

J2ME:
The Complete Reference

James Keogh

McGraw-Hill/Osborne
New York Chicago San Francisco

Lisbon London Madrid Mexico City
Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

Complete Reference / J2ME: TCR / Keogh / 222710-9
Blind Folio i

P:\010Comp\CompRef8\710-9\fm.vp
Friday, February 07, 2003 1:49:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

McGraw-Hill/Osborne
2600 Tenth Street
Berkeley, California 94710
U.S.A.

To arrange bulk purchase discounts for sales promotions, premiums, or fund-raisers,
please contact McGraw-Hill/Osborne at the above address. For information on
translations or book distributors outside the U.S.A., please see the International
Contact Information page immediately following the index of this book.

J2ME: The Complete Reference

Copyright © 2003 by The McGraw-Hill Companies. All rights reserved. Printed in the
United States of America. Except as permitted under the Copyright Act of 1976, no part
of this publication may be reproduced or distributed in any form or by any means,
or stored in a database or retrieval system, without the prior written permission of
publisher, with the exception that the program listings may be entered, stored, and
executed in a computer system, but they may not be reproduced for publication.

1234567890 CUS CUS 019876543

ISBN 0-07-222710-9

Publisher
Brandon A. Nordin

Vice President & Associate Publisher
Scott Rogers

Editorial Director
Wendy Rinaldi

Project Editor
Mark Karmendy

Acquisitions Coordinator
Athena Honore

Technical Editor
Amar Mehta

Copy Editor
Judith Brown

Proofreader
Claire Splan

Indexer
Jack Lewis

Computer Designers
Apollo Publishing Services,
Lucie Ericksen, Tara A. Davis

Illustrators
Michael Mueller, Lyssa Wald,
Melinda Moore Lytle

Series Design
Peter F. Hancik

This book was composed with Corel VENTURA™ Publisher.

Information has been obtained by McGraw-Hill/Osborne from sources believed to be reliable. However, because of the
possibility of human or mechanical error by our sources, McGraw-Hill/Osborne, or others, McGraw-Hill/Osborne does
not guarantee the accuracy, adequacy, or completeness of any information and is not responsible for any errors or omissions
or the results obtained from the use of such information.

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Front Matter
Blind Folio FM:ii

P:\010Comp\CompRef8\710-9\fm.vp
Friday, February 07, 2003 1:49:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This book is dedicated to Anne, Sandy,
Joanne, Amber-Leigh Christine, and Graaf,

without whose help and support
this book couldn’t be written.

Complete Reference / J2ME: TCR / Keogh / 222710-9
Blind Folio iii

Complete Reference / J2ME: TCR / Keogh / 222710-9
Blind Folio iii

P:\010Comp\CompRef8\710-9\fm.vp
Friday, February 07, 2003 1:49:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

About the Author

Jim Keogh teaches courses on Java Application
Development, including J2EE, at Columbia
University and is a member of the Java
Community Process Program. He developed
the first e-commerce track at Columbia and
became its first chairperson. Jim spent more
than a decade developing advanced systems
for major Wall Street firms. Jim introduced
PC Programming nationally in his Popular
Electronics Magazine column in 1982, four years
after Apple Computer started in a garage. He
was also a team member who built one of the
first Windows applications by a Wall Street
firm, featured by Bill Gates in 1986. Jim is the
author of 55 books, including his most recent
book, J2EE: The Complete Reference. He is also a
faculty member in the Graduate School, Saint
Peter’s College, New Jersey City, NJ.

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Front Matter
Blind Folio FM:iv

P:\010Comp\CompRef8\710-9\fm.vp
Friday, February 07, 2003 1:49:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Contents

Introduction . xv

Part I

J2ME Basics

1 J2ME Overview . 3
Java 2 Micro Edition and the World of Java . 4

Enter Java . 5
Java Virtual Machine . 6
J2EE and J2SE . 6
The Birth of J2EE . 8
Back to the Future: J2ME . 8

Inside J2ME . 9
How J2ME Is Organized . 12

J2ME and Wireless Devices . 14
What J2ME Isn’t . 15
Other Java Platforms for Small Computing Devices 16

v

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Front Matter
FM:v

P:\010Comp\CompRef8\710-9\fm.vp
Friday, February 07, 2003 1:49:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 Small Computing Technology . 17
Wireless Technology . 18

Radio Transmission . 20
Limitations of Radio Transmissions 20

Radio Data Networks . 22
Data Packets . 23

Microwave Technology . 24
Satellite Networks . 24

Mobile Radio Networks . 25
Cellular Telephone Networks . 26
Digital Wireless Transmissions . 28
Cell Phones and Text Input . 28

Messaging . 29
Personal Digital Assistants . 30
Mobile Power . 31
Set-Top Boxes . 32

Inside Look at a Set-Top Box . 33
Smart Cards . 34

3 J2ME Architecture and Development Environment . . . 35
J2ME Architecture . 36
Small Computing Device Requirements . 37
Run-Time Environment . 37

Inside the Java Archive File . 38
Inside the Java Application Descriptor File 40

MIDlet Programming . 42
Event Handling . 43
User Interfaces . 44
Device Data . 44

Java Language for J2ME . 45
J2ME Software Development Kits . 48
Hello World J2ME Style . 50

Compiling Hello World . 53
Running Hello World . 54
Deploying Hello World . 54
What to Do When Your MIDlet Doesn’t

Work Properly . 56
Multiple MIDlets in a MIDlet Suite . 57
J2ME Wireless Toolkit . 60

Building and Running a Project . 61
Hello World Project . 64
MIDlets on the Internet . 67

vi J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Front Matter

P:\010Comp\CompRef8\710-9\fm.vp
Friday, February 07, 2003 1:49:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4 J2ME Best Practices and Patterns 71
The Reality of Working in a J2ME World . 72
Best Practices . 73

Keep Applications Simple . 73
Keep Applications Small . 74
Limit the Use of Memory . 75
Off-Load Computations to the Server 76
Manage Your Application’s Use of a

Network Connection . 77
Simplify the User Interface . 79
Use Local Variables . 81
Don’t Concatenate Strings . 81
Avoid Synchronization . 82
Thread Group Class Workaround . 83
Upload Code from the Web Server . 83
Reading Settings from JAD Files . 84
Populating Drop-down Boxes . 85
Minimize Network Traffic . 86
Dealing with Time . 86
Automatic Data Synchronization . 88
Updating Data that Has Changed . 89
Be Careful of the Content of the startApp() Method 90

Part II

J2ME User Interface

5 Commands, Items, and Event Processing 95
J2ME User Interfaces . 96
Display Class . 96
The Palm OS Emulator . 102
Command Class . 103

CommandListener . 105
Item Class . 111

Item Listener . 114
Exception Handling . 118

Throwing a MIDletStateChangeException 120
Quick Reference Guide . 125

6 High-Level Display: Screens . 129
Screen Class . 130

C o n t e n t s vii

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Front Matter

P:\010Comp\CompRef8\710-9\fm.vp
Friday, February 07, 2003 1:49:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Alert Class . 131
Alert Sound . 138

Form Class . 139
Item Class . 143

ChoiceGroup Class . 144
DateField Class . 154
Gauge Class . 158
StringItem Class . 166
TextField Class . 170
ImageItem Class . 178

List Class . 182
Creating an Instance of a List Class 184

TextBox Class . 194
Creating an Instance of a TextBox Class 195

Ticker Class . 199
Quick Reference Guide . 203

7 Low-Level Display: Canvas . 213
The Canvas . 214

The Layout of a Canvas . 215
Proportional Coordinates . 216
The Pen . 217
Painting . 217
showNotify() and hideNotify() . 219

User Interactions . 219
Working with Key Codes . 220
Working with Game Actions . 227
Working with Pointer Devices . 233

Graphics . 239
Stroke Style and Color . 240
Lines . 243
Rectangles . 243
Arcs . 250
Text . 257
Images . 266
Repositioning Text and Images . 274

Clipping Regions . 279
Creating a Clipping Region . 280

Animation . 284
Quick Reference Guide . 286

viii J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Front Matter

P:\010Comp\CompRef8\710-9\fm.vp
Friday, February 07, 2003 1:49:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Part III

J2ME Data Management

8 Record Management System . 295
Record Storage . 296

The Record Store . 296
Record Store Scope . 297
Setting Up a Record Store . 298

Writing and Reading Records . 302
Creating a New Record and Reading an

Existing Record . 303
Writing and Reading Mixed Data Types 309

Record Enumeration . 316
Reading a Record of a Simple Data Type

into a RecordEnumeration . 319
Reading a Mixed Data Type Record into a

RecordEnumeration . 324
Sorting Records . 330

Sorting Single Data Type Records in a
RecordEnumeration . 332

Sorting Mixed Data Type Records in a
RecordEnumeration . 337

Searching Records . 345
Searching Single Data Type Records 345
Searching Mixed Data Type Records 352

RecordListener . 359
Quick Reference Guide . 360

9 J2ME Database Concepts . 365
Data . 366
Databases . 367

Tables . 367
Database Schema . 368

Identifying Information . 369
Decomposing Attributes to Data . 372
Defining Data . 375
Normalizing Data . 377
Grouping Data . 378
Creating Primary Keys . 380
Functional Dependency . 382
Transitive Dependencies . 382

C o n t e n t s ix

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Front Matter

P:\010Comp\CompRef8\710-9\fm.vp
Friday, February 07, 2003 1:49:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

x J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Front Matter

Foreign Keys . 383
Referential Integrity . 384

The Art of Indexing . 385
An Index in Motion . 386
Drawbacks of Using an Index . 386
Clustered Keys . 387
Derived Keys . 388
Selective Rows . 388
Exact Matches and Partial Matches . 389
Searching for Phonetic Matches . 389

10 JDBC Objects . 391
The Concept of JDBC . 392
JDBC Driver Types . 393

Type 1 JDBC to ODBC Driver . 393
Type 2 Java/Native Code Driver . 394
Type 3 JDBC Driver . 394
Type 4 JDBC Driver . 394

JDBC Packages . 394
Overview of the JDBC Process . 394

Load the JDBC Driver . 395
Connect to the DBMS . 395
Create and Execute an SQL Statement 395
Process Data Returned by the DBMS 396
Terminate the Connection to the DBMS 397

Database Connection . 398
The Connection . 398
Timeout . 401
Connection Pool . 402

Statement Objects . 403
The Statement Object . 403
PreparedStatement Object . 406
CallableStatement . 407

ResultSet . 409
Reading the ResultSet . 410
Scrollable ResultSet . 411
Specify Number of Rows to Return 414
Updatable ResultSet . 415

Transaction Processing . 419
Savepoints . 421
Batch Statements . 422
Keeping ResultSet Objects Open . 424

P:\010Comp\CompRef8\710-9\fm.vp
Friday, February 07, 2003 1:49:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C o n t e n t s xi

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Front Matter

RowSet . 424
Autogenerated Keys . 426

Metadata . 426
ResultSet Metadata . 426

Data Types . 427
Exceptions . 428
Quick Reference Guide . 429

11 JDBC and Embedded SQL . 453
Model Programs . 454

Model A Program . 455
Model B Program . 457

Tables . 460
Create a Table . 460
Drop a Table . 462

Indexing . 463
Create an Index . 463
Drop an Index . 465

Inserting Data into Tables . 465
Insert a Row . 466
Insert the System Date into a Column 466
Insert the System Time into a Column 467
Insert a Timestamp into a Column . 467

Selecting Data from a Table . 468
Select All Data from a Table . 469
Request One Column . 470
Request Multiple Columns . 471
Request Rows . 472
Request Rows and Columns . 472
AND, OR, and NOT Clauses . 473
Join Multiple Compound Expressions 474
Equal and Not Equal Operators . 475
Less Than and Greater Than Operators 477
Less Than or Equal to and Greater Than or Equal To 478
Between Operator . 479
LIKE Operator . 480
IS NULL Operator . 480
DISTINCT Modifier . 481
IN Modifier . 482

Metadata . 483
Number of Columns in ResultSet . 483
Data Type of Column . 484

P:\010Comp\CompRef8\710-9\fm.vp
Friday, February 07, 2003 1:49:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Name of Column . 484
Column Size . 484

Updating Tables . 485
Update Row and Column . 485
Update Multiple Rows . 486

Deleting Data from a Table . 490
Delete a Row from a Table . 490

Joining Tables . 491
Join Two Tables . 494
Parent-Child Join . 495
Multiple Comparison Join . 496
Multitable Join . 497
Create a Column Name Qualifier . 498
Create a Table Alias . 499
Inner and Outer Joins . 500

Calculating Data . 504
SUM() . 506
AVG() . 507
MIN() . 507
MAX() . 508
COUNT() . 508
Count All Rows in a Table . 509
Retrieve Multiple Counts . 509
Calculate a Subset of Rows . 510
NULLs and Duplicates . 511
Calculate Without Using Built-in Functions 511

Grouping and Ordering Data . 512
GROUP BY . 513
Group Multiple Columns . 514
Conditional Grouping . 515
Working with NULL Columns . 516
Sorting Data . 516
Sorting on Derived Data . 518

Subqueries . 519
Create a Subquery . 520
Conditional Testing . 521

VIEWs . 525
Rules for Using VIEWs . 525
Create a VIEW . 527
Select Columns to Appear in the VIEW 528
Create a Horizontal VIEW . 528
Create a Multitable VIEW . 529
Group and Sort VIEWs . 529
Modify a VIEW . 530

xii J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Front Matter

P:\010Comp\CompRef8\710-9\fm.vp
Friday, February 07, 2003 1:49:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C o n t e n t s xiii

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Front Matter

Part IV

J2ME Personal Information Manager Profile

12 Personal Information Manager . 535
PIM Databases . 536
The Contact Database . 538
The Event Database . 539
The To Do Database . 540
Error Handling . 541
A Model PIM Application . 541
Quick Reference Guide . 557

Part V

J2ME Networking and Web Services

13 Generic Connection Framework 575
The Connection . 576

Connection and Streams . 577
Hypertext Transfer Protocol . 580

Creating an HTTP Connection . 580
Reading Data from an HTTP Connection 582
The File Protocol . 589
Socket . 592

Communication Management Using HTTP Commands 597
HttpConnection . 598

Session Management . 608
Cookies . 610

Transmit as a Background Process . 610
Quick Reference Guide . 614

14 Web Services . 617
Web Services Basics . 618

The Tier . 618
Clients, Resources, and Components 620
Accessing Services . 621

J2EE Multi-Tier Web Services Architecture . 621
Client Tier Implementation . 624

Classification of Clients . 624
Web Tier Implementation . 625
Enterprise JavaBeans Tier Implementation . 626
Enterprise Information Systems Tier Implementation 627

P:\010Comp\CompRef8\710-9\fm.vp
Friday, February 07, 2003 1:49:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

xiv J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Front Matter

Inside WSDL . 629
The WSDL Document . 629
Types Element . 632
Message Element . 632
portType Element . 633
Binding Element . 634
Port Element . 635
Service Element . 635

J2ME MIDlets and Web Services . 636
JAX-RPC . 637
Holder Classes . 637

Remote Method Invocation Concept . 639
Remote Interface . 639

SOAP Basics . 639
SOAP Functionality . 640
The SOAP Message and Delivery Structure 640

WSDL and SOAP . 641
SOAP One-Way Transmission Primitive 642
SOAP Request-Response Transmission Primitive 643
SOAP Binding Element . 645
SOAP Operation Element . 645
SOAP Body Element . 646
SOAP Fault Element . 646
SOAP Header Element . 646
SOAP Address Element . 647

WSDL and HTTP Binding . 647
Quick Reference Guide . 649

Appendix: Quick Reference Guide 653

Index . 721

P:\010Comp\CompRef8\710-9\fm.vp
Friday, February 07, 2003 1:49:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Introduction

Java technology has evolved from a programming language designed to create
machine-independent embedded systems into a robust, vendor-independent,
machine-independent, server-side technology, enabling the corporate community

to realize the full potential of web-centric applications.
Java began with the release of the Java Development Kit (JDK). It was obvious from

the start that Java was on a fast track to becoming a solution to the problems of
many corporate systems. More interface and libraries were extended in the JDK as
the corporate world demanded—and received—application programming interfaces
(API) that addressed real-world situations.

JDK API extensions fully integrated into the JDK with the release of the Java 2
Standard Edition (J2SE) of the JDK. J2SE contains all the APIs needed to build industrial
strength Java applications. However, the corporate world felt J2SE lacked the strength
required for developing enterprise-wide applications and for servicing the needs of
developers of mobile and embedded systems.

Again the corporate community pushed Sun Microsystems, Inc. to revise Java
technology to address needs of an enterprise. Sun Microsystems, Inc. then launched
the Java Community Program (JCP) that brought together corporate users, vendors,
and technologists to develop a standard for enterprise Java APIs. The result is the

xv

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Front Matter
FM:xv

P:\010Comp\CompRef8\710-9\fm.vp
Friday, February 07, 2003 1:49:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

xvi J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Front Matter

Java 2 Platform Enterprise Edition, commonly referred to as Java 2 Enterprise Edition
(J2EE), and the Java 2 Micro Edition (J2ME).

Enterprise systems traditionally are designed using the client/server model, where
client-side systems request processing from service-side systems. However, enterprise
systems were undergoing their own evolution. A new model called Web services gradually
replaced the client/server model in corporations.

Application programmers assembled applications from an assortment of processing
components called Web services. Each Web service was independent from other Web
services and independent from applications. A client-side application communicates
with a middle-tier, server-side application, which in turns interacts with the necessary
Web services that are also located on the server side.

With the adoption of the Web services model in corporations, the JCP realized that
J2ME must also go through another evolutionary cycle. With the introduction of new
specifications, the Java community has merged J2ME technology with Web services
technology.

In addition to the acceptance of Web services, corporations are also seeking to merge
mobile technology such as Personal Digital Assistants and cellular phones with
corporate mainstream applications. J2ME, with the new PIM API, enables developers
to create sophisticated, wireless applications that have direct access to native PDA
databases. This enables corporate executives to use corporation’s PDA systems to
interact with data mantained by PDA native applications.

What’s Inside
This book covers in detail all aspect of J2ME, Web services, PDA, and cellular phone
application development. The book is divided into these five parts:

■ Part I: J2ME Basics

■ Part II: J2ME User Interface

■ Part III: J2ME Data Management

■ Part IV: J2ME Personal Information Manager Profile

■ Part V: J2ME Networking and Web Services

Part I: J2ME Basics
The new web-centric corporation is changing the way in which it delivers highly efficient,
enterprise-wide distributive systems to meet the round-the-clock instantaneous
demand expected by thousands of concurrent users—anywhere at any time. The old
way of building enterprise systems won’t solve today’s corporate IT requirements.

P:\010Comp\CompRef8\710-9\fm.vp
Friday, February 07, 2003 1:49:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

I n t r o d u c t i o n xvii

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Front Matter

Technologists at Sun Microsystems, Inc. and the Java Community Program rewrote
the way developers build large-scale, web-centric distributive systems by using Java 2
Enterprise Edition (J2EE), and Java 2 Micro Edition (J2ME). J2EE addresses complex
server-side issues faced by programmers who develop these systems while J2ME
addresses the need to create mobile and embedded components that makes these
systems accessible from other than the desktop.

Part I of this book introduces you to basic concepts used in J2ME technology and
in Web services technology. These concepts focus on four areas of interest, beginning
with an overview of J2ME that defines J2ME and illustrates J2ME’s role in the
evolutionary process of computer programming.

The next area of interest examines the J2ME architecture. It is here where you roll
up your sleeves and get your hands into the guts of J2ME to investigate how J2ME
works within the Web services infrastructure.

At first glance, you might feel overwhelmed by the power of J2ME. However, that
feeling is short-lived because the third area of interest in Part I discusses J2ME best
practices, showing you commonly used design principles used by J2ME programmers
to build advanced J2ME Web centric distributive systems.

Part I concludes with a look at J2ME design patterns used to solve common
programming problems that crop up during the development of a J2ME application.
After reading Part I you’ll have a solid basis for learning how to build your own J2ME
applications.

Part II: J2ME User Interface
Nearly every J2ME application that you develop requires a way for a user to interact
with it unless the application is an embedded closed system. An embedded closed
system such as those that control an automobile’s engine doesn’t require input from
the user but instead receives input from electro-mechanical devices.

A user interface for a J2ME application is similar to yet different from a user interface
that you find on a desktop application. They are similar in that both display options
available to the user and then receive and process the option selected by the user.
However, a J2ME user interface is less sophisticated than those found on a desktop
application because of the limited resources (i.e., screen size) that are available on a
J2ME device (i.e., cellular phone).

In Part II you’ll learn database concepts of the J2ME user interface. You’ll also
explore the details of building a J2ME user interface for your application.

Part III: J2ME Data Management
At the center of nearly every J2ME application is a repository of information that is
accessed and manipulated by both service-side components, such as Web services,
and client-side applications. A repository is a database management system that
stores, retrieves, and maintains the integrity of information stored in its databases.

P:\010Comp\CompRef8\710-9\fm.vp
Friday, February 07, 2003 1:49:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

xviii J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Front Matter

A J2ME application uses Java data objects, JDBC, and other technology that is
necessary to interact with a database management system to provide information to
the J2ME application.

In Part III you’ll learn database concepts in relation to Java data objects. You’ll also
explore the details of JDBC, which is used to connect to and interact with popular—
and some not so popular—database management systems. And you’ll also learn how
to create and send requests for information and integrate the results of a request into
your J2ME application.

Part IV: J2ME Personal Information Manager Profile
Many corporations have practically made PDAs the de facto standard as a mobile
communicator, especially since PDA and cell phone technologies have merged, causing
a blur between PDAs and cell phones. That is, a PDA can be used as a cell phone and
cell phones have incorporated PDA applications.

Until recently, J2ME applications lacked the capability to interact with native PDA
databases such as those used to store calendar, to-do list, and address information.

The Java Community Process released a new Personal Information Manager (PIM)
API, which is used to develop sophisticated J2ME applications. This enables J2ME
applications to interact with the J2ME device’s personal information database, which
is used by the device’s address book, notepad, and calendar applications.

In Part IV of this book you’ll explore this API and learn how to implement it in your
J2ME application.

Part V: J2ME Networking and Web Services
The glue that enables J2ME applications to interact with external applications, including
server-side components, is networking capabilities. In Part V you’ll learn how to
implement routines that take advantage of a J2ME device’s network features to open
communications with other applications using a hard-wire or wireless network
connection.

You’ll also learn how to utilize Web services to expand the horizon of your J2ME
application. Web services is a web of services where services are software building
blocks that are available on a network from which programmers can efficiently create
large-scale distributive systems.

You won’t learn how to create Web services, but you will learn how to utilize them
to increase the functionality of your J2ME application beyond the limited resources
found on a J2ME device. In Part V, you’ll also learn about Service Oriented Architecture
Protocol (SOAP), Universal Description, Discovery, and Web Services Description
Language (WSDL), and how to implement them in your J2ME application.

P:\010Comp\CompRef8\710-9\fm.vp
Friday, February 07, 2003 1:49:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A Book for All Programmers
J2ME: The Complete Reference is designed for all Java programmers, regardless of their
experience level. It does assume, however, that a reader is able to create at least a
runtime Java program. If you are just learning Java, this book will make an excellent
companion to any Java tutorial and serve as a source of answers to your specific
questions. Experienced Java, J2EE, and J2ME pros will find the coverage of the many
new Web services features.

Don’t Forget: Code on the Web
Remember, the source code for all of the programs in this book is available free of
charge on the Web at http://www.osborne.com. Downloading this code prevents you
from having to type in the examples.

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Front Matter

I n t r o d u c t i o n xix

P:\010Comp\CompRef8\710-9\fm.vp
Friday, February 07, 2003 1:49:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9
Blind Folio xx

P:\010Comp\CompRef8\710-9\fm.vp
Friday, February 07, 2003 1:49:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Part I
J2ME Basics

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 1
Blind Folio 1

P:\010Comp\CompRef8\710-9\ch01.vp
Thursday, February 06, 2003 10:52:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9
Blind Folio 2

P:\010Comp\CompRef8\710-9\ch01.vp
Thursday, February 06, 2003 10:52:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Chapter 1
J2ME Overview

3

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 1

P:\010Comp\CompRef8\710-9\ch01.vp
Thursday, February 06, 2003 10:52:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The term “computer” conjures many images, such as desktop and laptop computers
and servers stored in some highly protected remote location. And while these
images accurately portray a computer, there are many more computers that lack

the familiar computer shape but contain the same basic components found in desktop
and laptop computers. Cell phones, digital set-top boxes for cable television, car navigation
systems, pagers, and personal digital assistants are all computers. And computers are
also used to control the operation of automobiles, industrial equipment, and household
appliances. This new breed of computers, referred to as small computing devices, is
distinguishable from more traditional computers by their reduced resource availability.
Resources such as memory, permanent storage, and power are plentiful in traditional
computers but are precious in small computing devices.

Along with the new breed of computers came a new platform, on which developers
can build and implement programs to control small computing devices. The platform is
called Java 2 Micro Edition (J2ME). You’ll be introduced to J2ME in this chapter.

Java 2 Micro Edition and the World of Java
The computer revolution of the 1970s increased the demand for sophisticated computer
software to take advantage of the ever-increasing capacity of computers to process data.
The C programming language became the linchpin that enabled programmers to build
software that was just as robust as the computer it ran on.

As the 1980s approached, programmers were witnessing another spurt in the evolution
of programming language. Computer technology advanced beyond the capabilities of
the C programming language. The problem wasn’t new. It occurred previously and
caused the demise of generations of programming languages. The problem was that
programs were becoming too complicated to design, write, and manage to keep up with
the capabilities of computers. It was around this time that a design concept based
on Simula 67 and Smalltalk (from the late 1960s) moved programming to the next
evolutionary step. This was the period when object-oriented programming (OOP), and
with it a new programming language called C++, took programmers by storm.

In 1979, Bjarne Stroustrup of Bell Laboratories in New Jersey enhanced the C
programming language to include object-oriented features. He called the language C++.
(The ++ is the incremental operator in the C programming language.) C++ is truly an
enhancement of the C programming language, and it began as a preprocessor language
that was translated into C syntax before the program was processed by the compiler.

Stroustrup built on the concept of a class (taken from Simula 67 and Smalltalk), from
which instances of objects are created. A class contains data members and member
functions that define an object’s data and functionality. He also introduced the concept
of inheritance, which enabled a class to inherit some or all data members and member
functions from one or more other classes—all of which complements the concepts of
object-oriented programming. By 1988, ANSI officials standardized Stroustrup’s C++
specification.

4 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 1

P:\010Comp\CompRef8\710-9\ch01.vp
Thursday, February 06, 2003 10:52:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Enter Java
Just as C++ was becoming the language of choice for building industrial-strength
applications, another growth spurt in the evolution of programming language was
budding, fertilized by the latest disruptive technology—the World Wide Web. The
Internet had been a well-kept secret for decades before the National Science Foundation
(who oversaw the Internet) removed barriers that prevented commercialization. Until 1991
when it was opened to commerce, the Internet was the almost exclusive domain of
government agencies and the academic community. Once the barrier to commercialization
was lifted, the World Wide Web—one of several services offered on the Internet—
became a virtual community center where visitors could get free information about
practically anything and browse through thousands of virtual stores.

Browsers power the World Wide Web. A browser translates ASCII text files written
in HTML into an interactive display that can be interpreted on any machine. As long as
the browser is compatible with the correct version of HTML and HTTP implementation,
any computer running the browser can use the same HTML document without having
to modify it for a particular type of computer, which was something unheard of at the
time. Programs written in C or C++ are machine dependent and cannot run on a different
machine unless the program is recompiled.

The success of the Internet gave renewed focus to developing a machine-independent
programming language. And the same year the Internet was commercialized, five
technologists at Sun Microsystems set out to do just that. James Gosling, Patrick Naughton,
Chris Warth, Ed Frank, and Mike Sheridan spent 18 months developing the programming
language they called Oak, which was renamed Java when this new language made its
debut in 1995. Java went through numerous iterations between 1991 and 1995, during
which time many other technologists at Sun made substantial contributions to the
language. These included Bill Joy, Arthur van Hoff, Jonathan Payne, Frank Yelin, and
Tim Lindholm.

Although Java is closely associated with the Internet, it was developed as a language
for programming software that could be embedded into electronic devices regardless of
the type of CPU used by the device. This is known as the EmbeddedJava platform and
is in continuous use today for closed systems.

The Java team from Sun succeeded in creating a portable programming language,
something that had eluded programmers since computers were first programmed. Their
success, however, was far beyond their wildest dreams. The same concept used to make
Java programs portable to electronic devices also could be used to make Java programs
run on computers running Microsoft Windows, UNIX, and Macintosh.

Timing was perfect. The Internet/intranet had whetted corporate America’s appetite
for cost-effective, portable programs that could replace mission-critical applications
within the corporation. And Java had proven itself as a programming language used
to successfully develop machine-independent applications.

It was in the mid-1990s when the team from Sun realized that Java could be easily
adapted to develop software for the Internet/intranet. And toward the turn of the century,

C h a p t e r 1 : J 2 M E O v e r v i e w 5

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 1

J2
M

E
B

A
S
IC

S

P:\010Comp\CompRef8\710-9\ch01.vp
Thursday, February 06, 2003 10:52:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

many corporations embraced Java and began replacing legacy applications—many of
which were written in C and C++—with Java Internet/intranet-enabled applications.
In keeping with the genealogical philosophy that only the dominant genes are passed
on to the next generation, the Java development team at Sun incorporated the best of
Smalltalk (automatic garbage collection) and C++ into Java and left out features of C++
that were inefficient and not programmer friendly. The team also created new features
that gave Java the dynamics necessary for Internet-based programming.

Java Virtual Machine
Writing Java programs is similar to writing C++ programs in that the programmer writes
source code that contains instructions into an editor, or in an integrated development
environment, and then the source code is compiled. However, that’s where Java and C++
part ways. The compiling and linking process of a C++ program results in an executable
that can be run on an appropriate machine. In contrast, the Java compiler converts Java
source code into bytecode that is executed by the Java Virtual Machine (JVM).

Machine-specific instructions are not included in bytecode. Instead, they already reside
in the JVM, which is machine specific. This means that the bytecode might contain fewer
instructions that need to be translated than a comparable C++ program.

Although the Java compiler generates bytecode that must be interpreted by the JVM
at run time, the number of instructions that need translation are usually minimal and
have already been optimized by the Java compiler.

J2EE and J2SE
Java itself has undergone an evolution that rivals the evolution of programming languages
in general. Originally designed for programs that control electronic devices, Java made
waves in the Internet development community by providing a means to give intelligence
to passive web pages. The Java development team’s design has made Java the programming
language of choice for programming enterprise-wide, web-centric applications.

Information technology departments had always sought ways to create cost-effective
computer applications. One approach is client/server architecture that uses a two-tier
architecture in which client-side software requests services from server-side software.
For example, software running on the client captures a request for information from
a user and then formats the request into a query that is sent over the network to the
database server for processing. The database server then transmits the requested data
to the client, where software presents data to the user (Figure 1-1).

Increasingly, back-end systems and infrastructure grew as information technology
departments streamlined operations to deliver information and technology services to
the desktop. Client/server architecture exploded from a two-tier architecture to a multi-
tier web services architecture in which a client’s request to server-side software generates
requests to special software called a web service (Figure 1-2). This is very similar to asking
a travel agent to arrange for your vacation. The travel agent contacts hotels, airlines, the
car rental company, restaurants, and other vendors that are necessary to fulfill your request.

6 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 1

P:\010Comp\CompRef8\710-9\ch01.vp
Thursday, February 06, 2003 10:52:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 : J 2 M E O v e r v i e w 7

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 1

J2
M

E
B

A
S
IC

S

Figure 1-1. In client/server architecture, client-side software sends requests
to server-side software for processing.

Figure 1-2. Multi-tier web services architecture uses server-side software to receive
requests from client-side software that is processed by web services.

P:\010Comp\CompRef8\710-9\ch01.vp
Thursday, February 06, 2003 10:52:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Although multi-tier architecture provides services efficiently, it also complicates the
design, creation, debugging, distribution, and maintenance of an application because a
programmer must be assured that all tiers work together. However, the Java development
team enhanced the capabilities of Java to dramatically reduce the complexity of developing
a multi-tier application.

The team grouped features of Java into three editions, each having a software
development kit (SDK). The original edition of Java, called the Java 2 Standard Edition
(J2SE), consists of application programming interfaces (APIs) needed to build a
Java application or applet. The Java 2 Micro Edition (J2ME) contains the API used to create
applications for small computing devices, including wireless Java applications. And the
Java 2 Enterprise Edition (J2EE), an embellished version of the J2SE to accommodate
n-tier architecture, has the API to build applications for multi-tier architecture.

The Birth of J2EE
Java is an evolving programming language that began with the release of the Java
Development Kit (JDK). During this evolutionary process, the Java development team
included more interfaces and libraries as programmers demanded new APIs. These new
features were called extensions—APIs that were add-ons to the JDK. Sun Microsystems
incorporated these extensions into a new Java development kit called J2SE.

Information technology departments of corporations look toward web-centric
applications as a way to economize while offering streamlined services to employees
and customers. An increased emphasis was placed on server-side programming and on
development of vendor-independent APIs to access server-side systems. Sun responded
by creating the Java Community Process Program that invited corporate users, vendors,
and technologists to develop a standard for enterprise Java APIs. The Java Community
Process Program effort resulted in J2EE.

J2EE is a combination of several technologies that offer a cohesiveness to bond
together server-side systems and services to produce an industrial-strength scalable
environment within which web-centric applications can thrive. A critical ingredient
in the development of J2EE is the collaborative environment fostered by Sun, within
which vendors and technologists come together in the Java Community Process Program
to create and implement Java-based technologies.

Back to the Future: J2ME
Remember that Java began as a programming language to create programs for embedded
systems—microcomputers found in consumer and industrial products such as those
used to control automobiles and appliances. The development team at Sun worked on
Java in the early 1990s to address the programming needs of the fledgling embedded
computer market, but that effort was sidetracked by more compelling opportunities
presented by the Internet.

As those opportunities were addressed, a new breed of portable communications
devices opened other opportunities at the turn of the century. Cell phones expanded

8 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 1

P:\010Comp\CompRef8\710-9\ch01.vp
Thursday, February 06, 2003 10:52:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

from voice communications devices to voice and text communications devices. Pocket
electronic telephone directories evolved into personal digital assistants. Chipmakers
were releasing new products at this time that were designed to transfer computing power
from a desktop computer into mobile small computers that controlled gas pumps, cable
television boxes, and an assortment of other appliances.

The time was right for the next evolution of Java. However, instead of beefing up Java
with additional APIs, the team at Sun, along with the Java Community Process Program,
dismantled both the Java programming language and the Java Virtual Machine. They
stripped down Java APIs and the JVM to the minimum coding required to provide
intelligence to embedded systems and microcomputer devices. This was necessary
because of resource constraints imposed upon the hardware design of these devices. The
result of their efforts is J2ME. J2ME is a reduced version of the Java API and Java Virtual
Machine that is designed to operate within the sparse resources available in the new
breed of embedded computers and microcomputers.

Inside J2ME
J2ME made its debut at the JavaOne Developers Conference in mid-1999 and is targeted
to developers of intelligent wireless devices and small computing devices who need to
incorporate cross-platform functionality in their products.

Consumers of mobile and small computing devices have high performance
expectations for these devices. They demand quick response time, compatibility with
companion services, and full-featured applications in a small computing device.
Consumers expect the same software and capabilities found on their desktop and laptop
computers to be available on their cell phones and personal digital assistants.

To meet these expectations, developers have to rethink the way they build computer
systems. Developers need to harness the power of existing front-end and back-end
software found on business computers and transfer this power onto small, mobile, and
wireless computing devices. J2ME enables this transformation to occur with minimal
modifications, assuming that applications are scalable in design so that an application
can be custom-fitted to resources available on a small computing device.

Developers seeking to build applications that run on cell phones, personal digital
assistants, and various consumer and industrial appliances must strike a balance between
a thick client and a thin client. A thick client is front-end software that contains the logic
to handle a sizable amount of data processing for the system (Figure 1-3). A thin client is
front-end software that depends on back-end software for much of the system processing
(Figure 1-4).

Developers must determine the minimum client processing that will meet the end
user’s expectations of quick response time that is feasible within the limited resources
available on the small computing device. You’ll learn how to make this decision in
Chapter 4.

C h a p t e r 1 : J 2 M E O v e r v i e w 9

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 1

J2
M

E
B

A
S
IC

S

P:\010Comp\CompRef8\710-9\ch01.vp
Thursday, February 06, 2003 10:52:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

10 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 1

Figure 1-3. Thick client applications handle most processing locally.

Figure 1-4. Thin client applications rely on server-side software for nearly all
processing.

P:\010Comp\CompRef8\710-9\ch01.vp
Thursday, February 06, 2003 10:52:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Let’s say that a wireless small computing device is used to transact orders on the
floor of a stock exchange. The wireless device has software to handle user interactions
such as displaying an electronic form on the screen, collecting user input, processing the
input, and displaying results of the processing on the screen. The order form is displayed
on the screen, and the user enters information into the order form using various input
conventions commonly found in small wireless devices. The device collects the order
information and then processes the order using a combination of software on the wireless
device and software running on a back-end system that receives the order through
a wireless connection.

Processing on the wireless device might involve two steps: First the software performs
a simple validation process to assure that all fields on the form contain information. Next
the order is transmitted to the back-end system. The back-end system handles adjusting
account balances and other steps involved in processing the order. A confirmation notice
is returned by the back-end system to the wireless device, which displays the confirmation
notice on the screen (Figure 1-5).

A key benefit of using J2ME is that J2ME is compatible with all Java-enabled devices.
A Java-enabled device is any computer that runs the Java Virtual Machine. Ericsson,

C h a p t e r 1 : J 2 M E O v e r v i e w 11

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 1

J2
M

E
B

A
S
IC

S

Figure 1-5. A J2ME application is a balance between local and server-side
processing.

P:\010Comp\CompRef8\710-9\ch01.vp
Thursday, February 06, 2003 10:52:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Motorola, Nextel, Nokia, Panasonic, and RIM all have Java-enabled devices. In addition,
J2ME maintains the powerful security features found in the Java language and enables
wireless and small computing devices to access resources that are within an organization’s
firewall.

How J2ME Is Organized
Traditional computing devices use fairly standard hardware configurations such as
a display, keyboard, mouse, and large amounts of memory and permanent storage.
However, the new breed of computing devices lacks hardware configuration continuity
among devices. Some devices don’t have a display, permanent storage, keyboard,
or mouse. And memory availability is inconsistent among small computing devices.

The lack of uniform hardware configuration among the small computing devices poses
a formidable challenge for the Java Community Process Program, which is charged with
developing standards for the JVM and the J2ME for small computing devices.

J2ME must service many different kinds of small computing devices, including screen-
phones, digital set-top boxes used for cable television, cell phones, and personal digital
assistants. The challenge for the Java Community Process Program is to develop a Java
standard that can be implemented on small computing devices that have nonstandard
hardware configurations.

The Java Community Process Program has used a twofold approach to addressing
the needs of small computing devices. First, they defined the Java run-time environment
and core classes that operate on each device. This is referred to as the configuration. A
configuration defines the Java Virtual Machine for a particular small computing device.
There are two configurations, one for handheld devices and the other for plug-in devices.
Next, the Java Community Process Program defined a profile for categories of small
computing devices. A profile consists of classes that enable developers to implement
features found on a related group of small computing devices.

J2ME Configurations
There are two configurations for J2ME as of this writing. These are Connected Limited
Device Configuration (CLDC) and the Connected Device Configuration (CDC). The CLDC
is designed for 16-bit or 32-bit small computing devices with limited amounts of memory.
CLDC devices usually have between 160KB and 512KB of available memory and are
battery powered. They also use an inconsistent, small-bandwidth network wireless
connection and may not have a user interface. CLDC devices use the KJava Virtual
Machine (KVM) implementation, which is a stripped-down version of the JVM. CLDC
devices include pagers, personal digital assistants, cell phones, dedicated terminals, and
handheld consumer devices with between 128KB and 512KB of memory.

CDC devices use a 32-bit architecture, have at least two megabytes of memory
available, and implement a complete functional JVM. CDC devices include digital set-top
boxes, home appliances, navigation systems, point-of-sale terminals, and smart phones.

12 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 1

P:\010Comp\CompRef8\710-9\ch01.vp
Thursday, February 06, 2003 10:52:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

J2ME Profiles
A profile consists of Java classes that enable implementation of features for either a
particular small computing device or for a class of small computing devices. Small
computing technology continues to evolve, and with that, there is an ongoing process
of defining J2ME profiles. Seven profiles have been defined as of this writing. These are
the Foundation Profile, Game Profile, Mobile Information Device Profile, PDA Profile,
Personal Profile, Personal Basis Profile, and RMI Profile.

■ The Foundation Profile is used with the CDC configuration and is the core for
nearly all other profiles used with the CDC configuration because the Foundation
Profile contains core Java classes.

■ The Game Profile is also used with the CDC configuration and contains the
necessary classes for developing game applications for any small computing
device that uses the CDC configuration.

■ The Mobile Information Device Profile (MIDP) is used with the CLDC
configuration and contains classes that provide local storage, a user interface,
and networking capabilities to an application that runs on a mobile computing
device such as Palm OS devices. MIDP is used with wireless Java applications.

■ The PDA Profile (PDAP) is used with the CLDC configuration and contains classes
that utilize sophisticated resources found on personal digital assistants. These
features include better displays and larger memory than similar resources found
on MIDP mobile devices (such as cell phones).

■ The Personal Profile is used with the CDC configuration and the Foundation Profile
and contains classes to implement a complex user interface. The Foundation
Profile provides core classes, and the Personal Profiles provide classes to implement
a sophisticated user interface, which is a user interface that is capable of displaying
multiple windows at a time.

■ The Personal Basis Profile is similar to the Personal Profile in that it is used with
the CDC configuration and the Foundation Profile. However, the Personal Basis
Profile provides classes to implement a simple user interface, which is a user
interface that is capable of displaying one window at a time.

■ The RMI Profile is used with the CDC configuration and the Foundation Profile
to provide Remote Method Invocation classes to the core classes contained in the
Foundation Profile.

There will likely be many profiles as the proliferation of small computing devices
continues. Industry groups within the Java Community Process Program (java.sun.com/
aboutjava/communityprocess) define profiles. Each group establishes the standard
profile used by small computing devices manufactured by that industry.

A CDC profile is defined by expanding upon core Java classes found in the Foundation
Profile with classes specifically targeted to a class of small computing device. These

C h a p t e r 1 : J 2 M E O v e r v i e w 13

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 1

J2
M

E
B

A
S
IC

S

P:\010Comp\CompRef8\710-9\ch01.vp
Thursday, February 06, 2003 10:52:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

device-specific classes are contained in a new profile that enables developers to create
industrial-strength applications for those devices. However, if the Foundation Profile
is specific to CDC, not all profiles are expanded upon the core classes found in the
Foundation Profile.

Keep in mind that applications can access a small computing device’s software and
hardware features only if the necessary classes to do so are contained in the JVM and in
the profile used by the developer.

J2ME and Wireless Devices
With the dramatic increase and sophistication of mobile communications devices such as
cell phones came demand for applications that can run on those devices. Consumers and
corporations want to expand mobile communications devices from voice communications
to applications traditionally found on laptops and PCs. They want to send and receive
email, store and retrieve personal information, perform sophisticated calculations, and
play games.

Developers, mobile communications device manufacturers, and mobile network
providers are anxious to fill this need, but there is a serious hurdle: mobile communications
devices utilize a number of different application platforms and operating systems. Without
tweaking the code, an application written for one device cannot run on another device.
Mobile communications devices lack a standard application platform and operating
system, which has made developing applications for mobile communications devices
a risky economic venture for developers.

The lack of standards is nothing new to computing or to any developing technology.
Traditionally, manufacturers of hardware devices try to corner the market and enforce their
own proprietary standard as the de facto standard for the industry. Usually one upstart
succeeds, as in the case of Microsoft. Other times, industry leaders form a consortium,
such as the Java Community Process Program, to collectively develop a standard.

The Wireless Application Protocol (WAP) forum became the initial industry group
that set out to create standards for wireless technology. Ericsson, Motorola, Nokia, and
Unwired Planet formed the WAP forum in 1997, and it has since grown to include nearly
all mobile device manufacturers, mobile network providers, and developers. The WAP
forum created mobile communications device standards referred to as the WAP standard.
The WAP standard is an enhancement of HTML, XML, and TCP/IP. One element of this
standard is the Wireless Markup Language specification, which consists of a blend of
HTML and XML and is used by developers to create documents that can be displayed by
a microbrowser. A microbrowser is a diminutive web browser that operates on a mobile
communications device.

The WAP standard also includes specifications for a Wireless Telephony Application
Interface (WTAI) specification and the WMLScript specification. WTAI is used to create
an interface for applications that run on a mobile communications device. WMLScript
is a stripped-down version of JavaScript.

14 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 1

P:\010Comp\CompRef8\710-9\ch01.vp
Thursday, February 06, 2003 10:52:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

While the WAP forum provided the framework within which developers can build
mobile communications device applications, they still had to overcome a common
hurdle found in every rapidly developing technology. The sophistication of mobile
communications devices, phenomenal growth of the market, and high demand for
industrial-strength mobile communications applications out-paced the ability to define
and implement new mobile communications device standards.

Many sophisticated applications designed for mobile communications devices require
the device to process information beyond the capabilities of the WAP specification. J2ME
provided the standard to fill this gap. For example, a sales representative wants to check
available flights and hotel accommodations, purchase an airline ticket, book the hotel
and car rental, and then send the itinerary to a client, all while sitting in a taxi in traffic.
The sales representative also wants the itinerary stored on the mobile communications
device and retrieved during the trip.

J2ME applications referred to as a MIDlet can run on practically any mobile
communications device that implements a JVM and MIDP. This encourages developers
to invest time and money in building applications for mobile communications devices
without the risk that the application is device dependent. However, J2ME isn’t seen as
a replacement for the WAP specification because both are complementary technologies.
Developers whose applications are light-client based continue to use WML and
WMLScript. Developers turn to J2ME for heavier clients that require sophisticated
processing on the mobile communications device.

What J2ME Isn’t
The hype about any technology can cause misperceptions about the capabilities of an
evolving technology, and J2ME isn’t immune to such misunderstandings. Therefore, it is
important to understand the limitations of J2ME.

Although J2ME is J2SE without some classes, developers shouldn’t assume that
existing Java applications would run in the J2ME environment without requiring
modification to the code. The write-once-run-anywhere philosophy of Java is a bit
overstated when it comes to J2ME because of resource constraints imposed by small
computing devices.

Some J2SE applications require classes that are not available in J2ME. Likewise,
resources required by the J2SE application may not be available on the small computing
device. This means that developers must expect to test existing J2SE applications in the
J2ME environment and probably pare down the application to run using limited resources.

Another misconception about J2ME is the Java Virtual Machine implementation on
the small computing device. Small computing devices use one of two Java Virtual Machine
implementations. Devices that use the CDC configuration use the full Java Virtual
Machine implementation, while devices that use the CLDC configuration use the KJava
Virtual Machine implementation.

C h a p t e r 1 : J 2 M E O v e r v i e w 15

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 1

J2
M

E
B

A
S
IC

S

P:\010Comp\CompRef8\710-9\ch01.vp
Thursday, February 06, 2003 10:52:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

A MIDlet is not invoked the same way as a J2SE application is invoked because many
small computing devices don’t have a command prompt. MIDlets are controlled by
application management software (AMS). The manufacturer of a small computing device
provides AMS, although third-party vendors might also create AMS. AMS interacts with
native operations of a small computing device and controls the life cycle of a MIDlet.
The life cycle consists of installation and upgrades as well as version management
and uninstalling the application. Likewise, AMS is responsible for starting, managing
execution, and stopping the MIDlet.

Other Java Platforms for
Small Computing Devices
J2ME isn’t the only Java platform designed for small computing devices. Other Java
platforms—EmbeddedJava, JavaCard, and PersonalJava—predate J2ME.

EmbeddedJava is the Java platform used for small computing devices that are
dedicated to one purpose and have a 32-bit processor and 512KB of ROM and RAM.
EmbeddedJava is based on JDK 1.1 and is being replaced by the CDLC configuration. For
more information about EmbeddedJava, visit java.sun.com/products/embeddedjava.

JavaCard is the Java platform used for smart cards, the smallest computing device
that supports Java. The JavaCard VM runs on small computing devices that have
16KB of nonvolatile memory and 512 bytes of volatile memory. However, unlike the
EmbeddedJava platform, there isn’t any movement to replace JavaCard with J2ME because
of the resource constraints of the current generation of smart cards. Future smart card
generations will probably have great resources available and be compatible with the
CDLC configuration. You can find more information about JavaCard in java.sun.com/
products/javacard.

PersonalJava is the Java platform used for small computing devices that have a
maximum of 2MB of ROM and a minimum of 1MB of RAM, such as large PDAs and
mobile communications devices. PersonalJava uses JDK 1.1.8 and the JVM and will be
replaced by the CDC configuration and the Personal Basis Profile and Personal Profile.
More information about PersonalJava is available at java.sun.com/products/personaljava.

16 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 1

P:\010Comp\CompRef8\710-9\ch01.vp
Thursday, February 06, 2003 10:52:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 2
Small Computing
Technology

17

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 2

P:\010Comp\CompRef8\710-9\ch02.vp
Thursday, February 06, 2003 11:06:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

“Beam me up Scotty” is a famous line from Star Trek. Captain Kirk made this
request using a clamshell-shaped communicator. Granted there has yet to be
anyone transported on light waves, but clamshell-shaped communicators are

used everyday. We call it a cellular telephone.
Today we can speak with anyone, anywhere, anytime. And tomorrow we’ll read any

book, shop in any store, check up on our kids and our house, pay our bills, and do more
by using small computing devices and mobile communications devices. These devices
have already changed our lives. A friend of mine is responsible for building alliances
among corporate executives and investment bankers. Very few people know where my
friend physically works—and no one really cares. Calls are directed to a cellular telephone
and roll over to voice mail when there is no answer. Emails are retrieved using a laptop
that is sometimes connected to the email server through a traditional telephone line and
other times linked using a wireless connection. My friend’s office is where my friend is.

This is all made possible by software developers exploiting features of small computing
and mobile computing devices. Before you learn to build those applications, you should
become familiar with the technology that makes this possible. In this chapter you’ll
explore the technology used in small computing devices and mobile computing devices.

Wireless Technology
Wireless technology that is used in small computing devices and mobile communications
devices is the same radio technology Guglielmo Marconi used to provide an alternative
communication means to the telegraph and the telephone.

Radio technology is based on the wave phenomenon. A wave is a characteristic of
vibrating molecules, which you see whenever you move a knife up and down in the still
water of a dishpan (Figure 2-1). The force of the knife against the surface of the water
causes water molecules to vibrate and form a wave along the surface of the water.

The force used to propel the knife determines the wave height. The greater the force,
the higher the wave and the greater the distance the wave travels across the surface of the
water. The number of times the knife is moved up and down in the water determines
the frequency of the wave. Each time the knife is plunged into the water another wave
is generated, causing a rippling effect across the water’s surface.

18 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 2

Figure 2-1. Moving a knife up and down in water causes the formation of a wave.

P:\010Comp\CompRef8\710-9\ch02.vp
Thursday, February 06, 2003 11:06:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Waves are measured in two ways: by the wave height and by the wave frequency. The
wave height is referred to as the wave’s amplitude, and the frequency of the wave is simply
called frequency, which is measured as the number of waves per second (Figure 2-2).

The frequency of a wave causes the wave to take on specific characteristics. For
example, a low-frequency wave called a sound wave produces a frequency that can be
heard by humans. Sound waves travel a short distance through air. A higher-frequency
wave called a radio wave cannot be heard but can travel long distances in all directions
and through solid objects. And even higher frequencies called light waves take on other
characteristics. Light waves can be seen, travel a long distance in a limited direction, and
cannot penetrate solid objects.

Waves are grouped according to frequencies that have similar characteristics in the
electromagnetic spectrum (Figure 2-3). For example, there is an audio spectrum, a radio
spectrum, and a light spectrum. There are also subgroups within each spectrum, each
of which has a variation of the characteristics of the spectrum. The radio spectrum
has divisions for television, microwave, and X-ray frequencies. The light spectrum has
divisions for infrared light, visible light, and ultraviolet light.

Many small computing devices and mobile communications devices use radio waves
and light waves to transmit and receive information. Radio waves are used by cellular
telephones, wireless modems, and wireless personal digital assistants (PDAs) for
communication. Infrared light waves are used by PDAs to exchange information between
PDAs and laptop/desktop computers and among other PDAs.

C h a p t e r 2 : S m a l l C o m p u t i n g T e c h n o l o g y 19

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 2

J2
M

E
B

A
S
IC

S

Figure 2-2. Waves are measured by wave height and wave frequency.

Figure 2-3. The electromagnetic spectrum groups frequencies that have similar
characteristics.

P:\010Comp\CompRef8\710-9\ch02.vp
Thursday, February 06, 2003 11:06:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Radio signals are transmitted in the frequency range from 10 kilohertz to 300,000
megahertz. A hertz is one wave per second, kilohertz is 1,000 waves per second, and
a megahertz is a million waves per second.

Radio Transmission
Radio transmission consists of two components. These are a transmitter and a receiver,
both of which must be tuned to the same frequency. A transmitter broadcasts a steady
wave called a carrier signal that does not contain any information (Figure 2-4).
Conceptually, you can think of a telephone dial tone as a carrier signal.

A carrier signal has two purposes. First, the carrier signal establishes a communications
channel with the receiver (Figure 2-5). The receiver knows the channel is open when the
carrier signal is detected. The carrier signal also serves as the wave that is encoded with
information during transmission.

A radio transmitter encodes patterns of sound waves detected by a microphone by
modifying the carrier signal wave (Figure 2-6). The receiver decodes the pattern from
the carrier wave and translates the pattern into electrical current that directs a speaker
to regenerate the sound waves captured by the microphone attached to the transmitter.

Limitations of Radio Transmissions
The distance a radio signal travels is based on the amount of energy used to transmit the
radio wave. This is similar to the energy used to plunge the knife into the dishpan of
water. Using a relatively small amount of energy causes the wave to barely reach the side
of the dishpan. However, plunging the knife into the dishpan with force causes the wave
to overflow the sides of the dishpan.

20 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 2

Figure 2-4. A carrier signal is a broadcast wave that does not contain any
information.

P:\010Comp\CompRef8\710-9\ch02.vp
Thursday, February 06, 2003 11:06:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Radio waves are measured in watts. A radio signal transmitted at 50 megawatts travels
twice the distance a 25-megawatt radio signal travels. A radio signal gradually loses
power the farther it travels away from the transmitter. Radio engineers extend the range
of transmission by using a repeater. A repeater (Figure 2-7) is both a radio receiver and
radio transmitter, also known as a transceiver. A repeater receives a radio signal and then
retransmits the signal, thereby increasing the distance the signal travels. Retransmission
introduces new energy to power the signal for longer distances.

C h a p t e r 2 : S m a l l C o m p u t i n g T e c h n o l o g y 21

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 2

J2
M

E
B

A
S
IC

S

Figure 2-5. A carrier signal is used to establish a communications channel.

Figure 2-6. Sound waves detected by a microphone modify the carrier signal.

P:\010Comp\CompRef8\710-9\ch02.vp
Thursday, February 06, 2003 11:06:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

22 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 2

Radio Data Networks
Radio transmissions are commonly used to broadcast analog voice information on radio
waves that travel 360 degrees over the air and through many physical obstructions.
However, radio technology is also used to transmit digital information on those same
waves.

Information is traditionally encoded as variations of an aspect of the wave. Encoding
is achieved by modifying the amplitude of the wave, known as amplitude modulation (AM),
or modifying the frequency of the wave, called frequency modulation (FM). Encoding uses
many values to represent information using AM and FM.

Hundreds of thousands of radio waves are simultaneously and independently
transmitted. Sometimes a radio receiver picks up an erroneous radio signal while tuned
to its primary frequency. The erroneous radio signal is known as interference and can
disrupt the accurate decoding of the transmitted information.

Today information is digitally encoded using binary values to represent information
transmitted on radio waves. Digitizing information enables receivers to accurately
decode transmitted information because the degree of uncertainty in the encoded
information is far less than experienced in analog encoded information.

Both an analog signal and a digital signal are waves. They differ by the way
information is encoded into the signal. Information is represented in an analog signal as
many values. The receiver must determine whether each value is a component of the
signal or is interference. The same information is represented in a digital signal as one of
two discrete binary values. The receiver ignores a signal whose value is not a binary value.
Furthermore, error-checking software in the receiver determines whether an erroneous
digital signal is received.

Radio transmitters, repeaters, and receivers are organized to form a radio network
that extends transmissions over great distances. Radio networks are scalable because
repeaters are placed in the network to increase the distance that the original transmission
travels.

Figure 2-7. A repeater receives and retransmits a signal.

P:\010Comp\CompRef8\710-9\ch02.vp
Thursday, February 06, 2003 11:06:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

There are three types of wireless radio networks: low-power single frequency, high-
power single frequency, and spread spectrum. Low-power single frequency covers an
area of 30 meters, which is about the area of a small building such as a warehouse or
a stock exchange trading floor. A high-power single frequency wireless radio network
can cover a metropolitan area.

Both low-power single frequency and high-power single frequency radio networks
are exposed to the same security risk. Anyone tuned into the radio frequency receives the
transmitted signal. Therefore, all transmissions must be encrypted to hinder eavesdropping
on the signal.

A spread-spectrum wireless radio network uses multiple frequencies to transmit a
signal using either direct sequence modulation or frequency hopping. Direct sequence
modulation breaks down information into parts and then simultaneously transmits each
part over a different frequency. The receiver must tune to each frequency to receive
each part, then reassemble parts into the full message. Frequency hopping transmits
information rotating among a set of frequencies. The receiver must be tuned to each
frequency according to the transmission rotation.

Most radio frequencies are controlled by the Federal Communications Commission
and require an FCC license before a wireless radio network can be established.

Data Packets
Radio transmitters send one message at a time over a communications channel. This is
similar to sending one telephone call at a time over a telephone line. Each telephone
call is placed in a queue while waiting for the current telephone call to end. As you can
imagine, telephone calls could easily back up whenever there are more calls than there
are empty telephone lines.

Digital radio networks use packet switching technology to transmit multiple messages
simultaneously over a communications channel. Each message is divided into small
pieces and placed in an electronic envelope called a packet (Figure 2-8). A packet contains
information that identifies the sender and the receiver, a digitized portion of the message,
the sequence number of the packet, and error-checking information. To reassemble

C h a p t e r 2 : S m a l l C o m p u t i n g T e c h n o l o g y 23

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 2

J2
M

E
B

A
S
IC

S

Figure 2-8. A message is divided into small pieces that are placed in an electronic
envelope called a packet.

P:\010Comp\CompRef8\710-9\ch02.vp
Thursday, February 06, 2003 11:06:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

packets, the receiver uses the packet sequence number. A transmitter continuously
sends packets from multiple messages over a communications channel.

Packet switching technology is more efficient than traditional transmission methods
because packet switching utilizes pauses in a transmission to send packets. A transmission
pause is caused when a message isn’t ready for transmission. This is similar to a pause
in a telephone conversation.

Software running on the transmitter manages multiple outgoing messages to assure
that each message is divided and placed into packets and the packets are transmitted.
Software running on the receiver manages incoming packets, reconstructs packets into
original messages, and forwards messages to the appropriate application software for
future processing.

Microwave Technology
Microwave is a subspectrum of the radio spectrum and has many characteristics of
radio waves discussed previously in this chapter. However, microwaves travel in one
unobstructed direction. Any obstruction, such as a mountain or building, disrupts
microwave transmission.

There are two kinds of microwave networks: terrestrial and satellites. Terrestrial
microwave networks transmit a microwave signal over a terrain, such as buildings in
an office complex. Satellite microwave networks transmit a microwave signal between
a ground station and orbiting satellites and among orbiting satellites (Figure 2-9).

Earth-to-satellite transmissions are slower than terrestrial microwave transmissions,
which causes unnatural pauses to occur in the transmission. This is noticeable during
a live international television broadcast when a pause occurs between the time a television
news anchor questions a reporter and the reporter’s response. Therefore, satellite
microwave transmission may not be suitable for real-time two-way communications
where nearly instantaneous transmission is expected.

Satellite Networks
A satellite is an orbiting repeater that receives a microwave transmission from an earth
station or from other satellites, then retransmits the signal to a microwave receiver located
on the ground or in another satellite. The first generation of satellites used for the military
were stationed in geosynchronous orbit at a fixed location 22,300 miles above the surface
of the earth. However, the geosynchronous orbit hampers real-time transmission because
of the signal delay between earth and the satellite, which makes geosynchronous orbiting
satellites unacceptable for commercial two-way real-time communication.

A newer breed of satellite technology, called Low Earth Orbiting Satellite (LEOS),
overcame the communications delay by positioning satellites lower than geosynchronous
orbit—between 435 miles and 1,500 miles above the earth. LEOS eliminated delays in
communication, but introduced two new problems. First, LEOS covers a smaller area of
the earth, and therefore more satellites are required to cover the same ground area as

24 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 2

P:\010Comp\CompRef8\710-9\ch02.vp
Thursday, February 06, 2003 11:06:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

covered by geosynchronous satellites. The other problem is the orbital speed. LEOS
travels faster than the earth’s rotation and requires ground stations to locate LEOS before
beginning transmission. Geosynchronous satellites always remain in the same position
above the ground station.

In an effort to compromise between LEOS and geosynchronous satellites, another
breed of satellites called the Middle Earth Orbit (MEO) was developed. MEO orbits
between LEOS and geosynchronous satellites—6,000 to 13,000 miles—and thus has less
delay than geosynchronous satellites and poses less difficulty than LEOS for ground
stations to locate.

Mobile Radio Networks
The infrastructure of cellular telephone technology is the backbone of wireless small
computing mobile communications and enables these devices to connect to traditional
communications systems. The forerunner of cellular telephone technology is a private
radio technology. Service and trucking companies and government agencies use
private radio technology to communicate with employees over frequencies isolated from
other radio frequencies. For example, package carriers like Federal Express use private
radio networks to track packages. Private radio transmitted analog information when
first introduced but later expanded into digital communication as the need for paging
and messaging services materialized.

C h a p t e r 2 : S m a l l C o m p u t i n g T e c h n o l o g y 25

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 2

J2
M

E
B

A
S
IC

S

Figure 2-9. A microwave signal is used to communicate among orbiting satellites
and ground stations.

P:\010Comp\CompRef8\710-9\ch02.vp
Thursday, February 06, 2003 11:06:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Companies can operate their own private radio network by acquiring broadcast
rights to a specified radio frequency from the Federal Communications Commission
and purchasing the necessary broadcast equipment. Alternatively, companies can lease
broadcast time from organizations that offer Specialized Mobile Radio (SMR) network
services.

Cellular Telephone Networks
A cellular telephone network comprises mobile transceivers, called cellular telephones,
and a network of fixed transceivers, called base stations, that are strategically positioned
along the terrain (Figure 2-10). Base stations are used to connect cellular telephones to
the ground-based telephone system.

There are two kinds of cellular networks: analog and digital. Cellular telephones
began in the 1970s with the expansion of AT&T into the mobile telephone service market.
Cellular telephones used analog technology at that time. This changed in mid-1995 when
IBM developed technology that digitized information transmitted over the cellular
telephone network. Cellular telephone networks then became capable of transmitting
both voice and data.

The transmission range of a cellular telephone is determined by the strength of the
battery powering the phone and the location of the nearest base station. Transmission
range drops as power is drained from the cellular telephone and the telephone is taken
farther from a base station.

Engineers can provide reliable cellular telephone transmissions by strategically
positioning many base stations around the country so that a cellular telephone is always
within the vicinity of a base station. Cellular transceivers are also designed to minimize
the power drain that occurs from transmitting and receiving signals.

26 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 2

Figure 2-10. Fixed transceivers called base stations form a communications cell.

P:\010Comp\CompRef8\710-9\ch02.vp
Thursday, February 06, 2003 11:06:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

A cellular telephone is in continuous communication with base stations as it moves
throughout the cellular network. Transmission from a cellular telephone is broadcast
360 degrees and is received by a base station closest to the cellular telephone. Cellular
telephone networks are designed so that the signal is automatically transferred to the
next closest base station using a technique called a hand-off: the connection between
the cellular telephone and the cellular telephone network is dropped for a fraction of
a second, the cellular telephone moves between base stations, and the next base station
reestablishes the signal.

The area covered by a base station is called a cell. The split-second gap during the
hand-off goes unnoticed most times, as long as cells are near each other. The hand-off
doesn’t have a negative effect on voice communications because persons on the call adjust
for the slight break in communication. However, the communications drop has a dramatic
effect on data communication over a cellular telephone network. Analog cellular telephone
networks lose data during transmissions when a hand-off occurs, which is unacceptable
for data communications. Digital cellular telephone networks also lose connection during
hand-off, but a digital cellular telephone network uses software to recover lost data by
requesting that the transceiver resend the data.

Digital cellular telephone networks trap and correct errors. Analog cellular telephone
networks lack error-control capability. Analog networks transmit one long burst of
information over a communications channel that can either be used for transmitting or
receiving information but not both simultaneously, which is called half-duplex. In contrast,
digital cellular telephone networks transmit information in small packets, called frames
or cells, as described previously in this chapter. Pauses between transmissions give the
receiver an opportunity to notify the transmitter if an error occurred in receiving a packet.

Cellular Digital Packet Data
IBM pioneered digital cellular telephone networks with the introduction of their Cellular
Digital Packet Data (CDPD) protocol, commonly known as IP wireless. IP wireless
requires that an Internet protocol (IP) address be assigned to each cellular transceiver
in the cellular telephone network. An IP address uniquely identifies each device within
the cellular telephone network and is used to reestablish a connection if communication
is lost during a hand-off.

Base stations have multiple entry points called ports, each of which is identified by
a unique port number. A transceiver is assigned to a base station port in the cellular
telephone network. A transceiver continues to transmit to the port number until a hand-
off occurs, at which time the transceiver is assigned another port number associated
with the next base station.

IBM developed a special modem called a CDPD modem for transmitting digital
information over an analog cellular telephone network. The CDPD modem transmits
small bursts of encrypted data, which frees the communication channel between bursts
to transmit error messages.

Speed is the major stumbling block in using a cellular telephone network to transmit
data. The standard analog transmission rate of a cellular telephone network is 9,600 bits

C h a p t e r 2 : S m a l l C o m p u t i n g T e c h n o l o g y 27

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 2

J2
M

E
B

A
S
IC

S

P:\010Comp\CompRef8\710-9\ch02.vp
Thursday, February 06, 2003 11:06:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

per second, which is increased to 14,400 bits per second using CDPD. These speeds are
sufficient to transmit delivery information, inquire about the status of an order, or provide
remote access to email, but are insufficient for full Internet access.

Digital Wireless Transmissions
A digital cellular telephone network can transmit both voice and data simultaneously
using multiplex transmission. There are three multiplex transmission methods used on
a digital cellular telephone network: Code Division Multiple Access (CDMA), Time
Division Multiple Access (TDMA), and a third-generation wireless standard called 3G.

CDMA uses spread-spectrum transmission to use multiple communications channels
for transmission, which dramatically increases data throughput over the network. The
cellular telephone temporarily uses on-board memory in transceivers to store data to keep
transmissions flowing during a hand-off. This is called a soft hand-off. TDMA uses one
communications channel shared among transmissions by using time slots. Transmission
time is divided into time slots, and then each packet is assigned to a time slot. The 3G
multiplexing technique uses either CDMA or TDMA to increase the throughput to 56
kilobits per second.

Cell Phones and Text Input
Traditional cellular telephones have a keypad that contains numbers and letters.
(European traditional cellular telephones have only numbers.) Letters were designed
to identify telephone exchanges—local switching stations that serviced a group of
customers. Each switching station was referred to by a name that implied the location
of the switching station. For example, there was a switching station called Murray Hill
that covered the Murray Hill section of New York City.

The first two letters of the name of the switching station were used to replace the first
two digits of a seven-digit phone number. Let’s say a customer was assigned Murray
Hill 5 1000 as a telephone number. A caller dials MU 5 1000. Today the person would
call 685-1000 since the switching station naming convention was dropped decades ago.

Today customers expect to be able to enter textual information using the cellular
telephone keypad. However, there are two problems with the keypad. First, the keypad
doesn’t contain the letters Q or Z. And each numeric key, except for the first key, contains
three letters. A common solution to this problem is for software in the cellular telephone
to count the number of times a key on the keypad is pressed to determine which letter
of the alphabet was entered. For example, here’s how the name Jim is entered using
a cellular telephone keypad: Press the number 5 once, then pause. Press the number 4
three times without pausing. And press the number 6 and pause.

Another solution is to use T9 technology. T9 technology uses special glasses that track
eye movement, enabling a person to type by moving her eyes in one of eight directions.
Multiple letters are assigned to each direction. An algorithm was developed that predicted
which one of the multiple letters a person wanted to type based on the previous letters
that she selected. Let’s say you entered 546. The number 5 could represent the letters JKL.

28 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 2

P:\010Comp\CompRef8\710-9\ch02.vp
Thursday, February 06, 2003 11:06:50 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The number 4 could represent the letters GHI. And the number 6 could represent the
letters MNO. Only one English word can be created by combining these letters, which
is the word “JIM.” However, all legitimate words that can be formed using the selected
numbers are displayed on the cell phone screen. The person is then prompted to select
the correct word.

Counting keypresses and T9 technology are limited. Other technology such as voice
recognition and new mobile communications devices have capitalized on these limitations
and provide more efficient means to enter and send textual information over the cellular
telephone network.

Messaging
One of the first popular wireless mobile communications devices was a pager. A pager
displays any series of numbers that were sent by a caller. Technically, the series of numbers
represented the caller’s telephone number and implied that the call be returned. Practically,
the series of numbers could represent anything to which the caller and the receiver agreed
on. For example, it was common for systems administrators to have their system send
a 911 call to a pager whenever there was a systems problem. Some systems administrators
even devised a code that was sent indicating which system transmitted the call and the
nature of the problem. Drug dealers were also notorious for using pagers to send encoded
messages of drug deliveries. A buyer would call the pager and send a series of numbers
that told the dealer the type of drug, quantity, and delivery location for the buy.

Today’s wireless mobile communications devices offer text messaging services that
enable short textual messages to be sent to the device from any device that has access to
the service. Cellular telephone companies offer three types of messaging services: Short
Message Service (SMS), Cell Broadcast Service (CBS), and Unstructured Supplementary
Services Data (USSD).

C h a p t e r 2 : S m a l l C o m p u t i n g T e c h n o l o g y 29

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 2

J2
M

E
B

A
S
IC

S

Bluetooth Wireless Network
Many small computing devices such as those used in consumer appliances
communicate with each other by using a low-power radio network that uses
Bluetooth technology. Bluetooth technology broadcasts within a 400-foot radius,
which is expected to extend to nearly 4,000 feet, and so is perfect for a wireless
network in an office.

Transmission consists of short data packets to maximize throughput to one
megabit per second. The short size of a packet reduces retransmission time when
errors are detected and packets must be resent. Security is provided through frequency
hopping that occurs at 1,600 hops per second, practically eliminating the risk that
the signal will be intercepted. Data is also encrypted before being broadcast. So even
if the signal is intercepted, the receiver still requires the key to decipher the data.

P:\010Comp\CompRef8\710-9\ch02.vp
Thursday, February 06, 2003 11:06:50 AM

Color profile: Generic CMYK printer profile
Composite Default screen

SMS type of messaging is capable of sending a maximum of 160 characters on the
control channel of a cellular telephone network. A control channel is a communications
channel used to manage cellular telephone calls. Messages sent using SMS are sent and
received during a cellular telephone call because the telephone call and the message use
different communications channels for transmission. However, there may be a slight
delay between transmission of a message and when the message is received because
SMS messaging uses store-forwarding technology, where the message is temporarily
stored in a mailbox before being delivered to the receiver.

The CBS type of messaging broadcasts a maximum of 15 pages of 93 characters per
page to every device on the network. Everyone on the network receives the same message,
which is why CBS messaging has had limited success in the market.

The USSD type of messaging transmits a maximum of 182 characters along the control
channel, similar to SMS messaging. However, USSD messaging does not use store-
forwarding technology. Instead, USSD messaging sends the message directly to the
receiver, which enables the receiver to respond instantaneously.

Personal Digital Assistants
A personal digital assistant (PDA) is probably the most commonly used small mobile
computing device next to a cellular telephone. PDAs are lightweight and small enough to
fit in a pocket, and they run essential applications. PDA is a generic name that applies
to a simple digital telephone directory and to more elaborate mobile computing devices
that run a spreadsheet, word processor, email, and a variety of customized programs.

All PDAs are small computing devices that contain an operating system, processor,
memory, and a port to connect the PDA to peripherals and external computing
devices. There are three commonly used operating systems on a PDA: EPOC, Palm OS,
and Windows CE. EPOC is used in the Psion product line, Palm OS in the Palm PDAs, and
Windows CE on various pocket PC devices.

There is an assortment of processors designed for the PDA market that include the
DragonBall processor built by Motorola and used in the Palm PDA. The DragonBall has
a 16 MHz clock speed. The StrongARM processor, manufactured by Intel, is another PDA
processor used in the Psion product line and some pocket PCs. The StrongARM has a
clock speed of 200 MHz. Another competitor in the PDA processor market is the Crusoe
processor manufactured by Transmeta, which is also found in some pocket PC PDAs.

Avoid equating a PDA’s processing speed with that of a desktop or laptop computer.
Some operating systems, such as Windows CE, require more processing than a Palm OS
PDA to perform a similar task, and the extra processing power running under Windows
CE does not necessarily perform a task any faster than a Palm.

Memory is precious in a PDA. A PDA does not have permanent storage, therefore
all the applications and data running in a PDA must reside in memory. PDAs use ROM
and RAM. ROM is used to store bundled applications from the factory. These include
a word processor, spreadsheet, diary, telephone directory, and other kinds of programs

30 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 2

P:\010Comp\CompRef8\710-9\ch02.vp
Thursday, February 06, 2003 11:06:50 AM

Color profile: Generic CMYK printer profile
Composite Default screen

that you expect to find in a PDA. Applications that are not bundled with the PDA, and
data for all applications including those that reside in ROM, are stored in RAM.

PDAs use one of three types of RAM: Dynamic RAM (DRAM), Enhanced Data Output
(EDO), and Synchronous Dynamic RAM (SDRAM). DRAM is the least expensive RAM.
EDO is found in some PDAs, and SDRAM is very rarely used. Generally the more RAM
installed in a computer, the better the computer’s performance, but this is not necessarily
true with PDAs. The amount of RAM that affects performance depends on the PDA’s
operating system. Windows CE requires more memory (32MB) to perform basic functions
than a Palm (4MB).

Some PDAs have an expansion slot for Compact Flash (CF+) cards that contain
components such as a modem, cellular telephone, network card used to connect to a
local area network, or additional memory that slips into an expansion slot on the PDA
to enhance the PDA’s functionality.

PDAs have the same problem as all mobile devices. They need batteries to operate—
and they drain batteries quickly. You’ll learn more about batteries later in this chapter.
PDAs also don’t have a user-friendly keyboard to enter data.

Designers attempt to overcome the lack of a keyboard by creating a virtual keyboard
on a touch-sensitive screen that requires the user to hunt-and-peck to enter data. Another
approach to data entry is to use handwriting recognition software. Software running in
the PDA analyzes marks made on a touch-sensitive screen and guesses the character
that the user wants to enter. Pocket PCs that run Windows CE can use an autocorrect
feature that minimizes errors in handwriting recognition. Palm uses its own brand of
shorthand called Graffiti.

Mobile Power
Power is the primary challenge facing the mobile small computing industry. Consumer
expectations are high for mobile small computing devices. They want desktop performance
anytime and anywhere they power up. Unfortunately, improvements in power storage
technology haven’t kept pace with mobile computing technology.

Every mobile small computing device is powered by one or more batteries that have
a limited life span after which there is no electricity to operate the device. Engineers
reduce power consumption by removing power-hungry components and impose power-
saving techniques such as deactivating components when a component is not in use.

The length of time a mobile small computing device is operational depends on how
well and how long a battery holds its electrical charge. For example, a PDA might operate
steadily for 20 hours, while a cellular telephone remains operational for 10 hours. The
actual time a battery remains charged depends on a number of factors. These include
the type of battery in use, the condition of the battery, and the power consumption of
each operation. For example, standby operation for a cellular telephone consumes less
power than transmitting a signal.

C h a p t e r 2 : S m a l l C o m p u t i n g T e c h n o l o g y 31

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 2

J2
M

E
B

A
S
IC

S

P:\010Comp\CompRef8\710-9\ch02.vp
Thursday, February 06, 2003 11:06:50 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Power is measured in watt-hours, which means the number of hours the battery can
supply one watt of power. A cellular telephone battery is rated at 10 watt-hours, so the
battery can supply one watt of power for ten hours. A PDA battery has a rating of 2 watt-
hours, supplying one watt of power for two hours.

The amount of watts used by a mobile computing device varies depending on the
power-hungry components built into the device. In addition, power consumption depends
on the state of the device. Mobile computing devices have three states: active, standby,
and off. The active state is when the device is being used. The standby state, also known
as the sleep mode, is when all but critical components are powered down, minimizing
the drain on the battery. When the device is turned off, the off state still drains power
from the battery to maintain information such as a telephone directory in memory.

There are two general classes of batteries: non-rechargeable and rechargeable. Non-
rechargeable batteries are further classified as alkaline and zinc-carbon. These are found in
PDAs and as an emergency backup power for cellular telephones. Alkaline batteries have
a higher capacity to retain an electrical charge than zinc-carbon batteries. Rechargeable
batteries fall into four subclasses: lead acid batteries, nickel cadmium (NiCAD) batteries,
nickel metal hydride (NiMH) batteries, and lithium ion (LiON) batteries.

Cellular telephone manufacturers originally used lead acid batteries because they can
be recharged many times; however, lead acid is a dangerous ingredient, and therefore
the manufacturers moved to the safer nickel cadmium battery. NiCAD batteries can be
recharged 1,000 times before the battery discharges. However, NiCAD batteries must be
fully discharged before being recharged, otherwise the battery may not fully recharge.
Consumers complained about this recharging limitation, and therefore manufacturers
dropped NiCAD batteries for either the nickel metal hydride battery or the lithium ion
battery.

The NiMH battery does not have to be fully discharged before recharging. It also
has a quarter more charging capacity than a NiCAD battery. A lithium ion battery has
a longer life and more charging capacity than the NiMH battery. Both NiMH and LiON
batteries are considered “smart” batteries because each has a power meter that indicates
the electrical charge of the battery.

Set-Top Boxes
With the onset of cable television and satellite television came a demand for another type
of small computing device called a set-top box. A set-top box is the device that connects
a television to a cable signal or satellite signal received from a service provider. Set-top
box technology has evolved with the increasing demand by consumers for television
and related services such as email and video on demand. The first-generation set-top
box had a simple function: it received a scrambled analog television transmission from
the service provider, unscrambled the signal, and sent the unscrambled signal to the
television.

32 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 2

P:\010Comp\CompRef8\710-9\ch02.vp
Thursday, February 06, 2003 11:06:50 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The next generation set-top box enabled two-way digital transmissions between the
service provider and the consumer. A digital incoming signal from the service provider
contained the television signal, and the outgoing signal from the customer carried requests
for service, such as pay-per-view access to programming.

The latest in set-top box technology enables service providers to offer fully interactive
services that include video on demand, interactive advertising, TV-centric applications,
email, and Internet access. Set-top boxes have progressed from being a simple embedded
signal decoder to a dedicated personal computer.

There are three categories of set-top boxes: broadcast TV, enhanced TV, and advanced
services. A broadcast TV set-top box provides traditional broadcast television and has
no return channel. Signals are received in an MPEG-formatted data stream. An enhanced
TV set-top box is similar to a broadcast TV set-top except the enhanced TV set-top box
has a return channel from the customer to the service provider. An advanced services
set-top box is basically a dedicated personal computer that has sufficient computing
power to provide rapid processing for interactive, multimedia services.

Inside Look at a Set-Top Box
All modern set-top boxes perform five common operations. These are to decode a digital
signal received from the service provider, authenticate access rights, transmit a signal to
a television, transmit audio information to create surround sound, and provide interactive
services such as access to the Internet and email.

Multiple signals are received by the set-top box from the service provider, each of
which is transmitted over its own communications channel. The tuner circuit within the
set-top box filters all communications channels except the channel selected by the consumer.
The signal from the selected channel is sent to the demodulator circuit. The demodulator
circuit is a chip that converts the signal into binary data before sending the binary signal
to the demultiplexer chip.

The demultiplexer has a number of functions within the set-top box. First, with the
assistance of the built-in security system, it determines whether the consumer has the
right to access the service transmitted on the selected channel. The consumer is notified
if access to the service is denied, otherwise the demultiplexer separates the binary signal
into a video signal and an audio signal and then forwards each to the proper decoder
circuit. The decoder circuit transforms each signal into a signal used to display the video
and replay audio.

Set-top boxes are controlled by an operating system that is usually proprietary,
although some manufacturers use a third-party operating system for their set-top box.
The most commonly used operating systems are PowerTV OS, VxWorks (also used in
cellular phones and car navigation systems), pSOSystem, DAVID OS-9, Windows CE,
ChorusOS, JavaOS (also used for automobile computers and private telephone systems),
and Linux.

C h a p t e r 2 : S m a l l C o m p u t i n g T e c h n o l o g y 33

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 2

J2
M

E
B

A
S
IC

S

P:\010Comp\CompRef8\710-9\ch02.vp
Thursday, February 06, 2003 11:06:51 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Smart Cards
A smart card is a mobile small computing device that is used to store secured information.
Smart cards are replacing magnetic strip cards such as credit cards. Typically, a smart
card has an 8-bit CPU and 64KB of EEPROM along with a modest amount of memory.
And similar to set-top boxes, there are many operating systems used in smart cards. The
more commonly used smart card operating systems include Java Card from Sun, MultOS
from MasterCard, Smart Card for Windows from Microsoft, and Visa Open Platform.

Smart cards are used to provide real-time, interactive access to secured data stored in
the memory of the smart card. A security plan protects this information from unauthorized
access and manipulation of information stored in memory.

Let’s say that a smart card is used as an electronic checkbook. A consumer’s
identification information, checking account number, and balance are stored in the smart
card’s memory. When the consumer makes a purchase, the smart card is inserted into
a smart card reader. A smart card reader is an input/output device that is attached to a
bank’s merchant network and is used to transfer payment from the consumer’s account
to the merchant’s account.

The bank’s merchant network first authenticates the consumer by prompting the
consumer to present proper identification, which is commonly a personal identification
number that the consumer enters into the smart card reader. Once the customer is properly
identified to the bank’s merchant network, the network determines the portion of the
secured data contained on the smart card filing system that can be accessed by the merchant.
If the merchant isn’t permitted to access the consumer’s checking account information,
the transaction terminates.

If access is permitted, the necessary information stored in memory to complete the
transaction is deciphered, and the transaction commences. The bank’s merchant network
deducts the transaction amount from the checking account balance on the smart card and
within the bank’s own system and credits the merchant’s account. The revised checking
account balance is then rewritten to the smart card. The process by which the bank’s
merchant network verifies the transaction is called nonrepudiation.

34 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 2

P:\010Comp\CompRef8\710-9\ch02.vp
Thursday, February 06, 2003 11:06:51 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 3
J2ME Architecture
and Development
Environment

35

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

P:\010Comp\CompRef8\710-9\ch03.vp
Thursday, February 06, 2003 11:40:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Using J2ME you can develop practically any application that you can imagine
for a small computing device. The only limitations are those posed by available
resources on the small computing device and your skills as a J2ME programmer.

A small computing device is constrained by its resources, as you learned previously in this
book. These restrictions are inflexible and require you to design your J2ME application to
work within these limitations. Fortunately, J2ME technology provides tools to build an
industrial-strength Java application designed to run on a small computing device.

Writing a J2ME application is not unlike writing any Java application. You use
the same basic programming constructs as used in a J2SE application. However, some
routines commonly used in a J2SE application must be modified or excluded from a
J2ME application. In this chapter, you’ll learn more about the J2ME architecture and how
constraints of the architecture restrict the use of routines that you probably employ in
your J2SE applications. Furthermore, you’ll be introduced to the J2ME development
environment and learn techniques for building your first J2ME application.

J2ME Architecture
The modular design of the J2ME architecture enables an application to be scaled based on
constraints of a small computing device. J2ME architecture doesn’t replace the operating
system of a small computing device. Instead, J2ME architecture consists of layers located
above the native operating system, collectively referred to as the Connected Limited
Device Configuration (CLDC). The CLDC, which is installed on top of the operating
system, forms the run-time environment for small computing devices.

The J2ME architecture comprises three software layers (Figure 3-1). The first layer
is the configuration layer that includes the Java Virtual Machine (JVM), which directly
interacts with the native operating system. The configuration layer also handles inter-
actions between the profile and the JVM. The second layer is the profile layer, which
consists of the minimum set of application programming interfaces (APIs) for the small
computing device. The third layer is the Mobile Information Device Profile (MIDP).
The MIDP layer contains Java APIs for user network connections, persistence storage,
and the user interface. It also has access to CLDC libraries and MIDP libraries.

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

36 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

Figure 3-1. Layers of the J2ME architecture

P:\010Comp\CompRef8\710-9\ch03.vp
Thursday, February 06, 2003 11:40:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

A small computing device has two components supplied by the original equipment
manufacturer (OEM). These are classes and applications. OEM classes are used by the
MIDP to access device-specific features such as sending and receiving messages and
accessing device-specific persistent data. OEM applications are programs provided by
the OEM, such as an address book. OEM applications can be accessed by the MIDP.

A word of caution: accessing OEM classes and OEM applications from the MIDP
restricts the portability of a J2ME application since not all small computing device
manufacturers use the same OEM classes or OEM applications.

Small Computing Device Requirements
There are minimum resource requirements for a small computing device to run a J2ME
application. First the device must have a minimum of 96 × 54 pixel display that can
handle bitmapped graphics and have a way for users to input information, such as a
keypad, keyboard, or touch screen. At least 128 kilobytes (KB) of nonvolatile memory is
necessary to run Mobile Information Device (MID), and 8KB of nonvolatile memory is
needed for storage of persistent application data. To run JVM, 32KB of volatile memory
must be available. The device must also provide two-way network connectivity.

Besides minimal hardware requirements, there are also minimal requirements for
the native operating system. The native operating system must implement exception
handling, process interrupts, be able to run the JVM, and provide schedule capabilities.
Furthermore, all user input to the operating system must be forwarded to the JVM,
otherwise the device cannot run a J2ME application. Although the native operating
system doesn’t need to implement a file system to run a J2ME application, it must be
able to write and read persistent data (data retained when the device is powered down)
to nonvolatile memory.

Run-Time Environment
A MIDlet is a J2ME application designed to operate on an MIDP small computing
device. A MIDlet is defined with at least a single class that is derived from the javax
.microedition.midlet.MIDlet abstract class. Developers commonly bundle related
MIDlets into a MIDlet suite, which is contained within the same package and implemented
simultaneously on a small computing device. All MIDlets within a MIDlet suite are
considered a group and must be installed and uninstalled as a group (Figure 3-2).

Members of a MIDlet suite share resources of the host environment and share the
same instances of Java classes and run within the same JVM. This means if three MIDlets
from the same MIDlet suite run the same class, only one instance of the class is created at
a time in the Java Virtual Machine. A key benefit of the relationship among MIDlet suite
members is that they share the same data, including data in persistent storage such as
user preferences.

C h a p t e r 3 : J 2 M E A r c h i t e c t u r e a n d D e v e l o p m e n t E n v i r o n m e n t 37

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

J2
M

E
B

A
S
IC

S

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

P:\010Comp\CompRef8\710-9\ch03.vp
Thursday, February 06, 2003 11:40:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

38 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

Sharing data among MIDlets exposes each MIDlet to data errors caused by concurrent
read/write access to data. This risk is reduced by synchronization primitives on the MIDlet
suite level that restrict access to volatile data and persistent data. However, if a MIDlet uses
multi-threading, the MIDlet is responsible for coordinated access to the record store.

Data cannot be shared between MIDlets that are not from the same MIDlet suite
because the MIDlet suite name is used to identify data associated with the suite.
A MIDlet from a different MIDlet suite is considered an unreliable source.

A MIDlet suite is installed, executed, and removed by the application manager
running on the device. The manufacturer of the small computing device provides the
application manager. Once a MIDlet suite is installed, each member of the MIDlet suite
is given access to classes of the JVM and CLDC by the application manager. Likewise,
a MIDlet can access classes defined in the MIDP to interact with the user interface,
network, and persistent storage.

The application manager also makes the Java archive (JAR) file and the Java
application descriptor (JAD) file available to members of the MIDlet suite.

Inside the Java Archive File
All the files necessary to implement a MIDlet suite must be contained within a
production package called a Java archive (JAR) file. These files include MIDlet
classes, graphic images (if required by a MIDlet), and the manifest file. The manifest
file contains a list of attributes and related definitions that are used by the application
manager to install the files contained in the JAR file onto the small computing device.
Nine attributes are defined in the manifest file; all but six of these attributes are optional.

Table 3-1 lists attributes contained in a manifest file. Of these, the first six attributes
are required for every manifest file. Failure to include them in the manifest file causes
the application manager to halt the installation of the JAR file.

Listing 3-1 is a manifest file that contains the minimum number of attributes. As
you’ll see in the section “Hello World J2ME Style” later in this chapter, you use an

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

Figure 3-2. MIDlets are packaged into MIDlet suites, which are loaded in a small
computing device.

P:\010Comp\CompRef8\710-9\ch03.vp
Thursday, February 06, 2003 11:40:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 3 : J 2 M E A r c h i t e c t u r e a n d D e v e l o p m e n t E n v i r o n m e n t 39

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

J2
M

E
B

A
S
IC

S

editor to create a manifest file as a text file with the .txt file extension. The manifest
file’s extension is changed to .mf when the MIDlet is prepared for deployment.

MIDlet-Name: Best MIDlet

MIDlet-Version: 2.0

MIDlet-Vendor: MyCompany

MIDlet-1: BestMIDlet, /images/BestMIDlet.png, Best.BestMIDlet

MicroEdition-Profile: MIDP-1.0

MicroEdition-Configuration: CLDC-1.0

Entries in the manifest are name:value pairs and therefore can appear in any order
within the manifest file. Each pair must be terminated with a carriage return. Whitespace
between the colon and the attribute value is ignored when the application manager reads
the manifest file.

Manifest File Attribute Description

MIDlet-Name MIDlet suite name.

MIDlet-Version MIDlet version number.

MIDlet-Vendor Name of the vendor who supplied the MIDlet.

MIDlet-n Attribute per MIDlet. Values are MIDlet name,
optional icon, and MIDlet class name.

MicroEdition-Profile Identifies the J2ME profile that is necessary
to run the MIDlet.

MicroEdition-Configuration Identifies the J2ME configuration that is
necessary to run the MIDlet.

MIDlet-Icon Icon associated with MIDlet, must be in PNG
image format (optional).

MIDlet-Description Description of MIDlet (optional).

MIDlet-Info-URL URL containing more information about
the MIDlet.

Table 3-1. Attributes of the Manifest File

Listing 3-1
A manifest

file

P:\010Comp\CompRef8\710-9\ch03.vp
Thursday, February 06, 2003 11:40:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

40 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

Let’s step through the manifest file shown in Listing 3-1. The MIDlet-Name
attribute specifies the name of the MIDlet suite, which is Best MIDlet in this example.
The MIDlet-Version and MIDlet-Vendor attributes identify the version number of the
MIDlet suite and the company or person who provided the MIDlet suite.

The MIDlet-n attribute contains information about each MIDlet that is in the JAR
file. The number of the MIDlet replaces the letter n. In this example, the n is replaced
with the digit 1 because there is only one MIDlet in the MIDlet suite.

The MIDlet-n attribute can contain three values that describe the MIDlet. A comma
separates each value. The first value is the name of the MIDlet, which is BestMIDlet.
Next is an optional value that specifies the icon that will be used with the MIDlet. In
this example, BestMIDlet.png is the icon. The icon must be in the PNG image format.
And the last value for the MIDlet-n attribute is the MIDlet class name, which is
Best.BestMIDlet. The application manager uses the class name to load the MIDlet.

The next MIDlet-n attribute is the MicroEdition-Profile whose value is the J2ME
profile that is required to run the MIDlet. In this example the MIDP-1.0 profile is
required. And the last MIDlet-n attribute is the MicroEdition-Configuration. The
MicroEdition-Configuration attribute identifies the J2ME configuration that is
necessary to run the MIDlet.

Inside the Java Application Descriptor File
You may include a Java application descriptor (JAD) file within the JAR file of a MIDlet
suite as a way to pass parameters to a MIDlet without modifying the JAR file (see
Chapter 4). A JAD file is also used to provide the application manager with additional
content information about the JAR file to determine whether the MIDlet suite can be
implemented on the device.

A JAD file is similar to a manifest in that both contain attributes that are name:value
pairs. Name:value pairs can appear in any order within the JAD file. There are five required
system attributes for a JAD file:

MIDlet-Name
MIDlet-Version
MIDlet-Vendor
MIDlet-n
MIDlet-Jar-URL

A system attribute is an attribute that is defined in the J2ME specification. Table 3-2
contains a complete list of system attributes. Listing 3-2 illustrates a typical JAD file. All
JAD files must have the .jad extension.

The JAD file shown in Listing 3-2 contains a few attributes that are also found in
the manifest file in Listing 3-1. The first three attributes in the JAD file are identical to
attributes in the manifest file.

P:\010Comp\CompRef8\710-9\ch03.vp
Thursday, February 06, 2003 11:40:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

J2
M

E
B

A
S
IC

S

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

MIDlet-Name: Best MIDlet

MIDlet-Version: 2.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: http://www.mycompany.com/bestmidlet.jar

MIDlet-1: BestMIDlet, /images/BestMIDlet.png, Best.BestMIDlet

The MIDlet-Jar-URL attribute contains the URL of the JAR file, which in this example
is called bestmidlet.jar. And the last required attribute in the JAD file is the MIDlet-n
attribute that defines a MIDlet of the MIDlet suite identical to the MIDlet-n attribute
of the manifest. A MIDlet-n attribute is required for each MIDlet in the MIDlet suite.

A word of caution: the values of the MIDlet-Name, MIDlet-Version, and MIDlet-
Vendor attributes in the JAD file must match the same attributes in the manifest. If the
values are different, the JAR file is not installed. Other attributes that are not the same
are overridden by attributes in the descriptor.

C h a p t e r 3 : J 2 M E A r c h i t e c t u r e a n d D e v e l o p m e n t E n v i r o n m e n t 41

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

JAD File Attribute Description

MIDlet-Name MIDlet suite name.

MIDlet-Version MIDlet version number.

MIDlet-Vendor Name of the vendor who supplied the MIDlet.

MIDlet-n Attribute per MIDlet. Values are MIDlet name,
optional icon, and MIDlet class name.

MIDlet-Jar-URL Location of the JAR file.

MIDlet-Jar-Size Size of the JAR file in bytes (optional).

MIDlet-Data-Size Minimum size (in bytes) for persistent data
storage (optional).

MIDlet-Description Description of MIDlet (optional).

MIDlet-Delete-Confirm Confirmation required before removing the
MIDlet suite (optional).

MIDlet-Install-Notify Send installation status to given URL (optional).

Table 3-2. Attributes for a JAD File

Listing 3-2
A JAD file

P:\010Comp\CompRef8\710-9\ch03.vp
Thursday, February 06, 2003 11:40:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

A developer can include application attributes in a JAD file. An application attribute
is a name:value pair that contains a value unique to the application. Any name can be
given to an application attribute as long as it does not begin with MIDlet-.

MIDlet Programming
Programming a MIDlet is similar to creating a J2SE application in that you define a
class and related methods. However, a MIDlet is less robust than a J2SE application
because of the restrictions imposed by the small computing device. The following
overview gives you a glimpse of how a MIDlet is created. You’ll learn the details
of building your own MIDlet in the “Hello World J2ME Style” section later in this
chapter.

A MIDlet is a class that extends the MIDlet class and is the interface between appli-
cation statements and the run-time environment, which is controlled by the application
manager. A MIDlet class must contain three abstract methods that are called by the
application manager to manage the life cycle of the MIDlet. These abstract methods
are startApp(), pauseApp(), and destroyApp().

The startApp() method is called by the application manager when the MIDlet is started
and contains statements that are executed each time the application begins execution
(Figure 3-3). The pauseApp() method is called before the application manager temporarily
stops the MIDlet. The application manager restarts the MIDlet by recalling the startApp()
method. The destroyApp() method is called prior to the termination of the MIDlet by
the application manager.

Listing 3-3 illustrates the basic shell of a MIDlet. In this example, the MIDlet class
called BasicMIDletShell extends the MIDlet class. Any name can be used for a class as
long as it conforms to the Java class naming convention.

public class BasicMIDletShell extends MIDlet

{

public void startApp()

{

}

public void pauseApp()

{

}

public void destroyApp(boolean unconditional)

{

}

}

42 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

Listing 3-3
The basic

MIDlet shell

P:\010Comp\CompRef8\710-9\ch03.vp
Thursday, February 06, 2003 11:40:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 3 : J 2 M E A r c h i t e c t u r e a n d D e v e l o p m e n t E n v i r o n m e n t 43

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

J2
M

E
B

A
S
IC

S

Both the startApp() and pauseApp() methods are public and have no return value
nor parameter list. The destroyApp() method is also a public method without a return
value. However, the destroyApp() method has a boolean parameter that is set to true
if the termination of the MIDlet is unconditional, and false if the MIDlet can throw a
MIDletStateChangeException telling the application manager that the MIDlet does not
want to be destroyed just yet.

At the center of every MIDlet are the MIDP API classes used by the MIDlet to
interact with the user and handle data management. User interactions are managed by
user interface MIDP API classes. These APIs enable a developer to display screens of
data and prompt the user to respond with an appropriate command. The command
causes the MIDlet to execute one of three routines: perform a computation, make a
network request, or display another screen.

The data-handling MIDP API classes enable the developer to perform four kinds
of data routines: write and read persistent data, store data in data types, receive data
from and send data to a network, and interact with the small computing device’s
input/output features.

Event Handling
A MIDlet is an event-based application. All routines executed in the MIDlet are invoked
in response to an event reported to the MIDlet by the application manager. The initial
event that occurs is when the MIDlet is started and the application manager invokes the
startApp() method.

The startApp() method in a typical MIDlet contains a statement that displays a screen
of data and prompts the user to enter a selection from among one or more options. The
nature and number of options is MIDlet and screen dependent.

A Command object is used to present a user with a selection of options to choose
from when a screen is displayed. Each screen must have a CommandListener.

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

Figure 3-3. The application manager calls methods of a MIDlet.

P:\010Comp\CompRef8\710-9\ch03.vp
Thursday, February 06, 2003 11:40:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

A CommandListener monitors user events with a screen and causes the appropriate
code to execute based on the current event. You’ll learn more about screens, Command
objects, and CommandListeners in the “Hello World J2ME Style” section later in
this chapter.

User Interfaces
The design of a user interface for a MIDlet depends on the restrictions of a small
computing device. Some small computing devices contain resources that provide
a rich user interface, while other more resource-constrained devices offer a modest
user interface. A rich user interface contains the following elements, and a device
with a minimal user interface has some subset of these elements as determined by
the profile used for the device.

A Form is the most commonly invoked user interface element found in a MIDlet
and is used to contain other user interface elements. Text is placed on a form as a
StringItem, a List, a ChoiceGroup, and a Ticker.

A StringItem contains text that appears on a form that cannot be changed by the
user. A List is an itemized options list from which the user can choose an option. A
ChoiceGroup is a related itemized options list. And a Ticker is text that is scrollable.

A user enters information into a form by using the Choice element, TextBox,
TextField, or DateField elements. The Choice element returns an option that the user
selected. TextBox and TextField elements collect textual information from a user and
enable the user to edit information that appears in these user interface elements. The
DateField is similar to a TextBox and TextField except its contents are a date and time.

An Alert is a special Form that is used to alert the user that an error has occurred.
An Alert is usually limited to a StringItem user interface element that defines the
nature of the error to the user.

You will learn more about the full range of user interface elements and how to
deploy them later in this book.

Device Data
Small computing devices don’t have the resources necessary to run an onboard database
management system (DBMS). In fact some of these devices lack a file system. Therefore,
a MIDlet must read and write persistent data without the advantage of a DBMS or
file system.

A MIDlet can use an MIDP class—RecordStore—and two MIDP interfaces—
RecordComparator and RecordFilter—to write and read persistent data. A RecordStore
class contains methods used to write and read persistent data in the form of a record.
Persistent data is read from a RecordStore by using either the RecordComparator
interface or the RecordFilter interface. You’ll learn how to use RecordStore,
RecordComparator, and RecordFilter later in this book.

44 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

P:\010Comp\CompRef8\710-9\ch03.vp
Thursday, February 06, 2003 11:40:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 3 : J 2 M E A r c h i t e c t u r e a n d D e v e l o p m e n t E n v i r o n m e n t 45

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

J2
M

E
B

A
S
IC

S

Java Language for J2ME
CDC implements the full J2SE available, but CLDC implements a stripped-down J2SE
because of the limited resources in small computing devices. In this section you’ll learn
about three prominent features of J2SE that you cannot implement in J2ME.

Floating-point math is probably the most notable missing feature of J2ME. Floating-
point math requires special processing hardware to perform floating-point calculations.
However, most small computing devices lack such hardware and therefore are unable
to process floating-point calculations. This means that your MIDlet cannot use any
floating-point data types or calculations.

The second most notable difference between the Java language used in J2SE and
J2ME is the absence of support for the finalize() method. The finalize() method in J2SE
is automatically called before an instance of a class terminates and typically contains
statements that free previously allocated resources. However, resources in a small
computing device are too scarce to process the finalize() method.

Another dramatic difference is the reduced number of error-handling exceptions
that are supported in J2ME. Table 3-3 lists error-handling exceptions available in J2ME.
Exception handling drains system resources, which are precious in a small computing
device and therefore the primary reason for trimming the number of error-handling
exceptions. Typically, run-time errors are automatically responded to by the native
operating system by restarting the small computing device.

Changes were also made in the Java Virtual Machine that runs on a small computing
device because of resource constraints. One such change occurs with the class loader.
JVM for small computing devices requires a custom class loader that is supplied by the
device manufacturer and cannot be replaced or modified.

Another feature lacking in the JVM is the ThreadGroup class. You cannot group
threads. All threads are handled at the object level, although there is a workaround
(see Chapter 4). Also, you cannot call other programming languages’ methods and
APIs, primarily because of the memory requirements to execute such calls. Two other
features of J2SE that are missing from J2ME are weak references and the Reflection
classes.

The standard JVM uses class file verification to protect applications from malicious
code through the use of a security manager. However, this process is replaced with a
two-step process because of the limited resources available on small computing devices.
The first step is called preverification and occurs outside the small computing device
prior to loading the MIDlet. Preverification requires that additional attributes called
stack maps are inserted into a class file by software before the second step runs. Stack
maps describe the MIDlet’s variables and operands located on the interpreter stack.

After preverification is completed, the MIDlet class is loaded into the device, and
the verifier within the small computing device validates each instruction in the MIDlet
class. The MIDlet class is automatically rejected if the verifier detects an error.

P:\010Comp\CompRef8\710-9\ch03.vp
Thursday, February 06, 2003 11:40:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

46 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

S
ys

te
m

C
la

ss
es

ja
va

.la
ng

.C
la

ss
ja

va
.la

ng
.R

un
ti

m
e

ja
va

.la
ng

.S
ys

te
m

ja
va

.la
ng

.O
bj

ec
t

ja
va

.la
ng

.S
tr

in
g

ja
va

.la
ng

.T
hr

ea
d

ja
va

.la
ng

.R
un

na
bl

e
ja

va
.la

ng
.S

tr
in

gB
uf

fe
r

ja
va

.la
ng

.T
hr

ow
ab

le

D
at

a
Ty

pe
C

la
ss

es

ja
va

.la
ng

.B
oo

le
an

ja
va

.la
ng

.C
ha

ra
ct

er
ja

va
.la

ng
.L

on
g

ja
va

.la
ng

.B
yt

e
ja

va
.la

ng
.In

te
ge

r
ja

va
.la

ng
.S

ho
rt

C
ol

le
ct

io
n

C
la

ss
es

ja
va

.u
ti

l.E
nu

m
er

at
io

n
ja

va
.u

ti
l.S

ta
ck

ja
va

.u
ti

l.H
as

ht
ab

le
ja

va
.u

ti
l.V

ec
to

r

In
pu

t/
O

ut
pu

t
C

la
ss

es

ja
va

.io
.B

yt
eA

rr
ay

In
pu

tS
tr

ea
m

ja
va

.io
.D

at
aO

ut
pu

tS
tr

ea
m

ja
va

.io
.P

ri
nt

St
re

am

ja
va

.io
.B

yt
eA

rr
ay

O
ut

pu
tS

tr
ea

m
ja

va
.io

.In
pu

tS
tr

ea
m

ja
va

.io
.R

ea
d

er

ja
va

.io
.D

at
aI

np
ut

ja
va

.io
.In

pu
tS

tr
ea

m
R

ea
d

er
ja

va
.io

.W
ri

te
r

ja
va

.io
.D

at
aI

np
ut

St
re

am
ja

va
.io

.O
ut

pu
tS

tr
ea

m

ja
va

.io
.D

at
aO

ut
pu

t
ja

va
.io

.O
ut

pu
tS

tr
ea

m
W

ri
te

r

C
al

en
da

r
an

d
Ti

m
e

C
la

ss
es

ja
va

.u
ti

l.C
al

en
d

ar
ja

va
.u

ti
l.D

at
e

ja
va

.u
ti

l.T
im

eZ
on

e

Ta
bl

e
3

-3
.

J2
M

E
S

up
po

rt
C

la
ss

es

P:\010Comp\CompRef8\710-9\ch03.vp
Thursday, February 06, 2003 11:40:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 3 : J 2 M E A r c h i t e c t u r e a n d D e v e l o p m e n t E n v i r o n m e n t 47

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

J2
M

E
B

A
S
IC

S

U
ti

lit
y

C
la

ss
es

ja
va

.la
ng

.M
at

h
ja

va
.u

ti
l.R

an
d

om

Ex
ce

pt
io

n
C

la
ss

es

ja
va

.io
.E

O
FE

xc
ep

ti
on

ja
va

.la
ng

.C
la

ss
N

ot
Fo

un
d

E
xc

ep
ti

on
ja

va
.la

ng
.N

eg
at

iv
eA

rr
ay

Si
ze

E
xc

ep
ti

on

ja
va

.io
.In

te
rr

up
te

d
IO

E
xc

ep
ti

on
ja

va
.la

ng
.E

xc
ep

ti
on

ja
va

.la
ng

.N
ul

lP
oi

nt
er

E
xc

ep
ti

on

ja
va

.io
.IO

E
xc

ep
ti

on
ja

va
.la

ng
.Il

le
ga

lA
cc

es
sE

xc
ep

ti
on

ja
va

.la
ng

.N
um

be
rF

or
m

at
E

xc
ep

ti
on

ja
va

.io
.U

ns
up

po
rt

ed
E

nc
od

in
gE

xc
ep

ti
on

ja
va

.la
ng

.Il
le

ga
lA

rg
um

en
tE

xc
ep

ti
on

ja
va

.la
ng

.R
un

ti
m

eE
xc

ep
ti

on

ja
va

.io
.U

T
FD

at
af

or
m

at
E

xc
ep

ti
on

ja
va

.la
ng

.Il
le

ga
lM

on
it

or
St

at
eE

xc
ep

ti
on

ja
va

.la
ng

.S
ec

ur
it

yE
xc

ep
ti

on

ja
va

.la
ng

.A
ri

th
m

et
ic

E
xc

ep
ti

on
ja

va
.la

ng
.Il

le
ga

lT
hr

ea
d

St
at

eE
xc

ep
ti

on
ja

va
.la

ng
.S

tr
in

gI
nd

ex
O

ut
O

fB
ou

nd
sE

xc
ep

ti
on

ja
va

.la
ng

.A
rr

ay
In

d
ex

O
ut

O
fB

ou
nd

sE
xc

ep
ti

on
ja

va
.la

ng
.In

d
ex

O
ut

O
fB

ou
nd

sE
xc

ep
ti

on
ja

va
.u

ti
l.e

m
pt

yS
ta

ck
E

xc
ep

ti
on

ja
va

.la
ng

.A
rr

ay
St

or
eE

xc
ep

ti
on

ja
va

.la
ng

.In
st

an
ti

at
io

nE
xc

ep
ti

on
ja

va
.u

ti
l.N

oS
uc

hE
le

m
en

tE
xc

ep
ti

on

ja
va

.la
ng

.C
la

ss
C

as
tE

xc
ep

ti
on

ja
va

.la
ng

.In
te

rr
up

te
d

E
xc

ep
ti

on

Er
ro

r
C

la
ss

es

ja
va

.la
ng

.E
rr

or
ja

va
.la

ng
.O

ut
O

fM
em

or
yE

rr
or

ja
va

.la
ng

.V
ir

tu
al

M
ac

hi
ne

E
rr

or

In
te

rn
at

io
na

liz
at

io
n

ja
va

.io
.In

pu
tS

tr
ea

m
R

ea
d

er
ja

va
.io

O
ut

pu
tS

tr
ea

m
W

ri
te

r

Ta
bl

e
3

-3
.

J2
M

E
S

up
po

rt
C

la
ss

es
(c

on
tin

ue
d)

P:\010Comp\CompRef8\710-9\ch03.vp
Thursday, February 06, 2003 11:40:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

J2ME Software Development Kits
A MIDlet is built using free software packages that are downloadable from the java.sun
.com web site, although you can purchase third-party development products such as
Borland JBuilder Mobile Set, Sun One Studio 4 (formerly Forte for Java), and WebGain
VisualCafe Enterprise Suite. Three software packages need to be downloaded from
java.sun.com. These are the Java Development Kit (1.3 or greater) (java.sun.com/
j2se/downloads.html), Connected Limited Device Configuration (CLDC) (java.sun.
com/products/cldc/), and the Mobile Information Device Profile (MIDP) (java.sun.com/
products/midp/). You’ll also need the J2ME Wireless Toolkit to develop MIDlets for
handheld devices (java.sun.com/products/j2mewtoolkit/download.html).

Each of these software packages contains installation instructions that you need to
follow closely in order to assure proper installation of each package. However, there are
a few tips that will help you during the installation. First, install the Java development
kit. The Java development kit contains the Java compiler and the jar.exe, which is used
to create Java archive files as described previously in this chapter. After downloading the
Java development kit package, unzip the package and run the installation program. It is
best to accept the default directory, although you are free to choose a different directory
for the Java development kit.

Once the Java development kit is installed, place the c:\jdk\bin directory, or whatever
directory you selected for the Java development kit, on the PATH environment variable
(see “Setting the Path in Windows” sidebar). This enables you to invoke the Java compiler
from anywhere on your computer.

48 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

Setting the Path in Windows
Windows 2000 and Windows NT

1. Choose System from the Control Panel.

2. Select Environment or Advanced/Environment.

3. Locate the PATH environment variable.

4. Enter the directory at the end of the path. Be sure to separate entries with
a semicolon.

Windows 98 and Windows 95

1. Select Start.

2. Select Run.

3. Enter sysedit.

4. Select OK.

5. Locate the autoexec.bat dialog box.

6. Add the directory to the PATH environment variable.

P:\010Comp\CompRef8\710-9\ch03.vp
Thursday, February 06, 2003 11:40:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Install the CLDC once the Java development kit is installed. Unzip the downloaded
CLDC files from the java.sun.com web site onto the d:\j2me directory (J2ME_HOME) on
your computer. You’ll need to create the j2me directory if one doesn’t exist. Unzipping
the CLDC package creates the j2me_cldc subdirectory below the j2me directory.

The j2me_cldc has a bin subdirectory that contains the K Virtual Machine and the
preverifier executable files for an assortment of platforms such as win32. Each platform
is in its own subdirectory under j2me_cldc. Add the j2me\j2me_cldc\bin\win32
subdirectory to the PATH environment variable (see “Setting the Path in Windows”
sidebar). You should substitute win32 subdirectory with the appropriate subdirectory
for your platform.

Next, download and unzip the MIDP file. Be sure to use \j2me as the directory for
the MIDP file. Unzipping the MIDP file creates a midp directory. The name of this
directory might vary depending on the version that you download. Some versions
create a midp-fcs directory, while the 1.0.3 version creates a %J2ME_HOME%\
midp1.0.3fcs directory. This chapter references the %J2ME_HOME%\midp1.0.3fcs
directory. You can replace references to this directory with the directory relevant
to your midp version. The midp1.0.3fcs directory also contains a bin subdirectory.
And you’ll need to include the \j2me\midp1.0.3fcs\bin subdirectory in the PATH
environment variable.

Next, create two environment variables. These are CLASSPATH and MIDP_HOME.
The CLASSPATH environment variable identifies the path to be searched whenever a
class is invoked. The MIDP_HOME environment variable identifies the location of
the \lib directory that contains the internal.config file and the system.config file.

Set the CLASSPATH to

d:\j2me\midp1.0.3fcs\classes;.

Notice that the CLASSPATH terminates with a period. The period implies the
current directory and will cause the current directory to be searched if a class is not
found in the \j2me\midp1.0.3fcs\classes directory.

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

J2
M

E
B

A
S
IC

S
C h a p t e r 3 : J 2 M E A r c h i t e c t u r e a n d D e v e l o p m e n t E n v i r o n m e n t 49

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

Modifying the internal.config File
The internal.config file is used to describe preferences that affect features of MIDP.
Preferences are identified by name:value pairs. You can change values of name:value
pairs by modifying the file with an editor. For example, MIDP contains an emulator
for J2ME devices, such as cellular telephones. An emulator enables you to test the
performance of your MIDlet without having to load the MIDlet into the real device.

You can modify the color configuration of the emulated device by changing the
value of the system.display.screen_depth attribute to 1, 2, 4, or 8. The value 1 causes
the emulator to display black and white colors. The value 2 forces the emulator to
display a 4-color grayscale. The value 4 displays a 15-color grayscale, and the value 8
changes the emulator to 256 possible colors.

P:\010Comp\CompRef8\710-9\ch03.vp
Thursday, February 06, 2003 11:40:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Set the MIDP_HOME environment variable to

d:\j2me\midp1.0.3fcs

Hello World J2ME Style
You can create your first MIDlet once the Java development kit, Connected Limited
Device Configuration (CLDC), and Mobile Information Device Profile (MIDP) are
installed. And keeping tradition alive, let’s begin by creating a directory structure
within which you can create and run MIDlets. Here are the directories that are used
for examples in this chapter:

■ j2me

■ j2me\src

■ j2me\src\greeting

■ j2me\tmp_classes

■ j2me\midlets

You’ll create two MIDlets in this section, which will illustrate the basic concept of
making and running a J2ME application. The first MIDlet is called HelloWorld and the
other MIDlet is GoodbyeWorld. The HelloWorld MIDlet shows how to create a simple
MIDlet that can be invoked directly from the class and from a Java archive file. Later in
this section you’ll learn how to create a MIDlet suite that contains two MIDlets. These
are HelloWorld and GoodbyeWorld.

Let’s begin by creating the HelloWorld MIDlet. Enter the code shown in Listing 3-4
into a text editor such as Notepad, and save the file in the j2me\src\greeting directory
as HelloWorld.java.

The HelloWorld MIDlet performs three basic functions that are found in nearly all
MIDlets. These are to display a text box and a command on the screen, then listen to
events that occur while the MIDlet is running.

The HelloWorld MIDlet is created by defining a class called HelloWorld that
extends the MIDlet class and implements a CommandListener. The HelloWorld class
contains three private data members and four methods. The data members are a
Display object, a text box, and a command. The methods are startApp(), pauseApp(),
and destroyApp(), which are discussed earlier in this chapter. The fourth method is
called commandAction() and is invoked by the application manager whenever an
event occurs.

Listing 3-4 illustrates a typical HelloWorld MIDlet. Two packages must be imported
at the beginning of the MIDlet to access MIDlet classes and lcdui classes. MIDlet classes
are screen oriented and create a Display object and then place components of the screen
into the Display object. The Display object is then invoked later in the MIDlet to display
the screen on the small computing device.

50 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

P:\010Comp\CompRef8\710-9\ch03.vp
Thursday, February 06, 2003 11:40:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 3 : J 2 M E A r c h i t e c t u r e a n d D e v e l o p m e n t E n v i r o n m e n t 51

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

J2
M

E
B

A
S
IC

S

package greeting;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class HelloWorld extends MIDlet implements CommandListener

{

private Display display ;

private TextBox textBox ;

private Command quitCommand;

public void startApp()

{

display = Display.getDisplay(this);

quitCommand = new Command("Quit", Command.SCREEN, 1);

textBox = new TextBox("Hello World", "My first MIDlet", 40, 0);

textBox .addCommand(quitCommand);

textBox .setCommandListener(this);

display .setCurrent(textBox);

}

public void pauseApp()

{

}

public void destroyApp(boolean unconditional)

{

}

public void commandAction(Command choice, Displayable displayable)

{

if (choice == quitCommand)

{

destroyApp(false);

notifyDestroyed();

}

}

}

The Display object in this example is called display and will contain a TextBox object
called textBox and a Command object called quitCommand. All three objects are private
and are defined at the beginning of the HelloWorld class definition.

The startApp() method contains the necessary statements to invoke previously
defined objects. The startApp() method begins by creating an instance of the Display
object by calling the getDisplay() method. The instance of the Display object is assigned
to the display Display object that is previously defined in the class. Calling getDisplay
multiple times always returns the same Display reference for the specified MIDlet.

Next, an instance of a command object is created. There are three values required
when creating a command object. The first value is the label of the command that will

Listing 3-4
HelloWorld

MIDlet
source code

P:\010Comp\CompRef8\710-9\ch03.vp
Thursday, February 06, 2003 11:40:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

appear on the screen. The label in this example is Quit. The next value is the type of
command, which is a screen command. The third parameter determines the priority
of the command, which is the first priority—the higher the number, the lower the
priority. The application manager uses priority to determine the order in which a
command appears in a menu if the MIDlet uses a menu.

The last instance of an object that is created in the startApp() is a TextBox object. Four
values are necessary to create an instance of a TextBox object. The first is the caption for
the TextBox object followed by the text that will appear in the TextBox object. In this
example, Hello World is the caption and My first MIDlet is the text. The other two values
are coordinates used by the application manager to position the TextBox object on
the screen.

Next, the Command object must be associated with the TextBox message. This is
accomplished by calling the addCommand() method of the TextBox object and passing
the addCommand() method the Command object. Once the Command object is
associated with the TextBox object, the CommandListener must be associated with the
TextBox object in order for the CommandListener to respond to events occurring when
the TextBox object is displayed on the screen. The setCommandListener() method of the
TextBox object is used to associate the TextBox object with the CommandListener.

And the final statement within the startApp() method associates the TextBox object
with the Display object by calling the setCurrent() method of the Display object and
passing the setCurrent() method the TextBox object.

When the application manager of the small computing device runs the HelloWorld
MIDlet, the startApp() method is the first method that is invoked, which causes the
display that contains the Hello World message and the Quit command to be shown
on the screen.

The HelloWorld MIDlet is required to define a pauseApp() method and a destroyApp()
method, but these methods can remain empty because no special action is taken when the
HelloWorld MIDLet is paused or destroyed.

The commandAction() method contains statements that evaluate events that occur
while the HelloWorld MIDLet is running. The command selected by the user is passed
to the commandAction() method as the first parameter. The second parameter is a
Displayable object, which is a reference to the TextBox that is associated with the
command. A TextBox along with other interface objects are Displayable objects.

An if statement is used to determine whether the user selected the Command object
that is associated with the Hello World TextBox object. If so, the destroyApp() method
is invoked and is passed a boolean false. The destroyApp() method is called before the
MIDlet is destroyed; afterwards the notifyDestroyed() method is called to notify the
application manager that the HelloWorld MIDLet has entered into the destroyed state.
Prior to invoking the notifyDestroyed() method, a MIDlet should have completed its
own garbage collection.

52 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

P:\010Comp\CompRef8\710-9\ch03.vp
Thursday, February 06, 2003 11:40:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

J2
M

E
B

A
S
IC

S
C h a p t e r 3 : J 2 M E A r c h i t e c t u r e a n d D e v e l o p m e n t E n v i r o n m e n t 53

Compiling Hello World
The Hello World source code files should be saved in the new j2me\src\greeting
directory as HelloWorld.java. Next, you’ll need to compile the HelloWorld MIDlet.
Compiling a MIDlet is a two-step process. The first step is to use the Java compiler
to transform the source file into a class file. The second step is to preverify the class file, as
described previously in this chapter. The preverification generates a modified class file.

Make j2me\src\greeting the current directory, and then enter the following
command at the command line. The d: drive is used in this example. You can replace
the d: with the drive letter that is appropriate for your file structure.

javac -d d:\j2me\tmp_classes -target 1.1 -bootclasspath

d:\j2me\midp1.0.3fcs\classes HelloWorld.java

The bootclasspath option must be used when compiling a MIDlet. The bootclasspath
option points to the startup class files commonly referred to as the Java bootstrap files.
The startup classes are MIDP classes. If you fail to use the bootclasspath option, the
compiler uses JDK classes instead of the MIDP classes.

The compiler produces a file called HelloWorld.class in the j2me\tmp_classes\
greeting directory. The greeting directory is created because of the package greeting
declaration in the source code. The J2SDK 1.4 compiler outputs class files for JVM 1.2.
However, the preverification expects classes for JVM 1.1. Therefore, you need to specify
JVM 1.1 in the target option so the compiler generates classes for the JVM 1.1.

Next, you’ll need to preverify the HelloWorld.class that was generated by the
compiler. Make sure that j2me\src\greeting is the current directory and enter the
following command:

preverify -d d:\j2me\classes -classpath d:\j2me\midp1.0.3fcs\classes

d:\j2me\tmp_classes

You must use two preverify options. The -d option places the class file within the
tmp_classes directory. The second option is -classpath, which points to the location of
the library classes that come with the MIDP. Preverification files are contained in the
midp1.0.3fcs\classes directory. The output of the javac compiler is in the tmp_classes
directory.

You can exclude the -classpath option if the CLASSPATH environment variable points
to the d:\j2me\midp1.0.3fcs\classes directory. In this case, you simply invoke the
preverify using:

preverify -d d:\j2me\classes d:\j2me\tmp_classes

P:\010Comp\CompRef8\710-9\ch03.vp
Thursday, February 06, 2003 11:40:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

54 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

A word of caution: the preverifier overwrites the HelloWorld.class file generated
by the compiler if the directory specified in the -d option is the same directory that
contains the HelloWorld.class file. Replacing the HelloWorld.class file isn’t a problem
because the post-preverified HelloWorld.class is the file used to invoke the class.

Running Hello World
A MIDlet should be tested in an emulator before being downloaded to a small
computing device. An emulator is software that simulates how a MIDlet will run in
a small computing device. Once you’re satisfied that a MIDlet is operating properly,
you can deploy the MIDlet as part of a MIDlet suite, which you’ll learn to do a little
later in the chapter.

There are two ways to run a MIDlet. These are either by invoking the MIDlet class
or by creating a JAR file, then running the MIDlet from the JAR file. Let’s begin by
running the MIDlet class without the need of a JAR file. Make sure that j2me\src\
greeting is the current directory, and then enter the following command. Figure 3-4
illustrates how the MIDlet appears in the emulator. Click the right telephone handset
icon to close the MIDlet.

midp -classpath d:\j2me\classes greeting.HelloWorld

Deploying Hello World
A MIDlet should be placed in a MIDlet suite after testing is completed. The MIDlet
suite is then packaged into a JAR file along with other related files for downloading
to a small computing device. This process is commonly referred to as packaging.

In the HelloWorld example, the MIDlet suite contains one MIDlet, which is the
HelloWorld.class. Before packaging the MIDlet into a JAR file, you’ll need to use
an editor to create the manifest file shown in Listing 3-5. The manifest describes the
JAR file. The manifest file should be saved as manifest.txt in the j2me\src\greeting
directory. Notice that the MIDlet description within the manifest file contains a
graphic call, /greeting/mylogo.png, that is associated with the HelloWorld MIDlet.
Any PNG-formatted image file can be used in place of mylogo.png. However, all
image files must be in the PNG format. You can also remove references to an image
file by replacing the name of the image file with a space, such as:

MIDlet-1: HelloWorld, , greeting.HelloWorld

MIDlet-Name: Hello World

MIDlet-Version: 1.0

MIDlet-Vendor: Jim

MIDlet-1: HelloWorld, /greeting/myLogo.png, greeting.HelloWorld

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

Listing 3-5
The manifest
file for Hello

World

P:\010Comp\CompRef8\710-9\ch03.vp
Thursday, February 06, 2003 11:40:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

You can create the JAR file once the manifest.txt file is saved in the j2me\src\
greeting directory. Make sure the j2me\src\greeting directory is the current directory,
and then create the JAR file by entering the following command:

jar -cfvm d:\j2me\midlets\HelloWorld.jar manifest.txt -C d:\j2me\classes greeting

The final piece of the Hello World package is a JAD file. Create the JAD file shown
in Listing 3-6 using an editor, and save the JAD file in the j2me/src/greeting directory.

MIDlet-Name: Hello World

MIDlet-Version: 1.0

MIDlet-Vendor: Jim

C h a p t e r 3 : J 2 M E A r c h i t e c t u r e a n d D e v e l o p m e n t E n v i r o n m e n t 55

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

J2
M

E
B

A
S
IC

S

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

Figure 3-4. The HelloWorld MIDlet running in the emulator

Listing 3-6
The JAD

file for
HelloWorld

P:\010Comp\CompRef8\710-9\ch03.vp
Thursday, February 06, 2003 11:40:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

56 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

MIDlet-Description: My First MIDlet suite

MIDlet-1: HelloWorld, /greeting/myLogo.png, greeting.HelloWorld

MIDlet-Jar-URL: HelloWorld.jar

MIDlet-Jar-Size: 1428

Copy the HelloWorld.jad file into the j2me/midlets directory, and then make
j2me/midlets the current directory. Invoke the MIDlet by entering the following
command. The image of the mobile cellular telephone is displayed on the screen
(Figure 3-4). Click the right telephone handset icon to close the MIDlet.

midp -classpath HelloWorld.jar -Xdescriptor HelloWorld.jad

Once you are satisfied that the MIDlet suite packaged in a JAR file is operating
properly in the emulator, you can download the JAR file to a small computing device.
The downloading process is device dependent, and therefore you must refer to the
device’s documentation or the manufacturer’s web site for steps for downloading
your JAR file.

What to Do When Your MIDlet Doesn’t Work Properly
Sometimes a MIDlet won’t compile or run properly. Although each MIDlet is unique,
there are a few common problems that cause a MIDlet to fail. Here are areas to
investigate if you experience a failure.

If the compiler, preverifier, JAR program, or emulator doesn’t run from the command
line, review the value of the PATH, CLASSPATH, and MIDP_HOME environment
variables to be sure you have included the exact path to these programs. Also make
sure that the current directory reference (a period) is included in the CLASSPATH
environment variable.

Running out of environment space is a common problem on some platforms. This
results in not enough room to store the complete value of an environment variable such
as the PATH. You can work around this problem by creating an executable file, such as
a batch file in Windows, that sets the environment variables for J2ME components. Run
this executable file before compiling and testing your MIDlet to temporarily reset
environment variables. The environment variables return to their original values the
next time you restart your computer or log in.

Many types of errors can occur during the compiling and packaging process. Some
are syntax errors, which you’ll be able to fix quickly by reviewing the source code. Other
errors can be caused by poorly formed command line options and arguments, such as
failing to insert a space between an option and a period when referencing the current
directory.

Another common occurrence is for a MIDlet suite to run fine in test but fail to run
after downloaded to the small computing device. In this case, the application manager
on the small computing device might reject the MIDlet suite because the MIDlet suite
cannot be run on the device. An oversize MIDlet suite is a likely suspect.

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

P:\010Comp\CompRef8\710-9\ch03.vp
Thursday, February 06, 2003 11:40:18 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 3 : J 2 M E A r c h i t e c t u r e a n d D e v e l o p m e n t E n v i r o n m e n t 57

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

J2
M

E
B

A
S
IC

S

Multiple MIDlets in a MIDlet Suite
In the real world, multiple MIDlets are distributed in a single MIDlet suite. The
application manager then displays each MIDlet as a menu option, enabling the user
to run one of the MIDlets. Let’s create another MIDlet to illustrate how to deploy
a multiple MIDlet suite.

The new MIDlet is called GoodbyeWorld and is shown in Listing 3-7. Enter this
code into a text editor and save the file as GoodbyeWorld.java in the j2me\src\greeting
directory. Make the j2me\src\greeting directory the current directory. Compile both
the HelloWorld.java and GoodbyeWorld.java files by entering the following command
at the command line:

javac -d d:\j2me\tmp_classes -target 1.1 -bootclasspath

d:\j2me\midp1.0.3fcs\classes *.java

Preverify these files by entering the following command at the command line:

preverify -d d:\j2me\classes -classpath d:\j2me\midp1.0.3fcs\classes

d:\j2me\tmp_classes

package greeting;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class GoodbyeWorld extends MIDlet implements CommandListener

{

private Display display ;

private TextBox textBox ;

private Command quitCommand;

public void startApp()

{

display = Display.getDisplay(this);

quitCommand = new Command("Quit", Command.SCREEN, 1);

textBox = new TextBox("Goodbye World", "My second MIDlet", 40, 0);

textBox .addCommand(quitCommand);

textBox .setCommandListener(this);

display .setCurrent(textBox);

}

public void pauseApp()

{

}

public void destroyApp(boolean unconditional)

{

}

public void commandAction(Command choice, Displayable displayable)

Listing 3-7
GoodbyeWorld
MIDlet source

code

P:\010Comp\CompRef8\710-9\ch03.vp
Thursday, February 06, 2003 11:40:18 AM

Color profile: Generic CMYK printer profile
Composite Default screen

{

if (choice == quitCommand)

{

destroyApp(false);

notifyDestroyed();

}

}

}

Next, create a manifest.txt file, as illustrated in Listing 3-8, and save the file in the
j2me/src/greeting directory. You can modify the manifest.txt file created in the previous
example as an alternative to writing a new manifest file by including a description of the
GoodbyeWorld class as shown in Listing 3-8.

Create the HelloWorld.jar file by entering the following command. Make sure that
the j2m/src/greeting directory is the current directory.

jar -cfvm d:\j2me\midlets\HelloWorld.jar manifest.txt -C d:\j2me\classes greeting

You’ll also be required to create or modify the existing JAD file to resemble Listing 3-9.
Save the HelloWorld.jar file in 2me/src/greeting. Next, copy the HelloWorld.jar file and the
HelloWorld.jad file to the j2me/midlets directory.

Make the j2me/midlets directory the current directory, and then enter the following
command on the command line to run the J2ME application:

midp -classpath HelloWorld.jar -Xdescriptor HelloWorld.jad

MIDlet-Name: Hello World

MIDlet-Version: 1.0

MIDlet-Vendor: Jim

MIDlet-1: HelloWorld, /greeting/myLogo.png, greeting.HelloWorld

MIDlet-2: GoodbyeWorld, /greeting/myLogo.png, greeting.GoodbyeWorld

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-Name: Hello World

MIDlet-Version: 1.0

MIDlet-Vendor: Jim

MIDlet-Description: My First MIDlet suite

MIDlet-1: HelloWorld, /greeting/myLogo.png, greeting.HelloWorld

MIDlet-2: GoodbyeWorld, /greeting/myLogo.png, greeting.GoodbyeWorld

58 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

Listing 3-8
The manifest

file for
HelloWorld/

GoodbyeWorld
MIDlet suite

Listing 3-9
The JAD file

for
HelloWorld/

GoodbyeWorld

P:\010Comp\CompRef8\710-9\ch03.vp
Thursday, February 06, 2003 11:40:18 AM

Color profile: Generic CMYK printer profile
Composite Default screen

MIDlet-Jar-URL: HelloWorld.jar

MIDlet-Jar-Size: 4048

The cellular phone emulator displays the image of a cellular phone on the screen,
as shown in Figure 3-5. Notice that the emulator’s application manager displays both
the HelloWorld and GoodbyeWorld MIDlets as menu options.

Click on the up or down arrow keys on the emulator to move the cursor up and
down the menu options. Click on the center button to launch either the HelloWorld
MIDlet or the GoodbyeWorld MIDlet. For example, if you move the cursor to the
GoodbyeWorld MIDlet and select the center button on the emulator, the emulator’s
application manager launches the GoodbyeWorld MIDlet, as shown in Figure 3-6.
Click the left cellular telephone handset icon to return to the menu.

C h a p t e r 3 : J 2 M E A r c h i t e c t u r e a n d D e v e l o p m e n t E n v i r o n m e n t 59

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

J2
M

E
B

A
S
IC

S

Figure 3-5. The HelloWorld MIDlet running in the emulator

P:\010Comp\CompRef8\710-9\ch03.vp
Thursday, February 06, 2003 11:40:18 AM

Color profile: Generic CMYK printer profile
Composite Default screen

60 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

J2ME Wireless Toolkit
Building and running a J2ME application at the command line is cumbersome, to
say the least, when you are creating a robust application consisting of several MIDlets.
Creating your application within an integrated development environment is more
productive than developing applications by entering commands at the command line.

There are a number of popular integrated development environments on the market
designed for developing J2ME applications. These include Borland’s JBuilder and Sun
Microsystems’ Forte. Another integrated development environment is the J2ME Wireless
Toolkit that is downloadable from java.sun.com/products/j2mewtoolkit/download.html.

Figure 3-6. The GoodbyeWorld MIDlet running in the emulator

P:\010Comp\CompRef8\710-9\ch03.vp
Thursday, February 06, 2003 11:40:19 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 3 : J 2 M E A r c h i t e c t u r e a n d D e v e l o p m e n t E n v i r o n m e n t 61

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

J2
M

E
B

A
S
IC

S

The J2ME Wireless Toolkit is used to develop and test J2ME applications by selecting
a few buttons from a toolbar. However, the J2ME Wireless Toolkit is a stripped-down
integrated development environment in that it does not include an editor, a full debugger,
and other amenities found in a third-party integrated development environment.

Building and Running a Project
Download the J2ME Wireless Toolkit from the Sun web site. The Toolkit file is a self-
extracting executable file. Run this executable after downloading the file, and the
installation program creates all the directories required to run the Toolkit. The installed
J2ME Wireless Toolkit is placed in the WTK104 directory, although the directory might
have a variation of this name depending on the version of the Toolkit that you download.

Ktoolbar is the executable within the directory that launches the Toolkit. The main
window is displayed (see Figure 3-7) when you run ktoolbar. You’ll notice that the
main window is sparse compared with other integrated development environments.

Let’s create a new project by selecting the New Project button from the toolbar.
You’ll be prompted to enter a project name and class name (see Figure 3-8). Enter Hello
World as the project name and greeting.HelloWorld as the class name, which is the
name of the first MIDlet that is associated with the project.

After selecting the Create Project button, the J2ME Wireless Toolkit automatically
creates a directory structure for the project and also creates the manifest file and JAD file.
You can see and modify attributes of these files by selecting the Settings option, which
displays a dialog box containing a series of tabs. The first tab displayed, Required (see
Figure 3-9), contains a list of attributes that are necessary for the manifest file and JAD

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

Figure 3-7. Main window of the J2ME Wireless Toolkit

P:\010Comp\CompRef8\710-9\ch03.vp
Thursday, February 06, 2003 11:40:19 AM

Color profile: Generic CMYK printer profile
Composite Default screen

62 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

file, as previously discussed in this chapter. The Optional tab (see Figure 3-10) contains
attributes that are common to many projects but not required to build and deploy
a J2ME application.

Figure 3-9. List of required attributes

Figure 3-8. Enter the project name and class name of the first MIDlet to begin the
project.

P:\010Comp\CompRef8\710-9\ch03.vp
Thursday, February 06, 2003 11:40:19 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 3 : J 2 M E A r c h i t e c t u r e a n d D e v e l o p m e n t E n v i r o n m e n t 63

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

J2
M

E
B

A
S
IC

S

The User Defined tab (Figure 3-11) contains optional attributes specific to your
application, as discussed previously in this chapter. This tab will be empty until you
select the Add button and insert your own attributes. The MIDlets tab (Figure 3-12)
lists MIDlets of your project. Notice that the HelloWorld MIDlet is listed in the tab,
which is the MIDlet you entered as the class name when beginning the project.

A well-organized file structure is automatically created for your project as a result of
starting a new project. Within the WTK104 directory, you’ll see an apps subdirectory in
which the projects you create are stored. Browse the apps subdirectory to see a subdirectory
called Hello World, which is the name that you gave to your project. A subdirectory of the
apps directory is created for every project. And within the project’s subdirectory is another
set of subdirectories. These are

■ src, containing source code

■ bin, containing the manifest.mf file, JAD file, and JAR file

Figure 3-10. List of optional attributes

P:\010Comp\CompRef8\710-9\ch03.vp
Thursday, February 06, 2003 11:40:20 AM

Color profile: Generic CMYK printer profile
Composite Default screen

■ classes, containing the compiled classes

■ tmpclasses, containing the preverify classes

■ res, containing image, data, and other files required by the application

Hello World Project
Let’s re-create the Hello World and Goodbye World application that you created previously
in this chapter. Create a new project called Hello World following the directions in the
“Hello World J2ME Style” section. Next, create a greeting directory beneath the src
directory. Copy the HelloWorld.java file and GoodbyeWorld.java file that you created
previously, and place those files into the project’s src\greeting subdirectory, which is
Hello World\src\greeting if you named your project Hello World.

64 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

Figure 3-11. List of user-defined optional attributes

P:\010Comp\CompRef8\710-9\ch03.vp
Thursday, February 06, 2003 2:43:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Select the Settings button and the MIDlets tab. You’ll need to insert the
GoodbyeWorld.java MIDlet into the MIDlet list. Select the Add button to display
the Enter MIDlet Details dialog box (Figure 3-13), and enter Goodbye World as the
name of the MIDlet, then greeting.GoodbyeWorld as the MIDlet class. Leave the Icon
empty until you have a PNG image that you want to use with the MIDlet. Select OK
to return to the main screen.

If you choose not to create the greeting subdirectory, you’ll need to remove the package
greeting statement from the source code.

Select the Build button from the toolbar. The J2ME Wireless Toolkit compiles,
preverifies, and packages the application in one step, which previously required three
steps using the command line.

C h a p t e r 3 : J 2 M E A r c h i t e c t u r e a n d D e v e l o p m e n t E n v i r o n m e n t 65

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

J2
M

E
B

A
S
IC

S

Figure 3-12. List of MIDlets that are included in the project

P:\010Comp\CompRef8\710-9\ch03.vp
Thursday, February 06, 2003 11:40:20 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The Device drop-down box contains a list of emulators available for testing your
application. Select DefaultColorPhone, and then select the Run button. The image of
a color cellular telephone is displayed running your application (see Figure 3-14).

66 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

Figure 3-13. Enter the name of the MIDlet and the MIDlet class name.

Figure 3-14. The DefaultColorPhone emulator

P:\010Comp\CompRef8\710-9\ch03.vp
Thursday, February 06, 2003 11:40:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Rerun your application several times, alternating among device emulators. Figure 3-15
simulates your application running a DefaultGrayPhone, and Figure 3-16 emulates the
Motorola i85S cellular telephone.

MIDlets on the Internet
The Wireless Toolkit can run MIDlets that access Internet resources by configuring the
emulator to interact with a proxy server and let you monitor activities between the MIDlet
and the Internet for debugging purposes. You configure the emulator for the Internet
by selecting Edit | Preferences. The Network Configuration tab is used to set the port
number and server name of the proxy server. The Trace tab is used to set preferences

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

J2
M

E
B

A
S
IC

S
C h a p t e r 3 : J 2 M E A r c h i t e c t u r e a n d D e v e l o p m e n t E n v i r o n m e n t 67

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

Figure 3-15. The DefaultGrayPhone emulator

P:\010Comp\CompRef8\710-9\ch03.vp
Thursday, February 06, 2003 11:40:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

68 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

for monitoring the interactions between the MIDlet and the Internet. There are four
options that you can set by selecting the appropriate check boxes (Figure 3-17).

The Trace Garbage Collection option displays the status of objects that include
memory allocation of existing objects, the number of objects on the heap, and the size
of the largest free object. The status is displayed whenever the garbage collector is
invoked.

The Trace Class Loading option will display the name of each class as it is loaded into
the emulator. The Trace Class Method Calls option logs object and related methods when

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

Figure 3-16. The Motorola cellular telephone emulator

P:\010Comp\CompRef8\710-9\ch03.vp
Thursday, February 06, 2003 11:40:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 3 : J 2 M E A r c h i t e c t u r e a n d D e v e l o p m e n t E n v i r o n m e n t 69

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 3

J2
M

E
B

A
S
IC

S

they are called. Display Exceptions causes all exceptions to be displayed regardless of
whether they are caught or uncaught.

The Performance, Monitor, and Storage tabs are used to fine-tune the Wireless
Toolkit for those aspects of an emulator.

Figure 3-17. The Trace tab contains preferences for monitoring MIDlets over the
Internet.

P:\010Comp\CompRef8\710-9\ch03.vp
Thursday, February 06, 2003 11:40:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9
Blind Folio 70

P:\010Comp\CompRef8\710-9\ch03.vp
Thursday, February 06, 2003 11:40:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Chapter 4
J2ME Best Practices
and Patterns

71

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 4

P:\010Comp\CompRef8\710-9\ch04.vp
Thursday, February 06, 2003 12:01:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Designing applications for small computing devices is a challenge, to say the least,
primarily because of the limited resources found in these devices. You must assume
that the small computing device contains minimal memory and storage room for

persistent data, as discussed in the first two chapters of this book.
Many traditional systems design methods and best practices are simply not appropriate

for building applications to run on small computing devices. This means that you must
rethink your approach to designing an application earmarked for a small computing
device. Fortunately, there are best practices and patterns that you can implement in your
design that overcome many limitations inherent in small computing devices. In this chapter
you’ll learn about best practices and patterns for developing J2ME applications.

The Reality of Working in a J2ME World
A small computing device has a radically different hardware configuration than traditional
computing devices such as desktop computers and servers. It is for this reason that you
must take into account the device’s hardware configuration when designing your J2ME
application. Consider the following differences between traditional computing devices
and small computing devices.

Traditional computing devices are under continuous power from the power grid, while
some small computing devices such as cellular telephones rely on battery power that
diminishes during the course of operation. A power grid powers other small computing
devices such as set-top boxes and appliances.

Another important difference between traditional computing devices and small
computing devices is the network connection. Unlike traditional computing devices,
mobile small computing devices connect to a network via a radio or infrared connection
whose quality varies depending on the distance of the device from a network receiver
and the strength of the signal generated by the device. Some nonmobile small computing
devices such as set-top boxes use a hard-wired network connection similar to traditional
computing devices. Inconsistency in a network connection and the diminishing longevity
of power typically require the user of a small computing device to synchronize data and
applications frequently with a desktop computer or server.

As you learned in Chapter 1, programs and data are stored in a small computer
device’s memory, commonly referred to as primary storage. These are lost when the device
drops power, although many devices have a secondary battery to retain programs and
data as long as possible. Once lost, programs and data must be reloaded into the device.
Secondary storage is not usually available on a small computing device. Therefore, a J2ME
application should rely on data stored offline in a desktop computer or server rather than
data stored in the device’s primary storage. Data stored offline can be reloaded into the
device using a network connection.

Don’t expect a mobile small computing device to transmit and receive data at the
same rate as a device on a hard-wired network. Data transmission between a mobile
small computing device and a traditional computing device is slow in comparison to

72 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 4

P:\010Comp\CompRef8\710-9\ch04.vp
Thursday, February 06, 2003 12:01:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

a hard-wired network connection because radio and infrared technology offers a
narrower transmission bandwidth than that found in hard-wired network connections.
A bandwidth is the number of communications channels available to transmit bits of
data simultaneously.

Many users of your J2ME application expect the same response from your application
as they experience from desktop computer applications. Therefore, you must design
your J2ME application to minimize and optimize data transmission with offline data
sources. One way to optimize your J2ME application is called ROMizing the application
for run-time operations. ROMizing creates a machine code image of an application before
the application is deployed on the small computing device. In comparison, using a just-
in-time compiler, or other techniques employed by the Java Virtual Machine, optimizes
J2SE and J2EE applications.

Best Practices
Over time and through trial and error, J2ME developers have come up with the best way
to solve complex J2ME programming problems. And these techniques are called best
practices and patterns. Best practices are proven design and programming techniques used
to build J2ME systems. Patterns are routines that solve common programming problems
that occur in such systems.

Professional developers use best practices and patterns to avoid making common
mistakes when designing and building a J2ME application. You can benefit from
the experiences of professional J2ME developers by incorporating appropriate best
practices and patterns in the design of your J2ME application. You’ll learn about these
best practices and patterns in the following sections.

Keep Applications Simple
You must adapt to a new mind-set when creating applications for small computing devices
because of limited resources available and the inability to easily expand resources to
meet application requirements. Typically, you design an application by dividing it into
objects that have associated data and methods. Let’s use an order form as an example.
An order form is an object that has an order number, customer number, product number,
and related data. Likewise, an order form has functionality associated with it, such as
inserting a new order, modifying an existing order, and deleting an order. And the order
form has one or more menu options that enable a user to navigate the order form.

You design a J2ME application by also dividing the application into pieces. However,
the divisions of a J2ME application are much finer divisions than those found in a typical
application. For example, a common division of a J2ME application is a menu option rather
than a menu object or menu method of an object. Each menu option is its own MIDlet.
Menu option MIDlets are packaged in the same MIDlet suite along with other MIDlets
related to the application.

C h a p t e r 4 : J 2 M E B e s t P r a c t i c e s a n d P a t t e r n s 73

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 4

J2
M

E
B

A
S
IC

S

P:\010Comp\CompRef8\710-9\ch04.vp
Thursday, February 06, 2003 12:01:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The J2ME device’s application manager is used to present each MIDlet (menu option)
on the device’s menu and in this way reduces processing resources normally required
to run the application’s own menu (Figure 4-1).

The best practice is to keep your application design simple. Limit your design
to minimum functionality required to meet user expectations. Place each functional
component in its own MIDlet where possible, and package the application’s MIDlets
in the same MIDlet suite. This enables the device’s application manager to manage
MIDlets and the resources used by MIDlets.

Keep Applications Small
The size of your J2ME application is critical to deploying the application efficiently. The
best practice is to remove unnecessary components of your application in order to reduce
the size of the overall application. Fancy bells and whistles that have become the hallmark
of many desktop applications also increase the size of an application. While elaborate
applications work well on the desktop, they tend to be less adaptive to small computing
devices.

74 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 4

Figure 4-1. Make each menu option a MIDlet, and let the application menu display
each menu option.

P:\010Comp\CompRef8\710-9\ch04.vp
Thursday, February 06, 2003 12:01:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Anyone who uses a J2ME application expects the application to download quickly
to the small computing device and run among other applications on the device. A smaller
application meets these expectations because fewer bytes need to be downloaded and
stored in memory on the device.

Besides stripping away the bells and whistles and other unnecessary features from
your J2ME application, you should also deploy your application as a JAR file. A JAR file,
as you learned in the previous chapter, is a compressed version of a J2ME application.

On some occasions, you’ll discover that even a stripped-down version of your
application takes too long to download or simply is too large to run on the small
computing device. In these situations, divide your application into several MIDlets,
and then combine the MIDlets in a MIDlet suite, as described in the previous chapter.

Limit the Use of Memory
In addition to removing unnecessary features from your application, design your
application to manage memory efficiently. There are two types of memory management
that should be used in the J2ME application. These are overall memory management and
peak time memory management. Overall memory management is designed to reduce
the total memory requirements of an application. Peak memory management focuses on
minimizing the amount of memory the application uses at times of increased memory
usage on the device.

A primary way to reduce total memory requirements of your application is to avoid
using object types. Instead, use scalar types, which use less memory than object types.
Likewise, always use the minimum data type suited for storing data. For example, some
developers use an int as a binary flag where only one of two values is assigned to the
variable. A boolean value requires less memory and therefore should be used in place
of an int. This and similar data management subtleties usually have little or no noticeable
impact on a non-J2ME application. However, this kind of attention to detail will have
a dramatic impact on the performance of a J2ME application.

Peak time memory management requires you to manage garbage collection. J2ME
does have a garbage collector, but as with J2SE, you don’t know when the garbage collector
will collect your garbage. Therefore, it is critical that you clean up after the application
is finished using memory.

Here are a few ways to manage your own garbage collection: First, allocate an object
immediately before the object is used in the application rather than at the beginning of
your application. Allocating memory at the beginning of the application reserves memory
long before the object will be used within the application. This memory could be utilized
by other parts of the application until the application requires the object. Next, set all
references to objects to null once the application no longer needs the object. This decreases
the memory application of the object to the minimum memory necessary to store an
object reference.

Always reuse objects instead of creating new objects. This reduces both memory
allocation and the need for processing power. Memory allocation is reduced because

C h a p t e r 4 : J 2 M E B e s t P r a c t i c e s a n d P a t t e r n s 75

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 4

J2
M

E
B

A
S
IC

S

P:\010Comp\CompRef8\710-9\ch04.vp
Thursday, February 06, 2003 12:01:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

multiple references can use the same object at different times in the application’s life
cycle. Obviously, both objects that use the same memory cannot run simultaneously.
The need for processing power is reduced because a portion of the processing required
to allocate new memory doesn’t need to be invoked since memory has already been
allocated when the object is instantiated.

Reducing the likelihood of exceptions is another technique for lowering memory
usage of your application. The fewer exceptions that might be thrown, the less memory
your application requires. And the last best practice to reduce memory usage is to release
all resources immediately following their use within your application. Releasing a resource
makes the resource and related memory available to other components of your application
and to other applications running on the small computing device along with your
application.

Off-Load Computations to the Server
Small computing devices are designed to run applications that do not require intensive
processing because processing power common to desktop computers is not available on
these devices. This means that you must design your J2ME application to perform minimal
processing on the small computing device. However, the reality is that sophisticated,
industrial-strength applications require processing that is beyond the capabilities of these
devices. At first glance, you might assume that small computing devices are unable to
run processing-intensive applications, and you’d be correct in your assumptions. But
there is an alternative that lets you combine the convenience of a small computing device
with an application that requires intense processing.

The alternative is to build a client-service J2ME application or web services J2ME
application. There are two levels of operation in a client-service application. These are
the client level and the server level. The small computing device runs the client level that
provides user interface and presentation functionality to the application. The server-side
level processes client requests and returns the result to the small computing device for
presentation to the user. Nearly all processing occurs on the server side of the application.

There are three tiers in web services. The first layer is the client tier, sometimes referred
to as the presentation tier. This is where a person interacts with an application. The second
layer contains the business logic that is used to fulfill requests from a client by calling
appropriate software on the processing tier. Processing software returns results to the
business logic layer, and in turn, those results are returned to the client for presentation
to the user.

Let’s say an overnight delivery person is unsure of the recipient’s address and uses
client software in his handheld computing device to query the company’s database for
the recipient’s telephone number. The request is captured by client software and sent over
a wireless network connection to the business logic software running on the corporate
server (Figure 4-2). The business logic software assesses what web services are necessary
to fulfill the request and proceeds to invoke those web services, passing the necessary
information from the query to respond to the client’s request.

76 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 4

P:\010Comp\CompRef8\710-9\ch04.vp
Thursday, February 06, 2003 12:01:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In this example, the business logic software determines that the database management
system (DBMS) software (processing tier) is required to locate the customer’s telephone
number in the database. The DBMS running on the processing layer handles processing
required to locate the telephone number in the database and forwards the telephone
number to the business logic layer, which sends the telephone number to the delivery
person’s handheld computer.

Processing on the client is limited to displaying the user interface, capturing a user
request, opening and maintaining a network connection to the back-end systems, sending
(request) and receiving information (telephone number), and presenting incoming
information to the user of the small computing device.

Manage Your Application’s Use of a Network Connection
Besides lightening the processing load on the small computing device, you must also be
concerned about the availability of a network connection. Some small computing devices
are mobile, wireless devices where a network connection is not always available, and
even when available, the connection might be broken during transmission due to the
positioning of the transmitter and receiver (for example, when moving from one cell
to another in a cellular telephone network).

Cellular telephone networks use technology that attempts to maintain connection
as the mobile device moves from one cell to another cell. In reality there are dead zones
where the mobile device is outside the range of the cellular telephone transceiver. The
connection is broken in these dead zones, and sometimes it cannot be automatically
reestablished by the telephone company. The drop in communication can occur without
warning, as many cellular telephone users have experienced.

Although you cannot avoid a break in communication, you can take steps to reduce the
impact on the user of your application. Begin by keeping transmissions short—transfer
the minimum information necessary to accomplish a task. Let’s say your application is
designed to retrieve email messages from a server. Instead of retrieving all emails in an
inbox, you can retrieve the “From,” “Subject,” and “Data received” fields from the last

C h a p t e r 4 : J 2 M E B e s t P r a c t i c e s a n d P a t t e r n s 77

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 4

J2
M

E
B

A
S
IC

S

Figure 4-2. A request is captured and sent by client software to business logic
software for processing.

P:\010Comp\CompRef8\710-9\ch04.vp
Thursday, February 06, 2003 12:01:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ten emails that were placed in the inbox. Your J2ME application can present these fields
on the screen and then give the user the options to select an email to read, select a preview
for an email, delete an email, or retrieve the next ten emails.

Consider using store-forwarding technology and a server-side agent whenever your
J2ME application requests a lot of information. A server-side agent is software running
on the server that receives a request from a mobile device and then retrieves requested
information from a data source, which is very similar to the business logic layer of web
services technology. The results of the query are then held by the agent until the mobile
device asks for the information, at which time the information is forwarded to the
mobile device.

The request from the mobile device consists of a small amount of data. The agent
can accumulate large amounts of data from database management software to fulfill
the request and then forward small amounts of data to the mobile device.

Let’s say that a customer stopped an overnight delivery carrier on the street corner
and asked for a shipping status. The customer doesn’t have any particulars about the
shipment except for her company name, address, and destination. The delivery service’s
mobile tracking system can be designed to efficiently respond to the customer’s request
by using store-forwarding technology and a server-side agent (Figure 4-3). The mobile
device could send a request to the agent for all shipments from the company made from
the zip code given to the carrier by the customer.

78 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 4Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 4

Figure 4-3. An agent works on the server side to act on behalf of client software
running on the small computing device.

P:\010Comp\CompRef8\710-9\ch04.vp
Thursday, February 06, 2003 12:01:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 4 : J 2 M E B e s t P r a c t i c e s a n d P a t t e r n s 79

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 4

J2
M

E
B

A
S
IC

S

The agent forwards the request to the tracking system’s database management
software, which returns complete information for 30 shipments. Software running on
the mobile device polls the agent periodically (once per second), asking for the latest,
next, or previous shipping number and destination, depending on the option selected
by the carrier. The carrier then reviews the destinations of the ten shipments with the
customer to narrow the search for the customer’s shipment. Once the customer identifies
the correct shipment, the mobile device requests status information about the shipment
from the agent.

Always build into your mobile application a mechanism for recovering from a
transmission drop. For example, retain key information about a request on the mobile
device until the request is fulfilled. The mobile application can then use the retained key
information to resubmit the request either automatically or as a user option if there is
a breakdown in communication.

Simplify the User Interface
Most desktop applications have a standard set of graphical user interface objects such
as text boxes, combo boxes, radio buttons, check boxes, and push buttons. These objects
are accessible to the user through a mouse, keyboard, and other input devices commonly
associated with a desktop computer. However, small computing devices use a variety
of user display and input devices. Some devices, such as a cellular telephone, have an
inch-square display and a telephone keypad for data input. Other devices, such as personal
data assistants, have wide rectangular screens and a hunt-and-peck keyboard.

There is a standard display and input for desktop computers, but you cannot say the
same about small computing devices. The variety of shapes and hardware configurations
found in devices classified as small computing devices makes it nearly impossible to
standardize on a set of user interface objects for these devices. Given this limitation, you
still need to provide a user interface for your J2ME application. Here are several practices
that you should consider following when designing a user interface for a small computing
device.

It is critical that you design a user interface that takes advantage of convenient features
found on a small computing device and avoid user interactions that are awkward to
perform. For example, entering personal information using a small computer device such
as a cellular telephone or PDA is difficult, to say the least, although the information can be
entered given the time and patience. A more convenient approach is to design a desktop
companion application in which personal information is entered and then downloaded to
the device by selecting a menu option on the device’s keypad.

Where possible, take advantage of the user interface provided by the device’s
application manager, rather than designing your own. As you saw in the previous
chapter, the application manager lists each MIDlet in the MIDlet suite as a menu option,
avoiding the need for the programmer to develop a menu.

If you decide to create a user interface containing a menu, consider the available input
mechanisms of the small computer device before beginning your design. Some devices
have touch screens that enable you to use icons, rather than words, to represent menu

P:\010Comp\CompRef8\710-9\ch04.vp
Thursday, February 06, 2003 12:01:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

options. Other devices, such as cellular telephones, have limited keypads. Therefore,
you should carefully select shortcut keys that activate menu selection to conform to
the keyboard. Let’s say three options are presented in a list on the screen. Typically,
you identify each option with a shortcut key that is a sequence of letters (A, B, C), or
numbers (1, 2, 3), or a letter within the name of the option.

Selecting letters A, B, and C is easy on a standard keyboard, but awkward on a cellular
telephone keypad because all three letters are assigned to one key. Some keypad algorithms
recognize a letter by the number of times the key is pressed—press once for the letter A,
twice for B, and three times for C. A better design is to avoid using sequential letters as
such and either use the first letter of keys on the keypad or numbers as a shortcut key
(Figure 4-4).

Limit the amount of user input into your application to simple menu selections and an
occasional few fields of text or numbers, depending on the design of the small computing
device. The rule of thumb: a user should be able to interact with your application by using
a thumb while holding the device in one hand.

80 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 4

Figure 4-4. Select letters as shortcut keys that are easily entered into the small
computing device.

A

M

D
G

P:\010Comp\CompRef8\710-9\ch04.vp
Thursday, February 06, 2003 12:01:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Use Local Variables
Limited resource is the theme that echoes through design considerations for applications
that run on small computing devices. As a developer, you cannot assume there are
sufficient resources on every small computing device to run your application. Failure
to seriously recognize this theme will result in your application being unable to run on
many small computing devices. Therefore, it is critical to evaluate processing requirements
of each routine within your application. Your objective is to exclude routines that increase
processing overhead if a less processing-intense routine can accomplish the same task.

You’ll find this line of thought radically different from the mind-set used to write
applications for desktop devices and server devices, where you can safely assume that
sufficient resources exist to run an application. Desktop devices and server devices
typically have more than enough resources available to process an application efficiently.

Data storage is a key area within an application for reducing excessive processing.
In many applications, developers assign values to data members of a class rather than
using a local variable. Assigning data to a class member adheres to object-oriented design
philosophy, which is prevalent in application design.

Although encapsulating data within an object tightly controls access to the data,
this advantage is realized at the expense of additional processing time whenever the
application accesses the data member. Accessing a data member of a class requires
more processing steps than accessing the same data if the data is stored as a local variable.
Therefore, accessing a local variable is less processing intense than accessing a class
member.

You can increase processing of your application if you eliminate the extra steps of
accessing a data member of a class by assigning values to local variables. Of course, you’ll
need to weigh the gains in processing against the benefits of encapsulating data in a class.
However, you’ll find processing considerations an overriding factor in data-intense
applications that run on a small computing device.

Don’t Concatenate Strings
Concatenating strings is another processing drain that can be avoided by designing an
application to eliminate concatenations or at least reduce the number of concatenations
to the minimum necessary to achieve the objective of the application.

Concatenation also increases the application’s use of memory in addition to increasing
the application’s processing requirements, which becomes apparent by comparing
processing a string with processing a concatenated string.

A string is an array of characters terminated by a NULL and stored sequentially in
memory. Let’s assume the application wants to compare two strings, both of which are
four characters and reside in memory. The application instructs the small computing
device to copy the first character of each string into the CPU for comparison. This process
continues until either the null character is reached or a letter pair is different. The entire
process might require ten reading instructions and five comparison instructions, depending
on when a mismatch is discovered (see Figure 4-5).

C h a p t e r 4 : J 2 M E B e s t P r a c t i c e s a n d P a t t e r n s 81

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 4

J2
M

E
B

A
S
IC

S

P:\010Comp\CompRef8\710-9\ch04.vp
Thursday, February 06, 2003 12:01:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

However, additional processing steps are necessary if one of those strings is a
concatenated string. Let’s divide the first string into two strings, as shown in Figure 4-6.
The left string must be concatenated into the first string; afterwards, the first string and
the target string are compared.

The concatenation process introduces six additional processing steps: three instructions
to read each character of the second string and three more instructions to write those
characters to the end of the first string.

Besides the increase in processing steps, concatenation also requires more memory than
if the first string and second string did not have to be concatenated. Notice in Figure 4-6
that the second string remains in memory after the strings have been concatenated.
Therefore, you can reduce processing time and memory usage by avoiding concatenating
strings. An alternative is to concatenate strings before the string is loaded into the small
computing device.

If there is a need to concatenate strings, use a StringBuffer object. This makes efficient
use of memory when strings are appended to the buffer, although there is additional
processing overhead.

Avoid Synchronization
It is very common for developers to invoke one or multiple threads within an operation.
Invoking a thread is a way of sharing a routine among other operations. For example,
a sort routine can be shared simultaneously by multiple operations that must sort data.
Each operation invokes the sort routine independent of other operations, although the
same code is being executed for all operations. Deadlocks and other conflicts might
arise when multiple operations use the same routine. These problems are avoided by
synchronizing the invocations of a thread, as you probably remember when you learned
Java programming.

Always use a thread whenever an operation takes longer than a tenth of a second to
run because a thread requires less overhead than non-thread invocation methods, and
therefore you’ll see a performance increase in your application.

82 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 4

Figure 4-5. Ten reading instructions and five comparison instructions are
necessary to compare two strings.

P:\010Comp\CompRef8\710-9\ch04.vp
Thursday, February 06, 2003 12:01:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Another way to increase performance is to avoid using synchronization where
possible. Synchronization requires additional processing steps that are not necessary
when synchronization is deactivated. However, you must consider the performance
trade-off with possible conflicts among operations that use the same threaded routine.
As a general rule, avoid using synchronization unless there is a high likelihood that
conflicts among operations will occur.

Thread Group Class Workaround
A common way of reducing the overhead of starting a new thread is to create a group
of thread objects that are assigned threads as needed by operations within an application.
Less processing is required to assign a thread to an existing thread object than to create
a new thread object.

Grouping thread objects is made possible by the ThreadGroup class, but J2ME does
not support this class. You can work around it, however, by creating your own grouping
using the Collection class. You can store groups of thread objects in a collection and then
use standard collection methods to start and stop threads in the collection and assign
threads to particular thread objects within the collection.

Upload Code from the Web Server
Version management is always a concern of application developers, especially when
applications are invoked from within a small computing device. It can be a nightmare
keeping track of various versions of an application once an application is distributed.

C h a p t e r 4 : J 2 M E B e s t P r a c t i c e s a n d P a t t e r n s 83

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 4

J2
M

E
B

A
S
IC

S

Figure 4-6. Concatenating strings requires processing and memory allocation not
required if strings are concatenated before being loaded into the small
computing device.

P:\010Comp\CompRef8\710-9\ch04.vp
Thursday, February 06, 2003 12:01:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

84 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 4

You can reduce and possibly eliminate problems associated with multiple versions of
the same application by requiring invocation of the application from a web server. Every
device that invokes the application will then use the same copy of the application that
is stored on a web server accessible from the Internet, extranet, or intranet.

Here’s how a small computing device can invoke a web server–based J2ME
application:

midp -transient http://www.mycompany.com/welcome.jad

Rather than running a local JAD file, the -transient option specifies that the JAD file
is located on a web server identified by the URL on the command line. In this way, the
developer only needs to update one copy of the application, and distribution is handled
by making the latest version of the application available on the web server.

This technique is ideal for set-top boxes that are connected to a web server via a cable
television connection or satellite connection. Software can be updated each time the set-
top box comes online without the user or a technician having to reinstall the application.

Reading Settings from JAD Files
There will likely be occasions when you need to have your application perform in a
certain way, depending on the type of small computing device that runs the application.
Although you can create versions of your application for specific small computing devices,
there is a more efficient approach to tailoring an application to a device.

First, design your application with switches that activate and/or deactivate routines
depending on the value of a setting. A setting is a value assigned to a variable that is
either created within the application or passed to the application as a command line
parameter.

However, J2ME applications are capable of reading the value of a setting from a JAD
file and manifest file. A setting is a user-defined value created in either file, as discussed
in Chapter 3. A good practice is to create a user-defined value within the JAD file rather
than within the manifest file because the JAD file can be modified without having to
repackage your application. A manifest file is a component of a package (see Chapter 3).

Listing 4-1 shows a typical JAD file that includes a user-defined value called Model-
Version: M253. The J2ME program in Listing 4-2 illustrates how to read this user-defined
value during run time without having to recompile or repackage the application.

A user-defined value is read by invoking the getAppProperty() method and passing
the name of the user-defined value to the getAppProperty() method. The getAppProperty()
returns the user-defined value from either the manifest file or the JAD file depending on
which of these files contains the user-defined value.

P:\010Comp\CompRef8\710-9\ch04.vp
Thursday, February 06, 2003 12:01:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 4 : J 2 M E B e s t P r a c t i c e s a n d P a t t e r n s 85

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 4

J2
M

E
B

A
S
IC

S

Listing 4-2 reads the Model-Version user-defined value defined in the JAD file and
displays the value on the screen. Of course, you can create a compound statement that
invokes the getAppProperty() method and then assigns the returned value to a variable
or uses the return value directly in an expression.

MIDlet-Name: Best MIDlet

MIDlet-Version: 2.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: http://www.mycompany.com/bestmidlet.jar

MIDlet-1: BestMIDlet, /images/BestMIDlet.png, Best.BestMIDlet

Model-Version: M253

public class BasicMIDletShell extends MIDlet

{

public void startApp()

{

System.out.println(getAppProperty("Model-Version"));

}

public void pauseApp()

{

}

public void destroyApp(boolean unconditional)

{

}

}

Populating Drop-down Boxes
A drop-down box is a convenient way for users to choose an item from a list of possible
items, such as an abbreviation for a state. Traditionally, content of a drop-down box is
loaded from the data source once when the application is invoked and remains in memory
until the application terminates.

While caching the contents in memory is a best practice in Java programming, caching
is a questionable practice when developing a J2ME application. Loading a list of data
for a drop-down box when the J2ME application is invoked is efficient if this is a short
list that doesn’t require substantial memory resources.

Load the list dynamically from a server whenever the list is long. Release the list once
the user has made a selection, and then reload the list the next time the drop-down box
is invoked. In this way, memory used to store the list can be reused between calls to the
drop-down box.

Listing 4-2
A program

that reads a
user-defined

value from
the JAD file

Listing 4-1
A JAD file

containing a
user-defined

value

P:\010Comp\CompRef8\710-9\ch04.vp
Thursday, February 06, 2003 12:01:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The question that you’re bound to be asking is what constitutes a short or long list of
items. You’ll need to test your application loading the list once and then loading the list
dynamically for each invocation to determine which method delivers the best performance.
Be sure to test in real-world conditions when loading a list from a server. Any processing
delay by the server responding to a request for the list can severely impact your
application’s user response time. Likewise, transmission delays will also deliver a negative
user experience with your application.

In contrast, caching a long list limits memory availability to other routines within your
application and to other applications running on the small computing device. This might
result in some features of your application becoming unavailable or worse—a user won’t
be able to load another application if your application is loaded in memory.

Minimize Network Traffic
Developing a J2ME application is a balancing act between deciding whether processing
should be performed by the small computing device or by a server. The choice depends
upon many factors, including the amount of transmission that must occur for each process.
A good practice is to off-load as much processing as is reasonable to a server and minimize
the number of processes that need to be invoked by the J2ME application in order to
reduce network transmissions.

Collect all the information from the user that is required by the process at one time,
and then forward the information to the server when invoking the process. For example,
your application might be used to retrieve a list of customers that the user may later filter
to remove unwanted customers or reorder the customer list into a more appropriate
sequence. You can reduce the number of processes and network transmission by requiring
the user to select the filter and sequence as part of the request for the customer list
(Figure 4-7). In this way, the database server can create the customer list in the desired
order without having the user make subsequent requests to manipulate the customer
information.

Dealing with Time
J2ME applications that rely on current time might incur a problem that is not realized
in desktop computer and server applications. Current time is determined by the date/
time setting on the device. Desktop computers and servers are stationary, and therefore
current time reflects the time zone where these devices are located. However, the same
isn’t true of a mobile small computing device because the device can be moved to multiple
time zones.

The problem of time-sensitive data is further compounded by the fact that the date/
time setting is device dependent. For example, a number of cellular telephones have a
geographic positioning feature that enables the device’s operating system to know the
exact location of the device. Some geographic positioning systems use a global position
system (GPS) that pinpoints the device by triangulating satellite-transmitted signals. Other

86 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 4

P:\010Comp\CompRef8\710-9\ch04.vp
Thursday, February 06, 2003 12:01:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

geographic positioning systems determine a device’s time zone based on the cellular
telephone network’s cell that receives the device’s transmission (Figure 4-8).

Those mobile small computing devices that have a built-in geographic positioning
system typically adjust the date/time setting on the device automatically as the device
moves to a new time zone. However, not all mobile small computing devices have a
geographic positioning system on board (for example, PDAs) and therefore rely on the
user to adjust the date/time setting when crossing into another time zone.

Unfortunately, there isn’t any practice that guarantees a user will adjust the date/
time setting to reflect the current time zone, although you can remind the user of the
importance of making such an adjustment. Knowing the time zone used when the time-
sensitive data was entered into your J2ME application is critical when analyzing the data.
For example, the data might be time stamped 9:30 A.M., but you still need to know the time
zone in order to properly evaluate the time the data was entered into your application.

The best practice is to always store time based on Greenwich Mean Time (GMT) by
using the getTime() method of the Date class. In this way, the time stamp of all the data
is recorded in a uniform time zone, facilitating the data analysis.

C h a p t e r 4 : J 2 M E B e s t P r a c t i c e s a n d P a t t e r n s 87

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 4

J2
M

E
B

A
S
IC

S

Figure 4-7. Let the business logic layer filter and sort data rather than filtering
and sorting data in the small computing device.

P:\010Comp\CompRef8\710-9\ch04.vp
Thursday, February 06, 2003 12:01:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Automatic Data Synchronization
As discussed at the beginning of this chapter, a small computing device is typically used
to store and manipulate data that changes over time, such as a list of clients and financial
records. Storage of data in a small computing device is temporary because the device
usually doesn’t have secondary storage. All data is stored in primary storage (memory)
and can be lost whenever the device loses power.

Data is permanently stored in secondary storage on a traditional computing device
such as a desktop computer or server. Therefore, it is critical to the success of your
application that you provide a mechanism to efficiently update data in the small
computing device with data stored on the traditional computer’s secondary storage.

88 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 4

Figure 4-8. Geographic positioning systems in a mobile small computing device
detect the location of the device, enabling the operating system to
make time zone adjustments.

P:\010Comp\CompRef8\710-9\ch04.vp
Thursday, February 06, 2003 12:01:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Failure to do this will cause both devices to become unsynchronized, resulting in erroneous
data being displayed and manipulated by the small computing device.

A good practice is to build into your J2ME application a routine that automatically
uploads the latest data when the J2ME application is invoked. Likewise, your J2ME
application should automatically download data that has changed to the secondary
storage device prior to the termination of the application.

The small computing device must be connected to the network for both actions to
occur. It is common for the device to automatically log onto the network when the device
is activated. However, some devices might require the user to log onto the network. If
the user doesn’t log onto the network, your application is unable to update data in the
small computing device with data stored in the secondary storage device.

A good practice is to prompt the user to open a network connection while your J2ME
application begins running or right before the application terminates. The prompt should
give the user two choices: open a network connection or skip opening a network
connection until the next time the J2ME application is opened. The prompt should also
explain that if the user postpones opening a network connection, the data retained in the
small computing device might become outdated and might be lost should the device
lose power.

Updating Data that Has Changed
Keep in mind that synchronizing data can be a time-consuming process, depending
on the speed of the network connection and the amount of data that is being updated.
Therefore, you should balance the response time of your application with the need to
retain updated data. Data can become outdated in two ways: when data changes on the
small computing device and when data changes on the secondary storage device, which
is usually the server.

A good practice is to offer the user of your application three options for updating
data: incremental updates, batch updates, and full updates. Incremental updates require
an exchange of data to occur whenever data changes, either on the small computing
device or on the secondary storage device. And only the changed data is exchanged
between devices.

Performance decreases as the number of incremental data changes occur because the
changed data is transmitted following the modification of the data. The batch update
option eliminates the need for incremental updates by updating a batch of data either
periodically or on demand, controlled by the user of the application. A batch update
only transmits data that is changed by either the small computing device or the secondary
storage device.

For example, you might design the application to automatically send a batch when
the application begins, terminates, or during an idle period when the application runs.
Likewise, you should offer the user an option that enables a manual transfer of modified
data as a way for the user to back up changes to the data.

C h a p t e r 4 : J 2 M E B e s t P r a c t i c e s a n d P a t t e r n s 89

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 4

J2
M

E
B

A
S
IC

S

P:\010Comp\CompRef8\710-9\ch04.vp
Thursday, February 06, 2003 12:01:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A full update should be available as a user-invoked option because of the time required
to update all data. Typically, this option is used in an emergency to restore data when
incremental and batch updates are unsynchronized.

Be Careful of the Content of the startApp() Method
As you learned in Chapter 3, a MIDlet consists of required methods, each of which is
callable by the small computing device’s application manager. One of those methods is
startApp(), which is called each time the MIDlet is invoked. Intuitively you might assume
that the startApp() method is called once during the life of the MIDlet and therefore is
a perfect place within your application to store code that is to execute once each time the
MIDlet is invoked.

90 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 4

Tips for Developing J2ME Applications

■ Applications are typically single-threaded.

■ One application runs at a time.

■ Applications are event driven.

■ Users change from one application to another rather than terminating
an application.

■ Mobile small computing devices are used intermittently.

■ Applications use multiple subscreens, each displaying only relevant
information.

■ Mobile small computing devices are typically used in two-minute
sessions 30 times a day.

■ Applications must accomplish a task within two minutes; otherwise
the user is likely to turn off the mobile small computing device.

■ Limit user input to a few keystrokes. Develop a PC-based component
of your application that is used for data input.

■ Users want an instant response from an application.

■ Off-load processing to a server or desktop computer.

■ Avoid power-consuming tasks such as communications, animation,
and sound.

■ Reduce data communication to the bare minimum because users pay
for transmission by byte, usually in the range of 50,000 to 300,000 bytes
per month.

■ Preload as many files as possible into a mobile small computing device
in order to reduce data transmissions.

P:\010Comp\CompRef8\710-9\ch04.vp
Thursday, February 06, 2003 12:01:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

However, a MIDlet is started more than once by the device’s application manager.
For example, the application manager might pause the MIDlet while another MIDlet is
processing and then restart the MIDlet by calling the startApp() method. This means
that only statements that must be executed following a pause should appear within the
startApp() method. Statements that should run once during the lifetime of the MIDlet
should not be placed in the startApp() method and instead should appear within the
MIDlet constructor.

Let’s say your application uses a variable to accumulate the total of several operations
within the MIDlet. Typically, you initialize the variable once when the MIDlet is invoked
the first time. The initialization must be performed in the MIDlet constructor and not
in the startApp() method, otherwise the total will be reset to zero each time the MIDlet
is activated after a pause in operations.

C h a p t e r 4 : J 2 M E B e s t P r a c t i c e s a n d P a t t e r n s 91

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 4

J2
M

E
B

A
S
IC

S

P:\010Comp\CompRef8\710-9\ch04.vp
Thursday, February 06, 2003 12:01:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9
Blind Folio 92

P:\010Comp\CompRef8\710-9\ch04.vp
Thursday, February 06, 2003 12:01:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Part II
J2ME User Interface

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 5
Blind Folio 93

P:\010Comp\CompRef8\710-9\ch05.vp
Thursday, February 06, 2003 12:27:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9
Blind Folio 94

P:\010Comp\CompRef8\710-9\ch05.vp
Thursday, February 06, 2003 12:27:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Chapter 5
Commands, Items,
and Event Processing

95

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 5

P:\010Comp\CompRef8\710-9\ch05.vp
Thursday, February 06, 2003 12:27:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

96 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 5

Nearly every J2ME application has an interface that enables user interactions with
the application. The user interface can be as simple as pressing a button on the
small computing device, which causes the application to react, or as complex as

displaying a form containing check boxes, radio buttons, lists, and other objects common
to many applications.

Selections made by a user are considered events that are forwarded to your application
by the device’s application manager for processing. The application’s developer must
write code that recognizes an event and then reacts to the event by performing a task
based on the nature of the application. In this chapter you’ll be introduced to techniques
used to create a user interface for a J2ME application and to process events that are
generated by the user interacting with your application.

J2ME User Interfaces
A user interface is a set of routines that displays information on the screen, prompts the
user to perform a task, and then processes the task. For example, a J2ME email application
might display a list of menu options, such as Inbox, Compose, and Exit, and then prompt
the user to make a selection by moving the cursor keys and pressing a key on the small
computing device. The device’s application manager passes the selection to the application,
where it is compared with known options. If a match occurs, the application performs
the steps necessary to process the option.

A developer can use one of three kinds of user interfaces for an application. These
are a command, form, or canvas. A command-based user interface consists of instances
of the Command class. An instance of the Command class is a button that the user presses
on the device to enact a specific task. For example, Exit is an instance of the Command
class associated with an Exit button on the keypad to terminate the application. The Help
button is also an instance of the Command class that is linked to the Help key on the
device, which is used whenever the user requires assistance.

A form-based user interface consists of an instance of the Form class that contains
instances derived from the Item class such as text boxes, radio buttons, check boxes, lists,
and other conventions used to display information on the screen and to collect input
from the user. A form is similar to an HTML form.

A canvas-based user interface consists of instances of the Canvas class within which
the developer creates images such as those used in a game. In this chapter you’ll learn
about the Command class and be introduced to forms. You’ll learn how to incorporate
items onto a form in Chapter 6. Chapter 7 introduces you to techniques for developing
the canvas user interface.

Display Class
Before learning how to incorporate instances of the Command class and the Item class
into your application, let’s take a moment to explore how your application interacts with
the small computing device’s screen. The device’s screen is referred to as the display,

P:\010Comp\CompRef8\710-9\ch05.vp
Thursday, February 06, 2003 12:27:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

and you interact with the display by obtaining a reference to an instance of the MIDlet’s
Display class. Each MIDlet has one and only one instance of the Display class. Every J2ME
MIDlet that displays anything on the screen must obtain a reference to its Display instance.
This instance is used to show instances of Displayable class on the screen.

The Displayable class has two subclasses. These are the Screen class and the Canvas
class. The Screen class contains a subclass called the Item class, which has its own
subclasses used to display information or collect information from a user (such as forms,
check boxes, radio buttons). The Screen class and its derived classes are referred to as
high-level user interface components.

The Canvas class is used to display graphical images such as those used for games.
Displays created using the Canvas class are considered a low-level user interface and
are used whenever you need to display a customized screen.

Instances of classes derived from the Displayable class are placed on the screen by
calling the setCurrent() method of the Display class. The object that is to be displayed
is passed to the setCurrent() method as a parameter. It is important to note that instances
of derived classes of the Item class are not directly displayable and must be contained
within an instance of a Form class. An instance of an Item class appears on the screen
when the setCurrent() method is used to show the form. The getCurrent() method of the
Display class is used by a MIDlet to retrieve information about the instances of derivatives
of the Displayable class.

You obtain an instance of the Display class by declaring a reference to the instance
and then assigning the instance to the reference by invoking the getDisplay() method,

C h a p t e r 5 : C o m m a n d s , I t e m s , a n d E v e n t P r o c e s s i n g 97

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 5

J2
M

E
U

S
ER

IN
TER

FA
C

E

Determining the Color Attribute of a Device
Listed here are the steps required to determine the color attribute of a device:

1. Create references.

2. Create a Display object.

3. Create an instance of the Command class to exit the MIDlet.

4. Call isColor() method.

5. Evaluate the return value of isColor() method.

6. Create an instance of the TextBox class that describes results of isColor()
method.

7. Associate the instances of the Command class with the instances of the
TextBox class.

8. Associate a CommandListener with the instance of the TextBox class.

9. Display the instance of the TextBox class on the screen.

10. Terminate the MIDlet when the Exit command is entered.

P:\010Comp\CompRef8\710-9\ch05.vp
Thursday, February 06, 2003 12:27:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

as illustrated in the following code segment. Multiple calls to the getDisplay(this) method
return the same Display instance.

private Display display;

display = Display.getDisplay(this);

Once an instance of the Display object is created, you use the Display API (see “Quick
Reference Guide” at the end of the chapter) to display instances of classes derived from
the Display class on the screen and to retrieve information about the screen and currently
displayed objects.

Listing 5-1 contains the JAD file for this MIDlet, and Listing 5-2 illustrates how the
Display class is used to determine the color attribute of the small computing device’s
screen. In this example, the MIDlet invokes the isColor() method of the Display class
to determine whether the screen is capable of displaying color. If so, the MIDlet displays
an instance of the TextBox class reporting that the device has a color screen; otherwise
the instance reports that the device is incapable of displaying color. Of course, in a real-
world MIDlet, the response returned by the isColor() method is used within the MIDlet
either to activate or deactivate routines that manipulate color on the screen.

MIDlet-Name: CheckColor

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: CheckColor.jar

MIDlet-1: CheckColor, CheckColor.png, CheckColor

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class CheckColor extends MIDlet implements CommandListener

private Display display;

private Form form;

private TextBox textbox;

private Command exit;

public CheckColor()

{

display = Display.getDisplay(this);

exit = new Command("Exit", Command.SCREEN, 1);

String message=null;

if (display.isColor())

98 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 5

Listing 5-1
A JAD file

Listing 5-2
Using the

Display class
to determine
whether the

screen is
capable of
displaying

color

P:\010Comp\CompRef8\710-9\ch05.vp
Thursday, February 06, 2003 12:27:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

{

message="Color display.";

}

else

{

message="No color display";

}

textbox = new TextBox("Check Colors", message, 17, 0);

textbox.addCommand(exit);

textbox.setCommandListener(this);

}

public void startApp()

{

display.setCurrent(textbox);

}

public void pauseApp()

{

}

public void destroyApp(boolean unconditional)

{

}

public void commandAction(Command command,

Displayable displayable)

{

if (command == exit)

{

destroyApp(true);

notifyDestroyed();

}

}

}

The MIDlet is called CheckColor and begins by creating references for instances used
in the MIDlet. These instances are for the Display class, Form class, TextBox class, and
Command class. You’ll learn about the Form class, TextBox class, and Command class
later in this chapter. For now it is sufficient to understand that the instance of the Display
class displays a form that contains a text box and the Exit command. The color status
appears in the text box, and the Exit command terminates the MIDlet.

The constructor is defined next. Remember, statements within the constructor are
executed once during the life of the MIDlet when the MIDlet is invoked. The first statement
in the constructor creates an instance of the Display class by calling the getDisplay()
method, which is assigned to the display reference.

C h a p t e r 5 : C o m m a n d s , I t e m s , a n d E v e n t P r o c e s s i n g 99

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 5

J2
M

E
U

S
ER

IN
TER

FA
C

E

P:\010Comp\CompRef8\710-9\ch05.vp
Thursday, February 06, 2003 12:27:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

100 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 5

Next, an instance of the Command class is created. A later section of this chapter
explains the Command class. For now it is sufficient to understand that the label of the
instance of the Command class in this example is Exit and the instance is assigned to the
exit reference. An instance of the TextBox class is then created. The caption of this instance
is “Check Colors” and is assigned to the form reference.

The instance of the Command class is then associated with the instance of the TextBox
class by calling the addCommand() method and passing the method reference to the
Command class instance, which in this example is called exit.

As you’ll learn in the section “Command Class,” a MIDlet must associate a
CommandListener whenever a Command class is instantiated. A CommandListener
listens for command events to occur during the execution of the MIDlet. A command
event is the selection of a Command object by the user of the MIDlet. You associate
a CommandListener with a MIDlet by specifying the listener as an argument to the
setCommandListener() method.

The MIDlet then calls the isColor() method, which returns a boolean value. A true
indicates that the device can display color. A false is returned if the device is incapable of
displaying colors. The instance of the TextBox class is displayed with a message, depending
on the return value of the isColor() method. You’ll learn about the TextBox class later in
this chapter and in Chapter 6. However, understand that the first parameter is the caption
of the text box, and the second parameter is the text that appears in the text box.

The Exit command is also associated with the text box, so the user can terminate the
MIDlet when the text box appears on the screen. Likewise, a CommandListener is also
specified for the text box Exit command, which in this case is the MIDlet itself because
the MIDlet implements the CommandListener.

Once the constructor is defined, you must define the standard methods required
by a MIDlet. These are the startApp() method, pauseApp() method, and destroyApp()
method. The startApp() is called by the device’s application manager whenever the
MIDlet is started or restarted following a pause in operation. The startApp() method
contains a statement that calls the setCurrent() method and is passed reference the
instance of TextBox class that will be shown on the screen. You can include additional
statements in the startApp() method as needed by your MIDlet.

The pauseApp() method definition and the destroyApp() method definition are empty
in this example because there are no special statements that must be executed when the
MIDlet is paused by the device’s application manager. The commandAction() method
must be defined to receive event reports from the device’s application manager. Whenever
the user selects a command, the commandAction() method is invoked by the application
manager to process the command.

P:\010Comp\CompRef8\710-9\ch05.vp
Thursday, February 06, 2003 12:27:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 5 : C o m m a n d s , I t e m s , a n d E v e n t P r o c e s s i n g 101

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 5

J2
M

E
U

S
ER

IN
TER

FA
C

E

The application manager passes the commandAction() method reference to the selected
command, which is then compared to known commands that were created for the MIDlet.
In this sample the commandAction statement matches the Exit command, which invokes
a destroyApp() method to unconditionally terminate the MIDlet. Right after the execution
of the destroyApp() method, the notifyDestroyed() method is called to notify the
application manager that the MIDlet is terminating. Figure 5-1 and Figure 5-2 show how
this program appears on a generic cellular telephone and the Palm PDA.

Figure 5-1. The text “Color Display” appears when you run the MIDlet in the
default color phone emulator in the J2ME Wireless Toolkit.

P:\010Comp\CompRef8\710-9\ch05.vp
Thursday, February 06, 2003 12:27:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

102 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 5

The Palm OS Emulator
Before you can run the Palm OS emulator in the J2ME Wireless Toolkit, you’ll need to
download Palm OS ROM files from the Palm web site (www.palmos.com/dev). The
ROM file contains the Palm OS required for the emulator to properly perform like a
Palm PDA. You’ll also need to join the Palm OS Developer Program (free) and agree to
the online license (free) for ROM files before you are permitted to download them. Be
prepared to spend a few minutes downloading since ROM files are fairly large, even
when compressed into a zip file.

Several ROM files are available for download, each representing a different version
of the Palm OS and each suited for a particular Palm product. Always choose the latest
version of the Palm OS for downloading unless you are designing a MIDlet to run on

Figure 5-2. The text “No color display” appears when you run the MIDlet in the
default gray phone emulator in the J2ME Wireless Toolkit.

P:\010Comp\CompRef8\710-9\ch05.vp
Thursday, February 06, 2003 12:27:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 5 : C o m m a n d s , I t e m s , a n d E v e n t P r o c e s s i n g 103

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 5

J2
M

E
U

S
ER

IN
TER

FA
C

E

a particular type of Palm device. If your MIDlet is Palm device specific, you’ll need to
download the ROM file that corresponds to the Palm OS that runs on that Palm device.

Don’t fret if you download the wrong ROM, because the Palm OS emulator displays
an error when running your MIDlet, indicating the proper version of the Palm OS that
is required to run your MIDlet on the Palm device that is being tested in the emulator.
You’ll be prompted to enter the location of the ROM file on your hard disk into a dialog
box the first time that you run the Palm OS emulator. Subsequently, the Palm OS emulator
uses that ROM file.

Command Class
You create an instance of the Command class by using the Command class constructor
within your J2ME application. The Command class constructor requires three parameters.
These are the command label, the command type, and the command priority. The
Command class constructor returns an instance of the Command class.

The following example illustrates a cancel command. The first parameter of the
command declaration is Cancel. Any text can be placed here and will appear on the screen
as the label for the command. The second parameter is the predefined command types.
Table 5-1 lists all the predefined command types. The last parameter is the priority, which
is set to 1. The command created by this declaration is assigned to cancel.

cancel = new Command("Cancel", Command.CANCEL, 1);

Running MIDlets
It is strongly suggested that you avoid compiling and executing MIDlets at
the command line because you’ll find yourself being bogged down by entering
long command line statements to compile and run a MIDlet. Consider using the
J2ME Wireless Toolkit, or another integrated development environment such as
JBuilder, to compile and run your J2ME MIDlets, instead of working at the command
line. All the examples in this chapter were compiled and executed using the J2ME
Wireless Toolkit.

The Toolkit automatically creates a directory structure for your MIDlet
development project, sets default values for the JAD file, and creates its own JAR file.
You can change settings in the JAD file by using a graphical user interface provided
in the Toolkit. Furthermore, you can quickly test your MIDlet in a variety of cellular
telephone emulators, Palm emulators, and Black Berry pagers by selecting the
appropriate emulator from a drop-down box.

P:\010Comp\CompRef8\710-9\ch05.vp
Thursday, February 06, 2003 12:27:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

104 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 5

It is important to understand that although a command type is mapped to a key
on the device’s keypad, the device does not process the command. When the user selects
the command, the application manager detects the event and passes the selected command
to your application for processing.

Your selection of command type is a request and not a directive to the small computing
device to map the command to a particular keypad key. The device always has the option
to ignore your request and map the command in any way it wishes.

Priority indicates your preference as to the importance of each command object created
by your application. Priority is established by the value that you assigned to the third
parameter of the command declaration. A low value has a higher priority than a higher
value. The device’s application manager has the option of ignoring the priority or using
the priority to resolve conflicts between two commands. For example, an application
manager may use the priority to determine the order in which command labels appear
on the screen.

A word of caution: you have no control over how the device’s application manager
uses the priority of command objects created by your application.

Command Type Description

BACK Move to the previous screen

CANCEL Cancel the current operation

EXIT Terminate the application

HELP Display help information

ITEM Map the command to an item on the screen

OK Positive acknowledgment

SCREEN No direct key mapping available on device; command
will be mapped to object on a form or canvas

STOP Stop the current operation

Table 5-1. Command Types

P:\010Comp\CompRef8\710-9\ch05.vp
Thursday, February 06, 2003 12:27:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 5 : C o m m a n d s , I t e m s , a n d E v e n t P r o c e s s i n g 105

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 5

J2
M

E
U

S
ER

IN
TER

FA
C

E

CommandListener
Every J2ME application that creates an instance of the Command class must also create
an instance that implements the CommandListener interface. The CommandListener is
notified whenever the user interacts with a command by way of the commandAction()
method. Classes that implement the CommandListener must implement the
commandAction() method, which accepts two parameters. The first parameter
is a reference to an instance of the Command class, and the other parameter is
a reference to the instance of the Displayable class, as illustrated in Listing 5-3.

public void commandAction(Command command, Displayable displayable)

{

if (command == cancel)

{

destroyApp(false);

notifyDestroyed();

}

}

The device’s application manager calls the commandAction() method and passes
the command selected by the user. You must evaluate the command to determine the
command selected by the user. An if statement is used in this example to evaluate
the command.

Compare the command with the reference to the instance of the Command class
that was returned when you created the command within your application. The Exit
command was created in the previous section of this chapter and is used within the
if statement in Listing 5-1 to determine whether the user selected the Exit command.

The commandAction() method must contain all the processing that is to occur when
the user selects a command. The destroyApp() method is called to unconditionally
terminate the application; and before the application terminates, the notifyDestroyed()
method is called to notify the device’s application manager that the application is
terminating. You learned about these methods in Chapter 3.

Online Help Example
Providing online help is a routine common to nearly every well-written J2ME application.
Online help instructs users on interacting with the application. Instructions are displayed
in a text box that the application displays when the user selects the Help command
(Figure 5-3). You’ll learn more about using a text box in the next chapter.

Listing 5-3
Creating a
command-

Action()
method

P:\010Comp\CompRef8\710-9\ch05.vp
Thursday, February 06, 2003 12:27:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The user returns to the previous screen by selecting the Back command (Figure 5-4).
The Back command removes the Help text box from the screen and returns the user to
the original screen. The last command that is found in all J2ME applications is the Exit
command. The Exit command terminates the application.

You can also run this MIDlet in the Palm OS emulator by selecting the Palm OS
emulator in the Wireless Toolkit before selecting the Run button. Select the OnlineHelp
icon when the Palm appears on the screen. This runs the MIDlet. Next, press the Menu icon
on the bottom left of the screen. You’ll notice that a menu appears at the top of the screen.
Select the Options menu item and then the Help menu item to display the help text
created by the MIDlet (Figure 5-5).

Listing 5-4 contains the JAD file for Listing 5-5. Listing 5-5 illustrates how to use
commands to create an online help routine for your application. You can enhance the
online help routine by using instances of the Item class other than a text box, which
you’ll learn about in the next chapter.

106 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 5

Figure 5-3. Select the button below the Help command to display the help screen
on the default color phone emulator.

P:\010Comp\CompRef8\710-9\ch05.vp
Thursday, February 06, 2003 12:27:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

MIDlet-Name: OnlineHelp

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: OnlineHelp.jar

MIDlet-1: OnlineHelp, , OnlineHelp

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class OnlineHelp extends MIDlet implements CommandListener

{

private Display display;

private Command back;

private Command exit;

private Command help;

private Form form;

private TextBox helpMesg;

public OnlineHelp()

{

display = Display.getDisplay(this);

back = new Command("Back", Command.BACK, 2);

exit = new Command("Exit", Command.EXIT, 1);

help = new Command("Help", Command.HELP, 3);

form = new Form("Online Help Example");

helpMesg = new TextBox("Online Help", "Press Back to return

to the previous screen or press Exit to close this

program.", 81, 0);

helpMesg.addCommand(back);

form.addCommand(exit);

form.addCommand(help);

form.setCommandListener(this);

helpMesg.setCommandListener(this);

}

public void startApp()

{

display.setCurrent(form);

}

public void pauseApp()

{

}

C h a p t e r 5 : C o m m a n d s , I t e m s , a n d E v e n t P r o c e s s i n g 107

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 5

J2
M

E
U

S
ER

IN
TER

FA
C

E

Listing 5-5
Online help

routine using
Command

objects

Listing 5-4
A JAD file for

online help

P:\010Comp\CompRef8\710-9\ch05.vp
Thursday, February 06, 2003 12:27:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

public void destroyApp(boolean unconditional)

{

}

public void commandAction(Command command,

Displayable displayable)

{

if (command == back)

{

display.setCurrent(form);

}

else if (command == exit)

{

destroyApp(false);

notifyDestroyed();

}

else if (command == help)

{

display.setCurrent(helpMesg);

}

}

}

The MIDlet begins by creating an OnlineHelp class that extends the MIDlet class and
implements the CommandListener, which is used to trap events that occur while the
MIDlet is running. Five variables are declared that will be used to reference instances in
this MIDlet. The first variable is used to reference the Display class instance that is used
to display other Displayable class instances on the screen. Next are three variables that
reference the Back command, Exit command, and Help command. The last variable
references the instance of the Form class that contains commands and the instance of the
TextBox class, which is referenced with the helpMesg variable.

Next, the MIDlet defines a constructor for the OnlineHelp class. The constructor
contains statements that are executed once when the MIDlet is invoked. Remember from
Chapter 4 that the constructor is not the same as the startApp() method. The startApp() is
called by the device’s application manager each time the MIDlet is started, including after
the MIDlet is paused. This means that the startApp() might be called several times after the
invocation of the MIDlet.

The constructor is where you create instances and associate them with other instances.
The constructor begins by obtaining a reference to the instances of the OnlineHelp MIDlet’s
Display class. The next three instances (Command class, a Form class, and TextBox class)
are then created.

108 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 5

P:\010Comp\CompRef8\710-9\ch05.vp
Thursday, February 06, 2003 12:27:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 5 : C o m m a n d s , I t e m s , a n d E v e n t P r o c e s s i n g 109

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 5

J2
M

E
U

S
ER

IN
TER

FA
C

E

Figure 5-5. Select Help to run the MIDlet.

Figure 5-4. Select the button below the Back command to return to the previous
screen in the default color phone emulator.

P:\010Comp\CompRef8\710-9\ch05.vp
Thursday, February 06, 2003 12:27:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The instantiation of the Command class sets the label for each command, the reference
to the instance type, and the suggested priority for each command. The Form class
constructor is used to set the caption to “Online Help Example.”

The TextBox class constructor is where you specify the title and text. The TextBox class
constructor requires four parameters. First is the title of the text box, which is “Online
Help.” Next is the text that appears in the text box. You’ll notice in Figure 5-4 that there
are too many lines of text for all the text to appear simultaneously on the screen. Therefore,
you should take into consideration the screen size when preparing any text display in
order to reduce the need for the user to scroll through the text. You can use multiple
screens and an additional command (such as Forward) to enable the user to page through
your screens.

The third parameter is the number of characters in the message, which in this example
is 81. The last parameter is a TextField constraint, which is zero in this example and
explained in detail in Chapter 6.

110 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 5

Creating Online Help
Listed here are the steps required to create online help.

1. Declare references.

2. Obtain a reference to the instance of the Display class.

3. Create an instance of the Command class to return from the help page.

4. Create an instance of the Command class to exit the MIDlet.

5. Create an instance of the Form class.

6. Create an instance of the TextBox class that contains the help text.

7. Associate the instance of the Back Command class with the instance
of the TextBox class.

8. Associate the instance of the Exit Command class and the instance
of the Help Command class with the instance of the Form class.

9. Associate a CommandListener with the instance of the Form class.

10. Associate a CommandListener with the instance of the TextBox class.

11. Display the form.

12. Evaluate the command that the user entered into the small computing
device.

13. If the command is the Back command, display the form.

14. If the command is the Exit command, terminate the MIDlet.

15. If the command is the Help command, display the text box.

P:\010Comp\CompRef8\710-9\ch05.vp
Thursday, February 06, 2003 12:27:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Once classes are instantiated, the MIDlet then associates instances with other instances
to create a cohesive form. The addCommand() method of the text box is called to associate
the Back command with the helpMesg text box. This causes the Back command to be
available when the helpMesg text box is displayed. The Exit command and the Help
command are then associated with the form by calling the addCommand() method. The
last two statements within the constructor associate a CommandListener for the form
and the text box.

The startApp() method is the next component of the MIDlet that you need to define.
The startApp() method is called whenever the MIDlet is started by the device’s application
manager. The startApp() contains one statement that calls the setCurrent() method of
the Display class. The setCurrent() method requires one parameter, which is the form
that is to be placed on the display.

The pauseApp() method and the destroyApp() method are left empty because we
don’t require any special task to be performed when the MIDlet is paused or destroyed.
Both methods must be defined in every MIDlet, as you remember from Chapter 3.

The commandAction() method is where commands are processed. The
commandAction() method requires two parameters. The first parameter is a reference
to the instance of the Command class selected by the user and passed to the
commandAction() method by the device’s application manager. The other parameter
is the variable that references the Displayable instance of the event.

A series of if and if else statements are used to compare known commands to the
command passed to the commandAction() method. First, the method tests if the command
is the Back command. If so, the setCurrent() method is called once again to return to the
original form.

Next, the commandAction() method tests if the Exit command was selected. If so, the
destroyApp() method and notifyDestroyed() method are called, as described previously
in this section of the chapter. The commandAction() then determines whether the Help
command is selected. If so, the setCurrent() method is invoked and is passed the
helpMesg TextBox, which is displayed on the screen.

Item Class
The Item class is derived from the Form class, and that gives an instance of the Form
class character and functionality by implementing text fields, images, date fields, radio
buttons, check boxes, and other features common to most graphical user interfaces. The
Item class has derivative classes that create those features. You’ll learn how to implement
derivative classes of the Item class in Chapter 6. For now, we’ll examine how to insert
an instance of the Item class into the form of your J2ME application.

In many ways, the Item class has similarities to the Command class in that instances
of both classes must be declared and then added to the form. Likewise, a listener processes
instances of both the Item class and the Command class.

C h a p t e r 5 : C o m m a n d s , I t e m s , a n d E v e n t P r o c e s s i n g 111

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 5

J2
M

E
U

S
ER

IN
TER

FA
C

E

P:\010Comp\CompRef8\710-9\ch05.vp
Thursday, February 06, 2003 12:27:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The user interacts with your application by changing the status of instances of derived
classes of the Item class, except for instances of the ImageItem class and StringItem class.
These instances are static and not changeable by the user. An instance of the ImageItem
class causes an image to appear on the form, and an instance of the StringItem class
causes text to be displayed on the form. For example, your application might present
options in the form of an instance of the ChoiceGroup class, which is derived from the
Item class. An instance of a ChoiceGroup class is a check box or radio button. The user
makes a selection by choosing a check box or radio button.

A change in the status of an instance of the Item class is processed by the
itemStateChanged() method (defined in the ItemStateListener interface), which is called
automatically by the method for an application that utilizes the Item class. You must
create one itemStateChanged() method for an application that implements an instance
of the Item class.

The itemStateChanged() method is similar to the actionCommand() method used
to respond to the invocation of a command by the user of your application. Although
these methods are similar in design, you cannot combine them into one method because
the application manager specifically calls the itemStateChanged() method and
actionCommand() method independently of each other.

It is important to understand precisely when the itemStateChanged() method is called
because subtle differences in when the method is invoked can alter the way your
application reacts to change in the state of an instance of the Item class. The state is
changed by the user or by your application. For example, based on a user’s selection
of a radio button or check box, your application may change the text of a text field. The
change made by the user to a radio button or check box is detected by the listener and
causes the device’s application manager to call the itemStateChanged() method. However,
the state change of the text field by your program doesn’t invoke the itemStateChanged()
method, although it too is a change of state of an instance of the Item class.

In contrast, the itemStateChanged() method is invoked if the user changed the content
of the text field. The assumption is if the user caused the state to change, then your
application needs to consider processing the change in state. However, if your application
caused the change, then no additional processing is necessary because the assumption
is that any necessary processing would have been completed by your application prior
to changing the state.

The itemStateChanged() method is not like a trigger found in many database management
systems. A trigger is a method automatically called whenever an event occurs regardless
of what caused the event to occur. The itemStateChanged() method is automatically called
only when a user event changes the state.

The application manager invokes the itemStateChanged() method when the user
changes focus from the current instance of the Item class to another instance, if the
current instance state changed because of user interaction with the instance. The
itemStateChanged() method processes the change before focus is set on the other instance.

112 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 5

P:\010Comp\CompRef8\710-9\ch05.vp
Thursday, February 06, 2003 12:27:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In effect, the itemStateChanged() method processes each instance of the Item class as
the state is changed by the user. Let’s say a form contains a text field and a set of check
boxes. The user enters information into the text field and then selects check boxes. Between
the time the focus leaves the text field and arrives at the check boxes, the device’s
application manager calls the itemStateChanged() method, passing it the text of the text
field. Only after the itemStateChanged() is processed will the user be able to select
check boxes.

The following statement illustrates how to create a text field. The text field requires
four values. These are title, text, maximum number of characters that can be entered
into the text field, and the TextField constraint, which is zero to indicate there isn’t any
constraint. You’ll learn about TextField constraints in Chapter 6.

textbox = new TextField("Title", "Text", 4, 0);

C h a p t e r 5 : C o m m a n d s , I t e m s , a n d E v e n t P r o c e s s i n g 113

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 5

J2
M

E
U

S
ER

IN
TER

FA
C

E

Creating an Item Class
Listed here are the steps required for creating an Item class.

1. Declare references.

2. Declare an instance of the Display class.

3. Create an instance of the ChoiceGroup class.

4. Associate options with the instance of the ChoiceGroup class.

5. Set the default choice.

6. Create an Exit command.

7. Create an instance of the Form class.

8. Associate the instance of the ChoiceGroup class to the instance
of the Form class.

9. Associate the Exit command with the form.

10. Associate a CommandListener with the form.

11. Associate an ItemStateListener with the form.

12. Display the form.

13. Evaluate the command entered by the user.

14. If the command is the Exit command, terminate the MIDlet.

15. If an instance of the Item class changes state, read the selection
from the instances of the ChoiceGroup class.

16. Display the selection on the screen.

P:\010Comp\CompRef8\710-9\ch05.vp
Thursday, February 06, 2003 12:27:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Item Listener
Each MIDlet that utilizes instances of the Item class within a form must have
an itemStateChanged() method to handle state changes in these instances. The
itemStateChanged() method, as shown in Listing 5-5, contains one parameter, which
is an instance of the Item class. The instance passed to the itemStateChanged() method is
the instance whose state was changed by the user.

public void itemStateChanged(Item item)

{

if (item == selection)

{

StringItem msg = new StringItem("Your color is ",

radioButtons.getString(radioButtons.getSelectedIndex()));

form.append(msg);

}

Since there is one itemStateChanged() per MIDlet, you must include logic within the
itemStateChanged() method to identify the Item object that is passed by the device’s
application manager to the itemStateChanged() method. In this example, an if statement
is used to compare the incoming instance to one of two instances that the MIDlet created
on the form. These instances are a text field and radio buttons.

Logic within the itemStateChanged() method is similar to that used within the
actionCommand() method. First the itemStateChanged() method determines whether
the incoming instance is a text field. If so, the MIDlet displays a message that indicates the
state of the text field has been changed by the user. However, if the incoming instance
is not the text field and is a radio button, then a similar statement is displayed at the
command line indicating that the user changed the radio button state. The device’s
application manager must pass the two instances specified in the itemStatechanged()
method for a statement to be displayed.

Of course, the itemStateChanged() method would have appropriate logic to process
a change in each instance rather than displaying a statement at the command line.

Listing 5-6 contains the JAD for Listing 5-7. Listing 5-7 illustrates how to construct a
MIDlet that creates an instance of the ChoiceGroup class and associates the instance with
a form. The instance of the ChoiceGroup class in this example is a set of radio buttons.
The MIDlet begins with the declaration of references for instances of the Display class,
Form class, Exit Command class, the Item class, and ChoiceGroup class, and two integers
that reference the index of the instances of the ChoiceGroup class.

MIDlet-Name: RadioButtons

MIDlet-Version: 1.0

114 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 5Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 5

Listing 5-5
The

itemState-
Changed()

method

Listing 5-6
A JAD file

P:\010Comp\CompRef8\710-9\ch05.vp
Thursday, February 06, 2003 12:27:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 5 : C o m m a n d s , I t e m s , a n d E v e n t P r o c e s s i n g 115

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 5

J2
M

E
U

S
ER

IN
TER

FA
C

E

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: RadioButtons.jar

MIDlet-1: RadioButtons, , RadioButtons

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class RadioButtons extends MIDlet

implements ItemStateListener, CommandListener

{

private Display display;

private Form form;

private Command exit;

private Item selection;

private ChoiceGroup radioButtons;

private int defaultIndex;

private int radioButtonsIndex;

public RadioButtons()

{

display = Display.getDisplay(this);

radioButtons = new ChoiceGroup(

"Select Your Color",

Choice.EXCLUSIVE);

radioButtons.append("Red", null);

radioButtons.append("White", null);

radioButtons.append("Blue", null);

radioButtons.append("Green", null);

defaultIndex = radioButtons.append("All", null);

radioButtons.setSelectedIndex(defaultIndex, true);

exit = new Command("Exit", Command.EXIT, 1);

form = new Form("");

radioButtonsIndex = form.append(radioButtons);

form.addCommand(exit);

form.setCommandListener(this);

form.setItemStateListener(this);

}

public void startApp()

{

display.setCurrent(form);

}

Listing 5-7
Selecting an

option from a
ChoiceGroup

object

P:\010Comp\CompRef8\710-9\ch05.vp
Thursday, February 06, 2003 12:27:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

116 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 5

public void pauseApp()

{

}

public void destroyApp(boolean unconditional)

{

}

public void commandAction(Command command,

Displayable displayable)

{

if (command == exit)

{

destroyApp(true);

notifyDestroyed();

}

}

public void itemStateChanged(Item item)

{

if (item == radioButtons)

{

StringItem msg = new StringItem(Your color is ",

radioButtons.getString(radioButtons.getSelectedIndex()));

form.append(msg);

}

}

}

Next in the MIDlet is the constructor that contains statements executed once during
the life cycle of the MIDlet. The constructor begins by obtaining a reference to the instance
of the MIDlet’s Display class by calling the getDisplay() method. The instance is assigned
the display reference.

An instance of the ChoiceGroup class is created next. The instance has a title called
“Select Your Color” and a type, which in this example is EXCLUSIVE. As you’ll learn in
Chapter 6, the type of an instance of the ChoiceGroup class determines its display and
functionality. The EXCLUSIVE type causes the instance to appear and function as a set
of radio buttons. The MULTIPLE type transforms the instance into check boxes.

The next five statements call the append() method, and each creates an option in the
instance of the ChoiceGroup class and assigns the option an appropriate label. The first
parameter of the append() method is the label, and the other parameter is the image used
to represent the option. The second option is used to associate an image with the option.
A null is passed as the second option because no image is used in this example.

P:\010Comp\CompRef8\710-9\ch05.vp
Thursday, February 06, 2003 12:27:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The append() method returns the index number of the option that is appended to
the instance of the ChoiceGroup class. An index number is an integer within the instance
of the ChoiceGroup class that uniquely identifies an option. The index number is used
within the MIDlet to reference an option, which is illustrated in the statement that calls
the setSelectedIndex() method.

It is always wise to set one radio button as the default choice to assure that
the user doesn’t overlook selecting a radio button. You set the default by calling the
setSelectedIndex() method. The setSelectedIndex() method requires two parameters.
The first parameter is the index of the option selected as the default choice. The second
parameter indicates whether the selectedIndex should be selected (true) or not selected
(false)—see Figure 5-6.

In this example, the index of the All option is assigned to the defaultIndex variable
when the append() method appends the All option to the instance of the ChoiceGroup
class. The defaultIndex variable is passed as the first parameter to the setSelectedIndex()
method, and a true value is passed to select the All option when the MIDlet is invoked.

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 5

J2
M

E
U

S
ER

IN
TER

FA
C

E
C h a p t e r 5 : C o m m a n d s , I t e m s , a n d E v e n t P r o c e s s i n g 117

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 5

J2
M

E
U

S
ER

IN
TER

FA
C

E

Figure 5-6. The All option is the default selection when the MIDlet runs on the
default color phone emulator.

P:\010Comp\CompRef8\710-9\ch05.vp
Thursday, February 06, 2003 12:27:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

118 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 5

Next, the MIDlet creates an Exit command and an instance of the Form class, both of
which are assigned to appropriate references. Notice that the form does not contain
a caption, but still requires double quotations in place of the caption.

The instance of the ChoiceGroup class is then associated with the form by calling
the append() method and passing the append() method reference to the instance of the
ChoiceGroup class. The Exit command is then associated with the form by calling the
addCommand() and passing it the reference to the Exit command. The form is also
associated with a CommandListener and an ItemStateListener.

The form is displayed on the screen when the setCurrent() method is called each time
the device’s application manager invokes the startApp() method. The MIDlet is notified
of both commandAction() and itemStateChanged() events because the MIDlet implements
CommandListener and ItemStateListener for actions taking place on the form.

Command events are forwarded to the commandAction() method where the
command is compared to the Exit command to determine whether the user selected
the Exit command. If so, the destroyApp() method is called and passed a boolean true,
indicating an unconditional termination of the MIDlet. The notifyDestroyed() method
is then called to send notification to the application manager that the MIDlet has entered
the destroyed state and is ready to be terminated.

The radio button MIDlet, by virtue of implementing ItemStateListener, is notified
of Item state changes of the ChoiceGroup object on the form (Figure 5-7). The Item whose
state changed is passed to the itemStateChanged() method, where the Item object is
evaluated and compared to the radio button ChoiceGroup.

If the radio button is the Item whose state changed, the MIDlet calls the
getSelectedIndex() method to determine the index number of the radio button that
was selected. The index number is then passed to the getString() method to retrieve
the text of that option, which becomes a component of an instance of the StringItem
class. This instance is assigned to a reference that is passed to the append() method
so the label of the selected option is displayed on the form.

Exception Handling
As you learned in Chapter 3, the small computing device’s application manager oversees
the operation of a MIDlet. The application manager calls the startApp(), pauseApp(),
and destroyApp() methods whenever the user or the device requires a MIDlet to begin,
pause, or terminate. However, there are times when the disruption of processing by
complying with the application manager’s request might cause irreparable harm. For
example, a MIDlet might be in the middle of a communication session or saving persistent
data when the destroyApp() method is called by the device’s application manager.
Complying with the request would break off communications or corrupt data.

P:\010Comp\CompRef8\710-9\ch05.vp
Thursday, February 06, 2003 12:27:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 5 : C o m m a n d s , I t e m s , a n d E v e n t P r o c e s s i n g 119

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 5

J2
M

E
U

S
ER

IN
TER

FA
C

E

You can regain a little control of the MIDlet’s operation by causing a
MIDletStateChangeException to be thrown. A MIDletStateChangeException is used
to temporarily reject a request from the application manager either to start the MIDlet
(startApp()) or to destroy the MIDlet (destroyApp()). A MIDletStateChangeException
cannot be thrown within the pauseApp() method.

You should incorporate routines that throw a MIDletStateChangeException whenever
your MIDlet has processing that should not be interrupted by the application manager.
Many developers place routines that throw a MIDletStateChangeException in the
destroyApp() method since terminating a MIDlet during critical processing might have
a fatal effect on communication or data.

J2
M

E
U

S
ER

IN
TER

FA
C

E

Figure 5-7. Move the up and down arrow keys to highlight an option, and then
press the center button to select the highlighted option on the
default color phone emulator.

P:\010Comp\CompRef8\710-9\ch05.vp
Thursday, February 06, 2003 12:27:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

120 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 5

Throwing a MIDletStateChangeException
Listing 5-8 is the JAD file for Listing 5-9. Listing 5-9 illustrates the technique for throwing
a MIDletStateChangeException from within the destroyApp() method. Remember that a
MIDletStateChangeException can also be thrown from the startApp() method using an
approach similar to the one used in Listing 5-9.

MIDlet-Name: ThrowException

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: ThrowException.jar

MIDlet-1: ThrowException, ThrowException.png, ThrowException

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class ThrowException extends MIDlet

implements CommandListener

{

private Display display;

private Form form;

private Command exit;

private boolean isSafeToQuit;

public ThrowException()

{

isSafeToQuit = false;

display = Display.getDisplay(this);

exit = new Command("Exit", Command.SCREEN, 1);

form = new Form("Throw Exception");

form.addCommand(exit);

form.setCommandListener(this);

}

public void startApp()

{

display.setCurrent(form);

}

public void pauseApp()

{

Listing 5-9
Throwing a

MIDletState-
Change-

Exception in
destroyApp()

Listing 5-8
A JAD file

P:\010Comp\CompRef8\710-9\ch05.vp
Thursday, February 06, 2003 12:27:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 5 : C o m m a n d s , I t e m s , a n d E v e n t P r o c e s s i n g 121

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 5

J2
M

E
U

S
ER

IN
TER

FA
C

E

}

public void destroyApp(boolean unconditional)

throws MIDletStateChangeException

{

if (unconditional == false)

{

throw new MIDletStateChangeException();

}

}

public void commandAction(Command command,

Displayable displayable)

{

if (command == exit)

{

try

{

if (exitFlag == false)

{

StringItem msg = new StringItem (

"Busy", "Please try again.");

form.append(msg);

destroyApp(false);

}

else

{

destroyApp(true);

notifyDestroyed();

}

}

catch (MIDletStateChangeException exception)

{

isSafeToQuit = true;

}

}

}

}

Listing 5-9 requires the user to select the Exit command twice to terminate the MIDlet
(Figure 5-8). When the user selects the Exit command the first time, the device’s application
manager calls the destroyApp() method where a MIDletStateChangeException is thrown,

P:\010Comp\CompRef8\710-9\ch05.vp
Thursday, February 06, 2003 12:27:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

causing the message “Busy Please try again.” to be displayed on the screen (Figure 5-9).
The MIDlet successfully terminates the second time the user selects the Exit button.

Listing 5-9 begins by declaring references that are later used to point to objects and
variables within the MIDlet. These references are for the Display object, Form object,
and Exit Command object. Also declared is the boolean isSafeToQuit variable that is
used to indicate whether it is safe to terminate the MIDlet.

In the constructor, the isSafeToQuit is assigned a false, implying that the MIDlet
should not be terminated. Likewise in the constructor there are statements that obtain
instances to the Display class, Command class, and Form class, each of which is assigned
to the proper reference. The command is also associated with the form using the
addCommand() method, and a CommandListener is associated with the form.

When the MIDlet is loaded into the device, the application manager executes the
constructor and calls the startApp() method, where the setCurrent() method is invoked
to display the form on the screen. The MIDlet then waits for the user to select the Exit
command button. When this happens, the CommandListener “hears” the event and calls

122 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 5

Figure 5-8. The Exit command must be selected twice to terminate the MIDlet
on the default color phone emulator.

P:\010Comp\CompRef8\710-9\ch05.vp
Thursday, February 06, 2003 12:27:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the commandAction() method, passing the command selected by the user to the method.
The selected command is then compared to known commands within the MIDlet, which
in this example is the Exit command.

The MIDlet enters the try { } block within the commandAction() method if the Exit
command was selected by the user. The value of the exitFlag is then evaluated within
the try { } block. If the value is false, an instance of the StringItem class is created and is
displayed on the screen by passing the instance to the append() method. The destroyApp()
method is then called and passed a false value. A false value means that there is not an
unconditional termination of the MIDlet because processing cannot be disrupted. For the
sake of this example, we’re assuming that processing is ongoing and a fatal error would
occur should it not be allowed to complete before the MIDlet is terminated.

However, the destroyApp() method is passed a true value if the value of the exitFlag
is true, indicating that the MIDlet can be terminated unconditionally. Notification of the
pending destruction of the MIDlet is then sent by invoking the notifyDestroyed() method.

C h a p t e r 5 : C o m m a n d s , I t e m s , a n d E v e n t P r o c e s s i n g 123

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 5

J2
M

E
U

S
ER

IN
TER

FA
C

E

Figure 5-9. A message is displayed before the exception is thrown by the MIDlet
on the default color phone emulator.

P:\010Comp\CompRef8\710-9\ch05.vp
Thursday, February 06, 2003 12:27:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Notice that the destroyApp() method is capable of throwing a MIDletState-
ChangeException. A MIDletStateChangeException is thrown if the destroyApp() method
is passed a false value indicating there is a condition to termination of the MIDlet. The
MIDletStateChangeException is trapped by the catch { } block in the commandAction()
method where the value of the exitFlag is set to true. The next time the user selects the
Exit command the destroyApp() is called and passed a true value, meaning the MIDlet
can terminate unconditionally.

124 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 5

Steps for Throwing a MIDletStateChangeException
Listed here are the steps required for throwing a MIDletStateChangeException.

1. Declare references.

2. Set default value for the exit flag to false.

3. Obtain a reference to an instance of the Display class.

4. Create an instance of the Command class to exit the MIDlet.

5. Create an instance of the Form class.

6. Associate the command to the form.

7. Associate a CommandListener with the form.

8. Display the form on the screen.

9. Evaluate the command selected by the user.

10. If the Exit command is selected, determine whether conditions
are safe to terminate the MIDlet.

11. If conditions are not safe to terminate the MIDlet, create an instance
of the StringItem class with the message “Busy, please try again.”

12. Display the instance of the StringItem class on the screen.

13. Call the destroyApp() method with a conditional termination notice.

14. If conditions are safe to terminate the MIDlet, call the destroyApp()
method with an unconditional termination notice, and notify the
application manager of pending termination of the MIDlet.

15. When the destroyApp() method is called, evaluate the status
of the unconditional parameter.

16. If the unconditional parameter is false, throw a
MIDletStateChangeException; otherwise terminate the MIDlet.

17. Trap exceptions thrown within the commandAction() method.

18. If the MIDletStateChangeException is thrown, indicate that conditions are
now safe to terminate the MIDlet by assigning a true value to the exit flag.

19. Terminate the MIDlet when the Exit command is entered the second time.

P:\010Comp\CompRef8\710-9\ch05.vp
Thursday, February 06, 2003 12:27:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Quick Reference Guide
This quick reference guide provides a brief overview of classes used by J2ME for the
Display class, Command class, and Item class. Full details of these classes and all Java
classes and interfaces are available at java.sun.com.

javax.microedition.lcdui.Display Class

Method Description

static Display getDisplay(MIDlet midlet) Retrieve an instance of the Display class

Displayable getCurrent() Retrieve the current instance of
Displayable class

void setCurrent(Alert alert, Displayable
displayable)

Display the specified instance of the alert
dialog box and then the specified instance
of the Displayable class

void setCurrent (Displayable displayable) Display the specified instance of the
Displayable class

boolean isColor() Determine whether the device supports color

int numColors() Retrieve the number of colors or shades
of gray that are available on the device

void callSerial(Runnable runnable) Call an instance of the Runnable class
after repainting

javax.microedition.lcdui.Displayable Class

Method Description

void addCommand(Command command) Associate a command to an instance
of the Displayable class

void removecommand(Command command) Disassociate a command from an
instance of the Displayable class

void setCommandListener(CommandListener
commandlistener)

Associate a CommandListener to
an instance of the Displayable class

boolean isShown() Determine whether an instance of the
Displayable class is shown on the screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 5

J2
M

E
U

S
ER

IN
TER

FA
C

E
C h a p t e r 5 : C o m m a n d s , I t e m s , a n d E v e n t P r o c e s s i n g 125

P:\010Comp\CompRef8\710-9\ch05.vp
Thursday, February 06, 2003 12:27:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

javax.microedition.lcdui.Command Class

Method Description

Command(String label, int commandType,
int priority)

Create an instance of the Command class
that displays the specified label and is of
the specified commandType and has the
specified priority

int getCommandType() Retrieve the commandType of a command

String getLabel() Retrieve the label of a command

int getPriority() Retrieve the priority of a command

javax.microedition.lcdui.CommandListener Interface

Method Description

void commandAction (Command command,
Displayable displayable)

Process an instance of the Command class

javax.microedition.lcdui.Item Class

Method Description

String getLabel() Retrieve the label associated
with an instance of the Item class

void setLabel(String label) Assign a label to an instance
of the Item class

javax.microedition.lcdui.ItemStateListener Interface

Method Description

void itemStateChanged (Item item) Process changes to an instance
of the Item class

126 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 5

P:\010Comp\CompRef8\710-9\ch05.vp
Thursday, February 06, 2003 12:27:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

javax.microedition.midlet.MIDlet Class

Method Description

abstract void destroyApp (boolean
unconditional)

MIDlet is going to shut down

abstract void pauseApp() MIDlet is going to pause

abstract void startApp() MIDlet is in the active state

final void notifyDestroyed() Requesting to shut down the MIDlet

final void notifyPaused() Requesting to pause the MIDlet

final void resumeRequest() Requesting to activate the MIDlet

final String getAppProperty(String key) Retrieve attributes from a JAD or JAR file

javax.microedition.midlet.MIDletStatechangeException Class

Method Description

MIDletStateChangeException() Create a new MIDletStateChangeException
object without a test

MIDletStateChangeException(String string) Create a new MIDletStateChangeException
object with a message

C h a p t e r 5 : C o m m a n d s , I t e m s , a n d E v e n t P r o c e s s i n g 127

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 5

J2
M

E
U

S
ER

IN
TER

FA
C

E

P:\010Comp\CompRef8\710-9\ch05.vp
Thursday, February 06, 2003 12:27:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9
Blind Folio 128

P:\010Comp\CompRef8\710-9\ch05.vp
Thursday, February 06, 2003 12:27:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Chapter 6
High-Level Display:
Screens

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

129

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:10:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The display is a crucial component of every J2ME application since it contains
objects used to present information to the person using the application and in
many cases prompts the person to enter information that is processed by the

application. You were introduced to the basic concepts of the J2ME display in the
previous chapter and shown how to create a simple graphical user interface for your
application. To say the least, this user interface is wanting and lacks sophistication
that most of us expect from a J2ME application.

The J2ME Display class is the parent of Displayable, which you’ll recall from
the previous chapter. The Displayable class has two subclasses of its own: Screen
and Canvas. The Screen class is used to create high-level J2ME displays in which the
methods of its subclasses handle details of drawing objects such as radio buttons and
check boxes. In contrast, the Canvas class and its subclasses are used to create low-level
J2ME displays. The methods give you pixel-level control of the display, enabling you
to draw your own images and text such as those used to create games.

In this chapter we’ll continue exploring techniques for building a J2ME high-level
display by focusing on the Screen class and its derived classes. You’ll learn how to
create a low-level display using the Canvas class in the next chapter.

Screen Class
You will probably spend most of your time using the Screen class and its derived classes
when developing a user interface for your J2ME application. These classes contain methods
that generate radio buttons, check boxes, lists, and other familiar objects that users expect
to find on the screen when interacting with your application. The following illustrates the
Display class hierarchy, which helps you learn the inheritance structure of the Screen class.
Every MIDlet has one Display object but can have many Displayable objects, which you
discovered in the previous chapter. A Displayable object is any object that can be displayed
on the small computing device’s screen.

public class Display
public abstract class Displayable

public abstract class Screen extends Displayable
public class Alert extends Screen
public class Form extends Screen
public class List extends Screen implements Choice
public abstract class Item

public class ChoiceGroup extends Item implements Choice
public class DateField extends Item
public class TextField extends Item
public class Gauge extends Item
public class ImageItem extends Item
public class StringItem extends Item

public class TextBox extends Screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

130 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:10:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

public class Command
public class Ticker
public class Graphics
public interface Choice

public abstract class Canvas extends Displayable
public class Graphics

You already know that the Displayable class has two derived classes, Screen and
Canvas. The Screen class has its own set of derived classes. These are TextBox, List,
Alert, Form, and Item classes. The Canvas class also has its own derived class, the
Graphics class, which you’ll learn about in the next chapter.

The TextBox class is used to display multi-line text on the screen. The List class is
used to display a list of items, as in a menu, and enables the user to choose one of those
items. The Alert class displays a dialog box containing a message such as a warning.
And the Form class is a container class that can display multiple classes derived from
the Item class.

The Item class has six derived classes, any number of which can be displayed
within a Form object on the screen:

■ ChoiceGroup class used to display radio buttons and check boxes

■ DateField class used for inputting a date into an application

■ TextField class used for inputting text into an application

■ Gauge class used to graphically show progress

■ ImageItem class used to display an image stored in a file

■ StringItem class used to display text on the screen

The Command class is used to create a Command object that can be associated with
practically any class except the Alert class. You created Command objects for MIDlets
that you built in the previous chapter. The Ticker is a variable of the Screen class that
causes text to scroll on the screen like a stock exchange ticker tape. You’ll see how to
implement the Ticker in your own application later in this chapter.

The Graphics class is a base class used by derived classes to create and display
custom graphical images on the screen. Objects that display options to the person
using an application implement the Choice interface. You’ll see how the Graphics class
is used in the next chapter and how the Choice interface is used later in this chapter
when you learn how to create a ChoiceGroup object.

Alert Class
An alert is a dialog box displayed by your program to warn a user of a potential error
such as a break in communication with a remote computer. An alert can also be used
to display any kind of message on the screen, even if the message is not related to an

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

J2
M

E
U

S
ER

IN
TER

FA
C

E
C h a p t e r 6 : H i g h - L e v e l D i s p l a y : S c r e e n s 131

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:10:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

error. For example, an alert is an ideal way of displaying a reminder on the screen. You
implement an alert by creating an instance of the Alert class in your program using the
following statement. Once created, the instance is passed to the setCurrent() method of
the Display object to display the alert dialog box on the screen.

alert = new Alert("Failure", "Lost communication link!", null, null);

display.setCurrent(alert);

The Alert constructor requires four parameters. The first parameter is the title of
the dialog box, which is “Failure” in this example. The next parameter is the text of the
message displayed within the dialog box. “Lost communication link!” is the text that
appears when the Failure dialog box is shown on the screen. The third parameter is the
image that appears within the dialog box. The previous example doesn’t use an image;
therefore the third parameter is set to null. The last parameter is the AlertType. The
AlertType is a predefined type of alert. None of the predefined AlertTypes is used in
the previous example, and therefore a null is used as the fourth parameter. Table 6-1
contains a list of predefined AlertTypes.

A word of caution: An alert dialog box is not designed to retrieve input from a
user other than the selection of the OK button to close the dialog box. This means
displayable objects such as ChoiceGroup and TextBox cannot be used within an alert
dialog box. Likewise, you cannot insert your own Command objects as buttons.

An alert dialog box reacts in one of two ways depending on the value of the default
timeout for the Alert object. The alert dialog box can remain visible until the user selects the
OK button, or the alert dialog box can be visible for a specified number of milliseconds. An
alert dialog box is referred to as a modal dialog box if the user must select the OK button to
terminate the dialog box. Otherwise, it is considered a timed dialog box that terminates
when the default timeout value is reached.

132 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

Type Description

ALARM Your request has been received.

CONFIRMATION An event or processing is completed.

ERROR An error is detected.

INFO A nonerror alert occurred.

WARNING A potential error could occur.

Table 6-1. Predefined AlertTypes for the Alert Object

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:10:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 6 : H i g h - L e v e l D i s p l a y : S c r e e n s 133

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

J2
M

E
U

S
ER

IN
TER

FA
C

E

The value passed to the setTimeout() method determines whether an alert dialog box
is a modal dialog box or a timed dialog box. The setTimeout() method has one parameter,
which is the default timeout value. Use Alert.FOREVER as the default timeout value for a
modal alert dialog box, or pass a time value in milliseconds indicating time to terminate the
alert dialog box. The following example illustrates how to create a modal alert dialog box:

alert = new Alert("Failure", "Lost communication link!", null, null);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

You can always retrieve the current default timeout by calling the getDefaultTimeout()
method of the instance of the Alert class. The getDefaultTimeout() method returns the
integer value of Alert.FOREVER or the default timeout in milliseconds.

The device’s application manager determines the screen that appears when the
user dismisses the alert dialog box. However, you can control what appears following
the dialog box by passing reference to the next object as the second parameter to the
setCurrent() method. The second parameter is reference to the displayable object that
appears on the screen once the alert dialog box is closed, as illustrated in the next code
segment.

Let’s assume that an instance of the Form class contains instances of classes necessary
to open a communications link with a remote computer. In this example, the instance of
the Form class is titled “Communications Link.” Notice that instances of both the Alert
class and the Form class are passed to the setCurrent() method. Once the user selects OK
to dismiss the alert dialog box, the device’s application manager displays the instances of
the Form object, enabling the user to reestablish communication with the remote computer.

form = new Form("Communication Link");

alert = new Alert("Failure", "Lost communication link!", null, null);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert, form);

An alternative way to control which instance of a class appears on the screen once
an alert dialog box is terminated is simply to invoke the setCurrent() method twice. Pass
reference to the instance of the Alert class to the first invocation of the setCurrent(), and
then pass reference to the next instance the next time that the setCurrent() method is
called, as shown below. Calling the setCurrent() method twice using one parameter
or once using two parameters achieves the same results without penalties.

form = new Form("Communication Link");

alert = new Alert("Failure", "Lost communication link!", null, null);

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:10:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

display.setCurrent(form);

Listing 6-1 contains the JAD file for Listing 6-2, which illustrates how to incorporate
an alert in your MIDlet. This listing is similar to Listing 5-9 (in the previous chapter),
where the person using the MIDlet must select Exit twice before the MIDlet terminates.
The purpose of this example is to highlight the technique for preventing termination
of a MIDlet before critical processing, such as data transfer to a remote computer, is
completed.

A warning message was displayed on the screen in Listing 5-9 informing the user
that the MIDlet was busy and asking her to make another attempt to exit the MIDlet.
The warning message was displayed as an instance of the StringItem class. Listing 6-2
performs basically the same task, except the instance of the StringItem class is replaced
with an alert dialog box (Figure 6-1). The alert dialog box is modal and requires the
user to close the box before making a second attempt to terminate the MIDlet.

134 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

Figure 6-1. An alert dialog box displays a message on the screen.

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:10:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

J2
M

E
U

S
ER

IN
TER

FA
C

E

The MIDlet in Listing 6-2 is called DisplayAlert and begins by declaring references
to instances of the Display class, Alert object, Form object, and Command object. There is
also a boolean variable, which is used to flag whether or not the user made one attempt
to terminate the MIDlet.

Next, the constructor is defined, first by assigning a false value to the exitFlag
variable. The false value is the default value and indicates that the person hasn’t made
the first attempt to exit the MIDlet. Three instances are then created and assigned to the
appropriate reference. These are instances of the Display class, Command class, and
Form class.

The instance of the Command class is associated with the instance of the Form class
by calling the addCommand() method and passing it reference to the instances of the
Command class. The last statement in the constructor associates a CommandListener
to the instance of the Form class by invoking the setCommandListener() method. The
registered CommandListener is notified of command events as they occur.

The startApp() method is then defined with one statement that calls the setCurrent()
method to display the instance of the Form class on the screen. The startApp() method
is invoked by the device’s application manager. The pauseApp() is defined as an empty
method. Remember that every MIDlet must have a pauseApp() defined, even if no
statements are executed when the application manager calls the pauseApp() method.

The destroyApp() method also must be defined in every MIDlet and is the method
called before the MIDlet terminates. The destroyApp() method is passed a boolean
value that indicates whether termination of the MIDlet is conditional or unconditional.
Conditional termination requires that a particular condition be met prior to termination.
The condition in this example is that the value of the boolean parameter is false, indicating
that the MIDlet hasn’t finished processing, although the user requested that the MIDlet
terminate. An exception is thrown when this occurs. An unconditional termination
indicates that no condition must be met before the MIDlet terminates, which happens
in this example when the user selects the Exit command for the second time.

The commandAction() method processes command events trapped by the
CommandListener. The commandAction() is called when the person selects any command
available on the device. The CommandListener’s commandAction() method processes
command events as notified by the system/application manager. Only the Exit command
is evaluated in this example.

The MIDlet flow enters the try { } block when the Exit command is received by
the commandAction() method, and the MIDlet evaluates whether or not the value
of the exitFlag variable is false. If false, this means that the user has selected the Exit
command only once. This causes the creation of an instance of the Alert class, which
is assigned to the appropriate reference.

The title of the alert instance is “Busy,” and the message is “Please try again.” No
image is being used with the alert instance; therefore the third parameter is null. The
AlertType of the alert instance is WARNING.

The alert dialog box is modal, so the timeout setting must be set to Alert.FOREVER.
This is accomplished by calling the setTimeout() method and passing it the
Alert.FOREVER integer.

C h a p t e r 6 : H i g h - L e v e l D i s p l a y : S c r e e n s 135

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:10:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Next, the destroyApp() method is called and is passed a false, indicating there is a
condition associated with the termination of the MIDlet. That is, the user must make
two attempts to terminate the MIDlet, and only one attempt has been made so far.

136 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

Creating an Alert Dialog Box
Listed here are the steps required to create an alert dialog box:

1. Declare references.

2. Set default value for the exit flag to false.

3. Obtain a reference to the instance of the Display class.

4. Create an instance of a Command class to exit the MIDlet.

5. Create an instance of the Form class.

6. Associate the instance of the Command class to the instance of the Form
class.

7. Associate a CommandListener with the instance of the Form class.

8. Display the instance of the Form class on the screen.

9. Evaluate the command selected by the user.

10. If the Exit command is selected, determine whether conditions are safe to
terminate the MIDlet.

11. If conditions are not safe to terminate the MIDlet, create a modal instance
of the Alert class with the message “Busy” “Please try again.”

12. Display the instance of the Alert class on the screen.

13. Call the destroyApp() method with a conditional termination notice.

14. If conditions are safe to terminate the MIDlet, call the destroyApp() method
with an unconditional termination notice, and notify the application manager
of pending termination of the MIDlet.

15. When the destroyApp() method is called, evaluate the status of the
unconditional parameter.

16. If the unconditional parameter is false, throw a
MIDletStateChangeException; otherwise, terminate the MIDlet.

17. Trap exceptions thrown within the commandAction() method.

18. If the MIDletStateChangeException is thrown, indicate that conditions
are now safe to terminate the MIDlet by assigning a true value to the
exit flag variable.

19. Terminate the MIDlet when the Exit command is entered the second time.

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:10:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

However, the destroyApp() method is invoked and passed a boolean true if the value
of the exitFlag variable is true, which begins the termination process. The MIDlet then
returns from the destroyApp() to call the notifyDestroyed() method, which notifies the
application manager of the termination.

The catch { } traps a MIDletStateChangeException thrown by the destroyApp() when
a conditional termination notice is received. The exception causes the value of the exitFlag
variable to be set to true, meaning the MIDlet terminates unconditionally the next time
the user selects the Exit command.

MIDlet-Name: DisplayAlert

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: DisplayAlert.jar

MIDlet-1: DisplayAlert, , DisplayAlert

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class DisplayAlert extends MIDlet implements CommandListener

{

private Display display;

private Alert alert;

private Form form;

private Command exit;

private boolean exitFlag;

public DisplayAlert()

{

exitFlag = false;

display = Display.getDisplay(this);

exit = new Command("Exit", Command.SCREEN, 1);

form = new Form("Throw Exception");

form.addCommand(exit);

form.setCommandListener(this);

}

public void startApp()

{

display.setCurrent(form);

}

public void pauseApp()

{

C h a p t e r 6 : H i g h - L e v e l D i s p l a y : S c r e e n s 137

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

J2
M

E
U

S
ER

IN
TER

FA
C

E

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

Listing 6-1
The JAD

file for
Listing 6-2

Listing 6-2
Displaying

a modal
alert dialog

box when an
exception is

thrown

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:10:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

}

public void destroyApp(boolean unconditional)

throws MIDletStateChangeException

{

if (unconditional == false)

{

throw new MIDletStateChangeException();

}

}

public void commandAction(Command command, Displayable displayable)

{

if (command == exit)

{

try

{

if (exitFlag == false)

{

alert = new Alert("Busy", "Please try again.",

null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert, form);

destroyApp(false);

}

else

{

destroyApp(true);

notifyDestroyed();

}

}

catch (MIDletStateChangeException exception)

{

exitFlag = true;

}

}

}

}

Alert Sound
Each AlertType has an associated sound that automatically plays whenever the alert
dialog box appears on the screen. The sound, which is different for each AlertType, is
used as an audio cue to indicate that an event is about to occur. Users of your MIDlet

138 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:10:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

will learn to identify events by sound cue over time and will become less dependent
on the visual cue presented by the alert dialog box.

An audio cue can be sounded without having to display the alert dialog box. You
do this by calling the playSound() method and passing it reference to the instance of
the Display class, as illustrated in the following code segment. This is a modification
of the if statement in Listing 6-1. The sound associated with the AlertType WARNING
is heard when the playSound() method is called.

if (exitFlag == false)

{

AlertType.WARNING.playSound(display);

destroyApp(false);

}

Form Class
The Form class is a container for other displayable objects that appear on the screen
simultaneously. Any derived class of the Item class can be placed within an instance
of the Form class. For example, instances of the StringItem class can be displayed
by inserting those instances within the instance of the Form class, then showing the
instance of the Form class.

Small computing device screens vary in size, so you can expect that some instances
within the instance of the Form class won’t fit on the screen. However, devices typically
implement scrolling, which allows the user to bring instances out of view onto the screen.
An instance is placed with the instance of the Form class by calling one of two methods.
These are insert() method and append() method. The insert() method places the instance
in a particular position on the form as specified by parameters passed to the insert()
method. The append() method places the instance after the last object on the form.

The following code segment illustrates how to create an instance of the Form class
and call the append() method to place an instance of the StringItem class onto the form.
After declaring referencing for the instance of the Form class and for the instance of the
StringItem class, a new Form instance is created and given the title “My Form.” Next,
a StringItem instance with the message “Welcome, glad you could come.” is created.
You’ll learn the details of creating and using the StringItem object later in this chapter.
The append() method is called once when both instances are created. Reference to the
StringItem instance is then passed to the form, thereby placing the StringItem instance
as the last object on the form.

private Form form;

private StringItem message;

form = new Form("My Form");

C h a p t e r 6 : H i g h - L e v e l D i s p l a y : S c r e e n s 139

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

J2
M

E
U

S
ER

IN
TER

FA
C

E

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:10:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

message = new StringItem("Welcome, ", "glad you could come.");

form.append(message);

Each instance placed on a form has an index number associated with it, beginning
with the value zero. You can use the index number to reference the instance within
your MIDlet, for example, when you want to insert an instance onto the form.

The following segment of code shows you how to insert another StringItem instance
onto a form before the first StringItem instance. This example is nearly identical to the
previous example, except there are four changes. First, two StringItem references are
declared, called message1 and message2. An int is also declared and is used to store
the index number of the first StringItem instance placed on the form.

The same Form instance and StringItem instance as in the previous example are created
and assigned to the proper reference. However, a second StringItem instance is also
created. Notice that the index number of the first message appended to the Form instance
is stored in the index1 variable. The index1 variable is passed as the first parameter to
the insert() method to place the second message on the form before the first message.
Reference to the second message is passed as the second parameter to the insert() method.

private Form form;

private StringItem message1, message2;

private int index1;

form = new Form("My Form");

message1 = new StringItem("Welcome, ", "glad you could come.");

message2 = new StringItem("Hello, ", "Mary.");

index1 = form.append(message1);

form.insert(index1,message2);

An alternative to using the insert() and append() methods for associating instances
of the Item class with a form is to create an array of instances of the Item class and then
pass the array to the constructor when the instance of the Form class is created. This is
an excellent technique for initially populating the instance of the Form class. You can
then use the insert() method, append() method, set() method, and delete() method to
manage instances of the Item object on the form throughout the life of the MIDlet.

Listing 6-3 contains the JAD file for Listing 6-4, which illustrates how to populate
an instance of the Form class with an array of instances of the Item class. This example
creates an array of StringItem instances. Each element of the array is then assigned a
StringItem instance. The array is passed as the second parameter to the constructor
when the instance of the Form class is created, and the instance of the Form class

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

140 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:10:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

J2
M

E
U

S
ER

IN
TER

FA
C

E

is displayed within the startApp() method by calling the setCurrent() method, as
described in Listing 6-3.

MIDlet-Name: CreatingFormWithItems

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: CreatingFormWithItems.jar

MIDlet-1: CreatingFormWithItems, , CreatingFormWithItems

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class CreatingFormWithItems

C h a p t e r 6 : H i g h - L e v e l D i s p l a y : S c r e e n s 141

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

Creating an Instance of the Form Class
Listed here are the steps required to create an instance of the Form class:

1. Declare references.

2. Obtain a reference to the instance of the Display class.

3. Create an instance of a Command class to exit the MIDlet.

4. Create two instances of the StringItem class.

5. Assign each instance of the StringItem class to an array element.

6. Create an instance of the Form class.

7. Associate the instance of the Command class to the instance of the Form class.

8. Associate a CommandListener with the instance of the Form class.

9. Display the instance of the Form class on the screen.

10. Evaluate the command selected by the user.

11. If the Exit command is selected, terminate the MIDlet.

Listing 6-3
The JAD

file for
Listing 6-4

Listing 6-4
Creating a
form with

items

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:10:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

extends MIDlet implements CommandListener

{

private Display display;

private Form form;

private Command exit;

public CreatingFormWithItems ()

{

display = Display.getDisplay(this);

exit = new Command("Exit", Command.SCREEN, 1);

StringItem messages[] = new StringItem[2];

message[0] = new StringItem("Welcome, ", "glad you could come.");

message[1] = new StringItem("Hello, ", "Mary.");

form = new Form("Display Form with Items", messages);

form.addCommand(exit);

form.setCommandListener(this);

}

public void startApp()

{

display.setCurrent(form);

}

public void pauseApp()

{

}

public void destroyApp(boolean unconditional)

{

}

public void commandAction(Command command, Displayable displayable)

{

if (command == exit)

{

destroyApp(true);

notifyDestroyed();

}

}

}

An instance of the Item class that appears on the form can be replaced by another
instance of the Item class by calling the set() method. The set() method requires two
parameters. The first parameter is the index number of the instance of the Item class
that is being replaced, and the other parameter is reference to the instance of the Item
object that is replacing the existing Item class.

142 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:10:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Likewise, you can remove an instance of the Item class from a form by invoking
the delete() method. The delete() method requires one parameter, which is the index
number of the instance of the Item class that is being removed from the form.

Item Class
An Item class is a base class for a number of derived classes that can be contained within
a Form class. These derived classes are ChoiceGroup, DateField, Gauge, ImageItem,
StringItem, and TextField, each of which is discussed in detail later in this chapter. Some
classes derived from the Item class, such as ChoiceGroup, DateField, and TextField, are
used for data entry. The ChoiceGroup class is used to create check boxes or radio buttons
on a form, and the DateField class and TextField class are used to capture date and free-
form text from the user of the MIDlet.

The state of an instance of a class derived from the Item class changes whenever a
user enters data into the instance, such as when a check box is selected. You can capture
this change by associating an ItemStateListener with an instance of a class derived from
an Item class (ChoiceGroup, for example). An ItemStateListener monitors events during
the life of the MIDlet and traps events that represent changes in the state of any Item class
contained in a form on the screen.

The class implementing the ItemStateListener interface (the MIDlet in this case)
becomes the registered listener (callback) whose itemStateChanged() method is called
when an item event occurs. The device’s application manager detects the event and
calls the itemStateChanged() method of the MIDlet. This similar process occurs with the
CommandListener when a command event occurs, except when the commandAction()
method is invoked.

Logic within the itemStateChanged() method compares the reference to known
items on the form and then initiates processing. The nature of this processing is
application dependent, but processing is likely to retrieve the value that the user
entered into the item.

The following code segment illustrates how to associate an ItemStateListener with
an instance of the Item object and how to define the itemStateChanged() method. This
example creates an instance of the ChoiceGroup class, which is derived from the Item
class. The instance of the ChoiceGroup class is displayed as a set of radio buttons
collectively titled “Pick One.” No radio buttons are shown in this code segment, but
you’ll see how to create them in the next section of this chapter. For now, assume that
the instance of the ChoiceGroup class contains several radio buttons.

The instance of the ChoiceGroup class is then placed on the form by calling the
append() method, which is passed reference to the instance of the ChoiceGroup class.
Next, an ItemStateListener is associated with the form by calling the setItemStateListener()
method. As you’ll see in the next section, the creation of an instance of the ChoiceGroup
class, appending the instance to the form, and associating an ItemStateListener with the
form are performed within the constructor of the MIDlet.

C h a p t e r 6 : H i g h - L e v e l D i s p l a y : S c r e e n s 143

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

J2
M

E
U

S
ER

IN
TER

FA
C

E

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:10:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The itemStateChanged() method is defined outside the constructor and contains
logic to evaluate the item passed to the method. An if statement is used in this example
to determine whether the selected item is the instance of the ChoiceGroup class. If so,
the item is processed according to the business rules of the application.

private Form form;

private ChoiceGroup choiceGroup;

….

choiceGroup = new ChoiceGroup("Pick One", Choice.EXCLUSIVE);

form.append(choiceGroup);

form.setItemStateListener(this);

….

public void itemStateChanged(Item item)

{

if (item == choiceGroup)

{

// do some processing

}

}

ChoiceGroup Class
You are probably familiar with check boxes and radio buttons used in graphical user
interfaces for choosing one or multiple choices from a selection of options. Likewise,
check boxes and radio buttons are used to display selected options that were previously
chosen. Check boxes and radio buttons are often grouped into sets of options, although
there are times when one check box, rather than multiple check boxes, is required by an
application. Radio buttons are almost always displayed in a set of radio buttons.

The primary difference between a set of check boxes and a set of radio buttons,
besides their obvious appearance, is the number of check boxes or radio buttons that
users can select. Users can choose multiple check boxes within a set of check boxes,
while they can choose only one radio button within a set of radio buttons. For example,
radio buttons are used on a form to identify the user’s gender. The user can be either
male or female, and therefore selection of one precludes the other. In contrast, a set of
check boxes is used to identify preferences, such as choice of movies. Each check box
within the set is a movie category. The selection of one category does not preclude the
selection of other categories.

J2ME classifies check boxes and radio buttons as the ChoiceGroup class. An instance
of the ChoiceGroup class can be one of two types: exclusive or multiple. An exclusive
instance appears as a set of radio buttons, and a multiple instance contains one or a set
of check boxes. You determine the format of an instance of a ChoiceGroup class by
passing the ChoiceGroup class constructor a choice type, as shown in Table 6-2.

144 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:10:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When the user selects either a radio button or check box, the device’s application
manager detects the event and calls the itemStateChanged() method of the MIDlet, as
described in the “Item Class” section of this chapter. The itemStateChanged() method
determines whether the item selected is an instance of the ChoiceGroup. If so, then
either the getSelectedFlags() method or getSelectedIndex() method must be called
to retrieve the item selected by the user.

The getSelectedFlags() method returns an array that contains the status of the
selected flag for each member of the instance of the ChoiceGroup class (each radio
button or each check box). The MIDlet must step through each element of the array
to determine whether the selected flag status is true or false. If true, the radio button
or check box that corresponds to the index of the array element was selected by the
user. If false, the user did not make a selection.

The getSelectedIndex() method returns the index number of the item selected by
the user, such as a radio button. The index number is typically passed to the getString()
method, which returns the text of the selected radio button or check box. You’ll learn
this technique in the next section of this chapter.

Instead of using the ItemStateListener and itemStateChanged() methods, you can
place a Command on the screen and implement a CommandListener and define an
actionCommand() method. As you’ll recall from Chapter 5, the device’s application
manager notifies the CommandListener when a command is selected, and then the
actionCommand() method you define in the MIDlet is called. The actionCommand()
method then calls either the getSelectedFlags() method or the getSelectedIndex() method
to identify the item selected by the user.

The “Quick Reference Guide” section of this chapter contains methods that you can
use with instances of the ChoiceGroup class.

Creating and Accessing Check Boxes
Listing 6-5 contains the JAD file for Listing 6-6, which illustrates how to use a MULTIPLE
type to create check boxes in a MIDlet. This example displays a list of movie categories
in the form of check boxes within an instance of the Form class and then prompts the

C h a p t e r 6 : H i g h - L e v e l D i s p l a y : S c r e e n s 145

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

J2
M

E
U

S
ER

IN
TER

FA
C

E

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

Choice Type Description

EXCLUSIVE Only one selection available at any time (radio button).

MULTIPLE Zero or more selections available at any time (check box).

IMPLICIT Only one selection at any time. The selection generates a
command event automatically. No icon is used (menu list).

Table 6-2. Choice Types for ChoiceGroup Object and List Object

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:10:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

user to select kinds of movies he would like to see. Those choices are then displayed
as a string on the screen (Figure 6-2).

Listing 6-6 begins with the declaration of references for instances of classes that
are used within the application. The declarations are for the Display class, Form class,
Command class, and ChoiceGroup class as well as two integers that are later used to
identify the instance of the ChoiceGroup class.

The constructor is where instances are created and associated with the instance of the
Form class. First obtain a Display instance by calling the getDisplay() method. Next,
the instance of the ChoiceGroup class, called “movies,” is created. Two parameters are
passed to the constructor of the ChoiceGroup class. The first parameter is the title of
the instance, and the other parameter is the type of ChoiceGroup, which is MULTIPLE
because we want the instance to appear as check boxes.

The append() method is called once for each check box. The append() method requires
two parameters. The first parameter is the label of the check box, and the other parameter
is reference to an image that appears along with the label. No images are used in this
example, so the second parameter is set to a null value.

146 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

Figure 6-2. Displaying check boxes on a form

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:10:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Two Command instances are created next. These are the Exit command and the
Process command. The Exit command terminates the MIDlet, and the Process command
causes the MIDlet to evaluate each check box to determine the user’s preferences. Once
these Command instances are created, the MIDlet creates an instance of the Form class
that will become the container that holds other instances. The constructor of the Form
class is passed the title of the form, called “Movies.”

The next series of statements associates the instance of the ChoiceGroup class and
instances of the Command class with the form. Notice that the entire instance referenced
by movies is passed as a parameter to the append() method. This automatically appends
all the check boxes of the instance to the form. You don’t need to append each check box
to the form.

The append() method returns the index number of the instance placed on the form.
As you learned previously in this chapter, the index number uniquely identifies an
instance on the form and is used throughout the MIDlet to reference the instance. The
index number of the movies instance is stored in the movieIndex int so we can reference
the movies instance later in the MIDlet. You don’t need to store the index number of an
instance if the instance is not referenced within the MIDlet.

The MIDlet then associates commands and a CommandListener with the form
and processes all user selections immediately when the Process command activates.
Alternatively, the MIDlet can implement an ItemStateChangeListener, which is
notified whenever the state of an item changes. Many developers prefer to use
a CommandListener instead of an ItemStateChangeListener.

The instance of the Form object containing check boxes is displayed on the screen
by calling the setCurrent() method from within the startApp(). The setCurrent() method
is passed reference to the instance of the form as a parameter. The pauseApp() method
and the destroyApp() method are defined as required by J2ME specifications but are left
empty because the application doesn’t require any special statements to be executed
when the device’s application manager calls both of these methods.

The actionCommand() method is where all the processing occurs. The device’s
application manager detects when the user selects a command and notifies the MIDlet
using the CommandListener to call the commandAction() method, where the command is
evaluated. The if statement within the commandAction() method compares the incoming
command to the Process command. If they match, the instance of the ChoiceGroup class is
processed; otherwise the command is compared to the Exit command and terminates the
MIDlet if they match.

The MIDlet performs some interesting processing when the user selects the Process
command. First, an array of boolean types is created. Notice that the dimension of the
array is set by calling the size() method of the instance of the ChoiceGroup. The size()
method returns the number of check boxes in the set. The size() method is also used to
create an array of instances of the StringItem object. These instances are used to display
the user’s selections.

Next, the boolean array is passed to the getSelectedFlags() method. The
getSelectedFlags() method populates the boolean array with the state of each check

C h a p t e r 6 : H i g h - L e v e l D i s p l a y : S c r e e n s 147

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

J2
M

E
U

S
ER

IN
TER

FA
C

E

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:10:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

box. A for loop is then used to step through the boolean array, evaluating the value
of each array element. The picks array length variable is used instead of the size()
method to set the maximum iterations of the loop.

If the value of the boolean array element is true, the MIDlet calls the getString()
method, passing it the index number of the check box. Each check box is assigned an
index number relative to other check boxes within the set and is used to uniquely
identify the check box.

The getString() method returns the label of the check box, which is then passed to
the setText() method of the next instance of the StringItem class and is later displayed
on the screen by appending the string to the form. The instance of the ChoiceGroup

148 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

Creating Check Boxes
Listed here are the steps required to create check boxes:

1. Declare references.

2. Obtain a reference to the instance of the Display class.

3. Create an instance of a ChoiceGroup of MULTIPLE type.

4. Append check boxes to the instance of the ChoiceGroup.

5. Create an instance of a Command class to exit the MIDlet.

6. Create an instance of a Command class to process the check boxes.

7. Create an instance of a ChoiceGroup class.

8. Create an instance of the Form class.

9. Associate the instance of the ChoiceGroup to the instance of the Form class.

10. Associate the instance of the Command class to the instance of the Form class.

11. Associate a CommandListener with the instance of the Form class.

12. Display the instance of the Form class on the screen.

13. Evaluate the command selected by the user.

14. If the Exit command is selected, terminate the MIDlet.

15. If the Process command is selected, process the check boxes.

16. Read the selected status of each check box.

17. Evaluate the selected status of each check box.

18. If the selected status is true, retrieve the string of the check box.

19. Display the string of the check box on the form.

20. Remove the check box from the form.

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:10:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

class and the Process command are both removed from the form by calling the delete()
method and the removeCommand() method, respectively.

MIDlet-Name: CheckBoxes

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: CheckBoxes.jar

MIDlet-1: CheckBoxes, , CheckBoxes

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class CheckBoxes extends MIDlet implements CommandListener

{

private Display display;

private Form form;

private Command exit;

private Command process;

private ChoiceGroup movies;

private int movieIndex;

public CheckBoxes()

{

display = Display.getDisplay(this);

movies = new ChoiceGroup("Select Movies You Like to See",

Choice.MULTIPLE);

movies.append("Action", null);

movies.append("Romance", null);

movies.append("Comedy", null);

movies.append("Horror", null);

exit = new Command("Exit", Command.EXIT, 1);

process = new Command("Process", Command.SCREEN,2);

form = new Form("Movies");

movieIndex = form.append(movies);

form.addCommand(exit);

form.addCommand(process);

form.setCommandListener(this);

}

public void startApp()

{

display.setCurrent(form);

C h a p t e r 6 : H i g h - L e v e l D i s p l a y : S c r e e n s 149

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

J2
M

E
U

S
ER

IN
TER

FA
C

E

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

Listing 6-5
The JAD

file for
Listing 6-6

Listing 6-6
Creating and

accessing
check boxes

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:10:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

}

public void pauseApp()

{

}

public void destroyApp(boolean unconditional)

{

}

public void commandAction(Command command, Displayable displayable)

{

if (command == process)

{

boolean picks[] = new boolean[movies.size()];

StringItem message[] = new StringItem[movies.size()];

movies.getSelectedFlags(picks);

for (int x = 0; x < picks.length; x++)

{

if (picks[x])

{

message[x] = new StringItem("",movies.getString(x)+"\n");

form.append(message[x]);

}

}

form.delete(movieIndex);

form.removeCommand(process);

}

else if (command == exit)

{

destroyApp(false);

notifyDestroyed();

}

}

}

Creating and Accessing Radio Buttons
Listing 6-7 contains the JAD file for Listing 6-8, which shows how to create a ChoiceGroup
object that displays radio buttons on the screen as part of a form. This MIDlet displays two
radio buttons, each representing a gender, and then prompts the user to select one or the
other gender (Figure 6-3). After making a selection, the user clicks the Process command,
causing the MIDlet to read the selected radio button and display the label of the radio
button on the form.

Like Listing 6-6, Listing 6-8 begins by declaring references and integers that are
used later in the program. Instances are created within the constructor, one of which

150 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:10:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 6 : H i g h - L e v e l D i s p l a y : S c r e e n s 151

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

J2
M

E
U

S
ER

IN
TER

FA
C

E

is an instance of the ChoiceGroup class. The ChoiceGroup class constructor is passed
a title in the first parameter and the type in the second parameter. Notice that the type
is EXCLUSIVE, which limits selection to only one set of choices within the group.

The append() method is called twice to add two radio buttons to the group. These
are Female and Male. The Male radio button is the default selection. You set a default
selection by first storing the index number of the Male radio button that is returned
by the append() method. This index number is then passed as the first parameter to
the setSelectedIndex() method. The setSelectedIndex() method’s second parameter is
a boolean value indicating whether the radio button is on or off. In this example, a true
value is passed to turn on the radio button.

The remaining statements within the constructor create instances of the Command
class and associate them and other instances with the form. This is nearly identical to
similar statements within the constructor of Listing 6-6. The form is then displayed
by calling the setCurrent() method in the startApp() method. Command events are
detected, and the commandAction() method is called to process those events, as
described previously in the “Item Class” section of this chapter.

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

Figure 6-3. Displaying radio buttons on a form

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:10:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

152 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

The MIDlet invokes the getSelectedIndex() method of the gender object if the incoming
command is the Process command. The getSelectedIndex() returns an integer representing
the index of the gender object selected by the user. The index is passed to the getString()
method, which returns the radio button’s label and assigns the label to an instance of
the StringItem class. This instance is then displayed on the form by calling the append()
method; afterward the gender instance and the Process command are removed from
the form.

MIDlet-Name: RadioButtons

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

Creating Radio Buttons
Listed here are the steps required to create radio buttons:

1. Declare references.

2. Obtain a reference to the instance of the Display class.

3. Create an instance of a ChoiceGroup of EXCLUSIVE type.

4. Append radio buttons to the instance of the ChoiceGroup.

5. Set the Male radio button as the default radio button.

6. Create an instance of a Command class to exit the MIDlet.

7. Create an instance of a Command class to process the radio buttons.

8. Create an instance of the Form class.

9. Associate the instance of the ChoiceGroup to the instance of the Form class.

10. Associate the instance of the Command class to the instance of the Form class.

11. Associate a CommandListener with the instance of the Form class.

12. Display the instance of the Form class on the screen.

13. Evaluate the command selected by the user.

14. If the Exit command is selected, terminate the MIDlet.

15. If the Process command is selected, process the radio button.

16. Read the selected radio button.

17. Retrieve the string of the selected radio button.

18. Display the string of the radio button on the form.

19. Remove the radio button from the form.

20. Remove the Process command from the form.

Listing 6-7
The JAD

file for
Listing 6-8

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:10:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

MIDlet-Jar-URL: RadioButtons.jar

MIDlet-1: RadioButtons, , RadioButtons

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class RadioButtons extends MIDlet implements CommandListener

{

private Display display;

private Form form;

private Command exit;

private Command process;

private ChoiceGroup gender;

private int currentIndex;

private int genderIndex;

public RadioButtons()

{

display = Display.getDisplay(this);

gender = new ChoiceGroup("Enter Gender", Choice.EXCLUSIVE);

gender.append("Female", null);

currentIndex = gender.append("Male ", null);

gender.setSelectedIndex(currentIndex, true);

exit = new Command("Exit", Command.EXIT, 1);

process = new Command("Process", Command.SCREEN,2);

form = new Form("Gender");

genderIndex = form.append(gender);

form.addCommand(exit);

form.addCommand(process);

form.setCommandListener(this);

}

public void startApp()

{

display.setCurrent(form);

}

public void pauseApp()

{

}

public void destroyApp(boolean unconditional)

{

}

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

J2
M

E
U

S
ER

IN
TER

FA
C

E
C h a p t e r 6 : H i g h - L e v e l D i s p l a y : S c r e e n s 153

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

Listing 6-8
Creating and

accessing
radio buttons

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:10:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

public void commandAction(Command command, Displayable displayable)

{

if (command == exit)

{

destroyApp(false);

notifyDestroyed();

}

else if (command == process)

{

currentIndex = gender.getSelectedIndex();

StringItem message = new StringItem("Gender: ",

gender.getString(currentIndex));

form.append(message);

form.delete(genderIndex);

form.removeCommand(process);

}

}

}

DateField Class
The DateField class is used to display, edit, or input date and/or time into a MIDlet.
A DateField class is instantiated by specifying a label for the field, a field mode, and a
time zone, although time zone is optional. Table 6-3 lists the available DateField modes.
Both methods are illustrated in the following two statements:

DateField datefield = new DateField("Today", DateField.DATE);

DateField datefield = new DateField("Time", DateField.TIME, timeZone);

Once a DateField class is instantiated, you can use DateField class methods to enter
a date and time into the date field and retrieve the date and time value that has already
been entered into the date field. You place a date or time into the date field by calling the

154 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

Mode Description

DATE Display, edit, and input a date

TIME Display, edit, and input a time

DATE_TIME Display, edit, and input both date and time

Table 6-3. DateField Modes

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:10:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 6 : H i g h - L e v e l D i s p l a y : S c r e e n s 155

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

J2
M

E
U

S
ER

IN
TER

FA
C

E

setDate() method. The setDate() method requires one parameter, which is an instance of
the Date class containing the date/time value that will appear in the date field.

The getDate() method is called to retrieve the date/time value of the date field.
You can use the date/time value in a number of ways within your MIDlet, such as in
a calculation. Listing 6-9 contains the JAD file for Listing 6-10, which illustrates how
to place a date/time value into a date field and read a date/time value from a date
field that is later used in a calculation.

Besides storing and retrieving date/time values using DateField class methods, you
can also replace the DateField mode and retrieve the DateField mode of an instance of a
DateField class. You’ll find these methods handy to use whenever you need to change the
mode on the fly. The setInputMode() method replaces the existing DateField mode with
the mode passed as a parameter to the setInputMode() method. The getInputMode()
method is used to retrieve the mode of an instance of a DateField.

Creating and Manipulating an Instance of a DateField Object
The example in Listing 6-10 creates an instance of the DateField class that is initialized
with current date and time of the system’s clock, which is displayed on the screen
(Figure 6-4).

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

Figure 6-4. Displaying the date field on a form

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:10:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

156 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

You’ll notice that, like other listings in this chapter, Listing 6-10 begins by declaring
references to instances of classes that are used in the MIDlet. These classes are instantiated
in the constructor and assigned to variables.

The instance of the DateField class is placed in the DATE_TIME mode since both
date and time are displayed. The date and time is set by passing the Date() construction
a date/time value in milliseconds since January 1, 1970. The System.currentTimeMillis()
method returns the current time in milliseconds—the number of milliseconds since
January 1, 1970.

The instance of the DateField class, along with the Exit commands and the
CommandListener, are then associated with the instance of the Form class. The form is
then displayed on the screen by calling the setCurrent() method within the startApp()
method. After the user selects the Exit command, the device’s application manager
calls the commandAction() method, where the command is evaluated. The MIDlet
terminates when the user selects the Exit command.

MIDlet-Name: DateToday

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: DateToday.jar

MIDlet-1: DateToday, , DateToday

MicroEdition-Configuration: CLDC-1.0

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

Listing 6-9
The JAD

file for
Listing 6-10

Creating an Instance of the DateField Class
Listed here are the steps required to create an instance of the DateField class:

1. Declare references.

2. Obtain a reference to the instance of the Display class.

3. Create an instance of the Form class.

4. Create an instance of the DateField class.

5. Set the instance of the DateField class to the system’s date.

6. Create an instance of a Command class to exit the MIDlet.

7. Associate the instance of the DateField class to the instance of the Form class.

8. Associate the instance of the Command class to the instance of the Form class.

9. Associate a CommandListener with the instance of the Form class.

10. Display the instance of the Form class containing the system’s date on the
screen.

11. Evaluate the command selected by the user.

12. If the Exit command is selected, terminate the MIDlet.

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:10:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 6 : H i g h - L e v e l D i s p l a y : S c r e e n s 157

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

J2
M

E
U

S
ER

IN
TER

FA
C

E

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

import java.util.*;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class DateToday extends MIDlet implements CommandListener

{

private Display display;

private Form form;

private Date today;

private Command exit;

private DateField datefield;

public DateToday()

{

display = Display.getDisplay(this);

form = new Form("Today's Date");

today = new Date(System.currentTimeMillis());

datefield = new DateField("", DateField.DATE_TIME);

datefield.setDate(today);

exit = new Command("Exit", Command.EXIT, 1);

form.append(datefield);

form.addCommand(exit);

form.setCommandListener(this);

}

public void startApp ()

{

display.setCurrent(form);

}

public void pauseApp()

{

}

public void destroyApp(boolean unconditional)

{

}

public void commandAction(Command command, Displayable displayable)

{

if (command == exit)

{

destroyApp(false);

notifyDestroyed();

}

}

}

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

Listing 6-10
Displaying

the system’s
date

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:10:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

158 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

Gauge Class
The Gauge class creates an animated progress bar that graphically represents the status
of a process. The indicator on the gauge generated by the Gauge class moves from
one end to the other proportionally to the completion of the process measured by the
gauge. Although movement of the indicator appears to be automatically driven by
the underlying process that is being measured, this movement is completed under the
control of the MIDlet. There is no direct, automatic link between a Gauge class and
the associated process.

The Gauge class provides methods to display the gauge and move the indicator. The
developer must build the routine into the MIDlet to move the indicator. This means that
the routine must monitor the progress of the underlying process and move the indicator
of the Gauge class to a position that corresponds to the status of the process.

Let’s say a MIDlet performs 100 calculations, and you want to use a gauge to
indicate the number of calculations made. Each time a calculation is completed, you
must move the indicator one tick. The user of the MIDlet can also control the indicator
if the instance of the Gauge class is set in the interactive mode. In interactive mode
the user can move the indicator of the gauge to a desired value, such as increasing the
volume of a device. The developer must then include a routine in the MIDlet to read
the value of the gauge indicator and incorporate the user’s input into the MIDlet’s
processing.

You create an instance of the Gauge class by using the following code segment:

Gauge gauge = new Gauge("Like/Dislike Gauge", true, 100, 0);

This statement creates an interactive gauge with the caption “Like/Dislike Gauge” and
a scale of zero to 100. The first parameter passed to the constructor of the Gauge class is a
string containing the caption that is displayed with the gauge. The second parameter is
a boolean value indicating whether or not the gauge is interactive. The third parameter
is the maximum value of the gauge, and the last parameter is the gauge’s initial value.

Although a gauge is set to the interactive mode, you can still change the current
value of the gauge indicator by calling the setValue() method. The setValue() method
requires one parameter, which is the integer representing the new value. You must
write the logic in your MIDlet to calculate the new value. Many times you will want to
increment or decrement the current value of the gauge by a specific amount. Therefore,
you’ll need to determine the current value of the gauge by calling the getValue() method.
The getValue() method returns an integer representing the gauge’s current value.

Before setting a new value for the gauge, be sure the new value doesn’t exceed the
maximum value of the gauge, otherwise the indicator on the gauge won’t be able to
display the new value. You can determine the maximum value of the gauge by calling
the getMaxValue() method, which returns the integer representing the current maximum
value. If your new value exceeds the maximum value, you can reset the maximum value
before setting the new value by calling the setMaxValue() method and passing the method
an integer representing the new maximum value.

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:10:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 6 : H i g h - L e v e l D i s p l a y : S c r e e n s 159

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

J2
M

E
U

S
ER

IN
TER

FA
C

E

Creating and Manipulating an Instance of a Gauge Class
Listing 6-11 contains the JAD file for Listing 6-12, which shows how to create a
noninteractive gauge. This example simulates monitoring a process and reporting
the status of the process by moving the indicator on the gauge through the range
of values from zero to 100 (Figure 6-5). The monitoring begins when the user selects
the Start command. The commandAction() method then loops through moving the
indicator by retrieving the current value of the indicator, incrementing that value,
and then repositioning the indicator on the gauge. It is within this loop that you place
statements that evaluate the status of a process, which is then reflected by positioning
the indicator.

Like other examples in this chapter, Listing 6-12 begins by declaring variables that
are used to reference instances of classes created within the MIDlet, including an instance
of the Gauge class. These instances are created with the GaugeNonInteractive constructor.
The Gauge class constructor is passed four parameters. The first is the caption for the
gauge, “Progress Tracking.” The second parameter is a boolean false value indicating
that the gauge isn’t interactive. The third parameter is the maximum value of the gauge,
which is set to 100. And the last parameter is the initial value of the gauge.

Figure 6-5. Displaying a noninteractive gauge on a form

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Instances of the Command class, the Gauge class, and the CommandListener are then
associated with the form. The form is then displayed on the screen when the startApp()
method is called by the device’s application manager.

The commandAction() method is invoked any time a command event is detected.
This method evaluates the incoming command by comparing the command to the Exit
and Start commands created by the MIDlet. If the Exit command was selected, the
commandAction() method causes the MIDlet to terminate, as described in previous
listings in this chapter. If the Start command was selected, the MIDlet enters the
while loop.

The loop continues as long as the current value of the gauge, as reported by
the getValue() method, is less than the maximum value of the gauge returned by the
getMaxValue() method. The MIDlet then retrieves the current value again, increments

160 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

Creating an Instance of the Gauge Class
Listed here are the steps required to create an instance of the Gauge class:

1. Declare references.

2. Obtain a reference to the instance of the Display class.

3. Create an instance of the Gauge class.

4. Create an instance of a Command class to exit the MIDlet.

5. Create an instance of a Command class to start processing the selection.

6. Create an instance of the Form class.

7. Associate the instance of the Gauge class to the instance of the Form class.

8. Associate instances of the Command class to the instance of the Form class.

9. Associate a CommandListener with the instance of the Form class.

10. Display the instance of the Form class on the screen.

11. Evaluate the command selected by the user.

12. If the Exit command is selected, terminate the MIDlet.

13. If the Start command is selected, process the gauge.

14. Make sure the current value of the instance of the Gauge class is less than
the maximum value of the instance.

15. If the value is less than the maximum, increment the current value of the
gauge by one and reposition the indicator.

16. Remove the Start command.

17. Change the label of the gauge to indicate that processing is completed.

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the value by one, and passes the sum as the parameter to the setValue() method, thereby
resetting the gauge indicator to show the new status of processing within the while loop.

Once the current value is equal to the maximum value of the gauge, the loop is
terminated. The Start command is removed from the form, and the setLabel() method
is called, resetting the label of the gauge to “Process Completed.”

MIDlet-Name: GaugeNonInteractive

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: GaugeNonInteractive.jar

MIDlet-1: GaugeNonInteractive, , GaugeNonInteractive

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class GaugeNonInteractive

extends MIDlet implements CommandListener

{

private Display display;

private Form form;

private Command exit;

private Command start;

private Gauge gauge;

private boolean isSafeToExit;

public GaugeNonInteractive()

{

display = Display.getDisplay(this);

gauge = new Gauge("Progress Tracking", false, 100, 0);

exit = new Command("Exit", Command.EXIT, 1);

start = new Command("Start", Command.SCREEN, 1);

form = new Form("");

form.append(gauge);

form.addCommand(start);

form.addCommand(exit);

form.setCommandListener(this);

isSafeToExit = true;

}

public void startApp()

{

display.setCurrent(form);

}

public void pauseApp()

{

}

C h a p t e r 6 : H i g h - L e v e l D i s p l a y : S c r e e n s 161

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

J2
M

E
U

S
ER

IN
TER

FA
C

EListing 6-12
Implementing

a noninter-
active gauge

Listing 6-11
The JAD

file for
Listing 6-12

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

public void destroyApp(boolean unconditional)

throws MIDletStateChangeException

{

if (!unconditional)

{

throw new MIDletStateChangeException();

}

}

public void commandAction(Command command, Displayable displayable)

{

if (command == exit)

{

try

{

destroyApp(isSafeToExit);

notifyDestroyed();

}

catch (MIDletStateChangeException Error)

{

Alert alert = new Alert("Busy", "Please try again.", null, AlertType.WARNING);

alert.setTimeout(1500);

display.setCurrent(alert, form);

}

}

else if (command == start)

{

form.remove.Command(start);

new Thread(new GaugeUpdater()).start();

}

}

class GaugeUpdater implements Runnable

{

GaugeUpdater()

{

}

public void run()

{

isSafeToExit = false;

try

{

while (gauge.getValue() < gauge.getMaxValue())

{

Thread.sleep(1000);

gauge.setValue(gauge.getValue() + 1);

}

isSafeToExit = true;

gauge.setLabel("Process Completed.");

162 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

}

catch (InterruptedException Error)

{

throw new RuntimeException(Error.getMessage());

}

}

}

}

As mentioned earlier, an instance of a Gauge class can become interactive, enabling the
user to adjust the indicator of the gauge. Listing 6-13 contains the JAD file for Listing 6-14,
which illustrates how to create an interactive gauge (Figure 6-6). Listing 6-14 prompts the
user to rate a movie by moving the indicator on a gauge, then selecting the Vote command
to register her rating. The rating is then displayed on the screen in an alert dialog box.

You’ll notice that this listing is very similar to Listing 6-12 in that references to
instances of classes are declared at the beginning of the list and are assigned instances
after instances of classes are created in the GaugeInteractive constructor.

C h a p t e r 6 : H i g h - L e v e l D i s p l a y : S c r e e n s 163

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

J2
M

E
U

S
ER

IN
TER

FA
C

E

Creating an Interactive Gauge
Listed here are the steps required to create an interactive gauge:

1. Declare references.

2. Obtain a reference to the instance of the Display class.

3. Create an instance of the Gauge class.

4. Create an instance of a Command class to exit the MIDlet.

5. Create an instance of a Command class to start processing the selection.

6. Create an instance of the Form class.

7. Associate the instance of the Gauge class to the instance of the Form class.

8. Associate instances of the Command class to the instance of the Form class.

9. Associate a CommandListener with the instance of the Form class.

10. Display the instance of the Form class on the screen.

11. Evaluate the command selected by the user.

12. If the Exit command is selected, terminate the MIDlet.

13. If the Vote command is selected, process the value of the gauge.

14. Read the current value of the gauge.

15. Display the value of the gauge in an alert dialog box.

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The instance of the Gauge class has a caption called “Rate the movie:” and has an
initial value of one and a maximum value of five. Notice that the second parameter of
the Gauge constructor is a boolean true value, which makes the gauge interactive.

Instances are then associated with the form, and the form is displayed when the
startApp() method is invoked. The actionCommand() method traps the selection of the
Start command and displays an alert dialog box captioned “Ranking,” using the return
value from the getValue() method as its message. The getValue() method retrieves the
current value of the indicator gauge, which reflects the user’s ranking of the movie.
The MIDlet terminates when the Exit command is selected.

MIDlet-Name: GaugeInteractive

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: GaugeInteractive.jar

164 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

Listing 6-13
The JAD

file for
Listing 6-14

Figure 6-6. Displaying an interactive gauge on a form

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

MIDlet-1: GaugeInteractive, , GaugeInteractive

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class GaugeInteractive extends MIDlet implements CommandListener

{

private Display display;

private Form form;

private Command exit;

private Command vote;

private Gauge gauge;

public GaugeInteractive ()

{

display = Display.getDisplay(this);

gauge = new Gauge("Rate the movie: ", true, 5, 1);

exit = new Command("Exit", Command.EXIT, 1);

vote = new Command ("Vote", Command.SCREEN, 1);

form = new Form("");

form.addCommand(exit);

form.addCommand(vote);

form.append(gauge);

form.setCommandListener(this);

}

public void startApp()

{

display.setCurrent(form);

}

public void pauseApp()

{

}

public void destroyApp(boolean unconditional)

{

}

public void commandAction(Command command, Displayable displayable)

{

if (command == exit)

{

destroyApp(false);

notifyDestroyed();

C h a p t e r 6 : H i g h - L e v e l D i s p l a y : S c r e e n s 165

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

J2
M

E
U

S
ER

IN
TER

FA
C

E

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

Listing 6-14
Implementing
an interactive

gauge

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

}

else if (command == vote)

{

String msg = String.valueOf(gauge.getValue());

Alert alert = new Alert("Ranking", msg, null, null);

alert.setTimeout(Alert.FOREVER);

alert.setType(AlertType.INFO);

display.setCurrent(alert);

}

}

}

StringItem Class
Previously in this chapter, you used an instance of a StringItem class to display a message
on the screen. We’ll discuss the details of creating this instance in this section. The purpose
of using a StringItem class is to display a text that cannot be modified or deleted by the
user of the MIDlet.

A StringItem class is different from other classes derived from the Item class in that
a StringItem class does not recognize events. This means that an instance of a StringItem
class can never cause an event because the user cannot modify the text of the string item.
Other instances of the Item class, such as an instance of the ChoiceGroup class, recognize
an event whenever the value of the instance changes, such as selecting a radio button or
check box.

Although an instance of the StringItem class cannot cause an event to occur, you can
modify the instance from within the MIDlet as a result of an event caused by instances of
other classes. For example, the text of an instance of the StringItem class can be changed
as a result of the user selecting a radio button.

You create an instance of a StringItem class by passing the StringItem class
constructor two parameters. The first parameter is a string representing the label
of the instance. The other parameter is a string of text that will appear on the screen.

You can retrieve the text of the instance of a StringItem class once the instance is
created by calling the getText() method. The getText() method returns a string containing
the text. Likewise, you can replace the text by calling the setText() method. The setText()
method requires one parameter, which is the new text that replaces the current text of
the instance.

The label of the instance can be changed by calling the setLabel() method. The
setLabel() method requires one parameter, which is the replacement label. You can
retrieve a label from an instance by invoking the getLabel() method. The getLabel()
method returns a string consisting of the label of the instance.

166 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Creating and Manipulating an Instance
of a StringItem Object
Listing 6-15 contains the JAD file for Listing 6-16, which demonstrates how to create an
instance of a StringItem class and then manipulate the label and text after the instance
is displayed on the screen. This example tells the user a joke. A question is posed to the
user, and then he has the option either to terminate the MIDlet or give up and have
the MIDlet display the punch line in answer to the question (Figure 6-7).

The program starts like other listings in this chapter, so we’ll jump to statements
pertinent to the StringItem class instead of reviewing each statement. The instance
is created within the StringItemExample constructor. Two strings are passed to the
StringItem class constructor. The first parameter is the label called “Question:”, and
the other parameter is the question. The instance of the StringItem class is then associated
with the form, along with other instances of other classes created by the MIDlet. The
form is then displayed by the startApp() method.

C h a p t e r 6 : H i g h - L e v e l D i s p l a y : S c r e e n s 167

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

J2
M

E
U

S
ER

IN
TER

FA
C

E

Creating an Instance of a StringItem Class
Listed here are the steps required to create an instance of the StringItem class:

1. Declare references.

2. Obtain a reference to the instance of the Display class.

3. Create an instance of the StringItem class.

4. Create an instance of a Command class for the answer to the joke.

5. Create an instance of a Command class to exit the MIDlet.

6. Create an instance of the Form class.

7. Associate the instance of the StringItem class to the instance of the Form class.

8. Associate instances of the Command class to the instance of the Form class.

9. Associate a CommandListener with the instance of the Form class.

10. Display the instance of the Form class on the screen.

11. Evaluate the command selected by the user.

12. If the Exit command is selected, terminate the MIDlet.

13. If the Giveup command is selected, process the instance of the StringItem class.

14. Change the label of the instance to “Answer:”.

15. Change the text of the instance to the answer to the joke.

16. Remove the Giveup command.

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

168 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

The user selects the Giveup command if unable to answer the question. The if
statement within the commandAction() method then enables the setLabel() method
and setText() method to be invoked. The setLabel() method replaces the “Question:”
label of the StringItem class instance with the “Answer:” label. Likewise, the text of
the instance is replaced with the punch line when the setText() method is called. The
Giveup command is then removed from the form.

MIDlet-Name: StringItemExample

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: StringItemExample.jar

MIDlet-1: StringItemExample, , StringItemExample

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

Listing 6-15
The JAD

file for
Listing 6-16

Figure 6-7. Displaying a string item on a form

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class StringItemExample extends MIDlet

implements CommandListener

{

private Display display;

private Form form;

private StringItem question;

private Command giveup;

private Command exit;

public StringItemExample()

{

display = Display.getDisplay(this);

question = new StringItem("Question: ",

"A plane crashes on the border between Canada

and the US. Where are the survivors buried?");

giveup = new Command("Give Up", Command.SCREEN, 1);

exit = new Command("Exit", Command.EXIT, 1);

form = new Form("Quiz");

form.addCommand(exit);

form.addCommand(giveup);

form.append(question);

form.setCommandListener(this);

}

public void startApp()

{

display.setCurrent(form);

}

public void pauseApp()

{

}

public void destroyApp(boolean unconditional)

{

}

public void commandAction(Command command, Displayable displayable)

{

if (command == giveup)

{

question.setLabel("Answer: ");

question.setText("Survivors are not buried.");

form.removeCommand(giveup);

}

else if (command == exit)

C h a p t e r 6 : H i g h - L e v e l D i s p l a y : S c r e e n s 169

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

J2
M

E
U

S
ER

IN
TER

FA
C

E

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

Listing 6-16
Implementing
the StringItem

class

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

{

destroyApp(false);

notifyDestroyed();

}

}

}

TextField Class
The TextField class is used to capture one line or multiple lines of text entered by the
user. The number of lines of a text field depends on the maximum size of the text field
when you create an instance of the TextField class. You instantiate the TextField class
by using the following statement, passing the TextField constructor four parameters:

textfield = new TextField("First Name:", "", 30, TextField.ANY);

The first parameter is the label that appears when the instance is displayed on the
screen. The second parameter is text that you want to appear as the default text for
the instance, which the user can edit. The third parameter is the maximum number
of characters that can be held by the instance. A word of caution: The character count
that you enter is a request to the device’s application manager and not a directive. This
means the maximum number of characters that can be entered into the text field might
be lower than the value passed to the constructor.

You can determine the actual character size of a text box by calling the getMaxSize()
method once the text field is instantiated. Always check the maximum size of a text
field before populating it if your MIDlet is likely to populate the text field with a lot
of text. In this way you can prevent an error from occurring during run time.

You can also change the maximum size by calling the setMaxSize() method. The
setMaxSize() method requires one parameter, which is the new value for the maximum
size for the text field. Any time that you need to know the length of the text in the text
field you can call the size() method, which returns an integer representing the number
of characters existing in the text field.

Also keep in mind that not all characters in a text field will appear on the screen.
Characters that don’t fit on the screen are still available to the user by scrolling. The
device handles scrolling for you.

The last parameter passed to the constructor of the TextField class is the constraint
(if any) that is used to restrict the type of characters that the user can enter into the text
field. Table 6-4 lists the constraints recognized by the TextField class. The instance of
the TextField class accepts any character if the ANY constraint is set. You can restrict
entry to numeric characters by passing the NUMERIC constraint to the constructor.
All non-numeric characters are excluded from the text field.

170 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Three special-purpose constraints—EMAILADDR, PHONENUMBER, and URL—
act as filters to assure that only valid characters can be entered into the text field for email
addresses, phone numbers, and URLs. All other characters are treated as an error and
therefore are prevented from being stored in the text field. The PASSWORD constraint
can be combined with other constraints to hide characters from being displayed. An
asterisk or other character determined by the device is displayed in place of the actual
character placed in the text box. The CONSTRAINT_MASK constraint is used to determine
the constraint’s current value.

There are two methods you can use to retrieve characters entered into a text field
by the user of your MIDlet. These are the getString() method and the getChars() method.
The getString() method returns the content of the text field as a string, and the getChars()
method returns the text field content as a character array. The getChars() method requires
that you pass it a character array as a parameter.

You place text into a text field by calling either the setString() method or the
setChars() method. The setString() method requires one parameter, which is the string
containing text that should appear in the text field. The setChars() method requires
three parameters. The first is the character array whose data will populate the text field.
The second is the position of the first character within the array that will be placed into
the text field. The last parameter is the length of characters of the character array that
will be placed into the text field. Characters in the character array will replace the
entire content of the text field.

You can insert characters within the text field without overwriting the entire
content of the text field by calling the insert() method. The insert() method has two
signatures, one for strings and the other for character arrays. The insert() method used

C h a p t e r 6 : H i g h - L e v e l D i s p l a y : S c r e e n s 171

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

J2
M

E
U

S
ER

IN
TER

FA
C

E

Constraint Description

CONSTRAINT_MASK Used to determine the constraint’s current value

ANY Input any character

EMAILADDR Input only valid email address characters

NUMERIC Input positive and negative numbers; cannot exclude
either positive or negative numbers

PASSWORD Hide input

PHONENUMBER Input characters valid to a phone number sometimes
specific to locality and device

URL Input characters valid to a URL

Table 6-4. TextField Object Constraints

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

172 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

to insert a string into the contents of a text field requires two parameters. The first
parameter is the string that will be inserted into the text field. The other parameter
is the character position of the current string where the new text is inserted. The text
that exists there now will be shifted down to make room for the inserted text.

The insert() method used to insert a character array requires four parameters. The
first parameter is reference to the array. The second parameter is the position of the first
character within the array that will be placed into the text field. The third parameter is
the number of characters contained in the array that will be placed into the text field.
And the last parameter is the character position of the current text that will be shifted
down to make room for the inserted text.

Text can be removed from the text field by calling the delete() method, which
requires two parameters. The first is the position of the first character to be deleted.
The other parameter is the length of characters that are to be deleted.

The constraint of a text field can be changed after the instance is created by calling
the setConstraints() method. The setConstraints() method requires you to pass the
new constraint as a parameter to the setConstraints() method. You can also determine
the current constraint by calling the getConstraints() method.

Another sometimes handy method is the getCaretPosition() method. A caret is
the cursor within the text field, and as you probably guessed, the getCaretPosition()
method returns the current position of the cursor. For example, you might design an
application that requires the user to select a section of text by positioning the cursor
at the first character of the section and then selecting a command. In response, your
MIDlet calls the getCaretPosition() method and uses the returned position to extract
the section of text from the contents of the text field.

Creating and Manipulating an Instance of a TextField Class
We will look at two common ways to use a TextField class in a MIDlet. Listing 6-17
contains the JAD file for Listing 6-18, which shows how to create an instance of a
TextField class, capture user input, and then replace the text in the text field with text
generated by the MIDlet. Listing 6-19 contains the JAD file for Listing 6-20, which
illustrates the technique for using the PASSWORD constraint when prompting the
user to enter a password into a text field. This MIDlet also shows you how to change
the constraint from within your program and replace the password text with text of
your own.

Let’s begin with Listing 6-18. This MIDlet begins much the same way as other
examples shown in this chapter, by declaring variables, then creating instances of
classes within the TextCapture constructor. Those instances are then assigned to
variables and associated with the Form object.

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 6 : H i g h - L e v e l D i s p l a y : S c r e e n s 173

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

J2
M

E
U

S
ER

IN
TER

FA
C

E

Notice that an instance of a TextField class is created within the TextCapture
constructor. This text field is labeled “First Name:” and can receive up to 30 characters
of any kind. Initially, the text field is empty. Also notice that instances of two commands
are created. One command is called Submit and is selected after the user enters a first
name in the text box. The other command is the Exit command and is used to terminate
the MIDlet. The form containing the text field is displayed on the screen by calling the
setCurrent() method in the startApp() method (Figure 6-8).

The Submit command is detected and processed by the commandAction() method,
as described in the “Item Class” section of this chapter. If the command passed to the
commandAction() method is the Submit command, the MIDlet calls the getString()

Creating an Instance of a TextField Class
Listed here are the steps required to create an instance of a TextField class:

1. Declare references.

2. Obtain a reference to the instance of the Display class.

3. Create an instance of a Command class for the Submit class.

4. Create an instance of a Command class to exit the MIDlet.

5. Create an instance of the TextField class.

6. Create an instance of the Form class.

7. Associate the instance of the TextField class to the instance of the Form class.

8. Associate instances of the Command class to the instance of the Form class.

9. Associate a CommandListener with the instance of the Form class.

10. Display the instance of the Form class on the screen.

11. Evaluate the command selected by the user.

12. If the Exit command is selected, terminate the MIDlet.

13. If the Submit command is selected, process the instance of the TextField class.

14. Retrieve the text of the instance.

15. Concatenate the text to the “Hello,” greeting.

16. Replace the text in the instance.

17. Remove the Submit command.

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

174 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

method to retrieve the string from the text field. The content of the text field is then
concatenated to the word “Hello,” which is then passed to the setString() method,
causing the new string to replace the existing string in the text field (Figure 6-9). The
Submit command is then removed from the screen, forcing the user to select the Exit
command to terminate the MIDlet.

Listing 6-20 is practically the same MIDlet as Listing 6-18 with a few exceptions.
The text field in Listing 6-20 is labeled “Password:” and has two constraints. The
first constraint is ANY, enabling any character to be entered into the text field. The
other constraint is PASSWORD, which displays an asterisk (or another character
selected by the device) in place of each character that the user enters in the text field.
Notice that the bitwise OR operator (|) is used to join constraints.

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

Figure 6-8. Displaying a text field on a form

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If you drop down to the commandAction() method, you’ll see that the setConstraints()
method is called, changing the constraint from ANY | PASSWORD to ANY, which
causes characters placed in the text field to be displayed unchanged. The MIDlet also
calls the setString() method to replace the hidden content of the text field with the
“Thank you.” string.

MIDlet-Name: TextFieldCapture

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: TextFieldCapture.jar

MIDlet-1: TextFieldCapture, , TextFieldCapture

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

C h a p t e r 6 : H i g h - L e v e l D i s p l a y : S c r e e n s 175

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

J2
M

E
U

S
ER

IN
TER

FA
C

E

Figure 6-9. A sign-in screen is displayed after the Submit command is selected.

Listing 6-17
The JAD

file for
Listing 6-18

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class TextFieldCapture extends MIDlet

implements CommandListener

{

private Display display;

private Form form;

private Command submit;

private Command exit;

private TextField textfield;

public TextFieldCapture()

{

display = Display.getDisplay(this);

submit = new Command("Submit", Command.SCREEN, 1);

exit = new Command("Exit", Command.EXIT, 1);

textfield = new TextField("First Name:", "", 30, TextField.ANY);

form = new Form("Sign In Please");

form.addCommand(exit);

form.addCommand(submit);

form.append(textfield);

form.setCommandListener(this);

}

public void startApp()

{

display.setCurrent(form);

}

public void pauseApp()

{

}

public void destroyApp(boolean unconditional)

{

}

public void commandAction(Command command, Displayable displayable)

{

if (command == submit)

{

textfield.setString("Hello, " + textfield.getString());

form.removeCommand(submit);

}

else if (command == exit)

{

destroyApp(false);

notifyDestroyed();

176 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

Listing 6-18
Interacting

with an
instance of
a TextField

class

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

}

}

}

MIDlet-Name: HideText

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: HideText.jar

MIDlet-1: HideText, , HideText

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class HideText extends MIDlet implements CommandListener

{

private Display display;

private Form form;

private Command submit;

private Command exit;

private TextField textfield;

public HideText()

{

display = Display.getDisplay(this);

submit = new Command("Submit", Command.SCREEN, 1);

exit = new Command("Exit", Command.EXIT, 1);

textfield = new TextField("Password:", "", 30, TextField.ANY | TextField.PASSWORD);

form = new Form("Enter Password");

form.addCommand(exit);

form.addCommand(submit);

form.append(textfield);

form.setCommandListener(this);

}

public void startApp()

{

display.setCurrent(form);

}

public void pauseApp()

{

}

public void destroyApp(boolean unconditional)

{

}

public void commandAction(Command command, Displayable displayable)

C h a p t e r 6 : H i g h - L e v e l D i s p l a y : S c r e e n s 177

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

J2
M

E
U

S
ER

IN
TER

FA
C

E

Listing 6-19
The JAD

file for
Listing 6-20

Listing 6-20
Hiding text in

a text field

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

178 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

{

if (command == submit)

{

textfield.setConstraints(TextField.ANY);

textfield.setString("Thank you.");

form.removeCommand(submit);

}

else if (command == exit)

{

destroyApp(false);

notifyDestroyed();

}

}

}

ImageItem Class
There are two types of images that can be displayed. These are immutable images and
mutable images. An immutable image is loaded from a file or other resource and cannot
be modified once the image is displayed. Icons associated with MIDlets are immutable
images. A mutable image is drawn on the screen using methods available in the Graphics
class. Once drawn, your MIDlet can redraw any portion of the image.

An immutable image is drawn on a screen, and a mutable object is drawn on a
canvas. As you learned at the beginning of the chapter, the Displayable class has two
derived classes—the Screen class and the Canvas class. Immutable images are displayed
using an instance of the ImageItem class, which inherits from the Item class. Mutable
images are displayed using the Graphics class, which is derived from the Canvas class.
You’ll learn techniques for drawing and displaying mutable images in the next chapter,
which discusses the low-level MIDlet interface. This section focuses on displaying
immutable images.

The first step in displaying an immutable image is to create an instance of the
Image class by calling the createImage() method. The createImage() method requires
one parameter that contains the name of the file containing the image. Make sure
that you include the full path to the file in the parameter. The next step is to create
an instance of the ImageItem class. The constructor of the ImageItem class requires
four parameters. The first is a string that becomes the label for the image. The second
parameter is reference to the instance of the Image class created in step one. The
third parameter is the layout directive. And the last parameter is a string referred to
as alternate text that is displayed in place of the image if for some reason the image
cannot be displayed by the device. Some applications won’t require you to specify
a label or alternate text; therefore, use a null as the value of the parameter in place
of a string.

The layout directive is a request to the device’s application manager to position the
image at a particular location on the screen. The device’s application manager determines
the actual location where the image appears. Table 6-5 lists layout directives. The bitwise
OR operator combines layout directives (|), which is illustrated in Listing 6-22.

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 6 : H i g h - L e v e l D i s p l a y : S c r e e n s 179

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

J2
M

E
U

S
ER

IN
TER

FA
C

E

You can modify the image layout after the image is displayed on the screen by
calling the getLayout() method and setLayout() method. The getLayout() method
returns the current layout directive of an instance of an ImageItem. The setLayout()
method replaces the current layout with a new layout whose directive is passed as
a parameter to the setLayout() method.

Likewise, you can modify the label and alternate text associated with an image by
calling the getLabel() method, setLabel method, getAltText() method, and setAltText()
method. The getLabel() and getAltText() methods retrieve the current label and alternate
text, and the setLabel() and setAltText() methods are called to replace them. Both the
setLabel() and setAltText() methods require one parameter, which is the replacement text.

The image itself is replaceable by calling the getImage() method and the setImage()
method. The getImage() method fetches the current image associated with the instance
of the ImageItem, and the setImage() method associates a new image with the instance.
The setImage() method requires you to pass it an instance of an Image class. Therefore,
you’ll need to create a new instance of the Image class for the new image before calling
the setImage() method.

Creating an Instance of an ImageItem Class
Listing 6-21 contains the JAD file for Listing 6-22, which illustrates how to create
instances of an Image class and an ImageItem class and then display an immutable
image on the screen. The necessary variables are declared at the beginning of the
program and are assigned relative objects within the ImmutableImage constructor.

The ImmutableImage constructor is slightly different from constructors of other
examples in this chapter because it includes a try { } block. The try { } block contains
statements that create an instance of the Image class and an instance of the ImageItem
class and then associates the image item with the form. These statements are placed
within the try { } block to detect an exception that is thrown if the file name passed
to the createImage() method isn’t found.

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

Value Description

LAYOUT_DEFAULT Use the device’s default layout

LAYOUT_LEFT Place image left

LAYOUT_RIGHT Place image right

LAYOUT_CENTER Center image

LAYOUT_NEWLINE_BEFORE Start a new line and then draw the image

LAYOUT_NEWLINE_AFTER Draw the image and then start a new line

Table 6-5. ImageItem Layout Directives

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The first statement within the try { } block calls the createImage() method and passes
the name of the file that contains the image we want displayed on the screen. Obviously,
you should replace the image “myimage.png” with the file name of your own image.

The next statement creates an instance of an ImageItem class. Notice that a null is
passed as the first parameter to the constructor of the ImageItem class because there is
no label for the image. The next parameter is reference to the image created by calling
the createImage() method in the previous statement. The third parameter contains three
layout directives. The first directive states that the image must appear below the previous
image or text on the screen. The second layout directive requests that the image appear
left on the screen. And the last layout directive states that no other images or text should
appear on the same line on the screen as the image. The image item is then appended to
the form.

An exception is thrown if for some reason myimage.png cannot be loaded into the
instance of the Image class. The catch { } block traps the exception and displays an alert
message that a problem exists with the myimage.png file. Barring an exception being
thrown, the form and image are displayed on the screen when the startApp() method
is called to invoke the setCurrent() method. The rest of Listing 6-22 is nearly identical
to previous listings shown in this chapter.

180 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

Creating an Instance of an ImageItem Class
Listed here are the steps required to create an instance of an ImageItem class:

1. Declare references.

2. Obtain a reference to the instance of the Display class.

3. Create an instance of a Command class to exit the MIDlet.

4. Create an instance of the Form class.

5. Associate the instance of the Command class to the instance of the Form class.

6. Associate a CommandListener with the instance of the Form class.

7. Create an instance of the Image class.

8. Create an instance of the ImageItem class.

9. Place the image on its own line to the left of the screen and display “My
Image” whenever the image cannot be displayed.

10. Associate the instance of the ImageItem class to the form.

11. Display an alert dialog box if the image cannot be found.

12. Display the instance of the Form class on the screen.

13. Evaluate the command selected by the user.

14. If the Exit command is selected, terminate the MIDlet.

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

MIDlet-Name: ImmutableImage

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: ImmutableImage.jar

MIDlet-1: ImmutableImage, , ImmutableImage

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class ImmutableImage extends MIDlet

implements CommandListener

{

private Display display;

private Form form;

private Command exit;

private Image image;

private ImageItem imageItem;

public ImmutableImage()

{

display = Display.getDisplay(this);

exit = new Command("Exit", Command.EXIT, 1);

form = new Form("Immutable Image Example");

form.addCommand(exit);

form.setCommandListener(this);

try

{

image = Image.createImage("myimage.png");

imageItem = new ImageItem(null, image,

ImageItem.LAYOUT_NEWLINE_BEFORE |

ImageItem.LAYOUT_LEFT |

ImageItem.LAYOUT_NEWLINE_AFTER, "My Image");

form.append(imageItem);

}

catch (java.io.IOException error)

{

Alert alert = new Alert("Error", "Cannot load myimage.png.",

null, null);

alert.setTimeout(Alert.FOREVER);

alert.setType(AlertType.ERROR);

display.setCurrent(alert);

C h a p t e r 6 : H i g h - L e v e l D i s p l a y : S c r e e n s 181

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

J2
M

E
U

S
ER

IN
TER

FA
C

E

Listing 6-21
The JAD

file for
Listing 6-22

Listing 6-22
Displaying an

immutable
image

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

182 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

}

}

public void startApp()

{

display.setCurrent(form);

}

public void pauseApp()

{

}

public void destroyApp(boolean unconditional)

{

}

public void commandAction(Command command, Displayable Displayable)

{

if (command == exit)

{

destroyApp(false);

notifyDestroyed();

}

}

}

List Class
The List class is used to display a list of items on the screen from which the user can
select one or multiple items. There are three formats for the List class: radio buttons,
check boxes, and an implicit list that does not use a radio button or check box icon
(see Table 6-2). As you can probably gather from the description of a List class, it is
functionally similar to the ChoiceGroup class discussed previously in this chapter.
This is because both the List class and the ChoiceGroup class implement the Choice
interface. The Choice interface defines methods to retrieve a selection and remove
a selection, among other maintenance functionality.

A List class differs from the ChoiceGroup class by the way events of each instance
are handled by a MIDlet. As you recall from the discussion about the ChoiceGroup
class, an ItemStateListener is used to listen to events generated by an instance of a
ChoiceGroup class. Those events are then passed along to the itemStateChanged()
method for processing. Likewise, a commandAction() method is used to process
command events, as described in the “Item Class” section of this chapter.

In contrast, a list does not generate an item state change event; therefore, a Command
needs to be added to initiate processing. For example, no event is generated when a user
selects a radio button or check box item with a list. Those selections are received by the
MIDlet only after an instance of a Command class is chosen. However, a command event
is automatically generated when the user selects an item from an instance of an implicit

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

formatted List class. Typically, an implicit formatted List class is used to create a menu.
The commandAction() method is automatically called to process the menu selection
without requiring the user to select a command to process the selection.

A List class is derived from the Screen class and does not require a container. In
contrast, the ChoiceGroup class is derived from the Item class and requires an instance
of a Form class to contain the instance of the ChoiceGroup class.

You can create an instance of the List class with or without list items. An instance
is created without list items by passing the constructor of the List class two parameters.
The first parameter is a string that contains the titles of the list, and the other parameter
is the format of the list (see Table 6-2), commonly referred to as the listType.

You can include list items when creating the instance of a List class by passing two
additional parameters to the List class constructor. The first two parameters are title
and listType. The third parameter is a string array whose elements contain list items
that can be selected by the user of your MIDlet. The fourth parameter is an array of
instances of the Image class, each associated with a corresponding list item.

List items can be added to an instance of a List object by calling the append() method
or insert() method. The append() method requires two parameters. The first parameter
is the string that contains the new list item, and the second parameter is an instance of
the Image class of an image that is associated with the new list item. The new list item
is appended to the end of the list.

The insert() method is very similar in design to the append() method, except the
new list item is inserted within the list. Three parameters are necessary for the insert()
method. The first parameter is the index number of the list item above which the new
list item is inserted. The other two parameters are the same as the parameters of the
append() method.

You can retrieve the list item selected by the user by calling the getSelectedIndex()
method. The getSelectedIndex() method returns the index number of the selected
list item. You pass the returned index number as the parameter to the getString()
method, which returns the string of the selected list item, which is then processed
by the commandAction() method.

If the instance of the List class is a check box, then call the getSelectedFlag() method.
The getSelectedFlag() method requires one parameter, which is a boolean array. The
method then populates the boolean array with the selected flag value of each list item.
You can then evaluate each array element to determine which list items the user selected.
The size() method returns the number of items on the list and can be used to set the size
of the boolean array.

One or more list items can become the default selection by calling the setSelectedIndex()
method or the setSelectedFlags() method. The setSelectedFlags() method is used to set
the selected flag of one list item and requires two parameters. The first parameter is the
index number of the list item being selected, and the other parameter is a boolean value,
where true signifies that the list item is selected and false signifies unselected. The
setSelectedIndex() method performs an operation similar to the setSelectedFlags(),
except the setSelectedIndex() sets the selected status for all list items. The setSelectedIndex()

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

J2
M

E
U

S
ER

IN
TER

FA
C

E
C h a p t e r 6 : H i g h - L e v e l D i s p l a y : S c r e e n s 183

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

requires one parameter, which is a boolean array containing the selected status for the
entire list.

Any list item can be replaced by calling the set() method. The set() method requires
three parameters. The first is the index number of the list item being replaced. The second
parameter is the string replacing the string of the specified list item. And the last parameter
is an Image object that contains the image associated with the replacement list item.

A list item can be removed from the list by calling the delete() method. The delete()
method requires one parameter, which is the index number of the list item being deleted.

Creating an Instance of a List Class
The listings in this section illustrate how to implement the three formats of a List class in
your MIDlet. Listing 6-23 contains the JAD file for Listing 6-24, which creates an instance
of an implicit List class. Listing 6-25 contains the JAD file for Listing 6-26, which creates
a check box instance of a List class, and Listing 6-27 is the JAD file for Listing 6-28, which
creates a radio button instance of a List class.

Listing 6-24 creates an implicit list called “Menu:” that contains two options: New
and Open (Figure 6-10). This listing is constructed like other listings in this chapter,

184 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

Figure 6-10. Displaying an implicit list on the screen

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

by declaring variables at the beginning of the MIDlet and then creating objects and
assigning those objects to variables within the ListImplicit constructor.

Passing two parameters to the constructor of the List object creates the instance
of the List class. The first parameter is the title of the instance, “Menu:”, and the other
parameter is the List object format type IMPLICIT.

You can modify this listing and assign list items and related images when creating
the instance by also passing an array of list items as the third parameter and the array
of images as the fourth parameter to the constructor. However, in this example the
append() method is called to append list items to the instance. The first parameter to
the append() method is the string that is displayed on the list, and the other parameter
is null because no image is associated with the list item. You pass an instance of the
Image object referencing the image as the second parameter of the append() method
if you want to associate an image with a list item.

Notice that the Exit command is added to the instance of the List object. In previous
examples, the Exit command was added to an instance of a Form object. Remember
that the List class and the Form class are both directly derived from the Screen class.
Therefore, the List class isn’t contained within the Form class, requiring that instances
of the Command class be directly added to the instance of the List class.

The instance of the List class is then passed to the setCurrent() method within the
startApp() method to display the list on the screen. Also remember that a command
event is automatically generated when the user selects an item on the list. This command
is identified as List.SELECT_COMMAND, which is tested within the commandAction()
method. The List.SELECT_COMMAND simply informs the MIDlet that an item on the
list was selected. It does not identify the selected item.

C h a p t e r 6 : H i g h - L e v e l D i s p l a y : S c r e e n s 185

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

J2
M

E
U

S
ER

IN
TER

FA
C

E

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

Creating an Instance of an Implicit List Class
Listed here are the steps required to create an instance of an implicit List class:

1. Declare references.

2. Obtain a reference to the instance of the Display class.

3. Create an instance of a Command class to exit the MIDlet.

4. Create an instance of the List class using the IMPLICIT type.

5. Append items to the instance of the List class.

6. Associate the instance of the Command class to the instance of the List class.

7. Associate a CommandListener with the instance of the List class.

8. Display the instance of the List class on the screen.

9. Evaluate the command selected by the user.

10. If the Exit command is selected, terminate the MIDlet.

11. If an item from the instance of the List class is selected, display the text of
the item in an alert dialog box.

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

First, the getSelectedIndex() method is called to return the index number of the
selected list item. Index numbers are assigned sequentially beginning with zero as each
item is appended to the list. This means that the first item is “New” and has the index
value zero. The second item has the index number of one as a string value of “Open.”

The if statement evaluates the value returned by the getSelectedIndex() method.
An alert is displayed when a match occurs. The alert shows the list item selected by
the user of the MIDlet. The MIDlet terminates like the other examples in this chapter—
when the user selects the Exit command.

MIDlet-Name: ListImplicit

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: ListImplicit.jar

MIDlet-1: ListImplicit, , ListImplicit

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class ListImplicit extends MIDlet implements CommandListener

{

private Display display;

private List list;

private Command exit;

Alert alert;

public ListImplicit()

{

display = Display.getDisplay(this);

exit = new Command("Exit", Command.EXIT, 1);

list = new List("Menu:", List.IMPLICIT);

list.append("New",null);

list.append("Open",null);

list.addCommand(exit);

list.setCommandListener(this);

}

public void startApp()

{

display.setCurrent(list);

}

public void pauseApp()

{

186 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

Listing 6-24
Displaying
an implicit
List class

Listing 6-23
The JAD

file for
Listing 6-24

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

}

public void destroyApp(boolean unconditional)

{

}

public void commandAction(Command command, Displayable displayable)

{

if (command == List.SELECT_COMMAND)

{

String selection = list.getString(list.getSelectedIndex());

alert = new Alert("Option Selected", selection, null, null);

alert.setTimeout(Alert.FOREVER);

alert.setType(AlertType.INFO);

display.setCurrent(alert);

}

else if (command == exit)

{

destroyApp(false);

notifyDestroyed();

}

}

}

Listing 6-26 displays an instance of a List class in the form of check boxes (Figure 6-11).
This instance is created similar to Listing 6-12 except that the format type of the instance is
MULTIPLE. Four items are added to the list by calling the append() method. None of the
items is associated with an image, so the second parameter of the append() method is null.

Unlike the implicit formatted instance of the List class, the multiple format does
not automatically generate a command event. Instead, you must create an instance
of the Command object that, when selected, causes the MIDlet to process the list. The
Submit command is used in this example for that purpose. The list is displayed the same
way as in Listing 6-24.

The if statement within the actionCommand() method traps the submit event and
causes statements within the if statement to process the user selections. First, a boolean
array is declared having the size of the value returned by calling the size() method, which
is the number of items in the instance of the List class. The StringBuffer is also created.

Next, the getSelectedFlags() method is called and is passed the boolean array. The
getSelectedFlags() method populates the boolean array with the selected status of each
item on the list. The MIDlet then steps through each item using a for loop. The selected
flag status of the boolean array element is compared to the boolean value true for each
iteration of the for loop. If the value of the boolean array element is true, the getString()
method is called and passed the index number of the current boolean array element,
which is the same index number of the item on the list. The getString() method returns

C h a p t e r 6 : H i g h - L e v e l D i s p l a y : S c r e e n s 187

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

J2
M

E
U

S
ER

IN
TER

FA
C

E

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the text of that item, which is then appended to the instance of the StringBuffer class
called message.

An alert is displayed on the screen containing the text of each item selected by the
user. The Submit command is then removed from the screen, leaving the user to close
the alert dialog box and then terminate the MIDlet by selecting the Exit command.

MIDlet-Name: ListCheckBox

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: ListCheckBox.jar

MIDlet-1: ListCheckBox, , ListCheckBox

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

188 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

Listing 6-25
The JAD

file for
Listing 6-26

Figure 6-11. Displaying a list in the form of check boxes

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class ListCheckBox extends MIDlet implements CommandListener

{

private Display display;

private Command exit;

private Command submit;

private List list;

public ListCheckBox()

{

C h a p t e r 6 : H i g h - L e v e l D i s p l a y : S c r e e n s 189

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

J2
M

E
U

S
ER

IN
TER

FA
C

E

Listing 6-26
Displaying

and
manipulating
a check box

List class

Creating an Instance of a
Check Box–Formatted List Class
Listed here are the steps required to create an instance of a check box–formatted
List class:

1. Declare references.

2. Obtain a reference to the instance of the Display class.

3. Create an instance of the List class using the MULTIPLE type.

4. Append items to the instance of the List class.

5. Create an instance of a Command class to exit the MIDlet.

6. Create an instance of a Command class to submit the instance of the List
class for processing.

7. Associate instances of the Command class to the instance of the List class.

8. Associate a CommandListener with the instance of the List class.

9. Display the instance of the List class on the screen.

10. Evaluate the command selected by the user.

11. If the Exit command is selected, terminate the MIDlet.

12. If the Submit command is selected, process the instance of the List class.

13. Retrieve the status of the selected flags of each item on the list.

14. Evaluate each status of the selected flags.

15. If the status is true, append the text to the message.

16. Display the message containing text of the selected check boxes within an
alert dialog box.

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

display = Display.getDisplay(this);

list = new List("Select Media", List.MULTIPLE);

list.append("Books", null);

list.append("Movies", null);

list.append("Television", null);

list.append("Radio", null);

exit = new Command("Exit", Command.EXIT, 1);

submit = new Command("Submit", Command.SCREEN,2);

list.addCommand(exit);

list.addCommand(submit);

list.setCommandListener(this);

}

public void startApp()

{

display.setCurrent(list);

}

public void pauseApp()

{

}

public void destroyApp(boolean unconditional)

{

}

public void commandAction(Command command, Displayable Displayable)

{

if (command == submit)

{

boolean choice[] = new boolean[list.size()];

StringBuffer message = new StringBuffer();

list.getSelectedFlags(choice);

for (int x = 0; x < choice.length; x++)

{

if (choice[x])

{

message.append(list.getString(x));

message.append(" ");

}

}

Alert alert = new Alert("Choice", message.toString(),

null, null);

alert.setTimeout(Alert.FOREVER);

alert.setType(AlertType.INFO);

display.setCurrent(alert);

190 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

list.removeCommand(submit);

}

else if (command == exit)

{

destroyApp(false);

notifyDestroyed();

}

}

}

Listing 6-28 displays a list of radio buttons. You’ll notice that the construction of
Listing 6-28 is nearly identical to the check box listing in Listing 6-26 (Figure 6-12).
There are two differences between these listings. First, the instance of the List class
uses the EXCLUSIVE format in Listing 6-28. This of course is the radio button format.
The other difference is within the commandAction() method.

C h a p t e r 6 : H i g h - L e v e l D i s p l a y : S c r e e n s 191

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

J2
M

E
U

S
ER

IN
TER

FA
C

E

Figure 6-12. Displaying a list in the form of radio buttons

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

192 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

The user of this MIDlet still must select an item from the list and activate the Submit
command before the selection is processed. Since there is only one possible selection, the
MIDlet calls the getSelectedIndex() method to return the index number of the selected list
item. This index number is then passed to the getString() method to retrieve the text of
the item, which is used as the second parameter to the constructor of the Alert class. As
with Listing 6-26, the alert dialog box displays the list item that was selected by the user.
The remaining code in Listing 6-28 is the same as in Listing 6-26.

MIDlet-Name: ListRadioButtons

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: ListRadioButtons.jar

MIDlet-1: ListRadioButtons, , ListRadioButtons

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

Listing 6-27
The JAD

file for
Listing 6-28

Creating an Instance of a Radio Button–Formatted
List Class
Listed here are the steps required to create an instance of a radio button–formatted
List class:

1. Declare references.

2. Obtain a reference to the instance of the Display class.

3. Create an instance of the List class using the EXCLUSIVE type.

4. Append items to the instance of the List class.

5. Create an instance of a Command class to exit the MIDlet.

6. Create an instance of a Command class to submit the instance of the
List class for processing.

7. Associate instances of the Command class to the instance of the List class.

8. Associate a CommandListener with the instance of the List class.

9. Display the instance of the List class on the screen.

10. Evaluate the command selected by the user.

11. If the Exit command is selected, terminate the MIDlet.

12. If the Submit command is selected, process the instance of the List class.

13. Retrieve the index number of the selected item from the instance of the
List class.

14. Retrieve the text of the selected item using the item’s index number.

15. Display the text of the selected radio button in an alert dialog box.

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class ListRadioButtons extends MIDlet implements CommandListener

{

private Display display;

private Command exit;

private Command submit;

private List list;

public ListRadioButtons()

{

display = Display.getDisplay(this);

list = new List("Select one", List.EXCLUSIVE);

list.append("Male", null);

list.append("Female", null);

exit = new Command("Exit", Command.EXIT, 1);

submit = new Command("Submit", Command.SCREEN,2);

list.addCommand(exit);

list.addCommand(submit);

list.setCommandListener(this);

}

public void startApp()

{

display.setCurrent(list);

}

public void pauseApp()

{

}

public void destroyApp(boolean unconditional)

{

}

public void commandAction(Command command, Displayable Displayable)

{

if (command == submit)

{

Alert alert = new Alert("Choice",

list.getString(list.getSelectedIndex()),

null, null);

alert.setTimeout(Alert.FOREVER);

C h a p t e r 6 : H i g h - L e v e l D i s p l a y : S c r e e n s 193

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

J2
M

E
U

S
ER

IN
TER

FA
C

E

Listing 6-28
Displaying

and
manipulating

a radio
button List

object

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

alert.setType(AlertType.INFO);

display.setCurrent(alert);

list.removeCommand(submit);

}

else if (command == exit)

{

destroyApp(false);

notifyDestroyed();

}

}

}

TextBox Class
The TextBox class is very similar to a TextField class, discussed previously in this chapter.
Both are used to receive multiple lines of textual data from a user and constrain text that
can be entered using the constraint directives shown in Table 6-4. You can request that a
maximum number of characters be allowed in instances of both the TextBox class and the
TextField class. However, the device determines the actual size of both of these instances.
Characters that exceed the display area of the screen become scrollable in many devices.

The TextBox class and TextField class differ in that the TextBox class is derived from
the Screen class, while the TextField class is derived from the Item class. This means
that an instance of the Form class cannot contain an instance of the TextBox class, while
an instance of a TextField class must be contained within an instance of the Form class.

Another important difference between the TextBox class and the TextField class is
that the TextBox class uses a CommandListener and cannot use an ItemStateListener.
An ItemStateListener is used with an instance of the TextField class, although many
times the content of an instance of the TextField class is retrieved and processed when
the user selects a command associated with a form that contains the text field.

An instance of the TextBox class is created by passing four parameters to the TextBox
class constructor. The first parameter is the title of the text box. The second parameter
is text used to populate the instance. The third parameter is the maximum number of
characters that can be entered into the instance. Keep in mind that this parameter is a
request and may not be fulfilled by the device. The device determines the maximum
number of characters for an instance of the TextBox class. The last parameter is the
constraint used to limit the types of characters that can be placed within the instance.

The TextBox class has the same methods as found in the TextField class. Refer to the
“TextField Class” section of this chapter for details on how to use these methods. You’ll
also find TextBox class methods in the “Quick Reference Guide” section at the end of
this chapter.

194 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 6 : H i g h - L e v e l D i s p l a y : S c r e e n s 195

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

J2
M

E
U

S
ER

IN
TER

FA
C

E

Creating an Instance of a TextBox Class
Listing 6-29 contains the JAD file for Listing 6-30, which illustrates how to create an
instance of the TextBox class and manipulate text entered into the text box by the user
of this MIDlet. This listing displays a text box and prompts the user to enter a first
name, then select the Submit command (Figure 6-13).

Many of the keys on a telephone keypad are associated with three letters. Select each
letter associated with a key by pressing the key multiple times. For example, the letter
I is the third letter associated with key 4. You can display the letter I on the screen by
pressing the key three times.

When the Submit command is selected, it is processed by the commandAction()
method (see “Item Class,” earlier in this chapter). The name is copied from the text
box and used to form a greeting, which then replaces the first name on the screen
(Figure 6-14).

Figure 6-13. Displaying a text box on the screen

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

196 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

Listing 6-30 begins very much like the other listings in this chapter, by declaring
variables and then creating objects within the TextBoxCapture constructor, which
are then assigned to those variables. You’ll notice that an instance of a TextBox class
is created with the title “First Name:”. The instance does not contain any text when
first displayed on the screen. The instance can receive any characters based on the
ANY constraint, and a request is made to limit the number of characters that can
be contained in the instance to 30 characters.

After the user enters a first name and selects the Submit command, the MIDlet
calls the getString() method from within the commandAction() method to retrieve the
contents of the text box. The first name is then concatenated to the expression “Hello,”
and the concatenated string is passed as a parameter to the setString() method. The
setString() method replaces the contents of the text box with the string passed as the
parameter.

Figure 6-14. Displaying the greeting on the screen

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 6 : H i g h - L e v e l D i s p l a y : S c r e e n s 197

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

J2
M

E
U

S
ER

IN
TER

FA
C

E

The Submit command is then removed from the screen, making the Exit command
the only available option for the user to select. The Exit command terminates the MIDlet.

MIDlet-Name: TextBoxCapture

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: TextBoxCapture.jar

MIDlet-1: TextBoxCapture, , TextBoxCapture

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

Listing 6-29
The JAD

file for
Listing 6-30

Creating an Instance of a TextBox Class
Listed here are the steps required to create an instance of a TextBox class:

1. Declare references.

2. Obtain a reference to the instance of the Display class.

3. Create an instance of a Command class to submit the instance of the List
class for processing.

4. Create an instance of a Command class to exit the MIDlet.

5. Create an instance of a TextBox class and accept any characters.

6. Associate instances of the Command class to the instance of the TextBox class.

7. Associate a CommandListener with the instance of the TextBox class.

8. Display the instance of the TextBox class on the screen.

9. Evaluate the command selected by the user.

10. If the Exit command is selected, terminate the MIDlet.

11. If the Submit command is selected, process the instance of the TextBox class.

12. Retrieve the text of the instance of the TextBox class.

13. Concatenate the text to the greeting “Hello,”.

14. Replace the text of the instance with the concatenated text.

15. Remove the Submit command from the screen.

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class TextBoxCapture extends MIDlet implements CommandListener

{

private Display display;

private TextBox textbox;

private Command submit;

private Command exit;

public TextBoxCapture()

{

display = Display.getDisplay(this);

submit = new Command("Submit", Command.SCREEN, 1);

exit = new Command("Exit", Command.EXIT, 1);

textbox = new TextBox("First Name:", "", 30, TextField.ANY);

textbox.addCommand(exit);

textbox.addCommand(submit);

textbox.setCommandListener(this);

}

public void startApp()

{

display.setCurrent(textbox);

}

public void pauseApp()

{

}

public void destroyApp(boolean unconditional)

{

}

public void commandAction(Command command, Displayable displayable)

{

if (command == submit)

{

textbox.setString("Hello, " + textbox.getString());

textbox.removeCommand(submit);

}

else if (command == exit)

{

destroyApp(false);

notifyDestroyed();

}

}

}

198 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

Listing 6-30
Interacting

with an
instance of a
TextBox class

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 6 : H i g h - L e v e l D i s p l a y : S c r e e n s 199

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

J2
M

E
U

S
ER

IN
TER

FA
C

E

Ticker Class
The Ticker class is used to scroll text horizontally on the screen much like a stock ticker
scrolls stock prices across the screen. An instance of the Ticker class can be associated with
any class derived from the Screen class and be shared among screens. An instance of
a Ticker object is created by passing the constructor of the Ticker class a string containing
the text that is to be scrolled across the screen. You cannot control the location on the
screen where scrolling occurs. Likewise, there is no control over the speed of the scrolling.
The device that runs the MIDlet controls both location and speed.

You can retrieve the text associated with an instance of the Ticker class by calling
the getString() method. You can replace the text currently scrolling across the screen
by calling the setString() method. The setString() method requires one parameter, which
is a string containing the replacement text.

Listing 6-31 contains the JAD file for Listing 6-32, which illustrates how to create
an instance of the Ticker class and associate the instance with an instance of a List class.

Creating an Instance of a Ticker Class
Listed here are the steps required to create an instance of a Ticker class:

1. Declare references.

2. Obtain a reference to the instance of the Display class.

3. Create an instance of a Command class to exit the MIDlet.

4. Create an instance of a Command class to begin processing.

5. Create an instance of the Ticker class and initialize text of the instance.

6. Create an instance of the List class.

7. Append items to the instance of the List class.

8. Associate instances of the Command class to the instance of the List class.

9. Associate a CommandListener with the instance of the List class.

10. Associate the instance of the Ticker class with the instance of the List class.

11. Display the instance of the List class on the screen.

12. Evaluate the command selected by the user.

13. If the Exit command is selected, terminate the MIDlet.

14. If the Submit command is selected, process the selection.

15. Change the text of the instance of the Ticker class to reflect the selection.

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This example creates a set of radio buttons that contain two options (Figure 6-15). The
first option is called “Technology” and the other “Entertainment.” When the MIDlet
runs, fictitious stock symbols and stock prices representing the technology industry
scroll across the screen. The user is prompted to select a radio button, then select the
Submit command. The Submit command causes the MIDlet to display the desired
industry stock symbols and prices scrolling across the ticker.

This listing begins like the other listings in this chapter. You’ll notice that an
instance of the Ticker class is created within the TickerList constructor. Technology
stock symbols and prices are the default text appearing on the ticker. The MIDlet then
creates an EXCLUSIVE instance of the List class and assigns the instance two list items
called Technology and Entertainment by calling the append() method. The second
parameter of the append() method is null since no image is associated with these list
items. The ticker is then associated with the list by calling the setTicker() and passing
the reference to the ticker instance as a parameter to the setTicker() method.

200 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

Figure 6-15. Displaying a ticker on the screen

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 6 : H i g h - L e v e l D i s p l a y : S c r e e n s 201

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

J2
M

E
U

S
ER

IN
TER

FA
C

E

The actionCommand() method is the place in the MIDlet where the request is
processed. First, the actionCommand() determines whether the Submit command is
selected. If so, the getSelectedIndex() method is called to retrieve the index number
of the item that the user selected from the list. Remember, index number zero is the
first item appended to the list. Index numbers are assigned sequentially as items are
appended to the list.

Depending on the user’s selection, the MIDlet replaces the current text of the ticker
with new text by calling the setString() method. Text continues to flow across the screen
until the user selects the Exit command to terminate the MIDlet.

MIDlet-Name: TickerList

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: TickerList.jar

MIDlet-1: TickerList, , TickerList

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class TickerList extends MIDlet implements CommandListener

{

private Display display;

private List list;

private final String tech;

private final String entertain;

private Ticker ticker;

private Command exit;

private Command submit;

public TickerList()

{

display = Display.getDisplay(this);

tech = new String ("IBM 55 MSFT 32 SUN 52 CISCO 87");

entertain = new String ("CBS 75 ABC 455 NBC 243 GE 21");

exit = new Command("Exit", Command.SCREEN, 1);

submit = new Command("Submit", Command.SCREEN, 1);

ticker = new Ticker(tech);

list = new List("Stock Ticker", Choice.EXCLUSIVE);

list.append("Technology", null);

Listing 6-32
Interacting

with an
instance of a
Ticker class

Listing 6-31
The JAD

file for
Listing 6-32

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

202 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

list.append("Entertainment", null);

list.addCommand(exit);

list.addCommand(submit);

list.setCommandListener(this);

list.setTicker(ticker);

}

public void startApp()

{

display.setCurrent(list);

}

public void pauseApp()

{

}

public void destroyApp(boolean unconditional)

{

}

public void commandAction(Command command, Displayable display)

{

if (command == exit)

{

destroyApp(true);

notifyDestroyed();

}

else if (command == submit)

{

if (list.getSelectedIndex() == 0)

{

ticker.setString (tech);

}

else

{

ticker.setString(entertain);

}

}

}

}

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Quick Reference Guide
This guide provides an overview of classes used by J2ME for the Screen object and
derived classes, along with the Ticker object. Full details of these classes and all Java
classes and interfaces are available at java.sun.com.

javax.microedition.lcdui.Screen Class

Method Description

String getTitle() Retrieve the screen’s title.

void setTitle(String string) Set the screen’s title.

Ticker getTicker() Retrieve the screen’s Ticker.

void setTicker(Ticker ticker) Set the screen’s Ticker.

javax.microedition.lcdui.Alert Class

Method Description

Alert(String title) Create an instance of the Alert class.

Alert(String title, String message, Image
image, AlertType, alertType)

Create an instance of the Alert class with an
Image and AlertType.

Image getImage() Retrieve an instance of the Alert class image.

void setImage(Image image) Associate an image with an instance of the
Alert class.

String getString() Get an instance of the Alert class message.

void setString(String str) Set an instance of the Alert class message.

int getDefaultTimeout() Retrieve an instance of the Alert class
default time.

int getTimeout() Retrieve actual time an instance of the
Alert class will be displayed.

void setTimeout(int time) Set the display time of an instance of the
Alert class.

AlertType getType() Retrieve the AlertType of an instance of
the Alert class.

void setType(AlertType type) Set the AlertType of an instance of the
Alert class.

C h a p t e r 6 : H i g h - L e v e l D i s p l a y : S c r e e n s 203

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

J2
M

E
U

S
ER

IN
TER

FA
C

E

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

204 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

Javax.microedition.lcdui.Form Class

Method Description

Form (String title) Create an instance of the Form class with a title.

Form (String title, Item[] items) Create an instance of the Form class and
append the specified list of array items onto
the instance.

Int append(Image image) Append an instance of the Image class to an
instance of the Form class.

Int append(Item item) Append an instance of the Item class or
subclass to an instance of the Form class.

Int append(String string) Append an instance of the String class to
an instance of the Form class.

Void delete(int index) Remove an instance of the Item class or
subclass specified by the index from an
instance of the Form class.

Void insert (int index, Item item) Insert an instance of the Item class or subclass
before the instance of the Item class whose
position is specified by the index.

Item get(int index) Retrieve an instance of the Item class or
subclass whose position is specified by
the index.

Void set(int index, Item item) Replace an existing instance of the Item class
or subclass whose position is specified by the
index with the instance of the Item class or
subclass reference in the second parameter.

Void setItemStateListener(ItemStatelistener
itemStateListener)

Associate an ItemStateListener with an
instance of the Item class or subclass.

Int size() Retrieve the number of instances of the Item
class or subclass in an instance of the Form class.

String getLabel() Retrieve the label associated with an instance
of an Item class.

Void setLabel(String label) Associate a label with an instance of an
Item class.

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 6 : H i g h - L e v e l D i s p l a y : S c r e e n s 205

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

J2
M

E
U

S
ER

IN
TER

FA
C

E

javax.microedition.lcdui.ChoiceGroup Class

Method Description

ChoiceGroup (String label, int choiceType) Create an instance of an empty
ChoiceGroup class, where label
is the title of the instance and
choiceType is the type of instance.

ChoiceGroup(String label, int choiceType,
String[] string, Image image)

Create an instance of the ChoiceGroup
class, where label is the title of the
instance and choiceType is the type of
instance, and use the image with the
instance. Also populate the instance
with options contained in the string.

int append (String string, Image image) Place an option at the end of other
options in an instance of the Choice
Group class, and associate the image
with the option.

void delete (int index) Remove the option identified by
the index number from an instance
of the ChoiceGroup class, and associate
the image with the option.

void insert (int index, String string, Image image) Insert an option into an instance of the
ChoiceGroup class before the option
identified by the index number.

void set (int index, String string, Image image) Replace an option identified by the
index number with the option specified
in the string and image.

String getString (int index) Retrieve the string associated with the
option identified by the index number.

Image getImage(int index) Retrieve the image associated with the
option identified by the index number.

int getSelectedIndex() Retrieve the index associated with
an option.

void setSelectedIndex(int index, boolean selected) Select the option identified by the index
and whether the option is selected (true)
or unselected (false).

int getSelectedFlags (boolean[] array) Retrieve the selection status of options
and store them in an array.

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

javax.microedition.lcdui.ChoiceGroup Class

Method Description

void setSelectedFlag (boolean[] array) Set the selection status of options stored
in an array.

boolean isSelected (int index) Determine whether the user selected the
option identified by the index number.

int size() Determine the number of options there
are in an instance of the ChoiceGroup.

javax.microedition.lcdui.DateField Class

Method Description

DateField (String label, int mode) Create an instance of the DateField class
that contains the specified label and
uses the specified mode.

DateField (String label, int mode,
TimeZone timeZone)

Create an instance of the DateField class
that contains the specified label and
uses the specified mode and time zone.

Date getDate() Retrieve the date/time from an instance
of the DateField class.

void setDate (Date date) Set the date for an instance of the
DateField class.

int getInputMode() Retrieve the input mode of an instance
of the DateField class.

void setInputMode(int mode) Replace the existing date field mode
with a different mode.

javax.microedition.lcdui.Gauge Class

Method Description

Gauge(String label, boolean interactive,
int maxValue, int initialValue)

Create an instance of the Gauge class,
where label is the caption for the
instance, interactive is a boolean value
indicating whether the instance is
interactive, maxValue is the maximum
value displayed in the gauge, and the
initialValue is the beginning value
displayed in the gauge.

int getValue() Retrieve the current value of the gauge.

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

206 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

J2
M

E
U

S
ER

IN
TER

FA
C

E

javax.microedition.lcdui.Gauge Class

Method Description

void setValue (int value) Set a new value for the gauge.

int getMaxValue() Retrieve the maximum value of
the gauge.

void setMaxValue(int maxValue) Set the maximum value of the gauge.

boolean isInteractive() Determine whether the gauge is
interactive.

javax.microedition.lcdui.StringItem Class

Method Description

StringItem (String label, String text) Create an instance of a StringItem class,
where the label is text describing the
StringItem class, and text is the text
displayed on the screen.

String getText() Retrieve the text portion of an instance
of a StringItem class.

Void setText (String text) Replace the text portion of an instance
of a StringItem class.

String getLabel() Retrieve the label portion of an instance
of a StringItem class.

Void setLabel (String text) Replace the label portion of an instance
of a StringItem class.

javax.microedition.lcdui.TextField Class

Method Description

TextField (String label, String text,
int maxSize, int constraint)

Create an instance of a TextField class.

void delete (int offset, int length) Remove characters from a TextField
class at a specified offset.

void insert (String src, int position) Insert String at a specified offset in
a TextField class at a specified offset.

void insert (char[] data, int offset, int length,
int position)

Insert characters from an array into
a TextField class at a specified offset.

void setChars (char[] data, int offset, int length) Replace characters of a TextField class
with characters from an array.

C h a p t e r 6 : H i g h - L e v e l D i s p l a y : S c r e e n s 207

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

208 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

javax.microedition.lcdui.TextField Class

Method Description

void setString(String text) Replace characters of a TextField
class with characters in a string.

int getChars (char[] data) Copy contents of a TextField class
into an array.

String getString() Copy contents of the TextField
class into a string.

int getConstraints() Retrieve the constraint of a
TextField class.

void setConstraints (int constraint) Set the constraint of a TextField class.

int getMaxSize() Retrieve the maximum number of
characters of a TextField class.

int setMaxSize (int maxsize) Set the maximum number of characters
of a TextField class.

int getCaretPosition() Retrieve the cursor position within
a TextField class.

int size() Retrieve the number of characters
in a TextField class.

javax.microedition.lcdui.Image Class

Method Description

static Image create Image (String name) Create an immutable image, where
name is the name of a resource.

Static Image createImage (Image source) Create an immutable image, where
source is reference to an existing Image.

Static Image createImage(byte[] imageData,
int imageOffset, int imageLength)

Create an immutable image, where byte
is an array of data representing the image,
imageOffset is the starting position of the
image, and imageLength is the length of
the image.

Static Image createImage(int width,
int height)

Create a mutable image that has
a specified width and height.

Graphics getGraphics() Retrieve reference to an instance
of the Graphics class.

Int getHeight() Retrieve the image height.

Int getwidth() Retrieve the image width.

boolean isMutable() Determine whether an image is
a mutable image.

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

javax.microedition.lcdui.ImageItem Class

Method Description

ImageItem(String label, Image im, int layout,
String altText)

Create an instance of the ImageItem class,
where label is text describing the image,
im is reference to the image, layout is the
layout directive, and altText is displayed if
the image cannot be shown on the device.

Image getImage() Retrieve an image associated with an
ImageItem class.

voaid setImage (image im) Associate an image with an ImageItem class.

int getLayout() Retrieve the layout directive of an
ImageItem instance.

void setLayout (int layout) Replace the layout directive of an
ImageItem instance.

String getAltText() Retrieve the alternate text of an
ImageItem instance.

void setAltText(String text) Replace the alternate text of an
ImageItem instance.

javax.microedition.lcdui.List Class

Method Description

List (String title, int listType) Create an instance of the List class without
assigning elements to the list. The title is the
title of the list, and the listType is the type
of list being created.

List (String title, int listType, String[]
stringElements, Image[] imageElements)

Create an instance of the List class and
assign elements to the list. The title is the
title of the list; the listType is the type of list
being created; stringElements is an array of
strings containing text for the list; and
imageElements is an array of images
associated with each list element.

int append (String stringPart,
Image imagePart)

Append an element to the end of the list,
where stringPart is the text of the element,
and imagePart is the image associated with
the element.

void delete(int indexNum) Remove an element from a list, where the
element being removed is identified by
the indexNum.

C h a p t e r 6 : H i g h - L e v e l D i s p l a y : S c r e e n s 209

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

J2
M

E
U

S
ER

IN
TER

FA
C

E

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

210 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

javax.microedition.lcdui.List Class

void insert (int indexNum, String stringPart,
Image imagePart)

Insert an element into the list at a specific
position within the list, where indexNum is
the position within the list where the element
will be located; stringPart is the text of the
element; and imagePart is the image
associated with the element.

void set(int indexNum, String stringPart,
Image imagePart)

Replace an element in the list at a specific
position within the list, where indexNum
is the position within the list where the
element will be located; stringPart is
the text of the element; and imagePart
is the image associated with the element.

String getString (int indexNum) Retrieve the text of an element from a specific
position in the list, where indexNum
identifies the position of the element.

Image getImage(int indexNum) Retrieve the image of an element from a
specific position in the list, where indexNum
identifies the position of the element.

int getSelectedIndex() Retrieve index of a selected element of a list.

void setSelectedIndex(int indexNum,
boolean selected)

Set the default selected flag of an element
within the list, where indexNum is the
index number of the element, and selected
is either true or false.

int getSelectedFlag (boolean[]
selectedArray_return)

Retrieve the selection status and store them
in the selectedArray.

void setSelectedFlags(boolean[]
selectedArray)

Set the selection status based on values
stored in the selectedArray.

boolean isSelected(int indexNum) Determine whether the element identified
by indexNum is selected.

int size() Number of elements in list.

javax.microedition.lcdui.TextBox Class

Method Description

TextBox(String title, String text, int maxSize,
int constraint)

Create a new instance of the TextBox class,
where title is the title of the text box; text
is the text used to populate the text box;
maxSize is the requested maximum number
of characters that can be entered into the
text box; and constraint identifies character
restrictions.

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

javax.microedition.lcdui.TextBox Class

Method Description

void delete(int offset, int length) Remove characters from a text box.
Characters to be removed begin with
the character specified by offset character
position until the specified length is reached.

void insert(String src, int position) Insert characters from a string into the text
box, where src is the string, and position is
the position within the text box to insert the
characters.

void insert(char[] data, in offset, int length,
int position)

Insert characters from an array into the
text box, where data is the array; offset
is the starting position within the array;
length is the number of characters to insert;
and position is the place within the text box
to insert the characters.

void setChars(char[] data, int offset,
int length)

Replace contents of the text box with
characters in an array, where data is the
array; offset is the starting position within
the array; and length is the number of
characters to insert.

int getChars(char[] data) Retrieve the contents of a text box into an
array, where data is the array that receives
the contents of the text box.

string getString() Retrieve the contents of a text box into
a string.

int getConstraints() Retrieve the constraints of the text box.

void setConstraints(int constraints) Replace the constraints of a text box, where
constraints contains the new constraints.

int getMaxSize() Retrieve the maximum number of
characters that can be stored in a text box.

int setMaxSize(int maxSize) Set the maximum number of characters that
can be stored in a text box, where maxSize
is the requested maximum number of
characters.

int getCaretPosition() Retrieve the current cursor position within
the text box.

int size() Retrieve the current number of characters in
a text box.

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

J2
M

E
U

S
ER

IN
TER

FA
C

E
C h a p t e r 6 : H i g h - L e v e l D i s p l a y : S c r e e n s 211

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

javax.microedition.lcdui.Ticker Class

Method Description

Ticker(String str) Create a new Ticker, where str is the text
that appears in the ticker.

String getString() Retrieve the text displayed by the Ticker.

void setString(String str) Set the text displayed by the Ticker, where
str is the text.

212 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 6

P:\010Comp\CompRef8\710-9\ch06.vp
Thursday, February 06, 2003 2:11:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 7
Low-Level Display:
Canvas

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

213

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Small computing devices are still in their formative years as they evolve into Star
Trek–like devices that handle our mundane, and some not so mundane, tasks—at
any time and anywhere. However, many of these devices have already grown to

a level of sophistication that is necessary for implementing a wide range of applications.
Today’s small computing devices are capable of running form-based applications, games
that challenge the best of us, and applications that interact with remote computers.
Practically any application you can imagine can be designed to operate within the confines
of a small computing device.

Many applications that you develop will use a high-level user interface, usually
thought of as an object that handles its own display and consists of lists, radio buttons,
check boxes, images, and text. You learned how to create a high-level user interface in
the previous chapter. Classes associated with the high-level interface handle the pixel-
level detail necessary to draw radio buttons, check boxes, and other objects on the screen.
You basically call methods and let the methods handle display.

Occasionally, you may be called upon to create an application that sizzles and wows the
user with fancy graphics and animation. To get the sizzle and wow into your application,
you’ll need to go beyond the high-level user interface and get down and dirty into the
pixel level of your application, where you control the position of every picture element
that appears on the screen. This is referred to as the low-level user interface. You’ll learn
how to become the master of the low-level user interface in this chapter.

The Canvas
As you’ll recall from Chapter 6, each MIDlet has one instance of the Display class, and
the Display class has one derived class called the Displayable class. Everything a MIDlet
displays on the screen is created by an instance of a class that is derived from the
Displayable class. The Display class hierarchy is shown here:

public class Display
public abstract class Displayable

public abstract class Screen extends Displayable
public abstract class Canvas extends Displayable

public class Graphics

The Displayable class has two subclasses: Screen and Canvas. The Screen class and
its derivatives are used to create high-level components that you learned about in the
previous chapter. The Canvas class and its derivatives are used to gain low-level access to
the display, which is necessary for graphic- and animation-based applications. A graphic
is used with a canvas.

You can think of an instance of the Canvas class as an artist’s canvas on which you
draw images that might include text. An instance of the Graphics class is similar to the
artist’s tools that are used to draw an image. For example, color, lines, and arcs are some
of the graphic tools available to create an image on the canvas. The Canvas class and

214 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : L o w - L e v e l D i s p l a y : C a n v a s 215

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

J2
M

E
U

S
ER

IN
TER

FA
C

E

the Graphics class give you pixel control over everything that appears on the canvas. This
low-level control is particularly noticeable whenever text is placed on the canvas because
you control every aspect of how characters are formed to display the text.

Let’s step back to recall how you display text using the high-level user interface. First,
you create an instance of a text field, text box, or string item and then associate text with
the instance. Next, the setCurrent() is called and passed the instance (or a container such
as a form that contains the instance). You don’t need to be concerned about describing
how the device’s application manager is to form each character of the text on the screen.

However, displaying text using the Graphics class requires you to specify the height,
width, and other characteristics that describe how each character of the text is to be drawn
on the screen. Your application is actually drawing each character as compared to simply
specifying the text that you want displayed. You’ll learn how to draw characters later
in this chapter.

A Canvas is created by instantiating a concrete subclass, which is discussed later in
this chapter.

The Layout of a Canvas
The canvas is divided into a virtual grid in which each cell represents one pixel.
Coordinates mark the column and row of a cell within the grid (Figure 7-1). The x
coordinate represents the column, and the y coordinate represents the cell’s row. The
first cell located in the upper-left corner of the grid has the coordinate location of 0, 0,
where the first zero is the x coordinate and the other zero is the y coordinate.

As you probably imagine, the size of the canvas is device dependent since canvas size
and the screen size are the same. The screen size of a mobile telephone might be different
from the screen size of a PDA, and yet both devices are capable of running the same
MIDlet. Your MIDlet should determine the canvas size of the device that implements
your graphic application before drawing on the screen. The canvas size is measured
in pixels. Your MIDlet should determine the canvas size of the device by calling the
getWidth() and getHeight() methods of the Canvas class.

Figure 7-1. Coordinates mark the column and row of a cell within a grid.

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Proportional Coordinates
The values (in pixels) returned by the getWidth() and getHeight() methods can be used
to draw an image at a given location that is proportional to the size of the canvas by using
relative coordinates rather than exact coordinates on the canvas. Let’s say that the first
element of the image you want drawn on the canvas is located in the center of the canvas.
The question you need to answer is what coordinate is the center of the canvas? The
answer depends on the canvas size, which depends on the small computing device that
runs your MIDlet. You work around this problem by letting your MIDlet calculate the
center coordinate based on the return value of the getWidth() and getHeight() methods.

Here’s what you need to do. Assume the size of the canvas is 200 pixels wide (columns)
and 200 pixels high (rows). The coordinate of the center of the canvas is 99, 99 (remember
that coordinates are zero based), calculated as:

x = getWidth()/2
y = getHeight()/2

Now assume the same MIDlet is running on a small computing device with a canvas
size of 400 pixels wide by 400 pixels high. The same calculation determines the center
coordinate as 199, 199. Therefore, the MIDlet can use the calculation to determine the
center coordinate of any size canvas, which means that the image will appear in the same
canvas location when the MIDlet runs on any device.

Calculating a specific coordinate rather than specifying a fixed coordinate solves one
problem facing a developer of a J2ME application. Another problem is scaling an image
to fit a canvas size that is device dependent. If you knew the size of the canvas, you could
plot each pixel that is required to draw an image. The image will be symmetrical within
the screen. However, the symmetry is disrupted when the size of the canvas changes
and the image size remains the same.

Let’s say that you want to draw a line across the top of the canvas, but leave a one-pixel
border around the line. If the screen size is 200 pixels wide by 200 pixels high, the starting
coordinate of the line is 1, 1 (the cell in the second column and second row beginning at
the left corner). The ending coordinate is 1, 198. However, the line takes on a different
appearance if the size of the canvas is 400 pixels by 400 pixels. The line stops at the top
center of the canvas because row 198 is halfway to the right of the canvas.

Therefore, you should write code that draws images proportional to the size of the
canvas if being symmetrical within the canvas is critical to your application. This means
that you’ll need to use relative coordinates to draw an image rather than specific
coordinates by having your MIDlet calculate the specific coordinate of each element of
your image. For example, here is how to identify the coordinates for the line so that the
length of the line is always proportional to the canvas size. The starting coordinates are
set as specific values because the line always begins one pixel from the left and top of
the canvas. Likewise, the x coordinate will always be the second row and can be fixed
at row coordinate one. However, the column coordinate used to specify the termination

216 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

of the line must be calculated so that the line always appears one pixel away from the
right end of the canvas regardless of the size of the canvas.

startX = 1
startY = 1
endX = 1
endY = getWidth() – 1

You can use the concepts presented in this section to create your own calculations that
determine specific coordinates based on the canvas size of the device running your MIDlet.

The Pen
An image is drawn on a canvas using a virtual pen. Using a virtual pen is very similar to
using a real pen to draw an image on paper. That is, the pen is dropped on the canvas
at a specified coordinate, filling the cell with the color of ink used in the pen. Cells change
from their present color to the color of the ink as the pen is repositioned on the canvas.
For example, a horizontal line forms on the canvas when the virtual pen is dragged
horizontally across the canvas. Likewise, dragging the virtual pen vertically down the
canvas draws a vertical line.

A virtual pen is used by instances of the Graphics class to draw rectangles, arcs,
and other graphical image components on the canvas. You don’t directly create and use
a virtual pen.

Painting
Graphical components used to create an image on a canvas are drawn on the canvas when
the paint() method of the Displayable class is called. This is referred to as painting. The
paint() method is an abstract method that is used both by instances and derivatives of
the Screen class and Canvas class.

Java specifications require that a concrete class provide implementation for any
abstract methods defined in its parent class. Therefore, an instance of the Screen class
and Canvas class must define a paint() method. The contents of the paint() method are
statements that draw images on the screen.

Derivatives from the Screen class have two predefined methods used to paint the
screen. Images painted by derivatives of the Screen class (Textbox, List, Alert, and Form)
are radio buttons, check boxes, list, text, and other constructs that you find in a graphical
user interface, which you learned about in the previous chapter. The first predefined
method is paint(), which contains instructions that set parameters for drawing an image,
such as defining the virtual pen. The other method is paintContent(), which is called at
the end of the paint() method and contains statements to actually draw the image.

The developer doesn’t become directly involved with the paint() method or the
paintContent() method when building an application that uses the high-level user interface
because details on how to display images are already defined by the derivative of the

C h a p t e r 7 : L o w - L e v e l D i s p l a y : C a n v a s 217

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

J2
M

E
U

S
ER

IN
TER

FA
C

E

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

218 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

Screen class. The same cannot be said when you develop an application that uses the
low-level user interface by creating instances of classes derived from the Canvas class.
You are responsible for defining the paint() method for your canvas-based application.

The paint() method requires one parameter, which is reference to the instance of the
Graphics class created by your application. You’ll learn how to use the Graphics class
later in this chapter. Here is a paint() method that draws a rectangle on the canvas. Let’s
assume that an instance of the Graphics class referenced as graphics was created. The
drawRect() is one of the many methods available from the Graphics class that draw
predefined images on the canvas. The first two parameters of the drawRect() method
specify the cell of the upper-left corner of the rectangle, and the last two parameters specify
the width and height of the rectangle, where 40 is the width and 20 is the height.

protected void paint(Graphics graphics)

{

graphics.drawRect(12, 6, 40, 20));

}

The paint() and repaint() Methods
You don’t call the paint() method directly. Instead, the paint() method is called
automatically by the setCurrent() method when the MIDlet is started. You call the
repaint() whenever the canvas or a portion of the canvas must be refreshed.

Let’s say that you want to draw text on a canvas that is already displayed on the
screen. First, you create the text using a graphic, which you’ll learn how to do later in
this chapter. Next, you call the repaint() method to have the entire canvas redrawn, which
includes text and images that currently exist on the screen and the new text, unless you’ve
removed existing text or images.

There are two versions of the repaint() method. One version requires no parameters
and repaints the entire canvas. The other version requires four parameters that define
the region of the canvas that is to be repainted. The first two parameters are the x and
y coordinates for the upper-left corner of the region, and the last two parameters are
the width and height of the region.

You specify a region of the canvas to repaint whenever only a portion of the canvas
has changed and when you don’t want to waste time repainting the entire canvas, such
as when an animated image is displayed on the screen. This is known as clipping.

Animation is the illusion of movement caused by rapidly changing images on the
screen, where each image is slightly different from the previous image. Each image
displayed on the screen is referred to as a frame. A key to successful animation is speed.
You must change frames in such a way that users don’t notice the change. Typically, a
small portion of a frame changes in an animated image. The repaint() method is capable
of repainting only the portion of the frame that changed rather than the entire frame,
which dramatically reduces the time that is necessary to change a frame on the screen.

The serviceRepaints() method is another painting method that you’ll use when
developing a low-level user interface for your application. A paint request is one of many

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : L o w - L e v e l D i s p l a y : C a n v a s 219

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

J2
M

E
U

S
ER

IN
TER

FA
C

E

requests a MIDlet can make to the application manager of a small computing device.
Other requests can be made to store data or to communicate with a remote computer.
Sometimes outstanding requests can be given a higher process priority by the device’s
application manager than a paint request. However, you’ll need to override outstanding
requests to have the canvas repainted whenever an image is being animated; otherwise,
a delay in repainting the canvas destroys the effect of animation.

The serviceRepaints() method directs the device’s application manager to override
outstanding requests for service with the repaint request. The repaint request becomes
the next request to be processed by the application manager.

showNotify() and hideNotify()
The device’s application manager calls the showNotify() method immediately before the
application manager displays the canvas. You define the showNotify() method with
statements that prepare the canvas for display, such as initializing resources by beginning
threads or assigning values to variables as required by your application.

The hideNotify() method is called by the application manager after the canvas is
removed from the screen. You define the hideNotify() method with statements that free
resources that were allocated when the showNotify() method was called. This includes
deactivating threads and resetting values assigned to variables as necessary.

User Interactions
One of two techniques can be used to receive user input into your low-level J2ME
application. The first technique is to create one or more instances of the Command class,
which you learned about in the previous chapter. Once an instance of a command is
created, the instance is associated with the instance of the Canvas class by calling the
addCommand() method illustrated in Chapter 6. If you associate a command with a
canvas, you’ll also need to associate a CommandListener to the canvas in order to monitor
command events generated by the user selecting a command. Likewise, you’ll need
to define a commandAction() method (see Chapter 6) that is called by the device’s
application manager to process the command event.

The other technique is to use low-level user input components that generate low-level
user events. These components are key codes, game actions, and pointers.

■ A key code is a numerical value sent by the small computing device when the
user of your application selects a particular key. Each key on the device’s keypad
is identified by a unique key code.

■ A game action is a keystroke that a person uses to play a game on the small
computing device. MIDP defines a set of constants that represent keystrokes
common to game controllers.

■ A pointer event is input received from a pointer device attached to the small
computing device, such as a touch screen or mouse.

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Working with Key Codes
Each key on an ITU-T keypad, which is used on cellular telephones, is mapped to a
standard set of key codes that are shown in Table 7-1. J2ME associates key code values
with constants; however, use the constant instead of the constant value. You’ll find that
using constants within your code clarifies the reference to a key because the name of the
constant contains the name of the key associated with the key code.

All small computing devices that use the ITU-T keypad adhere to these key codes.
Some of these devices also have other keys on the keypad, each of which is also assigned
a key code. The manufacturer’s specification for the device usually lists key codes used
by the device for keys outside of those on the standard ITU-T keypad.

Your MIDlet can detect and process any key code—including keys other than those found
on the standard ITU-T keypad—using techniques described later in this section. However,
keys outside of the standard ITU-T keypad may not be available in all small computing
devices, resulting in a possible portability problem with your MIDlet. So avoid using keys
other than those on the standard ITU-T keypad unless your MIDlet will run exclusively
on a specific make and model device that contains those keys.

220 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

Constant Value

KEY_NUM0 48

KEY_NUM1 49

KEY_NUM2 50

KEY_NUM3 51

KEY_NUM4 52

KEY_NUM5 53

KEY_NUM6 54

KEY_NUM7 55

KEY_NUM8 56

KEY_NUM9 57

KEY_STAR 42

KEY_POUND 35

Table 7-1. Key Code Constants and Key Code Values

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

There are three empty methods that are called when a particular key event occurs
while your MIDlet is running. You should override these methods if your application
needs to call them. These methods are keyPressed(), keyReleased(), and keyRepeated().
The keyPressed() method is called by the application manager whenever a key is pressed
by the user. Likewise, the keyReleased() method is called when the key selected by the
user is released. And the keyRepeated() method is called by the application manager
when the user holds down the key, causing the key to be automatically repeated. A word
of caution: not all devices support repeated keys. Your MIDlet can inquire whether or
not the repeated key feature is supported by calling the hasRepeatEvents() method. (See
“Quick Reference Guide” at the end of this chapter.)

All of these methods have empty implementation. You must override each method
if your application needs to process the related key events. However, many of the
applications you create that implement a low-level user interface will only need to
override the keyPressed() method because you’ll need to know which key was selected
by the user. The keyRelease() method and the keyRepeated() method are overridden
only for applications that have special processing whenever a person releases a key or
holds down a key for an extended period.

All three methods require one parameter, which is an integer that represents the value
of the key code passed to the method by the device’s application manager. An if statement
or switch case statement is used to compare the incoming key code with key code constants
that are processed by the MIDlet.

Listing 7-1 illustrates the basic way in which you detect and process key codes of keys
selected by the person using the MIDlet. This example designates the 2, 8, 4, and 6 keys
as directional keys, where the 2 and 8 are up and down and 4 and 6 are left and right.
The MIDlet displays text that describes the direction selected by the user. Of course, in
a real application you would likely reposition an image, such as a game piece, on the
screen whenever a direction key is detected rather than display text. You’ll see how this
is done later in this chapter.

Detecting and Processing Key Codes
A MIDlet that uses a low-level user interface extends the MIDlet as illustrated in
Listing 7-1. Listing 7-2 contains the JAD file for Listing 7-1. This listing displays a
menu (Figure 7-2) on the screen prompting the user to press a key displayed on
the menu. Each key represents a direction. The name of the direction is drawn
on the canvas after the key is selected (Figure 7-3).

The MIDlet begins by declaring two variables. The first variable references an instance
of the Display class, much the same as you saw in the previous chapter. The other variable
references a developer-defined class called MyCanvas, which is defined later in this
listing.

You’ll notice that most of the work occurs outside of the constructor, which is different
from the high-level user interface (see Chapter 6), where a number of tasks are performed
in the constructor. Tasks normally performed in the constructor of a MIDlet that uses the

C h a p t e r 7 : L o w - L e v e l D i s p l a y : C a n v a s 221

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

J2
M

E
U

S
ER

IN
TER

FA
C

E

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

high-level user interface are performed in the developer-defined class that extends the
Canvas class.

Two instances of classes are created within the KeyCodeExample constructor. These
are the Display class and the MyCanvas class. Notice that the remainder of code within
the KeyCodeExample class definition is nearly identical to examples shown in the previous
chapter. This is because a MIDlet that uses the low-level user interface must contain the
same required method definitions as a MIDlet that uses the high-level user interface.

Let’s turn to the end of the listing where the MyCanvas class is defined. The first
statement declares a reference to an instance of the Command class that is used to
terminate the MIDlet. You’ve seen that command used many times in the high-level
user interface MIDlets in the previous chapter. Next, reference to a String called direction
is declared, followed by the creation of an instance of the KeyCodeExample class.

The constructor of MyCanvas is passed an instance of the KeyCodeExample class
that is referenced internally to the constructor. The direction string is initialized with

222 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

Figure 7-2. A menu is displayed prompting the user to select a menu option.

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

text that describes directional keys; the text is displayed on the screen when the device’s
application manager calls the paint() method.

Next, an instance of the Command class is created and associated with the instance
of MyCanvas. Likewise, a CommandListener is associated with the instance of
MyCanvas in order to monitor command events occurring while the MIDlet runs.
The commandAction() method defined later in the class definition is called by the
device’s application manager to process a command event—identical to how the
same method is used in the high-level user interface.

The paint() method is defined next. It uses an instance of the Graphics class, which
is passed as the parameter to the paint() method, to draw an image on the canvas, as
discussed previously in this chapter. There are four statements within the paint() method.
The first statement sets the color to white. Each of the three integers passed to the
setColor() method represents a color value of red, green, and blue. You’ll learn about
setting colors later in this chapter. For now understand that the higher the number, the

C h a p t e r 7 : L o w - L e v e l D i s p l a y : C a n v a s 223

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

J2
M

E
U

S
ER

IN
TER

FA
C

E

Figure 7-3. The name of the direction selected by the user is drawn on the canvas.

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

lighter the value; so the values 255, 255, 255 whiten the canvas and thereby erase existing
images from the canvas.

Next, a filled rectangle is drawn on the screen. The color of the filled rectangle is white,
and drawing the rectangle has the effect of erasing images from the canvas. The first two
parameters of the fillRect() method are the coordinates of the upper-left corner of the
rectangle. The last two parameters are the width and height of the rectangle. You’ll learn
more about drawing rectangles later in this chapter.

Once the canvas is erased, the color is set to red, and then the drawString() method,
which actually paints text on the canvas, is called. There are four parameters to the
drawString() method. The first parameter is the string of text that will be painted on

224 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

Detecting and Processing Key Codes
Listed here are the steps for detecting and processing key codes:

1. Declare references to classes.

2. Create instances of classes and assign those instances to references.

3. Display the instance of the Canvas class whenever the MIDlet is started.

4. Terminate the MIDlet when the Exit command is selected.

5. Define a class derived from the Canvas class that implements
a CommandListener.

6. Within the derived class, declare references.

7. Within the derived class, define a constructor that initializes text
to be displayed on the canvas.

8. Within the derived class, create an instance of the Command class.

9. Within the derived class, associate the instance of the Command class
with the canvas.

10. Within the derived class, associate the CommandListener with the canvas.

11. Within the derived class, define a paint() method that erases the canvas
and draws the string on the canvas.

12. Within the derived class, define a commandAction() method to process
the Exit command.

13. Within the derived class, define a keyPressed() method to process keys
selected by the user while the MIDlet runs.

14. Compare the incoming key code value with game action constants
for KEY_NUM2, KEY_NUM8, KEY_NUM4, and KEY_NUM6.

15. If matched, indicate the direction selected by the player.

16. Erase the canvas and redraw the text on the canvas.

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the canvas. The next two parameters specify the location on the canvas to paint the
text. The first is the x (column) coordinate, and the other is the y (row coordinate). The
fourth parameter of the drawString() method is the anchor point. You’ll learn about
anchor points later in this chapter when the drawString() method is discussed in detail.
For now, consider an anchor point as a construct used to align text with other objects
on the canvas.

The last method defined in the MyCanvas class is the keyPressed() method. The
keyPressed() method, as described previously in this section, is called by the device
application manager whenever the user presses a key on the keypad. The key code of
that key is passed to the keyPressed() method for processing.

In this example, a switch case statement is used to compare the incoming key code to
the directional keys recognized by the MIDlet. If the incoming key code matches the key
code constant, text describing the direction selected by the user is assigned to the direction
string, and then the repaint() method is called. The repaint() method causes the paint()
method to be invoked, which erases the canvas and displays the value of the direction
string on the canvas.

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class KeyCodeExample extends MIDlet

{

private Display display;

private MyCanvas canvas;

public KeyCodeExample ()

{

display = Display.getDisplay(this);

canvas = new MyCanvas(this);

}

protected void startApp()

{

display.setCurrent(canvas);

}

protected void pauseApp()

{

}

protected void destroyApp(boolean unconditional)

{

}

public void exitMIDlet()

{

destroyApp(true);

notifyDestroyed();

}

}

class MyCanvas extends Canvas implements CommandListener

{

C h a p t e r 7 : L o w - L e v e l D i s p l a y : C a n v a s 225

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

J2
M

E
U

S
ER

IN
TER

FA
C

E

Listing 7-1
Capturing

and
processing
key codes

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

private Command exit;

private String direction;

private KeyCodeExample keyCodeExample;

public MyCanvas (KeyCodeExample keyCodeExample)

{

direction = "2=up 8=dn 4=lt 6=rt";

this.keyCodeExample = keyCodeExample;

exit = new Command("Exit", Command.EXIT, 1);

addCommand(exit);

setCommandListener(this);

}

protected void paint(Graphics graphics)

{

graphics.setColor(255,255,255);

graphics.fillRect(0, 0, getWidth(), getHeight());

graphics.setColor(255, 0, 0);

graphics.drawString(direction, 0, 0,

Graphics.TOP | Graphics.LEFT);

}

public void commandAction(Command command, Displayable displayable)

{

if (command == exit)

{

keyCodeExample.exitMIDlet();

}

}

protected void keyPressed(int key)

{

switch (key){

case KEY_NUM2:

direction = “up”;

break;

case KEY_NUM8:

direction = “down”;

break;

case KEY_NUM4:

direction = “left”;

break;

case KEY_NUM6:

direction = “right”;

break;

}

repaint();

}

}

226 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : L o w - L e v e l D i s p l a y : C a n v a s 227

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

J2
M

E
U

S
ER

IN
TER

FA
C

E

MIDlet-Name: KeyCodeExample

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: KeyCodeExample.jar

MIDlet-1: KeyCodeExample, , KeyCodeExample

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

Working with Game Actions
The theme may differ among computer games, but the way players interact with a
game is fairly constant across all computer games. Players can move up, down, left,
right, and they can fire. Typically, directional movement causes a game piece to move
in a corresponding direction or changes the viewpoint of the player, depending on the
nature of the game. Fire causes an event to occur within the game, such as releasing
a bullet from a gun.

Directional movement and fire are referred to as game actions, and MIDP game action
defines constants that enable you to utilize game actions within your MIDlet without
being concerned about the appropriate key code that is assigned to each action. Nearly
all small computing devices accommodate game action keys either by associating each
game action with a dedicated key, such as a key labeled “fire,” or by associating each game
action to a generic key, such as numbers on a keypad.

Each game action is associated with one or more keys on the keypad. For example,
the down game action might be associated with a down directional key and a number
on the keypad. Pressing either key causes the same game action to occur. However, each
key can be assigned to only one game action. This means pressing the down game
action key doesn’t also generate an up game action.

You don’t need to be concerned about key mapping of game actions if you use game
action constants to refer to game actions within your MIDlet. Table 7-2 contains game action
constants that are used when developing a game for a small computing device. You can
reference either the name of the constant or the value of the constant within your MIDlet
to determine the game action selected by the player. However, it is always best to reference
the constant rather than the constant value.

A game action causes the keyPressed() method, keyReleased() method, and
keyRepeated() method to be called, depending on the key pressed by the player. You
can detect which game action occurred by calling the getGameAction() method. The
getGameAction() method requires one parameter—the key code of the key selected
by the player—which is passed as a parameter to the keyPressed(), keyReleased(), or
keyRepeated() method.

Listing 7-2
The JAD

file for
Listing 7-1

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

An if statement or a switch case statement can be used to compare the incoming key
code to game action constants. Each game action constant is a data member of the Canvas
class and is referenced by using the name of the game action constant, such as
Canvas.LEFT, Canvas.RIGHT, Canvas.UP, Canvas.DOWN, and Canvas.FIRE.

There are two alternative ways to detect the game action key selected by the player. The
first is to compare key code values by calling the getKeyCode() method. The getKeyCode()
method requires one parameter, which is the name of the game action constant. The
getKeyCode() returns the key code value associated with the game action constant that
can then be directly compared to the incoming key code value passed to the keyPressed(),
keyReleased(), or keyRepeated() method.

Let’s say that you need to determine whether the player selected the FIRE game action
key. You call the getKeyCode() method and pass it the name of the FIRE game action
constant, which is FIRE. The return value is then compared with the incoming game
action key code, as illustrated in the following code segment. The keycode variable is
an int representing the value of the key code selected by the player.

if (getKeyCode(FIRE) == keycode)

{

//fire

}

228 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

Game Action Constant Description Game Action Constant Value

UP Move up 1

DOWN Move down 6

LEFT Move left 2

RIGHT Move right 5

FIRE Fire 8

GAME_A Device defined 9

GAME_B Device defined 10

GAME_C Device defined 11

GAME_D Device defined 12

Table 7-2. Game Action Constants

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The other way to determine the player’s selection is to retrieve the name of the key
that is associated with the incoming key code by calling the getKeyName() method.
The getKeyName() method requires one parameter, which is the key code value. The
getKeyName() method returns the name of the key represented by the key code value.
A word of caution: the name returned by the getKeyName() method is not necessarily
the name of the game action. Instead, it is the name of the key.

Let’s say that the player pressed the left game action key, which has a game action
constant value of 2 (Table 7-2). The actual name for the key might be KEY_4 if the device
uses the key labeled 4 as the left directional key on the keypad. In this example, the name
KEY_NUM4 is returned by the getKeyName() method.

In order to use the getKeyName() method to detect the game action key selected by
the player, you must first determine the key name for each of the game action keys. You
do this by calling the getKeyCode() method, passing it the game action constant name,
and then passing the return value from the getKeyCode() method to the getKeyName()
method, which returns the name of the key associated with the key code value. This
technique is illustrated in the following code segment:

if (getKeyName(getKeyCode(FIRE).equals(getKeyName(keycode))))

{

//fire

}

Detecting and Processing Game Actions
Listing 7-3 illustrates how to detect and process game actions selected by a player. Listing 7-4
is the JAD file for Listing 7-3. You’ll notice that Listing 7-3 is very similar to Listing 7-1,
except this example relocates text on the screen based upon the game action selected by
the player.

This listing begins the same as Listing 7-1, by declaring references that are later
assigned instances of the Display class and the MyCanvas class in the GameActionExample
constructor. And as in Listing 7-1, MyCanvas is declared later in the listing. The instance
of MyCanvas class is displayed by passing it to the setCurrent() method within the
startApp() method of the MIDlet.

Nearly all the action in Listing 7-3 happens in the definition of the MyCanvas class.
The class definition begins by declaring references similar to references declared in
Listing 7-1. However, two additional variables are declared in Listing 7-3. These are x
and y integers whose values represent canvas coordinates used to position text on
the canvas.

The initial coordinate is 5, 5, which identifies the cell in the upper-left region of the
canvas. This is the cell where the device draws the line of text assigned to the message
variable in the constructor (see Figure 7-4). The other statements within the constructor
are the same as statements used in Listing 7-1.

C h a p t e r 7 : L o w - L e v e l D i s p l a y : C a n v a s 229

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

J2
M

E
U

S
ER

IN
TER

FA
C

E

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The paint() method erases images from the canvas and draws the string called
“message” at the x, y coordinate. Initially, the value of the x, y coordinate is 5, 5.
However, you’ll notice that statements within the keyPressed() method definition modify
the initial values, depending on the game action key selected by the player.

The commandAction() method is defined next and has the same definition as the
commandAction() command contained in Listing 7-1. The purpose of the commandAction()
method is to process the Exit command when the player terminates the MIDlet.

The keyPressed() method is called to detect and process game action keys. As in
Listing 7-1, a switch case statement is used to compare the incoming key code value to a
constant. This example uses game action constants to detect the game action key selected
by the player. The key selected by the user is retrieved by calling the getGameAction(key)
method.

Based on the selected key, the appropriate case statement replaces the string assigned
to the message variable and then adjusts the value of either the x or y coordinate to

230 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

Figure 7-4. Text assigned to the message variables in the constructor is displayed
on the screen.

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

reposition the text on the canvas. Next the repaint() method is called, which calls the
paint() method to erase the canvas and draw the new text on the canvas.

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class GameActionExample extends MIDlet

{

C h a p t e r 7 : L o w - L e v e l D i s p l a y : C a n v a s 231

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

J2
M

E
U

S
ER

IN
TER

FA
C

E

Detecting and Processing Game Action Keys
Listed here are the steps for detecting and processing game action keys:

1. Declare references to classes.

2. Create instances of classes and assign those instances to references.

3. Display the instance of the Canvas class whenever the MIDlet is started.

4. Terminate the MIDlet when the Exit command is selected.

5. Define a class derived from the Canvas class that implements
a CommandListener.

6. Within the derived class, declare references.

7. Within the derived class, define a constructor that initializes text
to be displayed on the canvas.

8. Within the derived class, create an instance of the Command class.

9. Within the derived class, associate the instance of the Command class
with the canvas.

10. Within the derived class, associate the CommandListener with the canvas.

11. Within the derived class, define a paint() method that erases the canvas
and draws the string on the canvas.

12. Within the derived class, define a commandAction() method to process
the Exit command.

13. Within the derived class, define a keyPressed() method to process keys
selected by the user while the MIDlet runs.

14. Compare the incoming key code value with game action constants
for UP, DOWN, LEFT, RIGHT, and FIRE.

15. If matched, indicate the direction selected by the player and adjust the
coordinate appropriately to position the text on the canvas in the direction
selected by the player.

16. Erase the canvas and redraw the text on the canvas.

Listing 7-3
Capturing

and
processing

game actions

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

232 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

private Display display;

private MyCanvas canvas;

public GameActionExample()

{

display = Display.getDisplay(this);

canvas = new MyCanvas (this);

}

protected void startApp()

{

display.setCurrent(canvas);

}

protected void pauseApp()

{

}

protected void destroyApp(boolean unconditional)

{

}

public void exitMIDlet()

{

destroyApp(true);

notifyDestroyed();

}

}

class MyCanvas extends Canvas implements CommandListener

{

private Command exit;

private String message;

private GameActionExample gameActionExample;

private int x, y;

public MyCanvas (GameActionExample gameActionExample)

{

x = 5;

y = 5;

direction = "Use Game Keys";

this.gameActionExample = gameActionExample;

exit = new Command("Exit", Command.EXIT, 1);

addCommand(exit);

setCommandListener(this);

}

protected void paint(Graphics graphics)

{

graphics.setColor(255,255,255);

graphics.fillRect(0, 0, getWidth(), getHeight());

graphics.setColor(255, 0, 0);

graphics.drawString(message, x, y, Graphics.TOP | Graphics.LEFT);

}

public void commandAction(Command command, Displayable displayable)

{

if (command == exit)

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : L o w - L e v e l D i s p l a y : C a n v a s 233

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

J2
M

E
U

S
ER

IN
TER

FA
C

E

{

gameActionExample.exitMIDlet();

}

}

protected void keyPressed(int key)

{

switch (getGameAction(key)){

case Canvas.UP:

message = “up”;

y--;

break;

case Canvas.DOWN:

message = “down”;

y++;

break;

case Canvas.LEFT:

message = “left”;

x--;

break;

case Canvas.RIGHT:

message = “right”;

x++;

break;

case Canvas.FIRE:

message = “FIRE”;

break;

}

repaint();

}

}

MIDlet-Name: GameActionExample

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: GameActionExample.jar

MIDlet-1: GameActionExample, , GameActionExample

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

Working with Pointer Devices
A pointer device is something other than a keyboard or keypad that is used to interact
with an application. The most commonly used pointer devices are a touch screen and a
mouse, although you can be sure that new pointer devices are bound to find their way
into the marketplace in the future. Fortunately, as a J2ME developer, you don’t become
involved in the details of how a pointer device interfaces with a small computer or how

Listing 7-4
The JAD

file for
Listing 7-3

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

someone uses the pointer device to interact with your MIDlet. The device manufacturer
and the implementation of the Java Virtual Machine handle those details. However, you
are responsible for developing routines within your MIDlet to process pointer events.
A pointer event occurs whenever the person uses a pointer device to interact with your
MIDlet. There are three pointer events that your MIDlet must process. These are when
the person presses a pointer device, releases a pointer device, and drags a pointer device.

A person presses a pointer device by applying pressure to a portion of a touch screen
or by clicking the mouse button. This causes a press event. A release event occurs once
pressure is removed from the touch screen or the mouse button. And your MIDlet is
notified of a drag event whenever the person moves the pointer device during a press
event.

Your MIDlet processes pointer events by defining three methods that are automatically
called by the device’s application manager when a pointer event occurs. These methods
are the pointerPressed() method, the pointerReleased() method, and the pointerDragged()
method. All three methods require two parameters. The first parameter is an integer
representing the x coordinate of the pointer device, and the other parameter is an
integer representing the y coordinate. Typically, your MIDlet will use these parameters
to change the image that appears on the screen.

Let’s say that your MIDlet prompts the user to draw a line across the screen using
a pointer device. A line is drawn by pressing the pointer device at a particular location
on the canvas, then while pressed (or while holding down the mouse button), the
person drags the pointer device to another position on the canvas before releasing the
pointer device.

Here’s what happens behind the scenes in the MIDlet. A press event is detected and the
pointerPressed() method is called when the pointer device is pressed. The pointerPressed()
method receives the coordinate of the pointer on the canvas. Let’s call that the starting
coordinate.

Dragging the pointer device is a drag event and causes the pointerDragged() method
to be invoked continuously until the person stops dragging the pointer device. The
pointerDragged() method is called each time the pointer device is dragged and is passed
the coordinate of the pointer device when the drag event occurs. Let’s call this coordinate the
current coordinate.

Finally, the release event occurs when the person removes pressure from the pointer
device (removes the finger or implement from the touch screen or releases the mouse
button). The pointerReleased() method is then called and passed the pointer device’s
coordinate on the canvas where the person released the pointer device. We’ll call this
the end coordinate.

In this example, the color of the pixel at the coordinate must be changed to the color of
the line to give the illusion that a line is being drawn on the screen. The pointerPressed()
method, pointerDragged() method, and pointerReleased() method all must contain
statements that change the color of the pixel at the coordinate passed to each method
by the device’s application manager.

234 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : L o w - L e v e l D i s p l a y : C a n v a s 235

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

J2
M

E
U

S
ER

IN
TER

FA
C

E

Detecting and Processing Pointer Events
Listing 7-5 shows how to write a MIDlet that draws a line on the canvas based on pointer
events generated by the user of the application. Listing 7-6 is the JAD file for Listing 7-5.
Each time a pointer event occurs, the MIDlet redraws the line as determined by the
coordinate passed to the appropriate pointer event method.

Listing 7-5 follows the same basic structure as other listings discussed previously
in this chapter. The PointerExample class definition is technically the same as the
GameActionExample class definition in Listing 7-3, except the class name is different.
Therefore, we’ll jump down to the definition of the MyCanvas class.

Several variables are declared at the beginning of the MyCanvas class. Two variables
are used to reference commands. These are the Exit command used by the user to
terminate the MIDlet and the Erase command. The Erase command is used whenever
the user wants to remove the line from the screen.

Next, a boolean variable called eraseFlag is declared and is initialized to a false value.
The eraseFlag is used throughout the MIDlet to indicate whether the user wants the
screen erased. There are also four integers declared. These integers are used to hold
the start and current coordinates when the line is being drawn. And the last variable
is reference to the instance of the PointerExample class.

The MyCanvas class constructor definition assigns commands to references and
associates commands and the CommandListener with the instance of the Canvas class.
This is the same technique illustrated in other listings in this chapter.

You’ll notice that the paint() method is a bit more complex than paint() methods
defined in other listings in this chapter because the paint() method must perform several
tasks. First, the paint() method must determine whether the user wants the screen erased
by evaluating the value of the eraseFlag. If the eraseFlag is true, images on the canvas
are erased, otherwise the paint() method draws the line on the canvas.

The canvas is erased by calling the setColor() method to white. Remember from our
previous discussion about the setColor() method that you must pass the setColor() method
three parameters. These are color values for red, green, and blue. The higher the color
value, the brighter the color. The highest—and therefore brightest—color value is 255,
which is white.

The fillRect() method is then called to paint a rectangle on the canvas with the current
color, which is white. The fillRect() method requires four parameters. The first two
parameters are the coordinates of the upper-left corner and lower-right corner of the
rectangle. The upper-left corner of the rectangle is the first cell of the canvas. The lower-
right corner is determined by the getWidth() and getHeight() methods, both of which
return the maximum width and height of the filled rectangle. You’ll be formally introduced
to the setColor() method, the fillRect() method, and other graphic methods in the next
section of this chapter.

Once the canvas is erased, the eraseFlag, start, and current coordinates are initialized
to false and zero, respectively. The paint() method is then abruptly terminated with the
return statement because the remaining statements in the paint() method draw a line

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

on the screen, which is not what the user requested. However, if the user didn’t select
the Erase command, statements that erase the canvas within the paint() method are
skipped, and the MIDlet proceeds to draw a line on the screen. This process begins by
calling the setColor() method and setting each parameter to zero. Zero is the darkest
color value, which is black. This means images drawn on the canvas after the color is
set to zero are drawn in black.

The drawLine() method is called once the color is set to black. The drawLine() method
requires four parameters. The first two parameters identify the starting coordinates for
the line, and the other parameters identify the end coordinates of the line. The values
of these parameters are the current values of sX, sY, cX, cY variables.

236 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

Detecting and Processing Pointer Events
Listed here are the steps for detecting and processing pointer events:

1. Declare references to classes.

2. Create instances of classes and assign those instances to references.

3. Display the instance of the Canvas class whenever the MIDlet is started.

4. Terminate the MIDlet when the Exit command is selected.

5. Define a class derived from the Canvas class that implements
a CommandListener.

6. Within the derived class, declare references.

7. Within the derived class, create instances of the Command class—one
command used to terminate the MIDlet and the other to erase the screen.

8. Within the derived class, associate instances of the Command class with
the canvas.

9. Within the derived class, associate the CommandListener with the canvas.

10. Within the derived class, define a paint() method either to erase the canvas
or draw a line segment on the canvas.

11. Within the derived class, define a commandAction() method to process
the Exit command and the Erase command.

12. Within the derived class, define a pointerPressed() method to process
the pointer pressed event by resetting the starting coordinates of the line
to coordinates that identify the position of the pointer device when the
pointer device is pressed.

13. Within the derived class, define a pointerDragged() method to process
the pointer drag event by resetting the current coordinates of the line to
coordinates that identify the position of the pointer device as the pointer
device is dragged across the screen.

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : L o w - L e v e l D i s p l a y : C a n v a s 237

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

J2
M

E
U

S
ER

IN
TER

FA
C

E

The values of the sX, sY, cX, cY variables are modified by the pointer event methods
that are defined later in the MyClass class definition. Before the MIDlet leaves the paint()
method, the values of the current coordinates (cX and cY) are assigned to the starting
coordinates (sX and sY). This means that the next segment of the line is drawn at the end
of the current line.

The commandAction() method is similar to the commandAction() method used in
other listings with one exception. When the commandAction() method detects that the
user selected the Erase command, the eraseFlag is set to true and the repaint() method
is called. The repaint() method invokes the paint() method, which erases the canvas.

Two other methods are defined in the MyClass class. These are the pointerPressed()
method and the pointerDragged() method. We didn’t define the pointerReleased() method
because the MIDlet doesn’t perform any special processing when the user releases the
pointer device.

The pointerPressed() method receives coordinates of where the pointer device was
located on the canvas when the user pressed the pointer device. This coordinate is always
the starting coordinate of the line. Notice that the repaint() method isn’t called within the
pointerPressed() method because we expect that the user doesn’t want a pixel to appear
unless the pointer device is dragged.

The pointerDragged() method receives coordinates of each position of the canvas
over which the user drags the pointer device. As each drag event is captured, the
pointerDragged() method is called and the current coordinate variables (cX and cY)
are assigned the value of the pointer device. The repaint() method is called once the
coordinates are assigned to these variables. The repaint() method calls the paint() method,
as previously described, and uses the value of the current coordinate variables and the
start coordinate variables to draw the next segment of the line.

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class PointerExample extends MIDlet

{

private Display display;

private MyClass canvas;

public PointerExample()

{

display = Display.getDisplay(this);

canvas = new MyClass (this);

}

protected void startApp()

{

display.setCurrent(canvas);

}

protected void pauseApp()

{

}

protected void destroyApp(boolean unconditional)

{

Listing 7-5
Capturing

and
processing

pointer
events

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

238 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

}

public void exitMIDlet()

{

destroyApp(true);

notifyDestroyed();

}

}

class MyClass extends Canvas implements CommandListener

{

private Command exit;

private Command erase;

private boolean eraseFlag = false;

private boolean isFirstPaint;

private int sX = 0,sY = 0, cX = 0, cY = 0;

private PointerExample pointerExample;

public MyClass (PointerExample pointerExample)

{

this.pointerExample = pointerExample;

exit = new Command("Exit", Command.EXIT, 1);

erase = new Command("Erase", Command.SCREEN, 1);

addCommand(exit);

addCommand(erase);

setCommandListener(this);

isFirstPaint = true;

}

protected void paint(Graphics graphics)

{

if (eraseFlag || isFirstPaint)

{

graphics.setColor(255, 255, 255);

graphics.fillRect(0, 0, getWidth(), getHeight());

eraseFlag = isFirstPaint = false;

sX = 0;

sY = 0;

cX = 0;

cY = 0;

return;

}

graphics.setColor(0, 0, 0);

graphics.drawLine(sX, sY, cX, cY);

sX = cX;

sY = cY;

}

public void commandAction(Command command, Displayable displayable)

{

if (command == exit)

pointerExample.exitMIDlet();

else if (command == erase)

{

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

eraseFlag = true;

repaint();

}

}

protected void pointerPressed(int x, int y)

{

sX = x;

sY = y;

}

protected void pointerDragged(int x, int y)

{

cX = x;

cY = y;

repaint();

}

}

MIDlet-Name: PointerExample

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: PointerExample.jar

MIDlet-1: PointerExample, , PointerExample

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

Graphics
As you recall from earlier in this chapter, the screen of the low-level user interface is a
canvas, which is an instance of the Canvas class. The canvas is organized into a grid in
which each cell of the grid is a pixel. Coordinates, as explained in the previous sections,
identify each cell. An image is drawn on the canvas by using a virtual graphical device
called a graphic context, such as the rectangle and line. A graphic context is an instance
of the Graphics class. You’ll learn about these virtual graphical devices in this section.

Reference to the graphic context is passed to the paint() method. A mutable image,
as you’ll remember, is an image that can be altered by your MIDlet. You’ve seen how to
create a graphic context in previous listings that defined the paint() method. Reference
to the graphic context passed to a paint() method exists for the duration of the paint()
method. Once the MIDlet leaves the paint() method, the graphic context goes out of scope.
The graphic context can no longer be used to draw on the canvas, even if reference to the
graphic context is retained. In contrast, a graphic context created in association with a
mutable image remains available to the MIDlet as long as reference to the image and
the image itself remains in scope. You’ll learn how to create a graphic context using
a mutable image later in this chapter.

C h a p t e r 7 : L o w - L e v e l D i s p l a y : C a n v a s 239

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

J2
M

E
U

S
ER

IN
TER

FA
C

E

Listing 7-6
The JAD

file for
Listing 7-5

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Stroke Style and Color
Every graphic context has two characteristics you can control from within the MIDlet.
These are stroke style and color. Stroke style defines the appearance of lines used to
draw an image on the canvas, and color specifies the background and foreground color
of the image.

You can use two kinds of stroke styles when drawing images on the canvas: solid
and dotted. As the names imply, the solid stroke style causes the graphic context to use
a solid line when drawing the image, and the dotted stroke style results in the image
being drawn using a dotted line. The solid stroke style is the default.

Skipping pixels along the lines of the image creates the dotted stroke. The small
computing device determines the number of pixels skipped. You cannot modify the
appearance of the dotted stroke, and you might discover that skipped pixels may affect
the appearance of the image. For example, a pixel at the corner of a rectangle might be
missing and therefore ruin the illusion of a square-cornered rectangle.

Calling the setStrokeStyle() method determines the stroke style that will be used by
a graphic context. A stroke style setting is particular to each graphic context and does
not affect other graphic contexts. For example, one graphic context can be set to a dotted
stroke style and another set to a solid stroke style. Both graphic contexts can be used
to draw images on the same canvas without affecting each other’s stroke style.

The setStrokeStyle() method requires one parameter, which is a constant that represents
a stroke style. There are two constants, SOLID and DOTTED, both of which are members
of the Graphics class. You can change the stroke style of a graphic context anytime within
your MIDlet by calling the setStrokeStyle() and passing the setStrokeStyle() the constant
that represents a different stroke style. You determine the current stroke style of a graphic
context by calling the getStrokeStyle(). This method returns an integer that can be
compared within your MIDlet to the stroke style constants.

Colors
You’ve already seen how combining degrees of red, green, and blue creates the foreground
and background color of a graphic context. The degree of each color is specified as an
integer value within the range of 0 to 255. Zero produces the darkest possible value of
the color, and 255 produces the lightest possible value. For example, color values 0, 0, 0
(red, green, blue) produce black, and color values 255, 255, 255 produce white. Values
between these extremes produce shades of various colors. All integers in Java are 32 bits.
Of those 32 bits, 8 bits are used to represent red, blue, and green. All color values are
stored in one integer. The 8 highest order bits are not used.

A word of caution: Your choice of colors for a graphic context is a request and not
a directive. The actual color of a graphic context is device dependent. Every effort is made
to draw an image in the requested colors, but sometimes the device doesn’t support the
colors you select or doesn’t support color at all. In these cases, the device automatically
uses colors that closely match your request, or it converts your color selection to shades
of gray. You don’t have any control over color choices made by a device.

240 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The gray scale uses a range from 0 to 255, where zero is black and 255 is white.

You can determine whether a device supports color and the number of colors or shades
of gray that are supported by calling the appropriate Display class method within your
MIDlet. The isColor() method returns a boolean value that is true if color is supported;
otherwise a false value is returned, indicating that the device supports the gray scale
instead of color. The numColors() method returns an integer representing the number
of colors or shades of gray supported by the device. You can use both of these return
values to reset a color choice for the graphic context that is appropriate for the colors
available on the small computing device.

You set the color of a graphic context by calling the setColor() method of the Graphics
class. The setColor() method requires either one parameter or three parameters depending
on how you represent your choice of color. A color can be represented as one integer
or three integers, where each of the three integers represents a color value of red, green,
and blue.

Let’s take a closer look at how color values are represented in order to understand
the technique used to represent a color by a single integer. Remember that the highest
order bits are not used to represent color values. The color is represented by the next
24 bits. The 24 bits are divided into three 8-bit groups. The first 8-bit group represents the
color value of red. The second 8-bit group represents the color value of green. And the third
8-bit group represents the color value of blue.

C h a p t e r 7 : L o w - L e v e l D i s p l a y : C a n v a s 241

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

J2
M

E
U

S
ER

IN
TER

FA
C

E

Background Colors
Technically there isn’t any way to distinguish between foreground and background
colors because the concept of background colors is not supported in J2ME. All
colors are foreground colors. However, you can work around this limitation by
drawing a filled rectangle over the complete canvas before drawing other images
on the canvas.

You’ve seen this technique used in Listing 7-3 to erase the canvas. In this example
the following code segment is used to draw a filled rectangle the size of the canvas
and fill the rectangle with the color white:

graphics.setColor(255, 255, 255);

graphics.fillRect(0, 0, getWidth(), getHeight());

Once the filled rectangle is drawn on the canvas, you can use another graphic
context to draw an image on the canvas. Of course, that graphic context must have
a color setting other than white; otherwise, you won’t be able to see the new image
on the screen.

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Normally, you will determine the color to use with a graphic context by assigning
a color value to each color group (red, green, blue), as discussed previously in this section.
The bitwise shift operator (<<) and the bitwise OR operator (|) are then used to insert
each of the color values into the appropriate place within the 24 bits that represent
the color.

Let’s use this example to illustrate. Suppose we use the following color values:
red = 50, green = 200, and blue = 150. You can set the color of a graphic context by
calling setColor(50, 200, 150). You can also pass the combined values of red, green,
and blue to the setColor() method. Here’s how these values are combined and passed
to the setColor() method:

setColor((50 << 16) | (200 << 8) | 150);

First, the red color value 50 is bit shifted 16 places to the left, so it now occupies the
second high order byte of an integer. Next, the green color value is bit shifted 8 places to
the left, so it now occupies the third high order byte of an integer. No shifting is done
to the blue value since it is already where it is supposed to be, namely, the lowest order
byte of an integer. Next, all the values are bitwise ORed together, resulting in a single
integer whose highest order byte is 0, second highest order byte is the value 50, third
highest is 200, and the lowest order byte is 150.

Looking at the red, green, and blue color values in binary rather than decimal
illustrates how these values are combined into one 24-bit value. Here are the decimal
values for each color:

Red 50 00110010

Green 200 11001000

Blue 150 10010110

When these values are combined into one 32-bit value they appear as:

00000000001100101100100010010110

There are two techniques available for determining the current color setting of a
graphic context. They involve determining the value of each component of the color (red,
green, blue) either by calling the appropriate method for each component or by masking
the color value. The simplest way to determine the color is to call the getRedComponent()
method, getGreenComponent() method, and getBlueComponent() method. Each returns
an integer representing the color value of the corresponding component.

An alternative technique is to retrieve the 32-bit color value by calling the getColor()
method, then using a bit mask to extract each component of the color. The following code
segment illustrates how to use this technique. Assume that red, green, and blue are integer
variables and graphics is the instance of the Graphics class. The getColor() method returns

242 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the color value setting of the instance of the Graphics class, which is the graphic context.
The first statement masks all but the first 8 bits of the color value, which represents the
red component of the color. The second statement masks all but the second 8 bits of the
color value. This is the green component. And the last statement masks the last 8 bits of
the color, which is the blue component.

red = graphics.getColor() & 0x00ff0000;

red = red >> 16;

green = graphics.getColor() & 0x0000ff00;

green = green >> 8;

blue = graphics.getColor() & 0x000000ff;

Lines
Lines are drawn on the canvas by calling the drawLine() method, which is illustrated
in Listing 7-6. The drawLine() method creates a line from a starting coordinate to an
ending coordinate. Four parameters are required by the drawLine() method. The first two
parameters are integers representing the starting x, y coordinate of the line. The other
two parameters are integers representing the ending x, y coordinate of the line.

The thickness of the line, referred to as the weight, is typically measured in point
size, where zero is the thinnest possible line. Unfortunately, you cannot easily change
the weight of a line drawn on the canvas because the weight is always one pixel. The
only way to create a heavier (thicker) line is to draw multiple, abutting lines, which
appear as one thicker line on the screen. You can simulate point size by controlling the
number of abutting lines used to draw the line on the canvas. A single line equates
practically to zero point. You can approximate an increase in point size each time
another line abuts the existing line.

The color of the line is determined by the color setting of the graphic context used
to draw the line. You can set the color of the line by calling the setColor() method before
invoking the drawLine() method. The setColor() method is discussed in the previous
section of this chapter. Remember, the setColor() method determines the foreground color of
the line. To paint the background color, you’ll need to draw a filled rectangle that has the
same dimensions as the canvas (see previous section).

Rectangles
A rectangle is an area of the canvas defined by four corners, just like a rectangle that you
can draw using paper and pencil. You define a rectangle’s dimensions by identifying
coordinates for the upper-left corner and the lower-right corner. Four types of rectangles
can be drawn on a canvas. These are an outlined rectangle, filled rectangle, outlined
rectangle with rounded corners, and a filled rectangle with rounded corners. An
outlined rectangle is one where only line segments connecting the corners are drawn.
The inside of the rectangle remains the same color as the outside of the rectangle. The

C h a p t e r 7 : L o w - L e v e l D i s p l a y : C a n v a s 243

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

J2
M

E
U

S
ER

IN
TER

FA
C

E

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

244 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

filled rectangle also draws line segments to connect corners, but the inside of the rectangle
is filled with the same color as the drawn line segments. And as the names imply, each
of these types of rectangles can have squared corners or rounded corners.

You create an outlined rectangle by calling the drawRect() method and the filled
rectangle by calling the fillRect() method. Both methods create a square-cornered rectangle
and require four parameters. The first two parameters are the coordinates of the upper-
left corner of the rectangle (x1, y1), and the last two parameters are the width and height
of the rectangle (x2, y2).

The color used to draw a rectangle must be set using the setColor() method (discussed
previously in this chapter) before drawing the rectangle. Otherwise the current color of
the graphic context is used both to color the outline and fill the inside of the rectangle,
depending on the type of rectangle being drawn.

By setting the color of the graphic context that draws a filled rectangle to 255, 255, 255
and using 0, 0, getWidth(), getHeight() as the coordinates of the rectangle, you can erase
all images from the canvas.

Creating a round-cornered rectangle is nearly identical to creating a square-cornered
rectangle, except you must specify the horizontal and vertical diameter of the arc used
to create the round corners. The horizontal diameter is referred to as the arc width, and
the vertical diameter is referred to as the arc height.

The diameter represents the sharpness of the corner, where the smaller the diameter,
the sharper the corner appears. Both the horizontal and vertical diameters are defined
as integers. You should experiment using different diameter values before deciding on
the diameters that are best to use with your application.

You create a round-cornered rectangle by calling the drawRoundRect() method and
fillRoundRect() method, respectively. Both methods require six parameters. The first four
parameters identify the upper-left corner and lower-right corner of the rectangle. The
fifth and sixth parameters are integers representing the horizontal diameter and vertical
diameter of the corners.

Drawing a Rectangle
We are going to look at two ways to draw a rectangle on the canvas. Listing 7-7 draws
two outlined rectangles, one with square corners and the other with rounded corners.
Listing 7-8 contains the JAD file for Listing 7-7. Listing 7-9 draws the same two rectangles,
except these are filled rectangles. Its JAD file appears in Listing 7-10. The listings begin
like the other listings discussed in this chapter, by declaring references for instances of
the Display class and the MyCanvas class, which is defined within these listings. These
instances are created and assigned within the constructor. The required methods for
a MIDlet are then defined.

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : L o w - L e v e l D i s p l a y : C a n v a s 245

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

J2
M

E
U

S
ER

IN
TER

FA
C

E

The structure of the MyCanvas class definition also resembles those of other listings
that you’ve explored previously in this chapter. First, references are declared for the Exit
command and the instances of the MIDlet class. The actual instances are created in the
constructor of the MyCanvas definition where they are also assigned to these references.
The Exit command and the CommandListener are both then associated with the canvas.

You’ll notice that the definition of the paint() methods of Listing 7-7 and Listing 7-9 are
different from each other. The paint() method in Listing 7-7 draws an outlined rectangle
with square corners using the default color of the graphic context. This rectangle appears
in the upper-left portion of the canvas, where the upper-left corner is located at
coordinate 2, 2 and the width and height of the rectangle is 20, 20.

Next, a rounded corner outlined rectangle is drawn on the same canvas at a location
lower than the first rectangle. The upper-left corner of this rectangle is at coordinate 20, 20,
and the width and height are 60, 60. Since this is a round-cornered rectangle, we also need

Drawing a Rectangle
Listed here are the steps for drawing a rectangle:

1. Declare references to classes.

2. Create instances of classes and assign those instances to references.

3. Display the instance of the Canvas class whenever the MIDlet is started.

4. Terminate the MIDlet when the Exit command is selected.

5. Define a class derived from the Canvas class that implements
a CommandListener.

6. Within the derived class, declare references.

7. Within the derived class, create an instance of the Command class.

8. Within the derived class, associate the instance of the Command class
with the canvas.

9. Within the derived class, associate the CommandListener with the canvas.

10. Within the derived class, define a paint() method to define the rectangular
area of the canvas where the rectangle is to be drawn. Specify the horizontal
and vertical diameters of the arc if rounded corners are used in the rectangle.
Specify the color to be used to draw and fill the rectangle unless the default
color is being used.

11. Within the derived class, define a commandAction() method to process the
Exit command.

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

246 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

to specify the horizontal and vertical diameter of the arc that forms the corner of the
rectangle. In this example, the horizontal diameter is 15, and the vertical diameter is 45.

The definition of the paint() method in Listing 7-9 begins by erasing the canvas of
images by setting the color to white and then drawing a filled rectangle. Next, the color is
set to red. Remember, parameters to the setColor() method represent the integer color value
of red, green, and blue. Green and blue are set to the darkest color value, while the color
value for red is set to the brightest color value.

The same rectangles drawn in Listing 7-7 are also drawn in Listing 7-9. However,
these rectangles are filled with the color blue rather than outlined in the default color
as they are in Listing 7-7 (Figure 7-5 and Figure 7-6). Both Listing 7-7 and Listing 7-9

Figure 7-5. An outlined rectangle with rounded corner

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : L o w - L e v e l D i s p l a y : C a n v a s 247

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

J2
M

E
U

S
ER

IN
TER

FA
C

E

define the commandAction() method that is used to detect and process the selection
of the Exit command to terminate the MIDlet.

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class RectangleExample extends MIDlet

{

private Display display;

private MyCanvas canvas;

public RectangleExample ()

{

Figure 7-6. A filled rectangle with rounded corner

Listing 7-7
Drawing a

rectangle and
a rounded
rectangle

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

display = Display.getDisplay(this);

canvas = new MyCanvas (this);

}

protected void startApp()

{

display.setCurrent(canvas);

}

protected void pauseApp()

{

}

protected void destroyApp(boolean unconditional)

{

}

public void exitMIDlet()

{

destroyApp(true);

notifyDestroyed();

}

}

class MyCanvas extends Canvas implements CommandListener

{

private Command exit;

private RectangleExample rectangleExample;

public MyCanvas (RectangleExample rectangleExample)

{

this.rectangleExample = rectangleExample;

exit = new Command("Exit", Command.EXIT, 1);

addCommand(exit);

setCommandListener(this);

}

protected void paint(Graphics graphics)

{

graphics.setColor(255,255,255);

graphics.fillRect(0, 0, getWidth(), getHeight());

graphics.setColor(255,0,0);

graphics.drawRect(2, 2, 20, 20);

graphics.drawRoundRect(20, 20, 60, 60, 15, 45);

}

public void commandAction(Command command, Displayable displayable)

{

if (command == exit)

{

rectangleExample.exitMIDlet();

}

}

}

248 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

MIDlet-Name: RectangleExample

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: RectangleExample.jar

MIDlet-1: RectangleExample, , RectangleExample

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class FilledRectangleExample extends MIDlet

{

private Display display;

private MyCanvas canvas;

public FilledRectangleExample ()

{

display = Display.getDisplay(this);

canvas = new myCanvas(this);

}

protected void startApp()

{

display.setCurrent(canvas);

}

protected void pauseApp()

{

}

protected void destroyApp(boolean unconditional)

{

}

public void exitMIDlet()

{

destroyApp(true);

notifyDestroyed();

}

}

class MyCanvas extends Canvas implements CommandListener

{

private Command exit;

private FilledRectangleExample filledRectangleExample;

public MyCanvas (FilledRectangleExample filledRectangleExample)

{

this. filledRectangleExample = filledRectangleExample;

exit = new Command("Exit", Command.EXIT, 1);

addCommand(exit);

C h a p t e r 7 : L o w - L e v e l D i s p l a y : C a n v a s 249

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

J2
M

E
U

S
ER

IN
TER

FA
C

E

Listing 7-9
Drawing
a filled

rectangle
and a filled

rounded
rectangle

Listing 7-8
The JAD

file for
Listing 7-7

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

250 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

setCommandListener(this);

}

protected void paint(Graphics graphics)

{

graphics.setColor(255,255,255);

graphics.fillRect(0, 0, getWidth(), getHeight());

graphics.setColor(0, 0, 255);

graphics.fillRect(2, 2, 20, 20);

graphics.fillRoundRect(20, 20, 60, 60, 15, 45);

}

public void commandAction(Command command, Displayable displayable)

{

if (command == exit)

{

filledRectangleExample.exitMIDlet();

}

}

}

MIDlet-Name: FilledRectangleExample

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: FilledRectangleExample.jar

MIDlet-1: FilledRectangleExample, , FilledRectangleExample

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

Arcs
An arc is a curved line segment that is used to draw circles, ovals, and other curved images.
As you’ll soon discover, drawing an arc is a bit tricky because you must define the area
of the canvas that will be covered by the arc and the angle used to draw the arc. The first
step in drawing an arc is to decide the area of the canvas that will be covered by the arc.
The area is defined as a rectangle rather than the circumference of the arc. Think of this
as defining a box within which the angle is drawn. A rectangle is defined by specifying
two sets of coordinates. The first set of coordinates (x1, y1) set the upper-left corner of the
rectangle. The other set of coordinates (x2, y2) set the lower-right corner of the rectangle.

Once the rectangle is defined, you must define two angles used to draw the arc. An
angle is defined in degrees from 0 to 360 degrees. The first angle is the starting point of the
arc, and the other angle is the end point of the arc. Picture a clock. The 3 o’clock position
is 0 degree. Degrees are incremented as you move counterclockwise. The 12 o’clock

Listing 7-10
The JAD

file for
Listing 7-9

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : L o w - L e v e l D i s p l a y : C a n v a s 251

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

J2
M

E
U

S
ER

IN
TER

FA
C

E

position is 90 degrees, 9 o’clock is 180 degrees, and 6 o’clock is 270 degrees. Degrees
decrement as you move clockwise. Based on the picture of the clock, you must select the
angle where the arc begins to be drawn. Likewise, you select the angle where the arc
terminates.

Let’s say that you want to draw a smile on the canvas. A smile is an arc. The starting
point of the smile is at angle 180 (9 o’clock) and the end point at angle 360 (3 o’clock). It
might take some trial and error, but you’ll quickly learn to determine the proper angles
to use when defining an arc to be drawn on the canvas.

Now with the theory under your belt, let’s see how an arc is drawn from within
a MIDlet. You can draw two kinds of arcs—an outlined arc and a filled arc. In an
outlined arc, only the circumference of the arc is drawn (like a smile). In a filled
arc, the circumference of the arc is drawn, and the area within the center and the
circumference is filled with the color of the graphic context used to draw the arc
(a colored circle, for example).

An outlined arc is drawn by calling the drawArc() method, and the filled arc is drawn
by calling the fillArc() method. Both methods require six parameters, all of which are
integers. The first two parameters set the coordinates for the upper-left corner of the
rectangle that contains the arc (x1, y1). The next two parameters are the width and
height of that rectangle (x2, y2). The fifth parameter is the start angle, and the last
parameter is the end angle of the arc.

The rectangle is used as a reference when drawing the arc. The rectangle is not drawn
on the canvas.

Drawing an Arc
Two listings are presented here, showing how to draw an arc within a MIDlet. Both
programs perform basically the same task, except Listing 7-11 draws an outlined arc
(see Figure 7-7), with the JAD file in Listing 7-12; while Listing 7-13 draws a filled arc (see
Figure 7-8). Listing 7-14 contains the JAD file for Listing 7-13. The outlined arc is a smile
using the default color. The filled arc is a half circle colored red.

Let’s begin with Listing 7-11. This listing begins like other listings in this chapter,
by declaring references to instances of the Display class and MyCanvas class, which is
defined within the MIDlet. Instances are assigned to these variables in the constructor.
The rest of the ArcExample class definition follows the structure used in other classes
that we’ve discussed previously in this chapter.

Most of the action in Listing 7-11 and Listing 7-13 occurs in the MyCanvas class
definition. The class definition begins by declaring references to the Exit command and
an instance of the ArcExample class. The Exit command and the CommandListener are
then associated with MyCanvas in the constructor of the MyCanvas class.

The paint() method definition is where the MIDlet draws the arc by calling the
drawArc() method. First the rectangular area of the canvas that will contain the arc is

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

252 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

defined by the first four parameters to the drawArc() method. The upper-left corner is
at x, y coordinate 0, 0. The lower-right corner is calculated based on the size of the canvas.
The getWidth() method and the getHeight() method return integers that represent the
width and height of the canvas, which you learned about previously in this chapter.

The last two parameters of the drawArc() method specify the angle where the device
begins drawing the arc on the canvas and the angle representing the end point of the
arc. Drawing begins at the 180-degree angle position, which is 9 o’clock on the face of
a clock. Drawing continues counterclockwise until another 180-degree angle position
is reached. This is the 3 o’clock position.

The definition of the paint() method in Listing 7-13 is nearly the same as Listing 7-7’s
paint() method except that the paint() method in Listing 7-13 calls the fillArc() method
instead of the drawArc() method. Both methods use the same parameters.

Figure 7-7. An outlined half-circle arc

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : L o w - L e v e l D i s p l a y : C a n v a s 253

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

J2
M

E
U

S
ER

IN
TER

FA
C

E

The last method defined in the MyCanvas class is the commandAction() method that
is used to detect and process the Exit command whenever the user decides to terminate
the MIDlet.

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class ArcExample extends MIDlet

{

private Display display;

private MyCanvas canvas;

public ArcExample()

{

Figure 7-8. A filled half-circle arc

Listing 7-11
Drawing an

outlined arc

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

254 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

display = Display.getDisplay(this);

canvas = new MyCanvas (this);

}

protected void startApp()

{

display.setCurrent(canvas);

}

protected void pauseApp()

{

}

protected void destroyApp(boolean unconditional)

{

}

public void exitMIDlet()

{

destroyApp(true);

notifyDestroyed();

}

}

class MyCanvas extends Canvas implements CommandListener

{

private Command exit;

private ArcExample arcExample;

public myCanvas (ArcExample arcExample)

{

this.arcExample = arcExample;

exit = new Command("Exit", Command.EXIT, 1);

addCommand(exit);

setCommandListener(this);

}

protected void paint(Graphics graphics)

{

graphics.setColor(255,255,255);

graphics.fillRect(0, 0, getWidth(), getHeight());

graphics.setColor(255,0,0);

graphics.drawArc(0, 0, getWidth(), getHeight(), 180, 180);

}

public void commandAction(Command command, Displayable displayable)

{

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : L o w - L e v e l D i s p l a y : C a n v a s 255

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

J2
M

E
U

S
ER

IN
TER

FA
C

E

if (command == exit)

{

arcExample.exitMIDlet();

}

}

}

MIDlet-Name: ArcExample

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: ArcExample.jar

MIDlet-1: ArcExample, , ArcExample

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class ArcFilledExample extends MIDlet

{

private Display display;

private MyCanvas canvas;

public ArcFilledExample()

{

display = Display.getDisplay(this);

canvas = new MyCanvas (this);

}

protected void startApp()

{

display.setCurrent(canvas);

}

protected void pauseApp()

{

}

protected void destroyApp(boolean unconditional)

{

}

public void exitMIDlet()

{

Listing 7-12
The JAD file for

Listing 7-11

Listing 7-13
Drawing a
filled arc

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

destroyApp(true);

notifyDestroyed();

}

}

class MyCanvas extends Canvas implements CommandListener

{

private Command exit;

private ArcFilledExample arcFilledExample;

public MyCanvas (ArcFilledExample arcFilledExample)

{

this.arcFilledExample = arcFilledExample;

exit = new Command("Exit", Command.EXIT, 1);

addCommand(exit);

setCommandListener(this);

}

protected void paint(Graphics graphics)

{

graphics.setColor(255,255,255);

graphics.fillRect(0, 0, getWidth(), getHeight());

graphics.setColor(255,0,0);

graphics.fillArc(0, 0, getWidth(), getHeight(), 180, 180);

}

public void commandAction(Command command, Displayable displayable)

{

if (command == exit)

{

arcFilledExample.exitMIDlet();

}

}

}

MIDlet-Name: ArcFilledExample

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: ArcFilledExample.jar

MIDlet-1: ArcFilledExample, , ArcFilledExample

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

256 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

Listing 7-14
The JAD file for

Listing 7-13

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Text
Displaying text using the low-level user interface differs from displaying text with the
high-level user interface discussed in the previous chapter. The difference is based on
who controls the details used to display the text. Using the high-level user interface, text
is displayed by calling one of several methods and passing the text as a parameter to
those methods. Each method determines how to display the text without requiring any
direction from you. This is not the situation when displaying text using the low-level
user interface because you control the details of how text is displayed.

Many developers pay little attention to how text appears on the screen (other than
color and position), although displaying text is a complex operation. For example, someone
must determine the appearance of each letter of the text, the height and width of every
character, and the size of the space between characters, among other such details.

The font used to display text determines the appearance of text on the screen. There
are thousands of fonts, as you have probably seen when you write a document using a
word processor. We identify fonts by name, such as Times Roman and Arial. A font name

C h a p t e r 7 : L o w - L e v e l D i s p l a y : C a n v a s 257

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

J2
M

E
U

S
ER

IN
TER

FA
C

E

Drawing an Arc
Listed here are the steps for drawing an arc:

1. Declare references to classes.

2. Create instances of classes and assign those instances to references.

3. Display the instance of the Canvas class whenever the MIDlet is started.

4. Terminate the MIDlet when the Exit command is selected.

5. Define a class derived from the Canvas class that implements
a CommandListener.

6. Within the derived class, declare references.

7. Within the derived class, create an instance of the Command class.

8. Within the derived class, associate the instance of the Command
class with the canvas.

9. Within the derived class, associate the CommandListener with the canvas.

10. Within the derived class, define a paint() method to define the rectangular
area of the canvas within which to draw the arc, and define angles where the
arc begins and where the arc ends. Also set the color used to outline the arc
or the fill area of the arc, unless the default color value is going to be used
by the MIDlet.

11. Within the derived class, define a commandAction() method to process
the Exit command.

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

258 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

actually represents a set of font metrics that determine the pixels necessary to generate
alphanumeric characters and symbols on the screen and on a printed page.

The J2SE specification defines the FontMetrics class that is used to specify every detail
of the font; but the J2ME specification does not support the FontMetrics class, and therefore
you are limited to the font metrics that you can control from within your MIDlet. There
are three font metrics that are controllable by a MIDlet. These are the font face, the font
style, and the font size.

Selecting the font face is similar to selecting the font name in a word processing
document, although your selections are limited to the default system font face, monospace
font face, and proportional font face. The default system is the font face that the device
chooses. Monospace is a font face in which all characters are the same width. Proportional
is a font face in which the width of a character is determined by the nature of the character.
For example, the letter W is wider than the letter A, and the letter I has a smaller width
than A.

There are four font styles to choose from, which are identical to styles available in a
word processor. These are plain, bold, italic, and underlined. You can apply multiple font
styles to text by using the OR (|) operator. Font sizes are small, medium, and large. The
small computing device determines the actual size of the font. Unlike a word processor,
in which you can set font sizes to 10 points or 12 points, you cannot select specific type
sizes. Instead, you must limit your choices to small, medium, or large.

Font faces, font styles, and font sizes are associated with font constants (Table 7-3) that
are used to identify your font request. It is important to understand that your selection
of a font is a request and not a directive to the device. The device will match your request
to available fonts, but there is no guarantee that your request will be fulfilled. For example,
you might request a monospace font face and an italic font style, but the text might be
displayed using a monospace, plain font if the device doesn’t have a monospace font in
the italic font style.

You set a font by calling the setFont() method, which is a member of the Graphics class.
The setFont() method requires one parameter, which is an instance of the Font class. You
obtain the instance of the Font class by calling the getFont() method. The getFont() method
requires three parameters. The first parameter is the font face, the second parameter is
the font style, and the last parameter is the font size.

The following code segment illustrates how to set a font to the proportional font
face that has bold and underline styles, and uses small size characters. Notice that the
getFont() method is a member of the Font class, as are the font constants. Also notice
that the OR (|) operator is used to combine font styles. Text displayed by that graphic
context appears in the font once the font is set.

graphics.setFont(Font.getFont(Font.PROPORTIONAL,

Font.BOLD | Font.ITALIC, Font.SMALL);

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : L o w - L e v e l D i s p l a y : C a n v a s 259

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

J2
M

E
U

S
ER

IN
TER

FA
C

E

You can determine the font face, font style, and font size of an instance of the Font
class by calling the getFace() method, getStyle() method, and the getSize() method,
respectively. These methods return an integer that represents the value of the font
constant listed in Table 7-3.

The integer returned by the getStyle() method represents the combined style of the
instance of the Font class, such as Font.BOLD | Font.ITALIC. You can use a series of other
methods to query the individual font styles associated with a font. These methods are
isPlain(), isBold(), isItalic(), and isUnderlined(). Each of these methods returns a boolean
value that is true if the corresponding style is used in the font, otherwise a false value
is returned.

Aligning Text
Aligning text is probably the trickiest routine that you’ll encounter when drawing text on
the canvas because you’ll need to know measurements of text that is already on the canvas
as well as measurements of text being drawn. Text is drawn within a virtual bounding
box, which is an invisible box that defines the boundaries of the text. First you specify
a position on the screen by setting coordinates. Let’s call them x, y. Next, you specify
an anchor point that identifies the relationship of the coordinate to the bounding box.

Font Constant Description Font Constant Value

FACE_SYSTEM System font face 0

FACE_MONOSPACE Monospace font face 32

FACE_PROPORTIONAL Proportional font face 64

STYLE_PLAIN Plain font style 0

STYLE_BOLD Bold font style 1

STYLE_ITALIC Italicized font style 2

STYLE_UNDERLINED Underlined font style 4

SIZE_SMALL Small font size 8

SIZE_MEDIUM Medium font size 0

SIZE_LARGE Large font size 16

Table 7-3. Font Constants

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

260 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

Suppose you want the coordinates to be the upper-left corner of the boundary box.
You then specify the anchor point TOP | LEFT. Let’s say that you want the coordinates
to represent the lower-right corner of the boundary box. You then use the BOTTOM |
RIGHT anchor point. The width and height of the text determine the coordinate of the
opposite corner of the boundary box. Anchor points are represented by anchor point
constants, as shown in Table 7-4.

There are three horizontal values, LEFT, HCENTER, and RIGHT, and three vertical
values, TOP, BASELINE, and BOTTOM. Horizontal and vertical values define the location
within the bounding box of the specified coordinate. The values are combined to define
an anchor point. Here’s how this is done. You pick a location on the screen, and if you
want that position to be the upper-right of the bounding box, you set the anchor point
to GRAPHICS.TOP | GRAPHICS.RIGHT.

The question that remains to be answered is how do you know which anchor point
to use to draw your text? However, there isn’t a clear-cut answer. Other text that abuts
the boundary box usually determines text alignment within the boundary box. Text is
measured by ascent, descent, leading, font height, and advance.

Ascent is the measurement from the baseline of the text to the top of the highest
character in the text. Descent is from the baseline to the lowest character in the text. Let’s
examine the following text to identify the ascent and descent: “We work together.” The
ascent is the distance between the bottom and the top of the W because the W is the highest
character in the text. The bottom of the W is the baseline. The descent is the distance
between the bottom of the g and the bottom of the W, or the bottom of any of the other
characters of the text, because the g is the lowest character within the text.

Anchor Point
Constant Description

LEFT Coordinates represent the left edge of the boundary box.

HCENTER Coordinates represent the horizontal center of the boundary box.

RIGHT Coordinates represent the right edge of the boundary box.

TOP Coordinates represent the top edge of the boundary box.

BASELINE Coordinates represent the baseline for the text.

BOTTOM Coordinates represent the bottom edge of the boundary box.

Table 7-4. Anchor Point Constants

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : L o w - L e v e l D i s p l a y : C a n v a s 261

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

J2
M

E
U

S
ER

IN
TER

FA
C

E

Leading is the distance between the descent and ascent of abutting lines of text. The
font height is the sum of the ascent, leading, and descent. And the advance is the text length,
including spaces between characters.

You can use methods of the Font class to determine these measurements. You can
determine the advance by calling the charWidth() method, the charsWidth() method,
or the substringWidth() method. The charWidth() method measures the width of one
character and requires one parameter, which is a character. This method returns an
integer representing the width of the character in pixels.

The charsWidth() method measures a series of characters in a character array. This
method requires three parameters. The first parameter is the character array. The second
parameter is an integer representing the first character of the series being measured. The
last parameter is an integer representing the length of the series.

The substringWidth() method measures a substring of characters within a string and
also requires three parameters. The first parameter is the string. The second parameter
is an integer representing the first character of the substring, and the last parameter is
an integer representing the length of the substring.

The ascent is measured by calling the getBaselinePosition() method. No parameters
are required by this method because the method analyzes text already associated with
the graphic context used to draw text on the canvas. The getBaselinePosition() method
returns an integer that represents the pixels between the baseline and the top character
within the text.

The font height is measured by calling the getHeight() method. The getHeight()
method does not require any parameters and returns an integer representing the pixel
measurement of the font height.

You use these measurements to determine the alignment adjustments that must be
made to the anchor point of the text. Let’s say you draw two lines of text, and you want
to align both lines. The first line is already drawn, and you’re about to draw the second
line. First, set the boundary box of the second line of text two pixels below the boundary
box of the first line of text. Next, determine the font height of both lines. Let’s assume
that the font height for the first line of text is higher than the second line because the first
line has descending characters and the second line does not have either ascending or
descending characters.

You may want to anchor the second line of text toward either the horizontal center or
bottom of the boundary box in order to avoid the appearance of cramping the descending
character of the first line of text.

Be forewarned that aligning text using text metrics and anchor points is tedious and
requires patience, but your efforts will show in the results on the screen.

Drawing Methods
There are four methods that you can use to draw text on the canvas. Your choice depends
on whether the text is a character, array of characters, a string, or a substring. Call the

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

262 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

drawChar() method if you are drawing one character on the canvas. The drawChar()
method requires four parameters. The first parameter is the character. The next two
parameters are the x, y coordinates of the upper-left corner of the boundary box. And
the last parameter is the anchor point.

The drawChars() method is used to draw an array of characters or a subset of a
character array. The drawChars() method requires six parameters. The first parameter
is the character array. The second parameter is an integer representing the offset in the
array where the first character to be drawn is located. The third parameter indicates
how many characters are to be drawn starting at the offset specified by the second
parameter. The fourth and fifth parameters are the x, y coordinates of the boundary
box’s anchor point.

There are two methods you can use when drawing a string on the canvas. These are the
drawString() method and the drawSubstring() method. The drawString() method requires
four parameters. The first parameter is the string. The second and third parameters are
the x, y coordinates that specify the anchor point coordinate. And the last parameter
specifies the part of the boundary box to locate the anchor point.

The drawSubstring() method is very similar in structure to the drawChars() method
in that the same six parameters are required, except the first parameter is the string that
contains the substring that is being drawn on the canvas.

Drawing Text
Listing 7-15 illustrates how to draw a line of text on the canvas. Listing 7-16 is the JAD
file for Listing 7-15. The text is short but sufficient to demonstrate this technique. This
example uses the proportional font face, bold style, and small font size to draw the text in
the center of the boundary box, which is located near the upper-left corner of the canvas.

The TextExample class definition is structured identically to other listings in this
chapter. Likewise, the definition of the myCanvas class is very similar to the myCanvas
class definitions used in other examples. However, the definition of the paint() method
is where all the action takes place to draw the text.

The first two statements within the paint() method are used to erase the canvas, as
discussed in previous sections of this chapter. The third statement sets the font for the
graphic context used to draw the text. The setFont() method requires reference to an
instance of the Font class, which is returned by the getFont() method. Notice that we pass
the font face, font style, and font size that we want to the getFont() method. This assures
that the instance of the Font class returned to the MIDlet has those properties.

The last statement draws the string by calling the drawString() method (see Figure 7-9).
The text is “Profound statement.”, which is passed as the first parameter to the drawString()
method. The next two parameters are coordinates of the anchor point. The last parameter
defines the position of the string using the HCENTER | BASELINE constants. It tells
drawString() that the center of the bounding box and where the baseline occurs is at
pixel coordinate (50, 10).

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : L o w - L e v e l D i s p l a y : C a n v a s 263

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

J2
M

E
U

S
ER

IN
TER

FA
C

E

The commandAction() method is the last method defined in the myCanvas class.
This class definition is the same as used in other examples in this chapter.

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class TextExample extends MIDlet

{

private Display display;

private MyCanvas canvas;

public TextExample ()

{

display = Display.getDisplay(this);

canvas = new MyCanvas (this);

}

Figure 7-9. This draws a string on the canvas by calling the drawString() method.

Listing 7-15
Drawing

text on the
canvas

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

264 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

protected void startApp()

{

display.setCurrent(canvas);

}

protected void pauseApp()

{

}

protected void destroyApp(boolean unconditional)

{

}

public void exitMIDlet()

{

destroyApp(true);

notifyDestroyed();

}

}

class MyCanvas extends Canvas implements CommandListener

{

private Command exit;

private TextExample textExample;

public MyCanvas (TextExample textExample)

{

this. textExample = textExample;

exit = new Command("Exit", Command.EXIT, 1);

addCommand(exit);

setCommandListener(this);

}

protected void paint(Graphics graphics)

{

graphics.setColor(255,255,255);

graphics.fillRect(0, 0, getWidth(), getHeight());

graphics.setColor(255,0,0);

graphics.setFont(Font.getFont(Font.FACE_PROPORTIONAL,

Font.STYLE_BOLD, Font.SIZE_SMALL));

graphics.drawString("Profound statement.", 50, 10,

Graphics.HCENTER|Graphics.BASELINE);

}

public void commandAction(Command command, Displayable displayable)

{

if (command == exit)

{

textExample.exitMIDlet();

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

}

}

}

MIDlet-Name: TextExample

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: TextExample.jar

MIDlet-1: TextExample, , TextExample

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

C h a p t e r 7 : L o w - L e v e l D i s p l a y : C a n v a s 265

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

J2
M

E
U

S
ER

IN
TER

FA
C

E

Drawing Text
Listed here are the steps for drawing text:

1. Declare references to classes.

2. Create instances of classes and assign those instances to references.

3. Display the instance of the Canvas class whenever the MIDlet is started.

4. Terminate the MIDlet when the Exit command is selected.

5. Define a class derived from the Canvas class that implements
a CommandListener.

6. Within the derived class, declare references.

7. Within the derived class, create an instance of the Command class.

8. Within the derived class, associate the instance of the Command class with
the canvas.

9. Within the derived class, associate the CommandListener with the canvas.

10. Within the derived class, define a paint() method to create a font that has
a proportional font face, bold font style, and small font size. The paint()
method must also draw the text “Profound statement.”

11. Within the derived class, define a commandAction() method to process
the Exit command.

Listing 7-16
The JAD

file for
Listing 7-15

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Images
An image is an instance of an Image object that has been previously created either by
your MIDlet using a graphic context (discussed earlier in this chapter), or by graphics
software. Recall from the previous chapter, there are two kinds of images: a mutable
image can be modified by your MIDlet, and an immutable image cannot be modified
by your MIDlet.

You create an instance of an Image by calling the createImage() method. The
createImage() method requires one parameter or two parameters depending on whether
you are drawing a mutable or immutable image. One parameter is required for the
createImage() method if the instance is used to draw an immutable image. The parameter
is the file name of the image, including the full directory path. The following code segment
illustrates this technique:

Image image = Image.createImage(“/myImage.png”);

Two parameters are required for the createImage() method if the instance is used to
draw a mutable image. These parameters define the height and width in pixels of the
memory block used to store the mutable image as it is being drawn. The following code
segment creates a block of memory 20 pixels high and 10 pixels wide for a total image
size of 200 pixels.

Image tmpImg = Image.createImage(20, 10);

Some developers sketch a mutable image on graph paper to get a rough layout of the image
and an estimate of the memory block size required to draw the image.

You’ll use the instance as a parameter to the drawImage() method, which draws
the image on the canvas. You’ll see how this is done later in this section. The instance
of the image is also used to create a mutable image.

You create a mutable image by calling the getGraphics() method of the Image class
to return an instance of the Graphics class, which is the graphic context used to draw the
mutable image. Methods discussed in the “Graphics” section earlier in this chapter are
used to draw elements of the mutable image.

Let’s say that you want to create a mutable image of a line. The following code segment
shows you how this is done. First, you must create an instance of the Image class by calling
the createImage() method. Next, you’ll need an instance of the Graphics class that is
created by calling the getGraphics() method. And then you call the drawLine() method,
as described previously in this chapter.

266 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Image image = Image.createImage(20, 10);

Graphics graphic = image.getGraphics();

graphic.drawLine(5, 5, 20, 20);

Of course, your mutable graphic would be more complex than a simple line because
you’ll probably use other methods of the Graphics class to build an attractive image.
Each of these methods, however, must be called from the same instance of the Graphics
class that is derived from the instance of the image you created in your MIDlet.

The drawImage() method is used to draw a mutable or immutable image on the
canvas. The drawImage() requires four parameters. The first parameter is the instance
of the Image class that references the image. The next two parameters are integers that
represent the coordinate used to position the image on the canvas. The image is drawn
within a virtual boundary box similar to the boundary box used to draw text on the canvas
(see “Text”). The coordinate represents the upper-left corner of the boundary box.

The last parameter is an integer that represents the portion of the image bounding
box that is anchored at the specified coordinate. The image anchor point is used to finely
adjust the location of the image within the boundary box. Table 7-5 lists constants used
to represent image anchor points. Two anchor points must be specified in the drawImage()
method—one for the horizontal position and the other for the vertical position. This is
nearly identical to the way anchor points are specified in the text drawing methods.

Here is a code segment that shows how to draw an image on the canvas. This method
is used to draw both mutable and immutable images. The code segment centers the image

C h a p t e r 7 : L o w - L e v e l D i s p l a y : C a n v a s 267

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

J2
M

E
U

S
ER

IN
TER

FA
C

E

Anchor Point
Constant Description

LEFT Coordinates represent the left edge of the boundary box.

HCENTER Coordinates represent the horizontal center of the boundary box.

RIGHT Coordinates represent the right edge of the boundary box.

TOP Coordinates represent the top edge of the boundary box.

VCENTER Coordinates represent the baseline for the text.

BOTTOM Coordinates represent the bottom edge of the boundary box.

Table 7-5. Image Anchor Point Constants

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

horizontally and vertically at 5, 20, which is the center of the image bounding box specified
by the coordinate.

graphics.drawImage(image, 5, 20, Graphics.HCENTER | Graphics.VCENTER);

Drawing an Image
Listing 7-17 creates a mutable image of a filled arc (see Figure 7-10) and then draws the
image. The JAD file is in Listing 7-18. Listing 7-19 draws an immutable image; Listing 7-20
contains the JAD file.

Let’s begin with Listing 7-17. The structure of this listing is very similar to other
listings discussed in this chapter, so we’ll move to the definition of the MyCanvas class
that contains statements not used in previous listings. The MyCanvas definition begins
by declaring references that include a reference to an instance of the Image class, which
is set to null. The constructor of the MyCanvas class creates an Exit command and assigns
the Exit command and a CommandListener to the canvas.

268 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

Figure 7-10. A drawing of a mutable image of a filled arc

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Next, the memory block is requested for the image by calling the createImage() method.
The memory block is 70 pixels high and 70 pixels wide. The createImage() method returns
an instance of the Image class, which is then assigned to the image variable.

The instance of the Image class is then used to create a graphic context by calling the
getGraphics() method. The getGraphics() method returns an instance of the Graphics
class. The setColor() method is then called to set the color of the image to red. This is
followed by a call to the fillArc() method that draws a filled arc (see “Arcs”) in the memory
block that was requested for the image.

You can’t assume that the device will be able to reserve the block of memory for the
image or be able to create the image. Therefore, you should place these statements within
a try {} block and create a catch {} block to respond to any errors that might occur during
this process. The catch {} block in this example displays an alert dialog box should an
error happen (see Chapter 6).

C h a p t e r 7 : L o w - L e v e l D i s p l a y : C a n v a s 269

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

J2
M

E
U

S
ER

IN
TER

FA
C

E

Drawing an Image
Listed here are the steps for drawing an image:

1. Declare references to classes.

2. Create instances of classes and assign those instances to references.

3. Display the instance of the Canvas class whenever the MIDlet is started.

4. Terminate the MIDlet when the Exit command is selected.

5. Define a class derived from the Canvas class that implements a
CommandListener.

6. Within the derived class, declare references.

7. Within the derived class, create an instance of the Command class.

8. Within the derived class, associate the instance of the Command class with
the canvas.

9. Within the derived class, associate the CommandListener with the canvas.

10. Request a block of memory sufficient to hold the image, and then create the
image, if you are using a mutable image. Otherwise, identify the file name
that contains the immutable image. Display an error message if there is a
problem creating the image or opening the file that contains the image.

11. Within the derived class, define a paint() method that determines whether
the image was successfully created or the image file was successfully
opened. If so, then draw the image on the canvas.

12. Within the derived class, define a commandAction() method to process the
Exit command.

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The definition of the paint() method is also different from paint() methods used in
previous listings in this chapter. The paint() method uses an if statement to determine
whether the image variable is referencing an image memory block. You’ll recall that the
image variable was initialized to null at the beginning of the MyCanvas class definition.
If the allocation of the memory block failed in the constructor, the image variable is still
null, otherwise the null value is replaced with a reference to the image memory block.

The drawImage() method is called once the paint() method verifies that the image
variable isn’t null. The drawImage() is passed the image variable and the coordinate
of the image boundary box. The image is then positioned in the vertical and horizontal
center of the image boundary box as indicated by the image anchor point parameter.
The commandAction() method definition is the same as in other listings discussed in
this chapter.

Listing 7-19 is similar to Listing 7-17 except for statements within the try {} block and
catch {} block in the definition of the MyCanvas class constructor. You’ll notice that the
try {} block contains one statement that calls the createImage() method. The createImage()
is passed the name of the immutable image that will be associated with the instance of
the Image class returned by the createImage() method. No other statements are necessary
because the image is already created and the createImage() method automatically requests
a block of memory to store the image.

However, there is a possibility that the device is unable to load the image into memory;
for example, it may not be able to locate the image file that is passed to the createImage()
method. Therefore, you still need to place the call to the createImage() method within a
try {} block. The catch{} block is practically the same as in Listing 7-17, except the message
that appears in the alert dialog box reports that the image file cannot be opened.

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class MutableImageExample extends MIDlet

{

private Display display;

private MyCanvas canvas;

public MutableImageExample ()

{

display = Display.getDisplay(this);

canvas = new MyCanvas (this);

}

protected void startApp()

{

display.setCurrent(canvas);

}

protected void pauseApp()

{

270 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

Listing 7-17
Drawing

a mutable
image on

the canvas

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

}

protected void destroyApp(boolean unconditional)

{

}

public void exitMIDlet()

{

destroyApp(true);

notifyDestroyed();

}

class MyCanvas extends Canvas implements CommandListener

{

private Command exit;

private MutableImageExample mutableImageExample;

private Image image = null;

public myCanvas(MutableImageExample mutableImageExample)

{

this. mutableImageExample = mutableImageExample;

exit = new Command("Exit", Command.EXIT, 1);

addCommand(exit);

setCommandListener(this);

try

{

image = Image.createImage(70, 70);

Graphics graphics = image.getGraphics();

graphics.setColor(255, 0, 0);

graphics.fillArc(10, 10, 60, 50, 180, 180);

}

catch (Exception error)

{

Alert alert = new Alert(“Failure”,

“Creating Image”, null, null);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

}

protected void paint(Graphics graphics)

{

if (image != null)

{

graphics.setColor(255,255,255);

graphics.fillRect(0, 0, getWidth(), getHeight());

graphics.drawImage(image, 30, 30,

C h a p t e r 7 : L o w - L e v e l D i s p l a y : C a n v a s 271

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

J2
M

E
U

S
ER

IN
TER

FA
C

E

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Graphics.VCENTER | Graphics.HCENTER);

}

}

public void commandAction(Command command, Displayable display)

{

if (command == exit)

{

mutableImageExample.exitMIDlet();

}

}

}

}

MIDlet-Name: MutableImageExample

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: MutableImageExample.jar

MIDlet-1: MutableImageExample, , MutableImageExample

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class ImmutableImageExample extends MIDlet

{

private Display display;

private MyCanvas canvas;

public ImmutableImageExample ()

{

display = Display.getDisplay(this);

canvas = new MyCanvas (this);

}

protected void startApp()

{

display.setCurrent(canvas);

}

protected void pauseApp()

{

}

protected void destroyApp(boolean unconditional)

272 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

Listing 7-18
The JAD

file for
Listing 7-17

Listing 7-19
Drawing an
immutable
image on

the canvas

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

{

}

public void exitMIDlet()

{

destroyApp(true);

notifyDestroyed();

}

class MyCanvas extends Canvas implements CommandListener

{

private Command exit;

private ImmutableImageExample immutableImageExample;

private Image image = null;

public MyCanvas (ImmutableImageExample immutableImageExample)

{

this. immutableImageExample = immutableImageExample;

exit = new Command("Exit", Command.EXIT, 1);

addCommand(exit);

setCommandListener(this);

try

{

image = Image.createImage(“/myImage.png”);

}

catch (Exception error)

{

Alert alert = new Alert(“Failure”,

“Can’t open image file.”, null, null);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

}

protected void paint(Graphics graphics)

{

if (image != null)

{

graphics.drawImage(image, 0, 0,

Graphics.VCENTER | Graphics.HCENTER);

}

}

public void commandAction(Command command, Displayable display)

{

if (command == exit)

{

C h a p t e r 7 : L o w - L e v e l D i s p l a y : C a n v a s 273

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

J2
M

E
U

S
ER

IN
TER

FA
C

E

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

274 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

immutableImageExample.exitMIDlet();

}

}

}

}

MIDlet-Name: ImmutableImageExample

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: ImmutableImageExample.jar

MIDlet-1: ImmutableImageExample, , ImmutableImageExample

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

Repositioning Text and Images
Each position on a canvas is organized by a row and column grid, where each coordinate
identifies a pixel. The upper-left corner of the canvas is always coordinate 0, 0, as
previously discussed in this chapter. Coordinates are used with methods of a graphic
context to identify locations on the canvas for drawing and positioning an image, as
illustrated through listings in this chapter.

Coordinates are passed explicitly to these methods by providing exact coordinates,
such as 5, 10, or implicitly by referencing an offset of an explicit coordinate, such as 5 + 3,
10 + 3. In either case, coordinates are based on the 0, 0 coordinate being the upper-left
corner of the canvas.

You might need to proportionally shift all text and images to a new location on the
canvas. There are two techniques you can use to make this move. First, you can change
all coordinates of an image to reflect its new position, or you can move the entire grid
and let the device adjust all the coordinates based on the new position of the upper-left
corner of the grid on the canvas. This technique, called translating coordinates, is a more
efficient way of moving text and images than modifying coordinates within your MIDlet.

You translate coordinates by calling the translate() method of the Graphics class. The
translate() method requires two parameters that are integers representing the x, y coordinate
of the new position of the upper-left corner of the grid.

Let’s say you draw an arc where the upper-left corner of the image boundary box is
at coordinate 0, 0 on the canvas. You then want to modify your MIDlet to move the arc
and any other text and images on the canvas down and across 15 pixels. You can achieve
this by calling the translate() and passing the coordinates of the new location of the first
cell of the grid before the image is drawn on the screen. This is illustrated in Listing 7-21.

You’ll notice that the coordinate for the drawImage() method is 0, 0. However, the
coordinate passed to the translate() method is 15, 15. Reference to coordinate 0, 0 is
automatically adjusted to the coordinate of the new upper-left corner of the grid, which
is 15, 15.

Listing 7-20
The JAD

file for
Listing 7-19

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

At any point in your MIDlet you can reset the first pixel on the canvas to the original
position by calling the translate() method and passing it 0, 0 as the coordinate for the
upper-left corner of the canvas. Remember that the translate() method only affects the
position of text and images called after the translate() method is invoked. Text and images
previously drawn on the canvas are unaffected.

You can determine the coordinate of the upper-left corner of the canvas by calling
the getTranslateX() method and getTranslateY() method to return the x, y coordinate.

Translating Coordinates in a MIDlet
Listing 7-21 is a modification of Listing 7-17, which creates a mutable image of a filled
arc drawn on the canvas using the drawImage() method. Listing 7-22 is the JAD file for
Listing 7-21. Refer to the “Drawing an Image” section of this chapter for a detailed
explanation of Listing 7-17, which also applies to Listing 7-21.

C h a p t e r 7 : L o w - L e v e l D i s p l a y : C a n v a s 275

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

J2
M

E
U

S
ER

IN
TER

FA
C

E

Translating Coordinates
Listed here are the steps for translating coordinates:

1. Declare references to classes.

2. Create instances of classes and assign those instances to references.

3. Display the instance of the Canvas class whenever the MIDlet is started.

4. Terminate the MIDlet when the Exit command is selected.

5. Define a class derived from the Canvas class that implements
a CommandListener.

6. Within the derived class, declare references.

7. Within the derived class, create an instance of the Command class.

8. Within the derived class, associate the instance of the Command class
with the canvas.

9. Within the derived class, associate the CommandListener with the canvas.

10. Request a block of memory sufficient to hold the image, and then create the
image, if you are using a mutable image. Otherwise, identify the file name
that contains the immutable image. Display an error message if there is
a problem creating the image or opening the file that contains the image.

11. Within the derived class, define a paint() method that determines whether
the image was successfully created or the image file was successfully
opened. If so, translate the coordinates of the first pixel on the grid, and
then draw the image on the canvas.

12. Within the derived class, define a commandAction() method to process
the Exit command.

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You’ll notice that the instance of the Image class is created in the constructor of the
definition of the myCanvas class. Creation of the instance also reserves a block of memory
that is used to draw the filled arc. The instance is also used to create an instance of the
Graphics class that provides the graphic contexts needed to draw the filled arc. The color
is set to red, and the fillArc() method is called to draw the filled arc with the reserved
block of memory.

Let’s jump down to the definition of the paint() method in Listing 7-21 to see how
the image of the filled arc is drawn on the screen using the translate() method. Once the
MIDlet determines that an image has been created by using the if statement, the translate()
method is called and passed the coordinate 45, 45, which is the new coordinate for the
upper-left corner of the grid.

Notice that the drawImage() method is passed 0, 0 as the coordinate used to draw the
image on the canvas. Coordinate 0, 0 refers to the first pixel on the canvas. However, the
translate() method redefined the coordinate of the first pixel as being 45, 45. Therefore,
the image is drawn at cell 45, 45 on the original grid rather than 0, 0 (see Figure 7-11).
This happens without your having to modify the coordinates passed to the drawImage()
method.

276 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

Figure 7-11. An image is drawn at cell 45, 45 on the original grid rather than
at cell 0, 0.

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class TranslateCoordinates extends MIDlet

{

private Display display;

private MyCanvas canvas;

public TranslateCoordinates ()

{

display = Display.getDisplay(this);

canvas = new MyCanvas (this);

}

protected void startApp()

{

display.setCurrent(canvas);

}

protected void pauseApp()

{

}

protected void destroyApp(boolean unconditional)

{

}

public void exitMIDlet()

{

destroyApp(true);

notifyDestroyed();

}

class MyCanvas extends Canvas implements CommandListener

{

private Command exit;

private TranslateCoordinates translateCoordinates;

private Image image = null;

public myCanvas(TranslateCoordinates translateCoordinates)

{

this. translateCoordinates = translateCoordinates;

exit = new Command("Exit", Command.EXIT, 1);

addCommand(exit);

setCommandListener(this);

try

{

image = Image.createImage(70, 70);

Graphics graphics = image.getGraphics();

graphics.setColor(255,0,0);

C h a p t e r 7 : L o w - L e v e l D i s p l a y : C a n v a s 277

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

J2
M

E
U

S
ER

IN
TER

FA
C

E

Listing 7-21
Using

translated
coordinates

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

278 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

graphics.fillArc(10, 10, 60, 50, 180, 180);

}

catch (Exception error)

{

Alert alert = new Alert(“Failure”,

“Creating Image”, null, null);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

}

protected void paint(Graphics graphics)

{

if (image != null)

{

graphics.setColor(255,255,255);

graphics.fillRect(0, 0, getWidth(), getHeight());

graphics.translate(45, 45);

graphics.drawImage(image, 0, 0,

Graphics.VCENTER | Graphics.HCENTER); }

}

public void commandAction(Command command, Displayable display)

{

if (command == exit)

{

translateCoordinates.exitMIDlet();

}

}

}

}

MIDlet-Name: TranslateCoordinates

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: TranslateCoordinates.jar

MIDlet-1: TranslateCoordinates, , TranslateCoordinates

Listing 7-22
The JAD

file for
Listing 7-21

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : L o w - L e v e l D i s p l a y : C a n v a s 279

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

J2
M

E
U

S
ER

IN
TER

FA
C

E

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

Clipping Regions
The drawImage() method used in previous listings in this chapter draws an image on
the canvas based on a clipping region. A clipping region is a rectangular piece of an image
defined by two sets of coordinates. The first set identifies the upper-left corner of the
clipping region, and the second set is the width and height of the clipping region. Only
the portion of the image that appears within the clipping region is drawn on the canvas.
Other portions of the image still exist within the image but are not drawn. The entire
canvas is the default clipping region and is used to draw the complete image whenever
the drawImage() method is called.

Let’s return to the filled arc created and drawn in Listing 7-17 to see how adjusting
the clipping region changes the way an image is drawn on the canvas. The image
boundary box of the filled arc in Listing 7-17 has the coordinates 10, 10, 60, 60. This means
the upper-left corner of the box appears at cell 10, 10 and has a width of 60 and height
of 60. The clipping region is the entire canvas. We can show a piece of the filled arc
by setting the clipping region to 35, 35, 40, 40, which is what happens in Listing 7-23.
Only a portion of the filled arc is drawn when the drawImage() method is called.

You set the clipping region by calling the setClip() method of the Graphics class.
The setClip() method requires four parameters. The first two parameters are integers
representing the upper-left corner coordinates of the clipping region, and the third and
fourth parameters are integers representing the width and height of the clipping region.

You can also reduce the size of a clipping region by calling the clipRect() method.
The clipRect() method also requires the same four parameters as the setClip(), except
coordinates passed to the clipRect() method refer to the new clipping region.

There are four other methods that you might find handy when working with a
clipping region. These are the getClipX() method, getClipY() method, getClipHeight()
method, and getClipWidth() method. The getClipX() method and getClipY() method return
upper-left coordinates of the existing clipping region. Similarly, the getClipHeight()
method returns the height and getClipWidth() method returns the width of the existing
clipping region.

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

280 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

Creating a Clipping Region
Listing 7-23 illustrates how to set a clipping region in a MIDlet. Listing 7-24 contains
the JAD file for Listing 7-23. This example draws a filled arc, which you have seen in
Listing 7-17 (see Figure 7-12). However, only a portion of the filled arc is actually drawn
on the canvas because a clipping region is defined as being smaller than the filled arc
(see Figure 7-13).

Creating a Clipping Region
Listed here are the steps for creating a clipping region:

1. Declare references to classes.

2. Create instances of classes and assign those instances to references.

3. Display the instance of the Canvas class whenever the MIDlet is started.

4. Terminate the MIDlet when the Exit command is selected.

5. Define a class derived from the Canvas class that implements
a CommandListener.

6. Within the derived class, declare references.

7. Within the derived class, create an instance of the Command class.

8. Within the derived class, associate the instance of the Command class with
the canvas.

9. Within the derived class, associate the CommandListener with the canvas.

10. Request a block of memory sufficient to hold the image, and then create the
image, if you are using a mutable image. Otherwise, identify the file name
that contains the immutable image. Display an error message if there is
a problem creating the image or opening the file that contains the image.

11. Within the derived class, define a paint() method that determines whether
the image was successfully created or the image file was successfully opened.
If so, create a new clipping region and draw the image on the canvas.

12. Within the derived class, define a commandAction() method to process the
Exit command.

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : L o w - L e v e l D i s p l a y : C a n v a s 281

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

J2
M

E
U

S
ER

IN
TER

FA
C

E

Listing 7-23 is basically the same as Listing 7-17, so refer back to the “Drawing an
Image” section if you are unsure of how each statement in the MIDlet works. For now,
we’ll turn our attention to the definition of the paint() method since this is where the
clipping region is created.

The filled arc is created and drawn in the myCanvas class constructor and drawn
on the screen by calling the drawImage() method in the definition of the paint() method.
However, the clipping region is created prior to calling the drawImage() method since
the drawImage() method draws the image on the current clipping region, which is the
full canvas if we didn’t precede the drawImage() method with the setClip() method.

Figure 7-12. A filled arc is drawn without using a clipping region.

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The setClip() method is passed two coordinates. The first coordinate identifies the
upper-left cell of the clipping region, which is 35, 35. The second coordinate identifies
the width and height of the region, which is 40, 40.

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class ClippingRegion extends MIDlet

{

private Display display;

private MyCanvas canvas;

public ClippingRegion()

{

display = Display.getDisplay(this);

canvas = new MyCanvas(this);

282 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

Figure 7-13. A filled arc is drawn using a clipping region.

Listing 7-23
Creating

a clipping
region

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

}

protected void startApp()

{

display.setCurrent(canvas);

}

protected void pauseApp()

{

}

protected void destroyApp(boolean unconditional)

{

}

public void exitMIDlet()

{

destroyApp(true);

notifyDestroyed();

}

class MyCanvas extends Canvas implements CommandListener

{

private Command exit;

private ClippingRegion clippingRegion;

private Image image = null;

public MyCanvas (ClippingRegion clippingRegion)

{

this. clippingRegion = clippingRegion;

exit = new Command("Exit", Command.EXIT, 1);

addCommand(exit);

setCommandListener(this);

try

{

image = Image.createImage(70, 70);

Graphics graphics = image.getGraphics();

graphics.setColor(255,0,0);

graphics.fillArc(10, 10, 60, 50, 180, 180);

}

catch (Exception error)

{

Alert alert = new Alert(“Failure”, “Creating Image”,

null, null);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

}

C h a p t e r 7 : L o w - L e v e l D i s p l a y : C a n v a s 283

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

J2
M

E
U

S
ER

IN
TER

FA
C

E

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

284 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

protected void paint(Graphics graphics)

{

if (image != null)

{

graphics.setColor(255,255,255);

graphics.fillRect(0, 0, getWidth(), getHeight());

graphics.setClip(35, 35, 40, 40);

graphics.drawImage(image, 30, 30,

Graphics.VCENTER | Graphics.HCENTER);

}

}

public void commandAction(Command command, Displayable display)

{

if (command == exit)

{

clippingRegion.exitMIDlet();

}

}

}

}

MIDlet-Name: ClippingRegion

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: ClippingRegion.jar

MIDlet-1: ClippingRegion, , ClippingRegion

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

Animation
Animation is the simulation of motion on the screen caused by the timed drawing of
a series of related images. Each image is referred to as a cell in animation terminology;
however, we’ll use the term image instead because a cell also refers to an intersection of
the grid used for positioning objects on the canvas.

Each image in the animation must relate to the image currently displayed and the
next image to be displayed. Let’s say the animation shows a ball bouncing up and down.
At least two images are necessary to create this illusion of motion. One image is the ball
in the air, and the other is the ball on the ground. The animation begins by showing the

Listing 7-24
The JAD file for

Listing 7-23

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

image of the ball in the air followed by the image of the ball on the ground and then back
to displaying the ball in the air.

You can enhance the quality of the animation by inserting other images in this
sequence. For example, one image might be the ball striking the ground followed by
another image that shows the ball being flattened by the ground, and then the image
of the rounded ball on the ground is displayed before the ball is shown in the air.

Our brain is able to retain the current image for the fraction of a second until the next
image is displayed. We don’t notice that the image has changed. That is, we don’t notice
unless the time between displaying images is longer than the length of time our brain
retains the image, or if the next image isn’t logically associated with the current image.

For example, suppose there is an animation of a ball being dropped from a rooftop
to the ground. The ball bounces after striking the ground. The animation begins with the
image of the ball on the rooftop followed by the ball in the air, giving the illusion of the
ball falling. The next image we’d expect to see is the ball hitting the ground. Let’s say
that the next image isn’t the ball hitting the ground but is the image of the ball on the
rooftop again. The sequence of images isn’t logical and therefore disrupts the illusion
of the bouncing ball.

Simulated movement becomes realistic if 30 images (sometimes called frames) are
displayed per second. This is the display rate used in films and television. However, you
can probably use a slower rate for animation on the small computing device. The slower
the rate (fewer images per second), the more jerky the movement appears.

Animation appears to move smoothly if each image in the series represents a small
progression toward the final image. Let’s return to the bouncing ball. The ball appears
to move roughly if there are three images: one image at the top of the roof; another midway
to the ground; and the last image of the ball hitting the ground. However, by showing
other images of the ball at different stages of falling in a logical sequence, the ball appears
to fall smoothly from the roof.

The first step in animation is to carefully lay out the progression of images that you’ll
need to display in order to create the illusion of movement. Next, create each image so
that each is slightly different from the previous image. You can create these images as
either mutable or immutable. A mutable image is created using methods described in this
chapter. An immutable image is created using graphics software or digital photography.

Once images are drawn or loaded from a file, you display each image by first calling
the createImage() method to create an instance of the Image class and then calling the
drawImage() method. Timing the display of each image is controlled by a timing loop
(sometimes within a while loop) so that the animation recycles to the first image after
the last image is displayed.

Another way to incorporate animation in your MIDlet is to create one large image
that is a composite of each image in the animation. You then change the clipping region
each time an image is to be displayed. The coordinate of the clipping region changes to
the coordinate of the image that is to be displayed. This technique draws the image once
and then displays portions of the image as required to create the illusion of movement.

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

J2
M

E
U

S
ER

IN
TER

FA
C

E
C h a p t e r 7 : L o w - L e v e l D i s p l a y : C a n v a s 285

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Quick Reference Guide
This quick reference guide provides an overview of classes used by J2ME for the
low-level user interface. Full details of these classes and all Java classes and interfaces
are available at java.sun.com.

javax.microedition.lcdui.Canvas Class

Method Description

int getWidth() Return the width of the canvas in pixels.

int getHeight() Return the height of the canvas in pixels.

Paint

abstract void paint(Graphic g) Draw an image on the canvas using the
instance of the Graphics class passed as
a parameter.

final void repaint() Repaint the full canvas.

final void repaint(int x, int y, int width,
int height)

Repaint the specified region of the canvas.

final void servicePaints() A pending paint request must be processed
before other outstanding requests.

boolean isDoubleBuffered() Determine whether the device supports
double buffering.

Notify

void showNotify() Called before the application manager
displays the canvas.

void hideNotify() Called after the application manager
removes the canvas from the screen.

Key and Game Actions

void keyPressed(int keycode) Called whenever a key is pressed and used
to process the key code of that key.

void keyReleased(int keycode) Called whenever a key is released and used
to process the key code of that key.

void keyRepeated(int keycode) Called whenever a key is held down and
used to process the key code of that key
(not supported by all devices).

boolean hasRepeatEvents() Determine whether the device supports
repeated keys.

String getKeyName(int keycode) Return the text associated with the key.

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

286 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

J2
M

E
U

S
ER

IN
TER

FA
C

E

javax.microedition.lcdui.Canvas Class

Key and Game Actions

Method Description

int getKeyCode(int gameActionConstant) Return the key code value for the game
action constant.

int getGameAction(int keycode) Return the game action for a key code
value.

String getKeyname(int keycode) Return the name of the key for a key code.
The name returned is not the name of the
game action, but is the name of the actual key.

Pointer Events

boolean hasPointerEvents() Determine whether the device supports
a pointer device.

boolean hasPointerMotionEvents() Determines whether the device detects
the press, drag, and release motion of
a pointer device.

void pointerDragged(int x, int y) Called in response to a pointer drag event.

void pointerPressed(int x, int y) Called in response to a pointer press event.

void pointerReleased(int x, int y) Called in response to a pointer release event.

javax.microedition.lcdui.Graphics Class

Method Description

void setColor(int RGB) Change the current color to the integer
represented by RGB. Red, green, and blue
color values are consolidated into one
integer value and passed to the setColor()
method.

void setColor(int red, int green, int blue) Change the current color to integers
represented by red, green, and blue
color values.

int getColor() Retrieve the integer value that represents
the current color.

int getBlueComponent() Retrieve the blue color value.

int getGreenComponent() Retrieve the green color value.

int getRedComponent() Retrieve the red color value.

void setGrayScale(int value) Change the value of the current gray scale.

int getGrayScale() Retrieve the value of the current gray scale.

C h a p t e r 7 : L o w - L e v e l D i s p l a y : C a n v a s 287

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

288 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

javax.microedition.lcdui.Graphics Class

Method Description

Stroke Style

int getStrokeStyle() Retrieve the stroke style of a graphic context.

void setStrokeStyle(int style) Set the stroke style of a graphic context,
where style is either SOLID or DOTTED.

Line

void drawLine(int x1, int y1, int x2, int y2) Draw a line beginning at coordinate x1, y1
and ending at coordinate x2, y2.

Arc

Void drawArc(int x1, int y1, int x2, int y2,
startAngle, endAngle)

Draw an outline arc within the rectangle
defined as the first four parameters
beginning with the startAngle and
terminating with the endAngle.

Void fillArc(int x1, int y1, int x2, int y2,
startAngle, endAngle)

Draw a filled arc within the rectangle
defined as the first four parameters
beginning with the startAngle and
terminating with the endAngle.

Rectangle

void drawRect(int x1, int y1, int x2, int y2) Draw a rectangle, where x1, y1 represents
the coordinate of the upper-left corner of
the rectangle, and x2, y2 represents the
width and height of the rectangle.

void drawroundRect(int x1, int y1, int x2,
int y2, int arcW, int arcH)

Draw a rounded rectangle, where x1, y1
represents the coordinate of the upper-left
corner of the rectangle, and x2, y2 represents
the width and height of the rectangle. arcW
is the angle for the width of the arc, and
arcH is the angle for the height of the arc.

void fillRect(int x1, int y1, int x2, int y2) Draw a filled rectangle, where x1, y1
represents the coordinate of the upper-left
corner of the rectangle, and x2, y2 represents
the width and height of the rectangle.

void fillRoundedRect (int x1, int y1, int x2,
int y2, int arcW, int arcH)

Draw a rounded filled rectangle, where
x1, y1 represents the coordinate of the
upper-left corner of the rectangle, and x2,
y2 represents the width and height of the
rectangle. arcW is the angle for the width
of the arc, and arcH is the angle for the
height of the arc.

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : L o w - L e v e l D i s p l a y : C a n v a s 289

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

J2
M

E
U

S
ER

IN
TER

FA
C

E

javax.microedition.lcdui.Graphics Class

Method Description

Text

void drawChar(char character, int x, int y,
int anchor)

Draw a character at the x, y coordinate on
the canvas using the specified anchor point.

void drawChars(char[] data, int offset,
int len, int x, int y, int anchor)

Draw a subset of a character array the
length specified by len and beginning with
the character indicated by the offset. Draw
the subset at the x, y coordinate on the
canvas using the specified anchor point.

void drawString (String str, int x, int y,
int anchor)

Draw a string at the x, y coordinate on the
canvas using the specified anchor point.

void drawSubstring(String str, int offset,
int len, int x, int y, int anchor)

Draw a substring the length specified by len
and beginning with the character indicated
by the offset. Draw the substring at the x, y
coordinate on the canvas using the specified
anchor point.

Font getFont() Return the font of the graphic context.

void setFont(Font font) Set the font of the graphic context, where
font is the new font.

Image

void drawImage(Image img, int x, int y,
int anchor)

Draw the image specified in img, where the
upper-left corner of the image is positioned
at coordinate x, y using anchor point
referenced by anchor.

Translate

void translate (int x, int y) Translate the specified by x, y coordinate.

int getTranslateX() Retrieve the translated x coordinate.

int getTranslateY() Retrieve the translated y coordinate.

Clip Region

void setClip (int x1, int y1, int x2, int y2) Set the coordinates for the clipping region,
where x1, y1 represents the coordinate of
the upper-left corner of the region, and
x2, y2 represents the coordinate of the
lower-right corner of the clipping region.

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

290 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

javax.microedition.lcdui.Graphics Class

Clip Region

Method Description

void clipRect(int x1, int y1, int x2, int y2) Create a rectangle defined by x1, y1 and x2,
y2 coordinates that establish a new clipping
region by intersecting the existing clipping
region. The coordinate x1, y1 represents the
upper-left corner of the region, and x2, y2
represents the coordinate of the lower-right
corner of the new clipping region.

int getClipX() Retrieve the x1 coordinate of the upper-left
corner of the clipping region.

int getClipY() Retrieve the y1 coordinate of the upper-left
corner of the clipping region.

int getClipHeight() Retrieve the x2 coordinate of the lower-right
corner of the clipping region.

int getclipWidth() Retrieve the y2 coordinate of the
lower-right corner of the clipping region.

javax.microedition.lcdui.Font Class

Method Description

static Font getFont(int face, int style,
int size)

Create an instance of the Font class that
has the specified font face, font style, and
font size.

static Font getDefaultfont() Create an instance of the Font class that uses
the default font face, font style, and font size.

Face, Style, Size

int getFace() Retrieve the font face.

int getStyle() Retrieve the combination of font styles.

int getSize() Retrieve the font size.

boolean isPlain() Determine whether the font uses the
plain style.

boolean isBold() Determine whether the font uses the
bold style.

boolean isItalic() Determine whether the font uses the
italic style.

boolean isUnderlined() Determine whether the font uses the
underlined style.

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

javax.microedition.lcdui.Font Class

Method Description

Height/Width

int getHeight() Return the font height.

int getBaselinePosition() Return the ascent of the text.

int charWidth(char ch) Return the advance of a character.

int charsWidth(char[] ch, int offset,
int length)

Return the advance of a series of characters
in a character array that begins with
character represented by the offset and has
a length represented by the integer length.

int substringWidth(String str, int offset,
int length)

Return the advance of a substring that
begins with character represented by the
offset and has a length represented by
the integer length.

C h a p t e r 7 : L o w - L e v e l D i s p l a y : C a n v a s 291

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 7

J2
M

E
U

S
ER

IN
TER

FA
C

E

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9
Blind Folio 292

P:\010Comp\CompRef8\710-9\ch07.vp
Thursday, February 06, 2003 5:48:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Part III
J2ME Data Management

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8
Blind Folio 293

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8
Blind Folio 293

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9
Blind Folio 294

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Chapter 8
Record Management
System

295

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

296 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

Practically every J2ME application that you develop requires persistence. Persistence
is the retention of information during operation of the MIDlet and when it is not
running. The nature of the information is application dependent, but typically

stretches the breadth of data storage from application settings to information common
to a database. Persistence is common to every Java application written in J2SE, J2EE, or
J2ME. However, the manner in which persistence is maintained in a J2ME application
differs from persistence in J2SE or J2EE applications because of the limited resources
available in small computing devices that run J2ME applications.

Many small computing devices lack disk drives and access to a network database
server or file server, which are the typical resources used for persistence in J2SE and
J2EE applications. Therefore, J2ME applications must store information in nonvolatile
memory using the Record Management System (RMS). The RMS is an application
programming interface that is used to store and manipulate data in a small computing
device using a J2ME application. In this chapter you’ll learn how to use the Record
Management System for your application’s persistence.

Record Storage
Many operating environments contain a file system that is used to store information in
nonvolatile resources such as a CD-ROM and disk drive. Groups of related information
are stored under the same file name. Not all small computing devices have a file system
and therefore are unable to store information in the manner that you are accustomed to
when working with a PC, server, and other traditional computing devices.

The Record Management System provides a file system–like environment that is used
to store and maintain persistence in a small computing device. RMS is a combination file
system and database management system that enables you to store data in columns and
rows similar to the organization of data in a table of a database. And you can use RMS
to perform the functionality of database management software (DBMS). That is, you
can insert records, read records, search for particular records, and sort records stored
by the RMS.

Although RMS provides database functionality, RMS is not a relational database,
and therefore you cannot use SQL to interact with the data. Instead, you’ll use the RMS
application programming interface and the enumeration application programming
interface to sort, search, and otherwise manipulate information stored in persistence.

The Record Store
RMS stores information in a record store. A record store compares to a flat file used
for data storage in a traditional file system and to a table of a database. A record store
contains information referenced by a single name, similar to a flat file and like a table.
A record store is a collection of records organized as rows (records) and columns (fields).

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

Columns contain like data such as first name. Rows contain related data such as a
first name, middle name, last name, street, city, state, and postal code. RMS automatically
assigns to each row a unique integer that identifies the row in the record store, which
is called the record ID. The record ID is in its own column within the record store. The
record ID is considered the primary key of the record store. A primary key of the record
store serves the same purpose as a primary key in a table of a database, which is to
uniquely identify each record in a table.

Although conceptually you can envision a record store as rows and columns,
technically there are two columns. The first column is the record ID, and the other
column is an array of bytes that contains the persistent data, which you’ll learn more
about later in this chapter.

Record Store Scope
You can create multiple record stores as required by your MIDlet as long as the
name of each record store is unique. The name of a record store must be a minimum
of one character and not more than 32 characters. Characters are Unicode, and the name
is case sensitive. Record stores can be shared among MIDlets that are within the same
MIDlet suite (see Chapter 3) (Figure 8-1). Record stores must be uniquely named
within a MIDlet suite, although duplicate names can be used for record stores in other
MIDlet suites.

Let’s say that MIDlet A collects information about customers from a sales
representative. MIDlet B displays customer information collected by MIDlet A.
MIDlet B can access customer information if both MIDlet A and MIDlet B are in the
same MIDlet suite. However, MIDlet B is unable to access customer information if
MIDlet A and MIDlet B are in different MIDlet suites.

C h a p t e r 8 : R e c o r d M a n a g e m e n t S y s t e m 297

Figure 8-1. MIDlets within MIDlet suite A cannot access record stores collected
in MIDlet suite B.

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

298 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

Setting Up a Record Store
The openRecordStore() method is called to create a new record store and to open an
existing record store. This method creates or opens a record store depending on whether
the record store already exists within the MIDlet suite. The openRecordStore() method
requires two parameters. The first parameter is a string containing the name of the record
store. The second parameter is a boolean value indicating whether the record store should
be created if the record store doesn’t exist. A true value causes the record store to be created
if the record store isn’t in the MIDlet suite and also opens the record store. A false value
does not create the record store if the record store isn’t located.

You’ll find the second version of the openRecordStore() method useful whenever
your MIDlet tries to open an existing record store. Let’s say that your MIDlet accesses
address information stored in a record store created and maintained by another MIDlet
in the same MIDlet suite. You don’t want your MIDlet to create a new record store if for
some reason the record store is unavailable when you tried to open it because another
MIDlet creates and maintains the record store.

Internal resources are utilized to make an open record store available to MIDlets
within a MIDlet suite. As you know, resources are limited in small computing devices.
Therefore, you should make a conscious effort not to tie up resources that can be
otherwise used for processing by your MIDlet or other MIDlets running on the small
computing device. To that end, always close any record store that is not in use so that
resources utilized by the record store can be reused by other processes. You close a
record store by calling the closeRecordStore() method. The closeRecordStore() method
does not require any parameters.

A record store remains in nonvolatile memory even after the small computing
device is powered down. Nonvolatile memory is a scarce resource that needs to be
properly managed to ensure that sufficient memory is available when required to
store information collected by a MIDlet. You can help manage nonvolatile memory
by removing all record stores that are no longer being used by MIDlets running on
the device. A record store can be deleted by calling the deleteRecordStore() method.
This method requires one parameter, which is a string containing the name of the
record store that is to be removed from the device.

Creating, Opening, Closing, and Removing a Record Store
Listing 8-1 illustrates how to create a new record store, close it, and then remove it from
the small computing device. All information contained in the record store is lost when the
record store is removed. Listing 8-2 is the JAD file for Listing 8-1.

Listing 8-1 begins by declaring three references for instances of the Display class,
Alert class, and RecordStore class. The instance of the Display class is required because
an alert dialog box (see Chapter 6) is shown should an error be detected by this MIDlet;
otherwise, an instance of the Display class is not necessary unless the MIDlet has a user
interface. A user interface is not required to interact with a record store, although many
MIDlets that interact with a record store have a user interface.

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

All the actions in this listing occur in the commandAction() method. Typically,
routines to create, open, close, and remove a record store are located in appropriate
methods throughout the MIDlet, which you’ll see in examples shown later in this
chapter.

Once the instance of the Display class is created, the listing enters the first of three try {}
blocks. In the first try {} block, the listing attempts to create the record store by calling
the openRecordStore() method and passing it the name of the record store and a boolean
value. The boolean value indicates that the record store should be created if there isn’t
an existing record store of the same name. Errors occurring when creating the record
store are trapped by the catch {} block, where an alert dialog box is displayed describing
the error.

Typically, the MIDlet will read from and/or write to the record store at this point in
the listing. We’ll move on to showing how to close the record store since the purpose
of this listing is to provide a framework for working with a record store rather than
illustrating how to interact with the record store. You’ll see how to read and write in
the next section of this chapter.

The closeRecordStore() method is called within the second try {} block to close the
record store and release resources used to maintain an open record store. Remember,
you can always reopen the record store by calling the openRecordStore() method and
passing it the name of the record store that you want to open.

The catch {} responds to errors that happen if a problem arises when closing the
record store. The second catch {} block, similar to other catch {} blocks in this listing,
displays an alert dialog box that contains the error and informs the user that an
error occurred.

C h a p t e r 8 : R e c o r d M a n a g e m e n t S y s t e m 299

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

Creating, Closing, and Removing a Record Store
Here are the steps required to create, close, and remove a record store:

1. Declare references to classes.

2. Create instances of classes and assign those instances to references.

3. Open a record store and create a new record store if the record store
doesn’t exist.

4. Display any errors that occur when opening/creating a record store.

5. Close the record store.

6. Display any errors that occur when closing the record store.

7. Remove the record store.

8. Display any errors that occur when removing the record store.

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

300 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

Next, the listing determines whether the small computing device contains record stores
in nonvolatile memory by calling the listRecordStores() method. The listRecordStores()
returns a null value if no record stores exist on the device.

The listing proceeds if at least one record store exists, by entering the third try {}
block, where the deleteRecordStore() method is called. The deleteRecordStore() method
requires one parameter, which is a string containing the name of the record store that is
to be removed from the device. Any errors occurring during this process are trapped
by the catch {} block and displayed in an alert dialog box. The remainder of the listing
contains the same structure that you learned about in previous chapters.

import javax.microedition.rms.*;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import java.io.*;

public class RecordStoreExample

extends MIDlet implements CommandListener

{

private Display display;

private Alert alert;

private Form form;

private Command exit;

private Command start;

private RecordStore recordstore = null;

private RecordEnumeration recordenumeration = null;

public RecordStoreExample ()

{

display = Display.getDisplay(this);

exit = new Command("Exit", Command.SCREEN, 1);

start = new Command("Start", Command.SCREEN, 1);

form = new Form("Record Store");

form.addCommand(exit);

form.addCommand(start);

form.setCommandListener(this);

}

public void startApp()

{

display.setCurrent(form);

}

public void pauseApp()

{

}

public void destroyApp(boolean unconditional)

{

Listing 8-1
Create,

close, and
remove a

record store

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

}

public void commandAction(Command command, Displayable displayable)

{

if (command == exit)

{

destroyApp(true);

notifyDestroyed();

}

else if (command == start)

{

try

{

recordstore = RecordStore.openRecordStore("myRecordStore",

true);

}

catch (Exception error)

{

alert = new Alert("Error Creating", error.toString(),

null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

try

{

recordstore.closeRecordStore();

}

catch (Exception error)

{

alert = new Alert("Error Closing", error.toString(),

null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

if (RecordStore.listRecordStores() != null)

{

try

{

RecordStore.deleteRecordStore("myRecordStore");

}

catch (Exception error)

{

alert = new Alert("Error Removing", error.toString(),

C h a p t e r 8 : R e c o r d M a n a g e m e n t S y s t e m 301

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

}

}

}

}

MIDlet-Name: RecordStoreExample

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: RecordStoreExample.jar

MIDlet-1: RecordStoreExample, , RecordStoreExample

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

Writing and Reading Records
Once your MIDlet opens a record store, the MIDlet can write records to the record
store and read information already stored there using one of two techniques for writing
and reading records. The first technique is used to write and read a string of data and is
used primarily whenever you have one data column in the record store such as a list of
abbreviations of states. The other technique is used to write and read multiple columns
of data of different types such as string, integer, and boolean.

Let’s begin by exploring the technique for writing a string to a record store. The
addRecord() method is used to write a record to the record store. The addRecord()
method requires three parameters. The first is a byte array containing the byte value
of the string being written to the record store. The second is an integer representing
the index of the first byte of the byte array that is to be written to the record store. The
third is the total number of bytes that is to be written to the record store.

The first step in writing a string to a record store is to create an instance of a String
and assign text to the instance. Next, the string must be converted to a byte array by
calling the getBytes() method, as shown here. The getBytes() method returns a byte array.

string.getBytes()

The second parameter of the addRecord() method is usually zero, and the third
parameter is the length of the byte array, indicating that the entire byte array should
be written to the record store.

302 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

Listing 8-2
The JAD

file for
Listing 8-1

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Typically, information is read from a record store a record at a time and stored in a
byte array. The byte array is then converted to a string, which is then displayed on the
screen or processed further based on the needs of the application.

Your MIDlet needs to know the number of records in a record store in order to read
all the records from the record store. The getNumRecords() method of the RecordStore
class returns an integer that represents the total number of records in the record store.
You should use this value as the maximum value for a for loop used to step through
each record in the record store, as you’ll see in Listing 8-3.

Call the getRecord() method of the RecordStore class for each iteration of the for
loop. The getRecord() method returns bytes from the RecordStore, which are stored in a
byte array that you create. The getRecord() method requires three parameters. The first
parameter is the record ID, as described earlier in this chapter. The second parameter is
the byte array that you create for storing the record. The third parameter is an integer
representing the position in the record from which to begin copying into the byte array.

For example, the following code segment reads the second record from the record store
and copies that record, beginning with the first byte of the record, from the record store into
the byte array. Typically, the first parameter of the getRecord() method is the integer of the
for loop, and the third parameter is zero, indicating the entire record is to be copied into
the byte array.

recordstore.getRecord(2, myByteArray, 0)

Creating a New Record and Reading an Existing Record
Listing 8-3 illustrates the technique for writing a record to a record store and reading
records from the record store. Figure 8-2 shows the output of running this MIDlet.
Listing 8-4 is the JAD file for this listing. You’ll notice that Listing 8-3 is similar in
design to Listing 8-1 in that nearly all the action occurs within the commandAction()
method.

Many programmers separate routines to write and read records into their own
methods. These routines are shown in the commandAction() method rather than in
separate methods in order to simplify the design and make it easier to understand the
technique of writing and reading records. You can rewrite the program to separate
these functionalities once you feel comfortable working with a record store.

Listing 8-3 performs five routines. First a record store is created, and then one record
is written to the record store. Next, the record is read from the record store and displayed
within an alert dialog box. Once the user dismisses the alert dialog box, the MIDlet closes
the record store, then removes the record store from the small computing device.

The record store is created by calling the openRecordStore() method, as described in
Listing 8-1. An exception is thrown if the MIDlet is unable to create the record store, at
which time the exception is displayed in an alert dialog box. The MIDlet then enters the
routine that writes a record to the record store. This routine begins with the creation of

C h a p t e r 8 : R e c o r d M a n a g e m e n t S y s t e m 303

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

a string called “First Record.” The string must be stored as a byte array. Therefore, the
bytes that make up the string are retrieved by calling the getBytes() method.

Finally, the addRecord() method is called to write the string to the record store. The
addRecord() method is passed three parameters. The first parameter is the byte array
that contains the string. The second parameter is the index of the first byte, and the
third parameter is the total number of bytes that are to be written to the record store.
The first byte is the first element of the byte array (zero), and the total number of bytes
is the number stored in byteOutputData.length. Exceptions thrown when writing the
record are displayed in an alert dialog box called within the related catch {} block.

The next routine reads the record that was written to the record store. The routine
begins by declaring a byte array that is used to store the bytes read from the record
store. An integer is also declared and is used when converting the byte array to a
string. The routine is written to read all records from the record store, not simply the

304 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

Figure 8-2. Reading a record from a record store and displaying the record on
the screen

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

one record that the MIDlet wrote to the record store in the previous routine, although
that is the only record in the record store.

A for loop is used to step through records in the record store. The maximum iteration
of the for loop is set as the return value from the getNumRecords() method, which
returns the number of records in the record store. The value of the for loop integer (x)
represents the record ID. Record IDs begin with one—not zero—therefore the value of
the for loop is initialized to one.

There is always the possibility that the record size exceeds the byte array allocation.
You can avoid this potential problem by evaluating this condition with an if statement,
as shown in this routine. If the current record size is greater than the length of the
allocated byte array, the MIDlet creates a new byte array the size of the value returned
by the getRecordSize() method.

The getRecord() method is called to retrieve a record from the record store. The
getRecord() method requires three parameters. The first is the record ID that is being

C h a p t e r 8 : R e c o r d M a n a g e m e n t S y s t e m 305

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Writing and Reading String-Based Records
Here are the steps required to write and read string-based records:

1. Declare references to classes.

2. Create instances of classes and assign those instances to references.

3. Open a record store and create a new record store if the record store
doesn’t exist.

4. Display any errors that occur when opening/creating a record store.

5. Create data in the form of a string.

6. Convert data to a byte array.

7. Write the byte array to the record store.

8. Create a byte array before reading data from the record store.

9. Determine the number of records in the record store.

10. Loop through each record in the record store.

11. Determine whether the size of the current record exceeds the length of the
byte array. If so, then create a new byte array large enough to hold the record.

12. Copy the current record from the record store to the byte array.

13. Convert the byte array to a string and display the string on the screen.

14. Close the record store and display any errors that occur as the record store
is closed.

15. Remove the record store and display any errors that occur as the record
store is being removed.

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

read, which is the current value of the for loop variable. The second is the name of
the byte array into which the record is copied. The third is the index position of the
first byte that is to be copied into the byte array.

The getRecord() method copies the record from the record store and into the
byteInputData byte array and returns an integer representing the length of the record.
Remember that the record is still in a byte array and must be converted to a string
before the record is displayed within the alert dialog box.

Notice that the message parameter of the Alert method creates a new string using
the byte array that contains the record read from the record store. Three parameters are
necessary to create the string from the context of the byte array. The first parameter is
reference to the byte array. The next two parameters define the first index of the byte
array and the last index, which is the number of bytes read by the getRecord() method
(length). The second parameter is almost always zero, and the third parameter is the
length of the record read from the record store, which is the value assigned to the length
integer variable.

The record read from the record store is displayed in the alert dialog box. Once the alert
dialog box is dismissed, the MIDlet closes the record store by calling the closeRecordStore()
method and then removes the record store by calling the deleteRecordStore() method, as
described previously in this chapter. The remainder of Listing 8-3 contains the structure
that is standard to all MIDlets as discussed previously in this book.

import javax.microedition.rms.*;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import java.io.*;

public class WriteReadExample extends MIDlet implements CommandListener

{

private Display display;

private Alert alert;

private Form form;

private Command exit;

private Command start;

private RecordStore recordstore = null;

public WriteReadExample()

{

display = Display.getDisplay(this);

exit = new Command("Exit", Command.SCREEN, 1);

start = new Command("Start", Command.SCREEN, 1);

form = new Form("Record");

form.addCommand(exit);

form.addCommand(start);

form.setCommandListener(this);

306 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

Listing 8-3
Write and

read records

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

}

public void startApp()

{

display.setCurrent(form);

}

public void pauseApp()

{

}

public void destroyApp(boolean unconditional)

{

}

public void commandAction(Command command, Displayable displayable)

{

if (command == exit)

{

destroyApp(true);

notifyDestroyed();

}

else if (command == start)

{

try

{

recordstore = RecordStore.openRecordStore(

"myRecordStore", true);

}

catch (Exception error)

{

alert = new Alert("Error Creating",

error.toString(), null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

try

{

String outputData = "First Record";

byte[] byteOutputData = outputData.getBytes();

recordstore.addRecord(byteOutputData, 0,

byteOutputData.length);

}

catch (Exception error)

{

alert = new Alert("Error Writing",

C h a p t e r 8 : R e c o r d M a n a g e m e n t S y s t e m 307

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

error.toString(), null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

try

{

byte[] byteInputData = new byte[1];

int length = 0;

for (int x = 1; x <= recordstore.getNumRecords(); x++)

{

if (recordstore.getRecordSize(x) > byteInputData.length)

{

byteInputData = new byte[recordstore.getRecordSize(x)];

}

length = recordstore.getRecord(x, byteInputData, 0);

}

alert = new Alert("Reading", new String(byteInputData, 0,

length), null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

catch (Exception error)

{

alert = new Alert("Error Reading", error.toString(),

null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

try

{

recordstore.closeRecordStore();

}

catch (Exception error)

{

alert = new Alert("Error Closing", error.toString(),

null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

if (RecordStore.listRecordStores() != null)

308 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

{

try

{

RecordStore.deleteRecordStore("myRecordStore");

}

catch (Exception error)

{

alert = new Alert("Error Removing", error.toString(),

null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

}

}

}

}

MIDlet-Name: WriteReadExample

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: WriteReadExample.jar

MIDlet-1: WriteReadExample, , WriteReadExample

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

Writing and Reading Mixed Data Types
It is common for records to consist of mixed data types such as string, boolean, and
integer (see Figure 8-3). Let’s say that you are saving information. You might store the
customer name, customer number, and gender. A string is used to store a customer name,
an integer to store the customer number, and a boolean to indicate gender.

C h a p t e r 8 : R e c o r d M a n a g e m e n t S y s t e m 309

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

Listing 8-4
The JAD

file for
Listing 8-3

Figure 8-3. A record store typically stores data of multiple data types
such as a string, integer, and boolean.

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The routine that you’ll need to write to save a record of mixed data types is slightly
different from the routine in Listing 8-3 that saves string information to the record
store. Listing 8-5 shows how to write and read mixed data types. Listing 8-6 contains
the JAD file for this listing. Figure 8-4 shows the output of Listing 8-5.

You’ll notice that Listing 8-5 has basically the same structure as Listing 8-3. This
MIDlet writes a string, an integer, and a boolean value to a record store that is created
by the MIDlet. Once the record is written, the MIDlet reads the context of the record,
which is displayed in an alert dialog box.

The MIDlet begins by declaring references to objects that are used within the
MIDlet. Instances of these objects are created within the class constructor. The MIDlet
creates a record store called myRecordStore after retrieving reference to the display.
Any errors occurring while the record store is being created are caught by the catch {}
block and displayed in an alert dialog box.

Next, the MIDlet creates an array of bytes called outputRecord followed by the
creation of the string, integer, and boolean values of the first record. Two streams
are used to write the record to the record store. The first stream is a byte array output

310 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

Figure 8-4. Displaying mixed data types read from a record store

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

stream created by calling the ByteArrayOutputStream() constructor. The other stream—
a data output stream used to output the byte array output stream—is created by calling
the DataOutputStream() constructor and passing it reference to the byte array output
stream.

The objective is to write data to a buffer, then write the buffered data to the stream.
The data stream is then converted to a byte array. The byte array is then written to the
record store.

The DataOutputStream class has methods that write specific data types to a buffer.
Three of these methods are used in this example. These are writeUTF() method,
writeBoolean() method, and writeInt() method. Each is passed the appropriate data.

The buffered data is placed in the data stream by calling the flush() method. The
stream is converted to a byte array by calling the toByteArray() method, which returns
a reference to the byte array of the stream. This reference is passed to the addRecord()
method, as described in the previous section, which saves the byte array as a new
record in the record store. The ByteArrayOutputStream object's internal store is cleared
by calling the reset() method.

Next, the output stream and the data output stream are both closed. Any errors
occurring while the data is being written to the record store are trapped by the catch {}
block and displayed in an alert dialog box. The MIDlet then focuses on retrieving the
record from the record store. This process begins by declaring appropriate references
and an array. The array size is set to 100 bytes. You must be sure that the size of the
array is sufficient to hold all the bytes of the record.

Reading a mixed data type record from a record store is similar to the routine that
writes mixed data types. First, you create an instance of the ByteArrayInputStream class.
The constructor of this class is passed the byte array that was just created. You also create
an instance of the DataInputStream class and pass reference to the ByteArrayInputStream
class to the DataInputStream class constructor.

The routine used to read records from a record store must assume that more than
one record exists, and therefore you need to include a for loop so the MIDlet continues
to read records from a record store until the last record is read.

You’ll notice that the construction of the for loop is very similar to the for loop in
Listing 8-3 to read string data from a record store. The getRecord() method is called for
each iteration. Remember that the value of x is the record ID number of the record you
want to retrieve. The contents of the record are copied from the record store and into
the byte array that is passed to the getRecord() method. This places bytes of the record
into the input data stream.

The appropriate method is called to extract the string, integer, and boolean values
from the copy of the record in the input data stream and to store those values in the
appropriate variable. A word of caution: you must read data from the data stream in
the order in which the data appears in the record.

The reset() method is called to enable reuse of the ByteArrayInputStream's buffer.
The MIDlet then returns to the top of the for loop and evaluates whether or not to read
another record from the record store. If so, the process begins again. If not, the input

C h a p t e r 8 : R e c o r d M a n a g e m e n t S y s t e m 311

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

stream and input data stream are closed, and the contents of the variables are displayed
within an alert dialog box. Errors that occur while records are read from the record
store are displayed in an alert dialog box. The record store is then closed and deleted
from the device.

import javax.microedition.rms.*;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import java.io.*;

public class WriteReadMixedDataTypesExample

extends MIDlet implements CommandListener

312 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

Writing and Reading Mixed Data Type Records
Here are the steps required to write and read mixed data type records:

1. Declare references to classes.

2. Create instances of classes and assign those instances to references.

3. Open a record store and create a new record store if the record store
doesn’t exist.

4. Display any errors that occur when opening/creating a record store.

5. Create data in the appropriate data type.

6. Convert data to a byte array output stream.

7. Create a data output stream using the byte array output stream.

8. Write each column of the record to the data output stream.

9. Convert the data output stream to a byte array.

10. Write the record to the record store.

11. Close the output byte array output stream and the data output stream.

12. Display any errors that might occur while writing to the record store.

13. Create a buffer of bytes sufficient to hold a record.

14. Create a byte array input stream and a data input stream.

15. Loop through the record store, copying each column from the record store
to a variable.

16. Display the data in a dialog box.

17. Display any errors that occur when reading records from the record store.

18. Close and remove the record store.

Listing 8-5
Write

and read
records

of mixed
data types

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

{

private Display display;

private Alert alert;

private Form form;

private Command exit;

private Command start;

private RecordStore recordstore = null;

public WriteReadMixedDataTypesExample ()

{

display = Display.getDisplay(this);

exit = new Command("Exit", Command.SCREEN, 1);

start = new Command("Start", Command.SCREEN, 1);

form = new Form("Mixed Record");

form.addCommand(exit);

form.addCommand(start);

form.setCommandListener(this);

}

public void startApp()

{

display.setCurrent(form);

}

public void pauseApp()

{

}

public void destroyApp(boolean unconditional)

{

}

public void commandAction(Command command, Displayable displayable)

{

if (command == exit)

{

destroyApp(true);

notifyDestroyed();

}

else if (command == start)

{

try

{

recordstore = RecordStore.openRecordStore(

"myRecordStore", true);

}

catch (Exception error)

{

alert = new Alert("Error Creating",

error.toString(), null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

C h a p t e r 8 : R e c o r d M a n a g e m e n t S y s t e m 313

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

}

try

{

byte[] outputRecord;

String outputString = "First Record";

int outputInteger = 15;

boolean outputBoolean = true;

ByteArrayOutputStream outputStream = new ByteArrayOutputStream();

DataOutputStream outputDataStream =

new DataOutputStream(outputStream);

outputDataStream.writeUTF(outputString);

outputDataStream.writeBoolean(outputBoolean);

outputDataStream.writeInt(outputInteger);

outputDataStream.flush();

outputRecord = outputStream.toByteArray();

recordstore.addRecord(outputRecord, 0, outputRecord.length);

outputStream.reset();

outputStream.close();

outputDataStream.close();

}

catch (Exception error)

{

alert = new Alert("Error Writing",

error.toString(), null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

try

{

String inputString = null;

int inputInteger = 0;

boolean inputBoolean = false;

byte[] byteInputData = new byte[100];

ByteArrayInputStream inputStream = new ByteArrayInputStream(byteInputData);

DataInputStream inputDataStream =

new DataInputStream(inputStream);

for (int x = 1; x <= recordstore.getNumRecords(); x++)

{

recordstore.getRecord(x, byteInputData, 0);

inputString = inputDataStream.readUTF();

inputBoolean = inputDataStream.readBoolean();

inputInteger = inputDataStream.readInt();

inputStream.reset();

}

inputStream.close();

inputDataStream.close();

alert = new Alert("Reading", inputString + " " +

314 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

inputInteger + " " +

inputBoolean, null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

catch (Exception error)

{

alert = new Alert("Error Reading",

error.toString(), null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

try

{

recordstore.closeRecordStore();

}

catch (Exception error)

{

alert = new Alert("Error Closing",

error.toString(), null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

if (RecordStore.listRecordStores() != null)

{

try

{

RecordStore.deleteRecordStore("myRecordStore");

}

catch (Exception error)

{

alert = new Alert("Error Removing",

error.toString(), null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

}

}

}

}

MIDlet-Name: WriteReadMixedDataTypesExample

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: WriteReadMixedDataTypesExample.jar

MIDlet-1: WriteReadMixedDataTypesExample, ,

C h a p t e r 8 : R e c o r d M a n a g e m e n t S y s t e m 315

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

Listing 8-6
The JAD

file for
Listing 8-5

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

316 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

WriteReadMixedDataTypesExample

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

Record Enumeration
A record store is more like a flat file than a database management system and therefore
lacks many sophisticated features that you find in a database management system. For
example, you cannot send an SQL query to a record store, nor can you ask a record store
to search for keywords or sort records, which is commonly performed by a database
management system. However, you can still perform searches and sorts of records in
a record store by using the RecordEnumeration interface. An Enumeration provides a
way to traverse data elements. The Enumeration object manages how data is retrieved
from the record store. Changes to the record store are reflected when the record store’s
content is iterated.

You obtain a record enumeration by calling the enumerateRecords() method. The
enumerateRecords() method requires three parameters. The first is the record filter used
to exclude records returned from the record store. The second is reference to the record
comparator, which is a method used to compare records returned from the record store.
The last parameter is a boolean value indicating whether or not the enumeration is
automatically updated when changes are made to the underlying record store.

The enumerateRecords() method returns a RecordEnumeration, as illustrated in the
following code segment. There isn’t any filter or comparator method, and the record
enumeration is not automatically updated when a change is made to the record store.
You’ll see how to create a record enumeration that uses a filter and comparator method
later in this chapter.

RecordEnumeration recordEnumeration = recordstore.enumerateRecords(null, null,

false);

You then use methods of the RecordEnumeration (see “Quick Reference Guide”
at the end of this chapter) to interact with records in the RecordEnumeration.

One of the most common interactions that you’ll have with a RecordEnumeration
is to step through each record of the RecordEnumeration. The following code segment
illustrates how this is done. The hasNextElement() method is called to evaluate whether
or not there is another record in the RecordEnumeration. A boolean true is returned if
another record exists; otherwise, a boolean false is returned.

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 8 : R e c o r d M a n a g e m e n t S y s t e m 317

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

while (recordEnumeration.hasNextElement())

{

//do something

}

You can retrieve a record from the RecordEnumeration using one of two techniques.
The first technique is designed to read a record that has a single data type such as a string
from the RecordEnumeration. The other technique reads a record that has a compound
data type. The next code segment shows how to read a record that has a single data type,
which in this case is a string. You’ll learn about reading records having compound data
types later in this chapter.

This code segment calls the nextRecord() method, which returns a copy of the next
record in the RecordEnumeration. The record is passed to the constructor of the String
class and is assigned to the string variable. You would place this code segment within a
conditional loop, such as the while loop shown previously in this section, to be assured
that a record exists in the RecordEnumeration before attempting to copy the record
to the string. Of course, you probably would use an array of strings if a while loop is
used; otherwise the MIDlet would be overwriting the previous record assigned to the
string, unless you plan to process the record within the while loop.

String string = new String(recordEnumeration.nextRecord());

You can move forward or back within the RecordEnumeration by calling either the
nextRecord() method, which moves to the next record, or the previousRecord() method,
which moves back one record. Both the nextRecord() method and the previousRecord()
method return a byte array containing a copy of the record.

You are positioned at the top of the RecordEnumeration when the RecordEnumeration
is created. The top is not the first record; you must call the nextRecord() method to move
to the first record. You can move to the last record by calling the previousRecord()
method while at the top of the RecordEnumeration. You can return to the top of the
RecordEnumeration by calling the reset() method.

Before moving in either direction through the RecordEnumeration, you should
always determine whether there are records in the RecordEnumeration, and if so,
whether there is a next record or previous record.

Call the numRecords() method to determine the number of records there are
in the RecordEnumeration. The numRecords() method returns an integer representing
the total number of records. If the return value is greater than zero, then evaluate whether
there is a next record or previous record depending on the desired direction. The
hasNextElement() method is called to determine whether there is a next record, which

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

is illustrated in a previous code segment. Call the hasPreviousElement() method to
determine whether there is a previous record. Both methods return a boolean value
indicating whether or not there is another record.

You can track your progress through the RecordEnumeration by retrieving the
record IDs of records in the RecordEnumeration. Let’s say that you determine there
are ten records in the RecordEnumeration by calling the numRecords() method. The
ID of the first record in the RecordEnumeration is zero, and the ID of the last record is
nine. You can determine the record ID of the next record by calling the nextRecordId()
method. The nextRecordId() method returns an integer representing the ID of the
next record. Likewise, you call the previousRecordId() method to retrieve the ID
of the previous record.

Sometimes record IDs can be misleading when the RecordEnumeration is
automatically updated whenever a change is made to the underlying record store.
There are two ways in which automatic updating is activated or deactivated. The first
way is when the RecordEnumeration is created. As you’ll recall, the last parameter
in the enumerateRecords() method is a boolean value that if set to true, causes the
RecordEnumeration to update automatically. The RecordEnumeration is not changed
when the underlying record store changes if the boolean value is false.

The other way to set automatic updating of the RecordEnumeration is by calling
the keepUpdated() method. The keepUpdated() method has one parameter, which is
a boolean value indicating whether or not the RecordEnumeration is automatically
updated.

You can check the status of the automatic updating feature by calling the
isKeptUpdated() method. This method returns a boolean value indicating whether
or not the RecordEnumeration is automatically updated. This is important to know
if you are relying on record IDs to plot your way through the RecordEnumeration,
because each time a record is inserted or removed from the RecordEnumeration,
record IDs are reindexed.

You can manually cause the RecordEnumeration to be rebuilt by calling the rebuild()
method. The rebuild() method should be called whenever records in the underlying
record store change and the automatic update feature is deactivated.

Obviously, you’ll know when your MIDlet changes the underlying record store
and therefore needs to call the rebuild() method. However, many times other MIDlets
within the same MIDlet suite can also change the record store without notifying your
MIDlet. In this case, you should create a RecordListener, which notifies your MIDlet
that the associated record store has changed and that the MIDlet needs to call the
rebuild() method. You’ll learn more about the RecordListener later in this chapter.

You can call the destroy method to empty the contents of a RecordEnumeration
and release resources used by the RecordEnumeration. This should be done as soon as
the MIDlet no longer requires the RecordEnumeration in order to free those resources
for other purposes. Remember, a small computing device has limited resources, unlike
a PC or server.

318 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Reading a Record of a Simple Data Type
into a RecordEnumeration

We’ll look at two listings to show how to read records from a record store into a
RecordEnumeration. Listing 8-7 reads three records, each a string type from a record
store, and displays them in an alert dialog box (Figure 8-5). The JAD file is in Listing 8-8.
Listing 8-9 reads three mixed data type records from a record store and also displays
them in an alert dialog box. Listing 8-10 contains the JAD file for this listing.

Let’s begin with a look at Listing 8-7. The structure is very similar to Listing 8-3,
which inserted a record into a record store and then read the record from the record
store, displaying the record in an alert dialog box. You’ll notice the first difference from
Listing 8-3 occurs in the second try {} block. Three strings are created and assigned to
a String array. One string was used in Listing 8-3. Each element of the String array is
then written to the record store using the same technique as illustrated in Listing 8-3.

C h a p t e r 8 : R e c o r d M a n a g e m e n t S y s t e m 319

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

Reading a Record of a String Data Type
into a RecordEnumeration
Here are the steps required to read a record of a string data type into
a RecordEnumeration:

1. Declare references to classes.

2. Create instances of classes and assign those instances to references.

3. Open a record store and create a new record store if the record store
doesn’t exist.

4. Display any errors that occur when opening/creating a record store.

5. Create data in the appropriate data type.

6. Convert data to a byte array.

7. Write the record to the record store.

8. Display any errors that might occur while writing to the record store.

9. Create a RecordEnumeration.

10. Loop through the RecordEnumeration, copying each record to a variable.

11. Display the data in a dialog box.

12. Display any errors that occur when reading records from the
RecordEnumeration.

13. Close and remove the RecordEnumeration and the record store.

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Another change is in the third try {} block, where records from the record store are
copied into the RecordEnumeration and then displayed on the screen. The first statement
in this try {} block creates a RecordEnumeration by calling the enumerateRecords() method.
The RecordEnumeration doesn’t use a filter or comparator and is not automatically
updated when changes are made to the underlying record store.

Before entering the while loop, the MIDlet calls the hasNextElement() method to
determine whether there is a next record in the RecordEnumeration. Remember that
the RecordEnumeration is not at the first record, so the hasNextElement() method
determines whether there is a record in the record store. A boolean true is returned
if a record exists, otherwise a false is returned.

If a true is returned by the hasNextElement(), the MIDlet copies the first record of the
RecordEnumeration into a string, which is then displayed in an alert dialog box. Of course,
you can further process the record instead of displaying the record, depending on the
nature of your application. This process continues until the hasNextElement() method
returns a false, indicating no more records exist in the RecordEnumeration.

320 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

Figure 8-5. Displaying a simple data type from a RecordEnumeration

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The last modification of Listing 8-3 occurs in the fifth try {} block of Listing 8-7. This
is where the record store is deleted. The destroy() method is called in this example to
release resources used by the RecordEnumeration and thereby having the effect of
deleting records in the RecordEnumeration.

import javax.microedition.rms.*;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import java.io.*;

public class RecordEnumerationExample

extends MIDlet implements CommandListener

{

private Display display;

private Alert alert;

private Form form;

private Command exit;

private Command start;

private RecordStore recordstore = null;

private RecordEnumeration recordEnumeration = null;

public RecordEnumerationExample ()

{

display = Display.getDisplay(this);

exit = new Command("Exit", Command.SCREEN, 1);

start = new Command("Start", Command.SCREEN, 1);

form = new Form("RecordEnumeration");

form.addCommand(exit);

form.addCommand(start);

form.setCommandListener(this);

}

public void startApp()

{

display.setCurrent(form);

}

public void pauseApp()

{

}

public void destroyApp(boolean unconditional)

{

}

public void commandAction(Command command,

Displayable displayable)

{

C h a p t e r 8 : R e c o r d M a n a g e m e n t S y s t e m 321

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Listing 8-7
Reading

a record of a
string data

type into
a Record-

Enumeration

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

322 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

if (command == exit)

{

destroyApp(true);

notifyDestroyed();

}

else if (command == start)

{

try

{

recordstore = RecordStore.openRecordStore(

"myRecordStore", true);

}

catch (Exception error)

{

alert = new Alert("Error Creating",

error.toString(), null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

try

{

String outputData[] = {"First Record",

"Second Record", "Third Record"};

for (int x = 0; x < 3; x++)

{

byte[] byteOutputData = outputData[x].getBytes();

recordstore.addRecord(byteOutputData,

0, byteOutputData.length);

}

}

catch (Exception error)

{

alert = new Alert("Error Writing",

error.toString(), null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

try

{

StringBuffer buffer = new StringBuffer();

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 8 : R e c o r d M a n a g e m e n t S y s t e m 323

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

recordEnumeration =

recordstore.enumerateRecords(null, null, false);

while (recordEnumeration.hasNextElement())

{

buffer.append(new String(recordEnumeration.nextRecord()));

buffer.append("\n");

}

alert = new Alert("Reading",

buffer.toString(), null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

catch (Exception error)

{

alert = new Alert("Error Reading",

error.toString(), null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

try

{

recordstore.closeRecordStore();

}

catch (Exception error)

{

alert = new Alert("Error Closing",

error.toString(), null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

if (RecordStore.listRecordStores() != null)

{

try

{

RecordStore.deleteRecordStore("myRecordStore");

recordEnumeration.destroy();

}

catch (Exception error)

{

alert = new Alert("Error Removing",

error.toString(), null, AlertType.WARNING);

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

324 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

}

}

}

}

MIDlet-Name: RecordEnumerationExample

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: RecordEnumerationExample.jar

MIDlet-1: RecordEnumerationExample, , RecordEnumerationExample

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

Reading a Mixed Data Type Record
into a RecordEnumeration

Listing 8-9 is very similar to Listing 8-5. Both write and read mixed data type
records. Listing 8-9 creates an array of strings, integers, and boolean and assigns
values to each element of these arrays. Each of these is a record. Listing 8-5 created
one record. The process of writing mixed data type records to the record store is the
same as the process used in Listing 8-5 with one small difference. Listing 8-9 uses
a loop to write all three records to the record store.

The next records from the record store are copied into the RecordEnumeration.
This process is very similar to the same process in Listing 8-5 that is used to read
records from the record store, but there are a few subtle differences that you need to
notice. First, the enumerateRecords() method is called to build a RecordEnumeration.
The enumerateRecords() method doesn’t use a filter or comparator and is not updated
automatically as changes occur to the record store. Next, the hasNextElement() is called
to determine whether there is a record in the RecordEnumeration. Statements within
the while block are skipped if a false is returned; otherwise, the MIDlet proceeds to the
current record by calling the getRecord() method. The getRecord() method requires
one parameter, which is the record ID of the record that is being copied into the
RecordEnumeration. The record ID is returned by the nextRecordId() method.

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

Listing 8-8
The JAD

file for
Listing 8-7

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 8 : R e c o r d M a n a g e m e n t S y s t e m 325

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

The readUTF() method, readBoolean() method, and readInt() method are then
called to return their respective data from the current record of the RecordEnumeration.
These return values are then concatenated and assigned to a string. The string is then
displayed in an alert dialog box (Figure 8-6). The same process occurs for each record
in the RecordEnumeration.

And as with Listing 8-7, Listing 8-9 releases resources used by the RecordEnumeration
by calling the destroy() method in the fifth try {} block.

import javax.microedition.rms.*;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import java.io.*;

public class MixedRecordEnumerationExample

Listing 8-9
Reading

a record of a
mixed data

type into
a Record-

Enumeration

Figure 8-6. Records of mixed data types in the RecordEnumeration are displayed.

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

326 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

extends MIDlet implements CommandListener

{

private Display display;

private Alert alert;

private Form form;

private Command exit;

private Command start;

private RecordStore recordstore = null;

private RecordEnumeration recordEnumeration = null;

public MixedRecordEnumerationExample ()

{

display = Display.getDisplay(this);

exit = new Command("Exit", Command.SCREEN, 1);

start = new Command("Start", Command.SCREEN, 1);

form = new Form("Mixed RecordEnumeration");

form.addCommand(exit);

form.addCommand(start);

form.setCommandListener(this);

}

public void startApp()

{

display.setCurrent(form);

}

public void pauseApp()

{

}

public void destroyApp(boolean unconditional)

{

}

public void commandAction(Command command, Displayable displayable)

{

if (command == exit)

{

destroyApp(true);

notifyDestroyed();

}

else if (command == start)

{

try

{

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 8 : R e c o r d M a n a g e m e n t S y s t e m 327

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

recordstore = RecordStore.openRecordStore(

"myRecordStore", true);

}

catch (Exception error)

{

alert = new Alert("Error Creating",

error.toString(), null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

try

{

byte[] outputRecord;

String outputString[] = {"First Record",

"Second Record", "Third Record"};

int outputInteger[] = {15, 10, 5};

boolean outputBoolean[] = {true, false, true};

ByteArrayOutputStream outputStream =

new ByteArrayOutputStream();

DataOutputStream outputDataStream =

new DataOutputStream(outputStream);

for (int x = 0; x < 3; x++)

{

outputDataStream.writeUTF(outputString[x]);

outputDataStream.writeBoolean(outputBoolean[x]);

outputDataStream.writeInt(outputInteger[x]);

outputDataStream.flush();

outputRecord = outputStream.toByteArray();

recordstore.addRecord(outputRecord, 0,

outputRecord.length);

}

outputStream.reset();

outputStream.close();

outputDataStream.close();

}

catch (Exception error)

{

alert = new Alert("Error Writing",

error.toString(), null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

328 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

display.setCurrent(alert);

}

try

{

StringBuffer buffer = new StringBuffer();

byte[] byteInputData = new byte[300];

ByteArrayInputStream inputStream = new ByteArrayInputStream(byteInputData);

DataInputStream inputDataStream =

new DataInputStream(inputStream);

recordEnumeration = recordstore.enumerateRecords(

null, null, false);

while (recordEnumeration.hasNextElement())

{

recordstore.getRecord(recordEnumeration.nextRecordId(),

byteInputData, 0);

buffer.append(inputDataStream.readUTF());

buffer.append("\n");

buffer.append(inputDataStream.readBoolean());

buffer.append("\n");

buffer.append(inputDataStream.readInt());

buffer.append("\n");

alert = new Alert("Reading", buffer.toString(),

null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

inputStream.close();

}

catch (Exception error)

{

alert = new Alert("Error Reading",

error.toString(), null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

try

{

recordstore.closeRecordStore();

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 8 : R e c o r d M a n a g e m e n t S y s t e m 329

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

}

catch (Exception error)

{

alert = new Alert("Error Closing",

error.toString(), null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

if (RecordStore.listRecordStores() != null)

{

try

{

RecordStore.deleteRecordStore("myRecordStore");

recordEnumeration.destroy();

}

catch (Exception error)

{

alert = new Alert("Error Removing",

error.toString(), null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

}

}

}

}

MIDlet-Name: MixedRecordEnumerationExample

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: MixedRecordEnumerationExample.jar

MIDlet-1: MixedRecordEnumerationExample, ,

MixedRecordEnumerationExample

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

Listing 8-10
The JAD

file for
Listing 8-9

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

330 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

Sorting Records
Records within a RecordEnumeration are sorted by defining a comparator class that
is an implementation of the RecordComparator interface. Within the comparator class
you define a method that has the logic to compare each record to determine whether

Reading a Mixed Data Type Record
into a RecordEnumeration
Here are the steps required to read a mixed data type record into
a RecordEnumeration:

1. Declare references to classes.

2. Create instances of classes and assign those instances to references.

3. Open a record store and create a new record store if the record store
doesn’t exist.

4. Display any errors that occur when opening/creating a record store.

5. Create data in the appropriate data type.

6. Convert data to a byte array output stream.

7. Create a data output stream using the byte array output stream.

8. Write each column of the record to the data output stream.

9. Convert the data output stream to a byte array.

10. Write the record to the record store.

11. Close the output byte array output stream and the data output stream.

12. Display any errors that might occur while writing to the record store.

13. Create a buffer of bytes sufficient to hold a record.

14. Create a byte array input stream and a data input stream.

15. Create a RecordEnumeration.

16. Loop through the RecordEnumeration, copying each column from the
record store to a variable.

17. Display the data in a dialog box.

18. Display any errors that occur when reading records from the record store.

19. Close and remove the RecordEnumeration and the record store.

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

the record is equal to the current record or should precede or follow the current
record within the RecordEnumeration. This method, called compare(), requires two
parameters, which are two byte arrays that contain the current record and the next
record. These byte arrays are then converted to two strings that are compared by
using the compareTo() method of the String class.

The compareTo() method returns an integer that is equal to zero, less than zero, or
greater than zero. A zero indicates that both strings are the same. An integer less than
zero indicates that the next record precedes the current record in the RecordEnumeration.
An integer greater than zero indicates that the next record follows the current record in
the RecordEnumeration.

Based on the return value of the compareTo() method, the compare() method
returns a predefined comparison value. These are RecordComparator.EQUIVALENT,
RecordComparator.PRECEDES, and RecordComparator.FOLLOW (see Table 8-1).

You pass reference to the instance of the RecordComparator() as the second parameter
of the enumerateRecords() method. The enumerateRecords() then calls the compare()
method whenever there is a need to sort records within the RecordEnumerator. The
direction of the sort is controlled by the logic that you create within the compare() method.
If you want the sort to appear in ascending order, then return the RecordComparator
.PRECEDES when the return value of the compareTo() string is less than the current
record and RecordComparator.FOLLOW when the return value is greater than the
current record.

You create a descending sort by reversing these operations: return the
RecordComparator.FOLLOW when the return value of the compareTo() string is
less than the current record and RecordComparator.PRECEDES when the return
value is greater than the current record.

C h a p t e r 8 : R e c o r d M a n a g e m e n t S y s t e m 331

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Value Description

EQUIVALENT Records passed to the compare() method are the same.

FOLLOW The record passed as the first parameter follows the
record passed as the second parameter.

PRECEDES The record passed as the first parameter precedes the
record passed as the second parameter.

Table 8-1. Comparison Values for the compare() Method

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Sorting Single Data Type Records
in a RecordEnumeration

Listing 8-11 illustrates how to sort a RecordEnumeration that contains a single data type
record, which is a string (Figure 8-7). Listing 8-12 contains the JAD file for Listing 8-11.
You’ll notice that Listing 8-11 is very similar to Listing 8-7 in that both create a record
store that contains three strings. Each record in the RecordEnumeration is then displayed
in an alert dialog box.

The difference between Listing 8-7 and Listing 8-11 is that Listing 8-11 presents
records contained in the RecordEnumeration in sort order. Notice in the second try {}
block that three strings are created. These are different from the strings created in
Listing 8-7. The strings First Record, Second Record, and Third Record are replaced
with the names Mary, Bob, and Adam in order to illustrate sorting.

332 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

Figure 8-7. Sorting a single data type record in a RecordEnumeration

P:\010Comp\CompRef8\710-9\ch08.vp
Friday, February 07, 2003 2:17:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 8 : R e c o r d M a n a g e m e n t S y s t e m 333

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

The next change occurs in the third try {} block where an instance of the
RecordComparator() interface is created and passed as the second argument
to the enumerateRecords() method. A null was passed as the second parameter to
the enumerateRecords() method in Listing 8-7 because the RecordEnumeration
was not sorted.

The final change occurs at the end of the listing where the compare() method is
defined. The compare() method receives two parameters called record1 and record2;
both are byte arrays supplied by the enumerateRecords() method. Those byte arrays
are transformed into strings, which are evaluated by the compareTo() method. The
compareTo() method requires one argument that is the value of the second parameter
passed to the compare() method. In this example, record2 is referenced to the second
parameter.

Sorting a Single Data Type of
a Record in a RecordEnumeration
Here are the steps required to sort using a data type of a record in
a RecordEnumeration:

1. Declare references to classes.

2. Create instances of classes and assign those instances to references.

3. Open a record store and create a new record store if the record store
doesn’t exist.

4. Display any errors that occur when opening/creating a record store.

5. Create data in the appropriate data type.

6. Convert data to a byte array.

7. Write the record to the record store.

8. Display any errors that might occur while writing to the record store.

9. Create a Comparator class with a method that compares two records and
returns a value indicating whether the next record should follow, precede,
or is equivalent to the current record.

10. Create an instance of the Comparator class and use the instance when
creating the RecordEnumeration.

11. Loop through the RecordEnumeration, copying each record to a variable.

12. Display the data in a dialog box.

13. Display any errors that occur when reading records from the
RecordEnumeration.

14. Close and remove the RecordEnumeration and the record store.

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

An if…if else…else statement evaluates the return value of the compareTo() method,
and then the appropriate comparison value is returned to the compareTo() method.

import javax.microedition.rms.*;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import java.io.*;

public class SortExample extends MIDlet implements CommandListener

{

private Display display;

private Alert alert;

private Form form;

private Command exit;

private Command start;

private RecordStore recordstore = null;

private RecordEnumeration recordEnumeration = null;

private Comparator comparator = null;

public SortExample ()

{

display = Display.getDisplay(this);

exit = new Command("Exit", Command.SCREEN, 1);

start = new Command("Start", Command.SCREEN, 1);

form = new Form("Mixed RecordEnumeration", null);

form.addCommand(exit);

form.addCommand(start);

form.setCommandListener(this);

}

public void startApp()

{

display.setCurrent(form);

}

public void pauseApp()

{

}

public void destroyApp(boolean unconditional)

{

}

public void commandAction(Command command, Displayable displayable)

{

if (command == exit)

{

destroyApp(true);

334 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

Listing 8-11
Sort a

single data
type record

in a Record-
Enumeration

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

notifyDestroyed();

}

else if (command == start)

{

try

{

recordstore = RecordStore.openRecordStore(

"myRecordStore", true);

}

catch (Exception error)

{

alert = new Alert("Error Creating",

error.toString(), null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

try

{

String outputData[] = {"Mary", "Bob", "Adam"};

for (int x = 0; x < 3; x++)

{

byte[] byteOutputData = outputData[x].getBytes();

recordstore.addRecord(byteOutputData, 0,

byteOutputData.length);

}

}

catch (Exception error)

{

alert = new Alert("Error Writing",

error.toString(), null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

try

{

StringBuffer buffer = new StringBuffer();

Comparator comparator = new Comparator();

recordEnumeration = recordstore.enumerateRecords(

null, comparator, false);

while (recordEnumeration.hasNextElement())

{

buffer.append(new String(recordEnumeration.nextRecord()));

C h a p t e r 8 : R e c o r d M a n a g e m e n t S y s t e m 335

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

buffer.append("\n");

}

alert = new Alert("Reading", buffer.toString() ,

null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

catch (Exception error)

{

alert = new Alert("Error Reading",

error.toString(), null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

try

{

recordstore.closeRecordStore();

}

catch (Exception error)

{

alert = new Alert("Error Closing",

error.toString(), null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

if (RecordStore.listRecordStores() != null)

{

try

{

RecordStore.deleteRecordStore("myRecordStore");

recordEnumeration.destroy();

}

catch (Exception error)

{

alert = new Alert("Error Removing",

error.toString(), null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

}

}

}

336 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:54:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 8 : R e c o r d M a n a g e m e n t S y s t e m 337

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

}

class Comparator implements RecordComparator

{

public int compare(byte[] record1, byte[] record2)

{

String string1 = new String(record1),

string2= new String(record2);

int comparison = string1.compareTo(string2);

if (comparison == 0)

return RecordComparator.EQUIVALENT;

else if (comparison < 0)

return RecordComparator.PRECEDES;

else

return RecordComparator.FOLLOWS;

}

}

MIDlet-Name: SortExample

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: SortExample.jar

MIDlet-1: SortExample, , SortExample

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

Sorting Mixed Data Type Records
in a RecordEnumeration

Listing 8-13 shows how to sort a RecordEnumeration that contains records of mixed
data types (Figure 8-8). Listing 8-14 is the JAD file for Listing 8-13. Listing 8-13 is
a modification of Listing 8-9 that wrote and read mixed data types to and from
a record store.

Both Listing 8-9 and Listing 8-13 are structured similarly, so we’ll concentrate on
exploring the modifications made to Listing 8-9 to sort records in the RecordEnumeration.
Listing 8-13 writes three records containing two columns of data. The first column consists
of strings and the second column integers. This is different from Listing 8-9 where a
boolean column is also written to the record store. The boolean column was excluded
from this example to simplify the code.

The next modification occurs in the third try {} block of Listing 8-13 where an
instance of the RecordComparator interface is referenced and passed as the second
parameter to the enumerateRecords() method. The RecordComparator implementation
is defined at the end of Listing 8-13.

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

Listing 8-12
The JAD

file for
Listing 8-11

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:55:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Another modification is made in the fifth try {} block where a call is made to the
compareClose() method of the RecordComparator interface. The compareClose()
method closes streams opened by the RecordComparator interface to facilitate
comparing records.

At the end of Listing 8-13 you’ll find the definition of the Comparator
implementation of the RecordInterface. The Comparator defines two methods:
compare() and compareClose(). The compare() method is called by the
enumerateRecords() method to compare the next record with the current record
within the RecordEnumeration. Both records are passed as byte arrays to the
compare() method.

Records passed as parameters to the compare() method contain both columns—
first a string and then an int. In real projects you can expect to have multiple columns
of different data types. However, the technique used in this example can easily be
expanded to handle records of any number of columns and data types.

338 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

Figure 8-8. Sorting mixed data type records in a RecordEnumeration

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:55:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The compare() method begins by creating a byte array input stream from the first
record and then using the byte array input stream to create a data input stream. This
is the same process used in Listing 8-9 to read mixed data type records from the
RecordEnumeration.

C h a p t e r 8 : R e c o r d M a n a g e m e n t S y s t e m 339

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Sorting a Mixed Data Type Record
in a RecordEnumeration
Here are the steps required to sort a mixed data type record in a
RecordEnumeration:

1. Declare references to classes.

2. Create instances of classes and assign those instances to references.

3. Open a record store and create a new record store if the record store
doesn’t exist.

4. Display any errors that occur when opening/creating a record store.

5. Create data in the appropriate data type.

6. Convert data to a byte array output stream.

7. Create a data output stream using the byte array output stream.

8. Write each column of the record to the data output stream.

9. Convert the data output stream to a byte array.

10. Write the record to the record store.

11. Close the output byte array output stream and the data output stream.

12. Display any errors that might occur while writing to the record store.

13. Create a buffer of bytes sufficient to hold a record.

14. Create a byte array input stream and a data input stream.

15. Create a Comparator class with a method that compares two records and
returns a value indicating whether the next record should follow, precede,
or is equivalent to the current record.

16. Create an instance of the Comparator class and use the instance when
creating the RecordEnumeration.

17. Loop through the RecordEnumeration, copying each column from the
record store to a variable.

18. Display the data in a dialog box.

19. Display any errors that occur when reading records from the record store.

20. Close and remove the RecordEnumeration and the record store.

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:55:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Each column in the record is read using the appropriate readXXX() method, as
described previously in this chapter. It is important to remember to read each column
in the order in which the column appears in the record. In this example, the first
column is a string, and the second column is an integer. Therefore, the readUTF()
method must be called before calling the readInt() method. This is also true if the
record has other columns.

Only the return value of the readInt() method is assigned to a variable in this example
because the value of the second column is being used to sort the record. The return value
of the readUTF() method is not retained because the value of this column is not being
sorted. You don’t need to read columns of a record beyond the column that is the key
to the sort because only the column with the sort key is processed.

The same process is used to extract the column used as the sort key for the second
record passed to the compare() method. The integer columns from both records are
then compared, and the appropriate comparison value is returned by the compare()
method.

import javax.microedition.rms.*;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import java.io.*;

public class SortMixedRecordDataTypeExample

extends MIDlet implements CommandListener

{

private Display display;

private Alert alert;

private Form form;

private Command exit;

private Command start;

private RecordStore recordstore = null;

private RecordEnumeration recordEnumeration = null;

private Comparator comparator = null;

public SortMixedRecordDataTypeExample ()

{

display = Display.getDisplay(this);

exit = new Command("Exit", Command.SCREEN, 1);

start = new Command("Start", Command.SCREEN, 1);

form = new Form("Mixed RecordEnumeration");

form.addCommand(exit);

form.addCommand(start);

form.setCommandListener(this);

}

public void startApp()

{

display.setCurrent(form);

}

public void pauseApp()

340 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

Listing 8-13
Sorting

mixed data
types in a

Record-
Enumeration

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:55:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

{

}

public void destroyApp(boolean unconditional)

{

}

public void commandAction(Command command, Displayable displayable)

{

if (command == exit)

{

destroyApp(true);

notifyDestroyed();

}

else if (command == start)

{

try

{

recordstore = RecordStore.openRecordStore(

"myRecordStore", true);

}

catch (Exception error)

{

alert = new Alert("Error Creating",

error.toString(), null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

try

{

byte[] outputRecord;

String outputString[] = {"Mary", "Bob", "Adam"};

int outputInteger[] = {15, 10, 5};

ByteArrayOutputStream outputStream =

new ByteArrayOutputStream();

DataOutputStream outputDataStream =

new DataOutputStream(outputStream);

for (int x = 0; x < 3; x++)

{

outputDataStream.writeUTF(outputString[x]);

outputDataStream.writeInt(outputInteger[x]);

outputDataStream.flush();

outputRecord = outputStream.toByteArray();

recordstore.addRecord(outputRecord, 0,

outputRecord.length);

outputStream.reset();

}

outputStream.close();

outputDataStream.close();

C h a p t e r 8 : R e c o r d M a n a g e m e n t S y s t e m 341

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:55:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

}

catch (Exception error)

{

alert = new Alert("Error Writing",

error.toString(), null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

try

{

String[] inputString = new String[3];

int z = 0;

byte[] byteInputData = new byte[300];

ByteArrayInputStream inputStream =

new ByteArrayInputStream(byteInputData);

DataInputStream inputDataStream =

new DataInputStream(inputStream);

StringBuffer buffer = new StringBuffer();

comparator = new Comparator();

recordEnumeration = recordstore.enumerateRecords(

null, comparator, false);

while (recordEnumeration.hasNextElement())

{

recordstore.getRecord(recordEnumeration.nextRecordId(),

byteInputData, 0);

buffer.append(inputDataStream.readUTF());

buffer.append(inputDataStream.readInt());

buffer.append("\n");

inputDataStream.reset();

}

alert = new Alert("Reading", buffer.toString(), null,

AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

inputDataStream.close();

inputStream.close();

}

catch (Exception error)

{

alert = new Alert("Error Reading",

error.toString(), null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

try

{

recordstore.closeRecordStore();

342 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:55:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

}

catch (Exception error)

{

alert = new Alert("Error Closing",

error.toString(), null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

if (RecordStore.listRecordStores() != null)

{

try

{

RecordStore.deleteRecordStore("myRecordStore");

comparator.compareClose();

recordEnumeration.destroy();

}

catch (Exception error)

{

alert = new Alert("Error Removing",

error.toString(), null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

}

}

}

}

class Comparator implements RecordComparator

{

private byte[] comparatorInputData = new byte[300];

private ByteArrayInputStream comparatorInputStream = null;

private DataInputStream comparatorInputDataType = null;

public int compare(byte[] record1, byte[] record2)

{

int record1int, record2int;

try

{

int maxlen = Math.max(record1.length, record2.length);

if (maxlen > comparatorInputData.length)

{

comparatorInputData = new byte[maxlen];

}

comparatorInputStream = new ByteArrayInputStream(record1);

comparatorInputDataType =

new DataInputStream(comparatorInputStream);

comparatorInputDataType.readUTF();

record1int = comparatorInputDataType.readInt();

C h a p t e r 8 : R e c o r d M a n a g e m e n t S y s t e m 343

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:55:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

comparatorInputStream = new ByteArrayInputStream(record2);

comparatorInputDataType =

new DataInputStream(comparatorInputStream);

comparatorInputDataType.readUTF();

record2int = comparatorInputDataType.readInt();

if (record1int == record2int)

{

return RecordComparator.EQUIVALENT;

}

else if (record1int < record2int)

{

return RecordComparator.PRECEDES;

}

else

{

return RecordComparator.FOLLOWS;

}

}

catch (Exception error)

{

return RecordComparator.EQUIVALENT;

}

}

public void compareClose()

{

try

{

if (comparatorInputStream!= null)

{

comparatorInputStream.close();

}

if (comparatorInputDataType!= null)

{

comparatorInputDataType.close();

}

}

catch (Exception error)

{

}

}

}

MIDlet-Name: SortMixedRecordDataTypeExample

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

344 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

Listing 8-14
The JAD

file for
Listing 8-13

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:55:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 8 : R e c o r d M a n a g e m e n t S y s t e m 345

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

MIDlet-Jar-URL: SortMixedRecordDataTypeExample.jar

MIDlet-1: SortMixedRecordDataTypeExample, ,

SortMixedRecordDataTypeExample

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

Searching Records
Searching is referred to as filtering, where the filter is defined by the search criteria.
Records that match the search criteria are copied into the RecordEnumeration. Those
not matching the search criteria are filtered from the RecordEnumeration. Searching
for a record in a record store is very similar to sorting records in that you define an
implementation of an interface. In this case the implementation you define filters
records contained in a record store rather than sorting records in a RecordEnumeration.

The RecordFilter interface is used when searching for a record. You must define two
methods when defining an implementation of the RecordFilter interface. These are the
matches() method and the filterClose() method.

The constructor accepts the search criteria as a parameter when your MIDlet creates
an instance of the implementation class. The matches() method contains the logic
necessary to determine whether a column fits the search criteria and returns a boolean
value indicating whether or not there is a match. The filterClose() method frees resources
used by the implementation of the RecordFilter interface once the search is completed.

Logic contained in the matches() method reads one or multiple columns from
the current record and then applies logical operators to determine whether the record
meets the search criteria. You determine the logic used to decide whether or not a
record should or should not be included in the RecordEnumeration. Furthermore,
you can sort the filtered records by first searching for a subset of records in the record
store, then sorting those records.

The next two sections illustrate how to search a record store that contains records
of a single data type and records containing multiple data types.

Searching Single Data Type Records
Listing 8-15 shows how to search records that contain a single data type (Figure 8-9).
Listing 8-16 is the JAD file for Listing 8-15. You’ll notice that Listing 8-15 is a modified
version of Listing 8-13. Both listings write three records to a record store. Each record
has one column that is a String data type. Listing 8-15 searches for one of those records
and displays the results of the search in an alert dialog box.

You’ll notice in the third try {} block that a statement creating an instance of the
Filter replaces the statement that creates an instance of the Comparator. The Filter is
the implementation of the RecordFilter that is defined at the end of the listing. The
constructor of the Filter is passed the word “Bob,” which is the search criteria.

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:55:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

346 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

The statement beneath the statement that created the instance of the Filter creates
the RecordEnumeration. The enumerateRecords() method is passed three parameters.
The first is reference to the filter. The second is reference to the Comparator. This is
set to null because a Comparator isn’t used in this example. The last parameter is a
boolean value indicating that the RecordEnumeration should not be automatically
updated when changes are made to the underlying record store.

The next modification occurs at the end of the listing where the implementation
of the RecordFilter is defined. This implementation is called Filter, and its constructor
is passed the search criteria, which is assigned the String search. The search criteria is
immediately converted to all lowercase characters. As you’ll notice, the record is also
changed to lowercase characters before comparing the record to the search criteria.

Figure 8-9. Searching a single data type record in a RecordEnumeration

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:55:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 8 : R e c o r d M a n a g e m e n t S y s t e m 347

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

The matches() method is automatically called to filter records that don’t meet the
search criteria. The matches() method requires one parameter, which is the record that
is being matched to the search criteria. The record is an array of bytes passed by the
enumerateRecords() method. The record is then converted to lowercase characters
and assigned to a String variable.

The if statement expression is used to determine whether the record should be
included in or excluded from the RecordEnumeration. Two conditions must be met
for the record to be included in the RecordEnumeration. The record must not be null,
and the comparison of the record and the search criteria must not be –1. The matches()
method returns a boolean true or false to the enumerateRecords() method indicating
whether or not the record should be included in the RecordEnumeration. A true value
implies that the record should be included.

Searching with a Data Type of a Record
Here are the steps required to search using a data type of a record:

1. Declare references to classes.

2. Create instances of classes and assign those instances to references.

3. Open a record store and create a new record store if the record store
doesn’t exist.

4. Display any errors that occur when opening/creating a record store.

5. Create data in the appropriate data type.

6. Convert data to a byte array.

7. Write the record to the record store.

8. Display any errors that might occur while writing to the record store.

9. Create a Filter class with a method that compares the search criteria to
a record and returns a value indicating whether the record matches the
search criteria. If so, include the record in the RecordEnumeration.

10. Create an instance of the Filter class and use the instance when creating
the RecordEnumeration.

11. Loop through the RecordEnumeration, copying each record to a variable.

12. Display the data in a dialog box.

13. Display any errors that occur when reading records from the
RecordEnumeration.

14. Close and remove the RecordEnumeration and the record store.

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:55:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The last method defined in the RecordFilter implementation, filterClose(), is used to
free the ByteArrayInputStream and the DataInputStream used by the implementation.
This method is called in the fifth try {} block.

import javax.microedition.rms.*;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import java.io.*;

public class SearchExample extends MIDlet implements CommandListener

{

private Display display;

private Alert alert;

private Form form;

private Command exit;

private Command start;

private RecordStore recordstore = null;

private RecordEnumeration recordEnumeration = null;

private Filter filter = null;

public SearchExample ()

{

display = Display.getDisplay(this);

exit = new Command("Exit", Command.SCREEN, 1);

start = new Command("Start", Command.SCREEN, 1);

form = new Form("Mixed RecordEnumeration", null);

form.addCommand(exit);

form.addCommand(start);

form.setCommandListener(this);

}

public void startApp()

{

display.setCurrent(form);

}

public void pauseApp()

{

}

public void destroyApp(boolean unconditional)

{

}

public void commandAction(Command command, Displayable displayable)

{

if (command == exit)

{

348 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

Listing 8-15
Searching for

single data
type records

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:55:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

destroyApp(true);

notifyDestroyed();

}

else if (command == start)

{

try

{

recordstore = RecordStore.openRecordStore(

"myRecordStore", true);

}

catch (Exception error)

{

alert = new Alert("Error Creating",

error.toString(), null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

try

{

String outputData[] = {"Mary", "Bob", "Adam"};

for (int x = 0 ; x < 3; x++)

{

byte[] byteOutputData = outputData[x].getBytes();

recordstore.addRecord(byteOutputData, 0,

byteOutputData.length);

}

}

catch (Exception error)

{

alert = new Alert("Error Writing",

error.toString(), null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

try

{

filter = new Filter("Bob");

recordEnumeration = recordstore.enumerateRecords(

filter, null, false);

if (recordEnumeration.numRecords() > 0)

{

String string = new String(recordEnumeration.nextRecord());

C h a p t e r 8 : R e c o r d M a n a g e m e n t S y s t e m 349

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:55:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

350 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

alert = new Alert("Reading", string,

null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

}

catch (Exception error)

{

alert = new Alert("Error Reading",

error.toString(), null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

try

{

recordstore.closeRecordStore();

}

catch (Exception error)

{

alert = new Alert("Error Closing",

error.toString(), null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

if (RecordStore.listRecordStores() != null)

{

try

{

RecordStore.deleteRecordStore("myRecordStore");

recordEnumeration.destroy();

filter.filterClose();

}

catch (Exception error)

{

alert = new Alert("Error Removing",

error.toString(), null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

}

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:55:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 8 : R e c o r d M a n a g e m e n t S y s t e m 351

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

}

}

}

class Filter implements RecordFilter

{

private String search = null;

private ByteArrayInputStream inputstream = null;

private DataInputStream datainputstream = null;

public Filter(String search)

{

this.search = search.toLowerCase();

}

public boolean matches(byte[] suspect)

{

String string = new String(suspect).toLowerCase();

if (string!= null && string.indexOf(search) != -1)

return true;

else

return false;

}

public void filterClose()

{

try

{

if (inputstream != null)

{

inputstream.close();

}

if (datainputstream != null)

{

datainputstream.close();

}

}

catch (Exception error)

{

}

}

}

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:55:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

MIDlet-Name: SearchExample

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: SearchExample.jar

MIDlet-1: SearchExample, , SearchExample

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

Searching Mixed Data Type Records
Listing 8-17 illustrates how to search records that contain multiple columns, each
possibly having different data types (Figure 8-10). Listing 8-18 is the JAD file for
Listing 8-17. Listing 8-17 is similar in structure to Listing 8-15, which is used to sort
single data type records. Therefore, we’ll focus on sections of the example that are

352 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

Figure 8-10. Searching mixed data type records in a RecordEnumeration

Listing 8-16
The JAD

file for
Listing 8-15

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:55:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 8 : R e c o r d M a n a g e m e n t S y s t e m 353

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

modifications to Listing 8-15. Refer to Listing 8-15 for a complete discussion of each
line of code that isn’t modified in this example.

The first modification is found in the third try { } block where an instance of the
Filter class is created. The Filter class is an implementation of the RecordFilter interface.
The constructor of the Filter class is passed the search criteria, which is the integer 10.

Reference to the instance of the Filter class is passed as the first parameter
to the enumerateRecords() method, which returns a RecordEnumeration. The
enumerateRecords() method calls methods defined in the Filter class. Notice
that a null is passed as the second parameter to the enumerateRecords() since
a RecordComparator is not being used to sort the RecordEnumeration.

Let’s move toward the end of the example and review the definition of the Filter class
where three methods are defined. The first method is the constructor, which receives the
search criteria as a parameter. The search criteria is assigned to locate an integer variable,
which has previously been initialized to zero. The matches() method is the next method
defined in the Filter class. This is the method called by the enumerateRecords() method
to determine whether the current record should or should not be included in the
RecordEnumeration.

The enumerateRecords() method passes the matches() method a byte array containing
the current record. This byte array is then converted to a byte array input stream, which
is further converted to a data input stream.

The readXXX() method is then called to read each column from the data input
stream. Columns must be read in the order they are written using the appropriate
readXXX() method that reflects the data type of the column, as discussed previously
in this chapter. You don’t need to assign the results of the readXXX() method to
a variable unless the value of the column is being compared to the search criteria.
Furthermore, you can stop reading columns from the data input stream once the
column used for the comparison has been read.

In this example, the first column is a string containing a person’s name, and the
second column is an integer. The first column is read, but the value of the first column
is not assigned to a variable because this column is not matched to the search criteria.
We still must read this column because columns are read sequentially within a record.
Once a column is read, the next column is pointed to within the data input stream.

Next, the second column is read. However, the value of the column is assigned to
an integer variable because this is the value within the record that is being compared
to the search criteria.

Any errors that occur while reading the data input stream are trapped by the catch {}
block where instead of displaying an error message, a boolean false is returned to the
enumerateRecords() method indicating that the current record should not be included
in the RecordEnumeration.

The if statement is used to compare the string value of the data input stream to the
search criteria. If there is a match, a boolean true is returned to the enumerationRecords()
method; otherwise, a boolean false is returned.

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:55:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

The last method defined in the Filter class implementation of the RecordFilter is
the filterClose() method. This method, called in the fifth try {} block, closes the input
stream and data input stream used by the Filter class.

import javax.microedition.rms.*;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

354 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

Searching a Mixed Data Type Record
Here are the steps required to search a mixed data type record:

1. Declare references to classes.

2. Create instances of classes and assign those instances to references.

3. Open a record store and create a new record store if the record store
doesn’t exist.

4. Display any errors that occur when opening/creating a record store.

5. Create data in the appropriate data type.

6. Convert data to a byte array output stream.

7. Create a data output stream using the byte array output stream.

8. Write each column of the record to the data output stream.

9. Convert the data output stream to a byte array.

10. Write the record to the record store.

11. Close the output byte array output stream and the data output stream.

12. Display any errors that might occur while writing to the record store.

13. Create a buffer of bytes sufficient to hold a record.

14. Create a byte array input stream and a data input stream.

15. Create a Filter class with a method that compares the search criteria to
a record and returns a boolean value true or false. If true, then include
the record in the RecordEnumeration.

16. Create an instance of the Filter class and use the instance when creating
the RecordEnumeration.

17. Loop through the RecordEnumeration, copying each column from the
record store to a variable.

18. Display the data in a dialog box.

19. Display any errors that occur when reading records from the record store.

20. Close and remove the RecordEnumeration and the record store.

Listing 8-17
Searching

a mixed
data type

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:55:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 8 : R e c o r d M a n a g e m e n t S y s t e m 355

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

import java.io.*;

public class SearchMixedRecordDataTypeExample

extends MIDlet implements CommandListener

{

private Display display;

private Alert alert;

private Form form;

private Command exit;

private Command start;

private RecordStore recordstore = null;

private RecordEnumeration recordEnumeration = null;

private Filter filter = null;

public SearchMixedRecordDataTypeExample ()

{

display = Display.getDisplay(this);

exit = new Command("Exit", Command.SCREEN, 1);

start = new Command("Start", Command.SCREEN, 1);

form = new Form("Mixed RecordEnumeration");

form.addCommand(exit);

form.addCommand(start);

form.setCommandListener(this);

}

public void startApp()

{

display.setCurrent(form);

}

public void pauseApp()

{

}

public void destroyApp(boolean unconditional)

{

}

public void commandAction(Command command, Displayable displayable)

{

if (command == exit)

{

destroyApp(true);

notifyDestroyed();

}

else if (command == start)

{

try

{

recordstore = RecordStore.openRecordStore(

"myRecordStore", true);

}

catch (Exception error)

{

alert = new Alert("Error Creating",

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:55:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

error.toString(), null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

try

{

byte[] outputRecord;

String outputString[] = {"Adam", "Bob", "Mary"};

int outputInteger[] = {15, 10, 5};

ByteArrayOutputStream outputStream = new ByteArrayOutputStream();

DataOutputStream outputDataStream =

new DataOutputStream(outputStream);

for (int x = 0; x < 3; x++)

{

outputDataStream.writeUTF(outputString[x]);

outputDataStream.writeInt(outputInteger[x]);

outputDataStream.flush();

outputRecord = outputStream.toByteArray();

recordstore.addRecord(outputRecord, 0, outputRecord.length);

outputStream.reset();

}

outputStream.close();

outputDataStream.close();

}

catch (Exception error)

{

alert = new Alert("Error Writing",

error.toString(), null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

try

{

String inputString;

byte[] byteInputData = new byte[300];

ByteArrayInputStream inputStream =

new ByteArrayInputStream(byteInputData);

DataInputStream inputDataStream =

new DataInputStream(inputStream);

if (recordstore.getNumRecords() > 0)

{

filter = new Filter("Mary");

recordEnumeration = recordstore.enumerateRecords(

filter, null, false);

while (recordEnumeration.hasNextElement())

{

recordstore.getRecord(recordEnumeration.nextRecordId(),

356 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:55:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

byteInputData, 0);

inputString = inputDataStream.readUTF() +

" " + inputDataStream.readInt();

alert = new Alert("Reading", inputString,

null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

}

inputStream.close();

}

catch (Exception error)

{

alert = new Alert("Error Reading",

error.toString(), null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

try

{

recordstore.closeRecordStore();

}

catch (Exception error)

{

alert = new Alert("Error Closing",

error.toString(), null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

if (RecordStore.listRecordStores() != null)

{

try

{

RecordStore.deleteRecordStore("myRecordStore");

filter.filterClose();

recordEnumeration.destroy();

}

catch (Exception error)

{

alert = new Alert("Error Removing",

error.toString(), null, AlertType.WARNING);

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

}

}

}

C h a p t e r 8 : R e c o r d M a n a g e m e n t S y s t e m 357

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:55:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

}}

class Filter implements RecordFilter

{

private String search = null;

private ByteArrayInputStream inputstream = null;

private DataInputStream datainputstream = null;

public Filter(String searchcriteria)

{

search = searchcriteria;

}

public boolean matches(byte[] suspect)

{

String string = null;

try

{

inputstream = new ByteArrayInputStream(suspect);

datainputstream = new DataInputStream(inputstream);

string = datainputstream.readUTF();

}

catch (Exception error)

{

return false;

}

if (string!= null && string.indexOf(search) != -1)

return true;

else

return false;

}

public void filterClose()

{

try

{

if (inputstream != null)

{

inputstream.close();

}

if (datainputstream != null)

{

datainputstream.close();

}

}

catch (Exception error)

{

}

}

}

358 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:55:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 8 : R e c o r d M a n a g e m e n t S y s t e m 359

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

MIDlet-Name: SearchMixedRecordDataTypeExample

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: SearchMixedRecordDataTypeExample.jar

MIDlet-1: SearchMixedRecordDataTypeExample, ,

SearchMixedRecordDataTypeExample

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

RecordListener
Records in a RecordEnumeration might be a subset of records if filtering has been
applied, as you learned in previous sections of this chapter. It is possible that the
RecordEnumeration becomes out of sync with the record store if the record store
is accessible to other MIDlets. You can synchronize the RecordEnumeration and the
record store by setting the third parameter of the enumerateRecords() method to true,
which has already been illustrated in this chapter. However, besides synchronizing the
RecordEnumeration and the record store, there are occasions when you’ll want other
events to occur whenever a record changes in the record store. For example, you may
want to change information on a form to reflect the latest data in the record store.

You can be notified of changes made to a record store by implementing an instance
of the RecordListener interface. The instance of the RecordListener interface is notified
whenever one of three changes is made to the record store. These are when a record is
added, modified, or deleted from the record store.

Your definition of the RecordListener interface must define three methods:
recordAdded(), recordChanged(), and recordDeleted(). All three methods require
two parameters. The first parameter is reference to the record store that has changed,
and the second is an integer indicating the record ID that was added, modified, or
removed from the record store. Listing 8-19 contains the structure of a RecordListener.

Once you’ve defined the implementation of the RecordListener, you’ll need
to associate the implementation with the record store. You do this by placing the
following statement below the statement that creates a record store in the constructor
of your MIDlet class.

recordstore.addRecordListener(new MyRecordListener());

class MyRecordListener implements RecordListener

{

public void recordAdded(RecordStore recordstore, int recordid)

{

Listing 8-19
Definition

of an imple-
mentation of

a Record-
Listener

Listing 8-18
The JAD

file for
Listing 8-17

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:55:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

try

{

//do something

}

catch (Exception error)

{

//do something

}

}

public void recordDeleted(RecordStore recordstore, int recordid)

{

try

{

//do something

}

catch (Exception error)

{

//do something

}

}

public void recordChanged(RecordStore recordstore, int recordid)

{

try

{

//do something

}

catch (Exception error)

{

//do something

}

}

}

Quick Reference Guide
This quick reference guide provides an overview of classes used by J2ME for the
Record Management System. Full details of these classes and all Java classes and
interfaces are available at java.sun.com.

360 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:55:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

javax.microedition.rms.RecordStore Class

Method Description

static RecordStore openRecordStore(String
recordStoreName)

Open the record store specified in
recordStoreName.

static RecordStore openRecordStore(String
recordStoreName, boolean createIfNecessary)

Open the record store specified in
recordStoreName. If createIfNecessary
is true, create a new record store if
the recordStoreName doesn’t exist.
If createIfNecessary is false, don’t
create a new record store.

void closeRecordStore() Close the currently opened record store.

static void deleteRecordStore(String
recordStoreName)

Remove the record store specified in
recordStoreName.

static String[] listRecordStores() Return an array of strings containing the
names of record stores in the MIDlet suite.

int addRecord(byte[] data, int offset,
int numBytes)

Insert a record into a record store, where
data is the record, offset is the index
within the data of the first byte of the
data, and the numBytes is the total
number of bytes of the data.

void setRecord (int recordID, byte[] newData,
int offset, int numBytes)

Replace data in the specified record,
where recordID is the record ID,
newData is the data that will overwrite
the existing data in the record, the offset
is the index of the first byte in the byte
array, and numBytes is the total number
of bytes to be written to the record store.

void deleteRecord(int recordID) Remove a record specified by recordID
from the record store.

byte[] getRecord(int recordID) Retrieve a record specified by recordID
from the record store.

int getRecord(int recordID, byte[] buffer,
int offset)

Retrieve a record specified by recordID
from the record store, where buffer is the
destination, and offset is the byte within
the record where copying begins.

int getRecordSize(int recordID) Retrieve the size of the record specified
in recordID. Size is returned as bytes.

int getNextRecordID() Retrieve the next record ID.

int getNumRecords() Retrieve the number of records that are
in a record store.

C h a p t e r 8 : R e c o r d M a n a g e m e n t S y s t e m 361

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:55:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

javax.microedition.rms.RecordStore Class

Method Description

long getLastModified() Retrieve the date of the last modification
made to the record store.

int getVersion() Retrieve the version number of the
record store.

String getName() Retrieve the name of the record store.

int getSize() Retrieve the size of the record.

int getSizeAvailable() Retrieve the space available within
a record store to store records.

RecordEnumeration
enumerateRecords(Recordfilter filter,
RecordComparator comparator,
boolean keepUpdate)

Create an enumeration of records,
where filter specifies the argument for
placing records within the enumeration,
comparator specifies the argument for
comparing records, and keepUpdate is
a boolean value that determines whether
the enumeration should be updated
when changes occur to the underlying
record store.

void addRecordListener(RecordListener listener) Associate a RecordListener to the
record store.

void removeRecordListener(recordListener
listener)

Remove the RecordListener that is
associated with a record store.

javax.microedition.rms.RecordEnumeration Interface

Method Description

int numRecords() Return the number of records in
the RecordEnumeration.

byte[] nextRecord() Return the next record in the
RecordEnumeration.

int nextRecordId() Return the next record ID in the
RecordEnumeration.

byte[] previousRecord() Return the previous record in the
RecordEnumeration.

int previousRecordId() Return the previous record ID in
the RecordEnumeration.

362 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:55:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 8 : R e c o r d M a n a g e m e n t S y s t e m 363

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

javax.microedition.rms.RecordEnumeration Interface

Method Description

boolean hasNextElement() Determine whether the enumeration has
more records going forward.

boolean hasPreviousElement() Determine whether there is a previous
record in the RecordEnumeration.

void keepUpdated(boolean keepUpdated) Set the automatic update feature
of the RecordEnumeration, where
keepUpdated is a boolean value
indicating whether or not the feature
is activated.

boolean isKeptUpdated() Determine whether the
RecordEnumeration is
automatically updated.

void rebuild() Rebuild the index of the
RecordEnumeration.

void reset() Return to the beginning of the
RecordEnumeration.

void destroy() Release resources reserved for
the RecordEnumeration.

javax.microedition.rms.RecordComparator Interface

Method Description

int compare(byte[], rec1, byte[] rec2) Compare two records represented
as byte array rec1 and byte array rec2
to determine the sort sequence of
a RecordEnumeration.

javax.microedition.rms.RecordFilter interface

Method Description

boolean matches(byte[] candidate) Search a record for a specific value.

javax.microedition.rms.RecordListener Interface

Method Description

void recordAdded(RecordStore recordStore,
int recordId)

This method is called whenever a record
is added to the record store, where
recordStore is the record store, and
recordID is the record that was added.

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:55:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

javax.microedition.rms.RecordListener Interface

Method Description

void recordChanged(RecordStore recordStore,
int recordId)

This method is called whenever a record
is changed in the record store, where
recordStore is the record store, and
recordID is the record that was changed.

void recordDeleted(RecordStore recordStore,
int recordId)

This method is called whenever a record
is deleted from the record store, where
recordStore is the record store, and
recordID is the record that was deleted.

Record Management System Exceptions

Exception Description

public InvalidRecordIDException() An invalid record number was used.

public InvalidRecordIDException(String message) An invalid record number was used,
where message contains the text of the
exception.

public RecordStoreException() General exception with the record store.

public RecordStoreException(String message) General exception with the record store,
where message contains the text of the
exception.

public RecordStoreFullException() Record store is full.

public RecordStoreFullException(String message) Record store is full, where message
contains the text of the exception.

public RecordStoreNotFoundException() Record store does not exist.

public RecordStoreNotFoundException(String
message)

Record store does not exist, where
message contains the text of the
exception.

public RecordStoreNotOpenException() Record store is not open.

public RecordStoreNotOpenException(String
message)

Record store is not open, where
message contains the text of the
exception.

364 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 8

P:\010Comp\CompRef8\710-9\ch08.vp
Thursday, February 06, 2003 11:55:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 9
J2ME Database
Concepts

365

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 9

P:\010Comp\CompRef8\710-9\ch09.vp
Thursday, February 06, 2003 12:16:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

366 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 9

AJ2ME application saves and retrieves data using the Record Management System
(RMS), which is discussed in the previous chapter. Applications running on
both Connected Limited Device Configuration (CLDC) and Connected Device

Configuration (CDC) devices use RMS for local data management. J2ME applications
that run on CDC devices are also capable of utilizing a relational database management
system (DBMS), which provides industrial-strength database management service to the
application. The DBMS is typically located on a server connected to the device over a
network, although some CDC devices might have the DBMS stored locally on a hard drive.

As you’ll recall from Chapter 1, CLDC devices usually have between 160KB and
512KB of available memory and are battery powered. They also use an inconsistent,
small- bandwidth network wireless connection and may not have a user interface.
CLDC devices use the KJava Virtual Machine (KVM) implementation, which is a
stripped-down version of the JVM. CLDC devices include pagers, personal digital
assistants, cell phones, dedicated terminals, and handheld consumer devices with
between 128KB and 512KB of memory.

CDC devices use a 32-bit architecture, have at least 2MB of memory available, and
implement a complete functional JVM. CDC devices include digital set-top boxes, home
appliances, navigation systems, point-of-sale terminals, and smart phones.

A database is a collection of data managed by a DBMS. Many corporations use one
of several commercially available DBMSs, such as Oracle, DB2, Sybase, and Microsoft
Access (used for small data collections).

A CDC-based J2ME application interacts with commercial DBMSs by using a
combination of Java data objects that are defined in the Java Database Connection (JDBC)
specification and by using the Structured Query Language (SQL). The JDBC interface
forms a communications link with a DBMS, while SQL is the language used to construct
the message (called a query) that is sent to the DBMS to request, update, delete, and
otherwise manipulate data in the DBMS.

This is the first of three chapters that show how to incorporate database interactions
into a J2ME application. In this chapter you learn how to transform data elements of
a business system into a relational database, which is a common task in development
of J2ME applications. You can skip this chapter if you are familiar with this technique.
The next chapter focuses on Java data objects—what they are, how they work, and how
to use them to communicate with a DBMS. Chapter 11 shows how to write and execute
queries, and then interact with the results returned by the DBMS.

Data
You are probably familiar with the term data because you use data in everyday life, such as
when you dial a telephone number or log into a computer network using a user ID and
password. The telephone number, user ID, and password are types of data. Yet the term
data is commonly confused with the term information. Although these terms have a similar
meaning in the vernacular, they are different when related to a DBMS. Information
consists of one or more words that collectively infer a meaning, such as a person’s

P:\010Comp\CompRef8\710-9\ch09.vp
Thursday, February 06, 2003 12:16:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

address. Data refers to an atomic unit that is stored in a DBMS and is sometimes
reassembled into information.

Examples of data are a person’s street address, city, state, and zip code. Each of
these is an atomic unit that is commonly found in a DBMS. A J2ME application can
access one or multiple atomic units as required by the application. Data is organized
in a database so that a J2ME application can quickly find, retrieve, update, or delete
one or more data elements.

Databases
As mentioned previously in this chapter, a database in the purest sense is a collection of
data. While you can use Java and Java’s IO classes to create your own database, you’ll
probably interact with a commercially available DBMS. DBMSs use proprietary and
public domain algorithms to assure fast and secure interaction with data stored in the
database. Most DBMSs adhere to a widely accepted relational database model. A database
model is a description of how data is organized in a database. In a relational database model,
data is grouped into tables using a technique called normalization, which you’ll learn
about later in this chapter.

Once a database and at least one table are created, a J2ME application can send SQL
statements to the DBMS to perform the following:

■ Save data

■ Retrieve data

■ Update data

■ Manipulate data

■ Delete data

Tables
A table is the component of a database that contains data in the form of rows and columns,
very similar to a spreadsheet. A row contains related data such as clients’ names and
addresses. A column contains like data such as clients’ first names. Each column is
identified by a unique name, called a column name, that describes the data contained
in the column. For example, “client first name” is a likely choice as the name of a column
that contains clients’ first names. In addition, columns are defined by attributes. An
attribute describes the characteristic of data that can be stored in the column. Attributes
include size, data type, and format. You’ll learn about these and other attributes later in
this chapter.

Database name, table name, column name, column attributes, and other information
that describe database components are known as metadata. Metadata is data about data.
For example, the size of the client first name column describes the data contained
within the column and therefore is referred to as metadata. Metadata is used by J2ME

C h a p t e r 9 : J 2 M E D a t a b a s e C o n c e p t s 367

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 9

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

P:\010Comp\CompRef8\710-9\ch09.vp
Thursday, February 06, 2003 12:16:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

applications to identify database components without needing to know details of
a column, table, or the database. For example, a J2ME application can request from the
DBMS the data type of a specific column. The column type is used by a J2ME application
to copy data retrieved from the DBMS into a Java collection.

Database Schema
A database schema (see Figure 9-1) is a document that defines all components of a database,
such as tables, columns, and indexes. A database schema also shows relationships between
tables; the relationships are used to join rows of two tables. You’ll learn about indexes
and relating tables later in this chapter.

368 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 9

Figure 9-1. A database schema diagrams the relationships among all components
of a database.

P:\010Comp\CompRef8\710-9\ch09.vp
Thursday, February 06, 2003 12:16:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To create a database schema, you must perform six steps:

1. Identify information used in the existing system or legacy system
that is being replaced by the J2ME application.

2. Decompose this information into data.

3. Define data.

4. Normalize data into logical groups.

5. Create primary and foreign keys.

6. Group data together into logical groups.

Identifying Information
The initial step in defining a database schema is to identify all information used by
the system that is being converted to J2ME technology. Information is associated with
objects—also known as entities—of the system. An entity is an order form, a product,
a customer, a sales representative, for example. Figure 9-2 illustrates the entities for
an order system. Each entity is defined by attributes. An attribute is information that
describes an entity, such as a customer name for a customer entity.

Don’t confuse an entity attribute with data attributes because an entity attribute
can be different from data attributes. An entity attribute provides general information
about an entity, while a data attribute provides information about data that is used by
the entity. Data, as you’ll recall, is the atomic level of information. An attribute of an
entity is at a more general level than the atomic level. For example, a customer name
is an entity attribute, and a customer first name and customer last name are data attributes.

C h a p t e r 9 : J 2 M E D a t a b a s e C o n c e p t s 369

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 9

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Figure 9-2. Entities of the order system

P:\010Comp\CompRef8\710-9\ch09.vp
Thursday, February 06, 2003 12:16:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Identifying attributes is intuitive most times because an attribute is information
commonly used to describe an entity. For example, a customer name and address are
information normally used to describe a customer. Therefore, customer name and
address are easily recognizable as attributes of a customer entity. Figure 9-3 contains
attributes for entities in the order system. Notice how attributes of an entity uniquely
identify the entity.

The best way to identify attributes of an entity is by analyzing instances of the entity.
An entity is like an empty order form and an instance is an order form that contains
order information. Looking at instances of an entity helps to identify attributes because

370 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 9

Figure 9-3. Attributes of entities of the order system

P:\010Comp\CompRef8\710-9\ch09.vp
Thursday, February 06, 2003 12:16:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

you are viewing a real entity. That is, instead of looking at a blank order form, you are
looking at an order form that represents a real order. You’ll find instances of an entity
in the existing system.

Once attributes are identified, you must describe the characteristics of each attribute
(see Figure 9-4). Here are common characteristics found in many attributes:

■ Attribute name The name of the attribute uniquely distinguishes the attribute
from other attributes of the same entity. “First name” is an attribute name.
Duplicate attribute names within the same entity are prohibited. However, two
entities can use the same attribute name. That is, the customer entity and the
sales representative entity can both have an attribute called first name.

C h a p t e r 9 : J 2 M E D a t a b a s e C o n c e p t s 371

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 9

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Figure 9-4. Attributes are defined by their characteristics.

P:\010Comp\CompRef8\710-9\ch09.vp
Thursday, February 06, 2003 12:16:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Attribute type An attribute type is nearly identical to the data type of a column
in a table. Common attribute types include numeric, character, alphanumeric,
date, time, Boolean, integer, float, and double, among other attribute types.
However, unlike a data type for a column, you do not have to use precise
terminology to describe an attribute type. That is, you might call an attribute
type “sales in dollars,” which is not a valid Java data type but is sufficient to
convey the type of information assigned to the entity. It is also advisable to include
sample values that are assigned to the entity. This enables you to match the
attribute with the most advantageous data type for the DBMS you are using
when you create a table for the system.

■ Attribute size The attribute size describes the number of characters used to
store values of the attribute. This is similar to the size of a column in a table.

■ Attribute range An attribute range contains minimum and maximum values
that can be assigned to an attribute. For example, the value of the “total amount”
attribute of an order entity is likely to be greater than zero and less than 10,000,
assuming that no order has ever been received that had a total amount of more
than 9,999. This range is then used to throw an error should an order be received
with a total amount outside this range.

■ Attribute default value An attribute default value is the value that is
automatically assigned to the attribute if the attribute isn’t assigned a value
by the J2ME application. For example, the J2ME application uses the default
system date for the date of an order if a sales representative fails to date the
order. The system date is the attribute default value.

■ Acceptable values An acceptable value for an attribute is one of a set of
values established by the business unit and includes zip codes, country codes,
methods of delivery, and simply “yes” or “no.”

■ Required value An attribute may require a value before the attribute is saved
to a table. For example, an order entity has an order number attribute that must
be assigned an order number.

■ Attribute format The attribute format consists of the way an attribute appears
in the existing system, such as the format of data.

■ Attribute source The attribute source identifies the origin of the attribute value.
Common sources are from data entry and J2ME applications (such as using the
system date as the value of the attribute).

■ Comments A comment is free-form text used to describe an attribute.

Decomposing Attributes to Data
Once attributes of entities are identified, they must be reduced to data elements. This
process is called decomposing. For the most part, decomposing is an intuitive process
because you can easily recognize whether an attribute is already at an atomic level, as

372 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 9

P:\010Comp\CompRef8\710-9\ch09.vp
Thursday, February 06, 2003 12:16:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 9 : J 2 M E D a t a b a s e C o n c e p t s 373

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 9

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

illustrated by the customer name and customer address attributes. Both attributes are
not atomic, but the atomic level is obvious—first name, last name, city, state, and zip code.

However, decomposing other attributes might be less intuitive. For example, should
a customer number attribute be decomposed? At first glance, the response is no because
typically, a customer number is already atomic. Consider the following customer number
that consists of three numbered segments: 12-24-1001. The first segment (12) represents
the sales region where the customer is located. The second segment (24) is the branch in the
sales region that handles the relationship with the customer. And the final segment (1001)
is the number that identifies the customer within the branch and region.

Since the customer number is in three segments, should the customer number
attribute be decomposed into each segment? This isn’t an easy question to answer since
in some systems it makes sense to further decompose the customer number attribute,
and in other systems no further decomposition of the customer number is necessary.
The nature of the system will determine whether or not additional decomposition is
required for an attribute. For example, in this scenario the customer number probably
should be further decomposed if the system references each segment of the customer
number, such as using the first segment to select customers of a particular region.
Otherwise, the customer number should be treated as atomic.

How to Decompose Attributes
The process of decomposing attributes begins by analyzing the list of entities and their
attributes. The list of attributes represents all the information used by the existing system.
The objective is to reduce each attribute to a list of data that represents the atomic level
of the attribute. Here’s how to do this:

1. Look at each attribute and ask yourself if the attribute is atomic.

2. If the attribute isn’t atomic, it must be further decomposed. Create a list of data
derived from the attribute, as illustrated in Figure 9-5.

3. If the attribute is atomic, no further decomposition is necessary for that attribute.

4. Place the name of the attribute on the data list.

5. Review the data list developed in step 2 and repeat the decomposition process
until all attributes are atomic.

Tools for Analysis
Computer-aided software engineering (CASE) tools are designed to automate
the process of analyzing a system. Oracle Designer/2000, Rational Rose, and
Together J are three of the better CASE tools on the market.

A CASE tool transforms basic information that is entered into the tool into
entities, attributes, data, and relationships among entities. CASE tools are beyond
the scope of this book. Visit the manufacturers’ web sites for more information
about CASE tools.

P:\010Comp\CompRef8\710-9\ch09.vp
Thursday, February 06, 2003 12:16:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

374 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 9

Decomposing by Example
Let’s work through an example of decomposing attributes using the customer address
attribute of a customer entity. The following are attributes for the customer entity:

■ Customer number

■ Customer name

Figure 9-5. Data elements for the customer name attribute

P:\010Comp\CompRef8\710-9\ch09.vp
Thursday, February 06, 2003 12:16:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 9 : J 2 M E D a t a b a s e C o n c e p t s 375

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 9

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

■ Customer address

■ Customer telephone number

Once the list of attributes is assembled, each attribute on the list must be decomposed.
The customer address attribute is decomposed in this example. The same process can
be applied to the other attributes.

Review the customer address attribute to determine whether the attribute is atomic,
which it isn’t. Therefore, the customer address attribute must be decomposed into the
following data elements:

■ Street address 1

■ Street address 2

■ City

■ State

■ Country

■ Country code

■ Postal code

■ Address type (home or business)

Defining Data
Decomposing attributes results in the identification of data elements used by the existing
system. Each data element must be defined using techniques similar to those used to
describe an attribute. Here are common ways to define a data element:

■ Data name The unique name given to the data element, which should reflect
the kind of data (see “The Art of Choosing a Name”).

■ Data type A data type describes the kind of values associated with the data
(see the next section, “Data Types”).

■ Data size The size of text data is the maximum number of characters required
to represent values of the data. The size of numeric data is usually either the
number of digits or the number of bytes for binary representation (for example,
smallint in DB2 is 2 bytes).

Data Types
As previously mentioned in this chapter, a data type describes the characteristics of
data associated with a data element. For example, a street address is likely to be an
alphanumeric data type because a street address has a mixture of characters and numbers.
It is important to use care when selecting the data type of a data element at this stage in
the analysis because the data type that you choose typically becomes the data type of the
column in the table that contains the data.

P:\010Comp\CompRef8\710-9\ch09.vp
Thursday, February 06, 2003 12:16:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Where possible, limit the choice of data types to those that are common to commercial
DBMSs. Not all DBMSs use the same data types; some enhance the standard data type
offering. However, if you are unsure of the data type to describe a data element, describe

376 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 9

The Art of Choosing a Name
Picking a name for a data element might seem intuitive, but can easily become
tricky when you realize the name must describe the data, it must be unique, and
it may have size and character limitations, depending on the DBMS. The nature
of the data provides a hint to the data name, such as “first name” being used as
the name for data associated with a person’s first name. However, sometimes the
obvious choice isn’t the best choice. For example, intuitively you might select
“telephone number” as the name of data associated with a telephone number. But
an entity such as a customer might have more than one telephone number, a home
number and business number. This means the name of the data element that contains
the telephone number must reflect the kind of telephone number too.

Another twist to selecting a name comes when more than one entity contains
similar data. In this example, there could be a customer entity and a sales
representative entity, both of which have home and business telephone numbers.
The solution is to use the name of the entity as part of the data element name, such
as “customer home telephone number” and “customer business telephone number,”
since this clearly identifies the data.

Keep the length of the name reasonable. The name of a data element typically
becomes a column name in a table. Some DBMSs restrict the length of column
names and the types of characters that can be used as a column name.

Names of data should have as few characters as possible to identify the data.
There are two reasons for this. First, the data name will probably conform to any
restrictions imposed by the DBMS. Second, a programmer won’t need to type long
column names when interacting with the database.

A data name can be abbreviated using components of the name. For example,
“customer home telephone number” can be shortened to “cust home phone.”
When abbreviating data names, make sure the same style of abbreviation is used
for naming data. This means that cust is the abbreviation for customer and should
be used in other data of the customer entity (for example, cust bus phone).

Be aware that some DBMSs prohibit spaces in column names. You can avoid
this problem by removing spaces in the data name. Doing so might make the name
unreadable. Readability can be enhanced by capitalizing the first letter of each word
in the name, or separating these words with hyphens or underlines as shown here:

■ CustHomePhone

■ cust-home-Phone

■ cust_home_phone

P:\010Comp\CompRef8\710-9\ch09.vp
Thursday, February 06, 2003 12:16:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 9 : J 2 M E D a t a b a s e C o n c e p t s 377

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 9

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

the type of data in your own words and include an example of data values that are
associated with the data element. You can refine your choice to available data types
in the DBMS when you create the table used to store the data element.

Many commercially available DBMSs have adopted a common set of data types
based on the SQL set of data types, which you’ll learn about in detail in the next chapter.
Some of these are listed here:

■ Character, also referred to as text Stores alphabetical characters and
punctuation

■ Alpha Stores only alphabetical characters

■ Alphanumeric Stores alphabetical characters, punctuation, and numbers

■ Numeric Stores numbers only

■ Date/Time Stores dates and time values

■ Logical (Boolean) Stores one of two values: true or false, 0 or 1, or yes or no

■ LOB (large object) Stores large text fields, images, and other binary data

Normalizing Data
Normalization is the process of organizing data elements into related groups to minimize
redundant data and to assure data integrity. Redundant data elements occur naturally
since multiple entities have the same data elements. For example, an order form and
invoice are both entities that contain a customer name and address. Therefore, customer
name and address are redundant.

For transactional databases, redundant data makes a database complex, inefficient,
and exposes the database to problems referred to as anomalies when the DBMS maintains
the database. Anomalies occur whenever new data is inserted into the database and
when existing data is either modified or deleted, and can lead to a breach in referential
integrity of the database (see “Referential Integrity” later in this chapter). However, for
reporting data, the redundancy rules are bent a little because redundant data is more
efficient. It minimizes the number of joins and allows data to be summarized into
logical groups.

Errors caused by redundant data are greatly reduced and possibly eliminated by
applying the normalization process to the list of data elements that describe all the
entities in a system. This is called normalizing the logical data model of a system.
The normalization process consists of applying a series of rules called normal forms
to the list of data elements to:

■ Remove redundant data elements.

■ Reorganize data elements into groups.

■ Define one data element of the group (called a primary key) to uniquely identify
the group. Often, two or more data elements make up the primary key, which is
referred to as a composite key.

P:\010Comp\CompRef8\710-9\ch09.vp
Thursday, February 06, 2003 12:16:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Make other data elements of the group (called non-key data elements) functionally
dependent on the primary key.

■ Relate one group to another using the primary key.

For example, a customer number is the primary key of a group that contains customer
information. Other data contained in the group such as the customer first name and last
name are referred to as non-key data elements. Non-key data elements are functionally
dependent on the primary key. That is, a customer name, address, and related information
cannot exist in the customer group without being assigned a customer number.

The Normalization Process
There are five normal forms. However, many industry leaders have concluded that the
fourth and fifth normal forms are difficult to implement and unnecessary. Therefore,
we’ll confine ourselves to the first three normal forms.

■ First normal form (1NF) requires that information is atomic, as discussed
previously in this chapter.

■ Second normal form (2NF) requires data to be in the first normal form. In
addition, data elements are organized into groups eliminating redundant
data. Each group contains a primary key and non-key data, and non-key
data must be functionally dependent on a primary key.

■ Third normal form (3NF) requires that data elements be in the second normal
form, and non-key data must not contain transitive dependencies.

Grouping Data
A common way to organize data elements into groups is to first assemble a list of all
data elements, as discussed previously in this chapter. When this is done, you’ll notice
that some data elements are duplicated because they are used by more than one entity.
Duplicate data elements must be removed from the list. Although this is an intuitive
process, you must be careful because not all data elements with similar sounding names
are duplicates.

Let’s say there are two data elements, zip code and postal code. At first glance
these appear to have the same meaning. A zip code is another term for postal code—
or is it? A zip code is a specific kind of postal code used in the United States. Postal
code is a general term that also applies to postal codes used by countries other than
the United States.

The difference is subtle, but could have an impact if you assume zip code and
postal code are the same. For example, many relational databases contain a table of
zip codes, where only valid zip codes are stored. The table also contains the city and
state that corresponds to a zip code. Postal code data may or may not be contained in
a relational database table since it could be difficult to identify all the postal codes from
every country and maintain this list as postal codes are modified.

378 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 9

P:\010Comp\CompRef8\710-9\ch09.vp
Thursday, February 06, 2003 12:16:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Figure 9-6 contains a list of all data elements before redundant data elements are
removed. Figure 9-7 shows the same list after redundant data is removed. Notice that
the number of data elements on the list has been dramatically reduced. Figure 9-8 organizes
related data into groups.

C h a p t e r 9 : J 2 M E D a t a b a s e C o n c e p t s 379

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 9

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Figure 9-6. The list of data elements from the entities shown in Figure 9-5

P:\010Comp\CompRef8\710-9\ch09.vp
Thursday, February 06, 2003 12:16:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Creating Primary Keys
As discussed previously in this chapter, a primary key is a data element that uniquely
identifies a row of data elements within a group. The data selected to become the primary
key may or may not exist in the data list generated as the result of analyzing entities.
Sometimes a data element, such as an order number, is used as the primary key. Other
times, the DBMS can be requested to automatically generate a primary key whenever a
column in the group isn’t suitable to be designated the primary key. Figure 9-8 indicates
the primary key of each group with an asterisk.

Let’s use a customer entity as an illustration. In the purest sense, a customer has
a name and address as attributes. These attributes decompose to first name, last name,

380 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 9

Figure 9-7. The list of data elements shown in Figure 9-6 after redundant data
is removed

P:\010Comp\CompRef8\710-9\ch09.vp
Thursday, February 06, 2003 12:16:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

street, city, state, and zip code. However, none of these data elements are suited to become
a primary key because individually and collectively none uniquely identify a customer.

Intuitively, the customer first name and last name seem to uniquely identify a customer,
but upon closer analysis you’ll see that more than one customer might have the same
first name and last name. Likewise, two people at the same address might have the same
name, although it’s somewhat unlikely. If neither a single data element nor a combination
of data elements uniquely identify a row, then you must create another data element to
serve as the primary key of the table, which is what is required in the previous example.
Alternatively, you can request the DBMS to generate a primary key automatically.

C h a p t e r 9 : J 2 M E D a t a b a s e C o n c e p t s 381

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 9

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Figure 9-8. Related data is organized into groups.

P:\010Comp\CompRef8\710-9\ch09.vp
Thursday, February 06, 2003 12:16:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Nearly all commercial DBMSs can generate primary keys to make the database
thread safe and reliable. In contrast, a J2ME application that generates a key must
contain the logic to be sure that none of the components running on different servers
accidentally generate the same key.

Functional Dependency
A functional dependency occurs when data depends on other data, such as when non-key
data is dependent on a primary key. This means that all non-key data has a functional
dependency on the primary key within its group.

For example, order product quantity in the orders group cannot exist unless there
is an order number. The order number is the primary key of the group, and the order
product quantity is non-key data. You can say that order product quantity is functionally
dependent on order number. This is noted by the expression

order product quantity -> order number

Transitive Dependencies
A transitive dependency is a functional dependency between two or more non-key
data elements. This is an elusive concept at first, but an example will clearly illustrate
transitive dependency. The first grouping in Figure 9-9 shows the Order entity with
the two data elements Sales Rep Number and Sales Region, which is the region to
which the sales representative is assigned. Salesperson and region have a transitive
dependency. The region is functionally dependent on the salesperson, and the salesperson
is functionally dependent on the order number. Both salesperson and region are non-key
data and are therefore functionally mutually dependent.

The problem lies with the fact that a salesperson cannot be relocated to a different
region without having to modify the region data element in the order information
group. Therefore, data elements must be regrouped to conform to the third normal
form and eliminate transitive dependency.

The second grouping in Figure 9-9 illustrates the regrouping of the Order entity
to address the transitive dependency problem. Notice that a new group is formed that
contains the Sales Rep Number and the Sales Region. The Sales Rep Number and the
Sales Region can be used as a composite key. A composite key, as you recall from an
earlier discussion in this chapter, is a primary key that consists of two data elements.
In this example, the Sales Rep Number and the Sales Region can be joined to form a
composite key. If a sales representative is permitted to make sales in multiple regions,
the composite key is used to associate the sales representative with one of many regions
and a region to one of many sales representatives.

Identifying transitive dependencies is tricky. You have to carefully analyze the data
elements once the list of data elements is in the second normal form to spot transitive
dependencies.

382 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 9

P:\010Comp\CompRef8\710-9\ch09.vp
Thursday, February 06, 2003 12:16:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Foreign Keys
As you recall, a foreign key is a primary key of another group used to draw a relationship
between two groups of data elements (see ** in Figure 9-8). Relationships between two
groups are made using the value of a foreign key and not necessarily the name of
a foreign key.

Let’s say there are two groups, one contains customer information, and the other
contains order information. The primary key in the customer information group is the
customer number, and the primary key in the order information group is the order
number. Each row in the order group contains the customer number of the customer
who placed the order. The customer number in the order group is a foreign key.
That is, the customer number in the order group is the primary key of the customer
information group.

The DBMS is able to join information about a customer along with information
about orders placed by that customer by joining together the customer number in
both the customer information group and the order group.

C h a p t e r 9 : J 2 M E D a t a b a s e C o n c e p t s 383

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 9

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Figure 9-9. Sales Rep Number and Sales Region (top) form a transitive dependency.
Regrouping data elements (see bottom) resolves the transitive
dependency problem.

P:\010Comp\CompRef8\710-9\ch09.vp
Thursday, February 06, 2003 12:16:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Referential Integrity
The success of a relational database is based on the existence of primary keys and
foreign keys of data groups to create relationships among groups. The existence of
this relationship is called referential integrity and is illustrated in Figure 9-10.

Referential integrity is enforced by imposing database constraints. This means the
DBMS assures referential integrity by preventing primary and foreign keys from being
modified or deleted. Likewise, database constraints prevent new rows from being inserted
without maintaining referential integrity.

384 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 9

Figure 9-10. Groups of data elements are related to other groups of data elements
by using a combination of foreign keys and primary keys.

P:\010Comp\CompRef8\710-9\ch09.vp
Thursday, February 06, 2003 12:16:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The Art of Indexing
An index is used to quickly locate information in a table, similar to the way information
is located in a book. However, instead of page numbers, an index references the row
number in the table that contains the search criteria. Conceptually, an index is a table
that has two columns. One column is the key to the index, and the other column is the
number of the row in the corresponding table that contains the value of the key.

Let’s say that you create a table of customer information and use customer number
as the primary key to the table. Figure 9-11 contains such a table. An index is created
using the primary key as the index key. Notice that each row in the index corresponds
to a row in the customer table. However, an index always has two columns regardless
of the number of columns in the associated table. The number of columns plays a critical
role in finding information quickly in a table because an index has less information for
a DBMS to search than a table that contains all the data.

Indexed keys are sorted in alphabetical or numerical order depending on the value
of the key. The DBMS begins at the center row of the index when searching for a particular
key value. The search criteria is either an exact match to the key value of the center row
of the index, is greater than the key value, or less than the key value.

If there is a match, the row that corresponds to the key is retrieved. If the value is
greater than the key, the DBMS begins the next search at the center row of the lower

C h a p t e r 9 : J 2 M E D a t a b a s e C o n c e p t s 385

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 9

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Figure 9-11. The index key is associated with the row number of the row in the
table that contains other information related to the index key.

P:\010Comp\CompRef8\710-9\ch09.vp
Thursday, February 06, 2003 12:16:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

386 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 9

half of the index. Likewise, if the value is less than the key, the search continues at the
center row of the upper half of the index. The process is repeated until either a match
is found or the search criteria cannot be found.

An Index in Motion
Unlike an index of a book, a table can be associated with multiple indexes, each of
which contains a different key. For example, a customer information table might have
an index based on zip code and another on customer number. The designer of the
database determines the number of indexes that are associated with a table, although
some DBMSs create their own indexes to speed searches if an appropriate index
doesn’t exist.

A J2ME application sends the DBMS a query that contains search criteria for
information required by the component. Instead of searching the table that contains
the search criteria, the DBMS compares the search criteria to keys of indexes, looking
for an index to use in the search.

Let’s say that a J2ME application needs to retrieve information about a customer.
The request for information (called a query) is sent to the DBMS along with the
customer number. The DBMS recognizes that the request contains a customer number,
then searches a catalog of indexes for an index that uses customer number as its key.

The DBMS always uses an index, if one exists, to locate search criteria. If an index
doesn’t match the search criteria, the DBMS either creates a temporary index as part
of the search or sequentially searches the table. The method used with your DBMS
depends on how the manufacturer designed the DBMS.

Once an index is located or a temporary index is created, the DBMS compares the
search criteria contained in the request to the index key. When a match is found, the DBMS
notes the row number in the second column of the index, then opens the associated
table and moves directly to the row that corresponds to the row number. The DBMS
then selects columns from the row that contains customer information requested by
the J2ME application.

Drawbacks of Using an Index
An index offers an unparalleled advantage for finding information in a table quickly.
However, there is a drawback when too many indexes are used with one table. An
unacceptable delay can occur whenever a row is inserted into or deleted from the table.
Once an index is built, the DBMS is responsible for automatically maintaining the
index whenever a row is inserted or deleted from the table. This means that each index
associated with a table must be modified whenever a row is inserted or deleted from
the table, which can cause performance degradation if a table is associated with many
indexes. The trade-off for using multiple indexes is the time necessary for the DBMS to
maintain each index.

P:\010Comp\CompRef8\710-9\ch09.vp
Thursday, February 06, 2003 12:16:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Performance degradation can be minimized by using a publisher-consumer database
design for applications where rows are frequently inserted, deleted, or modified, as in
an order processing system. The publisher-consumer database design consists of two
or more databases that contain the same information. One database, called the publisher,
receives requests from the J2ME application to insert a new row, modify, or delete an
existing row. J2ME applications don’t use the publisher to retrieve information, therefore
the publisher database isn’t indexed. A consumer database receives instructions to insert
a new row, modify, or delete an existing row from the publisher. However, the consumer
receives requests for information from a J2ME application. Therefore, the consumer
database is indexed.

Once the publisher passes data to the consumer, the publisher is free to process the
next incoming data, during which time the DBMS is updating the consumer’s indexes.
There are two major benefits to this design. First, a bottleneck is avoided when many
requests are received by the DBMS to insert new information or update existing
information. This is because the publisher has two tasks to perform: insert or modify
the database, then pass along those changes to the consumer.

The other benefit is that the database becomes scalable. This means that the database
can be adjusted to handle an increased volume of requests. Let’s say a company begins
with a publisher and one consumer. Over time there is an increase in the number of
requests for information, which can overwhelm the DBMS and cause performance
degradation. This can be remedied by creating a second consumer and routing requests
to one or the other consumer, reducing response time by half.

Clustered Keys
A clustered key is an index key whose value represents data contained in multiple
columns of the corresponding table. Although there is only one column in the index
to store the index key, that value can be a combination of data from multiple columns
of the table.

Let’s say a customer name is used as the index key. Customer name is composed of
two data elements: the customer first name and the customer last name. Since there is
only one column for the index key, the customer first name and the customer last name
are concatenated into one value. That is, the DBMS takes one data element and places it
behind the other data element to create a new data element that becomes the index key.

Let’s say that the customer first name is Tom and last name is Jones. Here’s what
they look like when they are concatenated: TomJones. Notice there isn’t a space between
the first and last name. This is because concatenating places the character of the second
value immediately following the last character of the first value.

Clustered keys add overhead to a DBMS because columns are delimited, and
the delimiter must be escaped if it appears in the data. This extra step might impede
performance of the DBMS. The DBMS treats the index key of a clustered index as it
does any index key and uses a combination of trees and hashing algorithms to locate
search criteria in the index.

C h a p t e r 9 : J 2 M E D a t a b a s e C o n c e p t s 387

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 9

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

P:\010Comp\CompRef8\710-9\ch09.vp
Thursday, February 06, 2003 12:16:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

388 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 9

Use concatenation of data elements to:

■ Create an index key that uses two or more columns to uniquely identify rows
in a table

■ Facilitate searching for values of multiple columns, such as a customer name,
using one index

Derived Keys
A derived key consists of a value that represents part of the value of a column rather
than the entire value of the column. Let’s say that an order number comprises three
components: the first component represents the sales region where the order was placed,
the second is the sales representative’s number, and the third is a unique number that
identifies the order. Although the order number appears in one column of the order
table, a component of the order number can be used as an index key. For example, the
DBMS can be instructed to derive an index key from the order number by using the first
component. This means the index can be used to search for all orders placed within
a region that is specified in the search criteria.

Selective Rows
Typically, all the rows in a table are represented in an index associated with that table.
However, an index can be created that references a subset of rows in a table. The subset
is determined when the index is created.

Let’s return to the order number example used in the previous section to illustrate
this feature. There might be tens of thousands of orders, each having a row in the
order table and in indexes associated with the order table. Suppose a J2ME application
is used only to search for orders within a specified region. There will never be an occasion
for the component to search other than in the region. Indexes used for searches by the
component can be limited to only rows of the table that contain orders placed within
the region as identified by the first component of the order number. This means that the
index does not contain any references to rows in the order table that are outside the
specified region.

A performance benefit is realized by using an index that contains a subset of all the
rows of the associated table. This is because rows that will never be searched are excluded
from the index, thereby reducing the number of rows of the index that must be searched
by the DBMS. The boost in performance, however, is only realized in databases that
contain huge amounts of rows. Little if any increase in performance is realized by creating
a subset of rows in a typical database because many DBMSs have been optimized to
search volumes of data without having to use a subset of rows in an index.

Using a conditional statement when creating an index, which you’ll learn to do in
the next two chapters, creates a subset. In the order number example, the conditional
statement directs the DBMS to include rows in the index where the first component
of the order number matches the conditional statement. All other rows are excluded
from the index.

P:\010Comp\CompRef8\710-9\ch09.vp
Thursday, February 06, 2003 12:16:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 9 : J 2 M E D a t a b a s e C o n c e p t s 389

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 9

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Exact Matches and Partial Matches
A DBMS can be instructed to use an index to find an exact or partial match to the search
criteria. By default, the DBMS searches for exact matches whenever a query is received
from a J2ME application. However, the programmer can construct the query to direct
the DBMS to find partial matches.

An exact match requires that all the characters of the search criteria match the
index key. If a single character is mismatched, the DBMS does not return data in
the corresponding row of the table. A partial match requires that some—not all—
of the characters of the index key match the search criteria. That is, if the first character of
the search criteria and the index key are the same and the remaining characters are
different, the DBMS still considers it a match and returns data in the corresponding row
of the table. Exact matches are used whenever a particular value, and only that value,
is required, such as a specific customer number. Partial matches are used whenever
someone is unsure of the exact value.

Let’s say that a sales representative is looking for information about a customer, but
she isn’t sure if the customer’s last name is Johnson or Johnston. She can search using
an index of customer names that looks for any customers with the first five letters of
“Johns” and any other characters as their last name.

In this example, the customer name index is a concatenated index. The order in
which values are concatenated plays a critical role when a DBMS searches for a partial
match. This is because the DBMS begins matches left to right. Therefore, the most
significant value must be placed first in the concatenated key. The most significant
value in the customer name is the customer last name because there are more people
with the same first name than the same last name. Therefore, the index key is last name,
then first, such as JohnstonMike.

Searching for Phonetic Matches
Some DBMSs feature phonetic searches in which the DBMS returns rows containing
index keys that “sound” like the search value. This means that the DBMS stores both
exact spelling and phonic spelling of the index key. Phonetic searches are a valuable
feature to look for in a DBMS, especially for use with customer service databases.
Customer service typically must take bits and pieces of information provided by
a customer, and then assemble those pieces into meaningful search criteria.

Many interactions with customers take place over the telephone, and customer service
representatives may not have printed materials (such as invoices) that the customer has
at hand. This situation typically leads to miscommunication, which aggravates a customer
relationship. Although a phonetic search won’t guarantee better communication between
the customer service representative and the customer, it does give the customer service
representative a tool for locating information necessary to respond properly to a customer.

Phonetic searches are made possible by an algorithm built into the DBMS. The
phonetic algorithm used by the DBMS defines each index key phonetically. Likewise,
the DBMS converts the search criteria into its phonetic spelling before comparing the
phonetic spelling of the search criteria to the phonetic spelling of the index key.

P:\010Comp\CompRef8\710-9\ch09.vp
Thursday, February 06, 2003 12:16:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9
Blind Folio 390

P:\010Comp\CompRef8\710-9\ch09.vp
Thursday, February 06, 2003 12:16:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Chapter 10
JDBC Objects

391

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

392 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

Many Connected Device Configuration (CDC) device–based J2ME applications
save, retrieve, and manipulate information stored in a database using web
services provided by a J2ME application. A J2ME application supplies database

access using the Java Database Connection (JDBC) interface contained in the JDBC
application programming interface (API). The JDBC interface has methods that open
a connection to a database management system (DBMS), then transmit messages (queries)
to insert, retrieve, modify, or delete data stored in a database.

The DBMS uses the same connection to send messages back to the J2ME application.
These messages contain rows of data requested by the J2ME application or information
indicating the status of the query being processed by the DBMS. Additional JDBC interfaces
are used to interact with data that is returned to the J2ME application by the DBMS.

This is the second of three chapters that focus on how to write a J2ME application to
interact with a database. The previous chapter showed how to develop a database schema,
which is the database design. This chapter shows how to use the JDBC interface to connect
to the DBMS, send queries to the DBMS, and manipulate data returned by the DBMS. The
next chapter shows how to use SQL to write queries that interact with the DBMS.

The Concept of JDBC
There are many industrial-strength DBMSs on the market, including Oracle, DB2, Sybase,
and many other popular brands. The challenge faced by Sun Microsystems in the late
1990s was to develop a way for Java developers to write high-level code that accesses
all popular DBMSs. One major obstacle to overcome was a language barrier. Each DBMS
defined its own low-level way to interact with programs to access data stored in its
databases. This meant that low-level code written to communicate with an Oracle database
might need to be rewritten to access a DB2 database.

Sun met the challenge in 1996 with the creation of the JDBC driver and the JDBC
API. Both were created out of necessity because until then Java couldn’t access DBMSs
and therefore wasn’t considered an industrial-strength programming language. The
JDBC driver developed by Sun wasn’t a driver at all. It was a specification that described
the detailed functionality of a JDBC driver. DBMS manufacturers and third-party
vendors were encouraged to build JDBC drivers that conformed to Sun’s specifications.
Those firms who built JDBC drivers for their products could tap into the growing Java
applications market.

The specifications required a JDBC driver to be a translator that converts low-level
proprietary DBMS messages to low-level messages that are understood by the JDBC API
and vice versa. This meant Java programmers could use high-level JDBC interfaces that
are defined in the JDBC API to write a routine that interacts with the DBMS. The JDBC
interface converts the routine into low-level messages that conform to the JDBC driver
specification and sends them to the JDBC driver. The JDBC driver translates the routine
into low-level messages that are understood and processed by the DBMS.

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

JDBC drivers created by DBMS manufacturers have to:

■ Open a connection between the DBMS and the J2ME application

■ Translate low-level equivalents of SQL statements sent by the J2ME application
into messages that can be processed by the DBMS

■ Return data that conforms to the JDBC specification to the JDBC driver

■ Return information, such as error messages, that conforms to the JDBC
specification to the JDBC driver

■ Provide transaction management routines that conform to the JDBC
specification

■ Close the connection between the DBMS and the J2ME application

The JDBC driver makes J2ME applications database independent, which complements
Java’s philosophy of platform independence. Today, JDBC drivers for nearly every
commercial DBMS are available from the Sun web site (www.sun.com) or the DBMS
manufacturers’ web sites. Java code independence is also extended to implementation of
SQL queries. SQL queries are passed from the JDBC API through the JDBC driver to the
DBMS without validation. This means it is the responsibility of the DBMS to implement
SQL statements contained in the query.

JDBC Driver Types
The JDBC driver specification classifies JDBC drivers into four groups. Each group is
referred to as a JDBC driver type and addresses a specific need for communicating with
various DBMSs. The JDBC driver types are described in the following sections.

Type 1 JDBC to ODBC Driver
Microsoft was the first company to devise a way to create DBMS-independent database
programs when they created Open Database Connectivity (ODBC). ODBC is the basis from
which Sun created JDBC. Both ODBC and JDBC have similar driver specifications and
an API. The JDBC to ODBC driver, also called the JDBC/ODBC Bridge, is used to translate
DBMS calls between the JDBC specification and the ODBC specification. The JDBC to
ODBC driver receives messages from a J2ME application that conforms to the JDBC
specification, as discussed previously in this chapter. Those messages are translated by
the JDBC to ODBC driver into the ODBC message format, which is then translated into
the message format understood by the DBMS. However, avoid using the JDBC/ODBC
Bridge in a mission-critical application because the extra translation might negatively
impact performance.

C h a p t e r 1 0 : J D B C O b j e c t s 393

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

394 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

Type 2 Java/Native Code Driver
The Java/Native Code driver uses Java classes to generate platform-specific code—
that is, code only understood by a specific DBMS. The manufacturer of the DBMS
provides both the Java/Native Code driver and API classes so the J2ME application
can generate the platform-specific code. The obvious disadvantage of using a Java/
Native Code driver is the loss of some portability of code. The API classes for the
Java/Native Code driver probably won’t work with another manufacturer’s DBMS.

Type 3 JDBC Driver
The Type 3 JDBC driver, also referred to as the Java Protocol, is the most commonly
used JDBC driver. The Type 3 JDBC driver converts SQL queries into JDBC-formatted
statements. The JDBC-formatted statements are translated into the format required by
the DBMS.

Type 4 JDBC Driver
The Type 4 JDBC driver is also known as the Type 4 Database Protocol. This driver
is similar to the Type 3 JDBC driver, except SQL queries are translated into the format
required by the DBMS. SQL queries do not need to be converted to JDBC-formatted
systems. This is the fastest way to communicate SQL queries to the DBMS.

JDBC Packages
The JDBC API is contained in two packages. The first package is called java.sql and
contains core JDBC interfaces of the JDBC API. These include the JDBC interfaces that
provide the basics for connecting to the DBMS and interacting with data stored in the
DBMS. java.sql is part of the J2SE.

The other package that contains the JDBC API is javax.sql, which extends java.sql
and is in the J2ME. Included in the javax.sql package is the JDBC interface that interacts
with Java Naming and Directory Interface (JNDI) and the JDBC interface that manages
connection pooling, among other advanced JDBC features.

Overview of the JDBC Process
Although each J2ME application is different, J2ME applications use a similar process for
interacting with a DBMS. This process is divided into five routines: loading the JDBC
driver, connecting to the DBMS, creating and executing a statement, processing data
returned by the DBMS, and terminating the connection with the DBMS.

It is sometimes better to get a general understanding of how the process works before
delving into the details of each routine of the process. Therefore, the next few sections
provide an overview of the process and each routine. A more detailed discussion of
each routine is provided later in this chapter.

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Load the JDBC Driver
The JDBC driver must be loaded before the J2ME application can connect to the DBMS. The
Class.forName() method is used to load the JDBC driver. Suppose a developer wants
to work offline and write a J2ME application that interacts with Microsoft Access on
the developer’s PC. The developer must write a routine that loads the JDBC/ODBC
Bridge driver called sun.jdbc.odbc.JdbcOdbcDriver. The driver is loaded by calling
the Class.forName() method and passing it the name of the driver, as shown in the
following code segment:

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Connect to the DBMS
Once the driver is loaded, the J2ME application must connect to the DBMS using the
DriverManager.getConnection() method. The java.sql.DriverManager class is the highest
class in the java.sql hierarchy and is responsible for managing driver information. The
DriverManager.getConnection() method is passed the URL of the database, along with
the user ID and password if required by the DBMS. The URL is a String object that contains
the driver name and the name of the database that is being accessed by the J2ME
application.

The DriverManager.getConnection() returns a Connection interface that is used
throughout the process to reference the database. The java.sql.Connection interface
is another member of the java.sql package that manages communications between
the driver and the J2ME application. It is the java.sql.Connection interface that sends
statements to the DBMS for processing. Listing 10-1 illustrates the use of the
DriverManager.getConnection() method to load the JDBC/ODBC Bridge and connect
to the CustomerInformation database.

String url = "jdbc:odbc:CustomerInformation";

String userID = "jim";

String password = "keogh";

Statement DataRequest;

private Connection Db;

try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Db = DriverManager.getConnection(url,userID,password);

}

Create and Execute an SQL Statement
The next step after the JDBC driver is loaded and a connection is successfully made with
a particular database managed by the DBMS is to send an SQL query to the DBMS for

C h a p t e r 1 0 : J D B C O b j e c t s 395

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Listing 10-1
Open a

connection
with a

database

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

396 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

processing. An SQL query consists of a series of SQL commands that direct the DBMS to
do something, such as return rows of data to the J2ME application. You’ll learn how
to write queries in the next chapter.

The Connect.createStatement() is used to create a Statement object. The Statement
object is then used to execute a query and return a ResultSet object that contains the
response from the DBMS, which is usually one or more rows of information requested
by the J2ME application. Typically, the query is assigned to a String object, which is passed
to the Statement object’s executeQuery() method, as illustrated in the next code segment.
Once the ResultSet is received from the DBMS, the close() method is called to terminate
the statement. Listing 10-2 retrieves all the rows and columns from the Customers table.

Statement DataRequest;

ResultSet Results;

try {

String query = "SELECT * FROM Customers";

DataRequest = Database.createStatement();

DataRequest = Db.createStatement();

Results = DataRequest.executeQuery (query);

DataRequest.close();

}

Process Data Returned by the DBMS
The java.sql.ResultSet object is assigned the results received from the DBMS after the
query is processed. The java.sql.ResultSet object consists of methods used to interact
with data that is returned by the DBMS to the J2ME application. Later in this chapter
you’ll learn the details of using the java.sql.ResultSet object. However, the following
code is an abbreviated example that gives you a preview of a commonly used routine
for extracting data returned by the DBMS. Error-catching code is purposely removed
from this example in order to minimize code clutter. You’ll find the completed version
of this routine later in this chapter and throughout Chapter 11.

Assume for Listing 10-3 that a J2ME application requested a customer’s first name
and last name from a table. The result returned by the DBMS is already assigned to the
ResultSet object called Results. The first time that the next() method of the ResultSet is
called, the ResultSet pointer is positioned at the first row in the ResultSet and returns
a boolean value. If false, this indicates that no rows are present in the ResultSet. The if
statement in Listing 10-3 traps this condition and displays the “End of data” message
on the screen.

A true value returned by the next() method means at least one row of data is present
in the ResultSet, which causes the code to enter the do…while loop. The getString()
method of the ResultSet object is used to copy the value of a specified column in the
current row of the ResultSet to a String object. The getString() method is passed the name
of the column in the ResultSet whose content needs to be copied, and the getString()
method returns the value from the specified column.

Listing 10-2
Retrieve all

the rows
from the

Customers
table

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You could also pass the number of the column to the getString() method instead of
the name. However, do so only if the columns are specifically named in the SELECT
statement. Otherwise you cannot be sure of the order in which the columns appear in
the ResultSet, especially since the table might have been reorganized since it was created,
and therefore the columns might be rearranged.

In Listing 10-3, the first column of the ResultSet contains the customer’s first name,
and the second column contains the customer’s last name. Both of these are concatenated
in this example and assigned to the printrow String object, which is displayed on the screen.
This process continues until the next() method, called as the conditional argument to the
while statement, returns a false, which means the pointer is at the end of the ResultSet.

ResultSet Results;

String FirstName;

String LastName;

String printrow;

boolean Records = Results.next();

if (!Records) {

System.out.println("No data returned");

return;

}

else

{

do {

FirstName = Results.getString (FirstName) ;

LastName = Results.getString (LastName) ;

printrow = FirstName + " " + LastName;

System.out.println(printrow);

} while (Results.next());

}

Terminate the Connection to the DBMS
The connection to the DBMS is terminated by using the close() method of the Connection
object once the J2ME application is finished accessing the DBMS. The close() method
throws an exception if a problem is encountered when disengaging the DBMS. You’ll
learn how to handle this exception later in this chapter. The following is an example of
calling the close() method. Although closing the database connection automatically closes
the ResultSet, it is better to close the ResultSet explicitly before closing the connection.

Db.close();

C h a p t e r 1 0 : J D B C O b j e c t s 397

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Listing 10-3
Retrieving

data from the
ResultSet

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Database Connection
A J2ME application does not directly connect to a DBMS. Instead, the J2ME application
connects with the JDBC driver that is associated with the DBMS. However, before
this connection is made, the JDBC driver must be loaded and registered with the
DriverManager as mentioned previously in this chapter. The purpose of loading and
registering the JDBC driver is to bring the JDBC driver into the Java Virtual Machine
(JVM). The JDBC driver is automatically registered with the DriverManager once it is
loaded and is therefore available to the JVM and can be used by J2ME applications.

The Class.forName(), as illustrated in Listing 10-4, is used to load the JDBC driver. In
this example, the JDBC/ODBC Bridge is the driver that is being loaded. You can replace
the JDBC/ODBC Bridge with the appropriate JDBC driver for the DBMS being used in
your J2EE application. The Class.forName() throws a ClassNotFoundException if an
error occurs when loading the JDBC driver. Errors are trapped using the catch {} block
whenever the JDBC driver is being loaded.

try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

}

catch (ClassNotFoundException error) {

System.err.println("Unable to load the JDBC/ODBC bridge." +

error.getMessage());

System.exit(1);

}

The Connection
After the JDBC driver is successfully loaded and registered, the J2ME application must
connect to the database. The database must be associated with the JDBC driver, which
is usually performed by either the database administrator or the system administrator.
Some students who are learning JDBC programming prefer to use Microsoft Access as
the DBMS because the DBMS is usually available on the student’s local computer. The
“Associating the JDBC/ODBC Bridge with the Database” sidebar shows how to associate
the JDBC/ODBC Bridge with a Microsoft Access database.

The data source that the JDBC component will connect to is defined using the URL
format. The URL consists of three parts:

■ jdbc, which indicates that the JDBC protocol is to be used to read the URL

■ <subprotocol>, which is the JDBC driver name

■ <subname>, which is the name of the database

398 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

Listing 10-4
Load the

driver and
catch any

exceptions
that might be
thrown during

the process

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 0 : J D B C O b j e c t s 399

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

The connection to the database is established by using one of three getConnection()
methods of the DriverManager object. The getConnection() method requests access to
the database from the DBMS. It is up to the DBMS to grant or reject access. A Connection
object is returned by the getConnection() method if access is granted, otherwise the
getConnection() method throws an SQLException.

Associating the JDBC/ODBC Bridge with the Database
You use the ODBC Data Source Administrator to create the association between
the database and the JDBC/ODBC Bridge. Here’s what you need to do:

1. Select Start | Settings | Control Panel.

2. Select ODBC 32 to display the ODBC Data Source Administrator.

3. Add a new user by selecting the Add button.

4. Select the driver, and then select Finish. Use the Microsoft Access Driver
if you are using Microsoft Access, otherwise select the driver for the DBMS
that you are using. If you don’t find the driver for your DBMS on the list,
you’ll need to install the driver. Contact the manufacturer of the DBMS for
more information on how to obtain the driver.

5. Enter the name of the database as the Data Source name in the ODBC
Microsoft Access Setup dialog box. This is the name that will be used
within your Java database program to connect to the DBMS.

6. Enter a description for the data source. This is optional, but will be
a reminder of the kind of data stored in the database.

7. Click the Select button. You’ll be prompted to browse the directory of each
hard drive connected to your computer in order to define the direct path to
the database. Click OK once you locate the database, and the directory path
and name of the database will be displayed in the ODBC Microsoft Access
Setup dialog box.

8. Since this is your database, you can determine whether a login name
and password are required to access the database.

If so, click the Advanced button to display the Set Advanced Options dialog
box. This dialog box is used to assign a login name (also referred to as a
user ID) and a password to the database. Select OK. If not, skip this step.

9. When the ODBC Microsoft Access Setup dialog box appears, select OK.

10. Select OK to close the ODBC Data Source Administrator dialog box.

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Sometimes the DBMS grants access to a database to anyone. In this case, the J2ME
application uses the getConnection(String url) method. One parameter is passed to the
method because the DBMS only needs the database identified. This is shown in Listing 10-5.

String url = "jdbc:odbc:CustomerInformation";

Statement DataRequest;

Connection Db;

try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Db = DriverManager.getConnection(url);

}

catch (ClassNotFoundException error) {

System.err.println("Unable to load the JDBC/ODBC bridge." +

error);

System.exit(1);

}

catch (SQLException error) {

System.err.println("Cannot connect to the database." + error);

System.exit(2);

}

Other databases limit access to authorized users and require the J2EE to supply a
user ID and password with the request to access the database. In this case, the J2ME
application uses the getConnection(String url, String user, String password) method,
as illustrated in Listing 10-6.

String url = "jdbc:odbc:CustomerInformation";

String userID = "jim";

String password = "keogh";

Statement DataRequest;

Connection Db;

try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Db = DriverManager.getConnection(url,userID,password);

}

catch (ClassNotFoundException error) {

System.err.println("Unable to load the JDBC/ODBC bridge." +

error);

System.exit(1);

}

catch (SQLException error) {

System.err.println("Cannot connect to the database." + error);

System.exit(2);

}

400 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

Listing 10-5
Connecting to

a database
using only

the URL

Listing 10-6
Connecting to

a database
using a user

ID and
password

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 0 : J D B C O b j e c t s 401

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

There might be occasions when a DBMS requires information besides a user ID and
password before the DBMS grants access to the database. This additional information is
referred to as “properties” and must be associated with a Properties object, which is passed
to the DBMS as a getConnection() parameter. Typically, properties used to access a database
are stored in a text file, the contents of which are defined by the DBMS manufacturer. The
J2ME application uses a FileInputStream object to open the file and then uses the Properties
object load() method to copy the properties into a Properties object. This is illustrated
in Listing 10-7. Notice that the third version of the getConnection() method passes the
Properties object and the URL as parameters to the getConnection() method.

Connection Db;

Properties props = new Properties ();

try {

FileInputStream propFileStream =

new fileInputStream("DBProps.txt");

props.load(propFileStream);

}

catch(IOException err) {

System.err.print("Error loading propFile: ");

System.err.println (err.getMessage());

System.exit(1);

}

try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Db = DriverManager.getConnection(url, props);

}

catch (ClassNotFoundException error) {

System.err.println("Unable to load the JDBC/ODBC bridge." +

error);

System.exit(2);

}

catch (SQLException error) {

System.err.println("Cannot connect to the database." + error);

System.exit(3);

}

Timeout
Competition to use the same database is a common occurrence and can lead to
performance degradation. For example, multiple applications might attempt to access
a database simultaneously. The DBMS may not respond quickly for a number of reasons,
one of which might be that database connections are not available. Rather than wait for
a delayed response from the DBMS, the J2ME application can set a timeout period after
which the DriverManager will cease trying to connect to the database.

Listing 10-7
Using

properties
to connect to
the database

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The public static void DriverManager.setLoginTimeout(int seconds) method can
be used by the J2ME application to establish the maximum time the DriverManager
waits for a response from a DBMS before timing out. Likewise, the public static int
DriverManager.getLoginTimeout() method is used to retrieve from the DriverManager
the maximum time the DriverManager is set to wait until it times out. The Driver-
Manager.getLoginTimeout() returns an int that represents seconds.

Connection Pool
Connecting to a database is performed on a per-client basis. That is, each client must open
its own connection to a database, and the connection cannot be shared with unrelated
clients. For example, a client that needs to interact frequently with a database must either
open a connection and leave the connection open during processing, or open or close
and reconnect each time the client needs to access the database. Leaving a connection
open might prevent another client from accessing the database should the DBMS have
a limited number of connections available. Connecting and reconnecting is simply time
consuming and causes performance degradation.

The release of the JDBC 2.1 Standard Extension API introduced connection pooling
to address the problem. A connection pool is a collection of database connections that are
opened once and loaded into memory so these connections can be reused without having
to reconnect to the DBMS. Clients use the DataSource interface to interact with the
connection pool. The connection pool itself is implemented by the application server
and other J2EE-specific technologies, which hide details on how the connection pool
is maintained from the client.

There are two types of connections made to the database. The first is the physical
connection, which is made by the application server using PooledConnection objects.
PooledConnection objects are cached and reused. The other type of connection
is the logical connection. A logical connection is made by a client calling the
DataSource.getConnection() method, which connects to a PooledConnection
object that has already made a physical connection to the database.

Listing 10-8 illustrates how to access a connection from a connection pool. A connection
pool is accessible by using the Java Naming and Directory Interface (JNDI). JNDI provides
a uniform way to find and access naming and directory services independent of any specific
naming or directory service.

First, a J2ME application must obtain a handle to the JNDI context, which is illustrated
in the first statement in this code segment. Next, the JNDI lookup() method is called and
is passed the name of the connection pool, which returns the DataSource object, called
pool in this example. The getConnection() method of the DataSource object is then called,
as illustrated earlier in this chapter. The getConnection() returns the logical connection
to the database, which is used by the J2ME application to access the database.

The close() method of the DataSource object is called once when the J2ME application
is finished accessing the database. The close() method closes the logical connection to

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

402 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 0 : J D B C O b j e c t s 403

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

the database and not the physical database connection. This means that the same physical
connection can be used by the next J2ME application that needs access to the database.

Context ctext = new InitialContext();

DataSource pool = (DataSource) ctext.lookup("java:comp/env/jdbc/pool");

Connection db = pool.getConnection();

// Place code to interact with the database here

db.close();

Statement Objects
Once a connection to the database is opened, the J2ME application creates and sends a
query to access data contained in the database. The query is written using SQL, which
you’ll learn about in the next chapter. One of three types of Statement objects is used to
execute the query. These objects are Statement, which executes a query immediately;
PreparedStatement, which is used to execute a compiled query; and CallableStatement,
which is used to execute store procedures.

The Statement Object
The Statement object is used whenever a J2ME application needs to execute a query
immediately without first having the query compiled. The Statement object contains
the executeQuery() method, which is passed the query as an argument. The query is
then transmitted to the DBMS for processing. The executeQuery() method returns one
ResultSet object that contains rows, columns, and metadata that represent data requested
by the query. The ResultSet object also contains methods that are used to manipulate data
in the ResultSet, which you’ll learn about later in this chapter.

The execute() method of the Statement object is used when multiple results may be
returned. A third commonly used method of the Statement object is the executeUpdate()
method. The executeUpdate() method is used to execute queries that contain UPDATE and
DELETE SQL statements, which change values in a row and remove a row, respectively.
The executeUpdate() method returns an integer indicating the number of rows that were
updated by the query. ExecuteUpdate() is used to INSERT, UPDATE, DELETE, and DDL
statements.

Listing 10-9 is an enhanced version of Listing 10-2, used earlier in this chapter to
illustrate how to open a database connection. The enhancements are to create a query,
execute the query, and return a ResultSet. Two new objects are declared in Listing 10-9:
a Statement object called DataRequest and a ResultSet object called Results. In the second
try {} block, the query is assigned to the String object query. The query requests that the
DBMS return all the rows from the Customers table of the CustomerInformation database.

Next, the createStatement() method of the Connection object is called to return a
Statement object. The executeQuery() method of the Statement object is passed the query

Listing 10-8
Connecting to

a database
using a

connection
pool

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

404 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

and returns a ResultSet object that contains data returned by the DBMS. Finally, the close()
method of the Statement object is called to close the statement.

The close() method closes all instances of the ResultSet object returned by the Statement.
Failure to call the close() method might cause resources used by the Statement object to
remain unavailable to other J2ME applications until the garbage routine is automatically
run. Java statements used to manipulate the ResultSet are placed between the call to the
executeQuery() method and the close() method.

The executeQuery() method throws an SQLException should an error occur during
the processing of the query. For example, the query may contain syntax not understood
by the DBMS. In this case, the DBMS returns an SQL error message that is passed along
to the J2ME application by the executeQuery() method.

String url = "jdbc:odbc:CustomerInformation";

String userID = "jim";

String password = "keogh";

Statement DataRequest;

ResultSet Results;

Connection Db;

try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Db = DriverManager.getConnection(url,userID,password);

}

catch (ClassNotFoundException error) {

System.err.println("Unable to load the JDBC/ODBC bridge." +

error);

System.exit(1);

}

catch (SQLException error) {

System.err.println("Cannot connect to the database." + error);

System.exit(2);

}

try {

String query = "SELECT * FROM Customers";

DataRequest = Db.createStatement();

Results = DataRequest.executeQuery (query);

//Place code here to interact with the ResultSet

DataRequest.close();

}

catch (SQLException error){

System.err.println("SQL error." + error);

System.exit(3);

}

Db.close();

Listing 10-10 illustrates how to use the executeUpdate() method of the Statement
object. You’ll notice that Listing 10-10 is nearly identical to Listing 10-9. However, the

Listing 10-9
Using the

Statement
object to
execute
a query

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 0 : J D B C O b j e c t s 405

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

query updates a value in the database rather than requesting that data be returned to
the J2ME application. You’ll learn more about how to write queries to update values
in a database in the next chapter.

Three changes are made to Listing 10-9 to illustrate the executeUpdate() method of
the Statement object. First, the declaration of the ResultSet object is replaced with the
declaration of an int called rowsUpdated. Next, the query is changed. The SQL UPDATE
command directs the DBMS to update the Customers table of the CustomerInformation
database. The value of the PAID column of the Customers table is changed to ‘Y’ if the
value of the BALANCE column is zero.

Finally, the executeUpdate() method replaces the executeQuery() method and is
passed the query. The number of rows that are updated by the query is returned to the
executeUpdate() method by the DBMS and is then assigned to the rowsUpdated int.
rowsUpdated can be used for many purposes within the J2ME application, such as sending
a confirmation notice to the J2ME application that requested database access.

String url = "jdbc:odbc:CustomerInformation";

String userID = "jim";

String password = "keogh";

Statement DataRequest;

Connection Db;

int rowsUpdated;

try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Db = DriverManager.getConnection(url,userID,password);

}

catch (ClassNotFoundException error) {

System.err.println("Unable to load the JDBC/ODBC bridge." +

error);

System.exit(1);

}

catch (SQLException error) {

System.err.println("Cannot connect to the database." + error);

System.exit(2);

}

try {

String query = "UPDATE Customers

SET PAID='Y' WHERE BALANCE = '0';

DataRequest = Db.createStatement();

rowsUpdated = DataRequest.executeUpdate (query);

DataRequest.close();

}

catch (SQLException error){

System.err.println("SQL error." + error);

System.exit(3);

}

Db.close();

Listing 10-10
Using the
execute-
Update()
method

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

406 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

PreparedStatement Object
An SQL query must be compiled before the DBMS processes the query. Compiling occurs
after one of the Statement object’s execution methods is called. Compiling a query is an
overhead that is acceptable if the query is called once. However, the compiling process
can become an expensive overhead if the query is executed several times by the same
instance of the J2ME application during the same session.

An SQL query can be precompiled and executed by using the PreparedStatement
object. In this case, the query is constructed similar to queries that were illustrated
previously in the chapter. However, a question mark is used as a placeholder for a value
that is inserted into the query after the query is compiled. It is this value that changes
each time the query is executed.

Listing 10-11 illustrates how to use the PreparedStatement object. Listing 10-11 is
very similar to Listing 10-9, in which the Statement object returned information from the
Customers table. However, the query directs the DBMS to return all customer information
where the customer number equals the customer number specified in the query. Notice
that the query has a question mark, which is a placeholder for the value of the customer
number that will be inserted into the precompiled query later in the code.

The preparedStatement() method of the Connection object is called to return the
PreparedStatement object. The preparedStatement() method is passed the query that
is then precompiled. The setXXX() method of the PreparedStatement object is used to
replace the question mark with the value passed to the setXXX() method. There are a
number of setXXX() methods available in the PreparedStatement object, each of which
specifies the data type of the value that is being passed to the setXXX() method (see the
section “Data Types” later in the chapter). In Listing 10-11, the setString() is used because
the customer number is being passed as a string.

The setXXX() requires two parameters. The first parameter is an integer that identifies
the position of the question mark placeholder, and the second parameter is the value
that replaces the question mark placeholder. In Listing 10-11, the first question mark
placeholder is replaced with the value of the second parameter.

Next, the executeQuery() method of the PreparedStatement object is called. The
executeQuery() statement doesn’t require a parameter because the query that is to
be executed is already associated with the PreparedStatement object.

The advantage of using the PreparedStatement object is that the query is precompiled
once and the setXXX() method called as needed to change the specified values of the
query without having to recompile the query. The PreparedStatement object also has an
execute() method and an executeUpdate() method, as described in the previous section.

The precompiling is performed by the DBMS and is referred to as late binding. When
the DBMS receives the request, the DBMS attempts to match the query to a previously
compiled query. If found, then parameters passed to the query using the setXXX() methods
are bound and the query is executed. If not found, then the query is compiled and retained
by the DBMS for later use.

The JDBC driver passes two parameters to the DBMS. One parameter is the query,
and the other is an array of late binding variables. Both binding and compiling are

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

performed by the DBMS. The late binding is not associated with the specific object or
code block where the preparedStatement() is declared.

String url = "jdbc:odbc:CustomerInformation";

String userID = "jim";

String password = "keogh";

ResultSet Results;

Connection Db;

try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Db = DriverManager.getConnection(url,userID,password);

}

catch (ClassNotFoundException error) {

System.err.println(

"Unable to load the JDBC/ODBC bridge." + error);

System.exit(1);

}

catch (SQLException error) {

System.err.println("Cannot connect to the database." + error);

System.exit(2);

}

try {

String query = "SELECT * FROM Customers WHERE CustNumber = ?";

PreparedStatement pstatement = Db.preparedStatement(query);

pstatement.setString(1, "123");

Results = pstatement.executeQuery ();

//Place code here to interact with the ResultSet

pstatement.close();

}

catch (SQLException error){

System.err.println("SQL error." + error);

System.exit(3);

}

Db.close();

CallableStatement
The CallableStatement is used to call a stored procedure from within a J2ME object. A
stored procedure is a block of code and is identified by a unique name. The type and style
of code depend on the DBMS vendor and can be written in PL/SQL, TransactSQL, C,
or another programming language. The stored procedure is executed by invoking the
name of the stored procedure.

The CallableStatement object uses three types of parameters when calling a stored
procedure. These parameters are IN, OUT, and INOUT. The IN parameter contains
any data that needs to be passed to the stored procedure and whose value is assigned
using the setXXX() method, as described in the previous section. The OUT parameter

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

C h a p t e r 1 0 : J D B C O b j e c t s 407

Listing 10-11
Using the
Prepared-

Statement
object

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

contains the value returned by the stored procedures, if any. The OUT parameter must
be registered using the registerOutParameter() method and then is later retrieved by the
J2ME application using the getXXX() method. The INOUT parameter is a single parameter
used for both passing information to the stored procedure and retrieving information
from a stored procedure using the techniques described in the previous two paragraphs.

Listing 10-12 illustrates how to call a stored procedure and retrieve a value returned
by the stored procedure. Listing 10-12 is similar to other listings used in this chapter, but
has been modified slightly to call a stored procedure.

The first statement in the second try {} block creates a query that calls the stored
procedure LastOrderNumber, which retrieves the most recently used order number.
The stored procedure requires one parameter that is represented by a question mark
placeholder. This parameter is an OUT parameter that will contain the last order number
following the execution of the stored procedure.

Next, the preparedCall() method of the Connection object is called and is passed the
query. This method returns a CallableStatement object, which is called cstatement. Since
an OUT parameter is used by the stored procedure, the parameter must be registered
using the registerOutParameter() of the CallableStatement object.

The registerOutParameter() method requires two parameters. The first parameter
is an integer that represents the number of the parameter, which is 1, meaning the first
parameter of the stored procedure. The second parameter to the registerOutParameter()
is the data type of the value returned by the stored procedure, which is Types.VARCHAR.

The execute() method of the CallableStatement object is called next to execute the
query. The execute() method doesn’t require the name of the query because the query
is already identified when the CallableStatement object is returned by the prepareCall()
query method.

After the stored procedure is executed, the getString() method is called to return the
value of the specified parameter of the stored procedure, which in this example is the last
order number.

String url = "jdbc:odbc:CustomerInformation";

String userID = "jim";

String password = "keogh";

String lastOrderNumber;

Connection Db;

try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Db = DriverManager.getConnection(url,userID,password);

}

catch (ClassNotFoundException error) {

System.err.println("Unable to load the JDBC/ODBC bridge." +

error);

System.exit(1);

}

catch (SQLException error) {

408 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

Listing 10-12
Calling a

stored
procedure

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

System.err.println("Cannot connect to the database." + error);

System.exit(2);

}

try {

String query = "{ CALL LastOrderNumber (?)}";

CallableStatement cstatement = Db.prepareCall(query);

cstatement.registerOutParameter(1, Types. VARCHAR);

cstatement.execute();

lastOrderNumber = cstatement.getString(1);

cstatement.close();

}

catch (SQLException error){

System.err.println("SQL error." + error);

System.exit(3);

}

Db.close();

ResultSet
As you’ll remember from previous sections in this chapter, a query is used to update,
delete, and retrieve information stored in a database. The executeQuery() method is
used to send the query to the DBMS for processing and returns a ResultSet object that
contains data requested by the query.

The ResultSet object contains methods that are used to copy data from the ResultSet
into a Java collection of objects or variable(s) for further processing. Data in a ResultSet
object is logically organized into a virtual table consisting of rows and columns. In addition
to data, the ResultSet object also contains metadata, such as column names, column size,
and column data type.

The ResultSet uses a virtual cursor to point to a row of the virtual table. A J2ME
application must move the virtual cursor to each row, then use other methods of the
ResultSet object to interact with the data stored in columns of that row. The virtual
cursor is positioned above the first row of data when the ResultSet is returned by the
executeQuery() method. This means that the virtual cursor must be moved to the first
row using the next() method. The next() method returns a boolean true if the row contains
data, otherwise a boolean false is returned, indicating that no more rows exist in the
ResultSet.

Once the virtual cursor points to a row, the getXXX() method is used to copy data
from the row to a collection, object, or variable. As illustrated previously in this chapter,
the getXXX() method is data type specific. For example, the getString() method is used
to copy String data from a column of the ResultSet. The data type of the getXXX() method
must be the same data type of the column in the ResultSet.

The getXXX() method requires one parameter, which is an integer that represents
the number of the column that contains the data. For example, getString(1) copies the
data from the first column of the ResultSet.

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

C h a p t e r 1 0 : J D B C O b j e c t s 409

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

410 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

Columns appear in the ResultSet in the order in which column names appeared in
the SELECT statement in the query. Let’s say a query contained the following SELECT
statement:

SELECT CustomerFirstName, CustomerLastName FROM Customer

This query directs the DBMS to return two columns. The first column contains
customer first names, and the second column contains customer last names. Therefore,
getString(1) returns data in the customer first name column of the current row in the
ResultSet.

Reading the ResultSet
Listing 10-13 illustrates a commonly used routine to read values from a ResultSet into
variables that can later be further processed by the J2ME application. Listing 10-13 is
based on previous code segments in this chapter.

Once a successful connection is made to the database, a query is defined in the second
try {} block to retrieve the first name and last name of customers from the Customers
table of the CustomerInformation database. The next() method of the ResultSet is called
to move the virtual pointer to the first row in the ResultSet. If there is data in that row,
the next() returns a true, which is assigned the boolean variable Records. If there isn’t
any data in that row, Records is assigned a false value. A false value is trapped by the if
statement, where the “End of data.” message is displayed and the program terminates.

A true value causes the program to enter the do…while in the third try {} block, where
the getString() method is called to retrieve values in the first and second columns of the
ResultSet. The values correspond to the first name and last name. These values are assigned
to their corresponding String object, which is then concatenated and assigned the printrow
String object and printed on the screen.

The next() method is called in the while statement to move the virtual cursor to the
next row in the ResultSet and determine whether there is data in that row. If so, statements
within the do…while loop are executed again. If not, the program breaks out of the loop
and executes the close() statement to close the Statement object, as discussed previously
in this chapter.

String url = "jdbc:odbc:CustomerInformation";

String userID = "jim";

String password = "keogh";

String printrow;

String FirstName;

String LastName;

Statement DataRequest;

ResultSet Results;

Connection Db;

try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Listing 10-13
Reading data

from the
ResultSet

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Db = DriverManager.getConnection(url,userID,password);

}

catch (ClassNotFoundException error) {

System.err.println("Unable to load the JDBC/ODBC bridge." +

error);

System.exit(1);

}

catch (SQLException error) {

System.err.println("Cannot connect to the database." + error);

System.exit(2);

}

try {

String query = "SELECT FirstName,LastName FROM Customers";

DataRequest = Db.createStatement();

Results = DataRequest.executeQuery (query);

}

catch (SQLException error){

System.err.println("SQL error." + error);

System.exit(3);

}

boolean Records = Results.next();

if (!Records) {

System.out.println("No data returned");

System.exit(4);

}

try {

do {

FirstName = Results.getString (1) ;

LastName = Results.getString (2) ;

printrow = FirstName + " " + LastName;

System.out.println(printrow);

} while (Results.next());

DataRequest.close();

}

catch (SQLException error) {

System.err.println("Data display error." + error);

System.exit(5);

}

Scrollable ResultSet
Until the release of JDBC 2.1 API, the virtual cursor could only be moved down the
ResultSet object. But today the virtual cursor can be moved backwards or even positioned
at a specific row. The JDBC 2.1 API also enables a J2ME application to specify the number
of rows to return from the DBMS. Six methods of the ResultSet object are used to position
the virtual cursor, in addition to the next() method discussed in the previous section.
These are first(), last(), previous(), absolute(), relative(), and getRow().

C h a p t e r 1 0 : J D B C O b j e c t s 411

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

412 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

The first() method moves the virtual cursor to the first row in the ResultSet. Likewise,
the last() method positions the virtual cursor at the last row in the ResultSet. The previous()
method moves the virtual cursor to the previous row. The absolute() method positions
the virtual cursor at the row number specified by the integer passed as a parameter to the
absolute() method.

The relative() method moves the virtual cursor the specified number of rows contained
in the parameter. The parameter is a positive or negative integer, where the sign represents
the direction the virtual cursor is moved. For example, a –4 moves the virtual cursor
back four rows from the current row. Likewise, a 5 moves the virtual cursor forward five
rows from the current row. And the getRow() method returns an integer that represents
the number of the current row in the ResultSet.

The Statement object that is created using the createStatement() of the Connection
object must be set up to handle a scrollable ResultSet by passing the createStatement()
method one of three constants. These constants are TYPE_FORWARD_ONLY,
TYPE_SCROLL_INSENSITIVE, and TYPE_SCROLL_SENSITIVE.

The TYPE_FORWARD_ONLY constant restricts the virtual cursor to downward
movement, which is the default setting. TYPE_SCROLL_INSENSITIVE and TYPE_
SCROLL_SENSITIVE constants permit the virtual cursor to move in both directions.
TYPE_SCROLL_INSENSITIVE makes the ResultSet insensitive to data changes made by
another J2ME application in the table whose rows are reflected in the ResultSet. The
TYPE_SCROLL_SENSITIVE constant makes the ResultSet sensitive to those changes.

Listing 10-14 illustrates how to reposition the virtual cursor in the ResultSet. This
listing, which is a modification of the previous code segments used as examples in
this chapter, retrieves customers’ first names and last names from the Customers table
of the CustomerInformation database. Since Listing 10-14 moves the virtual cursor
in multiple directions, the TYPE_SCROLL_INSENSITIVE constant is passed to the
createStatement(). This enables the use of virtual cursor control methods in the third
try {} block. Initially, the virtual cursor moves to the first row of the ResultSet and
then to the last row before being positioned at the second to last row of the ResultSet.

Next, the virtual cursor is positioned in the tenth row of the ResultSet using the
absolute() method. Finally, the relative() method is called twice. The first time the relative()
method is called, the virtual cursor is moved back two rows from the current row, which
places the virtual cursor at row eight. The relative() method is again called to return
the virtual cursor back to its original row by moving the virtual cursor two rows forward.

If you use any of these methods and end up positioning the cursor before the first
record or beyond the last record, there won’t be any errors thrown.

String url = "jdbc:odbc:CustomerInformation";

String userID = "jim";

String password = "keogh";

String printrow;

String FirstName;

String LastName;

Statement DataRequest;

Listing 10-14
Using a

scrollable
virtual cursor

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 0 : J D B C O b j e c t s 413

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

ResultSet Results;

Connection Db;

try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Db = DriverManager.getConnection(url,userID,password);

}

catch (ClassNotFoundException error) {

System.err.println("Unable to load the JDBC/ODBC bridge." +

error);

System.exit(1);

}

catch (SQLException error) {

System.err.println("Cannot connect to the database." + error);

System.exit(2);

}

try {

String query = "SELECT FirstName,LastName FROM Customers";

DataRequest = Db.createStatement(TYPE_SCROLL_INSENSITIVE);

Results = DataRequest.executeQuery (query);

}

catch (SQLException error){

System.err.println("SQL error." + error);

System.exit(3);

}

boolean Records = Results.next();

if (!Records) {

System.out.println("No data returned");

System.exit(4);

}

try {

do {

Results.first();

Results.last();

Results.previous();

Results.absolute(10);

Results.relative(-2);

Results.relative(2);

FirstName = Results.getString (1) ;

LastName = Results.getString (2) ;

printrow = FirstName + " " + LastName;

System.out.println(printrow);

} while (Results.next());

DataRequest.close();

}

catch (SQLException error) {

System.err.println("Data display error." + error);

System.exit(5);

}

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

414 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

Not All JDBC Drivers Are Scrollable
Although the JDBC API contains methods to scroll a ResultSet, some JDBC drivers may
not support some or all of these features, and therefore they will not be able to return a
scrollable ResultSet. Listing 10-15 can be used to test whether or not the JDBC driver in
use supports a scrollable ResultSet.

boolean forward, insensitive, sensitive;

DataBaseMetaData meta = Db.getMetaData();

forward = meta.supportsResultsSetType(ResultSet.TYPE_FORWARD_ONLY);

insensitive = meta.supportsResultsSetType(

ResultSet. TYPE_SCROLL_INSENSITIVE);

sensitive = meta.supportsResultsSetType(

ResultSet. TYPE_SCROLL_SENSITIVE);

System.out.println("forward: " + answer);

System.out.println("insensitive: " + insensitive);

System.out.println("sensitive: " + sensitive);

Specify Number of Rows to Return
When the J2ME application requests rows from the ResultSet, some rows are fetched into
the driver and returned at one time. Other times, all rows requested may not be retrieved
at the same time. In this case, the driver returns to the DBMS and requests another set
of rows that are defined by the fetch size and then discards the current set of rows. This
process continues until the J2EE retrieves all rows.

Although the Statement class has a method for setting maximum rows, the method
may not be effective since the driver does not implement them. In addition, the maximum
row setting is for rows in the ResultSet and not for the number of rows returned by
the DBMS. For example, the maximum rows can be set to 100. The DBMS might
return 500 rows, but the ResultSet object silently drops 400 of them. This means
all 500 rows are still pumped over the network.

The fetch size is set by using the setFetchSize() method, which is illustrated in
Listing 10-16. However, all DBMS vendors may not implement the fetch size. Consult
the driver documentation to determine whether fetch size is supported. If fetch size isn’t
supported, the methods will compile and execute, but have no effect. Don’t become overly
concerned about setting the fetch size because fetch size is in the area of performance
tuning, which is handled by the database administrator or the network engineer.

Listing 10-16 illustrates how to set the maximum number of rows returned by the
DBMS. The second try {} block in Listing 10-16 calls the createStatement() method of
the Connection object and then sets the maximum number of rows to 500 using the
setFetchSize() method of the Statement object.

Listing 10-15
Testing

whether
a driver

supports a
scrollable
ResultSet

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

String url = "jdbc:odbc:CustomerInformation";

String userID = "jim";

String password = "keogh";

String printrow;

String FirstName;

String LastName;

Statement DataRequest;

ResultSet Results;

Connection Db;

try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Db = DriverManager.getConnection(url,userID,password);

}

catch (ClassNotFoundException error) {

System.err.println("Unable to load the JDBC/ODBC bridge." +

error);

System.exit(1);

}

catch (SQLException error) {

System.err.println("Cannot connect to the database." + error);

System.exit(2);

}

try {

String query = "SELECT FirstName,LastName FROM Customers";

DataRequest = Db.createStatement(TYPE_SCROLL_INSENSITIVE);

DataRequest.setFetchSize(500);

Results = DataRequest.executeQuery (query);

}

catch (SQLException error){

System.err.println("SQL error." + error);

System.exit(3);

}

Updatable ResultSet
Rows contained in the ResultSet can be updated similar to how rows in a table can be
updated. This is made possible by passing the createStatement() method of the Connection
object the CONCUR_UPDATABLE. Alternatively, the CONCUR_READ_ONLY constant
can be passed to the createStatement() method to prevent the ResultSet from being
updated.

There are three ways to update a ResultSet. These are updating values in a row, deleting
a row, and inserting a new row. All of these changes are accomplished by using methods
of the Statement object.

C h a p t e r 1 0 : J D B C O b j e c t s 415

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Listing 10-16
Setting the
maximum

number
of rows

returned in
a ResultSet

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Update a Value in ResultSet
Once the executeQuery() method of the Statement object returns a ResultSet, the
updateXXX() method is used to change the value of a column in the current row
of the ResultSet. The XXX is replaced with the data type of the column that is to be
updated. The updateXXX() method requires two parameters. The first is either the
number or name of the column of the ResultSet that is being updated, and the second
is the value that will replace the value in the column of the ResultSet.

A value in a column of the ResultSet can be replaced with a NULL value by using the
updateNull() method. The updateNull() method requires one parameter, which is the
number of the column in the current row of the ResultSet. The updateNull() doesn’t
accept the name of the column as a parameter.

The updateRow() method is called after all the updateXXX() methods are called. The
updateRow() method changes values in columns of the current row of the ResultSet
based on the values of the updateXXX() methods.

Listing 10-17 illustrates how to update a row in a ResultSet. In this example, customer
Mary Jones was recently married and changed her last name to Smith before processing
the ResultSet. The updateString() method is used to change the value of the last name
column of the ResultSet to ‘Smith’. The change takes effect once the updateRow() method
is called, but this change only occurs in the ResultSet. The corresponding row in the table
remains unchanged until an update query is run, which is discussed in the next chapter.

String url = "jdbc:odbc:CustomerInformation";

String userID = "jim";

String password = "keogh";

Statement DataRequest;

ResultSet Results;

Connection Db;

try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Db = DriverManager.getConnection(url,userID,password);

}

catch (ClassNotFoundException error) {

System.err.println("Unable to load the JDBC/ODBC bridge." +

error);

System.exit(1);

}

catch (SQLException error) {

System.err.println("Cannot connect to the database." + error);

System.exit(2);

}

try {

String query = "SELECT FirstName,LastName

FROM Customers

WHERE FirstName = 'Mary' and

LastName = 'Jones'";

416 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

Listing 10-17
Updating the

ResultSet

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 0 : J D B C O b j e c t s 417

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

DataRequest = Db.createStatement(ResultSet.CONCUR_UPDATABLE);

Results = DataRequest.executeQuery (query);

}

catch (SQLException error){

System.err.println("SQL error." + error);

System.exit(3);

}

boolean Records = Results.next();

if (!Records) {

System.out.println("No data returned");

System.exit(4);

}

try {

Results.updateString ("LastName", "Smith");

Results.updateRow();

DataRequest.close();

}

catch (SQLException error) {

System.err.println("Data display error." + error);

System.exit(5);

}

Delete a Row in the ResultSet
The deleteRow() method is used to remove a row from a ResultSet. Sometimes this is
advantageous when processing the ResultSet because this is a way to eliminate rows
from future processing. For example, each row of a ResultSet may have to pass three
tests. Those that fail to pass the first test could be deleted from the ResultSet, thereby
reducing the number of rows that have to be evaluated for the second test. This also
deletes the row from the underlying database.

The deleteRow() method is passed an integer that contains the number of the row
to be deleted. A good practice is to use the absolute() method, described previously in
the chapter, to move the virtual cursor to the row in the ResultSet that should be deleted.
However, the value of that row should be examined by the program to assure it is the
proper row before the deleteRow() method is called. The deleteRow() method is then
passed a zero integer indicating that the current row must be deleted, as shown in the
following statement:

Results.deleteRow(0);

Insert a Row in the ResultSet
Inserting a row into the ResultSet is accomplished using basically the same technique
used to update the ResultSet. That is, the updateXXX() method is used to specify the
column and value that will be placed into the column of the ResultSet. You can insert
one or multiple columns into the new row using the same technique.

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

418 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

The updateXXX() method requires two parameters. The first parameter is either the
name of the column or the number of the column of the ResultSet. The second parameter
is the new value that will be placed in the column of the ResultSet. Remember that the
data type of the column replaces the XXX in the method name.

The insertRow() method is called after the updateXXX() methods, which causes a
new row to be inserted into the ResultSet having values that reflect the parameters in
the updateXXX() methods. This also updates the underlying database.

Listing 10-18 illustrates how to insert a new row in a ResultSet. In this example, the
query returns the first name and last name of all customers. The name Tom Smith is
inserted into the ResultSet in the third try {} block using the updateString() method.
Remember that columns are numbered based on the order that the column names appear
in the SELECT statement of the query. The new row is added to the ResultSet after the
insertRow() method is called.

String url = "jdbc:odbc:CustomerInformation";

String userID = "jim";

String password = "keogh";

Statement DataRequest;

ResultSet Results;

Connection Db;

try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Db = DriverManager.getConnection(url,userID,password);

}

catch (ClassNotFoundException error) {

System.err.println("Unable to load the JDBC/ODBC bridge." +

error);

System.exit(1);

}

catch (SQLException error) {

System.err.println("Cannot connect to the database." + error);

System.exit(2);

}

try {

String query = "SELECT FirstName,LastName FROM Customers";

DataRequest = Db.createStatement(CONCUR_UPDATABLE);

Results = DataRequest.executeQuery (query);

}

catch (SQLException error){

System.err.println("SQL error." + error);

System.exit(3);

}

boolean Records = Results.next();

if (!Records) {

System.out.println("No data returned");

Listing 10-18
Inserting a

new row into
the ResultSet

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 0 : J D B C O b j e c t s 419

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

System.exit(4);

}

try {

Results.updateString (1, "Tom");

Results.updateString (2, "Smith");

Results.insertRow();

DataRequest.close();

}

catch (SQLException error) {

System.err.println("Data display error." + error);

System.exit(5);

}

Transaction Processing
A transaction may involve several tasks similar to the tasks required to complete a
transaction at a supermarket. In a supermarket transaction, each item purchased must be
registered, the transaction must be totaled, and the customer must tender the amount
of the purchase. The transaction is successfully completed only if each task is completed
successfully. If one task fails, the entire transaction fails. Previously completed tasks must
be reversed if the transaction fails. For example, goods that were registered must be
removed from the register and returned to the shelf.

A database transaction consists of a set of SQL statements, each of which must be
successfully completed for the transaction to be completed. If one fails, SQL statements
that executed successfully up to that point in the transaction must be rolled back. A
database transaction isn’t completed until the J2ME application calls the commit() method
of the Connection object. All SQL statements executed before the call to the commit()
method can be rolled back. However, once the commit() method is called, none of the
SQL statements can be rolled back.

The commit() method must be called regardless of whether the SQL statement is
part of a transaction or not. This means that the commit() method must be issued in the
previous examples in this chapter. However, the commit() method was automatically
called in these examples because the DBMS has an AutoCommit feature that is by default
set to true.

If a J2ME application is processing a transaction, the AutoCommit feature must be
deactivated by calling the setAutoCommit() method and passing it a false parameter.
Once the transaction is completed, the setAutoCommit() method is called again, this
time passing it a true parameter, which reactivates the AutoCommit feature.

Listing 10-19 illustrates how to process a transaction. The transaction in this example
consists of two SQL statements, both of which update the street address of rows in the
Customers table. Each SQL statement is executed separately, and then the commit()
method is called. However, should either SQL statement throw an SQL exception, the

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

420 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

catch {} block reacts by rolling back the transaction before displaying the exception on
the screen.

String url = "jdbc:odbc:CustomerInformation";

String userID = "jim";

String password = "keogh";

Statement DataRequest1, DataRequest2 ;

Connection Database;

try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Database = DriverManager.getConnection(url,userID,password);

}

catch (ClassNotFoundException error) {

System.err.println("Unable to load the JDBC/ODBC bridge." +

error);

System.exit(1);

}

catch (SQLException error) {

System.err.println("Cannot connect to the database." + error);

System.exit(2);

}

try {

Database .setAutoCommit(false)

String query1 = "UPDATE Customers SET Street = '5 Main Street' "

"WHERE FirstName = 'Bob'";

String query2 = "UPDATE Customers SET Street = '10 Main Street' " +

"WHERE FirstName = 'Tim'";

DataRequest1= Database.createStatement();

DataRequest2= Database.createStatement();

DataRequest.executeUpdate (query1);

DataRequest.executeUpdate (query2);

Database.commit();

DataRequest1.close();

DataRequest2.close();

Database.close();

}

catch(SQLException ex) {

System.err.println("SQLException: " + ex.getMessage());

if (con != null) {

try {

System.err.println("Transaction is being rolled back ");

con.rollback();

}

catch(SQLException excep) {

System.err.print("SQLException: ");

System.err.println(excep.getMessage());

}

}

}

Listing 10-19
Executing

a database
transaction

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Savepoints
A transaction may consist of many tasks, some of which don’t need to be rolled back
should the entire transaction fail. Let’s say there are several tasks that occur when a new
order is processed. These include updating the customer account table, inserting the order
into the pending order table, and sending a customer a confirmation email. Technically
all three tasks must be completed before the transaction is considered completed. Suppose
the email server is down when the transaction is ready to send the customer a confirmation
email. Should the entire transaction be rolled back? Probably not since it is more important
that the order continue to be processed (that is, delivered). The confirmation notice can
be sent once the email server is back online.

The J2ME application can control the number of tasks that are rolled back by using
savepoints. A savepoint, introduced in JDBC 3.0, is a virtual marker that defines the task
at which the rollback stops. In the previous example, the task before the email confirmation
notice is sent can be designated as a savepoint. Listing 10-20 illustrates how to create a
savepoint. This is the same code segment as Listing 10-19, but a savepoint is created after
the execution of the first UPDATE SQL statement.

There can be many savepoints in a transaction; each is identified by a unique name.
The savepoint name is then passed to the rollback() method to specify the point within the
transaction where the rollback is to stop. In this example, there is one savepoint called
sp1. The name “sp1” is the parameter to the rollback() method in the catch {} block. The
purpose of this example is to illustrate how to set and release a savepoint and how to
use the savepoint name in the rollback() method. Of course, for commercial applications,
you will want more rigorous code that identifies the executeUpdate() method that threw
the exception, among other error-checking routines.

The releaseSavepoint() method is called to remove the savepoint from the transaction.
The name of the savepoint that is to be removed is passed to the releaseSavepoint() method.

String url = "jdbc:odbc:CustomerInformation";

String userID = "jim";

String password = "keogh";

Statement DataRequest1, DataRequest2 ;

Connection Database;

try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Database = DriverManager.getConnection(url,userID,password);

}

catch (ClassNotFoundException error) {

System.err.println("Unable to load the JDBC/ODBC bridge." +

error);

System.exit(1);

}

catch (SQLException error) {

System.err.println("Cannot connect to the database." + error);

System.exit(2);

C h a p t e r 1 0 : J D B C O b j e c t s 421

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Listing 10-20
Using

savepoints in
a transaction

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

422 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

}

try {

Database .setAutoCommit(false)

String query1 = "UPDATE Customers SET Street = '5 Main Street' " +

"WHERE FirstName = 'Bob'";

String query2 = "UPDATE Customers SET Street = '10 Main Street' " +

"WHERE FirstName = 'Tim'";

DataRequest1= Database.createStatement();

Savepoint s1 = Database.setSavepoint ("sp1");

DataRequest2= Database.createStatement();

DataRequest.executeUpdate (query1);

DataRequest.executeUpdate (query2);

Database.commit();

DataRequest1.close();

DataRequest2.close();

Database.releaseSavepoint ("sp1");

Database.close();

}

catch (SQLException error){

try {

Database.rollback(sp1);

}

catch (SQLException error){

System.err.println("rollback error." + error.getMessage());

System.exit(3);

}

System.err.println("SQL error." + error. getMessage()););

System.exit(4);

}

Batch Statements
Another way to combine SQL statements into a transaction is to batch statements together
into a single transaction and then execute the entire transaction. You can do this by using
the addBatch() method of the Statement object. The addBatch() method receives an
SQL statement as a parameter and places the SQL statement in the batch. Once all the SQL
statements that make up the transaction are included in the batch, the executeBatch()
method is called to execute the entire batch at the same time. The executeBatch() method
returns an int array that contains the number of SQL statements executed successfully.

The int array is displayed if a BatchUpdateException error is thrown during the
execution of the batch. The batch can be cleared of SQL statements by using the
clearBatch() method. The transaction must be committed using the commit() method.
Make sure that setAutoCommit() is set to false before executing the batch, as discussed
in the previous section.

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Listing 10-21 illustrates how to batch SQL statements. In this example, two SQL
statements are created, as discussed previously in this chapter. Each SQL statement is
added to the batch using the addBatch() method. Once both SQL statements are added
to the batch, the executeBatch() method is called to execute each of the SQL statements.
The commit() method is then called to commit the changes created by the SQL statement.
Until the commit() method is called, the transaction can be rolled back, as described in
the previous section.

String url = "jdbc:odbc:CustomerInformation";

String userID = "jim";

String password = "keogh";

Statement DataRequest;

Connection Database;

try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Database = DriverManager.getConnection(url,userID,password);

}

catch (ClassNotFoundException error) {

System.err.println("Unable to load the JDBC/ODBC bridge." +

error);

System.exit(1);

}

catch (SQLException error) {

System.err.println("Cannot connect to the database." + error);

System.exit(2);

}

try {

Database .setAutoCommit(false)

String query1 = "UPDATE Customers SET Street = '5 Main Street' " +

"WHERE FirstName = 'Bob'";

String query2 = "UPDATE Customers SET Street = '10 Main Street' " +

"WHERE FirstName = 'Tim'";

DataRequest= Database.createStatement();

DataRequest.addBatch(query1);

DataRequest.addBatch(query2);

int [] updated = DataRequest.executeBatch ();

Database.commit();

DataRequest1.close();

DataRequest2.close();

Database.close();

}

catch(BatchUpdateException error) {

System.out.println("Batch error.");

System.out.println("SQL State: " + error.getSQLState());

System.out.println("Message: " + error.getMessage());

System.out.println(Vendor: " + error.getErrorCode());

int [] updated = error.getUpdatecount();

C h a p t e r 1 0 : J D B C O b j e c t s 423

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Listing 10-21
Batching SQL

statements
into a

transaction

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

424 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

int count = updated.length();

for int - i = 0; i < count; i++) {

System.out.print (updated[i]);

}

SQLException sql = error;

While (sql != null)

{

System.out.println("SQL error " + sql);

sql = sql.getnextException();

}

try{

DataRequest.clearBatch();

}

catch(BatchUpdateException error) {

System.out.println("Unable to clear the batch: " +

error.getMessage());

}

}

Keeping ResultSet Objects Open
Whenever the commit() method is called, all ResultSet objects that were created for
the transaction are closed. Sometimes a J2ME application needs to keep the ResultSet
open even after the commit() method is called. You can control whether or not ResultSet
objects are closed following the call to the commit() method (called “holdability”) by
passing one of two constants to the createStatement() method. These constants are
HOLD_CURSORS_OVER_COMMIT and CLOSE_CURSORS_AT_COMMIT.

The HOLD_CURSORS_OVER_COMMIT keeps ResultSet objects open following
a call to the commit() method, and CLOSE_CURSORS_AT_COMMIT closes ResultSet
objects when the commit() method is called.

RowSet
The JDBC RowSet object is used to encapsulate a ResultSet for use with Enterprise
JavaBeans (EJB). A RowSet object contains rows of data from a table or tables that can
be used in a disconnected operation. That is, an EJB can interact with a RowSet object
without having to be connected to a DBMS, which is ideal for J2ME applications that
have PDA clients. You can learn about EJB by picking up a copy of J2EE: The Complete
Reference, by Jim Keogh (McGraw-Hill/Osborne, 2002).

A row set event is generated every time the cursor is moved in a RowSet and when one
or multiple columns of the RowSet change. These events are described in the RowSetEvent.

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When an event occurs, the RowSet object creates an instance of a RowSetEvent object and
sends the instance to all RowSetListeners that are registered with the RowSet.

A RowSetListener is a class you define that implements the RowSetListener interface.
The RowSetListener class must contain three methods, each of which responds to a
particular event occurring in a RowSet. These methods are as follows:

public void cursorMoved(RowSetEvent event)

public void rowChanged(RowSetEvent event)

public void rowSetChanged(RowSetEvent event)

The cursorMoved() method must contain logic that reacts to movement of the cursor
within the RowSet. Typically, this method calls ResultSet.getRow() to return the current
row of the ResultSet. The rowChanged() method contains logic to respond when a portion
of a RowSet is modified, and the rowSetChanged() has logic to respond when the entire
RowSet is modified.

Listing 10-22 illustrates how to implement a RowSetListener. First you’ll need to create
a class that implements the RowSetListener, which is called MyRowSetListener in this
example. Next, define the three required methods. Each method is passed an instance
of a RowSetEvent created by the RowSet when the event occurs.

After defining the RowSetListener class, you’ll need to create an instance of that class,
which is called rowsetlistner. The instance of the RowSetListener is then registered with
the RowSet by calling the addRowSetListener. This example assumes that the RowSet has
already been created. You can deregister a RowSetListener from a RowSet by calling the
rowset.removeRowSetListener(rowsetlistner) method.

MyRowSetListener rowsetlistener = new MyRowSetListener ();

rowset.addRowSetListener (rowsetlistener);

public class MyRowSetListener implements RowSetListener

{

public void cursorMoved(RowSetEvent event)

{

// do something

}

public void rowChanged(RowSetEvent event)

{

// do something

}

public void rowSetChanged(RowSetEvent event)

{

// do something

}

}

C h a p t e r 1 0 : J D B C O b j e c t s 425

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Listing 10-22
Creating a

RowSet
Listener,

assuming
the instance

rowset has
already been

created

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Autogenerated Keys
It is common for a DBMS to automatically generate unique keys for a table as rows are
inserted into the table. The getGeneratedKeys() method of the Statement object is called
to return keys generated by the DBMS.

The getGeneratedKeys() returns a ResultSet object. You can use the
ResultSet.getMetaData() method to retrieve metadata relating to the automatically
generated key, such as the type and properties. You can learn more about retrieving
metadata in the next section of this chapter.

Metadata
Metadata is data about data, as discussed in Chapter 9. A J2ME application can access
metadata by using the DatabaseMetaData interface. The DatabaseMetaData interface
is used to retrieve information about databases, tables, columns, and indexes, among
other information about the DBMS. A J2ME application retrieves metadata about the
database by calling the getMetaData() method of the Connection object. The getMetaData()
method returns a DatabaseMetaData object that contains information about the database
and its components.

Once the DatabaseMetaData object is obtained, an assortment of methods contained
in the DatabaseMetaData object are called to retrieve specific metadata. Here are some
of the more commonly used DatabaseMetaData object methods:

■ getDatabaseProductName() Returns the product name of the database

■ getUserName() Returns the user name

■ getURL() Returns the URL of the database

■ getSchemas() Returns all the schema names available in this database

■ getPrimaryKeys() Returns primary keys

■ getProcedures() Returns stored procedure names

■ getTables() Returns names of tables in the database

ResultSet Metadata
Two types of metadata can be retrieved from the DBMS: metadata that describes the
database (as mentioned in the previous section) and metadata that describes the ResultSet.
Metadata that describes the ResultSet is retrieved by calling the getMetaData() method
of the ResultSet object. This returns a ResultSetMetaData object, as illustrated in the
following code statement:

ResultSetMetaData rm = Result.getMetaData()

426 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Once the ResultSet metadata is retrieved, the J2ME application can call methods of
the ResultSetMetaData object to retrieve specific kinds of metadata. The more commonly
called methods are

■ getColumnCount() Returns the number of columns contained in the ResultSet

■ getColumnName(int number) Returns the name of the column specified by
the column number

■ getColumnType(int number) Returns the data type of the column specified
by the column number

There are many other methods used to retrieve practically any information you need
to know about a database and the ResultSet—many more methods than can fit in this
chapter. You can obtain detailed information about each of these methods by visiting
Sun’s web site, java.sun.com.

Data Types
The setXXX() and getXXX() methods are used throughout this chapter to set a value of
a specific data type and to retrieve a value of a specific data type. The XXX in the name
of these methods is replaced with the name of the data type. Table 10-1 contains a list of
data types and their Java equivalents. You can use this list to determine the proper data
name to replace the XXX in the two methods.

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

C h a p t e r 1 0 : J D B C O b j e c t s 427

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

SQL Type Java Type

CHAR String

VARCHAR String

LONGVARCHAR String

NUMERIC java.math.BigDecimal

DECIMAL java.math.BigDecimal

BIT Boolean

TINYINT Byte

SMALLINT Short

INTEGER Integer

BIGINT Long

REAL float

Table 10-1. Data Types for Use with the setXXX() and getXXX() Methods

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

428 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

Exceptions
Three kinds of exceptions are thrown by JDBC methods. These are SQLException,
SQLWarning, and DataTruncation. SQLException commonly reflects an SQL syntax error
in the query and is thrown by many of the methods contained in the java.sql package.
Hopefully the syntax errors in your code get resolved quickly. In production, this exception
is most commonly caused by connectivity issues with the database. It can also be caused
by subtle coding errors like trying to access an object that’s been closed. For example,
you try to roll back a transaction in a catch {} clause and don’t check first to see if the
database connection is still valid. The getNextException() method of the SQLException
object is used to return details about the SQL error or a null if the last exception was
retrieved. The getErrorCode() method of the SQLException object is used to retrieve
vendor-specific error codes.

The SQLWarning throws warnings received by the Connection from the DBMS.
The getWarnings() method of the Connection object retrieves the warning, and the
getNextWarning() method of the Connection object retrieves subsequent warnings.

Whenever data is lost due to truncation of the data value, a DataTruncation exception
is thrown.

SQL Type Java Type

FLOAT float

DOUBLE double

BINARY Byte[]

VARBINARY Byte[]

LONGVARBINARY byte[]

BLOB java.sql.Blob

CLOB java.sql.Clob

ARRAY java.sql.Array

STRUCT java.sql.Struct

REF java.sql.Ref

DATALINK java.sql.Types

DATE java.sql.date

TIME java.sql.Time

TIMESTAMP java.sql.Timestamp

Table 10-1. Data Types for Use with the setXXX() and getXXX() Methods
(continued)

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 0 : J D B C O b j e c t s 429

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Quick Reference Guide
JDBC classes and interfaces contain many methods. This quick reference guide provides
an overview of the more commonly used methods. Full details of these methods and
all the JDBC classes and interfaces are available at java.sun.com.

java.sql Package public interface CallableStatement

Method Description

public void registerOutParameter
(int parameterIndex, int sqlType)
throws SQLException

Register the OUT parameter.

public void registerOutParameter(int
parameterIndex, int sqlType,int scale)
throws SQLException

Register the OUT parameter.

public boolean wasNull() throws SQLException Determine an OUT parameter value is null.

set by name

Method Description

public void setURL(String parameterName,
URL val) throws SQLException

Set a parameter to a java.net.URL object.

public void setNull(String parameterName,
int sqlType) throws SQLException

Set a parameter to a null value.

public void setBoolean(String
parameterName,boolean x)
throws SQLException

Set a parameter to a Java boolean value.

public void setByte(String parameterName,
byte x)throws SQLException

Set a parameter to a Java byte value.

public void setShort(String parameterName,
short x) throws SQLException

Set a parameter to a Java short value.

public void setInt(String parameterName, int x)
throws SQLException

Set a parameter to a Java int value.

public void setLong(String parameterName,
long x)throws SQLException

Set a parameter to a Java long value.

public void setFloat(String parameterName,
float x)throws SQLException

Set a parameter to a Java float value.

public void setDouble(String parameterName,
double x) throws SQLException

Set a parameter to a Java double value.

public void setBigDecimal(String
parameterName,BigDecimal x)
throws SQLException

Set a parameter to a java.math.BigDecimal
value.

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

430 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

set by name

Method Description

public void setString(String
parameterName,String x)throws SQLException

Set a parameter to a Java String value.

public void setBytes(String parameterName,
byte[] x)throws SQLException

Set a parameter to a Java array of bytes.

public void setDate(String parameterName,
Date x)throws SQLException

Set a parameter to a java.sql.Date value.

public void setTime(String parameterName,
Time x) throws SQLException

Set a parameter to a java.sql.Time value.

public void setTimestamp(String
parameterName,Timestamp x)
throws SQLException

Set a parameter to a java.sql.Timestamp
value.

public void setBinaryStream(String
parameterName, InputStream x, int length)
throws SQLException

Set the designated parameter to the given
input stream, which will have the specified
number of bytes.

public void setObject(String parameterName,
Object x,int targetSqlType,int scale)throws
SQLException

Set a parameter with the given object.

public void setObject(String parameterName,
Object x, int targetSqlType) throws
SQLException

Set a parameter with the given object.

public void setObject(String parameterName,
Object x)throws SQLException

Set a parameter with the given object.

public void setDate(String parameterName,
Date x,Calendar cal) throws SQLException

Set a parameter to a java.sql.Date value.

public void setTime(String parameterName,
Time x, Calendar cal)throws SQLException

Set a parameter to a java.sql.Time value.

public void setTimestamp(String
parameterName, Timestamp x, Calendar cal)
throws SQLException

Set a parameter to a java.sql.Timestamp
value.

public void setNull(String parameterName, int
sqlType, String typeName)throws
SQLException

Set a parameter to a null value.

get by index

Method Description

public String getString(int parameterIndex)
throws SQLException

Determine the value of the designated
JDBC CHAR, VARCHAR, or
LONGVARCHAR parameter.

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 0 : J D B C O b j e c t s 431

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

get by index

Method Description

public boolean getBoolean(int parameterIndex)
throws SQLException

Determine the value of the designated
JDBC BIT parameter.

public byte getByte(int parameterIndex)
throws SQLException

Determine the value of the designated
JDBC TINYINT parameter.

public short getShort(int parameterIndex)
throws SQLException

Determine the value of the designated
JDBC SMALLINT parameter.

public int getInt(int parameterIndex)
throws SQLException

Determine the value of the designated
JDBC INTEGER parameter.

public long getLong(int parameterIndex)
throws SQLException

Determine the value of the designated
JDBC BIGINT parameter.

public float getFloat(int parameterIndex)
throws SQLException

Determine the value of the designated
JDBC FLOAT parameter.

public double getDouble(int parameterIndex)
throws SQLException

Determine the value of the designated
JDBC DOUBLE parameter.

public BigDecimal getBigDecimal(int
parameterIndex,int scale) throws SQLException

Determine the value of the designated
JDBC NUMERIC parameter.

public byte[] getBytes(int parameterIndex)
throws SQLException

Determine the value of the designated
JDBC BINARY or VARBINARY
parameter.

public Date getDate(int parameterIndex)
throws SQLException

Determine the value of the designated
JDBC DATE parameter.

public Time getTime(int parameterIndex)
throws SQLException

Determine the value of the designated
JDBC TIME parameter.

public Timestamp getTimestamp(int
parameterIndex) throws SQLException

Determine the value of the designated
JDBC TIMESTAMP parameter.

public Object getObject(int
parameterIndex)throws SQLException

Determine the value of the designated
parameter.

public BigDecimal getBigDecimal(int
parameterIndex) throws SQLException

Determine the value of the designated
JDBC NUMERIC parameter.

public Object getObject(int i, Map map)
throws SQLException

Return an object representing the value
of OUT parameter.

public Ref getRef(int i) throws SQLException Determine the value of the designated
JDBC REF parameter.

public Blob getBlob(int i) throws SQLException Determine the value of the designated
JDBC BLOB parameter.

public Clob getClob(int i) throws SQLException Determine the value of the designated
JDBC CLOB parameter.

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

432 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

get by index

Method Description

public Array getArray(int i) throws
SQLException

Determine the value of the designated
JDBC ARRAY parameter.

public Date getDate(int parameterIndex,
Calendar cal) throws SQLException

Determine the value of the designated
JDBC DATE parameter.

public Time getTime(int parameterIndex,
Calendar cal) throws SQLException

Determine the value of the designated
JDBC TIME parameter.

public Timestamp getTimestamp(int
parameterIndex, Calendar cal) throws
SQLException

Determine the value of the designated
JDBC TIMESTAMP parameter.

public void registerOutParameter
(int paramIndex, int sqlType,String
typeName)throws SQLException

Register the designated output parameter.

public void registerOutParameter(String
parameterName, int sqlType) throws
SQLException

Register the OUT parameter named
parameterName.

public void registerOutParameter(String
parameterName, int sqlType,int scale)
throws SQLException

Determine the parameter named
parameterName.

public void registerOutParameter(String
parameterName, int sqlType, String
typeName)throws SQLException

Determine the designated output
parameter.

public URL getURL(int parameterIndex)
throws SQLException

Determine the value of the designated
JDBC DATALINK parameter.

get by name

Method Description

public String getString(String parameterName)
throws SQLException

Determine the value of a JDBC CHAR,
VARCHAR, or LONGVARCHAR
parameter.

public boolean getBoolean(String
parameterName) throws SQLException

Determine the value of a JDBC BIT
parameter.

public byte getByte(String parameterName)
throws SQLException

Determine the value of a JDBC TINYINT
parameter.

public short getShort(String parameterName)
throws SQLException

Determine the value of a JDBC
SMALLINT parameter.

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 0 : J D B C O b j e c t s 433

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

get by name

Method Description

public int getInt(String parameterName) throws
SQLException

Determine the value of a JDBC INTEGER
parameter.

public long getLong(String parameterName)
throws SQLException

Determine the value of a JDBC BIGINT
parameter.

public float getFloat(String parameterName)
throws SQLException

Determine the value of a JDBC FLOAT
parameter.

public double getDouble(String
parameterName) throws SQLException

Determine the value of a JDBC DOUBLE
parameter.

public byte[] getBytes(String parameterName)
throws SQLException

Determine the value of a JDBC BINARY
or VARBINARY parameter.

public Date getDate(String parameterName)
throws SQLException

Determine the value of a JDBC DATE
parameter.

public Time getTime(String parameterName)
throws SQLException

Determine the value of a JDBC TIME
parameter.

public Timestamp getTimestamp(String
parameterName) throws SQLException

Determine the value of a JDBC
TIMESTAMP parameter.

public Object getObject(String parameterName)
throws SQLException

Determine the value of a parameter as
an Object.

public BigDecimal getBigDecimal(String
parameterName)throws SQLException

Determine the value of a JDBC NUMERIC
parameter.

public Object getObject(String parameterName,
Map map)throws SQLException

Return an object representing the value
of OUT parameter.

public Ref getRef(String parameterName)
throws SQLException

Determine the value of a JDBC REF
parameter.

public Blob getBlob(String parameterName)
throws SQLException

Determine the value of a JDBC BLOB
parameter.

public Clob getClob(String
parameterName)throws SQLException

Determine the value of a JDBC CLOB
parameter.

public Array getArray(String
parameterName)throws SQLException

Determine the value of a JDBC ARRAY.

public Date getDate(String parameterName,
Calendar cal)throws SQLException

Determine the value of a JDBC DATE
parameter.

public Time getTime(String parameterName,
Calendar cal)throws SQLException

Determine the value of a JDBC TIME
parameter.

public Timestamp getTimestamp(String
parameterName, Calendar cal)throws
SQLException

Determine the value of a JDBC
TIMESTAMP parameter.

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

434 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

get by name

Method Description

public URL getURL(String parameterName)
throws SQLException

Determine a URL.

java.sql Package public interface Connection Interface

Method Description

public void close()throws SQLException Close a Connection.

public boolean isClosed()throws SQLException Determine whether a Connection object
is closed.

public DatabaseMetaData getMetaData()throws
SQLException

Retrieve a DatabaseMetaData.

public void setReadOnly(boolean readOnly)
throws SQLException

Place a connection in read-only.

public boolean isReadOnly()throws
SQLException

Determine whether a Connection object
is in read-only.

public String getCatalog()throws SQLException Determine a Connection’s catalog name.

Warnings

Method Description

public SQLWarning getWarnings()throws
SQLException

Retrieve the first warning reported.

public void clearWarnings()throws
SQLException

Clear all warnings reported.

Holdability

Method Description

public void setHoldability(int holdability)
throws SQLException

Change the holdability of ResultSet
objects.

public int getHoldability() throws
SQLException

Determine the holdability of a ResultSet.

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 0 : J D B C O b j e c t s 435

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Transactions

Method Description

public Savepoint setSavepoint() throws
SQLException

Create an unnamed savepoint.

public Savepoint setSavepoint(String
name)throws SQLException

Create a named savepoint.

public void rollback(Savepoint savepoint)
throws SQLException

Reverse all changes made after a
savepoint was set.

public void releaseSavepoint(Savepoint
savepoint)throws SQLException

Remove a Savepoint object.

public void commit()throws SQLException Make all changes permanent.

public void rollback()throws SQLException Reverse changes made to a transaction
and release any database locks.

public void setAutoCommit(boolean
autoCommit)throws SQLException

Set the autocommit mode.

public boolean getAutoCommit()throws
SQLException

Determine whether the autocommit
mode is set.

CallableStatement

Method Description

public CallableStatement prepareCall(String
sql,int resultSetType, int resultSetConcurrency,
int resultSetHoldability)throws SQLException

Create a CallableStatement object that
generates a ResultSet.

public CallableStatement prepareCall(String
sql,int resultSetType,int
resultSetConcurrency)throws SQLException

Create a CallableStatement object that
generates a ResultSet.

public CallableStatement prepareCall(String
sql)throws SQLException

Create a CallableStatement object.

Statement

Method Description

public Statement createStatement(int
resultSetType,int resultSetConcurrency,int
resultSetHoldability) throws SQLException

Create a Statement object that will
generate ResultSet.

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

436 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

Statement

Method Description

public Statement createStatement(int
resultSetType,int resultSetConcurrency)
throws SQLException

Create a Statement object that generates
ResultSet.

public Statement createStatement()
throws SQLException

Create a Statement object.

PrepareStatement

Method Description

public PreparedStatement
prepareStatement(String sql)
throws SQLException

Create a PreparedStatement object.

public PreparedStatement
prepareStatement(String sql,int
resultSetType,int resultSetConcurrency,int
resultSetHoldability)throws SQLException

Create a PreparedStatement object that
will generate ResultSet.

public PreparedStatement
prepareStatement(String sql, int[]
columnIndexes)throws SQLException

Create a PreparedStatement object that
returns autogenerated keys.

public PreparedStatement
prepareStatement(String sql,int resultSetType,
int resultSetConcurrency)throws SQLException

Create a PreparedStatement object that
generates ResultSet.

public PreparedStatement
prepareStatement(String sql,String[]
columnNames) throws SQLException

Create a PreparedStatement object that
returns autogenerated keys.

java.sql Package public interface DatabaseMetaData

Method Description

public Connection getConnection() throws
SQLException

Retrieve the connection that produced
metadata.

public boolean supportsSavepoints() throws
SQLException

Determine whether a database supports
savepoints.

public boolean supportsNamedParameters()
throws SQLException

Determine whether a database supports
named parameters to callable
statements.

public boolean supportsMultipleOpenResults()
throws SQLException

Determine whether it is possible to have
multiple ResultSet objects returned from
a CallableStatement simultaneously.

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 0 : J D B C O b j e c t s 437

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

java.sql Package public interface DatabaseMetaData

public int getMaxUserNameLength() throws
SQLException

Determine the maximum number of
characters in a user name.

public boolean supportsTransactions() throws
SQLException

Determine whether a database supports
transactions.

public int getJDBCMajorVersion() throws
SQLException

Determine the major JDBC version
number of a driver.

public int getJDBCMinorVersion() throws
SQLException

Determine the minor JDBC version
number of a driver.

Database

Method Description

public String getURL() throws SQLException Retrieve the URL for a DBMS.

public String getDatabaseProductName()
throws SQLException

Determine the name of a DBMS.

public String getDatabaseProductVersion()
throws SQLException

Determine the version number of a DBMS.

public ResultSet getSchemas() throws
SQLException

Determine the schema names.

public ResultSet getCatalogs() throws
SQLException

Determine the catalog names.

public ResultSet getTypeInfo() throws
SQLException

Retrieve a description of standard SQL
types supported by a database.

public int getDatabaseMajorVersion()
throws SQLException

Determine the major version number
of a database.

public int getDatabaseMinorVersion()
throws SQLException

Determine the minor version number
of a database.

Columns and Rows

Method Description

public int getMaxColumnNameLength()
throws SQLException

Determine the maximum number of
characters allowed in a column name.

public int getMaxColumnsInGroupBy()
throws SQLException

Determine the maximum number of
columns allowed in a GROUP BY clause.

public int getMaxColumnsInIndex()
throws SQLException

Determine the maximum number of
columns allowed in an index.

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

438 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

Columns and Rows

Method Description

public int getMaxColumnsInOrderBy()
throws SQLException

Determine the maximum number of
columns allowed in an ORDER BY
clause.

public int getMaxColumnsInSelect()
throws SQLException

Determine the maximum number of
columns allowed in a SELECT list.

public int getMaxColumnsInTable()
throws SQLException

Determine the maximum number of
columns allowed in a table.

public int getMaxConnections()
throws SQLException

Determine the maximum number of
concurrent connections that are possible
to a database.

public int getMaxIndexLength()
throws SQLException

Determine the maximum number of
bytes allowed for an index.

public int getMaxRowSize()
throws SQLException

Determine the maximum number of
bytes allowed in a row.

public ResultSet getColumns(String catalog, String
schemaPattern, String tableNamePattern, String
columnNamePattern) throws SQLException

Retrieve a description of table columns.

public ResultSet getColumnPrivileges(String
catalog,String schema,String table,String
columnNamePattern)throws SQLException

Determine access rights for columns.

Statement

Method Description

public int getMaxStatementLength()
throws SQLException

Determine the maximum number
of characters permitted in an SQL
statement.

public int getMaxStatements()
throws SQLException

Determine the maximum number of
active statements that can be open at
the same time.

public boolean supportsBatchUpdates()
throws SQLException

Determine whether a database supports
batch updates.

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 0 : J D B C O b j e c t s 439

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Table

Method Description

public int getMaxTableNameLength()
throws SQLException

Determine the maximum number
of characters in a table name.

public int getMaxTablesInSelect()
throws SQLException

Determine the maximum number of
tables allowed in a SELECT statement.

public ResultSet getTables(String catalog,
String schemaPattern, String tableNamePattern,
String[] types) throws SQLException

Determine tables available in a catalog.

public ResultSet getTablePrivileges
(String catalog,String schemaPattern,String
tableNamePattern)throws SQLException

Determine access rights for each table.

Keys

Method Description

public ResultSet getPrimaryKeys(String
catalog,String schema,String table)throws
SQLException

Retrieve a description of a table’s
primary key.

public ResultSet getIndexInfo(String catalog,
String schema,String table,boolean unique,
boolean approximate)throws SQLException

Retrieve a description of table’s indices
and statistics.

public boolean supportsGetGeneratedKeys()
throws SQLException

Determine whether autogenerated keys
can be retrieved.

Procedure

Method Description

public ResultSet getProcedureColumns(String
catalog,String schemaPattern,String
procedureNamePattern,String
columnNamePattern)throws SQLException

Determine a catalog’s stored procedure
parameter and result columns.

public ResultSet getProcedures(String
catalog,String schemaPattern,String
procedureNamePattern)throws SQLException

Determine the stored procedures
available in a catalog.

Holdability

Method Description

public boolean supportsResultSetHoldability
(int holdability) throws SQLException

Determine whether a database supports
holdability.

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

440 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

Holdability

Method Description

public int getResultSetHoldability() throws
SQLException

Determine the default holdability
of a ResultSet.

java.sql Package public class DriverManager

Method Description

public static Connection getConnection(String
url, Properties info)throws SQLException

Open a connection to a database.

public static Connection getConnection(String
url, String user,String password)throws
SQLException

Open a connection to a database.

public static Connection getConnection(String
url) throws SQLException

Open a connection to a database.

Timeout

Method Description

public static void setLoginTimeout
(int seconds)

Set the maximum time in seconds before
the login to the database times out.

public static int getLoginTimeout() Determine the maximum time in
seconds before the login to the database
times out.

java.sql Package public interface PreparedStatement

Method Description

public ResultSetMetaData getMetaData()
throws SQLException

Retrieve a ResultSetMetaData object.

public ParameterMetaData
getParameterMetaData() throws SQLException

Determine the metadata for a
PreparedStatement’s parameters.

public void addBatch() throws SQLException Add a parameter to PreparedStatement
batch of commands.

Execute

Method Description

public ResultSet executeQuery() throws
SQLException

Execute a query in a PreparedStatement
and return a ResultSet.

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 0 : J D B C O b j e c t s 441

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Execute

Method Description

public int executeUpdate() throws
SQLException

Execute the SQL statement that contains
an INSERT, UPDATE, or DELETE
statement in a PreparedStatement.

public boolean execute() throws
SQLException

Execute an SQL statement in
a PreparedStatement.

Parameters

Method Description

public void setNull(int parameterIndex,int
sqlType)throws SQLException

Set the parameter to a null value.

public void setString(int parameterIndex,
String x) throws SQLException

Set the String value.

public void setDate(int parameterIndex,
Date x) throws SQLException

Set the java.sql.Date value.

public void setTime(int parameterIndex, Time x)
throws SQLException

Set the java.sql.Time value.

public void setTimestamp(int parameterIndex,
Timestamp x) throws SQLException

Set the java.sql.Timestamp value.

public void clearParameters() throws
SQLException

Clear the current parameter values.

public void setNull(int paramIndex, int sqlType,
String typeName)throws SQLException

Set a parameter to a null value.

java.sql Package public interface ResultSet

Method Description

public void close() throws SQLException Close a ResultSet.

public ResultSetMetaData getMetaData()
throws SQLException

Retrieve metadata.

public Statement getStatement()throws
SQLException

Retrieve the Statement object.

Warnings

Method Description

public SQLWarning getWarnings() throws
SQLException

Retrieve the first warning reported on
a ResultSet.

public void clearWarnings() throws
SQLException

Clear all warnings reported on a ResultSet.

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

442 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

Virtual Cursor Movement

Method Description

public boolean next() throws SQLException Move the virtual cursor down one row.

public boolean isFirst()throws SQLException Determine whether the virtual cursor is
on the first row.

public boolean isLast()throws SQLException Determine whether the virtual cursor is
on the last row.

public boolean first()throws SQLException Move the virtual cursor to the first row.

public boolean last()throws SQLException Move the virtual cursor to the last row.

public int getRow()throws SQLException Determine the current row number.

public boolean absolute(int row)throws
SQLException

Move the virtual cursor to the row
specified by the row parameter.

public boolean relative(int rows)throws
SQLException

Move the virtual cursor a relative
number of rows.

public boolean previous()throws SQLException Move the virtual cursor to the
previous row.

Fetch Size

Method Description

public void setFetchSize(int rows)
throws SQLException

Give the database driver a hint as to
how many rows should be fetched when
more rows are needed for this ResultSet.

public int getFetchSize()throws SQLException Determine the fetch size for this
ResultSet.

Rows

Method Description

public boolean rowUpdated()throws
SQLException

Determine whether a row has been
updated.

public boolean rowInserted()throws
SQLException

Determine whether a row has had
an insertion.

public boolean rowDeleted()throws
SQLException

Determine whether a row is deleted.

public void updateNull(int columnIndex)
throws SQLException

Insert a null into a column.

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 0 : J D B C O b j e c t s 443

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Rows

Method Description

public void insertRow()throws SQLException Insert a row into a ResultSet and into
the database.

public void updateRow()throws SQLException Update the underlying database with
the row of this ResultSet.

public void deleteRow()throws SQLException Delete a row from a ResultSet and from
the database.

public void refreshRow()throws SQLException Refresh the current row with the current
value in the database.

public void cancelRowUpdates()throws
SQLException

Cancel updates.

java.sql Package public interface ResultSetMetaData

Method Description

public int getColumnCount()throws
SQLException

Retrieve the number of columns in
a ResultSet object.

public boolean isCaseSensitive(int column)
throws SQLException

Determine whether a column is case
sensitive.

public boolean isSearchable(int column)
throws SQLException

Determine whether a column can
be used in a where clause.

public boolean isCurrency(int column)
throws SQLException

Determine whether a column is
a cash value.

public int isNullable(int column)
throws SQLException

Determine whether a null value can
be placed in the column.

public boolean isSigned(int column)
throws SQLException

Determine whether values are signed
numbers.

Columns

Method Description

public int getColumnDisplaySize(int
column)throws SQLException

Retrieve the column’s maximum width
in characters.

public String getColumnLabel(int column)
throws SQLException

Retrieve the column’s label.

public String getColumnName(int column)
throws SQLException

Retrieve the column’s name.

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

444 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

Columns

Method Description

public int getPrecision(int column)
throws SQLException

Retrieve the column’s precision.

public int getColumnType(int column)
throws SQLException

Retrieve the data type of the column.

public String getColumnTypeName(int
column)throws SQLException

Retrieve the name of the column data type.

public boolean isReadOnly(int column)
throws SQLException

Indicate whether a column is read-only.

public boolean isWritable(int column)
throws SQLException

Indicate whether a column is writable.

java.sql Package public interface Savepoint

Method Description

public int getSavepointId()throws
SQLException

Retrieve a savepoint ID.

public String getSavepointName()
throws SQLException

Retrieve a savepoint name.

java.sql Package public interface Statement

Method Description

public void close() throws SQLException Release a Statement object.

public ResultSet getResultSet() throws
SQLException

Retrieve the current ResultSet object.

public int getUpdateCount()throws
SQLException

Determine the number of rows that
were updated.

public Connection getConnection()
throws SQLException

Retrieve a Connection object.

public ResultSet getGeneratedKeys()
throws SQLException

Retrieve autogenerated keys.

Timeout

Method Description

public int getQueryTimeout()throws
SQLException

Determine the maximum number of
seconds for a Statement object to execute.

public void setQueryTimeout(int seconds)
throws SQLException

Set the maximum number of seconds for
a Statement object to execute.

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 0 : J D B C O b j e c t s 445

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Rows

Method Description

public int getMaxRows() throws
SQLException

Retrieve the maximum number of rows
for a ResultSet object.

public void setMaxRows(int max)
throws SQLException

Set the maximum number of rows for
a ResultSet object.

public void setFetchSize(int rows)
throws SQLException

Give database a hint for how many rows
to retrieve when more rows are needed
for the ResultSet.

public int getFetchSize()throws
SQLException

Determine the number of rows for the
fetch size.

Warnings

Method Description

public SQLWarning getWarnings() throws
SQLException

Retrieve the first warning on a Statement
object.

public void clearWarnings() throws
SQLException

Clear all the warnings reported on
a Statement object.

Execute

Method Description

public boolean execute(String sql) throws
SQLException

Execute an SQL statement.

public ResultSet executeQuery(String sql)
throws SQLException

Execute an SQL statement and return
a ResultSet object.

public int executeUpdate(String sql)
throws SQLException

Execute an SQL statement that contains
INSERT, UPDATE, or DELETE
statements or DDL statements.

Batch

Method Description

public void addBatch(String sql)throws
SQLException

Add an SQL statement to a batch.

public void clearBatch() throws SQLException Empty a batch of SQL statements.

public int[] executeBatch()throws SQLException Execute a batch of SQL statements.

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

446 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

javax.sql package public interface DataSource

Method Description

public Connection getConnection() throws
SQLException

Open a connection to a data source.

public Connection getConnection(String
username, String password) throws
SQLException

Open a connection to a data source.

javax.sql package public interface RowSet

Method Description

public void setUrl(String url) throws
SQLException

Set the URL of a RowSet.

public boolean isReadOnly() Determine whether a RowSet object
is read-only.

public void setReadOnly(boolean value)
throws SQLException

Set a RowSet object to read-only.

public int getMaxFieldSize() throws
SQLException

Determine the maximum number of
bytes that can be placed in a column.

public int getMaxRows() throws
SQLException

Determine the maximum number of
rows that can be in a RowSet.

DataSource

Method Description

public String getDataSourceName() Determine the logical name of the
data source for a RowSet.

public void setDataSourceName(String name)
throws SQLException

Set the data source name for a RowSet.

User Name and Password

Method Description

public String getUsername() Determine the user name used to create
a database connection for a RowSet.

public void setUsername(String name)
throws SQLException

Set the user name for a RowSet.

public String getPassword() Determine the password used to create
a database connection.

public void setPassword(String password)
throws SQLException

Set the database password for a RowSet.

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 0 : J D B C O b j e c t s 447

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Timeout

Method Description

public int getQueryTimeout() throws
SQLException

Determine the maximum time the driver
will wait for a statement to execute.

public void setQueryTimeout(int seconds)
throws SQLException

Set the maximum time the driver will wait
for a statement to execute.

javax.sql public class RowSetEvent extends java.util.EventObject

Method Description

public RowSetEvent(RowSet source) Create an instance of a RowSetEvent that
is associated with the RowSet specified by
the source parameter.

javax.sql public interface RowSetInternal

Method Description

public Object[] getParams() throws
SQLException

Return an array of Objects containing
parameter values for a RowSet.

public Connection getConnection()
throws SQLException

Return the Connection object associated
with a RowSet. A null is returned if there
is no Connection object associated with
a RowSet.

public void setMetaData(RowSetMetaData md)
throws SQLException

Set the metadata for a RowSet, where md
is the RowSetMetaData.

public ResultSet getOriginal() throws
SQLException

Return a ResutSet containing the original
value of the RowSet.

public ResultSet getOriginalRow() throws
SQLException

Return a ResutSet containing the original
value of the current row of the RowSet.
An exception is thrown if there is no
current row.

javax.sql public interface RowSetListener extends java.util.EventListener

Method Description

public void
rowSetChanged(RowSetEvent event)

Send a RowSetListener notification
that the entire content of a RowSet has
changed. RowSetEvent is the object that
contains the RowSet associated with
the change.

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:34:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

448 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

javax.sql public interface RowSetListener extends java.util.EventListener

Method Description

public void
rowChanged(RowSetEvent event)

Send a RowSetListener notification that
the one row of a RowSet has changed.
RowSetEvent is the object that contains
the RowSet associated with the change.

public void
cursorMoved(RowSetEvent event)

Send a RowSetListener notification
that the cursor of a RowSet has moved.
RowSetEvent is the object that contains
the RowSet associated with the cursor.

javax.sql public interface RowSetMetaData extends ResultSetMetaData

Method Description

public void setColumnCount(int
columnCount) throws SQLException

Determine the number of columns in
a RowSet, where columnCount specifies
the number of columns.

public void setAutoIncrement(int
columnIndex, boolean property) throws
SQLException

Determine whether the specified column
is numbered automatically, where
columnIndex is the index of the column,
and property is a boolean value indicating
whether or not the column is automatically
numbered. The property value is false
by default.

public void setCaseSensitive(int columnIndex,
boolean property) throws SQLException

Determine whether the specified column
is case sensitive, where columnIndex is
the index of the column, and property
is a boolean value indicating whether
or not the column is case sensitive. The
property value is false by default.

public void setSearchable(int columnIndex,
boolean property) throws SQLException

Determine whether the specified column
can be used in a where clause, where
columnIndex is the index of the column,
and property is a boolean value indicating
whether or not the column can be used in
a where clause. The property value is false
by default.

public void setCurrency(int columnIndex,
boolean property) throws SQLException

Determine whether the specified column
is a cash value, where columnIndex is
the index of the column, and property
is a boolean value indicating whether
or not the column is a cash value. The
property value is false by default.

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:35:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

C h a p t e r 1 0 : J D B C O b j e c t s 449

javax.sql public interface RowSetMetaData extends ResultSetMetaData

Method Description

public void setNullable(int columnIndex,
int property) throws SQLException

Determine whether the specified column
can be set to null, where columnIndex is
the index of the column, and property
is an int indicating whether or not the
column can be set to null. The property
value is one of the following constants:
ResultSetMetaData.columnNoNulls,
ResultSetMetaData.columnNullable, or
ResultSetMetaData.columnNullableUnknown

public void setSigned(int columnIndex,
boolean property) throws SQLException

Determine whether the specified column
is a signed number, where columnIndex is
the index of the column, and property
is a boolean value indicating whether or
not the column is a signed number. The
property value is false by default.

public void
setColumnDisplaySize(int columnIndex,
int size) throws SQLException

Determine the maximum width in chars
when displaying the column, where
columnIndex is the index of the column,
and property is an int indicating the
maximum number of characters that
will be displayed.

public void setColumnLabel(int columnIndex,
String label) throws SQLException

Determine the suggested label for the
column, where columnIndex is the index
of the column, and label is the String
containing the text of the suggested label.

public void setColumnName(int columnIndex,
String columnName) throws SQLException

Determine the name for the column, where
columnIndex is the index of the column,
and columnName is the String containing
the text of the column name.

public void setSchemaName(int columnIndex,
String schemaName) throws SQLException

Determine the name of the table’s
schema that contains the column, where
columnIndex is the index of the column,
and schemaName is the String containing
the text of the schema name.

public void setPrecision(int columnIndex,
int precision) throws SQLException

Determine the number of decimal digits,
where columnIndex is the index of the
column, and precision is an int indicating
the maximum number of decimal digits
contained in the column.

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:35:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

javax.sql public interface RowSetMetaData extends ResultSetMetaData

Method Description

public void setScale(int columnIndex, int scale)
throws SQLException

Determine the number of digits to the right
of the decimal point, where columnIndex
is the index of the column, and scale is an
int indicating the number of digits to the
right of the decimal point in the value
within the column.

public void setTableName(int columnIndex,
String tableName) throws SQLException

Determine the name of the table that
contains the column, where columnIndex
is the index of the column, and tableName is
a String containing the text of the table name.

public void setCatalogName(int columnIndex,
String catalogName) throws SQLException

Determine the name of the table
catalog that contains the column, where
columnIndex is the index of the column,
and catalogName is a String containing
the text of the catalog.

public void setColumnType(int columnIndex,
int SQLType) throws SQLException

Determine SQL type of the column, where
columnIndex is the index of the column,
and SQLType is an int containing the
SQL type.

public void
setColumnTypeName(int columnIndex, String
typeName) throws SQLException

Determine the name of the column type
in the data source of the column, where
columnIndex is the index of the column,
and typeName is the String containing
the text of the column type.

javax.sql public interface RowSetReader

Method Description

public void readData(RowSetInternal caller)
throws SQLException

Read the content of a RowSet, where
the caller is the RowSetInternal that is
implemented by a RowSet object and
is registered with the RowSetReader.

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

450 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:35:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

javax.sql public interface RowSetWriter

Method Description

public boolean writeData(RowSetInternal caller)
throws SQLException

Write changes to the RowSet associated
with the RowSetWriter to the data source,
where caller is the RowSetInternal
associated with the RowSetWriter.
A true is returned if the data was
successfully written to the data
source, otherwise a false is returned.

C h a p t e r 1 0 : J D B C O b j e c t s 451

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 10

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:35:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9
Blind Folio 452

P:\010Comp\CompRef8\710-9\ch10.vp
Thursday, February 06, 2003 12:35:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Chapter 11
JDBC and
Embedded SQL

453

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

454 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

AConnected Device Configuration (CDC) device–based J2ME application interacts
with a database management system (DBMS) using Java data objects and SQL
statements that are embedded in the J2ME application and executed by the Java

data objects. Java data objects are discussed in the previous chapter. This chapter continues
with a detailed look at how to create an SQL statement, execute the statement, and
interact with rows of data returned to the J2ME application by the DBMS in response
to the request for data.

SQL is presented in this chapter using a practical approach. Each section of the chapter
focuses on common tasks used in a J2ME application rather than on SQL keywords. This
means you can quickly locate a routine in the chapter, then incorporate the routine directly
into your J2ME component.

Model Programs
Many programming styles can be used to write the data-access portion of a J2ME
component. Two programming styles—referred to as Model A and Model B—are used in
this chapter to illustrate how a J2ME application can interact with a DBMS. The Model A
program style is used to execute SQL requests that use the execute() or executeUpdate()
methods (see Chapter 9) and don’t return a ResultSet. The Model B program style is used
to execute SQL requests that use the executeQuery() method, which returns a ResultSet.
Each of these is described in detail in the next two sections of this chapter.

Both program styles are designed to minimize the code clutter in this chapter. Code
clutter occurs whenever many lines of code are used in code examples, but only a few
lines of code change between examples. In an effort to reduce code clutter, each complete
program model is presented at the beginning of the chapter. One or two comments indicate
where within the program model to place code segments that are used to illustrate SQL
routines throughout the rest of the chapter. These code segments are contained either
within a try {} block or within the DownRow() method. The try {} block is where the SQL
statement is created and executed. The DownRow() method is where the J2ME application
interacts with the ResultSet.

Let’s say that you want to update a row in a database. As you’ll remember from
the previous chapter, the executeUpdate() method is used to execute the query, and no
ResultSet is returned. Therefore, you can replace the second try {} block in the Model A
program with the code segment contained in the section of this chapter that shows how
to update a row in the database. As you’ll see in the next section, the Model A program
does not contain a DownRow() method because no ResultSet is returned.

Suppose you want to retrieve data from the database. The executeQuery() method is
used in this scenario. The Model B program is used for this purpose because a ResultSet
is returned. In this case, the section of this chapter that shows how to retrieve data from
a database contains two code segments. The first code segment contains the query, and

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

C h a p t e r 1 1 : J D B C a n d E m b e d d e d S Q L 455

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

it replaces the second try {} block in the Model B program. The other code segment replaces
the DownRow() method of the Model B program and interacts with the ResultSet.

The next two sections explain how each model program works. Other sections of this
chapter discuss commonly used tasks and show how to incorporate those tasks into a
J2ME component. Each of these sections also indicates which program model to use with
the task.

Model A Program
The Model A program, shown in Listing 11-1, is designed to execute queries that do
not return a ResultSet. It is organized into the ModelA() constructor and the main().
The main() creates an instance of the ModelA object called sql1, which causes the
execution of the constructor.

The constructor begins by creating three String objects. These are url, userId,
and password. The url is assigned the URL of the database. In this example, the
JDBC/ODBC bridge is used to connect to the CustomerInformation database. Of
course, the URL used in your J2ME application replaces the URL in Model A and will
represent the JDBC driver and database that are specific to your J2ME component.
Likewise, the database used with your J2ME application may or may not require a
user ID and password. If these are required, they will undoubtedly be different from

the user ID and password used in Model A.
The first try {} block in Model A uses the Class.forName() method to load the JDBC

driver into the Java Virtual Machine (JVM). You will probably need to replace the driver
used in Model A with the appropriate JDBC driver for your J2ME component. Once
the JDBC driver is loaded, the getConnection() method is called to open a connection
to the database using the url, userID, and password String objects. The getConnection()
method returns a Connection object called database, which is declared above the
definition of the constructor.

Two catch {} blocks follow the first try {} block and are used to trap exceptions that
occur while the driver is loaded and a connection is established with the database.
You can change the text of messages shown in Model A that are displayed when an
exception is caught to a message that is more conducive to your programming style
and J2ME requirements.

The second try {} block in Model A contains a comment. You should replace this try {}
block with the try {} that appears in the section of this chapter that describes the task you
want performed by the J2ME component. You’ll notice as you read through this chapter
that the try {} block within each section references a Statement object called DataRequest,
which is declared as a private member of the ModelA class.

The second try {} block is followed by a catch {} block that traps SQL exceptions that
occur during the execution of the query in the second try {} block.

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

456 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

Anytime a database connection is closed, you should first check for a null value on
the Connection object. If the connection is no longer valid, the close() method will throw
a NullPointerException.

import java.sql.*;

public class ModelA

{

private Connection Database;

private Statement DataRequest;

public ModelA ()

{

String url = "jdbc:odbc:CustomerInformation";

String userID = "jim";

String password = "keogh";

try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Database = DriverManager.getConnection(url,userID,password);

}

catch (ClassNotFoundException error) {

System.err.println("Unable to load the JDBC/ODBC bridge." + error);

System.exit(1);

}

catch (SQLException error) {

System.err.println("Cannot connect to the database. "+ error);

if(Database != null) {

try {

Database.close();

}

catch(SQLException er){}

}

System.exit(2);

}

try {

// insert example code here

}

catch (SQLException error) {

System.err.println("SQL error." + error);

if(Database != null) {

try {

Database.close();

}

catch(SQLException er){}

}

System.exit(3);

}

Listing 11-1
A model

J2ME
application

that doesn’t
retrieve

information
from a

database
(Model A)

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

C h a p t e r 1 1 : J D B C a n d E m b e d d e d S Q L 457

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

if(Database != null) {

try {

Database.close();

}

catch(SQLException er){}

}

}

public static void main (String args [])

{

final ModelA sql1 = new ModelA ();

System.exit (0) ;

}

}

Model B Program
The Model B program, shown in Listing 11-2, is designed for use by J2ME components
that retrieve information from a database. Notice that the Model B program is similar
to the Model A program in that the constructor definition (except for the name of the
constructor) and the main() are identical. Therefore, refer to the previous section for
a description of the constructor and main().

The second try {} block in Model B is where you place the try {} block contained in
sections of this chapter that discuss how to retrieve information from a database. This
try {} executes a query and returns a ResultSet object called Results, which is declared
as a private member of the ModelB class.

Model B also contains DisplayResults() and DownRow(). DisplayResults() is passed
the ResultSet returned in the second try {} block, which is used to move the virtual cursor
to the first row of the ResultSet using the next() method (see Chapter 6). The next() returns
a boolean value that is assigned to the Records variable. The if statement evaluates
the value of Records and displays a “No data returned” message if Records contains
a false value indicating that there isn’t any data in the row.

However, a true value causes the do…while loop to execute, which is where a call
to DownRow() is made, passing it the ResultSet. DownRow() retrieves data stored in
columns of the ResultSet and assigns those values to variables. Each section of this chapter
that discusses a task that retrieves data from a database has its own DownRow(). Therefore,
you need to replace the DownRow() in Model B with the DownRow() that is associated
with the task that you want performed by the J2ME component.

After DownRow() extracts data from the current row of the ResultSet, control returns
to DisplayResults(), where the next() method is called and the results are evaluated by the
while. If the next() method returns a true value, then DownRow() is recalled, otherwise
the do…while loop is exited and control returns to the constructor.

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

DisplayResults() also contains a catch {} block that traps errors thrown by statements
within the try {} block.

import java.sql.*;

public class ModelB

{

private Connection Database;

private Statement DataRequest;

private ResultSet Results;

public ModelB ()

{

String url = "jdbc:odbc:CustomerInformation";

String userID = "jim";

String password = "keogh";

try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Database = DriverManager.getConnection(url,userID,password);

}

catch (ClassNotFoundException error) {

System.err.println("Unable to load the JDBC/ODBC bridge." + error);

System.exit(1);

}

catch (SQLException error) {

System.err.println("Cannot connect to the database." + error);

System.exit(2);

}

try {

// Enter example code here

}

catch (SQLException error){

System.err.println("SQL error." + error);

if(Database != null) {

try {

Database.close();

}

catch(SQLException er){}

}

System.exit(3);

}

if(Database != null) {

458 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

Listing 11-2
A model

J2ME
application

that retrieves
information

from a
database
(Model B)

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

try {

Database.close();

}

catch(SQLException er){}

}

}

private void DisplayResults (ResultSet DisplayResults)

throws SQLException

{

boolean Records = DisplayResults.next();

if (!Records) {

System.out.println("No data returned");

return;

}

try {

do {

DownRow(DisplayResults) ;

} while (DisplayResults.next());

}

catch (SQLException error) {

System.err.println("Data display error." + error);

if(Database != null) {

try {

Database.close();

}

catch(SQLException er){}

}

System.exit(4);

}

}

private void DownRow (ResultSet DisplayResults)

throws SQLException

{

//Enter new DownRow() code here

}

public static void main (String args [])

{

final ModelB sql1 = new ModelB ();

System.exit (0) ;

}

}

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

C h a p t e r 1 1 : J D B C a n d E m b e d d e d S Q L 459

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

460 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

Tables
Chapter 5 showed how to design a database. A database design is used as the basis for
building tables and indexes that make up a database. Tables and indexes are created
using a query written using SQL. Typically, the database administrator writes and
executes the query that creates tables and indexes, although it is possible to have a J2ME
application or a Java application execute the same query to create tables and indexes.

The following sections demonstrate various techniques used in a query to create a
table. Techniques to create indexes are presented later in this chapter. These queries can be
executed from within the Model A program, as discussed previously in this chapter, or
outside of a Java program using an interface, such as ISQL, that is supplied with a DBMS.

The user ID for logging onto the DBMS and executing the query must have rights
to create and drop tables. Dropping a table removes the table from the database, which
is discussed later in this chapter. Depending on the policies of your IT department,
developers are commonly given rights to create and drop tables in the development
environment. Only the database administrator has these rights to do the same in the
production environment.

Create a Table
You create a table by formatting an SQL query. The query contains the CREATE TABLE
SQL statement that contains the name of the table. In Listing 11-3 the table is called
CustomerAddress because the table will contain address information about customers.
Following the table name are the column definitions, which are enclosed in parentheses.
The first column is called CustomerNumber. The data type of the column and the column
size follow the column name. A comma separates each column.

The CustomerAddress table contains four columns. These are

■ CustomerNumber, a string of a maximum of 30 characters

■ CustomerStreet, a string of a maximum of 30 characters

■ CustomerCity, a string of a maximum of 30 characters

■ CustomerZip, a string of a maximum of 30 characters

All the SQL commands are enclosed in double quotation marks and assigned to a String
object called query. Next, the program creates an SQL statement using the createStatement()
method of the Connection object (see Chapter 9). This method returns the handle to the
DBMS to the DataRequest object, which is an object of the Statement class.

The query is sent to the DBMS using the executeQuery() method. If successful, the
DBMS creates the table. If unsuccessful, the table isn’t created and the DBMS returns an
error message. The SQL statement is then closed using DataRequest.close().

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

try {

String query = "CREATE TABLE CustomerAddress (" +

" CustomerNumber CHAR(30), " +

" CustomerStreet CHAR(30), " +

" CustomerCity CHAR(30), " +

" CustomerZip CHAR(30))";

DataRequest = Database.createStatement();

DataRequest.execute(query);

DataRequest.close();

}

Requiring Data in a Column
There are business rules that require a value in specific columns of a row, such as the
columns that contain a customer’s name. You can require the DBMS to reject rows that
are missing a value in specific columns by using the NOT NULL clause in the query
when the table is created. Listing 11-4 illustrates how the NOT NULL clause is used
in a query.

In this example, a CustomerAddress table is created that contains the same four
columns used in Listing 11-3, except all of these columns require a value. In other
words, a row that is missing a value in any of these columns is rejected by the DBMS
and will not be inserted into a table.

try {

String query = "CREATE TABLE CustomerAddress (" +

"CustomerNumber CHAR(30) NOT NULL," +

"CustomerStreet CHAR(30) NOT NULL," +

"CustomerCity CHAR(30) NOT NULL," +

"CustomerZip CHAR(30) NOT NULL)";

DataRequest = Database.createStatement();

DataRequest.execute (query);

DataRequest.close();

}

Setting a Default Value for a Column
The DBMS can enter a default value into a column automatically if the column is left
empty whenever a new row is inserted into the table. You determine the value entered
by the DBMS by creating a default value when you create the table. Any value can
be used as the default value as long as the value conforms to the data type and size
of the column.

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

C h a p t e r 1 1 : J D B C a n d E m b e d d e d S Q L 461

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

Listing 11-3
Creating

a table

Listing 11-4
Requiring a
value to be

placed in
a column
of a table

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

462 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

Let’s say most of your customers reside in the 07660 zip code. Some customers fail
to give their sales representative their zip code when placing their first order. They assume
that since the zip code is the same as your business, you already know the zip code.

A default value is assigned to a column when you create the table by using the
DEFAULT clause. The DEFAULT clause is followed in the query by the value that the
DBMS will place in the column if the column is empty in the incoming row. Listing 11-5
illustrates how to set a default value for a column when you create a table.

try {

String query = "CREATE TABLE CustomerAddress (" +

"CustomerNumber CHAR(30) NOT NULL," +

"CustomerStreet CHAR(30) NOT NULL," +

"CustomerCity CHAR(30) NOT NULL," +

"CustomerZip CHAR(30) NOT NULL DEFAULT '07660')";

DataRequest = Database.createStatement();

DataRequest.executeUpdate (query);

DataRequest.close();

}

Drop a Table
A developer may have the right to remove a table, but this is usually reserved for the
development environment only. The decision to drop a table shouldn’t be made lightly
because once a table is dropped you cannot recover it. Instead, the table must be re-created
and the data reinserted into the table. In addition to losing data elements stored in the
table, dropping a table may affect the integrity of the database and tables that relate to
values in the dropped table.

Using the Drop Table statement in the query drops a table. As illustrated in Listing 11-6,
the Drop Table statement contains the name of the table that is to be dropped.

try {

String query = new String ("DROP TABLE CustomerAddress");

DataRequest = Database.createStatement();

DataRequest. execute(query);

DataRequest.close();

}

Listing 11-5
Creating a

default value
for a column

Listing 11-6
Dropping

a table

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Indexing
The database schema describes indexes along with tables that are used in the database.
Writing a query, as illustrated in the next section, creates an index. Likewise, a query is
used to remove an existing index, which is referred to as dropping an index. Developers
are typically permitted to create or drop indexes within the development environment,
and only the database administrator has rights to do the same in the production
environment, although these rights may vary according to IT department policy.

Executing the query to create or drop an index follows procedures similar to those for
creating and dropping a table. That is, the query can be executed within or outside a J2ME
application or Java application. Listings in the following sections should be used with
the Model A program since no ResultSet is returned when the query is executed.

Create an Index
An index is created by using the CREATE INDEX statement in a query, as illustrated
in Listing 11-7. The CREATE INDEX statement contains the name of the index and any
modifier that describes to the DBMS the type of index to be created. In addition, the
CREATE INDEX statement uses the ON clauses to identify the name of the table and
the name of the column whose value is used for the index.

Listing 11-7 creates an index called CustNum that contains values in the
CustomerNumber column of the CustomerAddress table. The CustNum index doesn’t
have duplicate key values, and therefore the UNIQUE modifier is used in the CREATE
INDEX statement to prohibit duplicate key values from being included in the index.

try {

String query = "CREATE UNIQUE INDEX CustNum " +

"ON CustomerAddress (CustomerNumber)";

DataRequest = Database.createStatement();

DataRequest.execute (query);

DataRequest.close();

}

Designating a Primary Key
A primary key (see Chapter 9) can be designated when a table is created by using the
Primary Key modifier, as illustrated in Listing 11-8. This example contains a query that
creates a table, as described previously in this chapter, and one column within the table
is designated the primary key. You’ll remember that the primary key uniquely identifies
each row in a table. Therefore, the column or columns chosen as the primary key must
have unique values. That is, the column cannot contain duplicate values.

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

C h a p t e r 1 1 : J D B C a n d E m b e d d e d S Q L 463

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

Listing 11-7
Creating a

unique index

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

464 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

As shown in Listing 11-8, the OrderNumber column is used as the primary key and
is identified in the PRIMARY KEY modifier. Once a column is designated as the primary
key, the DBMS prevents duplicate and null values from being placed in the column.

try {

String query = "Create Table Orders (" +

"OrderNumber CHAR(30) NOT NULL, " +

"CustomerNumber CHAR(30), " +

"ProductNumber CHAR(30), " +

"CONSTRAINT ORDERS_PK PRIMARY KEY (OrderNumber))";

DataRequest = Database.createStatement();

DataRequest. execute(query);

DataRequest.close();

}

Creating a Secondary Index
A secondary index is created by using the CREATE INDEX statement in a query without
the use of the UNIQUE modifier. This means that a secondary index can have duplicate
values. Listing 11-9 illustrates how to create a secondary index. In this example, the index
is called CustZip, and its key is the CustomerZip column of the CustomerAddress table.

try {

String query = new String ("CREATE INDEX CustZip " +

"ON CustomerAddress (CustomerZip) ");

DataRequest = Database.createStatement();

DataRequest. execute(query);

DataRequest.close();

}

Creating a Clustered Index
A clustered index is an index whose key is created from two or more columns of a table,
as you learned in Chapter 5. For example, combining a customer’s last name with a
customer’s first name is a typical key for a clustered index. Listing 11-10 shows how to
create a clustered index. This example creates an index called CustName and uses the
LastName and FirstName columns of the Customers table as the key for the index.

The order in which column names appear in the ON clause plays a critical role in the
index. As you remember from Chapter 5, the value of the second column is concatenated
to the value of the first column that appears in the query. This means that the key in this
case would be KeoghJim, assuming Jim Keogh is a value in the FirstName and LastName
columns of the table. Therefore, the DBMS may not be able to find the search criteria
JimKeogh. Of course, this assumes that the DBMS uses the clustered index for the search.

Listing 11-8
Designating a

primary key
for a table

Listing 11-9
Creating a
secondary

index

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

try {

String query = "CREATE INDEX CustName " +

" ON Customers (LastName, FirstName)";

DataRequest = Database.createStatement();

DataRequest.execute (query);

DataRequest.close();

}

Drop an Index
An existing index can be removed from the database by using the DROP INDEX
statement, which is similar in construction to the DROP TABLE statement discussed
previously in this chapter. Listing 11-11 shows how to create a query that removes
an index. In this example, the CustName index that is associated with the Customers
table is dropped.

try {

String query = new String("DROP INDEX CustName ON Customers ");

DataRequest = Database.createStatement();

DataRequest. execute(query);

DataRequest.close();

}

Inserting Data into Tables
Once a database, tables, and indexes are created, a J2ME application can insert a new
row into a table. In the next several sections of this chapter, you’ll learn the technique
for writing a query that inserts data into all or some of the columns of a new row.

As you learned in Chapter 6, the executeUpdate() method is used to execute a query
that inserts a row, among other tasks. The executeUpdate() method does not return a
ResultSet, therefore you should use the Model A program with code segments shown in
sections that insert a row. These code segments insert a row into the Customers table that
is defined below. Make sure you create this table in the CustomerInformation database
using techniques described previously in this chapter before attempting to insert a new row.

■ CustomerNumber, number

■ FirstName, VARCHAR, 50

■ LastName, VARCHAR, 50

■ DateOfFirstOrder, date

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

C h a p t e r 1 1 : J D B C a n d E m b e d d e d S Q L 465

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

Listing 11-10
Creating a
clustered

index

Listing 11-11
Dropping
an index

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Insert a Row
The INSERT INTO statement is used to insert a new row into a table. This is illustrated
in Listing 11-12. The INSERT INTO statement contains the name of the table into which
the row is to be inserted and the name of the columns in which values are inserted. The
VALUES clause is used to define the values to be placed into the row.

Although the column names are optional, you should always use column names
because it is a bad practice to assume that columns appear in a particular order in the table.
The table might be restructured by the database administrator without your knowledge.

Each value is placed in the VALUES clause in the same order as the corresponding
column’s name. In Listing 11-12, a new row is being inserted into the Customers table.
The first value in the VALUES clause is the customer number, followed by the customer’s
first name, last name, and date of the first order placed by the customer. This is the same
order of the columns’ names.

You can exclude a value from appearing in a column by excluding the column from
the query. For example, you could have removed the LastName column and corresponding
value, and the LastName column will be empty for that row. Be careful that you don’t
exclude a value that is required by the table, otherwise the DBMS rejects the row, causing
an exception to be thrown.

try {

String query = "INSERT INTO Customers " +

" (CustomerNumber, FirstName, LastName, DateOfFirstOrder) " +

" VALUES (1,'Mary','Smith','10/10/2001') ";

DataRequest = Database.createStatement();

DataRequest.executeUpdate (query);

DataRequest.close();

}

Insert the System Date into a Column
Sometimes business rules require that the current date be placed into a column of a new
row. For example, the system date is usually used as the date of a new order. You can
place the system date into a column by calling the CURRENT_DATE function. This is
not implemented in all versions of DBMSs. If you’re using Microsoft Access for your
DBMS, for example, you use NOW. Oracle uses SYSDATE, and DB2 uses CURRENT
DATE (no underscore).

The CURRENT_DATE function directs the DBMS to use the system date of the
server as the value for the column. This is illustrated in Listing 11-13. In this example,
the CURRENT_DATE function is called to provide the value for the DateOfFirstOrder
column in the new row of the Customers table.

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

466 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

Listing 11-12
Inserting a

row into
a table

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

try {

String query = new String (

"INSERT INTO Customers (CustomerNumber ,FirstName, "+

" LastName, DateOfFirstOrder)" +

" VALUES (4,'Mary','Jones', CURRENT_DATE)");

DataRequest = Database.createStatement();

DataRequest.executeUpdate (query);

DataRequest.close();

}

Insert the System Time into a Column
Call the CURRENT_TIME() function whenever a column requires the current time.
The CURRENT_TIME() function is called by the DBMS when the query is processed,
and it returns the current time of the server. Listing 11-14 illustrates how to call the
CURRENT_TIME() function within a query.

A word of caution: Implementation of dates and time functions has not been
standardized among vendors. This means that some or all date and time functions
discussed in this section may not work with all DBMSs. You should consult your database
administrator or DBMS vendor to determine the proper date and time functions to use
with your DBMS.

try {

String query = new String (

"INSERT INTO Customers (CustomerNumber ,FirstName, "+

" LastName, TimeOfFirstOrder) " +

" VALUES (2,'Bob','Jones', CURRENT_TIME())") ;

DataRequest = Database.createStatement();

DataRequest.executeUpdate(query);

DataRequest.close();

}

Insert a Timestamp into a Column
A timestamp consists of both the current date and time and is used in applications where
both date and time are critical to the operation of the business. For example, Wall Street
firms timestamp orders as they arrive because they must correlate with the market price
of stocks at precisely the date and time the order is processed.

A word of caution: Not all DBMSs support timestamps. Therefore, consult your
database administrator or DBMS vendor for comparable functionality if examples in
this section do not work with your DBMS.

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

C h a p t e r 1 1 : J D B C a n d E m b e d d e d S Q L 467

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

Listing 11-13
Inserting the
system date

into a column

Listing 11-14
Inserting the
current time

into a column

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You can place the timestamp into a column by calling the TIMESTAMP() function, as
illustrated in Listing 11-15. The server’s system date and time is returned by the function
and placed into the column.

try {

String query = new String (

"INSERT INTO Customers (CustomerNumber ,FirstName, "+

" LastName, FirstOrder) " +

" VALUES (2,'Bob','Jones', CURRENT_TIMESTAMP()))";

DataRequest = Database.createStatement();

DataRequest.executeUpdate (query);

DataRequest.close();

}

Selecting Data from a Table
Retrieving information from a database is the most frequently used routine of J2ME
components that interact with a database. Some developers feel that retrieving information
is one of the most complex routines to write because there are various ways information
can be retrieved. The following sections illustrate the various techniques to retrieve data
using the executeQuery() method. As you learned in Chapter 6, the executeQuery()
method returns a ResultSet. Therefore, you’ll need to use the Model B program with
these code segments.

Each section contains a try {} block and a DownRow() method, which replace the
second try {} block and the DownRow() method in the Model B program, as described
previously in this chapter. Code segments illustrated in these sections retrieve data from
the Customers table. Here are the columns in the Customers table, which you should
create before executing the code segments:

■ FirstName, VARCHAR, 50

■ LastName, VARCHAR, 50

■ Street, VARCHAR, 50

■ City, VARCHAR, 50

■ State, VARCHAR, 2

■ ZipCode, VARCHAR, 12

Make sure that you insert rows into the Customers table before trying to execute code
segments that appear in the following sections. Table 11-1 contains rows of data that you
can use in the Customers table.

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

468 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

Listing 11-15
Inserting a
timestamp

into a column

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

C h a p t e r 1 1 : J D B C a n d E m b e d d e d S Q L 469

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

Select All Data from a Table
The SELECT statement is used to retrieve data from a table, as illustrated in Listing 11-16.
In this example, all the columns of all the rows of the Customers table are returned in
the ResultSet by the DBMS after the query is processed.

As you’ll see in the next few sections, names of columns that you want retrieved
from the table are included in the SELECT statement. The executeQuery() method, which
is used to execute the query, returns a ResultSet object. The ResultSet object is passed to
the DisplayResults() method, which is defined in the Model B program at the beginning
of this chapter. The DisplayResults() method is responsible for moving through the
ResultSet and displaying the contents of the ResultSet on the screen.

As you’ll recall from the beginning of this chapter, the DisplayResults() method calls
the DownRow() method, which extracts data from the current row of the ResultSet
and displays the row on the screen. Listing 11-17 contains the DownRow() method for
Listing 11-16. In this example, the DownRow() method is passed the ResultSet object
from the DisplayResults() method, as described at the beginning of this chapter.

The DownRow() method then declares String objects that are assigned the value of
each column in the ResultSet. There is also a String object called printrow, which is assigned
all the other String objects and is used to display the values on the screen.

The getString() method is called to gather the value of a specific column in the
ResultSet. Using the number of the column (as described in Chapter 6) specifies the column
in the getString() method. The getString() method returns the value of the column, which

FirstName LastName Street City State ZipCode

Bob Jones 5 First Street New York City NY 07555

Mary Smith 8 Third Street Dallas TX 75553

Bob Jones 5 First Street New York City NY 07555

Mark Russell 3 Sixth Street Los Angeles CA 82272

Susan Allen 18 Fifth Street Chicago IL 45003

Mark Russell 3 Sixth Street Los Angeles CA 82272

Table 11-1. Sample Entries in a Customers Table for Practice Selecting Data

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

470 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

is assigned to a String object. Remember, the getString() method is really the getXXX()
method discussed in Chapter 6. The data type of the column replaces the XXX.

try {

String query = new String ("SELECT " +

" FirstName, LastName, Street, City, State, ZipCode " +

" FROM Customers");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

DisplayResults (Results);

DataRequest.close();

}

private void DownRow (ResultSet DisplayResults) throws SQLException

{

String FirstName= new String();

String LastName= new String();

String Street= new String();

String City = new String();

String State = new String();

String ZipCode= new String();

String printrow;

FirstName = DisplayResults.getString (1) ;

LastName = DisplayResults.getString (2) ;

Street = DisplayResults.getString (3) ;

City = DisplayResults.getString (4) ;

State = DisplayResults.getString (5) ;

ZipCode = DisplayResults.getString (6) ;

printrow = FirstName + " " + LastName + " " +

City + " " + State + " " + ZipCode;

System.out.println(printrow);

}

Request One Column
You can specify a column that you want returned from the table by using the column
name in the SELECT statement, as illustrated in Listing 11-18. In this example, the
LastName column of all the rows in the Customers table is returned in the ResultSet.
Listing 11-19 contains the DownRow() method that is used to retrieve data from the
ResultSet returned by Listing 11-18.

try {

String query = new String ("SELECT LastName FROM Customers");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

Listing 11-16
Selecting all

data from
a table

Listing 11-17
Copying

values from
the ResultSet

Listing 11-18
Selecting one
column to be

retrieved
from a table

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

DisplayResults (Results);

DataRequest.close();

}

private void DownRow (ResultSet DisplayResults)throws SQLException

{

String LastName= new String();

LastName = DisplayResults.getString (1) ;

System.out.println(LastName);

}

Request Multiple Columns
Multiple columns can be retrieved by specifying the names of the columns in the SELECT
statement similar to the way you select one column in Listing 11-18. This is illustrated
in Listing 11-20, where the FirstName and LastName columns for all the rows in the
Customers table are returned in the ResultSet. Listing 11-21 shows the DownRow() method
that is used to copy and display values from the ResultSet.

try {

String query = new String (

"SELECT FirstName, LastName FROM Customers");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

DisplayResults (Results);

DataRequest.close();

}

private void DownRow (ResultSet DisplayResults)throws SQLException

{

String FirstName= new String();

String LastName= new String();

String printrow;

FirstName = DisplayResults.getString (1) ;

LastName = DisplayResults.getString (2) ;

printrow = FirstName + " " + LastName;

System.out.println(printrow);

}

C h a p t e r 1 1 : J D B C a n d E m b e d d e d S Q L 471

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

Listing 11-19
Copying

values from
the ResultSet

Listing 11-20
Requesting

multiple
columns to

be retrieved
from a table

Listing 11-21
Copying

values from
the ResultSet

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Request Rows
Specific rows can be retrieved from a column by using the WHERE clause in conjunction
with the SELECT statement. The WHERE clause contains an expression that is used by
the DBMS to identify rows that should be returned in the ResultSet. Any logical expression
can be used to include or exclude rows based on values in columns of a row, which is
discussed later in this chapter.

Listing 11-22 illustrates how to use the WHERE clause to retrieve specific rows. In
this example, the SELECT statement retrieves all the columns of rows in the Customers
table where the LastName column has the value ‘Jones’. You can use the DownRow()
method in Listing 11-17 to copy and display values in the ResultSet that is returned by
Listing 11-22.

try {

String query = new String ("SELECT " +

" FirstName, LastName, Street, City, State, ZipCode " +

" FROM Customers " +

" WHERE LastName = 'Jones' ");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

DisplayResults (Results);

DataRequest.close();

}

Request Rows and Columns
A query can select fewer than all the columns and all the rows of a table by using a
combination of techniques shown previously in this chapter, as illustrated in Listing 11-23.
In this example, the FirstName and LastName of rows in the Customers table are returned
in the ResultSet as long as the value of the LastName column is ‘Jones’. You can use the
DownRow() method shown in Listing 11-21 to copy and display values of the ResultSet
returned by Listing 11-23.

try {

String query = new String("SELECT FirstName, LastName " +

" FROM Customers " +

" WHERE LastName = 'Jones' ");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

DisplayResults (Results);

DataRequest.close();

}

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

472 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

Listing 11-22
Selecting
particular
rows from

a table

Listing 11-23
Retrieving

specific
columns
and rows

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

AND, OR, and NOT Clauses
The WHERE clause in a SELECT statement can evaluate values in more than one column
of a row by using the AND, OR, and NOT clauses to combine expressions. As you’ll learn
in the next three sections, compound expressions in the WHERE clause are individually
evaluated, and then the results of these evaluations are further evaluated based on the
AND, OR, and NOT clauses in the WHERE clause.

For example, the AND clause requires that both expressions in the compound
expression evaluate to true before the WHERE clause expression evaluates true and
includes a specified row in the ResultSet. The OR clause requires that at least one of
the expressions in the compound expression evaluate to true before the WHERE clause
expression evaluates true. And the NOT clause is used to reverse the logic, changing
an expression that evaluates true to a false. Each of these clauses is illustrated in the next
three sections.

AND Clause
The purpose of the AND clause is to join two subexpressions together to form one
compound expression. The AND clause tells the DBMS that the boolean value of both
subexpressions must be true for the compound expression to be true. If the compound
expression is true, the current row being evaluated by the DBMS is returned to your
program.

Listing 11-24 illustrates the use of the AND clause in the WHERE clause. In this
example, the FirstName and LastName columns of rows from the Customers table are
returned in the ResultSet only if the value of the LastName column is ‘Jones’ and the
value of the FirstName column is ‘Bob’. You can use the DownRow() method shown
in Listing 11-21 to copy and display values of the ResultSet returned by Listing 11-24.

try {

String query = new String ("SELECT FirstName, LastName " +

" FROM Customers " +

" WHERE LastName = 'Jones' " +

" AND FirstName = 'Bob'");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

DisplayResults (Results);

DataRequest.close();

}

OR Clause
The OR clause is used to create a compound expression using two subexpressions in the
same way as the AND clause. However, the OR clause tells the DBMS that the compound
expression evaluates to a boolean true if either of the two subexpressions evaluates to a

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

C h a p t e r 1 1 : J D B C a n d E m b e d d e d S Q L 473

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

Listing 11-24
Using the

AND clause
to form a

compound
expression in

the WHERE
clause

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

boolean true. Listing 11-25 illustrates the use of the OR clause in the WHERE clause. In
this example, the FirstName and LastName columns of rows from the Customers table
are returned in the ResultSet only if the value of the FirstName column is ‘Mary’ or ‘Bob’.
Listing 11-21 contains the DownRow() method that you can use with Listing 11-25.

try {

String query = new String ("SELECT FirstName, LastName " +

" FROM Customers " +

" WHERE FirstName = 'Mary' " +

" OR FirstName = 'Bob'");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

DisplayResults (Results);

DataRequest.close();

}

NOT Clause
The NOT clause reverses the logic of the subexpression contained in the WHERE NOT
clause. If the subexpression evaluates to a boolean true, the NOT clause reverses the
logic to return a boolean false. In contrast, if the subexpression evaluates to a boolean
false, the compound expression evaluates to a boolean true.

Listing 11-26 illustrates the use of the NOT clause. In this example, only rows that
don’t contain the value ‘Mary’ in the FirstName column are returned. Listing 11-21
contains the DownRow() method that can be used with Listing 11-26.

try {

String query = new String("SELECT FirstName, LastName " +

"FROM Customers " +

"WHERE NOT FirstName = 'Mary' ");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

DisplayResults (Results);

DataRequest.close();

}

Join Multiple Compound Expressions
As just discussed, the AND and OR clauses are used to link together two or more
subexpressions, which results in a compound expression. There can be multiple
compound expressions within a WHERE clause expression.

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

474 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

Listing 11-25
Using the OR

clause to
form a

compound
expression in

the WHERE
clause

Listing 11-26
Using the

NOT clause
to form a

compound
expression in

the WHERE
clause

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Let’s say that you want information about Bob Smith, but you are unsure whether
he is in Department 42 or 45. You can format a query that uses both the AND clause
and the OR clause to retrieve this information. Here’s how the WHERE clause might be
formatted in this scenario. A word of caution: the AND clause has a higher precedence
than the OR clause, so the OR clause must be placed within parentheses in this example.

WHERE FirstName = 'Bob' AND

LastName = 'Smith AND (

Dept = '42' OR Dept = '45')

Although the WHERE clause may appear confusing, you can simplify the expression
by identifying subexpressions and compound expressions. From reading the previous
section, you probably identified the first compound expression and its subexpressions,
shown here:

FirstName = 'Bob' AND LastName = 'Smith'

The second compound expression is

Dept = '42' OR Dept = '45'

The second AND clause in the WHERE clause links these two compound expressions.
You can use the AND, OR, and NOT clauses to create complex selection expressions. The
number of compound expressions that you can use in the WHERE clause is practically
endless, although some DBMSs establish a limit. This is because of processing time that
is necessary to evaluate a complex WHERE clause expression. Contact your database
administrator or the manufacturer of your DBMS to determine the limitations of the
DBMS that you are using for your system.

Equal and Not Equal Operators
The equal and not equal operators are used to determine whether the value in the WHERE
clause expression is or isn’t in the specified column. You’ve been using the equal operator
throughout examples in this chapter. The next section illustrates the use of the not equal
operator.

Before running the query in the next section, modify the Customers table by inserting
a Sales column. The Sales column is a long data type. After making the modification,
place values in the Sales column of the Customers table as shown in Table 11-2.

Not Equal Operator
The not equal operator is used in a WHERE clause expression or subexpression to identify
rows that should not be returned by the DBMS. Listing 11-27 illustrates the use of the

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

C h a p t e r 1 1 : J D B C a n d E m b e d d e d S Q L 475

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

not equal operator. In this example, all columns of rows in the Customers table are returned
where the values in the Sales column are not equal to 50000. Listing 11-28 contains the
DownRow() method that is used to copy and display values in the ResultSet.

try {

String query = new String ("SELECT " +

"FirstName, LastName, Street, City, State, ZipCode, Sales " +

"FROM Customers " +

"WHERE NOT Sales = 50000 ");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

DisplayResults (Results);

DataRequest.close();

Database.close();

}

private void DownRow (ResultSet DisplayResults)throws SQLException

{

String FirstName= new String();

String LastName= new String();

String Street= new String();

String City = new String();

String State = new String();

String ZipCode= new String();

long Sales;

String printrow;

FirstName = DisplayResults.getString (1) ;

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

476 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

FirstName LastName Street City State ZipCode Sales

Bob Jones 5 First Street New York City null 07555 50000

Mary Smith 8 Third Street Dallas TX 75553 20000

Bob Jones 5 First Street New York City null 07555 50000

Mark Russell 3 Sixth Street Los Angeles null 82272 30000

Susan Allen 18 Fifth Street Chicago IL 45003 40000

Mark Russell 3 Sixth Street Los Angeles CA 82272 30000

Table 11-2. Sales Column Added to the Customers Table in Table 11-1

Listing 11-27
Excluding
rows from

the ResultSet
using the
not equal
operator

Listing 11-28
Copying

values from
the ResultSet

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

C h a p t e r 1 1 : J D B C a n d E m b e d d e d S Q L 477

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

LastName = DisplayResults.getString (2) ;

Street = DisplayResults.getString (3) ;

City = DisplayResults.getString (4) ;

State = DisplayResults.getString (5) ;

ZipCode = DisplayResults.getString (6) ;

Sales = DisplayResults.getLong (7) ;

printrow = FirstName + " " + LastName + " " +

City + " " + State + " " + ZipCode + " " + Sales;

System.out.println(printrow);

}

Less Than and Greater Than Operators
The less than and greater than operators direct the DBMS to assess whether or not the
value in the specified column of the current row is less than or greater than the value
in the WHERE clause expression. Keep in mind that a value in a column that equals the
value in the WHERE clause expression is evaluated as a boolean false. Therefore the row
containing that value isn’t returned in the ResultSet. The value in the column must be
less than or greater than but not equal to the value in the WHERE clause expression.

Less Than Operator
Listing 11-29 illustrates the less than operator in the WHERE clause. In this example, all
the columns of rows from the Customers table are returned as long as the value of the
Sales column is less than 50000. Listing 11-28 contains the DownRow() method that should
be used to copy and display the ResultSet returned by Listing 11-29.

try {

String query = new String ("SELECT " +

"FirstName, LastName, Street, City, State, ZipCode, Sales " +

" FROM Customers " +

" WHERE Sales < 50000 ");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

DisplayResults (Results);

DataRequest.close();

}

Greater Than Operator
The greater than operator is similar to the less than operator, except the value in the
column must be greater than the value in the WHERE clause expression for the row to
be returned in the ResultSet. Listing 11-30 illustrates the use of the greater than operator.

Listing 11-29
Using the
less than

operator in
the WHERE

clause
expression

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In this example, all the columns of rows in the Customers table are returned in the
ResultSet if the value of the Sales column is greater than 40000. Listing 11-28 contains
the DownRow() method that should be used to copy and display the ResultSet returned
by Listing 11-30.

try {

String query = new String ("SELECT " +

"FirstName, LastName, Street, City, State, ZipCode, Sales " +

"FROM Customers " +

"WHERE Sales > 40000 ");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

DisplayResults (Results);

DataRequest.close();

}

Less Than or Equal to and Greater Than or Equal To
A drawback of using the less than and greater than operators is that rows containing the
value of the WHERE clause expression are not returned in the ResultSet. Alternatively,
the less than or equal to and the greater than or equal to operators can be used to include
rows that contain the WHERE clause expression. This is illustrated in the next two sections.

Less Than or Equal To
Listing 11-31 illustrates how to use the less than or equal to operator in the WHERE clause.
In this example, all columns of rows in the Customers table are returned if the value
of the Sales column of the row is less than or equal to 50000. Listing 11-28 contains the
DownRow() method that should be used to copy and display the ResultSet returned by
Listing 11-31.

try {

String query = new String ("SELECT " +

"FirstName, LastName, Street, City, State, ZipCode, Sales " +

"FROM Customers " +

"WHERE Sales <= 50000 ");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

DisplayResults (Results);

DataRequest.close();

}

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

478 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

Listing 11-30
Using the

greater than
operator in
the WHERE

clause
expression

Listing 11-31
Using the

less than or
equal to

operator in
the WHERE

clause
expression

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

C h a p t e r 1 1 : J D B C a n d E m b e d d e d S Q L 479

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

Greater Than or Equal To
As illustrated in Listing 11-32, the greater than or equal to operator is similar to the less
than or equal to operator. In this example, all the columns in rows of the Customers table
are returned in the ResultSet if the value of the Sales column in the row is greater than
or equal to 50000. Listing 11-28 contains the DownRow() method that should be used
to copy and display the ResultSet returned by Listing 11-32.

try {

String query = new String ("SELECT " +

"FirstName, LastName, Street, City, State, ZipCode, Sales " +

"FROM Customers " +

"WHERE Sales >= 50000 ");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

DisplayResults (Results);

DataRequest.close();

}

Between Operator
The BETWEEN operator is used to define a range of values to be used as the value of the
selection expression. The range must consist of a sequential series of values, such as 100
to 200. The BETWEEN operator must follow the name of the column in the WHERE clause.
The AND operator is used to join the lower and upper values of the range. All values in the
range, including the first and last values, are considered when the DBMS evaluates the
value of the column specified in the selection expression.

Listing 11-33 illustrates the use of the BETWEEN operator. In this example, all the
columns in rows of the Customers table are returned in the ResultSet if the value of
the Sales column in the row is between 20000 and 39999.

Listing 11-28 contains the DownRow() method that should be used to copy and display
the ResultSet returned by Listing 11-33.

try {

String query = new String("SELECT " +

"FirstName, LastName, Street, City, State, ZipCode, Sales " +

"FROM Customers " +

"WHERE Sales BETWEEN 20000 AND 39999 ");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

DisplayResults (Results);

DataRequest.close();

}

Listing 11-32
Using the

greater than
or equal to
operator in
the WHERE

clause
expression

Listing 11-33
Using the
BETWEEN

operator in
the WHERE

clause
expression

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

480 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

LIKE Operator
The LIKE operator directs the DBMS to return a row in the ResultSet if a value in a
specified column partially matches the value of the WHERE clause expression. The
WHERE clause expression must include a character that is an exact match and a wildcard
character that is used to match any other character.

A word of caution: the LIKE operator is convenient and powerful, but it also uses
a lot of database overhead and therefore should be used with discretion.

Here are the wildcards that are used with the LIKE operator:

■ Underscore (_) A single-character wildcard character. For example, if you
are unsure whether the customer’s last name is Anderson or Andersen, use
the underscore in place of the character that is in question, as in Anders_n.

■ Percent (%) A multicharacter wildcard character used to match any number
of characters. For example, Smi% is used to match a value of a column where
the first three characters are Smi followed by any other character(s).

Listing 11-34 illustrates the use of the LIKE operator. In this example, all the columns
in rows of the Customers table are returned in the ResultSet if the value of the LastName
column in the row has the first three characters Smi and any other characters. Listing 11-28
contains the DownRow() method that should be used to copy and display the ResultSet
returned by Listing 11-34.

try {

String query = new String ("SELECT " +

"FirstName, LastName, Street, City, State, ZipCode, Sales " +

"FROM Customers " +

"WHERE LastName LIKE 'Smi%' ");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

DisplayResults (Results);

DataRequest.close();

}

IS NULL Operator
The IS NULL operator is used to determine whether a specified column does not contain
any value. You’ll find this useful whenever you need to identify rows in a column that
are missing information.

Note that the number zero or a space are not NULL values. For example, a zero value
in the Sales column of a table is a real value. Likewise, a column that contains a space
isn’t NULL because a space is a valid ASCII character. NULL is void of any value and
occurs when a row is inserted into a table without having a value, or the value is explicitly
set to NULL.

Listing 11-34
Using the

LIKE operator
in the

WHERE
clause

expression

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

C h a p t e r 1 1 : J D B C a n d E m b e d d e d S Q L 481

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

Listing 11-35 illustrates the use of the IS NULL operator. In this example, all the
columns in rows of the Customers table are returned in the ResultSet if the value of
the State column in the row is NULL. Listing 11-28 contains the DownRow() method
that should be used to copy and display the ResultSet returned by Listing 11-35.

try {

String query = new String ("SELECT " +

"FirstName, LastName, Street, City, State, ZipCode, Sales " +

"FROM Customers " +

"WHERE State IS NULL ");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

DisplayResults (Results);

DataRequest.close();

}

DISTINCT Modifier
The SELECT statement returns all rows in a table unless a WHERE clause is used to
exclude specific rows. However, the ResultSet includes duplicate rows unless a primary
index is created for the table or only unique rows are required in the table, as you learned
previously in this chapter.

There will be occasions when you want to exclude all but one copy of a row from the
ResultSet. You can do this by using the DISTINCT modifier in the SELECT statement,
as illustrated in Listing 11-36. The DISTINCT modifier tells the DBMS not to include
duplicate rows in the ResultSet. You’ll find this useful whenever data from multiple
sources is combined into one table, as in a mailing list. The DISTINCT modifier filters
duplicate rows that contain the same name and address.

A word of caution: This technique requires a lot of system overhead and therefore
should be used with discretion. An alternative approach is to write a WHERE clause
expression that returns the same results as using the DISTINCT modifier.

In this example, all the columns in rows of the Customers table are returned in the
ResultSet exclusive of duplicate rows. Listing 11-28 contains the DownRow() method
that should be used to copy and display the ResultSet returned by Listing 11-36.

try {

String query = new String ("SELECT DISTINCT " +

"FirstName, LastName, Street, City, State, ZipCode, Sales " +

"FROM Customers ");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

DisplayResults (Results);

DataRequest.close();

}

Listing 11-35
Using the

IS NULL
operator in
the WHERE

clause
expression

Listing 11-36
Using the
DISTINCT
modifier

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

482 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

IN Modifier
The IN modifier is used to define a set of values used by the DBMS to match values in
a specified column. The set can include any number of values and appear in any order.
Let’s say that you want a list of customers who purchase three products. You place the
three product identification numbers in a set; then tell the DBMS to search the order table
for orders containing the product numbers in the set. If the product numbers match,
customer information associated with the row is returned to your program.

The IN modifier is used in the WHERE clause to define the list of values in the set.
This is demonstrated in Listing 11-37, where the DBMS is told to compare values in the
Sales column with the three values in the group clause. If any of these three values are
found in the Sales column of the current row, the row is returned to the program.
Listing 11-28 contains the DownRow() method that should be used to copy and display
the ResultSet returned by Listing 11-37.

try {

String query = new String ("SELECT " +

"FirstName, LastName, Street, City, State, ZipCode, Sales " +

" FROM Customers " +

" WHERE Sales IN (20000, 30000, 40000) ");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

DisplayResults (Results);

DataRequest.close();

}

NOT IN Modifier
The NOT IN modifier is similar to the IN modifier, except the NOT IN modifier reverses
the logic. That is, it identifies a set of values that shouldn’t match rows returned to the
program. Listing 11-38 shows how the NOT IN modifier is used in a program. In this
example, all columns of rows in the Customers table where the value of the Sales column
isn’t 20000, 30000, or 40000 are returned in the ResultSet. Rows with sales of 20000, 30000,
or 40000 are not returned. Listing 11-28 contains the DownRow() method that should be
used to copy and display the ResultSet returned by Listing 11-38.

try {

String query = new String ("SELECT " +

"FirstName, LastName, Street, City, State, ZipCode, Sales " +

" FROM Customers " +

" WHERE Sales NOT IN (20000, 30000, 40000) ");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

Listing 11-37
Using the IN

modifier in
the WHERE

clause

Listing 11-38
Using the IN

modifier in
the WHERE

clause

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DisplayResults (Results);

DataRequest.close();

}

Metadata
Metadata is data that describes data, which you learned about in Chapter 6. Metadata
is returned with the ResultSet object and can be extracted from the ResultSet object by
creating a ResultSetMetaData. Techniques for doing this are described in the next several
sections of this chapter. Metadata can be used in a J2ME application for various purposes,
such as to display the column name of a column and determine the data type of a column.
The most commonly used metadata are

■ Column name

■ Column number

■ Column data type

■ Column width

Number of Columns in ResultSet
Listing 11-39 contains the DownRow() method that illustrates how to determine the
number of columns in the ResultSet. The getMetaData() method is called to extract
metadata from the ResultSet. The getMetaData() method returns a ResultSetMetaData
object, which is called metadata in this example.

The ResultSetMetaData object contains several methods that are used to copy specific
metadata from the ResultSet. In this example, the getColumnCount() method is called
to retrieve the number of columns contained in the result set, which is then assigned to
the NumberOfColumns variable and printed on the screen using the println() method.
(This doesn’t work with all drivers.)

The DownRow() method in Listing 11-39 can replace the DownRow() method in the
Model B program and be used in any version of the Model B program presented in this
chapter. Of course, the DownRow() method must be modified to copy and display data
contained in the ResultSet, as shown previously in this chapter.

private void DownRow (ResultSet DisplayResults)throws SQLException

{

ResultSetMetaData metadata = DisplayResults.getMetaData ();

int NumberOfColumns;

String printrow;

NumberOfColumns = metadata.getColumnCount ();

System.out.println("Number Of Columns: " + NumberOfColumns);

}

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

C h a p t e r 1 1 : J D B C a n d E m b e d d e d S Q L 483

Listing 11-39
Determining
the number

of columns in
a ResultSet

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Data Type of Column
Listing 11-40 illustrates how to determine the data type of a column. You’ll notice that
this technique is very similar to the technique for retrieving the number of columns in
the ResultSet described in the previous section. In this example the getColumnTypeName()
method is called to copy the data type from column nine of the result set to the
ColumnType object. Any valid column number in the ResultSet can be passed
to the getColumnTypeName() method. You can use the data type returned by the
getColumnTypeName() method to determine the proper getXXX() method to use to
copy data from the ResultSet. The type is returned as the native type, not the SQL type.

private void DownRow (ResultSet DisplayResults) throws SQLException

{

ResultSetMetaData metadata = DisplayResults.getMetaData ();

String ColumnType = new String();

String printrow;

ColumnType = metadata.getColumnTypeName (9);

System.out.println("Column Type: " + ColumnType);

}

Name of Column
Retrieving the column name from the metadata uses a process similar to copying
the data type of a column from the metadata. In the example in Listing 11-41, the
getColumnLabel() method is used to copy the column name from a specific column
and assign the column name to the String object ColumnName. The number of the
column in the ResultSet is passed to the getColumnLabel() method.

private void DownRow (ResultSet DisplayResults) throws SQLException

{

ResultSetMetaData metadata = DisplayResults.getMetaData ();

String ColumnName = new String();

String printrow;

ColumnName = metadata.getColumnLabel (9) ;

System.out.println("Column Name: " + ColumnName);

}

Column Size
The column size, also referred to as the column width, is called the display size and
represents the number of characters needed to display the maximum value that might
be stored in the column.

You retrieve the display size by using the getColumnDisplaySize() method, as
illustrated in Listing 11-42. This listing is similar to the others in the metadata sections.
The getColumnDisplaySize() is called and passed the number of the column whose

484 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

Listing 11-40
Determining

the data type
of columns in

a ResultSet

Listing 11-41
Determining

the names of
columns in a

ResultSet

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

display size is to be retrieved from the ResultSet. The display size is then shown on
the screen.

private void DownRow (ResultSet DisplayResults) throws SQLException

{

ResultSetMetaData metadata = DisplayResults.getMetaData ();

int ColumnWidth;

String printrow;

ColumnWidth = metadata.getColumnDisplaySize (9) ;

System.out.println("Column Width:" + ColumnWidth);

}

Updating Tables
Modifying data in a database is one of the most common functionalities in every J2ME
application that provides database interactions. Generally, any information that is
retrievable is also changeable depending on access rights and data integrity issues,
which are discussed in Chapter 5. The next several sections illustrate techniques for
updating rows in a table of a database. Code segments described in these sections use
the executeUpdate() method to process queries. As you recall from Chapter 6, the
executeUpdate() method does not return a ResultSet. Therefore, the Model A program
described earlier in this chapter should be used with code segments in these sections.

Before executing code segments presented in these sections, you’ll need to create a
Customers table, as defined here, and then insert the rows of data shown in Table 11-3.

■ FirstName, VARCHAR, 50

■ LastName, VARCHAR, 50

■ Street, VARCHAR, 50

■ City, VARCHAR, 50

■ State, VARCHAR, 2

■ ZipCode, VARCHAR, 12

■ Discount, long

Update Row and Column
The UPDATE statement is used to change the value of one or more columns in one or
multiple rows of a table. The UPDATE statement must contain the name of the table
that is to be updated and a SET clause. The SET clause identifies the name of the column
and the new value that will be placed into the column, overriding the current value.
The UPDATE statement may have a WHERE clause if a specific number of rows are
to be updated. If the WHERE clause is omitted, all rows are updated based on the value
of the SET clause.

C h a p t e r 1 1 : J D B C a n d E m b e d d e d S Q L 485

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Listing 11-42
Determining
the width of

columns in a
ResultSet

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Listing 11-43 illustrates how to update one column. In this example, the value of the
Street column of the Customers table is changed to ‘5 Main Street’. However, the change
occurs only where the value of the FirstName column is ‘Bob’.

try {

String query = new String("UPDATE Customers " +

"SET Street = '5 Main Street' " +

" WHERE FirstName = 'Bob'");

DataRequest = Database.createStatement();

DataRequest.executeUpdate (query);

DataRequest.close();

}

Update Multiple Rows
Multiple rows of a table can be updated by formatting the WHERE clause expressions
to include criteria that qualify multiple rows for the update. Four common WHERE
clause expressions are used to update multiple rows of a table:

■ The IN test The WHERE clause expression contains multiple values in the IN
clause that must match the value in the specified column for the update to occur
in the row.

■ The IS NULL test Rows that don’t have a value in the specified column are
updated when the IS NULL operator is used in the WHERE clause expression.

■ The comparison test The WHERE clause expression contains a comparison
operator, as described previously in this chapter, that compares the value in
the specified column with a value in the WHERE clause expression.

486 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

FirstName LastName Street City State Zip Discount

Bob Jones 5 First Street New York City NY 07555 10

Mary Smith 8 Third Street Dallas TX 75553 20

Tom Jones 5 First Street New York City NY 07555 11

Mark Russell 23 Eighth Street Los Angeles CA 82272 16

Susan Allen 18 Fifth Street Chicago IL 45003 15

Kelly Russell 32 Fourth Street Los Angeles CA 82272 15

Table 11-3. Discount Column Added to the Customers Table in Table 11-1

Listing 11-43
Updating

a row and
column

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ All rows A query can direct the DBMS to update the specified column in all
rows of a table by excluding the WHERE clause in the query.

Always be cautious whenever you execute a query that updates multiple rows because
the query has the potential to affect all the information contained in a table. An error in
a query is multiplied by the number of rows in a table whenever the query updates more
than one row.

IN Test
The IN clause provides two or more values that are compared to the value of the
designated column in the IN clause. Rows whose columns contain one of these values
are updated by the UPDATE statement. Listing 11-44 illustrates how the IN test is used
to update rows of the Customers table. In this example, the value of the Discount column
is changed to 25 if the current value of the Discount column is either 12 or 15.

try {

String query = new String ("UPDATE Customers " +

"SET Discount = 25 " +

"WHERE Discount IN (12,15)");

DataRequest = Database.createStatement();

DataRequest.executeUpdate (query);

DataRequest.close();

}

IS NULL Test
The IS NULL test evaluates the value of a column designated in the test to determine
whether the column is NULL—that is, the column is empty of any value. If so, the IS
NULL test returns a true, and the UPDATE statement updates the column specified in
the SET clause. Listing 11-45 illustrates how to use the IS NULL test in the UPDATE
statement. In this example, the IS NULL test determines whether the LastName column
is NULL. If so, a zero is placed in the Discount column. If not, the value of the Discount
column remains unchanged.

try {

String query = new String ("UPDATE Customers " +

"SET Discount = 0 " +

"WHERE LastName IS NULL ");

DataRequest = Database.createStatement();

DataRequest.executeUpdate (query);

DataRequest.close();

}

C h a p t e r 1 1 : J D B C a n d E m b e d d e d S Q L 487

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Listing 11-44
Updating

a row using
the IN test

Listing 11-45
Updating a

row using the
IS NULL test

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

488 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

Update Based on Values in Column
An expression in the WHERE clause can be used to identify rows that are to be updated
by the UPDATE statement. All of the WHERE clause expressions discussed previously
in the SELECT statement also apply to the UPDATE statement. Review the section
“Selecting Data from a Table” for details on how to properly formulate the WHERE
clause expression.

Listing 11-46 illustrates how to identify a row to update. In this example, rows in
the Customers table that have a Discount greater than 20 will have the value of the
Discount changed to 20.

try {

String query = new String ("UPDATE Customers " +

"SET Discount = 20 " +

"WHERE Discount > 20 ");

DataRequest = Database.createStatement();

DataRequest.executeUpdate (query);

DataRequest.close();

}

Update Every Row
All rows in a table can be updated by excluding the WHERE clause in the UPDATE
statement. This technique is illustrated in Listing 11-47. In this example, the value of
the Discount column in all rows in the Customers table is changed to zero.

try {

String query = new String ("UPDATE Customers " +

"SET Discount = 0 ");

DataRequest = Database.createStatement();

DataRequest.executeUpdate (query);

DataRequest.close();

}

Update Multiple Columns
Multiple columns of rows can be updated simultaneously by specifying the column
names and appropriate values in the SET clause of the query. Listing 11-48 illustrates
this technique. In this example, rows in the Customers table where the LastName column
has the value ‘Jones’ are updated. The SET clause contains the column names and the
new values that override the current values of those columns. In this case, the value of
the Discount column is changed to 12, and the value of the Street column is changed to
‘Jones Street’.

Listing 11-46
Updating a

row based on
a value in a
designated

column

Listing 11-47
Updating

every row in
the table

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

try {

String query = new String ("UPDATE Customers " +

"SET Discount = 12, Street = 'Jones Street'" +

"WHERE LastName = 'Jones'");

DataRequest = Database.createStatement();

DataRequest.executeUpdate (query);

DataRequest.close();

}

Update Using Calculations
The value that replaces the current value in a column does not have to be explicitly defined
in the SET clause if the value can be derived from a value in another column of the same
row. Let’s say that a row contains the retail price of an item purchased by a customer. The
customer is granted a percentage discount based on how well the customer is valued
by the business. The UPDATE statement can calculate the discounted price and place it
in the DiscountPrice column of the row. The value of the discount price doesn’t need to
be included in the SET clause. Instead, the discount price can be calculated.

Listing 11-49 illustrates how to use the results of a calculation to update a value of
a column in a table. In this example, the value placed in the DiscountPrice column is
calculated by using values in the Price column and in the Discount column. The results
of this calculation override the current value in the DiscountPrice column.

Before running this query, you’ll need to create a new Customers table or modify the
existing Customers table to reflect the following columns. You’ll also need to insert data
shown in Table 11-4 into the Customers table.

■ FirstName, VARCHAR, 50

■ LastName, VARCHAR, 50

■ Street, VARCHAR, 50

C h a p t e r 1 1 : J D B C a n d E m b e d d e d S Q L 489

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

FirstName LastName Street City State Zip Discount Price

Bob Jones 5 First Street New York City NY 07555 10 100

Mary Smith 8 Third Street Dallas TX 75553 20 200

Tom Jones 5 First Street New York City NY 07555 20 300

Mark Russell 23 Eighth Street Los Angeles CA 82272 10 400

Susan Allen 18 Fifth Street Chicago IL 45003 15 500

Kelly Russell 32 Fourth Street Los Angeles CA 82272 15 600

Table 11-4. Price Column Added to the Customers Table in Table 11-2

Listing 11-48
Updating
multiple

columns of a
table

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

490 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

■ City, VARCHAR, 50

■ State, VARCHAR, 2

■ ZipCode, VARCHAR, 12

■ Discount, long

■ Price, long

■ DiscountPrice, long

try {

String query = new String ("UPDATE Customers " +

"SET DiscountPrice = Price * ((100 - Discount) / 100) ");

DataRequest = Database.createStatement();

DataRequest.executeUpdate (query);

DataRequest.close();

}

Deleting Data from a Table
Deleting rows is necessary to purge erroneous information from the database and to
remove information that is no longer needed. However, you must build in safeguards
to assure that critical information isn’t inadvertently deleted from the database. Before
you delete a row from a table, you must be certain that other tables are not negatively
affected. The next section illustrates the technique for removing a row from a table by
using the DELETE FROM statement. Multiple rows can be deleted by including a WHERE
clause in the DELETE FROM statement, as described in detail in the “Updating Tables”
section of this chapter.

The query that contains the DELETE FROM statement is executed using the
executeQuery() method. As you learned in Chapter 10, the executeQuery() method doesn’t
return a ResultSet. Therefore, use the Model A program with the code segment described
in the next section.

Delete a Row from a Table
The DELETE FROM statement includes the name of the table and a WHERE clause
containing an expression that identifies the row or rows to remove from the table.
Listing 11-50 illustrates how to use the DELETE FROM statement. In this example, rows
in which the value of the LastName column is ‘Jones’ and the value of the FirstName
column is ‘Tom’ will be deleted from the Customers table. Make sure you have a row
that contains these values in the Customers table before running this code segment.

try {

String query = new String ("DELETE FROM Customers " +

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

Listing 11-49
Updating a

column using
a calculation

Listing 11-50
Deleting

a row

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

"WHERE LastName = 'Jones' and FirstName = 'Tom'");

DataRequest = Database.createStatement();

DataRequest.executeUpdate (query);

DataRequest.close();

}

Joining Tables
In Chapter 9 you learned about normalization and how rows of data elements that are
placed in tables are related to each other by linking rows using a common value in each
row of two tables. Linking rows is called joining tables. Tables are joined in a query using
a two-step process. First, both tables that are being joined must be identified in the FROM
clause, where tables are listed one after the other and are separated by a comma.

Next, an expression is created in the WHERE clause that identifies the columns used
to create the join. Let’s say that an Orders table is joined to the Customers table using the
customer number. The customer number in the Orders table is in the CustomerNumber
column, and the customer number in the Customers table is the CustNum column. The
following line contains a WHERE clause expression that joins these tables:

WHERE CustomerNumber = CustNum

The joined tables create a logical table that has all the columns of both tables. All the
tasks performed on a single table (as covered previously in this chapter) can also be
applied to joined tables.

Joining too many tables can cause performance degradation and bring response time
to a crawl. Typically, five is the maximum number of tables joined. However, the actual
number may vary depending on the DBMS, so consult with your database administrator
or DBMS manufacturer for the maximum number of tables permitted to be joined using
your DBMS.

Before you try examples in this section, you’ll need to create a Customers table,
ZipCode table, Store table, Products table, and Orders table. These tables are defined
below. Insert the rows described in Table 11-5 through Table 11-9 into the appropriate
tables before running code segments described in the following sections.

Define the Customers table as follows:

■ CustNumber, number, primary key

■ FirstName, VARCHAR, 50

■ LastName, VARCHAR, 50

■ Street, VARCHAR, 50

■ Zip, VARCHAR, 12

C h a p t e r 1 1 : J D B C a n d E m b e d d e d S Q L 491

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

492 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

CustNumber FirstName LastName Street Zip

591 Anne Smith 65 Cutter Street 04735

721 Bart Adams 15 W. Spruce 05213

845 Tom Jones 35 Pine Street 07660

901 Mary Smith 5 Maple Street 08513

Table 11-5. Sample Customers Table for Practice Joining Tables

ZipCode City State

04735 Woodridge TX

05213 River Ville CA

07660 West Town NJ

08513 SunnySide NY

Table 11-6. Sample ZipCode Table for Practice Joining Tables

StoreNumber ZipCode

278 08513

345 07660

547 05213

825 04735

Table 11-7. Sample Store Table for Practice Joining Tables

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Define the ZipCode table as follows:

■ ZipCode, VARCHAR, 12, primary key

■ City, VARCHAR, 50

■ State, VARCHAR, 2

Define the Store table as follows:

■ StoreNumber, number, primary key

■ ZipCode, VARCHAR, 12

C h a p t e r 1 1 : J D B C a n d E m b e d d e d S Q L 493

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

OrderNumber ProdNumber CustomerNumber StoreNumber Quantity SubTotal

122 5237 591 345 1 325

334 3255 901 278 1 250

365 3255 901 278 4 1000

534 7466 591 825 3 1596

587 5237 845 345 1 325

717 1052 721 825 2 200

874 7466 721 825 1 532

Table 11-9. Sample Orders Table for Practice Joining Tables

ProductNumber ProductName Unit Price

1052 CD Player 100

3255 VCR 250

5237 DVD Player 325

7466 50-inch TV 532

Table 11-8. Sample Products Table for Practice Joining Tables

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Define the Products table as follows:

■ ProductNumber, number, primary key

■ ProductName, VARCHAR, 50

■ UnitPrice, long

Define the Orders table as follows:

■ OrderNumber, number, primary key

■ ProdNumber, number

■ CustomerNumber, number

■ StoreNumber, number

■ Quantity, number

■ SubTotal, long

Join Two Tables
Listing 11-51 illustrates the technique used to join two tables. In this example, the
Customers table and the ZipCode table are identified in the FROM clause. These are
the tables that are being joined.

The WHERE clause expression identifies the Zip column from the Customers table
and the ZipCode column from the ZipCode table. The equal operator directs the DBMS
to join rows in both the Customers table and the ZipCode table where values of the Zip
column and the ZipCode column match. Rows whose columns don’t match are excluded
from the join (see “Inner and Outer Joins” later in this chapter). If both columns used for
the join have the same name, then a column name qualifier is used to associate the column
with each table, which is discussed later in this chapter. It’s usually considered good
practice always to use a table name or alias.

Once the Customers and ZipCode tables are joined, the SELECT statement references
column names of both tables to be returned in the ResultSet. In this example, City, State,
and ZipCode columns are in the ZipCode table, and the FirstName and LastName columns
are in the Customers table.

Listing 11-51 uses the executeQuery() method to execute the query. Therefore,
you’ll need to use the Model B program to run this example. Listing 11-52 contains the
DownRow() method that extracts and displays data from the ResultSet.

try {

String query = new String (

"SELECT FirstName, LastName, City, State, ZipCode " +

"FROM Customers, ZipCode " +

"WHERE Zip = ZipCode");

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

494 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

Listing 11-51
Joining two

tables

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

DisplayResults (Results);

DataRequest.close();

}

private void DownRow (ResultSet DisplayResults)

throws SQLException

{

String FirstName= new String();

String LastName= new String();

String Street= new String();

String City = new String();

String State = new String();

String ZipCode= new String();

String printrow;

FirstName = DisplayResults.getString (1) ;

LastName = DisplayResults.getString (2) ;

Street = DisplayResults.getString (3) ;

City = DisplayResults.getString (4) ;

State = DisplayResults.getString (5) ;

ZipCode = DisplayResults.getString (6) ;

printrow = FirstName + " " + LastName + " " +

City + " " + State + " " + ZipCode + " " + Sales + " " + Profit;

System.out.println(printrow);

}

Parent-Child Join
A parent-child join is used to join tables that have a parent-child relationship. This means
rows in the parent table must exist for rows in the child table to exist, which is illustrated
in Listing 11-53. In this example, the Products table and Orders table are joined using
the product number value. Only rows that have a matching product number in both tables
are placed in the virtual table that consists of rows from both tables. The Products table
is the parent table in this relationship because an order cannot be placed without a product
appearing in the Products table. Basically, a customer cannot order a product that doesn’t
exist in the Products table.

Listing 11-53 is executed using the executeQuery() method and therefore returns a
ResultSet. This means that you must use the Model B program to run this code segment.
Listing 11-54 contains the DownRow() method that retrieves and displays values from
the ResultSet.

try {

String query = new String (" SELECT OrderNumber, ProductName " +

C h a p t e r 1 1 : J D B C a n d E m b e d d e d S Q L 495

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Listing 11-52
The

DownRow()
method used
when joining

two tables

Listing 11-53
The parent-

child join

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

496 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

" FROM Orders, Products " +

" WHERE ProdNumber = ProductNumber");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

DisplayResults (Results);

DataRequest.close();

}

private void DownRow (ResultSet DisplayResults)

throws SQLException

{

int OrderNum, ProdNum;

String printrow = new String();

OrderNum = DisplayResults.getInt (1) ;

ProdNum = DisplayResults. getInt (2) ;

printrow = OrderNum + " " + ProdNum;

System.out.println(printrow);

}

Multiple Comparison Join
The WHERE clause expression used to join tables can be a compound expression consisting
of two or more subexpressions. Each is evaluated separately, as described previously in
this chapter. A compound expression is used to specify more than one selection criteria
used to join two tables, which is illustrated in Listing 11-55. In this example, the DBMS
is directed to join rows of the Products table and rows of the Orders table. There are two
components of the subexpression in this example. The first requires the DBMS to match
product numbers in both tables. The other subexpression requires that the value in the
Quantity column is greater than 2.

The AND operator is used to join both subexpressions. This means that both
subexpressions must evaluate true for the DBMS to join rows of both tables. That is, only
when the product number matches in both tables and the quantity of the order is greater
than 2 will a row be included in the temporary table. If either subexpression evaluates
false, the row is not included in the virtual table.

Listing 11-55 is executed using the executeQuery() method and therefore returns a
ResultSet. This means that you must use the Model B program to run this code segment.
Listing 11-56 contains the DownRow() method that retrieves and displays values from
the ResultSet.

try {

String query = " SELECT OrderNumber, ProductName, Quantity " +

" FROM Orders, Products " +

Listing 11-54
The

DownRow()
method used
with a parent-

child join

Listing 11-55
The multiple
comparison

join

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 1 : J D B C a n d E m b e d d e d S Q L 497

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

" WHERE ProdNumber = ProductNumber " +

" AND Quantity > 2";

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

DisplayResults (Results);

DataRequest.close();

}

private void DownRow (ResultSet DisplayResults)

throws SQLException

{

int OrderNum, ProdNum, Quantity;

String printrow = new String();

OrderNum = DisplayResults.getInt (1) ;

ProdNum = DisplayResults. getInt (2) ;

Quantity = DisplayResults. getInt (3) ;

printrow = OrderNum + " " + ProdNum + " " + Quantity;

System.out.println(printrow);

}

Multitable Join
More than two tables can be joined together by using the name of each table in the join
in the FROM clause and by defining the join with the appropriate column names in the
WHERE clause expression. Listing 11-57 shows you how to create a multitable join. There
are three tables joined in this example—Customers, Orders, and Products, as shown in
the WHERE clause.

Notice that all three tables don’t need to have a common value used to join them.
Each pair of tables has a value common to both of them. Customer numbers that are
common between the tables join the Customers table and the Orders table. The Orders
table and the Products table are joined by the product number.

You’ll need to use the Model B program with this code segment because a ResultSet
is returned. Listing 11-58 contains the DownRow() method to use to retrieve and display
values in the ResultSet.

try {

String query = new String (

"SELECT FirstName, LastName,OrderNumber, ProductName, Quantity " +

" FROM Customers, Orders, Products " +

Listing 11-56
The

DownRow()
method used

with a
multiple

comparison
join

Listing 11-57
The multiple

table join

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

" WHERE ProdNumber = ProductNumber " +

" AND CustNumber = CustomerNumber");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

DisplayResults (Results);

DataRequest.close();

}

private void DownRow (ResultSet DisplayResults)

throws SQLException

{

int OrderNum, Quantity;

String FirstName = new String();

String LastName = new String();

String ProductName = new String();

String printrow = new String();

FirstName = DisplayResults.getString (1) ;

LastName = DisplayResults.getString (2) ;

OrderNum = DisplayResults.getInt (3) ;

ProductName = DisplayResults.getString (4) ;

Quantity = DisplayResults. getInt (5) ;

printrow = FirstName + " " +

LastName + " " +

OrderNum + " " +

ProductName + " " +

Quantity ;

System.out.println(printrow);

}

Create a Column Name Qualifier
Column names should reflect the kind of data element stored in the column, as you
learned in Chapter 5. However, there is likely to be a conflict when two or more tables
use the same column name to store the data element. This is the case when both the
Products table and the Orders table contain product numbers.

Conflict of column names can be resolved in a join by using a column name qualifier,
which identifies the table that contains the column name. Listing 11-59 illustrates how
to use a column name qualifier. In this example assume that the Customers table and
the Orders table both have a column called CustomerName. Therefore, the name of the
CustomerName column must be prefaced with the name of the table.

Listing 11-59 returns a ResultSet. The DownRow() method shown in Listing 11-60 is
used along with the Model B program to copy and display values from the ResultSet.

498 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

Listing 11-58
The

DownRow()
method

used with
a multiple
table join

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 1 : J D B C a n d E m b e d d e d S Q L 499

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

try {

String query = new String ("SELECT Customers.CustNumber, " +

" FirstName, LastName, OrderNumber, " +

" ProductName, Quantity " +

" FROM Customers, Orders, Products " +

" WHERE ProdNumber = ProductNumber " +

" AND Customers.CustomerNumber = Orders.CustomerNumber");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

DisplayResults (Results);

DataRequest.close();

}

private void DownRow (ResultSet DisplayResults)

throws SQLException

{

int CustomerNumber, OrderNum, Quantity;

String FirstName = new String();

String LastName = new String();

String ProductName = new String();

String printrow = new String();

CustomerNumber = DisplayResults. getInt (1) ;

FirstName = DisplayResults.getString (2) ;

LastName = DisplayResults.getString (3) ;

OrderNum = DisplayResults.getInt (4) ;

ProductName = DisplayResults.getString (5) ;

Quantity = DisplayResults. getInt (6) ;

printrow = CustomerNumber + " " +

FirstName + " " +

LastName + " " +

OrderNum + " " +

ProductName + " " +

Quantity ;

System.out.println(printrow);

}

Create a Table Alias
A query can be made readable by using table aliases. A table alias is an abbreviation for
the name of the table that is used in place of the table name in the join and in the SELECT
statement. Listing 11-61 shows you how to create and use a table alias in a query. Following

Listing 11-59
Creating a

column name
qualifier

Listing 11-60
The

DownRow()
method

used with a
column name

qualifier

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

500 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

each table name in the FROM clause is a letter used as the table alias. The table alias is
used in place of the table name in the column name qualifier.

Any letter or combination of letters can be used as a table alias, but you should make
the table alias:

■ With as few letters as possible to save space in the query string

■ Representative of the table name, such as the first letter(s) of the name

■ Unique and not a duplicate of another table name, table alias, or column name

The DownRow() method shown previously in Listing 11-60 is used with Listing 11-61
to extract and display values of the ResultSet.

try {

String query = new String ("SELECT c.CustNumber , " +

" c.FirstName, c.LastName, o.OrderNumber, " +

" p.ProductName, o.Quantity " +

" FROM Customers c, Orders o, Products p" +

" WHERE o.ProdNumber = p.ProductNumber " +

" AND c.CustomerNumber = o.CustomerNumber");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

DisplayResults (Results);

DataRequest.close();

}

Inner and Outer Joins
The joins shown in previous sections of this chapter link rows that have matching values
in the column specified in the join. A row in a table that doesn’t match is excluded from
the join. There are two kinds of joins, each of which either excludes or includes rows in
both tables of the join that don’t match. These are

■ An inner join excludes rows of either table that don’t have a matching value.

■ An outer join includes rows of either table that don’t have a matching value.

The following sections discuss each type of join in detail. However, some DBMSs
may use their own syntax rather than the SQL syntax for some or all joins. Therefore,
consult with your database administrator or DBMS manufacturer for the proper syntax
for joins if examples in this book don’t work with your DBMS. Code segments used in
these sections are executed using the executeQuery() method. Therefore, you’ll need to
use the Model B program. Remember that joins can also be used with the UPDATE and
DELETE statements, in which case the Model A program is used.

Listing 11-61
Creating a
table alias

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 1 : J D B C a n d E m b e d d e d S Q L 501

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Inner Join
Joins discussed previously in this chapter use an inner join to include only rows of both
tables that have matching values. Unmatched rows are excluded, and therefore those
rows are not returned in the ResultSet.

Listing 11-62 demonstrates the use of an inner join by joining the Orders table and
the Products table using product number and joining the Orders table and the Customers
table using the customer number. Listing 11-63 contains the DownRow() method used
with Listing 11-62 to copy and display the contents of the ResultSet.

try {

String query = new String (" SELECT FirstName, LastName, OrderNumber,

ProductName, Quantity " +

" FROM Customers,Orders, Products " +

" WHERE ProdNumber = ProductNumber " +

" AND Customers.CustNumber = Orders.CustomerNumber");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

DisplayResults (Results);

DataRequest.close();

}

private void DownRow (ResultSet DisplayResults)

throws SQLException

{

int OrderNum, Quantity;

String FirstName = new String();

String LastName = new String();

String ProductName = new String();

String printrow = new String();

FirstName = DisplayResults.getString (1) ;

LastName = DisplayResults.getString (2) ;

OrderNum = DisplayResults.getInt (3) ;

ProductName = DisplayResults.getString (4) ;

Quantity = DisplayResults. getInt (5) ;

printrow = FirstName + " " +

LastName + " " +

OrderNum + " " +

ProductName + " " +

Quantity ;

System.out.println(printrow);

}

Listing 11-62
Creating an

inner join

Listing 11-63
The

DownRow()
method used

with an
inner join

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Outer Join—Left, Right, Full
An outer join occurs when matching and nonmatching rows of either or both tables are
contained in the join. There are three kinds of outer joins:

Left outer join All matched and unmatched rows of the first table and
matched rows of the second table are included in the join.

Right outer join Matched rows of the first table and matched and unmatched
rows of the second table are included in the join.

Full outer join Matched and unmatched rows of both tables are included
in the join.

Left Outer Join Listing 11-64 shows how to create a left outer join. This example creates
a join between the Customers table and the Orders table using the customer number.
The *= operator is used in the WHERE clause to create a left outer join. Think of the
asterisk as a wildcard that tells the DBMS to use any row in the first table.

Before running Listing 11-64, insert the row shown in Table 11-10 into the Orders
table; otherwise there will not be unmatched rows, because all the rows in both tables
currently have matching values. Listing 11-65 contains the DownRow() method used
with Listing 11-64.

try {

String query = new String (

" SELECT FirstName, LastName,OrderNumber " +

" FROM Customers LEFT JOIN Orders " +

" ON Customers.CustNumber = Orders.CustomerNumber");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

DisplayResults (Results);

DataRequest.close();

}

private void DownRow (ResultSet DisplayResults)

throws SQLException

{

int, OrderNum;

String FirstName = new String();

String LastName = new String();

String printrow = new String();

FirstName = DisplayResults.getString (1) ;

LastName = DisplayResults.getString (2) ;

502 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

Listing 11-64
Creating a

left outer join

Listing 11-65
The

DownRow()
method

used with an
outer join

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 1 : J D B C a n d E m b e d d e d S Q L 503

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

OrderNum = DisplayResults.getInt (3) ;

printrow = FirstName + " " + LastName + " " + OrderNum;

System.out.println(printrow);

}

Right Outer Join Listing 11-66 illustrates how to create a right outer join. In this
example the Customers table and the Orders table are joined using the customer number.
All rows in the Orders table are used in the join regardless of whether the customer
number in the Orders table has a corresponding customer number in the Customers table.
The WHERE clause contains the right outer join operator (=*), which, as you can see,
has the asterisk positioned to the right instead of the left of the equivalent operator.

Before running Listing 11-66, insert the row shown in Table 11-11 into the Orders
table; otherwise there will not be unmatched rows, because all the rows in both tables
currently have matching values. Listing 11-65 contains the DownRow() method used
with Listing 11-66.

try {

String query = new String (

" SELECT FirstName, LastName,OrderNumber" +

" FROM Customers c, Orders o" +

" WHERE c.CustNumber =* o.CustomerNumber");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

DisplayResults (Results);

DataRequest.close();

}

Full Outer Join A full outer join uses all the rows of both tables regardless of whether
they match. Listing 11-67 shows how to create a full outer join. The full outer join operator
(*=*) is a combination of the left and right outer join operators, although some DBMSs
uses FULL JOIN or other syntax to create a full join. Consult with your database

OrderNumber ProdNumber CustomerNumber StoreNumber Quantity SubTotal

733 7466 999 825 1 532

Table 11-10. Add These Values to the Orders Table in Table 11-9 to Perform
a Left Outer Join.

Listing 11-66
Creating

a right
outer join

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

504 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

administrator or the DBMS manufacturer for the syntax used by your DBMS. Listing 11-65
contains the DownRow() method that is used with Listing 11-67.

try {

String query = new String(

" SELECT FirstName, LastName,OrderNumber " +

" FROM Customers c, Orders o" +

" WHERE c.CustNumber *=* o.CustomerNumber");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

DisplayResults (Results);

DataRequest.close();

}

Calculating Data
The DBMS can calculate values in a table and return the result of the calculation in the
ResultSet by using one of the five built-in calculation functions:

■ SUM() tallies values in a column passed to the built-in function.

■ AVG() averages values in a column passed to the built-in function.

■ MIN() determines the minimum value in a column passed to the built-in function.

■ MAX() determines the maximum value in a column passed to the built-in function.

■ COUNT() determines the number of rows in a column passed to the built-in
function.

The following sections discuss each built-in function and give examples. Before you
try the examples, you’ll need to create an Orders table, Sales table, and Customers table.
These tables are defined next. Insert the rows described in Table 11-12, Table 11-13, and
Table 11-14 into the appropriate tables before running code segments described in the
following sections of this chapter.

Listing 11-67
Creating a

full outer join

OrderNumber ProdNumber CustomerNumber StoreNumber Quantity SubTotal

555 1052 999 278 14 1400

Table 11-11. Add These Values to the Orders Table in Table 11-9 to Perform
a Right Outer Join.

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 1 : J D B C a n d E m b e d d e d S Q L 505

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

OrderNumber ProdNumber CustomerNumber StoreNumber Quantity SubTotal

122 5237 591 345 1 325

334 3255 901 278 1 250

365 3255 901 278 4 1000

534 7466 591 825 3 1596

587 5237 845 345 1 325

717 1052 721 825 2 200

874 7466 721 825 1 532

Table 11-12. Sample Entries in an Orders Table for Practice Calculating Data

StoreNumber Sales Estimate

6245 500 450

8644 650 700

Table 11-13. Sample Entries in a Sales Table for Practice Calculating Data

CustNumber FirstName LastName Street Zip

591 Anne Smith 65 Cutter Street 04735

721 Bart Adams 15 W. Spruce 05213

845 Tom Jones 35 Pine Street 07660

901 Mary Smith 5 Maple Street 08513

Table 11-14. Sample Entries in a Customers Table for Practice Calculating Data

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Define the Orders table as follows:

■ OrderNumber, number, primary key

■ ProdNumber, number

■ CustomerNumber, number

■ StoreNumber, number

■ Quantity, number

■ SubTotal, long

Define the Sales table as follows:

■ StoreNumber, number, primary key

■ Sales, number

■ Estimate, number

Define the Customers table as follows:

■ CustNumber, number, primary key

■ FirstName, VARCHAR

■ LastName, VARCHAR

■ Street, VARCHAR

■ Zip, VARCHAR

SUM()
The SUM() built-in function calculates the sum of the values in the column that is passed
to the function. Listing 11-68 illustrates how to use the SUM() built-in function. In this
example, values in the Quantity column in the Orders table are passed to the SUM()
built-in function.

Listing 11-68 uses the executeQuery() method to execute the query. Therefore, the
Model B program should be used with this listing. Listing 11-69 contains the DownRow()
method that is used with Listing 11-68.

try {

String query = new String ("SELECT SUM(Quantity) " +

"FROM Orders ");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

DisplayResults (Results);

506 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

Listing 11-68
Determining
the sum of

values in
a column

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DataRequest.close();

}

private void DownRow (ResultSet DisplayResults)

throws SQLException

{

long ReturnValue;

ReturnValue = DisplayResults.getLong (1) ;

System.out.println(ReturnValue);

}

AVG()
The AVG() built-in function calculates the average value in the column passed to the
function. The average is returned in the ResultSet. Listing 11-70 illustrates how to use
the AVG() built-in function to calculate the average of the values in the Quantity column
of the Orders table. This code segment is used with the Model B program, and Listing 11-69
contains the DownRow() method to retrieve and display the average from the ResultSet.

try {

String query = new String ("SELECT AVG(Quantity) " +

"FROM Orders ");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

DisplayResults (Results);

DataRequest.close();

}

MIN()
The MIN() built-in function returns the lowest value contained in the column passed to
the function. Listing 11-71 shows how to use the MIN() built-in function to determine the
minimum value in the Quantity column of the Orders table. This code segment is used
with the Model B program, and Listing 11-69 contains the DownRow() method to retrieve
and display the minimum value from the ResultSet.

try {

String query = new String ("SELECT MIN(Quantity) " +

"FROM Orders ");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

C h a p t e r 1 1 : J D B C a n d E m b e d d e d S Q L 507

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Listing 11-70
Determining
the average
of values in

a column

Listing 11-71
Determining

the minimum
value in

a column

Listing 11-69
The

DownRow()
method used

with the
SUM() built-in

function

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

508 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

DisplayResults (Results);

DataRequest.close();

}

MAX()
The MAX() built-in function returns the highest value contained in the column passed
to the built-in function. Listing 11-72 shows how to use the MAX() built-in function to
determine the maximum value in the Quantity column of the Orders table. This code
segment is used with the Model B program, and Listing 11-69 contains the DownRow()
method to retrieve and display the value from the ResultSet.

try {

String query = new String ("SELECT MAX(Quantity) " +

"FROM Orders ");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

DisplayResults (Results);

DataRequest.close();

}

COUNT()
Counting the number of rows or values in a table is a common calculation. The COUNT()
built-in function returns the number of rows in a column. Listing 11-73 uses the
COUNT() built-in function to determine the number of values that appear in the Quantity
column of the Orders table. The result is returned in the ResultSet. Rows without values
in the column are excluded from the count. This means the value returned does not
necessarily represent the total number of rows in the table.

This code segment is used with the Model B program, and Listing 11-69 contains the
DownRow() method to retrieve and display the value from the ResultSet.

try {

String query = new String ("SELECT COUNT(Quantity) " +

"FROM Orders ");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

DisplayResults (Results);

DataRequest.close();

}

Listing 11-73
Counting the

number of
values in a

column

Listing 11-72
Determining

the maximum
value in

a column

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 1 : J D B C a n d E m b e d d e d S Q L 509

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Count All Rows in a Table
The COUNT() built-in function is also used to return the number of rows in a table. This
is accomplished by passing the COUNT() built-in function an asterisk rather than the
name of a column. Listing 11-74 illustrates this technique. This code segment is used with
the Model B program, and Listing 11-69 contains the DownRow() method to retrieve and
display the value from the ResultSet.

try {

String query = new String ("SELECT COUNT(*) " +

"FROM Orders ");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

DisplayResults (Results);

DataRequest.close();

}

Retrieve Multiple Counts
Multiple counts can be returned in the ResultSet by using more than one COUNT() built-in
function in the SELECT statement. This is illustrated in Listing 11-75, where the ResultSet
contains the total number of rows in the Orders table and the number of rows from the
Orders table that contain values in the Quantity column.

This code segment is used with the Model B program, and Listing 11-76 contains the
DownRow() method to retrieve and display values from the ResultSet.

try {

String query = new String ("SELECT COUNT(*), COUNT(Quantity) " +

"FROM Orders ");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

DisplayResults (Results);

DataRequest.close();

}

private void DownRow (ResultSet DisplayResults)

throws SQLException

{

long TotalRows, TotalValues;

TotalRows = DisplayResults.getLong (1) ;

TotalValues = DisplayResults.getLong (2) ;

System.out.println(

"Rows: " + TotalRows + "\nValues: " +

Listing 11-74
Counting

the number
of rows

Listing 11-75
Retrieving

multiple
counts

Listing 11-76
The

DownRow()
method used
with multiple

calls to the
COUNT()

built-in
function

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

510 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

TotalValues);

}

Calculate a Subset of Rows
You can restrict the scope of a built-in calculation function by using a WHERE clause
expression to specify the criteria for a row to be included in a calculation. Any valid
WHERE clause expression can be used to filter rows to be excluded from the calculation.
Likewise, the WHERE clause expression is used to include rows in the calculation. WHERE
clause expressions are discussed earlier in this chapter.

Listing 11-77 illustrates how to restrict the scope of a built-in calculation function
by using a WHERE clause expression. In this example, the DBMS is told to count the
number of values in the OrderNumber column of the Orders table and to average and
total the value of the Quantity column of the Orders table. The WHERE clause contains
an expression that joins the Customers table and the Orders table using the customer
number as the common value between these tables. This means the calculations are
performed only on rows that are in the join. Rows whose customer numbers don’t appear
in both the Customers table and Orders table are excluded from the calculations.

This code segment is used with the Model B program, and Listing 11-78 contains the
DownRow() method to retrieve and display values from the ResultSet.

try {

String query = new String (

" SELECT COUNT(OrderNumber), AVG(Quantity), SUM(Quantity) " +

" FROM Orders o, customers c " +

" WHERE o.CustomerNumber = c.CustNumber");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

DisplayResults (Results);

DataRequest.close();

}

private void DownRow (ResultSet DisplayResults)

throws SQLException

{

long Orders;

long Average;

long Sum;

Orders = DisplayResults.getLong (1) ;

Average = DisplayResults.getLong (2) ;

Sum = DisplayResults.getLong (3) ;

System.out.println("Total Orders = " + Orders);

System.out.println("Average Qty = " + Average);

Listing 11-77
Calculating

a subset
of rows

Listing 11-78
The

DownRow()
method

used when
calculating

a subset
of rows

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 1 : J D B C a n d E m b e d d e d S Q L 511

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

System.out.println("Total Qty = " + Sum);

}

NULLs and Duplicates
Two common problems that occur when using built-in functions are columns that don’t
contain a value and rows that contain duplicate values in the same column. Many times
you don’t want empty columns and duplicate rows included in the calculation.

You can use the DISTINCT modifier to exclude duplicate rows from the calculation.
Likewise, problems posed by NULL columns can be avoided by using the IS NULL
operator along with the NOT operator in a selection expression. Both of these are discussed
earlier in this chapter.

Calculate Without Using Built-in Functions
Although built-in calculation functions are very useful, the DBMS can perform calculations
that are defined in the SELECT statement. Listing 11-79 illustrates how to do this. In this
example, the DBMS is directed to return to the program the value of the StoreNumber
column and the difference between the value in the Sales column and the value in the
Estimate column. Neither the Sales column nor the Estimate column data is returned.
Instead, only the difference between these two columns is returned. Any arithmetic
expression can be used in the SELECT statement along with the appropriate names of
columns that contain data elements used in the calculation.

This code segment is used with the Model B program, and Listing 11-80 contains the
DownRow() method to retrieve and display values from the ResultSet.

try {

String query = new String (

" SELECT StoreNumber, Sales - Estimate " +

" FROM Sales ");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

DisplayResults (Results);

DataRequest.close();

}

private void DownRow (ResultSet DisplayResults)

throws SQLException

{

String Store;

long Difference;

Store = DisplayResults.getString (1) ;

Difference = DisplayResults.getLong (2) ;

Listing 11-79
Calculating

without
built-in

functions

Listing 11-80
The

DownRow()
method

used when
calculating

without
built-in

functions

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

System.out.println("Store = " + Store);

System.out.println("Difference = " + Difference);

}

Grouping and Ordering Data
Columns are returned in the ResultSet in the order that the column names appear in the
SELECT statement of the query. The order in which rows appear in the ResultSet can
be grouped into similar values or sorted in ascending or descending order by using the
GROUP BY clause or the ORDER BY clause, which are discussed in the next few sections
of this chapter.

Grouping is the task of organizing rows of data according to similar values within
the same column. Let’s say that you want to see sales for each store. The ResultSet can
be grouped by store number.

Sorting is the task of organizing rows of data in either alphabetical or numerical order
according to the value of a column in the result set. A DBMS is capable of creating simple
and complex sorting. A simple sort is when the values in a single column are used for
the sort. A complex sort is when multiple columns are used for the sort, such as sorting
rows by last name and within last names, by first names.

Code segments in the following sections return a ResultSet, therefore the Model B
program should be used to execute these code segments. Before executing them, create
a Sales table as defined below; then insert rows of data contained in Table 11-15 into the
Sales table.

512 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

StoreNumber Sales Estimate SalesRepNumber

123 300 200 4

223 450 500 3

123 322 200 4

345 56 30 8

345 125 100 5

223 76 50 2

345 200 156 5

Table 11-15. Sample Entries in a Sales Table for Practice with Grouping and
Sorting Data

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Define the Sales table as follows:

■ StoreNumber, number, primary key

■ Sales, number

■ Estimate, number

■ SalesRepNumber, number

GROUP BY
The GROUP BY clause specifies the name of the column whose values are used to group
rows in the ResultSet. Listing 11-81 illustrates this technique. In this example, the
StoreNumber column and the sum of the values in the Sales column from the Sales table
are returned.

The GROUP BY clause organizes the ResultSet by the value in the StoreNumber
column. This means that the ResultSet contains the sum of the Sales column for each
StoreNumber. Listing 11-82 contains the DownRow() method that is used to retrieve
and display values from the ResultSet.

try {

String query = new String (" SELECT StoreNumber, SUM(Sales) " +

" FROM Sales " +

" Group By StoreNumber");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

System.out.println("Store Sales");

System.out.println("----- -----");

DisplayResults (Results);

DataRequest.close();

}

private void DownRow (ResultSet DisplayResults)

throws SQLException

{

long Store;

long Sum;

Store = DisplayResults.getLong (1) ;

Sum = DisplayResults.getLong (2) ;

System.out.println(Store + " " + Sum);

}

C h a p t e r 1 1 : J D B C a n d E m b e d d e d S Q L 513

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Listing 11-81
Grouping the

ResultSet

Listing 11-82
The

DownRow()
method

used when
grouping the

ResultSet

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Group Multiple Columns
The DBMS can create a subgroup within a group in the ResultSet. For example, the
business unit may want to see orders organized by store, and within each store, orders
are organized by product. A subgroup is created by placing the name of the column used
for the subgroup as the second column name in the GROUP BY clause of the query. Any
number of subgroups can be created, depending on the limitations established by the
manufacturer of the DBMS used by your program. Column names in the GROUP BY
clause must be separated with a comma.

Listing 11-83 illustrates how to create a subgroup. In this example, the ResultSet is
grouped by store number, and within each store number group, a subgroup is created
using the sales representative number. Listing 11-84 contains the DownRow() method
that is used to retrieve and display values from the ResultSet.

try {

String query = new String (

" SELECT StoreNumber,SalesRepNumber, SUM(Sales) " +

" FROM Sales " +

" Group By StoreNumber, SalesRepNumber");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

System.out.println("Store SalesRep Sales");

System.out.println("----- -------- -----");

DisplayResults (Results);

DataRequest.close();

}

private void DownRow (ResultSet DisplayResults)

throws SQLException

{

long StoreNumber;

long SalesRepNumber;

long Sum;

StoreNumber = DisplayResults.getLong (1) ;

SalesRepNumber = DisplayResults.getLong (2) ;

Sum = DisplayResults.getLong (3) ;

System.out.println(

StoreNumber + " " +

SalesRepNumber + " " +

Sum);

}

514 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

Listing 11-83
Creating

groupings
and

subgroupings
in the

ResultSet

Listing 11-84
The

DownRow()
method

used when
grouping and
subgrouping

the ResultSet

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 1 : J D B C a n d E m b e d d e d S Q L 515

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Conditional Grouping
The number of rows that are included in a group can be limited by a conditional expression
in the query. A conditional expression is similar to the WHERE clause expression discussed
previously in this chapter. The DBMS uses the conditional expression to qualify whether
or not the current row should be included in any group of the ResultSet. Only rows that
meet the condition are returned. A row that doesn’t meet the condition is excluded. The
conditional expression is placed in the HAVING clause of the query. The HAVING clause
sets the criteria for a row to be included in a group.

Listing 11-85 demonstrates the use of the HAVING clause in a query. In this example,
the value of the StoreNumber column and the total sales for each store from the Sales
table are grouped by store number. The HAVING clause excludes from the group, stores
that have total sales of less than $401. Listing 11-86 contains the DownRow() method
used to retrieve and display values in the ResultSet.

Here are the requirements for using a conditional expression in the HAVING clause:

■ The expression must result in a single value.

■ The result must appear in every column named in the expression.

■ The expression can include a built-in calculation function.

try {

String query = new String ("SELECT StoreNumber, SUM(Sales) " +

" FROM Sales " +

" Group By StoreNumber" +

" HAVING SUM(Sales) > 400");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

System.out.println("Store Sales");

System.out.println("----- -----");

DisplayResults (Results);

DataRequest.close();

}

private void DownRow (ResultSet DisplayResults)

throws SQLException

{

long StoreNumber;

long Sum;

StoreNumber = DisplayResults.getLong (1) ;

Sum = DisplayResults.getLong (2) ;

System.out.println(StoreNumber + " " + Sum);

}

Listing 11-85
Conditional
grouping in

the ResultSet

Listing 11-86
The

DownRow()
method

used with
conditional
grouping in

the ResultSet

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

Working with NULL Columns
Empty columns can create unexpected results when you execute a query. This is because,
depending on the nature of the query, the empty column may be included or excluded
from the operation. As you learned previously in this chapter, the DBMS includes empty
columns when calculating average values and counting rows, but excludes empty columns
when calculating the minimum or maximum value within a column.

The DBMS may include or exclude a row in a group depending on the conditional
expression. Here’s how this works:

■ A row is included in a group if the empty column isn’t used to group rows or
used in the conditional expression in the HAVING clause.

■ A row is excluded from the group if the empty column is used in the conditional
expression and the conditional expression normally excludes empty columns
from the calculation (as with MIN(), MAX()).

■ A row is included in the group if the empty column is used in the conditional
expression and the conditional expression normally includes empty columns
from the calculation (as with AVG(), COUNT()).

■ A row is included in the group if the empty column is used to group rows. Rows
containing the empty column are placed in their own group.

Sorting Data
The ResultSet can be placed in alphabetical or numerical order by using the ORDER BY
clause in the query. Listing 11-87 shows how to use the ORDER BY clause. In this example,
values in the StoreNumber column and values in the Sales column from the Sales table
are returned in the ResultSet. The ORDER BY clause specifies the StoreNumber column,
which sorts the value of the StoreNumber column in ascending numerical order. Listing 11-88
contains the DownRow() method that is used to retrieve and display values from the
ResultSet.

try {

String query = new String ("SELECT StoreNumber, Sales " +

" FROM Sales " +

" ORDER BY StoreNumber");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

System.out.println("Store Sales");

System.out.println("----- -----");

DisplayResults (Results);

DataRequest.close();

}

516 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

Listing 11-87
Sorting the

ResultSet

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 1 : J D B C a n d E m b e d d e d S Q L 517

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

private void DownRow (ResultSet DisplayResults)

throws SQLException

{

long StoreNumber;

long Sales;

StoreNumber = DisplayResults.getLong (1) ;

Sales = DisplayResults.getLong (2) ;

System.out.println(StoreNumber + " " + Sales);

}

Major and Minor Sort Keys
You can create a sort within a sort by specifying more than one column to be sorted, such
as sorting rows by customer last name, and then within last name, sorting by customer
first name. The first column specified in the ORDER BY clause is called the major sort key
and is the initial value used to sort rows. The second and subsequent columns in the
ORDER BY clause are called minor sort keys. A comma must separate each column name.

Listing 11-89 illustrates how to sort the ResultSet using major and minor sort keys. In
this example, the StoreNumber column and Sales column from the Sales table are returned
in the ResultSet. The ORDER BY clause sorts the ResultSet by values in the StoreNumber
column. Within each StoreNumber value, the value in the Sales column is sorted. Both
sorts are ascending numerical sorts. Listing 11-88 contains the DownRow() method that
is used to retrieve and display the ResultSet returned by Listing 11-89.

try {

String query = new String ("SELECT StoreNumber, Sales " +

" FROM Sales " +

" ORDER BY StoreNumber, Sales");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

System.out.println("Store Sales");

System.out.println("----- -----");

DisplayResults (Results);

DataRequest.close();

}

Descending Sort
In addition to choosing the column to sort, you can also select the direction of the
sort by using the ASC or DESC modifier. Listing 11-90 shows how to use the DESC
modifier in the ORDER BY clause to specify a descending sort. By default the sort is
ascending, although you can use the ASC modifier to explicitly direct that the sort
be in ascending order.

Listing 11-89
Sorting the

ResultSet
using major

and minor
sort keys

Listing 11-88
The

DownRow()
method used
when sorting

the ResultSet

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

518 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

The ASC or DESC modifier must appear after the column name in the ORDER BY
clause, as illustrated in this example. The ASC or DESC modifier can be used for major and
minor sort keys. Listing 11-88 contains the DownRow() method that is used to retrieve
and display the ResultSet returned by Listing 11-90.

try {

String query = new String ("SELECT StoreNumber, Sales "

" FROM Sales " +

" ORDER BY StoreNumber DESC ");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

System.out.println("Store Sales");

System.out.println("----- -----");

DisplayResults (Results);

DataRequest.close();

}

Sorting on Derived Data
Data that doesn’t exist in a table, but comes from the data in a table, such as a calculation
(as discussed previously), is derived data. As illustrated in Listing 11-91, placing a
calculation in the SELECT statement creates derived data. Listing 11-91 returns the store
number and the difference between the value in the Sales column and the value in the
Estimate column from the Sales table. The difference is derived data.

Derived data doesn’t have a column name. This means that you cannot include a
column name in the ORDER BY clause to designate the derived data as the major or
minor sort key for the sort. However, you can use the column number of derived data in
place of a column name to sort the derived data. The column number of derived data
corresponds to the position of the derived data in the SELECT statement.

In this example, the calculation expression that produces the derived data is the second
data referenced in the SELECT statement. Therefore, the derived data appears in the
second column of the ResultSet. Use 2 in place of the column name in the ORDER BY
clause. Listing 11-88 contains the DownRow() method that is used to retrieve and display
the ResultSet returned by Listing 11-91.

try {

String query = new String (

" SELECT StoreNumber, (Sales-Estimate) " +

" FROM Sales " +

" ORDER BY 2 ");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

System.out.println("Store Sales");

Listing 11-90
Sorting the

ResultSet in
descending

order

Listing 11-91
Sorting on

derived data

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 1 : J D B C a n d E m b e d d e d S Q L 519

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

System.out.println("----- -----");

DisplayResults (Results);

DataRequest.close();

}

Subqueries
In the real world, you’ll find that you need to create complex queries that do more than
simply request columns from the database. Instead, you might request columns based
on the result of another query. You can direct the DBMS to query the result of a query by
creating a subquery. A subquery joins two queries to form one complex query, which
efficiently identifies data to be included in the ResultSet.

The format of a subquery is similar to a query, but rows that are selected as a result
of the subquery are not returned to your program. Instead, selected rows are queried by
another query. Rows chosen by the second query are returned in the ResultSet.

Both queries and subqueries have a SELECT statement and a FROM clause and can
also include a WHERE clause and HAVING clause to qualify rows to return. The WHERE
clause and HAVING clause are used to express a condition that must be met for a row
to be included in the result set.

There are also differences between a query and a subquery. The most noticeable
difference is with the ResultSet. The ResultSet of a query is returned to the J2ME component.
In contrast, the result set of a subquery is returned to a temporary table, which is then used
by a query or another subquery to further extract rows. This means the J2ME application
never sees the result of a subquery. Instead, the subquery result is an intermediate step
working toward the final selection of data from the database.

You must follow two rules when using a subquery in your program:

■ Return one column from the subquery. The purpose of a subquery is to derive a list
of information from which a query can choose appropriate rows. Only a single
column needs to be included in the list.

■ Don’t sort or group the result from a subquery. Since the ResultSet of the subquery
isn’t going to be returned in the ResultSet of the query, there is no need to sort
or group data in the ResultSet of a subquery.

The next several sections illustrate how to create a subquery. These sections can
be run using the Model B program, as described previously in this chapter. Before
attempting to run these code segments, create the following tables and insert rows
shown in Table 11-16 and Table 11-17.

Define the Sales table as follows:

■ StoreNumber, number, primary key

■ Estimate, number

■ SalesRepNumber, number

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Define the Orders table as follows:

■ OrderNumber, number, primary key

■ ProdNumber, number

■ CustomerNumber, number

■ StoreNum, number

■ Amount, number

Create a Subquery
A subquery is a query whose results are evaluated by an expression in the WHERE clause
of another query, as illustrated in Listing 11-92. In this example, the subquery is defined
below the first WHERE clause. The subquery joins rows of the Sales table and the Order
table by store number value, as shown in the second WHERE clause. Once joined, the

520 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

OrderNumber ProdNumber CustomerNumber StoreNum Amount

122 5237 591 345 200

334 3255 901 278 321

365 3255 901 278 433

534 7466 591 825 523

555 1052 999 278 23

717 1052 721 825 75

874 7466 721 825 354

Table 11-17. Sample Entries in an Orders Table for Practice with Subqueries

StoreNumber Estimate SalesRepNumber

345 200 4

278 500 3

825 200 2

Table 11-16. Sample Entries in a Sales Table for Practice with Subqueries

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

subquery totals the value of the Amount column for each store number and returns the
results to a temporary table.

The query then returns a ResultSet that contains store numbers where the value of
the Estimate column in the Sales table is equal to the total number of the Amount column
returned by the subquery. Listing 11-93 contains the DownRow() method that retrieves
and displays the ResultSet from Listing 11-92.

try {

String query = new String (" SELECT StoreNumber " +

" FROM Sales "+

" WHERE Estimate = (SELECT SUM(Amount) " +

" FROM Orders, Sales " +

" WHERE StoreNum = StoreNumber) ");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

System.out.println("Store");

System.out.println("-----");

DisplayResults (Results);

DataRequest.close();

}

private void DownRow (ResultSet DisplayResults)

throws SQLException

{

long Store;

Store = DisplayResults.getLong (1) ;

System.out.println(Store);

}

Conditional Testing
Any conditional expression (as discussed previously in this chapter) can be used to
evaluate a relationship between a query and the results of the subquery. You can use
four types of conditional tests with a subquery:

■ Comparison test This test uses comparison operators to compare values in the
temporary table with values in the table used by the query.

■ Existence test This test determines whether a value in the current row of the
table used by the query also exists in the temporary table.

■ Set membership test This test is similar to the existence test in that the DBMS
is directed to determine whether a value in the current row of the table used by
the query also exists in the temporary table.

C h a p t e r 1 1 : J D B C a n d E m b e d d e d S Q L 521

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Listing 11-93
The

DownRow()
method

used with
a subquery

Listing 11-92
Creating a
subquery

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Qualified test This test consists of either the ANY test or the ALL test and
determines whether a value in the current row of the table used by the query
is in one row of the temporary table or all rows of the temporary table.

The comparison test is illustrated in the previous “Create a Subquery” section. The
next several sections show how to perform the other tests. Before executing code segments
in these sections, insert rows shown in Table 11-18 in the Sales table.

Existence Test
The existence test is used whenever you need to return rows in the ResultSet where a
value in a column is present in the results of the subquery. The existence test requires
that you place the EXISTS modifier between the query and the subquery.

Listing 11-94 gives an example of how to use an existence test. The DBMS is told to
return a single instance of store numbers from the Sales table only if the store number is
in the Orders table. The store number isn’t returned if the store hasn’t placed an order.
Listing 11-93 contains the DownRow() method that can be used with Listing 11-94.

try {

String query = new String (" SELECT DISTINCT StoreNumber " +

" FROM Sales "+

" WHERE EXISTS " +

" (SELECT StoreNum " +

" FROM Orders " +

" WHERE StoreNum = StoreNumber) ");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

System.out.println("Store");

System.out.println("-----");

DisplayResults (Results);

DataRequest.close();

}

522 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

Listing 11-94
Performing

the existence
test

StoreNumber Estimate SalesRepNumber

345 150 5

278 300 6

825 230 7

Table 11-18. Add These Values to the Sales Table in Table 11-16.

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Membership Test
The IN modifier is used to determine whether a value in the table that is being queried
is a member of the results produced by the subquery. If the value appears in both the
table and the results of the subquery, the conditional test is evaluated as true and the
row that contains the value is returned in the ResultSet; otherwise the row is skipped.

The IN modifier is used in Listing 11-95. In this example, the subquery returns
store numbers from the Orders table where the value in the Estimate column of the
corresponding row in the Sales table is less than the value in the Amount column of the
Orders table.

The IN modifier is used to determine whether the store number in the Sales table is
returned in the results of the subquery. If so, then the sales representative’s number from
the Sales table is returned in the ResultSet; if not, the sales representative’s number in the
current row of the Sales table is skipped. Listing 11-93 contains the DownRow() method
that can be used with Listing 11-95.

try {

String query = new String (" SELECT SalesRepNumber " +

" FROM Sales "+

" WHERE StoreNumber IN " +

" (SELECT StoreNum " +

" FROM Orders " +

" WHERE Estimate < Amount) ");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

System.out.println("Store");

System.out.println("-----");

DisplayResults (Results);

DataRequest.close();

}

ANY Test
The ANY test determines whether the value specified in the query is in any of the rows
returned by the subquery. If there is at least one match, the row is returned in the
ResultSet, otherwise the row is ignored. Listing 11-96 shows how to construct an ANY
test. The objective of this program is to return the store number from the Sales table for
any store where the estimate is greater than the amount of any of the store’s orders in
the Orders table.

The ANY test tells the DBMS to include the store number in the ResultSet if the
value of the Estimate column for the store in the Sales table is greater than any value
in the Amount column for that store in the temporary table. Listing 11-93 contains the
DownRow() method that can be used with Listing 11-96.

C h a p t e r 1 1 : J D B C a n d E m b e d d e d S Q L 523

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Listing 11-95
Performing

the
membership

test

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Rules for the ANY Test
You must conform to a set of rules that govern the use of the ANY test; otherwise, you
might experience unexpected results. Here are the rules that you must follow when
using the ANY text:

■ The ANY test fails if the subquery produces an empty result. Therefore, the query
doesn’t return any rows in the ResultSet.

■ A NULL value returned by the subquery causes the query to return a NULL value.
This is because the query is unsure whether the value of the table in the query
is in the results of the subquery.

■ No value is returned in the ResultSet if the value in the table being queried is not
in the results of the subquery.

try {

String query = new String (" SELECT DISTINCT StoreNumber " +

" FROM Sales "+

" WHERE Estimate > ANY " +

" (SELECT Amount" +

" FROM Orders " +

" WHERE StoreNumber = StoreNum) ");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

System.out.println("Store");

System.out.println("-----");

DisplayResults (Results);

DataRequest.close();

}

ALL Test
The ALL test is similar to the ANY test in that the value of the table specified in the query
is compared to values returned by the subquery. However, these tests differ in that the
ANY test requires at least one match for the row to be included in the ResultSet. The ALL
test requires that the value in the table specified in the query matches all the values
returned by the subquery.

Listing 11-97 illustrates how to implement the ALL test. In this example, the store
number joins the Sales table and the Orders table. Once the tables are joined, the subquery
is processed, which returns the value in the Amount column for each store in the Orders
table. Next, the value in the Estimate column of the Sales table is compared with each
Amount value returned by the subquery. If the Amount value for each row returned by
the subquery is less than the value in the Estimate column, then the row in the Sales table
is placed in the ResultSet. Otherwise, the row in the Sales table is skipped. The ALL test

524 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

Listing 11-96
Performing

the ANY test

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

follows the same rules that apply to the ANY test (see previous section). Listing 11-93
contains the DownRow() method that can be used with Listing 11-97.

try {

String query = new String (" SELECT DISTINCT Store " +

" FROM Sales "+

" WHERE Estimate > ALL " +

" (SELECT Amount" +

" FROM Orders " +

" WHERE StoreNumber = StoreNum) ");

DataRequest = Database.createStatement();

Results = DataRequest.executeQuery (query);

System.out.println("Store");

System.out.println("-----");

DisplayResults (Results);

DataRequest.close();

}

VIEWs
You can reduce the complexity of your J2ME application by creating one or more views
of the database for each user ID that is passed to the J2ME application for data access.
A VIEW is similar to creating a table that contains only data the user ID is permitted to
access. A VIEW limits columns and rows that can be queried to specific information
pertaining to a user ID. A VIEW is like a filter that hides information from a user ID.

Each VIEW is uniquely identified with a name and contains selection criteria for
columns and rows that appear in the VIEW when the VIEW is used by a J2ME component.
Once a VIEW is created, the J2ME application references a VIEW the same way that
a table is referenced in a query.

Rules for Using VIEWs
In many situations, using VIEWs increases the efficiency of interacting with tables in a
database. However, there are times when VIEWs are not appropriate for an application.
The following is a set of rules that govern how you should use VIEWs in your application:

■ Create as many VIEWs as necessary to simplify access to a database.

■ Restrict access to a table on need-to-know basis.

■ Work with the owner of the data to establish reasonable restrictions.

■ Classify users into groups that have similar access requirements to information.

■ Create a VIEW for each classification of user rather than for each user.

C h a p t e r 1 1 : J D B C a n d E m b e d d e d S Q L 525

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Listing 11-97
Performing

the ALL test

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ More than one column can be used in a VIEW.

■ More than one table can be used in a VIEW.

■ A VIEW is treated as a table in a query regardless of the number of columns
and tables that are used to create the VIEW.

■ Use a VIEW whenever your program accesses some columns in many tables.
The view simplifies the number of tables that a J2ME application needs to
access directly.

■ Beware of data security restrictions that affect the underlying columns and tables
used to create the VIEW. A VIEW inherits data security restrictions from tables used
to create the VIEW. Therefore, if the user ID doesn’t have rights to information in
a table, the VIEW also has the same restrictions.

■ Create as many VIEWs as necessary to simplify access to a database. However,
querying a VIEW is not necessarily an efficient way to query a database.

The following sections illustrate how to create and use a VIEW. You can execute code
segments within each section using the Model A program. Before doing so, create the
following tables and insert the rows shown in Table 11-19 and Table 11-20.

Define the Orders table as follows:

■ OrderNumber, number, primary key

■ ProdNumber, number

■ CustomerNumber, number

■ StoreNum, number

■ Amount, long

526 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

OrderNumber ProdNumber CustomerNumber StoreNum Amount

122 5237 591 345 200

334 3255 901 278 321

365 3255 901 278 433

534 7466 591 825 523

555 1052 999 278 23

717 1052 721 825 75

874 7466 721 825 354

Table 11-19. Sample Entries in an Orders Table for Practice Using VIEWs

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 1 : J D B C a n d E m b e d d e d S Q L 527

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Define the Products table as follows:

■ ProductNumber, number, primary key

■ ProductName, VARCHAR

■ UnitPrice, long

Create a VIEW
A VIEW is created by using the CREATE VIEW statement, as illustrated in Listing 11-98.
In this example, the CREATE VIEW statement contains the name of the VIEW, which
is Store278. Any unique name can be used as the name of a VIEW.

The AS modifier contains the query whose results form the rows and columns that
are contained in the VIEW. In this example, all the columns and rows of the Orders table
where the value of the StoreNum column is 278 are placed in the VIEW. Only rows that
pertain to store 278 are contained in the VIEW. Data from all other stores is excluded.

try {

String query = new String (" CREATE VIEW Store278 AS " +

" SELECT * " +

" FROM Orders " +

" WHERE StoreNum = 278");

DataRequest = Database.createStatement();

DataRequest.execute(query);

DataRequest.close();

}

ProductNumber ProductName UnitPrice

1052 CD Player 100

3255 VCR 250

5237 DVD Player 325

7466 50-inch TV 532

Table 11-20. Sample Entries in a Products Table for Practice Using VIEWs

Listing 11-98
Creating a

VIEW

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

528 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

Select Columns to Appear in the VIEW
You can include or exclude any column in a VIEW. Columns excluded from a VIEW
remain in underlying tables used to create the VIEW. However, those columns are hidden
from the J2ME component. Listing 11-99 illustrates how to include columns in a VIEW.
This example creates a VIEW called StoreProd. The SELECT statement contains column
names from the Orders table that are included in the view. All other columns of the Orders
table are excluded from the view.

try {

String query = new String (" CREATE VIEW StoreProd AS " +

" SELECT StoreNum, ProdNumber " +

" FROM Orders ");

DataRequest = Database.createStatement();

DataRequest.executeQuery (query);

DataRequest.close();

}

Create a Horizontal VIEW
There are two kinds of VIEWs: vertical and horizontal. A vertical VIEW includes all rows
of the underlying table and includes some, but not all, columns of the table. This is
illustrated in Listing 11-99. A horizontal VIEW contains all columns in the underlying
table, but only some rows of the table. This means some rows are excluded from the VIEW
and cannot be accessed.

Listing 11-100 shows how to create a horizontal VIEW. In this example, a VIEW
called cust901 is created that contains all rows in the Orders table where the value of the
CustomerNumber column is 901. Horizontal VIEWs are ideal for situations where access
to all columns of a table(s) is required, but not access to all rows.

try {

String query = new String (" CREATE VIEW cust901 AS " +

" SELECT * " +

" FROM Orders" +

" WHERE CustomerNumber = 901");

DataRequest = Database.createStatement();

Results = DataRequest.execute(query);

DataRequest.close();

}

Listing 11-99
Selecting

columns to
appear in

a VIEW

Listing
11-100

Creating a
horizontal

VIEW

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 1 : J D B C a n d E m b e d d e d S Q L 529

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

Create a Multitable VIEW
A multitable VIEW is created like a single table VIEW, but tables used in the view must
be joined. Listing 11-101 shows how this is done. Notice that a vertical VIEW is created
and contains three columns from the Orders table and the Products table. The Orders
table and the Products table are joined together in the WHERE clause using the product
number. Although columns in the view come from two tables, columns are treated as if
they are from the same table in a query that uses the view.

try {

String query = new String (" CREATE VIEW ProdDesc AS " +

" SELECT StoreNum, ProdNumber, ProductName " +

" FROM Orders, Products " +

" WHERE ProdNumber = ProductNumber");

DataRequest = Database.createStatement();

Results = DataRequest.execute(query);

DataRequest.close();

}

Group and Sort VIEWs
Rows in a VIEW can be grouped and sorted when the VIEW is created rather than
grouping or sorting rows in a query that uses the VIEW. A VIEW can be grouped or
sorted by using the GROUP BY clause and/or the ORDER BY clause, as discussed
previously in this chapter.

Listing 11-102 shows how to sort rows in the VIEW. In this example, a VIEW called
GroupProdDesc is created based on the underlying Orders table and Products table,
which are joined together by product number. The GroupProdDesc view consists of the
store number, product number, and product name that are sorted by the value in
the ProdNumber column.

try {

String query = new String (" CREATE VIEW GroupProdDesc AS " +

" SELECT StoreNum, ProdNumber, ProductName " +

" FROM Orders, Products " +

" WHERE ProdNumber = ProductNumber" +

" ORDER BY ProdNumber ");

DataRequest = Database.createStatement();

Results = DataRequest.execute(query);

DataRequest.close();

}

Listing
11-101

Creating a
multitable

VIEW

Listing
11-102

Grouping and
sorting
VIEWs

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

530 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

Modify a VIEW
A VIEW can be modified, and those modifications affect the underlying tables that are
used to create the VIEW. There are three ways to modify a VIEW:

■ Update Values in one or more columns of a VIEW are changed to values
supplied by the query.

■ Insert A new row is added to the VIEW and indirectly to the underlying
table(s) used to create the VIEW.

■ Delete A row is removed from the VIEW and from the underlying table(s)
used to create the VIEW.

Rules for Updating a View
A View can be used to update columns and rows in the underlying tables that comprise
the View. However, updating a View is possible only if you adhere to a set of rules that
govern the use of updating a View.

■ Calculation, expressions, and built-in column functions cannot be used in the
SELECT statement of the VIEW. Instead, only names of columns can be used.

■ Exclude the GROUP BY clause and HAVING clause from the VIEW.

■ Duplicate rows must be included in the modification. You cannot use the
DISTINCT modifier in the VIEW if values of the view are going to be modified.

■ The user ID used in your program must have rights to modify the underlying
tables that make up the VIEW.

■ Subqueries cannot be used in a VIEW if rows of the VIEW are to be modified.

Updating a View
You can replace values in a view by using the UPDATE statement, as discussed earlier
in the section “Update Row and Column.” Listing 11-103 illustrates how this is done. In
this example, the Store278 VIEW is referenced in the UPDATE statement. The SET clause
specifies the Amount column, which is to be updated, and the value that will override
the current value in the Amount column. This means the number 700 replaces whatever
value is in the column.

The WHERE clause is used to identify rows in the view that are to be updated. Rows
that have 334 as the value in the OrderNumber column will have 700 inserted into their
Amount column.

try {

String query = new String (" UPDATE Store278 " +

" SET Amount = 700 " +

Listing
11-103

Updating a
VIEW

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 1 : J D B C a n d E m b e d d e d S Q L 531

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

J2
M

E
D

A
TA

M
A

N
A

G
EM

EN
T

" WHERE OrderNumber = 334 ");

DataRequest = Database.createStatement();

Results = DataRequest.execute(query);

DataRequest.close();

}

Inserting a Row into a VIEW
A new row can be inserted into the underlying tables that make up a VIEW by using the
INSERT INTO statement and referencing the name of the VIEW, as shown in Listing 11-104.
In this example, a new row is inserted in the Store278 VIEW using the same technique
described in the section “Inserting a Row” earlier in the chapter.

try {

String query = new String (" INSERT INTO Store278 " +

" (OrderNumber, ProdNum, CustomerNumber, StoreNum, Amount) " +

" VALUES (325, 9545 ,301 ,278 ,400) ");

DataRequest = Database.createStatement();

Results = DataRequest.execute(query);

DataRequest.close();

}

Deleting a Row from a VIEW
You can remove a row from a VIEW by using the DELETE FROM statement. The
DELETE FROM statement requires the name of the VIEW from which the row or rows
is to be deleted.

Listing 11-105 illustrates how to delete a row from a VIEW. In this example, one or
more rows from the Store278 are deleted. Rows designated to be deleted are identified in
the WHERE clause. In this case, rows that have the value 555 in the OrderNumber column
are removed from the Orders table, which is the underlying table of the Store278 VIEW.

try {

String query = new String (" DELETE FROM Store278 " +

" WHERE OrderNumber = 555 ");

DataRequest = Database.createStatement();

Results = DataRequest.execute(query);

DataRequest.close();

}

Listing
11-104

Inserting
a row into

a VIEW

Listing
11-105

Deleting
a row from

a VIEW

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Dropping a VIEW
A VIEW can be removed by using the DROP VIEW statement. The DROP VIEW statement
requires the name of the VIEW that is to be dropped. Two modifiers are used with the
DROP VIEW statement:

■ CASCADE Remove all VIEWs that depend on the VIEW specified in the
DROP VIEW statement as well as the specified VIEW.

■ RESTRICT Remove only the VIEW specified in the DROP VIEW statement.
All dependent VIEWs remain intact.

A dependent VIEW is a VIEW that has another VIEW, rather than a table, as one of
its underlying components. Listing 11-106 shows you how to drop a VIEW. In this example,
the Store278 VIEW and all of its dependent VIEWs are dropped (although there aren’t
any dependent VIEWs). Some DBMSs use DROP TABLE instead of DROP VIEW.

try {

String query = new String (" DROP VIEW Store278 CASCADE");

DataRequest = Database.createStatement();

Results = DataRequest.DataRequest.execute(query);

DataRequest.close();

}

532 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 11

Listing
11-106

Dropping a
VIEW

P:\010Comp\CompRef8\710-9\ch11.vp
Thursday, February 06, 2003 1:14:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Part IV
J2ME Personal Information
Manager Profile

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12
Blind Folio 533

P:\010Comp\CompRef8\710-9\ch12.vp
Thursday, February 06, 2003 1:37:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9
Blind Folio 534

P:\010Comp\CompRef8\710-9\ch12.vp
Thursday, February 06, 2003 1:37:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Chapter 12
Personal Information
Manager

535

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

P:\010Comp\CompRef8\710-9\ch12.vp
Thursday, February 06, 2003 1:37:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The major reason for using a personal digital assistant (PDA) is to store, retrieve,
and manage personal information such as addresses, telephone numbers, a
calendar, and a to do list. Nearly all PDAs have factory-installed applications to

manage this type of information. Although personal information is maintained by PDA
applications, any J2ME application running within a CLDC base implementation can
access that data through the use of the personal information management (PIM) API.
The PIM API contains interfaces and classes that give your MIDP application access to
the PDA’s database so you can read and modify data stored by other applications and
insert your own information into the database, which can then be accessed by other
PDA applications.

In this chapter you’ll learn how to interact with data stored on the PDA’s database
by the PDA’s to do list, calendar, and address book application. You’ll also find a model
PIM application that can be modified to meet the needs of your own PIM application.

PIM Databases
The PIM uses three types of databases to store and manage the user’s personal
information, although a platform may have more than one of each type. These are a
contact database, event database, and to do database. The contact database contains
names, addresses, phone numbers, and other similar information about personal
contacts and follows the IETF vCard 2.1 specification, although optional package
PIMs can include 3.0. The vCard 2.1 standard is adhered to for importing and exporting
contact data. Databases can contain non-vCard fields. Those fields are mapped to
extensions in vCard terminology. You cannot assume that databases comply with the
vCard 2.1 format.

The event database and the to do database contain calendar-based information stores
that contain the day, month, year, time, and a brief description of activities occurring
on a specified date. Both databases adhere to the vCalendar 1.0 standard from the
Internet Mail Consortium. The vCalendar 1.0 standard is adhered to for importing and
exporting event data. Databases can contain non-vCalendar fields. Those fields are
mapped to extensions in vCalendar terminology. You cannot assume that databases
comply with the vCalendar 1.0 format.

Two types of interfaces are used with each database. One interface focuses on
data elements and gathering data, and the other focuses on persistence for some or
all data elements. The data-oriented interface for each database is called Contact,
Event, and ToDo. The persistence interface for each database is called ContactList,
EventList, and ToDoList. These interfaces determine what data is stored in the database.

Depending on the implementation of the PIM list class, data elements can be placed
in a named group called a category. The name of the group is arbitrary, and the list
determines whether categories can be assigned and the number of categories that can
be assigned for each element. Categories are used to logically group like items together,

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

536 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

P:\010Comp\CompRef8\710-9\ch12.vp
Thursday, February 06, 2003 1:37:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

usually reflected in the UI. For example, a contact database might have personal and
work categories, enabling users to classify their contacts.

Three conventions provide general functionality to Contact, Event, ToDo, ContactList,
EventList, and ToDoList. These are the PIM class, used to access PIM databases; the
PIMItem interface, which provides common element functionality; and the PIMList
interface, which provides common list functionality.

The PIM class contains methods that return a list of all ContactList, EventList,
and ToDoList names and methods that are used to open each of these lists in either
read-only, write-only, or read/write mode. You’ll find details of these methods in the
“Quick Reference Guide” at the end of this chapter. Each mode is predefined by a field
in the PIM class.

The PIMItem interface is a common interface for items of the PIM database. A PIM
item is a container created from a particular PIM list that references the item’s data
through fields. The association between the PIM item and a PIM list lasts for the life
of the item. This is similar to a field label within a database, but differs in that field
labels are meant for user interfaces and can be localized, while a field is a programmatic
reference. A field is a logical value identifying a particular group of data in an item.
Each field is assigned a name within the PIM API by the implementing class; an example
is TEL, which represents a field containing telephone number data. The field is referenced
in the PIM API to store data in a PIM item. That is, the field is used to set the value of
data and retrieve data.

The PIM API includes definitions for all of the most common fields in PIM databases.
However, not every PIM database in the world must support all fields in order to qualify
for use by this API. All databases support a subset of these fields, and the subset of
fields supported by a particular database is reflected in the API by the PIMList class.
This class determines which fields are contained in each PIM item.

Each field has a field data type and a field label in addition to a field. Standard fields—
fields that are explicitly defined in the PIM API—already have predefined data types
that cannot be changed by an implementation. For example, a TEL field used to store a
telephone number always contains String data types. An extended field is a nonstandard
field defined by a vendor. Vendors may include extended fields whose data types can
be retrieved by calling the getFieldDataType(int) method. This method requires one
parameter, which is an integer whose value represents the field.

The field label is retrieved by calling the getFieldLabel(int), which also requires
that the field be passed as a parameter. The field label is returned as a string. Data can
be imported into a PIM item or exported from a PIM item using standard byte-based
formats (such as vCard or vCal) defined by the implementing class.

An item contains three types of data: named fields, extended fields, and categories.
A named field is an item that is referenced by using an explicit field name defined in
the class. All fields have attributes, which are qualifiers used to describe the data for
a field. For example, ATTR_WORK identifies the field as containing data associated
with the work. Attributes appear with all fields unless PIMItem.ATTR_NONE is used,

C h a p t e r 1 2 : P e r s o n a l I n f o r m a t i o n M a n a g e r 537

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

J2
M

E
P

ER
S

O
N

A
L

IN
FO

R
M

A
TIO

N
M

A
N

A
G

ER
P

R
O

FILE

P:\010Comp\CompRef8\710-9\ch12.vp
Thursday, February 06, 2003 1:37:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

indicating there are no qualifiers for a field. However, attributes are hints to the underlying
VM. This means that the VM can ignore attributes if it does not support them.

As mentioned earlier, an extended field is a field that is not explicitly predefined,
but has a field ID assigned to it by a vendor’s specific PIM list. Extended fields are
not included in the standard named fields in the API. For example, a vendor-specific
contact database may have a field called MOTHER_IN_LAW. You can determine whether
a field is a vendor-specific extended field by comparing the field’s value against
MIN_EXTENDED_FIELD_VALUE; a field greater than that constant is a field specific
to a particular vendor’s database. Methods used to interact with a named field are also
used to interact with an extended field.

A category is a string item that may correspond to category values already existing
in the PIMItem’s associated PIMList.

The “Quick Reference Guide” at the end of the chapter contains methods used
with this interface. We’ll discuss a few of the commonly used methods here.

Your application can place values into a field by calling one of several addXXX()
methods. A field is similar to a Vector in that it can store more than one value, and
those values are stored in a logical array. These fields are setBinary(int fieldID, byte[]
data), setDate(int fieldID, long value), setInt(int fieldID, int value), and setString(int
fieldID, String value). Each method requires two parameters. The first parameter is
the field ID of the field receiving the value. The other parameter is reference to the
data being placed into the field. Once data is placed into fields of a PIM item, you
must call the commit() method to persist the data.

You call one of the getXXX() methods to retrieve the value of a field. These are
getBinary(int field, int index), getDate(int fielded, int index), getInt(int field, int index),
and getString(int field, int index). The getBinary() method returns a byte array. The
getDate() method returns a long whose value represents a date. Each method requires
an integer parameter, whose value is the field ID of the field, and an index into the
field. Indexes are used to access values in a field. The first value assigned to a field
using addXXX() resides at index 0, and the value is retrieved using getXXX().

The getFieldDataType(int fieldID) method is used to return the data type of the
specified field. The data type is returned as an integer field defined in the PIMItem
interface. These are BINARY, DATE, INT, STRING, and STRING_ARRAY.

The getFieldLabel(int fieldID) method is used to retrieve the label of the field
specified in the parameter passed to this method. The label is returned as a string.

The “Quick Reference Guide” at the end of this chapter lists methods that can be
used to interact with a PIMList.

The Contact Database
The contact database contains personal contact information in the form of a contact
entry. A contact entry consists of fields defined in the Contact interface, which is a
subset of fields defined by the IETF vCard 2.1 and 3.0 specification [RFC 2426]. There

538 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

P:\010Comp\CompRef8\710-9\ch12.vp
Thursday, February 06, 2003 1:37:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

are many predefined fields in a contact entry, as you’ll note from reviewing the “Quick
Reference Guide” at the end of this chapter. However, the ContactList interface restricts
the fields that are retained. That is, some native contact databases do not support all
fields defined in a contact entry. The PIMList.isSupportedField(int) method can be
called to determine whether a field is supported because the API supports more fields
than are associated with any single PIM database. The API supports many different
types of PIM databases. The PIMList.isSupportedField(int) method requires an integer
parameter whose value is the field ID of the field and returns a boolean value.

For example, a contact entry has a named field used to store a telephone number.
However, a contact probably has multiple telephone numbers. Two instances of the
named telephone number field can be created, and both can be added via the addString()
method. Both telephone numbers can have the same field (Contact.TEL) and can be
further distinguished with attributes such as ATTR_HOME and ATTR_MOBILE. The
“Quick Reference Guide” at the end of this chapter contains a list of all predefined
fields for the Contact interface. Data values of these fields are set and retrieved using
the setXXX() and getXXX() methods that correspond to the data type of the field.

A contact entry is associated with a contact list. The contact list determines what
fields from a contact entry are retained when the contract entry is saved to the contact
database. This is because all entries in the same list (that is, database tuple) have
common fields.

The ContactList interface is used to interact with a contact list. The createContact()
method is used to create a contact for a contact list. A contact can be imported into a
contact list by calling the importContact(Contact element) method. You use this method
when transferring a contact from one contact database to another or when a Contact
is created from a vCard data stream. This method requires one parameter, which is
reference to the contact being added to the contact list. A contact can be removed
from the contact list by calling the removeContact(Contact element) method, passing
it reference to the contact that is being removed.

The Event Database
An event is a single entry into the PIM event database, such as noting your significant
other’s birthday or any calendar event. Fields used in the event database are a subset of
the fields defined by the vCalendar 1.0 specification from the Internet Mail Consortium
(http://www.imc.org). The subset provides relevant information about an event without
compromising the portability of the platform.

The Event interface defines field IDs for use with an event entry. Field IDs include
START, END, LOCATION, SUMMARY, NOTE, REVISION, and ALARM. The START
and END field IDs designate that the date and time value of the field is the start date
and end date for the event entry, respectively. The LOCATION field ID signifies that
the field contains the venue for the event entry. SUMMARY and NOTE field IDs state
that the field contains free-form text whose value is a synopsis (SUMMARY) or a more

C h a p t e r 1 2 : P e r s o n a l I n f o r m a t i o n M a n a g e r 539

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

J2
M

E
P

ER
S

O
N

A
L

IN
FO

R
M

A
TIO

N
M

A
N

A
G

ER
P

R
O

FILE

P:\010Comp\CompRef8\710-9\ch12.vp
Thursday, February 06, 2003 1:37:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

complete description (NOTE) of the event. The REVISION field ID indicates that the
date and time contained in the field is the last time the event entry was modified. The
ALARM field ID implies that an alarm should sound on the date and time specified in
the field, indicating that the event is about to occur.

The event list determines which fields from an event entry are retained when the
event is saved to the event database. An implementation is not required to support all
fields of an event entry. You can query whether or not a field is supported by calling the
PIMList.isSupportedField(int), where the value of the integer parameter is the field ID.

You can interact with an event list by using the EventList interface. The EventList
interface defines the createEvent() method used to create a new event for the event
list. This method returns an Event. You can call the importEvent(Event element) method
to import an event into the event list. This method requires one parameter, which is
reference to the Event being imported to the event list. The importEvent(Event element)
method returns an Event. The removeEvent(Event element) method is called to remove
an event from the list. This method requires one parameter, which is reference to the
Event that is being removed.

You’ll find a complete listing of methods defined by the EventList interface in the
“Quick Reference Guide” at the end of this chapter.

Some events happen on a regular schedule, such as a weekly sales meeting. These
are considered repeating events, and you use the RepeatRule class to interact with them.
The RepeatRule class contains fields used to set the regularity of an event. Regularity
is defined in a number of ways, such as happening in a specific month, a specific
week within a month, every week, every year, a specific day of the week, at a specific
frequency or interval. Examine the “Quick Reference Guide” at the end of this chapter
for a complete listing of these fields.

In addition to fields, the RepeatRule class defines methods that can be used to
interact with repeated events. The setInt(int fieldID, int value) method is used to set
an event to be repeated. Two parameters are required for this method: the first is the
ID for the field, and the second is an integer whose value specifies the repeating
pattern of the event (RepeatRule class field). See the “Quick Reference Guide” at the
end of this chapter for a complete listing of these methods.

The To Do Database
The to do database contains entries for tasks that must be performed and the date and
time when they are to be performed. A ToDo entry has fields that are a subset of the
fields in the VTODO defined by the vCalendar 1.0 specification from the Internet
Mail Consortium.

The ToDo interface defines fields that are used as field IDs for ToDo entries. These
field IDs are DUE, SUMMARY, NOTE, REVISON, PRIORITY, COMPLETED, and
COMPLETION_DATE. The DUE field ID indicates that the field contains the date
when the ToDo entry is due. The SUMMARY and NOTE field IDs contain a synopsis

540 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

P:\010Comp\CompRef8\710-9\ch12.vp
Thursday, February 06, 2003 1:37:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

(SUMMARY) or a more complete description (NOTE) of the task. The REVISION field
ID indicates that the date contained in the field is the date the ToDo entry was last
modified. The PRIORITY field ID signifies that the ToDo is the priority of the ToDo
list. And the COMPLETED field ID states that the ToDo task is completed.

The ToDo list determines the fields from a ToDo entry that are retained in the to do
database. Methods defined in the ToDoList interface are used to interact with a ToDo
list. The createToDo() method is called to create a new ToDo entry for the ToDo list and
returns a ToDo reference to the new entry. The importToDo(ToDo element) method is
used to import a ToDo entry into the ToDo list. Reference to the ToDo entry is passed
to the method. And the removeToDo(ToDo element) method is called to remove a ToDo
entry from the ToDo list. Reference to the ToDo element that is being removed from the
ToDo list is passed as a parameter to this method.

Error Handling
Error handling is not consistent across API packages, so you’ll need to refer to the
implementation’s documentation to learn how errors are treated. For example,
some implementations, such as AWT, silently ignore optional features that they do not
support. Others, such as PIM API, use the “test before use, throw RuntimeException”
model, which expects the application to check for features and fields that may or may
not be supported before implementing a feature. You don’t need to have your application
check for features, but failing to do so risks the possibility of RuntimeExceptions
being thrown.

A Model PIM Application
The PIMTest application, shown in Listing 12-1, is a model PIM application that you
can modify to meet the needs of your own application. It is divided into three areas,
each showing how to interact with the address book, calendar, and to do list databases
found on most PDAs. The VM implementation defines databases that are accessible to
your application. However, your application is not permitted to create new databases.

Your application can interact with the address book by calling one of four methods
defined in the model application. These methods are createAContact(), retrieveContacts(),
modifyAContact(), and deleteContacts(). As the name of the method implies, the
createAContact() method is used to insert information about a new contact into
the local address book. Information about contacts can be retrieved by calling the
retrieveContacts() method. The retrieveContacts() method returns both information
inserted by the createAContact() method and information inserted by other applications
into the address book.

Changing contact information in the address book is accomplished by calling
the modifyAContact() method. This method enables your application to modify
information entered by other applications into the address book in addition to information

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

J2
M

E
P

ER
S

O
N

A
L

IN
FO

R
M

A
TIO

N
M

A
N

A
G

ER
P

R
O

FILE
C h a p t e r 1 2 : P e r s o n a l I n f o r m a t i o n M a n a g e r 541

P:\010Comp\CompRef8\710-9\ch12.vp
Thursday, February 06, 2003 1:37:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

entered by your own application. The deleteContacts() method is called whenever
your application needs to remove contacts from the local address book.

The PDA calendar database is used to store events that occur on a specified
date and time. You can insert events into the calendar database by calling the
createAnEvent() method, which places an entry into the database. Entries in the
calendar database are retrieved by calling the retrieveEvents() method. Your
application can process the entry using your own business logic once the entry is
retrieved from the database. The retrieveEvents() method retrieves entries inserted
by your application as well as entries inserted by other applications.

Any event contained in the calendar database can be modified by calling the
modifyEvent() method. This method enables your application to change values
of entries that appear in the database. Entries can be removed from the calendar
database by calling the deleteEvents() method.

A to do list is used to track activities. Each entry in a to do list is stored in the
to do database. Your application can create an entry in the to do list by calling the
createAToDo() method. Those entries and entries made by other applications can be
retrieved by calling the retrieveToDos() method. Information on a to do list entry can
be changed by using the modifyToDos() method. This method is also used to change
to do list entries inserted by other applications. The deleteToDos() method removes
entries of a to do list.

import javax.microedition.pim.*;

import java.util.Enumeration;

import java.util.Calendar;

import java.util.Date;

public class PIMTest {

public PIMTest() {

}

/**

* Contact/ContactList sample code

**/

public void createAContact() {

// Create a support contact entry in the device's

//local address bookso that users have the contact

//information for anything that they

// need help with about your application

PIM pim = PIM.getInstance();

ContactList cl = null;

Contact new_contact = null;

try {

// Open write only since you're just going to

// add your support contact

// info to the device's database

cl = (ContactList)

pim.openPIMList(PIM.CONTACT_LIST, PIM.WRITE_ONLY);

542 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

Listing 12-1
The PIM

model
application

P:\010Comp\CompRef8\710-9\ch12.vp
Thursday, February 06, 2003 1:37:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

} catch (PIMException e) {

// failed opening the default contact list!

// Error case - abort this attempt

System.err.println(

"Error accessing database - aborting action");

return;

} catch (SecurityException e) {

// user rejected application's request for

//write access to contact list

// This is not an error condition and can be normal

System.out.println(

"Okay, this application won't add the contact");

return;

}

// Create an "empty" contact to work with

new_contact = cl.createContact();

// Add your company's info: company name,

//two support phone numbers, a support

// email, and a note about what product the user has. Add whatever

// information the native contact list

//supports and don't add it if

// the field is not supported.

if (cl.isSupportedField(Contact.ORG))

new_contact.addString(Contact.ORG, PIMItem.ATTR_NONE,

"Acme, Inc.");

if (cl.isSupportedField(Contact.TEL)) {

new_contact.addString(Contact.TEL, PIMItem.ATTR_NONE,

"800-888-8888");

new_contact.addString(Contact.TEL, PIMItem.ATTR_NONE,

"800-888-8889");

}

if (cl.isSupportedField(Contact.EMAIL))

new_contact.addString(Contact.EMAIL,

PIMItem.ATTR_NONE, "support@acme.com");

if (cl.isSupportedField(Contact.NOTE))

new_contact.addString(Contact.NOTE, PIMItem.ATTR_NONE,

"You've purchased application with registration number NNN.");

try {

// commits it to the list and the native database

new_contact.commit();

}

catch (PIMException e) {

// failed committing the contact

System.err.println(

"This application cannot add the contact info");

}

try {

C h a p t e r 1 2 : P e r s o n a l I n f o r m a t i o n M a n a g e r 543

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

J2
M

E
P

ER
S

O
N

A
L

IN
FO

R
M

A
TIO

N
M

A
N

A
G

ER
P

R
O

FILE

P:\010Comp\CompRef8\710-9\ch12.vp
Thursday, February 06, 2003 1:37:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

cl.close();

} catch (PIMException e) {

// failed to close the list

}

}

public void retrieveContacts() {

// Get all contacts with last name starting with "S" (e.g.

// Smith, Sanders, Stargell, etc.) for a listing screen

PIM pim = PIM.getInstance();

ContactList cl = null;

Contact search_template = null;

Enumeration s_contacts = null;

try {

cl = (ContactList) pim.openPIMList(PIM.CONTACT_LIST,

PIM.READ_ONLY);

} catch (PIMException e) {

// failed opening the default contact list!

System.err.println(

"Error accessing database - aborting action");

return;

} catch (SecurityException e) {

// user rejected application's request for

// read access to contact list

// This is not an error condition and can be normal

System.out.println(

"Okay, this application won't get contacts");

return;

}

// first create a "template" contact which we'll use for matching

search_template = cl.createContact();

if (cl.isSupportedArrayElement(Contact.NAME,

Contact.NAME_FAMILY)) {

// this particular contact list does contain last names, so we

// can now do the search

// now fill in the search parameters of last name

// starting with 'S'

String[] name_struct = new String[Contact.NAMESIZE];

name_struct[Contact.NAME_FAMILY] = "S";

search_template.addStringArray(Contact.NAME,

PIMItem.ATTR_NONE, name_struct);

}

else if (cl.isSupportedField(Contact.FORMATTED_NAME)) {

// the contact implementation doesn't have individual name

// fields, so try the single name field FORMATTED_NAME

search_template.addString(Contact.FORMATTED_NAME,

PIMItem.ATTR_NONE, "S");

}

544 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

P:\010Comp\CompRef8\710-9\ch12.vp
Thursday, February 06, 2003 1:37:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

try {

// Get the enumeration of matching elements

s_contacts = cl.items(search_template);

} catch (PIMException e) {

// failed to retrieve elements due to error!

System.err.println(

"This application cannot retrieve the contacts");

}

try {

cl.close();

} catch (PIMException e) {

// failed to close the list

}

}

public void modifyAContact() {

// Code sample:

// Update John Smith's home phone number

// from "555-0000" to "555-1212"

// since he moved...

PIM pim = PIM.getInstance();

ContactList cl = null;

Enumeration contacts = null;

try {

cl = (ContactList) pim.openPIMList(

PIM.CONTACT_LIST, PIM.READ_WRITE);

} catch (PIMException e) {

// failed opening the default contact list!

System.err.println(

"This application failed to open the contact list");

} catch (SecurityException e) {

// user rejected application's request

// for read/write access to contact list

// This is not an error condition and can be normal

System.out.println(

"Okay, this application won't get contacts");

return;

}

// first create a "template" contact which we'll use for matching

// to find John Smith's contact entry

Contact template = cl.createContact();

String tel_number = "";

if (cl.isSupportedField(Contact.NAME)) {

String[] name_struct = new String[Contact.NAMESIZE];

name_struct[Contact.NAME_FAMILY] = "Smith";

name_struct[Contact.NAME_FAMILY] = "John";

template.addStringArray(

Contact.NAME, PIMItem.ATTR_NONE, name_struct);

C h a p t e r 1 2 : P e r s o n a l I n f o r m a t i o n M a n a g e r 545

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

J2
M

E
P

ER
S

O
N

A
L

IN
FO

R
M

A
TIO

N
M

A
N

A
G

ER
P

R
O

FILE

P:\010Comp\CompRef8\710-9\ch12.vp
Thursday, February 06, 2003 1:37:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

}

if (cl.isSupportedField(Contact.TEL)) {

template.addString(Contact.TEL, Contact.ATTR_HOME, "555-0000");

}

try {

// Get the enumeration of matching elements

contacts = cl.items(template);

} catch (PIMException e) {

// failed retrieving the items enumeration due to an error

System.err.println(

"This application cannot retrieve the contact");

}

// update all John Smith entries with old home numbers of 555-0000

while (contacts!= null && contacts.hasMoreElements()) {

Contact c = (Contact) contacts.nextElement();

for (int index = c.countValues(Contact.TEL); index != 0; index--)

{

if (c.getString(Contact.TEL, index).equals("555-0000")) {

c.setString(Contact.TEL, index, Contact.ATTR_HOME,

"555-1212");

try {

// save change to the database

c.commit();

} catch (PIMException e) {

// Oops couldn't save the data...

System.err.println(

"This application cannot commit the contact info");

}

break; // go to next matching element

}

}

}

try {

cl.close();

} catch (PIMException e) {

// failed to close the list

}

}

public void deleteContacts() {

// Delete all contacts at company WorldCom

// since they won't be answering

// phone calls anymore...

PIM pim = PIM.getInstance();

ContactList cl = null;

Enumeration contacts = null;

try {

cl = (ContactList) pim.openPIMList(

546 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

P:\010Comp\CompRef8\710-9\ch12.vp
Thursday, February 06, 2003 1:37:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

PIM.CONTACT_LIST, PIM.READ_WRITE);

} catch (PIMException e) {

// failed opening the default contact list!

System.err.println(

"This application failed to open the contact list");

return;

} catch (SecurityException e) {

// user rejected application's request for

// read/write access to contact list

// This is not an error condition and can be normal

System.out.println(

"Okay, this application won't get contacts");

return;

}

// first create a "template" contact which we'll use for matching

// to find WorldCom contact entries

Contact template = cl.createContact();

if (cl.isSupportedField(Contact.ORG)) {

template.addString(Contact.ORG,

PIMItem.ATTR_NONE, "WorldCom");

try {

// Get the enumeration of matching elements

contacts = cl.items(template);

} catch (PIMException e) {

// failed retrieving the items enumeration due to an error

System.err.println(

"This application cannot commit the contact info");

}

}

// delete all WorldCom entries

while (contacts != null && contacts.hasMoreElements()) {

Contact c = (Contact) contacts.nextElement();

try {

cl.removeContact(c);

} catch (PIMException e) {

// couldn't delete the entry for some

// reason (probably shredded)

System.err.println(

"This application cannot remove the contact info");

}

}

try {

cl.close();

} catch (PIMException e) {

// failed to close the list

}

}

C h a p t e r 1 2 : P e r s o n a l I n f o r m a t i o n M a n a g e r 547

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

J2
M

E
P

ER
S

O
N

A
L

IN
FO

R
M

A
TIO

N
M

A
N

A
G

ER
P

R
O

FILE

P:\010Comp\CompRef8\710-9\ch12.vp
Thursday, February 06, 2003 1:37:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

/**

* Event/EventList sample code

**/

public void createAnEvent() {

// Create an event entry in the device's local calendar

// reminding the user to register your application

PIM pim = PIM.getInstance();

EventList el = null;

Event new_event = null;

try {

// Open write only since you're just going to

//add your registration

// event info to the device's database

el = (EventList) pim.openPIMList(

PIM.EVENT_LIST, PIM.WRITE_ONLY);

} catch (PIMException e) {

// failed opening the default event list!

// Error case - abort this attempt

System.err.println(

"Error accessing database - aborting action");

return;

} catch (SecurityException e) {

// user rejected application's request

// for write access to event list

// This is not an error condition and can be normal

System.out.println(

"Okay, this application won't add the event");

return;

}

// Create an "empty" event to work with

new_event = el.createEvent();

// Add a registration reminder event:

// make it two weeks from now with an

// alarm 10 minutes before the occurrence, and

// add a note with the phone or email to call.

if (el.isSupportedField(Event.START)) {

Date d = new Date();

long l = d.getTime() + (long)1209600000;

new_event.addDate(Event.START, PIMItem.ATTR_NONE, l);

}

if (el.isSupportedField(Event.ALARM))

new_event.addInt(Event.ALARM, PIMItem.ATTR_NONE, 600);

if (el.isSupportedField(Event.SUMMARY))

new_event.addString(Event.SUMMARY, PIMItem.ATTR_NONE,

"Register Your Product!");

if (el.isSupportedField(Event.NOTE))

new_event.addString(Event.NOTE, PIMItem.ATTR_NONE,

548 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

P:\010Comp\CompRef8\710-9\ch12.vp
Thursday, February 06, 2003 1:37:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

"You've purchased application XXX with registration number NNN.

Please register it now. Look in the Contact List

for information on how to contact us.");

try {

// commits it to the list and the native database

new_event.commit();

}

catch (PIMException e) {

// failed committing the event

System.err.println("This application cannot add the event")

}

try {

el.close();

} catch (PIMException e) {

// failed to close the list

}

}

public void retrieveEvents() {

// Get all events occurring for the coming week,

// for a listing screen

PIM pim = PIM.getInstance();

EventList el = null;

Event search_template = null;

Enumeration this_weeks_events = null;

try {

el = (EventList) pim.openPIMList(

PIM.EVENT_LIST, PIM.READ_ONLY);

} catch (PIMException e) {

// failed opening the default event list!

System.err.println(

"Error accessing database - aborting action");

return;

} catch (SecurityException e) {

// user rejected application's request for

// read access to event list

// This is not an error condition and can be normal

System.out.println("Okay, this application won't get events");

return;

}

// calculate today's date and next week's date

long current_time = (new Date()).getTime();

long next_week = current_time + 604800000;

try {

// Get the enumeration of matching elements

this_weeks_events = el.items(

EventList.OCCURRING, current_time, next_week, true);

} catch (PIMException e) {

C h a p t e r 1 2 : P e r s o n a l I n f o r m a t i o n M a n a g e r 549

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

J2
M

E
P

ER
S

O
N

A
L

IN
FO

R
M

A
TIO

N
M

A
N

A
G

ER
P

R
O

FILE

P:\010Comp\CompRef8\710-9\ch12.vp
Thursday, February 06, 2003 1:37:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

// failed to retrieve elements due to error!

// Error case - abort this attempt

System.err.println(

"This application cannot retrieve the events");

}

try {

el.close();

} catch (PIMException e) {

// failed to close the list

}

}

public void modifyEvents() {

// Code sample:

// Postpone all events from today until

// tomorrow (sick day today...)

PIM pim = PIM.getInstance();

EventList el = null;

Enumeration todays_events = null;

try {

el = (EventList) pim.openPIMList(

PIM.EVENT_LIST, PIM.READ_WRITE);

} catch (PIMException e) {

// failed opening the default event list!

System.err.println(

"Error accessing database - aborting action");

return;

} catch (SecurityException e) {

// user rejected application's request

for read/write access to contact list

// This is not an error condition and can be normal

System.out.println(

"Okay, this application won't modify any event");

return;

}

// calculate today's start and end times

Calendar start_of_day = Calendar.getInstance();

// start of work day is 7am

start_of_day.set(Calendar.HOUR_OF_DAY, 7);

Calendar end_of_day = Calendar.getInstance();

// end of work day is 8pm

end_of_day.set(Calendar.HOUR_OF_DAY, 20);

try {

// Get the enumeration of matching elements

todays_events = el.items(Event.OCCURRING,

start_of_day.getTime().getTime(), end_of_day.getTime().getTime(), true);

} catch (PIMException e) {

// failed to retrieve elements due to error!

550 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

P:\010Comp\CompRef8\710-9\ch12.vp
Thursday, February 06, 2003 1:37:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

System.err.println(

"This application cannot retrieve the events");

}

// update all events by one day

while (todays_events != null && todays_events.hasMoreElements()) {

Event e = (Event) todays_events.nextElement();

e.setDate(Event.START, 0, PIMItem.ATTR_NONE,

e.getDate(Event.START, 0) + 86400000);

try {

// save change to the database

e.commit();

} catch (PIMException exe) {

// Oops couldn't save the data...

System.err.println(

"This application cannot commit the event");

}

}

try {

el.close();

} catch (PIMException e) {

// failed to close the list

}

}

public void deleteEvents() {

// Delete all events having to do with Christmas (bah humbug!)

PIM pim = PIM.getInstance();

EventList el = null;

Enumeration xmas_events = null;

try {

el = (EventList) pim.openPIMList(

PIM.EVENT_LIST, PIM.READ_WRITE);

} catch (PIMException e) {

// failed opening the default event list!

System.err.println(

"Error accessing database - aborting action");

return;

} catch (SecurityException e) {

// user rejected application's request

// for read/write access to event list

// This is not an error condition and can be normal

System.out.println(

"Okay, this application won't modify any event");

return;

}

try {

// Get the enumeration of matching elements

xmas_events = el.items("Christmas");

C h a p t e r 1 2 : P e r s o n a l I n f o r m a t i o n M a n a g e r 551

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

J2
M

E
P

ER
S

O
N

A
L

IN
FO

R
M

A
TIO

N
M

A
N

A
G

ER
P

R
O

FILE

P:\010Comp\CompRef8\710-9\ch12.vp
Thursday, February 06, 2003 1:37:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

} catch (PIMException e) {

// failed retrieving the items enumeration due to an error

System.err.println(

"This application cannot retrieve the events");

return;

}

// delete all event entries containing Christmas

while (xmas_events != null && xmas_events.hasMoreElements()) {

Event e = (Event) xmas_events.nextElement();

try {

el.removeEvent(e);

} catch (PIMException exe) {

// couldn't delete the entry for some reason

System.err.println(

"This application cannot remove the event info");

}

}

try {

el.close();

} catch (PIMException e) {

// failed to close the list

}

}

/**

* ToDo/ToDoList sample code

**/

public void createAToDo() {

// Create a todo entry in the device's local todo list

// reminding the user to register your application

PIM pim = PIM.getInstance();

ToDoList tl = null;

ToDo new_todo = null;

try {

// Open write only since you're just going to

// add your registration

// todo info to the device's todo database

tl = (ToDoList) pim.openPIMList(PIM.TODO_LIST, PIM.WRITE_ONLY);

} catch (PIMException e) {

// failed opening the default todo list!

System.err.println(

"Error accessing database - aborting action");

return;

} catch (SecurityException e) {

// user rejected application's request

// for write access to todo list

// This is not an error condition and can be normal

System.out.println(

552 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

P:\010Comp\CompRef8\710-9\ch12.vp
Thursday, February 06, 2003 1:37:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

"Okay, this application won't add the todo");

return;

}

// Create an "empty" todo to work with

new_todo = tl.createToDo();

// Add a registration todo: make it have a

// due date of two weeks from now

// with a low priority, and

// add a note with the phone or email to call.

if (tl.isSupportedField(ToDo.DUE)) {

Date d = new Date();

long l = d.getTime() + (long)1209600000;

new_todo.addDate(ToDo.DUE, PIMItem.ATTR_NONE, l);

}

if (tl.isSupportedField(ToDo.PRIORITY))

new_todo.addInt(ToDo.PRIORITY, PIMItem.ATTR_NONE, 5);

if (tl.isSupportedField(ToDo.SUMMARY))

new_todo.addString(ToDo.SUMMARY, PIMItem.ATTR_NONE,

"Register Your Product!");

if (tl.isSupportedField(ToDo.NOTE))

new_todo.addString(ToDo.NOTE, PIMItem.ATTR_NONE,

"You've purchased application XXX with

registration number NNN. Please register it now.

Look in the Contact List for information on

how to contact us.");

try {

// commits it to the list and the native database

new_todo.commit();

}

catch (PIMException e) {

// failed committing the todo

System.err.println("This application cannot add the todo");

}

try {

tl.close();

} catch (PIMException e) {

// failed to close the list

}

}

public void retrieveToDos() {

// Get all todos due today, for a listing screen

PIM pim = PIM.getInstance();

ToDoList tl = null;

ToDo search_template = null;

Enumeration todos = null;

try {

tl = (ToDoList) pim.openPIMList(PIM.TODO_LIST, PIM.READ_ONLY);

C h a p t e r 1 2 : P e r s o n a l I n f o r m a t i o n M a n a g e r 553

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

J2
M

E
P

ER
S

O
N

A
L

IN
FO

R
M

A
TIO

N
M

A
N

A
G

ER
P

R
O

FILE

P:\010Comp\CompRef8\710-9\ch12.vp
Thursday, February 06, 2003 1:37:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

} catch (PIMException e) {

// failed opening the default todo list!

System.err.println(

"Error accessing database - aborting action");

return;

} catch (SecurityException e) {

// user rejected application's request for

// read access to todo list

// This is not an error condition and can be normal

System.out.println(

"Okay, this application won't get todo items");

return;

}

// calculate today's start and end times

Calendar start_of_day = Calendar.getInstance();

start_of_day.set(Calendar.HOUR_OF_DAY, 0);

Calendar end_of_day = Calendar.getInstance();

end_of_day.set(Calendar.HOUR_OF_DAY, 24);

try {

// Get the enumeration of matching elements

todos = tl.items(

ToDo.DUE, start_of_day.getTime().getTime(),

end_of_day.getTime().getTime());

} catch (PIMException e) {

// failed to retrieve elements due to error!

// Error case - abort this attempt

System.err.println(

"This application cannot retrieve the todos");

}

try {

tl.close();

} catch (PIMException e) {

// failed to close the list

}

}

public void modifyToDos() {

// Mark all stuff from yesterday as completed

PIM pim = PIM.getInstance();

ToDoList tl = null;

ToDo search_template = null;

Enumeration todos = null;

try {

tl = (ToDoList) pim.openPIMList(PIM.TODO_LIST, PIM.READ_ONLY);

} catch (PIMException e) {

// failed opening the default todo list!

System.err.println(

"Error accessing database - aborting action");

554 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

P:\010Comp\CompRef8\710-9\ch12.vp
Thursday, February 06, 2003 1:37:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 2 : P e r s o n a l I n f o r m a t i o n M a n a g e r 555

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

J2
M

E
P

ER
S

O
N

A
L

IN
FO

R
M

A
TIO

N
M

A
N

A
G

ER
P

R
O

FILE

return;

} catch (SecurityException e) {

// user rejected application's request for

// read access to todo list

// This is not an error condition and can be normal

System.out.println(

"Okay, this application won't get todo items");

return;

}

// calculate today's start and end times

Calendar start_of_day = Calendar.getInstance();

start_of_day.set(Calendar.HOUR_OF_DAY, 0);

Calendar end_of_day = Calendar.getInstance();

end_of_day.set(Calendar.HOUR_OF_DAY, 24);

try {

// Get the enumeration of matching elements

todos = tl.items(

ToDo.DUE, start_of_day.getTime().getTime() - 86400000,

end_of_day.getTime().getTime() - 86400000);

} catch (PIMException e) {

// failed to retrieve elements due to error!

// Error case - abort this attempt

System.err.println("This application cannot retrieve the todos");

}

// set all todos due yesterday to completed

//with updated completion date

while (todos != null && todos.hasMoreElements()) {

ToDo t = (ToDo) todos.nextElement();

if (tl.isSupportedField(ToDo.COMPLETED))

t.setBoolean(ToDo.COMPLETED, 0, PIMItem.ATTR_NONE, true);

if (tl.isSupportedField(ToDo.COMPLETION_DATE))

t.setDate(ToDo.COMPLETION_DATE, 0,

PIMItem.ATTR_NONE, (new Date()).getTime());

try {

// save change to the database

t.commit();

} catch (PIMException exe) {

// Oops couldn't save the data...

System.err.println(

"This application cannot commit the todo");

}

}

try {

tl.close();

} catch (PIMException e) {

// failed to close the list

}

}

P:\010Comp\CompRef8\710-9\ch12.vp
Thursday, February 06, 2003 1:37:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

556 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

public void deleteToDos() {

// Delete all ToDos having to do with

cleaning (hired a maid instead)

PIM pim = PIM.getInstance();

ToDoList tl = null;

Enumeration todos = null;

try {

tl = (ToDoList) pim.openPIMList(PIM.TODO_LIST, PIM.READ_WRITE);

} catch (PIMException e) {

// failed opening the default todo list!

System.err.println(

"Error accessing database - aborting action");

return;

} catch (SecurityException e) {

// user rejected application's request

// for read/write access to todo list

// This is not an error condition and can be normal

System.out.println(

"Okay, this application won't modify any todo");

return;

}

try {

// Get the enumeration of matching elements

todos = tl.items("clean");

} catch (PIMException e) {

// failed retrieving the items enumeration due to an error

System.err.println(

"This application cannot retrieve the todos");

return;

}

// delete all event entries containing 'clean'

while (todos != null && todos.hasMoreElements()) {

ToDo t = (ToDo) todos.nextElement();

try {

tl.removeToDo(t);

} catch (PIMException exe) {

// couldn't delete the entry for some reason

System.err.println(

"This application cannot remove the todo info");

}

}

try {

tl.close();

} catch (PIMException e) {

// failed to close the list

}

}

}

P:\010Comp\CompRef8\710-9\ch12.vp
Thursday, February 06, 2003 1:37:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 2 : P e r s o n a l I n f o r m a t i o n M a n a g e r 557

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

J2
M

E
P

ER
S

O
N

A
L

IN
FO

R
M

A
TIO

N
M

A
N

A
G

ER
P

R
O

FILE

Quick Reference Guide
This quick reference guide provides an overview of classes used by J2ME for the PIM
API. Full details of these classes and all Java classes and interfaces are available at
www.jcp.org.

public interface Contact extends PIMItem

Field Description

static int ADDR Specify an address for a Contact.

static int ADDR_COUNTRY Index into the string array for an address
field representing the country of an address.

static int ADDR_EXTRA Index into the string array for an address
field representing any extra info of an
address.

static int ADDR_LOCALITY Index into the string array for an address
field representing the locality (for example,
a city) of an address.

static int ADDR_POBOX Index into the string array for an address
field representing the post office box of an
address.

static int ADDR_POSTALCODE Index into the string array for an address
field representing the postal code (for
example, a zip code) of an address.

static int ADDR_REGION Index into the string array for an address
field representing the region (for example,
a province, state, or territory) of an address.

static int ADDR_STREET Index into the string array for an address
field, where the data at this index
represents the street information of a
particular address.

static int ADDRSIZE The size of an address string array.

static int ATTR_ASST Attribute classifying data as related to
an ASSISTANT.

static int ATTR_AUTO Attribute classifying a data as related to
AUTO.

static int ATTR_FAX Attribute classifying a data as related to FAX.

static int ATTR_HOME Attribute classifying a data as related to
HOME.

P:\010Comp\CompRef8\710-9\ch12.vp
Thursday, February 06, 2003 1:37:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

public interface Contact extends PIMItem

Field Description

static int ATTR_MOBILE Attribute classifying a data as related to
MOBILE.

static int ATTR_OTHER Attribute classifying a data as “OTHER.”

static int ATTR_PAGER Attribute classifying a data as related to
PAGER.

static int ATTR_PREFERRED Attribute classifying a data with preferred
status for retrieval or display purposes
(platform specific).

static int ATTR_SMS Attribute classifying a data as related
to SMS.

static int ATTR_WORK Attribute classifying a data as related to
WORK.

static int BIRTHDAY Field for birthday.

static int CLASS Field specifying access class for a contact.

static int CLASS_CONFIDENTIAL Constant indicating contact’s class is
confidential.

static int CLASS_PRIVATE Constant indicating contact’s class is
private.

static int CLASS_PUBLIC Constant indicating contact’s class is
public.

static int EMAIL Field for email address.

static int FORMATTED_ADDR Field for a formatted version of a contact
address.

static int FORMATTED_NAME Field for a formatted version of a contact
name.

static int NAME Field for a contact name.

static int NAME_FAMILY Index into the string array for an address
field, where the data at this index
represents a family name.

static int NAME_GIVEN Index into the string array for an address
field, where the data at this index
represents a given name.

558 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

P:\010Comp\CompRef8\710-9\ch12.vp
Thursday, February 06, 2003 1:37:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 2 : P e r s o n a l I n f o r m a t i o n M a n a g e r 559

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

J2
M

E
P

ER
S

O
N

A
L

IN
FO

R
M

A
TIO

N
M

A
N

A
G

ER
P

R
O

FILE

public interface Contact extends PIMItem

Field Description

static int NAME_OTHER Index into the string array for an address
field, where the data at this index
represents other alternate name or names.

static int NAME_PREFIX Index into the string array for an address
field, where the data at this index
represents a prefix to a name.

static int NAME_SUFFIX Index into the string array for an address
field, where the data at this index
represents a suffix to a name.

static int NAMESIZE Indicate the size of a name string array.

static int NICKNAME Field where the data is a nickname.

static int NOTE Field for supplemental information or
a comment associated with a Contact.

static int ORG Field for the organization name or units
associated with a Contact.

static int PHOTO Field for a photo of a Contact.

static int PHOTO_URL Field for a URL for a photo of a Contact.

static int PUBLIC_KEY Field for the public encryption key for
a Contact.

static int PUBLIC_KEY_STRING Field for the public encryption key for
a Contact.

static int REVISION Field for the last modification date and
time of a Contact item.

static int TEL Field for a voice telephone number.

static int TITLE Field for the job title for a Contact.

static int UID Field for a unique ID for a Contact.

static int URL Field for the uniform resource locator
for a Contact.

Method Description

int getPreferredIndex(int field) Return the index of the value marked
with the attribute ATTR_PREFERRED
for a field.

P:\010Comp\CompRef8\710-9\ch12.vp
Thursday, February 06, 2003 1:37:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

public interface ContactList extends PIMItem

Method Description

Contact createContact() Create a Contact for this contact list.

Contact importContact(Contact contact) Import the given Contact into this contact
list.

void removeContact(Contact contact) Remove a Contact from the list.

public interface Event extends PIMItem

Field Description

static int ALARM Field for the relative time for an Alarm for
this Event.

static int CLASS Field for the desired access class for this
contact.

static int CLASS_CONFIDENTIAL Indicate this event’s class is confidential.

static int CLASS_PRIVATE Indicate this event’s class is private.

static int CLASS_PUBLIC Indicate this event’s class is public.

static int END Field for the noninclusive date and time
a single Event ends.

static int LOCATION Field for the venue for this Event.

static int NOTE A String for a complete description of
an Event.

static int REVISION Field for the last modification date and
time of an Event item.

static int START Field for the inclusive date and time a
single Event starts.

static int SUMMARY Field for the summary or subject for this
Event.

static int UID Field for a unique ID for an Event.

Method Description

RepeatRule getRepeat() Retrieve a RepeatRule object that specifies
how often and when this event occurs.

void setRepeat(RepeatRule value) Set the RepeatRule that specifies how
often and when this event occurs.

560 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

P:\010Comp\CompRef8\710-9\ch12.vp
Thursday, February 06, 2003 1:37:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

public interface EventList extends PIMItem

Field Description

static int ENDING Represents a search type for Events based
on the event end date/time.

static int OCCURRING Represents a search type for Events based
on the event during a time period.

static int STARTING Represents a search type for Events based
on the event start date/time.

Method Description

Event createEvent() Create an Event for this event list.

Event importEvent(Event item) Import the given Event into this list
by making a new Event for the list.

java.util.Enumeration items(int
searchType, long startDate, long
endDate, boolean initialEventOnly)

Return an enumeration of all the Events
where at least one of the Event’s
occurrences falls in the specified
startDate to endDate inclusive.

void removeEvent(Event item) Remove a specific Event from the list.

public class FieldEmptyException extends java.lang.RuntimeException

Method Description

FieldEmptyException() Construct an instance of this class with its
stack trace filled.

FieldEmptyException(java.lang.String
detailMessage)

Construct an instance of this class with its
stack trace and message filled.

FieldEmptyException(java.lang.String
detailMessage, int field)

Construct an instance of this class with its
stack trace, message, and offending field
filled.

int getField() Access the field that caused the exception
to be thrown.

public class FieldFullException extends java.lang.RuntimeException

Method Description

FieldFullException() Construct an instance of this class with its
stack trace filled.

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

J2
M

E
P

ER
S

O
N

A
L

IN
FO

R
M

A
TIO

N
M

A
N

A
G

ER
P

R
O

FILE
C h a p t e r 1 2 : P e r s o n a l I n f o r m a t i o n M a n a g e r 561

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

P:\010Comp\CompRef8\710-9\ch12.vp
Thursday, February 06, 2003 1:37:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

562 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

public class FieldFullException extends java.lang.RuntimeException

Method Description

FieldFullException(java.lang.String
detailMessage)

Construct an instance of this class with its
stack trace and message filled.

FieldFullException(java.lang.String
detailMessage, int field)

Construct an instance of this class with its
stack trace, message, and offending field
filled.

int getField() Access the field that caused the exception
to be thrown.

public class PIMException extends java.lang.Exception

Field Description

static int FEATURE_NOT_SUPPORTED Functionality is not supported in this
implementation.

static int GENERAL_ERROR General PIM exception error.

static int LIST_CLOSED List is closed and access is attempted.

static int LIST_NOT_ACCESSIBLE List is no longer accessible by the
application, such as if the underlying PIM
database is deleted.

static int
MAX_CATEGORIES_EXCEEDED

Maximum number of categories is
exceeded.

static int UNSUPPORTED_VERSION Data is in an unsupported PIM version.

static int UPDATE_ERROR The update could not continue.

Method Description

PIMException() Construct an instance of this class with its
stack trace filled.

PIMException(java.lang.String
detailMessage)

Construct an instance of this class with its
stack trace and message filled.

PIMException(java.lang.String
detailMessage, int reason)

Construct an instance of this class with its
stack trace, message, and reason filled.

int getReason() Return the reason for the PIM Exception.

P:\010Comp\CompRef8\710-9\ch12.vp
Thursday, February 06, 2003 1:37:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

J2
M

E
P

ER
S

O
N

A
L

IN
FO

R
M

A
TIO

N
M

A
N

A
G

ER
P

R
O

FILE

public interface PIMItem

Field Description

static int ATTR_NONE No additional attributes are applicable to
a data value for a field.

static int BINARY Data is binary in a byte array.

static int BOOLEAN Data is of boolean primitive data type.

static int DATE Data is a Date in long primitive data
type format expressed in the same long
value format as java.util.Date, which is
milliseconds since the epoch (00:00:00
GMT, January 1, 1970).

static int
EXTENDED_ATTRIBUTE_MIN_VALUE

The minimum possible value for an
extended attribute constant.

static int
EXTENDED_FIELD_MIN_VALUE

The minimum possible value for an
extended field constant.

static int INT Data is of int primitive data type.

static int STRING Data is a String object.

static int STRING_ARRAY Data is an array of related fields returned
in a string array.

Method Description

void addBinary(int field, int attributes,
byte[] value, int offset, int length)

Add a binary data value to a field.

void addBoolean(int field, int attributes,
boolean value)

Add a boolean value to a field.

void addDate(int field, int attributes,
long value)

Add a date value to a field.

void addInt(int field, int attributes, int
value)

Add an integer value to a field.

void addString(int field, int attributes,
java.lang.String value)

Add a String value to a field.

void addStringArray(int field, int
attributes, java.lang.String[] value)

Add an array of related string values as
a single entity to a field.

C h a p t e r 1 2 : P e r s o n a l I n f o r m a t i o n M a n a g e r 563

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

P:\010Comp\CompRef8\710-9\ch12.vp
Thursday, February 06, 2003 1:37:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

public interface PIMItem

Method Description

void addToCategory(java.lang.String
category)

Add a category to this item.

void commit() Persist the data in the item to its PIM list.

int countValues(int field) Return the number of values assigned to
a field.

int getAttributes(int field, int index) Return the attributes associated with
the data value at the given index for
the indicated field.

byte[] getBinary(int field, int index) Return a binary data value for a field
from the item.

boolean getBoolean(int field, int index) Return a boolean value from a field in
the item.

java.lang.String[] getCategories() Return all categories for the item.

long getDate(int field, int index) Return a date value from a field in the item.

int[] getFields() Return all fields in the item that have data
stored for them.

int getInt(int field, int index) Return an integer value from a field in the
item.

PIMList getPIMList() Return the PIMList associated with this
item.

java.lang.String getString(int field, int
index)

Return a String value from a field in the
item.

java.lang.String[] getStringArray(int
field, int index)

Return an array of related values from a
field in the item.

boolean isModified() Return a boolean indicating whether any
of this item’s fields have been modified
since the item was retrieved or last
committed.

int maxCategories() Return the maximum number of categories
that this item can be assigned to.

void removeFromCategory
(java.lang.String category)

Remove a category from this item.

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

564 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

P:\010Comp\CompRef8\710-9\ch12.vp
Thursday, February 06, 2003 1:37:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 2 : P e r s o n a l I n f o r m a t i o n M a n a g e r 565

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

J2
M

E
P

ER
S

O
N

A
L

IN
FO

R
M

A
TIO

N
M

A
N

A
G

ER
P

R
O

FILE

public interface PIMItem

Method Description

void removeValue(int field, int index) Remove the value at the given index for
the indicated field in an item.

void setBinary(int field, int index, int
attributes, byte[] value, int offset, int
length)

Set an existing binary data value in a field
to a new value.

void setBoolean(int field, int index, int
attributes, boolean value)

Set an existing boolean data value in a
field to a new value.

void setDate(int field, int index, int
attributes, long value)

Set an existing date data value in a field
to a new value.

void setInt(int field, int index, int
attributes, int value)

Set an existing int data value in a field to
a new value.

void setString(int field, int index, int
attributes, java.lang.String value)

Set an existing String data value in a field
to a new value.

void setStringArray(int field, int index,
int attributes, java.lang.String[] value)

Set an existing String array data value in a
field to a new value.

public interface PIMList

Field Description

static java.lang.String UNCATEGORIZED Constant for the itemsByCategory
(java.lang.String) method to indicate
to search for uncategorized items.

Method Description

void addCategory(java.lang.String
category)

Add a category to the PIM list.

void close() Close the list, releasing any resources.

void deleteCategory(java.lang.String
category)

Delete a category from the PIM list.

java.lang.String getAttributeLabel(int
attribute)

Return a String label associated with an
attribute.

java.lang.String[] getCategories() Return the categories defined for the
PIM list.

int getFieldDataType(int field) Return an int representing the data type
of the data associated with a field.

P:\010Comp\CompRef8\710-9\ch12.vp
Thursday, February 06, 2003 1:37:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

566 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

public interface PIMList

Method Description

java.lang.String getFieldLabel(int field) Return a String label associated with a field.

java.lang.String getName() Return the name of the list.

int[] getSupportedArrayElements
(int stringArrayField)

Return an integer array containing all of
the supported elements of a string array
for a field.

int[] getSupportedAttributes(int field) Return an integer array containing all of
the supported attributes for a field.

int[] getSupportedFields() Return all fields that are supported in
this list.

boolean isCategory(java.lang.String
category)

Return whether a category is a valid,
existing category for this list.

boolean isSupportedArrayElement(int
stringArrayField, int arrayElement)

Return whether or not the element in an
array is supported for a field in this PIM
list.

boolean isSupportedAttribute(int field,
int attribute)

Return whether or not the given attribute
is supported in this PIM list for a field.

boolean isSupportedField(int field) Return whether or not the given field is
supported in this PIM list.

java.util.Enumeration items() Return an Enumeration of all items in
the list.

java.util.Enumeration items(PIMItem
matchingItem)

Return an Enumeration of all items in the
list that contain fields that match all fields
specified in the matching item.

java.util.Enumeration
items(java.lang.String matchingValue)

Return an Enumeration of all items in the
list that contain at least one String field
data value that matches the specified
string value.

java.util.Enumeration
itemsByCategory(java.lang.String
category)

Return an enumeration of all items in
the PIM list that match the category.

int maxCategories() Return the maximum number of
categories that this list can have.

P:\010Comp\CompRef8\710-9\ch12.vp
Thursday, February 06, 2003 1:37:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

public interface PIMList

Method Description

void renameCategory(java.lang.String
currentCategory, java.lang.String
newCategory)

Rename a category to a new name.

int supportsMultipleValues(int field) Determine whether a field supports
adding more than one value to the field.

public class RepeatRule extends java.lang.Object

Field Description

static int APRIL Constant for the month of April.

static int AUGUST Constant for the month of August.

static int COUNT Specify the number of times this event
repeats, including the first time, starting
from the first time the event starts
(derived from Event.START) and
continuing to the last date of the repeat
(defined by RepeatRule.END).

static int DAILY Indicate frequency when the Event
happens every day.

static int DAY_IN_MONTH Specify the day of the month an Event
occurs; for example, 15.

static int DAY_IN_WEEK Specify the days of the week an Event
occurs.

static int DAY_IN_YEAR Specify the day of the year an Event
occurs; for example, 134.

static int DECEMBER Constant for the month of December.

static int END Specify the ending date of the repeating
event.

static int FEBRUARY Constant for the month of February.

static int FIFTH Constant for the fifth week of the month.

static int FIFTHLAST Constant for the fifth to last week of the
month.

static int FIRST Constant for the first week of the month.

C h a p t e r 1 2 : P e r s o n a l I n f o r m a t i o n M a n a g e r 567

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

J2
M

E
P

ER
S

O
N

A
L

IN
FO

R
M

A
TIO

N
M

A
N

A
G

ER
P

R
O

FILE

P:\010Comp\CompRef8\710-9\ch12.vp
Thursday, February 06, 2003 1:37:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

568 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

public class RepeatRule extends java.lang.Object

Field Description

static int FOURTH Constant for the fourth week of the month.

static int FOURTHLAST Constant for the fourth to last week of the
month.

static int FREQUENCY Specify the frequency of the Repeat.

static int FRIDAY Constant for the day of week Friday.

static int INTERVAL Specify the number of iterations of the
frequency between occurring dates, or
how often the frequency repeats.

static int JANUARY Constant for the month of January.

static int JULY Constant for the month of July.

static int JUNE Constant for the month of June.

static int LAST Constant for the last week of the month.

static int MARCH Constant for the month of March.

static int MAY Constant for the month of May.

static int MONDAY Constant for the day of week Monday.

static int MONTH_IN_YEAR Specify the month in which an event occurs.

static int MONTHLY Specify the frequency when the Event
happens every month.

static int NOVEMBER Constant for the month of November.

static int OCTOBER Constant for the month of October.

static int SATURDAY Constant for the day of week Saturday.

static int SECOND Constant for the second week of the
month.

static int SECONDLAST Constant for the second to last week of
the month.

static int SEPTEMBER Constant for the month of September.

static int SUNDAY Constant for the day of week Sunday.

static int THIRD Constant for the third week of the month.

static int THIRDLAST Constant for the third to last week of the
month.

P:\010Comp\CompRef8\710-9\ch12.vp
Thursday, February 06, 2003 1:37:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 2 : P e r s o n a l I n f o r m a t i o n M a n a g e r 569

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

J2
M

E
P

ER
S

O
N

A
L

IN
FO

R
M

A
TIO

N
M

A
N

A
G

ER
P

R
O

FILE

public class RepeatRule extends java.lang.Object

Field Description

static int THURSDAY Constant for the day of week Thursday.

static int TUESDAY Constant for the day of week Tuesday.

static int WEDNESDAY Constant for the day of week Wednesday.

static int WEEK_IN_MONTH Specify which week in a month a
particular event occurs.

static int WEEKLY Specify frequency when the Event
happens every week.

static int YEARLY Specify frequency when the Event
happens every year.

Method Description

RepeatRule() Default constructor.

void addExceptDate(long date) Add a Date for which the RepeatRule
should not occur.

java.util.Enumeration dates(long
startDate, long subsetBeginning,
long subsetEnding)

Return an Enumeration of dates on which
an Event will occur.

long getDate(int field) Return a Date field.

java.util.Enumeration getExceptDates() Return the Dates for which the
RepeatRule should not occur.

int[] getFields() Return a list of fields that currently have
values assigned to them.

int getInt(int field) Return an integer field.

void removeExceptDate(long date) Delete a Date for which the RepeatRule
should not occur.

void setDate(int field, long value) Set a Date field.

void setInt(int field, int value) Set an integer field.

P:\010Comp\CompRef8\710-9\ch12.vp
Thursday, February 06, 2003 1:37:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

public interface ToDo extends PIMItem

Field Description

static int CLASS Specify the desired access class for this
contact.

static int CLASS_CONFIDENTIAL Constant indicating the to do’s class is
confidential.

static int CLASS_PRIVATE Constant indicating the to do’s class is
private.

static int CLASS_PUBLIC Constant indicating the to do’s class is
public.

static int COMPLETED Field ID indicating a ToDo has been
completed.

static int COMPLETION_DATE Field ID indicating a ToDo has been
completed on the date specified by
this field.

static int DUE The date a ToDo is due expressed in the
same long value format as java.util.Date,
which is milliseconds since the epoch
(00:00:00 GMT, January 1, 1970).

static int NOTE Specify a more complete description than
the SUMMARY for this ToDo.

static int PRIORITY Specify the priority of this ToDo.

static int REVISION Specify the last modification date and
time of a ToDo item.

static int SUMMARY Specify the summary or subject for this
ToDo.

static int UID Specify a unique ID for a ToDo.

public interface ToDoList extends PIMList

Method Description

ToDo createToDo() Create a ToDo entry for this ToDo list.

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

570 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

P:\010Comp\CompRef8\710-9\ch12.vp
Thursday, February 06, 2003 1:37:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

public interface ToDoList extends PIMList

Method Description

ToDo importToDo(ToDo item) Import the ToDo into this list by making
a new ToDo for the list and filling its
information with as much information
as it can from the provided ToDo.

java.util.Enumeration items(int field,
long startDate, long endDate)

Return an enumeration of all the ToDos in
the list, where the value of the specified
date field falls in the range from startDate
to endDate inclusive.

void removeToDo(ToDo item) Delete a specific ToDo from the list.

public class UnsupportedFieldException extends java.lang.RuntimeException

Method Description

UnsupportedFieldException() Construct an instance of this class with its
stack trace filled.

UnsupportedFieldException(java.lang
.String detailMessage)

Construct an instance of this class with its
stack trace and message filled.

UnsupportedFieldException(java.lang
.String detailMessage, int field)

Construct an instance of this class with its
stack trace, message, and offending field
filled.

C h a p t e r 1 2 : P e r s o n a l I n f o r m a t i o n M a n a g e r 571

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 12

J2
M

E
P

ER
S

O
N

A
L

IN
FO

R
M

A
TIO

N
M

A
N

A
G

ER
P

R
O

FILE

P:\010Comp\CompRef8\710-9\ch12.vp
Thursday, February 06, 2003 1:37:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9
Blind Folio 572

P:\010Comp\CompRef8\710-9\ch12.vp
Thursday, February 06, 2003 1:37:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Part V
J2ME Networking and Web Services

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13
Blind Folio 573

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13
Blind Folio 573

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13
Blind Folio 573

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9
Blind Folio 574

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Chapter 13
Generic Connection
Framework

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

575

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The partnership between J2ME and small computing devices opens the possibility
of developing a large distributive system that combines the convenience of
portable computing with the horsepower of a back-end processing system. A

small computing device is compact and has sufficient resources to collect and display
information such as an order form, but lacks the capability to fully process and store
this information. In contrast, a back-end processing system has the power and storage
to handle any data processing requirement, but lacks the convenient size and flexibility to
work under any conditions, which are the hallmarks of a small computing device.

J2ME enables you to build an application that overcomes the disadvantages of
both by exchanging data between a small computing device and a back-end processing
system. You can design an application to utilize a small computing device’s capability
of data capture and data display and a back-end system’s capability for processing
and storing the data. The exchange occurs in real time over a connection created by a
J2ME application between the small computing device and the remote computer. This
connection is created using the Generic Connection Framework (GCF), which you’ll
learn about in this chapter.

The Connection
A connection is a path between two computing devices that utilizes a hard-wired (cable)
technology or wireless technology to transmit and receive data over a network. These
devices can be a small computing device and a back-end processing system or two small
computing devices. Three pieces of information are required to establish a connection
between two computing devices. These are a network address, communications protocol,
and communication parameters. (Parameters are not necessarily required depending on
the requirements of the remote computing device.)

The network address uniquely identifies each computing device on a network. An
Internet protocol (IP) address is used on many networks, although other addressing
schemes exist. A communications protocol is a set of rules that describe how data is
transmitted between two computing devices. Both computing devices must agree
on a communications protocol before transmitting data. There are three widely
used communications protocols: Hypertext Transfer Protocol (HTTP), File Transfer
Protocol (FTP), and socket. Communication parameters consist of information required
to open a connection between two computing devices. Login information such as
a user ID and password are commonly used as communication parameters if the
remote computer requires authentication before opening the connection with the other
computing device.

A connection is opened by calling the Connector.open() method. The Connector.open()
method requires one parameter, which is a String containing the communications protocol,
network address, and any communication parameters. These components are separated
within the String by a colon. You can disregard the last colon if no parameters are used
to open the connection. The following code segment illustrates how to open a connection

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

576 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

that uses HTTP as the communications protocol and //www.myweb.com as the network
address. No communications are necessarily in this example.

Connection connection=Connector.Open("http://www.myweb.com");

The Class.forName() method is automatically called at run time to determine the
class that implements the protocol being used for the connection. The Connector.open()
method returns an instance of the Connection Interface, which is used within your
J2ME application to transfer information between two computing devices. Figure 13-1
contains the Connection Interface class hierarchy that will be explored throughout
this chapter.

Connection and Streams
The Connector class described in the GCF is used to establish network connections. The
Connector class is used to access one of seven GCF connection interfaces. GCF connection
interfaces provide a basic architecture for network operations and network protocol
independence for writing network code. GCF connection interfaces are used the same
way regardless of the underlying network protocol. These interfaces are Connection,
ContentConnection, DatagramConnection, InputConnection, OutputConnection,
StreamConnection, and StreamConnectionNotifier. All of these are located in the
javax.microedition.io package.

The Connection interface is the basic connection that can either open or close a
connection. The ContentConnection interface is used in a streaming connection that
accesses information located on a web server. The DatagramConnection interface
is used for packet transmission through the use of a datagram connection. The

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

J2
M

E
N

ETW
O

R
K

IN
G

A
N

D
W

EB
S
ER

V
IC

ES

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

C h a p t e r 1 3 : G e n e r i c C o n n e c t i o n F r a m e w o r k 577

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

Connection Interface
InputConnection interface

StreamConnection Interface
ContentConnection Interface

HttpConnection
OutputConnection Interface

StreamConnection Interface
ContentConnection Interface

HttpConnection
DatagramConnection interface
StreamConnectionNotifier Interface

Figure 13-1. The Connection Interface class hierarchy

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

InputConnection interface and OutputConnection interface are used to receive
and send data from and to a communications device. The StreamConnection
interface is used for two-way transmissions using a communications device. The
StreamConnectionNotifier interface is used when a stream connection is established.

The Connector class and related connection interfaces only open (and close) a connection.
They do not manage transmission. Think of the Connector class as the code that opens the
telephone line for transmission to and from an Internet service provider.

Input/output classes defined in the java.io.package are used to manage transmission
over an open connection. It is the input/output classes that write data to an open
connection and read data from an open connection.

The InputStream class and the OutputStream class are base classes for all input
and output classes. Derived from these classes are input and output classes that stream
specific kinds of data. Derived classes are ByteArrayInputStream, ByteArrayOutputStream,
DataInputStream, DataOutputStream, and PrintStream. The ByteArrayInputStream class
and the ByteArrayOutputStream class buffer internal byte arrays for input and output. The
DataInputStream class and the DataOutputStream class are used to input and output data
as primitive Java data types. The PrintStream class outputs primitive data individually.

Characters are written and read by using the InputStreamReader class and the
OutputStreamWriter class, which are derived from both the InputStream class and
Reader class and the OutputStream class and Writer class, respectively.

InputStream Class
The InputStream class defines the basic interface for reading data from an open connection.
First, you’ll need to open a connection, which you’ll learn later in this chapter, and then
create an instance of the appropriate class derived from the InputStream class, as discussed
in the previous section. Next you call a method of the InputStream class to read data from
the connection. There are nine methods in the InputStream class, including three versions
of the read() method. These are read(), read(byte b[]), read(byte b[], int off, int len),
skip(long n), available(), mark(int readlimit), reset(), markSupported(), and close().

The first read() method returns a byte of data as an integer from the open connection.
If the end of the stream is reached, a –1 is returned. You’ll need to cast the returned
integer as a char when reading characters from the open connection, which you’ll see
later in this chapter.

The second read() method is used to read multiple bytes from the open connection,
which are stored in an array passed as a parameter to the read() method. The return
value of this version of the read() method is either the number of bytes read from the
open connection or a –1 indicating that the last byte has been read.

The third version of the read() method also reads multiple bytes from an open
connection to a byte array. However, you can specify where in the byte array to place
bytes read from the connection. This version requires three parameters. The first
parameter is the array used to store incoming bytes. The second parameter is an

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

578 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

int that specifies the first element of the array used to store the first incoming byte.
The third parameter is an int that specifies the total number of bytes to read from the
connection. This version of the read() method also returns either the total number of
bytes read or a –1.

You can skip bytes in an input stream by calling the skip() method. The skip() method
requires one parameter, which is a long that specifies the number of bytes to skip. The
skip() method returns either the total number of bytes skipped or a –1 indicating the end
of the stream.

The InputStream class uses a blocking technique whenever data is unavailable from
the open connection. The blocking technique requires the InputStream class to wait until
data becomes available before the application continues. Blocking also occurs with the
OutputStream class where the application pauses until data is sent.

You can avoid blocking by calling the available() method before calling the read()
method. The available() method returns the number of bytes available to be read from
the open connection. If bytes are available, call the read() method; otherwise avoid
calling the read() method because it will create a block until bytes are available to be
read by your program.

Although your application reads bytes sequentially from a stream, you can read
bytes downstream (ahead) and then return upstream to read additional bytes by using
the technique called marking. Before reading downstream, call the mark() method to mark
your current position in the stream. The mark() method requires an int parameter that
specifies how many bytes you can read ahead. You return to the marked position in the
stream by calling the reset() method. A word of caution: marking may not be available
in all implementations; therefore you should call the markSupported() method, which
returns a boolean value indicating whether or not marking is supported.

The close() method terminates the input stream, not the connection. Rarely will you
need to call the close() method because the input stream is automatically closed when
the instance of the InputStream is out of scope. However, it is always a good practice
to call the close() method to free up resources.

OutputStream Class
The OutputStream class defines the basic interface for writing data to an open connection.
First, you’ll need to open a connection and then create an instance of the appropriate class
derived from the OutputStream class, as discussed previously in this chapter. Next you
call a method of the OutputStream class to write data from the connection. There are five
methods in the OutputStream class, including three versions of the write() method. These
are write(int b), write(byte b[]), write(byte b[], int off, int len), flush(), and close().

The first version of the write() method writes one byte to the output stream. This
byte is passed as an int parameter to the write() method. The second version of the
write() method writes multiple bytes to the output stream. Those bytes are contained
in the byte array that is passed to the write() method.

The third version of the write() method writes specified elements of a byte array
to the output stream. This version requires three parameters. The first parameter is the

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

J2
M

E
N

ETW
O

R
K

IN
G

A
N

D
W

EB
S
ER

V
IC

ES
C h a p t e r 1 3 : G e n e r i c C o n n e c t i o n F r a m e w o r k 579

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

byte array. The second parameter is an int representing the offset of the first element
that will be written to the output stream. The last parameter is an int representing the
total number of bytes that are to be written.

The OutputStream class, like the InputStream class, uses blocking. In the case of the
OutputStream class, blocking causes the application to wait until all pending bytes are
written to the output stream. The flush() method causes any pending bytes to be output
to the output stream.

The close() method terminates the output stream, not the connection. Rarely will
you need to call the close() method because the output stream is automatically closed
when the instance of the OutputStream is out of scope. However, it is always a good
practice to call the close() method to free up resources.

Hypertext Transfer Protocol
The communications protocol HTTP is supported by MIDP 1.0 as required by specification.
Support for other protocols is implementation dependent. Therefore, you can safely use
HTTP in your application with confidence that the device running your application
supports it. HTTP requires that a client initiate a request for information from a remote
computer. The remote computer is typically a server, although any computing device
can respond to a client’s request if the computing device supports HTTP.

Communicating using HTTP is very similar in concept to sending and receiving an
email. The client creates an email with a request for information. The email contains the
address of the person who will supply the information and the return address of the
client, which is used to respond to the email. The Uniform Resource Locators (URLs)
of the client and remote computer are the addresses used in HTTP.

The network operating system routes the request to the remote computer, where
the request is reviewed and a response is returned to the client. Typically, the content
of the response is the requested information or a notification message indicating that
the information is unavailable or the client is unauthorized to receive the information,
depending on the nature of the application.

Creating an HTTP Connection
GCF optimizes mobile devices by providing a level of abstraction for network services
enabling the device profile to select network protocols and network services to support.
This means devices support only network protocols that they require. However, not all
implementations support every network protocol. MIDP implementations are required
to support HTTP; therefore, you can count on that support. HTTP is used to connect to
web pages.

An HTTP connection is made by calling one of the three versions of the open()
method of the Connector class. All three versions require at least a connection string
parameter that identifies the connection and throws an IOException error. They also
return a Connection. Here’s the syntax for the first version of the open() method:

580 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

static Connection open (String connectString) throws IOException

The second version of the open() method requires a second parameter, which is
an int that identifies the mode in which the connection is opened. Table 13-1 contains
three connector modes: READ, WRITE, and READ_WRITE. The READ mode causes
the connection to be used only for data input. The WRITE mode permits data to be
sent but not received over the connection. And the READ_WRITE mode enables
the connection to be used to send and receive data. Here’s the syntax for the second
version of the open() method:

static Connection open (String connectString, int mode)

throws IOException

The third version of the open() method requires a third parameter consisting of
a boolean value that indicates whether or not the application can handle a timeout
exception. A timeout exception is thrown whenever an attempt to create the connection
fails. The timeout period and other aspects of the timeout exception are implementation
dependent. Here’s the method definition for the third version of the open() method:

static Connection open (String connectString, int mode, boolean timeouts)

throws IOException

The connection string of each version of the open() method contains a unique
identifier of the connection that conforms to the Uniform Resource Indicator (URI).
The identifier consists of three components: the scheme, the target, and parameters.
(Parameters are optional.)

The scheme is the name of the network protocol used for the connection. Although
you are guaranteed that an implementation supports the HTTP network protocol, some
implementations also support socket, datagram, file, and port. Each has its own scheme,
as illustrated in Table 13-2.

C h a p t e r 1 3 : G e n e r i c C o n n e c t i o n F r a m e w o r k 581

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

J2
M

E
N

ETW
O

R
K

IN
G

A
N

D
W

EB
S
ER

V
IC

ES

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

Mode Description

READ Open connection for read only

WRITE Open connection for write only

READ_WRITE Open connection for read and write

Table 13-1. CLDC Connector Modes

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

582 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

The open() method returns a Connection object that consists of the base interface
for the connection. However, you’ll probably want to use a specific kind of connection
interface, as described previously in this chapter. Therefore, you’ll need to cast the
returned Connection interface to the interface required for your application. It is
common to use the StreamConnection interface for an HTTP connection. Here’s how
you cast the Connection object returned by the open() method as a StreamConnection
interface:

StreamConnection connection = (StreamConnection)

Connector.open("http://www.myweb.com");

Reading Data from an HTTP Connection
Once you’ve opened an HTTP connection and obtained a stream using a connection
interface, you are ready to read or write data using an input/output stream class. A
common routine is for a J2ME application to request and then receive information from
a web server, similar to the technique used by a browser to request and receive web
pages. A web page is a text file that contains text and HTML tags that describe how the
text should be displayed on the screen. The browser interprets HTML tags and displays
the corresponding text accordingly.

Your J2ME program must also interpret the contents of the file that it requests using
the HTTP connection. Interpretation of the contents is application dependent. For example,
your application might request from a web server a text file that contains customer contact
information. Your application must contain the logic necessary to translate raw customer
contact information into a meaningful presentation to the user of the application.

The initial step in communicating with a remote computer is to open a connection
and a connection interface. The following code segment illustrates how this is done.
The first line of code opens an HTTP connection to the web server www.jimkeogh.com
and requests access to the index.htm file. The index.htm file is the home page of the

Network Protocol Scheme Target Parameter

HTTP http:// www.myweb.com

Socket socket:// www.mysocket: 1800

Datagram datagram:// 9000

File file:// myfile.txt

Port comm: 0; baudrate=9600

Table 13-2. Values for the Connection String Parameter of the open() Method

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

J2
M

E
N

ETW
O

R
K

IN
G

A
N

D
W

EB
S
ER

V
IC

ES

web site. You can replace the name of the web server and file with any web server and
file that is available to you. Next, the openInputStream() method is called to create an
instance of the InputStream.

StreamConnect connection = (StreamConnection)

Connector.open("http://www.jimkeogh.com/index.htm");

InputStream in = connection.openInputStream();

The connection and input stream are like a highway between two computers. Once
the highway is built, you’ll need to send cars along the highway. You do this by calling the
read() method, assuming of course that you are reading data from the stream.

The read() method returns an int. The value of the int corresponds to a character
if your program is reading a text file. As you recall from learning J2SE, there are a
number of ways in which a program can assemble incoming characters into data that
can be further manipulated by the program. Probably one of the most common of
these techniques is to assemble characters in a line of text, as illustrated in the next
code segment.

This code segment begins by creating a string buffer and an int. The read() method
is called from within the conditional expression in the while loop. The return value of
the read() method is an int, which is assigned to the ch int variable. The value of the ch
variable is then compared to a –1 (negative one). A –1 is the value returned by the read()
method when there isn’t any data left to read from the stream.

Next, the conditional expression in the if statement determines whether the value
of the ch variable is the end-of-line character. If not, the append() method is called to
append the character to the buffer. The buffer requires one parameter, which is a char.
Since the read() method returns an int, you’ll need to convert the int to a char and pass
the char to the append() method.

If the value of the ch variable is the end-of-line character, the buffer contains the first
line of the file and can be processed further within the program. In this code segment, the
contents of the buffer are converted to a string by calling the toString() method, and the
string is passed as a parameter to the println() method, which displays the line of text on
the console—not on the screen of the mobile device. You can process the line of text any
way you wish as necessary to fulfill the requirements of the application. After the line of
text is processed, you should prepare the string buffer for the next series of characters by
resetting the string buffer as shown in the last statement in this code example.

StringBuffer buffer = new StringBuffer();

int ch;

while ((ch = in.read()) != -1)

{

if (ch != '\n')

{

buffer.append((char) ch);

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

C h a p t e r 1 3 : G e n e r i c C o n n e c t i o n F r a m e w o r k 583

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

}

else

{

System.out.println(buffer.toString());

buffer.delete(0, buffer.length());

}

}

Reading and Parsing a Web Page
HTTP is the only protocol guaranteed to be supported by all implementations and is
used to retrieve information from a web server. Listing 13-1 illustrates the technique
for retrieving such information. Listing 13-2 contains the JAD file for Listing 13-1. A web
server can serve information in various kinds of formats, the most common being HTML.
As you learned in the previous section, an HTML document contains information and
descriptions on how the information is to be displayed.

The purpose of Listing 13-1 is to retrieve the average star rating for my J2EE: The
Complete Reference book from amazon.com and display it in an alert dialog box. The average
star rating indicates how much or how little, on the average, customers enjoyed my book.
The rating is recalculated each time a customer reviews the book for amazon.com. To
achieve this objective, the MIDlet must connect to the specific HTML document that
contains the average star rating, retrieve the document, find the rating within the
document, and display it on the screen. You can use this same technique to retrieve
any file from a web server.

The listing begins by creating Exit and Start commands that are associated with a
form. A CommandListener is also associated with the form. The form is then displayed
when the startApp() method is called. Logic within the commandAction() method reacts
to the Start command when it is selected by the user of the MIDlet, which causes the
MIDlet to actively retrieve and process the information from amazon.com.

Processing begins by creating references to the connection, input stream, and a string
buffer before connection is made to amazon.com. The open() method is passed the
URL of the specific page on amazon.com that contains information about my book.
The URL was determined by manually visiting this book page on amazon.com and
then copying the URL from the browser into the listing.

An input stream is then opened once connection is made to amazon.com. The
conditional expression in the while loop calls the read() method to return the next
integer from the input stream, which is the first character of the HTML document
containing information about my book.

Processing continues as long as the value of the integer isn’t a –1, which indicates
there aren’t any characters remaining to be read from the input stream. The MIDlet
determines whether the character read from the input stream is a new line character (\n).
If not, the character value of the int is appended to the buffer. If so, a line from the HTML
document is contained in the buffer.

584 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The content of the buffer is then assigned to a String called line, which is compared
to the “out of 5 stars” text. This text is on the same line of the HTML document as the
average star rating. I determined this by manually examining the HTML document,
looking for a landmark that identifies this line within the document.

The next step is to identify the average star rating within this line of the document.
The actual average star rating can be one of a series of values. Therefore, we cannot
simply look for a specific value. Instead, the average star rating value is identified by
position within the line (see Figure 13-2).

Many commercial web sites position the same kind of information in the same spot
of every web page. For example, the average star rating appears five characters from
the position of the letter a in the HTML tag “alt=”. I know this by manually analyzing the
line of the HTML tag that contains the average star rating.

Once we know the position of the a in the alt= HTML tag in the line that contains
the average star rating, we can calculate the position of the rating itself. The indexOf()
method is called and passed the alt= HTML tag. The indexOf() method returns an int
that represents the character position within the line of the a in the alt= tag. This value
is assigned to the int position in this MIDlet.

Next the substring() method is called. The substring() method returns a subset of
characters contained within the line. The subset is identified by the two parameters
passed to the substring() method. The first parameter is an int representing the character
position of the first character of the subset. The second parameter is an int representing
the character position of the last character of the subset.

In this example, the specific starting and ending positions are unknown because we
don’t know exactly where within the line the average star rating appears. However, we do
know the relative positions of the starting and ending positions of the subset. The starting
position is five characters after the a in alt=, and the ending position is eight characters after
the a in alt=. These offset positions were determined by manually analyzing the position
of the average star rating in relation to alt=. Regardless of the position of alt= in the line, the
subset always began and ended at the same proportional position within the line relative
to the character a.

C h a p t e r 1 3 : G e n e r i c C o n n e c t i o n F r a m e w o r k 585

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

J2
M

E
N

ETW
O

R
K

IN
G

A
N

D
W

EB
S
ER

V
IC

ES

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

 Publisher: McGraw-Hill Osborne Media; ISBN:

007222472X;

1st edition (September 6, 2002)

Average Customer Review:

<img src="http://g-images.amazon.com/images/G/01/detail/stars-5-

0.gif" width=64 height=12 border=0 alt="5.0 out of 5 stars">

Based on 12 reviews.

Figure 13-2. A segment of the HTML document from amazon.com that is read by
the MIDlet

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The substring is then displayed in an alert dialog box. Notice that the content of the
buffer is erased after each line is read from the input stream by assigning a reference to
a new StringBuffer to the buffer variable. This assures there are no residual characters
remaining in the buffer from the previous line.

An IOException is thrown whenever the MIDlet is unable to connect to the web
server. This error is displayed in an alert dialog box in this example.

586 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

Retrieving Information from a Web Server
Here are the steps required to retrieve information from a web server:

1. Declare references.

2. Obtain a reference to the instance of the Display class.

3. Create an instance of a Command class to exit the MIDlet.

4. Create an instance of a Command class to start the MIDlet.

5. Create an instance of the Form class.

6. Associate the instance of the Command class to the instance of the Form class.

7. Associate a CommandListener with the instance of the Form class.

8. Display the instance of the Form class on the screen.

9. If the Start command is selected, create references to a StreamConnection
and InputStream.

10. Create a StringBuffer to store characters read from the input stream.

11. Open a connection to the server.

12. Open an input stream.

13. Read each byte from the input stream and append the byte to the
StringBuffer.

14. Assign the contents of the StringBuffer to a String after the last character is
read from the input stream.

15. Parse the string if necessary, and display the string in an alert dialog box.

16. If the Exit command is selected, terminate the MIDlet.

17. Trap exceptions thrown within the commandAction() method.

18. If the MIDletStateChangeException is thrown, indicate that conditions are
now safe to terminate the MIDlet by assigning a true value to the exit flag
variable.

19. Terminate the MIDlet when the Exit command is entered the second time.

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

J2
M

E
N

ETW
O

R
K

IN
G

A
N

D
W

EB
S
ER

V
IC

ES

The same technique illustrated in Listing 13-1 can be used to retrieve and parse any
text delivered by a web server. Let’s say that account information is stored in a delimited
text file called accounts.txt on a web server. You could modify Listing 13-1 to connect
to www.myweb.com/accounts.txt and then read each character from the input stream.
Logic that you write within the while loop reads each line from the input stream.

Let’s assume that each line is a record, and fields within the record are delimited. You
can replace the logic in Listing 13-1 that locates the average star ranking with logic that
uses the delimiter to parse each field of the current record to extract account information
from the input stream.

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import java.io.*;

import javax.microedition.io.*;

import java.util.*;

public class HttpExample extends MIDlet implements CommandListener

{

private Command exit, start;

private Display display;

private Form form;

private StringItem stars;

public HttpExample ()

{

display = Display.getDisplay(this);

exit = new Command("Exit", Command.EXIT, 1);

start = new Command("Start", Command.EXIT, 1);

form = new Form("Customer Ranking");

form.addCommand(exit);

form.addCommand(start);

form.setCommandListener(this);

}

public void startApp() throws MIDletStateChangeException

{

display.setCurrent(form);

}

public void pauseApp()

{

}

public void destroyApp(boolean unconditional)

{

}

public void commandAction(Command command, Displayable displayable)

{

if (command == exit)

{

destroyApp(false);

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

C h a p t e r 1 3 : G e n e r i c C o n n e c t i o n F r a m e w o r k 587

Listing 13-1
Retrieving

information
from a

web server

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

notifyDestroyed();

}

else if (command == start)

{

StreamConnection connection = null;

InputStream in = null;

StringBuffer buffer = new StringBuffer();

try

{

connection = (StreamConnection)

Connector.open(

"http://www.amazon.com/exec/obidos/tg/detail/-/007222472X");

in = connection.openInputStream();

int ch;

while ((ch = in.read()) != -1)

{

if (ch != '\n')

{

buffer.append((char)ch);

}

else

{

String line = new String (buffer.toString());

if(line.equals("out of 5 stars"))

{

int position = line.indexOf("alt=");

Alert alert = new Alert(

"Rating", line.substring(position + 5, position + 8), null, null);

alert.setTimeout(Alert.FOREVER);

alert.setType(AlertType.ERROR);

display.setCurrent(alert);

}

buffer = new StringBuffer();

}

}

}

catch (IOException error)

{

Alert alert = new Alert("Error", "Cannot connect", null, null);

alert.setTimeout(Alert.FOREVER);

alert.setType(AlertType.ERROR);

display.setCurrent(alert);

}

}

}

}

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

588 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

J2
M

E
N

ETW
O

R
K

IN
G

A
N

D
W

EB
S
ER

V
IC

ES

MIDlet-Name: httpexample

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: httpexample.jar

MIDlet-1: httpexample, , httpexample

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

The File Protocol
The file protocol is used to write information to a file from a MIDlet if the implementation
supports the file protocol and if the device supports a file system. Listing 13-3 illustrates
the technique used to write information to a file. Listing 13-4 contains the JAD file for
this listing. Listing 13-3 is structured similar to Listing 13-1 in that both listings contain
a form that has Start and Exit commands associated with it, along with the required
CommandListener, which is created within the constructor.

The text is written to the file when a user selects the Start command. Logic to write
to the file is contained within the start section of the commandAction() method. First
an OutputConnection is created by calling the open() method of the Connector. Two
parameters are passed to the open() method. The first parameter is the schema for the
file. The schema begins with the protocol identifier called file, which is followed by
the full path to the file, including the file name.

The append parameter is at the end of the schema. The append parameter is a
boolean value indicating whether or not the text should be written to the end of the
file or to the beginning of the file. If true, new text is appended to the end of the file.
If false, or if the append parameter is omitted, new text is written at the beginning
of the file, overwriting the content of the existing file. The file is automatically created
if the file doesn’t exist, even if the append parameter is set to true.

The second parameter is the file mode. In this example the file is opened for
output. The file could also be opened for input by replacing the Connector.WRITE
with Connector.READ. The Connector.WRITE_READ is used to open the file for both
input and output.

Once the connection is opened the program creates an OutputStream by calling the
openOutputStream() method. The OutputStream is then used to create a PrintStream,
which is necessary to write text to a file. You write text to the file by calling the println()
method and passing this method the text that is to be written to the file. The stream and
connection are both closed once the text is written to the file, and a message is then
displayed in an alert dialog box notifying the user that the operation was successful.
Any errors that are thrown are caught and displayed in another alert dialog box.

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

C h a p t e r 1 3 : G e n e r i c C o n n e c t i o n F r a m e w o r k 589

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

Listing 13-2
The JAD

file for
Listing 13-1

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

590 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

Writing to a File
Here are the steps required to write to a file:

1. Declare references.

2. Obtain a reference to the instance of the Display class.

3. Create an instance of a Command class to exit the MIDlet.

4. Create an instance of a Command class to start the MIDlet.

5. Create an instance of the Form class.

6. Associate the instance of the Command class to the instance of the
Form class.

7. Associate a CommandListener with the instance of the Form class.

8. Display the instance of the Form class on the screen.

9. If the Start command is selected, open an output connection to the server
where append is set to true.

10. Open an output stream.

11. Open a PrintStream.

12. Print text to the output stream.

13. Close the output stream.

14. Close the connection.

15. Display message indicating that data has been written.

16. Trap errors thrown during this process.

17. Assign the contents of the StringBuffer to a String after the last character
is read from the input stream.

18. Parse the string if necessary, and display the string in an alert dialog box.

19. If the Exit command is selected, terminate the MIDlet.

20. Trap exceptions thrown within the commandAction() method.

21. If the MIDletStateChangeException is thrown, indicate that conditions
are now safe to terminate the MIDlet by assigning a true value to the exit
flag variable.

22. Terminate the MIDlet when the Exit command is entered the second time.

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

J2
M

E
N

ETW
O

R
K

IN
G

A
N

D
W

EB
S
ER

V
IC

ES

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import java.io.*;

import javax.microedition.io.*;

public class FileConnection extends MIDlet implements CommandListener {

private Command exit, start;

private Display display;

private Form form;

public FileConnection ()

{

display = Display.getDisplay(this);

exit = new Command("Exit", Command.EXIT, 1);

start = new Command("Start", Command.EXIT, 1);

form = new Form("Write To File");

form.addCommand(exit);

form.addCommand(start);

form.setCommandListener(this);

}

public void startApp() throws MIDletStateChangeException

{

display.setCurrent(form);

}

public void pauseApp()

{

}

public void destroyApp(boolean unconditional)

{

}

public void commandAction(Command command, Displayable displayable)

{

if (command == exit)

{

destroyApp(false);

notifyDestroyed();

}

else if (command == start)

{

try

{

OutputConnection connection = (OutputConnection)

Connector.open("file://c:/myfile.txt;append=true", Connector.WRITE);

OutputStream out = connection.openOutputStream();

PrintStream output = new PrintStream(out);

output.println("This is a test.");

out.close();

C h a p t e r 1 3 : G e n e r i c C o n n e c t i o n F r a m e w o r k 591

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

Listing 13-3
Writing

to a file

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

connection.close();

Alert alert = new Alert("Completed", "Data Written", null, null);

alert.setTimeout(Alert.FOREVER);

alert.setType(AlertType.ERROR);

display.setCurrent(alert);

}

catch(ConnectionNotFoundException error)

{

Alert alert = new Alert(

"Error", "Cannot access file.", null, null);

alert.setTimeout(Alert.FOREVER);

alert.setType(AlertType.ERROR);

display.setCurrent(alert);

}

catch(IOException error)

{

Alert alert = new Alert("Error", error.toString(), null, null);

alert.setTimeout(Alert.FOREVER);

alert.setType(AlertType.ERROR);

display.setCurrent(alert);

}

}

}

}

MIDlet-Name: fileconnection

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: fileconnection.jar

MIDlet-1: fileconnection, , fileconnection

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

Socket
A socket is a connection to a port on a remote computer that is used to exchange
information using HTTP commands. HTTP commands enable your application
to send an HTTP request for a stream of data to a remote computer. In return, the
remote computer responds to your application by sending an HTTP response. Let’s
say your application wants to receive a stream of data from a particular file stored
on a remote server. First your application opens a socket connecting to a port on the
server. Next, the application sends a GET command followed by the file name as part
of an HTTP request. Your application then reads the stream containing the remote
server’s HTTP response.

592 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

Listing 13-4
The JAD

file for
Listing 13-3

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You’ll learn more about HTTP commands, HTTP requests, and HTTP responses
later in this chapter. For now let’s focus on opening a socket for two-way transmission
with a remote server. A socket is created by calling the Connector open() method and
passing it a string containing the socket schema. The socket schema consists of the
socket identifier followed by the URL of the remote server. The URL must contain the
port number of the remote server that is used to connect the remote server to the client.

The following code segment illustrates a socket schema. In this example, a connection
is made to port 80 of www.myserver.com, which is the URL of the remote server.

socket://www.myserver.com:80

The println() method of the PrintStream is used to send strings containing HTTP
commands to the remote server over the socket connection. The following code segment
is a typical HTTP request. GET is the HTTP command used to request a file. /my.html is
the name of the file being requested. HTTP/0.9 is the version of the protocol being used
for transmission, and \r\n are the carriage return and new line characters.

GET /my.html HTTP/0.9\r\n

The application then uses the read() method of the InputStream to retrieve the
HTTP response sent by the remote server along the socket connection. Logic within
the application responds appropriately to the HTTP response message.

Listing 13-5 illustrates how to create a socket connection and use it to communicate
with a remote computer. Listing 13-6 contains the JAD file for Listing 13-5. The program
issues a GET request for the my.html file and then displays the HTTP response in the
console. In a real-world program you would include logic to respond to the HTTP
response rather than simply displaying the response on the screen.

The MIDlet begins by creating a form that contains two command buttons, one
to start the application and the other to exit the application. Each command button is
then associated with the form within the constructor. Likewise, a CommandListener
is also associated with the form to process these commands. The form is then displayed
on the screen by calling the setCurrent() method within the startApp() method. The
startApp(), as you’ll remember from other chapters, is the method that is automatically
called when the MIDlet is loaded into the device.

The commandAction() method is called whenever the user selects a command
button. The application terminates if the Exit button is selected. The application sends
the HTTP request and processes the HTTP response received from the server.

The open() method is called to create a socket connection with the remote server.
The URI for the server is www.myserver.com, and the port used by the socket is port 80.
Once the connection is opened, the MIDlet creates a PrintStream that is used to write to
the socket by calling the println() method. The string passed to the println() method must
contain a properly structured HTTP command statement, which you learn about later in

C h a p t e r 1 3 : G e n e r i c C o n n e c t i o n F r a m e w o r k 593

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

J2
M

E
N

ETW
O

R
K

IN
G

A
N

D
W

EB
S
ER

V
IC

ES

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

this chapter. The println() method does not validate the HTTP command statement passed
to it. The println() method simply treats the HTTP command statement as any string as it
passes it through to the socket connection.

In this example, the GET command is issued specifying the requested file and
HTTP version used for transmission, as described previously in this section. The flush()
method is then called to assure that all pending strings waiting to be sent over the
socket connection are actually sent.

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

594 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

Writing to and Reading from a Socket Connection
Here are the steps required to write to and read from a socket connection:

1. Declare references.

2. Obtain a reference to the instance of the Display class.

3. Create an instance of a Command class to exit the MIDlet.

4. Create an instance of a Command class to start the MIDlet.

5. Create an instance of the Form class.

6. Associate the instance of the Command class to the instance of the Form class.

7. Associate a CommandListener with the instance of the Form class.

8. Display the instance of the Form class on the screen.

9. If the Start command is selected, create and open a StreamConnection.

10. Create and open a PrintStream.

11. Print an HTTP request to the PrintStream.

12. Flush the PrintStream.

13. Create an input stream.

14. Read bytes from the input stream and display them on the console.

15. Close the input stream.

16. Close the output stream.

17. Trap errors thrown during this process.

18. If the Exit command is selected, terminate the MIDlet.

19. Trap exceptions thrown within the commandAction() method.

20. If the MIDletStateChangeException is thrown, indicate that conditions are
now safe to terminate the MIDlet by assigning a true value to the exit flag
variable.

21. Terminate the MIDlet when the Exit command is entered the second time.

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

J2
M

E
N

ETW
O

R
K

IN
G

A
N

D
W

EB
S
ER

V
IC

ES

Next an InputStream is created and used to receive the server’s response from the
socket connection. The read() method is called within the conditional statement in the
while loop to reach a character from the socket connection. As long as the value returned
by the read() method isn’t a –1, the return value is converted to a char and then printed
on the console.

The InputStream, PrintStream, and socket connection are closed when the read()
method returns a –1 indicating that no more characters are to be read from the socket.
In a real-world application you include logic within the MIDlet to reply to the remote
server’s response until communication between both the client and server is no longer
necessary.

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import java.io.*;

import javax.microedition.io.*;

public class socketconnection extends MIDlet implements CommandListener {

private Command exit, start;

private Display display;

private Form form;

public socketconnection ()

{

display = Display.getDisplay(this);

exit = new Command("Exit", Command.EXIT, 1);

start = new Command("Start", Command.EXIT, 1);

form = new Form("Read Write Socket");

form.addCommand(exit);

form.addCommand(start);

form.setCommandListener(this);

}

public void startApp() throws MIDletStateChangeException

{

display.setCurrent(form);

}

public void pauseApp()

{

}

public void destroyApp(boolean unconditional)

{

}

public void commandAction(Command command, Displayable displayable)

{

if (command == exit)

{

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

C h a p t e r 1 3 : G e n e r i c C o n n e c t i o n F r a m e w o r k 595

Listing 13-5
Writing to

and reading
from a
socket

connection

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

destroyApp(false);

notifyDestroyed();

}

else if (command == start)

{

try

{

StreamConnection connection = (StreamConnection)

Connector.open("socket://www.myserver.com:80");

PrintStream output =

new PrintStream(connection.openOutputStream());

output.println("GET /my.html HTTP/0.9\n\n");

output.flush();

InputStream in = connection.openInputStream();

int ch;

while((ch = in.read()) != -1)

{

System.out.print((char) ch);

}

in.close();

output.close();

connection.close();

}

catch(ConnectionNotFoundException error)

{

Alert alert = new Alert(

"Error", "Cannot access socket.", null, null);

alert.setTimeout(Alert.FOREVER);

alert.setType(AlertType.ERROR);

display.setCurrent(alert);

}

catch(IOException error)

{

Alert alert = new Alert("Error", error.toString(), null, null);

alert.setTimeout(Alert.FOREVER);

alert.setType(AlertType.ERROR);

display.setCurrent(alert);

}

}

}

}

596 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

J2
M

E
N

ETW
O

R
K

IN
G

A
N

D
W

EB
S
ER

V
IC

ES

MIDlet-Name: socketconnection

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: socketconnection.jar

MIDlet-1: socketconnection, , socketconnection

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

Communication Management
Using HTTP Commands
HTTP is used by two computers to communicate with each other over a socket
connection. HTTP is considered a request/response protocol, meaning that a client
is the requestor of information contained on a server and the server responds to the
client’s request. An HTTP request, called a request entity, consists of three components.
These are the request method, request header, and request body. The request method
describes the way in which information is to be sent to the client by the server. The
client specifies the request method as part of the request, as illustrated in the previous
section of this chapter. There are three request methods (see Table 13-3). These are GET,
POST, and HEAD.

A word of caution: the term method used in relationship to an HTTP request is an
HTTP method and not a J2ME method.

There are basically two ways in which data is sent—by including the data as part
of the URL as a query string, which is called the GET method, or by sending data in a
stream aside from the URL, called the POST method. The GET method requires a URL
and data separated by a question mark, which is also known as URL encoding. Data
is grouped into one or more fields, each of which has a value associated with the field.
A value is associated with a field by using an assignment operator (=), and each field-
value pair is separated by an ampersand (&).

C h a p t e r 1 3 : G e n e r i c C o n n e c t i o n F r a m e w o r k 597

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

Request Description

GET Send requested data as part of the URL

POST Send requested data in a separate stream

HEAD Send only meta-information about the specified resource

Table 13-3. Types of HTTP Request Methods

Listing 13-6
The JAD

file for
Listing 13-5

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Data sent in response to a request is assigned to an environment variable within the
requestor’s operating environment. The requestor then retrieves the data by reading
the environment variable.

The following code segment illustrates the form of the data being returned using the
GET request method. This example is a response to a request from the client located at
www.myclient.com/inventory for the inventory status of product 123 and product 456.
The first field is prod123 and has a value of 100 units; the second field is prod456 and has
a value of 150 units. Spaces are not permitted in field names and in values. However, you
can insert a plus sign (+) in place of a space if a space is required to fulfill the request.

http://www.myclient.com/inventory?prod123=100&prod456=150

The POST method requires data to be sent in a separate stream, which provides two
advantages over the GET method. Data sent using the GET method is visible whenever the
URL is visible. You’ve probably noticed data attached to the end of the URL whenever you
select the Submit button after filling out a form in a browser. The POST method causes the
data not to be visible as part of the URL.

The other advantage of using the POST method is to be able to send an unlimited
amount of data in response to a request. The size of data sent using the GET method
is limited by the maximum size of data that can be held by the environment variable.
Data exceeding the size of the environment variable will probably be lost after reaching
the requestor.

A word of caution: the POST method is not a secure method to transmit data. It is
simply less accessible than the GET method because data is sent on a different stream.

The HEAD method requests metadata about the resource. Remember that metadata
is information about data, such as the last time inventory data was updated. A MIDlet
that wants to retrieve the latest inventory status of a product may do so only if the
inventory recently changed. Therefore, the MIDlet uses the HEAD method and follows
up with a GET or POST method if the inventory has changed. Metadata is returned
using the same technique as the GET request method.

HttpConnection
HttpConnection is used to send an HTTP request method. Implementing the following
code segment within your MIDlet creates an HttpConnection. In this example, a
connection is made to the inventory.dat resource located on the server associated with
the URI www.myserver.com:

HttpConnection connection = (HttpConnection)

Connector.open("http://www.myserver.com/inventory.dat");

Once an HttpConnection is opened, you can use HttpConnection client request
methods to interact with the remote server. There are two ways to interact with the

598 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

remote server—by setting or retrieving the request method, or by setting or retrieving
the HTTP header information.

The request method is set by calling the setRequestMethod(), which requires a
string containing GET, POST, or HEAD as a parameter. The getRequestMethod() is
called to retrieve a string that contains the current request method.

The setRequestProperty() method is used to write a value to a field in the HTTP
header. Two parameters are required by the setRequestProperty() method. The first
parameter is a string containing the field name, called a key, which is being set. The
other parameter is a string containing the new value of the specified header field.

A request header is information that describes the request using one or a combination
of 40 header fields. Many header fields are used only rarely. Here are commonly used
header fields:

■ Accept

■ Cache-Control

■ Content-Type

■ Expires

■ IF-Modified-Since

■ User-Agent

Let’s say that a client wants to receive a response using the plain text content type
and using the GET request method. Here’s the code segment that needs to be included
in the MIDlet:

HttpConnection connection = (HttpConnection)

Connector.open("http://www.myserver.com/inventory.dat");

connection.setRequestMethod(HttpConnection.GET);

connection.setRequestProperty("Content-Type","//text/plain");

The body of an HTTP request contains any information that is sent to the server
as part of the request. This information is transferred to the server using either the GET
or POST request method, as described in the request method portion of the request.

The request method, request header, and the body of the request are transmitted
over the connection to the server, where software running on the server reads each
component of the request, processes the request based on the nature of the application,
and returns a response with a response entity.

You are unlikely to create a response entity using a MIDlet because MIDlets are
typically clients in an HTTP transmission. You’ll find more information about how to
create a response entity in J2EE: The Complete Reference (McGraw-Hill/Osborne, 2001).
However, you will need to understand how to translate a server’s response into
information that is processed by your MIDlet. A response entity consists of three
components: the status line, header response, and the body of the response.

C h a p t e r 1 3 : G e n e r i c C o n n e c t i o n F r a m e w o r k 599

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

J2
M

E
N

ETW
O

R
K

IN
G

A
N

D
W

EB
S
ER

V
IC

ES

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The status line is a snapshot of the server’s response to the client’s request. There
are more than 35 response status codes for the HttpConnection. A three-digit number
represents a status code. The first digit represents the category of the status code (see
Table 13-4), and the remaining digits represent a specific status within a category.

There are two parts to the status line. The first part is the status code and the other,
the status message. You retrieve the status code by calling the getResponseCode(). The
getResponseCode() returns an int whose value is the status code. The status message
is retrieved by calling the getResponseMessage(). The getResponseMessage() method
returns a string containing the status message. The following code segment illustrates
how to retrieve the response code and response message from within a MIDlet:

HttpConnection connection = (HttpConnection)

Connector.open("http://www.myserver.com/inventory.dat");

System.out.println(connection.getResponseCode());

System.out.println(connection.getResponseMessage());

The response header contains header fields and related values similar to the
request header discussed previously in this section of the chapter. You can retrieve a
header field or field value by calling methods of the HttpConnection class. The most
commonly used methods to retrieve the value of a header field are two versions of the
getHeaderField() method. The first version retrieves the value by referencing the index
of the header field, which is passed to the getHeaderField() as an int. Each header field
is assigned an index beginning with zero in the order in which the header field was
entered into the header. Therefore, getHeaderField(0) retrieves the value of the first
header field of the response header.

The second version of the getHeaderField() retrieves the value of a header field by
referencing the name of the header field, which is passed as a string to the getHeaderField()
method as a parameter.

600 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

Status Code Category Description

100–199 Information

200–299 Success

300–399 Redirection

400–499 Client Error

500–599 Server Error

Table 13-4. Response Status Code Categories

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 3 : G e n e r i c C o n n e c t i o n F r a m e w o r k 601

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

J2
M

E
N

ETW
O

R
K

IN
G

A
N

D
W

EB
S
ER

V
IC

ES

You can retrieve the name of a header field by calling the getHeaderFieldInt()
method and passing it a string that contains the name of the header field. Likewise,
you can retrieve the name of a header field by calling the getHeaderFieldKey() and
passing it an int that represents the index of the header field.

Three useful header fields that are typically included in the response header are the
date, expiration, and last modified fields. These are fairly self-explanatory: date contains
the date when the header was created. Expiration is the date when information contained
in the header is no longer valid. And the last modified field is the date when values in
the header changed. You can retrieve these dates by calling the getDate() method,
getExpiration() method, and getLastModified() method. All three return the date as a long.

Besides predefined response header fields, a response header can also include
customized header fields. Customized header fields are application specific, and their
values are generated by the server-side process. The value assigned to a customized
header field is retrieved by calling the getHeaderField() method, as described previously
in this section.

The third component of a response entity is the body, which contains the information
that the client requested from the server. HttpConnection does not contain methods for
reading the body of a response entity because you read the body as illustrated previously
in this chapter in the “Reading Data from an HTTP Connection” section.

Using HttpConnection in a MIDlet
Listing 13-7 illustrates how to create a MIDlet to send an HTTP request and read
an HTTP response, including the body of the response, from a server. Listing 13-8
contains the JAD file for Listing 13-7. The MIDlet sets the request method to GET
and then retrieves a text file from the server, which is displayed on the console.

Listing 13-7 begins by creating and displaying a form containing Start and Exit
command buttons. The form is displayed when the startApp() method is called.
The commandAction() method responds to the selection of either the Exit or Start
command. When the Start command is selected, the MIDlet creates references for an
HttpConnection and InputStream and then calls the open() method of the Connector
to open an HTTP connection to www.myserver.com/myinfo.txt.

Once the connection is opened, the MIDlet tells the server that the GET request
method is being used for the transmission by calling the setRequestMethod() and
passing it the Http.Connection.GET field. Next, the value of the Content-Type HTTP
header field is set to //text/plain by passing the appropriate parameters to the
setRequestProperty() method.

The last step in sending the HTTP request is to call the setRequestProperty() method
again to close the connection. The MIDlet requests that the connection be closed after the
request is received, by setting the value of the Connection HTTP header field to close and
passing those values to the setRequestProperty() method. The value of the Connection
HTTP header field is then set to close, which tells the server to close the connection once
the request is received. It is wise to close the connection explicitly because in a real-
world application the connection to the server is reused for other requests. Closing
the connection when you no longer require it enables the connection to be reused.

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

602 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

The MIDlet then reads the HTTP response sent by the server. The HTTP response
consists of several components, which are discussed in the previous section. Components
can be read in any order, although the status line should be read first to determine the
status of the response.

The MIDlet calls the getResponseCode() method and getResponseMessage() method
to retrieve the status line code and status line message from the HTTP response. Both
are displayed on the console for illustrative purposes. If the server successfully fulfills
the request, the response code has the value of HTTP_OK; otherwise the request isn’t
fulfilled and the server sends a different response code. The MIDlet uses a conditional
expression in the if statement to determine whether the response code is equivalent
to HTTP_OK. If so, then the values of the selected HTTP header fields are read and
displayed on the console for illustrative purposes.

You don’t need to read HTTP header fields unless you require them to process the
HTTP response. The “Quick Reference Guide” section at the end of this chapter contains
a list of HttpConnection methods that you can use to retrieve connection information
from an HTTP response.

First, the header field and header key field are retrieved by passing the field index
to the getHeaderField() method and getHeaderFieldKey() method. Next, the date of
the header field is retrieved by passing the getHeaderField() method the name of the
header field.

The MIDlet then reads the body of the HTTP response. There are two techniques
for reading the body. First, you can read the entire contents of the body into an array,
which is possible only if the length of the content can be determined by the MIDlet.
If the length cannot be determined, the second technique is used to read each byte
of the contents of the body.

The MIDlet begins reading the body of the HTTP response by creating a string to
hold the contents and opening an input stream to read the contents. The input stream is
opened by calling the openInputStream method(). Once the input stream is opened, the
getLength() method is called to determine the length of the content of the body of the
HTTP response. The getLength() method returns an int that represents either the length
of the body or a –1, which means that the length cannot be established.

If the return value of getLength() is not a –1, the MIDlet proceeds to read the entire
contents of the body into an array. First, a byte array is created using the value returned
by the getLength() method to determine the size of the array. Next, the read() method is
called and passed the name of the byte array. The read() method copies the contents of
the body into the byte array. The byte array is then assigned to a string.

If the return value of getLength() is –1, the MIDlet cannot determine the size of the
content of the body and therefore must read the content a byte at a time. The MIDlet
begins this process by creating a ByteArrayOutputStream.

The read() method is called as a component of the conditional expression in the
while loop. The read() method returns a byte from the contents of the body of the HTTP
response, which is compared to –1. A –1 indicates the end of the stream. The MIDlet calls

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 3 : G e n e r i c C o n n e c t i o n F r a m e w o r k 603

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

J2
M

E
N

ETW
O

R
K

IN
G

A
N

D
W

EB
S
ER

V
IC

ES

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

Using an HttpConnection to Communicate with a Server
Here are the steps required to use an HttpConnection to communicate with
a server:

1. Declare references.

2. Obtain a reference to the instance of the Display class.

3. Create an instance of a Command class to exit the MIDlet.

4. Create an instance of a Command class to start the MIDlet.

5. Create an instance of the Form class.

6. Associate the instance of the Command class to the instance of the Form class.

7. Associate a CommandListener with the instance of the Form class.

8. Display the instance of the Form class on the screen.

9. If the Start command is selected, create an HttpConnection reference and
an InputStream reference.

10. Open an HTTP connection.

11. Set the request method and required properties.

12. Set the Connection field to close.

13. Read the response code and response message, and print them to the console.

14. If HttpConnection.HTTP_OK is received, read header fields and the header
field key, and display them on the console.

15. Open the input stream and determine the number of bytes to be read from
the input stream (length).

16. If the length of the input stream cannot be determined, create a byte array
the size of the length of the input stream.

17. Read bytes from the input stream into the byte array.

18. Assign the byte array to a string.

19. If the length of the input stream can be determined, create a
ByteArrayOutputStream.

20. Read each byte from the input stream and into the
ByteArrayOutputStream.

21. Assign the ByteArrayOutputStream to a string.

22. Close the byte stream.

23. Print the string to the console.

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the write() method to write the byte from the content to the ByteArrayOutputStream
until the end of the stream is read, at which time the ByteArrayOutputStream is assigned
to a string and then closed.

The string containing the contents of the body of the HTTP response is then displayed
on the console. In a real-world application, a MIDlet is likely to process the content further
rather than display the contents on the console. The nature of this processing is application
dependent. Both the input stream and the HttpConnection are closed within the final try {}
block as long as each was opened successfully.

input javax.microedition lcdui.*

import javax.microedition.midlet.*;

import javax.microedition.io.*;

import java.io.*;

public class httpconnection extends MIDlet implements CommandListener {

private Command exit, start;

private Display display;

private Form form;

public httpconnection ()

{

display = Display.getDisplay(this);

exit = new Command("Exit", Command.EXIT, 1);

start = new Command("Start", Command.EXIT, 1);

form = new Form("Http Connection");

form.addCommand(exit);

form.addCommand(start);

form.setCommandListener(this);

}

public void startApp()

{

display.setCurrent(form);

}

public void pauseApp()

{

}

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

604 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

24. Trap errors thrown during this process.

25. If the Exit command is selected, terminate the MIDlet.

26. Trap exceptions thrown within the commandAction() method.

27. If the MIDletStateChangeException is thrown, indicate that conditions
are now safe to terminate the MIDlet by assigning a true value to the
exit flag variable.

28. Terminate the MIDlet when the Exit command is entered the second time.

Listing 13-7
Using an

HttpConnec-
tion to com-

municate
with a server

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

public void destroyApp(boolean unconditional)

{

destroyApp(false);

notifyDestroyed();

}

public void commandAction(Command command, Displayable displayable)

{

if (command == exit)

{

destroyApp(false);

notifyDestroyed();

}

else if (command == start)

{

HttpConnection connection = null;

InputStream inputstream = null;

try

{

connection = (HttpConnection) Connector.open("http://www.myserver.com/myinfo.txt");

//HTTP Request

connection.setRequestMethod(HttpConnection.GET);

connection.setRequestProperty("Content-Type","//text plain");

connection.setRequestProperty("Connection", "close");

// HTTP Response

System.out.println("

Status Line Code: " + connection.getResponseCode());

System.out.println(

"Status Line Message: " + connection.getResponseMessage());

if (connection.getResponseCode() == HttpConnection.HTTP_OK)

{

System.out.println(

connection.getHeaderField(0)+ " " + connection.getHeaderFieldKey(0));

System.out.println(

"Header Field Date: " + connection.getHeaderField("date"));

String str;

inputstream = connection.openInputStream();

int length = (int) connection.getLength();

if (length != -1)

{

byte incomingData[] = new byte[length];

inputstream.read(incomingData);

str = new String(incomingData);

}

else

{

ByteArrayOutputStream bytestream =

new ByteArrayOutputStream();

C h a p t e r 1 3 : G e n e r i c C o n n e c t i o n F r a m e w o r k 605

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

J2
M

E
N

ETW
O

R
K

IN
G

A
N

D
W

EB
S
ER

V
IC

ES

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

606 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

int ch;

while ((ch = inputstream.read()) != -1)

{

bytestream.write(ch);

}

str = new String(bytestream.toByteArray());

bytestream.close();

}

System.out.println(str);

}

}

catch(IOException error)

{

System.out.println("Caught IOException: " + error.toString());

}

finally

{

if (inputstream!= null)

{

try

{

inputstream.close();

}

catch(Exception error)

{

/*log error*/

}

}

if (connection != null)

{

try

{

connection.close();

}

catch(Exception error)

{

/*log error*/

}

}

}

}

}

}

MIDlet-Name: httpconnection

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

Listing 13-8
The JAD

file for
Listing 13-7

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

MIDlet-Jar-URL: httpconnection.jar

MIDlet-1: httpconnection, , httpconnection

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

Sending Data Along with an HTTP Request
Typically, an HTTP request to a server is accompanied by information needed by the
server to process the request. A case in point is when a server must authenticate a client
using the client’s user ID and password. The client sends the user ID and password
along with the HTTP request. Data sent to a server must be in a pair value set, where
the first element in the pair value is the field name and the second element is the value
associated with the field. The field name and value must be separated by an equal sign.

One of two techniques is used to send data to the server depending on whether the
GET or POST request method is used for transmission. The GET request method requires
that data be concatenated to the URL of the server. The POST request method requires that
each pair value be written to the output stream.

The following code segment illustrates how to send data using the GET request
method. The URL includes the name of the program that executes on the server to process
the data associated with the request. A Java Servlet called my.LoginServlet processes this
request by reading both pair value sets sent to the server. The pair value sets are sent as
a query string that is separated from the URL by a question mark. Each pair value set is
separated from other pair value sets by an ampersand (&).

HttpConnection http = (HttpConnection)

Connector.open("

http://www.myserver.com/my.LoginServlet?UserID=jim&password=keogh;

The next code segment shows how to send data using the POST request method. In
this example, each pair value is assigned to a byte array. The byte array is then written
to the output stream by calling the write() method. The flush() method is called after
the last pair value set is written.

byte data[] = ("userID=jim");

outputstream.write(data);

data = ("&password=Keogh");

outputstream.write(data);

outputstream.flush();

C h a p t e r 1 3 : G e n e r i c C o n n e c t i o n F r a m e w o r k 607

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

J2
M

E
N

ETW
O

R
K

IN
G

A
N

D
W

EB
S
ER

V
IC

ES

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

Session Management
A key drawback of HTTP communication is the lack of persistence. HTTP is a stateless
protocol, and there is no record of an HTTP transaction once a server responds to a
client. The lack of state becomes a concern if multiple related HTTP transactions occur
during the same session. This is the case in an order entry application. A session is
created for one order. A separate HTTP transaction occurs each time an item is placed
in the shopping cart and when the order is presented to the customer at the checkout
counter. Items in the shopping cart are stored on the server. The checkout process
summarizes items in the shopping cart and completes the transaction. Therefore, the
server needs a way to associate an HTTP request with a session in order to properly
relate data stored on the server, which is called session tracking.

It is critical that each HTTP transaction is related to a specific session, especially
if the server is processing thousands of orders daily. Although HTTP does not have
the built-in capability to conduct HTTP transactions within a session, you can work
around this problem by managing the session yourself. Two techniques are used to
manage an HTTP session—rewriting the URL and using cookies. Rewriting the URL
requires that a session identifier be written to a customized HTTP response header
field. The server generates a session identifier when the initial request is received
from the client. The URL of the server is modified to include the session identifier
and is returned to the client as the value of a custom HTTP header field. The client
copies the value of the field, appends new data to the end of the URL, and uses the
new URL to open an HTTP connection to the server.

A session begins when a client sends an HTTP request to the server. The URL
specified in the request contains the domain name followed by the name of the
server-side application that will process the request, which you learned previously
in this chapter. The client appends a query string to the end of the full URL if the
client uses the GET request method. The server-side application generates a session
ID, appends the session ID to the full URL (minus the query string), and writes the
revised URL to a custom HTTP response field. The HTTP response is then returned
to the client.

Let’s assume that the custom HTTP response field is called SessionIDURL. The client
reads this field by calling the getHeaderField() method, as shown in the following code
segment. The getHeaderField() method returns the string value of the HTTP response
field, which you learned about earlier in this chapter.

String url = http.getHeaderField("SessionIDURL");

The client retains this value while waiting for another item to be entered by the user.
The next item entered by the user is appended to the modified URL as a query string and
used to open the connection to the server. The following code segment illustrates how

608 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

this is done. In this example, the pair value Prod=012345 represents the product number
of the next item.

HttpConnection connection = (HttpConnection)

Connector.open(url + "?" + "Prod=012345");

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

J2
M

E
N

ETW
O

R
K

IN
G

A
N

D
W

EB
S
ER

V
IC

ES

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

C h a p t e r 1 3 : G e n e r i c C o n n e c t i o n F r a m e w o r k 609

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

Downloading an Image
From time to time, you will need to download an image from a server. The processing
for downloading an image is very similar to processes discussed previously in the
chapter for downloading files. However, the MIDlet needs to perform a few additional
steps when downloading an image.

Begin by opening a ContentConnection specifying the full path to the image
in the URL, as illustrated in this code segment. This example opens a connection
to the my.png image located in the image directory on www.myserver.com.

ContentConnection connection = (ContentConnection)

Connector.open("http://www.myserver.com/image/my.png");

Next you’ll need to open an input stream and call the read() method to read
each byte of the file from the input stream and write the byte to a byte array output
stream. The byte array output stream is then passed to the createImage() method,
which transforms the byte array output stream into an image. These steps are
illustrated in the following code segment:

InputStream inputstream = (InputStream)

Connector.openInputStream(connection);

try

{

ByteArrayOutputStream bytearray = new ByteArrayOutputStream();

int ch;

while ((ch = inputstream.read()) != -1)

{

bytearray.write(ch);

}

byte imagearray[] = bytearray.toByteArray();

// Create the image from the byte array

Image image = Image.createImage(imagearray, 0, imagearray.length);

}

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

610 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

Remember that the modified URL received from the server already has reference
to the server-side application that will process the request. The server-side application
uses the session ID to associate the newly ordered item with other items ordered
during the same session.

Cookies
The other alternative to managing an HTTP session is to use a cookie. A cookie is a pair
value in the HTTP response field and an HTTP request field that contains the session
ID generated by the server-side application.

The session begins when the server receives the client’s request. The server generates
the session ID, assigns the session ID to the cookie HTTP response field, and then sends the
response to the client. The client retrieves and temporarily retains the session ID and then
processes the response from the server. The cookie pair value is then written as an HTTP
request field in the next request to the server made by the client. The server-side application
retrieves the session ID, and the process is repeated until the client terminates the session.

Transmit as a Background Process
Rarely do any of us want to wait very long to send and receive transmissions. Most of
us want instant gratification. Unfortunately, network communications are sometimes
slow and unable to meet our expectations. Although you are at the mercy of the network
infrastructure for the speed of your transmission, you can improve the perception that
users have of your application by making transmissions a background process. Running
your application as a background process enables users to run another process while
transmission occurs in the background.

You can run an application as a background process by using a thread. Listing 13-9
illustrates how this is done. Listing 13-10 contains the JAD file for Listing 13-9.
Listing 13-9 is a skeleton of an application to which you’ll need to add code that
handles the transmission, which is discussed throughout this chapter. You’ll also need
to include the other process that runs in the foreground.

Two classes are defined in Listing 13-9. The first is the MIDlet and the other is the
Process class containing code for the transmission. The MIDlet class is very similar to
other MIDlets discussed in this chapter in that a form is created containing Start and
Exit command buttons. The Start button launches the background process and the
foreground process. Take a look at the start section of the commandAction() method and
you’ll notice that an instance of the Process class is created; then the start() method of
the instance is called to begin the background process as a thread. You place code that
starts the foreground process below the call to the start() method.

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The Process class defines the start() method. The start() method creates a thread and
then calls the start() method to run the thread. The run() method calls the transmit()
method. The transmit() method contains all the code to send or receive a transmission.

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import javax.microedition.io.*;

import java.io.*;

public class BackgroundProcessing extends MIDlet

implements CommandListener

{

private Display display;

C h a p t e r 1 3 : G e n e r i c C o n n e c t i o n F r a m e w o r k 611

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

J2
M

E
N

ETW
O

R
K

IN
G

A
N

D
W

EB
S
ER

V
IC

ES

Transmitting a Background Process
Here are the steps required to transmit a background process:

1. Declare references.

2. Obtain a reference to the instance of the Display class.

3. Create an instance of a Command class to exit the MIDlet.

4. Create an instance of a Command class to start the MIDlet.

5. Create an instance of the Form class.

6. Associate the instance of the Command class to the instance of the Form class.

7. Associate a CommandListener with the instance of the Form class.

8. Display the instance of the Form class on the screen.

9. Create a processing class that runs a thread and contains a method that
defines the background process.

10. If the Start command is selected, create an instance of the processing class.

11. Call the start() method of the processing class.

12. Call the foreground process.

13. If the Exit command is selected, terminate the MIDlet.

14. Trap exceptions thrown within the commandAction() method.

15. If the MIDletStateChangeException is thrown, indicate that conditions
are now safe to terminate the MIDlet by assigning a true value to the
exit flag variable.

16. Terminate the MIDlet when the Exit command is entered the second time.

Listing 13-9
Transmitting

as a
background

process

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

private Form form;

private Command exit;

private Command start;

public BackgroundProcessing()

{

display = Display.getDisplay(this);

form = new Form("Background Processing");

exit = new Command("Exit", Command.EXIT, 1);

start = new Command("Start", Command.SCREEN, 2);

form.addCommand(exit);

form.addCommand(start);

form.setCommandListener(this);

}

public void startApp()

{

display.setCurrent(form);

}

public void pauseApp()

{

}

public void destroyApp(boolean unconditional)

{

}

public void commandAction(Command command, Displayable displayable)

{

if (command == exit)

{

destroyApp(false);

notifyDestroyed();

}

else if (command == start)

{

Process process = new Process(this);

process.start();

//Do foreground processing here

}

}

}

class Process implements Runnable

{

private BackgroundProcessing MIDlet;

public Process(BackgroundProcessing MIDlet)

612 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

{

this.MIDlet = MIDlet;

}

public void run()

{

try

{

transmit ();

}

catch (Exception error)

{

System.err.println(error.toString());

}

}

public void start()

{

Thread thread = new Thread(this);

try

{

thread.start();

}

catch (Exception error)

{

}

}

private void transmit() throws IOException

{

//Place code here to receive or send transmission.

}

}

MIDlet-Name: BackgroundProcessing

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: BackgroundProcessing.jar

MIDlet-1: BackgroundProcessing, , BackgroundProcessing

MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

C h a p t e r 1 3 : G e n e r i c C o n n e c t i o n F r a m e w o r k 613

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

J2
M

E
N

ETW
O

R
K

IN
G

A
N

D
W

EB
S
ER

V
IC

ES

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

Listing 13-10
The JAD

file for
Listing 13-9

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

614 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

Quick Reference Guide
This quick reference guide provides an overview of classes used by J2ME for the GCF. Full
details of these classes and all Java classes and interfaces are available at java.sun.com.

javax.microedition.io.Connector Class

Method Description

static Connection open (string name) Open a connection in READ_WRITE mode,
where name is the connection identifier.

static Connection open(String name,
int mode)

Open a connection, where name is the
connection identifier and mode is the read/
write mode.

static Connection open(String name,
int mode, boolean timeouts)

Open a connection, where name is the
connection identifier, mode is the read/
write mode, and timeouts is a boolean value
indicating whether or not the connection can
time out.

static InputStream openInputStream
(String name)

Open an input stream.

static OutputStream
openOutputStream(String name)

Open an output stream.

static DataInputStream
openDataInputStream(String name)

Open a data input stream.

static DataOutputStream(String name) Open a data output stream.

javax.microedition.io.HttpConnection

Method Description

void setRequestMethod(String method) Set the request method to either GET, POST,
or HEAD.

void setRequestProperty(String key,
String value)

Set the header information, where key is the
field name in the HTTP header, and value is
the new value assigned to the field.

String getRequestMethod() Retrieve the request method.

String getRequestProperty(String key) Retrieve the current value of the HTTP field,
where key is a string containing the name of
the field.

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

javax.microedition.io.HttpConnection Class

Method Description

int getResponseCode() Retrieve the response status line code.

String getResponseMessage() Retrieve the response status line message.

javax.microedition.io.HttpConnection Class

Method Description

String getHeaderField (int n) Retrieve the value of the header field whose
index value is represented as n.

String getHeaderField(String name) Retrieve the value of the header field whose
header field name is contained in name.

long getHeaderFieldDate(String name,
long deft)

Retrieve the header field date, where the field
name is represented by name and the date is
represented by deft.

int getHeaderFieldInt(String name, int def) Retrieve the index of the field name identified
as name.

String getHeaderFieldKey (int n) Retrieve the name of the field using the field
name index represented by n.

long getDate() Retrieve the header field date.

long getExpiration() Retrieve the expiration of the header field.

long getLastModified() Retrieve the date when the header field was
modified.

javax.microedition.io.HttpConnection

Method Description

String getFile() Retrieve the file name from the URL.

String getHost() Retrieve the host from the URL.

int getPort() Retrieve the port from the URL.

String getProtocol() Retrieve the protocol from the URL.

String getQuery() Retrieve the query string if the GET request
method is used.

String getRef() Retrieve the reference portion of the URL.

String getURL() Retrieve the complete URL.

C h a p t e r 1 3 : G e n e r i c C o n n e c t i o n F r a m e w o r k 615

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 13

J2
M

E
N

ETW
O

R
K

IN
G

A
N

D
W

EB
S
ER

V
IC

ES

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9
Blind Folio 616

P:\010Comp\CompRef8\710-9\ch13.vp
Thursday, February 06, 2003 1:28:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Chapter 14
Web Services

617

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 14

P:\010Comp\CompRef8\710-9\ch14.vp
Thursday, February 06, 2003 10:12:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

With IT cost escalating, IT departments are always on the hunt for ways to reduce
cost without negatively affecting operations. A key target for cost savings is
removing unnecessary redundancy within an organization, such as duplicate

routines in software applications. A duplicate routine is stealthy in that no one can see
its drain on IT resources.

Web services offer a new approach to designing a cost-effective infrastructure by
organizing commonly used routines into services that can be invoked by any application
that needs them. Let’s say that multiple applications need to perform a credit check
on customers. The credit check routine can be a web service called by each application,
rather than a routine built into each application. This not only reduces redundancy
of code but also eliminates the need to modify multiple routines whenever the credit
check routines are modified.

A web services infrastructure consists of a client and a web service. A client is
software that requests a web service. A J2ME MIDlet is capable of becoming a web
service client and can access any web service that it is authorized to use within a
corporate web services infrastructure. You’ll learn about web services in this chapter
and how to make your MIDlet a web services client. You’ll need to pick up a copy
of J2EE: The Complete Reference (McGraw-Hill/Osborne, 2002) if you want to learn how
to create a web service. Web services are built using J2EE technology because J2EE
addresses the complex issues that a programmer faces when developing a large-scale
distributive system.

Web Services Basics
A common misunderstanding regarding web services is that the “web” component
comes from the relationship between web services and the Internet. This isn’t true.
Web services are a web of software building blocks (routines) that are available on a
network from which programmers can efficiently create large-scale distributive systems.

Three standards were developed with the introduction of web services: Web Services
Description Language (WSDL), Universal Description, Discovery, and Integration
(UDDI), and Simple Object Access Protocol (SOAP). Programmers use WSDL to publish
their web service, thereby making the web service available to other programmers
over the network. They use UDDI to locate web services that have been published and
SOAP to invoke a particular web service.

The Tier
Numerous web services are used in a typical large-scale distributive system, and
each service is associated with a tier in the multi-tier architecture that is used to share
resources over a corporate infrastructure. A tier is an abstract concept that defines
a group of technologies that provide one or more services to clients. One way to
understand a tier structure’s organization is to draw a parallel to a typical large corporation
(see Figure 14-1).

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 14

618 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 14

P:\010Comp\CompRef8\710-9\ch14.vp
Thursday, February 06, 2003 10:12:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

At the lowest level of a corporation, facilities services consist of resources necessary
to maintain the office building. Facilities services encompass a wide variety of resources
that typically include electricity, ventilation, elevator services, computer network
services, and telephone service. The next tier in the organization contains services such
as accounting, supplies, computer programming, and other resources that support
the main activity of the company. Above the support tier is the production tier, which
has resources necessary to produce the products and services sold by the company.
And in our example the highest tier is the marketing tier, consisting of resources used
to determine the products and services to sell to customers.

Any resource is considered a client when it sends a request for service to a service
provider (also referred to as a service). A service is any resource that receives and
fulfills a request from a client. And that resource itself might have to make requests to
other resources to fulfill a client’s request. Let’s say that a product manager working
at the marketing tier decides the company could make a profit by selling customers a
widget. The product manager requests an accountant to conduct a formal cost analysis
of manufacturing a widget. The accountant is on the support tier of the organization.
The product manager is the client, and the accountant is the service. However, the
accountant requires information from the manufacturing manager to fulfill the product
manager’s request. The manufacturing manager works on the production tier of the
organization. The accountant is the client to the manufacturing manager, who is the
service to the accountant.

In multi-tier architecture, each tier contains services that include software objects,
database management systems (DBMSs), or connectivity to legacy systems. Information

C h a p t e r 1 4 : W e b S e r v i c e s 619

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 14

J2
M

E
N

ETW
O

R
K

IN
G

A
N

D
W

EB
S
ER

V
IC

ES

Figure 14-1. Resources of a large corporation are typically organized into a
tier structure that operates similarly to the tier structure used
in distributed systems.

P:\010Comp\CompRef8\710-9\ch14.vp
Thursday, February 06, 2003 10:12:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

technology departments of corporations employ multi-tier architecture because it is
a cost-efficient way to build an application that is flexible, scalable, and responsive to
the expectations of clients. The functionality of the application is divided into logical
components associated with a tier. Each component is a service that is built and maintained
independently of other services. Services are bound together by a communication protocol
that enables a service to receive and send information from and to another service.

A client is concerned about sending a request for service and receiving results from
a service. A client isn’t concerned about how a service provides the results. This means
that a programmer can quickly develop a system by creating a client program that
formulates a request to services that already exist in the multi-tier architecture. These
services already have the functionality built into them to fulfill the request made by
the client program.

Services can be modified as changes occur in the functionality without affecting
the client program. For example, a client might request the tax owed on a specific order.
The request is sent to a service that has the functionality to determine the tax. The business
logic for calculating the tax resides within the service. A programmer can modify the
business logic in the service to reflect the latest changes in the tax code without having
to modify the client program. These changes are hidden from the client program.

Clients, Resources, and Components
Multi-tier architecture is composed of clients, resources, components (web service), and
containers (see Figure 14-2). A client is a program that requests service from a component.
A resource is anything a component needs to provide a service. A component is part of
a tier and consists of a collection of classes or a program that performs a function to
provide the service. A container is software that manages a component and provides
a component with system services.

620 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 14

Figure 14-2. A multi-tier architecture consist of clients, resources, components,
and containers that are used by a programmer to create a distributive
system.

P:\010Comp\CompRef8\710-9\ch14.vp
Thursday, February 06, 2003 10:12:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 4 : W e b S e r v i c e s 621

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 14

J2
M

E
N

ETW
O

R
K

IN
G

A
N

D
W

EB
S
ER

V
IC

ES

The relationship between a container and a component is sometimes referred to
as a contract whose terms are governed by an application programming interface (API).
An API defines rules that a component must follow and the services a component
will receive from the container.

A container handles persistence, resource management, security, threading,
and other system-level services for components that are associated with the container.
Components are responsible for implementation of business logic. This means
programmers can focus on encoding business rules into components without becoming
concerned about low-level system services. This is an important concept in multi-tier
architecture because modification can be made to low-level security, for example,
without requiring any modification to a component. Only the container needs to be
modified by the programmer.

The relationship between a component and a container is very similar to the
relationship between a program and an operating system. The operating system provides
low-level systems services such as I/O to a program. Programs don’t need to be
modified if a new disk drive is installed in the computer. Instead, the operating system
is reconfigured to recognize the new disk drive.

Accessing Services
A client uses a client protocol to access a service associated with a particular tier. A
protocol is a standard method of communication that both a client and the tier/
component/resource understands. A number of protocols are used within a multi-tier
infrastructure because each tier/component/resource could use different protocols.

One of the most commonly implemented multi-tier architectures is used in web-
centric applications where browsers are used to interact with corporate online resources.
A browser is a client and requests a service from a web server using HTTP. In a typical
enterprise-wide application, a browser requests services from other components within
the infrastructure, such as a servlet. A servlet uses a resource protocol to access resources
necessary for the servlet to fulfill the request. For example, a servlet will use the JDBC
protocol to retrieve data from a DBMS. Pick up a copy of J2EE: The Complete Reference,
which will introduce you to specific protocols as you learn to build components and
use resources.

J2EE Multi-Tier Web Services Architecture
J2EE multi-tier web services architecture is a four-tier architecture (see Figure 14-3).
The four tiers are the Client Tier (sometimes referred to as the Presentation Tier or
Application Tier), Web Tier, Enterprise JavaBeans Tier (sometimes referred to as the
Business Tier), and the Enterprise Information Systems Tier. Each tier focuses on
providing a specific type of functionality to an application.

It is important to delineate between physical location and functionality. Two or
more tiers can physically reside on the same Java Virtual Machine, although each tier
provides a different type of functionality to an application. And since the J2EE multi-tier

P:\010Comp\CompRef8\710-9\ch14.vp
Thursday, February 06, 2003 10:12:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

web services architecture is functionality-centric, an application accesses only tiers
whose functionality it requires. It is also important to disassociate a J2EE API from a
particular tier. That is, some APIs (XML API, for example) and J2EE components can
be used on more than one tier, while others (Enterprise JavaBeans API, for example)
are associated with a particular tier.

The Client Tier consists of programs that interact with the user. These programs
prompt the user for input and then convert the user’s response into requests that are
forwarded to software on a component that processes the request and returns results
to the client program. The component can operate on any tier, although most requests
from clients are processed by components on the Web Tier. The client program also
translates the server’s response into text and screens that are presented to the user.

The Web Tier provides Internet functionality to an application. Components that
operate on the Web Tier use HTTP to receive requests from and send responses to
clients that could reside on any tier. A client is any component that initiates a request,
as explained previously in this chapter.

For example (see Figure 14-4), a client’s request for data that is received by a component
working on the Web Tier is passed by the component to the Enterprise JavaBeans Tier,
where an Enterprise JavaBean working on this tier interacts with a DBMS to fulfill the
request. Requests are made to the Enterprise JavaBeans by using the Java Remote
Method Invocation (RMI) API. The requested data is then returned by the Enterprise
JavaBeans, where the data is then forwarded to the Web Tier, and then relayed to the
Client Tier where the data is presented to the user.

The Enterprise JavaBeans (EJB) Tier contains the business logic for applications.
One or more Enterprise JavaBeans reside on this tier, each encoded with business rules

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 14

622 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 14

Figure 14-3. J2EE multi-tier web services architecture consists of four tiers, each
of which focuses on providing specific functionality to an application.

P:\010Comp\CompRef8\710-9\ch14.vp
Thursday, February 06, 2003 10:12:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

that are called upon indirectly by clients. The EJB Tier is the keystone to every application
because Enterprise JavaBeans working on this tier enable multiple instances of an
application to access business logic and data concurrently so as not to impede performance.

Enterprise JavaBeans are contained on the Enterprise JavaBeans server, which is
a distributed object server that works on the EJB Tier. It manages transactions and
security, and assures that multi-threading and persistence are properly implemented
whenever Enterprise JavaBeans are accessed.

Although Enterprise JavaBeans can access components on any tier, they typically
access components and resources such as a DBMS on the Enterprise Information System
(EIS) Tier. Access is made using an Access Control List (ACL) that controls communication
between tiers. The ACL is a critical design element in the J2EE multi-tier web services
architecture because it bridges tiers that are typically located on different virtual local
area networks and adds a security level to web applications. Hackers typically focus
their attack on the Web Tier to try to directly access the DBMS. ACL prevents direct
access to DBMSs and similar resources.

The EIS Tier links an application to resources and legacy systems that are available
on the corporate backbone network. This is where an application directly or indirectly
interfaces with a variety of technologies, including DBMSs and mainframes that are
part of the mission-critical systems keeping the corporation operational. Components
that work on the EIS Tier communicate with resources using CORBA or Java connectors
referred to as J2EE Connector Extensions.

C h a p t e r 1 4 : W e b S e r v i c e s 623

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 14

J2
M

E
N

ETW
O

R
K

IN
G

A
N

D
W

EB
S
ER

V
IC

ES

Figure 14-4. A request is typically passed from one tier to another before the
request is fulfilled.

P:\010Comp\CompRef8\710-9\ch14.vp
Thursday, February 06, 2003 10:12:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Client Tier Implementation
The two components on the Client Tier are applet clients and application clients
(J2ME MIDlet). An applet client is a component used by a web client that operates
within the applet container, which is a Java-enabled browser. An applet uses the
browser as a user interface.

An application client is a Java application that operates within the application
client container, which is the Java 2 Runtime Environment, Standard Edition (JRE).
An application has its own user interface and is capable of accessing all the tiers in
the multi-tier architecture, depending on how the ACLs are configured. Typically,
an application has access only to the web layer.

A rich client is a third type of client but is not considered a component of the Client
Tier because a rich client can be written in a language other than Java. A rich client is
similar to an application client in that both contain their own user interface. And as
with an application client, a rich client can access any tier in the environment (depending
on the ACL configuration), using HTTP, SOAP, ebXML, or an appropriate protocol.

Classification of Clients
Besides being defined as an applet client, application client, or a rich client, clients are
also classified by the technology used to access components and resources associated
with each tier. There are five classifications: a web client, Enterprise JavaBeans client,
Enterprise Information System (EIS) client, web service peers, and a multi-tier client.

A web client consists of software—usually a browser—that accesses resources located
on the Web Tier. These resources typically consist of web pages written in HTML or
XML. However, a web client can also access other kinds of information located on the
Web Tier. Web clients communicate with Web Tier resources using either HTTP or
HTTPS (the Hyptertext Transfer Protocol, Secured), which is used to transfer encrypted
information.

Enterprise JavaBeans clients are similar to web clients in that they work on the
Client Tier and act as an interface between the application and the user. However,
an Enterprise JavaBeans client only accesses one or more Enterprise JavaBeans located
on the Enterprise JavaBeans Tier rather than resources on the Web Tier. This access
is made possible by using the RMI API. RMI handles communication between the
Enterprise JavaBeans client and the Enterprise JavaBeans Tier using either the Java
Remote Method Protocol (JRMP) or the Internet Inter-ORB Protocol (IIOP).

EIS clients act as the interface between users and resources located on the EIS Tier.
These clients use Java connectors, appropriate APIs, or proprietary protocols to utilize
resources such as DBMSs and legacy data sources.

A web service peer is a unique type of client because it is also a service that works
on the Web Tier. Technically, a web service peer forms a peer-to-peer relationship
with other components on the Web Tier rather than a true client/server relationship.
However, a web service peer is commonly referred to as a client because it requests
service from other components on the Web Tier, although a web service peer can also

624 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 14

P:\010Comp\CompRef8\710-9\ch14.vp
Thursday, February 06, 2003 10:12:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

access other tiers. Typically, a web service peer makes requests over HTTP using either
electronic business XML or SOAP.

Multi-tier clients are conceptually similar to a web service peer, except they access
components located on tiers other than the tier where the multi-tier client resides. Multi-
tier clients typically use the Java Message Service (JMS) to communicate asynchronously
with other tiers.

Web Tier Implementation
The Web Tier has several responsibilities in the J2EE multi-tier web services architecture,
all of which are provided to the Client Tier using HTTP. These responsibilities are to
act as an intermediary between components working on the Web Tier and other tiers
and the Client Tier. Intermediary activities include

■ Accepting requests from other software that are sent using POST, GET, and
PUT operations, which are part of HTTP transmissions

■ Transmitting data such as images and dynamic content

Two types of components work on the Web Tier. These are servlets and JavaServer
Pages (JSP), although many times they are proxied to the Application or EJB Tier. A
servlet is a Java class that resides on the Web Tier and is called by a request from a
browser client that operates on the Client Tier. A servlet is associated with a URL that
is mapped by the servlet container.

A request for a servlet contains the servlet’s URL and is transmitted from the Client
Tier to the Web Tier using HTTP. The request generates an instance of the servlet or
reuses an existing instance, which receives any input parameters from the Web Tier
necessary for the servlet to perform the service. Input parameters are sent as part of
the request from the client.

An instance of a servlet fulfills the request by accessing components/resources on
the Web Tier or on other tiers as necessary based on the business logic encoded in the
servlet. The servlet typically generates an HTML output stream that is returned to the
web server. The web server then transmits the data to the client. This output stream is
a dynamic web page.

JSP is similar to a servlet in that a JSP is associated with a URL and is callable from a
client, but it is different in several ways depending on the container that is used. Some
containers translate the JSP into a servlet the first time the client calls the JSP, which is
then compiled, and the compiled servlet is loaded into memory. The servlet remains
in memory. Subsequent calls by the client to the JSP cause the web server to recall the
servlet without translating the JSP and compiling the resulting code. Other containers
precompile a JSP into a .java file that looks like a servlet file, which is then compiled
into a Java class.

Business logic used by JSP and servlets is contained in one or more Enterprise
JavaBeans that are callable from within the JSP and servlet. The code is the same for

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 14

J2
M

E
N

ETW
O

R
K

IN
G

A
N

D
W

EB
S
ER

V
IC

ES
C h a p t e r 1 4 : W e b S e r v i c e s 625

P:\010Comp\CompRef8\710-9\ch14.vp
Thursday, February 06, 2003 10:12:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

626 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 14

both JSP and servlet, although the format of the code differs. JSP uses custom tags to
access Enterprise JavaBeans, while servlets can access Enterprise JavaBeans directly.
You can learn how to create and use servlets in J2EE: The Complete Reference.

Enterprise JavaBeans Tier Implementation
J2EE uses distributive object technology to enable Java developers to build portable,
scalable, and efficient applications that meet the 24x7 durability expected from an
enterprise system. The Enterprise JavaBeans Tier contains the Enterprise JavaBeans
server, which is the object server that stores and manages Enterprise JavaBeans.

The EJB Tier is a vital element in the J2EE multi-tier web services architecture
because it provides concurrency, scalability, life cycle management, and fault tolerance.
This tier automatically handles concurrency issues to assure that multiple clients have
simultaneous access to the same object. The EJB Tier is where some vendors include
features that enable scalability of an application because the tier is designed to work in
a clustered environment. This assumes that vendor components that are used support
clustering. If not, a Local Director is typically used for horizontal load balancing.

The Enterprise JavaBeans Tier manages instances of components. This means
component containers working on the EJB Tier create and destroy instances of components
and also move components in and out of memory.

Fault tolerance is an important consideration in mission-critical applications. The
EJB Tier is also where some vendors include features that provide fault-tolerant operation
by making it possible to have multiple Enterprise JavaBeans servers available through
the tier. This means backup Enterprise JavaBeans servers can be contacted immediately
upon the failure of the primary server.

The Enterprise JavaBeans server has an Enterprise JavaBeans container within
which is a collection of Enterprise JavaBeans. As discussed in previous sections of this
chapter, Enterprise JavaBeans are classes that contain business logic and are callable
from a servlet or JSP.

Collectively, the Enterprise JavaBeans server and Enterprise JavaBeans container
are responsible for low-level system services required to implement business logic of
an Enterprise JavaBean. These system services are

■ Resource pooling
■ Distributed object protocols
■ Thread management
■ State management
■ Process management
■ Object persistence
■ Security
■ Deploy-time configuration

P:\010Comp\CompRef8\710-9\ch14.vp
Thursday, February 06, 2003 10:12:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

A key benefit of using the Enterprise JavaBeans server and container technology
is that this technology makes proper use of a programmer’s expertise. That is, a
programmer who specializes in coding business logic isn’t concerned about coding
system services. Likewise, a programmer whose specialty is system services can focus
on developing system services and not be concerned with coding business logic.

Any component, regardless of the tier where it is located, can use Enterprise JavaBeans.
This means that an Enterprise JavaBean client can reside outside the client tier. The
protocol used to communicate between the Enterprise JavaBeans Tier and other tiers
is dependent on the protocol used by the other tier.

Components on the Client Tier and the Web Tier communicate with the Enterprise
JavaBeans Tier using the Java RMI API and either IIOP or JRMP. Sometimes software
on other tiers, usually the middle tier, uses JMS to communicate with the EJB Tier. This
communication isn’t exclusively used to send and receive messages between machines.
JMS is also used for other communication, such as decoupling tiers using the queue
mechanism.

However, the Enterprise JavaBean that is used must be a message-driven bean
(MDB). MDBs are commonly used to process messages on a queue that may or may
not reside on the local machine. You’ll learn more about MDB by reading J2EE: The
Complete Reference.

Enterprise Information
Systems Tier Implementation
The Enterprise Information Systems (EIS) Tier is the J2EE multi-tier web services
architecture’s connectivity to resources that are not part of J2EE. These include a
variety of resources such as legacy systems, DBMSs, and systems provided by third
parties that are accessible to components in the J2EE infrastructure. This tier provides
flexibility to developers of applications because developers can leverage existing
systems and resources currently available to the corporation and do not need to replicate
them in J2EE.

Likewise, developers can utilize off-the-shelf software that is commercially available
in the marketplace because the EIS Tier provides the connectivity between an application
and non-J2EE software. This connectivity is made possible through the use of CORBA and
Java connectors or through proprietary protocols.

Java connector technology enables software developers to create a Java connector
for legacy systems and for third-party software. The connector defines all the elements
that are needed to communicate between the application and the non-J2EE software.
This includes rules for connecting to each other and rules for conducting secured
transactions. You’ll learn more on how these connections are created by reading J2EE:
The Complete Reference.

C h a p t e r 1 4 : W e b S e r v i c e s 627

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 14

J2
M

E
N

ETW
O

R
K

IN
G

A
N

D
W

EB
S
ER

V
IC

ES

P:\010Comp\CompRef8\710-9\ch14.vp
Thursday, February 06, 2003 10:12:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

628 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 14

XML
The Extensible Markup Language (XML) is used to create other languages that
define components of a document, called elements. Elements include the title page,
table of contents, index, and chapters, each of which conforms to a specific style.

In a relational database, data is described using metadata such as a column
name, column data type, and column size. XML is used to create metadata that
describes elements in a document, such as a book.

XML is similar in concept to the hypertext markup language (HTML) in that an
element is defined using tags and attributes. Tags and attributes are comparable to
the metadata of a relational database. XML simplifies data exchange by organizing
a document and standardizing data exchange.

An XML Schema contains the definition of the language created using XML
that consists of a definition of a customized set of tags. These tags are very similar
to HTML tags (tag names and attributes of these tags), except XML is specific to
the language created using XML. The XML Schema is referenced whenever the
document is accessed.

Elements defined in the XML Schema are used to create an XML document
such as a description of a web service. For example, you might define a tag called
RetailPrice in the XML Schema. There is a growing trend to standardize XML
Schemas such as when describing a web service. You’ll enclose the retail price
element of your document with the retail price tag as shown here:

<RetailPrice>$15.95</RetailPrice>

Browsers cannot read an XML document because they read HTML documents
that contain HTML tags and not XML tags. XML tags are displayed literally by
a browser as if tags are part of text that is displayed on the screen. However, an
XML-based document can be converted to an HTML document by server-side
software using an XML style sheet—referred to as Extensible Stylesheet Language
Transformation (XSLT). An XSLT contains rules used to translate each element
of the XML-based document into tags on an HTML page.

An XML parser is a program that transforms an XML document into a structure
that allows programmatic access to a document’s content. During the transformation
process, the XML parser reads the XML document and examines XML syntax, then
reports any syntax errors that are encountered. An XML parser is included in Internet
Explorer 5 and Netscape 6 browsers.

Two parsers are used to access a document’s content: the Document Object Model
(DOM) and the Simple API for XML (SAX), which is used by Java, C, and other
programming languages to programmatically use the content of an XML document.

P:\010Comp\CompRef8\710-9\ch14.vp
Thursday, February 06, 2003 10:12:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 4 : W e b S e r v i c e s 629

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 14

J2
M

E
N

ETW
O

R
K

IN
G

A
N

D
W

EB
S
ER

V
IC

ES

Inside WSDL
Organizations that either publish web services or consume web services must be able
to communicate with each other using an agreed-upon protocol. Protocols supported
by an organization are described using the Web Services Description Language
(WSDL). WSDL standardizes XML elements that describe a collection of communication
endpoints. A communication endpoint is a port that sends and receives messages. Web
services providers and web services consumers are endpoints in communication, each
of which has one or multiple ports. Each port is associated with a network address.
Collectively, ports of a web services provider or web services consumer are called a
network service.

WSDL defines a network service using seven XML elements. These are types,
message, operation, portType, binding, port, and service. The type element contains
data type definitions. The message element contains the data type of the data that is
being transmitted. The operation element describes an action supported by the network
service. The portType element defines operations supported by the web services provider.
The binding element specifies the protocol and data format for a port type. And the
service element contains other ports associated with the web services provider. Each
WSDL element is discussed in detail later in this chapter.

WSDL has binding extensions for popular protocols and message formats that
are positioned on top of the network service definition. These include SOAP 1.1, HTTP
GET/POST, and MIME. Other binding extensions can be used with WSDL.

The WSDL Document
The WSDL document should be organized into a set of three documents so that it can
be easily maintained and reused as necessary. The first document is the XML Schema,
which contains the Data Type Definition (DTD), as shown in Listing 14-1. The next
document contains abstract definitions and is shown in Listing 14-2. The third document
identifies service bindings and is illustrated in Listing 14-3.

This example illustrates a WSDL document set that is used to provide a product
pricing service to a trading partner. The XML Schema in Listing 14-1 identifies the target
namespace schemas located at mycompany.com/pricing.

The first element defined in the XML Schema is ProductPriceRequest, which is a
complex type that contains the child element called ProductID. ProductID is a string.
The other element defined in the XML Schema is called ProductPrice. ProductPrice is
also a complex type and has one child element called UnitPrice. UnitPrice is a float.

The next document in the set is the abstract definition called Pricing. The document
begins by identifying namespaces. You’ll notice that the XML Schema is incorporated
into the abstract definition document by using the import element. The import element
enables you to divide the WSDL document into a set of three documents and then
combine the set into one WSDL document by importing the other documents of the set.

P:\010Comp\CompRef8\710-9\ch14.vp
Thursday, February 06, 2003 10:12:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

630 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 14

The abstract definition document creates two message elements. The first
message element is called GetProductPriceInput, and the body of this message is the
ProductPriceRequest element. The other message element is called GetProductPriceOutput,
and the body of this message is the ProductPrice element. Both the ProductPriceRequest
element and the ProductPrice element are defined in the XML Schema.

Next the abstract definition document creates the portType element called
ProductPricePortType that contains one child element, which is called operation. The
operation element contains two child elements. These are the input element and the
output element. The input element message is the GetProductPriceInput element, and
the output element is the GetProductPriceOut element. Both of these elements are
defined in the message elements of the abstract definition document.

The last document in the WSDL document set is the service bindings, shown in
Listing 14-3. This document begins by identifying namespaces and then imports the
XML Schema and the abstract definition documents.

Next the document creates the ProductPriceSoapBinding element that is a
ProductPricePortType. ProductPricePortType is defined in the abstract definition
document. Within the binding element is the operations element that identifies the
location of GetProductPrice, which is used by the trading partner to obtain product
pricing. The document also creates a service element that identifies information about
the product pricing service offered by the business.

<?xml version="1.0"?>

<schema targetNamespace="http://mycompany.com/pricing/schemas"

xmlns="http://www.w3.org/2000/10/XMLSchema">

<element name="ProductPriceRequest">

<complexType>

<all>

<element name="ProductID" type="string"/>

</all>

</complexType>

</element>

<element name="ProductPrice">

<complexType>

<all>

<element name="UnitPrice" type="float"/>

</all>

</complexType>

</element>

</schema>

Listing 14-1
XML Schema

(Data Type
Definition)

P:\010Comp\CompRef8\710-9\ch14.vp
Thursday, February 06, 2003 10:12:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 4 : W e b S e r v i c e s 631

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 14

J2
M

E
N

ETW
O

R
K

IN
G

A
N

D
W

EB
S
ER

V
IC

ES

<?xml version="1.0"?>

<definitions name="Pricing"

targetNamespace="http://mycompany.com/pricing/definitions"

xmlns:tns="http://mycompany.com/pricing/definitions"

xmlns:xsd1="http://mycompany.com/pricing/schemas"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns="http://schemas.xmlsoap.org/wsdl/">

<import namespace="http://mycompany.com/pricing/schemas"

location="http://mycompany.com/pricing/pricing.xsd"/>

<message name="GetProductPriceInput">

<part name="body" element="xsd1:ProductPriceRequest"/>

</message>

<message name="GetProductPriceOutput">

<part name="body" element="xsd1:ProductPrice"/>

</message>

<portType name="ProductPricePortType">

<operation name="GetProductPrice">

<input message="tns:GetProductPriceInput"/>

<output message="tns:GetProductPriceOutput"/>

</operation>

</portType>

</definitions>

<?xml version="1.0"?>

<definitions name="pricing"

targetNamespace="http://mycompany.com/pricing/service"

xmlns:tns="http://mycompany.com/pricing/service"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:defs="http://example.com/stockquote/definitions"

xmlns="http://schemas.xmlsoap.org/wsdl/">

<import namespace="http://mycompany.com/pricing/definitions"

location="http://mycompany.com/pricing/pricing.wsdl"/>

<binding name="ProductPriceSoapBinding"

type="defs:ProductPricePortType">

<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="GetProductPrice">

<soap:operation soapAction=

Listing 14-3
Service

bindings

Listing 14-2
Abstract

definition

P:\010Comp\CompRef8\710-9\ch14.vp
Thursday, February 06, 2003 10:12:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

632 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 14

"http://mycompany.com/GetProductPrice"/>

<input>

<soap:body use="literal"/>

</input>

<output>

<soap:body use="literal"/>

</output>

</operation>

</binding>

<service name="ProductPriceService">

<documentation>Product pricing service</documentation>

<port name="ProductPricePort" binding="tns:ProductPriceBinding">

<soap:address location="http://mycompany.com/pricing"/>

</port>

</service>

</definitions>

Types Element
The types element of the WSDL document contains definitions of data types used
within the WSDL document message. WSDL uses XML Schema Definition (XSD) as
the canonical type system, so data types are independent of wire format.

WSDL also introduces flexibility when it comes to data type systems through the
use of extensibility elements. An extensibility element functions like the XML Schema
element in that the extensibility element identifies both the type definition system and
the XML container element for the type definition.

Message Element
The message element identifies the body of the WSDL document and is divided into
multiple sections, where each section is typed using an extensible message attribute.
Two of the commonly used message attributes are element and type. The element
attribute identifies the unique name of the message. The type is either simpleType
or complexType. You can create your own attributes as necessary. However, your
attributes must use a namespace other than the WSDL namespace.

A message is identified by a unique name assigned to the name attribute. The message
name must be unique among all messages within the same document. A message can
be divided into logical components, where each component is referred to as a message
part. Message parts are identified with the part element. Each part element must have
a unique name within the message. The name of the part element is identified by the
part element’s name attribute.

P:\010Comp\CompRef8\710-9\ch14.vp
Thursday, February 06, 2003 10:12:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

portType Element
The portType element is used to describe abstract operations and messages. This
element has a name attribute whose value uniquely identifies the portType element
within all the portTypes of the WSDL XML document.

The portType element has a child element called operation, which also has a name
attribute used to uniquely identify the operation within the portType element. The
portType uses one of four transmission primitives supported by an endpoint.

The first transmission primitive is one way and indicates that the endpoint supports
receiving a message. This is identified by using the wsdl:input element, as shown in
Listing 14-4. In this example, GetPricing is the name of the wsdl:input operation, and
ProductPricing is the message associated with this operation.

<wsdl:operation name="GetProductPricing">

<wsdl:input name="GetPricing"? message="InputProductPricing"/>

</wsdl:operation>

Next is the request-response transmission primitive that states the endpoint receives
and sends a responding message. This is illustrated in Listing 14-5. The operation is
called GetProductPricing, and ProductID is the parameterOrder.

The parameterOrder attribute is used with the request-response and solicit-response
transmission primitives to capture the function signature of the remote procedure call
that made the request. Although this example shows one parameter, there can be other
parameters, each separated by a space. Parameters do not need to be used by the operation.

There are three child elements within the operation. These are wsdl:input, wsdl:output,
and wsdl:fault. The wsdl:input element called GetPricing indicates that the endpoint
receives messages. The InputProductPricing message is associated with the input
operation. Next is the wsdl:output operation called SendPricing that indicates the endpoint
supports sending a reply message. OutputProductPricing is the message associated
with the output operation. The last operation is the wsdl:fault element that sets the default.
The default is used if the name attribute is not specified. The wsdl:fault element is called
DefaultPricing and is associated with the DefaultProductPricing message.

<wsdl:operation name=" GetProductPricing " parameterOrder="ProductID">

<wsdl:input name=" GetPricing "? message="InputProductPricing"/>

<wsdl:output name="SendPricing "? message="OutputProductPricing"/>

<wsdl:fault name="DefaultPricing" message="DefaultProductPricing"/>*

</wsdl:operation>

C h a p t e r 1 4 : W e b S e r v i c e s 633

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 14

J2
M

E
N

ETW
O

R
K

IN
G

A
N

D
W

EB
S
ER

V
IC

ES

Listing 14-4
One-way

transmission
primitive

Listing 14-5
Request-
response

transmission
primitive

P:\010Comp\CompRef8\710-9\ch14.vp
Thursday, February 06, 2003 10:12:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The third transmission primitive is solicit-response. The solicit-response transmission
primitive indicates that the endpoint sends a message and then receives a responding
message, and is structured the same as the request-response transmission primitive.

The final transmission primitive is notification, which states that the endpoint
sends a message. Listing 14-6 illustrates this structure. In this example, the wsdl:output
element called GetPricing is used and is associated with the OutputProductPricing
message.

<wsdl:operation name=" SendProductPricing ">

<wsdl:output name="GetPricing"? message="OutputProductPricing"/>

</wsdl:operation>

WSDL defines bindings for two of the four transmission primitives, the one-way
transmission primitive and the request-response transmission primitive.

Binding Element
The purpose of the binding element is to define details of protocols and message
format that are referenced in a portType element. Since a portType can have many
operations, there can be multiple binding elements for each portType described in
the WSDL XML document.

The binding element requires a name attribute whose value uniquely identifies the
binding in the WSDL XML document. The binding element is associated with a portType
through the binding element’s type attribute.

Within the binding element is the wsdl:operation child element. The wsdl:operation
element contains information necessary for binding operations specified in the portType.
Listing 14-7 illustrates how operations are specified in the wsdl:operation element of
the binding element.

You’ll notice that there are three operations. These are input, output, and the default
operation. Each operation is identified as an appropriate child element of the operation
element. You place the necessary information needed to bind each operation within its
operation element.

<wsdl:binding name="ProductPriceSoapBinding" type="ProductPricePortType">

<wsdl:operation name="GetProductPrice">

<wsdl:input name="GetProductPriceInput"? > ?

</wsdl:input>

<wsdl:output name="GetProductPriceOutput"? > ?

</wsdl:output>

<wsdl:fault name="GetProductPriceDefault">

</wsdl:fault>

</wsdl:operation>

</wsdl:binding>

634 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 14

Listing 14-6
Notification

transmission
primitive

Listing 14-7
The binding

element

P:\010Comp\CompRef8\710-9\ch14.vp
Thursday, February 06, 2003 10:12:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Port Element
Endpoints are identified by the wsdl:port element in the WSDL XML document. The
wsdl:port element is a child element of the wsdl:service element, and each port element
contains the URL of a binding. The wsdl:port element requires two attributes: the name
attribute and the binding attribute.

The value of the name attribute uniquely identifies the wsdl:port element within
the WSDL XML document. The value of the binding attribute identifies the binding
associated with the wsdl:port element. Listing 14-8 illustrates the wsdl:port element.
This example identifies the location for the ProductPriceBinding at the URL
mycompany.com/pricing.

< wsdl:port name="ProductPricePort" binding="tns:ProductPriceBinding">

wsdl:<soap:address location="http://mycompany.com/pricing"/>

</wsdl:port>

Service Element
The wsdl:port element is a child element of the wsdl:service element, as discussed
in the previous section. The wsdl:service element is used within a WSDL document
to group together related wsdl:port elements. The wsdl:service element is the child
element of the wsdl:definitions element.

The wsdl:definitions element can have multiple wsdl:service elements, each associated
with a group of ports. Therefore, you’ll need to use the name attribute to uniquely
identify each wsdl:service element contained in the wsdl:definitions element.

A port within a wsdl:service element is restricted from communicating with other
ports contained in the same wsdl:service element. Ports within a wsdl:service element
that share the same port type and have different binding URLs are semantically similar.
A trading partner can choose the appropriate port within the wsdl:service using a port’s
communication characteristics as criteria for the selection.

Listing 14-9 illustrates the use of the wsdl:service element within a WSDL document.
This example defines the wsdl:service called ProductPriceService that contains the
wsdl:port ProductPricePort, which was presented in the previous section.

<wsdl:service name="ProductPriceService">

<wsdl:port name="ProductPricePort" binding="tns:ProductPriceBinding">

<soap:address location="http://mycompany.com/pricing"/>

</wsdl:port>

</wsdl:service>

C h a p t e r 1 4 : W e b S e r v i c e s 635

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 14

J2
M

E
N

ETW
O

R
K

IN
G

A
N

D
W

EB
S
ER

V
IC

ES

Listing 14-8
The wsdl:port

element

Listing 14-9
The

wsdl:service
element

P:\010Comp\CompRef8\710-9\ch14.vp
Thursday, February 06, 2003 10:12:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

636 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 14

J2ME MIDlets and Web Services
A J2ME MIDlet can become a client of a web service but cannot be a web service because
a J2ME implementation typically lacks the resources required to be an endpoint. An
endpoint is a server-based application that provides a web service. A web service is
invoked by calling methods associated with the web service. For example, a web
service might have one method that is designed to retrieve the default price of a specified
product. Calling this method returns the default price of a product to the client.

A J2ME client uses remote method calls to invoke methods associated with web
services. The MIDlet cannot directly call a method of a web service. Instead, the MIDlet
must use a proxy, called a stub interface, that is used to interact with the web service.
A stub that corresponds to the web service must first be created before the MIDlet can
invoke the call. Information about the stub is contained within the WSDL description
of the web service.

At development time, you must use the wsdl2java tool provided by the
implementation. This tool reads the WSDL description of the web service and generates
the appropriate Java code that instantiates the stub for the web service. This is the same
tool used in JAX-RPC (see J2EE: The Complete Reference).

Let’s assume that the web service is called ProductInformation. An instance of the
stub associated with the ProductInformation web service is created by the following
statement. The instance of the stub becomes a proxy for the web service.

ProductInformation stub = new ProductInformation();

The instance of the stub can be used to set stub properties, such as login information
and the address of the web service, and can also be used to invoke methods associated
with the web service.

The following example sets a stub’s user ID property and then invokes a method
that retrieves recent sales data by region. Data returned by the getSalesByRegion()
method is assigned to a holder, which is an array. You’ll learn more about Holder
classes later in this chapter.

stub._setProperty(Stub.USER_ID_PROPERTY, "BSmith");

SalesByRegionHolder[] salesByRegion = stub.getSalesByRegion();

Both the generated stub and other artifacts generated with the stub, such as Holder
classes, must be included in the J2ME client application’s deployment bundle. In the
previous example, the Stub interface and the SalesByRegionHolder Holder class are
artifacts that must be included in the deployment bundle.

The remote method call uses the synchronous request-response mode when invoking
a web service, which is conceptually the same mode used in the client/server model.

P:\010Comp\CompRef8\710-9\ch14.vp
Thursday, February 06, 2003 10:12:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The client invocation thread is blocked until the remote method call responds with
either a return value or an exception. The return value might be void.

All parameters passed to remote method invocation are made by copy and not by
reference. The same is true of return values. This also means that the web service cannot
expect parameters to be passed by reference or values to be returned by reference. A
J2ME client wouldn’t be able to utilize any web service that requires passing by reference.

JAX-RPC
J2ME uses a subset of the JAX-RPC 1.9 specification to provide a Java API to
SOAP-based web services that is appropriate for the J2ME platform. The JAX-RPC
subset is suited for the restricted memory size, processing power, and deployment
environment, which has a low bandwidth and high latency.

The JAX-RPC subset run time is identical to the JAX-RPC 1.0 specifications. The
implementation supports static stub invocation using the Stub interface, which is
commonly referred to as a local stub base. However, there is no support for dynamic
proxies or a dynamic invocation interface (DII). Stubs that are generated use the
document style and literal use (documents/literal) mode. Although this is restrictive,
the document style and literal use mode simplify the implementation.

The implementation supports data types shown in Table 14-1. There is no support
for extensible type mapping. Table 14-2 shows the mapping of XML simple data types
to Java data types. XML data types are defined in the XML Schema.

Holder Classes
A Holder class is used in the mapping of WSDL operations to Java as a way of
preserving the intended WSDL operation signature and parameter. The JAX-RPC
subset specification contains Holder classes for simple XML data types and is
contained in the javax.xml.rpc.holders package. The name of the Holder class is the
concatenation of the name of the Java primitive type and the suffix Holder. The initial
letter of the Java type name is capitalized, as in IntegerHolder, and maps to the Java
primitive type int. Standard Holder classes specified in the javax.xml.rpc.holders
package are shown in Table 14-3.

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 14

J2
M

E
N

ETW
O

R
K

IN
G

A
N

D
W

EB
S
ER

V
IC

ES
C h a p t e r 1 4 : W e b S e r v i c e s 637

boolean byte short int

long string value types arrays of primitive
and value types

QName

Table 14-1. Data Types Supported by Web Services Implementation

P:\010Comp\CompRef8\710-9\ch14.vp
Thursday, February 06, 2003 10:12:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

A Holder class is also constructed for complex XML data types by concatenating
the name of the Java class with the prefix Holder, as in SalesByRegionHolder[].
A Holder class has a public field that corresponds to the Java type and a default
constructor that initializes the field value to a default value as specified in the Java
language specification. The constructor then sets the field value to the passed parameter.

638 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 14

XML Data Type Java Data Type

xsd:string java.lang.String

xsd:int int

xsd:long long

xsd:short short

xsd:boolean boolean

xsd:byte byte

xsd:QName javax.xml.namespace.QName

xsd:base64Binary byte[]

xsd:hexBinary byte[]

xsd:int java.lang.Integer

xsd:long java.lang.Long

xsd:short java.lang.Short

xsd:boolean java.lang.Boolean

xsd:byte java.lang.Byte

Table 14-2. XML Data Type to Java Data Type Mapping

BooleanHolder BooleanWrapperHolder ByteArrayHolder ByteHolder

ByteWrapperHolder IntHolder IntegerWrapperHolder LongHolder

LongWrapperHolder ObjectHolder QNameHolder ShortHolder

ShortWrapperHolder StringHolder

Table 14-3. Standard Holder Classes Specified in the javax.xml.rpc.holders Package

P:\010Comp\CompRef8\710-9\ch14.vp
Thursday, February 06, 2003 10:12:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Remote Method Invocation Concept
An application that operates under a JVM can invoke objects located on a different JVM
by using the Java Remote Method Invocation (RMI) system. RMI is used for remote
communication between Java applications and components (web services); it connects
a client and a server. A client is an application or component that requires the services
of an object to fulfill a request. A server creates an object and makes the object available
to clients. A client contacts the server to reference and invoke the object by using RMI.

RMI handles transmission of requests and provides the facility to load the object’s
bytecode, which is referred to as dynamic code loading. This means that the behavior of
an application can be dynamically extended by the remote JVM.

Remote Interface
Server-side objects that are invoked by remote clients must implement a remote
interface and associated method definitions. The remote interface is used by clients
to interact with an object using RMI communications. A remote interface extends
java.rmi.Remote, and each method must throw a RemoteException.

There are two stubs used in RMI: a local stub, which is the proxy, and a remote
stub called a skeleton. A client uses the local stub to interact with a remote object. The
skeleton on the web service receives the invocation from the local stub and in turn
invokes the web service’s method.

SOAP Basics
Simple Object Access Protocol (SOAP) was conceived in 1997 by three industry players:
a small software company called Userland Software, Microsoft, and DevelopMentor,
which is a Lucent spin-off. Together they set out to develop a communication protocol
that would meet three needs: ease of use, flexibility, and the forever-elusive interoperability.
Soon after the project began, they focused their attention on XML as the basis for the
new communication protocol. XML is straightforward to implement and extensible,
providing a structure for flexibility.

XML is the ideal language to use to implement the new communication protocol
because of its built-in data types defined in the XML Schema. Data types are used by
a communication protocol to define data transmissions. This meant that the team
developing SOAP didn’t have to reinvent data typing. Instead, they could adopt data
types defined in XML. XML defined all but the array data type.

It took the team a year to flesh out the details of the new protocol, and internal
squabbles at Microsoft hampered development. Delays frustrated some of the team
and resulted in a defection by Dave Winer. Winer created his own communication
protocol called XML-Remote Procedure Call (XML-RPC), which gained popularity
until the release of SOAP 1.0 in 2000.

C h a p t e r 1 4 : W e b S e r v i c e s 639

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 14

J2
M

E
N

ETW
O

R
K

IN
G

A
N

D
W

EB
S
ER

V
IC

ES

P:\010Comp\CompRef8\710-9\ch14.vp
Thursday, February 06, 2003 10:12:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

640 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 14

SOAP 1.0 used HTTP for transmitting messages sent using SOAP. Although HTTP is
a widely used transport protocol, specifying HTTP violated one of the key objectives of
SOAP—interoperability. SOAP shouldn’t be dependent on one transport protocol. SOAP
became fully independent with the introduction of SOAP 1.1. This meant that SOAP
messages could use any transport protocol, such as SMTP and FTP, as well as HTTP.

SOAP 1.1 addresses the concerns of the web services industry. However, it wasn’t
until the end of 2000 before the SOAP team caught the industry’s attention, when
Microsoft adopted SOAP as the communication protocol used with .NET technology.
The SOAP team submitted SOAP 1.1 to the World Wide Web Consortium (W3C),
the organization that adopts standards for the World Wide Web community. W3C
formed their own committee, which included Sun Microsystems, and set out to develop
specifications for a communication protocol based on SOAP 1.1. They adopted a
working draft for the new specification called SOAP 1.2.

SOAP Functionality
SOAP is a specification for a messaging system where data is represented as text and
defined as a data type. The text that contains this data is called a SOAP message, which
is written in XML. Besides transmitting data, SOAP also transmits metadata in the
SOAP message header. Anyone familiar with HTML and XML can read and understand
a SOAP message and if necessary use XML to modify the SOAP message. Tags are used
in XML to define data elements. Unlike HTML, XML enables you to create your own
XML tags. This is referred to as extensibility, which is critical to implement future
developments in SOAP technology.

SOAP is a stateless communication protocol. That is, data and the SOAP message
aren’t saved during the course of the transmission. For example, SOAP transmits a
request to invoke a remote procedure call to the service provider. The service provider
responds to the request in a return SOAP message to the calling party. The relationship
between the sender and receiver no longer exists once the client receives the response.

SOAP cannot reference objects because all data must be explicitly contained in a SOAP
message. This means that a SOAP message cannot contain a reference to data that is
external from the message. Let’s say that you want to transmit data contained on a
remote computer. You cannot include code in the SOAP message that tells SOAP to get
this data. Instead, you must invoke a remote procedure by making a remote procedure call
within the SOAP message. The remote procedure must then get data from the remote
computer. Each SOAP message can contain one remote procedure call.

The SOAP Message and Delivery Structure
There are three parts to a SOAP message. These are the envelope, header, and body. The
SOAP envelope is a required XML tag that contains the SOAP header and body. The
header is an optional XML tag in the SOAP message that contains metadata. The body
of the SOAP message is required and contains the text of the message. The Java API for
XML Messaging (JAXM) generates the SOAP message for you based on the JAXM code
in your J2EE application, which you’ll learn about later in this chapter.

P:\010Comp\CompRef8\710-9\ch14.vp
Thursday, February 06, 2003 10:12:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 4 : W e b S e r v i c e s 641

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 14

J2
M

E
N

ETW
O

R
K

IN
G

A
N

D
W

EB
S
ER

V
IC

ES

The SOAP envelope is used to contain the SOAP message, similar to an envelope used
to post a letter. The header contains additional information and sometimes instructions
for use by the SOAP processor to transmit the SOAP message. For example, the body
of the SOAP message might have data that is defined in the header as metadata.

Any number of intermediate computers might process a SOAP message between
the requestor, who generates the SOAP message, and the receiver, who responds to the
request. Intermediate computers are called SOAP nodes that receive and forward a
SOAP message until the message reaches the receiver. Some SOAP nodes simply relay
the SOAP message to the next SOAP node or directly to the receiver. A SOAP message
might need to be processed a particular way based on needs of the SOAP node or the
receiver before the SOAP message is relayed to the next SOAP node or receiver. Such
processing instructions are generally contained in the SOAP message header, which is
read and processed by the SOAP node.

The process performed on the SOAP message by a node before the message is
relayed is called a SOAP actor. A SOAP node can have multiple actors, and each actor
might involve processing that occurs simultaneously on different machines.

There are three kinds of SOAP message bodies: a request, a response, and a fault. A
request message body contains the name of the remote procedure and serialized input
parameters, if any, that are passed to the remote procedures when the remote procedure
is invoked. The response message body contains the name of the remote procedure and
output parameter, if any, that are returned by the remote procedure to the requestor.
The fault message body contains fault codes and fault messages, known as the fault
string, that describe failure of the message to be successfully distributed. A fault code
is an abbreviation indicating the fault. A fault message is text that describes the fault.

The SOAP specification defines four kinds of faults. These are VersionMismatch,
MustUnderstand, Client, and Server. The VersionMismatch is sent when an invalid
namespace is detected in the envelope. MustUnderstand is generated when the
receiving SOAP processor is unable to process the SOAP message header. The Client
fault occurs when a client incorrectly formed the SOAP message. The SOAP server
sends the Client fault. The Server fault is sent when the SOAP server cannot process
the SOAP message, although the SOAP message is not a fault. A SOAP actor can also
generate one of the four SOAP faults.

WSDL and SOAP
SOAP facilitates the interaction between applications and web services located on remote
computers. WSDL can be used to describe network services used with SOAP by including
a binding for SOAP 1.1 protocol endpoints. Two commonly used transmission primitives
for SOAP are one-way transmission primitives using SMTP and request-response
transmission primitives using HTTP. Listing 14-10 illustrates the one-way transmission
primitive, and Listing 14-11 shows the request-response transmission primitive.

P:\010Comp\CompRef8\710-9\ch14.vp
Thursday, February 06, 2003 10:12:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

642 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 14

SOAP One-Way Transmission Primitive
Similar in design to the one-way transmission primitive described earlier in this
chapter for the WSDL document, the SOAP one-way transmission primitive consists
of only an input operation. There is no output operation. Listing 14-10 shows how to
construct a one-way transmission primitive using SMTP within a SOAP binding. The
document is divided into WSDL document components such as message, portType,
binding, operation, service, port, and types, all of which are described in the earlier
discussion about WSDL.

SOAP elements are placed within the appropriate elements of the WSDL document.
The first SOAP element used in the WSDL document is the soap:binding element. The
soap:binding element has two attributes—style and transport—that describe the SOAP
binding. The value of the style attribute describes the type of binding. There are two
types: document and rpc, which is used for a remote procedure call. This example uses
the document type. Listing 14-11 uses rpc. The value of the transport attribute is the
URI of the SMTP server.

The next two SOAP elements used in the WSDL document appear as child elements
of the input element. These are the soap:body element and the soap:header element,
each of which describes components of the SOAP message that will be received from a
trading partner.

The last SOAP element to appear within this WSDL document is the soap:address
element. The soap:address element is a child element of the port element. The soap:address
element has one attribute called location. The value of the location attribute is the port
binding used to receive requests from potential trading partners.

<?xml version="1.0"?>

<definitions name="pricing" targetNamespace=

"http://mycompany.com/pricing.wsdl"

xmlns:tns="http://mycompany.com/pricing.wsdl"

xmlns:xsd1="http://mycompany.com/pricing.xsd"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns="http://schemas.xmlsoap.org/wsdl/">

<message name="ProductPricing">

<part name="body" element="xsd1:ProductPricing"/>

<part name="productheader" element="xsd1:ProductHeader"/>

</message>

<portType name="ProductPricePortType">

<operation name="GetProductPricing">

<input message="tns:GetProductPricingInput"/>

</operation>

</portType>

<binding name="ProductPriceSoapBinding"

type="tns:ProductPricePortType">

Listing 14-10
SOAP

one-way
transmission

primitive
using SMTP

P:\010Comp\CompRef8\710-9\ch14.vp
Thursday, February 06, 2003 10:12:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 4 : W e b S e r v i c e s 643

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 14

J2
M

E
N

ETW
O

R
K

IN
G

A
N

D
W

EB
S
ER

V
IC

ES

<soap:binding style="document"

transport="http://mycompany.com/smtp"/>

<operation name="GetProductPricing">

<input message="tns:GetProductPricing">

<soap:body parts="body" use="literal"/>

<soap:header message="tns:GetProductPricing"

part="productheader" use="literal"/>

</input>

</operation>

</binding>

<service name="ProductPricingService">

<port name="ProductPricingPort"

binding="tns:ProductPricingSoap">

<soap:address location="mailto:customer@mycompany.com"/>

</port>

</service>

<types>

<schema targetNamespace="http://mycompany.com/ProductPrice.xsd"

xmlns="http://www.w3.org/2000/10/XMLSchema">

<element name="ProductPrice">

<complexType>

<all>

<element name="ProductID" type="string"/>

</all>

</complexType>

</element>

<element name="ProductPriceHeader" type="uriReference"/>

</schema>

</types>

</definitions>

SOAP Request-Response Transmission Primitive
The SOAP request-response transmission primitive is used whenever a web service is
designed to receive requests from potential trading partners and is designed to respond
to such a request. It is very similar in concept to the WSDL request-response transmission
primitive. Listing 14-11 illustrates the SOAP request-response transmission primitive.
This example begins by specifying namespaces used in the document. And as with the
SOAP one-way transmission primitive, the structure of the document is similar to the
WSDL document that uses the request-response transmission primitive.

Within the WSDL elements are SOAP elements, the first of which is the soap:binding
element. The soap:binding element, as discussed in the previous section, is a child
element within the binding element. In this example, the soap:binding element uses

P:\010Comp\CompRef8\710-9\ch14.vp
Thursday, February 06, 2003 10:12:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

644 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 14

rpc as the value of the style attribute. This means binding is designed for a remote
procedure call. The value of the transport attribute identifies HTTP as the protocol used
for transmission.

The next SOAP element, soap:operation, appears within the operation element.
The soap:operation element requires one attribute, which is the soapAction attribute. The
soapAction attribute contains the URI of the operation. In this example GetProductPrice
is the operation.

Within the input element is the soap:body element. The soap:body requires three
attributes. These are use, namespace, and encodingStyle. The value of the use attribute
specifies whether the soap:body is encoded or not. The namespace attribute identifies
the namespacing used in the SOAP body. And the encodingStyle attribute specifies the
URI of the encoding style if the soap:body is encoded. Likewise, another soap:body
element is included in the WSDL document. This one is within the output element and
describes the SOAP body of the output.

The last SOAP element in the example is soap:address and is contained within the
port element. The soap:address identifies the URI used for the binding.

<?xml version="1.0"?>

<definitions name="pricing"

targetNamespace="http://mycompany.com/pricing.wsdl"

xmlns:tns="http://mycompany.com/pricing.wsdl"

xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"

xmlns:xsd1="http://mycompany.com/pricing.xsd"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns="http://schemas.xmlsoap.org/wsdl/">

<message name="ProductPricingInput">

<part name="ProductID" element="xsd:string"/>

</message>

<message name="ProductPricingOutput">

<part name="price" type="xsd:float"/>

</message>

<portType name="ProductPricePortType">

<operation name="GetProductPricing">

<input message="tns:GetProductPricingInput"/>

<output message="tns:GetProductPricingOutput"/>

</operation>

</portType>

<binding name="ProductPriceSoapBinding"

type="tns:ProductPricePortType">

<soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="GetProductPrice">

<soap:operation soapAction="http://mycompany/GetProductPrice"/>

Listing 14-11
The request-

response
transmission

primitive

P:\010Comp\CompRef8\710-9\ch14.vp
Thursday, February 06, 2003 10:12:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

<input>

<soap:body use="encoded"

namespace="http://mycompany.com/pricing"

encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"/>

</input>

<output>

<soap:body use="encoded"

namespace="http://mycompany.com/pricing"

encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"/>

</output>

</operation>

</binding>

<service name="ProductPricingService">

<documentation>My first service</documentation>

<port name="ProductPricePort" binding="tns:ProductPriceBinding"

<soap:address location="http://mycompany.com/pricing"/>

</port>

</service>

</definitions>

SOAP Binding Element
The soap:binding element indicates that the WSDL document is bound to the SOAP 1.1
protocol. Recall that the SOAP protocol defines a SOAP message as having an envelope,
header, and body. There are two attributes required by the soap:binding element: the
style attribute, which has a value of either document or rpc (as described previously in
this chapter), and the transport attribute. The transport attribute contains the URI of the
SOAP transport used for the binding. SOAP transports include HTTP, SMTP, and FTP.

Both of these attributes are necessary whenever you need to use a SOAP binding to
a WSDL document. However, the value of the style attribute defaults to document if it
is excluded from the soap:binding.

SOAP Operation Element
The soap:operation element supplies information about the operation and contains
two attributes—style and soapAction. The style attribute states whether the message
contains a document or parameters and return values. The value of the style attribute
is document if the message contains a document; otherwise, it is rpc. As discussed
previously, rpc implies a remote procedure call, which uses parameters and return
values. The default value of the style attribute is document.

C h a p t e r 1 4 : W e b S e r v i c e s 645

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 14

J2
M

E
N

ETW
O

R
K

IN
G

A
N

D
W

EB
S
ER

V
IC

ES

P:\010Comp\CompRef8\710-9\ch14.vp
Thursday, February 06, 2003 10:13:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

646 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 14

The style attribute is important to the SOAP binding because the value determines
the structure of the message body and the programming model that will be used to
access the message. The soapAction attribute is used to identify the contents of the
SOAPAction header. The content of the SOAPAction header is specific to an operation.
The value of the soapAction attribute is the URI of the SOAPAction header content.

SOAP Body Element
The soap:body element defines the organization of message parts within the body
element and provides information on how message parts are assembled. Message parts
fall into two categories—abstract type definitions and concrete schema definitions. An
abstract type definition defines types that are serialized based on rules of an encoding
style. The encoding style is identified by a URI. An encoding style sets rules that enable
the message to be formatted in various ways, which requires the message recipient to
interpret all the variations in the message format. Alternatively, the concrete schema
definition avoids the use of various message formats. Therefore the message recipient
needs to be able to interpret one message format as specified in the schema definition.

The soap:body element contains four attributes. These are parts, user, encodingStyle,
and namespace. The parts attribute specifies the SOAP message parts contained in
the body of the message. It defaults to all parts of a SOAP message if the parts attribute
is omitted. The use attribute specifies whether parts of the message use an abstract
type definition or concrete schema definition. The value encoded indicates that an
abstract type definition is being used and the value literal implies use of a concrete
schema definition.

The encodingStyle attribute contains the URI of the abstract type definitions and
is required only if the use attribute is assigned the encoded value. The encodingStyle
attribute value can contain multiple URIs, each representing a different abstract type
definition supported by the message. Each URI assigned to the encodingStyle attribute
must be separated by a space.

The namespace attribute identifies the URI of the namespace used by the encodingStyle
and is applied to content that isn’t defined by the abstract type definition.

SOAP Fault Element
The soap:fault element defines SOAP fault details and follows the style of the soap:body
element. The soap:fault has four attributes. These are name, use, encodingStyle, and
namespace. The value of the name attribute associates the soap:fault element with the
wsdl:fault element that is used for the same operation. The other attributes have the
same functionality as they do within the soap:body element.

SOAP Header Element
The SOAP header element actually consists of two elements. These are the soap:header
and the soap:headerfault. Both elements define the header for the SOAP envelope
header element. The soap:headerfault is the default definition for the header element.

P:\010Comp\CompRef8\710-9\ch14.vp
Thursday, February 06, 2003 10:13:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 4 : W e b S e r v i c e s 647

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 14

J2
M

E
N

ETW
O

R
K

IN
G

A
N

D
W

EB
S
ER

V
IC

ES

Both the soap:header element and the soap:headerfault element contain five attributes.
These are message, part, use, encodingStyle, and namespace. The value of the message
attribute identifies the SOAP message whose header is being defined. The value of
the part attribute identifies the message part that defines the header type. The other
attributes function the same as they do in the soap:body element.

SOAP Address Element
The soap:address element is used to identify the address to be used for binding the
SOAP message. The soap:address element contains one attribute called location. The
location attribute is assigned the URI of the port used for binding.

WSDL and HTTP Binding
A web browser is typically used to interact with a web site, although there are other
programmatic ways of achieving the same interaction. WSDL contains specifications
for binding to a web site by using Get and Post, which are components of the HTTP 1.1
protocol. Let’s see how this works in Listing 14-12. This example defines two messages.
The first message has three parts, where the first and third parts are of xsd:string types,
and the second part is xsd:int type. The second message has one part that is of a
xsd:binary type.

The portType called FirstPort defines two operations. The first operation is input and
receives the FirstMessage, and the second operation is output that is the SecondMessage.
This means that the web service receives a three-part message consisting of a xsd:string,
xsd:int, and xsd:string. When this message is received, the web service replies with a
message that contains an xsd:binary type. As you’ll see later in this example, the output
operation returns a JPEG file containing an image.

The service element assigns an http:address to each port and associates ports with
related bindings. These bindings are defined in subsequent binding elements. You’ll
notice that both the FirstBinding and SecondBinding use GET and output mime:context.
However, input to the FirstBinding is http:urlReplace, and input to the SecondBinding
is http:urlEncoded. The ThirdBinding uses POST and input and output mime:content.

The http:address element requires one attribute, which is location. The value of the
location attribute is the base address.

The http:operation element contains a location attribute. The value of the location
attribute is the URI that is specific for the operation and is combined with the URI of
the http:address to become the URI used for the HTTP request.

The http:urlEncoded element signifies that the standard URI-encoding rules are used
to encode parts of the message. The URI-encoding rules use a name=value pair, where
each pair is separated with an ampersand (&), such as fname=“Bob”&lname=“Smith”
(see Chapter 8).

The http:urlReplacement element specifies that a replacement algorithm is used to
encode parts of the message. The replacement algorithm contains steps used to search
for a set of patterns in the http:operation element URI. This search occurs prior to the

P:\010Comp\CompRef8\710-9\ch14.vp
Thursday, February 06, 2003 10:13:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

648 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 14

http:operation and http:address values being joined. When a match occurs, the related
part of the message replaces the part matching the pattern.

<definitions>

<message name="FirstMessage">

<part name="FirstPart" type="xsd:string"/>

<part name="SecondPart" type="xsd:int"/>

<part name="ThirdPart" type="xsd:string"/>

</message>

<message name="SecondMessage">

<part name="FirstPart" type="xsd:binary"/>

</message>

<portType name="FirstPort">

<operation name="FirstOperation">

<input message="tns:FirstMessage"/>

<output message="tns:SecondMessage"/>

</operation>

</portType>

<service name="FirstService">

<port name="FirstPort" binding="tns:FirstBinding">

<http:address location="http://mycompany.com/"/>

</port>

<port name="SecondPort" binding="tns:SecondBinding">

<http:address location="http://mycompany.com/"/>

</port>

<port name="ThirdPort" binding="tns:ThirdBinding">

<http:address location="http://mycompany.com/"/>

</port>

</service>

<binding name="FirstBinding" type="FirstPart">

<http:binding verb="GET"/>

<operation name="FirstOperation">

http:operation location=

"FirstOperation/A(part1)B(part2)/(part3)"/>

<input>

<http:urlReplacement/>

</input>

<output>

<mime:content type="image/jpeg"/>

</output>

</operation>

</binding>

<binding name="SecondBinding" type="FirstPart">

Listing 14-12
WSDL HTTP

binding

P:\010Comp\CompRef8\710-9\ch14.vp
Thursday, February 06, 2003 10:13:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 4 : W e b S e r v i c e s 649

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 14

J2
M

E
N

ETW
O

R
K

IN
G

A
N

D
W

EB
S
ER

V
IC

ES

<http:binding verb="GET"/>

<operation name="FirstOperation">

<http:operation location="FirstOperation"/>

<input>

<http:urlEncoded/>

</input>

<output>

<mime:content type="image/jpeg"/>

</output>

</operation>

</binding>

<binding name="ThirdBinding" type="FirstPart">

<http:binding verb="POST"/>

<operation name="FirstOperation">

<http:operation location="FirstOperation"/>

<input>

<mime:content type="application/x-www-form-urlencoded"/>

</input>

<output>

<mime:content type="image/jpeg"/>

</output>

</operation>

</binding>

</definitions>

Quick Reference Guide
This quick reference guide provides an overview of classes used by J2ME for web
services. Full details of these classes and all Java classes and interfaces are available
at java.sun.com.

javax.xml.rpc public interface Stub

Field Description

static java.lang.String
ENDPOINT_ADDRESS_PROPERTY

Address of target service endpoint.

static java.lang.String PASSWORD_PROPERTY Password for authentication static.

java.lang.String
SESSION_MAINTAIN_PROPERTY

This boolean property is used by a
service client to indicate whether or
not it wants to participate in a session
with a service endpoint.

static java.lang.String USERNAME_PROPERTY User name for authentication.

P:\010Comp\CompRef8\710-9\ch14.vp
Thursday, February 06, 2003 10:13:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

650 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 14

javax.xml.rpc public interface Stub

Method Description

java.lang.Object _getProperty(java.lang.String
name)

Return the value of a specific
configuration property.

Iterator _getPropertyNames() Return an Iterator view of the names of
the properties that can be configured on
this stub instance.

void _setProperty(java.lang.String name,
java.lang.Object value)

Set the name and value of a configuration
property for this Stub instance.

public class NamespaceConstants extends java.lang.Object

Field Description

static java.lang.String
NSPREFIX_SCHEMA_XSD

Namespace prefix for XML schema
XSD static.

java.lang.String NSPREFIX_SCHEMA_XSI Namespace prefix for XML Schema XSI.

static java.lang.String
NSPREFIX_SOAP_ENCODING

Namespace prefix for SOAP encoding.

static java.lang.String
NSPREFIX_SOAP_ENVELOPE

Namespace prefix for SOAP envelope.

static java.lang.String NSURI_SCHEMA_XSD Namespace URI for XML Schema XSD.

static java.lang.String NSURI_SCHEMA_XSI Namespace URI for XML Schema XSI
static.

java.lang.String NSURI_SOAP_ENCODING Namespace URI for SOAP 1.1 encoding.

static java.lang.String
NSURI_SOAP_ENVELOPE

Namespace URI for SOAP 1.1 envelope.

static java.lang.String
NSURI_SOAP_NEXT_ACTOR

Namespace URI for SOAP 1.1 next
actor role.

Method Description

NamespaceConstants() Constructor.

P:\010Comp\CompRef8\710-9\ch14.vp
Thursday, February 06, 2003 10:13:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

public class JAXRPCException extends java.lang.RuntimeException

JAXRPCException() Construct a new exception with null as its
detail message.

JAXRPCException(java.lang.String message) Construct a new exception with the
specified detail message.

JAXRPCException(java.lang.String message,
java.lang.Throwable cause)

Construct a new exception with the
specified detail message and cause.

JAXRPCException(java.lang.Throwable cause) Construct a new JAXRPCException with
the specified cause and a detail message
of the cause. This contains the class and
detail message of cause.

java.lang.Throwable getLinkedCause() Retrieve the linked cause of the exception.

C h a p t e r 1 4 : W e b S e r v i c e s 651

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter 14

J2
M

E
N

ETW
O

R
K

IN
G

A
N

D
W

EB
S
ER

V
IC

ES

P:\010Comp\CompRef8\710-9\ch14.vp
Thursday, February 06, 2003 10:13:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9
Blind Folio 652

P:\010Comp\CompRef8\710-9\ch14.vp
Thursday, February 06, 2003 10:13:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Appendix
Quick Reference Guide

653

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Chapter A

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

654 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9/ Appendix

This quick reference guide provides a brief overview of classes used by J2ME for
the Display class, Command class, and Item class. Full details of these classes
and all Java classes and interfaces are available at java.sun.com.

javax.microedition.lcdui.DisplayClass

Method Description

static Display getDisplay(MIDlet midlet) Retrieve an instance of the Display class.

Displayable getCurrent() Retrieve the current instance of
Displayable class.

void setCurrent(Alert alert, Displayable
displayable)

Display the specified instance of the alert
dialog box and then the specified instance
of the Displayable class.

void setCurrent (Displayable displayable) Display the specified instance of the
Displayable class.

boolean isColor() Determine whether the device supports
color.

int numColors() Retrieve the number of colors or shades
of gray that are available on the device.

void callSerial(Runnable runnable) Call an instance of the Runnable class
after repainting.

javax.microedition.lcdui.DisplayableClass

Method Description

void addCommand(Command
command)

Associate a command to an instance of
the Displayable class.

void removecommand(Command
command)

Disassociate a command from an instance
of the Displayable class.

void setCommandListener(Command
Listener commandlistener)

Associate a CommandListener to an
instance of the Displayable class.

boolean isShown() Determine whether an instance of the
Displayable class is shown on the screen.

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

javax.microedition.lcdui.CommandClass

Method Description

Command(String label, int
commandType, int priority)

Create an instance of the Command class that
displays the specified label and is of the specified
commandType and has the specified priority.

int getCommandType() Retrieve the commandType of a command.

String getLabel() Retrieve the label of a command.

int getPriority() Retrieve the priority of a command.

javax.microedition.lcdui.CommandListener-
Interface

Method Description

void commandAction (Command
command, Displayable displayable)

Process an instance of the Command class.

javax.microedition.lcdui.ItemClass

Method Description

String getLabel() Retrieve the label associated with an instance of
the Item class.

void setLabel(String label) Assign a label to an instance of the Item class.

javax.microedition.lcdui.ItemStateListener-
Interface

Method Description

void itemStateChanged (Item item) Process changes to an instance of the Item class.

A p p e n d i x : Q u i c k R e f e r e n c e G u i d e 655

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Appendix

A
P

P
EN

D
IX

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

javax.microedition.midlet.MIDletClass

Method Description

abstract void destroyApp (boolean
unconditional)

MIDlet is going to shut down.

abstract void pauseApp() MIDlet is going to pause.

abstract void startApp() MIDlet is in the active state.

final void notifyDestroyed() Requesting to shut down the MIDlet.

final void notifyPaused() Requesting to pause the MIDlet.

final void resumeRequest() Requesting to activate the MIDlet.

final String getAppProperty(String key) Retrieve attributes from a JAD or JAR file.

javax.microedition.midlet.MIDletStatechange-
ExceptionClass

Method Description

MIDletStateChangeException() Create a new MIDletStateChangeException object
without a test.

MIDletStatechangeException
(String string)

Create a new MIDletStateChangeException object
with a message.

javax.microedition.lcdui.Screen Class

Method Description

String getTitle() Retrieve the screen’s title.

void setTitle(String string) Set the screen’s title.

Ticker getTicker() Retrieve the screen’s Ticker.

void setTicker(Ticker ticker) Set the screen’s Ticker.

656 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9/ Appendix

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

javax.microedition.lcdui.Alert Class

Method Description

Alert(String title) Create an instance of the Alert class.

Alert(String title, String message,
Image image, AlertType, alertType)

Create an instance of the Alert class with
an Image and AlertType.

Image getImage() Retrieve an instance of the Alert class image.

void setImage(Image image) Associate an image with an instance of the
Alert class.

String getString() Get an instance of the Alert class message.

void setString(String str) Set an instance of the Alert class message.

int getDefaultTimeout() Retrieve an instance of the Alert class
default time.

int getTimeout() Retrieve actual time an instance of the Alert
class will be displayed.

void setTimeout(int time) Set the display time of an instance of the
Alert class.

AlertType getType() Retrieve the AlertType of an instance of
the Alert class.

void setType(AlertType type) Set the AlertType of an instance of the
Alert class.

javax.microedition.lcdui.Form Class

Method Description

Form (String title) Create an instance of the Form class with a title.

Form (String title, Item[] items) Create an instance of the Form class and
append the specified list of array items onto
the instance.

int append(Image image) Append an instance of the Image class to an
instance of the Form class.

int append(Item item) Append an instance of the Item class or
subclass to an instance of the Form class.

A p p e n d i x : Q u i c k R e f e r e n c e G u i d e 657

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Appendix

A
P

P
EN

D
IX

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Method Description

int append(String string) Append an instance of the String class to an
instance of the Form class.

void delete(int index) Remove an instance of the Item class or
subclass specified by the index from an
instance of the Form class.

void insert (int index, Item item) Insert an instance of the Item class or subclass
before the instance of the Item class whose
position is specified by the index.

Item get(int index) Retrieve an instance of the Item class or
subclass whose position is specified by
the index.

void set(int index, Item item) Replace an existing instance of the Item class
or subclass whose position is specified by the
index with the instance of the Item class or
subclass reference in the second parameter.

void setItemStateListener(Item-
Statelistener itemStateListener)

Associate an ItemStateListener with an instance
of the Item class or subclass.

int size() Retrieve the number of instances of the Item
class or subclass in an instance of the Form class.

String getLabel() Retrieve the label associated with an instance of
an Item class.

void setLabel(String label) Associate a label with an instance of an Item class.

javax.microedition.lcdui.ChoiceGroup Class

Method Description

ChoiceGroup (String label,
int choiceType)

Create an instance of an empty ChoiceGroup
class, where label is the title of the instance
and choiceType is the type of instance.

ChoiceGroup(String label, int
choiceType, String[] string,
Image image)

Create an instance of the ChoiceGroup class, where
label is the title of the instance and choiceType is
the type of instance, and use the image with the
instance. Also populate the instance with options
contained in the string.

658 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9/ Appendix

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A p p e n d i x : Q u i c k R e f e r e n c e G u i d e 659

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Appendix

A
P

P
EN

D
IX

Method Description

int append (String string,
Image image)

Place an option at the end of other options in an
instance of the Choice Group class, and associate
the image with the option.

void delete (int index) Remove the option identified by the index number
from an instance of the ChoiceGroup class, and
associate the image with the option.

void insert (int index, String
string, Image image)

Insert an option into an instance of the ChoiceGroup
class before the option identified by the index
number.

void set (int index, String string,
Image image)

Replace an option identified by the index number
with the option specified in the string and image.

String getString (int index) Retrieve the string associated with the option
identified by the index number.

Image getImage(int index) Retrieve the image associated with the option
identified by the index number.

int getSelectedIndex() Retrieve the index associated with an option.

void setSelectedIndex(int index,
boolean selected)

Select the option identified by the index and
whether the option is selected (true) or unselected
(false).

int getSelectedFlags (boolean[]
array)

Retrieve the selection status of options and store
them in an array.

void setSelectedFlag (boolean[]
array)

Set the selection status of options stored in an
array.

boolean isSelected (int index) Determine whether the user selected the option
identified by the index number.

int size() Determine the number of options there are in an
instance of the ChoiceGroup.

javax.microedition.lcdui.DateField Class

Method Description

DateField (String label, int mode) Create an instance of the DateField class that
contains the specified label and uses the
specified mode.

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Method Description

DateField (String label, int mode,
TimeZone timeZone)

Create an instance of the DateField class that
contains the specified label and uses the specified
mode and time zone.

Date getDate() Retrieve the date/time from an instance of the
DateField class.

void setDate (Date date) Set the date for an instance of the DateField class.

int getInputMode() Retrieve the input mode of an instance of the
DateField class.

void setInputMode(int mode) Replace the existing date field mode with a
different mode.

javax.microedition.lcdui.Gauge Class

Method Description

Gauge(String label, boolean
interactive, int maxValue,
int initialValue)

Create an instance of the Gauge class, where label
is the caption for the instance, interactive is a
boolean value indicating whether the instance
is interactive, maxValue is the maximum value
displayed in the gauge, and the initialValue is
the beginning value displayed in the gauge.

int getValue() Retrieve the current value of the gauge.

void setValue (int value) Set a new value for the gauge.

int getMaxValue() Retrieve the maximum value of the gauge.

void setMaxValue(int maxValue) Set the maximum value of the gauge.

boolean isInteractive() Determine whether the gauge is interactive.

javax.microedition.lcdui.StringItem Class
Method Description

StringItem (String label,
String text)

Create an instance of a StringItem class, where
the label is text describing the StringItem class,
and text is the text displayed on the screen.

660 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9/ Appendix

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Method Description

String getText() Retrieve the text portion of an instance of a
StringItem class.

void setText (String text) Replace the text portion of an instance of a
StringItem class.

String getLabel() Retrieve the label portion of an instance of a
StringItem class.

void setLabel (String text) Replace the label portion of an instance of a
StringItem class.

javax.microedition.lcdui.TextField Class

Method Description

TextField (String label, String
text, int maxSize, int constraint)

Create an instance of a TextField class.

void delete (int offset, int length) Remove characters from a TextField class at a
specified offset.

void insert (String src, int
position)

Insert String at a specified offset in a TextField
class at a specified offset.

void insert (char[] data, int
offset, int length, int position)

Insert characters from an array into a TextField
class at a specified offset.

void setChars (char[] data,
int offset, int length)

Replace characters of a TextField class with
characters from an array.

void setString(String text) Replace characters of a TextField class with
characters in a string.

int getChars (char[] data) Copy contents of a TextField class into an array.

String getString() Copy contents of the TextField class into a string.

int getConstraints() Retrieve the constraint of a TextField class.

void setConstraints (int
constraint)

Set the constraint of a TextField class.

int getMaxSize() Retrieve the maximum number of characters of
a TextField class.

A p p e n d i x : Q u i c k R e f e r e n c e G u i d e 661

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Appendix

A
P

P
EN

D
IX

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

662 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9/ Appendix

Method Description

int setMaxSize (int maxsize) Set the maximum number of characters of a
TextField class.

int getCaretPosition() Retrieve the cursor position within a TextField class.

int size() Retrieve the number of characters in a TextField
class.

javax.microedition.lcdui.Image Class
Method Description

static Image create Image (String
name)

Create an immutable image, where name is the
name of a resource.

static Image createImage (Image
source)

Create an immutable image, where source is
reference to an existing Image.

static Image createImage(byte[]
imageData, int imageOffset, int
imageLength)

Create an immutable image, where byte is an array
of data representing the image, imageOffset is the
starting position of the image, and imageLength is
the length of the image.

static Image createImage(int
width, int height)

Create a mutable image that has a specified width
and height.

Graphics getGraphics() Retrieve reference to an instance of the Graphics
class.

int getHeight() Retrieve the image height.

int getwidth() Retrieve the image width.

boolean isMutable() Determine whether an image is a mutable image.

javax.microedition.lcdui.ImageItem Class
Method Description

ImageItem(String label, Image
im, int layout, String altText)

Create an instance of the ImageItem class, where
label is text describing the image, im is reference
to the image, layout is the layout directive, and
altText is displayed if the image cannot be shown
on the device.

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Method Description

Image getImage() Retrieve an image associated with an ImageItem
class.

voaid setImage (image im) Associate an image with an ImageItem class.

int getLayout() Retrieve the layout directive of an ImageItem
instance.

void setLayout (int layout) Replace the layout directive of an ImageItem
instance.

String getAltText() Retrieve the alternate text of an ImageItem instance.

void setAltText(String text) Replace the alternate text of an ImageItem instance.

javax.microedition.lcdui.List Class

Method Description

List (String title, int listType) Create an instance of the List class without
assigning elements to the list. The title is the title
of the list, and the listType is the type of list being
created.

List (String title, int listType,
String[] stringElements, Image[]
imageElements)

Create an instance of the List class and assign
elements to the list. The title is the title of the list;
the listType is the type of list being created;
stringElements is an array of strings containing
text for the list; and imageElements is an array
of images associated with each list element.

int append (String stringPart,
Image imagePart)

Append an element to the end of the list, where
stringPart is the text of the element, and imagePart
is the image associated with the element.

void delete(int indexNum) Remove an element from a list, where the element
being removed is identified by the indexNum.

void insert (int indexNum, String
stringPart, Image imagePart)

Insert an element into the list at a specific position
within the list, where indexNum is the position
within the list where the element will be located;
stringPart is the text of the element; and imagePart
is the image associated with the element.

A p p e n d i x : Q u i c k R e f e r e n c e G u i d e 663

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Appendix

A
P

P
EN

D
IX

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

664 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9/ Appendix

Method Description

void set(int indexNum, String
stringPart, Image imagePart)

Replace an element in the list at a specific position
within the list, where indexNum is the position
within the list where the element will be located;
stringPart is the text of the element; and imagePart
is the image associated with the element.

String getString (int indexNum) Retrieve the text of an element from a specific
position in the list, where indexNum identifies
the position of the element.

Image getImage(int indexNum) Retrieve the image of an element from a specific
position in the list, where indexNum identifies
the position of the element.

int getSelectedIndex() Retrieve index of a selected element of a list.

void setSelectedIndex(int
indexNum, boolean selected)

Set the default selected flag of an element within
the list, where indexNum is the index number of
the element, and selected is either true or false.

int getSelectedFlag (boolean[]
selectedArray_return)

Retrieve the selection status and store them in the
selectedArray.

void setSelectedFlags(boolean[]
selectedArray)

Set the selection status based on values stored in
the selectedArray.

boolean isSelected(int
indexNum)

Determine whether the element identified by
indexNum is selected.

int size() Number of elements in list.

javax.microedition.lcdui.TextBox Class
Method Description

TextBox(String title, String text,
int maxSize, int constraint)

Create a new instance of the TextBox class, where
title is the title of the text box; text is the text used
to populate the text box; maxSize is the requested
maximum number of characters that can be
entered into the text box; and constraint identifies
character restrictions.

void delete(int offset, int length) Remove characters from a text box. Characters to
be removed begin with the character specified by
offset character position until the specified length
is reached.

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Method Description

void insert(String src, int
position)

Insert characters from a string into the text box,
where src is the string, and position is the position
within the text box to insert the characters.

void insert(char[] data, in offset,
int length, int position)

Insert characters from an array into the text box,
where data is the array; offset is the starting
position within the array; length is the number
of characters to insert; and position is the place
within the text box to insert the characters.

void setChars(char[] data, int
offset, int length)

Replace contents of the text box with characters
in an array, where data is the array; offset is the
starting position within the array; and length is
the number of characters to insert.

int getChars(char[] data) Retrieve the contents of a text box into an array,
where data is the array that receives the contents
of the text box.

String getString() Retrieve the contents of a text box into a string.

int getConstraints() Retrieve the constraints of the text box.

void setConstraints(int
constraints)

Replace the constraints of a text box, where
constraints contains the new constraints.

int getMaxSize() Retrieve the maximum number of characters that
can be stored in a text box.

int setMaxSize(int maxSize) Set the maximum number of characters that can
be stored in a text box, where maxSize is the
requested maximum number of characters.

int getCaretPosition() Retrieve the current cursor position within the
text box.

int size() Retrieve the current number of characters in a
text box.

javax.microedition.lcdui.Ticker Class
Method Description

Ticker(String str) Create a new Ticker, where str is the text that
appears in the ticker.

A p p e n d i x : Q u i c k R e f e r e n c e G u i d e 665

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Appendix

A
P

P
EN

D
IX

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Method Description

String getString() Retrieve the text displayed by the Ticker.

void setString(String str) Set the text displayed by the Ticker, where str is
the text.

javax.microedition.lcdui.Canvas Class
Method Description

int getWidth() Return the width of the canvas in pixels.

int getHeight() Return the height of the canvas in pixels.

Paint Description

abstract void paint(Graphic g) Draw an image on the canvas using the instance
of the Graphics class passed as a parameter.

final void repaint() Repaint the full canvas.

final void repaint(int x, int y,
int width, int height)

Repaint the specified region of the canvas.

final void servicePaints() A pending paint request must be processed
before other outstanding requests.

boolean isDoubleBuffered() Determine whether the device supports double
buffering.

Notify Description

void showNotify() Called before the application manager displays
the canvas.

void hideNotify() Called after the application manager removes
the canvas from the screen.

Key and Game Action Description

void keyPressed(int keycode) Called whenever a key is pressed and used to
process the key code of that key.

void keyReleased(int keycode) Called whenever a key is released and used to
process the key code of that key.

void keyRepeated(int keycode) Called whenever a key is held down and used
to process the key code of that key (not supported
by all devices).

666 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9/ Appendix

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Method Description

boolean hasRepeatEvents() Determine whether the device supports repeated
keys.

String getKeyName(int keycode) Return the text associated with the key.

int getKeyCode(int
gameActionConstant)

Return the key code value for the game action
constant.

int getGameAction(int keycode) Return the game action for a key code value.

String getKeyname(int keycode) Return the name of the key for a key code. The
name returned is not the name of the game action,
but is the name of the actual key.

Pointer Event Description

boolean hasPointerEvents() Determine whether the device supports a pointer
device.

boolean hasPointerMotion
Events()

Determine whether the device detects the press,
drag, and release motion of a pointer device.

void pointerDragged(int x, int y) Called in response to a pointer drag event.

void pointerPressed(int x, int y) Called in response to a pointer press event.

void pointerReleased(int x, int y) Called in response to a pointer release event.

javax.microedition.lcdui.Graphics Class
Method Description

void setColor(int RGB) Change the current color to the integer represented
by RGB. Red, green, and blue color values are
consolidated into one integer value and passed to
the setColor() method.

void setColor(int red, int green,
int blue)

Change the current color to integers represented
by red, green, and blue color values.

int getColor() Retrieve the integer value that represents the
current color.

int getBlueComponent() Retrieve the blue color value.

int getGreenComponent() Retrieve the green color value.

int getRedComponent() Retrieve the red color value.

A p p e n d i x : Q u i c k R e f e r e n c e G u i d e 667

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Appendix

A
P

P
EN

D
IX

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Method Description

void setGrayScale(int value) Change the value of the current gray scale.

int getGrayScale() Retrieve the value of the current gray scale.

Stroke Style Description

int getStrokeStyle() Retrieve the stroke style of a graphic context.

void setStrokeStyle(int style) Set the stroke style of a graphic context, where
style is either SOLID or DOTTED.

Line Description

void drawLine(int x1, int y1, int
x2, int y2)

Draw a line beginning at coordinate x1, y1 and
ending at coordinate x2, y2.

Arc Description

void drawArc(int x1, int y1, int
x2, int y2, startAngle, endAngle)

Draw an outline arc within the rectangle defined
as the first four parameters beginning with the
startAngle and terminating with the endAngle.

void fillArc(int x1, int y1, int x2,
int y2, startAngle, endAngle)

Draw a filled arc within the rectangle defined
as the first four parameters beginning with the
startAngle and terminating with the endAngle.

Rectangle Description

void drawRect(int x1, int y1,
int x2, int y2)

Draw a rectangle, where x1, y1 represents the
coordinate of the upper-left corner of the rectangle,
and x2, y2 represents the width and height of the
rectangle.

void drawroundRect(int x1,
int y1, int x2, int y2, int arcW,
int arcH)

Draw a rounded rectangle, where x1, y1 represents
the coordinate of the upper-left corner of the
rectangle, and x2, y2 represents the width and
height of the rectangle. arcW is the angle for the
width of the arc, and arcH is the angle for the
height of the arc.

void fillRect(int x1, int y1, int x2,
int y2)

Draw a filled rectangle, where x1, y1 represents the
coordinate of the upper-left corner of the rectangle,
and x2, y2 represents the width and height of the
rectangle.

668 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9/ Appendix

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A p p e n d i x : Q u i c k R e f e r e n c e G u i d e 669

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Appendix

A
P

P
EN

D
IX

Method Description

void fillRoundedRect (int x1, int
y1, int x2, int y2, int arcW, int
arcH)

Draw a rounded filled rectangle, where x1, y1
represents the coordinate of the upper-left corner
of the rectangle, and x2, y2 represents the width
and height of the rectangle. arcW is the angle for
the width of the arc, and arcH is the angle for the
height of the arc.

Text Description

void drawChar(char character,
int x, int y, int anchor)

Draw a character at the x, y coordinate on the
canvas using the specified anchor point.

void drawChars(char[] data,
int offset, int len, int x, int y,
int anchor)

Draw a subset of a character array the length
specified by len and beginning with the character
indicated by the offset. Draw the subset at the
x, y coordinate on the canvas using the specified
anchor point.

void drawString (String str, int x,
int y, int anchor)

Draw a string at the x, y coordinate on the canvas
using the specified anchor point.

void drawSubstring(String str,
int offset, int len, int x, int y, int
anchor)

Draw a substring the length specified by len and
beginning with the character indicated by the
offset. Draw the substring at the x, y coordinate
on the canvas using the specified anchor point.

Font getFont() Return the font of the graphic context.

void setFont(Font font) Set the font of the graphic context, where font is
the new font.

Image Description

void drawImage(Image img, int
x, int y, int anchor)

Draw the image specified in img, where the
upper-left corner of the image is positioned at
coordinate x, y using anchor point referenced
by anchor.

Translate Description

void translate (int x, int y) Translate the specified by x, y coordinate.

int getTranslateX() Retrieve the translated x coordinate.

int getTranslateY() Retrieve the translated y coordinate.

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Method Description

Clip Region Description

void setClip (int x1, int y1,
int x2, int y2)

Set the coordinates for the clipping region, where
x1, y1 represents the coordinate of the upper-left
corner of the region, and x2, y2 represents the
coordinate of the lower-right corner of the clipping
region.

void clipRect(int x1, int y1,
int x2, int y2)

Create a rectangle defined by x1, y1 and x2, y2
coordinates that establish a new clipping region
by intersecting the existing clipping region. The
coordinate x1, y1 represents the upper-left corner
of the region, and x2, y2 represents the coordinate
of the lower-right corner of the new clipping
region.

int getClipX() Retrieve the x1 coordinate of the upper-left corner
of the clipping region.

int getClipY() Retrieve the y1 coordinate of the upper-left corner
of the clipping region.

int getClipHeight() Retrieve the x2 coordinate of the lower-right corner
of the clipping region.

int getclipWidth() Retrieve the y2 coordinate of the lower-right corner
of the clipping region.

javax.microedition.lcdui.Font Class
Method Description

static Font getFont(int face,
int style, int size)

Create an instance of the Font class that has the
specified font face, font style, and font size.

static Font getDefaultfont() Create an instance of the Font class that uses the
default font face, font style, and font size.

Face, Style, Size Description

int getFace() Retrieve the font face.

int getStyle() Retrieve the combination of font styles.

int getSize() Retrieve the font size.

670 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9/ Appendix

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Method Description

boolean isPlain() Determine whether the font uses the plain style.

boolean isBold() Determine whether the font uses the bold style.

boolean isItalic() Determine whether the font uses the italic style.

boolean isUnderlined() Determine whether the font uses the underlined style.

Height/Width Description

int getHeight() Return the font height.

int getBaselinePosition() Return the ascent of the text.

int charWidth(char ch) Return the advance of a character.

int charsWidth(char[] ch,
int offset, int length)

Return the advance of a series of characters in a
character array that begins with character represented
by the offset and has a length represented by the
integer length.

int substringWidth(String
str, int offset, int length)

Return the advance of a substring that begins with
character represented by the offset and has a length
represented by the integer length.

javax.microedition.rms.RecordStore Class
Method Description

static RecordStore
openRecordStore(String
recordStoreName)

Open the record store specified in recordStoreName.

static RecordStore
openRecordStore(String
recordStoreName, boolean
createIfNecessary)

Open the record store specified in recordStoreName.
If createIfNecessary is true, create a new record
store if the recordStoreName doesn’t exist. If
createIfNecessary is false, don’t create a new
record store.

void closeRecordStore() Close the currently opened record store.

static void deleteRecordStore
(String recordStoreName)

Remove the record store specified in
recordStoreName.

static String[]
listRecordStores()

Return an array of strings containing the names
of record stores in the MIDlet suite.

A p p e n d i x : Q u i c k R e f e r e n c e G u i d e 671

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Appendix

A
P

P
EN

D
IX

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

672 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9/ Appendix

Method Description

int addRecord(byte[] data,
int offset, int numBytes)

Insert a record into a record store, where data is the
record, offset is the index within the data of the first
byte of the data, and the numBytes is the total
number of bytes of the data.

void setRecord (int recordID,
byte[] newData, int offset,
int numBytes)

Replace data in the specified record, where recordID
is the record ID, newData is the data that will
overwrite the existing data in the record, the offset
is the index of the first byte in the byte array, and
numBytes is the total number of bytes to be written
to the record store.

void deleteRecord(int
recordID)

Remove a record specified by recordID from the
record store.

byte[] getRecord(int recordID) Retrieve a record specified by recordID from the
record store.

int getRecord(int recordID,
byte[] buffer, int offset)

Retrieve a record specified by recordID from the
record store, where buffer is the destination, and
offset is the byte within the record where copying
begins.

int getRecordSize(int
recordID)

Retrieve the size of the record specified in recordID.
Size is returned as bytes.

int getNextRecordID() Retrieve the next record ID.

int getNumRecords() Retrieve the number of records that are in a record store.

long getLastModified() Retrieve the date of the last modification made to
the record store.

int getVersion() Retrieve the version number of the record store.

String getName() Retrieve the name of the record store.

int getSize() Retrieve the size of the record.

int getSizeAvailable() Retrieve the space available within a record store to
store records.

RecordEnumeration
enumerateRecords
(Recordfilter filter,
RecordComparator
comparator, boolean
keepUpdate)

Create an enumeration of records, where filter
specifies the argument for placing records within
the enumeration, comparator specifies the argument
for comparing records, and keepUpdate is a boolean
value that determines whether the enumeration
should be updated when changes occur to the
underlying record store.

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Method Description

void addRecordListener
(RecordListener listener)

Associate a RecordListener to the record store.

void removeRecordListener
(recordListener listener)

Remove the RecordListener that is associated with
a record store.

javax.microedition.rms.RecordEnumeration
Interface
Method Description

int numRecords() Return the number of records in the
RecordEnumeration.

byte[] nextRecord() Return the next record in the RecordEnumeration.

int nextRecordId() Return the next record ID in the RecordEnumeration.

byte[] previousRecord() Return the previous record in the
RecordEnumeration.

int previousRecordId() Return the previous record ID in the
RecordEnumeration.

boolean hasNextElement() Determine whether the enumeration has more
records going forward.

boolean hasPreviousElement() Determine whether there is a previous record in the
RecordEnumeration.

void keepUpdated(boolean
keepUpdated)

Set the automatic update feature of the
RecordEnumeration, where keepUpdated is a boolean
value indicating whether or not the feature is
activated.

boolean isKeptUpdated() Determine whether the RecordEnumeration is
automatically updated.

void rebuild() Rebuild the index of the RecordEnumeration.

void reset() Return to the beginning of the RecordEnumeration.

void destroy() Release resources reserved for the
RecordEnumeration.

A p p e n d i x : Q u i c k R e f e r e n c e G u i d e 673

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Appendix

A
P

P
EN

D
IX

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

674 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9/ Appendix

javax.microedition.rms.RecordComparator
Interface
Method Description

int compare(byte[], rec1, byte[] rec2) Compare two records represented as byte array
rec1 and byte array rec2 to determine the sort
sequence of a RecordEnumeration.

javax.microedition.rms.RecordFilter interface
Method Description

boolean matches(byte[] candidate) Search a record for a specific value.

javax.microedition.rms.RecordListener
Interface
Method Description

void recordAdded(RecordStore
recordStore, int recordId)

This method is called whenever a record is
added to the record store, where recordStore
is the record store, and recordID is the record
that was added.

void recordChanged(RecordStore
recordStore, int recordId)

This method is called whenever a record is
changed in the record store, where recordStore
is the record store, and recordID is the record
that was changed.

void recordDeleted(RecordStore
recordStore, int recordId)

This method is called whenever a record
is deleted from the record store, where
recordStore is the record store, and recordID
is the record that was deleted.

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A p p e n d i x : Q u i c k R e f e r e n c e G u i d e 675

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Appendix

A
P

P
EN

D
IX

Record Management System Exceptions
Exception Description

public InvalidRecordIDException() An invalid record number was used.

public InvalidRecordIDException
(String message)

An invalid record number was used, where
message contains the text of the exception.

public RecordStoreException() General exception with the record store.

public RecordStoreException
(String message)

General exception with the record store, where
message contains the text of the exception.

public RecordStoreFullException() Record store is full.

public RecordStoreFullException
(String message)

Record store is full, where message contains
the text of the exception.

public RecordStoreNotFound
Exception()

Record store does not exist.

public RecordStoreNotFound
Exception(String message)

Record store does not exist, where message
contains the text of the exception.

public RecordStoreNotOpen
Exception()

Record store is not open.

public RecordStoreNotOpen
Exception(String message)

Record store is not open, where message
contains the text of the exception.

java.sql Package Public Interface
CallableStatement
Method Description

public void registerOutParameter
(int parameterIndex, int sqlType)
throws SQLException

Register the OUT parameter.

public void registerOutParameter
(int parameterIndex, int sqlType,
int scale) throws SQLException

Register the OUT parameter.

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Method Description

public boolean wasNull() throws
SQLException

Determine an OUT parameter value is null.

set by name

Method Description

public void setURL(String
parameterName,URL val) throws
SQLException

Set a parameter to a java.net.URL object.

public void setNull(String
parameterName, int sqlType)
throws SQLException

Set a parameter to a null value.

public void setBoolean(String
parameterName,boolean x)
throws SQLException

Set a parameter to a Java boolean value.

public void setByte(String
parameterName, byte x)
throws SQLException

Set a parameter to a Java byte value.

public void setShort(String
parameterName, short x)
throws SQLException

Set a parameter to a Java short value.

public void setInt(String
parameterName, int x)
throws SQLException

Set a parameter to a Java int value.

public void setLong(String
parameterName, long x)
throws SQLException

Set a parameter to a Java long value.

public void setFloat(String
parameterName, float x)
throws SQLException

Set a parameter to a Java float value.

public void setDouble(String
parameterName, double x)
throws SQLException

Set a parameter to a Java double value.

public void setBigDecimal(String
parameterName,BigDecimal x)
throws SQLException

Set a parameter to a java.math.BigDecimal
value.

676 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9/ Appendix

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Method Description

public void setString(String
parameterName,String x)
throws SQLException

Set a parameter to a Java String value.

public void setBytes(String
parameterName, byte[] x)
throws SQLException

Set a parameter to a Java array of bytes.

public void setDate(String
parameterName,Date x)
throws SQLException

Set a parameter to a java.sql.Date value.

public void setTime(String
parameterName, Time x)
throws SQLException

Set a parameter to a java.sql.Time value.

public void setTimestamp(String
parameterName,Timestamp x)
throws SQLException

Set a parameter to a java.sql.Timestamp value.

public void setBinaryStream(String
parameterName, InputStream x,
int length) throws SQLException

Set the designated parameter to the given input
stream, which will have the specified number
of bytes.

public void setObject(String
parameterName, Object x,int
targetSqlType,int scale)throws
SQLException

Set a parameter with the given object.

public void setObject(String
parameterName, Object x, int
targetSqlType) throws SQLException

Set a parameter with the given object.

public void setObject(String
parameterName, Object x)throws
SQLException

Set a parameter with the given object.

public void setDate(String
parameterName, Date x,Calendar
cal) throws SQLException

Set a parameter to a java.sql.Date value.

public void setTime(String
parameterName, Time x, Calendar
cal)throws SQLException

Set a parameter to a java.sql.Time value.

A p p e n d i x : Q u i c k R e f e r e n c e G u i d e 677

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Appendix

A
P

P
EN

D
IX

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Method Description

public void setTimestamp(String
parameterName, Timestamp x,
Calendar cal) throws SQLException

Set a parameter to a java.sql.Timestamp value.

public void setNull(String
parameterName, int sqlType, String
typeName)throws SQLException

Set a parameter to a null value.

get by index

Method Description

public String getString(int
parameterIndex) throws
SQLException

Determine the value of the designated JDBC
CHAR, VARCHAR, or LONGVARCHAR
parameter.

public boolean getBoolean(int
parameterIndex) throws
SQLException

Determine the value of the designated JDBC
BIT parameter.

public byte getByte(int
parameterIndex) throws
SQLException

Determine the value of the designated JDBC
TINYINT parameter.

public short getShort(int
parameterIndex) throws
SQLException

Determine the value of the designated JDBC
SMALLINT parameter.

public int getInt(int parameter
Index) throws SQLException

Determine the value of the designated JDBC
INTEGER parameter.

public long getLong(int
parameterIndex) throws
SQLException

Determine the value of the designated JDBC
BIGINT parameter.

public float getFloat(int
parameterIndex) throws
SQLException

Determine the value of the designated JDBC
FLOAT parameter.

public double getDouble(int
parameterIndex) throws
SQLException

Determine the value of the designated JDBC
DOUBLE parameter.

public BigDecimal getBigDecimal
(int parameterIndex,int scale)
throws SQLException

Determine the value of the designated JDBC
NUMERIC parameter.

678 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9/ Appendix

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Method Description

public byte[] getBytes(int
parameterIndex) throws
SQLException

Determine the value of the designated JDBC
BINARY or VARBINARY parameter.

public Date getDate(int
parameterIndex)throws
SQLException

Determine the value of the designated JDBC
DATE parameter.

public Time getTime(int
parameterIndex) throws
SQLException

Determine the value of the designated JDBC
TIME parameter.

public Timestamp getTimestamp
(int parameterIndex) throws
SQLException

Determine the value of the designated JDBC
TIMESTAMP parameter.

public Object getObject(int
parameterIndex)throws
SQLException

Determine the value of the designated
parameter.

public BigDecimal getBigDecimal
(int parameterIndex) throws
SQLException

Determine the value of the designated JDBC
NUMERIC parameter.

public Object getObject(int i,
Map map) throws SQLException

Return an object representing the value of OUT
parameter.

public Ref getRef(int i) throws
SQLException

Determine the value of the designated JDBC
REF parameter.

public Blob getBlob(int i) throws
SQLException

Determine the value of the designated JDBC
BLOB parameter.

public Clob getClob(int i) throws
SQLException

Determine the value of the designated JDBC
CLOB parameter.

public Array getArray(int i) throws
SQLException

Determine the value of the designated JDBC
ARRAY parameter.

public Date getDate(int
parameterIndex, Calendar cal)
throws SQLException

Determine the value of the designated JDBC
DATE parameter.

public Time getTime(int
parameterIndex, Calendar cal)
throws SQLException

Determine the value of the designated JDBC
TIME parameter.

A p p e n d i x : Q u i c k R e f e r e n c e G u i d e 679

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Appendix

A
P

P
EN

D
IX

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Method Description

public Timestamp getTimestamp
(int parameterIndex, Calendar cal)
throws SQLException

Determine the value of the designated JDBC
TIMESTAMP parameter.

public void
registerOutParameter(int
paramIndex, int sqlType,String
typeName)throws SQLException

Register the designated output parameter.

public void registerOutParameter
(String parameterName, int sqlType)
throws SQLException

Register the OUT parameter named
parameterName.

public void
registerOutParameter(String
parameterName, int sqlType,
int scale)throws SQLException

Determine the parameter named
parameterName.

public void registerOutParameter
(String parameterName, int sqlType,
String typeName)throws
SQLException

Determine the designated output parameter.

public URL getURL(int
parameterIndex)throws
SQLException

Determine the value of the designated JDBC
DATALINK parameter.

get by name

Method Description

public String getString(String
parameterName) throws
SQLException

Determine the value of a JDBC CHAR,
VARCHAR, or LONGVARCHAR parameter.

public boolean getBoolean(String
parameterName) throws
SQLException

Determine the value of a JDBC BIT parameter.

public byte getByte(String
parameterName) throws
SQLException

Determine the value of a JDBC TINYINT
parameter.

public short getShort(String
parameterName) throws
SQLException

Determine the value of a JDBC SMALLINT
parameter.

680 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9/ Appendix

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Method Description

public int getInt(String
parameterName) throws
SQLException

Determine the value of a JDBC INTEGER
parameter.

public long getLong(String
parameterName) throws
SQLException

Determine the value of a JDBC BIGINT
parameter.

public float getFloat(String
parameterName) throws
SQLException

Determine the value of a JDBC FLOAT
parameter.

public double getDouble(String
parameterName) throws
SQLException

Determine the value of a JDBC DOUBLE
parameter.

public byte[] getBytes(String
parameterName) throws
SQLException

Determine the value of a JDBC BINARY or
VARBINARY parameter.

public Date getDate(String
parameterName) throws
SQLException

Determine the value of a JDBC DATE
parameter.

public Time getTime(String
parameterName) throws
SQLException

Determine the value of a JDBC TIME
parameter.

public Timestamp
getTimestamp(String
parameterName) throws
SQLException

Determine the value of a JDBC TIMESTAMP
parameter.

public Object getObject(String
parameterName) throws
SQLException

Determine the value of a parameter as an
Object.

public BigDecimal
getBigDecimal(String
parameterName)throws
SQLException

Determine the value of a JDBC NUMERIC
parameter.

public Object getObject(String
parameterName, Map map)
throws SQLException

Return an object representing the value of
OUT parameter.

A p p e n d i x : Q u i c k R e f e r e n c e G u i d e 681

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Appendix

A
P

P
EN

D
IX

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Method Description

public Ref getRef(String
parameterName) throws
SQLException

Determine the value of a JDBC REF parameter.

public Blob getBlob(String
parameterName) throws
SQLException

Determine the value of a JDBC BLOB
parameter.

public Clob getClob(String
parameterName)throws
SQLException

Determine the value of a JDBC CLOB
parameter.

public Array getArray(String
parameterName)throws
SQLException

Determine the value of a JDBC ARRAY.

public Date getDate(String
parameterName, Calendar
cal)throws SQLException

Determine the value of a JDBC DATE
parameter.

public Time getTime(String
parameterName, Calendar
cal)throws SQLException

Determine the value of a JDBC TIME
parameter.

public Timestamp
getTimestamp(String
parameterName, Calendar
cal)throws SQLException

Determine the value of a JDBC TIMESTAMP
parameter.

public URL getURL(String
parameterName) throws
SQLException

Determine a URL.

java.sql Package Public Interface Connection
Interface
Method Description

public void close()throws
SQLException

Close a Connection.

public boolean isClosed()throws
SQLException

Determine whether a Connection object is closed.

682 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9/ Appendix

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A p p e n d i x : Q u i c k R e f e r e n c e G u i d e 683

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Appendix

A
P

P
EN

D
IX

Method Description

public DatabaseMetaData
getMetaData()throws
SQLException

Retrieve a DatabaseMetaData.

public void setReadOnly(boolean
readOnly)throws SQLException

Place a connection in read-only.

public boolean isReadOnly()
throws SQLException

Determine whether a Connection object is
in read-only.

public String getCatalog()throws
SQLException

Determine a Connection’s catalog name.

Warnings

Method Description

public SQLWarning
getWarnings()throws
SQLException

Retrieve the first warning reported.

public void clearWarnings()
throws SQLException

Clear all warnings reported.

Holdability

Method Description

public void setHoldability(int
holdability)throws SQLException

Change the holdability of ResultSet objects.

public int getHoldability() throws
SQLException

Determine the holdability of a ResultSet.

Transactions

Method Description

public Savepoint setSavepoint()
throws SQLException

Create an unnamed savepoint.

public Savepoint
setSavepoint(String name)
throws SQLException

Create a named savepoint.

public void rollback(Savepoint
savepoint) throws SQLException

Reverse all changes made after a savepoint
was set.

public void releaseSavepoint
(Savepoint savepoint)throws
SQLException

Remove a Savepoint object.

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Method Description

public void commit()throws
SQLException

Make all changes permanent.

public void rollback()throws
SQLException

Reverse changes made to a transaction and release
any database locks.

public void
setAutoCommit(boolean
autoCommit)throws
SQLException

Set the autocommit mode.

public boolean
getAutoCommit()throws
SQLException

Determine whether the autocommit mode is set.

CallableStatement

Method Description

public CallableStatement
prepareCall(String sql,
int resultSetType, int
resultSetConcurrency, int
resultSetHoldability)throws
SQLException

Create a CallableStatement object that generates
a ResultSet.

public CallableStatement
prepareCall(String sql,int
resultSetType,int
resultSetConcurrency)throws
SQLException

Create a CallableStatement object that generates
a ResultSet.

public CallableStatement
prepareCall(String sql)throws
SQLException

Create a CallableStatement object.

Statement

Method Description

public Statement
createStatement(int
resultSetType,int
resultSetConcurrency,int
resultSetHoldability)
throws SQLException

Create a Statement object that will generate
ResultSet.

684 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9/ Appendix

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Method Description

public Statement
createStatement(int
resultSetType,int
resultSetConcurrency)
throws SQLException

Create a Statement object that generates ResultSet.

public Statement
createStatement()throws
SQLException

Create a Statement object.

PrepareStatement

Method Description

public PreparedStatement
prepareStatement(String
sql)throws SQLException

Create a PreparedStatement object.

public PreparedStatement
prepareStatement(String sql,
int resultSetType,int
resultSetConcurrency,int
resultSetHoldability)throws
SQLException

Create a PreparedStatement object that will
generate ResultSet.

public PreparedStatement
prepareStatement(String sql,
int[] columnIndexes)throws
SQLException

Create a PreparedStatement object that returns
autogenerated keys.

public PreparedStatement
prepareStatement(String sql,
int resultSetType,int
resultSetConcurrency)throws
SQLException

Create a PreparedStatement object that generates
ResultSet.

public PreparedStatement
prepareStatement(String
sql,String[] columnNames)
throws SQLException

Create a PreparedStatement object that returns
autogenerated keys.

A p p e n d i x : Q u i c k R e f e r e n c e G u i d e 685

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Appendix

A
P

P
EN

D
IX

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

686 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9/ Appendix

java.sql Package Public Interface
DatabaseMetaData
Method Description

public Connection getConnection()
throws SQLException

Retrieve the connection that produced metadata.

public boolean
supportsSavepoints() throws
SQLException

Determine whether a database supports
savepoints.

public boolean
supportsNamedParameters()
throws SQLException

Determine whether a database supports named
parameters to callable statements.

public boolean supports
MultipleOpenResults()
throws SQLException

Determine whether it is possible to have
multiple ResultSet objects returned from a
CallableStatement simultaneously.

public int getMaxUserName
Length() throws SQLException

Determine the maximum number of characters
in a user name.

public boolean supports
Transactions() throws
SQLException

Determine whether a database supports
transactions.

public int getJDBCMajorVersion()
throws SQLException

Determine the major JDBC version number of
a driver.

public int getJDBCMinorVersion()
throws SQLException

Determine the minor JDBC version number of
a driver.

Database

Method Description

public String getURL() throws
SQLException

Retrieve the URL for a DBMS.

public String
getDatabaseProductName() throws
SQLException

Determine the name of a DBMS.

public String
getDatabaseProductVersion()
throws SQLException

Determine the version number of a DBMS.

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Appendix

A
P

P
EN

D
IX

Method Description

public ResultSet getSchemas()
throws SQLException

Determine the schema names.

public ResultSet getCatalogs()
throws SQLException

Determine the catalog names.

public ResultSet getTypeInfo()
throws SQLException

Retrieve a description of standard SQL types
supported by a database.

public int
getDatabaseMajorVersion() throws
SQLException

Determine the major version number of a
database.

public int
getDatabaseMinorVersion() throws
SQLException

Determine the minor version number of a
database.

Columns and Rows

Method Description

public int
getMaxColumnNameLength()
throws SQLException

Determine the maximum number of characters
allowed in a column name.

public int
getMaxColumnsInGroupBy()
throws SQLException

Determine the maximum number of columns
allowed in a GROUP BY clause.

public int
getMaxColumnsInIndex() throws
SQLException

Determine the maximum number of columns
allowed in an index.

public int
getMaxColumnsInOrderBy()
throws SQLException

Determine the maximum number of columns
allowed in an ORDER BY clause.

public int
getMaxColumnsInSelect() throws
SQLException

Determine the maximum number of columns
allowed in a SELECT list.

public int
getMaxColumnsInTable() throws
SQLException

Determine the maximum number of columns
allowed in a table.

public int getMaxConnections()
throws SQLException

Determine the maximum number of concurrent
connections that are possible to a database.

public int getMaxIndexLength()
throws SQLException

Determine the maximum number of bytes
allowed for an index.

public int getMaxRowSize() throws
SQLException

Determine the maximum number of bytes
allowed in a row.

A p p e n d i x : Q u i c k R e f e r e n c e G u i d e 687

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

688 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9/ Appendix

Method Description

public ResultSet
getColumns(String catalog,
String schemaPattern, String
tableNamePattern, String
columnNamePattern)
throws SQLException

Retrieve a description of table columns.

public ResultSet
getColumnPrivileges(String
catalog,String schema,String
table,String columnNamePattern)
throws SQLException

Determine access rights for columns.

Statement

Method Description

public int
getMaxStatementLength()
throws SQLException

Determine the maximum number of characters
permitted in an SQL statement.

public int getMaxStatements()
throws SQLException

Determine the maximum number of active
statements that can be open at the same time.

public boolean
supportsBatchUpdates()
throws SQLException

Determine whether a database supports batch
updates.

Table

Method Description

public int
getMaxTableNameLength()
throws SQLException

Determine the maximum number of characters in
a table name.

public int getMaxTablesInSelect()
throws SQLException

Determine the maximum number of tables
allowed in a SELECT statement.

public ResultSet getTables(String
catalog, String schemaPattern,
String tableNamePattern, String[]
types) throws SQLException

Determine tables available in a catalog.

public ResultSet
getTablePrivileges(String
catalog,String
schemaPattern,String
tableNamePattern)throws
SQLException

Determine access rights for each table.

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A p p e n d i x : Q u i c k R e f e r e n c e G u i d e 689

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Appendix

A
P

P
EN

D
IX

Method Description

Keys

Method Description

public ResultSet
getPrimaryKeys(String
catalog,String schema,String
table)throws SQLException

Retrieve a description of a table’s primary key.

public ResultSet
getIndexInfo(String catalog, String
schema,String table,boolean
unique, boolean
approximate)throws SQLException

Retrieve a description of table’s indices and
statistics.

public boolean
supportsGetGeneratedKeys()
throws SQLException

Determine whether autogenerated keys can be
retrieved.

Procedure

Method Description

public ResultSet
getProcedureColumns(String
catalog,String
schemaPattern,String
procedureNamePattern,String
columnNamePattern)throws
SQLException

Determine a catalog’s stored procedure
parameter and result columns.

public ResultSet
getProcedures(String catalog,String
schemaPattern,String
procedureNamePattern)throws
SQLException

Determine the stored procedures available in a
catalog.

Holdability

Method Description

public boolean
supportsResultSetHoldability(int
holdability) throws SQLException

Determine whether a database supports
holdability.

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Method Description

public int getResultSetHoldability()
throws SQLException

Determine the default holdability of a ResultSet.

java.sql Package Public Class DriverManager
Method Description

public static Connection
getConnection(String url, Properties
info)throws SQLException

Open a connection to a database.

public static Connection
getConnection(String url, String user,
String password)throws SQLException

Open a connection to a database.

public static Connection
getConnection(String url) throws
SQLException

Open a connection to a database.

Timeout

Method Description

public static void
setLoginTimeout(int seconds)

Set the maximum time in seconds before
the login to the database times out.

public static int getLoginTimeout() Determine the maximum time in seconds
before the login to the database times out.

java.sql Package Public Interface
PreparedStatement
Method Description

public ResultSetMetaData getMetaData()
throws SQLException

Retrieve a ResultSetMetaData object.

public ParameterMetaData
getParameterMetaData() throws
SQLException

Determine the metadata for a
PreparedStatement’s parameters.

690 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9/ Appendix

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A p p e n d i x : Q u i c k R e f e r e n c e G u i d e 691

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Appendix

A
P

P
EN

D
IX

Method Description

public void addBatch() throws
SQLException

Add a parameter to PreparedStatement
batch of commands.

Execute

Method Description

public ResultSet executeQuery() throws
SQLException

Execute a query in a PreparedStatement
and return a ResultSet.

public int executeUpdate() throws
SQLException

Execute the SQL statement that contains
an INSERT, UPDATE, or DELETE
statement in a PreparedStatement.

public boolean execute() throws
SQLException

Execute an SQL statement in a
PreparedStatement.

Parameters

Method Description

public void setNull(int parameterIndex,int
sqlType)throws SQLException

Set the parameter to a null value.

public void setString(int parameterIndex,
String x) throws SQLException

Set the String value.

public void setDate(int parameterIndex,
Date x) throws SQLException

Set the java.sql.Date value.

public void setTime(int parameterIndex,
Time x) throws SQLException

Set the java.sql.Time value.

public void setTimestamp(int
parameterIndex, Timestamp x) throws
SQLException

Set the java.sql.Timestamp value.

public void clearParameters() throws
SQLException

Clear the current parameter values.

public void setNull(int paramIndex,
int sqlType, String typeName)throws
SQLException

Set a parameter to a null value.

java.sql Package Public Interface ResultSet
Method Description

public void close() throws SQLException Close a ResultSet.

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

692 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9/ Appendix

Method Description

public ResultSetMetaData getMetaData()
throws SQLException

Retrieve metadata.

public Statement getStatement()throws
SQLException

Retrieve the Statement object.

Warnings

Method Description

public SQLWarning getWarnings() throws
SQLException

Retrieve the first warning reported
on a ResultSet.

public void clearWarnings() throws
SQLException

Clear all warnings reported on a
ResultSet.

Virtual Cursor Movement

Method Description

public boolean next() throws
SQLException

Move the virtual cursor down one row.

public boolean isFirst()throws
SQLException

Determine whether the virtual cursor is
on the first row.

public boolean isLast()throws
SQLException

Determine whether the virtual cursor is
on the last row.

public boolean first()throws
SQLException

Move the virtual cursor to the first row.

public boolean last()throws SQLException Move the virtual cursor to the last row.

public int getRow()throws SQLException Determine the current row number.

public boolean absolute(int row)throws
SQLException

Move the virtual cursor to the row
specified by the row parameter.

public boolean relative(int rows)throws
SQLException

Move the virtual cursor a relative number
of rows.

public boolean previous()throws
SQLException

Move the virtual cursor to the previous row.

Fetch Size

Method Description

public void setFetchSize(int rows)throws
SQLException

Give the database driver a hint as to how
many rows should be fetched when more
rows are needed for this ResultSet.

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Method Description

public int getFetchSize()throws
SQLException

Determine the fetch size for this ResultSet.

Rows

Method Description

public boolean rowUpdated()throws
SQLException

Determine whether a row has been
updated.

public boolean rowInserted()throws
SQLException

Determine whether a row has had an
insertion.

public boolean rowDeleted()throws
SQLException

Determine whether a row is deleted.

public void updateNull(int
columnIndex)throws SQLException

Insert a null into a column.

public void insertRow()throws
SQLException

Insert a row into a ResultSet and into the
database.

public void updateRow()throws
SQLException

Update the underlying database with the
row of this ResultSet.

public void deleteRow()throws
SQLException

Delete a row from a ResultSet and from
the database.

public void refreshRow()throws
SQLException

Refresh the current row with the current
value in the database.

public void cancelRowUpdates()throws
SQLException

Cancel updates.

java.sql Package Public Interface
ResultSetMetaData
Method Description

public int getColumnCount()throws
SQLException

Retrieve the number of columns in a
ResultSet object.

public boolean isCaseSensitive(int
column) throws SQLException

Determine whether a column is case
sensitive.

A p p e n d i x : Q u i c k R e f e r e n c e G u i d e 693

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Appendix

A
P

P
EN

D
IX

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

694 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9/ Appendix

Method Description

public boolean isSearchable(int column)
throws SQLException

Determine whether a column can be used
in a where clause.

public boolean isCurrency(int column)
throws SQLException

Determine whether a column is a cash
value.

public int isNullable(int column)throws
SQLException

Determine whether a null value can be
placed in the column.

public boolean isSigned(int
column)throws SQLException

Determine whether values are signed
numbers.

Columns

Method Description

public int
getColumnDisplaySize(int
column)throws SQLException

Retrieve the column’s maximum width in
characters.

public String
getColumnLabel(int column)throws
SQLException

Retrieve the column’s label.

public String
getColumnName(int column) throws
SQLException

Retrieve the column’s name.

public int getPrecision(int column)
throws SQLException

Retrieve the column’s precision.

public int getColumnType(int
column)throws SQLException

Retrieve the data type of the column.

public String
getColumnTypeName(int column)throws
SQLException

Retrieve the name of the column data type.

public boolean isReadOnly(int column)
throws SQLException

Indicate whether a column is read-only.

public boolean isWritable(int
column)throws SQLException

Indicate whether a column is writable.

java.sql Package Public Interface Savepoint
Method Description

public int getSavepointId()throws
SQLException

Retrieve a savepoint ID.

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Method Description

public String getSavepointName()throws
SQLException

Retrieve a savepoint name.

java.sql Package Public Interface Statement
Method Description

public void close() throws SQLException Release a Statement object.

public ResultSet getResultSet() throws
SQLException

Retrieve the current ResultSet object.

public int getUpdateCount()throws
SQLException

Determine the number of rows that were
updated.

public Connection getConnection()
throws SQLException

Retrieve a Connection object.

public ResultSet getGeneratedKeys()
throws SQLException

Retrieve autogenerated keys.

Timeout

Method Description

public int getQueryTimeout()throws
SQLException

Determine the maximum number of
seconds for a Statement object to execute.

public void setQueryTimeout(int seconds)
throws SQLException

Set the maximum number of seconds for
a Statement object to execute.

Rows

Method Description

public int getMaxRows() throws
SQLException

Retrieve the maximum number of rows
for a ResultSet object.

public void setMaxRows(int max) throws
SQLException

Set the maximum number of rows for a
ResultSet object.

public void setFetchSize(int rows)throws
SQLException

Give database a hint for how many rows
to retrieve when more rows are needed
for the ResultSet.

public int getFetchSize()throws
SQLException

Determine the number of rows for the
fetch size.

A p p e n d i x : Q u i c k R e f e r e n c e G u i d e 695

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Appendix

A
P

P
EN

D
IX

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Method Description

Warnings

Method Description

public SQLWarning getWarnings() throws
SQLException

Retrieve the first warning on a Statement
object.

public void clearWarnings() throws
SQLException

Clear all the warnings reported on a
Statement object.

Execute

Method Description

public boolean execute(String sql) throws
SQLException

Execute an SQL statement.

public ResultSet executeQuery(String
sql)throws SQLException

Execute an SQL statement and return a
ResultSet object.

public int executeUpdate(String sql)
throws SQLException

Execute an SQL statement that contains
INSERT, UPDATE, or DELETE statements
or DDL statements.

Batch

Method Description

public void addBatch(String sql)throws
SQLException

Add an SQL statement to a batch.

public void clearBatch() throws
SQLException

Empty a batch of SQL statements.

public int[] executeBatch()throws
SQLException

Execute a batch of SQL statements.

javaxsql Package Public Interface DataSource
Method Description

public Connection getConnection()
throws SQLException

Open a connection to a data source.

public Connection getConnection(String
username, String password) throws
SQLException

Open a connection to a data source.

696 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9/ Appendix

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A p p e n d i x : Q u i c k R e f e r e n c e G u i d e 697

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Appendix

A
P

P
EN

D
IX

javaxsql Package Public Interface RowSet
Method Description

public void setUrl(String url) throws
SQLException

Set the URL of a RowSet.

public boolean isReadOnly() Determine whether a RowSet object is
read-only.

public void setReadOnly(boolean value)
throws SQLException

Set a RowSet object to read-only.

public int getMaxFieldSize() throws
SQLException

Determine the maximum number of bytes
that can be placed in a column.

public int getMaxRows() throws
SQLException

Determine the maximum number of rows
that can be in a RowSet.

DataSource

Method Description

public String getDataSourceName() Determine the logical name of the data
source for a RowSet.

public void setDataSourceName(String
name) throws SQLException

Set the data source name for a RowSet.

User Name and Password

Method Description

public String getUsername() Determine the user name used to create a
database connection for a RowSet.

public void setUsername(String name)
throws SQLException

Set the user name for a RowSet.

public String getPassword() Determine the password used to create a
database connection.

public void setPassword(String
password) throws SQLException

Set the database password for a RowSet.

Timeout

Method Description

public int getQueryTimeout() throws
SQLException

Determine the maximum time the driver
will wait for a statement to execute.

public void setQueryTimeout(int seconds)
throws SQLException

Set the maximum time the driver will
wait for a statement to execute.

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9/ Appendix

698 J 2 M E : T h e C o m p l e t e R e f e r e n c e

javax.sql Public Class RowSetEvent Extends
java.util.EventObject
Method Description

public RowSetEvent(RowSet source) Create an instance of a RowSetEvent that is
associated with the RowSet specified by the
source parameter.

javax.sql Public Interface RowSetInternal
Method Description

public Object[] getParams() throws
SQLException

Return an array of Objects containing
parameter values for a RowSet.

public Connection getConnection()
throws SQLException

Return the Connection object associated with
a RowSet. A null is returned if there is no
Connection object associated with a RowSet.

public void
setMetaData(RowSetMetaData md)
throws SQLException

Set the metadata for a RowSet, where md is
the RowSetMetaData.

public ResultSet getOriginal() throws
SQLException

Return a ResutSet containing the original
value of the RowSet.

public ResultSet getOriginalRow()
throws SQLException

Return a ResutSet containing the original
value of the current row of the RowSet. An
exception is thrown if there is no current row.

javax.sql Public Interface RowSetListener
Extends java.util.EventListener
Method Description

public void
rowSetChanged(RowSetEvent
event)

Send a RowSetListener notification that the entire
content of a RowSet has changed. RowSetEvent
is the object that contains the RowSet associated
with the change.

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Method Description

public void
rowChanged(RowSetEvent
event)

Send a RowSetListener notification that the one row
of a RowSet has changed. RowSetEvent is the object
that contains the RowSet associated with the change.

public void
cursorMoved(RowSetEvent
event)

Send a RowSetListener notification that the cursor of
a RowSet has moved. RowSetEvent is the object that
contains the RowSet associated with the cursor.

javax.sql Public Interface RowSetMetaData
Extends ResultSetMetaData
Method Description

public void
setColumnCount(int
columnCount) throws
SQLException

Determine the number of columns in a RowSet, where
columnCount specifies the number of columns.

public void
setAutoIncrement(int
columnIndex, boolean
property) throws
SQLException

Determine whether the specified column is numbered
automatically, where columnIndex is the index of the
column, and property is a boolean value indicating
whether or not the column is automatically numbered.
The property value is false by default.

public void
setCaseSensitive(int
columnIndex, boolean
property) throws
SQLException

Determine whether the specified column is case
sensitive, where columnIndex is the index of the
column, and property is a boolean value indicating
whether or not the column is case sensitive. The
property value is false by default.

public void
setSearchable(int
columnIndex,boolean
property) throws
SQLException

Determine whether the specified column can be used
in a where clause, where columnIndex is the index of
the column, and property is a boolean value indicating
whether or not the column can be used in a where
clause. The property value is false by default.

public void
setCurrency(int
columnIndex, boolean
property) throws
SQLException

Determine whether the specified column is a cash
value, where columnIndex is the index of the column,
and property is a boolean value indicating whether or
not the column is a cash value. The property value is
false by default.

A p p e n d i x : Q u i c k R e f e r e n c e G u i d e 699

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Appendix

A
P

P
EN

D
IX

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9/ Appendix

Method Description

public void
setNullable(int
columnIndex, int property)
throws SQLException

Determine whether the specified column can be set to
null, where columnIndex is the index of the column,
and property is an int indicating whether or not the
column can be set to null. The property value is one
of the following constants:
ResultSetMetaData.columnNoNulls,
ResultSetMetaData.columnNullable, or
ResultSetMetaData.columnNullableUnknown

public void setSigned(int
columnIndex, boolean
property) throws
SQLException

Determine whether the specified column is a signed
number, where columnIndex is the index of the column,
and property is a boolean value indicating whether or
not the column is a signed number. The property value
is false by default.

public void
setColumnDisplaySize(int
columnIndex, int size)
throws SQLException

Determine the maximum width in chars when
displaying the column, where columnIndex is the index
of the column, and property is an int indicating the
maximum number of characters that will be displayed.

public void
setColumnLabel(int
columnIndex, String label)
throws SQLException

Determine the suggested label for the column, where
columnIndex is the index of the column, and label is
the String containing the text of the suggested label.

public void
setColumnName(int
columnIndex, String
columnName) throws
SQLException

Determine the name for the column, where columnIndex
is the index of the column, and columnName is the
String containing the text of the column name.

public void
setSchemaName(int
columnIndex, String
schemaName) throws
SQLException

Determine the name of the table’s schema that contains
the column, where columnIndex is the index of the
column, and schemaName is the String containing the
text of the schema name.

public void
setPrecision(int
columnIndex, int precision)
throws SQLException

Determine the number of decimal digits, where
columnIndex is the index of the column, and precision
is an int indicating the maximum number of decimal
digits contained in the column.

public void setScale(int
columnIndex, int scale)
throws SQLException

Determine the number of digits to the right of the
decimal point, where columnIndex is the index of the
column, and scale is an int indicating the number of
digits to the right of the decimal point in the value
within the column.

700 J 2 M E : T h e C o m p l e t e R e f e r e n c e

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Method Description

public void
setTableName(int
columnIndex,
String tableName)
throws SQLException

Determine the name of the table that contains the
column, where columnIndex is the index of the column,
and tableName is a String containing the text of the
table name.

public void
setCatalogName(int
columnIndex,
String catalogName)
throws SQLException

Determine the name of the table catalog that contains
the column, where columnIndex is the index of the
column, and catalogName is a String containing the text
of the catalog.

public void
setColumnType(int
columnIndex, int SQLType)
throws SQLException

Determine SQL type of the column, where columnIndex
is the index of the column, and SQLType is an int
containing the SQL type.

public void
setColumnTypeName(int
columnIndex, String
typeName) throws
SQLException

Determine the name of the column type in the data
source of the column, where columnIndex is the index
of the column, and typeName is the String containing
the text of the column type.

javax.sql Public Interface RowSetReader
Method Description

public void
readData(RowSetInternal
caller) throws SQLException

Read the content of a RowSet, where the caller is the
RowSetInternal that is implemented by a RowSet
object and is registered with the RowSetReader.

javax.sql Public Interface RowSetWriter
Method Description

public boolean
writeData(RowSetInternal
caller) throws SQLException

Write changes to the RowSet associated with the
RowSetWriter to the data source, where caller is the
RowSetInternal associated with the RowSetWriter.
A true is returned if the data was successfully written
to the data source, otherwise a false is returned.

A p p e n d i x : Q u i c k R e f e r e n c e G u i d e 701

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Appendix

A
P

P
EN

D
IX

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Public Interface Contact Extends PIMItem
Field Description

static int ADDR Specify an address for a Contact.

static int ADDR_COUNTRY Index into the string array for an address field
representing the country of an address.

static int ADDR_EXTRA Index into the string array for an address field
representing any extra info of an address.

static int ADDR_LOCALITY Index into the string array for an address field
representing the locality (for example, a city) of
an address.

static int ADDR_POBOX Index into the string array for an address field
representing the post office box of an address.

static int ADDR_POSTALCODE Index into the string array for an address field
representing the postal code (for example, a zip
code) of an address.

static int ADDR_REGION Index into the string array for an address field
representing the region (for example, a province,
state, or territory) of an address.

static int ADDR_STREET Index into the string array for an address field,
where the data at this index represents the street
information of a particular address.

static int ADDRSIZE The size of an address string array.

static int ATTR_ASST Attribute classifying data as related to an
ASSISTANT.

static int ATTR_AUTO Attribute classifying a data as related to AUTO.

static int ATTR_FAX Attribute classifying a data as related to FAX.

static int ATTR_HOME Attribute classifying a data as related to HOME.

static int ATTR_MOBILE Attribute classifying a data as related to MOBILE.

static int ATTR_OTHER Attribute classifying a data as “OTHER.”

static int ATTR_PAGER Attribute classifying a data as related to PAGER.

static int ATTR_PREFERRED Attribute classifying a data with preferred status
for retrieval or display purposes (platform specific).

static int ATTR_SMS Attribute classifying a data as related to SMS.

702 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9/ Appendix

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Field Description

static int ATTR_WORK Attribute classifying a data as related to WORK.

static int BIRTHDAY Field for birthday.

static int CLASS Field specifying access class for a contact.

static int
CLASS_CONFIDENTIAL

Constant indicating contact’s class is confidential.

static int CLASS_PRIVATE Constant indicating contact’s class is private.

static int CLASS_PUBLIC Constant indicating contact’s class is public.

static int EMAIL Field for email address.

static int FORMATTED_ADDR Field for a formatted version of a contact address.

static int FORMATTED_NAME Field for a formatted version of a contact name.

static int NAME Field for a contact name.

static int NAME_FAMILY Index into the string array for an address field,
where the data at this index represents a family
name.

static int NAME_GIVEN Index into the string array for an address field,
where the data at this index represents a given
name.

static int NAME_OTHER Index into the string array for an address field,
where the data at this index represents other
alternate name or names.

static int NAME_PREFIX Index into the string array for an address field,
where the data at this index represents a prefix
to a name.

static int NAME_SUFFIX Index into the string array for an address field,
where the data at this index represents a suffix
to a name.

static int NAMESIZE Indicate the size of a name string array.

static int NICKNAME Field where the data is a nickname.

static int NOTE Field for supplemental information or a comment
associated with a Contact.

static int ORG Field for the organization name or units associated
with a Contact.

A p p e n d i x : Q u i c k R e f e r e n c e G u i d e 703

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Appendix

A
P

P
EN

D
IX

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Field Description

static int PHOTO Field for a photo of a Contact.

static int PHOTO_URL Field for a URL for a photo of a Contact.

static int PUBLIC_KEY Field for the public encryption key for a Contact.

static int PUBLIC_KEY_STRING Field for the public encryption key for a Contact.

static int REVISION Field for the last modification date and time of a
Contact item.

static int TEL Field for a voice telephone number.

static int TITLE Field for the job title for a Contact.

static int UID Field for a unique ID for a Contact.

static int URL Field for the uniform resource locator for a Contact.

Method Description

int getPreferredIndex(int field) Return the index of the value marked with the
attribute ATTR_PREFERRED for a field.

Public Interface ContactList Extends PIMItem
Method Description

Contact createContact() Create a Contact for this contact list.

Contact importContact(Contact contact) Import the given Contact into this
contact list.

void removeContact(Contact contact) Remove a Contact from the list.

Public Interface Event Extends PIMItem
Field Description

static int ALARM Field for the relative time for an Alarm
for this Event.

static int CLASS Field for the desired access class for this contact.

static int CLASS_CONFIDENTIAL Indicate this event’s class is confidential.

704 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9/ Appendix

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A p p e n d i x : Q u i c k R e f e r e n c e G u i d e 705

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Appendix

A
P

P
EN

D
IX

Field Description

static int CLASS_PRIVATE Indicate this event’s class is private.

static int CLASS_PUBLIC Indicate this event’s class is public.

static int END Field for the noninclusive date and time a
single Event ends.

static int LOCATION Field for the venue for this Event.

static int NOTE A String for a complete description of an
Event.

static int REVISION Field for the last modification date and time
of an Event item.

static int START Field for the inclusive date and time a single
Event starts.

static int SUMMARY Field for the summary or subject for this Event.

static int UID Field for a unique ID for an Event.

Method Description

RepeatRule getRepeat() Retrieve a RepeatRule object that specifies
how often and when this event occurs.

void setRepeat(RepeatRule value) Set the RepeatRule that specifies how often
and when this event occurs.

Public Interface EventList Extends PIMItem
Field Description

static int ENDING Represents a search type for Events based on
the event end date/time.

static int OCCURRING Represents a search type for Events based on
the event during a time period.

static int STARTING Represents a search type for Events based on
the event start date/time.

Method Description

Event createEvent() Create an Event for this event list.

Event importEvent(Event item) Import the given Event into this list by making
a new Event for the list.

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Field Description

java.util.Enumeration items(int
searchType, long startDate, long
endDate, boolean initialEventOnly)

Return an enumeration of all the Events where
at least one of the Event’s occurrences falls in
the specified startDate to endDate inclusive.

void removeEvent(Event item) Remove a specific Event from the list.

Public Class FieldEmptyException Extends
java.lang.RuntimeException
Method Description

FieldEmptyException() Construct an instance of this class with its stack
trace filled.

FieldEmptyException(java.lang
.String detailMessage)

Construct an instance of this class with its stack
trace and message filled.

FieldEmptyException(java.lang
.String detailMessage, int field)

Construct an instance of this class with its stack
trace, message, and offending field filled.

int getField() Access the field that caused the exception to
be thrown.

Public Class FieldFullException Extends
java.lang.RuntimeException
Method Description

FieldFullException() Construct an instance of this class with its stack
trace filled.

FieldFullException(java.lang.String
detailMessage)

Construct an instance of this class with its stack
trace and message filled.

FieldFullException(java.lang.String
detailMessage, int field)

Construct an instance of this class with its stack
trace, message, and offending field filled.

int getField() Access the field that caused the exception to
be thrown.

706 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9/ Appendix

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Public Class PIMException Extends
java.lang.Exception
Field Description

static int FEATURE_NOT_SUPPORTED Functionality is not supported in this
implementation.

static int GENERAL_ERROR General PIM exception error.

static int LIST_CLOSED List is closed and access is attempted.

static int LIST_NOT_ACCESSIBLE List is no longer accessible by the
application, such as if the underlying
PIM database is deleted.

static int
MAX_CATEGORIES_EXCEEDED

Maximum number of categories is
exceeded.

static int UNSUPPORTED_VERSION Data is in an unsupported PIM version.

static int UPDATE_ERROR The update could not continue.

Method Description

PIMException() Construct an instance of this class with its
stack trace filled.

PIMException(java.lang.String
detailMessage)

Construct an instance of this class with its
stack trace and message filled.

PIMException(java.lang.String
detailMessage, int reason)

Construct an instance of this class with its
stack trace, message, and reason filled.

int getReason() Return the reason for the PIM Exception.

Public Interface PIMItem
Field Description

static int ATTR_NONE No additional attributes are applicable to a
data value for a field.

static int BINARY Data is binary in a byte array.

static int BOOLEAN Data is of boolean primitive data type.

A p p e n d i x : Q u i c k R e f e r e n c e G u i d e 707

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Appendix

A
P

P
EN

D
IX

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Field Description

static int DATE Data is a Date in long primitive data type
format expressed in the same long value
format as java.util.Date, which is milliseconds
since the epoch (00:00:00 GMT, January 1, 1970).

static int EXTENDED_ATTRIBUTE_
MIN_VALUE

The minimum possible value for an extended
attribute constant.

static int EXTENDED_FIELD_MIN_
VALUE

The minimum possible value for an extended
field constant.

static int INT Data is of int primitive data type.

static int STRING Data is a String object.

static int STRING_ARRAY Data is an array of related fields returned in
a string array.

Method Description

void addBinary(int field, int
attributes, byte[] value, int offset,
int length)

Add a binary data value to a field.

void addBoolean(int field, int
attributes, boolean value)

Add a boolean value to a field.

void addDate(int field, int attributes,
long value)

Add a date value to a field.

void addInt(int field, int attributes,
int value)

Add an integer value to a field.

void addString(int field, int attributes,
java.lang.String value)

Add a String value to a field.

void addStringArray(int field, int
attributes, java.lang.String[] value)

Add an array of related string values as a
single entity to a field.

void addToCategory(java.lang.String
category)

Add a category to this item.

void commit() Persist the data in the item to its PIM list.

int countValues(int field) Return the number of values assigned to
a field.

int getAttributes(int field, int index) Return the attributes associated with the data
value at the given index for the indicated field.

708 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9/ Appendix

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Field Description

byte[] getBinary(int field, int index) Return a binary data value for a field from
the item.

boolean getBoolean(int field, int
index)

Return a boolean value from a field in the item.

java.lang.String[] getCategories() Return all categories for the item.

long getDate(int field, int index) Return a date value from a field in the item.

int[] getFields() Return all fields in the item that have data
stored for them.

int getInt(int field, int index) Return an integer value from a field in the
item.

PIMList getPIMList() Return the PIMList associated with this item.

java.lang.String getString(int field,
int index)

Return a String value from a field in the item.

java.lang.String[]
getStringArray(int field, int index)

Return an array of related values from a field
in the item.

boolean isModified() Return a boolean indicating whether any of
this item’s fields have been modified since
the item was retrieved or last committed.

int maxCategories() Return the maximum number of categories
that this item can be assigned to.

void
removeFromCategory(java.lang.String
category)

Remove a category from this item.

void removeValue(int field, int index) Remove the value at the given index for the
indicated field in an item.

void setBinary(int field, int index, int
attributes, byte[] value, int offset, int
length)

Set an existing binary data value in a field to
a new value.

void setBoolean(int field, int index,
int attributes, boolean value)

Set an existing boolean data value in a field
to a new value.

void setDate(int field, int index, int
attributes, long value)

Set an existing date data value in a field to a
new value.

void setInt(int field, int index, int
attributes, int value)

Set an existing int data value in a field to a
new value.

A p p e n d i x : Q u i c k R e f e r e n c e G u i d e 709

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Appendix

A
P

P
EN

D
IX

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

710 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9/ Appendix

Field Description

void setString(int field, int index, int
attributes, java.lang.String value)

Set an existing String data value in a field to
a new value.

void setStringArray(int field, int
index, int attributes, java.lang.String[]
value)

Set an existing String array data value in a
field to a new value.

Public Interface PIMList
Field Description

static java.lang.String
UNCATEGORIZED

Constant for the
itemsByCategory(java.lang.String) method
to indicate to search for uncategorized items.

Method Description

void addCategory(java.lang.String
category)

Add a category to the PIM list.

void close() Close the list, releasing any resources.

void deleteCategory(java.lang.String
category)

Delete a category from the PIM list.

java.lang.String getAttributeLabel(int
attribute)

Return a String label associated with an
attribute.

java.lang.String[] getCategories() Return the categories defined for the PIM list.

int getFieldDataType(int field) Return an int representing the data type of
the data associated with a field.

java.lang.String getFieldLabel(int field) Return a String label associated with a field.

java.lang.String getName() Return the name of the list.

int[] getSupportedArrayElements(int
stringArrayField)

Return an integer array containing all of the
supported elements of a string array for a field.

int[] getSupportedAttributes(int field) Return an integer array containing all of the
supported attributes for a field.

int[] getSupportedFields() Return all fields that are supported in this list.

boolean isCategory(java.lang.String
category)

Return whether a category is a valid,
existing category for this list.

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A p p e n d i x : Q u i c k R e f e r e n c e G u i d e 711

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Appendix

A
P

P
EN

D
IX

Field Description

boolean isSupportedArrayElement(int
stringArrayField, int arrayElement)

Return whether or not the element in an
array is supported for a field in this PIM list.

boolean isSupportedAttribute(int field,
int attribute)

Return whether or not the given attribute is
supported in this PIM list for a field.

boolean isSupportedField(int field) Return whether or not the given field is
supported in this PIM list.

java.util.Enumeration items() Return an Enumeration of all items in the list.

java.util.Enumeration items(PIMItem
matchingItem)

Return an Enumeration of all items in the list
that contain fields that match all fields
specified in the matching item.

java.util.Enumeration
items(java.lang.String matchingValue)

Return an Enumeration of all items in the list
that contain at least one String field data
value that matches the specified string value.

java.util.Enumeration
itemsByCategory(java.lang.String
category)

Return an enumeration of all items in the
PIM list that match the category.

int maxCategories() Return the maximum number of categories
that this list can have.

void renameCategory(java.lang.String
currentCategory, java.lang.String
newCategory)

Rename a category to a new name.

int supportsMultipleValues(int field) Determine whether a field supports adding
more than one value to the field.

Public Class RepeatRule Extends
java.lang.Object
Field Description

static int APRIL Constant for the month of April.

static int AUGUST Constant for the month of August.

static int COUNT Specify the number of times this event repeats, including
the first time, starting from the first time the event starts
(derived from Event.START) and continuing to the last
date of the repeat (defined by RepeatRule.END).

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9/ Appendix

Field Description

static int DAILY Indicate frequency when the Event happens every day.

static int DAY_IN_
MONTH

Specify the day of the month an Event occurs; for
example, 15.

static int DAY_IN_WEEK Specify the days of the week an Event occurs.

static int DAY_IN_YEAR Specify the day of the year an Event occurs; for
example, 134.

static int DECEMBER Constant for the month of December.

static int END Specify the ending date of the repeating event.

static int FEBRUARY Constant for the month of February.

static int FIFTH Constant for the fifth week of the month.

static int FIFTHLAST Constant for the fifth to last week of the month.

static int FIRST Constant for the first week of the month.

static int FOURTH Constant for the fourth week of the month.

static int FOURTHLAST Constant for the fourth to last week of the month.

static int FREQUENCY Specify the frequency of the Repeat.

static int FRIDAY Constant for the day of week Friday.

static int INTERVAL Specify the number of iterations of the frequency between
occurring dates, or how often the frequency repeats.

static int JANUARY Constant for the month of January.

static int JULY Constant for the month of July.

static int JUNE Constant for the month of June.

static int LAST Constant for the last week of the month.

static int MARCH Constant for the month of March.

static int MAY Constant for the month of May.

static int MONDAY Constant for the day of week Monday.

static int MONTH_IN_
YEAR

Specify the month in which an event occurs.

static int MONTHLY Specify the frequency when the Event happens every month.

static int NOVEMBER Constant for the month of November.

static int OCTOBER Constant for the month of October.

static int SATURDAY Constant for the day of week Saturday.

712 J 2 M E : T h e C o m p l e t e R e f e r e n c e

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A p p e n d i x : Q u i c k R e f e r e n c e G u i d e 713

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Appendix

A
P

P
EN

D
IX

Field Description

static int SECOND Constant for the second week of the month.

static int SECONDLAST Constant for the second to last week of the month.

static int SEPTEMBER Constant for the month of September.

static int SUNDAY Constant for the day of week Sunday.

static int THIRD Constant for the third week of the month.

static int THIRDLAST Constant for the third to last week of the month.

static int THURSDAY Constant for the day of week Thursday.

static int TUESDAY Constant for the day of week Tuesday.

static int WEDNESDAY Constant for the day of week Wednesday.

static int WEEK_IN_
MONTH

Specify which week in a month a particular event occurs.

static int WEEKLY Specify frequency when the Event happens every week.

static int YEARLY Specify frequency when the Event happens every year.

Method Description

RepeatRule() Default constructor.

void
addExceptDate(long date)

Add a Date for which the RepeatRule should not occur.

java.util.Enumeration
dates(long startDate,
long subsetBeginning,
long subsetEnding)

Return an Enumeration of dates on which an Event
will occur.

long getDate(int field) Return a Date field.

java.util.Enumeration
getExceptDates()

Return the Dates for which the RepeatRule should not occur.

int[] getFields() Return a list of fields that currently have values assigned
to them.

int getInt(int field) Return an integer field.

void
removeExceptDate(long
date)

Delete a Date for which the RepeatRule should not occur.

void setDate(int field,
long value)

Set a Date field.

void setInt(int field, int
value)

Set an integer field.

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Public Interface ToDo Extends PIMItem
Field Description

static int CLASS Specify the desired access class for this contact.

static int CLASS_CONFIDENTIAL Constant indicating the to do’s class is
confidential.

static int CLASS_PRIVATE Constant indicating the to do’s class is private.

static int CLASS_PUBLIC Constant indicating the to do’s class is public.

static int COMPLETED Field ID indicating a ToDo has been completed.

static int COMPLETION_DATE Field ID indicating a ToDo has been completed
on the date specified by this field.

static int DUE The date a ToDo is due expressed in the same
long value format as java.util.Date, which is
milliseconds since the epoch (00:00:00 GMT,
January 1, 1970).

static int NOTE Specify a more complete description than the
SUMMARY for this ToDo.

static int PRIORITY Specify the priority of this ToDo.

static int REVISION Specify the last modification date and time of a
ToDo item.

static int SUMMARY Specify the summary or subject for this ToDo.

static int UID Specify a unique ID for a ToDo.

Public Interface ToDoList Extends PIMList
Method Description

ToDo createToDo() Create a ToDo entry for this ToDo list.

ToDo importToDo(ToDo item) Import the ToDo into this list by making a new
ToDo for the list and filling its information with
as much information as it can from the provided
ToDo.

714 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9/ Appendix

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A p p e n d i x : Q u i c k R e f e r e n c e G u i d e 715

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Appendix

A
P

P
EN

D
IX

Method Description

java.util.Enumeration items(int
field, long startDate, long
endDate)

Return an enumeration of all the ToDos in the list,
where the value of the specified date field falls in
the range from startDate to endDate inclusive.

void removeToDo(ToDo item) Delete a specific ToDo from the list.

Public Class UnsupportedFieldException
Extends java.lang.RuntimeException
Method Description

UnsupportedFieldException() Construct an instance of this class with its stack
trace filled.

UnsupportedFieldException(java
.lang.String detailMessage)

Construct an instance of this class with its stack
trace and message filled.

UnsupportedFieldException(java
.lang.String detailMessage, int field)

Construct an instance of this class with its stack
trace, message, and offending field filled.

javax.microedition.io.Connector Class
Method Description

static Connection open
(string name)

Open a connection in READ_WRITE mode,
where name is the connection identifier.

static Connection
open(String name, int mode)

Open a connection, where name is the
connection identifier and mode is the
read/write mode.

static Connection
open(String name, int mode,
boolean timeouts)

Open a connection, where name is the
connection identifier, mode is the read/write
mode, and timeouts is a boolean value
indicating whether
or not the connection can time out.

static InputStream
openInputStream(String name)

Open an input stream.

static OutputStream
openOutputStream(String name)

Open an output stream.

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

716 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9/ Appendix

Method Description

static DataInputStream
openDataInputStream(String name)

Open a data input stream.

static DataOutputStream(String name) Open a data output stream.

javax.microedition.io.HttpConnection
Method Description

void setRequestMethod(String method) Set the request method to either GET, POST,
or HEAD.

void setRequestProperty(String key,
String value)

Set the header information, where key is the
field name in the HTTP header, and value is
the new value assigned to the field.

String getRequestMethod() Retrieve the request method.

String getRequestProperty(String key) Retrieve the current value of the HTTP field,
where key is a string containing the name of
the field.

javax.microedition.io.HttpConnection Class
Method Description

int getResponseCode() Retrieve the response status line code.

String getResponseMessage() Retrieve the response status line message.

javax.microedition.io.HttpConnection Class
Method Description

String getHeaderField (int n) Retrieve the value of the header field whose index
value is represented as n.

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Method Description

String getHeaderField(String
name)

Retrieve the value of the header field whose
header field name is contained in name.

long getHeaderFieldDate(String
name, long deft)

Retrieve the header field date, where the field
name is represented by name and the date is
represented by deft.

int getHeaderFieldInt(String
name, int def)

Retrieve the index of the field name identified
as name.

String getHeaderFieldKey (int n) Retrieve the name of the field using the field
name index represented by n.

long getDate() Retrieve the header field date.

long getExpiration() Retrieve the expiration of the header field.

long getLastModified() Retrieve the date when the header field was
modified.

javax.microedition.io.HttpConnection
Method Description

String getFile() Retrieve the file name from the URL.

String getHost() Retrieve the host from the URL.

int getPort() Retrieve the port from the URL.

String getProtocol() Retrieve the protocol from the URL.

String getQuery() Retrieve the query string if the GET request
method is used.

String getRef() Retrieve the reference portion of the URL.

String getURL() Retrieve the complete URL.

javax.xml.rpc public interface Stub
Field Description

static java.lang.String ENDPOINT_
ADDRESS_PROPERTY

Address of target service endpoint.

A p p e n d i x : Q u i c k R e f e r e n c e G u i d e 717

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Appendix

A
P

P
EN

D
IX

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Field Description

static java.lang.String PASSWORD_
PROPERTY

Password for authentication static.

java.lang.String SESSION_
MAINTAIN_PROPERTY

This boolean property is used by a service client
to indicate whether or not it wants to participate
in a session with a service endpoint.

static java.lang.String
USERNAME_PROPERTY

User name for authentication.

Method Description

java.lang.Object
_getProperty(java.lang.String name)

Return the value of a specific configuration
property.

Iterator _getPropertyNames() Return an Iterator view of the names of the
properties that can be configured on this stub
instance.

void _setProperty(java.lang.String
name, java.lang.Object value)

Set the name and value of a configuration
property for this Stub instance.

Public Class NamespaceConstants Extends
java.lang.Object
Field Description

static java.lang.String
NSPREFIX_SCHEMA_XSD

Namespace prefix for XML schema XSD static.

java.lang.String
NSPREFIX_SCHEMA_XSI

Namespace prefix for XML Schema XSI.

static java.lang.String
NSPREFIX_SOAP_ENCODING

Namespace prefix for SOAP encoding.

static java.lang.String
NSPREFIX_SOAP_ENVELOPE

Namespace prefix for SOAP envelope.

static java.lang.String
NSURI_SCHEMA_XSD

Namespace URI for XML Schema XSD.

static java.lang.String
NSURI_SCHEMA_XSI

Namespace URI for XML Schema XSI static.

Complete Reference / J2ME: TCR / Keogh / 222710-9/ Appendix

718 J 2 M E : T h e C o m p l e t e R e f e r e n c e

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Field Description

java.lang.String
NSURI_SOAP_ENCODING

Namespace URI for SOAP 1.1 encoding.

static java.lang.String
NSURI_SOAP_ENVELOPE

Namespace URI for SOAP 1.1 envelope.

static java.lang.String
NSURI_SOAP_NEXT_ACTOR

Namespace URI for SOAP 1.1 next actor role.

Method Description

NamespaceConstants() Constructor.

Public Class JAXRPCException Extends
java.lang.RuntimeException
JAXRPCException() Construct a new exception with null as its

detail message.

JAXRPCException(java.lang.String
message)

Construct a new exception with the specified
detail message.

JAXRPCException(java.lang.String
message, java.lang.Throwable cause)

Construct a new exception with the specified
detail message and cause.

JAXRPCException(java.lang
.Throwable cause)

Construct a new JAXRPCException with the
specified cause and a detail message of the
cause. This contains the class and detail
message of cause.

java.lang.Throwable
getLinkedCause()

Retrieve the linked cause of the exception.

A p p e n d i x : Q u i c k R e f e r e n c e G u i d e 719

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Appendix

A
P

P
EN

D
IX

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9
Blind Folio 720

P:\010Comp\CompRef8\710-9\appa.vp
Thursday, February 06, 2003 1:58:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Index

(=) assignment operator, 597
(|) OR operator. See OR (|) operator
(=*) right outer join operator, 503
(&) ampersand, 597, 607
(*=*) full outer join operator, 503-504
(*=) left outer join operator, 502

A
absolute() method, 412-413
abstract definitions

SOAP body element, 646
WSDL document, 629, 631

acceptable values, attribute, 372
Access database, Microsoft, 398-399
ACL (Access Control List), 623
actionCommand() method

check boxes, 147
ChoiceGroup class, 145
interactive gauge, 164
itemStateChanged() method vs., 112, 114
ticker display, 201

addBatch() method, 422-424
addCommand() method

Display class, 100
key codes, 223
online help, 111
user input interface, 219

addRecord() method
adding records to record store, 302
writing/reading mixed data type

records, 311
writing/reading records, 304

addXXX() methods, 538
advance, text alignment, 261

ALARM field ID, 539
Alerts

AlertTypes, 132
dialog box, 136-138
file protocol, 589-592
MIDlet user interface design, 44
overview of, 131-137
record store setup and, 298
reference guide, 203
sound, 138-139
web page, 586-587
writing/reading records, 303, 310, 312

AlertTypes
predefined, 132
sound, 138-139

alignment, text, 259-261
alkaline batteries, 32
All option, 117
ALL test, 524-525
alt=, 585
AM (amplitude modulation), 22
ampersand (&), 597, 607
amplitude modulation (AM), 22
AMS (application management software), 16
analog signals

cellular telephone networks, 26-27
radio data networks, 22

anchor point constants
images, 267
text, 260

AND clause
comparison joins, 496-497
compound expressions, 474-475
BETWEEN operator and, 479
overview of, 473

I n d e x 721

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Index

P:\010Comp\CompRef8\710-9\index.vp
Friday, February 07, 2003 3:03:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

animation, canvas, 284-285
anomalies, 377
ANY test, 523-524
APIs (application programming interfaces)

Display class, 97
J2ME, 36-37
JAXM (Java API for XML Messaging), 640
MIDP API classes, 42-43
RMI API, 624
SAX (Simple API for XML), 628

append() method
check boxes, 146-147
Form class, 139-140
ItemListener, 116-118
List class, 183
MIDletStateChangeExceptions, 123
radio buttons, 151-154

applet clients, 624
application management software (AMS), 16
applications

keeping simple, 73-74
keeping small, 74-75
managing, 79

apps directory, J2ME Wireless Toolkit, 63-64
arc height, 244
arc width, 244
architecture, client/server, 6-7, 76-77
architecture/development environment, J2ME.

See also J2ME Wireless Toolkit
architecture, 36-37
Hello World, 50-56
Java language, 45-47
MIDlet programming, 42-44
multiple MIDlets in a MIDlet suite, 57-60
run-time environment, 37-42
small computing device requirements, 37
software development kits, 48-50

architecture, multi-tier web services
clients/resources/components, 620-621
development of, 6-8
J2EE, 621-623
overview of, 619-620

arcs
drawing, 251-257
overview of, 250-251
round-cornered rectangles and, 244

ASC modifier, 517-518
ascent, text alignment, 260-261
assignment operator (=), 597
attributes

J2ME Wireless Toolkit, 61-64

JAD file, 40-42
manifest file, 38-40

attributes, database
characteristics of, 371-373
decomposing to data, 372-375
entity, 369-371
PIM field, 537-538
table, 367

autogenerated keys, 426
available() method, 579
AVG() function

defined, 504
NULL columns and, 516
overview of, 507

B
Back command, online help, 106-111
background colors, 241, 243
background process, transmitting, 610-613
bandwidth, 73
batch statements, 422-424
batch updates, 89
batteries, 31-32
best practices/patterns, J2ME

application development tips, 90
application simplicity, 73-74
application size, 74-75
defining, 73
local variables, 81
memory use, 75-76
network connection management, 77-79
network traffic, 86
off-loading computations to server, 76-77
overview of, 72-73
populating drop-down boxes, 85-86
reading JAD file settings, 84-85
startApp() method, 90-91
strings, avoiding concatenating, 81-82
synchronization, automatic data, 88-89
synchronization, avoiding, 82-83
thread group class, 83
time issues, 86-87
updating data, 89-90
uploading code from web server, 83-84
user interface, 79-80

BETWEEN operator, 479
binding element

SOAP, 645
WSDL, 634

722 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Index

P:\010Comp\CompRef8\710-9\index.vp
Friday, February 07, 2003 3:03:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

binding, WSDL HTTP
code example, 648-649
overview of, 647-648

blocking
InputStream class, 579
OutputStream class, 580

Bluetooth wireless network technology, 29
body, SOAP, 640-641
boolean, 309-314
browsers, 5
ByteArrayOutputStream() constructor, 311

C
C programming language, 4, 6
C++ programming language, 4, 6
caching, 85-86
calculations, 504-512

AVG() function, 507
COUNT() function, 508
counting all rows in tables, 509
MAX() function, 508
MIN() function, 507-508
NULLs and duplicates, 511
overview of, 504-506
retrieving multiple counts, 509-510
sorting on derived data, 518-519
subsets of rows, 510-511
SUM() function, 506-507
updating tables, 489-490
without built-in functions, 511-512

CallableStatement object
defined, 403
reference guide, 429-434
stored procedures, 407-409

canvas. See also graphics; user interactions,
canvas

animation, 284-285
clipping regions, 279-284
hideNotify() method, 219
layout, 215
overview of, 214-215
paint() method, 218-219
painting, 217-218
pen, 217
proportional coordinates, 216-217
reference guide, 286-291
repaint() method, 218-219
showNotify() method, 219

Canvas class
Display class and, 97

reference guide, 286-287
user interface and, 96

carets, 172
carrier signals, radio transmission, 20-21
CASCADE modifier, DROP VIEW

statement, 532
CASE (computer-aided software engineering)

tools, 373
catch{ } blocks

creating alert dialog box, 137-138
creating instance of ImageItem class, 180
creating record store, 299, 301
drawing mutable image on canvas,

269-270
MIDletStateChangeExceptions, 124
Model A program style and, 455-457

categories, PIM databases, 536-538
CBS (Cell Broadcast Service), 29-30
CDC (Connected Device Configuration) devices

DBMSs and, 366
JDBC interface and, 392
overview of, 12
profiles, 13-14

CDMA (Code Division Multiple Access), 28
CDPD (Cellular Digital Packet Data), 27-28
Cell Broadcast Service (CBS), 29-30
cells

animation, 284
cellular telephone network, 27

Cellular Digital Packet Data (CDPD), 27-28
cellular telephone networks

network connections, 77-78
overview of, 26-27
setting time, 86-87
simplifying user interface, 80
text input, 28-29

CF+ (Compact Flash) cards, 31
charsWidth() method, 261
charWidth() method, 261
check boxes

creating/accessing, 145-150
displaying list as, 189-191
radio buttons vs., 144

Check Colors MIDlet, 99-102
Choice element, 44
ChoiceGroup class

check boxes, 145-150
options, 114-118
overview of, 144-145
radio buttons, 150-154
reference guide, 205-206

I n d e x 723

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Index

P:\010Comp\CompRef8\710-9\index.vp
Friday, February 07, 2003 3:03:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

classes
concept of, 4
J2ME support for, 46-47

Class.forName() method
database connection and, 398
loading JDBC driver, 395
opening connection by calling, 577

CLASSPATH environment variable, 49
CLDC (Connected Limited Device

Configuration) devices
installing, 48-49
J2ME architecture and, 36-37
overview of, 12
profiles, 13-14

clearBatch() method, 422-424
Client fault, SOAP, 641
client/server architecture, 6-7, 76-77
Client Tier, 621-622, 624-625
clients, multi-tier architecture, 620-621
clipping regions, 279-284
clipRect() method, 279
close() method

DBMS connection, 397
input stream, 579
logical connection to database, 402-403
output stream, 580
SQL statements, 396
Statement object, 404, 410

closeRecordStore() method, 298-301
clustered indexes, 464-465
clustered keys, 387-388
code clutter, 454
Code Division Multiple Access (CDMA), 28
codes, key. See key codes
color. See also setColor() method

determining device, 97-99
overview of, 240-243

column name qualifiers, 498-499
columns

data in, 461
data type of, 484
default value, 461-462
inserting system date, 466-467
inserting timestamp, 467-468
multiple, 471
name of, 484
NULL/duplicate calculations, 511
overview of, 367-368
rows and, 472
single, 470
sizing, 484-485

updating, 485-489
in VIEW, 528

Command class, 103-111
check boxes, 146
CommandListener, 105-111
key codes, 223
overview of, 103-104
rectangles, 245
reference guide, 126
user interface, 96, 219

command events, 100
commandAction() method

alert dialog box, 135
arcs, 252, 257
check boxes, 147
CommandListener and, 105
Display class and, 100
file protocols, 589-592
game actions, 230
HelloWorld MIDlet, 49-52
instances of DateField class, 156-157
instances of StringItem class, 168-169
key codes, 223
noninteractive gauges, 159-162
online help, 111
pointer events, 237
record store, 299, 301
rectangles, 247
socket, 593
text, 262-265
user interface, 219
web page reading/parsing, 584
writing/reading records, 303-309

CommandListener
Display class and, 100
event handling and, 43-44
overview of, 105-111

comments, defined, 372
commit() method

batching SQL statements, 422-424
executing database transaction, 419-420
ResultSet objects and, 424

communication endpoints, WSDL, 629
communication parameters, defined, 576
communications protocols, defined, 576
Compact Flash (CF+) cards, 31
comparison tests, 486, 521
compiling

error-handling and, 56
HelloWorld MIDlet, 53-54

724 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Index

P:\010Comp\CompRef8\710-9\index.vp
Friday, February 07, 2003 3:03:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

COMPLETED field ID, 540-541
components

EJB Tier, 626-627
multi-tier architecture, 620-621

composite key, defined, 377
computer-aided software engineering (CASE)

tools, 373
computers, as small computing devices, 4
concatenation, avoiding, 81-82
conditional grouping, 515
conditional tests, 521-525

ALL test, 524-525
ANY test, 523-524
existence test, 522
membership test, 523
overview of, 521-522

configurations
defined, 12
J2ME, 12-13

Connect.createStatement() method, 396
Connected Device Configuration devices. See

CDC (Connected Device Configuration)
devices

Connection Interface
DBMS, 395
GCF, 577-578
JDBC reference guide, 434-436

connection pool, JDBC, 402-403
connections. See also HTTP (HyperText Transfer

Protocol)
EIS Tier, 627
GCF, 576-580

connections, JDBC database, 398-403
connection pool, 402-403
JDBC/ODBC bridge, 399
overview of, 398-401
timeout, 401-402

Connector class
GCF connection, 577-578
HTTP connection, 580-581
reference guide, 614

Connector.open() method, 576
constants

font, 259
image anchor point, 267
text anchor point, 260

constraints, TextField class, 171, 174-175
consumer database, 387
contact database, 536, 538-539
Contact interface, 538-539, 557-559

ContactList interface, 539, 560
containers

EJB Tier, 626-627
multi-tier, 620-621

ContentConnection interface, 577, 609
cookies, 610
coordinates, proportional

aligning text, 259-261
clipping regions, 279
drawing arcs, 250-251
game actions and, 229
overview of, 216-217
translating coordinates, 274-279

COUNT() function
defined, 504
multiple counts, 509-510
NULL columns and, 516
overview of, 508

CREATE INDEX statement, 463, 464
CREATE TABLE SQL statement, 460-461
CREATE VIEW statement, 527
createAContact() method, 541
createAnEvent() method, 542
createAToDo() method, 542
createContact() method, 539
createEvent() method, 540
createImage() method

downloading images, 609
image creation, 266
immutable images, 178
instance of ImageItem class, 180
mutable images, 269-270

createStatement() method, 403, 460-461
createToDo() method, 541
CURRENT_DATE function, 466-467
CURRENT_TIME function, 467
cursorMoved() method, 425

D
data, database. See also tables, data selection

calculating, 504-512
comparing data/entity attributes, 369
decomposing attributes to, 372-375
defining, 375-377
grouping/ordering, 378-380, 512-519
inserting into tables, 465-468
normalizing, 377-378
overview of, 366-367

I n d e x 725

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Index

P:\010Comp\CompRef8\710-9\index.vp
Friday, February 07, 2003 3:03:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

data entry
cell phone, 28-29
PDA, 31
reading/writing persistent, 44

data, grouping and ordering, 512-519
conditional grouping, 515
GROUP BY clause, 513
NULL columns, 515
sorting, 516-518
sorting on derived data, 518-519
subqueries, 519

data, storage
automatic data synchronization, 88-89
best practices for J2ME, 81
primary storage, 72

Data Type Definition (DTD), WSDL document,
629-630

data type records, mixed
reading into RecordEnumeration, 324-330
reading/writing, 309-314
searching, 352-359
sorting into RecordEnumeration, 337-345

data type records, single
searching, 345-352
sorting into RecordEnumeration, 332-337

data types
column, 484
defining data by, 375
JDBC, 427-428
mapping from XML to Java, 638
overview of, 375-376
setXXX()/getXXX() methods and,

427-428
WSDL type element, 632

database administrator, 460
database, concepts

data, 366-367
databases, 366-368
indexing, 385-389
overview of, 366
schema. see also database schema

database connection, JDBC. See connections,
JDBC database

database model, 367
Database Protocol, 394
database schema, 368-384

decomposing attributes, 372-375
defining data, 375-377
foreign keys, 383
functional dependency, 382
grouping data, 378-380
identifying information, 369-372

normalizing data, 377-378
overview of, 368-369
primary keys, 380-382
referential integrity, 384
transitive dependencies, 382-383

DatabaseMetaData interface, 426, 436-440
DatagramConnection interface, 577
DataOutputStream() constructor, 311
DataRequest.close() method, 460-461
DataSource, JDBC reference guide, 446
DataSource.getConnection() method, 402
DataTruncation exception, JDBC, 428
DateField class, 154-157, 206
dates

displaying, editing or inputting, 154-157
inserting system date into columns,

466-467
inserting timestamp into columns,

467-468
J2ME problems with, 86-88

DBMS (database management system)
database concepts. See database, concepts
defined, 366
JDBC and. See JDBC
JDBC and embedded SQL. See JDBC,

embedded SQL and
decomposing, 372-375
DEFAULT clause, 462
DELETE FROM statement, 490-491, 531
delete() method

check boxes, 148
removing list items, 142, 184
TextField class instances, 172

DELETE statement, 500
deleteContacts() method, 541-542
deleteRecordStore() method, 300
deleteRow() method, 417
deleteToDo() method, 542
demodulator circuit, 33
derived keys, 388
DESC modifier, 517-518
descent, text alignment, 260
destroy() method, 318, 321
destroyApp() method

alert dialog box, 135-137
CommandListener and, 105
HelloWorld MIDlet, 49-52
MIDlet programming and, 42-43
MIDletStateChangeExceptions, 119,

120-124
online help, 111

developers, database, 460

726 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Index

P:\010Comp\CompRef8\710-9\index.vp
Friday, February 07, 2003 3:03:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

development, J2ME. See J2ME,
architecture/development environment

digital signals
cellular telephone networks, 26-27
radio data networks, 22

direct sequence modulation, defined, 23
Display API, 97
Display class, 96-102

check boxes, 146
record stores, 298-301
reference guide, 125

Display Exceptions, 69
Displayable class, 97
DisplayResults() method, 457-459, 469-470
DISTINCT modifier, 481
do database, 536, 540-541
Document Object Model (DOM), 628
document, WSDL, 629-632
DOM (Document Object Model), 628
DownRow() method. See also joins; tables, data

selection
columns, numbers of, 483-484
data calculation, 507-511
data grouping, 513-514
data sorting, 516-518
Model B program style using, 454, 457
subqueries, 521-525

drag events, 234
DragonBall processor, 30
DRAM (Dynamic RAM), 31
drawArc() method, 251
drawChar() method, 262
drawChars() method, 262
drawImage() method

clipping regions, 279, 281
images, 266-267
mutable images on canvas, 270
translating coordinates, 276

drawing
arcs, 250-257
lines, 243
methods for, 261-262
proportional coordinates for, 216-217
rectangles, 244-250
text, 262-265
with virtual pen, 217

drawLine() method
images, 266
line color, 243
pointer events, 236

drawRect() method, 244
drawRoundRect() method, 244

drawString() method
drawing string on canvas, 262
drawing text, 262-265
key codes and, 224-225

drawSubString() method, 262
DriverManager class

database connection and, 395, 398
JDBC reference guide, 440

DriverManager.getConnection() method, 395
DriverManager.getLoginTimeout() method, 402
DriverManager.setLoginTimeout() method, 402
drivers, JDBC

concept of, 392
database connections, 398-403
JDBC process and, 394-397
scrollable ResultSet and, 413
types, 393-394

drop-down boxes, 85-86
DROP INDEX statement, 465
Drop Table statement, 462
DROP VIEW statement, 532
DTD (Data Type Definition), WSDL document,

629-630
DUE field ID, 540
duplicate columns, 511
dynamic code loading, 639
Dynamic RAM (DRAM), 31

E
EDO (Enhanced Data Output), 31
EIS (Enterprise Information Systems) client, 624
EIS (Enterprise Information Systems) Tier,

621-623, 627
EJB (Enterprise JavaBeans) client, 625-626
EJB (Enterprise JavaBeans), RowSet object,

424-425
EJB (Enterprise JavaBeans) Tier, 621-623,

626-627
electromagnetic spectrum, 19
element attribute, WSDL document, 632
elements, XML, 628, 629
embedded SQL. See JDBC, embedded SQL and
EmbeddedJava platform, 5, 16
emulators

configuring for Internet, 67-69
DefaultColorPhone, 66
GoodbyeWorld MIDlet running in, 60
HelloWorld MIDlet running in, 59
Palm OS, 102-103
testing MIDlet with, 54

I n d e x 727

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Index

P:\010Comp\CompRef8\710-9\index.vp
Friday, February 07, 2003 3:03:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

encoding, radio data networks, 22
encodingStyle attribute, 646, 647
END field ID, 539
endpoints, 629, 635
Enterprise Information Systems (EIS) client, 624
Enterprise Information Systems (EIS) Tier,

621-623, 627
Enterprise JavaBeans (EJB) client, 625-626
Enterprise JavaBeans (EJB), RowSet object,

424-425
Enterprise JavaBeans (EJB) Tier, 621-623,

626-627
entity attributes, 369-375
enumerateRecords() method

record enumeration, 316, 324
searching data type records, 346-347, 353

envelope, SOAP, 640-641
equal operator, 475
Erase command, 235
error handling. See exception handling
event database, 536, 539-540
event handling, 43-44
Event interface, 539-540, 560
EventList interface, 540, 561
exception handling

HelloWorld MIDlet, 56
J2ME and, 45-46
JDBC driver and, 398
MIDlets and, 56
overview of, 118-119
PIM and, 541

exceptions
MIDletStateChangeException, 120-124
Record Management System, 364
reducing likelihood of, 76
thrown by JDBC methods, 428
writing/reading records, 303

exclusive instance, 144, 151-154
execute() method, 403, 408-409
executeBatch() method, 422-424
executeQuery() method

Model B program style, 454
multiple comparison joins, 496-497
parent-child joins, 495-496
PreparedStatement object, 406
ResultSet object, 409
selecting data from table, 468, 469-470
SQL statement, 396
Statement object, 403-404
table creation, 460-461
tables, joining, 494-495

executeUpdate() method
inserting data into tables, 465
Model A program style, 454
PreparedStatement object, 406
Statement object, 403, 404-405
updating tables, 485-490

existence test, 521, 522
EXISTS modifier, 522
Exit command

check boxes, 147
Display class and, 100
file protocol and, 589-592
instance of TextBox class, 197
instance of TextField class, 173
MIDletStateChangeExceptions, 121-122
pointer events, 235
reading/parsing web pages, 584

extended field, PIM databases, 537
extensibility, defined, 640
Extensible Markup Language. See XML

(Extensible Markup Language)
Extensible Stylesheet Language Transformation

(XSLT), 628
extensions, Java programming, 8

F
facilities services tier, 619
Fame Profile, 13
fault tolerance, EJB Tier, 626
faults, SOAP, 641
FCC (Federal Communications Commission),

23
field IDs, 540-541
field, PIM database, 537-538
FieldEmptyException class, 561
FieldFullException class, 561-562
file protocol, HTTP, 589-592
fillArc() method, 251-252, 269-272
filled arcs

defined, 251
drawing, 255-256
drawing mutable image on canvas,

268-272
drawn with/without clipping regions,

280-284
filled rectangles, 243-244
fillRect() method

creating filled rectangle, 244
key codes, 224
pointer events, 235

728 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Index

P:\010Comp\CompRef8\710-9\index.vp
Friday, February 07, 2003 3:03:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

fillRoundRect() method, 244
Filter class, 345-347, 352-354
filterClose() method

RecordFilter interface and, 345
searching data type records, 348, 354

filtering, defined, 345
finalize() method, 45
first() method, 412-413
floating-point math, 45
flush() method

HTTP requests and, 607
OutputStream class and, 580
socket creation, 593
writing/reading mixed data types, 311

FM (frequency modulation), 22
FontMetrics class, 258
fonts

aligning text, 261
displaying on low-level interface, 257-259
drawing text, 262-265
overview of, 258-259
reference guide, 290-291

foreign keys, 383
Form class

check boxes, 146
MIDlet user interface, 44
overview of, 139-143
reference guide, 204
user interface, 96

format, attribute, 372
Foundation Profile, 13-14
frames, 218
frequencies, wireless, 19
frequency hopping, 23
frequency modulation (FM), 22
FROM clause

joining tables, 491
joining two tables, 494-495
multitable joins, 497-498
subqueries and, 519

FULL JOIN, 503
full outer join (*=*) operator, 503-504
full outer joins, 503-504
full updates, 90
functional dependencies, 382

G
game actions

defined, 219
detecting/processing, 229-233
overview of, 227-229

garbage collection, memory and, 75
Gauge class, 158-166, 206-207
GCF (Generic Connection Framework). See also

HTTP (HyperText Transfer Protocol); HTTP
commands

connection, 576-580
reference guide, 613-615
session management, 608-610
transmitting background process, 610-613

geosynchronous satellites, 24-25
GET request method

communication management and, 597-598
HTTP request and, 607
HttpConnection and, 599-601
socket creation, 593-594

getAltText() method, 179
getAppProperty() method, 84-85
getBaselinePosition() method, 261
getBlueComponent() method, 242
getBytes() method, 302, 304
getCaretPosition() method, 172
getChars() method, 171
getClipHeight() method, 279
getClipWidth() method, 279
getClipX() method, 279
getClipY() method, 279
getColor() method, 242-243
getColumnDisplaySize() method, 484-485
getColumnLabel() method, 484
getColumnTypeName() method, 484
getConnection() methods, 399-401
getConstraints() method, 172
getCurrent() method, 97
getDate() method, 155
getDefaultTimeout() method, 133
getDisplay() method, 97-99, 146
getErrrorCode() method, 428
getFace() method, 259
getFieldDataType() method, 537-538
getFieldLabel() method, 537-538
getFont() method, 258, 262-265
getGameAction() method, 227, 230
getGeneratedKeys() method, 426
getGraphics() method, 266, 269
getGreenComponent() method, 242
getHeaderField() method, 600, 602
getHeaderFieldInt() method, 601
getHeaderFieldKey() method, 601, 602
getHeight() method

canvas proportions, 216-217
fonts, 261
pointer events, 235

I n d e x 729

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Index

P:\010Comp\CompRef8\710-9\index.vp
Friday, February 07, 2003 3:03:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

getInputMode() method, 155
getKeyCode() method, 228-229
getKeyName() method, 229
getLabel() method, 166, 179
getLayout() method, 179
getLength() method, 602
getMaxSize() method, 170
getMaxValue() method, 158, 160-162
getMetaData() method

accessing metadata, 426
extracting metadata, 483
ResultSet metadata and, 426-427

getNextException() method, 428
getNextWarnings() method, 428
getNumRecords() method, 303, 305
getRecord() method

reading records from record store, 303
record enumeration, 324
writing/reading records, 305-306

getRecordSize() method, 305
getRedComponent() method, 242
getRequest() method, 599
getResponseCode() method, 600, 602
getResponseMessage() method, 602
getRow() method, 412-413
getSelectedFlags() method

check boxes, 147, 183
instance of ChoiceGroup, 145

getSelectedIndex() method
displaying implicit List class, 186
instance of ChoiceGroup, 145
ItemListener and, 118
radio buttons, 152-154, 192
retrieving item from List class, 183

getSize() method, 259
getString() method

CallableStatement object and, 408-409
check boxes, 148, 187-188
ItemListener and, 118
processing returned DBMS data, 396-397
radio buttons, 152-154
reading ResultSet, 410-411
selecting all data from table, 469-470
TextBox class and, 196
TextField class and, 171, 174-176
Ticker class and, 199

getStrokeStyle() method, 240
getStyle() method, 259
getText() Method, 166
getTime() method, 87
getTranslateX() method, 275
getTranslateY() method, 275

getValue() method, 160-162, 164
getWarnings() method, 428
getWidth() method, 216-217, 235
getXXX() method

CallableStatement object, 407-408
contact database, 539
data types for use with, 427-428
PIM databases, 538
ResultSet object, 409

Giveup command, 168
global positioning system (GPS), 86
GMT (Greenwich Mean Time), 87
GoodbyeWorld MIDlet, 57-60, 64-67
GPS (global positioning system), 86
graphic context, defined, 239
graphics, 239-279

arcs, 250-257
colors, 240-243
images, 266-274
images, repositioning, 274-279
lines, 243
overview of, 239
rectangles, 243-250
stroke style, 240
text, 257-265
text, repositioning, 274-279

Graphics class, 287-290
gray scale, 241
greater than operator, 477-478
greater than or equal to operator, 479
Greenwich Mean Time (GMT), 87
grid, canvas layout, 215-216
GROUP BY clause, 512-513, 529
grouping data. See data, grouping and ordering
grouping, VIEWs, 529

H
half-duplex, 27
hand-off technique, 27
hardware, small computing device

J2ME and, 72
lack of uniformity in, 12
resource requirements, 37
user interface, 79-80

hasNextElement() method, 316-318, 320, 324
hasPreviousElement() method, 318
HAVING clause

conditional grouping, 515
NULL columns and, 516
subqueries including, 519

730 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Index

P:\010Comp\CompRef8\710-9\index.vp
Friday, February 07, 2003 3:03:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

HEAD request method, 598, 599-601
header response, HttpConnection, 600
header, SOAP, 640-641
HelloWorld MIDlet

compiling, 53-54
creating, 49-52
deploying, 54-56
error-handling, 56
J2ME development environment, 50-56
J2ME Wireless Toolkit and, 64-67
running, 54

Help command, 105-109
hideNotify() method, 219
high-power single frequency, 23
holdability, defined, 424
Holder classes, 637-638
HTML (HyperText Markup Language)

documents, 584-589
HTTP binding, WSDL and, 647-649
HTTP commands, 597-607

HttpConnection, 598-601
overview of, 597-598
sending data with HTTP request, 607
socket creation, 592-597
using HttpConnection in a MIDlet,

601-607
HTTP (HyperText Transfer Protocol), 580-597

connection creation, 580-582
file protocol, 589-592
overview of, 580
reading data from HTTP connection,

582-589
session management, 608-610
SOAP 1.0 message transmission and, 640
socket connection, 592-597

HTTP request
methods, 597-598
sending data along with, 607
using HttpConnection to send, 598-601

http:address element, 647
HttpConnection

overview of, 598-601
reference guide, 614-615
using in MIDlets, 601-607

http:operation element, 647
http:urlEncoded element, 647
http:urlReplacement element, 647-648
HyperText Markup Language (HTML)

documents, 584-589
HyperText Transfer Protocol. See HTTP

(HyperText Transfer Protocol)

I
icons, 79-80
IETF vCard specification, 538-539
IIOP (Internet-ORB Protocol), 624
Image class, 208
ImageItem class

instance of, 179-182
overview of, 178-179
reference guide, 209

images, 266-268
downloading, 609
drawing with virtual pen, 217
immutable, 178-179, 181-184, 272-274
mutable, 178, 182-188
overview of, 266-268
reference guide, 208
repositioning, 274-279

implicit List class, 185
importContact() method, 539
importEvent() method, 540
importToDo() method, 541
IN modifier, 482, 523
IN parameter, 407-408
IN test, 486, 487
incremental updates, 89
indexes

clustered keys, 387-388
creating, 463-465
derived keys, 388
drawbacks of, 386-387
dropping, 465
exact/partial matches, 389
motion of, 386
overview of, 385-386
searching for phonetic matches, 389
selective rows, 388

indexOf() method, 585
information

comparing data with, 366-367
identifying, 369-372

inheritance, 4
inner joins, 494-495, 500-501
INOUT parameter, 407-408
InputConnection interface, 578
InputStream class

defined, 578
downloading images, 609
overview of, 578-579
socket creation, 595

INSERT INTO statement, 466, 531

I n d e x 731

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Index

P:\010Comp\CompRef8\710-9\index.vp
Friday, February 07, 2003 3:03:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

insert() method
inserting instance on form, 139-140
List class, 183
TextField class, 171-172

integers, 309-314
internal.config file, 49
Internet

history of, 5
use of Java on, 6
Wireless Toolkit running MIDlets on, 67-69

Internet Mail Consortium, 539
Internet-ORB Protocol (IIOP), 624
IP wireless, 27-28
IS NULL operator, 480-481, 511
IS NULL test, 486, 487
isColor() method, 97-100, 241
isItalic() method, 259
isPlain() method, 259
isUnderlined() method, 259
Item class, 143-182

check boxes, 145-150
ChoiceGroup class, 144-145
creating, 111-113
DateField class, 154-157
Gauge class, 158-166
ImageItem class, 178-182
instances of StringItem class, 166-170
instances of TextField class, 170-178
Item Listener, 114-118
overview of, 143-144
radio buttons, 150-154
reference guide, 126
as subclass within screen class, 100

ItemListener, 114-118
itemStateChanged() method, 112-114, 118, 145
ITU-T keypad. See key codes

J
J2EE (Java 2 Enterprise Edition)

birth of, 8
connection extensions, 623
overview of, 6-8

J2EE: The Complete Reference (Keogh), 424, 599
J2ME (Java 2Micro Edition), 4-16

architecture/development environment.
See architecture/development
environment, J2ME

best practices/patterns. See best
practices/patterns, J2ME

developing, 8-9
J2EE/J2SE, 6-8

Java, 5-6
Java Virtual Machine, 6
limitations of, 15-16
organization of, 9-14
other Java platforms, 16
software development kits, 48-50
user interfaces, 96
wireless devices and, 14-15

J2ME Wireless Toolkit, 60-69
building/running project, 61-64
downloading, 60
HelloWorld project, 64-67
MIDlets on Internet, 67-69

J2SE (Java 2 Standard Edition)
limitations of J2ME and, 15
overview of, 6-8
stripping down for J2ME, 45-47

JAD (Java application descriptor) files,
40-42, 84-85

JAR (Java archive) files, 38-40, 75
Java

history of, 5-6
J2ME and, 45-47
mapping XML data types to, 638

Java 2 Enterprise Edition. See J2EE (Java 2
Enterprise Edition)

Java 2 Standard Edition. See J2SE (Java 2
Standard Edition)

Java API for XML Messaging (JAXM), 640
Java application descriptor (JAD) files, 40-42,

84-85
Java archive (JAR) files, 38-40, 75
Java Community Process Program, 8-9
Java Database Connection. See JDBC
Java Development Kit (JDK), 8, 48
Java Naming and Directory Interface (JNDI), 402
Java/Native Code driver, 394
Java Protocol, 394
Java Remote Method Protocol (JRMP), 624
Java Virtual Machine. See JVM (Java Virtual

Machine)
JavaCard, 16
JavaServer Pages (JSP), 625-626
java.sql

Connection Interface, 395
defined, 394
DriverManager class, 395
ResultSet object, 396-397

javax.sql, 394
JAX-RPC subset, 637, 638
JAXM (Java API for XML Messaging), 640

732 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Index

P:\010Comp\CompRef8\710-9\index.vp
Friday, February 07, 2003 3:03:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

JDBC drivers
Type 1 JDBC to ODBC driver, 393, 395, 399
Type 2 Java/Native Code driver, 394
Type 3 JDBC driver, 394
Type 4 JDBC driver, 394

JDBC, embedded SQL and. See also calculations;
joins; tables, data selection

deleting data from table, 490-491
grouping/ordering data, 512-519
indexing, 463-465
inserting data into tables, 465-468
metadata, 483-485
model programs, 454-459
subqueries, 519-525
tables, 460-462
updating tables, 485-490
VIEWs, 525-532

JDBC objects
concept, 392-393
data types, 427-428
database connection, 398-403
driver types, 393-394
exceptions, 428
memory requirements, 75-76
metadata, 426-427
packages, 394
process overview, 394-397
ResultSet, 409-419
statement objects, 403-409
transaction processing, 419-426

JDBC reference guide, 429-451
CallableStatement, 429-434
Connection Interface, 434-436
DatabaseMetaData, 436-440
DataSource, 446
DriverManager, 440
PreparedStatement, 440-441
ResultSet, 441-443
ResultSetMetaData, 443-444
RowSet, 446-447
RowSet extends java.util.EventObjects, 447
RowSetInternal, 447
RowSetListener extends

java.util.EventListener, 447-448
RowSetMetaData extends

ResultSetMetaData, 448-450
RowSetReader, 450
RowSetWriter, 451
Savepoint, 444
Statement, 444-445

JDBC to ODBC driver. See Type 1 JDBC to
ODBC driver

JDBC transaction processing, 419-426
autogenerated keys, 426
batch statements, 422-424
keeping ResultSet objects open, 424
overview of, 419-420
RowSet object, 424-425
savepoints, 421-422

JDK (Java Development Kit), 8, 48
JNDI (Java Naming and Directory Interface), 402
joins, 491-504

column name qualifier and, 498-499
inner joins, 500-501
multiple comparison join, 496-497
multitable join, 497-498
outer joins, 500, 502-504
overview of, 491-494
parent-child join, 495-496
table alias and, 499-500
two table join, 494-495

JRMP (Java Remote Method Protocol), 624
JSP (JavaServer Pages), 625-626
JVM (Java Virtual Machine)

database connections and, 398
J2ME and, 36-37, 45
overview of, 6
resource requirements, 37

K
keepUpdated() method, 318
key codes

defined, 219
detecting/processing, 221-227
overview of, 220-221

keypads, cellular telephones
text input, 28
user interface, 80
working with, 195

keyPressed() method
game actions, 227-228, 230
key codes, 221, 225

keyReleased() method
game actions, 227-228
key codes, 221

keyRepeated() method, 227-228
keys. See also primary keys

autogenerated, 426
clustered, 387-388
derived, 388
foreign, 383
major/minor sort, 517

KVM (KJava Virtual Machine), 12

I n d e x 733

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Index

P:\010Comp\CompRef8\710-9\index.vp
Friday, February 07, 2003 3:03:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

L
last() method, 412-413
layout, of canvas, 215
leading, text alignment, 261
left outer join, 502
left outer join (*=) operator, 502
LEOS (Low Earth Orbiting Satellite), 24-25
less than operator, 477
less than or equal to operator, 478
LIKE operator, 480
lines, 243
LiON (lithium ion) batteries, 32
List class, 182-194

check-box formatted, 189-191
instance of, 184-188
overview of, 182-184
radio button formatted, 192-194
reference guide, 209-210

listRecordStores() method, 300
lithium ion (LiON) batteries, 32
local variables, 81
LOCATION field ID, 539
logical connection, 402
Low Earth Orbiting Satellite (LEOS), 24-25
low-power single frequency, 23

M
major sort keys, 517
manifest file, 38-40, 58
mark() method, 579
marketing tier, 619
marking, 579
markSupported() method, 579
matches, 389
matches() method

RecordFilter interface using, 345
searching data type records, 347, 353

MAX() function, 504, 508, 516
MDB (message-driven bean), 626-627
membership test, 521, 523
memory

application design and, 75-76
CLDC devices and, 12
other Java platforms and, 16
PDA technology and, 30
resource requirements, 37

menu option MIDlets, 73-74, 79-80
message attribute, SOAP header element, 647
message-driven bean (MDB), 626-627
message element, WSDL document, 632

messaging technology, 29-30
metadata

column datatype from, 484
column name from, 484
column size from, 484-485
database, 367-368
JDBC, 426-427
number of columns, 483-484
overview of, 426
ResultSet, 426
XML, 628

methods, HTTP request, 597, 598-601
microbrowsers, 14
Microsoft Access database, 398-399
microwave technology, 24-25
MIDlet class, 127, 610-613
MIDlet suites

keeping applications small with, 75
multiple MIDlets in, 57-60
overview of, 37-38

MIDlets
defined, 15
HelloWorld. See HelloWorld MIDlet
limitations of, 16
programming, 42-44
run-time environment and, 37-38
suites, 37-38, 57-60, 75
web services and, 636-638
Wireless Toolkit running on Internet, 67-69

MIDlets tab, J2ME Wireless Toolkit, 63-64, 65
MIDletStateChangeException

overview of, 119
reference guide, 127
throwing, 120-124

MIDP API classes, 42-43
MIDP (Mobile Information Device Profile)

defined, 13
installing, 48-49
J2ME architecture and, 36-37
resource requirements, 37

MIDP_HOME environment variable, 49-50
MIN() function, 504, 507-508, 516
minor sort keys, 517
Mobile Information Device Profile. See MIDP

(Mobile Information Device Profile)
mobile power, 31-32
mobile radio networks, 25-29. See also cellular

telephone networks
Bluetooth wireless network, 29
Cellular Digital Packet Data, 27-28
digital wireless transmissions, 28
overview of, 25-26

734 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Index

P:\010Comp\CompRef8\710-9\index.vp
Friday, February 07, 2003 3:03:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

model programs, DBMS programming, 454-459
Model A program style, 455-457
Model B program style, 457-459
overview of, 454-455

modems, CDPD, 27
modifyAContact() method, 541
modifyEvent() method, 542
modifyToDos() method, 542
mouse. See pointer events
multi-tier clients, 625
multi-tier web services architecture. See

architecture, multi-tier web services
multiple comparison join, 496-497
multiple compound expressions, 473-474
multiple instance, 144, 145-150
multitable join, 497-498
MustUnderstand fault, SOAP, 641
mutable images, 178, 266-272

N
name attribute

data elements for, 373-374
defined, 371
portType element, 633
SOAP body element, 646
WSDL messages, 632

name, of data, 375, 376
named fields, PIM databases, 537
names, column, 484
namespace attribute

SOAP body element, 646
SOAP header element, 647

network address, defined, 576
Network Configuration tab, J2ME Wireless

Toolkit, 67
network connections

automatic data synchronization, 88-89
J2ME and, 72
managing, 77-78
minimizing network traffic, 86

next() method, 396-397, 410-411
nextRecord() method, 317
nextRecordId() method, 318
NiCAD (nickel cadmium) batteries, 32
NiMH (nickel metal hydride) batteries, 32
nodes, SOAP, 641
non-key data elements, 378
nonrepudiation, 34
nonvolatile memory, managing, 298
normal forms, 377, 378

normalization, 377-378
NOT clause, 474, 475
not equal operator, 475-477
NOT IN modifier, 482-483
NOT NULL clause, 461
NOTE field ID, 539-541
notification transmission primitive, 634
notifyDestroyed() method

alert dialog box, 137
CommandListener and, 105
Display class and, 101
MIDletStateChangeExceptions, 123
online help, 111

NOW function, 466
NULL columns

grouping/ordering, 515
IS NULL operator, 480-481
problems calculating, 511

numColors() method, 241
numRecords() method, 317

O
Oak, programming language, 5
object-oriented programming (OOP), 4
objects, JDBC. See JDBC objects
ODBC (Open Database Connectivity), 393
OEM (original equipment manufacturer)

applications, 37
ON clause, 463, 464-465
one-way transmission primitive

SOAP, 642-643
WSDL, 633

online help, 105-111
commands, 106-111
Palm OS emulator and, 106
required steps, 110

OOP (object-oriented programming), 4
Open Database Connectivity (ODBC), 393
open() method

file protocol, 589-592
HTTP connection, 580-582
reading/parsing web pages, 584
socket creation, 593

openInputStream() method, 583, 602
openOutputStream() class, 589
openRecordStore() method, 298-301, 303
operating system, requirements, 37
operation element

SOAP, 645
WSDL, 633

I n d e x 735

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Index

P:\010Comp\CompRef8\710-9\index.vp
Friday, February 07, 2003 3:03:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Optional tab, J2ME Wireless Toolkit, 62-63
OR (|) operator

font styles, 258
ImageItem layout, 178-179
TextField class, 174

OR clause, 473-475
ORDER BY clause, 512, 516-518, 529
original equipment manufacturer (OEM)

applications, 37
OUT parameter, CallableStatement object,

407-408
outer joins

defined, 500
joining two tables, 494-495
overview of, 502-504

outlined arcs, 251, 253-255
outlined rectangles, 243-244
OutputConnection interface, 578
OutputStream class, 578-580, 589-592
overall memory management, 75

P
packaging

error-handling and, 56
HelloWorld MIDlet deployment, 54
JDBC, 394

packet technology, 23-24
pager technology, 29-30
paint() method

arcs, 251-252
clipping regions, 281
game actions, 230, 231
graphics and, 239
key codes, 223
mutable images on canvas, 270
overview of, 217-218
pointer events, 235-237
rectangles, 245-246
repaint() method, 218-219
text, 262-265
translating coordinates, 276

paintContent() method, 217-218
painting. See also paint() method

key codes, 224-225
overview of, 217-218

Palm OS emulator, 102-103, 106
parameterOrder attribute, 633
parent-child join, 495-496
parsers, XML, 628
parsing, web pages, 584-589

part attribute
SOAP body element, 646
SOAP header element, 647

passwords, database connections, 400-401
patterns. See best practices/patterns, J2ME
pauseApp() method

alert dialog box, 135
HelloWorld MIDlet, 49-52
MIDlet programming, 42-43, 100

PDAP (PDA Profile), 13
PDAs (personal digital assistants), 30-31
peak memory management, 75
pen, 217
percent (%) character, 480
Personal Basis Profile, 13
personal digital assistants (PDAs), 30-31
personal information management. See PIM

(personal information management)
Personal Profile, 13
PersonalJava, 16
phonetic searches, DBMS, 389
PIM (personal information management)

contact database, 538-539
database types, 536-538
to do database, 540-541
error handling, 541
event database, 539-540
model application, 541-556
overview of, 536
PIM class, 537

PIM, reference guide, 557-571
Contact interface, 557-560
Event interface, 560-561
FieldEmptyException class, 561
FieldFullException class, 561-562
PIMException class, 562
PIMItem interface, 563-565
PIMList interface, 565-567
RepeatRule class, 567-569
ToDo interface, 569-570
ToDoList interface, 570-571
UnsupportedFieldException class, 571

PIMException class, 562
PIMItem interface

Contact interface, 557-559
ContactList interface, 559
Event interface, 560
EventList interface, 561
overview of, 537, 563-565
ToDo interface, 569-570

PIMList interface, 565-567, 570-571
PIMList.isSupportedField() method, 539, 540

736 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Index

P:\010Comp\CompRef8\710-9\index.vp
Friday, February 07, 2003 3:03:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

PimTest application, 541-556
playSound() method, 139
pointer events

defined, 219
detecting/processing, 235-239
overview of, 233-235

pointerDragged() method, 234, 236-237
pointerPressed() method, 234, 236-237
pointerReleased() method, 234
PooledConnection objects, 402
port element, WSDL document, 635
ports, Cellular Digital Packet Data, 27
portType element, WSDL document, 633-634
POST request method

communication using, 597-598
HTTP request, 607
HttpConnection, 599-601

power, mobile, 31-32
preparedCall() method, 408-409
preparedstatement() method, 406
PreparedStatement object, 403, 406-407, 440-441
press events, 234
preverification, 45
previous() method, 412-413
previousRecord() method, 317
Primary Key modifier, 463-464
primary keys

creating, 380-382
index, 463-464
normalization and, 377-378

primary storage, 72, 88-89
printIn() method, 483-484, 593-594
priority, Command class, 104
PRIORITY field ID, 540-541
Process class, 610-613
Process command, 147
production tier, 619
profiles

defined, 12
J2ME, 13-14, 36-37

properties, database connections, 401
proportional coordinates, 216-217
protocols, web services, 621
publisher database, 387

Q
qualified test, 522
queries

defined, 386
executing, 403-409
subqueries and, 519

R
radio buttons

comparing check boxes with, 144
creating/accessing, 150-154
displaying list as, 192-194
displaying ticker on screen, 200

radio data networks technology, 22-24
RAM, PDAs and, 31
range, attribute, 372
read() method

downloading images, 609
HttpConnection in MIDlet, 602
InputStream class, 578-579
reading data from HTTP connection, 583
reading/parsing web pages, 584
socket creation, 595

readBoolean() method, 325
reading data from HTTP connections, 582-589
reading data from socket connections, 592-597
reading ResultSet object, 410-411
reading RMS records. See writing/reading RMS

records
reading web pages, 584-589
readInt() method, 325
readUTF() method, 325
readXXX() method, 353
rebuild() method, 318
receivers, radio, 20-22
rechargeable batteries, 32
record IDs, updating, 318
Record Management System. See RMS (Record

Management System)
record store, 296-302

creating, opening, closing, removing,
298-302

overview of, 296-297
scope, 297
setting up, 298

recordAdded() method, 359-360
recordChanged() method, 359-360
RecordComparator interface, 44, 363
recordDeleted() method, 359-360
RecordEnumeration interface, 316-330

overview of, 316-318
reading mixed data type record into,

324-330
reading records into, 319-324
reference guide, 362-363
searching records. see searches, RMS

records
sorting records. see sorting records, RMS

I n d e x 737

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Index

P:\010Comp\CompRef8\710-9\index.vp
Friday, February 07, 2003 3:03:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

RecordFilter interface
defined, 44
overview of, 345
reference guide, 363
searching mixed data type records,

352-359
searching single data type records,

345-352
RecordListener interface, 359-360, 363-364
records. See RMS (Record Management System)
RecordStore class

defined, 44
record store creation, 298, 301
reference guide, 361-362

rectangles
drawing, 244-250
drawing arcs, 250-251
key codes, 224
overview of, 243-244
pointer events, 235
types of, 243-244

reference guides. See also JDBC reference guide;
screen classes, reference guide

Canvas classes, 286-291
Command class, 126
DataSource, 446
Display class, 125
Generic Connection Framework, 613-615
Item class, 126-127
MIDlet class, 127
MIDletStateChangeException class, 127
Record Management System, 360-364
web services, 649-651

referential integrity, 377, 384
registerOutParameter() method, 408-409
relational database model, 367
relative() method, 412-413
release events, 234
releaseSavepoint() method, 421-422
remote interface, RMI communications, 639
Remote Method Invocation (RMI), 639
removeCommand() method, 149-150
removeContact() method, 539
removeEvent() method, 540
removeToDo() method, 541
repaint() method, 218-219, 231
repeaters, radio, 21-22
RepeatRule class, 540, 567-569
request entity, 597
request message body, SOAP, 641
request/response protocol, 597

request-response transmission primitive
SOAP, 641, 643-645
WSDL, 633

Required tab, J2ME Wireless Toolkit, 61-62
required value, attribute, 372
reset() method, 311-312, 317
resources

local variables conserving, 81
multi-tier architecture and, 620-621
small computing devices and, 4

response entities, creating, 599-600
response message body, SOAP, 641
RESTRICT modifier, DROP VIEW statement, 532
ResultSet object, 409-419

JDBC reference guide, 441-443
metadata describing, 426
overview of, 409-410
processing returned data, 396-397
reading, 410-411
scrollable, 411-414
specifying rows to return, 414-415
updateable, 415-419

ResultSet objects, 424
ResultSet.getMetaData() method, 426
ResultSetMetaData object, 443-444, 483-484
retrieveContact() method, 541
retrieveEvents() method, 542
retrieveToDos() method, 542
REVISION field ID, 539-541
rich clients, defined, 624
right outer join (=*) operator, 503
right outer joins, 503
RMI API, 624
RMI Profile, 13
RMI (Remote Method Invocation), 639
RMS (Record Management System)

exceptions, 364
overview of, 296
RecordEnumeration, mixed data type

records, 324-330
RecordEnumeration overview, 316-318
RecordEnumeration, single data type

records, 319-324
RecordListener, 359-360
reference guide, 360-364
search overview, 345
searching mixed data type records,

352-359
searching single data type records,

345-352
sort overview, 330-331

738 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Index

P:\010Comp\CompRef8\710-9\index.vp
Friday, February 07, 2003 3:03:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

sorting mixed data type records, 337-345
sorting single data type records, 332-337
storage management, 298-302
storage overview of, 296-297
storage scope, 297
storage setup, 298
write/read overview, 302-303
writing/reading mixed data types,

309-316
writing/reading techniques, 303-309

rollback() method, 421-422
ROM files, 102-103
ROMizing, 73
rounded rectangles, 244, 245-250
rowChanged() method, 425
rows. See also joins

calculating subsets, 510-511
counting all, 509
deleting from tables, 490-491
deleting from VIEWs, 531
indexing selective, 388
inserting into tables, 466
inserting into VIEWs, 531
NULL columns and, 516
overview of, 367-368
requesting, 472
retrieving multiple counts, 509-510
specifying number to return in ResultSet,

414-415
updating, 485-488

RowSet extends java.util.EventObjects, 447
RowSet object, 424-425, 446-447
rowSetChanged() method, 425
RowSetEvent, 424-425
RowSetInternal, 447
RowSetListener, 424-425
RowSetListener extends java.util.EventListener,

447-448
RowSetMetaData extends ResultSetMetaData,

448-450
RowSetReader, 450
RowSetWriter, 451
run() method, 611-613
run-time environment, J2ME

Java application descriptor file, 40-42
Java archive file, 38-40
MIDlets and, 37-38

RuntimeExceptions
avoiding, 541
reference guide for, 561-562, 571

S
satellite networks, 24
Savepoint, 421-422, 444
SAX (Simple API for XML), 628
scalar types, 75
schema

database. See database schema
SOAP, 646
XML. See XML Schema

scheme, defined, 581-582
Screen class, 97, 130-131, 203
screen classes, reference guide, 204-212

ChoiceGroup class, 205-206
DateField class, 206
Form class, 204
Gauge class, 206-207
Image class, 208
ImageItem class, 209
List class, 209-210
StringItem class, 207
TextBox class, 210-211
TextField class, 207-208
Ticker class, 212

screens. See also Item class
Alert class, 131-139
Form class, 139-143
List class, 182-194
Screen class, 130-131
TextBox class, 194-198
Ticker class, 199-202

scrolling, 199-202, 411-414
SDKs (software development kits)

J2EE and J2SE, 8
J2ME, 48-50

SDRAM (Synchronous Dynamic RAM), 31
searches, DBMS phonetic, 389
searches, RMS records

mixed data type records, 352-359
overview of, 345
single data type records, 345-352

secondary storage, 88-89
security, preverification, 45
SELECT statement

all data from table, 469-470
calculations using, 511-512
columns to appear in VIEW, 528
DISTINCT modifier, 481
joining two tables, 494-495
multiple columns, 471
rows from table, 472

I n d e x 739

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Index

P:\010Comp\CompRef8\710-9\index.vp
Friday, February 07, 2003 3:03:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

single column, 470-471
sorting on derived data, 518-519
subqueries and, 519
table aliases, 499-500

selective rows, 388
Server fault, SOAP, 641
server-side agents, 78-79
servers, web. See web servers
service bindings, 629, 631-632
service element, WSDL document, 635
serviceRepaints() method, 218-219
servlets, Web Tier implementation, 625-626
session management, 608-610
session tracking, 608
SET clause

multiple column updates, 488-489
row/column updates, 485-486
updating using calculations, 489-490
view updates, 530-531

set() method, 142, 184
set-top boxes, 32-33
setAltText() method, 179
setAutoCommit() method, 419-420, 422-424
setChars() method, 171
setClip() method, 279, 281-282
setColor() method

key codes, 223-224
line color, 243
mutable images on canvas, 269
overview of, 241
pointer events, 235-236
rectangles, 244, 246

setCommandListener() method, 100
setConstraints() method, 172
setCurrent() method

alert dialog box, 133-134
check boxes, 147
Display class and, 97, 100
instance of Form class, 141
instances of DateField class, 156-157
ItemListener and, 118
online help, 111
radio buttons, 151-154
socket, 593

setDate() method, 155
setFetchSize() method, 414-415
setFont() method, 258, 262-265
setInputMode() method, 155
setInt() method, 540
setLabel() method

ImageItem layout, 179

instances of StringItem class, 166, 168-169
noninteractive gauge, 161-162

setLayout() method, 179
setMaxSize() method, 170
setMaxValue() method, 158
setRequestMethod(), 599
setRequestProperty() method, 599, 601
setSelectedFlags() method, 183
setSelectedIndex() method

ItemListener and, 117
radio buttons, 151-154
setting default selection in List class,

183-184
setString() method

TextField class, 171, 174-176
Ticker class, 199

setStrokeStyle() method, 240
setText() method

check boxes, 148
instances of StringItem class, 166, 168-170

setTicker() method, 200
setTimeout() method, 133, 135
settings, reading JAD file, 84-85
setValue() method, 158, 161-162
setXXX() method

contact database, 539
data types for use with, 427-428
PreparedStatement object, 406

Short Message Service (SMS), 29-30
shortcut keys, 80
showNotify() method, 219
Simple API for XML (SAX), 628
Simple Object Access Protocol. See SOAP

(Simple Object Access Protocol)
Simula 67, 4
size

attribute, 372
canvas, 215-217
column, 484-485
defining data by, 375-377
fetch, 414-415
fonts, 258-259
reducing clipping region, 279

size() method, 147-148, 170
skip() method, 579
small computing devices, 17-34

J2ME limitations, 15-16
lack of uniform hardware in, 12
messaging, 29-30
microwave, 24-25
mobile power, 31-32

740 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Index

P:\010Comp\CompRef8\710-9\index.vp
Friday, February 07, 2003 3:03:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

mobile radio networks, 25-29
other Java platforms for, 16
overview of, 4
personal digital assistants, 30-31
radio data networks, 22-24
resource requirements, 37
set-top boxes, 32-33
smart cards, 34
wireless, 18-22

Smalltalk, 4
smart cards, 34
SMS (Short Message Service), 29-30
SOAP body, 640-641
SOAP envelope, 640-641
SOAP header, 640-641
SOAP message, 640-641
SOAP nodes, 641
SOAP (Simple Object Access Protocol), 639-647

development of, 639-640
functionality, 640
message/delivery structure, 640-641
WSDL and, 641-647

soapAction attribute, 645-646
soap:address element, 642
soap:binding element, 642, 645
soap:body element, 642, 646
soap:fault element, 646
soap:header element, 642, 646-647
soap:headerfault element, 646-647
soap:operation element, 645
socket connection, HTTP, 592-597
software development kits (SDKs)

J2EE/J2SE, 8
J2ME, 48-50

solicit-response transmission primitive, WSDL,
633, 634

sorting
data, 512, 516-518
derived data, 518-519
results from subqueries, 519
VIEWs, 529

sorting records, RMS
mixed data type records, 337-345
overview of, 330-331
single data type records, 332-337

sound, alert, 138-139
source, attribute, 372
speed, 72-73, 75
spread-spectrum wireless radio network, 23, 28
SQL. See JDBC, embedded SQL and
SQL statements

batching into transaction, 422-424

creating/executing, 395-396
table creation, 460-461

SQLException, JDBC, 428
SQLWarning, JDBC, 428
standards, 12, 14-15
Start command

file protocol, 589-592
implementing noninteractive gauge,

159, 164
reading/parsing web pages, 584

START field ID, 539
start() method, 610-613
startApp() method

alert dialog box, 135
care when using, 90-91
event handling and, 43
HelloWorld MIDlet, 49-52
instance of Form class, 141
MIDlet and, 42-43, 100
online help, 111
reading/parsing web pages, 584
socket, 593

Statement object
creating/executing SQL statement, 396
JDBC reference guide, 444-445
overview of, 403-409
updating ResultSet, 415-418

status line, HttpConnection, 600
storage, primary data, 72
storage, RMS records

creating, opening, closing, removing,
298-302

overview of, 296-297
scope, 297
setup, 298

stored procedures, calling, 407-409
StreamConnection interface, 578, 582
streams, GCF connection

InputStream class, 578-579
OutputStream class, 579-580
overview of, 577-578

StringBuffer object, 82
StringItem class

MIDlet user interface, 44
overview of, 166-170
reference guide, 207

strings
avoiding concatenation of, 81-82
drawing on canvas, 262
record enumeration, 319-324
writing/reading mixed data types, 309-314

stroke style, 240

I n d e x 741

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Index

P:\010Comp\CompRef8\710-9\index.vp
Friday, February 07, 2003 3:03:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

StrongARM processor, 30
Stroustrup, Bjarne, 4
stub interface, MIDlets, 636
style attribute, SOAP, 645-646
Submit command, 173-174, 195-197
subqueries, 519-525

conditional testing, 521-525
creating, 520-521
overview of, 519-520

substring() method, 585-586
substringWidth() method, 261
SUM() function, 504, 506-507
SUMMARY field ID, 539, 540-541
support tier, 619
synchronization, 82-83, 88-89
Synchronous Dynamic RAM (SDRAM), 31
SYSDATE function, 466
system date. See date
system time. See time

T
T9 technology, 28-29
table aliases, creating, 499-500
tables. See also joins

counting all rows, 509
creating, 460-461
default value for columns, 461-462
deleting data, 490-491
dropping, 462
inserting data, 465-468
joining, 491-504
multitable VIEWs, 529
overview of, 367-368
relationships between, 368
requiring data in columns, 461

tables, data selection, 468-483
all data, 469-470
AND clause, 473
DISTINCT modifier, 481
equal and not equal operators, 475-477
greater than operator, 477-478
greater than or equal to operator, 479
IS NULL operator, 480-481
joining multiple compound expressions,

474-475
less than operator, 477
less than or equal to operator, 478
LIKE operator, 480
IN modifier, 482

multiple columns, 471
NOT clause, 474
NOT IN modifier, 482-483
one column, 470
BETWEEN operator, 479
OR clause, 473-474
overview of, 468-469
rows, 470-471, 472
rows and columns, 472

tables, updating, 485-490
based on values in column, 488
every row, 488
IS NULL test, 487
multiple columns, 488-489
multiple rows, 486-487
overview of, 485
rows and columns, 485-486
IN test, 487
using calculations, 489-490

tags, XML, 628
TDMA (Time Division Multiple Access), 28
terrestrial networks, 24
tests. See conditional tests
text

alignment on canvases, 259-261
drawing on canvases, 261, 262-265
high-level interface vs., 215
input on cell phones, 28-29
overview of, 257-259
repositioning, 274-279

TextBox class
creating online help, 110
overview of, 194-198
reference guide, 210-211

TextField class
hiding text in, 177-178
interacting with instance of, 172-176
overview of, 170-172
reference guide, 207-208
TextBox class compared to, 194

thick client applications, defined, 9-10
thin client applications, defined, 9-10
ThreadGroup class, 45, 83
threads, 610-613
3G, multiplexing technique, 28
Ticker class

MIDlet user interface, 44
overview of, 199-202
reference guide, 212

tiers, web service, 618-619

742 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Index

P:\010Comp\CompRef8\710-9\index.vp
Friday, February 07, 2003 3:03:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

time
displaying, editing or inputting,

154-157
inserting system time into column, 467
inserting timestamp into column,

467-468
J2ME problems with, 86-88

Time Division Multiple Access (TDMA), 28
timeout periods, JDBC database connection,

401-402
TIMESTAMP() function, 468
timestamps, inserting into column, 467-468
toByteArray() method, 311
ToDo interface, 540-541, 569-570
ToDoList interface, 541, 570-571
touch screen. See pointer events
Trace Class Loading option, 68
Trace Garbage Collection option, 68
Trace tab, J2ME Wireless Toolkit, 67
transceivers, radio, 21, 26-27
transitive dependencies, 382-383
translate() method, 274-275
translating coordinates, 274-279
transmission primitives

SOAP, 641-645
WSDL, 633

transmissions, as background process, 610-613
transmit() method, 611-613
transmitters, radio, 20
transport attribute, SOAP binding element, 645
try{ } block

alert dialog box, 135
instance of ImageItem class, 179-180
MIDletStateChangeExceptions, 123
Model A program style, 455-457
Model B program style, 457-459
mutable image on canvas, 269-270
record enumeration, 319-321
record store, 299, 301
selecting data from table, 468

Type 1 JDBC to ODBC driver
associating with database, 399
connecting to DBMS, 395
loading, 395
overview of, 393

Type 2 Java/Native Code driver, 394
Type 3 JDBC driver, 394
Type 4 JDBC driver, 394
type attribute, 372, 632
types element, WSDL document, 632

U
underscore (_) character, 480
Uniform Resource Identifier (URI), 581
Uniform Resource Locator. See URL (Uniform

Resource Locator)
UNIQUE modifier, 463, 464
Unstructured Supplementary Services Data

(USSD), 29-30
UnsupportedFieldException class, 571
UPDATE statement

IS NULL test, 487
IN test, 487
updating based on values in column, 487
updating every row, 488
updating row/column, 485-486
updating using calculations, 489-490
updating view, 530-531
using joins with, 500

updateNULL() method, 416-417
updateRow() method, 416-417
updates. See also tables, updating

best practices for, 89-90
ResultSet object, 415-419

updateXXX() method
inserting row in ResultSet, 417-419
updating value in ResultSet, 416-417

URI (Uniform Resource Identifier), 581
URL (Uniform Resource Locator)

creating socket, 593
database connections, 398, 400
encoding HTTP requests, 597

use attribute
SOAP body element, 646
SOAP header element, 647

user attribute, SOAP body element, 646
User Defined tab, J2ME Wireless Toolkit, 63-64
user ID

database connections, 400-401
views for, 525-532

user interactions, canvas, 219-239
game actions, 227-233
key codes, 220-227
overview of, 219
pointer devices, 233-239

user interfaces
J2ME, 96
low-level vs. high-level, 214
MIDlet, 44
simplifying, 79-80

USSD (Unstructured Supplementary Services
Data), 29-30

I n d e x 743

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Index

P:\010Comp\CompRef8\710-9\index.vp
Friday, February 07, 2003 3:03:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

V
values

acceptable attribute, 372
anchor point constant, 260
ANY test and, 524
attribute, 372
color, 240-243
requesting multiple column, 471
requiring column, 461
selecting all data from table and, 470
setting column default, 461-462
updating based on column, 488
updating in ResultSet, 416-417

VALUES clause, 466
variables, local, 81
vCalendar 1.0 standard

defined, 536
to do database, 540-541
event database, 539-540

vCard 2.1 standard, 536, 538-539
version management, 83-84
VersionMisMatch fault, SOAP, 641
VIEWs, 525-532

creating, 527
deleting row from, 531
dropping, 532
grouped/sorted, 529
horizontal, 528
inserting row into, 531
multitable, 529
rules for using, 525-527
selecting columns to appear in, 528
updating, 530-531

virtual cursor, 409, 411-413
virtual pen, 217
voice recognition, 29

W
W3C (World Wide Web Consortium), 640
WAP (Wireless Application Protocol) forum,

14-15
watts

battery power and, 32
radio waves and, 21

waves
radio, 20-22
wireless, 18-19

web clients, 624
web pages, reading/parsing, 584-589

web servers
downloading images from, 609
HttpConnection and, 601-607
network traffic, 86
off-loading computations to, 76-77
reading data from HTTP connection,

582-583
reading/parsing web pages, 584-589
uploading code from, 83-84

web service peers, 624-625
web services

architecture, 6-7
basics, 618-621
client tier implementation, 624-625
defined, 618
EIS, 627
EJB, 626-627
J2EE multi-tiered, 621-623
J2ME MIDlets, 636-638
off-loading computations to server with,

76-77
reference guide, 649-651
RMI, 639
SOAP, 639-641
web tier implementation, 625-626
WSDL, 629-635
WSDL and HTTP binding, 647-649
WSDL and SOAP, 641-647
XML, 628

Web Services Description Language. See WSDL
(Web Services Description Language)

Web Tier, 621-622, 625-626
weight, line, 243
WHERE clause

AND, OR, and NOT clauses and, 473-474
calculating subsets of rows, 510-511
greater than or equal to operators, 479
joining tables, 491, 494-495
less than or equal to operator, 479
less than or greater than operator, 477-478
LIKE operator, 480
IN modifier, 482
multiple comparison joins, 496-497
multitable joins, 497-498
multitable VIEWs, 529
not equal operator and, 475-477
NOT IN modifier, 482-483
outer joins, 502-503
overview of, 474-475
requesting rows from table, 472
subqueries, 520-521

744 J 2 M E : T h e C o m p l e t e R e f e r e n c e

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Index

P:\010Comp\CompRef8\710-9\index.vp
Friday, February 07, 2003 3:03:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

subqueries including, 519
updating, based on values in column, 488
updating multiple rows, 486-487
updating rows and columns, 485-486
updating views, 530-531

wildcards, 480
Wireless Application Protocol (WAP) forum,

14-15
wireless devices, 14-15, 18-22
Wireless Markup Language (WML), 14
Wireless Telephony Application Interface

(WTAI), 14
WML (Wireless Markup Language), 14
WMLScript, 14
World Wide Web, 5
World Wide Web Consortium (W3C), 640
write() method

HTTP request, 607
HttpConnection, 602
OutputStream class and, 579-580

writeBoolean() method, 311
writeInt() method, 311
writeUTF() method, 311
writing

to files, 589-592
from socket connections, 592-597

writing/reading RMS records
mixed data types, 309-316
overview, 302-303
techniques, 303-309

WSDL (Web Services Description Language),
629-635

binding element, 634

document, 629-632
HTTP binding and, 647-649
message element, 632
port element, 635
portType element, 633-634
service element, 635
SOAP and, 641-647
types element, 632

wsdl2java tool, 636
wsdl:fault element, 633
wsdl:input element, 633
wsdl:operation element, 634
wsdl:output element, 633
wsdl:port element, 635
wsdl:service element, 635
WTAI (Wireless Telephony Application

Interface), 14

X
XML (Extensible Markup Language). See also

WSDL (Web Services Description Language)
overview of, 628
SOAP basics and, 639-641

XML parser, 628
XML-RPC (XML-Remote Procedure Call), 639
XML Schema, 628-630
xsd:binary, 647
xsd:int, 647
xsd:string, 647
XSLT (Extensible Stylesheet Language

Transformation), 628

I n d e x 745

Complete Reference / J2ME: TCR / Keogh / 222710-9 / Index

P:\010Comp\CompRef8\710-9\index.vp
Friday, February 07, 2003 3:03:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9
Blind Folio 746

INTERNATIONAL CONTACT INFORMATION

AUSTRALIA

McGraw-Hill Book Company Australia Pty. Ltd.

TEL +61-2-9900-1800

FAX +61-2-9878-8881

http://www.mcgraw-hill.com.au

books-it_sydney@mcgraw-hill.com

CANADA

McGraw-Hill Ryerson Ltd.

TEL +905-430-5000

FAX +905-430-5020

http://www.mcgraw-hill.ca

GREECE, MIDDLE EAST, & AFRICA

(Excluding South Africa)

McGraw-Hill Hellas

TEL +30-210-6560-990

TEL +30-210-6560-993

TEL +30-210-6560-994

FAX +30-210-6545-525

MEXICO (Also serving Latin America)

McGraw-Hill Interamericana Editores S.A. de C.V.

TEL +525-117-1583

FAX +525-117-1589

http://www.mcgraw-hill.com.mx

fernando_castellanos@mcgraw-hill.com

SINGAPORE (Serving Asia)

McGraw-Hill Book Company

TEL +65-863-1580

FAX +65-862-3354

http://www.mcgraw-hill.com.sg

mghasia@mcgraw-hill.com

SOUTH AFRICA

McGraw-Hill South Africa

TEL +27-11-622-7512

FAX +27-11-622-9045

robyn_swanepoel@mcgraw-hill.com

SPAIN

McGraw-Hill/Interamericana de España, S.A.U.

TEL +34-91-180-3000

FAX +34-91-372-8513

http://www.mcgraw-hill.es

professional@mcgraw-hill.es

UNITED KINGDOM, NORTHERN,

EASTERN, & CENTRAL EUROPE

McGraw-Hill Education Europe

TEL +44-1-628-502500

FAX +44-1-628-770224

http://www.mcgraw-hill.co.uk

computing_europe@mcgraw-hill.com

ALL OTHER INQUIRIES Contact:

Osborne/McGraw-Hill

TEL +1-510-549-6600

FAX +1-510-883-7600

http://www.osborne.com

omg_international@mcgraw-hill.com

P:\010Comp\CompRef8\710-9\index.vp
Friday, February 07, 2003 3:03:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9
Blind Folio 747

Richard Petersen Paul Watters

Richard Petersen

Keith Strassberg, Gary Rollie
& Richard Gondek

Ryan Bloom

Brian Hill

David Lowe et al.

Also Available:

Coming Q3, 2002:

Exchange 2000 Server:
The Complete Reference
Scott Schnoll, Bill English

& Mark Cavalancia

Networking:
The Complete Reference
Craig Zacker

Nortel® Networks:
The Complete Reference
Second Edition
James Knapp

SQL:
The Complete Reference
James Groff & Paul Weinberg

IBM® Websphere®

Application Server
The Complete Reference
Ron Ben-Natan & Ori Sasson

PC Hardware:
The Complete Reference
Craig Zacker & John Rourke

Solaris™ 8:
The Complete Reference
Paul Watters & Sriranga

Veerarghavan

Windows® 2000:
The Complete Reference
Kathy Ivens

Linux:
The Complete Reference
Fifth Edition
Richard Petersen

Expert authors. In-depth coverage.

The Complete Reference Series.
Essential resources covering today’s
top technologies and applications.

Matt Kolon & Jeff Doyle

P:\010Comp\CompRef8\710-9\index.vp
Friday, February 07, 2003 3:03:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / J2ME: TCR / Keogh / 222710-9
Blind Folio 748

Hacking Exposed™ J2EE

By Art Taylor, Brian Buege
& Randy Layman
ISBN: 0072225653

O s b o r n e D e l i v e r s R e s u lt s !]

[
Get comprehensive coverage of the

tools and techniques for identifying and

correcting J2EE and Java security

issues. Written in the same exciting and

informative style as the international

blockbuster Hacking Exposed, this

definitive book includes examples of

J2EE attacks and countermeasures, risk

ratings, and insightful case studies.

Secure Your J2EE
Applications

Using the Proven
Hacking Exposed
Methodology

McGraw-Hill/Osborne products are available worldwide wherever quality computer books are sold.

P:\010Comp\CompRef8\710-9\index.vp
Friday, February 07, 2003 3:03:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

	J2ME: The Complete Reference
	Contents
	Introduction
	Part I J2ME Basics
	1 J2ME Overview
	Java 2 Micro Edition and the World of Java
	Enter Java
	Java Virtual Machine
	J2EE and J2SE
	The Birth of J2EE
	Back to the Future: J2ME

	Inside J2ME
	How J2ME Is Organized

	J2ME and Wireless Devices
	What J2ME Isn't
	Other Java Platforms for Small Computing Devices

	2 Small Computing Technology
	Wireless Technology
	Radio Transmission
	Limitations of Radio Transmissions

	Radio Data Networks
	Data Packets

	Microwave Technology
	Satellite Networks

	Mobile Radio Networks
	Cellular Telephone Networks
	Digital Wireless Transmissions
	Cell Phones and Text Input

	Messaging
	Personal Digital Assistants
	Mobile Power
	Set-Top Boxes
	Inside Look at a Set-Top Box

	Smart Cards

	3 J2ME Architecture and Development Environment
	J2ME Architecture
	Small Computing Device Requirements
	Run-Time Environment
	Inside the Java Archive File
	Inside the Java Application Descriptor File

	MIDlet Programming
	Event Handling
	User Interfaces
	Device Data

	Java Language for J2ME
	J2ME Software Development Kits
	Hello World J2ME Style
	Compiling Hello World
	Running Hello World
	Deploying Hello World
	What to Do When Your MIDlet Doesn't Work Properly

	Multiple MIDlets in a MIDlet Suite
	J2ME Wireless Toolkit
	Building and Running a Project
	Hello World Project
	MIDlets on the Internet

	4 J2ME Best Practices and Patterns
	The Reality of Working in a J2ME World
	Best Practices
	Keep Applications Simple
	Keep Applications Small
	Limit the Use of Memory
	Off-Load Computations to the Server
	Manage Your Application's Use of a Network Connection
	Simplify the User Interface
	Use Local Variables
	Don't Concatenate Strings
	Avoid Synchronization
	Thread Group Class Workaround
	Upload Code from the Web Server
	Reading Settings from JAD Files
	Populating Drop-down Boxes
	Minimize Network Traffic
	Dealing with Time
	Automatic Data Synchronization
	Updating Data that Has Changed
	Be Careful of the Content of the startApp() Method

	Part II J2ME User Interface
	5 Commands, Items, and Event Processing
	J2ME User Interfaces
	Display Class
	The Palm OS Emulator
	Command Class
	CommandListener

	Item Class
	Item Listener

	Exception Handling
	Throwing a MIDletStateChangeException

	Quick Reference Guide

	6 High-Level Display: Screens
	Screen Class
	Alert Class
	Alert Sound

	Form Class
	Item Class
	ChoiceGroup Class
	DateField Class
	Gauge Class
	StringItem Class
	TextField Class
	ImageItem Class

	List Class
	Creating an Instance of a List Class

	TextBox Class
	Creating an Instance of a TextBox Class

	Ticker Class
	Quick Reference Guide

	7 Low-Level Display: Canvas
	The Canvas
	The Layout of a Canvas
	Proportional Coordinates
	The Pen
	Painting
	showNotify() and hideNotify()

	User Interactions
	Working with Key Codes
	Working with Game Actions
	Working with Pointer Devices

	Graphics
	Stroke Style and Color
	Lines
	Rectangles
	Arcs
	Text
	Images
	Repositioning Text and Images

	Clipping Regions
	Creating a Clipping Region

	Animation
	Quick Reference Guide

	Part III J2ME Data Management
	8 Record Management System
	Record Storage
	The Record Store
	Record Store Scope
	Setting Up a Record Store

	Writing and Reading Records
	Creating a New Record and Reading an Existing Record
	Writing and Reading Mixed Data Types

	Record Enumeration
	Reading a Record of a Simple Data Type into a RecordEnumeration
	Reading a Mixed Data Type Record into a RecordEnumeration

	Sorting Records
	Sorting Single Data Type Records in a RecordEnumeration
	Sorting Mixed Data Type Records in a RecordEnumeration

	Searching Records
	Searching Single Data Type Records
	Searching Mixed Data Type Records

	RecordListener
	Quick Reference Guide

	9 J2ME Database Concepts
	Data
	Databases
	Tables

	Database Schema
	Identifying Information
	Decomposing Attributes to Data
	Defining Data
	Normalizing Data
	Grouping Data
	Creating Primary Keys
	Functional Dependency
	Transitive Dependencies
	Foreign Keys
	Referential Integrity

	The Art of Indexing
	An Index in Motion
	Drawbacks of Using an Index
	Clustered Keys
	Derived Keys
	Selective Rows
	Exact Matches and Partial Matches
	Searching for Phonetic Matches

	10 JDBC Objects
	The Concept of JDBC
	JDBC Driver Types
	Type 1 JDBC to ODBC Driver
	Type 2 Java/Native Code Driver
	Type 3 JDBC Driver
	Type 4 JDBC Driver

	JDBC Packages
	Overview of the JDBC Process
	Load the JDBC Driver
	Connect to the DBMS
	Create and Execute an SQL Statement
	Process Data Returned by the DBMS
	Terminate the Connection to the DBMS

	Database Connection
	The Connection
	Timeout
	Connection Pool

	Statement Objects
	The Statement Object
	PreparedStatement Object
	CallableStatement

	ResultSet
	Reading the ResultSet
	Scrollable ResultSet
	Specify Number of Rows to Return
	Updatable ResultSet

	Transaction Processing
	Savepoints
	Batch Statements
	Keeping ResultSet Objects Open
	RowSet
	Autogenerated Keys

	Metadata
	ResultSet Metadata

	Data Types
	Exceptions
	Quick Reference Guide

	11 JDBC and Embedded SQL
	Model Programs
	Model A Program
	Model B Program

	Tables
	Create a Table
	Drop a Table

	Indexing
	Create an Index
	Drop an Index

	Inserting Data into Tables
	Insert a Row
	Insert the System Date into a Column
	Insert the System Time into a Column
	Insert a Timestamp into a Column

	Selecting Data from a Table
	Select All Data from a Table
	Request One Column
	Request Multiple Columns
	Request Rows
	Request Rows and Columns
	AND, OR, and NOT Clauses
	Join Multiple Compound Expressions
	Equal and Not Equal Operators
	Less Than and Greater Than Operators
	Less Than or Equal to and Greater Than or Equal To
	Between Operator
	LIKE Operator
	IS NULL Operator
	DISTINCT Modifier
	IN Modifier

	Metadata
	Number of Columns in ResultSet
	Data Type of Column
	Name of Column
	Column Size

	Updating Tables
	Update Row and Column
	Update Multiple Rows

	Deleting Data from a Table
	Delete a Row from a Table

	Joining Tables
	Join Two Tables
	Parent-Child Join
	Multiple Comparison Join
	Multitable Join
	Create a Column Name Qualifier
	Create a Table Alias
	Inner and Outer Joins

	Calculating Data
	SUM()
	AVG()
	MIN()
	MAX()
	COUNT()
	Count All Rows in a Table
	Retrieve Multiple Counts
	Calculate a Subset of Rows
	NULLs and Duplicates
	Calculate Without Using Built-in Functions

	Grouping and Ordering Data
	GROUP BY
	Group Multiple Columns
	Conditional Grouping
	Working with NULL Columns
	Sorting Data
	Sorting on Derived Data

	Subqueries
	Create a Subquery
	Conditional Testing

	VIEWs
	Rules for Using VIEWs
	Create a VIEW
	Select Columns to Appear in the VIEW
	Create a Horizontal VIEW
	Create a Multitable VIEW
	Group and Sort VIEWs
	Modify a VIEW

	Part IV J2ME Personal Information Manager Profile
	12 Personal Information Manager
	PIM Databases
	The Contact Database
	The Event Database
	The To Do Database
	Error Handling
	A Model PIM Application
	Quick Reference Guide

	Part V J2ME Networking and Web Services
	13 Generic Connection Framework
	The Connection
	Connection and Streams

	Hypertext Transfer Protocol
	Creating an HTTP Connection
	Reading Data from an HTTP Connection
	The File Protocol
	Socket

	Communication Management Using HTTP Commands
	HttpConnection

	Session Management
	Cookies

	Transmit as a Background Process
	Quick Reference Guide

	14 Web Services
	Web Services Basics
	The Tier
	Clients, Resources, and Components
	Accessing Services

	J2EE Multi-Tier Web Services Architecture
	Client Tier Implementation
	Classification of Clients

	Web Tier Implementation
	Enterprise JavaBeans Tier Implementation
	Enterprise Information Systems Tier Implementation
	Inside WSDL
	The WSDL Document
	Types Element
	Message Element
	portType Element
	Binding Element
	Port Element
	Service Element

	J2ME MIDlets and Web Services
	JAX-RPC
	Holder Classes

	Remote Method Invocation Concept
	Remote Interface

	SOAP Basics
	SOAP Functionality
	The SOAP Message and Delivery Structure

	WSDL and SOAP
	SOAP One-Way Transmission Primitive
	SOAP Request-Response Transmission Primitive
	SOAP Binding Element
	SOAP Operation Element
	SOAP Body Element
	SOAP Fault Element
	SOAP Header Element
	SOAP Address Element

	WSDL and HTTP Binding
	Quick Reference Guide

	Appendix: Quick Reference Guide
	Index

