OsSBORNE

The

Complete
Reference

Get eamples on JOME- Understand the core
supported sftware fundamestals and
development kits, databases, | advanced techniques
Web services, and more of J2ZME

J2ME:
The Gomplete Reference

James Keogh

McGraw-Hill/Osborne

New York Chicago San Francisco
Lisbon London Madrid Mexico City
Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

The McGraw-Hill companies

McGraw-Hill/Osborne
2600 Tenth Street
Berkeley, California 94710
US.A.

To arrange bulk purchase discounts for sales promotions, premiums, or fund-raisers,
please contact McGraw-Hill/Osborne at the above address. For information on
translations or book distributors outside the U.S.A., please see the International
Contact Information page immediately following the index of this book.

J2ME: The Complete Reference

Copyright © 2003 by The McGraw-Hill Companies. All rights reserved. Printed in the
United States of America. Except as permitted under the Copyright Act of 1976, no part
of this publication may be reproduced or distributed in any form or by any means,

or stored in a database or retrieval system, without the prior written permission of
publisher, with the exception that the program listings may be entered, stored, and
executed in a computer system, but they may not be reproduced for publication.

1234567890 CUS CUS 019876543

ISBN 0-07-222710-9
Publisher
Brandon A. Nordin

Vice President & Associate Publisher
Scott Rogers

Editorial Director
Wendy Rinaldi

Project Editor
Mark Karmendy

Acquisitions Coordinator
Athena Honore

Technical Editor
Amar Mehta

Copy Editor
Judith Brown

Proofreader
Claire Splan

Indexer
Jack Lewis

Computer Designers

Apollo Publishing Services,
Lucie Ericksen, Tara A. Davis

Illustrators

Michael Mueller, Lyssa Wald,
Melinda Moore Lytle

Series Design
Peter F. Hancik

This book was composed with Corel VENTURA " Publisher.

Information has been obtained by McGraw-Hill/Osborne from sources believed to be reliable. However, because of the
possibility of human or mechanical error by our sources, McGraw-Hill /Osborne, or others, McGraw-Hill/Osborne does
not guarantee the accuracy, adequacy, or completeness of any information and is not responsible for any errors or omissions
or the results obtained from the use of such information.

This book is dedicated to Anne, Sandy,
Joanne, Amber-Leigh Christine, and Graaf,
without whose help and support
this book couldn’t be written.

About the Author

Jim Keogh teaches courses on Java Application
Development, including J2EE, at Columbia
University and is a member of the Java
Community Process Program. He developed
the first e-commerce track at Columbia and
became its first chairperson. Jim spent more
than a decade developing advanced systems
for major Wall Street firms. Jim introduced

PC Programming nationally in his Popular
Electronics Magazine column in 1982, four years
after Apple Computer started in a garage. He
was also a team member who built one of the
tirst Windows applications by a Wall Street
firm, featured by Bill Gates in 1986. Jim is the
author of 55 books, including his most recent
book, J2EE: The Complete Reference. He is also a
faculty member in the Graduate School, Saint
Peter’s College, New Jersey City, NJ.

Contents

Introduction XV

J2ME Overviewiiiiiiiiiinnenn. 3
Java 2 Micro Edition and the World of Java 4
EnterJava 5
Java Virtual Machine 6
J2ZEEand J2SE 6
The Birthof J2EE i 8
Back to the Future: 2ME 8
Inside J2ME 9
How J2ME Is Organized 12
J2ME and Wireless Devices, 14
What 2ME ISN't ..o e 15
Other Java Platforms for Small Computing Devices 16

J2ME: The Complete Reference

Small Computing Technology
Wireless Technology,
Radio Transmission
Limitations of Radio Transmissions
Radio Data Networks i,
DataPackets i il
Microwave Technology
Satellite Networks
Mobile Radio Networks o L.
Cellular Telephone Networks
Digital Wireless Transmissions
Cell Phones and TextInput
Messaging ...
Personal Digital Assistants
Mobile Power
Set-Top BOXeS\
Inside Look ata Set-TopBox
Smart Cards

J2ME Architecture and Development Environment . ..
J2ME Architecture
Small Computing Device Requirements
Run-Time Environment
Inside the Java Archive File
Inside the Java Application Descriptor File
MIDlet Programming oo oo
EventHandling
UserInterfacesoiiiiiniiiinnann...
DeviceDatao i
JavaLanguagefor 2MEol
J2ME Software Development Kits
Hello World 2ME Style i
Compiling HelloWorld
Running HelloWorld
Deploying HelloWorld

What to Do When Your MIDlet Doesn’t

Work Properlyo il

Multiple MIDlets in a MIDlet Suite
J2ME Wireless Toolkitt
Building and Running a Project

Hello World Project
MIDletsontheInternet

17
18
20
20
22
23
24
24
25
26
28
28
29
30
31
32
33
34

35
36
37
37
38
40
42
43
44
44
45
48
50
53
54
54

56
57
60
61
64
67

Contents
4]J2ME Best Practices and Patterns 71
The Reality of Working ina J2ME World 72
Best Practices 73
Keep Applications Simple 73
Keep ApplicationsSmall 74
Limit the Use of Memory 75
Off-Load Computations to the Server 76

Manage Your Application’s Use of a
Network Connection 77
Simplify the User Interface 79
Use Local Variables 81
Don’t Concatenate Strings 81
Avoid Synchronization oL 82
Thread Group Class Workaround 83
Upload Code from the Web Server 83
Reading Settings from JAD Files 84
Populating Drop-down Boxes 85
Minimize Network Traffic 86
DealingwithTime 86
Automatic Data Synchronization 88
Updating Data that Has Changed 89
Be Careful of the Content of the startApp() Method 90

| Partll |
J2ME User Interface

5 Commands, Items, and Event Processing 95
J2ME User Interfaceso, 96
Display Classuuuiuiiiiiiiiiiii 96
The Palm OSEmulator 102
Command Classooiiiiiiiiiiii i 103
CommandListener 105
Item Classcoouiiiiiii 111
Item Listener 114
ExceptionHandlingol 118
Throwing a MIDletStateChangeException 120
Quick Reference Guidecciiiiiiiiiiiiia.. 125
6 High-Level Display: Screens 129
Screen Classt 130

vii

Vili J2ME: The Complete Reference

Alert Class ...t 131
AlertSound 138

Form Class i 139
TItem Class ... 143
ChoiceGroup Classo.... 144
DateField Class o i, 154
GaugeClass ool 158
Stringltem Class oL 166
TextFieldClass i 170
Imageltem Class 178

List Classcouuun i 182
Creating an Instance of a List Class 184
TextBox Class ...t 194
Creating an Instance of a TextBox Class 195

Ticker Class ... 199
Quick Reference Guide i, 203
7 Low-Level Display: Canvas 213
TheCanvaso i 214
The LayoutofaCanvas 215
Proportional Coordinates 216
ThePen 217
Painting 217
showNotify() and hideNotify() 219

User Interactions 219
Working with Key Codes 220
Working with Game Actions 227
Working with Pointer Devices 233
Graphics i 239
Stroke Styleand Color 240

Lines 243
Rectanglesol 243

ATCS o 250

Text ... 257

Images 266
Repositioning Text and Images 274
Clipping Regionsco ... 279
Creating a Clipping Region 280
Animation 284

Quick Reference Guidecoiiiiiiiiiiiii.. 286

J2ME Data Management

Record Management System
Record Storage,
The Record Store
Record Store Scope
Setting Up a Record Store
Writing and Reading Records
Creating a New Record and Reading an
Existing Record
Writing and Reading Mixed Data Types
Record Enumeration
Reading a Record of a Simple Data Type
into a RecordEnumeration
Reading a Mixed Data Type Record into a
RecordEnumeration
Sorting Records
Sorting Single Data Type Records in a
RecordEnumeration
Sorting Mixed Data Type Records in a
RecordEnumeration
Searching Records
Searching Single Data Type Records ...
Searching Mixed Data Type Records ...
RecordListenero....
Quick Reference Guide

J2ME Database Concepts
Data
Databases
Tables i
Database Schema
Identifying Information
Decomposing Attributes to Data
Defining Data
Normalizing Data
Grouping Data
Creating Primary Keys
Functional Dependency
Transitive Dependencies

Contents

296
296
297
298
302

303
309
316

319

324
330

332

337
345
345
352
359
360

366
367
367
368
369
372
375
377
378
380
382
382

ix

X J2ME: The Complete Reference

ForeignKeys L 383
Referential Integrity 384

The Artof Indexing 385
AnIndexinMotion i 386
Drawbacks of UsinganIndex 386
Clustered Keys 387
Derived Keys ool 388
Selective ROWS ot 388

Exact Matches and Partial Matches 389
Searching for Phonetic Matches 389

10 JDBCObjectsccoiiiiiiiiiiiiiiii 391
The Concept of JDBC ... 392
JDBC Driver Types ... i 393
Type 1JDBC to ODBC Driver 393

Type 2 Java/Native Code Driver 394
Type3JDBC Driver 394
Type4JDBC Driver 394
JDBCPackages i 394
Overview of the JDBC Processcoviiiiiinnenno.. 394
Load the JDBC Driverccouiiiiiineinnnan. 395
Connecttothe DBMS i, 395

Create and Execute an SQL Statement 395

Process Data Returned by the DBMS 396
Terminate the Connection tothe DBMS 397
Database Connectioniiuiiniininnennan.. 398
The Connectioncouiiiiiniineinennn.. 398
Timeout 401
Connection Pool i 402
Statement Objects i 403
The Statement Object 403
PreparedStatement Object 406
CallableStatement, 407
ResultSet 409
Reading the ResultSet 410
Scrollable ResultSet i, 411

Specify Number of Rows to Return 414
Updatable ResultSet 415
Transaction Processing 419
Savepointsl 421

Batch Statements i 422

Keeping ResultSet Objects Open 424

11

Contents

RowSet 424
Autogenerated Keys 426
Metadata 426
ResultSet Metadata 426
DataTypes 427
Exceptions 428
Quick Reference Guide il 429
JDBC and Embedded SQL 453
Model Programs 454
Model AProgram oo i 455

Model BProgram oo 457

Tables ... 460
CreateaTable i il 460
DropaTable il 462
Indexingo 463
CreateanIndex 463
Dropanlndex il 465
Inserting Data into Tables 465
InsertaRow 466

Insert the System Date intoa Column 466

Insert the System Time intoa Column 467

Insert a Timestamp intoa Column 467
Selecting Data fromaTable 468
Select All Data fromaTable 469
RequestOne Column, 470
Request Multiple Columns 471
Request Rows 472
Request Rows and Columns 472

AND, OR,and NOT Clausesc.covueuenenn.. 473

Join Multiple Compound Expressions 474

Equal and Not Equal Operators 475

Less Than and Greater Than Operators 477

Less Than or Equal to and Greater Than or Equal To 478
Between Operator 479

LIKE Operator 480
ISNULLOperator 480
DISTINCT Modifierot 481
INModifier ... 482
Metadata 483
Number of Columns in ResultSet 483

Data Typeof Column 484

Xii

J2ME: The Complete Reference

Nameof Column,
Column Size ...

Updating Tables o i

Update Rowand Column
Update Multiple Rows

Deleting Data fromaTable,

DeleteaRow fromaTable

Joining Tables il

JoinTwoTables
Parent-Child Join
Multiple Comparison Join
Multitable Join
Create a Column Name Qualifier
CreateaTable Aliaso,
Inner and Outer Joinsco i,

Calculating Data i

10) Y () T

COUNT() oo
Count AllRowsinaTable
Retrieve Multiple Counts
Calculate a Subsetof Rows
NULLs and Duplicates
Calculate Without Using Built-in Functions

Grouping and Ordering Data,

GROUPBY ... o
Group Multiple Columns
Conditional Grouping,
Working with NULL Columns
SortingDatal
Sorting on Derived Data

SUDQUETIES\t

VIEWSs

CreateaSubquery
Conditional Testing
Rules for Using VIEWs
Createa VIEW
Select Columns to Appear in the VIEW
Create a Horizontal VIEW
Create a Multitable VIEW
Groupand Sort VIEWso 0oL
Modifya VIEW oo

12

13

14

Contents

J2ME Personal Information Manager Profile
Personal Information Manager 535
PIM Databasesiuiiuin e 536
The Contact Database 538
The Event Database 539
The ToDo Database 540
Error Handling i 541
A Model PIM Application 541
Quick Reference Guide 557

J2ME Networking and Web Services

Generic Connection Framework 575
The Connectionitirin e 576
Connectionand Streamsc..ouiiin.. 577
Hypertext Transfer Protocol 580
Creating an HTTP Connection 580
Reading Data from an HTTP Connection 582
The File Protocol 0 i, 589
SOoCKet .. 592
Communication Management Using HTTP Commands 597
HttpConnection 598
Session Management il 608
CoOKIeS .t 610
Transmit as a Background Process 610
Quick Reference Guide i 614
Web Servicesooiii e 617
Web Services Basics 618
The Tier ... e 618
Clients, Resources, and Components 620
Accessing Services ol 621
J2EE Multi-Tier Web Services Architecture 621
Client Tier Implementation 624
Classification of Clients, 624
Web Tier Implementation 625
Enterprise JavaBeans Tier Implementation 626

Enterprise Information Systems Tier Implementation 627

Xiii

Xiv J2ME: The Complete Reference

Inside WSDL 629
The WSDL Documentoiuiiiiuninanon. 629
Types Element o L 632
Message Element 632
portType Element 633
Binding Element o o 0oL 634
PortElement i, 635
Service Element 635
J2ME MIDlets and Web Services, 636
JAX-RPC .. 637
Holder Classesiuiiii . 637
Remote Method Invocation Concept 639
Remote Interface 639
SOAP BasiCs ... 639
SOAP Functionality 640
The SOAP Message and Delivery Structure 640
WSDL and SOAP e 641
SOAP One-Way Transmission Primitive 642
SOAP Request-Response Transmission Primitive 643
SOAP Binding Element 645
SOAP Operation Element 645
SOAP Body Element 646
SOAP FaultElement i, 646
SOAP Header Element 646
SOAP Address Element 647
WSDLand HTTP Binding 647
Quick Reference Guideo i 649
Appendix: Quick Reference Guide 653

Introduction

ava technology has evolved from a programming language designed to create

machine-independent embedded systems into a robust, vendor-independent,

machine-independent, server-side technology, enabling the corporate community
to realize the full potential of web-centric applications.

Java began with the release of the Java Development Kit (JDK). It was obvious from
the start that Java was on a fast track to becoming a solution to the problems of
many corporate systems. More interface and libraries were extended in the JDK as
the corporate world demanded—and received—application programming interfaces
(API) that addressed real-world situations.

JDK API extensions fully integrated into the JDK with the release of the Java 2
Standard Edition (J2SE) of the JDK. J2SE contains all the APIs needed to build industrial
strength Java applications. However, the corporate world felt J2SE lacked the strength
required for developing enterprise-wide applications and for servicing the needs of
developers of mobile and embedded systems.

Again the corporate community pushed Sun Microsystems, Inc. to revise Java
technology to address needs of an enterprise. Sun Microsystems, Inc. then launched
the Java Community Program (JCP) that brought together corporate users, vendors,
and technologists to develop a standard for enterprise Java APIs. The result is the

XV

XVi J2ME: The Complete Reference

Java 2 Platform Enterprise Edition, commonly referred to as Java 2 Enterprise Edition
(J2EE), and the Java 2 Micro Edition (J2ME).

Enterprise systems traditionally are designed using the client/server model, where
client-side systems request processing from service-side systems. However, enterprise
systems were undergoing their own evolution. A new model called Web services gradually
replaced the client/server model in corporations.

Application programmers assembled applications from an assortment of processing
components called Web services. Each Web service was independent from other Web
services and independent from applications. A client-side application communicates
with a middle-tier, server-side application, which in turns interacts with the necessary
Web services that are also located on the server side.

With the adoption of the Web services model in corporations, the JCP realized that
J2ME must also go through another evolutionary cycle. With the introduction of new
specifications, the Java community has merged J2ME technology with Web services
technology.

In addition to the acceptance of Web services, corporations are also seeking to merge
mobile technology such as Personal Digital Assistants and cellular phones with
corporate mainstream applications. J2ME, with the new PIM API, enables developers
to create sophisticated, wireless applications that have direct access to native PDA
databases. This enables corporate executives to use corporation’s PDA systems to
interact with data mantained by PDA native applications.

| what’s Inside

This book covers in detail all aspect of J2ME, Web services, PDA, and cellular phone
application development. The book is divided into these five parts:

B Part [: J2ME Basics

B Part II: J2ME User Interface

B Part III: J2ME Data Management

B Part IV: J2ME Personal Information Manager Profile

B Part V: J2ME Networking and Web Services

Part I: J2ME Basics

The new web-centric corporation is changing the way in which it delivers highly efficient,
enterprise-wide distributive systems to meet the round-the-clock instantaneous
demand expected by thousands of concurrent users—anywhere at any time. The old
way of building enterprise systems won't solve today’s corporate IT requirements.

Introduction XVii

Technologists at Sun Microsystems, Inc. and the Java Community Program rewrote
the way developers build large-scale, web-centric distributive systems by using Java 2
Enterprise Edition (J2EE), and Java 2 Micro Edition (J2ME). J2EE addresses complex
server-side issues faced by programmers who develop these systems while J2ME
addresses the need to create mobile and embedded components that makes these
systems accessible from other than the desktop.

Part I of this book introduces you to basic concepts used in J2ME technology and
in Web services technology. These concepts focus on four areas of interest, beginning
with an overview of J2ME that defines J2ME and illustrates J2ME’s role in the
evolutionary process of computer programming.

The next area of interest examines the J2ME architecture. It is here where you roll
up your sleeves and get your hands into the guts of J2ME to investigate how J2ME
works within the Web services infrastructure.

At first glance, you might feel overwhelmed by the power of J2ME. However, that
feeling is short-lived because the third area of interest in Part I discusses J2ME best
practices, showing you commonly used design principles used by J2ME programmers
to build advanced J2ME Web centric distributive systems.

Part I concludes with a look at J2ME design patterns used to solve common
programming problems that crop up during the development of a J2ME application.
After reading Part I you'll have a solid basis for learning how to build your own J2ME
applications.

Part II: J2ME User Interface

Nearly every J2ME application that you develop requires a way for a user to interact
with it unless the application is an embedded closed system. An embedded closed
system such as those that control an automobile’s engine doesn’t require input from
the user but instead receives input from electro-mechanical devices.

A user interface for a J2ME application is similar to yet different from a user interface
that you find on a desktop application. They are similar in that both display options
available to the user and then receive and process the option selected by the user.
However, a J2ME user interface is less sophisticated than those found on a desktop
application because of the limited resources (i.e., screen size) that are available on a
J2ME device (i.e., cellular phone).

In Part II you'll learn database concepts of the J2ME user interface. You'll also
explore the details of building a J2ME user interface for your application.

Part lll: J2ME Data Management

At the center of nearly every J2ME application is a repository of information that is
accessed and manipulated by both service-side components, such as Web services,
and client-side applications. A repository is a database management system that
stores, retrieves, and maintains the integrity of information stored in its databases.

Xviii

J2ME: The Complete Reference

A J2ME application uses Java data objects, JDBC, and other technology that is
necessary to interact with a database management system to provide information to
the J2ME application.

In Part IIT you'll learn database concepts in relation to Java data objects. You'll also
explore the details of JDBC, which is used to connect to and interact with popular—
and some not so popular—database management systems. And you'll also learn how
to create and send requests for information and integrate the results of a request into
your J2ME application.

Part IV: J2ME Personal Information Manager Profile

Many corporations have practically made PDAs the de facto standard as a mobile
communicator, especially since PDA and cell phone technologies have merged, causing
a blur between PDAs and cell phones. That is, a PDA can be used as a cell phone and
cell phones have incorporated PDA applications.

Until recently, J2ME applications lacked the capability to interact with native PDA
databases such as those used to store calendar, to-do list, and address information.

The Java Community Process released a new Personal Information Manager (PIM)
API, which is used to develop sophisticated J2ME applications. This enables J2ME
applications to interact with the J2ME device’s personal information database, which
is used by the device’s address book, notepad, and calendar applications.

In Part IV of this book you’'ll explore this API and learn how to implement it in your
J2ME application.

Part V: J2ME Networking and Web Services

The glue that enables J2ME applications to interact with external applications, including
server-side components, is networking capabilities. In Part V you'll learn how to
implement routines that take advantage of a J2ME device’s network features to open
communications with other applications using a hard-wire or wireless network
connection.

You'll also learn how to utilize Web services to expand the horizon of your]2ME
application. Web services is a web of services where services are software building
blocks that are available on a network from which programmers can efficiently create
large-scale distributive systems.

You won't learn how to create Web services, but you will learn how to utilize them
to increase the functionality of your J2ME application beyond the limited resources
found on a J2ME device. In Part V, you'll also learn about Service Oriented Architecture
Protocol (SOAP), Universal Description, Discovery, and Web Services Description
Language (WSDL), and how to implement them in your J2ME application.

Introduction Xix

___ | A Book for All Programmers

J2ME: The Complete Reference is designed for all Java programmers, regardless of their
experience level. It does assume, however, that a reader is able to create at least a
runtime Java program. If you are just learning Java, this book will make an excellent
companion to any Java tutorial and serve as a source of answers to your specific

questions. Experienced Java, J2EE, and J2ME pros will find the coverage of the many
new Web services features.

Don’t Forget: Code on the Web

Remember, the source code for all of the programs in this book is available free of

charge on the Web at http:/ /www.osborne.com. Downloading this code prevents you
from having to type in the examples.

This page intentionally left blank

The |
Complete <
Reference &

J2ME Basics

This page intentionally left blank

The _
Complete <
Reference &

J2ME Overview

4 J2ME: The Complete Reference

and servers stored in some highly protected remote location. And while these

images accurately portray a computer, there are many more computers that lack
the familiar computer shape but contain the same basic components found in desktop
and laptop computers. Cell phones, digital set-top boxes for cable television, car navigation
systems, pagers, and personal digital assistants are all computers. And computers are
also used to control the operation of automobiles, industrial equipment, and household
appliances. This new breed of computers, referred to as small computing devices, is
distinguishable from more traditional computers by their reduced resource availability.
Resources such as memory, permanent storage, and power are plentiful in traditional
computers but are precious in small computing devices.

Along with the new breed of computers came a new platform, on which developers

can build and implement programs to control small computing devices. The platform is
called Java 2 Micro Edition (J2ME). You'll be introduced to J2ME in this chapter.

The term “computer” conjures many images, such as desktop and laptop computers

| Java 2 Micro Edition and the World of Java

The computer revolution of the 1970s increased the demand for sophisticated computer
software to take advantage of the ever-increasing capacity of computers to process data.
The C programming language became the linchpin that enabled programmers to build
software that was just as robust as the computer it ran on.

As the 1980s approached, programmers were witnessing another spurt in the evolution
of programming language. Computer technology advanced beyond the capabilities of
the C programming language. The problem wasn’t new. It occurred previously and
caused the demise of generations of programming languages. The problem was that
programs were becoming too complicated to design, write, and manage to keep up with
the capabilities of computers. It was around this time that a design concept based
on Simula 67 and Smalltalk (from the late 1960s) moved programming to the next
evolutionary step. This was the period when object-oriented programming (OOP), and
with it a new programming language called C++, took programmers by storm.

In 1979, Bjarne Stroustrup of Bell Laboratories in New Jersey enhanced the C
programming language to include object-oriented features. He called the language C++.
(The ++ is the incremental operator in the C programming language.) C++ is truly an
enhancement of the C programming language, and it began as a preprocessor language
that was translated into C syntax before the program was processed by the compiler.

Stroustrup built on the concept of a class (taken from Simula 67 and Smalltalk), from
which instances of objects are created. A class contains data members and member
functions that define an object’s data and functionality. He also introduced the concept
of inheritance, which enabled a class to inherit some or all data members and member
functions from one or more other classes—all of which complements the concepts of
object-oriented programming. By 1988, ANSI officials standardized Stroustrup’s C++
specification.

Chapter 1: J2ME Overview

Enter Java

Just as C++ was becoming the language of choice for building industrial-strength
applications, another growth spurt in the evolution of programming language was
budding, fertilized by the latest disruptive technology—the World Wide Web. The
Internet had been a well-kept secret for decades before the National Science Foundation
(who oversaw the Internet) removed barriers that prevented commercialization. Until 1991
when it was opened to commerce, the Internet was the almost exclusive domain of
government agencies and the academic community. Once the barrier to commercialization
was lifted, the World Wide Web—one of several services offered on the Internet—
became a virtual community center where visitors could get free information about
practically anything and browse through thousands of virtual stores.

Browsers power the World Wide Web. A browser translates ASCII text files written
in HTML into an interactive display that can be interpreted on any machine. As long as
the browser is compatible with the correct version of HTML and HTTP implementation,
any computer running the browser can use the same HTML document without having
to modify it for a particular type of computer, which was something unheard of at the
time. Programs written in C or C++ are machine dependent and cannot run on a different
machine unless the program is recompiled.

The success of the Internet gave renewed focus to developing a machine-independent
programming language. And the same year the Internet was commercialized, five
technologists at Sun Microsystems set out to do just that. James Gosling, Patrick Naughton,
Chris Warth, Ed Frank, and Mike Sheridan spent 18 months developing the programming
language they called Oak, which was renamed Java when this new language made its
debut in 1995. Java went through numerous iterations between 1991 and 1995, during
which time many other technologists at Sun made substantial contributions to the
language. These included Bill Joy, Arthur van Hoff, Jonathan Payne, Frank Yelin, and
Tim Lindholm.

Although Java is closely associated with the Internet, it was developed as a language
for programming software that could be embedded into electronic devices regardless of
the type of CPU used by the device. This is known as the Embedded]ava platform and
is in continuous use today for closed systems.

The Java team from Sun succeeded in creating a portable programming language,
something that had eluded programmers since computers were first programmed. Their
success, however, was far beyond their wildest dreams. The same concept used to make
Java programs portable to electronic devices also could be used to make Java programs
run on computers running Microsoft Windows, UNIX, and Macintosh.

Timing was perfect. The Internet/intranet had whetted corporate America’s appetite
for cost-effective, portable programs that could replace mission-critical applications
within the corporation. And Java had proven itself as a programming language used
to successfully develop machine-independent applications.

It was in the mid-1990s when the team from Sun realized that Java could be easily
adapted to develop software for the Internet/intranet. And toward the turn of the century,

6 J2ME: The Complete Reference

many corporations embraced Java and began replacing legacy applications—many of
which were written in C and C++—with Java Internet/intranet-enabled applications.
In keeping with the genealogical philosophy that only the dominant genes are passed
on to the next generation, the Java development team at Sun incorporated the best of
Smalltalk (automatic garbage collection) and C++ into Java and left out features of C++
that were inefficient and not programmer friendly. The team also created new features
that gave Java the dynamics necessary for Internet-based programming.

Java Virtual Machine

Writing Java programs is similar to writing C++ programs in that the programmer writes
source code that contains instructions into an editor, or in an integrated development
environment, and then the source code is compiled. However, that’s where Java and C++
part ways. The compiling and linking process of a C++ program results in an executable
that can be run on an appropriate machine. In contrast, the Java compiler converts Java
source code into bytecode that is executed by the Java Virtual Machine (JVM).

Machine-specific instructions are not included in bytecode. Instead, they already reside
in the JVM, which is machine specific. This means that the bytecode might contain fewer
instructions that need to be translated than a comparable C++ program.

Although the Java compiler generates bytecode that must be interpreted by the JVM
at run time, the number of instructions that need translation are usually minimal and
have already been optimized by the Java compiler.

J2EE and J2SE

Java itself has undergone an evolution that rivals the evolution of programming languages
in general. Originally designed for programs that control electronic devices, Java made
waves in the Internet development community by providing a means to give intelligence
to passive web pages. The Java development team’s design has made Java the programming
language of choice for programming enterprise-wide, web-centric applications.

Information technology departments had always sought ways to create cost-effective
computer applications. One approach is client/server architecture that uses a two-tier
architecture in which client-side software requests services from server-side software.
For example, software running on the client captures a request for information from
a user and then formats the request into a query that is sent over the network to the
database server for processing. The database server then transmits the requested data
to the client, where software presents data to the user (Figure 1-1).

Increasingly, back-end systems and infrastructure grew as information technology
departments streamlined operations to deliver information and technology services to
the desktop. Client/server architecture exploded from a two-tier architecture to a multi-
tier web services architecture in which a client’s request to server-side software generates
requests to special software called a web service (Figure 1-2). This is very similar to asking
a travel agent to arrange for your vacation. The travel agent contacts hotels, airlines, the
car rental company, restaurants, and other vendors that are necessary to fulfill your request.

Chapter 1: J2ME Overview

Client-side

Server-side
%

Figure 1-1. In client/server architecture, client-side software sends requests
to server-side software for processing.

Client-side

‘ Component ‘ ‘ Component ‘ ‘ Component Web services

A
|

Server-side L ‘

Resource | Database

Figure 1-2. Multi-tier web services architecture uses server-side software to receive
requests from client-side software that is processed by web services.

8 J2ME: The Complete Reference

Although multi-tier architecture provides services efficiently, it also complicates the
design, creation, debugging, distribution, and maintenance of an application because a
programmer must be assured that all tiers work together. However, the Java development
team enhanced the capabilities of Java to dramatically reduce the complexity of developing
a multi-tier application.

The team grouped features of Java into three editions, each having a software
development kit (SDK). The original edition of Java, called the Java 2 Standard Edition
(J2SE), consists of application programming interfaces (APIs) needed to build a
Java application or applet. The Java 2 Micro Edition (J2ME) contains the API used to create
applications for small computing devices, including wireless Java applications. And the
Java 2 Enterprise Edition (J2EE), an embellished version of the J2SE to accommodate
n-tier architecture, has the API to build applications for multi-tier architecture.

The Birth of J2EE

Java is an evolving programming language that began with the release of the Java
Development Kit (JDK). During this evolutionary process, the Java development team
included more interfaces and libraries as programmers demanded new APIs. These new
features were called extensions—AP]Is that were add-ons to the JDK. Sun Microsystems
incorporated these extensions into a new Java development kit called J2SE.

Information technology departments of corporations look toward web-centric
applications as a way to economize while offering streamlined services to employees
and customers. An increased emphasis was placed on server-side programming and on
development of vendor-independent APIs to access server-side systems. Sun responded
by creating the Java Community Process Program that invited corporate users, vendors,
and technologists to develop a standard for enterprise Java APIs. The Java Community
Process Program effort resulted in J2EE.

J2EE is a combination of several technologies that offer a cohesiveness to bond
together server-side systems and services to produce an industrial-strength scalable
environment within which web-centric applications can thrive. A critical ingredient
in the development of J2EE is the collaborative environment fostered by Sun, within
which vendors and technologists come together in the Java Community Process Program
to create and implement Java-based technologies.

Back to the Future: J2ME

Remember that Java began as a programming language to create programs for embedded
systems—microcomputers found in consumer and industrial products such as those
used to control automobiles and appliances. The development team at Sun worked on
Java in the early 1990s to address the programming needs of the fledgling embedded
computer market, but that effort was sidetracked by more compelling opportunities
presented by the Internet.

As those opportunities were addressed, a new breed of portable communications
devices opened other opportunities at the turn of the century. Cell phones expanded

Chapter 1: J2ME Overview

from voice communications devices to voice and text communications devices. Pocket
electronic telephone directories evolved into personal digital assistants. Chipmakers
were releasing new products at this time that were designed to transfer computing power
from a desktop computer into mobile small computers that controlled gas pumps, cable
television boxes, and an assortment of other appliances.

The time was right for the next evolution of Java. However, instead of beefing up Java
with additional APIs, the team at Sun, along with the Java Community Process Program,
dismantled both the Java programming language and the Java Virtual Machine. They
stripped down Java APIs and the JVM to the minimum coding required to provide
intelligence to embedded systems and microcomputer devices. This was necessary
because of resource constraints imposed upon the hardware design of these devices. The
result of their efforts is J2ME.]2ME is a reduced version of the Java API and Java Virtual
Machine that is designed to operate within the sparse resources available in the new
breed of embedded computers and microcomputers.

| Inside J2ME

J2ME made its debut at the JavaOne Developers Conference in mid-1999 and is targeted
to developers of intelligent wireless devices and small computing devices who need to
incorporate cross-platform functionality in their products.

Consumers of mobile and small computing devices have high performance
expectations for these devices. They demand quick response time, compatibility with
companion services, and full-featured applications in a small computing device.
Consumers expect the same software and capabilities found on their desktop and laptop
computers to be available on their cell phones and personal digital assistants.

To meet these expectations, developers have to rethink the way they build computer
systems. Developers need to harness the power of existing front-end and back-end
software found on business computers and transfer this power onto small, mobile, and
wireless computing devices. J2ME enables this transformation to occur with minimal
modifications, assuming that applications are scalable in design so that an application
can be custom-fitted to resources available on a small computing device.

Developers seeking to build applications that run on cell phones, personal digital
assistants, and various consumer and industrial appliances must strike a balance between
a thick client and a thin client. A thick client is front-end software that contains the logic
to handle a sizable amount of data processing for the system (Figure 1-3). A thin client is
front-end software that depends on back-end software for much of the system processing
(Figure 1-4).

Developers must determine the minimum client processing that will meet the end
user’s expectations of quick response time that is feasible within the limited resources
available on the small computing device. You'll learn how to make this decision in
Chapter 4.

10

J2ME: The Complete Reference

Server-side Client-side
==
===1hk
Thick client
=== — —
: <> =ﬁ Reply
p| =
S Request
===}
Limited processing Heavy processing
Figure 1-3. Thick client applications handle most processing locally.
Server-side Client-side
Thin client
Reply o
Request
Heavy processing Limited processing
Figure 1-4. Thin client applications rely on server-side software for nearly all

processing.

Chapter 1: J2ME Overview

Let’s say that a wireless small computing device is used to transact orders on the
floor of a stock exchange. The wireless device has software to handle user interactions
such as displaying an electronic form on the screen, collecting user input, processing the
input, and displaying results of the processing on the screen. The order form is displayed
on the screen, and the user enters information into the order form using various input
conventions commonly found in small wireless devices. The device collects the order
information and then processes the order using a combination of software on the wireless
device and software running on a back-end system that receives the order through
a wireless connection.

Processing on the wireless device might involve two steps: First the software performs
a simple validation process to assure that all fields on the form contain information. Next
the order is transmitted to the back-end system. The back-end system handles adjusting
account balances and other steps involved in processing the order. A confirmation notice
is returned by the back-end system to the wireless device, which displays the confirmation
notice on the screen (Figure 1-5).

A key benefit of using J2ME is that J2ME is compatible with all Java-enabled devices.
A Java-enabled device is any computer that runs the Java Virtual Machine. Ericsson,

Server-side Client-side

am—\

E=

Reply

=

==

% = Request
—

Balanced processing

Figure 1-5. A J2ME application is a balance between local and server-side
processing.

12 J2ME: The Complete Reference

Motorola, Nextel, Nokia, Panasonic, and RIM all have Java-enabled devices. In addition,
J2ME maintains the powerful security features found in the Java language and enables
wireless and small computing devices to access resources that are within an organization’s
firewall.

How J2ME Is Organized

Traditional computing devices use fairly standard hardware configurations such as
a display, keyboard, mouse, and large amounts of memory and permanent storage.
However, the new breed of computing devices lacks hardware configuration continuity
among devices. Some devices don’t have a display, permanent storage, keyboard,
or mouse. And memory availability is inconsistent among small computing devices.

The lack of uniform hardware configuration among the small computing devices poses
a formidable challenge for the Java Community Process Program, which is charged with
developing standards for the JVM and the J2ME for small computing devices.

J2ME must service many different kinds of small computing devices, including screen-
phones, digital set-top boxes used for cable television, cell phones, and personal digital
assistants. The challenge for the Java Community Process Program is to develop a Java
standard that can be implemented on small computing devices that have nonstandard
hardware configurations.

The Java Community Process Program has used a twofold approach to addressing
the needs of small computing devices. First, they defined the Java run-time environment
and core classes that operate on each device. This is referred to as the configuration. A
configuration defines the Java Virtual Machine for a particular small computing device.
There are two configurations, one for handheld devices and the other for plug-in devices.
Next, the Java Community Process Program defined a profile for categories of small
computing devices. A profile consists of classes that enable developers to implement
features found on a related group of small computing devices.

J2ME Configurations
There are two configurations for J2ME as of this writing. These are Connected Limited
Device Configuration (CLDC) and the Connected Device Configuration (CDC). The CLDC
is designed for 16-bit or 32-bit small computing devices with limited amounts of memory.
CLDC devices usually have between 160KB and 512KB of available memory and are
battery powered. They also use an inconsistent, small-bandwidth network wireless
connection and may not have a user interface. CLDC devices use the KJava Virtual
Machine (KVM) implementation, which is a stripped-down version of the JVM. CLDC
devices include pagers, personal digital assistants, cell phones, dedicated terminals, and
handheld consumer devices with between 128KB and 512KB of memory.

CDC devices use a 32-bit architecture, have at least two megabytes of memory
available, and implement a complete functional JVM. CDC devices include digital set-top
boxes, home appliances, navigation systems, point-of-sale terminals, and smart phones.

Chapter 1: J2ME Overview

J2ME Profiles

A profile consists of Java classes that enable implementation of features for either a
particular small computing device or for a class of small computing devices. Small
computing technology continues to evolve, and with that, there is an ongoing process
of defining J2ME profiles. Seven profiles have been defined as of this writing. These are
the Foundation Profile, Game Profile, Mobile Information Device Profile, PDA Profile,
Personal Profile, Personal Basis Profile, and RMI Profile.

B The Foundation Profile is used with the CDC configuration and is the core for
nearly all other profiles used with the CDC configuration because the Foundation
Profile contains core Java classes.

B The Game Profile is also used with the CDC configuration and contains the
necessary classes for developing game applications for any small computing
device that uses the CDC configuration.

B The Mobile Information Device Profile (MIDP) is used with the CLDC
configuration and contains classes that provide local storage, a user interface,
and networking capabilities to an application that runs on a mobile computing
device such as Palm OS devices. MIDP is used with wireless Java applications.

B The PDA Profile (PDAP) is used with the CLDC configuration and contains classes
that utilize sophisticated resources found on personal digital assistants. These
features include better displays and larger memory than similar resources found
on MIDP mobile devices (such as cell phones).

B The Personal Profile is used with the CDC configuration and the Foundation Profile
and contains classes to implement a complex user interface. The Foundation
Profile provides core classes, and the Personal Profiles provide classes to implement
a sophisticated user interface, which is a user interface that is capable of displaying
multiple windows at a time.

B The Personal Basis Profile is similar to the Personal Profile in that it is used with
the CDC configuration and the Foundation Profile. However, the Personal Basis
Profile provides classes to implement a simple user interface, which is a user
interface that is capable of displaying one window at a time.

B The RMI Profile is used with the CDC configuration and the Foundation Profile
to provide Remote Method Invocation classes to the core classes contained in the
Foundation Profile.

There will likely be many profiles as the proliferation of small computing devices
continues. Industry groups within the Java Community Process Program (java.sun.com/
aboutjava/communityprocess) define profiles. Each group establishes the standard
profile used by small computing devices manufactured by that industry.

A CDC profile is defined by expanding upon core Java classes found in the Foundation
Profile with classes specifically targeted to a class of small computing device. These

13

14

J2ME: The Complete Reference

device-specific classes are contained in a new profile that enables developers to create
industrial-strength applications for those devices. However, if the Foundation Profile
is specific to CDC, not all profiles are expanded upon the core classes found in the
Foundation Profile.

Keep in mind that applications can access a small computing device’s software and
hardware features only if the necessary classes to do so are contained in the JVM and in
the profile used by the developer.

J2ME and Wireless Devices

With the dramatic increase and sophistication of mobile communications devices such as
cell phones came demand for applications that can run on those devices. Consumers and
corporations want to expand mobile communications devices from voice communications
to applications traditionally found on laptops and PCs. They want to send and receive
email, store and retrieve personal information, perform sophisticated calculations, and
play games.

Developers, mobile communications device manufacturers, and mobile network
providers are anxious to fill this need, but there is a serious hurdle: mobile communications
devices utilize a number of different application platforms and operating systems. Without
tweaking the code, an application written for one device cannot run on another device.
Mobile communications devices lack a standard application platform and operating
system, which has made developing applications for mobile communications devices
a risky economic venture for developers.

The lack of standards is nothing new to computing or to any developing technology.
Traditionally, manufacturers of hardware devices try to corner the market and enforce their
own proprietary standard as the de facto standard for the industry. Usually one upstart
succeeds, as in the case of Microsoft. Other times, industry leaders form a consortium,
such as the Java Community Process Program, to collectively develop a standard.

The Wireless Application Protocol (WAP) forum became the initial industry group
that set out to create standards for wireless technology. Ericsson, Motorola, Nokia, and
Unwired Planet formed the WAP forum in 1997, and it has since grown to include nearly
all mobile device manufacturers, mobile network providers, and developers. The WAP
forum created mobile communications device standards referred to as the WAP standard.
The WAP standard is an enhancement of HTML, XML, and TCP/IP. One element of this
standard is the Wireless Markup Language specification, which consists of a blend of
HTML and XML and is used by developers to create documents that can be displayed by
a microbrowser. A microbrowser is a diminutive web browser that operates on a mobile
communications device.

The WAP standard also includes specifications for a Wireless Telephony Application
Interface (WTALI) specification and the WMLScript specification. WTAI is used to create
an interface for applications that run on a mobile communications device. WMLScript
is a stripped-down version of JavaScript.

Chapter 1: J2ME Overview 15

While the WAP forum provided the framework within which developers can build
mobile communications device applications, they still had to overcome a common
hurdle found in every rapidly developing technology. The sophistication of mobile
communications devices, phenomenal growth of the market, and high demand for
industrial-strength mobile communications applications out-paced the ability to define
and implement new mobile communications device standards.

Many sophisticated applications designed for mobile communications devices require
the device to process information beyond the capabilities of the WAP specification. J2ME
provided the standard to fill this gap. For example, a sales representative wants to check
available flights and hotel accommodations, purchase an airline ticket, book the hotel
and car rental, and then send the itinerary to a client, all while sitting in a taxi in traffic.
The sales representative also wants the itinerary stored on the mobile communications
device and retrieved during the trip.

J2ME applications referred to as a MIDIet can run on practically any mobile
communications device that implements a JVM and MIDP. This encourages developers
to invest time and money in building applications for mobile communications devices
without the risk that the application is device dependent. However, J2ME isn’t seen as
a replacement for the WAP specification because both are complementary technologies.
Developers whose applications are light-client based continue to use WML and
WMLScript. Developers turn to J2ME for heavier clients that require sophisticated
processing on the mobile communications device.

| what J2ME Isn’t

The hype about any technology can cause misperceptions about the capabilities of an
evolving technology, and J2ME isn’t immune to such misunderstandings. Therefore, it is
important to understand the limitations of J2ME.

Although J2ME is J2SE without some classes, developers shouldn’t assume that
existing Java applications would run in the J2ME environment without requiring
modification to the code. The write-once-run-anywhere philosophy of Java is a bit
overstated when it comes to J2ME because of resource constraints imposed by small
computing devices.

Some J2SE applications require classes that are not available in J2ME. Likewise,
resources required by the J2SE application may not be available on the small computing
device. This means that developers must expect to test existing J2SE applications in the
J2ME environment and probably pare down the application to run using limited resources.

Another misconception about J2ME is the Java Virtual Machine implementation on
the small computing device. Small computing devices use one of two Java Virtual Machine
implementations. Devices that use the CDC configuration use the full Java Virtual
Machine implementation, while devices that use the CLDC configuration use the KJava
Virtual Machine implementation.

16 J2ME: The Complete Reference

A MlIDlet is not invoked the same way as a J2SE application is invoked because many
small computing devices don’t have a command prompt. MIDlets are controlled by
application management software (AMS). The manufacturer of a small computing device
provides AMS, although third-party vendors might also create AMS. AMS interacts with
native operations of a small computing device and controls the life cycle of a MIDlet.
The life cycle consists of installation and upgrades as well as version management
and uninstalling the application. Likewise, AMS is responsible for starting, managing
execution, and stopping the MIDlet.

___| other Java Platforms for
Small Computing Devices

J2ME isn’t the only Java platform designed for small computing devices. Other Java
platforms—Embedded]ava, JavaCard, and PersonalJava—predate J2ME.

Embedded]ava is the Java platform used for small computing devices that are
dedicated to one purpose and have a 32-bit processor and 512KB of ROM and RAM.
Embedded]ava is based on JDK 1.1 and is being replaced by the CDLC configuration. For
more information about Embedded]ava, visit java.sun.com/products/embeddedjava.

JavaCard is the Java platform used for smart cards, the smallest computing device
that supports Java. The JavaCard VM runs on small computing devices that have
16KB of nonvolatile memory and 512 bytes of volatile memory. However, unlike the
Embedded]ava platform, there isn’t any movement to replace JavaCard with J2ME because
of the resource constraints of the current generation of smart cards. Future smart card
generations will probably have great resources available and be compatible with the
CDLC configuration. You can find more information about JavaCard in java.sun.com/
products/javacard.

PersonalJava is the Java platform used for small computing devices that have a
maximum of 2MB of ROM and a minimum of 1MB of RAM, such as large PDAs and
mobile communications devices. Personaljava uses JDK 1.1.8 and the JVM and will be
replaced by the CDC configuration and the Personal Basis Profile and Personal Profile.
More information about PersonalJava is available at java.sun.com/products/personaljava.

The

Complete <
Reference

Small Computing
Technology

18 J2ME: The Complete Reference

request using a clamshell-shaped communicator. Granted there has yet to be
anyone transported on light waves, but clamshell-shaped communicators are
used everyday. We call it a cellular telephone.

Today we can speak with anyone, anywhere, anytime. And tomorrow we’ll read any
book, shop in any store, check up on our kids and our house, pay our bills, and do more
by using small computing devices and mobile communications devices. These devices
have already changed our lives. A friend of mine is responsible for building alliances
among corporate executives and investment bankers. Very few people know where my
friend physically works—and no one really cares. Calls are directed to a cellular telephone
and roll over to voice mail when there is no answer. Emails are retrieved using a laptop
that is sometimes connected to the email server through a traditional telephone line and
other times linked using a wireless connection. My friend’s office is where my friend is.

This is all made possible by software developers exploiting features of small computing
and mobile computing devices. Before you learn to build those applications, you should
become familiar with the technology that makes this possible. In this chapter you'll
explore the technology used in small computing devices and mobile computing devices.

£/ Beam me up Scotty” is a famous line from Star Trek. Captain Kirk made this

___ | Wireless Technology

Wireless technology that is used in small computing devices and mobile communications
devices is the same radio technology Guglielmo Marconi used to provide an alternative
communication means to the telegraph and the telephone.

Radio technology is based on the wave phenomenon. A wave is a characteristic of
vibrating molecules, which you see whenever you move a knife up and down in the still
water of a dishpan (Figure 2-1). The force of the knife against the surface of the water
causes water molecules to vibrate and form a wave along the surface of the water.

The force used to propel the knife determines the wave height. The greater the force,
the higher the wave and the greater the distance the wave travels across the surface of the
water. The number of times the knife is moved up and down in the water determines
the frequency of the wave. Each time the knife is plunged into the water another wave
is generated, causing a rippling effect across the water’s surface.

ARV VAR

Figure 2-1. Moving a knife up and down in water causes the formation of a wave.

Chapter 2: Small Computing Technology

— Frequency]

ARRN

Amplitude

Figure 2-2. Waves are measured by wave height and wave frequency.

Waves are measured in two ways: by the wave height and by the wave frequency. The
wave height is referred to as the wave’s amplitude, and the frequency of the wave is simply
called frequency, which is measured as the number of waves per second (Figure 2-2).

The frequency of a wave causes the wave to take on specific characteristics. For
example, a low-frequency wave called a sound wave produces a frequency that can be
heard by humans. Sound waves travel a short distance through air. A higher-frequency
wave called a radio wave cannot be heard but can travel long distances in all directions
and through solid objects. And even higher frequencies called light waves take on other
characteristics. Light waves can be seen, travel a long distance in a limited direction, and
cannot penetrate solid objects.

Waves are grouped according to frequencies that have similar characteristics in the
electromagnetic spectrum (Figure 2-3). For example, there is an audio spectrum, a radio
spectrum, and a light spectrum. There are also subgroups within each spectrum, each
of which has a variation of the characteristics of the spectrum. The radio spectrum
has divisions for television, microwave, and X-ray frequencies. The light spectrum has
divisions for infrared light, visible light, and ultraviolet light.

Many small computing devices and mobile communications devices use radio waves
and light waves to transmit and receive information. Radio waves are used by cellular
telephones, wireless modems, and wireless personal digital assistants (PDAs) for
communication. Infrared light waves are used by PDAs to exchange information between
PDAs and laptop/desktop computers and among other PDAs.

Visible light
1‘06 1‘08 1‘010 1‘012 1‘014 i 1‘016
Radiowaves [|
Microwaves[]
Infrared[]
Ultraviolet| |

Figure 2-3. The electromagnetic spectrum groups frequencies that have similar
characteristics.

19

20 J2ME: The Complete Reference

Radio signals are transmitted in the frequency range from 10 kilohertz to 300,000
megahertz. A hertz is one wave per second, kilohertz is 1,000 waves per second, and
a megahertz is a million waves per second.

Radio Transmission

Radio transmission consists of two components. These are a transmitter and a receiver,
both of which must be tuned to the same frequency. A transmitter broadcasts a steady
wave called a carrier signal that does not contain any information (Figure 2-4).
Conceptually, you can think of a telephone dial tone as a carrier signal.

A carrier signal has two purposes. First, the carrier signal establishes a communications
channel with the receiver (Figure 2-5). The receiver knows the channel is open when the
carrier signal is detected. The carrier signal also serves as the wave that is encoded with
information during transmission.

A radio transmitter encodes patterns of sound waves detected by a microphone by
modifying the carrier signal wave (Figure 2-6). The receiver decodes the pattern from
the carrier wave and translates the pattern into electrical current that directs a speaker
to regenerate the sound waves captured by the microphone attached to the transmitter.

Limitations of Radio Transmissions

The distance a radio signal travels is based on the amount of energy used to transmit the
radio wave. This is similar to the energy used to plunge the knife into the dishpan of
water. Using a relatively small amount of energy causes the wave to barely reach the side
of the dishpan. However, plunging the knife into the dishpan with force causes the wave
to overflow the sides of the dishpan.

Analog wave

Carrier wave

Figure 2-4. A carrier signal is a broadcast wave that does not contain any
information.

Chapter 2: Small Computing Technology

oy LA
) T

Carrier wave

Power Transmitter Receiver

Figure 2-5. A carrier signal is used to establish a communications channel.

Radio waves are measured in watts. A radio signal transmitted at 50 megawatts travels
twice the distance a 25-megawatt radio signal travels. A radio signal gradually loses
power the farther it travels away from the transmitter. Radio engineers extend the range
of transmission by using a repeater. A repeater (Figure 2-7) is both a radio receiver and
radio transmitter, also known as a transceiver. A repeater receives a radio signal and then
retransmits the signal, thereby increasing the distance the signal travels. Retransmission
introduces new energy to power the signal for longer distances.

Carrier signal

Encoded

Figure 2-6. Sound waves detected by a microphone modify the carrier signal.

21

22 J2ME: The Complete Reference

O IALAALAL
) iy — o)

Carrier wave

Transmitter Repeater Receiver

Figure 2-7. A repeater receives and retransmits a signal.

___| Radio Data Networks

Radio transmissions are commonly used to broadcast analog voice information on radio
waves that travel 360 degrees over the air and through many physical obstructions.
However, radio technology is also used to transmit digital information on those same
waves.

Information is traditionally encoded as variations of an aspect of the wave. Encoding
is achieved by modifying the amplitude of the wave, known as amplitude modulation (AM),
or modifying the frequency of the wave, called frequency modulation (FM). Encoding uses
many values to represent information using AM and FM.

Hundreds of thousands of radio waves are simultaneously and independently
transmitted. Sometimes a radio receiver picks up an erroneous radio signal while tuned
to its primary frequency. The erroneous radio signal is known as interference and can
disrupt the accurate decoding of the transmitted information.

Today information is digitally encoded using binary values to represent information
transmitted on radio waves. Digitizing information enables receivers to accurately
decode transmitted information because the degree of uncertainty in the encoded
information is far less than experienced in analog encoded information.

Both an analog signal and a digital signal are waves. They differ by the way
information is encoded into the signal. Information is represented in an analog signal as
many values. The receiver must determine whether each value is a component of the
signal or is interference. The same information is represented in a digital signal as one of
two discrete binary values. The receiver ignores a signal whose value is not a binary value.
Furthermore, error-checking software in the receiver determines whether an erroneous
digital signal is received.

Radio transmitters, repeaters, and receivers are organized to form a radio network
that extends transmissions over great distances. Radio networks are scalable because
repeaters are placed in the network to increase the distance that the original transmission
travels.

Chapter 2: Small Computing Technology

There are three types of wireless radio networks: low-power single frequency, high-
power single frequency, and spread spectrum. Low-power single frequency covers an
area of 30 meters, which is about the area of a small building such as a warehouse or
a stock exchange trading floor. A high-power single frequency wireless radio network
can cover a metropolitan area.

Both low-power single frequency and high-power single frequency radio networks
are exposed to the same security risk. Anyone tuned into the radio frequency receives the
transmitted signal. Therefore, all transmissions must be encrypted to hinder eavesdropping
on the signal.

A spread-spectrum wireless radio network uses multiple frequencies to transmit a
signal using either direct sequence modulation or frequency hopping. Direct sequence
modulation breaks down information into parts and then simultaneously transmits each
part over a different frequency. The receiver must tune to each frequency to receive
each part, then reassemble parts into the full message. Frequency hopping transmits
information rotating among a set of frequencies. The receiver must be tuned to each
frequency according to the transmission rotation.

Most radio frequencies are controlled by the Federal Communications Commission
and require an FCC license before a wireless radio network can be established.

Data Packets

Radio transmitters send one message at a time over a communications channel. This is
similar to sending one telephone call at a time over a telephone line. Each telephone
call is placed in a queue while waiting for the current telephone call to end. As you can
imagine, telephone calls could easily back up whenever there are more calls than there
are empty telephone lines.

Digital radio networks use packet switching technology to transmit multiple messages
simultaneously over a communications channel. Each message is divided into small
pieces and placed in an electronic envelope called a packet (Figure 2-8). A packet contains
information that identifies the sender and the receiver, a digitized portion of the message,
the sequence number of the packet, and error-checking information. To reassemble

Originator address Information

Packet ‘ ‘ ‘ ‘ ‘ ‘

|

Destination address Sequence code Error checking

Figure 2-8. A message is divided into small pieces that are placed in an electronic
envelope called a packet.

24

J2ME: The Complete Reference

packets, the receiver uses the packet sequence number. A transmitter continuously
sends packets from multiple messages over a communications channel.

Packet switching technology is more efficient than traditional transmission methods
because packet switching utilizes pauses in a transmission to send packets. A transmission
pause is caused when a message isn’t ready for transmission. This is similar to a pause
in a telephone conversation.

Software running on the transmitter manages multiple outgoing messages to assure
that each message is divided and placed into packets and the packets are transmitted.
Software running on the receiver manages incoming packets, reconstructs packets into
original messages, and forwards messages to the appropriate application software for
future processing.

Microwave Technology

Microwave is a subspectrum of the radio spectrum and has many characteristics of
radio waves discussed previously in this chapter. However, microwaves travel in one
unobstructed direction. Any obstruction, such as a mountain or building, disrupts
microwave transmission.

There are two kinds of microwave networks: terrestrial and satellites. Terrestrial
microwave networks transmit a microwave signal over a terrain, such as buildings in
an office complex. Satellite microwave networks transmit a microwave signal between
a ground station and orbiting satellites and among orbiting satellites (Figure 2-9).

Earth-to-satellite transmissions are slower than terrestrial microwave transmissions,
which causes unnatural pauses to occur in the transmission. This is noticeable during
a live international television broadcast when a pause occurs between the time a television
news anchor questions a reporter and the reporter’s response. Therefore, satellite
microwave transmission may not be suitable for real-time two-way communications
where nearly instantaneous transmission is expected.

Satellite Networks

A satellite is an orbiting repeater that receives a microwave transmission from an earth
station or from other satellites, then retransmits the signal to a microwave receiver located
on the ground or in another satellite. The first generation of satellites used for the military
were stationed in geosynchronous orbit at a fixed location 22,300 miles above the surface
of the earth. However, the geosynchronous orbit hampers real-time transmission because
of the signal delay between earth and the satellite, which makes geosynchronous orbiting
satellites unacceptable for commercial two-way real-time communication.

A newer breed of satellite technology, called Low Earth Orbiting Satellite (LEOS),
overcame the communications delay by positioning satellites lower than geosynchronous
orbit—between 435 miles and 1,500 miles above the earth. LEOS eliminated delays in
communication, but introduced two new problems. First, LEOS covers a smaller area of
the earth, and therefore more satellites are required to cover the same ground area as

Chapter 2: Small Computing Technology

Figure 2-9. A microwave signal is used to communicate among orbiting satellites
and ground stations.

covered by geosynchronous satellites. The other problem is the orbital speed. LEOS
travels faster than the earth’s rotation and requires ground stations to locate LEOS before
beginning transmission. Geosynchronous satellites always remain in the same position
above the ground station.

In an effort to compromise between LEOS and geosynchronous satellites, another
breed of satellites called the Middle Earth Orbit (MEO) was developed. MEO orbits
between LEOS and geosynchronous satellites—6,000 to 13,000 miles—and thus has less
delay than geosynchronous satellites and poses less difficulty than LEOS for ground
stations to locate.

| Mobile Radio Networks

The infrastructure of cellular telephone technology is the backbone of wireless small
computing mobile communications and enables these devices to connect to traditional
communications systems. The forerunner of cellular telephone technology is a private
radio technology. Service and trucking companies and government agencies use
private radio technology to communicate with employees over frequencies isolated from
other radio frequencies. For example, package carriers like Federal Express use private
radio networks to track packages. Private radio transmitted analog information when
tirst introduced but later expanded into digital communication as the need for paging
and messaging services materialized.

25

26

J2ME: The Complete Reference

Companies can operate their own private radio network by acquiring broadcast
rights to a specified radio frequency from the Federal Communications Commission
and purchasing the necessary broadcast equipment. Alternatively, companies can lease
broadcast time from organizations that offer Specialized Mobile Radio (SMR) network
services.

Cellular Telephone Networks

A cellular telephone network comprises mobile transceivers, called cellular telephones,
and a network of fixed transceivers, called base stations, that are strategically positioned
along the terrain (Figure 2-10). Base stations are used to connect cellular telephones to
the ground-based telephone system.

There are two kinds of cellular networks: analog and digital. Cellular telephones
began in the 1970s with the expansion of AT&T into the mobile telephone service market.
Cellular telephones used analog technology at that time. This changed in mid-1995 when
IBM developed technology that digitized information transmitted over the cellular
telephone network. Cellular telephone networks then became capable of transmitting
both voice and data.

The transmission range of a cellular telephone is determined by the strength of the
battery powering the phone and the location of the nearest base station. Transmission
range drops as power is drained from the cellular telephone and the telephone is taken
farther from a base station.

Engineers can provide reliable cellular telephone transmissions by strategically
positioning many base stations around the country so that a cellular telephone is always
within the vicinity of a base station. Cellular transceivers are also designed to minimize
the power drain that occurs from transmitting and receiving signals.

Central office

oty

Base station

Figure 2-10. Fixed transceivers called base stations form a communications cell.

Chapter 2: Small Computing Technology 27

A cellular telephone is in continuous communication with base stations as it moves
throughout the cellular network. Transmission from a cellular telephone is broadcast
360 degrees and is received by a base station closest to the cellular telephone. Cellular
telephone networks are designed so that the signal is automatically transferred to the
next closest base station using a technique called a hand-off: the connection between
the cellular telephone and the cellular telephone network is dropped for a fraction of
a second, the cellular telephone moves between base stations, and the next base station
reestablishes the signal.

The area covered by a base station is called a cell. The split-second gap during the
hand-off goes unnoticed most times, as long as cells are near each other. The hand-off
doesn’t have a negative effect on voice communications because persons on the call adjust
for the slight break in communication. However, the communications drop has a dramatic
effect on data communication over a cellular telephone network. Analog cellular telephone
networks lose data during transmissions when a hand-off occurs, which is unacceptable
for data communications. Digital cellular telephone networks also lose connection during
hand-off, but a digital cellular telephone network uses software to recover lost data by
requesting that the transceiver resend the data.

Digital cellular telephone networks trap and correct errors. Analog cellular telephone
networks lack error-control capability. Analog networks transmit one long burst of
information over a communications channel that can either be used for transmitting or
receiving information but not both simultaneously, which is called half-duplex. In contrast,
digital cellular telephone networks transmit information in small packets, called frames
or cells, as described previously in this chapter. Pauses between transmissions give the
receiver an opportunity to notify the transmitter if an error occurred in receiving a packet.

Cellular Digital Packet Data

IBM pioneered digital cellular telephone networks with the introduction of their Cellular
Digital Packet Data (CDPD) protocol, commonly known as IP wireless. IP wireless
requires that an Internet protocol (IP) address be assigned to each cellular transceiver
in the cellular telephone network. An IP address uniquely identifies each device within
the cellular telephone network and is used to reestablish a connection if communication
is lost during a hand-off.

Base stations have multiple entry points called ports, each of which is identified by
a unique port number. A transceiver is assigned to a base station port in the cellular
telephone network. A transceiver continues to transmit to the port number until a hand-
off occurs, at which time the transceiver is assigned another port number associated
with the next base station.

IBM developed a special modem called a CDPD modem for transmitting digital
information over an analog cellular telephone network. The CDPD modem transmits
small bursts of encrypted data, which frees the communication channel between bursts
to transmit error messages.

Speed is the major stumbling block in using a cellular telephone network to transmit
data. The standard analog transmission rate of a cellular telephone network is 9,600 bits

28

J2ME: The Complete Reference

per second, which is increased to 14,400 bits per second using CDPD. These speeds are
sufficient to transmit delivery information, inquire about the status of an order, or provide
remote access to email, but are insufficient for full Internet access.

Digital Wireless Transmissions

A digital cellular telephone network can transmit both voice and data simultaneously
using multiplex transmission. There are three multiplex transmission methods used on
a digital cellular telephone network: Code Division Multiple Access (CDMA), Time
Division Multiple Access (TDMA), and a third-generation wireless standard called 3G.

CDMA uses spread-spectrum transmission to use multiple communications channels
for transmission, which dramatically increases data throughput over the network. The
cellular telephone temporarily uses on-board memory in transceivers to store data to keep
transmissions flowing during a hand-off. This is called a soft hand-off. TDMA uses one
communications channel shared among transmissions by using time slots. Transmission
time is divided into time slots, and then each packet is assigned to a time slot. The 3G
multiplexing technique uses either CDMA or TDMA to increase the throughput to 56
kilobits per second.

Cell Phones and Text Input

Traditional cellular telephones have a keypad that contains numbers and letters.
(European traditional cellular telephones have only numbers.) Letters were designed
to identify telephone exchanges—Ilocal switching stations that serviced a group of
customers. Each switching station was referred to by a name that implied the location
of the switching station. For example, there was a switching station called Murray Hill
that covered the Murray Hill section of New York City.

The first two letters of the name of the switching station were used to replace the first
two digits of a seven-digit phone number. Let’s say a customer was assigned Murray
Hill 5 1000 as a telephone number. A caller dials MU 5 1000. Today the person would
call 685-1000 since the switching station naming convention was dropped decades ago.

Today customers expect to be able to enter textual information using the cellular
telephone keypad. However, there are two problems with the keypad. First, the keypad
doesn’t contain the letters Q or Z. And each numeric key, except for the first key, contains
three letters. A common solution to this problem is for software in the cellular telephone
to count the number of times a key on the keypad is pressed to determine which letter
of the alphabet was entered. For example, here’s how the name Jim is entered using
a cellular telephone keypad: Press the number 5 once, then pause. Press the number 4
three times without pausing. And press the number 6 and pause.

Another solution is to use T9 technology. T9 technology uses special glasses that track
eye movement, enabling a person to type by moving her eyes in one of eight directions.
Multiple letters are assigned to each direction. An algorithm was developed that predicted
which one of the multiple letters a person wanted to type based on the previous letters
that she selected. Let’s say you entered 546. The number 5 could represent the letters JKL.

Chapter 2: Small Computing Technology

Bluetooth Wireless Network

Many small computing devices such as those used in consumer appliances
communicate with each other by using a low-power radio network that uses
Bluetooth technology. Bluetooth technology broadcasts within a 400-foot radius,
which is expected to extend to nearly 4,000 feet, and so is perfect for a wireless
network in an office.

Transmission consists of short data packets to maximize throughput to one
megabit per second. The short size of a packet reduces retransmission time when
errors are detected and packets must be resent. Security is provided through frequency
hopping that occurs at 1,600 hops per second, practically eliminating the risk that
the signal will be intercepted. Data is also encrypted before being broadcast. So even

if the signal is intercepted, the receiver still requires the key to decipher the data.

The number 4 could represent the letters GHI. And the number 6 could represent the
letters MNO. Only one English word can be created by combining these letters, which
is the word “JIM.” However, all legitimate words that can be formed using the selected
numbers are displayed on the cell phone screen. The person is then prompted to select
the correct word.

Counting keypresses and T9 technology are limited. Other technology such as voice
recognition and new mobile communications devices have capitalized on these limitations
and provide more efficient means to enter and send textual information over the cellular
telephone network.

__ | Messaging

One of the first popular wireless mobile communications devices was a pager. A pager
displays any series of numbers that were sent by a caller. Technically, the series of numbers
represented the caller’s telephone number and implied that the call be returned. Practically,
the series of numbers could represent anything to which the caller and the receiver agreed
on. For example, it was common for systems administrators to have their system send
a 911 call to a pager whenever there was a systems problem. Some systems administrators
even devised a code that was sent indicating which system transmitted the call and the
nature of the problem. Drug dealers were also notorious for using pagers to send encoded
messages of drug deliveries. A buyer would call the pager and send a series of numbers
that told the dealer the type of drug, quantity, and delivery location for the buy.

Today’s wireless mobile communications devices offer text messaging services that
enable short textual messages to be sent to the device from any device that has access to
the service. Cellular telephone companies offer three types of messaging services: Short
Message Service (SMS), Cell Broadcast Service (CBS), and Unstructured Supplementary
Services Data (USSD).

29

30 J2ME: The Complete Reference

SMS type of messaging is capable of sending a maximum of 160 characters on the
control channel of a cellular telephone network. A control channel is a communications
channel used to manage cellular telephone calls. Messages sent using SMS are sent and
received during a cellular telephone call because the telephone call and the message use
different communications channels for transmission. However, there may be a slight
delay between transmission of a message and when the message is received because
SMS messaging uses store-forwarding technology, where the message is temporarily
stored in a mailbox before being delivered to the receiver.

The CBS type of messaging broadcasts a maximum of 15 pages of 93 characters per
page to every device on the network. Everyone on the network receives the same message,
which is why CBS messaging has had limited success in the market.

The USSD type of messaging transmits a maximum of 182 characters along the control
channel, similar to SMS messaging. However, USSD messaging does not use store-
forwarding technology. Instead, USSD messaging sends the message directly to the
receiver, which enables the receiver to respond instantaneously.

___ | Personal Digital Assistants

A personal digital assistant (PDA) is probably the most commonly used small mobile
computing device next to a cellular telephone. PDAs are lightweight and small enough to
fit in a pocket, and they run essential applications. PDA is a generic name that applies
to a simple digital telephone directory and to more elaborate mobile computing devices
that run a spreadsheet, word processor, email, and a variety of customized programs.

All PDAs are small computing devices that contain an operating system, processor,
memory, and a port to connect the PDA to peripherals and external computing
devices. There are three commonly used operating systems on a PDA: EPOC, Palm OS,
and Windows CE. EPOC is used in the Psion product line, Palm OS in the Palm PDAs, and
Windows CE on various pocket PC devices.

There is an assortment of processors designed for the PDA market that include the
DragonBall processor built by Motorola and used in the Palm PDA. The DragonBall has
a 16 MHz clock speed. The Strong ARM processor, manufactured by Intel, is another PDA
processor used in the Psion product line and some pocket PCs. The StrongARM has a
clock speed of 200 MHz. Another competitor in the PDA processor market is the Crusoe
processor manufactured by Transmeta, which is also found in some pocket PC PDAs.

Avoid equating a PDA’s processing speed with that of a desktop or laptop computer.
Some operating systems, such as Windows CE, require more processing than a Palm OS
PDA to perform a similar task, and the extra processing power running under Windows
CE does not necessarily perform a task any faster than a Palm.

Memory is precious in a PDA. A PDA does not have permanent storage, therefore
all the applications and data running in a PDA must reside in memory. PDAs use ROM
and RAM. ROM is used to store bundled applications from the factory. These include
a word processor, spreadsheet, diary, telephone directory, and other kinds of programs

Chapter 2: Small Computing Technology

that you expect to find in a PDA. Applications that are not bundled with the PDA, and
data for all applications including those that reside in ROM, are stored in RAM.

PDAs use one of three types of RAM: Dynamic RAM (DRAM), Enhanced Data Output
(EDO), and Synchronous Dynamic RAM (SDRAM). DRAM is the least expensive RAM.
EDO is found in some PDAs, and SDRAM is very rarely used. Generally the more RAM
installed in a computer, the better the computer’s performance, but this is not necessarily
true with PDAs. The amount of RAM that affects performance depends on the PDA’s
operating system. Windows CE requires more memory (32MB) to perform basic functions
than a Palm (4MB).

Some PDAs have an expansion slot for Compact Flash (CF+) cards that contain
components such as a modem, cellular telephone, network card used to connect to a
local area network, or additional memory that slips into an expansion slot on the PDA
to enhance the PDA’s functionality.

PDAs have the same problem as all mobile devices. They need batteries to operate—
and they drain batteries quickly. You'll learn more about batteries later in this chapter.
PDAs also don’t have a user-friendly keyboard to enter data.

Designers attempt to overcome the lack of a keyboard by creating a virtual keyboard
on a touch-sensitive screen that requires the user to hunt-and-peck to enter data. Another
approach to data entry is to use handwriting recognition software. Software running in
the PDA analyzes marks made on a touch-sensitive screen and guesses the character
that the user wants to enter. Pocket PCs that run Windows CE can use an autocorrect
feature that minimizes errors in handwriting recognition. Palm uses its own brand of
shorthand called Graffiti.

| Mobile Power

Power is the primary challenge facing the mobile small computing industry. Consumer
expectations are high for mobile small computing devices. They want desktop performance
anytime and anywhere they power up. Unfortunately, improvements in power storage
technology haven’t kept pace with mobile computing technology.

Every mobile small computing device is powered by one or more batteries that have
a limited life span after which there is no electricity to operate the device. Engineers
reduce power consumption by removing power-hungry components and impose power-
saving techniques such as deactivating components when a component is not in use.

The length of time a mobile small computing device is operational depends on how
well and how long a battery holds its electrical charge. For example, a PDA might operate
steadily for 20 hours, while a cellular telephone remains operational for 10 hours. The
actual time a battery remains charged depends on a number of factors. These include
the type of battery in use, the condition of the battery, and the power consumption of
each operation. For example, standby operation for a cellular telephone consumes less
power than transmitting a signal.

32 J2ME: The Complete Reference

Power is measured in watt-hours, which means the number of hours the battery can
supply one watt of power. A cellular telephone battery is rated at 10 watt-hours, so the
battery can supply one watt of power for ten hours. A PDA battery has a rating of 2 watt-
hours, supplying one watt of power for two hours.

The amount of watts used by a mobile computing device varies depending on the
power-hungry components built into the device. In addition, power consumption depends
on the state of the device. Mobile computing devices have three states: active, standby,
and off. The active state is when the device is being used. The standby state, also known
as the sleep mode, is when all but critical components are powered down, minimizing
the drain on the battery. When the device is turned off, the off state still drains power
from the battery to maintain information such as a telephone directory in memory.

There are two general classes of batteries: non-rechargeable and rechargeable. Non-
rechargeable batteries are further classified as alkaline and zinc-carbon. These are found in
PDAs and as an emergency backup power for cellular telephones. Alkaline batteries have
a higher capacity to retain an electrical charge than zinc-carbon batteries. Rechargeable
batteries fall into four subclasses: lead acid batteries, nickel cadmium (NiCAD) batteries,
nickel metal hydride (NiMH) batteries, and lithium ion (LiON) batteries.

Cellular telephone manufacturers originally used lead acid batteries because they can
be recharged many times; however, lead acid is a dangerous ingredient, and therefore
the manufacturers moved to the safer nickel cadmium battery. NiCAD batteries can be
recharged 1,000 times before the battery discharges. However, NiCAD batteries must be
fully discharged before being recharged, otherwise the battery may not fully recharge.
Consumers complained about this recharging limitation, and therefore manufacturers
dropped NiCAD batteries for either the nickel metal hydride battery or the lithium ion
battery.

The NiMH battery does not have to be fully discharged before recharging. It also
has a quarter more charging capacity than a NiCAD battery. A lithium ion battery has
a longer life and more charging capacity than the NiMH battery. Both NiMH and LiON
batteries are considered “smart” batteries because each has a power meter that indicates
the electrical charge of the battery.

___| set-Top Boxes

With the onset of cable television and satellite television came a demand for another type
of small computing device called a set-top box. A set-top box is the device that connects
a television to a cable signal or satellite signal received from a service provider. Set-top
box technology has evolved with the increasing demand by consumers for television
and related services such as email and video on demand. The first-generation set-top
box had a simple function: it received a scrambled analog television transmission from
the service provider, unscrambled the signal, and sent the unscrambled signal to the
television.

Chapter 2: Small Computing Technology 33

The next generation set-top box enabled two-way digital transmissions between the
service provider and the consumer. A digital incoming signal from the service provider
contained the television signal, and the outgoing signal from the customer carried requests
for service, such as pay-per-view access to programming,.

The latest in set-top box technology enables service providers to offer fully interactive
services that include video on demand, interactive advertising, TV-centric applications,
email, and Internet access. Set-top boxes have progressed from being a simple embedded
signal decoder to a dedicated personal computer.

There are three categories of set-top boxes: broadcast TV, enhanced TV, and advanced
services. A broadcast TV set-top box provides traditional broadcast television and has
no return channel. Signals are received in an MPEG-formatted data stream. An enhanced
TV set-top box is similar to a broadcast TV set-top except the enhanced TV set-top box
has a return channel from the customer to the service provider. An advanced services
set-top box is basically a dedicated personal computer that has sufficient computing
power to provide rapid processing for interactive, multimedia services.

Inside Look at a Set-Top Box

All modern set-top boxes perform five common operations. These are to decode a digital
signal received from the service provider, authenticate access rights, transmit a signal to
a television, transmit audio information to create surround sound, and provide interactive
services such as access to the Internet and email.

Multiple signals are received by the set-top box from the service provider, each of
which is transmitted over its own communications channel. The tuner circuit within the
set-top box filters all communications channels except the channel selected by the consumer.
The signal from the selected channel is sent to the demodulator circuit. The demodulator
circuit is a chip that converts the signal into binary data before sending the binary signal
to the demultiplexer chip.

The demultiplexer has a number of functions within the set-top box. First, with the
assistance of the built-in security system, it determines whether the consumer has the
right to access the service transmitted on the selected channel. The consumer is notified
if access to the service is denied, otherwise the demultiplexer separates the binary signal
into a video signal and an audio signal and then forwards each to the proper decoder
circuit. The decoder circuit transforms each signal into a signal used to display the video
and replay audio.

Set-top boxes are controlled by an operating system that is usually proprietary,
although some manufacturers use a third-party operating system for their set-top box.
The most commonly used operating systems are PowerTV OS, VxWorks (also used in
cellular phones and car navigation systems), pSOSystem, DAVID OS-9, Windows CE,
ChorusOS, JavaOS (also used for automobile computers and private telephone systems),
and Linux.

34

J2ME: The Complete Reference

Smart Cards

A smart card is a mobile small computing device that is used to store secured information.
Smart cards are replacing magnetic strip cards such as credit cards. Typically, a smart
card has an 8-bit CPU and 64KB of EEPROM along with a modest amount of memory.
And similar to set-top boxes, there are many operating systems used in smart cards. The
more commonly used smart card operating systems include Java Card from Sun, MultOS
from MasterCard, Smart Card for Windows from Microsoft, and Visa Open Platform.

Smart cards are used to provide real-time, interactive access to secured data stored in
the memory of the smart card. A security plan protects this information from unauthorized
access and manipulation of information stored in memory.

Let’s say that a smart card is used as an electronic checkbook. A consumer’s
identification information, checking account number, and balance are stored in the smart
card’s memory. When the consumer makes a purchase, the smart card is inserted into
a smart card reader. A smart card reader is an input/output device that is attached to a
bank’s merchant network and is used to transfer payment from the consumer’s account
to the merchant’s account.

The bank’s merchant network first authenticates the consumer by prompting the
consumer to present proper identification, which is commonly a personal identification
number that the consumer enters into the smart card reader. Once the customer is properly
identified to the bank’s merchant network, the network determines the portion of the
secured data contained on the smart card filing system that can be accessed by the merchant.
If the merchant isn’t permitted to access the consumer’s checking account information,
the transaction terminates.

If access is permitted, the necessary information stored in memory to complete the
transaction is deciphered, and the transaction commences. The bank’s merchant network
deducts the transaction amount from the checking account balance on the smart card and
within the bank’s own system and credits the merchant’s account. The revised checking
account balance is then rewritten to the smart card. The process by which the bank’s
merchant network verifies the transaction is called nonrepudiation.

The

Complete <
Reference \

Chapter 3

J2ME Architecture
and Development
Environment

36 J2ME: The Complete Reference

for a small computing device. The only limitations are those posed by available

resources on the small computing device and your skills as a J2ME programmer.
A small computing device is constrained by its resources, as you learned previously in this
book. These restrictions are inflexible and require you to design your J2ME application to
work within these limitations. Fortunately, J2ME technology provides tools to build an
industrial-strength Java application designed to run on a small computing device.

Writing a J2ME application is not unlike writing any Java application. You use

the same basic programming constructs as used in a J2SE application. However, some
routines commonly used in a J2SE application must be modified or excluded from a
J2ME application. In this chapter, you'll learn more about the J2ME architecture and how
constraints of the architecture restrict the use of routines that you probably employ in
your J2SE applications. Furthermore, you’'ll be introduced to the J2ME development
environment and learn techniques for building your first J2ME application.

Using J2ME you can develop practically any application that you can imagine

| J2ME Architecture

The modular design of the J2ME architecture enables an application to be scaled based on
constraints of a small computing device. J2ME architecture doesn’t replace the operating
system of a small computing device. Instead, J2ME architecture consists of layers located
above the native operating system, collectively referred to as the Connected Limited
Device Configuration (CLDC). The CLDC, which is installed on top of the operating
system, forms the run-time environment for small computing devices.

The J2ME architecture comprises three software layers (Figure 3-1). The first layer
is the configuration layer that includes the Java Virtual Machine (JVM), which directly
interacts with the native operating system. The configuration layer also handles inter-
actions between the profile and the JVM. The second layer is the profile layer, which
consists of the minimum set of application programming interfaces (APIs) for the small
computing device. The third layer is the Mobile Information Device Profile (MIDP).
The MIDP layer contains Java APIs for user network connections, persistence storage,
and the user interface. It also has access to CLDC libraries and MIDP libraries.

OEM MIDP
apps ‘T J2ME APIs +
OEM Configuration Y
clas‘ses Java Virtual Machine*‘
v Operating System v

Figure 3-1. Layers of the J2ME architecture

Chapter 3: J2ME Architecture and Development Environment

A small computing device has two components supplied by the original equipment
manufacturer (OEM). These are classes and applications. OEM classes are used by the
MIDP to access device-specific features such as sending and receiving messages and
accessing device-specific persistent data. OEM applications are programs provided by
the OEM, such as an address book. OEM applications can be accessed by the MIDP.

A word of caution: accessing OEM classes and OEM applications from the MIDP
restricts the portability of a J2ME application since not all small computing device
manufacturers use the same OEM classes or OEM applications.

___| small Computing Device Requirements

There are minimum resource requirements for a small computing device to run a J2ME
application. First the device must have a minimum of 96 x 54 pixel display that can
handle bitmapped graphics and have a way for users to input information, such as a
keypad, keyboard, or touch screen. At least 128 kilobytes (KB) of nonvolatile memory is
necessary to run Mobile Information Device (MID), and 8KB of nonvolatile memory is
needed for storage of persistent application data. To run JVM, 32KB of volatile memory
must be available. The device must also provide two-way network connectivity.

Besides minimal hardware requirements, there are also minimal requirements for
the native operating system. The native operating system must implement exception
handling, process interrupts, be able to run the JVM, and provide schedule capabilities.
Furthermore, all user input to the operating system must be forwarded to the JVM,
otherwise the device cannot run a J2ME application. Although the native operating
system doesn’t need to implement a file system to run a J2ME application, it must be
able to write and read persistent data (data retained when the device is powered down)
to nonvolatile memory.

| Run-Time Environment

A MIDlet is a J2ME application designed to operate on an MIDP small computing
device. A MIDlet is defined with at least a single class that is derived from the javax
.microedition.midlet. MIDlet abstract class. Developers commonly bundle related
MIDlets into a MIDlet suite, which is contained within the same package and implemented
simultaneously on a small computing device. All MIDlets within a MIDlet suite are
considered a group and must be installed and uninstalled as a group (Figure 3-2).

Members of a MIDlet suite share resources of the host environment and share the
same instances of Java classes and run within the same JVM. This means if three MIDlets
from the same MIDlet suite run the same class, only one instance of the class is created at
a time in the Java Virtual Machine. A key benefit of the relationship among MIDlet suite
members is that they share the same data, including data in persistent storage such as
user preferences.

38

J2ME: The Complete Reference

MiDiet 1 MIDlet suite Small computing device
IS MIDlet 1 MIDlet 1
[MDDlet2 }—
MIDlet 2 MIDlet 2

—
MIDlet 3 MIDlet 3 MIDlet 3
MIDlet 4 MIDlet 4

MIDlet 4 Load

Package

Figure 3-2. MiIDlets are packaged into MIDlet suites, which are loaded in a small
computing device.

Sharing data among MIDlets exposes each MIDlet to data errors caused by concurrent
read /write access to data. This risk is reduced by synchronization primitives on the MIDlet
suite level that restrict access to volatile data and persistent data. However, if a MIDlet uses
multi-threading, the MIDlet is responsible for coordinated access to the record store.

Data cannot be shared between MIDlets that are not from the same MIDlet suite
because the MIDlet suite name is used to identify data associated with the suite.

A MIDlet from a different MIDlet suite is considered an unreliable source.

A MIDlet suite is installed, executed, and removed by the application manager
running on the device. The manufacturer of the small computing device provides the
application manager. Once a MIDlet suite is installed, each member of the MIDlet suite
is given access to classes of the JVM and CLDC by the application manager. Likewise,
a MIDlet can access classes defined in the MIDP to interact with the user interface,
network, and persistent storage.

The application manager also makes the Java archive (JAR) file and the Java
application descriptor (JAD) file available to members of the MIDlet suite.

Inside the Java Archive File

All the files necessary to implement a MIDlet suite must be contained within a
production package called a Java archive (JAR) file. These files include MIDlet
classes, graphic images (if required by a MIDlet), and the manifest file. The manifest
file contains a list of attributes and related definitions that are used by the application
manager to install the files contained in the JAR file onto the small computing device.
Nine attributes are defined in the manifest file; all but six of these attributes are optional.

Table 3-1 lists attributes contained in a manifest file. Of these, the first six attributes
are required for every manifest file. Failure to include them in the manifest file causes
the application manager to halt the installation of the JAR file.

Listing 3-1 is a manifest file that contains the minimum number of attributes. As
you'll see in the section “Hello World J2ME Style” later in this chapter, you use an

Chapter 3:

J2ME Architecture and Development Environment

Manifest File Attribute

MIDlet-Name
MIDlet-Version
MIDlet-Vendor
MIDlet-n

MicroEdition-Profile
MicroEdition-Configuration
MIDlet-Icon

MIDlet-Description
MIDlet-Info-URL

Description

MIDlet suite name.
MIDlet version number.
Name of the vendor who supplied the MIDlet.

Attribute per MIDlet. Values are MIDlet name,
optional icon, and MIDlet class name.

Identifies the J2ME profile that is necessary
to run the MIDlet.

Identifies the J2ME configuration that is
necessary to run the MIDlet.

Icon associated with MIDlet, must be in PNG
image format (optional).

Description of MIDlet (optional).

URL containing more information about
the MIDlet.

Table 3-1.

Attributes of the Manifest File

editor to create a manifest file as a text file with the .txt file extension. The manifest
file’s extension is changed to .mf when the MIDlet is prepared for deployment.

Listing 3-1 MIDlet-Name: Best MIDlet
A manifest MIDlet-Version: 2.0
file

MIDlet-Vendor: MyCompany

MIDlet-1: BestMIDlet, /images/BestMIDlet.png, Best.BestMIDlet
MicroEdition-Profile: MIDP-1.0
MicroEdition-Configuration: CLDC-1.0

Entries in the manifest are name:value pairs and therefore can appear in any order
within the manifest file. Each pair must be terminated with a carriage return. Whitespace
between the colon and the attribute value is ignored when the application manager reads

the manifest file.

39

40

J2ME: The Complete Reference

Let’s step through the manifest file shown in Listing 3-1. The MIDIlet-Name
attribute specifies the name of the MIDlet suite, which is Best MIDlet in this example.
The MIDlet-Version and MIDlet-Vendor attributes identify the version number of the
MIDlet suite and the company or person who provided the MIDlet suite.

The MIDlet-n attribute contains information about each MIDlet that is in the JAR
file. The number of the MIDlet replaces the letter n. In this example, the 7 is replaced
with the digit 1 because there is only one MIDlet in the MIDlet suite.

The MIDlet-n attribute can contain three values that describe the MIDlet. A comma
separates each value. The first value is the name of the MIDlet, which is BestMIDlet.
Next is an optional value that specifies the icon that will be used with the MIDlet. In
this example, BestMIDlet.png is the icon. The icon must be in the PNG image format.
And the last value for the MIDlet-n attribute is the MIDlet class name, which is
Best.BestMIDlet. The application manager uses the class name to load the MIDlet.

The next MIDlet-n attribute is the MicroEdition-Profile whose value is the]2ME
profile that is required to run the MIDlet. In this example the MIDP-1.0 profile is
required. And the last MIDlet-n attribute is the MicroEdition-Configuration. The
MicroEdition-Configuration attribute identifies the J2ME configuration that is
necessary to run the MIDlet.

Inside the Java Application Descriptor File

You may include a Java application descriptor (JAD) file within the JAR file of a MIDlet
suite as a way to pass parameters to a MIDlet without modifying the JAR file (see
Chapter 4). A JAD file is also used to provide the application manager with additional
content information about the JAR file to determine whether the MIDIet suite can be
implemented on the device.

ATJAD file is similar to a manifest in that both contain attributes that are name:value
pairs. Name:value pairs can appear in any order within the JAD file. There are five required
system attributes for a JAD file:

MIDlet-Name
MIDlet-Version
MIDlet-Vendor
MIDlet-n
MIDlet-Jar-URL

A system attribute is an attribute that is defined in the J2ME specification. Table 3-2
contains a complete list of system attributes. Listing 3-2 illustrates a typical JAD file. All
JAD files must have the jad extension.

The JAD file shown in Listing 3-2 contains a few attributes that are also found in
the manifest file in Listing 3-1. The first three attributes in the JAD file are identical to
attributes in the manifest file.

Listing 3-2
A JAD file

Chapter 3: J2ME Architecture and Development Environment

MIDlet-Name: Best MIDlet

MIDlet-Version: 2.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: http://www.mycompany.com/bestmidlet.jar
MIDlet-1: BestMIDlet, /images/BestMIDlet.png, Best.BestMIDlet

The MIDlet-Jar-URL attribute contains the URL of the JAR file, which in this example
is called bestmidlet.jar. And the last required attribute in the JAD file is the MIDlet-n
attribute that defines a MIDlet of the MIDlet suite identical to the MIDlet-n attribute
of the manifest. A MIDlet-n attribute is required for each MIDlet in the MIDlet suite.

A word of caution: the values of the MIDlet-Name, MIDlet-Version, and MIDlet-
Vendor attributes in the JAD file must match the same attributes in the manifest. If the
values are different, the JAR file is not installed. Other attributes that are not the same
are overridden by attributes in the descriptor.

JAD File Attribute Description

MIDlet-Name MIDlet suite name.

MIDlet-Version MIDlet version number.

MIDlet-Vendor Name of the vendor who supplied the MIDlet.

MIDlet-n Attribute per MIDlet. Values are MIDlet name,
optional icon, and MIDlet class name.

MIDlet-Jar-URL Location of the JAR file.

MIDlet-Jar-Size Size of the JAR file in bytes (optional).

MIDlet-Data-Size Minimum size (in bytes) for persistent data
storage (optional).

MIDlet-Description Description of MIDlet (optional).

MIDlet-Delete-Confirm Confirmation required before removing the

MIDlet suite (optional).
MIDlet-Install-Notify Send installation status to given URL (optional).

Table 3-2. Attributes for a JAD File

41

42

J2ME: The Complete Reference

A developer can include application attributes in a JAD file. An application attribute
is a name:value pair that contains a value unique to the application. Any name can be
given to an application attribute as long as it does not begin with MIDlet-.

___| MmIDlet Programming

Listing 3-3
The basic
MIDlet shell

Programming a MIDlet is similar to creating a J2SE application in that you define a
class and related methods. However, a MIDlet is less robust than a J2SE application
because of the restrictions imposed by the small computing device. The following
overview gives you a glimpse of how a MIDlet is created. You'll learn the details

of building your own MIDlet in the “Hello World J2ME Style” section later in this
chapter.

A MIDlet is a class that extends the MIDlet class and is the interface between appli-
cation statements and the run-time environment, which is controlled by the application
manager. A MIDlet class must contain three abstract methods that are called by the
application manager to manage the life cycle of the MIDlet. These abstract methods
are startApp(), pauseApp(), and destroyApp().

The startApp() method is called by the application manager when the MIDlet is started
and contains statements that are executed each time the application begins execution
(Figure 3-3). The pauseApp() method is called before the application manager temporarily
stops the MIDlet. The application manager restarts the MIDlet by recalling the startApp()
method. The destroyApp() method is called prior to the termination of the MIDlet by
the application manager.

Listing 3-3 illustrates the basic shell of a MIDlet. In this example, the MIDlet class
called BasicMIDletShell extends the MIDlet class. Any name can be used for a class as
long as it conforms to the Java class naming convention.

public class BasicMIDletShell extends MIDlet
{

public void startApp()

{

}

public void pauselpp ()

{

}

public void destroyApp(boolean unconditional)

{

}

Chapter 3: J2ME Architecture and Development Environment

; startApp()
Start MIDlet-1 J

> | pauseApp() |
Pause MIDlet-t M B pp()
Start MIDlet-1 ’dt—A‘

= estro 0
Terminate MIDlet-1] YAPP

MIDlet-1

Application manager

Figure 3-3. The application manager calls methods of a MIDlet.

Both the startApp() and pauseApp() methods are public and have no return value
nor parameter list. The destroyApp() method is also a public method without a return
value. However, the destroyApp() method has a boolean parameter that is set to true
if the termination of the MIDlet is unconditional, and false if the MIDlet can throw a
MIDletStateChangeException telling the application manager that the MIDlet does not
want to be destroyed just yet.

At the center of every MIDlet are the MIDP API classes used by the MIDlet to
interact with the user and handle data management. User interactions are managed by
user interface MIDP API classes. These APIs enable a developer to display screens of
data and prompt the user to respond with an appropriate command. The command
causes the MIDlet to execute one of three routines: perform a computation, make a
network request, or display another screen.

The data-handling MIDP API classes enable the developer to perform four kinds
of data routines: write and read persistent data, store data in data types, receive data
from and send data to a network, and interact with the small computing device’s
input/output features.

Event Handling

A MIDlet is an event-based application. All routines executed in the MIDlet are invoked
in response to an event reported to the MIDlet by the application manager. The initial
event that occurs is when the MIDlet is started and the application manager invokes the
startApp() method.

The startApp() method in a typical MIDlet contains a statement that displays a screen
of data and prompts the user to enter a selection from among one or more options. The
nature and number of options is MIDlet and screen dependent.

A Command object is used to present a user with a selection of options to choose
from when a screen is displayed. Each screen must have a CommandListener.

44 J2ME: The Complete Reference

A CommandListener monitors user events with a screen and causes the appropriate
code to execute based on the current event. You'll learn more about screens, Command
objects, and CommandListeners in the “Hello World J2ME Style” section later in

this chapter.

User Interfaces

The design of a user interface for a MIDlet depends on the restrictions of a small
computing device. Some small computing devices contain resources that provide
a rich user interface, while other more resource-constrained devices offer a modest
user interface. A rich user interface contains the following elements, and a device
with a minimal user interface has some subset of these elements as determined by
the profile used for the device.

A Form is the most commonly invoked user interface element found in a MIDlet
and is used to contain other user interface elements. Text is placed on a form as a
Stringltem, a List, a ChoiceGroup, and a Ticker.

A Stringltem contains text that appears on a form that cannot be changed by the
user. A List is an itemized options list from which the user can choose an option. A
ChoiceGroup is a related itemized options list. And a Ticker is text that is scrollable.

A user enters information into a form by using the Choice element, TextBox,
TextField, or DateField elements. The Choice element returns an option that the user
selected. TextBox and TextField elements collect textual information from a user and
enable the user to edit information that appears in these user interface elements. The
DateField is similar to a TextBox and TextField except its contents are a date and time.

An Alert is a special Form that is used to alert the user that an error has occurred.
An Alert is usually limited to a Stringltem user interface element that defines the
nature of the error to the user.

You will learn more about the full range of user interface elements and how to
deploy them later in this book.

Device Data

Small computing devices don’t have the resources necessary to run an onboard database
management system (DBMS). In fact some of these devices lack a file system. Therefore,
a MIDlet must read and write persistent data without the advantage of a DBMS or
file system.

A MIDlet can use an MIDP class—RecordStore—and two MIDP interfaces—
RecordComparator and RecordFilter—to write and read persistent data. A RecordStore
class contains methods used to write and read persistent data in the form of a record.
Persistent data is read from a RecordStore by using either the RecordComparator
interface or the RecordFilter interface. You’ll learn how to use RecordStore,
RecordComparator, and RecordFilter later in this book.

Chapter 3: J2ME Architecture and Development Environment

___ | Java Language for J2ME

CDC implements the full J2SE available, but CLDC implements a stripped-down J2SE
because of the limited resources in small computing devices. In this section you'll learn
about three prominent features of J2SE that you cannot implement in J2ME.

Floating-point math is probably the most notable missing feature of J2ME. Floating-
point math requires special processing hardware to perform floating-point calculations.
However, most small computing devices lack such hardware and therefore are unable
to process floating-point calculations. This means that your MIDlet cannot use any
floating-point data types or calculations.

The second most notable difference between the Java language used in J2SE and
J2ME is the absence of support for the finalize() method. The finalize() method in J2SE
is automatically called before an instance of a class terminates and typically contains
statements that free previously allocated resources. However, resources in a small
computing device are too scarce to process the finalize() method.

Another dramatic difference is the reduced number of error-handling exceptions
that are supported in J2ME. Table 3-3 lists error-handling exceptions available in J2ME.
Exception handling drains system resources, which are precious in a small computing
device and therefore the primary reason for trimming the number of error-handling
exceptions. Typically, run-time errors are automatically responded to by the native
operating system by restarting the small computing device.

Changes were also made in the Java Virtual Machine that runs on a small computing
device because of resource constraints. One such change occurs with the class loader.
JVM for small computing devices requires a custom class loader that is supplied by the
device manufacturer and cannot be replaced or modified.

Another feature lacking in the JVM is the ThreadGroup class. You cannot group
threads. All threads are handled at the object level, although there is a workaround
(see Chapter 4). Also, you cannot call other programming languages’ methods and
APIs, primarily because of the memory requirements to execute such calls. Two other
features of J2SE that are missing from J2ME are weak references and the Reflection
classes.

The standard JVM uses class file verification to protect applications from malicious
code through the use of a security manager. However, this process is replaced with a
two-step process because of the limited resources available on small computing devices.
The first step is called preverification and occurs outside the small computing device
prior to loading the MIDlet. Preverification requires that additional attributes called
stack maps are inserted into a class file by software before the second step runs. Stack
maps describe the MIDlet’s variables and operands located on the interpreter stack.

After preverification is completed, the MIDlet class is loaded into the device, and
the verifier within the small computing device validates each instruction in the MIDlet
class. The MIDlet class is automatically rejected if the verifier detects an error.

45

The Complete Reference

J2ME

46

sesse|Q JJoddns JNZr "€-€ dlqel

auozawl] [n-eael

I93LIAN O RAR(
1opedyoreael

weanguLLJ oreael

110yg Suereael

SuoSuereael

a[qemony [3uereael
peany L -Suereael

wysAg Guereael

Ay un-eael
sasse|) awil pue lepusjed
Pupueangmding-oreae!
weangmdinp-oreael
1epeayweangndur-oreael
weangduroreael
weangidinpeyeq-oreael
sasse|) nding/nduj

10300/ ‘TN eae(
yoeig un-eael

sasse|) uo1399|j09
193ayur-Suereae(
1operey) Suereael

sasse|) adA] ejeq
1_pngdumng Suereael
Suing Suereael
swmuny Suey eael

sasse|) wajsAs

Iepuare) mn-eael

mdmQeyeoreael
weangmdureyeqoreael
mdurejecqoreael
weangmdinAerryayfg-oreael

weangndugAerryafg-oreael

S[qeryse mn-eael

uonjerowmuy [N eAel

914g-Suereael

uesfoog-uereael

orqeuuny-Sueyeae(
12l Suereael

sse[D Suepeae(

47

J2ME Architecture and Development Environment

Chapter 3

(penunuo9) saesse|n 1ioddns JNZI

"€-€ 9lqel

JoLIgaurnyoeA eI “Sueyeael

uondeoxgyuawergyongoN TN eael
uondeoxgpeighidwa mn-eael
uondeoxgspunogyoimQxapurdurng Suereael
uondeoxgAjrmoag Guereael
uondeoxgawmuny Suer-eael
uondeoxgyewroJroqun - 3ueyeael
uondeoxgIauro NN Suer eael

uondaoxgazigAerryaane3oN Suereael

pweangindingoreael

uoljezijeuoneuiajuj

I0LIg AIOWIAFOMO Sue eael
sasse|) 10113

uondeoxgpaydnizejur Suer-eael
uondeoxguonenue)suy 3uereael
uondedxgspunogjomQxapuy-3uey-eael
uondaoxgajeigpeary 1 reSayr-Suereael
uondoaoxgayeigroyruoneda-3uereael
uondeoxguswndryTeday Suereae!
uondooxgssedoyredar3uereael
uondeoxg-3uereael

uondaoxgpunojoNsser) Suereael
sasse|) uondaax3y
wopuey Tyn-eael

sasse|) Aynn

1epeayweangmduroreael

1o1rg - Suepeae(

uondeoxgiseysser) Suer-eael
uondaoxgarojgherry - Suereael
uondadxgspunogjOmOxapuderry-3uereaef
uondeoxgonounpry Suereael
uondeoxgyeurioyeye 1N oreael
uondaoxgurpoougpajroddnsun -oreael
uondaoxgOroreael
uondedxgOrpaidnirajur-oreael

uondaoxg O oreael

e Suereael

48 J2ME: The Complete Reference

___| J2ME Software Development Kits

A MIDlet is built using free software packages that are downloadable from the java.sun
.com web site, although you can purchase third-party development products such as
Borland JBuilder Mobile Set, Sun One Studio 4 (formerly Forte for Java), and WebGain
VisualCafe Enterprise Suite. Three software packages need to be downloaded from
java.sun.com. These are the Java Development Kit (1.3 or greater) (java.sun.com/
j2se/downloads.html), Connected Limited Device Configuration (CLDC) (java.sun.
com/products/cldc/), and the Mobile Information Device Profile (MIDP) (java.sun.com/
products/midp/). You'll also need the J2ME Wireless Toolkit to develop MIDlets for
handheld devices (java.sun.com/products/j2mewtoolkit/download.html).

Each of these software packages contains installation instructions that you need to
follow closely in order to assure proper installation of each package. However, there are
a few tips that will help you during the installation. First, install the Java development
kit. The Java development kit contains the Java compiler and the jar.exe, which is used
to create Java archive files as described previously in this chapter. After downloading the
Java development kit package, unzip the package and run the installation program. It is
best to accept the default directory, although you are free to choose a different directory
for the Java development kit.

Once the Java development kit is installed, place the c:\jdk\bin directory, or whatever
directory you selected for the Java development kit, on the PATH environment variable
(see “Setting the Path in Windows” sidebar). This enables you to invoke the Java compiler
from anywhere on your computer.

Setting the Path in Windows
Windows 2000 and Windows NT

1. Choose System from the Control Panel.

2. Select Environment or Advanced/Environment.

3. Locate the PATH environment variable.

4. Enter the directory at the end of the path. Be sure to separate entries with
a semicolon.

Windows 98 and Windows 95

1. Select Start.

2. Select Run.

3. Enter sysedit.

4. Select OK.

5. Locate the autoexec.bat dialog box.

6. Add the directory to the PATH environment variable.

Chapter 3: J2ME Architecture and Development Environment

Install the CLDC once the Java development kit is installed. Unzip the downloaded
CLDC files from the java.sun.com web site onto the d:\j2me directory (J2ME_HOME) on
your computer. You'll need to create the j2me directory if one doesn’t exist. Unzipping
the CLDC package creates the j2me_cldc subdirectory below the j2me directory.

The j2me_cldc has a bin subdirectory that contains the K Virtual Machine and the
preverifier executable files for an assortment of platforms such as win32. Each platform
is in its own subdirectory under j2me_cldc. Add the j2me\j2me_cldc\bin\win32
subdirectory to the PATH environment variable (see “Setting the Path in Windows”
sidebar). You should substitute win32 subdirectory with the appropriate subdirectory
for your platform.

Next, download and unzip the MIDP file. Be sure to use \j2me as the directory for
the MIDP file. Unzipping the MIDP file creates a midp directory. The name of this
directory might vary depending on the version that you download. Some versions
create a midp-fcs directory, while the 1.0.3 version creates a %J2ME_HOME%\
midp1.0.3fcs directory. This chapter references the %J2ME_HOME%\midp1.0.3fcs
directory. You can replace references to this directory with the directory relevant
to your midp version. The midp1.0.3fcs directory also contains a bin subdirectory.
And you’ll need to include the \j2me\midp1.0.3fcs\bin subdirectory in the PATH
environment variable.

Next, create two environment variables. These are CLASSPATH and MIDP_HOME.
The CLASSPATH environment variable identifies the path to be searched whenever a
class is invoked. The MIDP_HOME environment variable identifies the location of
the \lib directory that contains the internal.config file and the system.config file.

Set the CLASSPATH to

I d:\j2me\midpl.0.3fcs\classes; .

Notice that the CLASSPATH terminates with a period. The period implies the
current directory and will cause the current directory to be searched if a class is not
found in the \j2me\midp1.0.3fcs\classes directory.

Modifying the internal.config File
The internal.config file is used to describe preferences that affect features of MIDP.
Preferences are identified by name:value pairs. You can change values of name:value
pairs by modifying the file with an editor. For example, MIDP contains an emulator
for J2ME devices, such as cellular telephones. An emulator enables you to test the
performance of your MIDlet without having to load the MIDlet into the real device.
You can modify the color configuration of the emulated device by changing the
value of the system.display.screen_depth attribute to 1, 2, 4, or 8. The value 1 causes
the emulator to display black and white colors. The value 2 forces the emulator to
display a 4-color grayscale. The value 4 displays a 15-color grayscale, and the value 8
changes the emulator to 256 possible colors.

49

50 J2ME: The Complete Reference

Set the MIDP_HOME environment variable to

I d:\j2me\midpl.0.3fcs

___| Hello World J2ME Style

You can create your first MIDlet once the Java development kit, Connected Limited
Device Configuration (CLDC), and Mobile Information Device Profile (MIDP) are
installed. And keeping tradition alive, let’s begin by creating a directory structure
within which you can create and run MIDlets. Here are the directories that are used
for examples in this chapter:

B j2me

B j2me\src

B j2me\src\greeting
B j2me\tmp_classes
B j2me\midlets

You'll create two MIDlets in this section, which will illustrate the basic concept of
making and running a J2ME application. The first MIDlet is called HelloWorld and the
other MIDlet is GoodbyeWorld. The HelloWorld MIDlet shows how to create a simple
MIDlet that can be invoked directly from the class and from a Java archive file. Later in
this section you'll learn how to create a MIDlet suite that contains two MIDlets. These
are HelloWorld and GoodbyeWorld.

Let’s begin by creating the HelloWorld MIDlet. Enter the code shown in Listing 3-4
into a text editor such as Notepad, and save the file in the j2me\src\greeting directory
as HelloWorld java.

The HelloWorld MIDlet performs three basic functions that are found in nearly all
MIDlets. These are to display a text box and a command on the screen, then listen to
events that occur while the MIDlet is running.

The HelloWorld MIDlet is created by defining a class called HelloWorld that
extends the MIDlet class and implements a CommandListener. The HelloWorld class
contains three private data members and four methods. The data members are a
Display object, a text box, and a command. The methods are startApp(), pauseApp(),
and destroyApp(), which are discussed earlier in this chapter. The fourth method is
called commandAction() and is invoked by the application manager whenever an
event occurs.

Listing 3-4 illustrates a typical HelloWorld MIDlet. Two packages must be imported
at the beginning of the MIDlet to access MIDlet classes and lcdui classes. MIDlet classes
are screen oriented and create a Display object and then place components of the screen
into the Display object. The Display object is then invoked later in the MIDlet to display
the screen on the small computing device.

Chapter 3: J2ME Architecture and Development Environment 51

Listing 3-4 package greeting;
HellowWorld import javax.microedition.midlet.*;
MiIDlet

import javax.microedition.lcdui.*;
public class HelloWorld extends MIDlet implements CommandListener

{

source code

private Display display ;
private TextBox textBox ;
private Command quitCommand;

public void startApp()
{
display = Display.getDisplay (this);
quitCommand = new Command("Quit", Command.SCREEN, 1);
textBox = new TextBox("Hello World", "My first MIDlet", 40, 0);
textBox .addCommand (quitCommand) ;
textBox .setCommandListener (this);
display .setCurrent (textBox) ;
}
public void pauseApp ()
{
}
public void destroyApp (boolean unconditional)
{
}
public void commandAction (Command choice, Displayable displayable)
{
if (choice == quitCommand)
{
destroyApp (false) ;
notifyDestroyed() ;
}

The Display object in this example is called display and will contain a TextBox object
called textBox and a Command object called quitCommand. All three objects are private
and are defined at the beginning of the HelloWorld class definition.

The startApp() method contains the necessary statements to invoke previously
defined objects. The startApp() method begins by creating an instance of the Display
object by calling the getDisplay() method. The instance of the Display object is assigned
to the display Display object that is previously defined in the class. Calling getDisplay
multiple times always returns the same Display reference for the specified MIDlet.

Next, an instance of a command object is created. There are three values required
when creating a command object. The first value is the label of the command that will

52

J2ME: The Complete Reference

appear on the screen. The label in this example is Quit. The next value is the type of
command, which is a screen command. The third parameter determines the priority
of the command, which is the first priority—the higher the number, the lower the
priority. The application manager uses priority to determine the order in which a
command appears in a menu if the MIDlet uses a menu.

The last instance of an object that is created in the startApp() is a TextBox object. Four
values are necessary to create an instance of a TextBox object. The first is the caption for
the TextBox object followed by the text that will appear in the TextBox object. In this
example, Hello World is the caption and My first MIDlet is the text. The other two values
are coordinates used by the application manager to position the TextBox object on
the screen.

Next, the Command object must be associated with the TextBox message. This is
accomplished by calling the addCommand() method of the TextBox object and passing
the addCommand() method the Command object. Once the Command object is
associated with the TextBox object, the CommandListener must be associated with the
TextBox object in order for the CommandListener to respond to events occurring when
the TextBox object is displayed on the screen. The setCommandListener() method of the
TextBox object is used to associate the TextBox object with the CommandListener.

And the final statement within the startApp() method associates the TextBox object
with the Display object by calling the setCurrent() method of the Display object and
passing the setCurrent() method the TextBox object.

When the application manager of the small computing device runs the HelloWorld
MIDlet, the startApp() method is the first method that is invoked, which causes the
display that contains the Hello World message and the Quit command to be shown
on the screen.

The HelloWorld MIDlet is required to define a pauseApp() method and a destroyApp()
method, but these methods can remain empty because no special action is taken when the
HelloWorld MIDLet is paused or destroyed.

The commandAction() method contains statements that evaluate events that occur
while the HelloWorld MIDLet is running. The command selected by the user is passed
to the commandAction() method as the first parameter. The second parameter is a
Displayable object, which is a reference to the TextBox that is associated with the
command. A TextBox along with other interface objects are Displayable objects.

An if statement is used to determine whether the user selected the Command object
that is associated with the Hello World TextBox object. If so, the destroy App() method
is invoked and is passed a boolean false. The destroyApp() method is called before the
MIDlet is destroyed; afterwards the notifyDestroyed() method is called to notify the
application manager that the HelloWorld MIDLet has entered into the destroyed state.
Prior to invoking the notifyDestroyed() method, a MIDlet should have completed its
own garbage collection.

Chapter 3: J2ME Architecture and Development Environment

Compiling Hello World

The Hello World source code files should be saved in the new j2me\src\greeting
directory as HelloWorld.java. Next, you'll need to compile the HelloWorld MIDlet.
Compiling a MIDlet is a two-step process. The first step is to use the Java compiler
to transform the source file into a class file. The second step is to preverify the class file, as
described previously in this chapter. The preverification generates a modified class file.
Make j2me\src\greeting the current directory, and then enter the following
command at the command line. The d: drive is used in this example. You can replace
the d: with the drive letter that is appropriate for your file structure.

javac -d d:\j2me\tmp_classes -target 1.1 -bootclasspath
d:\j2me\midpl.0.3fcs\classes HelloWorld.java

The bootclasspath option must be used when compiling a MIDlet. The bootclasspath
option points to the startup class files commonly referred to as the Java bootstrap files.
The startup classes are MIDP classes. If you fail to use the bootclasspath option, the
compiler uses JDK classes instead of the MIDP classes.

The compiler produces a file called HelloWorld.class in the j2me\tmp_classes\
greeting directory. The greeting directory is created because of the package greeting
declaration in the source code. The J25DK 1.4 compiler outputs class files for JVM 1.2.
However, the preverification expects classes for JVM 1.1. Therefore, you need to specify
JVM 1.1 in the target option so the compiler generates classes for the JVM 1.1.

Next, you'll need to preverify the HelloWorld.class that was generated by the
compiler. Make sure that j2me\src\greeting is the current directory and enter the
following command:

preverify -d d:\j2me\classes -classpath d:\j2me\midpl.0.3fcs\classes
d:\j2me\tmp_classes

You must use two preverify options. The -d option places the class file within the
tmp_classes directory. The second option is -classpath, which points to the location of
the library classes that come with the MIDP. Preverification files are contained in the
midp1.0.3fcs\classes directory. The output of the javac compiler is in the tmp_classes
directory.

You can exclude the -classpath option if the CLASSPATH environment variable points
to the d:\j2me\midp1.0.3fcs\classes directory. In this case, you simply invoke the

preverify using:

preverify -d d:\j2mel\classes d:\j2me\tmp_classes

Tip

J2ME: The Complete Reference

A word of caution: the preverifier overwrites the HelloWorld.class file generated
by the compiler if the directory specified in the -d option is the same directory that
contains the HelloWorld.class file. Replacing the HelloWorld.class file isn’t a problem
because the post-preverified HelloWorld.class is the file used to invoke the class.

Running Hello World

A MIDlet should be tested in an emulator before being downloaded to a small
computing device. An emulator is software that simulates how a MIDlet will run in
a small computing device. Once you're satisfied that a MIDlet is operating properly,
you can deploy the MIDlet as part of a MIDlet suite, which you'll learn to do a little
later in the chapter.

There are two ways to run a MIDlet. These are either by invoking the MIDlet class
or by creating a JAR file, then running the MIDlet from the JAR file. Let’s begin by
running the MIDlet class without the need of a JAR file. Make sure that j2me\src\
greeting is the current directory, and then enter the following command. Figure 3-4
illustrates how the MIDlet appears in the emulator. Click the right telephone handset
icon to close the MIDlet.

I midp -classpath d:\j2me\classes greeting.HelloWorld

Deploying Hello World

Listing 3-5
The manifest
file for Hello
World

A MIDlet should be placed in a MIDlet suite after testing is completed. The MIDlet
suite is then packaged into a JAR file along with other related files for downloading
to a small computing device. This process is commonly referred to as packaging.

In the HelloWorld example, the MIDlet suite contains one MIDlet, which is the
HelloWorld.class. Before packaging the MIDlet into a JAR file, you'll need to use
an editor to create the manifest file shown in Listing 3-5. The manifest describes the
JAR file. The manifest file should be saved as manifest.txt in the j2me\src\greeting
directory. Notice that the MIDlet description within the manifest file contains a
graphic call, /greeting/mylogo.png, that is associated with the HelloWorld MIDlet.
Any PNG-formatted image file can be used in place of mylogo.png. However, all
image files must be in the PNG format. You can also remove references to an image
file by replacing the name of the image file with a space, such as:

I MIDlet-1: HelloWorld, , greeting.HelloWorld

MIDlet-Name: Hello World

MIDlet-Version: 1.0

MIDlet-Vendor: Jim

MIDlet-1: HelloWorld, /greeting/myLogo.png, greeting.HelloWorld
MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

Chapter 3: J2ME Architecture and Development Environment 55

Famil
Select one Lo
launch:

- o &
e s

Figure 3-4. The HelloWorld MIDlet running in the emulator

You can create the JAR file once the manifest.txt file is saved in the j2me\src\
greeting directory. Make sure the j2me\src\greeting directory is the current directory,
and then create the JAR file by entering the following command:

I jar -cfvm d:\j2me\midlets\HelloWorld.jar manifest.txt -C d:\j2me\classes greeting

The final piece of the Hello World package is a JAD file. Create the JAD file shown
in Listing 3-6 using an editor, and save the JAD file in the j2me/src/greeting directory.

Listing 3-6 MIDlet-Name: Hello World
The JAD MIDlet-Version: 1.0
file for

MIDlet-Vendor: Jim
HelloWorld

56

J2ME: The Complete Reference

MIDlet-Description: My First MIDlet suite

MIDlet-1: HelloWorld, /greeting/myLogo.png, greeting.HelloWorld
MIDlet-Jar-URL: HelloWorld.jar

MIDlet-Jar-Size: 1428

Copy the HelloWorld.jad file into the j2me/midlets directory, and then make
j2me/midlets the current directory. Invoke the MIDlet by entering the following
command. The image of the mobile cellular telephone is displayed on the screen
(Figure 3-4). Click the right telephone handset icon to close the MIDlet.

I midp -classpath HelloWorld.jar -Xdescriptor HelloWorld.jad

Once you are satisfied that the MIDlet suite packaged in a JAR file is operating
properly in the emulator, you can download the JAR file to a small computing device.
The downloading process is device dependent, and therefore you must refer to the
device’s documentation or the manufacturer’s web site for steps for downloading
your JAR file.

What to Do When Your MIDlet Doesn’t Work Properly

Sometimes a MIDlet won’t compile or run properly. Although each MIDlet is unique,
there are a few common problems that cause a MIDlet to fail. Here are areas to
investigate if you experience a failure.

If the compiler, preverifier, JAR program, or emulator doesn’t run from the command
line, review the value of the PATH, CLASSPATH, and MIDP_HOME environment
variables to be sure you have included the exact path to these programs. Also make
sure that the current directory reference (a period) is included in the CLASSPATH
environment variable.

Running out of environment space is a common problem on some platforms. This
results in not enough room to store the complete value of an environment variable such
as the PATH. You can work around this problem by creating an executable file, such as
a batch file in Windows, that sets the environment variables for J2ME components. Run
this executable file before compiling and testing your MIDlet to temporarily reset
environment variables. The environment variables return to their original values the
next time you restart your computer or log in.

Many types of errors can occur during the compiling and packaging process. Some
are syntax errors, which you'll be able to fix quickly by reviewing the source code. Other
errors can be caused by poorly formed command line options and arguments, such as
failing to insert a space between an option and a period when referencing the current
directory.

Another common occurrence is for a MIDlet suite to run fine in test but fail to run
after downloaded to the small computing device. In this case, the application manager
on the small computing device might reject the MIDlet suite because the MIDlet suite
cannot be run on the device. An oversize MIDlet suite is a likely suspect.

Chapter 3: J2ME Architecture and Development Environment

___| Multiple MiIDlets in a MiIDlet Suite

Listing 3-7
GoodbyeWorld
MiDlet source

code

In the real world, multiple MIDlets are distributed in a single MIDlet suite. The
application manager then displays each MIDlet as a menu option, enabling the user
to run one of the MIDlets. Let’s create another MIDlet to illustrate how to deploy

a multiple MIDlet suite.

The new MIDlet is called GoodbyeWorld and is shown in Listing 3-7. Enter this
code into a text editor and save the file as GoodbyeWorld java in the j2me\src\greeting
directory. Make the j2me\src\greeting directory the current directory. Compile both
the HelloWorld java and GoodbyeWorld java files by entering the following command
at the command line:

javac -d d:\j2me\tmp_classes -target 1.1 -bootclasspath
d:\j2me\midpl.0.3fcs\classes *.java

Preverify these files by entering the following command at the command line:

preverify -d d:\j2me\classes -classpath d:\j2me\midpl.0.3fcs\classes
d:\j2me\tmp_classes

package greeting;
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
public class GoodbyeWorld extends MIDlet implements CommandListener
{
private Display display ;
private TextBox textBox ;
private Command quitCommand;
public void startApp()
{
display = Display.getDisplay (this);
quitCommand = new Command ("Quit", Command.SCREEN, 1);
textBox = new TextBox("Goodbye World", "My second MIDlet", 40, 0);
textBox .addCommand (quitCommand) ;
textBox .setCommandListener (this) ;
display .setCurrent (textBox);
}
public void pauseApp ()
{
}
public void destroyApp (boolean unconditional)
{
}

public void commandAction (Command choice, Displayable displayable)

57

58

Listing 3-8
The manifest
file for
HellowWorld/
GoodbyeWorld
MiDlet suite

Listing 3-9
The JAD file
for
HelloWorld/
GoodbyeWorld

J2ME: The Complete Reference

if (choice == quitCommand)
{
destroyApp (false) ;
notifyDestroyed() ;
}

Next, create a manifest.txt file, as illustrated in Listing 3-8, and save the file in the
j2me/src/greeting directory. You can modify the manifest.txt file created in the previous
example as an alternative to writing a new manifest file by including a description of the
GoodbyeWorld class as shown in Listing 3-8.

Create the HelloWorld jar file by entering the following command. Make sure that
the j2m/src/greeting directory is the current directory.

I jar -cfvm d:\j2me\midlets\HelloWorld.jar manifest.txt -C d:\j2me\classes greeting

You'll also be required to create or modify the existing JAD file to resemble Listing 3-9.
Save the HelloWorld jar file in 2me/src/greeting. Next, copy the HelloWorld jar file and the
HelloWorld jad file to the j2me/midlets directory.

Make the j2me/midlets directory the current directory, and then enter the following
command on the command line to run the J2ME application:

I midp -classpath HelloWorld.jar -Xdescriptor HelloWorld.jad

MIDlet-Name: Hello World

MIDlet-Version: 1.0

MIDlet-Vendor: Jim

MIDlet-1: HelloWorld, /greeting/myLogo.png, dgreeting.HelloWorld
MIDlet-2: GoodbyeWorld, /greeting/myLogo.png, greeting.GoodbyeWorld
MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-Name: Hello World

MIDlet-Version: 1.0

MIDlet-Vendor: Jim

MIDlet-Description: My First MIDlet suite

MIDlet-1: HelloWorld, /greeting/myLogo.png, dgreeting.HelloWorld
MIDlet-2: GoodbyeWorld, /greeting/myLogo.png, greeting.GoodbyeWorld

Chapter 3: J2ME Architecture and Development Environment

MIDlet-Jar-URL: HelloWorld.jar
MIDlet-Jar-Size: 4048

The cellular phone emulator displays the image of a cellular phone on the screen,
as shown in Figure 3-5. Notice that the emulator’s application manager displays both
the HelloWorld and GoodbyeWorld MIDlets as menu options.

Click on the up or down arrow keys on the emulator to move the cursor up and
down the menu options. Click on the center button to launch either the HelloWorld
MIDlet or the GoodbyeWorld MIDlet. For example, if you move the cursor to the
GoodbyeWorld MIDlet and select the center button on the emulator, the emulator’s
application manager launches the GoodbyeWorld MIDlet, as shown in Figure 3-6.
Click the left cellular telephone handset icon to return to the menu.

= MIDP M=l E3

Figure 3-5. The HelloWorld MIDlet running in the emulator

59

60 J2ME: The Complete Reference

= MIDP | |O] x]

“F il HEC
Goodbye World

My second MIDTe]

- o &
@ @ @
|
5 e o |

Figure 3-6. The GoodbyeWorld MIDlet running in the emulator

___| J2ME Wireless Toolkit

Building and running a J2ME application at the command line is cumbersome, to
say the least, when you are creating a robust application consisting of several MIDlets.
Creating your application within an integrated development environment is more
productive than developing applications by entering commands at the command line.
There are a number of popular integrated development environments on the market
designed for developing J2ME applications. These include Borland’s JBuilder and Sun
Microsystems’ Forte. Another integrated development environment is the J2ME Wireless
Toolkit that is downloadable from java.sun.com/products/j2mewtoolkit/download.html.

Chapter 3: J2ME Architecture and Development Environment

The J2ME Wireless Toolkit is used to develop and test J2ME applications by selecting
a few buttons from a toolbar. However, the J2ME Wireless Toolkit is a stripped-down
integrated development environment in that it does not include an editor, a full debugger,
and other amenities found in a third-party integrated development environment.

Building and Running a Project

Download the J2ME Wireless Toolkit from the Sun web site. The Toolkit file is a self-
extracting executable file. Run this executable after downloading the file, and the
installation program creates all the directories required to run the Toolkit. The installed
J2ME Wireless Toolkit is placed in the WTK104 directory, although the directory might
have a variation of this name depending on the version of the Toolkit that you download.

Ktoolbar is the executable within the directory that launches the Toolkit. The main
window is displayed (see Figure 3-7) when you run ktoolbar. You'll notice that the
main window is sparse compared with other integrated development environments.

Let’s create a new project by selecting the New Project button from the toolbar.
You’'ll be prompted to enter a project name and class name (see Figure 3-8). Enter Hello
World as the project name and greeting.HelloWorld as the class name, which is the
name of the first MIDlet that is associated with the project.

After selecting the Create Project button, the J2ME Wireless Toolkit automatically
creates a directory structure for the project and also creates the manifest file and JAD file.
You can see and modify attributes of these files by selecting the Settings option, which
displays a dialog box containing a series of tabs. The first tab displayed, Required (see
Figure 3-9), contains a list of attributes that are necessary for the manifest file and JAD

1

EflJ2ME wireless Toolkit - O]]
File Edit :

| = B] 3 |] G clear Console I

Device! |DefaultSray

[Create a new project or opeh an existing one

Figure 3-7. Main window of the J2ME Wireless Toolkit

62

J2ME: The Complete Reference

ﬂ New Project

Froject Mame]Hello WWiarld

miDlet Class Mame Jgreeting.HeIIoWorld

Create Project ‘ Cancel]

Figure 3-8. Enter the project name and class name of the first MIDlet to begin the
project.

file, as previously discussed in this chapter. The Optional tab (see Figure 3-10) contains
attributes that are common to many projects but not required to build and deploy
a J2ME application.

Settings for project "Hello World"™
ptional UserDeﬂned] MIDIets]

Key J Yalue]
MIDlet-Jar-Size. 100
MIDIet-Jar-URL :HB.IID”WD_.r! d.jar
MIDlet-Name |Hello World.
MIDIet-vendor Sun Microsystems
MIDlet-Yersian 1o
MicroEdition-Configuration: |CLDC-1.0

MIDP-1.0

oK Caneel

Figure 3-9. List of required attributes

Chapter 3: J2ME Architecture and Development Environment

ﬂ Settings for project "Hello World"
|] User Defined | MIDIets |
Key | Yalue |

Reguired

MIDIet-Data-Size
MIDlet-Delete-Confirm
MIDIEt Description
MIDlet-lcon.

MIDIet Info-URL
MIDIet Install-Natify

0K Cancel

Figure 3-10. List of optional attributes

The User Defined tab (Figure 3-11) contains optional attributes specific to your
application, as discussed previously in this chapter. This tab will be empty until you
select the Add button and insert your own attributes. The MIDlets tab (Figure 3-12)
lists MIDlets of your project. Notice that the HelloWorld MIDlet is listed in the tab,
which is the MIDlet you entered as the class name when beginning the project.

A well-organized file structure is automatically created for your project as a result of
starting a new project. Within the WTK104 directory, you'll see an apps subdirectory in
which the projects you create are stored. Browse the apps subdirectory to see a subdirectory
called Hello World, which is the name that you gave to your project. A subdirectory of the
apps directory is created for every project. And within the project’s subdirectory is another
set of subdirectories. These are

B src, containing source code
B bin, containing the manifest.mf file, JAD file, and JAR file

63

64 J2ME: The Complete Reference

B classes, containing the compiled classes

B tmpclasses, containing the preverify classes

B res, containing image, data, and other files required by the application

Hello World Project

Let’s re-create the Hello World and Goodbye World application that you created previously
in this chapter. Create a new project called Hello World following the directions in the
“Hello World J2ME Style” section. Next, create a greeting directory beneath the src
directory. Copy the HelloWorld.java file and GoodbyeWorld.java file that you created
previously, and place those files into the project’s src\greeting subdirectory, which is

Hello World\src\greeting if you named your project Hello World.

ﬂ Settings for project "Hello World"

Required] Option

MIDlets |

Key

|

Yalue]

Add

oK Caneel

Figure 3-11.

List of user-defined optional attributes

Chapter 3: J2ME Architecture and Development Environment 65

ﬂSettings for project "Hello World"
Required | Optional | User Defined |
Key | Name | lcon | class |
MiDlet1 |Hello World |Hello \World.png | Helloworld
Add J =i[j] egf=R) I iy [J REriye J
0K Cancel
Figure 3-12. List of MIDlets that are included in the project

Select the Settings button and the MIDlets tab. You'll need to insert the
GoodbyeWorld.java MIDlet into the MIDlet list. Select the Add button to display
the Enter MIDlet Details dialog box (Figure 3-13), and enter Goodbye World as the
name of the MIDlet, then greeting.GoodbyeWorld as the MIDlet class. Leave the Icon
empty until you have a PNG image that you want to use with the MIDlet. Select OK
to return to the main screen.

| If you choose not to create the greeting subdirectory, you'll need to remove the package
P greeting statement from the source code.
Select the Build button from the toolbar. The J2ME Wireless Toolkit compiles,

preverifies, and packages the application in one step, which previously required three
steps using the command line.

66 J2ME: The Complete Reference

B! Enter MIDlet Details

Mame Gioadine Wiarld
Icon

Class aresting. GoodhyelSarld

carn |

Figure 3-13. Enter the name of the MIDlet and the MIDlet class name.

The Device drop-down box contains a list of emulators available for testing your
application. Select DefaultColorPhone, and then select the Run button. The image of
a color cellular telephone is displayed running your application (see Figure 3-14).

] DefaultColorPhone [E[E]
-

o @@ @
@ e @

¢+
MODE SPACE

Figure 3-14. The DefaultColorPhone emulator

Chapter 3: J2ME Architecture and Development Environment

Rerun your application several times, alternating among device emulators. Figure 3-15
simulates your application running a DefaultGrayPhone, and Figure 3-16 emulates the
Motorola i85S cellular telephone.

MiDlets on the Internet

The Wireless Toolkit can run MIDlets that access Internet resources by configuring the
emulator to interact with a proxy server and let you monitor activities between the MIDlet
and the Internet for debugging purposes. You configure the emulator for the Internet
by selecting Edit | Preferences. The Network Configuration tab is used to set the port
number and server name of the proxy server. The Trace tab is used to set preferences

] DefaultGrayPhone [HE

e

atll
[Select one to

- o @O

D @ @
= o o
CE

MODE 5P

Figure 3-15.

The DefaultGrayPhone emulator

67

68

J2ME: The Complete Reference

Motorola_iBbs [_]

Emulation Only

Figure 3-16. The Motorola cellular telephone emulator

for monitoring the interactions between the MIDlet and the Internet. There are four
options that you can set by selecting the appropriate check boxes (Figure 3-17).

The Trace Garbage Collection option displays the status of objects that include
memory allocation of existing objects, the number of objects on the heap, and the size
of the largest free object. The status is displayed whenever the garbage collector is
invoked.

The Trace Class Loading option will display the name of each class as it is loaded into
the emulator. The Trace Class Method Calls option logs object and related methods when

Chapter 3: J2ME Architecture and Development Environment 69

they are called. Display Exceptions causes all exceptions to be displayed regardless of
whether they are caught or uncaught.

The Performance, Monitor, and Storage tabs are used to fine-tune the Wireless
Toolkit for those aspects of an emulator.

Preferences
Preferences for:

B | BEE =Bl l] | Metwork Configuration] Trace] F'erfurman[:e] Munituringl Storage]
| PalmCSEmulatar
Type Address of proxy server

HTTP | o
Security] : |
Hitp Wersion

& HTTRM .1

 HTTRA.0

oK J cancel J

Figure 3-17.

The Trace tab contains preferences for monitoring MlIDlets over the
Internet.

This page intentionally left blank

The

Complete <
Reference

J2ME Best Practices
and Patterns

72 J2ME: The Complete Reference

primarily because of the limited resources found in these devices. You must assume
that the small computing device contains minimal memory and storage room for
persistent data, as discussed in the first two chapters of this book.

Many traditional systems design methods and best practices are simply not appropriate
for building applications to run on small computing devices. This means that you must
rethink your approach to designing an application earmarked for a small computing
device. Fortunately, there are best practices and patterns that you can implement in your
design that overcome many limitations inherent in small computing devices. In this chapter
you’ll learn about best practices and patterns for developing J2ME applications.

Designing applications for small computing devices is a challenge, to say the least,

___| The Reality of Working in a J2ME World

A small computing device has a radically different hardware configuration than traditional
computing devices such as desktop computers and servers. It is for this reason that you
must take into account the device’s hardware configuration when designing your J2ME
application. Consider the following differences between traditional computing devices

and small computing devices.

Traditional computing devices are under continuous power from the power grid, while
some small computing devices such as cellular telephones rely on battery power that
diminishes during the course of operation. A power grid powers other small computing
devices such as set-top boxes and appliances.

Another important difference between traditional computing devices and small
computing devices is the network connection. Unlike traditional computing devices,
mobile small computing devices connect to a network via a radio or infrared connection
whose quality varies depending on the distance of the device from a network receiver
and the strength of the signal generated by the device. Some nonmobile small computing
devices such as set-top boxes use a hard-wired network connection similar to traditional
computing devices. Inconsistency in a network connection and the diminishing longevity
of power typically require the user of a small computing device to synchronize data and
applications frequently with a desktop computer or server.

As you learned in Chapter 1, programs and data are stored in a small computer
device’s memory, commonly referred to as primary storage. These are lost when the device
drops power, although many devices have a secondary battery to retain programs and
data as long as possible. Once lost, programs and data must be reloaded into the device.
Secondary storage is not usually available on a small computing device. Therefore, a J2ME
application should rely on data stored offline in a desktop computer or server rather than
data stored in the device’s primary storage. Data stored offline can be reloaded into the
device using a network connection.

Don’t expect a mobile small computing device to transmit and receive data at the
same rate as a device on a hard-wired network. Data transmission between a mobile
small computing device and a traditional computing device is slow in comparison to

Chapter 4: J2ME Best Practices and Patterns

a hard-wired network connection because radio and infrared technology offers a
narrower transmission bandwidth than that found in hard-wired network connections.
A bandwidth is the number of communications channels available to transmit bits of
data simultaneously.

Many users of your J2ME application expect the same response from your application
as they experience from desktop computer applications. Therefore, you must design
your J2ME application to minimize and optimize data transmission with offline data
sources. One way to optimize your J2ME application is called ROMizing the application
for run-time operations. ROMizing creates a machine code image of an application before
the application is deployed on the small computing device. In comparison, using a just-
in-time compiler, or other techniques employed by the Java Virtual Machine, optimizes
J2SE and J2EE applications.

| Best Practices

Over time and through trial and error, J2ME developers have come up with the best way
to solve complex J2ME programming problems. And these techniques are called best
practices and patterns. Best practices are proven design and programming techniques used
to build J2ME systems. Patterns are routines that solve common programming problems
that occur in such systems.

Professional developers use best practices and patterns to avoid making common
mistakes when designing and building a J2ME application. You can benefit from
the experiences of professional J2ME developers by incorporating appropriate best
practices and patterns in the design of your J2ME application. You'll learn about these
best practices and patterns in the following sections.

Keep Applications Simple

You must adapt to a new mind-set when creating applications for small computing devices
because of limited resources available and the inability to easily expand resources to
meet application requirements. Typically, you design an application by dividing it into
objects that have associated data and methods. Let’s use an order form as an example.
An order form is an object that has an order number, customer number, product number,
and related data. Likewise, an order form has functionality associated with it, such as
inserting a new order, modifying an existing order, and deleting an order. And the order
form has one or more menu options that enable a user to navigate the order form.

You design a J2ME application by also dividing the application into pieces. However,
the divisions of a J2ME application are much finer divisions than those found in a typical
application. For example, a common division of a J2ME application is a menu option rather
than a menu object or menu method of an object. Each menu option is its own MIDlet.
Menu option MIDlets are packaged in the same MIDlet suite along with other MIDlets
related to the application.

73

74

J2ME: The Complete Reference

The J2ME device’s application manager is used to present each MIDlet (menu option)
on the device’s menu and in this way reduces processing resources normally required
to run the application’s own menu (Figure 4-1).

The best practice is to keep your application design simple. Limit your design
to minimum functionality required to meet user expectations. Place each functional
component in its own MIDlet where possible, and package the application’s MIDlets
in the same MIDlet suite. This enables the device’s application manager to manage
MIDlets and the resources used by MIDlets.

Keep Applications Small

The size of your J2ME application is critical to deploying the application efficiently. The
best practice is to remove unnecessary components of your application in order to reduce
the size of the overall application. Fancy bells and whistles that have become the hallmark
of many desktop applications also increase the size of an application. While elaborate
applications work well on the desktop, they tend to be less adaptive to small computing
devices.

] DefaultGrayPhone [HEl E3

Address Book

Launch

Figure 4-1. Make each menu option a MIDlet, and let the application menu display

each menu option.

Chapter 4: J2ME Best Practices and Patterns

Anyone who uses a J2ME application expects the application to download quickly
to the small computing device and run among other applications on the device. A smaller
application meets these expectations because fewer bytes need to be downloaded and
stored in memory on the device.

Besides stripping away the bells and whistles and other unnecessary features from
your J2ME application, you should also deploy your application as a JAR file. A JAR file,
as you learned in the previous chapter, is a compressed version of a J2ME application.

On some occasions, you'll discover that even a stripped-down version of your
application takes too long to download or simply is too large to run on the small
computing device. In these situations, divide your application into several MIDlets,
and then combine the MIDlets in a MIDlet suite, as described in the previous chapter.

Limit the Use of Memory

In addition to removing unnecessary features from your application, design your
application to manage memory efficiently. There are two types of memory management
that should be used in the J2ME application. These are overall memory management and
peak time memory management. Overall memory management is designed to reduce
the total memory requirements of an application. Peak memory management focuses on
minimizing the amount of memory the application uses at times of increased memory
usage on the device.

A primary way to reduce total memory requirements of your application is to avoid
using object types. Instead, use scalar types, which use less memory than object types.
Likewise, always use the minimum data type suited for storing data. For example, some
developers use an int as a binary flag where only one of two values is assigned to the
variable. A boolean value requires less memory and therefore should be used in place
of an int. This and similar data management subtleties usually have little or no noticeable
impact on a non-J2ME application. However, this kind of attention to detail will have
a dramatic impact on the performance of a J2ME application.

Peak time memory management requires you to manage garbage collection. J2ME
does have a garbage collector, but as with J2SE, you don’t know when the garbage collector
will collect your garbage. Therefore, it is critical that you clean up after the application
is finished using memory.

Here are a few ways to manage your own garbage collection: First, allocate an object
immediately before the object is used in the application rather than at the beginning of
your application. Allocating memory at the beginning of the application reserves memory
long before the object will be used within the application. This memory could be utilized
by other parts of the application until the application requires the object. Next, set all
references to objects to null once the application no longer needs the object. This decreases
the memory application of the object to the minimum memory necessary to store an
object reference.

Always reuse objects instead of creating new objects. This reduces both memory
allocation and the need for processing power. Memory allocation is reduced because

76

J2ME: The Complete Reference

multiple references can use the same object at different times in the application’s life
cycle. Obviously, both objects that use the same memory cannot run simultaneously.
The need for processing power is reduced because a portion of the processing required
to allocate new memory doesn’t need to be invoked since memory has already been
allocated when the object is instantiated.

Reducing the likelihood of exceptions is another technique for lowering memory
usage of your application. The fewer exceptions that might be thrown, the less memory
your application requires. And the last best practice to reduce memory usage is to release
all resources immediately following their use within your application. Releasing a resource
makes the resource and related memory available to other components of your application
and to other applications running on the small computing device along with your
application.

Off-Load Computations to the Server

Small computing devices are designed to run applications that do not require intensive
processing because processing power common to desktop computers is not available on
these devices. This means that you must design your J2ME application to perform minimal
processing on the small computing device. However, the reality is that sophisticated,
industrial-strength applications require processing that is beyond the capabilities of these
devices. At first glance, you might assume that small computing devices are unable to
run processing-intensive applications, and you’d be correct in your assumptions. But
there is an alternative that lets you combine the convenience of a small computing device
with an application that requires intense processing.

The alternative is to build a client-service J2ME application or web services J2ME
application. There are two levels of operation in a client-service application. These are
the client level and the server level. The small computing device runs the client level that
provides user interface and presentation functionality to the application. The server-side
level processes client requests and returns the result to the small computing device for
presentation to the user. Nearly all processing occurs on the server side of the application.

There are three tiers in web services. The first layer is the client tier, sometimes referred
to as the presentation tier. This is where a person interacts with an application. The second
layer contains the business logic that is used to fulfill requests from a client by calling
appropriate software on the processing tier. Processing software returns results to the
business logic layer, and in turn, those results are returned to the client for presentation
to the user.

Let’s say an overnight delivery person is unsure of the recipient’s address and uses
client software in his handheld computing device to query the company’s database for
the recipient’s telephone number. The request is captured by client software and sent over
a wireless network connection to the business logic software running on the corporate
server (Figure 4-2). The business logic software assesses what web services are necessary
to fulfill the request and proceeds to invoke those web services, passing the necessary
information from the query to respond to the client’s request.

Chapter 4: J2ME Best Practices and Patterns

e

i

4 A

Figure 4-2. A request is captured and sent by client software to business logic

software for processing.

In this example, the business logic software determines that the database management
system (DBMS) software (processing tier) is required to locate the customer’s telephone
number in the database. The DBMS running on the processing layer handles processing
required to locate the telephone number in the database and forwards the telephone
number to the business logic layer, which sends the telephone number to the delivery
person’s handheld computer.

Processing on the client is limited to displaying the user interface, capturing a user
request, opening and maintaining a network connection to the back-end systems, sending
(request) and receiving information (telephone number), and presenting incoming
information to the user of the small computing device.

Manage Your Application’s Use of a Network Connection

Besides lightening the processing load on the small computing device, you must also be
concerned about the availability of a network connection. Some small computing devices
are mobile, wireless devices where a network connection is not always available, and
even when available, the connection might be broken during transmission due to the
positioning of the transmitter and receiver (for example, when moving from one cell

to another in a cellular telephone network).

Cellular telephone networks use technology that attempts to maintain connection
as the mobile device moves from one cell to another cell. In reality there are dead zones
where the mobile device is outside the range of the cellular telephone transceiver. The
connection is broken in these dead zones, and sometimes it cannot be automatically
reestablished by the telephone company. The drop in communication can occur without
warning, as many cellular telephone users have experienced.

Although you cannot avoid a break in communication, you can take steps to reduce the
impact on the user of your application. Begin by keeping transmissions short—transfer
the minimum information necessary to accomplish a task. Let’s say your application is
designed to retrieve email messages from a server. Instead of retrieving all emails in an
inbox, you can retrieve the “From,” “Subject,” and “Data received” fields from the last

77

78

J2ME: The Complete Reference

ten emails that were placed in the inbox. Your J2ME application can present these fields
on the screen and then give the user the options to select an email to read, select a preview
for an email, delete an email, or retrieve the next ten emails.

Consider using store-forwarding technology and a server-side agent whenever your
J2ME application requests a lot of information. A server-side agent is software running
on the server that receives a request from a mobile device and then retrieves requested
information from a data source, which is very similar to the business logic layer of web
services technology. The results of the query are then held by the agent until the mobile
device asks for the information, at which time the information is forwarded to the
mobile device.

The request from the mobile device consists of a small amount of data. The agent
can accumulate large amounts of data from database management software to fulfill
the request and then forward small amounts of data to the mobile device.

Let’s say that a customer stopped an overnight delivery carrier on the street corner
and asked for a shipping status. The customer doesn’t have any particulars about the
shipment except for her company name, address, and destination. The delivery service’s
mobile tracking system can be designed to efficiently respond to the customer’s request
by using store-forwarding technology and a server-side agent (Figure 4-3). The mobile
device could send a request to the agent for all shipments from the company made from
the zip code given to the carrier by the customer.

(==
s 1
e
— @
1
e
% % % % Client
== ==
Agent
e
1
_
==
Figure 4-3. An agent works on the server side to act on behalf of client software
running on the small computing device.

Chapter 4: J2ME Best Practices and Patterns

The agent forwards the request to the tracking system’s database management
software, which returns complete information for 30 shipments. Software running on
the mobile device polls the agent periodically (once per second), asking for the latest,
next, or previous shipping number and destination, depending on the option selected
by the carrier. The carrier then reviews the destinations of the ten shipments with the
customer to narrow the search for the customer’s shipment. Once the customer identifies
the correct shipment, the mobile device requests status information about the shipment
from the agent.

Always build into your mobile application a mechanism for recovering from a
transmission drop. For example, retain key information about a request on the mobile
device until the request is fulfilled. The mobile application can then use the retained key
information to resubmit the request either automatically or as a user option if there is
a breakdown in communication.

Simplify the User Interface

Most desktop applications have a standard set of graphical user interface objects such
as text boxes, combo boxes, radio buttons, check boxes, and push buttons. These objects
are accessible to the user through a mouse, keyboard, and other input devices commonly
associated with a desktop computer. However, small computing devices use a variety
of user display and input devices. Some devices, such as a cellular telephone, have an
inch-square display and a telephone keypad for data input. Other devices, such as personal
data assistants, have wide rectangular screens and a hunt-and-peck keyboard.

There is a standard display and input for desktop computers, but you cannot say the
same about small computing devices. The variety of shapes and hardware configurations
found in devices classified as small computing devices makes it nearly impossible to
standardize on a set of user interface objects for these devices. Given this limitation, you
still need to provide a user interface for your J2ME application. Here are several practices
that you should consider following when designing a user interface for a small computing
device.

It is critical that you design a user interface that takes advantage of convenient features
found on a small computing device and avoid user interactions that are awkward to
perform. For example, entering personal information using a small computer device such
as a cellular telephone or PDA is difficult, to say the least, although the information can be
entered given the time and patience. A more convenient approach is to design a desktop
companion application in which personal information is entered and then downloaded to
the device by selecting a menu option on the device’s keypad.

Where possible, take advantage of the user interface provided by the device’s
application manager, rather than designing your own. As you saw in the previous
chapter, the application manager lists each MIDlet in the MIDlet suite as a menu option,
avoiding the need for the programmer to develop a menu.

If you decide to create a user interface containing a menu, consider the available input
mechanisms of the small computer device before beginning your design. Some devices
have touch screens that enable you to use icons, rather than words, to represent menu

80

J2ME: The Complete Reference

options. Other devices, such as cellular telephones, have limited keypads. Therefore,
you should carefully select shortcut keys that activate menu selection to conform to
the keyboard. Let’s say three options are presented in a list on the screen. Typically,
you identify each option with a shortcut key that is a sequence of letters (A, B, C), or
numbers (1, 2, 3), or a letter within the name of the option.

Selecting letters A, B, and C is easy on a standard keyboard, but awkward on a cellular
telephone keypad because all three letters are assigned to one key. Some keypad algorithms
recognize a letter by the number of times the key is pressed—press once for the letter A,
twice for B, and three times for C. A better design is to avoid using sequential letters as
such and either use the first letter of keys on the keypad or numbers as a shortcut key
(Figure 4-4).

Limit the amount of user input into your application to simple menu selections and an
occasional few fields of text or numbers, depending on the design of the small computing
device. The rule of thumb: a user should be able to interact with your application by using
a thumb while holding the device in one hand.

] DefaultGrayPhone Sl E3

—

(7o L Grov J G
L7~
(E

MODE 3pa

Figure 4-4. Select letters as shortcut keys that are easily entered into the small
computing device.

Chapter 4: J2ME Best Practices and Patterns

Use Local Variables

Limited resource is the theme that echoes through design considerations for applications
that run on small computing devices. As a developer, you cannot assume there are
sufficient resources on every small computing device to run your application. Failure
to seriously recognize this theme will result in your application being unable to run on
many small computing devices. Therefore, it is critical to evaluate processing requirements
of each routine within your application. Your objective is to exclude routines that increase
processing overhead if a less processing-intense routine can accomplish the same task.

You'll find this line of thought radically different from the mind-set used to write
applications for desktop devices and server devices, where you can safely assume that
sufficient resources exist to run an application. Desktop devices and server devices
typically have more than enough resources available to process an application efficiently.

Data storage is a key area within an application for reducing excessive processing.
In many applications, developers assign values to data members of a class rather than
using a local variable. Assigning data to a class member adheres to object-oriented design
philosophy, which is prevalent in application design.

Although encapsulating data within an object tightly controls access to the data,
this advantage is realized at the expense of additional processing time whenever the
application accesses the data member. Accessing a data member of a class requires
more processing steps than accessing the same data if the data is stored as a local variable.
Therefore, accessing a local variable is less processing intense than accessing a class
member.

You can increase processing of your application if you eliminate the extra steps of
accessing a data member of a class by assigning values to local variables. Of course, you'll
need to weigh the gains in processing against the benefits of encapsulating data in a class.
However, you'll find processing considerations an overriding factor in data-intense
applications that run on a small computing device.

Don’t Concatenate Strings

Concatenating strings is another processing drain that can be avoided by designing an
application to eliminate concatenations or at least reduce the number of concatenations
to the minimum necessary to achieve the objective of the application.

Concatenation also increases the application’s use of memory in addition to increasing
the application’s processing requirements, which becomes apparent by comparing
processing a string with processing a concatenated string.

A string is an array of characters terminated by a NULL and stored sequentially in
memory. Let’s assume the application wants to compare two strings, both of which are
four characters and reside in memory. The application instructs the small computing
device to copy the first character of each string into the CPU for comparison. This process
continues until either the null character is reached or a letter pair is different. The entire
process might require ten reading instructions and five comparison instructions, depending
on when a mismatch is discovered (see Figure 4-5).

82

J2ME: The Complete Reference

A B[c | D]\o] A [B[c | D]\o]
LA j=1A]
B J=1[_B |
¢ h=1c]|
. Db j=1[D|
[N | = N0 |
Figure 4-5. Ten reading instructions and five comparison instructions are
necessary to compare two strings.

However, additional processing steps are necessary if one of those strings is a
concatenated string. Let’s divide the first string into two strings, as shown in Figure 4-6.
The left string must be concatenated into the first string; afterwards, the first string and
the target string are compared.

The concatenation process introduces six additional processing steps: three instructions
to read each character of the second string and three more instructions to write those
characters to the end of the first string.

Besides the increase in processing steps, concatenation also requires more memory than
if the first string and second string did not have to be concatenated. Notice in Figure 4-6
that the second string remains in memory after the strings have been concatenated.
Therefore, you can reduce processing time and memory usage by avoiding concatenating
strings. An alternative is to concatenate strings before the string is loaded into the small
computing device.

If there is a need to concatenate strings, use a StringBuffer object. This makes efficient
use of memory when strings are appended to the buffer, although there is additional
processing overhead.

Avoid Synchronization

It is very common for developers to invoke one or multiple threads within an operation.
Invoking a thread is a way of sharing a routine among other operations. For example,
a sort routine can be shared simultaneously by multiple operations that must sort data.
Each operation invokes the sort routine independent of other operations, although the
same code is being executed for all operations. Deadlocks and other conflicts might
arise when multiple operations use the same routine. These problems are avoided by
synchronizing the invocations of a thread, as you probably remember when you learned
Java programming.

Always use a thread whenever an operation takes longer than a tenth of a second to
run because a thread requires less overhead than non-thread invocation methods, and
therefore you'll see a performance increase in your application.

Chapter 4: J2ME Best Practices and Patterns

First string Second string

lal Bl f[c D]
First string ‘ ‘ Target string

e v N

Il Al BJ]C[D]\ | Il A] BJ]C[D]\ |
A f=1[4a]
B §=1[5B]
Lcj=1[c]
D J=1[D]
[N = [\o |

Figure 4-6. Concatenating strings requires processing and memory allocation not
required if strings are concatenated before being loaded into the small
computing device.

Another way to increase performance is to avoid using synchronization where
possible. Synchronization requires additional processing steps that are not necessary
when synchronization is deactivated. However, you must consider the performance
trade-off with possible conflicts among operations that use the same threaded routine.
As a general rule, avoid using synchronization unless there is a high likelihood that
conflicts among operations will occur.

Thread Group Class Workaround

A common way of reducing the overhead of starting a new thread is to create a group
of thread objects that are assigned threads as needed by operations within an application.
Less processing is required to assign a thread to an existing thread object than to create
a new thread object.

Grouping thread objects is made possible by the ThreadGroup class, but J2ME does
not support this class. You can work around it, however, by creating your own grouping
using the Collection class. You can store groups of thread objects in a collection and then
use standard collection methods to start and stop threads in the collection and assign
threads to particular thread objects within the collection.

Upload Code from the Web Server

Version management is always a concern of application developers, especially when
applications are invoked from within a small computing device. It can be a nightmare
keeping track of various versions of an application once an application is distributed.

84

J2ME: The Complete Reference

You can reduce and possibly eliminate problems associated with multiple versions of
the same application by requiring invocation of the application from a web server. Every
device that invokes the application will then use the same copy of the application that
is stored on a web server accessible from the Internet, extranet, or intranet.

Here’s how a small computing device can invoke a web server-based J2ME
application:

I midp -transient http://www.mycompany.com/welcome.jad

Rather than running a local JAD file, the -transient option specifies that the JAD file
is located on a web server identified by the URL on the command line. In this way, the
developer only needs to update one copy of the application, and distribution is handled
by making the latest version of the application available on the web server.

This technique is ideal for set-top boxes that are connected to a web server via a cable
television connection or satellite connection. Software can be updated each time the set-
top box comes online without the user or a technician having to reinstall the application.

Reading Settings from JAD Files

There will likely be occasions when you need to have your application perform in a
certain way, depending on the type of small computing device that runs the application.
Although you can create versions of your application for specific small computing devices,
there is a more efficient approach to tailoring an application to a device.

First, design your application with switches that activate and/or deactivate routines
depending on the value of a setting. A setting is a value assigned to a variable that is
either created within the application or passed to the application as a command line
parameter.

However, J2ME applications are capable of reading the value of a setting from a JAD
file and manifest file. A setting is a user-defined value created in either file, as discussed
in Chapter 3. A good practice is to create a user-defined value within the JAD file rather
than within the manifest file because the JAD file can be modified without having to
repackage your application. A manifest file is a component of a package (see Chapter 3).

Listing 4-1 shows a typical JAD file that includes a user-defined value called Model-
Version: M253. The J2ME program in Listing 4-2 illustrates how to read this user-defined
value during run time without having to recompile or repackage the application.

A user-defined value is read by invoking the getAppProperty() method and passing
the name of the user-defined value to the getAppProperty() method. The getAppProperty()
returns the user-defined value from either the manifest file or the JAD file depending on
which of these files contains the user-defined value.

Listing 4-1
A JAD file
containing a
user-defined
value

Listing 4-2
A program
that reads a
user-defined
value from
the JAD file

Chapter 4: J2ME Best Practices and Patterns

Listing 4-2 reads the Model-Version user-defined value defined in the JAD file and
displays the value on the screen. Of course, you can create a compound statement that
invokes the getAppProperty() method and then assigns the returned value to a variable
or uses the return value directly in an expression.

MIDlet-Name: Best MIDlet

MIDlet-Version: 2.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: http://www.mycompany.com/bestmidlet.jar
MIDlet-1: BestMIDlet, /images/BestMIDlet.png, Best.BestMIDlet
Model-Version: M253

public class BasicMIDletShell extends MIDlet
{
public void startApp()
{
System.out.println (getAppProperty ("Model-Version")) ;
}
public void pauselpp ()
{
}
public void destroyApp(boolean unconditional)
{
}

Populating Drop-down Boxes

A drop-down box is a convenient way for users to choose an item from a list of possible
items, such as an abbreviation for a state. Traditionally, content of a drop-down box is
loaded from the data source once when the application is invoked and remains in memory
until the application terminates.

While caching the contents in memory is a best practice in Java programming, caching
is a questionable practice when developing a J2ME application. Loading a list of data
for a drop-down box when the J2ME application is invoked is efficient if this is a short
list that doesn’t require substantial memory resources.

Load the list dynamically from a server whenever the list is long. Release the list once
the user has made a selection, and then reload the list the next time the drop-down box
is invoked. In this way, memory used to store the list can be reused between calls to the
drop-down box.

85

86

J2ME: The Complete Reference

The question that you're bound to be asking is what constitutes a short or long list of
items. You'll need to test your application loading the list once and then loading the list
dynamically for each invocation to determine which method delivers the best performance.
Be sure to test in real-world conditions when loading a list from a server. Any processing
delay by the server responding to a request for the list can severely impact your
application’s user response time. Likewise, transmission delays will also deliver a negative
user experience with your application.

In contrast, caching a long list limits memory availability to other routines within your
application and to other applications running on the small computing device. This might
result in some features of your application becoming unavailable or worse—a user won't
be able to load another application if your application is loaded in memory.

Minimize Network Traffic

Developing a J2ME application is a balancing act between deciding whether processing
should be performed by the small computing device or by a server. The choice depends
upon many factors, including the amount of transmission that must occur for each process.
A good practice is to off-load as much processing as is reasonable to a server and minimize
the number of processes that need to be invoked by the J2ME application in order to
reduce network transmissions.

Collect all the information from the user that is required by the process at one time,
and then forward the information to the server when invoking the process. For example,
your application might be used to retrieve a list of customers that the user may later filter
to remove unwanted customers or reorder the customer list into a more appropriate
sequence. You can reduce the number of processes and network transmission by requiring
the user to select the filter and sequence as part of the request for the customer list
(Figure 4-7). In this way, the database server can create the customer list in the desired
order without having the user make subsequent requests to manipulate the customer
information.

Dealing with Time

J2ME applications that rely on current time might incur a problem that is not realized
in desktop computer and server applications. Current time is determined by the date/
time setting on the device. Desktop computers and servers are stationary, and therefore
current time reflects the time zone where these devices are located. However, the same
isn’t true of a mobile small computing device because the device can be moved to multiple
time zones.

The problem of time-sensitive data is further compounded by the fact that the date/
time setting is device dependent. For example, a number of cellular telephones have a
geographic positioning feature that enables the device’s operating system to know the
exact location of the device. Some geographic positioning systems use a global position
system (GPS) that pinpoints the device by triangulating satellite-transmitted signals. Other

Chapter 4: J2ME Best Practices and Patterns

Processing layer

=
m
~=F
[
— Business logic layer i \ .
—— =
T 3
== ==
[[
E E E E Presentation layer
V\
= Filters and sorts data
|
~=F
[
==

Figure 4-7. Let the business logic layer filter and sort data rather than filtering
and sorting data in the small computing device.

geographic positioning systems determine a device’s time zone based on the cellular
telephone network’s cell that receives the device’s transmission (Figure 4-8).

Those mobile small computing devices that have a built-in geographic positioning
system typically adjust the date/time setting on the device automatically as the device
moves to a new time zone. However, not all mobile small computing devices have a
geographic positioning system on board (for example, PDAs) and therefore rely on the
user to adjust the date/time setting when crossing into another time zone.

Unfortunately, there isn’t any practice that guarantees a user will adjust the date/
time setting to reflect the current time zone, although you can remind the user of the
importance of making such an adjustment. Knowing the time zone used when the time-

sensitive data was entered into your J2ME application is critical when analyzing the data.

For example, the data might be time stamped 9:30 AM,, but you still need to know the time
zone in order to properly evaluate the time the data was entered into your application.

The best practice is to always store time based on Greenwich Mean Time (GMT) by
using the getTime() method of the Date class. In this way, the time stamp of all the data
is recorded in a uniform time zone, facilitating the data analysis.

87

88

J2ME: The Complete Reference

Cellular telephone cells ——p-

Figure 4-8. Geographic positioning systems in a mobile small computing device
detect the location of the device, enabling the operating system to
make time zone adjustments.

Automatic Data Synchronization

As discussed at the beginning of this chapter, a small computing device is typically used
to store and manipulate data that changes over time, such as a list of clients and financial
records. Storage of data in a small computing device is temporary because the device
usually doesn’t have secondary storage. All data is stored in primary storage (memory)
and can be lost whenever the device loses power.

Data is permanently stored in secondary storage on a traditional computing device
such as a desktop computer or server. Therefore, it is critical to the success of your
application that you provide a mechanism to efficiently update data in the small
computing device with data stored on the traditional computer’s secondary storage.

Chapter 4: J2ME Best Practices and Patterns 89

Failure to do this will cause both devices to become unsynchronized, resulting in erroneous
data being displayed and manipulated by the small computing device.

A good practice is to build into your J2ME application a routine that automatically
uploads the latest data when the J2ME application is invoked. Likewise, your J2ME
application should automatically download data that has changed to the secondary
storage device prior to the termination of the application.

The small computing device must be connected to the network for both actions to
occur. It is common for the device to automatically log onto the network when the device
is activated. However, some devices might require the user to log onto the network. If
the user doesn’t log onto the network, your application is unable to update data in the
small computing device with data stored in the secondary storage device.

A good practice is to prompt the user to open a network connection while your J2ME
application begins running or right before the application terminates. The prompt should
give the user two choices: open a network connection or skip opening a network
connection until the next time the J2ME application is opened. The prompt should also
explain that if the user postpones opening a network connection, the data retained in the
small computing device might become outdated and might be lost should the device
lose power.

Updating Data that Has Changed

Keep in mind that synchronizing data can be a time-consuming process, depending
on the speed of the network connection and the amount of data that is being updated.
Therefore, you should balance the response time of your application with the need to
retain updated data. Data can become outdated in two ways: when data changes on the
small computing device and when data changes on the secondary storage device, which
is usually the server.

A good practice is to offer the user of your application three options for updating
data: incremental updates, batch updates, and full updates. Incremental updates require
an exchange of data to occur whenever data changes, either on the small computing
device or on the secondary storage device. And only the changed data is exchanged
between devices.

Performance decreases as the number of incremental data changes occur because the
changed data is transmitted following the modification of the data. The batch update
option eliminates the need for incremental updates by updating a batch of data either
periodically or on demand, controlled by the user of the application. A batch update
only transmits data that is changed by either the small computing device or the secondary
storage device.

For example, you might design the application to automatically send a batch when
the application begins, terminates, or during an idle period when the application runs.
Likewise, you should offer the user an option that enables a manual transfer of modified
data as a way for the user to back up changes to the data.

90 J2ME: The Complete Reference

A full update should be available as a user-invoked option because of the time required
to update all data. Typically, this option is used in an emergency to restore data when
incremental and batch updates are unsynchronized.

Be Careful of the Content of the startApp() Method

As you learned in Chapter 3, a MIDlet consists of required methods, each of which is
callable by the small computing device’s application manager. One of those methods is
startApp(), which is called each time the MIDlet is invoked. Intuitively you might assume
that the startApp() method is called once during the life of the MIDlet and therefore is
a perfect place within your application to store code that is to execute once each time the
MIDlet is invoked.

Tips for Developing J2ME Applications

Applications are typically single-threaded.
One application runs at a time.
Applications are event driven.

Users change from one application to another rather than terminating
an application.

Mobile small computing devices are used intermittently.

Applications use multiple subscreens, each displaying only relevant
information.

Mobile small computing devices are typically used in two-minute
sessions 30 times a day.

Applications must accomplish a task within two minutes; otherwise
the user is likely to turn off the mobile small computing device.

Limit user input to a few keystrokes. Develop a PC-based component
of your application that is used for data input.

Users want an instant response from an application.
Off-load processing to a server or desktop computer.

Avoid power-consuming tasks such as communications, animation,
and sound.

Reduce data communication to the bare minimum because users pay
for transmission by byte, usually in the range of 50,000 to 300,000 bytes
per month.

Preload as many files as possible into a mobile small computing device
in order to reduce data transmissions.

Chapter 4: J2ME Best Practices and Patterns

However, a MIDlet is started more than once by the device’s application manager.
For example, the application manager might pause the MIDlet while another MIDlet is
processing and then restart the MIDlet by calling the startApp() method. This means
that only statements that must be executed following a pause should appear within the
startApp() method. Statements that should run once during the lifetime of the MIDlet
should not be placed in the startApp() method and instead should appear within the
MIDlet constructor.

Let’s say your application uses a variable to accumulate the total of several operations
within the MIDlet. Typically, you initialize the variable once when the MIDlet is invoked
the first time. The initialization must be performed in the MIDlet constructor and not
in the startApp() method, otherwise the total will be reset to zero each time the MIDlet
is activated after a pause in operations.

91

This page intentionally left blank

The |
Complete <
Reference &

J2ME User Interface

This page intentionally left blank

The

Complete <
Reference

Commands, Items,
and Event Processing

96

J2ME: The Complete Reference

the application. The user interface can be as simple as pressing a button on the

small computing device, which causes the application to react, or as complex as
displaying a form containing check boxes, radio buttons, lists, and other objects common
to many applications.

Selections made by a user are considered events that are forwarded to your application
by the device’s application manager for processing. The application’s developer must
write code that recognizes an event and then reacts to the event by performing a task
based on the nature of the application. In this chapter you'll be introduced to techniques
used to create a user interface for a J2ME application and to process events that are
generated by the user interacting with your application.

Nearly every J2ME application has an interface that enables user interactions with

J2ME User Interfaces

A user interface is a set of routines that displays information on the screen, prompts the
user to perform a task, and then processes the task. For example, a J2ME email application
might display a list of menu options, such as Inbox, Compose, and Exit, and then prompt
the user to make a selection by moving the cursor keys and pressing a key on the small
computing device. The device’s application manager passes the selection to the application,
where it is compared with known options. If a match occurs, the application performs
the steps necessary to process the option.

A developer can use one of three kinds of user interfaces for an application. These
are a command, form, or canvas. A command-based user interface consists of instances
of the Command class. An instance of the Command class is a button that the user presses
on the device to enact a specific task. For example, Exit is an instance of the Command
class associated with an Exit button on the keypad to terminate the application. The Help
button is also an instance of the Command class that is linked to the Help key on the
device, which is used whenever the user requires assistance.

A form-based user interface consists of an instance of the Form class that contains
instances derived from the Item class such as text boxes, radio buttons, check boxes, lists,
and other conventions used to display information on the screen and to collect input
from the user. A form is similar to an HTML form.

A canvas-based user interface consists of instances of the Canvas class within which
the developer creates images such as those used in a game. In this chapter you'll learn
about the Command class and be introduced to forms. You'll learn how to incorporate
items onto a form in Chapter 6. Chapter 7 introduces you to techniques for developing
the canvas user interface.

Display Class

Before learning how to incorporate instances of the Command class and the Item class
into your application, let’s take a moment to explore how your application interacts with
the small computing device’s screen. The device’s screen is referred to as the display,

Chapter 5: Commands, Items, and Event Processing 97

and you interact with the display by obtaining a reference to an instance of the MIDlet’s
Display class. Each MIDlet has one and only one instance of the Display class. Every J2ME
MIDlet that displays anything on the screen must obtain a reference to its Display instance.
This instance is used to show instances of Displayable class on the screen.

The Displayable class has two subclasses. These are the Screen class and the Canvas
class. The Screen class contains a subclass called the Item class, which has its own
subclasses used to display information or collect information from a user (such as forms,
check boxes, radio buttons). The Screen class and its derived classes are referred to as
high-level user interface components.

The Canvas class is used to display graphical images such as those used for games.
Displays created using the Canvas class are considered a low-level user interface and
are used whenever you need to display a customized screen.

Instances of classes derived from the Displayable class are placed on the screen by
calling the setCurrent() method of the Display class. The object that is to be displayed
is passed to the setCurrent() method as a parameter. It is important to note that instances
of derived classes of the Item class are not directly displayable and must be contained
within an instance of a Form class. An instance of an Item class appears on the screen
when the setCurrent() method is used to show the form. The getCurrent() method of the
Display class is used by a MIDlet to retrieve information about the instances of derivatives
of the Displayable class.

You obtain an instance of the Display class by declaring a reference to the instance
and then assigning the instance to the reference by invoking the getDisplay() method,

Determining the Color Attribute of a Device

Listed here are the steps required to determine the color attribute of a device:
. Create references.

. Create a Display object.

. Create an instance of the Command class to exit the MIDlet.

. Call isColor() method.

. Evaluate the return value of isColor() method.

N Ol = W N -

. Create an instance of the TextBox class that describes results of isColor()
method.

7. Associate the instances of the Command class with the instances of the
TextBox class.

8. Associate a CommandListener with the instance of the TextBox class.
9. Display the instance of the TextBox class on the screen.

10. Terminate the MIDlet when the Exit command is entered.

98

Listing 5-1
A JAD file

Listing 5-2
Using the
Display class
to determine
whether the
screen is
capable of
displaying
color

J2ME: The Complete Reference

as illustrated in the following code segment. Multiple calls to the getDisplay(this) method
return the same Display instance.

private Display display;
display = Display.getDisplay(this);

Once an instance of the Display object is created, you use the Display API (see “Quick
Reference Guide” at the end of the chapter) to display instances of classes derived from
the Display class on the screen and to retrieve information about the screen and currently
displayed objects.

Listing 5-1 contains the JAD file for this MIDlet, and Listing 5-2 illustrates how the
Display class is used to determine the color attribute of the small computing device’s
screen. In this example, the MIDlet invokes the isColor() method of the Display class
to determine whether the screen is capable of displaying color. If so, the MIDlet displays
an instance of the TextBox class reporting that the device has a color screen; otherwise
the instance reports that the device is incapable of displaying color. Of course, in a real-
world MIDlet, the response returned by the isColor() method is used within the MIDlet
either to activate or deactivate routines that manipulate color on the screen.

MIDlet-Name: CheckColor

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: CheckColor.jar

MIDlet-1: CheckColor, CheckColor.png, CheckColor
MicroEdition-Configuration: CLDC-1.0
MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
public class CheckColor extends MIDlet implements CommandListener
private Display display;
private Form form;
private TextBox textbox;
private Command exit;
public CheckColor ()
{
display = Display.getDisplay(this) ;
exit = new Command ("Exit", Command.SCREEN, 1);
String message=null;
if (display.isColor())

Chapter 5: Commands, Items, and Event Processing 99

message="Color display.";
}
else
{
message="No color display";
}
textbox = new TextBox("Check Colors", message, 17, 0);
textbox.addCommand (exit) ;
textbox.setCommandListener (this) ;
}
public void startApp()
{
display.setCurrent (textbox) ;
}
public void pauselpp ()
{
}
public void destroyApp (boolean unconditional)
{
}
public void commandAction (Command command,
Displayable displayable)

c
n
m
P
2
-
m
A
>
o
m

{
if (command == exit)
{
destroyApp (true) ;
notifyDestroyed() ;

The MIDlet is called CheckColor and begins by creating references for instances used
in the MIDlet. These instances are for the Display class, Form class, TextBox class, and
Command class. You'll learn about the Form class, TextBox class, and Command class
later in this chapter. For now it is sufficient to understand that the instance of the Display
class displays a form that contains a text box and the Exit command. The color status
appears in the text box, and the Exit command terminates the MIDlet.

The constructor is defined next. Remember, statements within the constructor are
executed once during the life of the MIDlet when the MIDlet is invoked. The first statement
in the constructor creates an instance of the Display class by calling the getDisplay()
method, which is assigned to the display reference.

100

J2ME: The Complete Reference

Next, an instance of the Command class is created. A later section of this chapter
explains the Command class. For now it is sufficient to understand that the label of the
instance of the Command class in this example is Exit and the instance is assigned to the
exit reference. An instance of the TextBox class is then created. The caption of this instance
is “Check Colors” and is assigned to the form reference.

The instance of the Command class is then associated with the instance of the TextBox
class by calling the addCommand() method and passing the method reference to the
Command class instance, which in this example is called exit.

As you'll learn in the section “Command Class,” a MIDlet must associate a
CommandListener whenever a Command class is instantiated. A CommandListener
listens for command events to occur during the execution of the MIDlet. A command
event is the selection of a Command object by the user of the MIDlet. You associate
a CommandListener with a MIDlet by specifying the listener as an argument to the
setCommandListener() method.

The MIDIet then calls the isColor() method, which returns a boolean value. A true
indicates that the device can display color. A false is returned if the device is incapable of
displaying colors. The instance of the TextBox class is displayed with a message, depending
on the return value of the isColor() method. You'll learn about the TextBox class later in
this chapter and in Chapter 6. However, understand that the first parameter is the caption
of the text box, and the second parameter is the text that appears in the text box.

The Exit command is also associated with the text box, so the user can terminate the
MIDlet when the text box appears on the screen. Likewise, a CommandListener is also
specified for the text box Exit command, which in this case is the MIDlet itself because
the MIDlet implements the CommandListener.

Once the constructor is defined, you must define the standard methods required
by a MIDlet. These are the startApp() method, pauseApp() method, and destroyApp()
method. The startApp() is called by the device’s application manager whenever the
MIDlet is started or restarted following a pause in operation. The startApp() method
contains a statement that calls the setCurrent() method and is passed reference the
instance of TextBox class that will be shown on the screen. You can include additional
statements in the startApp() method as needed by your MIDlet.

The pauseApp() method definition and the destroy App() method definition are empty
in this example because there are no special statements that must be executed when the
MIDlet is paused by the device’s application manager. The commandAction() method
must be defined to receive event reports from the device’s application manager. Whenever
the user selects a command, the commandAction() method is invoked by the application
manager to process the command.

Chapter 5: Commands, Items, and Event Processing

[5] DefaultColorPhone [HE
—

Figure 5-1. The text “Color Display” appears when you run the MIDlet in the
default color phone emulator in the J2ME Wireless Toolkit.

The application manager passes the commandAction() method reference to the selected
command, which is then compared to known commands that were created for the MIDlet.
In this sample the commandAction statement matches the Exit command, which invokes
a destroyApp() method to unconditionally terminate the MIDlet. Right after the execution
of the destroyApp() method, the notifyDestroyed() method is called to notify the
application manager that the MIDlet is terminating. Figure 5-1 and Figure 5-2 show how
this program appears on a generic cellular telephone and the Palm PDA.

101

102

J2ME: The Complete Reference

] DefaultGrayPhone [HE

—

Fanll AEC
heck Colors

- o @
@ @ @
D GO @
o o

MODE SPALE

Figure 5-2. The text “No color display” appears when you run the MIDlet in the
default gray phone emulator in the J2ME Wireless Toolkit.

| The Palm OS Emulator

Before you can run the Palm OS emulator in the J2ME Wireless Toolkit, you'll need to
download Palm OS ROM files from the Palm web site (www.palmos.com/dev). The
ROM file contains the Palm OS required for the emulator to properly perform like a
Palm PDA. You'll also need to join the Palm OS Developer Program (free) and agree to
the online license (free) for ROM files before you are permitted to download them. Be
prepared to spend a few minutes downloading since ROM files are fairly large, even
when compressed into a zip file.

Several ROM files are available for download, each representing a different version
of the Palm OS and each suited for a particular Palm product. Always choose the latest
version of the Palm OS for downloading unless you are designing a MIDlet to run on

Chapter 5: Commands, Items, and Event Processing 103

Running MIDlets

It is strongly suggested that you avoid compiling and executing MIDlets at

the command line because you'll find yourself being bogged down by entering
long command line statements to compile and run a MIDlet. Consider using the
J2ME Wireless Toolkit, or another integrated development environment such as
JBuilder, to compile and run your J2ME MIDlets, instead of working at the command
line. All the examples in this chapter were compiled and executed using the J2ME
Wireless Toolkit.

The Toolkit automatically creates a directory structure for your MIDlet
development project, sets default values for the JAD file, and creates its own JAR file.
You can change settings in the JAD file by using a graphical user interface provided
in the Toolkit. Furthermore, you can quickly test your MIDlet in a variety of cellular
telephone emulators, Palm emulators, and Black Berry pagers by selecting the
appropriate emulator from a drop-down box.

a particular type of Palm device. If your MIDlet is Palm device specific, you'll need to
download the ROM file that corresponds to the Palm OS that runs on that Palm device.

Don't fret if you download the wrong ROM, because the Palm OS emulator displays
an error when running your MIDlet, indicating the proper version of the Palm OS that
is required to run your MIDlet on the Palm device that is being tested in the emulator.
You'll be prompted to enter the location of the ROM file on your hard disk into a dialog
box the first time that you run the Palm OS emulator. Subsequently, the Palm OS emulator
uses that ROM file.

| command Class

You create an instance of the Command class by using the Command class constructor
within your J2ME application. The Command class constructor requires three parameters.
These are the command label, the command type, and the command priority. The
Command class constructor returns an instance of the Command class.

The following example illustrates a cancel command. The first parameter of the
command declaration is Cancel. Any text can be placed here and will appear on the screen
as the label for the command. The second parameter is the predefined command types.
Table 5-1 lists all the predefined command types. The last parameter is the priority, which
is set to 1. The command created by this declaration is assigned to cancel.

I cancel = new Command("Cancel", Command.CANCEL, 1);

104 J2ME: The Complete Reference

Command Type Description

BACK Move to the previous screen

CANCEL Cancel the current operation

EXIT Terminate the application

HELP Display help information

ITEM Map the command to an item on the screen

OK Positive acknowledgment

SCREEN No direct key mapping available on device; command

will be mapped to object on a form or canvas

STOP Stop the current operation

Table 5-1. Command Types

It is important to understand that although a command type is mapped to a key
on the device’s keypad, the device does not process the command. When the user selects
the command, the application manager detects the event and passes the selected command
to your application for processing.

. Your selection of command type is a request and not a directive to the small computing
Caution ; . . :
device to map the command to a particular keypad key. The device always has the option
to ignore your request and map the command in any way it wishes.

Priority indicates your preference as to the importance of each command object created
by your application. Priority is established by the value that you assigned to the third
parameter of the command declaration. A low value has a higher priority than a higher
value. The device’s application manager has the option of ignoring the priority or using
the priority to resolve conflicts between two commands. For example, an application
manager may use the priority to determine the order in which command labels appear
on the screen.

A word of caution: you have no control over how the device’s application manager
uses the priority of command objects created by your application.

Chapter 5: Commands, Items, and Event Processing 105

CommandListener

Every J2ME application that creates an instance of the Command class must also create
an instance that implements the CommandListener interface. The CommandListener is
notified whenever the user interacts with a command by way of the commandAction()
method. Classes that implement the CommandListener must implement the
commandAction() method, which accepts two parameters. The first parameter

is a reference to an instance of the Command class, and the other parameter is

a reference to the instance of the Displayable class, as illustrated in Listing 5-3.

Listing 5-3 public void commandAction(Command command, Displayable displayable)
Creating a {
comn@n& if (command == cancel)

Action()

method {

destroyApp (false) ;
notifyDestroyed() ;

The device’s application manager calls the commandAction() method and passes
the command selected by the user. You must evaluate the command to determine the
command selected by the user. An if statement is used in this example to evaluate
the command.

Compare the command with the reference to the instance of the Command class
that was returned when you created the command within your application. The Exit
command was created in the previous section of this chapter and is used within the
if statement in Listing 5-1 to determine whether the user selected the Exit command.

The commandAction() method must contain all the processing that is to occur when
the user selects a command. The destroyApp() method is called to unconditionally
terminate the application; and before the application terminates, the notifyDestroyed()
method is called to notify the device’s application manager that the application is
terminating. You learned about these methods in Chapter 3.

Online Help Example

Providing online help is a routine common to nearly every well-written J2ME application.
Online help instructs users on interacting with the application. Instructions are displayed
in a text box that the application displays when the user selects the Help command
(Figure 5-3). You'll learn more about using a text box in the next chapter.

106

J2ME: The Complete Reference

] DefaultColorPhone [ENJE]
—

Fall
Online Help
xample

- o @
£ @D
D GO @
.
;t

t +
MODE SPALE

Figure 5-3. Select the button below the Help command to display the help screen
on the default color phone emulator.

The user returns to the previous screen by selecting the Back command (Figure 5-4).
The Back command removes the Help text box from the screen and returns the user to
the original screen. The last command that is found in all J2ME applications is the Exit
command. The Exit command terminates the application.

You can also run this MIDlet in the Palm OS emulator by selecting the Palm OS
emulator in the Wireless Toolkit before selecting the Run button. Select the OnlineHelp
icon when the Palm appears on the screen. This runs the MIDlet. Next, press the Menu icon
on the bottom left of the screen. You'll notice that a menu appears at the top of the screen.
Select the Options menu item and then the Help menu item to display the help text
created by the MIDlet (Figure 5-5).

Listing 5-4 contains the JAD file for Listing 5-5. Listing 5-5 illustrates how to use
commands to create an online help routine for your application. You can enhance the
online help routine by using instances of the Item class other than a text box, which
you'll learn about in the next chapter.

Chapter 5: Commands, Items, and Event Processing 107

Listing 5-4 MIDlet-Name: OnlineHelp
A JAD file for MIDlet-Version: 1.0
online help MIDlet-Vendor: MyCompany
MIDlet-Jar-URL: OnlineHelp.jar
MIDlet-1: OnlineHelp, , OnlineHelp

MicroEdition-Configuration: CLDC-1.0
MicroEdition-Profile: MIDP-1.0
MIDlet-JAR-SIZE: 100

private Display display;

Listing 5-5 import javax.microedition.midlet.*; §
Online help import javax.microedition.lcdui.*; <
rmﬁ?g#g:g public class OnlineHelp extends MIDlet implements CommandListener E
m

objects { ¥

>

(e

m

private Command back;
private Command exit;

private Command help;

private Form form;

private TextBox helpMesg;

public OnlineHelp()

{
display = Display.getDisplay(this) ;
back new Command ("Back", Command.BACK, 2);
exit = new Command("Exit", Command.EXIT, 1);

help = new Command("Help", Command.HELP, 3);
form = new Form("Online Help Example") ;
helpMesg = new TextBox("Online Help", "Press Back to return
to the previous screen or press Exit to close this
program.", 81, 0);
helpMesg.addCommand (back) ;
form.addCommand (exit) ;
form.addCommand (help) ;
form.setCommandListener (this) ;
helpMesg.setCommandListener (this) ;
}
public void startApp()
{
display.setCurrent (form) ;
}
public void pauseApp ()
{
}

108

J2ME: The Complete Reference

public void destroyApp (boolean unconditional)

{

}

public void commandAction (Command command,
Displayable displayable)

if (command == back)
{
display.setCurrent (form) ;
}
else if (command == exit)
{
destroyApp (false) ;
notifyDestroyed() ;
}
else if (command == help)
{
display.setCurrent (helpMesqg) ;
}

The MIDlet begins by creating an OnlineHelp class that extends the MIDlet class and
implements the CommandListener, which is used to trap events that occur while the
MIDlet is running. Five variables are declared that will be used to reference instances in
this MIDlet. The first variable is used to reference the Display class instance that is used
to display other Displayable class instances on the screen. Next are three variables that
reference the Back command, Exit command, and Help command. The last variable
references the instance of the Form class that contains commands and the instance of the
TextBox class, which is referenced with the helpMesg variable.

Next, the MIDlet defines a constructor for the OnlineHelp class. The constructor
contains statements that are executed once when the MIDlet is invoked. Remember from
Chapter 4 that the constructor is not the same as the startApp() method. The startApp() is
called by the device’s application manager each time the MIDlet is started, including after
the MIDlet is paused. This means that the startApp() might be called several times after the
invocation of the MIDlet.

The constructor is where you create instances and associate them with other instances.
The constructor begins by obtaining a reference to the instances of the OnlineHelp MIDlet’s
Display class. The next three instances (Command class, a Form class, and TextBox class)
are then created.

Chapter 5: Commands, Items, and Event Processing 2109

[E] DefaultColorPhone Sl
—

Faantl AEC
Online Help

Frevious screen
or press Exitto
cloze this

Figure 5-4. Select the button below the Back command to return to the previous

screen in the default color phone emulator.

Palm OS™ Emulator

(Actions Go rTTd
Java . R
Help...
Hel|

Figure 5-5. Select Help to run the MIDlet.

110 J2ME: The Complete Reference

Creating Online Help

Listed here are the steps required to create online help.

. Declare references.

. Obtain a reference to the instance of the Display class.

. Create an instance of the Command class to return from the help page.
. Create an instance of the Command class to exit the MIDlet.

. Create an instance of the Form class.

. Create an instance of the TextBox class that contains the help text.

NN O UG W DN -

. Associate the instance of the Back Command class with the instance
of the TextBox class.

8. Associate the instance of the Exit Command class and the instance
of the Help Command class with the instance of the Form class.

9. Associate a CommandListener with the instance of the Form class.
10. Associate a CommandListener with the instance of the TextBox class.
11. Display the form.

12. Evaluate the command that the user entered into the small computing
device.

13. If the command is the Back command, display the form.
14. If the command is the Exit command, terminate the MIDlet.

15. If the command is the Help command, display the text box.

The instantiation of the Command class sets the label for each command, the reference
to the instance type, and the suggested priority for each command. The Form class
constructor is used to set the caption to “Online Help Example.”

The TextBox class constructor is where you specify the title and text. The TextBox class
constructor requires four parameters. First is the title of the text box, which is “Online
Help.” Next is the text that appears in the text box. You'll notice in Figure 5-4 that there
are too many lines of text for all the text to appear simultaneously on the screen. Therefore,
you should take into consideration the screen size when preparing any text display in
order to reduce the need for the user to scroll through the text. You can use multiple
screens and an additional command (such as Forward) to enable the user to page through
your screens.

The third parameter is the number of characters in the message, which in this example
is 81. The last parameter is a TextField constraint, which is zero in this example and
explained in detail in Chapter 6.

Chapter 5: Commands, Items, and Event Processing 111

Once classes are instantiated, the MIDlet then associates instances with other instances
to create a cohesive form. The addCommand() method of the text box is called to associate
the Back command with the helpMesg text box. This causes the Back command to be
available when the helpMesg text box is displayed. The Exit command and the Help
command are then associated with the form by calling the addCommand() method. The
last two statements within the constructor associate a CommandListener for the form
and the text box.

The startApp() method is the next component of the MIDlet that you need to define.
The startApp() method is called whenever the MIDlet is started by the device’s application
manager. The startApp() contains one statement that calls the setCurrent() method of
the Display class. The setCurrent() method requires one parameter, which is the form
that is to be placed on the display.

The pauseApp() method and the destroyApp() method are left empty because we
don’t require any special task to be performed when the MIDlet is paused or destroyed.
Both methods must be defined in every MIDlet, as you remember from Chapter 3.

The commandAction() method is where commands are processed. The
commandAction() method requires two parameters. The first parameter is a reference
to the instance of the Command class selected by the user and passed to the
commandAction() method by the device’s application manager. The other parameter
is the variable that references the Displayable instance of the event.

A series of if and if else statements are used to compare known commands to the
command passed to the commandAction() method. First, the method tests if the command
is the Back command. If so, the setCurrent() method is called once again to return to the
original form.

Next, the commandAction() method tests if the Exit command was selected. If so, the
destroyApp() method and notifyDestroyed() method are called, as described previously
in this section of the chapter. The commandAction() then determines whether the Help
command is selected. If so, the setCurrent() method is invoked and is passed the
helpMesg TextBox, which is displayed on the screen.

| 1tem Class

The Item class is derived from the Form class, and that gives an instance of the Form
class character and functionality by implementing text fields, images, date fields, radio
buttons, check boxes, and other features common to most graphical user interfaces. The
Item class has derivative classes that create those features. You'll learn how to implement
derivative classes of the Item class in Chapter 6. For now, we’ll examine how to insert
an instance of the Item class into the form of your J2ME application.

In many ways, the Item class has similarities to the Command class in that instances
of both classes must be declared and then added to the form. Likewise, a listener processes
instances of both the Item class and the Command class.

112 J2ME: The Complete Reference

The user interacts with your application by changing the status of instances of derived
classes of the Item class, except for instances of the Imageltem class and Stringltem class.
These instances are static and not changeable by the user. An instance of the Imageltem
class causes an image to appear on the form, and an instance of the Stringltem class
causes text to be displayed on the form. For example, your application might present
options in the form of an instance of the ChoiceGroup class, which is derived from the
Item class. An instance of a ChoiceGroup class is a check box or radio button. The user
makes a selection by choosing a check box or radio button.

A change in the status of an instance of the Item class is processed by the
itemStateChanged() method (defined in the ItemStateListener interface), which is called
automatically by the method for an application that utilizes the Item class. You must
create one itemStateChanged() method for an application that implements an instance
of the Item class.

The itemStateChanged() method is similar to the actionCommand() method used
to respond to the invocation of a command by the user of your application. Although
these methods are similar in design, you cannot combine them into one method because
the application manager specifically calls the itemStateChanged() method and
actionCommand() method independently of each other.

It is important to understand precisely when the itemStateChanged() method is called
because subtle differences in when the method is invoked can alter the way your
application reacts to change in the state of an instance of the Item class. The state is
changed by the user or by your application. For example, based on a user’s selection
of a radio button or check box, your application may change the text of a text field. The
change made by the user to a radio button or check box is detected by the listener and
causes the device’s application manager to call the itemStateChanged() method. However,
the state change of the text field by your program doesn’t invoke the itemStateChanged()
method, although it too is a change of state of an instance of the Item class.

In contrast, the itemStateChanged() method is invoked if the user changed the content
of the text field. The assumption is if the user caused the state to change, then your
application needs to consider processing the change in state. However, if your application
caused the change, then no additional processing is necessary because the assumption
is that any necessary processing would have been completed by your application prior
to changing the state.

. The itemStateChanged() method is not like a trigger found in many database management
Caution e .
systems. A trigger is a method automatically called whenever an event occurs regardless
of what caused the event to occur. The itemStateChanged() method is automatically called
only when a user event changes the state.

The application manager invokes the itemStateChanged() method when the user
changes focus from the current instance of the Item class to another instance, if the
current instance state changed because of user interaction with the instance. The
itemStateChanged() method processes the change before focus is set on the other instance.

Chapter 5: Commands, Items, and Event Processing

Creating an Item Class

Listed here are the steps required for creating an Item class.

. Declare references.

. Declare an instance of the Display class.

. Create an instance of the ChoiceGroup class.

. Associate options with the instance of the ChoiceGroup class.
. Set the default choice.

. Create an Exit command.

. Create an instance of the Form class.

R N3 O G B W DN -

. Associate the instance of the ChoiceGroup class to the instance
of the Form class.

9. Associate the Exit command with the form.
10. Associate a CommandListener with the form.
11. Associate an ItemStateListener with the form.
12. Display the form.
13. Evaluate the command entered by the user.
14. If the command is the Exit command, terminate the MIDlet.

15. If an instance of the Item class changes state, read the selection
from the instances of the ChoiceGroup class.

16. Display the selection on the screen.

In effect, the itemStateChanged() method processes each instance of the Item class as
the state is changed by the user. Let’s say a form contains a text field and a set of check
boxes. The user enters information into the text field and then selects check boxes. Between
the time the focus leaves the text field and arrives at the check boxes, the device’s
application manager calls the itemStateChanged() method, passing it the text of the text
field. Only after the itemStateChanged() is processed will the user be able to select
check boxes.

The following statement illustrates how to create a text field. The text field requires
four values. These are title, text, maximum number of characters that can be entered
into the text field, and the TextField constraint, which is zero to indicate there isn’t any
constraint. You'll learn about TextField constraints in Chapter 6.

I textbox = new TextField("Title", "Text", 4, 0);

113

114

J2ME: The Complete Reference

Item Listener

Listing 5-5
The
itemState-
Changed()
method

Listing 5-6
A JAD file

Each MIDlet that utilizes instances of the Item class within a form must have

an itemStateChanged() method to handle state changes in these instances. The
itemStateChanged() method, as shown in Listing 5-5, contains one parameter, which
is an instance of the Item class. The instance passed to the itemStateChanged() method is
the instance whose state was changed by the user.

public void itemStateChanged(Item item)
{
if (item == selection)
{
StringItem msg = new StringItem("Your color is ",
radioButtons.getString (radioButtons.getSelectedIndex())) ;
form.append (msqg) ;

Since there is one itemStateChanged() per MIDlet, you must include logic within the
itemStateChanged() method to identify the Item object that is passed by the device’s
application manager to the itemStateChanged() method. In this example, an if statement
is used to compare the incoming instance to one of two instances that the MIDlet created
on the form. These instances are a text field and radio buttons.

Logic within the itemStateChanged() method is similar to that used within the
actionCommand() method. First the itemStateChanged() method determines whether
the incoming instance is a text field. If so, the MIDlet displays a message that indicates the
state of the text field has been changed by the user. However, if the incoming instance
is not the text field and is a radio button, then a similar statement is displayed at the
command line indicating that the user changed the radio button state. The device’s
application manager must pass the two instances specified in the itemStatechanged()
method for a statement to be displayed.

Of course, the itemStateChanged() method would have appropriate logic to process
a change in each instance rather than displaying a statement at the command line.

Listing 5-6 contains the JAD for Listing 5-7. Listing 5-7 illustrates how to construct a
MIDlet that creates an instance of the ChoiceGroup class and associates the instance with
a form. The instance of the ChoiceGroup class in this example is a set of radio buttons.
The MIDlet begins with the declaration of references for instances of the Display class,
Form class, Exit Command class, the Item class, and ChoiceGroup class, and two integers
that reference the index of the instances of the ChoiceGroup class.

MIDlet-Name: RadioButtons
MIDlet-Version: 1.0

Chapter 5: Commands, Items, and Event Processing 115

MIDlet-Vendor: MyCompany
MIDlet-Jar-URL: RadioButtons.jar
MIDlet-1: RadioButtons, , RadioButtons
MicroEdition-Configuration: CLDC-1.0
MicroEdition-Profile: MIDP-1.0
MIDlet-JAR-SIZE: 100

Listing 5-7 import javax.microedition.midlet.*;
Selecting an import javax.microedition.lcdui.*;
option from a public class RadioButtons extends MIDlet
ChomeGE9u? implements ItemStateListener, CommandListener
objec (

private Display display;
private Form form;
private Command exit;

c
n
m
P
2
-
m
A
>
o
m

private Item selection;
private ChoiceGroup radioButtons;
private int defaultIndex;

private int radioButtonsIndex;
public RadioButtons ()
{
display = Display.getDisplay(this) ;
radioButtons = new ChoiceGroup (
"Select Your Color",
Choice.EXCLUSIVE) ;
radioButtons.append ("Red", null);
radioButtons.append("White", null);
("Blue", null);
radioButtons.append("Green", null) ;
defaultIndex = radioButtons.append("All", null);
radioButtons.setSelectedIndex (defaultIndex, true);
exit = new Command ("Exit", Command.EXIT, 1);
form = new Form("");

radioButtons.append

radioButtonsIndex = form.append(radioButtons) ;
form.addCommand (exit) ;
form.setCommandListener (this) ;
form.setItemStateListener (this) ;

}

public void startZpp()

{

display.setCurrent (form) ;

116

J2ME: The Complete Reference

public void pauseApp ()
{
}
public void destroyApp (boolean unconditional)
{
}
public void commandAction (Command command,
Displayable displayable)
{
if (command == exit)
{
destroyApp (true) ;
notifyDestroyed() ;
}
}
public void itemStateChanged(Item item)
{
if (item == radioButtons)
{
StringItem msg = new StringItem(Your color is ",
radioButtons.getString (radioButtons.getSelectedIndex())) ;
form.append (msg) ;

Next in the MIDlet is the constructor that contains statements executed once during
the life cycle of the MIDlet. The constructor begins by obtaining a reference to the instance
of the MIDlet’s Display class by calling the getDisplay() method. The instance is assigned
the display reference.

An instance of the ChoiceGroup class is created next. The instance has a title called
“Select Your Color” and a type, which in this example is EXCLUSIVE. As you'll learn in
Chapter 6, the type of an instance of the ChoiceGroup class determines its display and
functionality. The EXCLUSIVE type causes the instance to appear and function as a set
of radio buttons. The MULTIPLE type transforms the instance into check boxes.

The next five statements call the append() method, and each creates an option in the
instance of the ChoiceGroup class and assigns the option an appropriate label. The first
parameter of the append() method is the label, and the other parameter is the image used
to represent the option. The second option is used to associate an image with the option.
A null is passed as the second option because no image is used in this example.

Chapter 5: Commands, Items, and Event Processing

The append() method returns the index number of the option that is appended to
the instance of the ChoiceGroup class. An index number is an integer within the instance
of the ChoiceGroup class that uniquely identifies an option. The index number is used
within the MIDlet to reference an option, which is illustrated in the statement that calls
the setSelectedIndex() method.

It is always wise to set one radio button as the default choice to assure that
the user doesn’t overlook selecting a radio button. You set the default by calling the
setSelectedIndex() method. The setSelectedIndex() method requires two parameters.
The first parameter is the index of the option selected as the default choice. The second
parameter indicates whether the selectedIndex should be selected (true) or not selected
(false)—see Figure 5-6.

In this example, the index of the All option is assigned to the defaultIndex variable
when the append() method appends the All option to the instance of the ChoiceGroup
class. The defaultIndex variable is passed as the first parameter to the setSelectedIndex()
method, and a true value is passed to select the All option when the MIDlet is invoked.

DefaultColorPhone [EE
r-

T 70c] 7o)
D @ @@
@ e o

MODE SPACE

Figure 5-6. The All option is the default selection when the MIDlet runs on the
default color phone emulator.

118 J2ME: The Complete Reference

Next, the MIDlet creates an Exit command and an instance of the Form class, both of
which are assigned to appropriate references. Notice that the form does not contain
a caption, but still requires double quotations in place of the caption.

The instance of the ChoiceGroup class is then associated with the form by calling
the append() method and passing the append() method reference to the instance of the
ChoiceGroup class. The Exit command is then associated with the form by calling the
addCommand() and passing it the reference to the Exit command. The form is also
associated with a CommandListener and an ItemStateListener.

The form is displayed on the screen when the setCurrent() method is called each time
the device’s application manager invokes the startApp() method. The MIDlet is notified
of both commandAction() and itemStateChanged() events because the MIDlet implements
CommandListener and ItemStateListener for actions taking place on the form.

Command events are forwarded to the commandAction() method where the
command is compared to the Exit command to determine whether the user selected
the Exit command. If so, the destroyApp() method is called and passed a boolean true,
indicating an unconditional termination of the MIDlet. The notifyDestroyed() method
is then called to send notification to the application manager that the MIDlet has entered
the destroyed state and is ready to be terminated.

The radio button MIDlet, by virtue of implementing ItemStateListener, is notified
of Item state changes of the ChoiceGroup object on the form (Figure 5-7). The Item whose
state changed is passed to the itemStateChanged() method, where the Item object is
evaluated and compared to the radio button ChoiceGroup.

If the radio button is the Item whose state changed, the MIDlet calls the
getSelectedIndex() method to determine the index number of the radio button that
was selected. The index number is then passed to the getString() method to retrieve
the text of that option, which becomes a component of an instance of the Stringltem
class. This instance is assigned to a reference that is passed to the append() method
so the label of the selected option is displayed on the form.

___| Exception Handling

As you learned in Chapter 3, the small computing device’s application manager oversees
the operation of a MIDlet. The application manager calls the startApp(), pauseApp(),
and destroyApp() methods whenever the user or the device requires a MIDlet to begin,
pause, or terminate. However, there are times when the disruption of processing by
complying with the application manager’s request might cause irreparable harm. For
example, a MIDlet might be in the middle of a communication session or saving persistent
data when the destroyApp() method is called by the device’s application manager.
Complying with the request would break off communications or corrupt data.

Chapter 5: Commands, Items, and Event Processing

DefaultColorPhone [HE
r

- O €D
& O @@
@ G ao

MODE SPALE

Figure 5-7. Move the up and down arrow keys to highlight an option, and then
press the center button to select the highlighted option on the

default color phone emulator.

You can regain a little control of the MIDlet’s operation by causing a
MIDletStateChangeException to be thrown. A MIDletStateChangeException is used
to temporarily reject a request from the application manager either to start the MIDlet
(startApp()) or to destroy the MIDlet (destroyApp()). A MIDletStateChangeException
cannot be thrown within the pauseApp() method.

You should incorporate routines that throw a MIDletStateChangeException whenever
your MIDlet has processing that should not be interrupted by the application manager.
Many developers place routines that throw a MIDletStateChangeException in the
destroyApp() method since terminating a MIDlet during critical processing might have
a fatal effect on communication or data.

119

120

J2ME: The Complete Reference

Throwing a MiDletStateChangeException

Listing 5-8
A JAD file

Listing 5-9
Throwing a
MiDletState-
Change-
Exception in
destroyApp()

Listing 5-8 is the JAD file for Listing 5-9. Listing 5-9 illustrates the technique for throwing
a MIDletStateChangeException from within the destroyApp() method. Remember that a
MIDletStateChangeException can also be thrown from the startApp() method using an
approach similar to the one used in Listing 5-9.

MIDlet-Name: ThrowException

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: ThrowException.jar

MIDlet-1: ThrowException, ThrowException.png, ThrowException
MicroEdition-Configuration: CLDC-1.0

MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

import javax.microedition.midlet.*;

import javax.microedition.lcdui.?*;

public class ThrowException extends MIDlet
implements CommandListener

private Display display;

private Form form;

private Command exit;

private boolean isSafeToQuit;

public ThrowException ()

{
isSafeToQuit = false;
display = Display.getDisplay(this) ;
exit = new Command ("Exit", Command.SCREEN, 1);
form = new Form("Throw Exception") ;
form.addCommand (exit) ;
form.setCommandListener (this) ;

}

public void startApp()

{

display.setCurrent (form) ;

}

public void pauselpp ()

{

Chapter 5: Commands, Items, and Event Processing 121

}
public void destroyApp (boolean unconditional)
throws MIDletStateChangeException

if (unconditional == false)
{
throw new MIDletStateChangeException() ;
}
}

public void commandAction (Command command, c
Displayable displayable) ﬁ
t >
if (command == exit) H
{ E
t >
ry o
m

{

if (exitFlag == false)

{
StringItem msg = new StringItem (
"Busy", "Please try again.");
form.append (msqg) ;
destroylApp (false) ;
}
else
{
destroyApp (true) ;
notifyDestroyed() ;
}
}
catch (MIDletStateChangeException exception)
{

isSafeToQuit = true;

Listing 5-9 requires the user to select the Exit command twice to terminate the MIDlet
(Figure 5-8). When the user selects the Exit command the first time, the device’s application
manager calls the destroyApp() method where a MIDletStateChangeException is thrown,

122

J2ME: The Complete Reference

DefaultColorPhone [HE
r

17wl)
e

MODE SPALE

Figure 5-8. The Exit command must be selected twice to terminate the MIDlet
on the default color phone emulator.

causing the message “Busy Please try again.” to be displayed on the screen (Figure 5-9).
The MIDlet successfully terminates the second time the user selects the Exit button.

Listing 5-9 begins by declaring references that are later used to point to objects and
variables within the MIDlet. These references are for the Display object, Form object,
and Exit Command object. Also declared is the boolean isSafeToQuit variable that is
used to indicate whether it is safe to terminate the MIDlet.

In the constructor, the isSafeToQuit is assigned a false, implying that the MIDlet
should not be terminated. Likewise in the constructor there are statements that obtain
instances to the Display class, Command class, and Form class, each of which is assigned
to the proper reference. The command is also associated with the form using the
addCommand() method, and a CommandListener is associated with the form.

When the MIDlet is loaded into the device, the application manager executes the
constructor and calls the startApp() method, where the setCurrent() method is invoked
to display the form on the screen. The MIDlet then waits for the user to select the Exit
command button. When this happens, the CommandListener “hears” the event and calls

Chapter 5: Commands, Items, and Event Processing

DefaultColorPhone [HE
r

- O €D
& O @@
@ G ao

MODE SPALE

Figure 5-9. A message is displayed before the exception is thrown by the MIDlet

on the default color phone emulator.

the commandAction() method, passing the command selected by the user to the method.
The selected command is then compared to known commands within the MIDlet, which
in this example is the Exit command.

The MIDlet enters the try { } block within the commandAction() method if the Exit
command was selected by the user. The value of the exitFlag is then evaluated within
the try { } block. If the value is false, an instance of the Stringltem class is created and is
displayed on the screen by passing the instance to the append() method. The destroy App()
method is then called and passed a false value. A false value means that there is not an
unconditional termination of the MIDlet because processing cannot be disrupted. For the
sake of this example, we’re assuming that processing is ongoing and a fatal error would
occur should it not be allowed to complete before the MIDlet is terminated.

However, the destroy App() method is passed a true value if the value of the exitFlag
is true, indicating that the MIDlet can be terminated unconditionally. Notification of the
pending destruction of the MIDlet is then sent by invoking the notifyDestroyed() method.

123

J2ME: The Complete Reference

Notice that the destroyApp() method is capable of throwing a MIDletState-
ChangeException. A MIDletStateChangeException is thrown if the destroyApp() method
is passed a false value indicating there is a condition to termination of the MIDlet. The
MIDletStateChangeException is trapped by the catch { } block in the commandAction()
method where the value of the exitFlag is set to true. The next time the user selects the
Exit command the destroyApp() is called and passed a true value, meaning the MIDlet
can terminate unconditionally.

Steps for Throwing a MIDletStateChangeException
Listed here are the steps required for throwing a MIDletStateChangeException.

. Declare references.

. Set default value for the exit flag to false.

. Obtain a reference to an instance of the Display class.

. Create an instance of the Command class to exit the MIDlet.
. Create an instance of the Form class.

. Associate the command to the form.

. Associate a CommandListener with the form.

. Display the form on the screen.

O 00 N O Ul = W N -

. Evaluate the command selected by the user.

—_
(@]

. If the Exit command is selected, determine whether conditions
are safe to terminate the MIDlet.

—_
[

. If conditions are not safe to terminate the MIDlet, create an instance
of the Stringltem class with the message “Busy, please try again.”

12. Display the instance of the Stringltem class on the screen.
13. Call the destroyApp() method with a conditional termination notice.

14. If conditions are safe to terminate the MIDlet, call the destroy App()
method with an unconditional termination notice, and notify the
application manager of pending termination of the MIDlet.

15. When the destroyApp() method is called, evaluate the status
of the unconditional parameter.

16. If the unconditional parameter is false, throw a
MIDletStateChangeException; otherwise terminate the MIDlet.

17. Trap exceptions thrown within the commandAction() method.

18. If the MIDletStateChangeException is thrown, indicate that conditions are
now safe to terminate the MIDlet by assigning a true value to the exit flag.

19. Terminate the MIDlet when the Exit command is entered the second time.

Chapter 5:

___| Quick Reference Guide

Commands, Items, and Event Processing

125

This quick reference guide provides a brief overview of classes used by J2ME for the
Display class, Command class, and Item class. Full details of these classes and all Java
classes and interfaces are available at java.sun.com.

javax.microedition.lcdui.Display Class

Method

static Display getDisplay(MIDlet midlet)
Displayable getCurrent()

void setCurrent(Alert alert, Displayable
displayable)

void setCurrent (Displayable displayable)

boolean isColor()

int numColors()

void callSerial(Runnable runnable)

Description

Retrieve an instance of the Display class

Retrieve the current instance of
Displayable class

Display the specified instance of the alert
dialog box and then the specified instance
of the Displayable class

Display the specified instance of the
Displayable class

Determine whether the device supports color

Retrieve the number of colors or shades
of gray that are available on the device

Call an instance of the Runnable class
after repainting

javax.microedition.lcdui.Displayable Class

Method

void addCommand(Command command)
void removecommand(Command command)
void setCommandListener(CommandListener

commandlistener)

boolean isShown()

Description

Associate a command to an instance
of the Displayable class

Disassociate a command from an
instance of the Displayable class

Associate a CommandListener to
an instance of the Displayable class

Determine whether an instance of the
Displayable class is shown on the screen

126

J2ME: The Complete Reference

javax.microedition.lcdui.Command Class

Method Description

Command(String label, int commandType, Create an instance of the Command class

int priority) that displays the specified label and is of
the specified commandType and has the
specified priority

int getCommandType() Retrieve the commandType of a command

String getLabel() Retrieve the label of a command

int getPriority/() Retrieve the priority of a command

javax.microedition.lcdui.CommandListener Interface
Method Description

void commandAction (Command command, Process an instance of the Command class
Displayable displayable)

javax.microedition.lcdui.ltem Class
Method Description

String getLabel() Retrieve the label associated
with an instance of the Item class

void setLabel(String label) Assign a label to an instance
of the Item class

javax.microedition.lcdui.ltemStateListener Interface
Method Description

void itemStateChanged (Item item) Process changes to an instance
of the Item class

Chapter 5: Commands, Items, and Event Processing 127

javax.microedition.midlet.MIDlet Class

Method Description

abstract void destroyApp (boolean MIDlet is going to shut down
unconditional)

abstract void pauseApp() MIDlet is going to pause

abstract void startApp() MIDlet is in the active state

final void notifyDestroyed() Requesting to shut down the MIDlet
final void notifyPaused() Requesting to pause the MIDlet

final void resumeRequest() Requesting to activate the MIDlet

final String getAppProperty(String key) Retrieve attributes from a JAD or JAR file

javax.microedition.midlet.MIDletStatechangeException Class
Method Description

MIDletStateChangeException() Create a new MIDletStateChangeException
object without a test

MIDletStateChangeException(String string) Create a new MIDletStateChangeException
object with a message

This page intentionally left blank

The

Complete <
Reference

High-Level Display:
Screens

130

J2ME: The Complete Reference

objects used to present information to the person using the application and in
many cases prompts the person to enter information that is processed by the
application. You were introduced to the basic concepts of the J2ME display in the
previous chapter and shown how to create a simple graphical user interface for your
application. To say the least, this user interface is wanting and lacks sophistication
that most of us expect from a J2ME application.
The J2ME Display class is the parent of Displayable, which you’ll recall from
the previous chapter. The Displayable class has two subclasses of its own: Screen
and Canvas. The Screen class is used to create high-level J2ME displays in which the
methods of its subclasses handle details of drawing objects such as radio buttons and
check boxes. In contrast, the Canvas class and its subclasses are used to create low-level
J2ME displays. The methods give you pixel-level control of the display, enabling you
to draw your own images and text such as those used to create games.
In this chapter we'll continue exploring techniques for building a J2ME high-level
display by focusing on the Screen class and its derived classes. You'll learn how to
create a low-level display using the Canvas class in the next chapter.

The display is a crucial component of every J2ME application since it contains

Screen Class

You will probably spend most of your time using the Screen class and its derived classes
when developing a user interface for your J2ME application. These classes contain methods
that generate radio buttons, check boxes, lists, and other familiar objects that users expect
to find on the screen when interacting with your application. The following illustrates the
Display class hierarchy, which helps you learn the inheritance structure of the Screen class.
Every MIDlet has one Display object but can have many Displayable objects, which you
discovered in the previous chapter. A Displayable object is any object that can be displayed
on the small computing device’s screen.

public class Display
public abstract class Displayable
public abstract class Screen extends Displayable

public class Alert extends Screen

public class Form extends Screen

public class List extends Screen implements Choice

public abstract class Item
public class ChoiceGroup extends Item implements Choice
public class DateField extends Item
public class TextField extends Item
public class Gauge extends Item
public class Imageltem extends Item
public class Stringltem extends Item

public class TextBox extends Screen

Chapter 6: High-Level Display: Screens 131

public class Command
public class Ticker
public class Graphics
public interface Choice
public abstract class Canvas extends Displayable
public class Graphics

You already know that the Displayable class has two derived classes, Screen and
Canvas. The Screen class has its own set of derived classes. These are TextBox, List,
Alert, Form, and Item classes. The Canvas class also has its own derived class, the
Graphics class, which you'll learn about in the next chapter.

The TextBox class is used to display multi-line text on the screen. The List class is
used to display a list of items, as in a menu, and enables the user to choose one of those
items. The Alert class displays a dialog box containing a message such as a warning,.
And the Form class is a container class that can display multiple classes derived from
the Item class.

The Item class has six derived classes, any number of which can be displayed
within a Form object on the screen:

B ChoiceGroup class used to display radio buttons and check boxes
DateField class used for inputting a date into an application

TextField class used for inputting text into an application

Gauge class used to graphically show progress

Imageltem class used to display an image stored in a file

B Stringltem class used to display text on the screen

The Command class is used to create a Command object that can be associated with
practically any class except the Alert class. You created Command objects for MIDlets
that you built in the previous chapter. The Ticker is a variable of the Screen class that
causes text to scroll on the screen like a stock exchange ticker tape. You'll see how to
implement the Ticker in your own application later in this chapter.

The Graphics class is a base class used by derived classes to create and display
custom graphical images on the screen. Objects that display options to the person
using an application implement the Choice interface. You'll see how the Graphics class
is used in the next chapter and how the Choice interface is used later in this chapter
when you learn how to create a ChoiceGroup object.

| Alert Class

An alert is a dialog box displayed by your program to warn a user of a potential error
such as a break in communication with a remote computer. An alert can also be used
to display any kind of message on the screen, even if the message is not related to an

132

J2ME: The Complete Reference

error. For example, an alert is an ideal way of displaying a reminder on the screen. You
implement an alert by creating an instance of the Alert class in your program using the
following statement. Once created, the instance is passed to the setCurrent() method of
the Display object to display the alert dialog box on the screen.

alert = new Alert("Failure", "Lost communication link!", null, null);
display.setCurrent (alert) ;

The Alert constructor requires four parameters. The first parameter is the title of
the dialog box, which is “Failure” in this example. The next parameter is the text of the
message displayed within the dialog box. “Lost communication link!” is the text that
appears when the Failure dialog box is shown on the screen. The third parameter is the
image that appears within the dialog box. The previous example doesn’t use an image;
therefore the third parameter is set to null. The last parameter is the AlertType. The
AlertType is a predefined type of alert. None of the predefined AlertTypes is used in
the previous example, and therefore a null is used as the fourth parameter. Table 6-1
contains a list of predefined AlertTypes.

A word of caution: An alert dialog box is not designed to retrieve input from a
user other than the selection of the OK button to close the dialog box. This means
displayable objects such as ChoiceGroup and TextBox cannot be used within an alert
dialog box. Likewise, you cannot insert your own Command objects as buttons.

An alert dialog box reacts in one of two ways depending on the value of the default
timeout for the Alert object. The alert dialog box can remain visible until the user selects the
OK button, or the alert dialog box can be visible for a specified number of milliseconds. An
alert dialog box is referred to as a modal dialog box if the user must select the OK button to
terminate the dialog box. Otherwise, it is considered a timed dialog box that terminates
when the default timeout value is reached.

Type Description
ALARM Your request has been received.
CONFIRMATION An event or processing is completed.
ERROR An error is detected.
INFO A nonerror alert occurred.
WARNING A potential error could occur.

Table 6-1. Predefined AlertTypes for the Alert Object

Chapter 6: High-Level Display: Screens

The value passed to the setTimeout() method determines whether an alert dialog box
is a modal dialog box or a timed dialog box. The setTimeout() method has one parameter,
which is the default timeout value. Use Alert. FOREVER as the default timeout value for a
modal alert dialog box, or pass a time value in milliseconds indicating time to terminate the
alert dialog box. The following example illustrates how to create a modal alert dialog box:

alert = new Alert("Failure", "Lost communication link!", null, null);
alert.setTimeout (Alert.FOREVER) ;
display.setCurrent (alert) ;

You can always retrieve the current default timeout by calling the getDefaultTimeout()
method of the instance of the Alert class. The getDefaultTimeout() method returns the
integer value of Alert FOREVER or the default timeout in milliseconds.

The device’s application manager determines the screen that appears when the
user dismisses the alert dialog box. However, you can control what appears following
the dialog box by passing reference to the next object as the second parameter to the
setCurrent() method. The second parameter is reference to the displayable object that
appears on the screen once the alert dialog box is closed, as illustrated in the next code
segment.

Let’s assume that an instance of the Form class contains instances of classes necessary
to open a communications link with a remote computer. In this example, the instance of
the Form class is titled “Communications Link.” Notice that instances of both the Alert
class and the Form class are passed to the setCurrent() method. Once the user selects OK
to dismiss the alert dialog box, the device’s application manager displays the instances of
the Form object, enabling the user to reestablish communication with the remote computer.

form = new Form("Communication Link");

alert = new Alert("Failure", "Lost communication link!", null, null);
alert.setTimeout (Alert.FOREVER) ;

display.setCurrent (alert, form);

An alternative way to control which instance of a class appears on the screen once
an alert dialog box is terminated is simply to invoke the setCurrent() method twice. Pass
reference to the instance of the Alert class to the first invocation of the setCurrent(), and
then pass reference to the next instance the next time that the setCurrent() method is
called, as shown below. Calling the setCurrent() method twice using one parameter
or once using two parameters achieves the same results without penalties.

form = new Form("Communication Link");
alert = new Alert("Failure", "Lost communication link!", null, null);

133

134

J2ME: The Complete Reference

alert.setTimeout (Alert.FOREVER) ;
display.setCurrent (alert) ;
display.setCurrent (form) ;

Listing 6-1 contains the JAD file for Listing 6-2, which illustrates how to incorporate
an alert in your MIDlet. This listing is similar to Listing 5-9 (in the previous chapter),
where the person using the MIDlet must select Exit twice before the MIDlet terminates.
The purpose of this example is to highlight the technique for preventing termination
of a MIDlet before critical processing, such as data transfer to a remote computer, is
completed.

A warning message was displayed on the screen in Listing 5-9 informing the user
that the MIDlet was busy and asking her to make another attempt to exit the MIDlet.
The warning message was displayed as an instance of the Stringltem class. Listing 6-2
performs basically the same task, except the instance of the Stringltem class is replaced
with an alert dialog box (Figure 6-1). The alert dialog box is modal and requires the
user to close the box before making a second attempt to terminate the MIDlet.

] DefaultColorPhone [EE
~

. D 6D
@ @ @
o @ @
- @

SPACE

MODE

Figure 6-1. An alert dialog box displays a message on the screen.

Chapter 6: High-Level Display: Screens

The MIDlet in Listing 6-2 is called DisplayAlert and begins by declaring references
to instances of the Display class, Alert object, Form object, and Command object. There is
also a boolean variable, which is used to flag whether or not the user made one attempt
to terminate the MIDlet.

Next, the constructor is defined, first by assigning a false value to the exitFlag
variable. The false value is the default value and indicates that the person hasn’t made
the first attempt to exit the MIDlet. Three instances are then created and assigned to the
appropriate reference. These are instances of the Display class, Command class, and
Form class.

The instance of the Command class is associated with the instance of the Form class
by calling the addCommand() method and passing it reference to the instances of the
Command class. The last statement in the constructor associates a CommandListener
to the instance of the Form class by invoking the setCommandListener() method. The
registered CommandListener is notified of command events as they occur.

The startApp() method is then defined with one statement that calls the setCurrent()
method to display the instance of the Form class on the screen. The startApp() method
is invoked by the device’s application manager. The pauseApp() is defined as an empty
method. Remember that every MIDlet must have a pauseApp() defined, even if no
statements are executed when the application manager calls the pauseApp() method.

The destroy App() method also must be defined in every MIDlet and is the method
called before the MIDlet terminates. The destroyApp() method is passed a boolean
value that indicates whether termination of the MIDlet is conditional or unconditional.
Conditional termination requires that a particular condition be met prior to termination.
The condition in this example is that the value of the boolean parameter is false, indicating
that the MIDlet hasn't finished processing, although the user requested that the MIDlet
terminate. An exception is thrown when this occurs. An unconditional termination
indicates that no condition must be met before the MIDlet terminates, which happens
in this example when the user selects the Exit command for the second time.

The commandAction() method processes command events trapped by the
CommandListener. The commandAction() is called when the person selects any command
available on the device. The CommandListener’s commandAction() method processes
command events as notified by the system/application manager. Only the Exit command
is evaluated in this example.

The MIDlet flow enters the try { } block when the Exit command is received by
the commandAction() method, and the MIDlet evaluates whether or not the value
of the exitFlag variable is false. If false, this means that the user has selected the Exit
command only once. This causes the creation of an instance of the Alert class, which
is assigned to the appropriate reference.

The title of the alert instance is “Busy,” and the message is “Please try again.” No
image is being used with the alert instance; therefore the third parameter is null. The
AlertType of the alert instance is WARNING.

The alert dialog box is modal, so the timeout setting must be set to Alert. FOREVER.
This is accomplished by calling the setTimeout() method and passing it the
Alert. FOREVER integer.

135

136 J2ME: The Complete Reference

Creating an Alert Dialog Box

Listed here are the steps required to create an alert dialog box:

. Declare references.

. Set default value for the exit flag to false.

. Obtain a reference to the instance of the Display class.

. Create an instance of a Command class to exit the MIDlet.

. Create an instance of the Form class.

N O = WO N -

. Associate the instance of the Command class to the instance of the Form
class.

7. Associate a CommandListener with the instance of the Form class.
8. Display the instance of the Form class on the screen.
9. Evaluate the command selected by the user.

10. If the Exit command is selected, determine whether conditions are safe to
terminate the MIDlet.

11. If conditions are not safe to terminate the MIDlet, create a modal instance
of the Alert class with the message “Busy” “Please try again.”

12. Display the instance of the Alert class on the screen.
13. Call the destroyApp() method with a conditional termination notice.

14. If conditions are safe to terminate the MIDlet, call the destroyApp() method
with an unconditional termination notice, and notify the application manager
of pending termination of the MIDlet.

15. When the destroyApp() method is called, evaluate the status of the
unconditional parameter.

16. If the unconditional parameter is false, throw a
MIDletStateChangeException; otherwise, terminate the MIDlet.

17. Trap exceptions thrown within the commandAction() method.

18. If the MIDletStateChangeException is thrown, indicate that conditions
are now safe to terminate the MIDlet by assigning a true value to the
exit flag variable.

19. Terminate the MIDlet when the Exit command is entered the second time.

Next, the destroyApp() method is called and is passed a false, indicating there is a
condition associated with the termination of the MIDlet. That is, the user must make
two attempts to terminate the MIDlet, and only one attempt has been made so far.

Listing 6-1
The JAD
file for
Listing 6-2

Listing 6-2
Displaying

a modal
alert dialog
box when an
exception is
thrown

Chapter 6: High-Level Display: Screens 137

However, the destroyApp() method is invoked and passed a boolean true if the value
of the exitFlag variable is true, which begins the termination process. The MIDlet then
returns from the destroyApp() to call the notifyDestroyed() method, which notifies the
application manager of the termination.

The catch { } traps a MIDletStateChangeException thrown by the destroyApp() when
a conditional termination notice is received. The exception causes the value of the exitFlag
variable to be set to true, meaning the MIDlet terminates unconditionally the next time
the user selects the Exit command.

MIDlet-Name: DisplayAlert
MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany
MIDlet-Jar-URL: DisplayAlert.jar
MIDlet-1: DisplayAlert, , DisplayAlert
MicroEdition-Configuration: CLDC-1.0
MicroEdition-Profile: MIDP-1.0
MIDlet-JAR-SIZE: 100

c
n
m
P
2
-
m
A
>
o
m

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
public class DisplayAlert extends MIDlet implements CommandListener
{
private Display display;
private Alert alert;
private Form form;
private Command exit;
private boolean exitFlag;
public DisplayAlert ()
{
exitFlag = false;
display = Display.getDisplay (this);
exit = new Command ("Exit", Command.SCREEN, 1);
form = new Form("Throw Exception") ;
form.addCommand (exit) ;
form.setCommandListener (this) ;
}
public void startApp()
{
display.setCurrent (form) ;
}
public void pauselpp ()
{

138 J2ME: The Complete Reference

}
public void destroyApp (boolean unconditional)
throws MIDletStateChangeException

if (unconditional == false)
{
throw new MIDletStateChangeException() ;
}
}

public void commandAction (Command command, Displayable displayable)

{

if (command == exit)
{
try
{
if (exitFlag == false)
{
alert = new Alert("Busy", "Please try again.",

null, AlertType.WARNING) ;
alert.setTimeout (Alert.FOREVER) ;
display.setCurrent (alert, form);
destroylApp (false) ;
}
else
{
destroyApp (true) ;
notifyDestroyed() ;
}
}
catch (MIDletStateChangeException exception)
{

exitFlag = true;

Alert Sound

Each AlertType has an associated sound that automatically plays whenever the alert
dialog box appears on the screen. The sound, which is different for each AlertType, is
used as an audio cue to indicate that an event is about to occur. Users of your MIDlet

Chapter 6: High-Level Display: Screens 139

will learn to identify events by sound cue over time and will become less dependent
on the visual cue presented by the alert dialog box.

An audio cue can be sounded without having to display the alert dialog box. You
do this by calling the playSound() method and passing it reference to the instance of
the Display class, as illustrated in the following code segment. This is a modification
of the if statement in Listing 6-1. The sound associated with the AlertType WARNING
is heard when the playSound() method is called.

if (exitFlag == false)

{
AlertType.WARNING.playSound (display) ;
destroyApp (false) ;

| Form Class

The Form class is a container for other displayable objects that appear on the screen
simultaneously. Any derived class of the Item class can be placed within an instance
of the Form class. For example, instances of the Stringltem class can be displayed
by inserting those instances within the instance of the Form class, then showing the
instance of the Form class.

Small computing device screens vary in size, so you can expect that some instances
within the instance of the Form class won't fit on the screen. However, devices typically
implement scrolling, which allows the user to bring instances out of view onto the screen.
An instance is placed with the instance of the Form class by calling one of two methods.
These are insert() method and append() method. The insert() method places the instance
in a particular position on the form as specified by parameters passed to the insert()
method. The append() method places the instance after the last object on the form.

The following code segment illustrates how to create an instance of the Form class
and call the append() method to place an instance of the Stringltem class onto the form.
After declaring referencing for the instance of the Form class and for the instance of the
Stringltem class, a new Form instance is created and given the title “My Form.” Next,

a Stringltem instance with the message “Welcome, glad you could come.” is created.
You’ll learn the details of creating and using the Stringltem object later in this chapter.
The append() method is called once when both instances are created. Reference to the
Stringltem instance is then passed to the form, thereby placing the Stringltem instance
as the last object on the form.

private Form form;
private Stringltem message;
form = new Form("My Form") ;

140

J2ME: The Complete Reference

message = new StringlItem("Welcome, ", "glad you could come.");
form.append (message) ;

Each instance placed on a form has an index number associated with it, beginning
with the value zero. You can use the index number to reference the instance within
your MIDlet, for example, when you want to insert an instance onto the form.

The following segment of code shows you how to insert another Stringltem instance
onto a form before the first Stringltem instance. This example is nearly identical to the
previous example, except there are four changes. First, two Stringltem references are
declared, called messagel and message2. An int is also declared and is used to store
the index number of the first Stringltem instance placed on the form.

The same Form instance and Stringltem instance as in the previous example are created
and assigned to the proper reference. However, a second Stringltem instance is also
created. Notice that the index number of the first message appended to the Form instance
is stored in the index1 variable. The index1 variable is passed as the first parameter to
the insert() method to place the second message on the form before the first message.
Reference to the second message is passed as the second parameter to the insert() method.

private Form form;

private Stringltem messagel, message2;
private int indexl;

form = new Form("My Form") ;

messagel = new StringItem("Welcome, ", "glad you could come.");
message2 = new StringItem("Hello, ", "Mary.");
indexl = form.append (messagel) ;

form.insert (indexl,message?) ;

An alternative to using the insert() and append() methods for associating instances
of the Item class with a form is to create an array of instances of the Item class and then
pass the array to the constructor when the instance of the Form class is created. This is
an excellent technique for initially populating the instance of the Form class. You can
then use the insert() method, append() method, set() method, and delete() method to
manage instances of the Item object on the form throughout the life of the MIDlet.

Listing 6-3 contains the JAD file for Listing 6-4, which illustrates how to populate
an instance of the Form class with an array of instances of the Item class. This example
creates an array of Stringltem instances. Each element of the array is then assigned a
Stringltem instance. The array is passed as the second parameter to the constructor
when the instance of the Form class is created, and the instance of the Form class

Chapter 6: High-Level Display: Screens

Creating an Instance of the Form Class

Listed here are the steps required to create an instance of the Form class:

. Declare references.

. Obtain a reference to the instance of the Display class.

. Create an instance of a Command class to exit the MIDlet.

. Create two instances of the Stringltem class.

. Assign each instance of the Stringltem class to an array element.

. Create an instance of the Form class.

. Associate the instance of the Command class to the instance of the Form class.

. Associate a CommandListener with the instance of the Form class.

O 00 NI O Ul b W N -

. Display the instance of the Form class on the screen.

—_
o

. Evaluate the command selected by the user.

—_
—_

. If the Exit command is selected, terminate the MIDlet.

Listing 6-3
The JAD
file for
Listing 6-4

Listing 6-4
Creating a
form with
items

is displayed within the startApp() method by calling the setCurrent() method, as
described in Listing 6-3.

MIDlet-Name: CreatingFormwWithItems

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: CreatingFormWithItems.jar

MIDlet-1: CreatingFormWithItems, , CreatingFormwithItems
MicroEdition-Configuration: CLDC-1.0
MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
public class CreatingFormWithItems

141

142

J2ME: The Complete Reference

extends MIDlet implements CommandListener

private Display display;
private Form form;
private Command exit;
public CreatingFormWithItems ()
{
display = Display.getDisplay (this);
exit = new Command ("Exit", Command.SCREEN, 1);

StringItem messages[] = new StringlItem[2];
message[0] = new StringItem("Welcome, ", "glad you could come.");
message[l] = new StringItem("Hello, ", "Mary.");

form = new Form("Display Form with Items", messages) ;
form.addCommand (exit) ;
form.setCommandListener (this) ;
}
public void startApp()
{
display.setCurrent (form) ;
}
public void pauseApp ()
{
}
public void destroyApp (boolean unconditional)
{
}
public void commandAction (Command command, Displayable displayable)
{
if (command == exit)
{
destroyApp (true) ;
notifyDestroyed() ;

An instance of the Item class that appears on the form can be replaced by another
instance of the Item class by calling the set() method. The set() method requires two
parameters. The first parameter is the index number of the instance of the Item class
that is being replaced, and the other parameter is reference to the instance of the Item
object that is replacing the existing Item class.

Chapter 6: High-Level Display: Screens

Likewise, you can remove an instance of the Item class from a form by invoking
the delete() method. The delete() method requires one parameter, which is the index
number of the instance of the Item class that is being removed from the form.

| 1tem Class

An Item class is a base class for a number of derived classes that can be contained within
a Form class. These derived classes are ChoiceGroup, DateField, Gauge, Imageltem,
Stringltem, and TextField, each of which is discussed in detail later in this chapter. Some
classes derived from the Item class, such as ChoiceGroup, DateField, and TextField, are
used for data entry. The ChoiceGroup class is used to create check boxes or radio buttons
on a form, and the DateField class and TextField class are used to capture date and free-
form text from the user of the MIDlet.

The state of an instance of a class derived from the Item class changes whenever a
user enters data into the instance, such as when a check box is selected. You can capture
this change by associating an ItemStateListener with an instance of a class derived from
an Item class (ChoiceGroup, for example). An ItemStateListener monitors events during
the life of the MIDlet and traps events that represent changes in the state of any Item class
contained in a form on the screen.

The class implementing the ItemStateListener interface (the MIDlet in this case)
becomes the registered listener (callback) whose itemStateChanged() method is called
when an item event occurs. The device’s application manager detects the event and
calls the itemStateChanged() method of the MIDlet. This similar process occurs with the
CommandListener when a command event occurs, except when the commandAction()
method is invoked.

Logic within the itemStateChanged() method compares the reference to known
items on the form and then initiates processing. The nature of this processing is
application dependent, but processing is likely to retrieve the value that the user
entered into the item.

The following code segment illustrates how to associate an ItemStateListener with
an instance of the Item object and how to define the itemStateChanged() method. This
example creates an instance of the ChoiceGroup class, which is derived from the Item
class. The instance of the ChoiceGroup class is displayed as a set of radio buttons
collectively titled “Pick One.” No radio buttons are shown in this code segment, but
you’ll see how to create them in the next section of this chapter. For now, assume that
the instance of the ChoiceGroup class contains several radio buttons.

The instance of the ChoiceGroup class is then placed on the form by calling the
append() method, which is passed reference to the instance of the ChoiceGroup class.
Next, an ItemStateListener is associated with the form by calling the setltemStateListener()
method. As you'll see in the next section, the creation of an instance of the ChoiceGroup
class, appending the instance to the form, and associating an ItemStateListener with the
form are performed within the constructor of the MIDlet.

143

144

J2ME: The Complete Reference

The itemStateChanged() method is defined outside the constructor and contains
logic to evaluate the item passed to the method. An if statement is used in this example
to determine whether the selected item is the instance of the ChoiceGroup class. If so,
the item is processed according to the business rules of the application.

private Form form;
private ChoiceGroup choiceGroup;

choiceGroup = new ChoiceGroup ("Pick One", Choice.EXCLUSIVE) ;
form.append (choiceGroup) ;
form.setItemStateListener (this) ;

public void itemStateChanged(Item item)
{

if (item == choiceGroup)

// do some processing

}

ChoiceGroup Class

You are probably familiar with check boxes and radio buttons used in graphical user
interfaces for choosing one or multiple choices from a selection of options. Likewise,
check boxes and radio buttons are used to display selected options that were previously
chosen. Check boxes and radio buttons are often grouped into sets of options, although
there are times when one check box, rather than multiple check boxes, is required by an
application. Radio buttons are almost always displayed in a set of radio buttons.

The primary difference between a set of check boxes and a set of radio buttons,
besides their obvious appearance, is the number of check boxes or radio buttons that
users can select. Users can choose multiple check boxes within a set of check boxes,
while they can choose only one radio button within a set of radio buttons. For example,
radio buttons are used on a form to identify the user’s gender. The user can be either
male or female, and therefore selection of one precludes the other. In contrast, a set of
check boxes is used to identify preferences, such as choice of movies. Each check box
within the set is a movie category. The selection of one category does not preclude the
selection of other categories.

J2ME classifies check boxes and radio buttons as the ChoiceGroup class. An instance
of the ChoiceGroup class can be one of two types: exclusive or multiple. An exclusive
instance appears as a set of radio buttons, and a multiple instance contains one or a set
of check boxes. You determine the format of an instance of a ChoiceGroup class by
passing the ChoiceGroup class constructor a choice type, as shown in Table 6-2.

Chapter 6: High-Level Display: Screens

Choice Type Description

EXCLUSIVE Only one selection available at any time (radio button).
MULTIPLE Zero or more selections available at any time (check box).
IMPLICIT Only one selection at any time. The selection generates a

command event automatically. No icon is used (menu list).

Table 6-2. Choice Types for ChoiceGroup Object and List Object

When the user selects either a radio button or check box, the device’s application
manager detects the event and calls the itemStateChanged() method of the MIDlet, as
described in the “Item Class” section of this chapter. The itemStateChanged() method
determines whether the item selected is an instance of the ChoiceGroup. If so, then
either the getSelectedFlags() method or getSelectedIndex() method must be called
to retrieve the item selected by the user.

The getSelectedFlags() method returns an array that contains the status of the
selected flag for each member of the instance of the ChoiceGroup class (each radio
button or each check box). The MIDlet must step through each element of the array
to determine whether the selected flag status is true or false. If true, the radio button
or check box that corresponds to the index of the array element was selected by the
user. If false, the user did not make a selection.

The getSelectedIndex() method returns the index number of the item selected by
the user, such as a radio button. The index number is typically passed to the getString()
method, which returns the text of the selected radio button or check box. You'll learn
this technique in the next section of this chapter.

Instead of using the ItemStateListener and itemStateChanged() methods, you can
place a Command on the screen and implement a CommandListener and define an
actionCommand() method. As you'll recall from Chapter 5, the device’s application
manager notifies the CommandListener when a command is selected, and then the
actionCommand() method you define in the MIDlet is called. The actionCommandy()
method then calls either the getSelectedFlags() method or the getSelectedIndex() method
to identify the item selected by the user.

The “Quick Reference Guide” section of this chapter contains methods that you can
use with instances of the ChoiceGroup class.

Creating and Accessing Check Boxes

Listing 6-5 contains the JAD file for Listing 6-6, which illustrates how to use a MULTIPLE
type to create check boxes in a MIDlet. This example displays a list of movie categories
in the form of check boxes within an instance of the Form class and then prompts the

145

146

J2ME: The Complete Reference

user to select kinds of movies he would like to see. Those choices are then displayed
as a string on the screen (Figure 6-2).

Listing 6-6 begins with the declaration of references for instances of classes that
are used within the application. The declarations are for the Display class, Form class,
Command class, and ChoiceGroup class as well as two integers that are later used to
identify the instance of the ChoiceGroup class.

The constructor is where instances are created and associated with the instance of the
Form class. First obtain a Display instance by calling the getDisplay() method. Next,
the instance of the ChoiceGroup class, called “movies,” is created. Two parameters are
passed to the constructor of the ChoiceGroup class. The first parameter is the title of
the instance, and the other parameter is the type of ChoiceGroup, which is MULTIPLE
because we want the instance to appear as check boxes.

The append() method is called once for each check box. The append() method requires
two parameters. The first parameter is the label of the check box, and the other parameter
is reference to an image that appears along with the label. No images are used in this
example, so the second parameter is set to a null value.

[5] DefaultColorPhone [HI[E] B3

—

- o @
@ o @@

{7ros L 5rov R 0w
s o us
MODE SPACE

Figure 6-2. Displaying check boxes on a form

Chapter 6: High-Level Display: Screens

Two Command instances are created next. These are the Exit command and the
Process command. The Exit command terminates the MIDlet, and the Process command
causes the MIDlet to evaluate each check box to determine the user’s preferences. Once
these Command instances are created, the MIDlet creates an instance of the Form class
that will become the container that holds other instances. The constructor of the Form
class is passed the title of the form, called “Movies.”

The next series of statements associates the instance of the ChoiceGroup class and
instances of the Command class with the form. Notice that the entire instance referenced
by movies is passed as a parameter to the append() method. This automatically appends
all the check boxes of the instance to the form. You don’t need to append each check box
to the form.

The append() method returns the index number of the instance placed on the form.
As you learned previously in this chapter, the index number uniquely identifies an
instance on the form and is used throughout the MIDlet to reference the instance. The
index number of the movies instance is stored in the movielndex int so we can reference
the movies instance later in the MIDlet. You don’t need to store the index number of an
instance if the instance is not referenced within the MIDlet.

The MIDlet then associates commands and a CommandListener with the form
and processes all user selections immediately when the Process command activates.
Alternatively, the MIDlet can implement an ItemStateChangeListener, which is
notified whenever the state of an item changes. Many developers prefer to use
a CommandListener instead of an ItemStateChangeListener.

The instance of the Form object containing check boxes is displayed on the screen
by calling the setCurrent() method from within the startApp(). The setCurrent() method
is passed reference to the instance of the form as a parameter. The pauseApp() method
and the destroyApp() method are defined as required by J2ME specifications but are left
empty because the application doesn’t require any special statements to be executed
when the device’s application manager calls both of these methods.

The actionCommand() method is where all the processing occurs. The device’s
application manager detects when the user selects a command and notifies the MIDlet
using the CommandListener to call the commandAction() method, where the command is
evaluated. The if statement within the commandAction() method compares the incoming
command to the Process command. If they match, the instance of the ChoiceGroup class is
processed; otherwise the command is compared to the Exit command and terminates the
MIDlet if they match.

The MIDlet performs some interesting processing when the user selects the Process
command. First, an array of boolean types is created. Notice that the dimension of the
array is set by calling the size() method of the instance of the ChoiceGroup. The size()
method returns the number of check boxes in the set. The size() method is also used to
create an array of instances of the Stringltem object. These instances are used to display
the user’s selections.

Next, the boolean array is passed to the getSelectedFlags() method. The
getSelectedFlags() method populates the boolean array with the state of each check

147

148

J2ME: The Complete Reference

Creating Check Boxes

Listed here are the steps required to create check boxes:

. Declare references.

. Obtain a reference to the instance of the Display class.

. Create an instance of a ChoiceGroup of MULTIPLE type.

. Append check boxes to the instance of the ChoiceGroup.

. Create an instance of a Command class to exit the MIDlet.

. Create an instance of a Command class to process the check boxes.
. Create an instance of a ChoiceGroup class.

. Create an instance of the Form class.

O 00 N1 O Ul = W N =

. Associate the instance of the ChoiceGroup to the instance of the Form class.

—_
o

. Associate the instance of the Command class to the instance of the Form class.

—_
—_

. Associate a CommandListener with the instance of the Form class.

—_
N

. Display the instance of the Form class on the screen.

—_
(O8]

. Evaluate the command selected by the user.

—_
S

. If the Exit command is selected, terminate the MIDlet.

—_
€)]

. If the Process command is selected, process the check boxes.
. Read the selected status of each check box.

[-
N O

. Evaluate the selected status of each check box.

—_
o

. If the selected status is true, retrieve the string of the check box.

—_
\O

. Display the string of the check box on the form.

N
o

. Remove the check box from the form.

box. A for loop is then used to step through the boolean array, evaluating the value
of each array element. The picks array length variable is used instead of the size()
method to set the maximum iterations of the loop.

If the value of the boolean array element is true, the MIDlet calls the getString()
method, passing it the index number of the check box. Each check box is assigned an
index number relative to other check boxes within the set and is used to uniquely
identify the check box.

The getString() method returns the label of the check box, which is then passed to
the setText() method of the next instance of the Stringltem class and is later displayed
on the screen by appending the string to the form. The instance of the ChoiceGroup

Chapter 6: High-Level Display: Screens 149

class and the Process command are both removed from the form by calling the delete()
method and the removeCommand() method, respectively.

Listing 6-5 MIDlet-Name: CheckBoxes
The JAD MIDlet-Version: 1.0
file for

MIDlet-Vendor: MyCompany

Listing 6-6 .
MIDlet-Jar-URL: CheckBoxes.jar
MIDlet-1: CheckBoxes, , CheckBoxes
MicroEdition-Configuration: CLDC-1.0
MicroEdition-Profile: MIDP-1.0 -
MIDlet-JAR-SIZE: 100 ﬁ
=
-
Listing 6-6 import javax.microedition.midlet.*; g
Creating and import javax.microedition.lcdui.*; 3
accessing public class CheckBoxes extends MIDlet implements CommandListener ﬁ

check boxes

{
private Display display;

private Form form;

private Command exit;

private Command process;

private ChoiceGroup movies;

private int movieIndex;

public CheckBoxes ()

{
display = Display.getDisplay (this);
movies = new ChoiceGroup ("Select Movies You Like to See",

Choice.MULTIPLE) ;

movies.append("Action", null);
movies.append ("Romance", null) ;
movies.append ("Comedy", null);
movies.append ("Horror", null);
exit = new Command("Exit", Command.EXIT, 1);
process = new Command ("Process", Command.SCREEN,?2) ;
form = new Form("Movies") ;
movieIndex = form.append (movies) ;
form.addCommand (exit) ;
form.addCommand (process) ;
form.setCommandListener (this) ;

}

public void startApp()

{

display.setCurrent (form) ;

150 J2ME: The Complete Reference

}

public void pauselpp ()

{

}

public void destroyApp (boolean unconditional)

{

}

public void commandAction (Command command, Displayable displayable)

{

if (command == process)

{
boolean picks[] = new boolean[movies.size()];
StringItem message[] = new StringItem[movies.size()];

movies.getSelectedFlags (picks) ;
for (int x = 0; x < picks.length; x++)
{
if (picks(x])
{
message[x] = new StringItem("",movies.getString(x)+"\n");
form.append (message[x]) ;
}
}
form.delete (movieIndex) ;
form.removeCommand (process) ;
}
else if (command == exit)
{
destroyApp (false) ;
notifyDestroyed() ;

Creating and Accessing Radio Buttons
Listing 6-7 contains the JAD file for Listing 6-8, which shows how to create a ChoiceGroup
object that displays radio buttons on the screen as part of a form. This MIDlet displays two
radio buttons, each representing a gender, and then prompts the user to select one or the
other gender (Figure 6-3). After making a selection, the user clicks the Process command,
causing the MIDlet to read the selected radio button and display the label of the radio
button on the form.

Like Listing 6-6, Listing 6-8 begins by declaring references and integers that are
used later in the program. Instances are created within the constructor, one of which

Chapter 6: High-Level Display: Screens

[5] DefaultColorPhone [EI[E

—

. D 6D

@ @ @

Tz L7

o o o
CE

MODE 5P

Figure 6-3. Displaying radio buttons on a form

is an instance of the ChoiceGroup class. The ChoiceGroup class constructor is passed
a title in the first parameter and the type in the second parameter. Notice that the type
is EXCLUSIVE, which limits selection to only one set of choices within the group.

The append() method is called twice to add two radio buttons to the group. These
are Female and Male. The Male radio button is the default selection. You set a default
selection by first storing the index number of the Male radio button that is returned
by the append() method. This index number is then passed as the first parameter to
the setSelectedIndex() method. The setSelectedIndex() method’s second parameter is
a boolean value indicating whether the radio button is on or off. In this example, a true
value is passed to turn on the radio button.

The remaining statements within the constructor create instances of the Command
class and associate them and other instances with the form. This is nearly identical to
similar statements within the constructor of Listing 6-6. The form is then displayed
by calling the setCurrent() method in the startApp() method. Command events are
detected, and the commandAction() method is called to process those events, as
described previously in the “Item Class” section of this chapter.

151

152

J2ME: The Complete Reference

Creating Radio Buttons

Listed here are the steps required to create radio buttons:

. Declare references.

. Obtain a reference to the instance of the Display class.

. Create an instance of a ChoiceGroup of EXCLUSIVE type.

. Append radio buttons to the instance of the ChoiceGroup.

. Set the Male radio button as the default radio button.

. Create an instance of a Command class to exit the MIDlet.

. Create an instance of a Command class to process the radio buttons.

. Create an instance of the Form class.

O 00 NI O Ul b W N -

. Associate the instance of the ChoiceGroup to the instance of the Form class.

—_
o

. Associate the instance of the Command class to the instance of the Form class.

—_
—_

. Associate a CommandListener with the instance of the Form class.

—_
N

. Display the instance of the Form class on the screen.

—_
@D

. Evaluate the command selected by the user.

. If the Exit command is selected, terminate the MIDlet.

=
TS

. If the Process command is selected, process the radio button.
. Read the selected radio button.

_
R e

. Retrieve the string of the selected radio button.

—_
o

. Display the string of the radio button on the form.

—_
\O

. Remove the radio button from the form.

N
(@]

. Remove the Process command from the form.

Listing 6-7
The JAD
file for
Listing 6-8

The MIDlet invokes the getSelectedIndex() method of the gender object if the incoming
command is the Process command. The getSelectedIndex() returns an integer representing
the index of the gender object selected by the user. The index is passed to the getString()
method, which returns the radio button’s label and assigns the label to an instance of
the Stringltem class. This instance is then displayed on the form by calling the append ()
method; afterward the gender instance and the Process command are removed from
the form.

MIDlet-Name: RadioButtons
MIDlet-Version: 1.0
MIDlet-Vendor: MyCompany

Chapter 6: High-Level Display: Screens 153

MIDlet-Jar-URL: RadioButtons.jar
MIDlet-1: RadioButtons, , RadioButtons
MicroEdition-Configuration: CLDC-1.0
MicroEdition-Profile: MIDP-1.0
MIDlet-JAR-SIZE: 100

Listing 6-8 import javax.microedition.midlet.*;
Creating and import javax.microedition.lcdui.*;
accessing

public class RadioButtons extends MIDlet implements CommandListener

{
private Display display;

radio buttons

private Form form;
private Command exit;
private Command process;

Cc
(72
m
e
2
-
m
A
>
o
m

private ChoiceGroup gender;
private int currentIndex;

private int genderIndex;

public RadioButtons/()

{
display = Display.getDisplay (this);
gender = new ChoiceGroup ("Enter Gender", Choice.EXCLUSIVE) ;
gender .append ("Female", null) ;
currentIndex = gender.append("Male ", null);
gender.setSelectedIndex (currentIndex, true);
exit = new Command ("Exit", Command.EXIT, 1);
process = new Command ("Process", Command.SCREEN,2) ;
form = new Form("Gender") ;
genderIndex = form.append (gender) ;
form.addCommand (exit) ;
form.addCommand (process) ;
form.setCommandListener (this) ;

}

public void startApp()

{
display.setCurrent (form) ;

}

public void pauseApp ()

{

}

public void destroyApp (boolean unconditional)

{

}

154 J2ME: The Complete Reference

public void commandAction (Command command, Displayable displayable)
{
if (command == exit)
{
destroyApp (false) ;
notifyDestroyed() ;
}
else if (command == process)
{
currentIndex = gender.getSelectedIndex() ;
StringItem message = new StringlItem("Gender: ",
gender .getString (currentIndex)) ;
form.append (message) ;
form.delete (genderIndex) ;
form.removeCommand (process) ;

DateField Class

The DateField class is used to display, edit, or input date and/or time into a MIDlet.

A DateField class is instantiated by specifying a label for the field, a field mode, and a
time zone, although time zone is optional. Table 6-3 lists the available DateField modes.
Both methods are illustrated in the following two statements:

DateField datefield new DateField("Today", DateField.DATE) ;
DateField datefield = new DateField("Time", DateField.TIME, timeZone) ;

Once a DateField class is instantiated, you can use DateField class methods to enter
a date and time into the date field and retrieve the date and time value that has already
been entered into the date field. You place a date or time into the date field by calling the

Mode Description

DATE Display, edit, and input a date

TIME Display, edit, and input a time
DATE_TIME Display, edit, and input both date and time

Table 6-3. DateField Modes

Chapter 6: High-Level Display: Screens

setDate() method. The setDate() method requires one parameter, which is an instance of
the Date class containing the date/time value that will appear in the date field.

The getDate() method is called to retrieve the date/time value of the date field.
You can use the date/time value in a number of ways within your MIDlet, such as in
a calculation. Listing 6-9 contains the JAD file for Listing 6-10, which illustrates how
to place a date/time value into a date field and read a date/time value from a date
field that is later used in a calculation.

Besides storing and retrieving date/time values using DateField class methods, you
can also replace the DateField mode and retrieve the DateField mode of an instance of a
DateField class. You'll find these methods handy to use whenever you need to change the
mode on the fly. The setinputMode() method replaces the existing DateField mode with
the mode passed as a parameter to the setinputMode() method. The getInputMode()
method is used to retrieve the mode of an instance of a DateField.

Creating and Manipulating an Instance of a DateField Object
The example in Listing 6-10 creates an instance of the DateField class that is initialized
with current date and time of the system’s clock, which is displayed on the screen
(Figure 6-4).

] DefaultGrayPhone [EIE

—

. D @D

(7o L [T
= U o

.. - ~
MODE SPACE

Figure 6-4. Displaying the date field on a form

155

156

J2ME: The Complete Reference

Creating an Instance of the DateField Class

Listed here are the steps required to create an instance of the DateField class:

. Declare references.

. Obtain a reference to the instance of the Display class.

. Create an instance of the Form class.

. Create an instance of the DateField class.

. Set the instance of the DateField class to the system’s date.

. Create an instance of a Command class to exit the MIDlet.

. Associate the instance of the DateField class to the instance of the Form class.

. Associate the instance of the Command class to the instance of the Form class.

O 00 NI O Ul b W N -

. Associate a CommandListener with the instance of the Form class.

—_
o

. Display the instance of the Form class containing the system’s date on the
screen.

—_
—_

. Evaluate the command selected by the user.

—_
N

. If the Exit command is selected, terminate the MIDlet.

Listing 6-9
The JAD
file for
Listing 6-10

You'll notice that, like other listings in this chapter, Listing 6-10 begins by declaring
references to instances of classes that are used in the MIDlet. These classes are instantiated
in the constructor and assigned to variables.

The instance of the DateField class is placed in the DATE_TIME mode since both
date and time are displayed. The date and time is set by passing the Date() construction
a date/time value in milliseconds since January 1, 1970. The System.currentTimeMillis()
method returns the current time in milliseconds—the number of milliseconds since
January 1, 1970.

The instance of the DateField class, along with the Exit commands and the
CommandListener, are then associated with the instance of the Form class. The form is
then displayed on the screen by calling the setCurrent() method within the startApp()
method. After the user selects the Exit command, the device’s application manager
calls the commandAction() method, where the command is evaluated. The MIDlet
terminates when the user selects the Exit command.

MIDlet-Name: DateToday
MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany
MIDlet-Jar-URL: DateToday.jar
MIDlet-1: DateToday, , DateToday
MicroEdition-Configuration: CLDC-1.0

Chapter 6: High-Level Display: Screens 157

MicroEdition-Profile: MIDP-1.0
MIDlet-JAR-SIZE: 100

Listing 6-10 import java.util.*;
Displaying import javax.microedition.midlet.*;
thesyﬁgz&i import javax.microedition.lcdui.*;

public class DateToday extends MIDlet implements CommandListener
{

private Display display;

private Form form;

private Date today;

private Command exit;

private DateField datefield;

public DateToday ()

{

display = Display.getDisplay (this);

c
n
m
P
2
-
m
A
>
o
m

form = new Form("Today's Date") ;
today = new Date(System.currentTimeMillis());
datefield = new DateField("", DateField.DATE_TIME) ;
datefield.setDate(today) ;
exit = new Command("Exit", Command.EXIT, 1);
form.append (datefield) ;
form.addCommand (exit) ;
form.setCommandListener (this) ;
}
public void startApp ()
{
display.setCurrent (form) ;
}
public void pauselpp ()
{
}
public void destroyApp (boolean unconditional)
{
}
public void commandAction (Command command, Displayable displayable)
{
if (command == exit)
{
destroyApp (false) ;
notifyDestroyed() ;
}
}

158

J2ME: The Complete Reference

Gauge Class

The Gauge class creates an animated progress bar that graphically represents the status
of a process. The indicator on the gauge generated by the Gauge class moves from
one end to the other proportionally to the completion of the process measured by the
gauge. Although movement of the indicator appears to be automatically driven by
the underlying process that is being measured, this movement is completed under the
control of the MIDlet. There is no direct, automatic link between a Gauge class and
the associated process.

The Gauge class provides methods to display the gauge and move the indicator. The
developer must build the routine into the MIDlet to move the indicator. This means that
the routine must monitor the progress of the underlying process and move the indicator
of the Gauge class to a position that corresponds to the status of the process.

Let’s say a MIDlet performs 100 calculations, and you want to use a gauge to
indicate the number of calculations made. Each time a calculation is completed, you
must move the indicator one tick. The user of the MIDlet can also control the indicator
if the instance of the Gauge class is set in the interactive mode. In interactive mode
the user can move the indicator of the gauge to a desired value, such as increasing the
volume of a device. The developer must then include a routine in the MIDlet to read
the value of the gauge indicator and incorporate the user’s input into the MIDlet’s
processing.

You create an instance of the Gauge class by using the following code segment:

I Gauge gauge = new Gauge("Like/Dislike Gauge", true, 100, 0);

This statement creates an interactive gauge with the caption “Like/Dislike Gauge” and
a scale of zero to 100. The first parameter passed to the constructor of the Gauge class is a
string containing the caption that is displayed with the gauge. The second parameter is
a boolean value indicating whether or not the gauge is interactive. The third parameter
is the maximum value of the gauge, and the last parameter is the gauge’s initial value.

Although a gauge is set to the interactive mode, you can still change the current
value of the gauge indicator by calling the setValue() method. The setValue() method
requires one parameter, which is the integer representing the new value. You must
write the logic in your MIDlet to calculate the new value. Many times you will want to
increment or decrement the current value of the gauge by a specific amount. Therefore,
you'll need to determine the current value of the gauge by calling the getValue() method.
The getValue() method returns an integer representing the gauge’s current value.

Before setting a new value for the gauge, be sure the new value doesn’t exceed the
maximum value of the gauge, otherwise the indicator on the gauge won’t be able to
display the new value. You can determine the maximum value of the gauge by calling
the getMaxValue() method, which returns the integer representing the current maximum
value. If your new value exceeds the maximum value, you can reset the maximum value
before setting the new value by calling the setMaxValue() method and passing the method
an integer representing the new maximum value.

Chapter 6: High-Level Display: Screens

Creating and Manipulating an Instance of a Gauge Class
Listing 6-11 contains the JAD file for Listing 6-12, which shows how to create a
noninteractive gauge. This example simulates monitoring a process and reporting
the status of the process by moving the indicator on the gauge through the range

of values from zero to 100 (Figure 6-5). The monitoring begins when the user selects
the Start command. The commandAction() method then loops through moving the
indicator by retrieving the current value of the indicator, incrementing that value,
and then repositioning the indicator on the gauge. It is within this loop that you place
statements that evaluate the status of a process, which is then reflected by positioning
the indicator.

Like other examples in this chapter, Listing 6-12 begins by declaring variables that
are used to reference instances of classes created within the MIDlet, including an instance
of the Gauge class. These instances are created with the GaugeNonlInteractive constructor.
The Gauge class constructor is passed four parameters. The first is the caption for the
gauge, “Progress Tracking.” The second parameter is a boolean false value indicating
that the gauge isn’t interactive. The third parameter is the maximum value of the gauge,
which is set to 100. And the last parameter is the initial value of the gauge.

] DefaultColorPhone [E[El
—

Process Completed

. D 6D
s vl
uﬂ

MODE

Figure 6-5. Displaying a noninteractive gauge on a form

159

160

J2ME: The Complete Reference

Creating an Instance of the Gauge Class

Listed here are the steps required to create an instance of the Gauge class:

. Declare references.

. Obtain a reference to the instance of the Display class.

. Create an instance of the Gauge class.

. Create an instance of a Command class to exit the MIDlet.

. Create an instance of a Command class to start processing the selection.

. Create an instance of the Form class.

. Associate the instance of the Gauge class to the instance of the Form class.

. Associate instances of the Command class to the instance of the Form class.

O 00 NI O Ul b W N -

. Associate a CommandListener with the instance of the Form class.

—_
o

. Display the instance of the Form class on the screen.

—_
—_

. Evaluate the command selected by the user.

—_
N

. If the Exit command is selected, terminate the MIDlet.

—_
@D

. If the Start command is selected, process the gauge.

—_
S

. Make sure the current value of the instance of the Gauge class is less than
the maximum value of the instance.

15. If the value is less than the maximum, increment the current value of the
gauge by one and reposition the indicator.

16. Remove the Start command.

17. Change the label of the gauge to indicate that processing is completed.

Instances of the Command class, the Gauge class, and the CommandListener are then
associated with the form. The form is then displayed on the screen when the startApp()
method is called by the device’s application manager.

The commandAction() method is invoked any time a command event is detected.
This method evaluates the incoming command by comparing the command to the Exit
and Start commands created by the MIDlet. If the Exit command was selected, the
commandAction() method causes the MIDlet to terminate, as described in previous
listings in this chapter. If the Start command was selected, the MIDlet enters the
while loop.

The loop continues as long as the current value of the gauge, as reported by
the getValue() method, is less than the maximum value of the gauge returned by the
getMaxValue() method. The MIDlet then retrieves the current value again, increments

Chapter 6: High-Level Display: Screens 161

the value by one, and passes the sum as the parameter to the setValue() method, thereby
resetting the gauge indicator to show the new status of processing within the while loop.

Once the current value is equal to the maximum value of the gauge, the loop is
terminated. The Start command is removed from the form, and the setLabel() method
is called, resetting the label of the gauge to “Process Completed.”

Listing 6-11 MIDlet-Name: GaugeNonInteractive
The JAD MIDlet-Version: 1.0
file for MIDlet-Vendor: MyCompany
Listing 6-12 MIDlet-Jar-URL: GaugeNonInteractive.jar
MIDlet-1: GaugeNonInteractive, , GaugeNonInteractive E
MicroEdition-Configuration: CLDC-1.0 E
MicroEdition-Profile: MIDP-1.0 —
MIDlet-JAR-SIZE: 100 3
2
Listing 6-12 import javax.microedition.midlet.*; §
Implementing import javax.microedition.lcdui.*;
a noninter- public class GaugeNonInteractive
active gauge extends MIDlet implements CommandListener

private Display display;

private Form form;

private Command exit;

private Command start;

private Gauge gauge;

private boolean isSafeToExit;

public GaugeNonInteractive()

{
display = Display.getDisplay(this);
gauge = new Gauge ("Progress Tracking", false, 100, 0);
exit = new Command("Exit", Command.EXIT, 1);
start = new Command("Start", Command.SCREEN, 1);
form = new Form("");
form.append (gauge) ;
form.addCommand (start) ;
form.addCommand (exit) ;
form.setCommandListener (this) ;
isSafeToExit = true;

}

public void startApp()

{

display.setCurrent (form) ;

}

public void pauselpp ()

{

}

162 J2ME: The Complete Reference

public void destroyApp (boolean unconditional)
throws MIDletStateChangeException

if (!unconditional)
{
throw new MIDletStateChangeException() ;

}

public void commandAction (Command command, Displayable displayable)
{
if (command == exit)
{
try
{
destroyApp (isSafeToExit) ;
notifyDestroyed() ;
}
catch (MIDletStateChangeException Error)
{
Alert alert = new Alert ("Busy"
alert.setTimeout (1500) ;

display.setCurrent (alert, form);

"Please try again.", null, AlertType.WARNING) ;

}
else if (command == start)
{
form.remove.Command (start) ;
new Thread(new GaugeUpdater ()) .start();
}
}
class GaugeUpdater implements Runnable
{
GaugeUpdater ()
{
}
public void run()
{
isSafeToExit = false;
try
{
while (gauge.getValue() < gauge.getMaxValue())
{
Thread.sleep (1000) ;
gauge.setValue (gauge.getValue() + 1);
}
isSafeToExit = true;
gauge.setLabel ("Process Completed.");

Chapter 6: High-Level Display: Screens

}
catch (InterruptedException Error)
{
throw new RuntimeException (Error.getMessage()) ;

}

As mentioned earlier, an instance of a Gauge class can become interactive, enabling the
user to adjust the indicator of the gauge. Listing 6-13 contains the JAD file for Listing 6-14,
which illustrates how to create an interactive gauge (Figure 6-6). Listing 6-14 prompts the
user to rate a movie by moving the indicator on a gauge, then selecting the Vote command
to register her rating. The rating is then displayed on the screen in an alert dialog box.

You'll notice that this listing is very similar to Listing 6-12 in that references to
instances of classes are declared at the beginning of the list and are assigned instances
after instances of classes are created in the Gaugelnteractive constructor.

Creating an Interactive Gauge
Listed here are the steps required to create an interactive gauge:

. Declare references.

. Obtain a reference to the instance of the Display class.

. Create an instance of the Gauge class.

. Create an instance of a Command class to exit the MIDlet.

. Create an instance of a Command class to start processing the selection.

. Create an instance of the Form class.

. Associate the instance of the Gauge class to the instance of the Form class.

. Associate instances of the Command class to the instance of the Form class.

O 00 N O Ul = WO N =

. Associate a CommandListener with the instance of the Form class.

—_
o

. Display the instance of the Form class on the screen.

—_
—_

. Evaluate the command selected by the user.

—_
N

. If the Exit command is selected, terminate the MIDlet.

—_
(O8]

. If the Vote command is selected, process the value of the gauge.

—_
S

. Read the current value of the gauge.

—_
Q1

. Display the value of the gauge in an alert dialog box.

163

164

Listing 6-13
The JAD
file for
Listing 6-14

J2ME: The Complete Reference

] DefaultColorPhone [E[El

-

ate the movie:

--Ilﬂ

- D O
oo@
@ @
@ @

N =
MODE SPALE

Figure 6-6. Displaying an interactive gauge on a form

The instance of the Gauge class has a caption called “Rate the movie:” and has an
initial value of one and a maximum value of five. Notice that the second parameter of
the Gauge constructor is a boolean true value, which makes the gauge interactive.

Instances are then associated with the form, and the form is displayed when the
startApp() method is invoked. The actionCommand() method traps the selection of the
Start command and displays an alert dialog box captioned “Ranking,” using the return
value from the getValue() method as its message. The getValue() method retrieves the
current value of the indicator gauge, which reflects the user’s ranking of the movie.
The MIDlet terminates when the Exit command is selected.

MIDlet-Name: GaugelInteractive
MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany
MIDlet-Jar-URL: GaugelInteractive.jar

Listing 6-14
Implementing
an interactive

gauge

Chapter 6: High-Level Display: Screens

MIDlet-1: Gaugelnteractive, , Gaugelnteractive
MicroEdition-Configuration: CLDC-1.0
MicroEdition-Profile: MIDP-1.0
MIDlet-JAR-SIZE: 100

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
public class GaugeInteractive extends MIDlet implements CommandListener
{
private Display display;
private Form form;
private Command exit;
private Command vote;
private Gauge gauge;
public Gaugelnteractive ()
{
display = Display.getDisplay(this);
gauge = new Gauge ("Rate the movie: ", true, 5, 1);
exit = new Command("Exit", Command.EXIT, 1);
vote = new Command ("Vote", Command.SCREEN, 1);
form = new Form("");
form.addCommand (exit) ;
form.addCommand (vote) ;
form. append (gauge) ;
form. setCommandListener (this) ;

}
public void startApp()
{
display.setCurrent (form) ;
}
public void pauseApp ()
{
}
public void destroyApp (boolean unconditional)
{
}
public void commandAction (Command command, Displayable displayable)
{
if (command == exit)
{

destroyApp (false) ;
notifyDestroyed() ;

165

c
n
m
P
2
-
m
A
>
o
m

166

J2ME: The Complete Reference

}

else if (command == vote)
{

String msg = String.valueOf (gauge.getValue()) ;
Alert alert = new Alert("Ranking", msg, null, null);
alert.setTimeout (Alert.FOREVER) ;
alert.setType (AlertType.INFO) ;
display.setCurrent (alert) ;

Stringltem Class

Previously in this chapter, you used an instance of a Stringltem class to display a message
on the screen. We’ll discuss the details of creating this instance in this section. The purpose
of using a Stringltem class is to display a text that cannot be modified or deleted by the
user of the MIDlet.

A Stringltem class is different from other classes derived from the Item class in that
a Stringltem class does not recognize events. This means that an instance of a Stringltem
class can never cause an event because the user cannot modify the text of the string item.
Other instances of the Item class, such as an instance of the ChoiceGroup class, recognize
an event whenever the value of the instance changes, such as selecting a radio button or
check box.

Although an instance of the Stringltem class cannot cause an event to occur, you can
modify the instance from within the MIDlet as a result of an event caused by instances of
other classes. For example, the text of an instance of the Stringltem class can be changed
as a result of the user selecting a radio button.

You create an instance of a Stringltem class by passing the Stringltem class
constructor two parameters. The first parameter is a string representing the label
of the instance. The other parameter is a string of text that will appear on the screen.

You can retrieve the text of the instance of a Stringltem class once the instance is
created by calling the getText() method. The getText() method returns a string containing
the text. Likewise, you can replace the text by calling the setText() method. The setText()
method requires one parameter, which is the new text that replaces the current text of
the instance.

The label of the instance can be changed by calling the setLabel() method. The
setLabel() method requires one parameter, which is the replacement label. You can
retrieve a label from an instance by invoking the getLabel() method. The getLabel()
method returns a string consisting of the label of the instance.

Chapter 6: High-Level Display: Screens

Creating and Manipulating an Instance
of a Stringltem Object

Listing 6-15 contains the JAD file for Listing 6-16, which demonstrates how to create an
instance of a Stringltem class and then manipulate the label and text after the instance
is displayed on the screen. This example tells the user a joke. A question is posed to the
user, and then he has the option either to terminate the MIDlet or give up and have
the MIDlet display the punch line in answer to the question (Figure 6-7).

The program starts like other listings in this chapter, so we’ll jump to statements
pertinent to the Stringltem class instead of reviewing each statement. The instance
is created within the StringltemExample constructor. Two strings are passed to the
Stringltem class constructor. The first parameter is the label called “Question:”, and
the other parameter is the question. The instance of the Stringltem class is then associated
with the form, along with other instances of other classes created by the MIDlet. The
form is then displayed by the startApp() method.

Creating an Instance of a Stringltem Class

Listed here are the steps required to create an instance of the Stringltem class:

. Declare references.

. Obtain a reference to the instance of the Display class.

. Create an instance of the Stringltem class.

. Create an instance of a Command class for the answer to the joke.

. Create an instance of a Command class to exit the MIDlet.

. Create an instance of the Form class.

. Associate the instance of the Stringltem class to the instance of the Form class.

. Associate instances of the Command class to the instance of the Form class.

O 00 NI O Ul = W N -

. Associate a CommandListener with the instance of the Form class.

—_
o

. Display the instance of the Form class on the screen.

—_
—_

. Evaluate the command selected by the user.

—_
N

. If the Exit command is selected, terminate the MIDlet.

—_
[S]

. If the Giveup command is selected, process the instance of the Stringltem class.

—_
S

. Change the label of the instance to “Answer:”.

—_
Q1

. Change the text of the instance to the answer to the joke.

—_
(@)}

. Remove the Giveup command.

167

168

Listing 6-15
The JAD
file for
Listing 6-16

J2ME: The Complete Reference

IE] DefaultColorPhone !

—

Cueston: A plane
rashes on the

Figure 6-7. Displaying a string item on a form

The user selects the Giveup command if unable to answer the question. The if
statement within the commandAction() method then enables the setLabel() method
and setText() method to be invoked. The setLabel() method replaces the “Question:”
label of the Stringltem class instance with the “Answer:” label. Likewise, the text of
the instance is replaced with the punch line when the setText() method is called. The
Giveup command is then removed from the form.

MIDlet-Name: StringltemExample

MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: StringItemExample.jar

MIDlet-1: StringItemExample, , StringItemExample
MicroEdition-Configuration: CLDC-1.0
MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

Listing 6-16
Implementing
the Stringltem
class

Chapter 6: High-Level Display: Screens

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
public class StringltemExample extends MIDlet
implements CommandListener

private Display display;
private Form form;
private StringlItem question;
private Command giveup;
private Command exit;
public StringItemExample ()
{
display = Display.getDisplay (this);
question = new StringItem("Question: ",
"A plane crashes on the border between Canada
and the US. Where are the survivors buried?");
giveup = new Command("Give Up", Command.SCREEN, 1);
exit = new Command("Exit", Command.EXIT, 1);
form = new Form("Quiz");
form.addCommand (exit) ;
form.addCommand (giveup) ;
form.append (question) ;
form.setCommandListener (this) ;
}
public void startApp()
{
display.setCurrent (form) ;
}
public void pauselpp ()
{
}
public void destroyApp (boolean unconditional)
{
}
public void commandAction (Command command, Displayable displayable)
{
if (command == giveup)
{
question.setLabel ("Answer: ");
question.setText ("Survivors are not buried.");
form. removeCommand (giveup) ;
}

else if (command == exit)

169

c
n
m
P
2
-
m
A
>
o
m

170

J2ME: The Complete Reference

{
destroylpp (false) ;
notifyDestroyed() ;

TextField Class

The TextField class is used to capture one line or multiple lines of text entered by the
user. The number of lines of a text field depends on the maximum size of the text field
when you create an instance of the TextField class. You instantiate the TextField class
by using the following statement, passing the TextField constructor four parameters:

I textfield = new TextField("First Name:", "", 30, TextField.ANY) ;

The first parameter is the label that appears when the instance is displayed on the
screen. The second parameter is text that you want to appear as the default text for
the instance, which the user can edit. The third parameter is the maximum number
of characters that can be held by the instance. A word of caution: The character count
that you enter is a request to the device’s application manager and not a directive. This
means the maximum number of characters that can be entered into the text field might
be lower than the value passed to the constructor.

You can determine the actual character size of a text box by calling the getMaxSize()
method once the text field is instantiated. Always check the maximum size of a text
tield before populating it if your MIDlet is likely to populate the text field with a lot
of text. In this way you can prevent an error from occurring during run time.

You can also change the maximum size by calling the setMaxSize() method. The
setMaxSize() method requires one parameter, which is the new value for the maximum
size for the text field. Any time that you need to know the length of the text in the text
field you can call the size() method, which returns an integer representing the number
of characters existing in the text field.

Also keep in mind that not all characters in a text field will appear on the screen.
Characters that don’t fit on the screen are still available to the user by scrolling. The
device handles scrolling for you.

The last parameter passed to the constructor of the TextField class is the constraint
(if any) that is used to restrict the type of characters that the user can enter into the text
field. Table 6-4 lists the constraints recognized by the TextField class. The instance of
the TextField class accepts any character if the ANY constraint is set. You can restrict
entry to numeric characters by passing the NUMERIC constraint to the constructor.
All non-numeric characters are excluded from the text field.

Chapter 6: High-Level Display: Screens

Constraint Description

CONSTRAINT_MASK Used to determine the constraint’s current value

ANY Input any character

EMAILADDR Input only valid email address characters

NUMERIC Input positive and negative numbers; cannot exclude
either positive or negative numbers

PASSWORD Hide input

PHONENUMBER Input characters valid to a phone number sometimes
specific to locality and device

URL Input characters valid to a URL

Table 6-4. TextField Object Constraints

Three special-purpose constraints—EMAILADDR, PHONENUMBER, and URL—
act as filters to assure that only valid characters can be entered into the text field for email
addresses, phone numbers, and URLs. All other characters are treated as an error and
therefore are prevented from being stored in the text field. The PASSWORD constraint
can be combined with other constraints to hide characters from being displayed. An
asterisk or other character determined by the device is displayed in place of the actual
character placed in the text box. The CONSTRAINT_MASK constraint is used to determine
the constraint’s current value.

There are two methods you can use to retrieve characters entered into a text field
by the user of your MIDlet. These are the getString() method and the getChars() method.
The getString() method returns the content of the text field as a string, and the getChars()
method returns the text field content as a character array. The getChars() method requires
that you pass it a character array as a parameter.

You place text into a text field by calling either the setString() method or the
setChars() method. The setString() method requires one parameter, which is the string
containing text that should appear in the text field. The setChars() method requires

three parameters. The first is the character array whose data will populate the text field.

The second is the position of the first character within the array that will be placed into
the text field. The last parameter is the length of characters of the character array that
will be placed into the text field. Characters in the character array will replace the
entire content of the text field.

You can insert characters within the text field without overwriting the entire
content of the text field by calling the insert() method. The insert() method has two
signatures, one for strings and the other for character arrays. The insert() method used

171

172

J2ME: The Complete Reference

to insert a string into the contents of a text field requires two parameters. The first
parameter is the string that will be inserted into the text field. The other parameter
is the character position of the current string where the new text is inserted. The text
that exists there now will be shifted down to make room for the inserted text.

The insert() method used to insert a character array requires four parameters. The
tirst parameter is reference to the array. The second parameter is the position of the first
character within the array that will be placed into the text field. The third parameter is
the number of characters contained in the array that will be placed into the text field.
And the last parameter is the character position of the current text that will be shifted
down to make room for the inserted text.

Text can be removed from the text field by calling the delete() method, which
requires two parameters. The first is the position of the first character to be deleted.
The other parameter is the length of characters that are to be deleted.

The constraint of a text field can be changed after the instance is created by calling
the setConstraints() method. The setConstraints() method requires you to pass the
new constraint as a parameter to the setConstraints() method. You can also determine
the current constraint by calling the getConstraints() method.

Another sometimes handy method is the getCaretPosition() method. A caret is
the cursor within the text field, and as you probably guessed, the getCaretPosition()
method returns the current position of the cursor. For example, you might design an
application that requires the user to select a section of text by positioning the cursor
at the first character of the section and then selecting a command. In response, your
MIDlet calls the getCaretPosition() method and uses the returned position to extract
the section of text from the contents of the text field.

Creating and Manipulating an Instance of a TextField Class
We will look at two common ways to use a TextField class in a MIDlet. Listing 6-17
contains the JAD file for Listing 6-18, which shows how to create an instance of a
TextField class, capture user input, and then replace the text in the text field with text
generated by the MIDlet. Listing 6-19 contains the JAD file for Listing 6-20, which
illustrates the technique for using the PASSWORD constraint when prompting the
user to enter a password into a text field. This MIDlet also shows you how to change
the constraint from within your program and replace the password text with text of
your own.

Let’s begin with Listing 6-18. This MIDlet begins much the same way as other
examples shown in this chapter, by declaring variables, then creating instances of
classes within the TextCapture constructor. Those instances are then assigned to
variables and associated with the Form object.

Chapter 6: High-Level Display: Screens

Creating an Instance of a TextField Class

Listed here are the steps required to create an instance of a TextField class:

. Declare references.

. Obtain a reference to the instance of the Display class.

. Create an instance of a Command class for the Submit class.

. Create an instance of a Command class to exit the MIDlet.

. Create an instance of the TextField class.

. Create an instance of the Form class.

. Associate the instance of the TextField class to the instance of the Form class.

. Associate instances of the Command class to the instance of the Form class.

O 00 NI O Ul b W N -

. Associate a CommandListener with the instance of the Form class.

—_
o

. Display the instance of the Form class on the screen.

—_
—_

. Evaluate the command selected by the user.

—_
N

. If the Exit command is selected, terminate the MIDlet.

—_
@D

. If the Submit command is selected, process the instance of the TextField class.

—_
S

. Retrieve the text of the instance.

—_
Q1

. Concatenate the text to the “Hello,” greeting.

—_
(@)

. Replace the text in the instance.

—_
N

. Remove the Submit command.

Notice that an instance of a TextField class is created within the TextCapture
constructor. This text field is labeled “First Name:” and can receive up to 30 characters
of any kind. Initially, the text field is empty. Also notice that instances of two commands
are created. One command is called Submit and is selected after the user enters a first
name in the text box. The other command is the Exit command and is used to terminate
the MIDlet. The form containing the text field is displayed on the screen by calling the
setCurrent() method in the startApp() method (Figure 6-8).

The Submit command is detected and processed by the commandAction() method,
as described in the “Item Class” section of this chapter. If the command passed to the
commandAction() method is the Submit command, the MIDlet calls the getString()

173

174

J2ME: The Complete Reference

[5] DefaultColorPhone [EI[E

—

@ @ @

Tz L7

o o o
SPACE

MODE.

Figure 6-8. Displaying a text field on a form

method to retrieve the string from the text field. The content of the text field is then
concatenated to the word “Hello,” which is then passed to the setString() method,
causing the new string to replace the existing string in the text field (Figure 6-9). The
Submit command is then removed from the screen, forcing the user to select the Exit
command to terminate the MIDlet.

Listing 6-20 is practically the same MIDlet as Listing 6-18 with a few exceptions.
The text field in Listing 6-20 is labeled “Password:” and has two constraints. The
first constraint is ANY, enabling any character to be entered into the text field. The
other constraint is PASSWORD, which displays an asterisk (or another character
selected by the device) in place of each character that the user enters in the text field.
Notice that the bitwise OR operator (|) is used to join constraints.

Chapter 6: High-Level Display: Screens 175

IE] DefaultColorPhone !

—

i —

Fuml :::1)
I5ign In Please

Figure 6-9. A sign-in screen is displayed after the Submit command is selected.

If you drop down to the commandAction() method, you'll see that the setConstraints()
method is called, changing the constraint from ANY | PASSWORD to ANY, which
causes characters placed in the text field to be displayed unchanged. The MIDlet also
calls the setString() method to replace the hidden content of the text field with the
“Thank you.” string.

Listing 6-17 MIDlet-Name: TextFieldCapture
The JAD MIDlet-Version: 1.0
file for

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: TextFieldCapture.jar

MIDlet-1: TextFieldCapture, , TextFieldCapture
MicroEdition-Configuration: CLDC-1.0
MicroEdition-Profile: MIDP-1.0
MIDlet-JAR-SIZE: 100

Listing 6-18

176 J2ME: The Complete Reference

Listing 6-18 import javax.microedition.midlet.*;
Interacting import javax.microedition.lcdui.*;
inﬂgili; public class TextFieldCapture extends MIDlet
a TextField implements CommandListener
class {

private Display display;

private Form form;

private Command submit;

private Command exit;

private TextField textfield;

public TextFieldCapture ()

{

display = Display.getDisplay (this);

submit = new Command ("Submit", Command.SCREEN, 1);
exit = new Command("Exit", Command.EXIT, 1);
textfield = new TextField("First Name:", "", 30, TextField.ANY) ;
form = new Form("Sign In Please");
form.addCommand (exit) ;
form.addCommand (submit) ;
form.append (textfield) ;
form.setCommandListener (this) ;

}

public void startApp()

{

display.setCurrent (form) ;

}
public void pauselpp ()
{
}
public void destroyApp (boolean unconditional)
{
}
public void commandAction (Command command, Displayable displayable)
{
if (command == submit)
{
textfield.setString("Hello, " + textfield.getString());
form.removeCommand (submit) ;
}
else if (command == exit)
{

destroyApp (false) ;
notifyDestroyed() ;

Listing 6-19
The JAD

file for
Listing 6-20

Listing 6-20
Hiding text in
a text field

Chapter 6: High-Level Display: Screens

MIDlet-Name: HideText
MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany
MIDlet-Jar-URL: HideText.jar
MIDlet-1: HideText, , HideText
MicroEdition-Configuration: CLDC-1.0
MicroEdition-Profile: MIDP-1.0
MIDlet-JAR-SIZE: 100

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class HideText extends MIDlet implements CommandListener

{

private Display display;

private Form form;

private Command submit;

private Command exit;

private TextField textfield;

public HideText ()

{

display = Display.getDisplay(this);

submit = new Command("Submit", Command.SCREEN, 1);
exit = new Command("Exit", Command.EXIT, 1);
textfield = new TextField("Password:", "", 30, TextField.ANY | TextField.PASSWORD) ;
form = new Form("Enter Password");
form.addCommand (exit) ;
form.addCommand (submit) ;
form.append (textfield) ;
form.setCommandListener (this) ;

}

public void startApp()

{

display.setCurrent (form) ;

}

public void pauselpp ()

{

}

public void destroyApp (boolean unconditional)
{

}

public void commandAction (Command command, Displayable displayable)

177

c
n
m
P
2
-
m
A
>
o
m

178

J2ME: The Complete Reference

{

if (command == submit)

{
textfield.setConstraints (TextField.ANY) ;
textfield.setString ("Thank you.");
form. removeCommand (submit) ;

}

else if (command == exit)

{
destroyApp (false) ;
notifyDestroyed() ;

Imageltem Class

There are two types of images that can be displayed. These are immutable images and
mutable images. An immutable image is loaded from a file or other resource and cannot
be modified once the image is displayed. Icons associated with MIDlets are immutable
images. A mutable image is drawn on the screen using methods available in the Graphics
class. Once drawn, your MIDlet can redraw any portion of the image.

An immutable image is drawn on a screen, and a mutable object is drawn on a
canvas. As you learned at the beginning of the chapter, the Displayable class has two
derived classes—the Screen class and the Canvas class. Immutable images are displayed
using an instance of the Imageltem class, which inherits from the Item class. Mutable
images are displayed using the Graphics class, which is derived from the Canvas class.
You'll learn techniques for drawing and displaying mutable images in the next chapter,
which discusses the low-level MIDlet interface. This section focuses on displaying
immutable images.

The first step in displaying an immutable image is to create an instance of the
Image class by calling the createImage() method. The createlmage() method requires
one parameter that contains the name of the file containing the image. Make sure
that you include the full path to the file in the parameter. The next step is to create
an instance of the Imageltem class. The constructor of the Imageltem class requires
four parameters. The first is a string that becomes the label for the image. The second
parameter is reference to the instance of the Image class created in step one. The
third parameter is the layout directive. And the last parameter is a string referred to
as alternate text that is displayed in place of the image if for some reason the image
cannot be displayed by the device. Some applications won’t require you to specify
a label or alternate text; therefore, use a null as the value of the parameter in place
of a string.

The layout directive is a request to the device’s application manager to position the
image at a particular location on the screen. The device’s application manager determines
the actual location where the image appears. Table 6-5 lists layout directives. The bitwise
OR operator combines layout directives (|), which is illustrated in Listing 6-22.

Chapter 6: High-Level Display: Screens

Value Description

LAYOUT_DEFAULT Use the device’s default layout
LAYOUT_LEFT Place image left

LAYOUT_RIGHT Place image right

LAYOUT_CENTER Center image

LAYOUT _NEWLINE_BEFORE Start a new line and then draw the image
LAYOUT_NEWLINE_AFTER Draw the image and then start a new line

Table 6-5. Imageltem Layout Directives

You can modify the image layout after the image is displayed on the screen by
calling the getLayout() method and setLayout() method. The getLayout() method
returns the current layout directive of an instance of an Imageltem. The setLayout()
method replaces the current layout with a new layout whose directive is passed as
a parameter to the setLayout() method.

Likewise, you can modify the label and alternate text associated with an image by
calling the getLabel() method, setLabel method, getAltText() method, and setAltText()
method. The getLabel() and getAltText() methods retrieve the current label and alternate
text, and the setLabel() and setAltText() methods are called to replace them. Both the

setLabel() and setAltText() methods require one parameter, which is the replacement text.

The image itself is replaceable by calling the getlmage() method and the setlmage()
method. The getlmage() method fetches the current image associated with the instance
of the Imageltem, and the setImage() method associates a new image with the instance.
The setImage() method requires you to pass it an instance of an Image class. Therefore,
you'll need to create a new instance of the Image class for the new image before calling
the setlmage() method.

Creating an Instance of an Imageltem Class
Listing 6-21 contains the JAD file for Listing 6-22, which illustrates how to create
instances of an Image class and an Imageltem class and then display an immutable
image on the screen. The necessary variables are declared at the beginning of the
program and are assigned relative objects within the Immutablelmage constructor.
The ImmutableImage constructor is slightly different from constructors of other
examples in this chapter because it includes a try { } block. The try { } block contains
statements that create an instance of the Image class and an instance of the Imageltem
class and then associates the image item with the form. These statements are placed
within the try { } block to detect an exception that is thrown if the file name passed
to the createImage() method isn’t found.

179

180

J2ME: The Complete Reference

Creating an Instance of an Imageltem Class
Listed here are the steps required to create an instance of an Imageltem class:

. Declare references.

. Obtain a reference to the instance of the Display class.

. Create an instance of a Command class to exit the MIDlet.

. Create an instance of the Form class.

. Associate the instance of the Command class to the instance of the Form class.
. Associate a CommandListener with the instance of the Form class.

. Create an instance of the Image class.

. Create an instance of the Imageltem class.

O 0 N3 O UG &= W N =

. Place the image on its own line to the left of the screen and display “My
Image” whenever the image cannot be displayed.

10. Associate the instance of the Imageltem class to the form.
11. Display an alert dialog box if the image cannot be found.
12. Display the instance of the Form class on the screen.

13. Evaluate the command selected by the user.

14. If the Exit command is selected, terminate the MIDlet.

The first statement within the try { } block calls the createlmage() method and passes
the name of the file that contains the image we want displayed on the screen. Obviously,
you should replace the image “myimage.png” with the file name of your own image.

The next statement creates an instance of an Imageltem class. Notice that a null is
passed as the first parameter to the constructor of the Imageltem class because there is
no label for the image. The next parameter is reference to the image created by calling
the createlmage() method in the previous statement. The third parameter contains three
layout directives. The first directive states that the image must appear below the previous
image or text on the screen. The second layout directive requests that the image appear
left on the screen. And the last layout directive states that no other images or text should
appear on the same line on the screen as the image. The image item is then appended to
the form.

An exception is thrown if for some reason myimage.png cannot be loaded into the
instance of the Image class. The catch { } block traps the exception and displays an alert
message that a problem exists with the myimage.png file. Barring an exception being
thrown, the form and image are displayed on the screen when the startApp() method
is called to invoke the setCurrent() method. The rest of Listing 6-22 is nearly identical
to previous listings shown in this chapter.

Chapter 6: High-Level Display: Screens 181

Listing 6-21 MIDlet-Name: ImmutableImage
The JAD MIDlet-Version: 1.0
file for

MIDlet-Vendor: MyCompany

Listing 6-22 .
MIDlet-Jar-URL: ImmutableImage.jar
MIDlet-1: ImmutableImage, , ImmutableImage
MicroEdition-Configuration: CLDC-1.0
MicroEdition-Profile: MIDP-1.0
MIDlet-JAR-SIZE: 100

Listing 6-22 import javax.microedition.midlet.*;

Displaying an import javax.microedition.lcdui.*;

imnﬁﬁizz public class ImmutableImage extends MIDlet

implements CommandListener

Cc
(72
m
e
2
-
m
A
>
o
m

private Display display;
private Form form;

private Command exit;
private Image image;
private Imageltem imageltem;
public ImmutableImage ()
{
display = Display.getDisplay (this);
exit = new Command("Exit", Command.EXIT, 1);
form = new Form("Immutable Image Example") ;
form.addCommand (exit) ;
form.setCommandListener (this) ;
try
{
image = Image.createlmage ("myimage.png") ;
imageltem = new Imageltem(null, image,
Imageltem.LAYOUT NEWLINE_BEFORE |
ImageIltem.LAYOUT_LEFT |
Imageltem.LAYOUT NEWLINE_AFTER, "My Image");
form.append (imageItem) ;

}

catch (java.io.IOException error)

{

Alert alert = new Alert("Error", "Cannot load myimage.png.",

null, null);
alert.setTimeout (Alert.FOREVER) ;
alert.setType (AlertType.ERROR) ;
display.setCurrent (alert) ;

182

J2ME: The Complete Reference

}
public void startApp()
{
display.setCurrent (form) ;
}
public void pauselpp ()
{
}
public void destroyApp (boolean unconditional)
{
}
public void commandAction (Command command, Displayable Displayable)
{
if (command == exit)
{
destroyApp (false) ;
notifyDestroyed() ;

| List Class

The List class is used to display a list of items on the screen from which the user can
select one or multiple items. There are three formats for the List class: radio buttons,
check boxes, and an implicit list that does not use a radio button or check box icon
(see Table 6-2). As you can probably gather from the description of a List class, it is
functionally similar to the ChoiceGroup class discussed previously in this chapter.
This is because both the List class and the ChoiceGroup class implement the Choice
interface. The Choice interface defines methods to retrieve a selection and remove

a selection, among other maintenance functionality.

A List class differs from the ChoiceGroup class by the way events of each instance
are handled by a MIDlet. As you recall from the discussion about the ChoiceGroup
class, an ItemStateListener is used to listen to events generated by an instance of a
ChoiceGroup class. Those events are then passed along to the itemStateChanged()
method for processing. Likewise, a commandAction() method is used to process
command events, as described in the “Item Class” section of this chapter.

In contrast, a list does not generate an item state change event; therefore, a Command
needs to be added to initiate processing. For example, no event is generated when a user
selects a radio button or check box item with a list. Those selections are received by the
MIDlet only after an instance of a Command class is chosen. However, a command event
is automatically generated when the user selects an item from an instance of an implicit

Chapter 6: High-Level Display: Screens

formatted List class. Typically, an implicit formatted List class is used to create a menu.
The commandAction() method is automatically called to process the menu selection
without requiring the user to select a command to process the selection.

A List class is derived from the Screen class and does not require a container. In
contrast, the ChoiceGroup class is derived from the Item class and requires an instance
of a Form class to contain the instance of the ChoiceGroup class.

You can create an instance of the List class with or without list items. An instance
is created without list items by passing the constructor of the List class two parameters.
The first parameter is a string that contains the titles of the list, and the other parameter
is the format of the list (see Table 6-2), commonly referred to as the listType.

You can include list items when creating the instance of a List class by passing two
additional parameters to the List class constructor. The first two parameters are title
and listType. The third parameter is a string array whose elements contain list items
that can be selected by the user of your MIDlet. The fourth parameter is an array of
instances of the Image class, each associated with a corresponding list item.

List items can be added to an instance of a List object by calling the append() method
or insert() method. The append() method requires two parameters. The first parameter
is the string that contains the new list item, and the second parameter is an instance of
the Image class of an image that is associated with the new list item. The new list item
is appended to the end of the list.

The insert() method is very similar in design to the append() method, except the
new list item is inserted within the list. Three parameters are necessary for the insert()
method. The first parameter is the index number of the list item above which the new
list item is inserted. The other two parameters are the same as the parameters of the
append() method.

You can retrieve the list item selected by the user by calling the getSelectedIndex()
method. The getSelectedIndex() method returns the index number of the selected
list item. You pass the returned index number as the parameter to the getString()
method, which returns the string of the selected list item, which is then processed
by the commandAction() method.

If the instance of the List class is a check box, then call the getSelectedFlag() method.
The getSelectedFlag() method requires one parameter, which is a boolean array. The
method then populates the boolean array with the selected flag value of each list item.
You can then evaluate each array element to determine which list items the user selected.
The size() method returns the number of items on the list and can be used to set the size
of the boolean array.

One or more list items can become the default selection by calling the setSelectedIndex()
method or the setSelectedFlags() method. The setSelectedFlags() method is used to set
the selected flag of one list item and requires two parameters. The first parameter is the
index number of the list item being selected, and the other parameter is a boolean value,
where true signifies that the list item is selected and false signifies unselected. The
setSelectedIndex() method performs an operation similar to the setSelectedFlags(),
except the setSelectedIndex() sets the selected status for all list items. The setSelectedIndex()

183

184

J2ME: The Complete Reference

requires one parameter, which is a boolean array containing the selected status for the
entire list.

Any list item can be replaced by calling the set() method. The set() method requires
three parameters. The first is the index number of the list item being replaced. The second
parameter is the string replacing the string of the specified list item. And the last parameter
is an Image object that contains the image associated with the replacement list item.

Alist item can be removed from the list by calling the delete() method. The delete()
method requires one parameter, which is the index number of the list item being deleted.

Creating an Instance of a List Class

The listings in this section illustrate how to implement the three formats of a List class in
your MIDlet. Listing 6-23 contains the JAD file for Listing 6-24, which creates an instance
of an implicit List class. Listing 6-25 contains the JAD file for Listing 6-26, which creates
a check box instance of a List class, and Listing 6-27 is the JAD file for Listing 6-28, which
creates a radio button instance of a List class.

Listing 6-24 creates an implicit list called “Menu:” that contains two options: New
and Open (Figure 6-10). This listing is constructed like other listings in this chapter,

] DefaultColorPhone [E[E]
=

. D 6D
@D @ @
@ am ao

(E

MODE SPA

Figure 6-10. Displaying an implicit list on the screen

Chapter 6: High-Level Display: Screens

by declaring variables at the beginning of the MIDlet and then creating objects and
assigning those objects to variables within the ListImplicit constructor.

Passing two parameters to the constructor of the List object creates the instance
of the List class. The first parameter is the title of the instance, “Menu:”, and the other
parameter is the List object format type IMPLICIT.

You can modify this listing and assign list items and related images when creating
the instance by also passing an array of list items as the third parameter and the array
of images as the fourth parameter to the constructor. However, in this example the
append() method is called to append list items to the instance. The first parameter to
the append() method is the string that is displayed on the list, and the other parameter
is null because no image is associated with the list item. You pass an instance of the
Image object referencing the image as the second parameter of the append() method
if you want to associate an image with a list item.

Notice that the Exit command is added to the instance of the List object. In previous
examples, the Exit command was added to an instance of a Form object. Remember
that the List class and the Form class are both directly derived from the Screen class.
Therefore, the List class isn’t contained within the Form class, requiring that instances
of the Command class be directly added to the instance of the List class.

The instance of the List class is then passed to the setCurrent() method within the
startApp() method to display the list on the screen. Also remember that a command
event is automatically generated when the user selects an item on the list. This command
is identified as List.SELECT_COMMAND, which is tested within the commandAction()
method. The List SELECT_COMMAND simply informs the MIDlet that an item on the
list was selected. It does not identify the selected item.

Creating an Instance of an Implicit List Class
Listed here are the steps required to create an instance of an implicit List class:

. Declare references.

. Obtain a reference to the instance of the Display class.

. Create an instance of a Command class to exit the MIDlet.

. Create an instance of the List class using the IMPLICIT type.

. Append items to the instance of the List class.

. Associate the instance of the Command class to the instance of the List class.
. Associate a CommandListener with the instance of the List class.

. Display the instance of the List class on the screen.

O 00 NI O Ul b WO N =

. Evaluate the command selected by the user.

. If the Exit command is selected, terminate the MIDlet.

_ =
_ O

. If an item from the instance of the List class is selected, display the text of
the item in an alert dialog box.

185

186

Listing 6-23
The JAD
file for
Listing 6-24

Listing 6-24
Displaying
an implicit
List class

J2ME: The Complete Reference

First, the getSelectedIndex() method is called to return the index number of the
selected list item. Index numbers are assigned sequentially beginning with zero as each
item is appended to the list. This means that the first item is “New” and has the index
value zero. The second item has the index number of one as a string value of “Open.”

The if statement evaluates the value returned by the getSelectedIndex() method.
An alert is displayed when a match occurs. The alert shows the list item selected by
the user of the MIDlet. The MIDlet terminates like the other examples in this chapter—
when the user selects the Exit command.

MIDlet-Name: ListImplicit
MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany
MIDlet-Jar-URL: ListImplicit.jar
MIDlet-1: ListImplicit, , ListImplicit
MicroEdition-Configuration: CLDC-1.0
MicroEdition-Profile: MIDP-1.0
MIDlet-JAR-SIZE: 100

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
public class ListImplicit extends MIDlet implements CommandListener
{
private Display display;
private List list;
private Command exit;
Alert alert;
public ListImplicit()
{
display = Display.getDisplay (this);
exit = new Command ("Exit", Command.EXIT, 1);
list = new List("Menu:", List.IMPLICIT);
list.append("New",null) ;
list.append("Open",null) ;
list.addCommand (exit) ;
list.setCommandListener (this) ;
}
public void startApp()
{
display.setCurrent (list) ;
}
public void pauselpp ()
{

Chapter 6: High-Level Display: Screens

}
public void destroyApp (boolean unconditional)
{
}
public void commandAction (Command command, Displayable displayable)
{
if (command == List.SELECT COMMAND)
{
String selection = list.getString(list.getSelectedIndex()) ;
alert = new Alert("Option Selected", selection, null, null);
alert.setTimeout (Alert.FOREVER) ;
alert.setType (AlertType.INFO) ;
display.setCurrent (alert) ;
}
else if (command == exit)
{
destroyApp (false) ;
notifyDestroyed() ;

Listing 6-26 displays an instance of a List class in the form of check boxes (Figure 6-11).
This instance is created similar to Listing 6-12 except that the format type of the instance is
MULTIPLE. Four items are added to the list by calling the append() method. None of the
items is associated with an image, so the second parameter of the append() method is null.

Unlike the implicit formatted instance of the List class, the multiple format does
not automatically generate a command event. Instead, you must create an instance
of the Command object that, when selected, causes the MIDlet to process the list. The
Submit command is used in this example for that purpose. The list is displayed the same
way as in Listing 6-24.

The if statement within the actionCommand() method traps the submit event and
causes statements within the if statement to process the user selections. First, a boolean
array is declared having the size of the value returned by calling the size() method, which
is the number of items in the instance of the List class. The StringBulffer is also created.

Next, the getSelectedFlags() method is called and is passed the boolean array. The
getSelectedFlags() method populates the boolean array with the selected status of each
item on the list. The MIDlet then steps through each item using a for loop. The selected
flag status of the boolean array element is compared to the boolean value true for each
iteration of the for loop. If the value of the boolean array element is true, the getString()
method is called and passed the index number of the current boolean array element,
which is the same index number of the item on the list. The getString() method returns

187

188

Listing 6-25
The JAD
file for
Listing 6-26

J2ME: The Complete Reference

IE] DefaultColorPhone !

—

Figure 6-11. Displaying a list in the form of check boxes

the text of that item, which is then appended to the instance of the StringBuffer class
called message.

An alert is displayed on the screen containing the text of each item selected by the
user. The Submit command is then removed from the screen, leaving the user to close
the alert dialog box and then terminate the MIDlet by selecting the Exit command.

MIDlet-Name: ListCheckBox
MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany
MIDlet-Jar-URL: ListCheckBox.jar
MIDlet-1: ListCheckBox, , ListCheckBox
MicroEdition-Configuration: CLDC-1.0
MicroEdition-Profile: MIDP-1.0
MIDlet-JAR-SIZE: 100

Chapter 6: High-Level Display: Screens

Creating an Instance of a
Check Box-Formatted List Class

Listed here are the steps required to create an instance of a check box—formatted
List class:

N Q1 = W N -

. Declare references.

. Obtain a reference to the instance of the Display class.

. Create an instance of the List class using the MULTIPLE type.
. Append items to the instance of the List class.

. Create an instance of a Command class to exit the MIDlet.

. Create an instance of a Command class to submit the instance of the List

class for processing.

7. Associate instances of the Command class to the instance of the List class.

8. Associate a CommandListener with the instance of the List class.

. Display the instance of the List class on the screen.
10.
11.
12.
13.
14.
15.
16.

Evaluate the command selected by the user.

If the Exit command is selected, terminate the MIDlet.

If the Submit command is selected, process the instance of the List class.
Retrieve the status of the selected flags of each item on the list.

Evaluate each status of the selected flags.

If the status is true, append the text to the message.

Display the message containing text of the selected check boxes within an
alert dialog box.

Listing 6-26
Displaying
and
manipulating
a check box
List class

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class ListCheckBox extends MIDlet implements CommandListener

{

private Display display;

private Command exit;

private Command submit;

private List list;
public ListCheckBox ()

{

189

190 J2ME: The Complete Reference

display = Display.getDisplay (this);

list = new List("Select Media", List.MULTIPLE) ;
list.append("Books", null);
list.append("Movies", null);
list.append("Television", null);
list.append("Radio", null);

exit = new Command ("Exit", Command.EXIT, 1);
submit = new Command ("Submit", Command.SCREEN, 2) ;
list.addCommand (exit) ;

list.addCommand (submit) ;
list.setCommandListener (this) ;

}
public void startApp()
{
display.setCurrent (list) ;
}
public void pauselpp ()
{
}
public void destroyApp (boolean unconditional)
{
}
public void commandAction (Command command, Displayable Displayable)
{
if (command == submit)
{

boolean choice[] = new boolean[list.size()];
StringBuffer message = new StringBuffer();
list.getSelectedFlags (choice) ;

for (int x = 0; x < choice.length; x++)

{
if (choice[x])
{
message.append (list.getString(x)) ;
message.append (" ") ;
}
}
Alert alert = new Alert ("Choice", message.toString(),

null, null);
alert.setTimeout (Alert.FOREVER) ;
alert.setType (AlertType.INFO) ;
display.setCurrent (alert) ;

Chapter 6: High-Level Display: Screens 191

list.removeCommand (submit) ;
}
else if (command == exit)
{
destroyApp (false) ;
notifyDestroyed() ;

}

Listing 6-28 displays a list of radio buttons. You'll notice that the construction of
Listing 6-28 is nearly identical to the check box listing in Listing 6-26 (Figure 6-12).
There are two differences between these listings. First, the instance of the List class
uses the EXCLUSIVE format in Listing 6-28. This of course is the radio button format.
The other difference is within the commandAction() method.

IE] DefaultColorPhone !

-~

Tl
[Select one

Figure 6-12. Displaying a list in the form of radio buttons

192 J2ME: The Complete Reference

Creating an Instance of a Radio Button-Formatted
List Class

Listed here are the steps required to create an instance of a radio button-formatted
List class:

. Declare references.

. Obtain a reference to the instance of the Display class.

. Create an instance of the List class using the EXCLUSIVE type.

. Append items to the instance of the List class.

. Create an instance of a Command class to exit the MIDlet.

N Q1 = W N -

. Create an instance of a Command class to submit the instance of the
List class for processing.

7. Associate instances of the Command class to the instance of the List class.
8. Associate a CommandListener with the instance of the List class.
9. Display the instance of the List class on the screen.

10. Evaluate the command selected by the user.

11. If the Exit command is selected, terminate the MIDlet.

12. If the Submit command is selected, process the instance of the List class.

13. Retrieve the index number of the selected item from the instance of the
List class.

14. Retrieve the text of the selected item using the item’s index number.

15. Display the text of the selected radio button in an alert dialog box.

The user of this MIDlet still must select an item from the list and activate the Submit
command before the selection is processed. Since there is only one possible selection, the
MIDlet calls the getSelectedIndex() method to return the index number of the selected list
item. This index number is then passed to the getString() method to retrieve the text of
the item, which is used as the second parameter to the constructor of the Alert class. As
with Listing 6-26, the alert dialog box displays the list item that was selected by the user.
The remaining code in Listing 6-28 is the same as in Listing 6-26.

Listing 6-27 MIDlet-Name: ListRadioButtons
The JAD MIDlet-Version: 1.0
file for

MIDlet-Vendor: MyCompany
MIDlet-Jar-URL: ListRadioButtons.jar
MIDlet-1: ListRadioButtons, , ListRadioButtons

Listing 6-28

Chapter 6: High-Level Display: Screens 193

MicroEdition-Configuration: CLDC-1.0
MicroEdition-Profile: MIDP-1.0
MIDlet-JAR-SIZE: 100

Listing 6-28 import javax.microedition.midlet.*;
Displaying import javax.microedition.lcdui.*;
manmubgag public class ListRadioButtons extends MIDlet implements CommandListener
a radio {
button List private Display display;
object private Command exit;

private Command submit;

private List list;

public ListRadioButtons ()

{
display = Display.getDisplay(this);
list = new List("Select one", List.EXCLUSIVE) ;
list.append("Male", null);

c
n
m
P
2
-
m
A
>
o
m

list.append("Female", null);

exit = new Command("Exit", Command.EXIT, 1);
submit = new Command("Submit", Command.SCREEN, 2) ;
list.addCommand (exit) ;

list.addCommand (submit) ;
list.setCommandListener (this) ;

}
public void startApp()
{
display.setCurrent (list);
}
public void pauseApp ()
{
}
public void destroyApp (boolean unconditional)
{
}
public void commandAction (Command command, Displayable Displayable)
{
if (command == submit)

{

Alert alert = new Alert("Choice",
list.getString(list.getSelectedIndex()),
null, null);

alert.setTimeout (Alert.FOREVER) ;

194 J2ME: The Complete Reference

alert.setType (AlertType.INFO) ;
display.setCurrent (alert) ;
list.removeCommand (submit) ;

}

else if (command == exit)

{
destroyApp (false) ;
notifyDestroyed() ;

}

| TextBox Class

The TextBox class is very similar to a TextField class, discussed previously in this chapter.
Both are used to receive multiple lines of textual data from a user and constrain text that
can be entered using the constraint directives shown in Table 6-4. You can request that a
maximum number of characters be allowed in instances of both the TextBox class and the
TextField class. However, the device determines the actual size of both of these instances.
Characters that exceed the display area of the screen become scrollable in many devices.

The TextBox class and TextField class differ in that the TextBox class is derived from
the Screen class, while the TextField class is derived from the Item class. This means
that an instance of the Form class cannot contain an instance of the TextBox class, while
an instance of a TextField class must be contained within an instance of the Form class.

Another important difference between the TextBox class and the TextField class is
that the TextBox class uses a CommandListener and cannot use an ItemStateListener.
An ItemStateListener is used with an instance of the TextField class, although many
times the content of an instance of the TextField class is retrieved and processed when
the user selects a command associated with a form that contains the text field.

An instance of the TextBox class is created by passing four parameters to the TextBox
class constructor. The first parameter is the title of the text box. The second parameter
is text used to populate the instance. The third parameter is the maximum number of
characters that can be entered into the instance. Keep in mind that this parameter is a
request and may not be fulfilled by the device. The device determines the maximum
number of characters for an instance of the TextBox class. The last parameter is the
constraint used to limit the types of characters that can be placed within the instance.

The TextBox class has the same methods as found in the TextField class. Refer to the
“TextField Class” section of this chapter for details on how to use these methods. You'll
also find TextBox class methods in the “Quick Reference Guide” section at the end of
this chapter.

Chapter 6: High-Level Display: Screens 195

Creating an Instance of a TextBox Class

Listing 6-29 contains the JAD file for Listing 6-30, which illustrates how to create an
instance of the TextBox class and manipulate text entered into the text box by the user
of this MIDlet. This listing displays a text box and prompts the user to enter a first
name, then select the Submit command (Figure 6-13).

| Many of the keys on a telephone keypad are associated with three letters. Select each

letter associated with a key by pressing the key multiple times. For example, the letter
I is the third letter associated with key 4. You can display the letter I on the screen by
pressing the key three times.

When the Submit command is selected, it is processed by the commandAction()
method (see “Item Class,” earlier in this chapter). The name is copied from the text

box and used to form a greeting, which then replaces the first name on the screen
(Figure 6-14).

[5] DefaultColorPhone [EIE
—

irst Hame:

- D 6
@ @ @@
G T T
-
SPALCE

MODE

Figure 6-13. Displaying a text box on the screen

196 J2ME: The Complete Reference

[5] DefaultColorPhone [EI[E

—

F ol REC
irst Hame:

Hello, Ji

- o @@
@ uw
el v
o am i
SPACE

MODE.

Figure 6-14. Displaying the greeting on the screen

Listing 6-30 begins very much like the other listings in this chapter, by declaring
variables and then creating objects within the TextBoxCapture constructor, which
are then assigned to those variables. You'll notice that an instance of a TextBox class
is created with the title “First Name:”. The instance does not contain any text when
first displayed on the screen. The instance can receive any characters based on the
ANY constraint, and a request is made to limit the number of characters that can
be contained in the instance to 30 characters.

After the user enters a first name and selects the Submit command, the MIDlet
calls the getString() method from within the commandAction() method to retrieve the
contents of the text box. The first name is then concatenated to the expression “Hello,”
and the concatenated string is passed as a parameter to the setString() method. The
setString() method replaces the contents of the text box with the string passed as the
parameter.

Chapter 6: High-Level Display: Screens

O 00 NI O U1

Creating an Instance of a TextBox Class

Listed here are the steps required to create an instance of a TextBox class:

1. Declare references.
2. Obtain a reference to the instance of the Display class.

3. Create an instance of a Command class to submit the instance of the List

class for processing.

. Create an instance of a Command class to exit the MIDlet.

. Create an instance of a TextBox class and accept any characters.

. Associate instances of the Command class to the instance of the TextBox class.
. Associate a CommandListener with the instance of the TextBox class.

. Display the instance of the TextBox class on the screen.

. Evaluate the command selected by the user.

10.
11.
12.
13.
14.
15.

If the Exit command is selected, terminate the MIDlet.

If the Submit command is selected, process the instance of the TextBox class.
Retrieve the text of the instance of the TextBox class.

Concatenate the text to the greeting “Hello,”.

Replace the text of the instance with the concatenated text.

Remove the Submit command from the screen.

Listing 6-29
The JAD
file for
Listing 6-30

The Submit command is then removed from the screen, making the Exit command
the only available option for the user to select. The Exit command terminates the MIDlet.

MIDlet-Name: TextBoxCapture
MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: TextBoxCapture.jar
MIDlet-1: TextBoxCapture, , TextBoxCapture

MicroEdition-Configuration: CLDC-1.0
MicroEdition-Profile: MIDP-1.0
MIDlet-JAR-SIZE: 100

197

198 J2ME: The Complete Reference

Listing 6-30 import javax.microedition.midlet.*;

Interacting import javax.microedition.lcdui.*;
insm;ﬁ:g?; public class TextBoxCapture extends MIDlet implements CommandListener
TextBox class {

private Display display;
private TextBox textbox;
private Command submit;
private Command exit;
public TextBoxCapture ()
{
display = Display.getDisplay (this);
submit = new Command("Submit", Command.SCREEN, 1);
exit = new Command ("Exit", Command.EXIT, 1);
textbox = new TextBox("First Name:", "", 30, TextField.ANY) ;
textbox.addCommand (exit) ;
textbox.addCommand (submit) ;
textbox.setCommandListener (this) ;
}
public void startApp()
{
display.setCurrent (textbox) ;
}
public void pauseApp ()
{
}
public void destroy2App (boolean unconditional)
{
}
public void commandAction (Command command, Displayable displayable)
{
if (command == submit)
{
textbox.setString ("Hello, " + textbox.getString());
textbox.removeCommand (submit) ;
}
else if (command == exit)
{
destroyApp (false) ;
notifyDestroyed() ;

Chapter 6: High-Level Display: Screens 199

___ | Ticker Class

The Ticker class is used to scroll text horizontally on the screen much like a stock ticker
scrolls stock prices across the screen. An instance of the Ticker class can be associated with
any class derived from the Screen class and be shared among screens. An instance of

a Ticker object is created by passing the constructor of the Ticker class a string containing
the text that is to be scrolled across the screen. You cannot control the location on the
screen where scrolling occurs. Likewise, there is no control over the speed of the scrolling.
The device that runs the MIDlet controls both location and speed.

You can retrieve the text associated with an instance of the Ticker class by calling
the getString() method. You can replace the text currently scrolling across the screen
by calling the setString() method. The setString() method requires one parameter, which
is a string containing the replacement text.

Listing 6-31 contains the JAD file for Listing 6-32, which illustrates how to create
an instance of the Ticker class and associate the instance with an instance of a List class.

Creating an Instance of a Ticker Class

Listed here are the steps required to create an instance of a Ticker class:

. Declare references.

. Obtain a reference to the instance of the Display class.

. Create an instance of a Command class to exit the MIDlet.

. Create an instance of a Command class to begin processing.

. Create an instance of the Ticker class and initialize text of the instance.
. Create an instance of the List class.

. Append items to the instance of the List class.

. Associate instances of the Command class to the instance of the List class.

O 00 N O U = W N -

. Associate a CommandListener with the instance of the List class.

—_
o

. Associate the instance of the Ticker class with the instance of the List class.

—_
—

. Display the instance of the List class on the screen.

—_
N

. Evaluate the command selected by the user.

—_
(O]

. If the Exit command is selected, terminate the MIDlet.

—_
S

. If the Submit command is selected, process the selection.

—_
Q1

. Change the text of the instance of the Ticker class to reflect the selection.

200

J2ME: The Complete Reference

This example creates a set of radio buttons that contain two options (Figure 6-15). The
first option is called “Technology” and the other “Entertainment.” When the MIDlet
runs, fictitious stock symbols and stock prices representing the technology industry
scroll across the screen. The user is prompted to select a radio button, then select the
Submit command. The Submit command causes the MIDlet to display the desired
industry stock symbols and prices scrolling across the ticker.

This listing begins like the other listings in this chapter. You’ll notice that an
instance of the Ticker class is created within the TickerList constructor. Technology
stock symbols and prices are the default text appearing on the ticker. The MIDlet then
creates an EXCLUSIVE instance of the List class and assigns the instance two list items
called Technology and Entertainment by calling the append() method. The second
parameter of the append() method is null since no image is associated with these list
items. The ticker is then associated with the list by calling the setTicker() and passing
the reference to the ticker instance as a parameter to the setTicker() method.

[l petauColorPhone HE
—

o uD €0
D &3 @
{77 g7 N oo
s e o

. SPACE

MOCE

Figure 6-15. Displaying a ticker on the screen

Listing 6-31
The JAD
file for
Listing 6-32

Listing 6-32
Interacting
with an
instance of a
Ticker class

Chapter 6: High-Level Display: Screens 201

The actionCommand() method is the place in the MIDlet where the request is
processed. First, the actionCommand() determines whether the Submit command is
selected. If so, the getSelectedIndex() method is called to retrieve the index number
of the item that the user selected from the list. Remember, index number zero is the
first item appended to the list. Index numbers are assigned sequentially as items are
appended to the list.

Depending on the user’s selection, the MIDlet replaces the current text of the ticker
with new text by calling the setString() method. Text continues to flow across the screen
until the user selects the Exit command to terminate the MIDlet.

MIDlet-Name: TickerList
MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany
MIDlet-Jar-URL: TickerList.jar
MIDlet-1: TickerList, , TickerList
MicroEdition-Configuration: CLDC-1.0
MicroEdition-Profile: MIDP-1.0
MIDlet-JAR-SIZE: 100

Cc
(72
m
e
2
-
m
A
>
o
m

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
public class TickerList extends MIDlet implements CommandListener
{
private Display display;
private List list;
private final String tech;
private final String entertain;
private Ticker ticker;
private Command exit;
private Command submit;
public TickerList ()
{
display = Display.getDisplay(this);
tech = new String ("IBM 55 MSFT 32 SUN 52 CISCO 87");
entertain = new String ("CBS 75 ABC 455 NBC 243 GE 21");
exit = new Command("Exit", Command.SCREEN, 1);
submit = new Command("Submit", Command.SCREEN, 1);
ticker = new Ticker (tech);
list = new List("Stock Ticker", Choice.EXCLUSIVE) ;
list.append("Technology", null);

202 J2ME: The Complete Reference

list.append("Entertainment", null);
list.addCommand (exit) ;
list.addCommand (submit) ;
list.setCommandListener (this) ;
list.setTicker (ticker) ;

}
public void startApp()
{
display.setCurrent (list);
}
public void pauselpp ()
{
}
public void destroyApp (boolean unconditional)
{
}
public void commandAction (Command command, Displayable display)
{
if (command == exit)
{
destroyApp (true) ;
notifyDestroyed() ;
}
else 1f (command == submit)
{
if (list.getSelectedIndex() == 0)
{
ticker.setString (tech);
}
else
{
ticker.setString (entertain) ;
}
}
}

Chapter 6: High-Level Display: Screens

___| Quick Reference Guide

This guide provides an overview of classes used by J2ME for the Screen object and
derived classes, along with the Ticker object. Full details of these classes and all Java
classes and interfaces are available at java.sun.com.

javax.microedition.lcdui.Screen Class

Method Description

String getTitle() Retrieve the screen’s title.
void setTitle(String string) Set the screen’s title.

Ticker getTicker() Retrieve the screen’s Ticker.
void setTicker(Ticker ticker) Set the screen’s Ticker.

javax.microedition.lcdui.Alert Class

Method Description

Alert(String title) Create an instance of the Alert class.

Alert(String title, String message, Image Create an instance of the Alert class with an

image, AlertType, alertType) Image and AlertType.

Image getImage() Retrieve an instance of the Alert class image.

void setImage(Image image) Associate an image with an instance of the
Alert class.

String getString() Get an instance of the Alert class message.

void setString(String str) Set an instance of the Alert class message.

int getDefaultTimeout() Retrieve an instance of the Alert class
default time.

int getTimeout() Retrieve actual time an instance of the
Alert class will be displayed.

void setTimeout(int time) Set the display time of an instance of the
Alert class.

AlertType getType() Retrieve the AlertType of an instance of
the Alert class.

void setType(AlertType type) Set the AlertType of an instance of the

Alert class.

203

204 J2ME: The Complete Reference

Javax.microedition.lcdui.Form Class

Method Description
Form (String title) Create an instance of the Form class with a title.
Form (String title, Item[] items) Create an instance of the Form class and

append the specified list of array items onto
the instance.

Int append(Image image) Append an instance of the Image class to an
instance of the Form class.

Int append(Item item) Append an instance of the Item class or
subclass to an instance of the Form class.

Int append(String string) Append an instance of the String class to
an instance of the Form class.

Void delete(int index) Remove an instance of the Item class or
subclass specified by the index from an
instance of the Form class.

Void insert (int index, Item item) Insert an instance of the Item class or subclass
before the instance of the Item class whose
position is specified by the index.

Item get(int index) Retrieve an instance of the Item class or
subclass whose position is specified by
the index.

Void set(int index, Item item) Replace an existing instance of the Item class

or subclass whose position is specified by the
index with the instance of the Item class or
subclass reference in the second parameter.

Void setltemStateListener(ItemStatelistener Associate an ItemStateListener with an
itemStateListener) instance of the Item class or subclass.

Int size() Retrieve the number of instances of the Item
class or subclass in an instance of the Form class.

String getLabel() Retrieve the label associated with an instance
of an Item class.

Void setLabel(String label) Associate a label with an instance of an
Item class.

Chapter 6:

High-Level Display: Screens

javax.microedition.lcdui.ChoiceGroup Class

Method

ChoiceGroup (String label, int choiceType)

ChoiceGroup(String label, int choiceType,
String[] string, Image image)

int append (String string, Image image)

void delete (int index)

void insert (int index, String string, Image image)

void set (int index, String string, Image image)

String getString (int index)
Image getlmage(int index)

int getSelectedIndex()

void setSelectedIndex(int index, boolean selected)

int getSelectedFlags (boolean[] array)

Description

Create an instance of an empty
ChoiceGroup class, where label

is the title of the instance and
choiceType is the type of instance.

Create an instance of the ChoiceGroup
class, where label is the title of the
instance and choiceType is the type of
instance, and use the image with the
instance. Also populate the instance
with options contained in the string.

Place an option at the end of other
options in an instance of the Choice
Group class, and associate the image
with the option.

Remove the option identified by

the index number from an instance

of the ChoiceGroup class, and associate
the image with the option.

Insert an option into an instance of the
ChoiceGroup class before the option
identified by the index number.

Replace an option identified by the
index number with the option specified
in the string and image.

Retrieve the string associated with the
option identified by the index number.

Retrieve the image associated with the
option identified by the index number.

Retrieve the index associated with
an option.

Select the option identified by the index
and whether the option is selected (true)
or unselected (false).

Retrieve the selection status of options
and store them in an array.

205

206

J2ME: The Complete Reference

javax.microedition.lcdui.ChoiceGroup Class

Method

void setSelectedFlag (boolean[] array)
boolean isSelected (int index)

int size()

Description

Set the selection status of options stored
in an array.

Determine whether the user selected the
option identified by the index number.

Determine the number of options there
are in an instance of the ChoiceGroup.

javax.microedition.lcdui.DateField Class

Method
DateField (String label, int mode)

DateField (String label, int mode,
TimeZone timeZone)

Date getDate()
void setDate (Date date)
int getInputMode()

void setInputMode(int mode)

Description

Create an instance of the DateField class
that contains the specified label and
uses the specified mode.

Create an instance of the DateField class
that contains the specified label and
uses the specified mode and time zone.

Retrieve the date/time from an instance
of the DateField class.

Set the date for an instance of the
DateField class.

Retrieve the input mode of an instance
of the DateField class.

Replace the existing date field mode
with a different mode.

javax.microedition.lcdui.Gauge Class

Method

Gauge(String label, boolean interactive,

int maxValue, int initial Value)

int getValue()

Description

Create an instance of the Gauge class,
where label is the caption for the
instance, interactive is a boolean value
indicating whether the instance is
interactive, maxValue is the maximum
value displayed in the gauge, and the
initialValue is the beginning value
displayed in the gauge.

Retrieve the current value of the gauge.

Chapter 6:

High-Level Display: Screens

javax.microedition.lcdui.Gauge Class

Method

void setValue (int value)

int getMaxValue()

void setMaxValue(int maxValue)

boolean isInteractive()

Description

Set a new value for the gauge.

Retrieve the maximum value of
the gauge.

Set the maximum value of the gauge.

Determine whether the gauge is
interactive.

javax.microedition.lcdui.Stringltem Class

Method

Stringltem (String label, String text)

String getText()
Void setText (String text)
String getLabel()

Void setLabel (String text)

Description

Create an instance of a Stringltem class,
where the label is text describing the
StringItem class, and text is the text
displayed on the screen.

Retrieve the text portion of an instance
of a Stringltem class.

Replace the text portion of an instance
of a Stringltem class.

Retrieve the label portion of an instance
of a Stringltem class.

Replace the label portion of an instance
of a Stringltem class.

javax.microedition.lcdui.TextField Class

Method

TextField (String label, String text,
int maxSize, int constraint)

void delete (int offset, int length)
void insert (String src, int position)
void insert (char[] data, int offset, int length,

int position)

void setChars (char[] data, int offset, int length)

Description

Create an instance of a TextField class.

Remove characters from a TextField
class at a specified offset.

Insert String at a specified offset in
a TextField class at a specified offset.

Insert characters from an array into
a TextField class at a specified offset.

Replace characters of a TextField class
with characters from an array.

207

208

J2ME: The Complete Reference

javax.microedition.lcdui.TextField Class

Method

void setString(String text)
int getChars (char[] data)
String getString()

int getConstraints()

void setConstraints (int constraint)

int getMaxSize()
int setMaxSize (int maxsize)
int getCaretPosition()

int size()

Description

Replace characters of a TextField
class with characters in a string.

Copy contents of a TextField class
into an array.

Copy contents of the TextField
class into a string.

Retrieve the constraint of a
TextField class.

Set the constraint of a TextField class.

Retrieve the maximum number of
characters of a TextField class.

Set the maximum number of characters
of a TextField class.

Retrieve the cursor position within
a TextField class.

Retrieve the number of characters
in a TextField class.

javax.microedition.lcdui.Image Class

Method

static Image create Image (String name)

Static Image createImage (Image source)

Static Image createlmage(byte[] imageData,

int imageOffset, int imageLength)

Static Image createlmage(int width,
int height)

Graphics getGraphics()

Int getHeight()
Int getwidth()
boolean isMutable()

Description

Create an immutable image, where
name is the name of a resource.

Create an immutable image, where
source is reference to an existing Image.

Create an immutable image, where byte
is an array of data representing the image,
imageOffset is the starting position of the
image, and imageLength is the length of
the image.

Create a mutable image that has
a specified width and height.

Retrieve reference to an instance
of the Graphics class.

Retrieve the image height.
Retrieve the image width.

Determine whether an image is
a mutable image.

Chapter 6:

High-Level Display: Screens

javax.microedition.lcdui.Imageltem Class

Method

Imageltem(String label, Image im, int layout,
String altText)

Image getlmage()

voaid setImage (image im)

int getLayout()
void setLayout (int layout)
String getAltText()

void setAltText(String text)

Description

Create an instance of the Imageltem class,
where label is text describing the image,
im is reference to the image, layout is the
layout directive, and altText is displayed if
the image cannot be shown on the device.

Retrieve an image associated with an
Imageltem class.

Associate an image with an Imageltem class.

Retrieve the layout directive of an
Imageltem instance.

Replace the layout directive of an
Imageltem instance.

Retrieve the alternate text of an
Imageltem instance.

Replace the alternate text of an
Imageltem instance.

javax.microedition.lcdui.List Class

Method

List (String title, int listType)

List (String title, int listType, String[]
stringElements, Image[] imageElements)

int append (String stringPart,
Image imagePart)

void delete(int indexNum)

Description

Create an instance of the List class without
assigning elements to the list. The title is the
title of the list, and the listType is the type
of list being created.

Create an instance of the List class and
assign elements to the list. The title is the
title of the list; the listType is the type of list
being created; stringElements is an array of
strings containing text for the list; and
imageElements is an array of images
associated with each list element.

Append an element to the end of the list,
where stringPart is the text of the element,
and imagePart is the image associated with
the element.

Remove an element from a list, where the
element being removed is identified by
the indexNum.

209

210

J2ME: The Complete Reference

javax.microedition.lcdui.List Class

void insert (int indexNum, String stringPart,
Image imagePart)

void set(int indexNum, String stringPart,
Image imagePart)

String getString (int indexNum)

Image getImage(int indexNum)

int getSelectedIndex()

void setSelectedIndex(int indexNum,
boolean selected)

int getSelectedFlag (boolean[]
selected Array_return)

void setSelectedFlags(boolean(]
selected Array)

boolean isSelected(int indexNum)

int size()

Insert an element into the list at a specific
position within the list, where indexNum is
the position within the list where the element
will be located; stringPart is the text of the
element; and imagePart is the image
associated with the element.

Replace an element in the list at a specific
position within the list, where indexNum
is the position within the list where the
element will be located; stringPart is

the text of the element; and imagePart

is the image associated with the element.

Retrieve the text of an element from a specific
position in the list, where indexNum
identifies the position of the element.

Retrieve the image of an element from a
specific position in the list, where indexNum
identifies the position of the element.

Retrieve index of a selected element of a list.

Set the default selected flag of an element
within the list, where indexNum is the
index number of the element, and selected
is either true or false.

Retrieve the selection status and store them
in the selected Array.

Set the selection status based on values
stored in the selected Array.

Determine whether the element identified
by indexNum is selected.

Number of elements in list.

javax.microedition.lcdui.TextBox Class

Method

TextBox(String title, String text, int maxSize,
int constraint)

Description

Create a new instance of the TextBox class,
where title is the title of the text box; text

is the text used to populate the text box;
maxSize is the requested maximum number
of characters that can be entered into the
text box; and constraint identifies character
restrictions.

Chapter 6:

High-Level Display: Screens

javax.microedition.lcdui.TextBox Class

Method

void delete(int offset, int length)

void insert(String src, int position)

void insert(char[] data, in offset, int length,
int position)

void setChars(char[] data, int offset,
int length)

int getChars(char[] data)

string getString|()

int getConstraints()

void setConstraints(int constraints)
int getMaxSize()

int setMaxSize(int maxSize)

int getCaretPosition()

int size()

Description

Remove characters from a text box.
Characters to be removed begin with

the character specified by offset character
position until the specified length is reached.

Insert characters from a string into the text
box, where src is the string, and position is
the position within the text box to insert the
characters.

Insert characters from an array into the

text box, where data is the array; offset

is the starting position within the array;
length is the number of characters to insert;
and position is the place within the text box
to insert the characters.

Replace contents of the text box with
characters in an array, where data is the
array; offset is the starting position within
the array; and length is the number of
characters to insert.

Retrieve the contents of a text box into an
array, where data is the array that receives
the contents of the text box.

Retrieve the contents of a text box into
a string.

Retrieve the constraints of the text box.

Replace the constraints of a text box, where
constraints contains the new constraints.

Retrieve the maximum number of
characters that can be stored in a text box.

Set the maximum number of characters that
can be stored in a text box, where maxSize
is the requested maximum number of
characters.

Retrieve the current cursor position within
the text box.

Retrieve the current number of characters in
a text box.

211

212 J2ME: The Complete Reference

javax.microedition.lcdui.Ticker Class

Method Description

Ticker(String str) Create a new Ticker, where str is the text
that appears in the ticker.

String getString() Retrieve the text displayed by the Ticker.

void setString(String str) Set the text displayed by the Ticker, where

str is the text.

The

Complete <
Reference

Low-Level Display:
Canvas

214

J2ME: The Complete Reference

Trek-like devices that handle our mundane, and some not so mundane, tasks—at

any time and anywhere. However, many of these devices have already grown to
a level of sophistication that is necessary for implementing a wide range of applications.
Today’s small computing devices are capable of running form-based applications, games
that challenge the best of us, and applications that interact with remote computers.
Practically any application you can imagine can be designed to operate within the confines
of a small computing device.

Many applications that you develop will use a high-level user interface, usually
thought of as an object that handles its own display and consists of lists, radio buttons,
check boxes, images, and text. You learned how to create a high-level user interface in
the previous chapter. Classes associated with the high-level interface handle the pixel-
level detail necessary to draw radio buttons, check boxes, and other objects on the screen.
You basically call methods and let the methods handle display.

Occasionally, you may be called upon to create an application that sizzles and wows the
user with fancy graphics and animation. To get the sizzle and wow into your application,
you’ll need to go beyond the high-level user interface and get down and dirty into the
pixel level of your application, where you control the position of every picture element
that appears on the screen. This is referred to as the low-level user interface. You'll learn
how to become the master of the low-level user interface in this chapter.

Small computing devices are still in their formative years as they evolve into Star

| The canvas

As you'll recall from Chapter 6, each MIDlet has one instance of the Display class, and
the Display class has one derived class called the Displayable class. Everything a MIDlet
displays on the screen is created by an instance of a class that is derived from the
Displayable class. The Display class hierarchy is shown here:

public class Display
public abstract class Displayable
public abstract class Screen extends Displayable
public abstract class Canvas extends Displayable
public class Graphics

The Displayable class has two subclasses: Screen and Canvas. The Screen class and
its derivatives are used to create high-level components that you learned about in the
previous chapter. The Canvas class and its derivatives are used to gain low-level access to
the display, which is necessary for graphic- and animation-based applications. A graphic
is used with a canvas.

You can think of an instance of the Canvas class as an artist’s canvas on which you
draw images that might include text. An instance of the Graphics class is similar to the
artist’s tools that are used to draw an image. For example, color, lines, and arcs are some
of the graphic tools available to create an image on the canvas. The Canvas class and

Chapter 7: Low-Level Display: Canvas 215

the Graphics class give you pixel control over everything that appears on the canvas. This
low-level control is particularly noticeable whenever text is placed on the canvas because
you control every aspect of how characters are formed to display the text.

Let’s step back to recall how you display text using the high-level user interface. First,
you create an instance of a text field, text box, or string item and then associate text with
the instance. Next, the setCurrent() is called and passed the instance (or a container such
as a form that contains the instance). You don’t need to be concerned about describing
how the device’s application manager is to form each character of the text on the screen.

However, displaying text using the Graphics class requires you to specify the height,
width, and other characteristics that describe how each character of the text is to be drawn
on the screen. Your application is actually drawing each character as compared to simply
specifying the text that you want displayed. You'll learn how to draw characters later
in this chapter.

A Canvas is created by instantiating a concrete subclass, which is discussed later in
this chapter.

The Layout of a Canvas

The canvas is divided into a virtual grid in which each cell represents one pixel.
Coordinates mark the column and row of a cell within the grid (Figure 7-1). The x
coordinate represents the column, and the y coordinate represents the cell’s row. The
first cell located in the upper-left corner of the grid has the coordinate location of 0, 0,
where the first zero is the x coordinate and the other zero is the y coordinate.

As you probably imagine, the size of the canvas is device dependent since canvas size
and the screen size are the same. The screen size of a mobile telephone might be different
from the screen size of a PDA, and yet both devices are capable of running the same
MIDlet. Your MIDlet should determine the canvas size of the device that implements
your graphic application before drawing on the screen. The canvas size is measured
in pixels. Your MIDlet should determine the canvas size of the device by calling the
getWidth() and getHeight() methods of the Canvas class.

@D N = o

Figure 7-1. Coordinates mark the column and row of a cell within a grid.

216

J2ME: The Complete Reference

Proportional Coordinates

The values (in pixels) returned by the getWidth() and getHeight() methods can be used
to draw an image at a given location that is proportional to the size of the canvas by using
relative coordinates rather than exact coordinates on the canvas. Let’s say that the first
element of the image you want drawn on the canvas is located in the center of the canvas.
The question you need to answer is what coordinate is the center of the canvas? The
answer depends on the canvas size, which depends on the small computing device that
runs your MIDlet. You work around this problem by letting your MIDlet calculate the
center coordinate based on the return value of the getWidth() and getHeight() methods.

Here’s what you need to do. Assume the size of the canvas is 200 pixels wide (columns)
and 200 pixels high (rows). The coordinate of the center of the canvas is 99, 99 (remember
that coordinates are zero based), calculated as:

x = getWidth()/2
y = getHeight()/2

Now assume the same MIDlet is running on a small computing device with a canvas
size of 400 pixels wide by 400 pixels high. The same calculation determines the center
coordinate as 199, 199. Therefore, the MIDlet can use the calculation to determine the
center coordinate of any size canvas, which means that the image will appear in the same
canvas location when the MIDlet runs on any device.

Calculating a specific coordinate rather than specifying a fixed coordinate solves one
problem facing a developer of a J2ME application. Another problem is scaling an image
to fit a canvas size that is device dependent. If you knew the size of the canvas, you could
plot each pixel that is required to draw an image. The image will be symmetrical within
the screen. However, the symmetry is disrupted when the size of the canvas changes
and the image size remains the same.

Let’s say that you want to draw a line across the top of the canvas, but leave a one-pixel
border around the line. If the screen size is 200 pixels wide by 200 pixels high, the starting
coordinate of the line is 1, 1 (the cell in the second column and second row beginning at
the left corner). The ending coordinate is 1, 198. However, the line takes on a different
appearance if the size of the canvas is 400 pixels by 400 pixels. The line stops at the top
center of the canvas because row 198 is halfway to the right of the canvas.

Therefore, you should write code that draws images proportional to the size of the
canvas if being symmetrical within the canvas is critical to your application. This means
that you'll need to use relative coordinates to draw an image rather than specific
coordinates by having your MIDlet calculate the specific coordinate of each element of
your image. For example, here is how to identify the coordinates for the line so that the
length of the line is always proportional to the canvas size. The starting coordinates are
set as specific values because the line always begins one pixel from the left and top of
the canvas. Likewise, the x coordinate will always be the second row and can be fixed
at row coordinate one. However, the column coordinate used to specify the termination

Chapter 7: Low-Level Display: Canvas 217

of the line must be calculated so that the line always appears one pixel away from the
right end of the canvas regardless of the size of the canvas.

startX =1
startY =1
endX =1

endY = getWidth() - 1

You can use the concepts presented in this section to create your own calculations that
determine specific coordinates based on the canvas size of the device running your MIDlet.

The Pen

An image is drawn on a canvas using a virtual pen. Using a virtual pen is very similar to
using a real pen to draw an image on paper. That is, the pen is dropped on the canvas
at a specified coordinate, filling the cell with the color of ink used in the pen. Cells change
from their present color to the color of the ink as the pen is repositioned on the canvas.
For example, a horizontal line forms on the canvas when the virtual pen is dragged
horizontally across the canvas. Likewise, dragging the virtual pen vertically down the
canvas draws a vertical line.

A virtual pen is used by instances of the Graphics class to draw rectangles, arcs,
and other graphical image components on the canvas. You don’t directly create and use
a virtual pen.

Painting
Graphical components used to create an image on a canvas are drawn on the canvas when
the paint() method of the Displayable class is called. This is referred to as painting. The
paint() method is an abstract method that is used both by instances and derivatives of
the Screen class and Canvas class.

Java specifications require that a concrete class provide implementation for any
abstract methods defined in its parent class. Therefore, an instance of the Screen class
and Canvas class must define a paint() method. The contents of the paint() method are
statements that draw images on the screen.

Derivatives from the Screen class have two predefined methods used to paint the
screen. Images painted by derivatives of the Screen class (Textbox, List, Alert, and Form)
are radio buttons, check boxes, list, text, and other constructs that you find in a graphical
user interface, which you learned about in the previous chapter. The first predefined
method is paint(), which contains instructions that set parameters for drawing an image,
such as defining the virtual pen. The other method is paintContent(), which is called at
the end of the paint() method and contains statements to actually draw the image.

The developer doesn’t become directly involved with the paint() method or the
paintContent() method when building an application that uses the high-level user interface
because details on how to display images are already defined by the derivative of the

218

J2ME: The Complete Reference

Screen class. The same cannot be said when you develop an application that uses the
low-level user interface by creating instances of classes derived from the Canvas class.
You are responsible for defining the paint() method for your canvas-based application.

The paint() method requires one parameter, which is reference to the instance of the
Graphics class created by your application. You'll learn how to use the Graphics class
later in this chapter. Here is a paint() method that draws a rectangle on the canvas. Let’s
assume that an instance of the Graphics class referenced as graphics was created. The
drawRect() is one of the many methods available from the Graphics class that draw
predefined images on the canvas. The first two parameters of the drawRect() method
specify the cell of the upper-left corner of the rectangle, and the last two parameters specify
the width and height of the rectangle, where 40 is the width and 20 is the height.

protected void paint (Graphics graphics)
{

graphics.drawRect (12, 6, 40, 20));

}

The paint() and repaint() Methods

You don’t call the paint() method directly. Instead, the paint() method is called
automatically by the setCurrent() method when the MIDlet is started. You call the
repaint() whenever the canvas or a portion of the canvas must be refreshed.

Let’s say that you want to draw text on a canvas that is already displayed on the
screen. First, you create the text using a graphic, which you'll learn how to do later in
this chapter. Next, you call the repaint() method to have the entire canvas redrawn, which
includes text and images that currently exist on the screen and the new text, unless you've
removed existing text or images.

There are two versions of the repaint() method. One version requires no parameters
and repaints the entire canvas. The other version requires four parameters that define
the region of the canvas that is to be repainted. The first two parameters are the x and
y coordinates for the upper-left corner of the region, and the last two parameters are
the width and height of the region.

You specify a region of the canvas to repaint whenever only a portion of the canvas
has changed and when you don’t want to waste time repainting the entire canvas, such
as when an animated image is displayed on the screen. This is known as clipping.

Animation is the illusion of movement caused by rapidly changing images on the
screen, where each image is slightly different from the previous image. Each image
displayed on the screen is referred to as a frame. A key to successful animation is speed.
You must change frames in such a way that users don’t notice the change. Typically, a
small portion of a frame changes in an animated image. The repaint() method is capable
of repainting only the portion of the frame that changed rather than the entire frame,
which dramatically reduces the time that is necessary to change a frame on the screen.

The serviceRepaints() method is another painting method that you’ll use when
developing a low-level user interface for your application. A paint request is one of many

Chapter 7: Low-Level Display: Canvas 219

requests a MIDlet can make to the application manager of a small computing device.
Other requests can be made to store data or to communicate with a remote computer.
Sometimes outstanding requests can be given a higher process priority by the device’s
application manager than a paint request. However, you'll need to override outstanding
requests to have the canvas repainted whenever an image is being animated; otherwise,
a delay in repainting the canvas destroys the effect of animation.

The serviceRepaints() method directs the device’s application manager to override
outstanding requests for service with the repaint request. The repaint request becomes
the next request to be processed by the application manager.

showNotify() and hideNotify()

The device’s application manager calls the showNotify() method immediately before the
application manager displays the canvas. You define the showNotify() method with
statements that prepare the canvas for display, such as initializing resources by beginning
threads or assigning values to variables as required by your application.

The hideNotify() method is called by the application manager after the canvas is
removed from the screen. You define the hideNotify() method with statements that free
resources that were allocated when the showNotify() method was called. This includes
deactivating threads and resetting values assigned to variables as necessary.

| User Interactions

One of two techniques can be used to receive user input into your low-level J2ME
application. The first technique is to create one or more instances of the Command class,
which you learned about in the previous chapter. Once an instance of a command is
created, the instance is associated with the instance of the Canvas class by calling the
addCommand() method illustrated in Chapter 6. If you associate a command with a
canvas, you'll also need to associate a CommandListener to the canvas in order to monitor
command events generated by the user selecting a command. Likewise, you'll need
to define a commandAction() method (see Chapter 6) that is called by the device’s
application manager to process the command event.

The other technique is to use low-level user input components that generate low-level
user events. These components are key codes, game actions, and pointers.

B A key code is a numerical value sent by the small computing device when the
user of your application selects a particular key. Each key on the device’s keypad
is identified by a unique key code.

B A game action is a keystroke that a person uses to play a game on the small
computing device. MIDP defines a set of constants that represent keystrokes
common to game controllers.

B A pointer event is input received from a pointer device attached to the small
computing device, such as a touch screen or mouse.

220 J2ME: The Complete Reference

Working with Key Codes

Each key on an ITU-T keypad, which is used on cellular telephones, is mapped to a
standard set of key codes that are shown in Table 7-1. J2ME associates key code values
with constants; however, use the constant instead of the constant value. You'll find that
using constants within your code clarifies the reference to a key because the name of the
constant contains the name of the key associated with the key code.

All small computing devices that use the ITU-T keypad adhere to these key codes.
Some of these devices also have other keys on the keypad, each of which is also assigned
a key code. The manufacturer’s specification for the device usually lists key codes used
by the device for keys outside of those on the standard ITU-T keypad.

| Your MIDlet can detect and process any key code—including keys other than those found
on the standard ITU-T keypad—using techniques described later in this section. However,
keys outside of the standard ITU-T keypad may not be available in all small computing

devices, resulting in a possible portability problem with your MIDlet. So avoid using keys

other than those on the standard ITU-T keypad unless your MIDlet will run exclusively
on a specific make and model device that contains those keys.

Constant Value
KEY_NUMO 48
KEY_NUM1 49
KEY_NUM2 50
KEY_NUM3 51
KEY_NUM4 52
KEY_NUM5 53
KEY_NUM6 54
KEY_NUM7 55
KEY_NUMS8 56
KEY_NUM9 57
KEY_STAR 42
KEY_POUND 35
Table 7-1. Key Code Constants and Key Code Values

Chapter 7: Low-Level Display: Canvas 221

There are three empty methods that are called when a particular key event occurs
while your MIDlet is running. You should override these methods if your application
needs to call them. These methods are keyPressed(), keyReleased(), and keyRepeated)().
The keyPressed() method is called by the application manager whenever a key is pressed
by the user. Likewise, the keyReleased() method is called when the key selected by the
user is released. And the keyRepeated() method is called by the application manager
when the user holds down the key, causing the key to be automatically repeated. A word
of caution: not all devices support repeated keys. Your MIDlet can inquire whether or
not the repeated key feature is supported by calling the hasRepeatEvents() method. (See
“Quick Reference Guide” at the end of this chapter.)

All of these methods have empty implementation. You must override each method
if your application needs to process the related key events. However, many of the
applications you create that implement a low-level user interface will only need to
override the keyPressed() method because you'll need to know which key was selected
by the user. The keyRelease() method and the keyRepeated() method are overridden
only for applications that have special processing whenever a person releases a key or
holds down a key for an extended period.

All three methods require one parameter, which is an integer that represents the value
of the key code passed to the method by the device’s application manager. An if statement
or switch case statement is used to compare the incoming key code with key code constants
that are processed by the MIDlet.

Listing 7-1 illustrates the basic way in which you detect and process key codes of keys
selected by the person using the MIDlet. This example designates the 2, 8, 4, and 6 keys
as directional keys, where the 2 and 8 are up and down and 4 and 6 are left and right.
The MIDlet displays text that describes the direction selected by the user. Of course, in
a real application you would likely reposition an image, such as a game piece, on the
screen whenever a direction key is detected rather than display text. You'll see how this
is done later in this chapter.

Detecting and Processing Key Codes

A MIDlet that uses a low-level user interface extends the MIDlet as illustrated in
Listing 7-1. Listing 7-2 contains the JAD file for Listing 7-1. This listing displays a
menu (Figure 7-2) on the screen prompting the user to press a key displayed on
the menu. Each key represents a direction. The name of the direction is drawn
on the canvas after the key is selected (Figure 7-3).

The MIDlet begins by declaring two variables. The first variable references an instance
of the Display class, much the same as you saw in the previous chapter. The other variable
references a developer-defined class called MyCanvas, which is defined later in this
listing.

You'll notice that most of the work occurs outside of the constructor, which is different
from the high-level user interface (see Chapter 6), where a number of tasks are performed
in the constructor. Tasks normally performed in the constructor of a MIDlet that uses the

222

J2ME: The Complete Reference

] DefaultColorPhone [H|E E3

—

Faull 1)
=L G=cin 4=t G=rt

@
D €0 @
o am o

S
MODE SPACE

Figure 7-2. A menu is displayed prompting the user to select a menu option.

high-level user interface are performed in the developer-defined class that extends the
Canvas class.

Two instances of classes are created within the KeyCodeExample constructor. These
are the Display class and the MyCanvas class. Notice that the remainder of code within
the KeyCodeExample class definition is nearly identical to examples shown in the previous
chapter. This is because a MIDlet that uses the low-level user interface must contain the
same required method definitions as a MIDlet that uses the high-level user interface.

Let’s turn to the end of the listing where the MyCanvas class is defined. The first
statement declares a reference to an instance of the Command class that is used to
terminate the MIDlet. You've seen that command used many times in the high-level
user interface MIDlets in the previous chapter. Next, reference to a String called direction
is declared, followed by the creation of an instance of the KeyCodeExample class.

The constructor of MyCanvas is passed an instance of the KeyCodeExample class
that is referenced internally to the constructor. The direction string is initialized with

Chapter 7: Low-Level Display: Canvas

] DefaultColorPhone [H|E E3

—

o
D GO @
@ ao

S
MODE SPACE

Figure 7-3. The name of the direction selected by the user is drawn on the canvas.

text that describes directional keys; the text is displayed on the screen when the device’s
application manager calls the paint() method.

Next, an instance of the Command class is created and associated with the instance
of MyCanvas. Likewise, a CommandListener is associated with the instance of
MyCanvas in order to monitor command events occurring while the MIDlet runs.
The commandAction() method defined later in the class definition is called by the
device’s application manager to process a command event—identical to how the
same method is used in the high-level user interface.

The paint() method is defined next. It uses an instance of the Graphics class, which
is passed as the parameter to the paint() method, to draw an image on the canvas, as
discussed previously in this chapter. There are four statements within the paint() method.
The first statement sets the color to white. Each of the three integers passed to the
setColor() method represents a color value of red, green, and blue. You'll learn about
setting colors later in this chapter. For now understand that the higher the number, the

223

224

J2ME: The Complete Reference

lighter the value; so the values 255, 255, 255 whiten the canvas and thereby erase existing
images from the canvas.

Next, a filled rectangle is drawn on the screen. The color of the filled rectangle is white,
and drawing the rectangle has the effect of erasing images from the canvas. The first two
parameters of the fillRect() method are the coordinates of the upper-left corner of the
rectangle. The last two parameters are the width and height of the rectangle. You'll learn
more about drawing rectangles later in this chapter.

Once the canvas is erased, the color is set to red, and then the drawString() method,
which actually paints text on the canvas, is called. There are four parameters to the
drawString() method. The first parameter is the string of text that will be painted on

Detecting and Processing Key Codes

Listed here are the steps for detecting and processing key codes:

. Declare references to classes.
. Create instances of classes and assign those instances to references.
. Display the instance of the Canvas class whenever the MIDlet is started.

. Terminate the MIDlet when the Exit command is selected.

Gl = W N =

. Define a class derived from the Canvas class that implements
a CommandListener.

6. Within the derived class, declare references.

7. Within the derived class, define a constructor that initializes text
to be displayed on the canvas.

8. Within the derived class, create an instance of the Command class.

9. Within the derived class, associate the instance of the Command class
with the canvas.

10. Within the derived class, associate the CommandListener with the canvas.

11. Within the derived class, define a paint() method that erases the canvas
and draws the string on the canvas.

12. Within the derived class, define a commandAction() method to process
the Exit command.

13. Within the derived class, define a keyPressed() method to process keys
selected by the user while the MIDlet runs.

14. Compare the incoming key code value with game action constants
for KEY_NUM2, KEY_NUMS, KEY_NUM4, and KEY_NUMB6.

15. If matched, indicate the direction selected by the player.

16. Erase the canvas and redraw the text on the canvas.

Listing 7-1
Capturing
and
processing
key codes

Chapter 7: Low-Level Display: Canvas

the canvas. The next two parameters specify the location on the canvas to paint the
text. The first is the x (column) coordinate, and the other is the y (row coordinate). The
fourth parameter of the drawString() method is the anchor point. You'll learn about
anchor points later in this chapter when the drawString() method is discussed in detail.
For now, consider an anchor point as a construct used to align text with other objects
on the canvas.

The last method defined in the MyCanvas class is the keyPressed() method. The
keyPressed() method, as described previously in this section, is called by the device
application manager whenever the user presses a key on the keypad. The key code of
that key is passed to the keyPressed() method for processing.

In this example, a switch case statement is used to compare the incoming key code to
the directional keys recognized by the MIDlet. If the incoming key code matches the key
code constant, text describing the direction selected by the user is assigned to the direction
string, and then the repaint() method is called. The repaint() method causes the paint()
method to be invoked, which erases the canvas and displays the value of the direction
string on the canvas.

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
public class KeyCodeExample extends MIDlet
{
private Display display;
private MyCanvas canvas;
public KeyCodeExample ()
{
display = Display.getDisplay(this);
canvas = new MyCanvas (this) ;
}
protected void startApp()
{
display.setCurrent (canvas) ;
}
protected void pauseApp ()
{
}
protected void destroyApp(boolean unconditional)
{
}
public void exitMIDlet ()
{
destroyApp (true) ;
notifyDestroyed() ;
}
}
class MyCanvas extends Canvas implements CommandListener
{

225

226 J2ME: The Complete Reference

private Command exit;
private String direction;
private KeyCodeExample keyCodeExample;
public MyCanvas (KeyCodeExample keyCodeExample)
{
direction = "2=up 8=dn 4=1t 6=rt";
this.keyCodeExample = keyCodeExample;
exit = new Command("Exit", Command.EXIT, 1);
addCommand (exit) ;
setCommandListener (this) ;
}
protected void paint (Graphics graphics)
{
graphics.setColor (255,255,255) ;
graphics.fillRect (0, 0, getwWidth(), getHeight());
graphics.setColor (255, 0, 0);
graphics.drawString(direction, 0, O,
Graphics.TOP | Graphics.LEFT);
}
public void commandAction (Command command, Displayable displayable)
{
if (command == exit)
{
keyCodeExample.exitMIDlet () ;
}
}
protected void keyPressed(int key)
{
switch (key){
case KEY_NUM2:
direction = “up”;
break;
case KEY_NUMS8:
direction = “down”;
break;
case KEY_NUMA4:
direction = “left”;
break;
case KEY_NUM6 :
direction = “right”;
break;
}

repaint () ;

Listing 7-2
The JAD
file for
Listing 7-1

Chapter 7: Low-Level Display: Canvas

MIDlet-Name: KeyCodeExample
MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: KeyCodeExample.jar
MIDlet-1: KeyCodeExample, , KeyCodeExample
MicroEdition-Configuration: CLDC-1.0
MicroEdition-Profile: MIDP-1.0
MIDlet-JAR-SIZE: 100

Working with Game Actions

The theme may differ among computer games, but the way players interact with a
game is fairly constant across all computer games. Players can move up, down, left,
right, and they can fire. Typically, directional movement causes a game piece to move
in a corresponding direction or changes the viewpoint of the player, depending on the
nature of the game. Fire causes an event to occur within the game, such as releasing

a bullet from a gun.

Directional movement and fire are referred to as game actions, and MIDP game action
defines constants that enable you to utilize game actions within your MIDlet without
being concerned about the appropriate key code that is assigned to each action. Nearly
all small computing devices accommodate game action keys either by associating each
game action with a dedicated key, such as a key labeled “fire,” or by associating each game
action to a generic key, such as numbers on a keypad.

Each game action is associated with one or more keys on the keypad. For example,
the down game action might be associated with a down directional key and a number
on the keypad. Pressing either key causes the same game action to occur. However, each
key can be assigned to only one game action. This means pressing the down game
action key doesn’t also generate an up game action.

You don’t need to be concerned about key mapping of game actions if you use game
action constants to refer to game actions within your MIDlet. Table 7-2 contains game action
constants that are used when developing a game for a small computing device. You can
reference either the name of the constant or the value of the constant within your MIDlet
to determine the game action selected by the player. However, it is always best to reference
the constant rather than the constant value.

A game action causes the keyPressed() method, keyReleased() method, and
keyRepeated() method to be called, depending on the key pressed by the player. You
can detect which game action occurred by calling the getGameAction() method. The
getGameAction() method requires one parameter—the key code of the key selected
by the player—which is passed as a parameter to the keyPressed(), keyReleased(), or
keyRepeated() method.

227

228 J2ME: The Complete Reference

Game Action Constant Description Game Action Constant Value
uP Move up 1
DOWN Move down 6
LEFT Move left 2
RIGHT Move right 5
FIRE Fire 8
GAME_A Device defined 9
GAME_B Device defined 10
GAME_C Device defined 11
GAME_D Device defined 12
Table 7-2. Game Action Constants

An if statement or a switch case statement can be used to compare the incoming key
code to game action constants. Each game action constant is a data member of the Canvas
class and is referenced by using the name of the game action constant, such as
Canvas.LEFT, Canvas.RIGHT, Canvas.UP, Canvas.DOWN, and Canvas.FIRE.

There are two alternative ways to detect the game action key selected by the player. The
first is to compare key code values by calling the getKeyCode() method. The getKeyCode()
method requires one parameter, which is the name of the game action constant. The
getKeyCode() returns the key code value associated with the game action constant that
can then be directly compared to the incoming key code value passed to the keyPressed(),
keyReleased(), or keyRepeated() method.

Let’s say that you need to determine whether the player selected the FIRE game action
key. You call the getKeyCode() method and pass it the name of the FIRE game action
constant, which is FIRE. The return value is then compared with the incoming game
action key code, as illustrated in the following code segment. The keycode variable is
an int representing the value of the key code selected by the player.

if (getKeyCode (FIRE) == keycode)
{

//fire
}

Chapter 7: Low-Level Display: Canvas

The other way to determine the player’s selection is to retrieve the name of the key
that is associated with the incoming key code by calling the getKeyName() method.
The getKeyName() method requires one parameter, which is the key code value. The
getKeyName() method returns the name of the key represented by the key code value.
A word of caution: the name returned by the getKeyName() method is not necessarily
the name of the game action. Instead, it is the name of the key.

Let’s say that the player pressed the left game action key, which has a game action
constant value of 2 (Table 7-2). The actual name for the key might be KEY_4 if the device
uses the key labeled 4 as the left directional key on the keypad. In this example, the name
KEY_NUM4 is returned by the getKeyName() method.

In order to use the getKeyName() method to detect the game action key selected by
the player, you must first determine the key name for each of the game action keys. You
do this by calling the getKeyCode() method, passing it the game action constant name,
and then passing the return value from the getKeyCode() method to the getKeyName()
method, which returns the name of the key associated with the key code value. This
technique is illustrated in the following code segment:

if (getKeyName (getKeyCode (FIRE) .equals (getKeyName (keycode))))
{

//fire
}

Detecting and Processing Game Actions

Listing 7-3 illustrates how to detect and process game actions selected by a player. Listing 7-4

is the JAD file for Listing 7-3. You'll notice that Listing 7-3 is very similar to Listing 7-1,

except this example relocates text on the screen based upon the game action selected by
the player.

This listing begins the same as Listing 7-1, by declaring references that are later
assigned instances of the Display class and the MyCanvas class in the GameActionExample
constructor. And as in Listing 7-1, MyCanvas is declared later in the listing. The instance
of MyCanvas class is displayed by passing it to the setCurrent() method within the
startApp() method of the MIDlet.

Nearly all the action in Listing 7-3 happens in the definition of the MyCanvas class.
The class definition begins by declaring references similar to references declared in
Listing 7-1. However, two additional variables are declared in Listing 7-3. These are x
and y integers whose values represent canvas coordinates used to position text on
the canvas.

The initial coordinate is 5, 5, which identifies the cell in the upper-left region of the
canvas. This is the cell where the device draws the line of text assigned to the message
variable in the constructor (see Figure 7-4). The other statements within the constructor
are the same as statements used in Listing 7-1.

229

230

J2ME: The Complete Reference

] DefaultColorPhone [H|E E3
—

(e Lo Lol
D €0 @
@ am @

S
MODE SPACE

Figure 7-4. Text assigned to the message variables in the constructor is displayed
on the screen.

The paint() method erases images from the canvas and draws the string called
“message” at the X, y coordinate. Initially, the value of the X, y coordinate is 5, 5.
However, you'll notice that statements within the keyPressed() method definition modify
the initial values, depending on the game action key selected by the player.

The commandAction() method is defined next and has the same definition as the
commandAction() command contained in Listing 7-1. The purpose of the commandAction()
method is to process the Exit command when the player terminates the MIDlet.

The keyPressed() method is called to detect and process game action keys. As in
Listing 7-1, a switch case statement is used to compare the incoming key code value to a
constant. This example uses game action constants to detect the game action key selected
by the player. The key selected by the user is retrieved by calling the getGameAction(key)
method.

Based on the selected key, the appropriate case statement replaces the string assigned
to the message variable and then adjusts the value of either the x or y coordinate to

Chapter 7: Low-Level Display: Canvas

Ql = W N =

10.
11.

12.

13.

14.

15.

16.

Detecting and Processing Game Action Keys

Listed here are the steps for detecting and processing game action keys:

. Declare references to classes.

. Create instances of classes and assign those instances to references.

. Display the instance of the Canvas class whenever the MIDlet is started.
. Terminate the MIDlet when the Exit command is selected.

. Define a class derived from the Canvas class that implements

a CommandListener.

6. Within the derived class, declare references.

7. Within the derived class, define a constructor that initializes text

to be displayed on the canvas.

8. Within the derived class, create an instance of the Command class.

. Within the derived class, associate the instance of the Command class

with the canvas.
Within the derived class, associate the CommandListener with the canvas.

Within the derived class, define a paint() method that erases the canvas
and draws the string on the canvas.

Within the derived class, define a commandAction() method to process
the Exit command.

Within the derived class, define a keyPressed() method to process keys
selected by the user while the MIDlet runs.

Compare the incoming key code value with game action constants
for UP, DOWN, LEFT, RIGHT, and FIRE.

If matched, indicate the direction selected by the player and adjust the
coordinate appropriately to position the text on the canvas in the direction
selected by the player.

Erase the canvas and redraw the text on the canvas.

Listing 7-3
Capturing
and
processing
game actions

reposition the text on the canvas. Next the repaint() method is called, which calls the
paint() method to erase the canvas and draw the new text on the canvas.

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class GameActionExample extends MIDlet

{

231

232 J2ME: The Complete Reference

}

private Display display;
private MyCanvas canvas;
public GameActionExample ()
{
display = Display.getDisplay(this) ;
canvas = new MyCanvas (this);
}
protected void startApp()
{
display.setCurrent (canvas) ;
}
protected void pauseApp ()
{
}
protected void destroyApp(boolean unconditional)
{
}
public void exitMIDlet ()
{
destroyApp (true) ;
notifyDestroyed() ;

class MyCanvas extends Canvas implements CommandListener

{

private Command exit;

private String message;

private GameActionExample gameActionExample;

private int x, y;

public MyCanvas (GameActionExample gameActionExample)

{
x = 5;
y = 5;
direction = "Use Game Keys";

this.gameActionExample = gameActionExample;
exit = new Command("Exit", Command.EXIT, 1);
addCommand (exit) ;
setCommandListener (this) ;
}
protected void paint (Graphics graphics)
{
graphics.setColor (255,255,255) ;
graphics.fillRect (0, 0, getWidth(), getHeight());
graphics.setColor (255, 0, 0);
graphics.drawString (message, x, y, Graphics.TOP | Graphics.LEFT);
}
public void commandAction (Command command, Displayable displayable)
{

if (command == exit)

Chapter 7: Low-Level Display: Canvas 233

gameActionExample.exitMIDlet () ;
}
}
protected void keyPressed(int key)
{
switch (getGameAction (key)) {
case Canvas.UP:

message = “up”;
Y-=i
break; -
case Canvas.DOWN: m
message = “down”; E
y++; 3
break; E
case Canvas.LEFT: ;
message = “left”; ()
m
X-=7
break;
case Canvas.RIGHT:
message = “right”;
X++;
break;
case Canvas.FIRE:
message = “FIRE”;
break;
}
repaint () ;
}
}
Listing 7-4 MIDlet-Name: GameActionExample
The JAD MIDlet-Version: 1.0
file for
Listing 7-3 MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: GameActionExample.jar

MIDlet-1: GameActionExample, , GameActionExample
MicroEdition-Configuration: CLDC-1.0
MicroEdition-Profile: MIDP-1.0

MIDlet-JAR-SIZE: 100

Working with Pointer Devices

A pointer device is something other than a keyboard or keypad that is used to interact
with an application. The most commonly used pointer devices are a touch screen and a
mouse, although you can be sure that new pointer devices are bound to find their way
into the marketplace in the future. Fortunately, as a J2ME developer, you don’t become
involved in the details of how a pointer device interfaces with a small computer or how

234

J2ME: The Complete Reference

someone uses the pointer device to interact with your MIDlet. The device manufacturer
and the implementation of the Java Virtual Machine handle those details. However, you
are responsible for developing routines within your MIDlet to process pointer events.
A pointer event occurs whenever the person uses a pointer device to interact with your
MIDlet. There are three pointer events that your MIDlet must process. These are when
the person presses a pointer device, releases a pointer device, and drags a pointer device.

A person presses a pointer device by applying pressure to a portion of a touch screen
or by clicking the mouse button. This causes a press event. A release event occurs once
pressure is removed from the touch screen or the mouse button. And your MIDlet is
notified of a drag event whenever the person moves the pointer device during a press
event.

Your MIDlet processes pointer events by defining three methods that are automatically
called by the device’s application manager when a pointer event occurs. These methods
are the pointerPressed() method, the pointerReleased() method, and the pointerDragged()
method. All three methods require two parameters. The first parameter is an integer
representing the x coordinate of the pointer device, and the other parameter is an
integer representing the y coordinate. Typically, your MIDlet will use these parameters
to change the image that appears on the screen.

Let’s say that your MIDlet prompts the user to draw a line across the screen using
a pointer device. A line is drawn by pressing the pointer device at a particular location
on the canvas, then while pressed (or while holding down the mouse button), the
person drags the pointer device to another position on the canvas before releasing the
pointer device.

Here’s what happens behind the scenes in the MIDlet. A press event is detected and the
pointerPressed() method is called when the pointer device is pressed. The pointerPressed()
method receives the coordinate of the pointer on the canvas. Let’s call that the starting
coordinate.

Dragging the pointer device is a drag event and causes the pointerDragged() method
to be invoked continuously until the person stops dragging the pointer device. The
pointerDragged() method is called each time the pointer device is dragged and is passed
the coordinate of the pointer device when the drag event occurs. Let’s call this coordinate the
current coordinate.

Finally, the release event occurs when the person removes pressure from the pointer
device (removes the finger or implement from the touch screen or releases the mouse
button). The pointerReleased() method is then called and passed the pointer device’s
coordinate on the canvas where the person released the pointer device. We'll call this
the end coordinate.

In this example, the color of the pixel at the coordinate must be changed to the color of
the line to give the illusion that a line is being drawn on the screen. The pointerPressed ()
method, pointerDragged() method, and pointerReleased() method all must contain
statements that change the color of the pixel at the coordinate passed to each method
by the device’s application manager.

Chapter 7: Low-Level Display: Canvas

Detecting and Processing Pointer Events

Listing 7-5 shows how to write a MIDlet that draws a line on the canvas based on pointer
events generated by the user of the application. Listing 7-6 is the JAD file for Listing 7-5.
Each time a pointer event occurs, the MIDlet redraws the line as determined by the
coordinate passed to the appropriate pointer event method.

Listing 7-5 follows the same basic structure as other listings discussed previously
in this chapter. The PointerExample class definition is technically the same as the
GameActionExample class definition in Listing 7-3, except the class name is different.
Therefore, we’ll jump down to the definition of the MyCanvas class.

Several variables are declared at the beginning of the MyCanvas class. Two variables
are used to reference commands. These are the Exit command used by the user to
terminate the MIDlet and the Erase command. The Erase command is used whenever
the user wants to remove the line from the screen.

Next, a boolean variable called eraseFlag is declared and is initialized to a false value.
The eraseFlag is used throughout the MIDlet to indicate whether the user wants the
screen erased. There are also four integers declared. These integers are used to hold
the start and current coordinates when the line is being drawn. And the last variable
is reference to the instance of the PointerExample class.

The MyCanvas class constructor definition assigns commands to references and
associates commands and the CommandListener with the instance of the Canvas class.
This is the same technique illustrated in other listings in this chapter.

You'll notice that the paint() method is a bit more complex than paint() methods
defined in other listings in this chapter because the paint() method must perform several
tasks. First, the paint() method must determine whether the user wants the screen erased
by evaluating the value of the eraseFlag. If the eraseFlag is true, images on the canvas
are erased, otherwise the paint() method draws the line on the canvas.

The canvas is erased by calling the setColor() method to white. Remember from our
previous discussion about the setColor() method that you must pass the setColor() method
three parameters. These are color values for red, green, and blue. The higher the color
value, the brighter the color. The highest—and therefore brightest—color value is 255,
which is white.

The fillRect() method is then called to paint a rectangle on the canvas with the current
color, which is white. The fillRect() method requires four parameters. The first two
parameters are the coordinates of the upper-left corner and lower-right corner of the
rectangle. The upper-left corner of the rectangle is the first cell of the canvas. The lower-
right corner is determined by the getWidth() and getHeight() methods, both of which
return the maximum width and height of the filled rectangle. You'll be formally introduced
to the setColor() method, the fillRect() method, and other graphic methods in the next
section of this chapter.

Once the canvas is erased, the eraseFlag, start, and current coordinates are initialized
to false and zero, respectively. The paint() method is then abruptly terminated with the
return statement because the remaining statements in the paint() method draw a line

235

236 J2ME: The Complete Reference

on the screen, which is not what the user requested. However, if the user didn’t select
the Erase command, statements that erase the canvas within the paint() method are
skipped, and the MIDlet proceeds to draw a line on the screen. This process begins by
calling the setColor() method and setting each parameter to zero. Zero is the darkest
color value, which is black. This means images drawn on the canvas after the color is
set to zero are drawn in black.

The drawLine() method is called once the color is set to black. The drawLine() method
requires four parameters. The first two parameters identify the starting coordinates for
the line, and the other parameters identify the end coordinates of the line. The values
of these parameters are the current values of sX, sY, cX, cY variables.

Detecting and Processing Pointer Events

Listed here are the steps for detecting and processing pointer events:

. Declare references to classes.

. Create instances of classes and assign those instances to references.

. Display the instance of the Canvas class whenever the MIDlet is started.

. Terminate the MIDlet when the Exit command is selected.

Gl = W N =

. Define a class derived from the Canvas class that implements
a CommandListener.

6. Within the derived class, declare references.

7. Within the derived class, create instances of the Command class—one
command used to terminate the MIDlet and the other to erase the screen.

8. Within the derived class, associate instances of the Command class with
the canvas.

9. Within the derived class, associate the CommandListener with the canvas.

10. Within the derived class, define a paint() method either to erase the canvas
or draw a line segment on the canvas.

11. Within the derived class, define a commandAction() method to process
the Exit command and the Erase command.

12. Within the derived class, define a pointerPressed() method to process
the pointer pressed event by resetting the starting coordinates of the line
to coordinates that identify the position of the pointer device when the
pointer device is pressed.

13. Within the derived class, define a pointerDragged() method to process
the pointer drag event by resetting the current coordinates of the line to
coordinates that identify the position of the pointer device as the pointer
device is dragged across the screen.

Listing 7-5
Capturing
and
processing
pointer
events

Chapter 7: Low-Level Display: Canvas

The values of the sX, sY, cX, cY variables are modified by the pointer event methods
that are defined later in the MyClass class definition. Before the MIDlet leaves the paint()
method, the values of the current coordinates (cX and cY) are assigned to the starting
coordinates (sX and sY). This means that the next segment of the line is drawn at the end
of the current line.

The commandAction() method is similar to the commandAction() method used in
other listings with one exception. When the commandAction() method detects that the
user selected the Erase command, the eraseFlag is set to true and the repaint() method
is called. The repaint() method invokes the paint() method, which erases the canvas.

Two other methods are defined in the MyClass class. These are the pointerPressed ()
method and the pointerDragged() method. We didn’t define the pointerReleased() method
because the MIDlet doesn’t perform any special processing when the user releases the
pointer device.

The pointerPressed() method receives coordinates of where the pointer device was
located on the canvas when the user pressed the pointer device. This coordinate is always
the starting coordinate of the line. Notice that the repaint() method isn’t called within the
pointerPressed() method because we expect that the user doesn’t want a pixel to appear
unless the pointer device is dragged.

The pointerDragged() method receives coordinates of each position of the canvas
over which the user drags the pointer device. As each drag event is captured, the
pointerDragged() method is called and the current coordinate variables (cX and cY)
are assigned the value of the pointer device. The repaint() method is called once the
coordinates are assigned to these variables. The repaint() method calls the paint() method,
as previously described, and uses the value of the current coordinate variables and the
start coordinate variables to draw the next segment of the line.

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
public class PointerExample extends MIDlet
{
private Display display;
private MyClass canvas;
public PointerExample ()
{
display = Display.getDisplay(this) ;
canvas = new MyClass (this);
}
protected void startApp()
{
display.setCurrent (canvas) ;
}
protected void pauseApp ()
{
}
protected void destroyApp(boolean unconditional)
{

237

238

J2ME: The Complete Reference

}

}
public void exitMIDlet ()
{
destroyApp (true) ;
notifyDestroyed() ;

class MyClass extends Canvas implements CommandListener

{

private Command exit;
private Command erase;
private boolean eraseFlag = false;
private boolean isFirstPaint;
private int sX = 0,sY = 0, ¢X = 0, cY¥Y = 0;
private PointerExample pointerExample;
public MyClass (PointerExample pointerExample)
{
this.pointerExample = pointerExample;
exit = new Command("Exit", Command.EXIT, 1);
erase = new Command ("Erase", Command.SCREEN, 1);
addCommand (exit) ;
addCommand (erase) ;
setCommandListener (this) ;
isFirstPaint = true;
}
protected void paint (Graphics graphics)
{

if (eraseFlag || isFirstPaint)

graphics.setColor (255, 255, 255);
graphics.fillRect (0, 0, getwidth(), getHeight());

eraseFlag = isFirstPaint = false;
sX = 0;
sY = 0;
cX = 0;
cYy = 0;
return;

}
graphics.setColor (0, 0, 0);
graphics.drawLine (sX, sY, cX, cY);
sX = cX;
sY = cY;
}
public void commandAction (Command command, Displayable displayable)
{
if (command == exit)
pointerExample.exitMIDlet () ;
else if (command == erase)

{

Listing 7-6
The JAD
file for
Listing 7-5

Chapter 7: Low-Level Display: Canvas

eraseFlag = true;
repaint () ;
}
}
protected void pointerPressed(int x, int vy)
{
sX
sY = vy;
}
protected void pointerDragged(int x, int y)
{

X7

cX = X;
cY = vy;
repaint () ;

}

MIDlet-Name: PointerExample
MIDlet-Version: 1.0

MIDlet-Vendor: MyCompany

MIDlet-Jar-URL: PointerExample.jar
MIDlet-1: PointerExample, , PointerExample
MicroEdition-Configuration: CLDC-1.0
MicroEdition-Profile: MIDP-1.0
MIDlet-JAR-SIZE: 100

___| Graphics

As you recall from earlier in this chapter, the screen of the low-level user interface is a
canvas, which is an instance of the Canvas class. The canvas is organized into a grid in
which each cell of the grid is a pixel. Coordinates, as explained in the previous sections,
identify each cell. An image is drawn on the canvas by using a virtual graphical device
called a graphic context, such as the rectangle and line. A graphic context is an instance
of the Graphics class. You'll learn about these virtual graphical devices in this section.
Reference to the graphic context is passed to the paint() method. A mutable image,
as you'll remember, is an image that can be altered by your MIDlet. You've seen how to
create a graphic context in previous listings that defined the paint() method. Reference
to the graphic context passed to a paint() method exists for the duration of the paint()
method. Once the MIDlet leaves the paint() method, the graphic context goes out of scope.
The graphic context can no longer be used to draw on the canvas, even if reference to the
graphic context is retained. In contrast, a graphic context created in association with a
mutable image remains available to the MIDlet as long as reference to the image and
the image itself remains in scope. You'll learn how to create a graphic context using
a mutable image later in this chapter.

239

240

J2ME: The Complete Reference

Stroke Style and Color

Every graphic context has two characteristics you can control from within the MIDlet.
These are stroke style and color. Stroke style defines the appearance of lines used to
draw an image on the canvas, and color specifies the background and foreground color
of the image.

You can use two kinds of stroke styles when drawing images on the canvas: solid
and dotted. As the names imply, the solid stroke style causes the graphic context to use
a solid line when drawing the image, and the dotted stroke style results in the image
being drawn using a dotted line. The solid stroke style is the default.

Skipping pixels along the lines of the image creates the dotted stroke. The small
computing device determines the number of pixels skipped. You cannot modify the
appearance of the dotted stroke, and you might discover that skipped pixels may affect
the appearance of the image. For example, a pixel at the corner of a rectangle might be
missing and therefore ruin the illusion of a square-cornered rectangle.

Calling the setStrokeStyle() method determines the stroke style that will be used by
a graphic context. A stroke style setting is particular to each graphic context and does
not affect other graphic contexts. For example, one graphic context can be set to a dotted
stroke style and another set to a solid stroke style. Both graphic contexts can be used
to draw images on the same canvas without affecting each other’s stroke style.

The setStrokeStyle() method requires one parameter, which is a constant that represents
a stroke style. There are two constants, SOLID and DOTTED, both of which are members
of the Graphics class. You can change the stroke style of a graphic context anytime within
your MIDlet by calling the setStrokeStyle() and passing the setStrokeStyle() the constant
that represents a different stroke style. You determine the current stroke style of a graphic
context by calling the getStrokeStyle(). This method returns an integer that can be
compared within your MIDlet to the stroke style constants.

Colors
You've already seen how combining degrees of red, green, and blue creates the foreground
and background color of a graphic context. The degree of each color is specified as an
integer value within the range of 0 to 255. Zero produces the darkest possible value of
the color, and 255 produces the lightest possible value. For example, color values 0, 0, 0
(red, green, blue) produce black, and color values 255, 255, 255 produce white. Values
between these extremes produce shades of various colors. All integers in Java are 32 bits.
Of those 32 bits, 8 bits are used to represent red, blue, and green. All color values are
stored in one integer. The 8 highest order bits are not used.

A word of caution: Your choice of colors for a graphic context is a request and not
a directive. The actual color of a graphic context is device dependent. Every effort is made
to draw an image in the requested colors, but sometimes the device doesn’t support the
colors you select or doesn’t support color at all. In these cases, the device automatically
uses colors that closely match your request, or it converts your color selection to shades
of gray. You don’t have any control over color choices made by a device.

Chapter 7: Low-Level Display: Canvas 241

| The gray scale uses a range from 0 to 255, where zero is black and 255 is white.

You can determine whether a device supports color and the number of colors or shades
of gray that are supported by calling the appropriate Display class method within your
MIDlet. The isColor() method returns a boolean value that is true if color is supported;
otherwise a false value is returned, indicating that the device supports the gray scale
instead of color. The numColors() method returns an integer representing the number
of colors or shades of gray supported by the device. You can use both of these return
values to reset a color choice for the graphic context that is appropriate for the colors
available on the small computing device.

You set the color of a graphic context by calling the setColor() method of the Graphics
class. The setColor() method requires either one parameter or three parameters depending
on how you represent your choice of color. A color can be represented as one integer
or three integers, where each of the three integers represents a color value of red, green,
and blue.

Let’s take a closer look at how color values are represented in order to understand
the technique used to represent a color by a single integer. Remember that the highest
order bits are not used to represent color values. The color is represented by the next
24 bits. The 24 bits are divided into three 8-bit groups. The first 8-bit group represents the
color value of red. The second 8-bit group represents the color value of green. And the third
8-bit group represents the color value of blue.

Background Colors
Technically there isn’t any way to distinguish between foreground and background
colors because the concept of background colors is not supported in J2ME. All
colors are foreground colors. However, you can work around this limitation by
drawing a filled rectangle over the complete canvas before drawing other images
on the canvas.

You've seen this technique used in Listing 7-3 to erase the canvas. In this example
the following code segment is used to draw a filled rectangle the size of the canvas
and fill the rectangle with the color white:

graphics.setColor (255, 255, 255);
graphics.fillRect (0, 0, getWidth(), getHeight());

Once the filled rectangle is drawn on the canvas, you can use another graphic
context to draw an image on the canvas. Of course, that graphic context must have
a color setting other than white; otherwise, you won’t be able to see the new image
on the screen.

242

J2ME: The Complete Reference

Normally, you will determine the color to use with a graphic context by assigning
a color value to each color group (red, green, blue), as discussed previously in this section.
The bitwise shift operator (<<) and the bitwise OR operator (|) are then used to insert
each of the color values into the appropriate place within the 24 bits that represent
the color.

Let’s use this example to illustrate. Suppose we use the following color values:
red = 50, green = 200, and blue = 150. You can set the color of a graphic context by
calling setColor(50, 200, 150). You can also pass the combined values of red, green,
and blue to the setColor() method. Here’s how these values are combined and passed
to the setColor() method:

I setColor ((50 << 16) | (200 << 8) | 150);

First, the red color value 50 is bit shifted 16 places to the left, so it now occupies the
second high order byte of an integer. Next, the green color value is bit shifted 8 places to
the left, so it now occupies the third high order byte of an integer. No shifting is done
to the blue value since it is already where it is supposed to be, namely, the lowest order
byte of an integer. Next, all the values are bitwise ORed together, resulting in a single
integer whose highest order byte is 0, second highest order byte is the value 50, third
highest is 200, and the lowest order byte is 150.

Looking at the red, green, and blue color values in binary rather than decimal
illustrates how these values are combined into one 24-bit value. Here are the decimal
values for each color:

Red 50 00110010
Green 200 11001000
Blue 150 10010110

When these values are combined into one 32-bit value they appear as:
00000000001100101100100010010110

There are two techniques available for determining the current color setting of a
graphic context. They involve determining the value of each component of the color (red,
green, blue) either by calling the appropriate method for each component or by masking
the color value. The simplest way to determine the color is to call the getRedComponent()
method, getGreenComponent() method, and getBlueComponent() method. Each returns
an integer representing the color value of the corresponding component.

An alternative technique is to retrieve the 32-bit color value by calling the getColor()
method, then using a bit mask to extract each component of the color. The following code
segment illustrates how to use this technique. Assume that red, green, and blue are integer
variables and graphics is the instance of the