i I
BN 1 vy A o e .
g 1 = .
|.. I-I i L] i " L |_ II. _|I ; i
[" |“ * s, A .::._ i r i o
+ L ||.' - - % L, . g =
1k PR gy T N i 1: -
Lt - s .-J_._ L)
!i_ - ; S |.|--.'Il ': |‘ B
. 5 i & I"_‘H ki I. 'y &
" L] E ¥ = I ¥ »
F W ; I'I. -.";
i (il - :| E gk
T e D] o=
! - o T] AL N
iy L T 1 L =
PRt 5.5 Pk

IN A NUTSHEL

A Desktofr Ouick Reference

GIREILLYl Kime Topley

J2ME in a Nutshell

Kim Topley
Publisher: O'Reilly
Edition March 2002

ISBN: 0-596-00253-X, 478 pages

J2ME in a Nutshell provides a solid, no-nonsense reference to the 'alphabet soup' of micro
edition programming, covering the CLDC, CDC, KVM and MIDP APIs. The book also
includes tutorials for the CLDC, KVM, MIDP and MIDlets, MIDlet user interfaces,
networking and storage, and advice on programming small handhelds. Combined with
O'Reilly's classic quick reference to all the core micro-edition APIs, this is the one book that
will take you from curiosity to code with no frustrating frills in between.

Table of Contents

Preface e e e 1
Contents of This Book ittt 1
Related BoOkSo ittt e e e e 3
J2ME Programming Resources Online 4
Examples Onlinettt ittt ettt eeeeeenennens 5
Conventions Used in This Book 5
Request for Commentsttt e e e e eeeeeeenennennnns 6
Acknowledgmentst e e 6

I: Introduction to the Java 2 Micro Edition Platform API 8

1. Introductionttt ittt 9
1.1 What Is the J2ME Platform?ttt i, 9
1.2 J2ME Specifications o v vt ittt it et e et e et e et e e 14
1.3 J2ME and Other Java Platforms 14

2. The Connected Limited Device Configuration 16
2.1 The CLDC Java Virtual Machine i eenn... 16
2.2 The CLDC Class LIbraries« v oot v ittt ettt et e eeeeeeeeeennnns 24
23 KVM Debuggingvvti ittt ettt ettt 32
24 Advanced KVM TOPICS & v v v v vttt it e et e et et e e ettt eeeeeeeeennnns 37

3. The Mobile Information Device Profileand MIDlets 47
B3I MIDP OVEIVIEW . & v v ittt e e e ettt e et e e et e eeeeeeeeenneenns 47
3.2 The MIDP Java Platformttt 51
3.3 MIDlets and MIDIet SUItES . . o o v v vttt e et e e et e e et e e 51
3.4 MIDlet Execution Environment and Lifecycle 57
3.5 Developing MIDIetsttt ittt et ettt eeeeeennn 62
3.6 Delivery and Installation of MIDletst 76

4. MIDlet User Interfaces iiiiiinnnennn. 84
4.1 User Interface OVEIVIEW . . . v v vt v i it ittt et et e et e eeeeeeenennnns 84
4.2 The High-Level User Interface APT 88

5. The Low-Level MIDlet User Interface API 139
5.1 The Canvas Class . . .ot v ittt ittt et ettt ettt et e eeeeeeeeeenns 139
5.2 Painting and the Graphics Classottt ittt 143
5.3 Graphics AIIDULES . . . v v ottt et ettt e et ettt 144
54 Drawing Lines and ATCS . . . v v o v ittt ittt e e e e e e e e 147
5.5 Translating the Graphics Origino i ittt it ittt et e ee e 153
5.6 A Simple Animation MIDlet it 155
57 The Graphics Clip . v o v v vttt it e it et e e e e e et et eeeeeeennn 158
5.8 Rendering Text . ..ot ittt ittt et et ettt 161
5.0 IMages . o ittt et e e e e e e e et 166
5.10 Event Handlingttt ittt i eeeeennnn 171
5.11 Multithreading and the User Interface, 176

6. Wireless Java: Networking and Persistent Storage 179
6.1 A Networking Architecture for Small Devices 179
0.2 SOCKELS . o v vttt e e e e e e e e ettt 183
6.3 Datagramsot e e e e e e et 187
6.4 HTTP COoNnectionso o v v it v it e e et e eeeeeeeeeeeeeneeneenns 192

6.5 Persistent StOrage . . . o v v vttt i e e e e e et et 207

7. The Connected Device Configuration and Its Profiles 227

7.1 The CDC ..ottt e et e e e e ettt ee e 227
8. J2ME Command-Line Tools 239
8.1 cvm: The Connected Device Configuration Virtual Machine 239
8.2 kdp: The KVM Debug ProxXy iiiiiininn it tnennnnnn 244
8.3 kvm: The Kilobyte Virtual Machinettt 246
8.4 midp: The MID Profile Execution Environment 250
8.5 emulator: The J2ME Wireless Toolkit Emulator 254
8.6 preverify: The KVM Class Preverifierot 258
8.7 MakeMIDPApp: JAD to PRC Conversion Tool 261
8.8 chMEKeyTool: Public Key Certificate Management Tool 264
9. J2ME Programming Environments, 267
9.1 The J2ME Wireless Toolkitottt ittt it it et e eeeeenn 267
9.2 MIDP for PalmOS i e e e e e e 281
93 J2ME and Forte ForJava i i i e 291
9.4 Other Integrated Development Environmentsccu.... 296
II: API Quick Referencettt itteeeeeenneennn 298
10. J2ME Packages and Classes 0.0ttt tenneeennn.. 308
10.1 J2ME Packagesvv i ittt ittt it et eeeeeeeeeeennns 308
10.2 J2SE Packages Not Presentin J2ME 309
10.3 J2ME Package Contents iiit it ii ittt it teeeeeennnns 310
8 R T 1 325
Package Java.do ittt i i e e e e e e ettt e 325
ByteArraylnputStream e e e e e 325
ByteArrayOutputStreamt ittt e e e e e e 327
Datalnputo e e e e e e e 327
DatalnputStream oot e e e e et e 328
DataOutputt e e e e e e e et e 329
DataOutputStreamottt ittt ittt et e e et 330
EOFEXCeption ...t ittt ittt i it ettt ettt e e 331
InputStream e e e e et e 332
InputStreamReadert e e e e e 333
InterruptedlOEXception ittt e e e e e e 334
L (@) 2 (7= o1 51) K 334
OutputStreamo ittt it e e e e e et 335
OutputStreamWIIter v ittt it ettt e et ettt e 336
PrintStream e e 337
Reader i e e e e e 338
UnsupportedEncodingExceptionttt 339
UTFDataFormatEXceptionttt nnttenneeenneeennn 339
AT 4 LS 339
12.javaldang e e e e e e e e e 341
Package java.angttt e e e e e 341
ArithmeticEXceptionttt ittt et e e e e 342
ArraylndexOutOfBoundsException i ittt innnennn. 343
ArrayStoreEXCepPtIon . . .ttt it e e e e e e e e et 343
Boolean e e e e 343
Byt i e e e e e e 344
Character . ..o i ittt ittt et e e e e e e et 345
0]] 346
ClassCastEXCEPHON . . v v vttt ittt ettt e et ettt e e e e eeeeeeeeeaeeenns 347

ClassNotFoundEXception iiiit ittt it ettt teeeeeeennnnn 347

5 5 o) 348

2 (1< o1 5[) K 348
Ilegal AcCesSEXCEPLIoN . . v v vttt i ettt e e e et ettt et e 349
Ilegal ArgumentEXCeptiono v ittt ittt ittt et ettt et 349
IllegalMonitorStateEXception v v ittt ettt et et ettt et 350
[legalStateEXCePtion . . . v v v vttt it e e et e et e et e e eee e 350
IllegalThreadStateExXceptionttt teneeneenennens 351
IndexOutOfBoundsEXception iit ittt ittt enteeeenennennnns 351
InstantiationEXCePtiono i ittt it i e e e e e e et 352
53115 (<) 352
InterruptedExXceptiont e e e e e 353
570 4V 354
Math . . e e e e e 355
NegativeArraySizeEXCeptiono v vt ittt ittt ettt et e 355
NullPointerEXception i ittt ittt it ettt eeeeeeennns 356
NumberFormatEXceptionttt int e et eeeenennennns 356
[)01 A 356
OutOfMemoryEIToro vt ittt et e e ettt e 358
Runnable e e e 358
Runtime i ittt e e e e e e e 359
RuntimeEXceptionttt ittt it et ee e eeeeennns 359
SecurityEXceptionttt e e e et 360
N3] 110 o P 360
N5 1 361
StringBuffer e e e e et 363
StringIndexOutOfBoundsExceptionttt eennnnn 365
) 511 1 PR 366
Threadot e e e e e e e 367
Throwable e e et 368
VirtualMachineError ittt ittt ittt ettt e e 369
13. Javaautil e e e e e e 370
Package java.util i e e e e e e 370
Calendart e e e et 371
Date ... e e e e e e 373
EmptyStackExXceptionttt it e e 374
Enumeration e e e 374
Hashtable it et e e e e 375
NoSuchElementExceptionttt eneenennennns 376
Random e e 376
] 72 To] P 377
85341 378
TimerTask i e e e et e 379
TIMEZONE . .t it ittt it e e et et et e e e e et 379
Y5110 380
14. javax.microedition.io e e 383
Package javax.microedition.ioo v vt i ittt et e e e 383
L7034 Tt 5 o) U 384
ConnectionNotFoundEXception ittt eneenennennn 385
103 4 T 0) 385
ContentConnectiono vt i ittt ettt et ettt ettt 387
Datagram e e e e e e e et e 388
DatagramConnectiont vt ittt ittt ettt 389
HttpConnectiont i ittt it ittt ettt et eeeeenens 391
INputConnection v vttt ittt ittt ettt e e et et 393
OutputConneCtioN . . v v vttt et ettt ettt e ettt e et ea e 394

StreamOCONNECTION & v v v v v e e e e e et e e et et et e et 394

StreamConnectioNNOtIfIEr . . v v v vttt e et s e e e e e e e e e e e e e e e e 395

15. javax.microedition.dedui i e 396
Package javax.microedition.leduit e e .. 396
N) P 398
N 1< g o 154 o 399
0 3 1 400
0] 110 o P 402
(O] 10 (o7 o] 1 o 404
Command e ettt 405
CommandLiStenerttt tinn ettt teeneeeeneeenneens 407
DateField it e e e e e e e e e 407
Dasplay .. e e e e e e e e e e 408
Displayablet e e e e e e et e e 409
Font o e e e e 410
Form .. e e e e e e e e e e 412
L 11T 413
(65210 1 o1 414
Image . .ottt e e e e e e e e 417
Imageltem e e e e et e e 418
5 o 419
ItemStateListenerttt e e e e et e 420
55 421
01 (<< o 422
Stringltem e e e e e 423
0 €370 < 424
TextField e e e e 424
8 103 427

16. javax.microedition.midlet 428
Package javax.microedition.midlet i, 428
MID et . .t e e e e et e e 428
MIDIletStateChangeEXceptionttt nteneenennennens 430

17. javax.microedition.rms e e e e 432
Package javax.microedition.rmso uv it et et e eeneenennennens 432
InvalidRecordIDEXceptiont inen e teneeneenennnns 432
RecordComparatoro ittt ittt e e e e et e 433
RecordEnumerationttt ittt ittt 434
RecordFilterttt i e et e ettt e et e e 436
RecordListenerttt ettt ittty 437
RecordStore i e e e e 438
RecordStoreEXceptionttt e e e e e 441
RecordStoreFullEXCeptiono v ittt ittt it et ettt et 441
RecordStoreNotFoundExceptionttt enennnn. 442
RecordStoreNotOpenExceptionttt enneeennnn. 442

Class, Method, and Field Index 00ttt iiinnnnnnn. 443
A e e e e e e e e e e 443
5 445
P 447
D e e e e e e e e e 451
E o e e e e e e e 455
F oo e e e e e 458
Gt e e e e e e e e e 460
5 471
477

J2ME in a Nutshell

Preface

This book is a desktop quick reference for the JavaTM 2 Micro Edition (J2ZMETM). It is
intended for Java programmers writing applications for devices with limited memory
resources and processor power, such as cell phones, Personal Data Assistants (PDAs), and
set-top boxes. The first part of this book provides a fast-paced introduction to the two
different configurations that make up the J2ME platform -- the Connected Limited Device
Configuration (CLDC) and the Connected Device Configuration (CDC), along with
the profiles that are based on them, such as the Mobile Information Device Profile (MIDP),
which provides the APIs for programming cell phones and similar devices. These chapters are
followed by a quick-reference section that details each class of the CLDC and MIDP APIs,
along with tables that show which Java packages and classes are available in each
configuration and profile.

This book is intended to be used in conjunction with the best-selling Java in a Nutshell, by
David Flanagan, and Java Enterprise in a Nutshell, by Jim Farley, David Flanagan, and
William Crawford (both published by O'Reilly). Java in a Nutshell introduces the Java
programming language itself and provides an API quick reference for the core packages and
classes of the Java 2 Standard Edition (J2SE) platform. Java Enterprise in a Nutshell does
the same for the APIs in the Java 2 Enterprise Edition (J2EE). The CDC and its profiles are
actually large subsets of the J2SE API, and, therefore, this book does not replicate their API
quick reference material, which you can find in Java in a Nutshell and, in the case of the RMI
profile, in Java Enterprise in a Nutshell.

Contents of This Book

The first nine chapters of this book describe the J2ME platform, the command-line tools that
are provided with Sun's J2ME reference implementations, and some of the visual
development environments that you can use when writing J2ME applications:

Chapter 1

This chapter introduces the J2ME platform and the concepts of configuration and
profile, and it compares J2ME to a number of other Java platforms for small devices.

Chapter 2

This chapter covers the Connected Limited Device Configuration (CLDC), which is
the basic building block for the J2ME profiles for wireless devices and PDAs. It
begins by outlining the differences between CLDC and the core libraries of the J2SE
platform. Then it takes a close look at KVM, the small-footprint virtual machine that
is used in Sun's reference implementation of CLDC.

Chapter 3

This chapter introduces MIDlets, the wireless Java equivalent of applets. MIDlets are
part of the Mobile Information Device Profile (MIDP), which is the subject of this
and the following three chapters. This chapter looks at the lifecycle of a MIDlet
and illustrates it with a simple example. It concludes with a discussion of the facilities

J2ME in a Nutshell

that a typical mobile device would provide to allow the user to download, install,
manage, and remove MIDlets.

Chapter 4

The devices that MIDlets run on range from cell phones with a small two-color
display and room for only a few lines of text to PDAs with larger, multicolor screens.
In order to isolate MIDlets from the specifics of the devices on which they are
running, MIDP includes a high-level API that provides simple input and output
controls and the ability to combine these controls to create form-like screens. This
chapter takes a detailed look at the high-level API and provides sample MIDlets that
can be run on cell phones or PDAs.

Chapter 5

This chapter looks at an alternative user interface API that provides lower-level access
to a mobile device's screen and input devices. This chapter looks at the details of this
API and shows how to avoid writing code that may not be portable between devices
with different user interface capabilities.

Chapter 6

Networking is a key feature of a mobile device. The first part of this chapter looks at
the Generic Connection Framework (GCF), which provides the basis for access to
various networking APIs, including optional protocols (such as sockets and
datagrams) and HTTP, which all MIDP implementations are required to support. A
simple example that involves fetching information from a web site is used to illustrate
the use of HTTP on a mobile device and shows how to avoid problems that arise when
working in an environment with limited memory. The second part of this chapter
looks at the facilities available for storing information on a mobile device and
illustrates them by extending the HTTP example to include persistence of information
retrieved from the web site.

Chapter 7

This chapter looks at the Connected Device Configuration (CDC) and its profiles,
which are designed for use on devices that have more than 2 MB of memory to devote
to the Java platform. It begins by looking at Sun's reference implementation of CDC
and the CVM, the virtual machine for CDC devices, then briefly covers the content of
the CDC-based profiles that are currently defined.

Chapter 8
This chapter contains reference material for the command-line tools that are provided

with the CLDC and CDC reference implementations and the MIDP for the PalmOS
product.

J2ME in a Nutshell

Chapter 9

This chapter covers the J2ME wireless toolkit, a development environment provided
by Sun that allows you to create and test MIDlets using a cell-phone emulator that can
be customized to resemble a number of different cell phones and PalmOS-based
handhelds. It also looks at how to use the wireless toolkit in conjunction with Sun's
Forte for Java IDE to create a complete development environment, and it investigates
a number of alternative third-party products that provide similar functionality.

These first nine chapters provide a tutorial introduction to J2ME, with particular emphasis on
wireless devices, which are currently the most popular application of J2ME technology.
The core of this book, however, is the API quick reference, Chapter 10 through Class,
Method, and Field Index, which is a succinct but detailed API reference formatted for
optimum ease of use. Please be sure to read "How To Use This Quick Reference," which
appears at the beginning of the reference section; it explains how to get the most out of this
section.

Related Books

O'Reilly & Associates, Inc., publishes an entire series of books on Java programming. These
books include Java in a Nutshell and Java Enterprise in a Nutshell, which, as mentioned
earlier, are companions to this book.

You can find a complete list of Java books from O'Reilly at http://java.oreilly.com/. Books
that are of particular interest to J2ME programmers include:

Java in a Nutshell, by David Flanagan
A Java language tutorial and complete API reference for the core Java classes. This
book is of particular interest if you intend to work with the CDC-based profiles, since

the APIs very closely match those of J2SE.

Java Enterprise in a Nutshell, by Jim Farley and William Crawford, with David
Flanagan

A tutorial and API reference for Java's enterprise APIs, including Remote Method
Invocation (RMI). This book will be of interest to you if you intend to use the RMI
profile.

Java Network Programming, by Elliotte Rusty Harold
A book that describes the J2SE networking APIs.

Java I/O, by Elliotte Rusty Harold
A book that describes the input/output architecture of the Java platform, a proper

understanding of which is essential if you intend to use the networking and persistent
storage features of MIDP.

J2ME in a Nutshell

Java Threads, by Scott Oaks and Henry Wong

A book that describes how to make use of Java's built-in multithreading features,
which are also available in the J2ME platform.

Learning Wireless Java, by Qusay Mahmoud

An introduction to Wireless Java, this book also shows how to install MIDlets in some
of the Java-enabled cell phones that are currently available.

J2ME Programming Resources Online
This book is a quick reference designed for speedy access to frequently needed information. It
does not, and cannot, tell you everything you need to know about J2ME. In addition to
the books listed earlier, there are several valuable (and free) electronic sources of information
about J2ME.
Sun's web site for all things related to Java is http://java.sun.com/. This web site includes
home pages for many of the products that make up the J2ME platform, including
the following:
http://java.sun.com/j2me/

General information on the J2ME platform
http://java.sun.com/products/cldc/

The CLDC specification and to download the reference implementation
http://java.sun.com/products/midp/

The MIDP specification
http://java.sun.com/products/cdc/

The specification and reference implementation of the CDC
The following page is useful as a starting point for finding the latest documentation:
http://java.sun.com/j2me/docs/
The web site specifically for Java developers is http://developer.java.sun.com/. Much of the
content on this developer site is password-protected, and access to it requires (free)
registration. This site includes a forum for the K Virtual Machine (KVM), which also
discusses wider issues related to wireless development and J2ME in general. Once you have

registered, you can reach this forum at the following URL:

http://forum.java.sun.com/forum.jsp?forum=50

J2ME in a Nutshell

Sun also has a web site dedicated to Wireless Java development:
http://wireless.java.sun.com/

There is also a mailing list for discussion of KVM and MIDP; you can subscribe to it or just
browse the archives at:

http://archives.java.sun.com/archives/kvm-interest.html

Bill Day's J2ME site is very useful for up-to-date documentation and for links to other sources
of J2ME-related information and development tools:

http://www.billday.com/j2me/

J2ME implementations currently do not have XML or cryptography support included. In
many applications, one or both of these is vital. You can find an open-source XML product
suitable for J2ME at http://www.kxml.org/ and an open-source, lightweight crytography
product at http://www.bouncycastle.org/.

Information on cell phones and PDAs that support J2ME can be obtained from:

http://www.javamobiles.com/

Examples Online

The examples in this book are available online and can be downloaded from the home page
for the book at http://www.oreilly.com/catalog/j2meanut/. You may also want to visit this site
to see if any important notes or errata about the book have been published there.

The example code is held in two separate directory structures, which contain exactly the same
source code, but organized differently. The directory src has the source code arranged in
a hierarchy that is convenient if you intend to build and run the examples using an integrated
development environment such as Sun's Forte for Java. If, on the other hand, you plan to use
the J2ME Wireless Toolkit, which expects its source files to be arranged differently, you
should use the examples in the wtksrc directory. The J2ME Wireless Toolkit is available for
free download from Sun's web site at http://java.sun.com/products/j2mewtoolkit/.

Some of the descriptions of the examples in this book assume that you are using the J2ME

Wireless Toolkit. You'll find information on how to use the example source code with the
wireless toolkit in Chapter 3 and how to use it with Forte for Java in Chapter 9.

Conventions Used in This Book
The following font conventions are used in this book:
Italic
Used for emphasis and to signify the first use of a term. Italic is also used for

commands, email addresses, URLs, FTP sites, file and directory names, and
newsgroups.

J2ME in a Nutshell

Constant width

Used in all Java code and generally for anything that you would type literally when
programming, including keywords, data types, constants, method names, variables,
class names, and interface names.

Constant width italic

Used for the names of function arguments and generally as a placeholder to indicate
an item that should be replaced with an actual value in your program.

o Used to indicate a general note or tip.

= Used to indicate a warning.

Request for Comments

Please address comments and questions concerning this book to the publisher:
O'Reilly & Associates, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)

(707) 829-0515 (international/local)

(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any additional information.
You can access this page at:

http://www.oreilly.com/catalog/j2meanut/
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly Network,
see the O'Reilly web site at:

http://www.oreilly.com/
Acknowledgments
This book is based on the style of the bestselling Java in a Nutshell, which is one of the two

books that made it possible for me to make my living in the Java world. First and foremost,
therefore, I would like to express my thanks to David Flanagan, the author of Java in a

J2ME in a Nutshell

Nutshell, both for his part in getting me started down this path and for his help and advice
during the creation of reference material for J2ME in a Nutshell.

Thanks are also due Mike Loukides and Bob Eckstein, who gave me the opportunity to write
this book based on a very sketchy proposal and realize my longstanding ambition to write for
O'Reilly. Bob was also this book's editor and provided excellent feedback on each chapter as
it was completed. He and the rest of the O'Reilly production team, whose names appear in the
colophon, also converted my final draft into the more polished form in which it now appears.
Special thanks to Leanne Soylemez for arranging the production schedule to fit my holiday
plans, to Robert Romano for making the diagrams in the book look like they were produced
by a professional, and to the book's technical reviewers, Marc Loy (coauthor of O'Reilly's
Java Swing, along with Bob Eckstein) and Tom Keihl, for their helpful and constructive
comments.

The final couple of chapters and the reference material for this book were completed over the
Christmas and New Year 2000-2001 holiday period, when I should really have been spending
more time with my family eating turkey and Christmas pudding and drinking the beer my son
thoughtfully gave me as a present. Thanks to Berys, Andrew, and Katie for allowing me to
retreat to my study for most of every day (and night) during that hectic period, and for
allowing me to come out and rejoin the family when the book was finished!

J2ME in a Nutshell

Part |: Introduction to the Java 2 Micro Edition
Platform API

Part I is an introduction to the Java 2 Micro Edition platform. These chapters
provide enough information for you to get started using the J2ME APIs right
away.

J2ME in a Nutshell

Chapter 1. Introduction

This book is an introduction to and a quick reference for the Java 2 Micro Edition (J2ME)
APIs. J2ME is a family of specifications that defines various downsized versions of the
standard Java 2 platform; these downsized versions can be used to program consumer
electronic devices ranging from cell phones to highly capable Personal Data Assistants
(PDAs), smart phones, and set-top boxes. Diverse as they are in both form and function, these
devices have in common the fact that they either do not have the memory and/or processing
power or do not need to support J2SE, the standard Java platform used on desktop and server
systems. This chapter introduces J2ME and compares it to other platforms that target the same
range of hardware.

1.1 What Is the J2ME Platform?

In the early 1990s, Sun Microsystems created a new programming language called Oak as
part of a research project to build consumer electronics products that relied heavily on
software. The first prototype for Oak was a portable home controller called Star7, a small
handheld device with an LCD touchscreen and built-in wireless networking and infrared
communications. It could be used as remote control for a television or VCR and as
an electronic program guide, and it also had some of the functions that are now associated
with PDAs, such as appointment scheduling. Software for this type of device needs to be
extremely reliable and must not make excessive demands on memory or require an extremely
powerful (and therefore expensive) processor. Oak was developed as a result of the
development team's experiences with C++, which, despite having many powerful features,
proved to be prone to programmer errors that affected software reliability. Oak was designed
to remove or reduce the ability for programmers to create problems for themselves by
detecting more errors at compile time and by removing some of the features of the C++
language (such as pointers and programmer-controlled memory management) that seemed to
be most closely associated with the reliability problems. Unfortunately, the market for the
type of devices that the new language was intended for did not develop as Sun hoped, and no
Oak-based devices were ever sold to consumers. However, at around the same time, the
beginnings of public awareness of the Internet created a market for Internet browsing
software. In response to this, Sun renamed the Oak programming language Java and used it to
build a cross-platform browser called HotJava. It also licensed Java to Netscape, which
incorporated it into its own popular browser, at the time the undisputed market leader. Thus,
the world was introduced to Java applets.

Within a couple of years, the cross-platform capabilities of the Java programming language
and its potential as a development platform for free-standing applications that could be written
once and then run on both Windows and Unix-based systems had sparked the interest of
commercial end users as a way of reducing software development costs. In order to meet the
needs of seasoned Windows and Motif/X-Windows developers working to create applications
for sophisticated end users accustomed to using rich user interfaces, Sun rapidly expanded the
scope (and size) of the Java platform. This expanded platform included a much more complex
set of user interface libraries than those used to build the original applets, together with an
array of features for distributed computing and improved security.

By the time Sun released the first customer shipment of the Java 2 platform, it had become
necessary to split it into several pieces. The core functionality, regarded as the minimum
support required for any Java environment, is packaged as the Java 2 Standard Edition(J2SE).

J2ME in a Nutshell

Several optional packages can be added to J2SE to satisfy specific requirements for particular
application domains, such as a secure sockets extension to enable electronic commerce. Sun
also responded to an increasing interest in using Java for enterprise-level development and in
application server environments with the Java 2 Enterprise Edition (J2EE), which
incorporates new technology such as servlets, Enterprise JavaBeans, and JavaServer pages.

As with most software, Java's resource requirements have increased with each release.
Although it has its roots in software for consumer electronics products, J2SE requires far too
much memory and processor power to be a viable solution in that marketplace. Ironically,
while Sun was developing Java for the Internet and commercial programming, demand began
to grow for Java on smaller devices and even on smart cards, thus returning Java to its roots.
Sun responded by creating several reduced-functionality Java platforms, each tailored to a
specific vertical market segment, some of which will be covered briefly at the end of this
chapter. These platforms are all based on JDK 1.1, the predecessor of the Java 2 platform, and
they take different approaches to the problem of reducing the platform to fit the available
resources. In a sense, therefore, each of these reduced-functionality platforms represents an
ad-hoc solution to this problem, a solution that has evolved over time to meet the needs of its
own particular markets.

J2ME is a platform for small devices that is intended eventually to replace the various JDK
1.1-based products with a more unified solution based on Java 2. Unlike the desktop and
server worlds targeted by J2SE and J2EE, the micro-world includes such a wide range of
devices with vastly different capabilities that it is not possible to create a single software
product to suit all of them. Instead of being a single entity, therefore, J2ME is a collection of
specifications that define a set of a platforms, each of which is suitable for a subset of the total
collection of consumer devices that that fall within its scope. The subset of the full Java
programming environment for a particular device is defined by one or more profiles, which
extend the basic capabilities of a configuration. The configuration and profile or profiles that
are appropriate for a device depend both on the nature of its hardware and the market to which
it is targeted.

1.1.1 Configurations

A configuration is a specification that defines the software environment for a range of devices
defined by a set of characteristics that the specification relies on, usually such things as:

e The types and amount of memory available
e The processor type and speed
e The type of network connection available to the device

A configuration is supposed to represent the minimum platform for its target device and is not
permitted to define optional features. Vendors are required to implement the specification
fully so that developers can rely on a consistent programming environment and, therefore,

create applications that are as device-independent as possible.

J2ME currently defines two configurations:

10

J2ME in a Nutshell

Connected Limited Device Configuration (CLDC)

CLDC is aimed at the low end of the consumer electronics range. A typical CLDC
platform is a cell phone or PDA with around 512 KB of available memory. For this
reason, CLDC is closely associated with wireless Java, which is concerned with
allowing cell phone users to purchase and download small Java applications known as
MIDlets to their handsets. A large and growing number of cell phone vendors have
signed agreements with Sun Microsystems that will allow them to begin using this
technology, so the number of handsets with the capability to be programmed in Java
will probably grow rapidly in the next few years.

Connected Device Configuration (CDC)

CDC addresses the needs of devices that lie between those addressed by CLDC and
the full desktop systems running J2SE. These devices have more memory (typically 2
MB or more) and more capable processors, and they can, therefore, support a much
more complete Java software environment. CDC might be found on high-end PDAs
and in smart phones, web telephones, residential gateways, and set-top boxes.

Each configuration consists of a Java virtual machine and a core collection of Java classes that
provide the programming environment for application software. Processor and memory
limitations, particularly in low-end devices, can make it impossible for a J2ME virtual
machine to support all of the Java language features or instruction byte codes and software
optimizations provided by a J2SE VM. Therefore, J2ME VMs are usually defined in terms of
those parts of the Java Virtual Machine Specification and the Java Language Specification
that they are not obliged to implement. As an example of this, devices targeted by CLDC
often do not have floating point hardware, and a CLDC VM is therefore not required to
support the Java language types float and double or any of the classes and methods that
require these types or involve floating-point operations.

It is important to note that configuration specifications do not require implementations to use
any specific virtual machine. Vendors are free to create their own VM or license a third-party
VM, provided that it meets the minimum requirements of the specification. Sun provides
reference implementations of both configurations, each of which includes a conforming
virtual machine:

e The CLDC reference implementation is a source code and binary product for the
Windows, Solaris and Linux platforms. It includes the Kilobyte Virtual Machine
(KVM), a reduced-functionality VM that has a very small memory footprint and
incorporates a garbage collector that is optimized for a memory-constrained
environment. KVM, which is discussed in Chapter 2, is likely to be used as the basis
for most CLDC implementations in the near future, but there are other VMs that could
be used instead, such as the J9 VM from IBM.

e The CDC reference implementation is a source code-only product for Linux and
the Wind River VxWorks real-time operating system. The VM included with this
product, called CVM (see Chapter 7), implements the full range of J2SE VM features
as required by the CDC specification. However, it does not include the HotSpot
technology found in the J2SE Version 1.3 VM or even a just-in-time compiler (JIT) as
found in earlier J2SE releases. Several third-party vendors, including Insignia

11

J2ME in a Nutshell

Solutions and IBM, have plans to release their own CDC implementations that include
different virtual machines.

A configuration also includes a core set of Java language classes. The core class libraries
defined for a configuration (and for profiles) are required to be based on those of the Java 2
platform. This promotes as much compatability as possible between applications written for
different J2ME platforms and those written with J2SE, and it also reduces the learning curve
for J2ME developers. Broadly speaking, this means that developers can rely on the following:

e Where possible, J2ME must reuse J2SE classes and packages. This means that, for
example, it would not be acceptable for a J2ME configuration or profile to eschew the
java.util.Date class and introduce one of its own.' As a result, everything that you
know about J2SE can be carried forward to J2ME, provided you know the exceptions
that apply to the configuration and profiles you are working with. That information is
available in the reference section of this book.

e When a J2SE class is incorporated into J2ME, new methods and fields may not be
added to it. Similarly, new classes cannot be added to a coopted J2SE package. These
rules ensure that code written for J2ME that uses only those classes it shares with
J2SE will compile and work on J2SE, thus making it possible to share code between
these platforms.

You'll find detailed coverage of CLDC and KVM in Chapter 2 and coverage of CDC and
CVM in Chapter 7.

1.1.2 Profiles

A profile complements a configuration by adding additional classes that provide features
appropriate to a particular type of device or to a specific vertical market segment. Both J2ME
configurations have one or more associated profiles, some of which may themselves rely on
other profiles. Figure 1-1 shows the profiles that are currently defined or in the process of
being defined and the configurations they are dependent upon. These processes are described
in the following list:

Mobile Information Device Profile (MIDP)

This profile adds networking, user interface components, and local storage to CLDC.
This profile is primarily aimed at the limited display and storage facilities of mobile
phones, and it therefore provides a relatively simple user interface and basic
networking based on HTTP 1.1. MIDP is the best known of the J2ME profiles because
it is the basis for Wireless Java and is currently the only profile available for PalmOS-
based handhelds.

PDA Profile (PDAP)
The PDA Profile is similar to MIDP, but it is aimed at PDAs that have better screens

and more memory than cell phones. The PDA profile, which is not complete at the
time of writing, will offer a more sophisticated user interface library and a Java-based

! It could be argued that CLDC breaks this rule with its networking classes, because there is no usable subset of the java .net package that would
fit into the restricted memory available to a CLDC-based device. This problem is solved by creating a new package that contains a more lightweight
set of networking classes. See Chapter 6 for details.

12

J2ME in a Nutshell

API for accessing useful features of the host operating system. When this profile
becomes available, it is likely to take over from MIDP as the J2ME platform for small
handheld computers such as those from Palm and Handspring.

Foundation Profile

The Foundation Profile extends the CDC to include almost all of the core Java 2
Version 1.3 core libraries. As its name suggests, it is intended to be used as the basis
for most of the other CDC profiles.

Personal Basis and Personal Profiles

The Personal Basis Profile adds basic user interface functionality to the Foundation
Profile. It is intended to be used on devices that have an unsophisticated user interface
capability, and it therefore does not allow more than one window to be active at any
time. Platforms that can support a more complex user interface will use the Personal
Profile instead. At the time of writing, both these profiles are in the process of being
specified.

RMI Profile

The RMI Profile adds the J2SE Remote Method Invocation libraries to the Foundation
Profile. Only the client side of this API is supported.

Game Profile

The Game Profile, which is still in the process of being defined, will provide a
platform for writing games software on CDC devices. At the time of writing, it is not
certain whether this profile will be derived from the Foundation Profile or based
directly on CDC.

Figure 1-1. J2ME configurations and profiles

! F
: £
' E
. E
1
iE 8 | g?‘g‘ = g
o = I
1
1
1
1
1
1
: Foundation peafils
1
Loc | (0c
i
(onfiguration | Profile

13

J2ME in a Nutshell

1.2 J2ME Specifications

All of the J2ME configurations and profiles have been developed as part of the Java
Community Process (JCP). The JCP brings together leading players in the relevant industries
with the aim of agreeing on a common specification to which they can all design their
products. Each configuration or profile started out as a Java Specification Request(JSR),
which describes the scope of the work to be done and an outline of the areas to be covered.
An expert group is assembled to create the specification, which is then subject to an internal
ballot and revision before being made available for public review. Following public review
and a possible last revision, the final draft is produced, and the JSR is completed.

The current list of JSRs, including those that have been completed, can be found on the JCP
web site at http://jcp.org/jsr/all/. The JSRs that define the current J2ME configurations and
profiles are as follows:

Number Scope

JSR 30 J2ME Connected Limited Device Configuration (CLDC)

JSR 37 Mobile Information Device Profile for the J2ME Platform (MIDP)
JSR 75 PDA Profile for the J2ME Platform

JSR 36 J2ME Connected Device Configuration (CDC)

JSR 46 J2ME Foundation Profile

JSR 129 Personal Basis Profile Specification

JSR 62 Personal Profile Specification

JSR 66 J2ME RMI Profile

JSR 134 Java Game Profile

There is also work in progress that is not directly related to any configuration or profile:

Number Scope

JSR 82 Java APIs for Bluetooth

JSR 120 Wireless Telephony Communication APIs (WTCA)
JSR 135 J2ME Multimedia API

Finally, even though some of the current profiles have not yet been fully defined, work is
already underway to define the next generation of the J2ME platform. At the time of writing,
nothing is available for public review, but it would be worth keeping an eye on the following
JSRs:

Number Scope

JSR 68 J2ME Platform Specification

JSR 118 Mobile Information Device Next Generation

JSR 139 Connected Limited Device Configuration Next Generation

1.3 J2ME and Other Java Platforms

J2ME is intended to be the way ahead for Java on small devices, but, as noted at the
beginning of this chapter, there are other Java platforms already in existence (and in use) that
have similar scope. The following sections briefly summarize these alternative platforms and
compare them to J2ME.

14

J2ME in a Nutshell

1.3.1 JavaCard

JavaCard is a platform aimed at smart card technology. Smart cards are the smallest
environment for which a Java platform exists. The constraints of these devices are such that
the JavaCard virtual machine and the small set of Java class libraries that it supports require
only around 16 KB of non-volatile memory and 512 bytes of volatile memory. The scope of
J2ME does not extend to platforms with this little resource, so there is no J2ME configuration
that is suitable for the current generation of smart cards. You can find more information about
JavaCard at http://java.sun.com/products/javacard/.

1.3.2 EmbeddedJava

EmbeddedJava is a JDK 1.1-based platform that is used to create software for embedded
devices. These devices typically have a 32-bit processor with 512 KB of ROM and 512 KB of
RAM available for the VM, class libraries, and embedded application. Since embedded
devices generally serve only one purpose, it is unnecessary to include parts of the Java
platform that the application does not require. In fact, EmbeddedJava allows the implementor
to remove any package or class -- or even a method within a class -- that is not required, in
order to fit the final product into the memory available. The EmbeddedJava specification,
which can be found at http://java.sun.com/products/embeddedjava/, defines only the
maximum possible content of the platform, rather than a minimum (as is the case with J2ME
specifications).

EmbeddedJava is currently undergoing its end-of-life cycle, which means that it will no
longer be supported as of January 1, 2003. In the future, developers in embedded
environments will probably migrate to CDLC and one of its profiles, which are targeted to
devices with similar resources.

1.3.3 PersonalJava

PersonalJava is intended for a much more general application environment than
EmbeddedJava. The target devices for Personal Java have up to 2 MB of ROM and at least 1
MB of RAM available for the Java platform itself, with more required for application
software. Some of the larger PDAs and communicator devices, such as the Compaq iPAQ and
the Nokia 9210 cell phone, are currently using the PersonalJava environment.

PersonalJava is based on JDK 1.1.8 and includes a fully featured Java VM. The specification,
available at http://java.sun.com/products/personaljava/, designates each of the core JDK 1.1.8
packages as required, modified, or optional. Similar designations may also be applied to
individual classes and methods. A required package must contain all of the classes from its
JDK 1.1.8 counterpart, and each class must be a full implementation. An optional package
may or may not be present, but if it is present, it must be complete. A modified package must
be present, but its content may differ from its JDK 1.1.8 equivalent according to rules laid
down in the specification. PersonalJava includes user interface components in the form of a
modified java.awt package, and it also has optional support for RMI.

PersonalJava developers are expected to use CDC as a migration path to the Java 2 platform.
Since PersonalJava includes user interface components, it will be necessary to wait for the
Personal Basis and Personal Profiles to become available before migration can be started.
PersonalJava applications that use RMI will also need to use the CDC RMI profile.

15

J2ME in a Nutshell

Chapter 2. The Connected Limited Device
Configuration

The Connected Limited Device Configuration (CLDC) is the basic building block on which
the J2ME profiles for small devices, such as cell phones, pagers, and low-end PDAs, are built.
These devices are characterized by their limited memory resources and processing power,
which make it impossible for them to host a fully featured Java platform. CLDC specifies
a minimal set of Java packages and classes and a reduced functionality Java virtual machine
that can be implemented within the resource constraints imposed by such small devices.

The first part of this chapter describes the features that a Java virtual machine capable of
supporting CLDC must provide, and it explains how such a VM differs from the standard one
required by J2SE. As part of this discussion, we'll make use of Sun's reference
implementation of the CLDC specification and the Kilobyte Virtual Machine, or KVM,
around which it is based. The second part of the chapter covers the Java packages and classes
that a CLDC implementation must provide, which are a small subset of the core packages
found in J2SE. The chapter concludes with a discussion of the debugging facilities provided
by the KVM and a couple of advanced features -- using native code and preloading Java
classes -- that will be of interest to readers who want to work with the KVM at the source
code level.

2.1 The CLDC Java Virtual Machine

The hardware and software limitations imposed by the devices at which CLDC is targeted
make it impractical to support either a full Java virtual machine or a complete set of J2SE core
classes. Running a simple "Hello, world" application on the Windows platform requires
around 16 MB of memory to be allocated. Contrast this with the minimum platform
requirements for CLDC, which call for:

e 128 KB of ROM, flash or battery-backed memory for persistent storage of the Java
VM and the class libraries that make up the CLDC platform.

e 32 KB (or more) of volatile memory to be available for runtime allocation. This
memory is used to satisfy the dynamic requirements of Java applications, which
include class loading and the allocation of heap space for objects and the stack.

In order to support a Java runtime environment with such limited resources, CLDC defines
reduced requirements for the virtual machine, the language itself, and the core libraries,
details of which we'll describe in the following sections.

Other than the memory requirements, CLDC makes few assumptions about its host platform.
It does not, for example, assume that the device will have any kind of display or user input
mechanism such as a keyboard or a mouse, and it does not require any kind of local storage
for application data. These issues are all assumed to be addressed individually by each device
vendor. J2ME profiles, of course, place additional requirements that are suitable for the more
limited range of devices they are intended for, as you'll see in Chapter 3 and Chapter 7. For
CLDC, the number of requirements is minimized in order to maximize the number of
platforms on which it can be implemented.

16

J2ME in a Nutshell

As far as the software environment is concerned, CLDC assumes only that the host device has
some kind of operating system that can execute and manage the virtual machine. Although
Java is a multithreaded programming environment, it is not necessary for the operating system
to have the concept of threads or even to be able to schedule more than one process at any
given time. Instead, the virtual machine is required to provide the illusion of a multithreaded
environment using whatever native functionality is available to it.

The full specification of CLDC, which was developed under the Java Community Process,
can be downloaded from http://jcp.org/jsr/detail/30.jsp.

2.1.1 Virtual Machine and Language Features

The CLDC specification defines the features that a VM must have by describing the parts of
the full Java Virtual Machine Specification and the Java Language Specification that it is not
required to support and the parts to which limitations and qualifications are applied. Sun
provides a reference implementation of the CLDC specification that is based on the KVM, a
small-footprint VM that satisfies the CLDC requirements. Manufacturers of devices that
support CLDC and its profiles are not, however, required to base their products around KVM.
Any virtual machine that has the features required by the specification and can work within
the resource restrictions of the CLDC environment can be used. In this book, I will often refer
to features of KVM, but, unless I explicitly state the contrary, everything I say also applies to
any conforming virtual machine.'

The following sections describe the virtual machine and language features that are not
supported in a CLDC environment or in which the CLDC behavior is different from that in
J2SE.

2.1.1.1 Floating point support
Since many of the processors used in the target platforms for CLDC do not have floating
point hardware, the virtual machine is not required to support floating point operations.” In

terms of the virtual machine, this means that the byte code operations listed in Table 2-1 are
not implemented.

Table 2-1. Floating-Point Byte Codes Not Implemented by a CLDC VM

Dadd dload dsub fcmpl frem i2d

Daload dload x dz2f fconst 0O freturn i2f

dastore dmul dzi fconst 1 fstore 124

dcmpg dneg dz1 fdiv fstore x 12f

dcmpl drem fadd fload fsub newarray (double)
dconst 0 dreturn faload fload x f2d newarray (float)
dconst 1 dstore fastore fmul f21

ddiv dstore x fcmpg fneg £f21

! The IBM J9 virtual machine is another example of a VM that conforms to the CLDC specification. See http://www.embedded.oti.com/ for further
information.

Nothing prevents a VM from emulating floating point instructions in software, but the memory resources required for this are too great for this to be
a general requirement for all platforms.

17

J2ME in a Nutshell

This leads to the following coding restrictions:

e Variables of type float and double and arrays of these types cannot be declared or
used.

e Constants of type float and double (i.e., 1.0, 2.0F) cannot be used.

e Method arguments may not be of type float or double.

e Methods may not return double or float values.

e Objects of type Float and Double cannot be created (and, in fact, these classes do not
exist in CLDC -- see Section 2.2 for further details).

Sun does not supply a different version of its Java compiler for use when developing CLDC
applications, so it is possible, using a J2SE compiler, to create Java class files that use floating
point types and, therefore, violate these rules. However, these class files will be rejected when
they are loaded into the CLDC virtual machine during class file verification (see Section 2.1.2
for a discussion of class file verification).

2.1.1.2 Language omissions

Aside from the floating point restrictions, there are a few other Java language features that are
not available to CLDC applications:

Reflection
The java.lang.reflect package and all of the features of java.lang.Class that are
connected with reflection are not available. This restriction is applied partly to save
memory, but it also saves having to determine whether application code has the
privilege to access these features.

Weak references

Weak references and the java.lang.ref package are not provided because of the
memory required to implement them.

Object finalization
Object finalization causes great complexity in the VM for relatively little benefit.
Therefore, finalization is not implemented, and the CLDC java.lang.Object class
does not have a finalize () method.

Threading features
CLDC provides threads, but it does not allow the creation of a daemon thread (a
thread that is automatically terminated when all non-daemon threads in the VM
terminate) or thread groups.

Errors and exceptions
J2SE has a large number of classes that represent error and exception conditions.

Since Java applications are not, in general, expected to recover from errors (meaning
thrown exceptions derived from the class java.lang.Error), most of the classes

18

J2ME in a Nutshell

representing them are not included in the CLDC platform. When such an error occurs,
the device is responsible for taking appropriate action instead of reporting it to
application code. For further details, see Section 2.2.

Java Native Interface

CLDC does not provide the J2SE JNI feature, which allows native code to be called
from Java classes. JNI is omitted partly because it is memory-intensive to implement
and partly in order to protect CLDC devices against security problems caused by
malicious application code. Further discussion of this issue will be found in
Section 2.1.2.

2.1.1.3 Class loading

Class loading in J2SE is performed by class loaders, including application-defined class
loaders that can implement an open-ended set of mechanisms for locating and loading Java
classes. By contrast, the CLDC specification requires implementations to provide their own
class loading mechanism that cannot be overridden or extended by application code. Doing so
removes the security implications of allowing classes to be loaded from untrusted sources.

CLDC specifies that all VM implementations must be able to load applications packaged in
compressed JAR files. It does not, however, rule out additional, device-dependent means of
representing or accessing application code, and it does not prescribe any particular means
whereby the device would locate and fetch the packaged code. These tasks are delegated to a
piece of device-dependent application management software, the nature of which is outside
the scope of the specification. Sun's CLDC reference implementation includes an example
implementation of this functionality, which it refers to as a Java Application Manager (JAM).

A device is allowed to transform applications presented in any supported external format into
an internal format that is more suitable or more efficient for that device. For example, the
MIDP for PalmOS product, which includes an implementation of CLDC for the PalmOS
platform, accepts applications in the form of a JAR file and converts them to the internal PRC
format used by PalmOS for storage on the device. See Section 9.2 for further details.

2.1.2 Security Features

In J2SE, the security model is powerful enough to allow code originating from different
sources to have different levels of privilege and therefore different levels of access to system
resources. At one end of the scale, applications installed on a user's system have, by default,
unrestricted access. An applet downloaded from an untrusted web site, however, operates in
an extremely restricted environment that permits no access to local resources, such as the
user's filestore, and only limited access to the network. Between these extremes, the security
model allows privileges to be individually assigned or denied to an application or applet based
on the level of trust that the user has for its originator. Code to be trusted can be delivered
with a certificate that provides assurance that the code comes from its claimed point of origin.
It can also be cryptographically signed so that the receiver can be sure that it has not been
modified while being transported from its source.

A CLDC VM could be used in a device that does not allow code to be installed by the user,
and which, therefore, has much less need of security features. It could also be used at the heart

19

J2ME in a Nutshell

of a cell phone connected to a network that allows applications to be downloaded, possibly
from untrusted sources; the network should be subject to the same type of security constraints
that apply to J2SE applets. It would also be useful to have intermediate security levels for
code that is known to be trusted. Unfortunately, this is not practical in the general case,
because the memory and processing power required to implement the fine-grained security
model of J2SE, verify cryptographic signatures, and check certificates are too great for the
devices targeted by the CLDC specification. Therefore, a CLDC VM runs application code in
a "sandbox" environment that ensures it cannot maliciously damage the device on which it is
executing. The following sections summarize the constraints that the VM applies to create the
sandbox.

2.1.2.1 Class loading controls

Each CLDC implementation has its own class loader that can load classes from whatever
location or locations the host device can support, typically over a network or from device
local storage, if there is any. Unlike J2SE, application code is not permitted to create its own
class loaders and cannot affect in any way the process that the system's own class loader uses
to search for and locate classes. (In other words, there is no way to change the system's
effective CLASSPATH or its equivalent.)

An important consequence of this restriction is that application code cannot attempt to
substitute its own versions of core classes in the java and javax.microedition package
hierarchies. If this were allowed, it could compromise the security of the Java runtime
environment. The system class loader always ignores classes that claim to be part of these
packages if they are included in application code.

2.1.2.2 Access to native code

CLDC does not include an implementation of JNI, and therefore it is not possible to link
dynamically to native code at runtime, even if such code could be installed as part of an
application. As a side effect, this also prevents direct access to functionality provided by the
host device's native operating system, unless a specific Java interface for it is provided by
CLDC or one of its profiles. This restriction prevents application code from reading or
modifying information to which the user might not want it to have access.

However, it is possible to extend the API available to Java applications by prelinking extra
native code with the VM, but this facility is available only to applications that are installed
with a custom-built VM and is therefore not a general security risk. See Section 2.4.2 for
details of this mechanism.

2.1.2.3 Class verification

J2SE has always provided a byte-code verifier that can check the integrity of Java class files.
It ensures that the class files do not pose a risk to system security by failing to uphold rules of
the Java language that are normally checked and enforced by the Java compiler, such as the
following:

e All local variables must be initialized before use.

o Following creation of an object, its constructor must be called before it is used further.

e Each constructor must begin with an invocation of a constructor of its superclass (with
the exception of the constructor of java.lang.0Object).

20

J2ME in a Nutshell

e Local variables and instance and static members declared to contain a reference to an
object of a particular type must always hold a reference to an object of that type or one
that is legally assignable to it. It is not legal, for example, to define a variable of type
TimerTask and then assign a reference to a Timer to it.

By default, the J2SE VM runs the byte-code verifier over all classes loaded from an external
source (such as over a network) but not to classes loaded from a local filesystem. In the
mobile environment, it is generally advisable to apply these checks to all application code.
However, the algorithms necessary to perform the checks are very processor-intensive and
may require large amounts of memory, and, therefore, they cannot feasibly be carried out at
runtime on the small devices for which CLDC is primarily intended. For this reason, class file
verification is performed in two stages:

1. Preverification is performed on class files before they are installed on the target
device. This process involves most of the complex and time-consuming parts of the
byte-code verification algorithm and is typically performed as part of or immediately
followimg source code compilation. The results of the preverification step are
recorded in the class file, where they can be accessed at runtime.

2. Runtime verification is performed on the device itself. Depending on the nature of the
device, it may be done when a class is loaded or as part of the application installation
process, provided that installed code cannot subsequently be modified. This step uses
the information stored by preverification in conjunction with a linear sweep through
the byte codes of the class to ensure that all the language rules are followed. It is much
quicker than preverification and requires far less memory.

You don't need to know much about preverification and runtime verification in order to
compile and run CLDC applications, but brave souls can find the details in the CLDC
Specification.

2.1.3 Compiling and Running Code with the KVM

In order to compile and run applications using the KVM, you need to download and install the
following software:

e The Java 2 SDK or a development environment that has a command-line Java
compiler
e Sun's CLDC reference implementation

If you don't already have a suitable Java 2 SDK installed, you can download one from
http://java.sun.com/j2se/.

The CLDC reference implementation contains source code and documentation for Sun's
CLDC implementation, which runs on Microsoft Windows, Linux, and Solaris, and it also
contains the KVM and its associated tools in executable form. It can be obtained from
http://java.sun.com/products/cldc/.

The reference implementation is provided in the form of an archive suitable for your target
platform, which you should unpack into a convenient directory. In the rest of this section,
we'll use the following variables to refer to the installation directories for both the Java 2 SDK
and the CLDC reference implementation:

21

J2ME in a Nutshell

%JAVA_HOME% (Windows) or $JAVA_HOME (Linux/Solaris)

The base installation directory for the Java 2 SDK. For Windows, this is typically
c:jdkl.3.1.

%CLDC_HOME% (Windows) or $CLDC_HOME (Linux/Solaris)

The base installation directory for the CLDC reference implementation, such as
¢:\CLDC. The archive unpacks itself into a directory called j2me cldc beneath this
location.

%CLDC _PATH% (Windows) or $CLDC _PATH (Linux/Solaris)

The bin directory beneath the CLDC installation directory. Equal to
%CLDC _HOME%\j2me_cldc\bin for Windows and SCLDC HOME/j2me_cldc/bin
for Linux and Solaris.

The source code for this book includes a trivial example that we'll use to demonstrate how to
compile and run code for the KVM. We'll use the variable %6EXAMPLES% (or SEXAMPLES)
to refer to the location at which the example source code is installed. Based on this variable,
the source file for the example that we're going to use is contained in the file
%EXAMPLES%\src\ora\ch2\HelloWorld.java and shown in Example 2-1.

Example 2-1. A Trivial KVM Application

package ora.ch?2;

public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello, KVM world");
}
}

The first step is to open a command window (or a shell if you're using Linux or Solaris) and
set the PATH variable to include the executable files for both the Java 2 SDK and the CLDC
reference implementation. For Windows, the following command should be used:

PATH=%JAVA HOME$\bin; $CLDC_ PATH%\win32; $PATHS%

If you are using Linux or Solaris, you'll need to use the appropriate command for your chosen
shell and also make sure that you pick the correct directory for the CLDC executables, which
is SCLDC PATH/linux or SCLDC PATH/solaris.

The second step is to compile the example source code to produce a class file. In order to
simplify the following commands, change your working directory to %EXAMPLES%\src, the
directory in which the example source code is installed, and then type the following
commands:

mkdir tmpclasses
javac -bootclasspath $CLDC_PATH%\common\apilclasses -d tmpclasses
ora\ch2\HelloWorld.java

22

J2ME in a Nutshell

These commands compile the source file ora\ch2\HelloWorld java, creating a single class file
called tmpclasses\ora\ch2\HelloWorld.class. A couple of points are worth noting:

e We used the -d command line option to direct the compiler to put the class file into a
directory under the newly created tmpclasses directory instead of in the same directory
as the source file, which is the default. This is because all class files to be loaded into
the KVM have to be preverified (see Section 2.1.2.3) before they can be used, which
involves creating a modified class file. We'll use the class file under tmpclasses as
input to the preverification process and write the output class file to the source file
directory.

e When running the Java compiler, we used the -bootclasspath option to change the
location from which the core classes are loaded during compilation. As you'll see in
Section 2.2, CLDC does not include all the packages and classes available to a J2SE
application, so we need to be sure that the compiler picks up the CLDC core libraries
instead of those for J2SE, which it would use by default. If we had not done this, it
would be possible to compile code that referenced J2SE APIs that are not available in
CLDC. This would produce a legal class file that would subsequently fail to load into
the KVM.

Before you can use the class file with the KVM, it has to be preverified using the preverify
command that is included in the CLDC reference implementation. To preverify the class file
and write the preverified version to the same directory as the original source code, use the
following command:

preverify -classpath $CLDC PATH%\common\apilclasses;tmpclasses -d .
ora.ch2.HelloWorld

The -classpath command-line option indicates the directories in which the preverify command
should look for class files, both the core Java libraries and the class file to be preverified,
while the -d option is used to control where the preverified class file will be written. The
directory names supplied with the -classpath option should be separated by semicolons on the
Windows platform, colons in the case of Linux or Solaris. Notice that the compiler requires a
source filename, but preverify needs a fully qualified Java class name (with its parts separated
by periods) instead.

In the case of an application that consists of more than one class file, all class files must be
preverified, although not necessarily at the same time. There are two ways to arrange for
preverify to operate on more than one class file at a time. The most obvious way is to list all
of the classes on the command line:

preverify -classpath $CLDC PATH%\common\apilclasses;tmpclasses -d .
ora.ch2.HelloWorld ora.ch2.Help

Alternatively, if you supply one or more directory names on the command line, preverify

recursively searches them and processes every class file and each ZIP and JAR file that it
finds:

preverify -classpath $CLDC_PATH%\common\apilclasses -d . tmpclasses

Notice that in this case, there was no need to include tmpclasses in the -classpath argument
because its presence is inferred from the fact that it is the directory to be searched.

23

J2ME in a Nutshell

The complete set of command-line options recognized by the preverify command can be
found in Chapter 8.

Finally, you can run the example using the kv command:

kvm -classpath . ora.ch2.HelloWorld

which produces some very familiar output:

Hello, KVM world

Notice that the -classpath option identified only the directory search path needed to find the
class file for ora.ch2.Helloworld. There is no need to specify where the core libraries are
located, because the KVM knows where to find them.’

2.2 The CLDC Class Libraries

CLDC addresses a wide range of platforms that do not have sufficient memory resources to
support the full range of packages and classes provided by J2SE. Because CLDC is a
configuration rather than a profile, it cannot have any optional features. Therefore, the
packages and classes that it specifies must have a small enough footprint that they can be
hosted by devices that meet only the minimum requirements of the CLDC specification. The
CLDC class library is very small -- it is composed of a package containing functionality that
is specific to J2ME (called javax.microedition.io), along with a selection of classes from
the following packages in the core J2SE platform:*

e Jjava.io
e Jjava.lang
e Jjava.util

All J2ME configurations and profiles include packages or classes from J2SE. When J2ME
incorporates software interfaces from J2SE, it must follow several rules:

e The names of the packages or classes must be the same, wherever possible. It would
not be acceptable, for example, to completely reimplement the java.lang package in
a package called javax.microedition.lang if the API in the java.lang package
can be used.

e The semantics of classes and methods that are carried over into J2ME must be
identical to those with the same name in J2SE.

o It is not possible to add public or protected fields or methods to a class that is shared
between J2SE and J2ME.

Because of these rules, J2ME packages and classes will always be a subset of the packages
and classes of the same name in J2SE, and the J2ME behavior will not be surprising to
developers familiar with J2SE. Furthermore, J2ME configurations and profiles are not
allowed to add extra functionality in packages and classes that they share with J2SE, so

In fact, the core libraries are built into the KVM using a technique known as "ROMizing," which will be covered in Section 2.4.1, later in this
chapter.

Among other things that have been omitted due to resource constraints, CLDC does not include any support for internationalization of applications
and the formatting of dates and numbers according to locale-specific conventions. If you need to write an application that is locale-sensitive, you will
need to do all the hard work yourself.

24

J2ME in a Nutshell

upward compatibility from J2ME to J2SE is preserved. However, it is permissible to exclude
from J2ME those fields, methods, and classes that are deprecated in J2SE and this has been
done by the Java Community Process expert group responsible for the CLDC specification.

You'll find complete information on which classes from J2SE are included in CLDC and how
this set compares to other J2ME configurations and profiles in Chapter 10. Detailed
information on the individual classes in the reference chapters can be found in Part II of this
book. The following sections describe the most important aspects of each of the CLDC
packages that distinguish them from their counterparts in J2SE.

2.2.1 The java.lang Package

The CLDC java.lang package has only half of the classes of its J2SE counterpart and some
classes that are included are not complete implementations. The major points of interest are
covered in the following sections.

2.2.1.1 The Object class

The CLDC java.lang.Object class has no finalize() method because CLDC virtual
machines do not implement finalization. Furthermore, the clone() method has been
removed along with the java.lang.Cloneable interface. There is, therefore, no generic way
to clone an object in a CLDC VM.

2.2.1.2 Number-related classes

As noted earlier, floating point operations are not supported by the CLDC VM and, as a
consequence, the J2SE java.lang.Float and java.lang.Double classes, are not part of the
core library set. The other number classes (Byte, Integer, Long, and Short) are provided,
but their J2SE base class, java.lang.Number, is not included. The numeric classes are,
therefore, derived from object instead of Number. Another difference worthy of note is that
the java.lang.Comparable interface does not exist in CLDC, so CLDC numbers cannot be
directly compared in the same way that their J2SE counterparts are.

2.2.1.3 Reflective features

The exclusion of all VM support for reflection means that all methods in java.lang.Class
that are connected with this feature have been removed. It is still possible, however, to
perform limited operations on classes whose types are not known at compile time by using the
forName () and newInstance () methods.

2.2.1.4 System properties

The CLDC profile defines only a very small set of system properties that does not include any
of those available with J2SE. The properties that an implementation is required to provide are
listed in Table 2-2.”

5 Note that, at the time of writing, there is no consistency in the way that the default encoding is represented. The KVM returns the default encoding
as 1508859 1, which is the value required in the CLDC specification document, whereas the MIDP reference implementation returns
IS0-8859-1.

25

J2ME in a Nutshell

Table 2-2. System Properties Defined by CLDC
Property Name Meaning Example

The name of the J2ME configuration that the platform

supports, together with its version number. CLDC-1.0

microedition.configuration

The default character encoding that the device supports.
Devices are not required to provide any extra encodings, but
vendors are free to do so. There is, however, no way to find
out which encodings are available.

The name of the platform or device. The default KVM
implementation returns the value nul1l for this property.

microedition.encoding ISO8859 1

microedition.platform I2ME

The J2ME profiles that the device supports, separated by
microedition.profiles spaces. Since the KVM does not provide any profiles, the MIDP-1.0
reference implementation returns null for this property.

The value of a specific property can be obtained by using the getProperty () method in the
java.lang.System class:

String configuration = System.getProperty("microedition.configuration");

Since the CLDC java.util package does not include the J2SE properties class, the
system class does not include the getProperties () method, and it is not possible to get a
list of all of the available properties programmatically. Vendors are free to add their own
implementation-specific properties, but it is not possible for application code to define its
own, because there is no setpProperty() method. A device that supports one or more J2ME
profiles must include them in the microedition.profiles property, and profiles typically
define their own properties in addition to those listed in Table 2-2.

2.2.1.5 The System and Runtime classes

The system and Runtime classes in J2SE contain a collection of methods that perform
relatively low-level operations. These operations often involve the underlying host platform,
such as starting the execution of a native-language executable from within a Java application.
Because of the platform-dependent nature of these operations, and because of other
restrictions imposed by the virtual machine, many features supported by these classes have
been removed, including the following:

e Direct access to system properties using the getProperties(), setProperty(),
and setProperties() methods

e Methods that allow the source and destinations for the standard input, output, and error
streams to be changed

e Methods that provide access to native code libraries, which are not required because
JNI is not supported

o The ability to get a reference to and change the active securityManager

2.2.1.6 Threads

CLDC virtual machines are required to provide a multithreaded programming environment
even if the underlying platform does not. The Java programming interfaces used in J2SE to
support multithreading -- the synchronized keyword, the object wait (), notify(), and
notifyAll () methods, and the Thread class -- are all included in the CLDC specification.

26

J2ME in a Nutshell

However, CLDC does not provide thread groups or the ThreadGroup class, and several
features of the J2SE Thread class are omitted, including the following:

e All constructors and methods relating to ThreadGroups have been removed.

e Threads do not have application-settable names, so the getName () and setName ()
methods are not required and have been removed.

e The resume(), suspend(), and stop() methods have been removed. These
methods are, in any case, deprecated in J2SE, because they are inherently unsafe with
respect to locking in a multithreaded environment.

e The destroy(), interrupt(), and isInterrupted() methods do not exist.
Consequently, the only way to cause a thread to terminate is to signal it to do so by
changing the value of an instance variable that the thread periodically inspects, using a
construction like the following:

public void run() {
while (!requestedToStop) {
// Do whatever is required
}
}

e The dumpstack () method has been removed. The only way to get a stack backtrace
for debugging purposes (other than to run your code under the control of a debugger)
is to throw an exception, as described in the next section.

2.2.1.7 Exceptions and errors

As discussed in Section 2.1.1.2, CLDC includes the majority of the exceptions defined by the
J2SE java.lang package, but most of the error classes have been removed, leaving only the
following:

e Jjava.lang.Error
e java.lang.OutOfMemoryError
e Jjava.lang.VirtualMachineError

The Throwable method printstackTrace() is part of the CLDC specification (although
the overloaded version that directs the stack trace to somewhere other than the standard error
stream is not). However, the format of the output from this method is implementation-
dependent; more importantly, in the KVM reference implementation, this method simply
prints the name of the exception. To get a stack backtrace, it is necessary either to recompile
the virtual machine with the symbol PRINT BACKTRACE defined and nonzero or to use the
debug version of the VM in the directory j2me cldc\bin\win32\debug (for the Windows
platform), which is compiled in this way.

As noted in the previous section, the Thread method dumpstack() is not available, so the

following code, which is commonly used in J2SE, does not even compile in a CLDC
environment:

Thread.currentThread () .dumpStack();

27

J2ME in a Nutshell

Unfortunately, an attempt to work around this by creating an exception like the following also
fails:

new Exception () .printStackTrace();

This works for J2SE, but it fails in CLDC because the VM is not required to fill in the stack
trace in the exception when it is created. The KVM fills in the stack trace only when the

exception is actually thrown, so the only way to get a stack trace is to use the debug version of
the KVM and include the following code:

try {
throw new Exception();
} catch (Exception ex) {
ex.printStackTrace();

}

Of course, this technique is not available when working with production CLDC platforms,
such as cell phones, where debugging is not compiled in. Fortunately, most problems can be
diagnosed by running your code in an emulated environment where a debugger or a debug
version of the VM is available.

2.2.2 The java.util Package

The CLDC java.util package contains collection classes and classes that are related to date
and time handling.

2.2.2.1 Collection classes
CLDC includes the following collection-related classes:

e Hashtable

e Stack

e Vector

e Enumeration

This is a subset of the collections that were available in JDK 1.1, excluding Dictionary,
Properties, and the pseudo-collection Bitset. Unfortunately, due to resource constraints,
none of the Java 2 collection framework is available to CLDC applications, and, therefore,
methods that were added to the Hashtable and vector classes that make them more
compatible with the Java 2 collection framework (such as keyset () and entrySet ()) have
also been removed. As noted earlier in this chapter, the lack of the Properties class has the
side effect that it is not possible to get access to or change the complete set of system
properties.

2.2.2.2 The Date class

The J2SE pate class has a lot of functionality that was originally introduced by JDK 1.0 and
subsequently deprecated, such as the ability to construct a pate given a date and time
specified as day, month, year, hours, minutes, and seconds and the ability to extract those
values from an existing Date. In JDK 1.1, those functions became the responsibility of the
Calendar and GregorianCalendar classes. In line with the policy of cleaning up deprecated

28

J2ME in a Nutshell

functionality, the CLDC pate class does not have any of the constructors or methods that deal
with this functionality. Instead, a pate is simply a wrapper around a long value that represents
a date and time as its offset from 00:00 GMT on January 1, 1970. It only has constructors that
create a Date object representing the current time or a time given by its offset, a pair of
methods that allow the time offset to be set or retrieved, and an equals() method that
compares one Date with another. To convert between Dates and externally meaningful date
and time representations, you have to use the calendar class, described a little later.®

2.2.2.3 The TimeZone class

A TimeZone object represents the offset of a time zone from GMT. Because all dates in Java
are represented in terms of an offset from 00:00 GMT on January 1, 1970, you need to know
its time offset from GMT to format the corresponding time correctly for your location. This
offest is encapsulated in the default Timezone object for the platform on which the Java VM
is running. J2SE has full support for time zones specified with familiar time-zone names (such
as PST, CDT, etc., although these are deprecated), those using more complete specifications
(such as america/Los Angeles), or those specified as an offset from GMT (e.g., cMT-5 for
EST).

The CLDC Timezone class is somewhat more restricted; implementations are required to
support only GMT, and, in fact, the CLDC reference implementation provides only GMT and
UTC (which is, to all intents and purposes, identical).

2.2.2.4 The Calendar class

The CLDC calendar class is a simplified version of its J2SE counterpart, whose primary use
is to convert back and forth between an instant in time given as a Date and the corresponding
day, month, year, hours, minutes, and seconds values. The details of this conversion depend
on two things:

e The time zone for which the operation is performed
e The calendar rules used in the user's locale

calendar takes account of the first of these by virtue of the fact that it is associated with an
appropriate Timezone object. As noted in the previous section, however, the range of time
zones that a given host environment supports may be limited. The second issue is slightly
more complex. Calendar is actually an abstract class; to obtain an instance of it, you must use
the static getInstance () methods, which can be parameterized with a TimeZone object if
necessary. These methods are supposed to return a subclass of calendar that implements
appropriate rules for the environment in which the host device operates. In most cases, this
would be an object that operated with the same rules as the J2SE GregorianCalendar class
(which is not included in the CLDC specification), although some locales, such as Japan,
might require different rules to be applied. Implementations of CLDC that are intended to
operate in regions where there are requirements of this kind are expected to return an
appropriate Calendar subclass.

6 A useful feature of the J2SE Date class was the fact that its toString () method produced a reasonable representation of the corresponding
date and time, such as "Tue Nov 20 20:05:00 GMT 2001". The CLDC Date class does not override the Object toString() method and
therefore does not return anything as useful as this. The only way to get a formatted date from a CLDC Date object is to use the Calendar class.

29

J2ME in a Nutshell

Once you have a calendar object, you can use the setTime () method to install a time and
date value, then the get () method to extract the values of the various fields that represent
that value in a more user-friendly form. The following code, for example, gets the current day
and month:

Calendar cal = Calendar.getInstance();
Date date = new Date();

cal.setTime (date) ;

int month = cal.get (Calendar.MONTH) ;

int day = cal.get (Calendar.DAY OF MONTH) ;

On March 23, 2002, for example, this code would set day to 23 and month to 2 (month
numbers count from 0). (You can find the complete list of constant values that can be passed
to the get () method in the reference materials in Part II.) You can also use the calendar
object to perform the reverse process by setting individual fields using the get () method
and then calling getTime() to get the corresponding pate object. Unlike its J2SE
counterpart, Calendar does not have any explicit methods that perform date arithemetic, but
you can easily implement this yourself using the calendar and pate classes together. The
following code, for example, determines the day and month 20 days from today:

// Get a Calendar and get the millisecond value of today's date
Calendar cal = Calendar.getInstance();

Date date = new Date();

long offset = date.getTime();

// Add 20 days to the date

final long MILLIS PER DAY = 24 * 60 * 60 * 1000L;
offset += 20 * MILLIS PER DAY;

date.setTime (offset) ;

// Install the new date in the Calendar offset
cal.setTime (date) ;

// Now get the adjusted date
month = cal.get (Calendar.MONTH) ;
day = cal.get (Calendar.DAY OF MONTH) ;

This code uses the pate class to get the current date and time in milliseconds; adds the
required offset, also in milliseconds; stores it in the Date object; and then installs the pate
object in the calendar so that the day and month can be extracted. Unfortunately, there are
no useful definitions for things like the number of milliseconds in a day, so you have to create
them yourself.

It is worth noting that setting an individual field does not affect other fields, even if it appears
that it should. As an example of this, consider the following code, which also attempts to add
20 days to the current date:

// Get the day and month for today
Calendar cal = Calendar.getInstance();
Date date = new Date();

cal.setTime (date) ;

int month = cal.get (Calendar.MONTH) ;

int day = cal.get (Calendar.DAY OF MONTH) ;

30

J2ME in a Nutshell

// Add 20 days to the day and change the Calendar
cal.set (Calendar.DAY OF MONTH, day + 20);

// Now get the adjusted date -- THIS DOES NOT WORK!
month = cal.get (Calendar.MONTH) ;
day = cal.get (Calendar.DAY OF MONTH) ;

Suppose this code were executed on March 20, 2002. The day and month values would
initially be set to 20 and 2, respectively. Adding 20 to the day and storing it back would set it
to 40, which is illegal for March, so it would be adjusted to 9 (i.e., 40 minus the number of
days in March). You might expect this operation to increment the month field to April, but it
does not, so the result is March 9, 2002, not April 9, 2002.

The calendar class does not return string values for the days of the week and the months of
the year, and, because the J2SE java.text package is not included in the CLDC
specification, there is no way to get these strings from the system in a convenient form. The
only way to get day and month strings without creating them yourself is to call the calendar
tostring () method, which formats the date in readable terms:

Tue, 9 Apr 2002 12:00:00 UTC

This is only a feature of the reference implementation, however, and not part of the official
specification. Device vendors might implement this method to return a string suitable for the
locale in which their device is operating, or they may not.

2.2.3 The java.io Package

CLDC provides only a limited subset of the extensive J2SE java.io package. The only input
and output streams that you can connect to a real data source or sink are
ByteArrayInputStream and ByteArrayOutputStream. These streams can be used to read
from or write into a byte array directly, or, wrapped with a DataInputStream or
DataOutputStream, they provide a way of storing or transmitting primitive Java data types.
Access to all other data sources is provided by private InputStream and OutputStream
implementations that are obtained by calling methods on other classes. The most important
examples of this pattern are the openInputStream() and openOutputStream() methods
of the streamConnection interface, which is part of a generic framework that is used to
access external data sources. This is described in detail in Section 6.1.

The CLDC java.io package also retains support for character input and output by wrapping
byte streams with an InputStreamReader Or OutputStreamWriter. However, the set of
character encodings that can be used with these classes is implementation-dependent and is
required to extend only to the device's default encoding. Self-contained Reader and wWriter
classes like FileReader and stringiriter are not part of the CLDC specification.

2.2.4 The javax.microedition.io Package
This package, which is not inherited from J2SE, contains a collection of interfaces that define
the Generic Connection Framework. This framework is intended to be used by CLDC-based

profiles to provide a common mechanism for accessing network resources and other resources
that can be addressed by name and that can send and receive data via an InputStream and an

31

J2ME in a Nutshell

OoutputStream. A typical example of such a resource is an HTML page or a Java servlet,
which can be identified by its Uniform Resource Locator (URL).

Although the CLDC specification defines the interfaces and methods of the framework and
suggests how it might be used to allow applications to open connections to various types of
resources, including network servers and serial ports, the specification does not require any
actual implementations to be provided. However, by specifying common methods needed to
open, close, and get data from any of these resources, the framework makes it a lot easier for
developers to write applications that can connect to data sources using different
communication mechanisms, such as sockets, datagrams, or HTTP, because there is only one
coding pattern to follow. (In J2SE, socket communication and HTTP communication involve
using different classes and different coding patterns.) Further discussion of this topic and a
full description of the Generic Connection Framework and the javax.microedition.io
package are found in Chapter 6.

2.3 KVM Debugging

In order to provide Java-level debugging facilities, hooks must be supplied by the Java VM so
that a debugger can perform tasks such as placing breakpoints, inspecting and modifying
objects, and arranging to be notified when a debugging-related event occurs within the VM.
The Java 2 platform includes an architecture, called the Java Platform Debugger Archicture
(JPDA), that defines the debugging features that must be provided by a VM and the way in
which they can be accessed by a debugger. Figure 2-1 shows the logical software components
defined by the JPDA.

Figure 2-1. The Java 2 Platform Debugger Architecture

Debugger Iwe heeaaan
dient dient * :
I JoWP
o ¥
{1ava-level interfore)
0P Jovo
Server M
IeMD
{native fomguage inferfoce)

2.3.1 The JPDA

In the JPDA, the debugger interacts with the Java VM using a well-defined protocol called the
Java Debug Wire Protocol (JDWP). This protocol specifies messages that are passed from a
JDWP client to a JDWP server to request that operations be performed on the target VM,
corresponding to debugging commands issued by the user. It also defines events that can be
transmitted in the opposite direction to notify the debugger of state changes within the VM.

The architecture separates the debugger and the JVM from the details of the wire-level
protocol by inserting an insulating layer on each side of the JDWP; this layer takes care of
mapping the protocol messages to and from the programming interfaces required by the
debugger and provided by the VM. In order to make it possible to accomodate different VM

32

J2ME in a Nutshell

or debugger implementations without requiring each of them to provide their own JDWP
implementation, two internal APIs are defined:

The Java Debug Interface (JDI)

The JDI is a Java-level interface that exposes the services of a JDWP client to a
debugger. Typically, the debugger is a GUI program written by a third party vendor,
but it could provide a command-line interface (such as that provided by the jdb
command in the SDK). Debuggers using this interface can be assured that they will
work with any JVM written to conform to the JPDA.

The Java Virtual Machine Debug Interface (JVMDI)

JVMDI is the interface exposed by the JVM itself to allow operations received by the
JDWP to be performed and to report VM state changes to the JDWP server. Unlike
JDI, JVMDI is a native language interface because it requires low-level access to the
virtual machine.

The only absolute requirement of the JPDA is that the VM must support the use of the JDWP
as the means for the debugger to communicate with it.” As a consequence, there is no
requirement for a VM actually to implement the JVMDI; it could, instead, directly provide the
JDWP server interface and dispense with JVMDI. As long as the VM responds correctly to
messages delivered by the JDWP, a debugger need not be aware of the implementation
details. Similarly, although a debugger may be written to interface to the JWDP using the JDI
(and a reference implementation of the JDI is part of the Java 2 SDK), it is not required to do
so and could instead include its own JDWP client implementation.

2.3.2 The KVM Implementation of the JPDA

The CLDC specification does not place any requirements for debugging support within the
VM, but a practical VM implementation needs to provide some kind of debugging capability.
The KVM has debugging support, but resource constraints make it impossible to fully
implement the server side of the JDWP protocol and the hooks within the KVM itself.
Instead, this functionality is divided between the VM and another process called the KVM
debug proxy (or KDP), as shown in Figure 2-2.

7 The architecture does not specify how JWDP messages should be carried between the debugger and the VM, but typically either a socket (for remote
debugging) or shared memory (for colocated debugger and VM) is used.

33

J2ME in a Nutshell

Figure 2-2. The KVM implementation of the JPDA

Debugnes I meanaaan
lienl clianl -
i Jise
i ‘.
{hava-lovel interface)
Jowp 17 .
Ve debug proxy :
KDWP
L)
LT

The function of the debug proxy is to implement features of the JDWP that are too resource-
intensive to be placed within the KVM process itself. Normally, the debug proxy is not run on
the same device as the KVM itself, so it does not require device resources. Instead, the debug
proxy might be executed on a desktop system and communicate with the KVM using a
specially designed variant of JDWP called the KVM Debug Wire Protocol (KDWP), carried
over a socket connection. The definition of the KDWP can be found in the KVM Debug Wire
Protocol Specification, which is included with the CLDC reference implementation.

From the viewpoint of the debugger, the debug agent appears to support the JDWP, and it can
therefore be accessed either directly or through the JDI. A debugger does not need to be aware
that it is communicating with the debug proxy instead of the KVM itself and that it might not
be on the same machine as the debug proxy.

2.3.3 Debugging a KVM Application

In Section 2.1.3, you saw how to run a simple CLDC application. In this section, you'll see
how to modify the procedure used earlier in order to run an application under the control of a
debugger. As before, the commands shown are for the Windows platform; if you are using
Solaris or Linux, you should adjust them appropriately. The source for the application that we
are going to use in this section is in the file ora\ch2\KVMProperties.java, which can be found
in the example source code for this book. The application consists of a loop that prints the
values of the system properties as listed in Table 2-2.

Begin by opening a DOS window and setting the shell variable EXAMPLES to point to the
directory in which the example source code is installed. Then change your working directory
to 20EXAMPLES%\src and create a directory called tmpclasses, if you do not already have
one. As before, we need to first compile the source code for the application that we're going to
run under the control of the debugger and preverify it. With the shell variable CLDC PATH
set to the bin directory beneath the installation directory of the CLDC reference
implementation and JAVA HOME set to the directory in which the J2SE SDK is installed
(such as c¢:\idk1.3.1), set up the DOS PATH variable as follows:"

PATH=%JAVA HOME$\bin; $CLDC_ PATH%\win32; $PATHS%
PATH=%CLDC_ PATH%$\win32\debug; $PATHS

8 Refer to Section 2.1.3 for a full description of these shell variables.

34

J2ME in a Nutshell

Now use the following commands to compile and preverify the example source code:

javac -g -bootclasspath $CLDC_PATH%\common\apilclasses -d tmpclasses
ora\ch2\KVMProperties. java

preverify -classpath $CLDC PATH%\common\apilclasses;tmpclasses -d .
ora.ch2.KVMProperties

An important difference between these commands and those used in our earlier example is
that in this case we include the -g argument to the Java compiler. This argument causes
debugging information to be written to the class file; be sure to use this argument when
creating class files for debugging purposes.

The next step is to start the KVM to run the example code. The standard KVM is built without
debugging support to minimize its memory footprint, but the CLDC reference implementation
contains a second copy of the KVM (called kvm g) in the directory
%CLDC PATH%\win32\debug that can be used for debugging. You will notice that this
directory is one of those included in the PATH variable set above. The following command
starts the VM and prepares it for debugging:

kvm g -classpath . -debugger -port 2000 ora.ch2.KVMProperties

The -debugger argument causes the VM to load the specified class and suspend execution to
wait for the debug proxy to connect to it. The -port argument specifies the TCP/IP port
number on which the KVM will listen for a connection from the debug proxy; in this case,
port 2000 has been chosen, but any other free port could be used instead. Suspending
execution of the application is the default and usually the correct thing to do, because you
normally do not want to allow execution to proceed until you have set a breakpoint from the
debugger. You can explicitly request suspension by supplying the -suspend argument, or you
can allow execution to proceed without waiting for the debugger with the -nosuspend
argument:

kvm g -classpath . -debugger -nosuspend -port 2000 ora.ch2.KVMProperties

Now open another DOS window and set up the shell variables EXAMPLES, CLDC PATH
and PATH as before. We'll use this window to start the debug proxy process and connect it to
the KVM listening on port 2000. The debug proxy is a Java application that is included in the
CLDC reference implementation; its class files are located in the directory
%CLDC PATH%\common\tools\kdp\classes. For convenience, you should set up two more
shell variables as follows:

set KDPCLASSPATH=%CLDC PATH%\common\tools\kdp\classes
set CP=%CLDC_ PATH%\common\apilclasses;$EXAMPLES%\src

KDPCLASSPATH points to the class files for the debug proxy itself, and the CP variable
points to the class files for the CLDC core libraries and the compiled classes for this book's
example source code. Using these variable definitions, the debug proxy can be started using
the following command:

java -classpath $KDPCLASSPATHS% kdp.KVMDebugProxy -1 3000 -p
-r localhost 2000 -cp %CP%

The arguments passed to the debug proxy are as follows:

35

J2ME in a Nutshell

-1 3000

The port number on which the debug proxy listens for incoming connections from the
debugger. This can be any free port number to which you have access (i.e., on Solaris
or Linux, it must be greater than 1023 unless you are logged in as roof).

-r localhost 2000

The host and port number for the KVM to be debugged, which must match the value
of the KVM -port argument. Here we assume that the debug proxy and the KVM are
on the same machine, but this is not a requirement; if you run them on different
machines, the name of the machine on which the KVM is running should be supplied
in place of 1ocalhost.

-cp %CP%

The class path used to locate the CLDC core libraries and the classes for the
application being run in the debugger. Of course, the application classes should have
been compiled with the -g compiler option so that they have debugging information
available. If you are running the debug proxy and the KVM on different machines,
you will need to take a local copy of the class files or make them available on a
network drive.

You'll find a description of the complete set of arguments supported by the debug proxy in
Chapter 8.

As soon as it is started, the debug proxy connects to the KVM and then waits for a debugger
to connect on its socket port. You can use any debugger that supports JPDA, such as the ones
that are provided with Borland JBuilder’ or with Sun's free Forte for Java IDE, which we'll
use here.

To connect a debugger to the debug proxy, follow these steps:

1. Start Forte for Java and create a new project, supplying %EXAMPLES%\src as the
source directory to be initially mounted.

2. In the filesystem window, open the nodes for the example source code and double-
click the kvMProperties class so that it is opened in the editor window.

3. Right-click on the first line of the for loop in the main() method and apply a
breakpoint using the Add/Remove Breakpoint command in the popup menu.

4. From the main menu, select Debug and then Attach to VM. In the dialog that appears,
ensure that the debugger type is set to JPDA and the connector type is sockets. Then
fill in the debug proxy host and port names, typically localhost and 3000,
respectively.

5. Press OK to start the debugger.

At this point, Forte connects to the debug agent and resumes the application in the KVM,
which quickly reaches a breakpoint and stops, causing Forte to highlight the source line in the
editor window, as shown in Figure 2-3.

? JBuilder 5 provides JPDA support for remote debugging in the Professional and Enterprise editions only; it is not available in the Personal edition
(or the Foundation edition for JBuilder 4).

36

J2ME in a Nutshell

Figure 2-3. Reaching a breakpoint in Forte for Java

E Source Editor [EVMProperties]

L package ora.chi;
1 public class KVAProperties |
private static final Steingl] peopareiss = [

o E

r

10 i

12 public static void main{dteing[] acga) |

13 = 0: 1 < properties. length: i++) |

14 System. out.printlniproperties[i] + +

L5 Jysten.getPropecty (propecties[i]))

ey e

[1319 |ms|

With the debugger stopped at a breakpoint, you can now open the debug window (from View
on the main menu) and examine variables, look at the stack backtraces for the threads in the
KVM (as in Figure 2-4) or use any of the other features provided by the debugger, including
stepping through the code line by line. More information on Forte for Java and the facilities it
provides for building and debugging code, especially code written for MIDP, can be found in
Chapter 9. Further information on the debug proxy and KVM debugging in general can be
found in the KVM Porting Guide and the KVM Debug Wire Protocol Specification, both of
which are supplied with the CLDC reference implementation.

Figure 2-4. Examining the stack frame of a thread running in the KVM

8 Debugger Window [Threads] _ O] =]
B, Theeads (B g [| |
l‘-;‘ % K _Syetem ! ® 1l i :H =
@ @ KM _ThreadBedS2o (Funnng)
© % ColStack
@ %" grechl KvMPraperties.main ;
@ [Locss
@ & args = (jsvalang StringlD instd

[[+

T B udpulrlsl ﬂ SR 'r|¥_' Watchas | O Variables

2.4 Advanced KVM Topics

To close this chapter, we look at a couple of advanced techniques you can use with the KVM.
If your focus is on developing applications for mass market wireless devices, the techniques
shown in this section will be of little relevance, because they require you to be able to build
your own copy of the VM from its source code and ship it along with your application. This is
an option that is likely to be open to you only if you are using the KVM in a specialist
application of some kind or if you are working for a device vendor incorporating the KVM
into a new product.

37

J2ME in a Nutshell

In order to build the KVM, you need to download a copy of the CLDC reference
implementation and acquire a suitable compiler and build tools. The details of the build
process and the development tools with which it has been tested can be found in the KVM
Porting Guide, which is one of documents included with the reference implementation. Since
describing how to compile the VM is beyond the scope of this book, the rest of this section
assumes you have set up an environment within which you can compile and link the VM
using the Makefiles supplied by Sun.

2.4.1 Preloading Java Classes

In a J2SE system, the core class libraries are stored in the file rzjar and are dynamically
loaded and linked on demand from the point at which the VM starts up. This has two
consequences, both of which are not ideal in the kind of limited-resource environment toward
which the KVM is targeted:

e The process of loading a class and locating and linking it to other classes that it
depends upon takes a certain amount of time. This time is relatively small for each
individual class, but it becomes noticable when a large number of classes have to be
loaded at the same time, which is typically what happens when an application starts
executing. This effect would be much worse on the processors that the KVM runs on.
These processors are slower than those used in desktop systems, but they are used in
devices, such as cell phones, where the user will probably be prepared to wait only a
very short time between requesting a service and the service becoming available.

e In a desktop system, classes are loaded from the rtjar file on disk into memory.
KVM-based systems, however, typically don't have disks; instead, they just have a
small amount of memory. In a typical device, the KVM and its class libraries are held
in nonvolatile memory (ROM). If the KVM used the same technique as J2SE, these
classes would have to be (at least partly) copied from ROM into RAM during the
loading and linking process, causing an unacceptable overhead both in time and
memory usage. (This is because the CLDC specification requires that only 32 KB of
RAM be available, compared to a minimum of 128 KB of ROM.)

To address both these problems, the KVM uses a technique called prelinking or ROMizing,
which involves preprocessing all the core classes into a compact image form in which they
appear to have been loaded and linked already. This image is then burned into the device
ROM along with the KVM itself. Thus, when the VM starts up, all the core classes appear to
have been loaded already, thus avoiding the memory overhead of copying the classes and the
time overhead of linking them. The ROMizing process is performed during the KVM build
process by a tool called JavaCodeCompact, which is itself built when the KVM is compiled."

You can arrange to have your own classes included in the ROMizing process, so that they
appear to be preloaded when the KVM starts up. If you are building a device that has the
KVM in ROM, you would use this technique to ensure that your application is available as
soon as the device starts up. In order to do this, you have to understand how the KVM build
process works. The steps of the process that are relevant to ROMizing are as follows, where
the pathnames are relative to the directory in which the CLDC reference implementation is
installed:

10 ROMizing is optional. You can build a KVM that does not have any classes preloaded by defining the build-time constant ROMIZING to have
the value false.

38

J2ME in a Nutshell

1. The core class libraries are compiled and built into a ZIP file called classes.zip in the
directory j2me_cldc\api.

2. The Makefile in the directory j2me cldc\tools\jcc extracts all of the files from
classes.zip, removes any that are not required on the platform for which the KVM is
being built, and builds a new ZIP file consisting of the files that remain. For the
Windows platform, for example, this file would be called classesWin.zip.

3. The new ZIP file is processed by JavaCodeCompact to produce the ROMized image
for the corresponding platform in the form of a C-language source file. For the
Windows platform, this file would be called ROMJavaWin.c. This file is then
compiled and linked into the KVM.

To include your own classes among those preloaded into the KVM, you can do one of two
things:

o Create your own directory containing your source code and the Makefiles to compile it
into Java class files, and modify j2me_cldc\tools\jcc\Makefile so that it includes your
class files when building classesWin.zip.

e Include your source code below the directory j2me cldc\api\src, which contains the
source for the CLDC class libraries. All Java source files below this directory will be
compiled and included in classes.zip without the need to modify any Makefiles.

The first of these is the better solution and the one recommended for serious development.
However, for simplicity, we'll use the second alternative to demonstrate the ROMizing
process. In the next section, you'll see an example that uses the first technique.

To create a KVM with an additional preloaded class, do the following:

1. Copy the file ora\ch2\KVMProperties.java in the source code examples for this book
to j2me_cldc\api\src\ora\ch2\KVMProperties.java.

2. Make j2me_cldc\build\win32 your current directory.

3. Use make (or gnumake) to build the KVM as normal, as described in the KVM Porting
Guide.

The KVM that this process creates will be in the directory j2me cldc\kvm\VmWin\build. 1f
you make that directory your working directory and type the command:

.\kvm ora.ch2.KVMProperties

you'll see that the values of the four CLDC system properties are printed on the standard
output stream, indicating that the KvMProperties class has been preloaded into the KVM.

2.4.2 Interfacing with Native Code

Since the KVM does not support the Java Native Interface, it is not possible to write an
application that consists of a mixture of Java and native code and simply load the native code
into the VM on demand at runtime. The only way to make native code available to Java
applications running on the KVM is to include it in the VM build process. Like class
preloading, this is a technique that you can use only when you have full control over the VM,
and it is therefore not of any use when writing mass-market cell phone or PDA applications.

39

J2ME in a Nutshell

The KVM Porting Guide describes the environment that the KVM provides for native code
programming. A discussion of the details of native code programming is beyond the scope of
this book, but, before embarking on writing your own native code, you should read the
relevant chapters of the porting guide to ensure that you understand how to handle interaction
with the garbage collector and how to interface with Java code. This section concentrates on
getting you started with KVM native programming by showing you how to get your code
built and linked into the VM and what you need to do to create the linkage between the VM
and your Java code.

2.4.2.1 Writing the Java code

The first step when writing native code is to decide which methods of your Java classes will
be implemented as native methods. When you have done this, you simply declare them in the
same way as you would with a standard JVM. For the purposes of discussion, in this section
we'll use the class kvMNative, which you'll find in the directory ora\ch2 in the source code
examples for this book. This class has a single native method, declared using the Java
language native keyword, as shown in Example 2-2.

Example 2-2. A Java Class Containing a Native Method

package ora.ch?2;
public class KVMNative {
public native void printMessage (String message) ;

public static void main (String[] args) {
String msg = args.length > 0 ? args[0] : "";
for (int 1 = 1; i < args.length; i++) {
msg += " " + args[i];
}

new KVMNative().printMessage (msg) ;

}

The intent of this simple application is to use native code to print on the standard output a
message constructed by concatenating all of the application's command-line arguments. Once
you've written the Java code, compile and preverify it in the usual way, then wrap it in a JAR
file:

javac -bootclasspath $CLDC_PATH%\common\apilclasses -d tmpclasses
ora\ch2\KVMNative.java

preverify -classpath $CLDC PATH%\common\apilclasses -d . tmpclasses

jar cvfM0 native.jar ora\ch2\KVMNative.class

If you have several classes that need access to native code, it is easier to integrate them with
the KVM build process if they are in a JAR file, so we opt to create a JAR file in this example
-- even though we have only a single class -- to demonstrate the most general case. Note that
the JAR file does not need a manifest (hence the M option), and it must not be compressed,
which explains the use of the 0 option (note that this is the digit 0, not the uppercase letter O).

40

J2ME in a Nutshell

2.4.2.2 Determining the name of the native function

The second step is to write the native code. Native code is written in the C programming
language. The first problem to be tackled when writing a C-language function that
implements a native method is naming the function. The KVM uses the same naming
convention as the JNI; that is, the native function name is constructed as follows:

1. It starts with the string "Java ".

2. The fully qualified name of the class is appended, replacing periods with underscore
characters.
The method name is appended, separated from the class name by another underscore.
4. If the method is overloaded, then the method signature is appended, preceded by two

underscores.

(98]

In the case of the native method shown in Example 2-2, the correct native function name
would be Java ora ch2 KvMNative printMessage (). Since it is not overloaded, there is
no need to include the argument types in the name. However, if we declared a pair of methods
like this:

public native void printMessage (String str);
public native void printMessage (String intro, String str);

the native function names would have to include the method signature in order to
disambiguate them. The easiest way to obtain the method signatures is to compile the Java
class and then examine its content using javap, specifying argument -s:

javap -s ora.ch2.KVMNative

If the two definitions of printMessage () shown previously had been included in this class,
then the output from this command would look like this:

public class KVMNative extends java.lang.Object {
public KVMNative();
/*)V R/
public native void printMessage(java.lang.String);
/* (Ljava/lang/String;)V */
public native void printMessage (java.lang.String, java.lang.String);
/* (Ljava/lang/String;Ljava/lang/String;)V */

The method signatures are shown in brackets. To build the complete native method name, the
signature is modified and added to the part constructed from the package and class name. The
signature is modifed as follows:

o The part within the brackets, which specifies the arguments, is extracted.
e Any "/" characters are replaced with " ".

e Any" " characters are replaced with " _1".

e Any";" characters are replaced with " 2".

e Any "[" characters are replaced with "_3".

For your convenience, a utility program that prints the name of the native function, given the
class name, method name, and signature, is included in the example source code for this book.

41

J2ME in a Nutshell

To get the signature for a method that is not overloaded, you need to specify only the class
and method names, being careful to use "/" as the separator within the class name. For
example, the command:

java ora.ch2.KVMPrintNativeMethodName ora/ch2/KVMNative printMessage

produces the output:

Java ora ch2 KVMNative printMessage

For overloaded methods, include the signature as displayed by javap as the third argument,
like this:

java ora.ch2.KVMPrintNativeMethodName ora/ch2/KVMNative printMessage
(Ljava/lang/String;)V

which gives the following output:

Java_ora ch2 KVMNative printMessage Ljava lang String 2

The result for the two-argument variant of printMessage () would be:

Java ora ch2 KVMNative printMessage
_Ljava lang String 2Ljava_lang String 2

2.4.2.3 Writing the native code

Having determined what the native code function will be called, all that remains is to write it.
Native code needs to make use of utility methods provided by the KVM. Some of the more
useful KVM functions used by native code are described in the KVM porting guide, but, in
general, you will need to examine the KVM source code to work out what is available to you
and how to use it. In this case, we simply need to get hold of the Java string passed to the
method and print it on standard output. Example 2-3 shows a possible implementation of this
method, which you can find in the source file KVMNativeExample.c in the directory ora\ch2
of the example source code.

Example 2-3. An Example of Native Code for the KVM

#include <global.h>

void Java ora ch2 KVMNative printMessage()

{
STRING INSTANCE stringInstance = popStackAsType (STRING INSTANCE) ;
INSTANCE thisPtr = popStackAsType (INSTANCE) ;
char *string = getStringContents (stringlnstance);

if (string != (char *)0 && *string != (char)0) {
printf ("Message is %s\n", string);
} else {

printf ("No message\n");

}

Although it is beyond the scope of this book to cover the details of native language
programming for the KVM, it is worth reviewing a few details of this code:

42

J2ME in a Nutshell

e The source code starts by including the header file global h. This file contains
definitions of constants and functions that native code will need to reference. You'll
find this file in the directory j2me_cldc\kvm\VmCommon\h within the CLDC reference
implementation.

o The function name matches that described above. Note, however, that it is declared to
have no arguments, even though the corresponding Java method has an argument of
type String.

o Instead of being passed to the function in the usual way, Java language arguments are
pushed onto a stack, along with the value of the this pointer for the object on which
the method was invoked (except in the case of a static method). The item at the top of
the stack is the rightmost argument in the argument list.

e To access the arguments, you use macros defined in the file global.h. Here, the macro
popStackAsType () is used to pop first the pointer to the string argument and then
the value of the this pointer. Other macros can be used for removing primitive types
such as integers and longs, and there are also a small number of reference types (or
INSTANCE types) defined for use with the popstackasType() macro. Refer to
global.h for further information on these definitions.

o It is important that all arguments and the this pointer (if it is present) be popped off
the stack before the function returns. If this is not done, the likely result is that the
KVM will crash.

e The string reference obtained from the stack is not a pointer that can be directly used
by C-language code. References to Java objects are passed to native code in the form
of opaque objects known as handles; handles cannot be used directly but must be
passed to KVM methods to access the real data. In this case, the string reference is
used as an argument to the getStringContents () method, which returns a pointer
to an array of characters that can be used directly by the C code. From here, the
string's value is printed directly to the standard output using the printf function in the
usual way. Note that getStringContents () copies the string into a global buffer, so
there is no need to worry about freeing the memory that it occupies.

o This particular method does not return a value to the Java code that calls it. To return a
value, you must push it onto the stack using one of the macros such as pushstack (),
pushLong () Of pushStackAsType (), defined in global.h.

2.4.2.4 Arranging for the native code to be compiled and included in the KVM

Once you have written your native code functions, you need to arrange for them to be
compiled and linked with the KVM. The simplest way to achieve this is to include them with
the source files for the KVM itself and to modify its Makefiles so that they are included in the
build process. The following steps arrange for the native code created above to be linked into
the KVM:

o Create a new directory called j2me_cldc\Native\src in the source distribution included
with the CLDC reference implementation.

e Copy the file KVMNativeExample.c from the oralch? directory to
j2me_cldc\Native\src.

e Modify the KVM build Makefile to include the new source code in the build.

The Makefile to be modified in the last step depends on the platform for which the KVM is to

be built. For Windows, this Makefile can be found at j2me cldc\kvm\VmWin\build\Makefile,
while for Linux and Solaris it is j2me_cldc\kvm\VmUnix\build\Makefile. Add the following

43

J2ME in a Nutshell

lines (shown in bold) to include KVMNativeExample.c in the list of source files to be
compiled:

ifeq ($(ROMIZING), false)

ROMFLAGS = -DROMIZING=0
else

SRCFILES += ROMjavaWin.c
endif

Include the example native code
SRCFILES += KVMNativeExample.c

The directory in which the native code file is included also needs to be added to the list of
those searched for source files by adding it to the existing list:

Add last entry to include native code directory

vpath %.c $(TOP)/kvm/VmCommon/src/ $(TOP)/kvm/VmWin/src/ \
$ (TOP) /kvm/VmExtra/src/ $(TOP)/tools/jcc/ \
$(TOP) /jam/src/ $(TOP) /Native/src

With these changes, when the KVM is next built, the native code in KVMNativeExample.c
will be built and linked into it.

2.4.2.5 Connecting the Java code to the native code

The final step is to connect the native code in the KVM to the Java code that will invoke it.
Because the KVM does not support JNI, there has to be a different mechanism that maps at
runtime a native Java method call to the corresponding native function that implements it. The
details of how this is done depends on whether the KVM is built with ROMizing enabled.
Before looking at this in more detail, here are the steps that you need to follow to arrange for
the KVM build process to link the Java code and native code:

o Copy the file native jar that contains the compiled Java classes created earlier (see
Section 2.4.2.3) to the directory j2me_cldc\tools|jcc.

e Delete the files nativeFunctionTableWin.c and ROMjavaWin.c (or
nativeFunctionTableUnix.c and ROMjavaUnix.c for Linux and Solaris), if they exist,
to force them to be rebuilt.

o Edit the file j2me_cldc\tools\jcc\Makefile as shown later.

In the Makefile, you will find two targets called ROMjava%.c. Modify the first of these
targets and the nativeFunctionTable%.c target that follows it by making them depend on the
file native.jar :

ROMjava%.c: classes%.zip native.jar tools
@cp -f src/*.properties classes
@S (MAKE) $Q@ JCC_PASS TWO=true

nativeFunctionTable%.c: classes%.zip native.jar tools

@cp -f src/*.properties classes
@$ (MAKE) $@ JCC_PASS TWO=true

These changes ensure that if you change your Java source code and rebuild the native. jar file,
the appropriate parts of the KVM will also be rebuilt.

44

J2ME in a Nutshell

Further down the Makefile, you will find a second set of the same targets. Modify these so
that they also depend on native.jar and to ensure that the files in native.jar are included in the
build process:

ROMjava%$.c: classes%.zip native.jar
echo ... 3@
echo Arch $($(patsubst classes%.zip, $Arch, $<))
$ (JAVA) -classpath classes JavaCodeCompact \
-nq —arch $($(patsubst classes%.zip, $Arch,$<)) -o $@ $*

nativeFunctionTable%.c: classes$%.zip native.jar
echo ... $@
echo ... $”°
cp -f src/*.properties classes
$ (JAVA) -classpath classes JavaCodeCompact \
-ng -arch KVM Native -o $@ $*

Note that the s< on last line of each target has been changed to $~. This causes
JavaCodeCompact to include the class files in both classesWin.zip (or classesUnix.zip) and
native.jar. With these changes in place, you can rebuild the KVM. The new VM can be found
in the directory j2me cldc\kvm\VmWin\build for the Windows platform or
j2me_cldc\kvm\VmWin\build for Linux and Solaris. If you use it to run the example code
written earlier, you should see any words you supply as command line arguments written to
the standard output by the native function in the KVMNativeExample.c file:

> kvm ora.ch2.KVMNative Hello, Native World
Message is Hello, Native World

Now let's look a little more closely at how this works. There are slightly different
explanations depending on whether ROMizing is in use or not.

When ROMizing is enabled, JavaCodeCompact creates the linkage between the Java code
and the native code at build time. In this case, any Java code that needs to access native
methods must be included as part of the KVM build. This is why the native.jar file is one of
the files included as a target for the ROMjava%.c target in the Makefile. At build time, this
target builds a file in the directory j2me cldc\tools\jcc called ROMjavaWin.c or
ROMJavaUnix.c, which contains the ROMized image of the CLDC core libraries and any
application preloaded classes. When we run the KVM and load the class
ora.ch2.KVMNative, we are actually using the copy of this class that was preloaded into the
KVM and linked to the native code at build time. If we had linked the native code into the
KVM but not preloaded the class ora.ch2.KvMNative, we would see an error message
saying that the native method could not be found when we attempt to run the example, even
though the native code has been built into the KVM.

When ROMizing is not enabled, the core libraries and all application code is loaded into the
KVM on demand, from the class path supplied using its -classpath argument. In this case,
there is no build-time linkage created between the Java code and its corresponding native
methods. Instead, the nativeFunctionTable%.c target of the Makefile causes
JavaCodeCompact to generate a file called nativeFunctionTableWin.c or
nativeFunctionTableUnix.c that maps from the name of a Java native method to a pointer to
the native function that implements it. JavaCodeCompact generates the code in this file
automatically by scanning all the Java classes passed to it on the command line (in ZIP files,
JAR files, or individually named class files) looking for native methods. The generated source

45

J2ME in a Nutshell

file contains native method information for each class that contains a native method, as well
as a master index for all packages that have classes with native methods. Since this file is
generated automatically, you do not need to concern yourself with all the details, but it is still
instructive to examine the file's content. For the class ora.ch2.kvMNative, for example, the
following code is generated:

const NativeImplementationType ora ch2 KVMNative natives[] = {
{ "printMessage", NULL, Java ora ch2 KVMNative printMessage},
NATIVE END OF LIST

b

This shows that this class has one native method called printMessage(), which is
implemented by the function Java ora ch2 KvMNative printMessage (). The NULL that
appears before the function reference is used to indicate the method signature in cases of
method overloading. Since there is only one printMessage () method in this class, there is
no need to specify a signature. Compare this with the entries for the native methods in the
core library class java.lang.String:

const NativeImplementationType java lang String natives[] = {
{ "charAt", NULL, Java_ java lang String charAt},
{ "equals", NULL, Java_ java lang String equals},
{ "indexOf", "(I)I", Java java lang String indexOf I},
{ "indexOf", " (II)I", Java java_ lang String indexOf II},
NATIVE END OF LIST

bi

Here, the entries for the indexof method have to include the signature field because there are
two overloaded variants:

public int indexOf (int ch);
public int indexOf (int ch, int fromIndex);

You can see that the function names also include the method signature parts.

There is also a master index that is used to map from a class name to the native methods for
that class. Here is an extract from that index, which clearly shows how it works:

const ClassNativeImplementationType nativeImplementations[] = {
{ "java/lang", "Object", java lang Object natives },
{ "java/lang", "Throwable", java lang Throwable natives },
{ "ora/ch2", "KVMNative", ora ch2 KVMNative natives },

// MORE ENTRIES - NOT SHOWN
NATIVE END OF LIST
b

Note that this file is generated even if ROMizing is enabled, but its content is not used.

46

J2ME in a Nutshell

Chapter 3. The Mobile Information Device Profile and
MiDlets

The Connected Limited Device Configuration provides the basis for running Java on devices
that have insufficient resources to support a complete virtual machine together with a full
version of the J2SE core packages. However, if you are an application developer, it is
extremely unlikely that you will ever need to write software that works solely with the APIs
provided by CLDC, because it contains nothing that allows for interaction with users, storage
devices, or a network. CLDC is intended to be a base layer on top of which a range of profiles
that provide the missing facilities can be provided, in a form suitable for the class of device
for which each profile is designed. The Mobile Information Device Profile, or MIDP for short,
is one such profile, intended for use on small footprint devices with a limited user interface in
the form of a small screen with some kind of input capability. This chapter introduces MIDP;
in the following two chapters, we'll look in more detail at how it supports user interfaces,
networking, and persistent storage of information.

3.1 MIDP Overview

MIDP is a version of the Java platform based on CLDC and KVM that is aimed at small
footprint devices, principally cell phones and two-way pagers. It is also suitable for running
on PDAs, and an implementation is available for PalmOS Version 3.5 and higher. (In the
longer term, it is intended that these devices use the PDA profile, which is also hosted by
CLDC.) The MIDP specification was developed under the Java Community Process and is
available for download from http://jcp.org/jsr/detail/37.jsp.

The logical position of MIDP within the software architecture of a device that implements it is
shown in Figure 3-1. The software that implements MIDP runs in the KVM supplied by
CLDC and provides additional services for the benefit of application code written using
MIDP APIs. MIDP applications are called MIDlets. As Figure 3-1 shows, MIDlets can
directly use both MIDP facilities and the APIs described in Chapter 2 that MIDP inherits from
CLDC itself. MIDlets do not access the host platform's underlying operating system and
cannot do so without becoming nonportable. Because the KVM does not support JNI, the only
way for a MIDP application to access native platform facilities directly is by linking native
code into a customized version of the virtual machine.

Figure 3-1. The Mobile Information Device Profile

MiDhets

?QE“IH
B

F 'E_E 5

== E =5

== = B

= E< E .eE-g

CLoC

Herst plutfoam openating sysiem

HinP

Sun provides a reference implementation of MIDP that can be used on Windows; the Wireless
Toolkit, which contains versions of MIDP for Windows, Solaris and Linux; and a separate

47

J2ME in a Nutshell

MIDP product for use on PalmOS-based PDAs. Device manufacturers typically use the Sun
reference implementation as the basis for their own products. They usually integrate
additional code as part of their MIDP implementation to provide management features such as
installation, removal, and management of MIDIets that are not portable between devices and
hence not part of the reference software. As shown in Figure 3-1, this code (labeled "OEM
Code") may use some combination of MIDP and CLDC services and will also depend on the
host platform's operating system. Some parts of the core MIDP software are themselves
device-dependent and thus are also supplied by the manufacturer. These typically include
parts of the networking support, the user interface components, and the code that provides
persistent storage.

3.1.1 MIDP Hardware Requirements

As mentioned earlier, MIDP is intended for small devices with limited memory, CPU, and
display capabilities. The minimum hardware requirements are described in the following
sections.

3.1.1.1 Memory

As you'll see over the next few chapters, MIDP includes quite a lot of software that is not part
of the core Java platform and therefore requires more memory than the minimal CLDC
environment is obliged to supply. The MIDP specification requires at least 128 KB of RAM
be available to store the MIDP implementation itself, over and above whatever is needed by
CLDC. In addition to this, there must be at least 32 KB available for the Java heap. In
practice, a 32 KB heap is very limiting and demands that the developer exercise great care
when allocating objects and take all possible steps to avoid holding references to objects
longer than necessary, in order to allow the garbage collector to reclaim heap space as quickly
as possible. As well as the RAM requirement, MIDP devices must also supply at least § KB
of nonvolatile memory to be used as persistent storage so that MIDlets can save information
in such a way that it is not lost when the device is switched off. The content of this storage is
not guaranteed to be preserved over battery changes, however, and there is a general
expectation that the device also provides some way (such as the PDA "hot sync" mechanism)
to back up its content to a more permanent location.

3.1.1.2 Display

MIDP devices are characterized by small displays. The specification requires that the screen
should be at least 96 pixels wide and 54 pixels high and that each pixel be (approximately)
square. The screen must support at least two colors, and many cell phones are capable of no
more than this. At the top of the range, PDAs typically have screens with 160 pixels in each
direction and support as many as 65,536 different colors. This wide disparity in capability
provides the developer who wants to write a fully portable MIDlet with some interesting
challenges, and it has led to some trade-offs in the MIDP user interface library, as we'll see in
Chapter 4 and Chapter 5.

3.1.1.3 Input device
As with displays, there are several different types of input device that might be found on a
MIDP platform. At one end of the spectrum, the more sophisticated devices, like the RIM

wireless handheld, have a complete alphanumeric keyboard, as shown on the left of
Figure 3-2. Similarly, PalmOS-based handhelds allow the user to "write" on a special area of

48

J2ME in a Nutshell

the screen using a form of shorthand known as Graffiti; they also provide a simulated
onscreen keyboard for users who prefer a more traditional approach. The screenshot on
the right side of Figure 3-2 shows the Gratffiti area of a Palm handheld.

Figure 3-2. Handheld input devices

Contrast these highly functional keyboards (or keyboard substitutes) with the more basic one
that you'll find on most cell phones, an example of which is shown in Figure 3-3. Keyboards
like this provide relatively easy numeric input, but they require slightly more work on the part
of the user to type alphabetic characters, and there are almost no special characters available.

The minimum assumption made by the MIDP specification is that the device has the
equivalent of a keypad that allows the user to type the numbers 0 through 9, together with the
equivalent of arrow keys and a select button as shown in the diamond-shaped arrangement at
the top of Figure 3-3, where the select button is the white circle between the arrows. These
requirements are directly met by cell phones and may be satisfied in various ways on other
devices. On the Palm, for example, there are buttons that may be programmed to act as
directional arrows, while the select operation can be performed by tapping the screen with the
stylus. As we'll see in Chapter 5, this cut-down representation of the input device is reflected
in the APIs that handle the user interface, and it requires the developer to be careful when
handling events from whatever passes for the keyboard on the device on which a MIDlet is
running.

Figure 3-3. A typical cell phone keypad

| 4
W
L
ME SR

3.1.1.4 Connectivity

Mobile information devices have some kind of network access, whether it's the built-in
wireless connection in a cell phone or pager, or a separate modem attached to a PDA. MIDP
does not assume that devices are permanently attached to a network or that the network
directly supports TCP/IP. It does, however, require that the device vendor provide at least

49

J2ME in a Nutshell

the illusion that the device supports HTTP 1.1, either directly over an Internet protocol stack,
as would be the case for a Palm handheld connected to a modem, or by bridging a wireless
connection to the Internet via a WAP gateway. This provision allows developers to write
network-aware MIDlets that work equally well (other than performance differences due to
differing network bandwidth) across all supported platforms.

3.1.2 MIDP Software Requirements

Sun's reference version of MIDP is not a commercial product. Device vendors are expected to
port the reference implementation to their own hardware and software by implementing code
that bridges the gap between the expectations of Sun's reference code and the vendor's
hardware and operating system software. As with the hardware described previously, the
reference implementation makes the following assumptions about the capabilities offered by
the software base on which it will be hosted (shown as "Host Platform Operating System" in
Figure 3-1:

e The operating system must provide a protected execution environment in which the
JVM can run. Because CLDC supports the threading capabilities of J2SE, the host
platform ideally supports multithreading, and, if it does, the KVM can make direct use
of it. However, MIDP implementations are required to provide the illusion of
multithreading even when this is not available from the native operating system. They
do this by sharing the single available thread between the Java threads that belong to
application code and those used within the VM and the MIDP and core libraries.

e Networking support is required in some form. On some platforms, such as PalmOS, a
socket-level API is available, over which the mandatory MIDP HTTP support can be
implemented. In the case of devices that do not offer such a convenient interface,
including those that do not have direct connectivity to an IP-based network, the vendor
is required to provide a means for HTTP to be bridged from the device's own network
to the Internet. The networking aspects of MIDP are discussed in detail in Chapter 6.

o The software must provide access to the system's keyboard or keypad (or equivalent)
and a pointing device, if it is available. The software must be able to deliver events
when keys are pressed and released and when the pointing device is moved or
activated. (For example, for a handheld with a stylus, the software must deliver an
event when the stylus touches the screen, when it is lifted off the screen, and when it
moves over the screen.) The vendor is required to map whatever codes are delivered
by the user's keystrokes to a standard set of values so that similar keystrokes lead to
the same results across different hardware platforms. This issue is discussed further in
Chapter 5.

o It must be possible to access the device's screen. MIDP allows MIDlets to treat the
screen as a rectangular array of pixels, each of which may be independently set to one
of the colors supported by the device. Therefore, it is required that the software
provide access to the screen as if it were a bit-mapped graphics device. MIDP user
interfaces and graphics are covered in detail in Chapter 4 and Chapter 5.

e The platform must provide some form of persistent storage that does not lose its state
when the device is switched off (that is, when it is in its minimum power mode, but
not necessarily when it has no power at all). MIDP provides record-level access to this
storage and therefore requires that the host software supply some kind of
programmatic interface to its persistent storage mechanism. The MIDP storage APIs
are described in Chapter 6.

50

J2ME in a Nutshell

3.2 The MIDP Java Platform

The Java platform available to MIDlets is that provided by CLDC as described in Chapter 2,
together ~with a collection of MIDP-specific packages arranged under
the javax.microedition package hierarchy. The core libraries themselves are almost
unaffected by the MIDP specification; the only change is the addition of the J2SE 1.3 timer
facility in the java.util package, which will be covered in Section 3.5.4. The MIDP
specification also places the following requirements on the core libraries:

o Like applets, MIDlets are managed in an execution environment that is slightly
different from that of a Java application. As you'll see shortly, the initial entry point to
a MIDlet is not the main () method of its MIDlet class, and the MIDIet is not allowed
to cause the termination of the Java VM. In order to enforce this restriction,
the exit () methods in both the System and Runtime classes are required to throw
a SecurityException if they are invoked.

e In addition to the system properties defined by CLDC, MIDP devices must set the
microedition.locale property to reflect the locale in which the device is operating.
The locale names are formed in a slightly different way from those used by J2SE,
because the language and country components are separated by a hyphen instead of an
underscore character. A typical value for this property would be en-us on a MIDP
device, whereas a J2SE developer would expect the locale name in the form en Us.
Since both MIDP and CLDC provide almost no support for localization, however, the
precise format of this property is of little direct interest to MIDlets. Instead, it is
intended to be used when installing MIDlets from external sources, to allow the
selection of a version of the MIDlet suitable for the device owner's locale. The
property must therefore be properly interpreted by the agent (perhaps a servlet running
in a web server) that supplies the software.

e The system property microedition.profiles must contain at least the value m1DP-
1.0. In the future, as new versions of the MIDP specification are released and
implemented, devices that support multiple profiles may list them all in this profile,
using spaces to separate the names.

In summary, the values of the system properties that are introduced by or changed by MIDP
relative to the requirements placed by CLDC, are shown in Table 3-1.

Table 3-1. MIDP System Properties

Property Meaning Value
microedition.locale The current locale of the device e.g., en-US
microedition.profiles Blank-separated list of supported profiles MIDP-1.0

3.3 MiIDlets and MIDlet Suites

Java applications that run on MIDP devices are known as MIDlets. A MIDlet consists of at
least one Java class that must be derived from the MIDP-defined abstract class
javax.microedition.midlet .MIDlet. MIDlets run in an execution environment within
the Java VM that provides a well-defined lifecycle controlled via methods of the MID1et class
that each MIDlet must implement. A MIDlet can also use methods in the MIDlet class to
obtain services from its environment, and it must use only the APIs defined in the MIDP
specification if it is to be device-portable.

51

J2ME in a Nutshell

A group of related MIDlets may be collected into a MIDlet suite. All of the MIDlets in a suite
are packaged and installed onto a device as a single entity, and they can be uninstalled and
removed only as a group. The MIDlets in a suite share both static and runtime resources of
their host environment, as follows:

e At runtime, if the device supports concurrent running of more than one MIDlet, all
active MIDlets from a MIDlet suite run in the same Java VM. All MIDlets in the same
suite therefore share the same instances of all Java classes and other resources loaded
into the Java VM. Among other things, this means that data can be shared between
MIDlets, and the usual Java synchronization primitives can be used to protect against
concurrent access not only within a single MIDlet, but also between concurrently
executing MIDlets from the same suite.

o Persistent storage on the device is managed at the MIDlet suite level. MIDlets can
access their own persistent data and that of other MIDlets in the same suite. However,
it is not possible for a MIDlet to gain access to persistent storage owned by another
suite, because the naming mechanism used to identify the data implicitly includes the
MIDlet suite. This is partly to avoid unintended name clashes between MIDlets
obtained from unrelated sources, and partly as a security measure so that a MIDlet's
data cannot be read or corrupted by malicious code imported from an unreliable
source.

As an example of the sharing of classes and data between MIDlets, suppose a MIDlet suite
contains a class called counter, intended to keep count of the number of instances of MIDlets
from that suite are running at any given time.

public class Counter {
private static int instances;

public static synchronized void increment() {
instances++;

}

public static synchronized void decrement () {
instances--;

}

public static int getInstances() {

return instances;
}
}

Only a single instance of this class will be loaded in the Java VM, no matter how many
MIDlets from the suite that supplies it are running in that VM. This means that the same static
variable instances is used by all of these MIDlets, and, therefore the increment and
decrement methods all affect the same counter. The fact that these methods are synchronized
protects the instances variable from concurrent access by any threads in all of the MIDlets.

3.3.1 MIDlet Security

For the developer, dealing with MIDlet security is a very simple issue, because there isn't any!
The Java security model used in J2SE is both powerful and flexible, but it is expensive in
terms of memory resources, and it requires a certain amount of administration that may be
beyond the knowledge expected of a mobile device user. Therefore, neither CLDC nor MIDP

52

J2ME in a Nutshell

includes any of the security checking of API calls that is available in J2SE, with the exception
of the Runtime and System exit () methods, which can never be used by a MIDlet.

For the mobile device owner, this means that a MIDIlet appears to be more of a potential threat
than an applet would to a browser user, because the MIDlet is not constrained by the Java
applet "sandbox" that the browser imposes via a SecurityManager. A mobile device owner
needs to be careful when installing MIDlets and, preferably, he should accept software only
from trusted sources. Unfortunately, at the time of writing, there is no way for the user to be
completely sure who is actually providing a MIDlet or that the MIDIlet code has not been
interfered with en route to the device; the authentication mechanisms that provide this for the
J2SE platform (i.e., public key cryptography and certificates) are not a standard part of the
MIDP specification. The secure version of the HTTP protocol (HTTPS), which will help to
alleviate this problem, is under consideration for inclusion in a future version of MIDP. In the
meantime, there is limited security against malicious MIDlets. There are no MIDlet APIs that
allow access to information already on the device, such as address and telephone number lists
or calendars, and it is not possible for a MIDIet to directly control the device. As you'll see in
Chapter 6, a MIDlet can store information on a device, but that storage is private to that
MIDlet and its suite, so the MIDlet can harm only its own data.

3.3.2 MIDlet Packaging

MIDlets need to be properly packaged before they can be delivered to a device for
installation. The MID1et subclass that acts as the main entry point for the MIDlet, together
with any other classes that it requires (apart from those provided by MIDP itself) and any
images or other files to which it needs access at runtime, must be built into a single JAR file.
Packaging information that tells the device what is in the JAR must be supplied in the JAR's
manifest file. Similar packaging information is also provided in another file called the Java
application descriptor (or JAD file for short), which is held separately from the JAR. A JAR
may contain more than one MIDlet, in which case all the MIDlets are deemed to be in the
same MIDlet suite. To put the same thing another way, all MIDlets that are in the same
MIDlet suite must be packaged in the same JAR.

Both the manifest file and the JAD file are simple text files in which each line has the form:

attribute-name: attribute-value

The name and value are separated by a colon and optional whitespace. All the attributes that
are of relevance to the installation of MIDlets have names with the prefix "MIDlet-". A
complete list of these attributes, together with a short description of their associated values,
can be found in Table 3-2. The values in the JAR and JAD columns indicate whether the
attribute is mandatory (M), optional (O) or ignored (I) in the file corresponding to that
column.

53

Attribute Name

J2ME in a Nutshell

Table 3-2. MIDlet Packaging Attributes

JAR JAD Value and Meaning

MIDlet-Name M M
MIDlet-Version M M
MIDlet-Vendor ™M M
MIDlet-n M 1
MicroEdition-
Profile Mo
MicroEdition- M I
Configuration
MIDlet-

. . O (0]
Description
MIDlet-Icon (@) (@)
MIDlet-Info-

URL 0 0
MIDlet-Data-
) O (0]
Size
MIDlet-Jar-URL 1 M
MIDlet-Jar-
) o I M
Size
MIDlet- I 0
Install-Notify
MIDlet-Delete-
) I (0]
Confirm
MIDlet- ifi
et-specific o o

attributes

The name of the MIDlet suite packaged in the JAR file. This name may be
displayed to the user.

The version number of the MIDlet suite packaged in the JAR file. Version
numbers take the form a.b.c (for example 1.2.3), where larger values in each
field indicate a newer version, with the leftmost field taking precedence. For
example, version 1.2.5 is taken to be more recent than version 1.2.3, and,
similarly, version 2.1.5 is newer than 1.3.7.

The name of the MIDlet suite provider. This is free-form text that is intended
for display to the user.

Attributes that describe the MIDlet in the MIDlet suite. The value 7 is replaced
by a numeric value starting from 1 to identify individual MIDlets. The format
of the value associated with this attribute is described in the text.

The version or versions of the MIDP specification that the MIDlets in this suite
can work with. Where more than one version appears, they must be separated
by spaces. The versions specified are compared to those listed in the
microedition.profiles property of the target device to determine
whether the MIDlets are compatible with them. MIDP-1. 0 is a typical value
for this attribute.

The J2ME configuration required by the MIDlets in this suite. This value is
compared to the target device's microedition.configuration
property to determine compatibility.

A description of the MIDlet suite intended to be displayed to the user.

An icon that may be used to represent the MIDlet suite during or following
installation. The icon must be a Portable Network Graphics (PNG) file.

The URL of a file that contains further information describing the MIDlet
suite. The content of this file may be displayed to the user to allow the user to
decide whether to install the MIDlet suite.

The minimum amount of persistent storage that this MIDlet suite requires. This
refers to space used for the long-term storage of data used by the MIDIet suite,
not the space required to install and manage the MIDlet suite itself. It is
specified in bytes. If this attribute is not supplied, it is assumed that the MIDlet
suite does not require persistent storage. Whether or not MIDlets can use more
persistent storage space than they initially request is device-dependent.

The URL of the JAR file that contains the MIDlet or MIDlet suite described by
these attributes. This attribute is used only in the application descriptor.

The size of the MIDlet JAR file in bytes. This attribute is used only in the
application descriptor.

A URL used to report the success or failure of MIDlet installation performed
from a remote server. This attribute is not included in the current MIDP
specification, but it is supported by the Wireless Toolkit. See Section 3.6 for
further details.

A message to be displayed to the user before the MIDlets are deleted from the
device on which they are installed. Like MIDlet-Install-Notify, this
attribute is not currently included in the formal specification.

MIDIlet developers can provide limited configurability for MIDlets by
including attributes that can be retrieved at runtime.

As you can see, many of the attributes must be supplied in both the manifest file, which
resides in the JAR, and in the JAD file, which does not. To see why, it is necessary to
understand why two files are used.

54

J2ME in a Nutshell

The job of the manifest file is to indicate to the device the name and version of the MIDlet
suite in the JAR and to specify which of the class files it contains correspond to the individual
MIDlets. In order to make use of this information, however, the device must download the
JAR and extract the manifest. Having done this, it can then display the values associated with
the MIDlet-Name, MIDlet-Version, and MIDlet-Vendor attributes and the optional MIDlet-
Description and MIDlet-Icon attributes. These attributes allow the user to decide whether
the MIDlets should be installed. However, the JAR for a MIDlet suite might be quite large
and may take some time to retrieve over the relatively slow networks to which mobile devices
typically have access. If the only useful description of its content were in the JAR itself, a lot
of time might be wasted transferring large files that are immediately rejected as uninteresting.

To solve this problem, some of the attributes from the manifest file, together with extra
information, is duplicated in the JAD file. Instead of downloading the whole JAR, a MIDP
device first fetches its JAD file, which is much smaller than the JAR and can be transferred
quickly. The device then displays the JAD file's contents to the user so that she can decide
whether to fetch the JAR file. The JAD contains some attributes that come from the manifest
file and others that do not appear in the manifest. The common attributes are as follows:

MIDlet-Name
MIDlet-Vendor
MIDlet-Version
MIDlet-Description
MIDlet-Icon
MIDlet-Info-URL
MIDlet-Data-Size

These attributes (with the possible exception of the last one) can all be presented to the user as
an aid to deciding whether the content of the corresponding JAR file is interesting enough to
download. The first three of these attributes are mandatory in both JAR and JAD files, and the
MIDP specification requires that their values be identical. The remaining attributes are all
optional. If they appear in both the manifest and the JAD file, the value in the JAD file takes
precedence over that in the manifest (and at this stage, the device can see only the value in the
JAD file).

The JAD file also contains two other attributes that are not present in the manifest file:

MIDlet-Jar-Size
MIDlet-Jar-URL

The MIDlet-Jar-Size attribute can be displayed to the user to help determine how long it
will take to fetch the JAR; it also enables the user to guess whether the device has enough free
space to install the JAR. Assuming the user decides to install the MIDlet suite, the next step is
to fetch the JAR itself, which can be found by using the value of the MIDlet-Jar-URL
attribute.

Suppose a company called "Wireless Java Inc." creates a suite of MIDlets called
WirelessTrader that allow a user to do online stock trading from a MIDP device. The suite
contains two MIDlets, one for trading, the other for simply browsing through stock prices.
The main classes for these two MIDlets are called com.wireless.TradeMIDlet and
com.wireless.BrowseMIDlet, and they make wuse of common code in the
com.wireless.Utils class. The manifest for this suite would look something like this:

55

J2ME in a Nutshell

MIDlet-Name: WirelessTrader

MIDlet-Vendor: Wireless Java Inc.

MIDlet-Version: 1.0.1

MIDlet-Description: A set of MIDlets for online trading.
MIDlet-Icon: /com/wireless/icons/wireless.png

MIDlet-Info-URL: http://www.wireless.com/trader/info.html
MIDlet-Data-Size: 512

MicroEdition-Profile: MIDP-1.0

MicroEdition-Configuration: CLDC

MIDlet-1:

StockTrader, /com/wireless/icons/trader.png, com.wireless.TradeMIDlet
MIDlet-2:

StockBrowser, /com/wireless/icons/browser.png,com.wirelessBrowseMIDlet

In the JAR, this file would appear as META-INF/MANIFEST.mf. The JAR would also include
the following files:

/com/wireless/BrowseMIDlet.class
/com/wireless/TradeMIDlet.class
/com/wireless/Utils.class
/com/wireless/icons/browser.png
/com/wireless/icons/trader.png
/com/wireless/icons/wireless.png

Note the following about the attributes in the manifest file and the content of the JAR:

e The JAR contains the two MIDlet class files and the class file for
com.wireless.Utils, which contains code that is used by both MIDlets. This latter
file, however, does not need to be referenced from the manifest file. The JAR also
contains the three icons that are referred to from the manifest file.

e The MIDlet-TIcon attribute contains the absolute path of the icon file for the MIDlet
suite, relative to the JAR file itself.

o Each MIDIlet has an attribute that describes it; the attribute's name is of the form
MIDlet-n, where n is an integer. The value of this attribute has the following form:

name, icon,class

name is the name of the MIDlet within the MIDlet suite. icon is the full path of the
icon that the device may use along with the MIDlet name when displaying the content
of the MIDlet suite to the user. class is the name of the MIDlet's main class. The icon
is optional; if no icon is required, it should be omitted:

MIDlet-2: StockBrowser,,com.wireless.BrowseMIDlet

Note that even if an icon is specified, the device is not obliged to display it. The same
applies to the MIDlet suite icon defined by the optional MIDlet-Icon attribute.

The JAD file for this suite can be constructed like this:

MIDlet-Name: WirelessTrader

MIDlet-Vendor: Wireless Java Inc.

MIDlet-Version: 1.0.1

MIDlet-Description: A set of MIDlets for online trading.

56

J2ME in a Nutshell

MIDlet-Info-URL: http://www.wireless.com/trader/info.html
MIDlet-Data-Size: 512

MIDlet-Jar-Size: 10312

MIDlet-Jar-URL: http://www.wireless.com/trader/Midlets.jar

This file contains the information that the device displays to the user, together with the URL
of the MIDIet suite JAR. In this case, the common attributes have the same values in the
manifest and the JAR, but it is possible to override the MIDlet-Description, MIDlet-Icon,
MIDlet-Info-URL, and MIDlet-Data-Size attributes by specifying different values in the
JAD file.

In order to be fully portable, the JAD file should be encoded using ISO-8859-1, because all
MIDP implementations are required to support this character encoding. The successful use of
any other encoding depends on the target device, which may not support the encoding, and the
way in which the JAD file is transported to the device. If, for example, the file is fetched
using HTTP, the Content-Type header can be used to specify the encoding as described in
Section 3.6. In some cases, it is useful to be able to include in the JAD file Unicode characters
that are not available in the ISO-8859-1 encoding or that are not easy to access from a
standard keyboard. The MIDP reference implementation allows you to use Unicode escape
sequences of the form \uxxxx to overcome encoding limitations. For example, the following
line includes the copyright character (Unicode value 0029) in the MIDlet suite description:

MIDlet-Description: A set of MIDlets for online trading. \u0O0A9 Wireless
Java Inc.

Although this feature is available in the MIDP reference implementation, it is not mentioned
in the MIDP specification, so there is no guarantee that real devices will actually support it.

At runtime, a MIDlet can access files from its JAR using the getResourceAsStream()
method of java.lang.Class. Any file in the JAR, apart from class files, can be accessed this
way. This is typically how you would include images or text files that should be displayed in
the user interface, an example of which will be shown in Chapter 4. A MIDlet can also define
its own private attributes in the manifest file and the JAD and retrieve them at runtime, as
you'll see in Section 3.5, later in this chapter.

3.4 MiDlet Execution Environment and Lifecycle

All MIDlets are derived from the abstract base class javax.microedition.midlet.MIDlet,
which contains methods that the MIDP platform calls to control the MIDlet's lifecycle, as well
as methods that the MIDlet itself can use to request a change in its state. A MIDlet must have
a public default constructor (that is, a constructor that requires no arguments), which may be
one supplied by the developer if there is any initialization to perform or, when there are no
explicit constructors, the empty default constructor inserted by the Java compiler. This is what
a skeleton MIDlet class might look like:

57

J2ME in a Nutshell

public class MyMIDlet extends MIDlet {

// Optional constructor

MyMIDlet () {

}

protected void startApp() throws MIDletStateChangedException {
}

protected void pauselpp() {

}

protected void destroyApp (boolean unconditional)
throws MIDletStateChangedException {

}
}

At any given time, a MIDlet is in one of three states: Paused, Active, or Destroyed. A state
diagram that shows how these states are related and the legal state transitions is shown in
Figure 3-4.

Figure 3-4. The lifecycle of a MIDlet

Comslructed Susnended by devi
e ol oy Posed

Savted or resumad by device
or MIDNe! calls resime Regquest() n

Powsed | | Aclive
MilHst crlls

User emds oty Destroyed) User ends

WDl l MiDlet

S\ S—

When a MIDlet is loaded, it is initially in the Paused state. The usual class and instance
initialization is then performed -- that is, static initializers are called the first time the MIDlet
class is loaded, all instance initializers are invoked when the MIDIlet instance is created, and
its public, no-argument constructor is then invoked. If the MIDlet throws an exception during
the execution of its constructor, the MIDlet is destroyed. If the MIDlet does not throw an
exception, it is scheduled for execution at some later time. Its state is changed from Paused to

Active, and its startapp() method is called. The MIDlIet class declares this method as
follows:
protected void startApp() throws MIDletStateChangeException;

That this method is abstract means that you must implement it in your MIDlet, and that it is
protected implies that it will be called either from the MIDIet class itself or from another class
in the javax.microedition.midlet package. In the reference implementation, the MIDlet
lifecycle methods are called from a class in this package called scheduler, but there is
nothing in the MIDP specification that requires this class be used. Licensees may provide
their own scheduler implementations, provided that it supports the MIDlet lifecycle as
described in this section. It is very common for MIDlet developers to redefine the
startApp () method as public, which is certainly a safe option, but this should not be

58

J2ME in a Nutshell

necessary because vendor implementations must continue to work even if these methods are
declared as protected.

The startapp () method may complete normally, in which case the MIDlet is allowed to
run, or it may inform the MIDP platform that the MIDlet does not want to run at this point.
There are several ways to achieve the latter:

e If the startapp () method detects an error condition that stops it from completing,
but which might not exist later (i.e., a transient error condition), it should throw a
MIDletStateChangeException. This moves the MIDlet back to the Paused state, so
that another attempt to start it can be made later.

e Ifthe startapp() method detects an error condition from which recovery is likely
never to be possible (a nontransient error condition), it should call its
notifyDestroyed() method, which is described a little later.

o Finally, the MIDIlet may throw an exception other than
MIDletStateChangeException, either deliberately or because a method that it
invokes throws the exception, and the startapp () method does not catch it. In this
case, it is assumed that a fatal error has occurred, and the MIDlet is destroyed by
calling its destroyapp () method (described later).

If the MIDlet does none of these things, it is in the Active state and will be allowed to run
until it is either paused or destroyed. A MIDlet returns after completing its startApp ()
method, and it does not have a method that contains the main logic to which control could be
passed, so where is the MIDlet's code placed? Usually, a MIDlet has a user interface and
executes code as a result of events generated by key presses or pointer movements. MIDlets
can also start separate background threads to run code that does not depend on the user
interface, or they can use a timer to schedule work periodically, as will be shown later. If you
take these approaches, it is important to manage the background threads and/or timers
appropriately when the MIDlet itself is paused or destroyed.

At any time, the MIDP platform can put a MIDlet into the Paused state. On a cell phone, for
example, this might happen when the host software detects an incoming call and needs to
release the phone's display so the user can answer the call. When a MIDIet is paused, its
pausedpp () method is called:

protected abstract void pauseBApp();

As with startapp(), a MIDlet is required to provide an implementation for this method.
The appropriate response to this state change depends on the MIDlet itself, but, in general, it
should release any resources it is holding and save the current state so it can restore itself
when it is reactivated later.

The main consequence of being moved to the Paused state is that the MIDlet no longer has
access to the screen; any threads that it created are not automatically terminated, and timers
remain active. A MIDlet may choose to terminate any open network connections or
background threads and cancel active timers when told to pause, but it is not obliged to do so.

If the host platform decides to resume a paused MIDIlet, because the incoming call has

terminated, for example, the MIDlet's startapp() method is invoked again to notify the
MIDIet that it has access to the screen. As a consequence, a MIDlet's startapp () method

59

J2ME in a Nutshell

should be written carefully to distinguish, if necessary, between the first time that it is called,
which signifies that the MIDlet is being started for the first time, and subsequent calls
notifying resumption from the Paused state, to prevent resources from being allocated
multiple times. Of course, if a MIDlet reacts to being moved to the Paused state by releasing
all of its resources, it would probably be appropriate to execute the same initialization code in
startapp () to reallocate the resources upon resumption. However, a properly written
MIDlet would still take special action in the startapp () method to restore the user interface
and its internal state to the way it was before it was paused, rather than show the initial screen
again.

The fact that the startapp () method can be invoked more than once in the lifetime of a
MIDIet raises the question of whether initialization should be performed here or in the
MIDlet's constructor. The developer is free to choose the more convenient location to allocate
resources and prepare the MIDlet's state. In general, resources that will be released in
pauseapp() should be allocated in startapp (). Other resources can be allocated in either
startApp () or the constructor, with care being taken to ensure that allocations performed in
startApp () are not repeated following resumption from the Paused state.

An important difference between the startapp() method and the constructor is that,
according to the MIDP specification, the MIDlet is guaranteed to be able to access the
Display object that corresponds to the screen (see Chapter 4) only from the point at which
startapp () is invoked for the first time. Under a strict interpretation of the specification,
therefore, initialization that involves a Display object cannot be performed in the constructor.
Of course, actual MIDP implementations may not enforce this apparent restriction, but
portability may be compromised if the MIDlet accesses the Display object in its constructor.

A MIDlet may refuse a request to be resumed from the Paused state by throwing a
MIDletStateChangeException When its startaApp () method is called, as described earlier.

When the host platform needs to terminate a MIDlet, it calls the MIDlet's destroyapp ()
method:

public abstract void destroyApp (boolean unconditional) throws
MIDletStateChangeException;

In the destroyapp() method, the MIDlet should release all the resources that it has
allocated, terminate any background threads, and stop any active timers. When the MIDlet is
terminated this way, the unconditional argument has the value true, to indicate that the
MIDlet cannot prevent the process from continuing. Under some circumstances, however, it is
useful to give the MIDlet the option to not terminate, perhaps because it has data that it needs
to save. In this case, the destroyapp () method can be invoked with the argument false, in
which case the MIDlet can indicate that it wants to continue by throwing a
MIDletStateChangeException. The following code illustrates how this technique can be
used to implement the conditional shutdown of a MIDlet:

60

J2ME in a Nutshell

try {
// Call destroyApp to release resources
destroyApp (false);

// Arrange for the MIDlet to be destroyed
notifyDestroyed();

} catch (MIDletStateChangeException ex) {
// MIDlet does not want to close

}

This code might be used to respond to an Exit button in the MIDlet's user interface. It begins
by directly invoking the MIDlet's own destroyapp () method so that resources are released.
If the MIDlet is not in an appropriate state to terminate, and destroyapp () is called with
argument false, the MIDlet should throw a MIDletsStateChangeException. The calling
code should catch this exception and do nothing, as shown here. On the other hand, if the
MIDlet is prepared to be terminate, it should complete the destroyapp () method normally,
in which case the calling code uses the MIDlet notifybestroyed() method to tell the
MIDP platform that the MIDlet wants to be terminated.

This example also illustrates the use of the notifybestroyed() method, which is used by a
MIDlet to voluntarily terminate. It is important to understand the relationship between the
destroyApp () and notifyDestroyed() methods and when they are used:

e When the MIDIet is being destroyed by the platform, most likely because the user has
requested it, the MIDlet's destroyapp () method is called with the argument true,
and the MIDlet is destroyed when this method completes. It is not necessary in this
case for the MIDlet to invoke its notifyDestroyed() method.

e When the MIDlet itself wants to terminate, typically because it has no more useful
work to do or the user has pressed an Exit button, it can do so by invoking its
notifyDestroyed() method, which tells the platform that it should be destroyed. In
this case, the platform does not call the MIDlet's destroyapp () method; it assumes
that the MIDlet is already prepared to be terminated. Most MIDlets invoke their own
destroyapp() method to perform the wusual tidy up before -calling
notifyDestroyed(), as shown earlier.

Note that calling notifybestroyed() is the only way for a MIDlet to terminate voluntarily.
MIDlets cannot terminate by calling the system or Runtime exit () methods, because these
throw a SecurityException.

There are two other methods that a MIDlet may invoke to influence its own lifecycle:

public final void notifyPaused();
public final void resumeRequest();

The notifypPaused() method informs the platform that the MIDlet wishes to be moved to
the Paused state; this has the same effect as if the platform had invoked the MIDlet's
pauselpp () method. When the MIDlet calls notifypaused(), the platform does not
invoke its pauseapp () method, in the same way that it does not call destroyapp() in
response to notifyDestroyed(), because it assumes that the MIDlet has prepared itself to
be paused. A MIDlIet often, therefore, precedes an invocation of notifypaused() with a call
to pauseapp () so that the appropriate steps are taken before the MIDlet is suspended.

61

J2ME in a Nutshell

The resumeRequest () method is the reverse of notifypPaused(); it tells the platform that
a MIDlet in the Paused state wishes to return to the Active state. At some future time,
the platform may resume the MIDIlet by calling its startApp() method.

The resumerRequest () method typically is called by a background thread or from a timer
that the MIDlet left active while it was paused, an example of which is shown in the next
section.

3.5 Developing MiDlets

To illustrate the MIDlet lifecycle and how it can be controlled, we'll create a very simple
MIDlet that does the following:

o Prints a message when its constructor is called.

e Creates a timer that fires from time to time, putting the MIDlet in the paused state if it
is active and returning it to the active state if it is paused. When the timer has been
through this cycle twice, it terminates the MIDlet.

e Creates a background thread when it is started that simply prints a message every
second. This thread is allowed to run only when the MIDlet is active.

Since you haven't yet seen how to create user interfaces, this example MIDlet communicates
by writing messages to its standard output stream. On a real device, you can't see what is
written to standard output or standard error (unless you are using debug facilities provided by
the device vendor), but most device emulators provide a way to monitor the content of these
streams. There are several products available that allow you to build and test MIDlets either in
an emulated environment or on the real device; some of these products are described in
Chapter 9. Here, we'll use the Wireless Toolkit, which is available free of charge from Sun.

3.5.1 Building a MIDlet with the Wireless Toolkit

The Wireless Toolkit provides an implementation of MIDP together with an emulator that can
be customized to look and behave somewhat like a number of real cell phones. It can also be
used in conjunction with a third-party emulator that allows you to see how your MIDlets
would behave on handhelds that are based on PalmOS. It is not, however, a complete
development enviroment, because it does not provide an integrated editor to allow you to
create, view, and modify source code. Consequently, if you want to use the Wireless Toolkit
as part of a complete development cycle, you will need a text editor or IDE to manage the
source code. At the time of writing, the Wireless Toolkit can be installed to integrate with
Forte for Java, which is available for download from Sun's web site, and Borland JBuilder,
but any IDE will do.

The first step when using the Wireless Toolkit is to create a project, which manages the
source code, classes, and resources corresponding to a MIDlet suite. To do this, start the
KToolbar and press the New Project button to open the New Project dialog, which is shown
in Figure 3-5. For this example, the name of the MIDlet's main class should be
ora.ch3.ExampleMIDlet, and the project name can be anything you like.

62

J2ME in a Nutshell

Figure 3-5. Creating a new project with the Wireless Tooklit

Project Marma Ehi-r]!&r3

MID|at Class Mame jora.ch3 ExamipleMiDle]

Creala Project | Cancel |

When you press the Create Project button in the dialog, the Wireless Toolkit opens another
window, shown in Figure 3-6; it contains a set of tabs that allow you to provide the attributes
used to generate the manifest for the MIDlet's JAR and the JAD file. You can edit these
attributes by clicking the cell that you want to change and typing the new value. The fields on
the Required tab contain the attributes shown in Table 3-2 that are marked as mandatory.
Most of the values supplied by default can be used without modification. For example, the
MIDlet-Name field (which is actually the name that will be used for the MIDlet suite, not for
any individual MIDlet) matches the project name, and the name of the JAR that will be
created is also derived from the project name. The only field you might want to change on this
tab is MIDlet-Vendor, which is initially set to Ssun Microsystems by default.

Figure 3-6. Setting required attributes for a MIDlet suite

Eﬁdting; for project “Chaptes ™ E3

Required | Optional | User Defined | MiDlats |

Key | Walue |
M et-Jar-Slze 100
mIet-Jar-URL Chaplard. |ar
il Dilet-Hame Chapterd
MiDet-Vendar J2WE i a Nutshell

MIDlet-Version 1.0

MicroEdiion-Configuration
microE difior-Frofile WICP-1.0

To define the MIDlIets that should be included in the MIDIlet suite, select the MIDlets tab.
Initially, this contains a single row whose content is constructed from the name of the project.
In this example, the suite contains a single MIDlet called ExampleMIDlet in the package
ora.ch3, so you should press the Edit button and edit the values for the MIDlet-1 attribute on
this tab so that it looks like this:

Key Name Icon Class
MIDlet-1 |ExampleMIDlet /ora/ch3/icon.png ora.ch3.ExampleMIDlet

In this example, the name assigned to the MIDlet matches the class name (ignoring the
package prefix), but this need not be the case. Notice also that although the class name is
specified in the usual way, with the parts of the name separated by periods, the location of the
icon is specified as a filename, in which the path components are separated by a "/" character.
If an icon is present, an absolute pathname must be provided here. If the MIDlet does not have
an associated icon, this field should be left blank.

For a MIDlet suite with more than one MIDIet, you add an extra line for each MIDlet. It is
important that consecutive numbers are used in the key field, so the next MIDlet to be added
in this example would need to have the key mMIpDlet-2. Other required class files must be
included in the JAR, but they should not be included in the MIDlets list.

63

J2ME in a Nutshell

For this example, we are also going to use a user-defined attribute. A user-defined attribute is
a private attribute that can be set in the manifest and/or the JAD; its value can be retrieved at
runtime by any MIDlet in the MIDlet suite. These attributes provide a mechanism similar to
the setting of system properties in J2SE and allow the operation of the MIDlet to be
customized without the need to recompile source code. In this example, we'll use a user-
defined attribute to specify the length of a timer. To set the value of the attribute, select the
User Defined tab and press the Add button. In the dialog box that appears, supply the property
name as Timer-Interval and press OK. This creates a new entry in the table on the User
Defined tab. Click in the Value cell, and type the required value, which, in this case, should
be 3000. The property name is case-sensitive and, to avoid confusion with reserved attribute
names, should not begin with "MIDIlet-". The property value is always a string that is
interpreted by the MIDlet. In this case, it represents the timer interval in milliseconds, so the
value given here results in a timer that has a three-second interval. You'll see shortly how the
MIDlet retrieves the values of user-defined attributes.

This completes the setting of the MIDlet's attributes. To save them, press the OK button at the
bottom of the dialog. You can change these settings (perhaps to add extra MIDlets) at any
time by pressing the Settings . . . button on the main KToolbar window, which is shown in
Figure 3-7.

Figure 3-7. The main window of the Wireless Tooklit KToolbar

|20 12ME Winebesz Toolkit - Chapleed
fie Edr Fmiect Help

% WewPmiect I C Spen Project . Setings | £ Buid | S Run | L% Clear Consale

Dresiza: |Dafaulnlni®hona =|
CTEATANE pEojesE "Chaprers™

Flace Jawvs source Eiles in "o W d2HENTE\appeiCheptecdizce”

Flace Application cesource files in "o\ JZMENTE\eppaiChapteriices”
Fimea Applicarcion librazy Ciles in "e:\JEAEUTREAppaiChaprerdy 1ih”
Zetiinge wpdated

Froject sstcipgs =aved

The next step is to place the source code and the icon for the MIDlet where the Wireless
Toolkit can get access to them. Most IDEs allow you to choose where your project source
files are kept, but the Wireless Toolkit uses a fixed filesystem layout for each project, based
beneath the directory in which the Toolkit was originally installed. The name of the top-level
directory for a project is derived from the name given to the project when it was created. If,
for example, you installed the Windows Toolkit in the directory c.\J2MEWTK, all the files for
the chapter3 project need to be placed below the directory c:\J2MEWTK\apps\Chapter3.
When the chapter3 project was created, the toolkit created the following four directories
below the main directory for the project:

Sre
Holds the source code for the MIDlets and any shared classes
res

Holds any resources required by the MIDlets, such as icons

64

J2ME in a Nutshell

lib

Holds JAR or ZIP files for third-party libraries that the MIDlets need
bin

Holds the JAR, JAD and manifest files

Before building the project, you need to place the appropriate files in the src, res and lib
subdirectories. This example has one source file and a single icon, which can both be found in
the directory oralch3 of the source code for this book. The package structure used by the
MIDlet must be reflected in the directory layout as seen by the Wireless Toolkit, as it would
be by an IDE. Therefore, to install the files where the Wireless Toolkit can use them, you
should copy them as follows, creating the ora\ch3 subdirectory beneath both the src and res
directories while doing so:

Source Destination
ora\ch3\ExampleMIDlet.java c\2MEWTK\apps\Chapter3\src\ora\ch3\ExampleMIDet.java
ora\ch3\icon.png c\2MEWTK\apps\Chapter3\res\ora\ch3\icon.png

Once the files have been placed in the correct directories, the next step is to build the project
by pressing the Build button on the KToolbar main window. The build process performs the
following steps:

o Creates a tmpclasses directory below the main directory, compiles all the source files
below the src directory, and places the class files beneath tmpclasses, having regard to
the package hierarchy. Thus, for example, the class files for the MIDlet
ora.ch3.ExampleMIDlet would be placed in the directory
¢\ 2MEWTK\apps\Chapter3\tmpclasses\ora\ch3.

e Creates a classes directory below the main directory and runs the preverifier on all of
the classes found below tmpclasses, placing the verified class files below the classes
directory in a directory layout that again reflects the package hierarchy. The verified
ExampleMIDlet classes would, therefore, end up n
¢ \2MEWTK\apps\Chapter3\classes\ora\ch3.

o Creates the manifest file and the JAD file and places them in the bin directory.

- The source code for this book is actually stored in two different
o directory hierarchies, one for standard IDEs, the other for the J2ME
" 4 Wireless Toolkit. This example showed you how to create a project

from scratch using existing source files. A quicker way to use the book's
source code is to copy the content of the directory wtksrc into
c:\2MEWTK\apps. This will give you subdirectories called Chapter3,
Chapter4, etc., that contain all the source code and resources for each
chapter's examples in the format expected by the J2ME Wireless
Toolkit. To use each set of examples, select Open Project on the
KToolBar main screen instead of Create Project, and then select the
project from the dialog box that appears.

65

J2ME in a Nutshell

3.5.2 Running a MIDlet

At this stage, the JAR file has not been created, but you can nevertheless test the MIDlet suite
by selecting an appropriate target device on the KToolbar main window and pressing the Run
button. This loads the MIDlet classes, its resources, and any associated libraries from the
classes, res, and [ib subdirectories. If you select the default gray phone and press the Run
button, the emulator starts and displays the list of MIDlets in this suite, as shown in
Figure 3-8.

Figure 3-8. The Wireless Toolkit emulator

mﬂdmiﬁluﬁhmc M= E

When the MIDlet suite is loaded, the device's application management software displays a list
of the MIDlets that it contains and allows you to select the one you want to run. In this case,
even though the suite contains only one MIDlet, the list is still displayed, as shown in
Figure 3-8. Given the current lack of security for MIDlets imported from external sources, it
would be dangerous for the device to run a MIDlet automatically, and, by giving the device
user the chance to choose a MIDlet, it allows him the opportunity to decide not to run any of
the MIDlets if, for any reason, they are thought to be a security risk or otherwise unsuitable. It
is not obvious, though, on what basis such a decision would be made, since the user will see
only the MIDlet names at this stage, but requiring the user to confirm that a MIDlet should be
run transfers the ultimate responsibility to the user. In this case, the device displays the
MIDlet name and its icon (the exclamation mark) as taken from the MID1et-1 attribute in the
manifest file. The device is not obliged to display an icon, and it may use its own icon in
preference to the one specified in the manifest.

When you run the MIDlet suite this way, the Wireless Toolkit compiles the source code with
the option set to save debugging information in the class files, and it does not create a JAR
file. If you want to create a JAR, you can do so by selecting the Package item from the Project
menu. This rebuilds all the class files without debugging enabled, which reduces the size of
the class files, a measure intended to keep the time required to download the JAR to a cell
phone or PDA as small as possible. It also extracts the content of any JARs or ZIP files it
finds in the /ib subdirectory and includes them in the MIDIlet JAR, after running the
preverifier over any class files that it finds in these archives. The JAR can be used, along with

66

J2ME in a Nutshell

the JAD file, to distribute the MIDlet suite for installation into a device over a network, as
will be shown in Section 3.6.

Further information on the Wireless Toolkit and other MIDlet development environments can
be found in Chapter 9.

3.5.3 A Simple MIDlet

Now let's look at the implementation of the ExampleMIDlet class you have just built and
packaged with the Wireless Toolkit. This simple MIDlet demonstrates the lifecycle methods
that were described in Section 3.4, and it also illustrates how the MIDlet's foreground activity
interacts with background threads, as well as how to create and use timers. The code for this
example in shown in Example 3-1. For clarity, the timer-related code has not been included in
the code listing; you'll see how that works when timers are discussed later in this chapter.

Example 3-1. A Simple MiDlet

package ora.ch3;

import java.util.Timer;

import java.util.TimerTask;

import javax.microedition.midlet.MIDlet;

import Jjavax.microedition.midlet.MIDletStateChangeException;

public class ExampleMIDlet extends MIDlet {

// Flag to indicate first call to startApp
private boolean started = false;

// Background thread
private Thread thread;

// Timer interval
private int timerInterval;

// Timer
private Timer timer;

// Task to run via the timer
private TimerTask task;

// Required public constructor. Can be omitted if nothing to do and no
// other constructors are created.
public ExampleMIDlet () {

System.out.println ("Constructor executed");

// Get the timer interval from the manifest or JAD file.
String interval = getAppProperty ("Timer-Interval");
timerInterval = Integer.parselnt (interval);
System.out.println("Timer interval is " + interval);

67

J2ME in a Nutshell

protected void startApp() throws MIDletStateChangeException ({

if (!started) {
// First invocation. Create and start a timer.
started = true;
System.out.println ("startApp called for the first time");
startTimer ();

} else {
// Resumed after pausing.
System.out.println ("startApp called following pause");

}

// In all cases, start a background thread.
synchronized (this) {

if (thread == null) {
thread = new Thread() {
public void run() {
System.out.println ("Thread running");
while (thread == this) {
try |

Thread.sleep (1000) ;
System.out.println ("Thread still active");
} catch (InterruptedException ex) {
}
}

System.out.println ("Thread terminating");

}s
}
b
thread.start ()
}

protected void pauselpp() {
// Called from the timer task to do whatever is necessary to pause
// the MIDlet.
// Tell the background thread to stop.
System.out.println ("pauseApp called.");
synchronized (this) {
if (thread !'= null) {
thread = null;

}

protected void destroyApp (boolean unconditional)
throws MIDletStateChangeException ({
// Called to destroy the MIDlet.
System.out.println ("destroyApp called - unconditional = "
+ unconditional);
if (thread !'= null) {
Thread bgThread = thread;
thread = null; // Signal thread to die
try |
bgThread.join();
} catch (InterruptedException ex) {
}
}
stopTimer();

}

// Timer code not shown here

68

J2ME in a Nutshell

This simple MIDlet does two things:

o Starts a background thread that writes a message to standard output every second so
that you can see that the MIDlet is active

o Starts a timer that periodically pauses the MIDlet if it is active and makes it active
again if it is paused

The code listing shows the implementation of the MIDlet's constructor and its startapp (),
pauselpp () and destroyaApp () methods. A MIDlet is not required to do anything in its
constructor and may instead defer initialization until the startapp () method is executed. In
this example, the constructor prints a message so that you can see when it is being executed. It
also performs the more useful function of getting the interval for the timer that will be used to
change the MIDlet's state. It is appropriate to put this code in the constructor because this
value needs to be set only once. The timer value is obtained from the Timer-Interval
attribute that was specified in the settings dialog of the Wireless Toolkit and subsequently
written to the JAD file. Here is what the JAD file created for this MIDlet suite actually looks
like:

MIDlet-1: ExampleMIDlet, /ora/ch3/icon.png, ora.ch3.ExampleMIDlet
MIDlet-Jar-Size: 100

MIDlet-Jar-URL: Chapter3.jar

MIDlet-Name: Chapter3

MIDlet-Vendor: J2ME in a Nutshell

MIDlet-Version: 1.0

Timer-Interval: 3000

A MIDlet can read the values of its attributes using the following method from the mMiDlet
class:

public final String getAppProperty(String name) ;

This method looks for an attribute with the given name; it looks first in the JAD file, and then,
if it was not found there, in the manifest file. Attributes names are case-sensitive and scoped
to the MIDIet suite, so every MIDlet in the suite has access to the same set of attributes. The
getAppProperty() method can be used to retrieve any attributes in the JAD file or the
manifest, so the following line of code returns the name of the MIDlet's suite, in this case
Chapter3:

String suiteName = geAppProperty ("MIDlet-Name") ;

The timer interval for this MIDlet is obtained as follows:

String interval = getAppProperty("Timer-Interval");
timerInterval = Integer.parselnt (interval);

Once the value in the form of a string has been retrieved, the next step is to convert it to an
integer by calling the Integer parseInt () method. If the Timer-Interval attribute is not
included in the JAD file or manifest (or if its name is misspelled), getAppProperty ()
returns null, and the parseInt () method throws an exception. A similar thing happens if
the attribute value is not a valid integer. Notice that the constructor does not bother to catch
either of these exceptions. The main reason for catching an exception is to display some
meaningful information to the user and possibly allow recovery, but, strictly speaking, the

69

J2ME in a Nutshell

MIDlet is not allowed to use the user interface in the constructor, so attempting to post a
message would not necessarily work. The most appropriate thing to do in a real MIDlet is to
install a default value for the timer interval and arrange to notify the user from the startapp (
) method, when access to the user interface is possible. In this simple example, we allow the
exception to be thrown out of the constructor, which causes the MIDIlet to be destroyed.
Additionally, the version of MIDP in the Wireless Toolkit does, in fact, display the exception
on the screen, but vendor implementations are not bound to do so.

Once the constructor has completed execution, the device eventually calls the MIDlet's
startApp() method, which allocates any resources that the MIDlet needs.
The startapp () method is also called when the MIDlet is resumed after being in the Paused
state. In that case, however, it should allocate only the resources that were released by
pauselpp (). A boolean variable called started, which is false only when startapp() is
entered for the first time, is used to distinguish these two cases:

e When started iS false, startApp() creates and starts the MIDlet timer and the
MIDlet's background thread.

e When started is true, startApp () does not need to concern itself with the timer,
because it is not canceled by the pauseapp () method. It does, however, create a new
background thread, because the original thread will be stopped when the MIDlet is
paused.

Since the timer is going to be active throughout the lifetime of the MIDlet, it could have been
allocated in the constructor. We deferred creating the timer until startapp() executes for
the first time, however, because it isn't actually needed until that point; it is better, in an
environment with such limited memory, to delay allocating resources until they are needed.
The decision whether to commit resources in the constructor or in the startapp() method
depends on the MIDlet and must therefore be made on a case-by-case basis.

The pauseapp() method is relatively simple. Its job is to release any resources that the
MIDIlet does not need while it is not in the Active state. The MIDlet is making use of only two
resources:

e A background thread printing a message every second
e A timer responsible for pausing and resuming the MIDlet periodically

Clearly, we can't stop the timer when the MIDlet is paused, because the timer is responsible
for resuming it later. Therefore, the only resource the pauseapp () method can release is the
background thread, by arranging for it to stop execution.

How is the pauseapp () method going to stop the background thread? The J2SE Thread
class has two methods that might help: stop () and interrupt (). Neither of these methods
is available in the CLDC version of Thread, however, so it is not possible to act directly on
the background thread to stop it. Instead, we use a common mechanism, a shared variable that
the thread inspects from time to time to find out whether it has been asked to stop. In this
case, the MIDlet class keeps a reference to the Thread instance in a variable called thread. In
order to stop the thread, the pauseapp () method sets this variable to nu11, while the main
loop of the background thread checks its value on each pass:

70

J2ME in a Nutshell

public void run() {
System.out.println ("Thread running");
while (thread == this) {
try |
Thread.sleep (1000) ;
System.out.println ("Thread still active");
} catch (InterruptedException ex) {
}
}

System.out.println ("Thread terminating");

You'll notice that this code actually checks not whether the thread variable is null, but
whether it is pointing to the background thread itself. This prevents a race condition in which
the pauserpp () method clears thread to null, and the timer thread resumes the MIDlet
before the background thread restarts following the sieep () call and checks its value. In this
case, the startapp () method has started a new thread and stored its reference in thread,
which therefore will not be nu11 when the previous code checks it.

Finally, the destroyapp () method needs to stop the background thread and stop and release
the timer. The thread can be stopped just as it is in the pauseapp () method. However,
destroyApp () also waits for the thread to terminate so that it can guarantee that the MIDlet
1S not using any resources when it returns. It does this by calling the Thread.join()
method, which blocks until the thread terminates (and returns immediately if it has already
terminated). The stopTimer () method, which destroyapp () calls to stop and release the
timer, is described in the next section.

If you now launch the MIDlet from the emulator, you'll see the results in the Wireless
Toolkit's console window, an extract of which follows:

Constructor executed

Timer interval is 3000

startApp called for the first time
Timer started.

Thread running

Thread still active

Thread still active

Timer scheduled

>> Pausing MIDlet

pauselApp called.

Thread still active

Thread terminating

Timer scheduled

>> Resuming MIDlet

startApp called following pause
Thread running

As you can see, the constructor is executed first; it reads the value of the timer interval from
the JAD file. Then startapp() is called, and it detects that it is being called for the first
time and starts both the timer and the background thread. The "Thread running" and "Thread
active" messages are printed by the background thread itself and show that the thread executes
its loop twice before the timer fires. The code that executes when the timer expires, which
will be shown in the next section, alternately pauses and resumes the MIDIet. In this case, as
you can see, pauseipp () is called, which signals the background thread to stop running; the
"Thread terminating" message indicates that the thread detects that it has been told to stop.

71

J2ME in a Nutshell

Three seconds later, the timer expires again and resumes the MIDlet, causing its startapp ()
method to be invoked again to recreate the background thread. This process continues through
two cycles, at which point the timer code destroys the MIDlet.

3.5.4 Timers and TimerTasks

Code to be executed when a timer expires should be implemented as a TimerTask and
scheduled by a Timer. The Timer class provides the ability to execute sequentially one or
more TimerTasks in a dedicated background thread. Usually, a MIDlet creates a single Timer
to schedule all its TimerTasks, but it is possible to have more than one Timer active, each
running its assigned TimerTasks in its own thread.

TimerTask 1S an abstract class with three methods:

public abstract void run();
public boolean cancel();
public long scheduledExecutionTime();

You create a unit of work to be scheduled by a Timer by subclassing TimerTask and
implementing the run () method. You can schedule the run () method to be executed just
once or to be executed repeatedly at either a fixed interval or a fixed rate. You can use the
TimerTask cancel () method to stop future execution of a specific TimerTask. You may
invoke it from the run () method, in which case the current execution of the task is allowed
to complete, or you make invoke it from somewhere else. This method returns true if the task
was scheduled to run either once or repeatedly and has been canceled; it returns false if the
task was not associated with a Timer or if it had had been scheduled to be run once and has
already run. The scheduledExecutionTime () method gets the time at which the task was
most recently executed by its associated Timer. If called from within the run() method, it
returns the time at which the run() method began execution. The value returned by this
method is the number of milliseconds since midnight, January 1, 1970, which is the same as
that returned by the system currentTimeMillis () method. If this method is called before
the task is scheduled for the first time, its return value is undefined.

The Timer class has two methods that can be used to arrange for a task to be run exactly once:

public void schedule (TimerTask task, Date time);
public void schedule (TimerTask task, long delay);

The first of these methods schedules the task at the given time or as soon as possible
afterwards; the second runs the task when a given time interval, specified in milliseconds, has
passed. There are four methods that schedule a task for repeated execution:

public void schedule (TimerTask task, Date time, long period);
public void schedule (TimerTask task, long delay, long period);
public void scheduleAtFixedRate (TimerTask task, Date time, long period);
public void scheduleAtFixedRate (TimerTask task, long delay,
long period);

The difference between these methods is that the first two apply a fixed delay between
successive executions of the task, and the last two attempt to execute the task at a fixed rate.

72

J2ME in a Nutshell

In both cases, the desired interval between task executions is given by the period parameter.
Figure 3-9 shows how fixed-delay and fixed-rate scheduling differ.

Figure 3-9. Fixed-delay (top) and fixed-rate scheduling of TimerTasks

T = En
Tosk A Tk B ToskA Tosk A Task &
First run firstrun deloyed second nm third run foeth run
-+ 1 ¥
:Tuslle A Tarsk H :Tuslle A Tosk A Task &
first run firstrun deloyed second nm deloyed third run deloyed farth rum

In this example, task A is scheduled to run once every second; task B runs once, starting 900
milliseconds along the time line shown in the diagram. Task A first runs at T+0, followed by
task B, which begins its execution at T+900ms. Task B takes 200 milliseconds to complete,
however, which means that it is still running at T+1 second, when task A is supposed to run
for the second time. Since a Timer can schedule only one TimerTask at a time, the execution
of task A is delayed until task B finishes. Task A's second run begins, therefore, at T+1100ms.
The difference between fixed-delay and fixed-rate scheduling is what happens as a result of
this delay:

o In fixed-rate scheduling, the next execution of task A is scheduled relative to the time
its previous execution should have started. In this case, task A should have begun
execution at T+1 second. Under fixed rate scheduling, it will next run at T+2 seconds,
as it would have had task B not delayed it.

o With fixed-delay scheduling, the next execution of task A is timed relative to the time
its previous execution actually took place. Since task A last ran at T+1100ms, it will
next run at T+2100ms, then at T+3100ms, and so on.

With fixed-delay scheduling, therefore, any delay affects all future executions of the task.
With fixed-rate scheduling, however, an attempt is made to "ignore" the delay and schedule
the task again where it would have run had there been no delay.

In some cases, additional executions of a fixed-rate task may be required to ensure that it runs
the correct number of times when viewed over a long period. When this is necessary, the task
may be run two or more times in succession to catch up with the number of times that it
should have been run. For example, fixed-rate scheduling would be appropriate if you were
using a timer to trigger redrawing the second hand of a clock displayed on the screen. Delayed
execution of the redrawing task would cause the second hand to move more slowly, but the
extra executions would ensure that it eventually moved forward to catch up with the real time.
By contrast, using fixed delay execution in this case would result in the clock losing time that
it would never make up, because execution delays are never corrected.

You may be able to reduce timing delays by using more than one Timer and dividing tasks

among the Timers, because each Timer uses its own Thread. This only works, however, if the
platform has more than one processor (which is unlikely in a J2ME environment), or if it has

73

J2ME in a Nutshell

preemptive thread scheduling and chooses to suspend the thread of the Timer scheduling the
long-running task B in favor of the thread for task A's Timer. The most reliable way to obtain
predictable timer scheduling, however, is to ensure that code to be executed by a TimerTask
executes as quickly as possible and does not block.

Like TimerTask, the Timer class has a cancel () method:

public void cancel();

This method cancels all the TimerTasks associated with the Timer. The Timer's thread stops
executing when it has no more TimerTasks to be scheduled and there are no live references to
it.

Example 3-2 shows the timer-related code for our example MIDlet.
Example 3-2. Using a MIDlet Timer

// Starts a timer to run a simple task
private void startTimer() {

// Create a task to be run

task = new TimerTask() {
private boolean isPaused;
private int count;

public void run() {
// Pause or resume the MIDlet.
System.out.println ("Timer scheduled");

if (count++ == 4) {
// Terminate the MIDlet
try {

ExampleMIDlet.this.destroyApp (true);
} catch (MIDletStateChangeException ex) {
// Ignore pleas for mercy!
}
ExampleMIDlet.this.notifyDestroyed();
return;
}
if (isPaused) {
System.out.println (">> Resuming MIDlet");
ExampleMIDlet.this.resumeRequest ();
isPaused = false;
} else {
System.out.println (">> Pausing MIDlet");
isPaused = true;
ExampleMIDlet.this.pauselpp()’
ExampleMIDlet.this.notifyPaused();

b

// Create a timer and schedule it to run

timer = new Timer();
timer.schedule (task, timerInterval, timerInterval):;
System.out.println ("Timer started.");

74

J2ME in a Nutshell

// Stops the timer
private void stopTimer() {
if (timer !'= null) {
System.out.println ("Stopping the timer");
timer.cancel();

The startTimer () method, which is called during the first invocation of startapp(),
creates a TimerTask and schedules it to be run by a Timer object with the initial delay and
repeat period given by the Timer-Interval attribute obtained from the application
descriptor. The stopTimer() method is called from destroyapp(). It cancels the
TimerTaskandtheTimerby(xﬂhngtheTimefscancel() method.

The code that is executed when the timer expires is worth looking at because it demonstrates
how to control the lifecycle of a MIDlet. The intent of this code is to pause the MIDlet if it is
active when the timer expires and resume if it is paused. However, there is no method that
allows a MIDlet to find out whether it is in the Paused state, so the timer code has to retain
this state for itself using an instance variable called isPaused. The code used to suspend the
MIDlet looks like this:

isPaused = true;
ExampleMIDlet.this.pauselpp();
ExampleMIDlet.this.notifyPaused();

The notifyPaused() method tells the MIDIlet scheduler that the MIDIlet wants to be moved
into the Paused state. As stated earlier, when the MIDlet calls this method, it is assumed that it
is ready to be suspended, so its pauseapp () method is not called to give it a chance to
release resources. For this reason, the timer code calls the MIDlet's pauseapp () method
directly before suspending it. Moving a MIDlet to the Paused state simply means that it no
longer has access to the screen and so does not receive user interface events in response to key
presses or pointer movements. Timers and background threads belonging to a suspended
MIDlet continue to be scheduled, provided that they are not stopped by the MIDlet itself in its
pauseapp () method.

Moving the MIDlet from the Paused state to the Active state is a little easier:

ExampleMIDlet.this.resumeRequest ();
isPaused = false;

The resumeRequest () call notifies the scheduler that the MIDlet would like to be made
Active. In response to this, the MIDlet's startapp () method will be called at some future
time to allow it to reallocate resources that were released when it was paused. If another
MIDlet is currently in the foreground, the resumed MIDlet has to wait until the foreground
MIDlet is paused or terminates before it becomes eligible to become the foreground MIDlet
and recover use of the screen and input devices.

Finally, after two suspend/resume cycles are completed, the timer code destroys the MIDlet
by calling notifyDestroyed():

75

J2ME in a Nutshell

// Terminate the MIDlet

try {
ExampleMIDlet.this.destroyApp (true) ;

} catch (MIDletStateChangeException ex) {
// Ignore pleas for mercy!

}
ExampleMIDlet.this.notifyDestroyed();

As is the case with notifyPaused(), the MIDlet's destroyapp () method is not invoked as
a result of a call to notifybestroyed(), so the timer code explicitly invokes it in order to
allow the MIDIlet to release its resources. Because this is an involuntary termination, the
destroyhpp () method is called with its unconditional argument set to true. However,
care is taken to catch a MIDletStateChangeException in case the destroyapp () method
ignores this argument. It is important to note that notifyDestroyed() does not actually
terminate the MIDlet or any of its threads; it simply arranges for the MIDlet never to be
scheduled as the foreground MIDlet and removes it from the list of active MIDlets. It is the
MIDlet's responsibility to stop its active threads and timers in its destroyapp () method.
Failure to do this may cause the Java VM to continue running and consuming memory when
it has no useful work to do, which is unacceptable given the resource constraints of the typical
MIDP device.

3.6 Delivery and Installation of MiDlets

The MIDP specification creates the concept of a MIDlet, defines its lifecycle and its execution
environment, and specifies the programming interfaces that a MIDlet can expect to be present
on any conforming device. However, it currently does not address in any detail how the user
should locate MIDlet suites, how MIDlet suites will be installed on a cell phone or a PDA,
and what facilities are to be provided to allow the user to select and launch an installed
MIDlet or to remove MIDlet suites from the device. These features are not covered in detail in
the MIDP specification because they are largely device-specific. Instead, it refers loosely to
software that is intended for application delivery and management. The term Application
Management Software (AMS) is generally used to describe the software components that take
on this responsibility.! The MIDP reference implementation provides an example AMS for
the benefit of vendors porting the software to their own devices, and both the Wireless Toolkit
and the MIDP for PalmOS product have their own AMS implementations, which allow
software to be installed from two different sources:

From a local host computer via a dedicated, relatively high speed connection

This mode of operation is particularly suitable for PDAs, which are typically
associated with a desktop or laptop computer with which they periodically
synchronize. Synchronizing backs up the user's data from the handheld onto the larger
system and copies software and data in the other direction, as well. The MIDP for
PalmOS implementation is a good example of this, because its AMS allows MIDlet
suites to be installed from a host PC during the synchronization process. Once the
MIDlets are installed, they can be launched on the PDA in the same way as its native
applications. The same application management features are supported for MIDlets, so
they appear to be almost the same as native applications.

! The term Java Application Manager (or JAM) was originally used to describe the MIDP application management software. However, this resulted
in confusion with the Java Application Manager software that is part of the CLDC reference implementation, which performs similar functions but
with which it is incompatible.

76

Over a network to which the device is connected

J2ME in a Nutshell

This is the most common way in which MIDlets are downloaded to cell phones and
similar wireless devices, although it is also applicable to network-connected PDAs.
The process of deploying MIDlet suites over a network is referred to as over-the-air
provisioning, or OTA provisioning for short. OTA provisioning is not part of the
MIDP specification, but it is likely to be the dominant mechanism for distributing
MIDlets, and it will doubtless be included in the formal specification in the near
future. An AMS that supports installation of MIDlets from an HTTP server is included
in the Wireless Toolkit.

3.6.1 Over-the-Air Provisioning

With OTA provisioning, MIDlet providers install their MIDlet suites on web servers and
provide hypertext links to them. A user activates the links to download the MIDlets to a cell
phone via a WAP or Internet microbrowser. Figure 3-10 shows the steps involved in a typical

MIDlet installation.

N

OTA provisioning as described in this section is not formally a part of
the MIDP specification at the time of writing, but it is likely to be
included in the next version of the specification. Meanwhile, it has the
status of best-practice recommendation.

The process begins when the user fetches a page from the corporate web site of the (fictional)
corporation ACME, Inc. The page includes a link to a suite of MIDlets that allow the user to
browse ACME's product catalog and place orders directly from a Java-enabled cell phone.
Intrigued by this prospect, the user activates the link, which causes a request for the target to
be sent to ACME's web server. The link in question would look something like this:

Click here to install the ACME MIDlet suite

Figure 3-10. Installing MIDlets using OTA provisioning

liarmsm‘simrmn'

! fex.tr"rnmrﬂ'muppdﬁugfw

ACME wieh server: nomecom

Shﬂia Jud |

<HTML=<B0DY=
-f.!. I'IP.EF ‘Suikejod >

qfﬁ«ru mslull the ACME
MDA swile.
<=

=/ BO0Y< HTML>

ACME. bl

MIDit-Home: ACME suile
MIDét- Jor-LIRL:
Mﬁ'ﬂme o Suile pr
jar-Size; 8592

Suite.jor

As you can see, this link points to the JAD file for the ACME MIDIet suite. The request to
retrieve this file is sent by the cell phone's browser (see step 2 in Figure 3-10), but it will be

77

J2ME in a Nutshell

passed to and handled by the phone's application management software. To enable browsers
to easily identify JAD files, the web server is configured to return them with the following
MIME type:

text/vnd.sun.j2me.app-descriptor

On receipt of data with this content type, the phone's AMS activates and displays the content
of the application descriptor, so that the user can decide whether or not to install the MIDlet
suite. At this stage, the user has waited only a relatively short time for the download of the
small JAD file. Since this file contains an attribute that corresponds to the size of the JAR file
that contains the MIDlets as well as a textual description of the services they provide, the user
should be able to choose whether to install them. This is the advantage of providing MIDlet
information in both the JAD file and the JAR file manifest.

Should the user decide to install the MIDlets, the AMS looks for the MIDlet-Jar-URL
attribute in the JAD file and sends a request to that URL for the JAR, which the server should
return tagged with the MIME type application/java-archive.

At this point, the MIDlet suite is installed, and the user can select and run the individual
MIDlets. Following installation, the AMS may be required to deliver a status report to the
provisioning server indicating whether the suite was successfully installed and identifying the
reason for failure if it was not. This report takes the form of a status code and a status message
that is sent using an HTTP posT request to the URL given by the MIDlet-Install-Notify
attribute in the JAD file. If this attribute is not present, no installation report is sent. Of course,
the server must be configured to expect an installation report at the given URL. The server
typically uses a servlet or CGI script to save the report along with details of the originator for
later use.

— If you are not familiar with the HTTP protocol, you'll find a discussion
s 4 of those parts of it that are supported by MIDP devices, including the
- POST request, in Chapter 6. More complete coverage of HTTP can be
found in Java Network Programming by Elliotte Rusty Harold (O'Reilly

& Associates, Inc.).

Rl

The status codes and their meanings are listed in Table 3-3.

Table 3-3. Status Codes Used to Report Success or Failure of MIDlet Installation

fjt(?(;zs Meaning

900 Success

901 Insufficient memory

902 Canceled by the user

903 Loss of network service (because of the network service loss, this report may never get delivered to
the server)

904 JAR size mismatch

905 Attribute mismatch

906 Invalid descriptor

78

J2ME in a Nutshell

As well as implementing the MIDlet discovery and installation service as just described, the
AMS software is required to provide the following functionality:

MIDlet suite updates

MIDlet updates are delivered just as the original MIDlet suite is: the user returns to the
original server and requests the software as if an installation were being performed.
Because the JAD file contains the version number of the associated MIDlet suite, the
AMS can determine whether the software already installed is older than that on the
server; if it is, the AMS can perform an upgrade, with permission from the user.
Equally important, it can avoid downloading the JAR file if the newest version is
already installed.

MIDlet selection and execution

The AMS provides the user with a means of selecting an installed MIDlet to run. The
exact means by which this is achieved is device-dependent. On a cell phone, a menu
item might give the user the ability to launch the AMS, or individual MIDlet suites
may be included in the menu itself. On a PDA, MIDlet suites might be available in
exactly the same way as native applications.

MIDlet removal

The Java application management software is responsible for removing MIDlet suites
from the device on user request. MIDlets cannot be removed individually. Following
successful removal, the application manager must also delete any persistent storage
resources that were allocated to the MIDIet suite (see Section 6.5 for further details).
Because MIDIlet removal causes loss of persistent data and is therefore almost
certainly an irreversible process, the AMS will normally prompt the user for
confirmation. The MIDlet suite vendor can use the MIDlet-Delete-Confirm attribute
in the JAD file to include a message that should be displayed to the user before
removal. This message can be used to warn the user of the consequences, if any, of
removing the MIDlet suite.

3.6.2 The Wireless Toolkit Application Management Software

To prepare a MIDIet suite for remote installation, take the following steps:

1.
2.

98]

Install the MIDIet suite JAR file on your web server.

Edit the JAD file so that its MID1et-Jar-URL attribute points to the JAR file. Note that
the specification requires that an absolute URL is required in the JAD file; relative
URLSs are not guaranteed to work. The Wireless Toolkit does not generate a JAD file
containing an absolute URL, so you will need to edit it manually.

Place the JAD file on the web server.

Create an HTML or WML page with a hypertext link to the JAD file. The hypertext
link must use an absolute URL, since application managers are not required to support
relative URLs.

Configure the web server so that JAD files are returned with MIME type
text/vnd.sun.j2me.app-descriptor and JAR files with MIME type
application/java-archive.

79

J2ME in a Nutshell

The Wireless Toolkit contains a graphical AMS that can be used to test the OTA provisioning
of MIDlet suites as well as to provide developers and vendors with a demonstration of typical
application management and removal features. To use it, run the emulator provided with the
Toolkit from the command line and pass it the argument -Xjam. Assuming you have installed
the Wireless Toolkit in the directory c:\j2mewtk, issuing the following command in DOS
starts the emulator and activates the AMS:

c:\j2mewtk\bin\emulator.exe -Xjam

When started, the application manager displays the Java logo and a copyright message. Press
the Done button to show the application manager's main screen, which is shown on the left of
Figure 3-11.

Figure 3-11. The Wireless Toolkit application management software

ztall Ilerus Elmch Go

Pressing the Install button opens another screen that allows you to supply the URL of an
HTML page that contains links to MIDlet suites, as shown on the right of Figure 3-11. This
should be the URL of the HTML page set up previously, in step 4. The directory oralch3 in
this book's example source code contains a sample HTML file called MIDlet.html that you
can use for testing purposes. You should compile and package the MIDIet in this directory in
the usual way and copy the files MIDlet.html, Chapter3.jad and Chapter3.jar onto your web
server. Open Chapter3.jad and change the MIDlet-Jar-URL attribute to the absolute URL
that corresponds to the location of the JAR file. Also edit the MIDlet.htm! file so that the HREF
attribute in the <a> tag is the absolute URL of the JAD file.

Press the Go button to start the process. At this point, the AMS loads the HTML page and
scans it for links that point to JAD files. A commercial application manager distinguishes
these links from other links by making a request to the server for the target of the link and
looking for a returned MIME type of text/vnd.sun.j2me.app-descriptor. However, the
Wireless Toolkit AMS appears to take a shortcut and simply looks for links for which the
target URL ends with .jad. If the target page does not contain any links that correspond to
MIDlet suites, the error message shown on the left of Figure 3-12 appears.

Figure 3-12. Selecting a MIDlet suite for installation

MiDiet Suites |
ourc of this URL. |
Check the URL o |
ke sure if is |

Dl:r-r:

80

J2ME in a Nutshell

If you experience problems with this example, check that the server is properly configured
and that the JAR and JAD files are consistent:

e The URL that you supply to the AMS must point to an HTML file that contains
absolute hypertext links to one or more JAD files. The HTML file for this example
looks like this:

<HTML>
<HEAD>
<TITLE>
J2ME in a Nutshell Example MIDlet Download Page
</TITLE>
</HEAD>
<BODY>
Install the example MIDlet suite for
Chapter 3 of
"J2ME in a Nutshell".
</BODY>
</HTML>

e The web server must be configured to return JAD files with MIME type

text/vnd.sun.j2me.app-descriptor.

e The MIDlet-Jar-URL attribute in the JAD file must be an absolute URL pointing to
the JAR file.

o The JAD file must contain the mandatory attributes listed in Table 3-2.

If the AMS locates any JAD files, it displays a list of the links that point to them, using the
text within the <a> tag pair to identify each MIDIet suite, as shown on the right side of
Figure 3-12. This implementation does not display the MIDlet suite name or the JAR file size
from the JAD file because it hasn't fetched it yet. To continue with the installation process,
press the Install button.

At this point, the Wireless Toolkit AMS reads the JAD file from the server and uses the
MIDlet-Jar-URL attribute to locate and fetch the JAR file. If this process succeeds, a
confirmation message appears as shown on the left side of Figure 3-13. After a short pause,
the application manager switches back to its main screen, shown in the center of Figure 3-13.
If you compare this to Figure 3-11, you'll see that the main screen now contains the name of
the MIDlet suite that was just installed. The list of installed MIDlets is saved on the device, so
this list will reappear when you next run the emulator. In the case of a MIDlet suite containing
more than one MIDlet, the list in the main screen displays each suite together with the
MIDlets that it contains. An example of this is shown on the right-hand side of Figure 3-13, in
which a MIDIet suite called chapter5 containing individual MIDlets called socket, Time,
Ranking and others that are not visible in the screen shot, has been installed.

Figure 3-13. Installing a MIDlet suite

F ol = T il [
n Screen
4f§3‘ Po8 EcsenpizhiDizt
i M
Chapter 3 was
fuccesstuly
restalied
Launch MiEnu

81

J2ME in a Nutshell

The main screen also includes an option that lets you launch MIDlets. If you select a MIDlet
suite and choose this option, the usual MIDlet selector lets you pick the actual MIDlet to be
run (see Figure 3-8). For a suite with multiple MIDlets, you can also choose an individual
MIDlet from the main screen and launch it directly.

The Menu option provides access to the other application management features of
the Wireless Toolkit AMS, presented in the form of a list, as shown in Figure 3-14.

Figure 3-14. The Wireless Toolkit AMS application management menu

Farl B [Fami B0
Menu Miznu

1 2 Remove

2 Remove 3 Updata

3 Updeie 4 Inztall

4 Instal § Settings

5 Seffings Qrbout |

Lawnch 4 Manu Launch ¥ Menu

Of these menu items, only the first three are worth discussing here. Each of these items
operates on a MIDlet suite, so selecting any of them brings up another copy of the MIDlet
selection screen so that you can choose the suite to which the command should apply.

The Info command displays the content of the JAD file that was fetched when the MIDlet
suite was installed. Ideally, this information would be displayed to the user before the
installation process starts, but, as noted previously, the Wireless Toolkit AMS does not

implement this feature. Figure 3-15 shows the information displayed for the chapter3 MIDlet
suite.

Figure 3-15. MiIDlet suite information as displayed by the Windows Tooklit AMS

Tl [Fanl [Tl =
fnfo: nifing nifio:
ExarmpleiDiet sampleMIimet ramplemiDiet
i}‘ erzion: 1.0 Ltzhel
L] endor. J2ME in & Metyzite
[Size: S K utshel piocslhiost: 808
fwersion 1.0 ehahe Cheapterd jad
Back & ack 1 ack *

The Update command reinstalls the MIDlet suite from its original source. As noted earlier, the
AMS can compare the MIDlet version in its installed JAD file and the one it acquires from the
server to determine if it already has the latest version of a MIDlet suite.

The Remove option deletes a MIDlet suite and all its associated persistent storage from the

device. The Wireless Toolkit AMS displays a warning message and asks the user for
confirmation before performing this operation (see Figure 3-16).

82

J2ME in a Nutshell

Figure 3-16. Deleting a MIDlet suite using the Wireless Toolkit AMS

Tl ED
ICanfirmation

[Ari YOL 2Ura Yyou

terant to remowe
ExampleiDiet™?

Femaving will

T il =
i onfirmation

Eocampl bl

Fliamoving wil
Erase ol deta and
Fannol be undane

Cancel 4 Remove

cancel 1 Ramove

The Wireless Toolkit AMS can be controlled from the command line as well as through its
user interface. For example, you can install a MIDlet suite directly from a web server using

the command:

c:\j2mewtk\bin\emulator.exe -Xjam:install=http://www.yourserver.com/

SOMETHING/Chapter3.jad

A complete description of the command-line arguments recognized by the Wireless Toolkit

emulator can be found in Chapter 8.

83

J2ME in a Nutshell

Chapter 4. MiDlet User Interfaces

MIDlets are intended to be portable to a range of devices with widely varying input and
display capabilities, ranging from the very small, mainly two-color screens and restricted
keypads on pagers and cell phones to the larger, often multicolor displays and more
sophisticated keyboards or handwriting recognizers available on PDAs. Creating a set of user
interface components suitable for such a wide range of devices is not a simple task. One
option available to the MIDP designers was to use a subset of the Abstract Windows Toolkit
(AWT) or Swing components from J2SE. However, this is not really a viable solution.
Resource constraints rule out the adoption of Swing, while the basic user interface model
around which the AWT is based is far too complex to be used on small devices.

Both AWT and Swing are based on giving the developer maximum freedom to create a rich
and complex GUI in a multiwindowed environment, in which the user might be interacting
with several applications at the same time. By contrast, because of the limited screen size, cell
phone users do not expect to be able to work with more than one window or even more than
one MIDlIet at any given time. Instead of trying to find a subset of the AWT that would be
appropriate for this restricted environment, the MIDP expert group chose to introduce a much
simpler set of components and a lighter, screen-based programming model. In this model, the
MIDIlet developer focuses more on the business logic of the application rather than on the
minute details of the user interface itself. The result is a class library that is much smaller and
easier to use and also less demanding of memory and processor resources than either Swing or
AWT.

The price to be paid for this simplicity is that developers using this "high-level" API are much
less able to control the exact look and feel of their MIDlets; the programming interface does
not include features that would allow customization of colors, fonts, or even component
layout. The high-level API is covered in the second half of this chapter, but it does not
represent the entire scope of the MIDlet user interface support. Recognizing that some
application types, such as games (which are likely to form a large part of the software market
for cell phones) require a much greater level of control, MIDP also includes a "low-level"
user interface API. This API gives the developer exactly the opposite of the high-level API,
namely complete control over (a part of) the screen and access to the keypad and whatever
pointing device might be available. The trade-off for this greater control is greater
responsibility: using the low-level API means writing code to draw everything that appears on
the user's screen and interpreting every input keystroke and pointer movement to decipher
what the user wants to do. J2SE developers with experience creating custom components for
AWT and Swing applications will probably feel very much at home with the low-level API,
which is covered in the next chapter.

4.1 User Interface Overview

The user interface model for MIDP devices is very simple. J2SE applications often consist of
several simultaneously visible windows between which the user can move the input focus
simply by clicking with the mouse. A MIDP device, on the other hand, is required to display
only a single "window" at a time, and the ability to move from one window to another
depends on whether the MIDlet developer includes UI components that allow the user to do
so. Furthermore, if there is more than one MIDlet running in a device at the same time, only
one of them can have access to the screen, and the device may or may not provide a way for
the user to select which MIDlet should be given the screen at any particular time. The MIDlet

84

J2ME in a Nutshell

user interface library, which is implemented in the javax.microedition.lcdui package,
includes several classes that represent the device's screen and provide the basic top-level
windows. Developers can use these as the basis for building form-based MIDlets or more
graphically sophisticated MIDlets, such as games.

4.1.1 The Display and Displayable Classes

The pisplay class represents a logical device screen on which a MIDlet can display its user
interface. Each MIDlet has access to a single instance of this class; you can obtain a reference
to it by using the static getDisplay () method:

public static Display getDisplay (MIDlet midlet);

A MIDlet usually invokes getDisplay() when its startApp () method is called for the
first time and then uses the returned pisplay object to display the first screen of its user
interface. You can safely call this method at any time from the start of the initial invocation of
the startapp () method, up to the time when the MIDlet returns from destroyApp() or
notifyDestroyed(), whichever happens first. Each MIDlet has its own, unique and
dedicated instance of Display, SO getDisplay() returns the same value every time it is
called. A MIDlet will, therefore, usually save a reference to its Display object in an instance
variable rather than repeatedly call getDisplay().

Every screen that a MIDlet needs to display is constructed by mounting user interface
components (which are called items in MIDP terminology) or drawing shapes onto a top-level
window derived from the abstract class Displayable, which will be discussed later. A
Displayable is not visible to the user until it is associated with the MIDlet's pisplay object
using the Display's setCurrent () method:

public void setCurrent (Displayable displayable)

Similarly, the pisplayable currently associated with a Display can be retrieved by calling
getCurrent ():

public Displayable getCurrent()

Since a Display can show only one screen at a time, calling the setCurrent () method
causes the previously displayed screen, if any, to be removed and replaced with the new one.
However, the effect of calling setCurrent () is not guaranteed to be immediate; the device
is allowed to defer the change to a more convenient time. This has the following
consequences:

e Code such as the following:

Form newForm = new Form("New Form");
display.setCurrent (newForm) ;

Form currentForm = display.getCurrent();
System.out.println (newForm == currentForm) ;

(where Form is a kind of pisplayable that will be introduced shortly) does not
necessarily print "true" because getCurrent () may return the Displayable that was
installed before setCcurrent () was called.

85

J2ME in a Nutshell

o Installing a new Displayable and then blocking to perform a slow operation, such as
making a network connection, is likely to result in the MIDIlet appearing to stop with
the previous screen on display. If you want to display a "Please wait..." message to
make it clear to the user that a long-lasting operation is in progress, it is best to call
setCurrent () to install a new Form containing the message and initiate the
operation in a separate thread. The original thread can then continue unblocked and
eventually display the message.

The pisplay object does not correspond directly to the device's screen. Instead, it acts as a
virtual screen that the MIDlet can use to control what it would like to display. If there is more
than one active MIDlet, only one of them can control the real screen at any given time. The
MIDlet that has direct access to the screen is said to be in the foreground, and other MIDlets
are in the background. The MIDP device's AMS is responsible for selecting which MIDlet is
in the foreground at any given time. When a MIDlet is moved to the foreground, the
Displayable selected in its Display object is switched into the screen, and the MIDlet's
startApp () method is called, as described in Section 3.4. Figure 4-1 shows the relationship
between the device screen and the pisplay and current Displayable of foreground and
background MIDlets.

Figure 4-1. Foreground MiDlet and the Display object

Tam - | :

Digg Current displayoble | fire sovw e | fRerdngie |
kL revey ma|| [ROSEFOY |

obie s | |
b - e

MiDlet 1 :

Displosy
objecl

Once a MIDlet has the foreground, it retains it until it does one of the following things:

e Invokes its notifyPaused() method to request a temporary move to the background
state

e Invokes its notifyDestroyed() method to indicate that it no longer wants to be
scheduled into the foreground

Although a MIDlet would normally call these methods as part of its event handling in
response to user commands, a background thread running in the same MIDlet (or even in
another MIDlet) may also invoke them to move the MIDIet out of the foreground.

Since the current Displayable is an attribute of the pisplay object, a background MIDlet
also has a current pisplayable, which it may change by calling the setCurrent () method
if it has threads or timers running while it is not in the foreground. These changes have no
effect on what the user sees until the MIDlet returns to the foreground.

86

J2ME in a Nutshell

A MIDlet can determine whether a given Displayable is visible to the user by calling
isShown (), which is one of the four methods of the Displayable class:

public abstract class Displayable {
public boolean isShown();
public void addCommand (Command cmd) ;
public void removeCommand (Command cmd) ;
public void setCommandListener (CommandListener 1);

The isshown () method returns true only when the pisplayable can actually be seen by
the user, which requires that it be the current Displayable of the MIDlet's Display and that
the MIDlet be in the foreground. However, this condition is not sufficient, as the following
code illustrates:

Form newForm = new Form("New Form");

display.setCurrent (newForm) ;

System.out.println ("New form is shown? " + newForm.isShown());

In this case, newForm may not yet be visible, because the effect of setCurrent () is not

required to be immediate.

The other three methods of the Displayable class deal with the addition and removal of
command objects and the registration of a listener to receive events from Commands. As the
name suggests, Commands allow the user to request that an action be performed, such as
opening a network connection, switching to another screen, or terminating the MIDlet.
Commands are discussed in detail later in Section 4.2.4.

4.1.2 The High- and Low-Level User Interface APIs

Displayable is the base class for all MIDlet user interfaces, but it doesn't provide enough
functionality to be useful in its own right. There is a set of more useful classes, derived from
Displayable, that can be used as the basis for building real user interfaces. The class
hierarchy for these classes is shown in Figure 4-2.

Figure 4-2. Top-level user interface classes

7
iy -2 .-=i*I Disloyahle /
|
{ Sereem [Comvas "
| l |
Alar| Form Lt TextBox ‘

As you can see, there are two direct subclasses of Displayable, both of which are also
abstract. These two subclasses are the starting points for the two different styles of user
interface programming supported by the javax.microedition.lcdui package.

87

J2ME in a Nutshell

Canvas

The canvas class is the cornerstone of the low-level GUI API. canvas acts like a
blank sheet of paper that covers most of the user's screen. In order to create a user
interface using the low-level API, you subclass canvas and implement the paint ()
method to draw directly on the screen. You can also respond to user input by
overriding methods that are called as a result of key presses or pointer movements.
The low-level API does not provide any individual components to handle text input,
display lists, offer choices, and so on, although it does include the ability to use
commands, which canvas inherits from Displayable. The low-level API is well suited
for writing graphical games or displaying data in chart form and is described in detail
in Chapter 5.

Screen

Screen is the basic class from which the top-level windows of the high-level API are
derived. Like canvas, Screen is an abstract class, but, unlike canvas, developers are
not expected to subclass it in order to implement a MIDlet user interface. screen adds
to Displayable the ability to include an optional title string and an optional ticker,
which displays a continuously scrolling text message. The most commonly used
concrete subclass of screen is Form, which allows you to build a user interface by
adding standard components (referred to as Items) to it, much like you add
ComponentS to a Container in the AWT. List, TextBox, and Alert, which is the
MIDP equivalent of a dialog, are other subclasses of screen. Unlike the low-level
API, the high-level API does not allow the developer to draw directly to the screen or
to handle events from the keyboard or the pointer. Instead, these events are handled
internally and, where appropriate, are converted to higher-level events that originate
from the 1tems that appear on the user's screen.

Although the low- and high-level APIs are very different in style, they can be used together
within a MIDlet. A typical example of this might be using the high-level API to create a form
that allows the user to specify the location of some data, then switching to a canvas on which
the data is presented as a chart. You cannot, of course, use the high- and low-level APIs on
the same screen.

4.2 The High-Level User Interface API

A MIDlet written using the high-level API typically consists of one or more screens built
using the Form, List, or TextBox classes, together with a set of Commands that allow the user
to tell the MIDlet what actions to perform and how to navigate from screen to screen. Let's
start our examination of the high-level API by creating a simple MIDlet with a single screen
containing a TextBox.

4.2.1 A TextBox Example

TextBox 18 a component used to display and modify text. Since it is derived from Screen,
TextBox occupies the entire screen of the device and therefore can accomodate relatively
large amounts of text spread over several lines. Most of the API provided by TextBox is
identical to that of a similar component called TextField, which is covered in detail in

88

J2ME in a Nutshell

Section 4.2.9, later in this chapter. In this example, we use only the features that TextBox
inherits from screen (and which are not available to TextField, because it is not derived

from screen). The code for this example is shown in Example 4-1.
Example 4-1. Creating and Using a TextBox

package ora.ch4;

import java.io.InputStream;

import java.io.InputStreamReader;

import java.io.IOException;

import javax.microedition.lcdui.Display;
import javax.microedition.lcdui.TextBox;
import javax.microedition.lcdui.TextField;
import Jjavax.microedition.lcdui.Ticker;
import javax.microedition.midlet.MIDlet;

public class TextBoxMIDlet extends MIDlet {

// Maximum size of the text in the TextBox
private static final int MAX TEXT SIZE = 64;

// The TextBox
protected TextBox textBox;

// The MIDlet's Display object
protected Display display;

// Flag indicating first call of startApp
protected boolean started;

protected void startApp() {
if (!started) {
// First time through - initialize

// Get the text to be displayed
String str = null;
try {
InputStream is = getClass() .getResourceAsStream (
"resources/text.txt");
InputStreamReader r = new InputStreamReader (is);
char[] buffer = new char[32];
StringBuffer sb = new StringBuffer();
int count;
while ((count = r.read(buffer, 0, buffer.length))
sb.append (buffer, 0, count);
}
str = sb.toString();
} catch (IOException ex) {
str = "Failed to load text";

}

// Create the TextBox
textBox = new TextBox ("TextBox Example", str,
MAX TEXT STIZE, TextField.ANY) ;

// Create a ticker and install it
Ticker ticker = new Ticker ("This is a ticker...");
textBox.setTicker (ticker) ;

{

89

J2ME in a Nutshell

// Install the TextBox as the current screen
display = Display.getDisplay(this);
display.setCurrent (textBox) ;

started = true;

}

protected void pauselpp() {
}

protected void destroyApp (boolean unconditional) {

}

In this simple MIDIet, all of the code is in the startapp() method, which simply reads
some text from a file, installs it in a TextBox, and arranges for the TextBox to appear on the
screen. Since the startapp () method could be called more than once during the lifetime of
a MIDlet, this initialization code is protected by a boolean flag that ensures that it is
performed only on the first invocation of startaApp ().

Skipping for a moment the code that obtains the actual text, let's look at how the user interface
is created. The TextBox is created using its only constructor:

public TextBox (String title, String text, int maxSize, int constraints)

The title argument sets the title that appears above the TextBox; you can set it to null if no
title is required. The second argument specifies the text that will initially be displayed in the
TextBox, and the final two arguments allow you to exercise some control over what the
TextBox 1S allowed to contain, as follows:

maxSize

Specifies the maximum number of characters that the TextBox can contain at any
time. Once the TextBox contains the maximum number of characters, the user will not
be allowed to enter any more. The same restriction also applies to the text supplied to
the constructor and to all the other methods that allow you to change programmatically
the content of the TextBox, which you'll see later when we look at the TextField
component. There is no way to avoid specifying an upper bound on the number of
characters that the TextBox can hold; specifying 0, for example, creates a TextBox
that cannot contain any text at all! Furthermore, the implementation is permitted to
apply a smaller upper bound than the one you specify, so trying to avoid this
constraint by setting a large maximum size is unlikely to work. You can find out the
actual maximum size that applies to a TextBox by calling its getMaxsize () method.

constraints

Specifies the type of content that should be allowed in the TextBox. Using this
argument, you can, for example, restrict the user to entering only numbers or more
complex things such as phone numbers or URLs without having to write the code to
validate the content yourself. Since this is another feature that TextBox shares with
TextField, we'll defer further discussion of it until later in the chapter. In this

90

J2ME in a Nutshell

example, the constraint has the value TextField.aNy, which places no restriction on
what the TextBox can contain.

TextBox inherits the ability to display a title from its superclass (screen). Here is how
Screen itself is defined:

public abstract class Screen extends Displayable {
public Ticker getTicker();
public String getTitle();
public void setTicker (Ticker ticker);
public void setTitle(String title);

You can change the title associated with the TextBox at any time by calling the setTitle()
method, and you can also use the setTicker () method to add a Ticker to the screen.
Ticker is a very simple class that displays a string that continuously scrolls across the screen
area allocated to it, which is usually at the top. Here's the definition of this class:

public class Ticker {
public Ticker (String str);
public String getString();
public void setString(String str);

You'll notice that there is no way to explicitly start or stop the ticker or to control the direction
or rate at which it scrolls its content; these aspects are all controlled by the MIDP
implementation itself. This lack of direct control is a deliberate design feature of the high-
level API, which emphasizes simplicity, partly to minimize the size of the API and partly to
make it possible to port both the platform itself and the MIDlets that rely on it to devices with
varying user interface capabilities. In this example, we add a Ticker to the TextBox so that
you can see how it works and where it is placed:

Ticker ticker = new Ticker ("This is a ticker...")
textBox.setTicker (ticker) ;

It is worth noting that a single Ticker can be associated with any number of screens at the
same time. This is a very useful feature, not only because it potentially saves resources, but
also because any changes made to the Ticker by calling its setstring() method (e.g.,
updating stock prices) takes effect immediately for all the screens on which the Ticker
appears.

To run this example, you can use the Run MIDP Application utility that comes with the
Wireless Toolkit. Point it at the file ora\ch4\Chapter4.jad in the example source code for this
book and select TextBoxMIDlet. The MIDlet's user interface, as seen on the default color
phone, is shown in Figure 4-3.

91

J2ME in a Nutshell

Figure 4-3. A TextBox with a ticker and screen title

TentBiox Example— it

=hegy for man, one

lant leap for

rmankino
+

b ToxIBox orea

Serofl amow

This phone arranges the three parts of the screen so that the Ticker is placed at the top with
the title below it and the content of the TextBox itself at the bottom. Other devices might take
a different approach. For example, if you run this code on a PalmOS-based handheld,
the result looks like Figure 4-4, where the title and ticker are placed side by side. Notice also
that because less space is allocated for the title on the PalmOS platform, the text is truncated..

Figure 4-4. Title and Ticker as shown on a PalmOS-based handheld

Chap...TextBox.. ThlSlsatlcker

That's one srall step for man, one
qiant leap for mankind]

Although the text used in this example is fairly short due to the small size of the phone's
screen and the space taken up by the title and ticker, it isn't possible for the TextBox to show
all of the text at once. When this happens, the TextBox allows the user to scroll its content
using the up and down arrow keys on the keypad and draws a scroll arrow on the screen to
indicate that there is more text to be seen. On other devices, such as handhelds with pointing
devices, a scrollbar that could be dragged using the pointer might be provided. The presence
and nature of these visual cues and the way in which they work is transparent to the MIDlet,
which doesn't need to include any code to deal with them or even be concerned about whether
they are required.

Since TextBox provides editing facilities, you can use the keys on the emulated phone's
keyboard to change the text or add extra characters. If you try to add more than 6 characters,
however, you will fail, because this TextBox has a capacity of only 64 characters, and the
initial text is 58 characters long. Using the arrow keys, you can move the insertion point
around within the TextBox and insert or delete characters anywhere you like, provided you
don't exceed the 64-character limit.

The emulated devices provided by the Wireless Toolkit attempt to mimic the input
mechanisms of the real devices. In the case of a cell phone, the small number of keys
available means that most of the keys are overloaded to perform several functions. Most of
the keys give numbers when pressed, but if you press them repeatedly, they yield other
characters. On the default color phone, for example, the 2 key can be used to input the number
2 or the letters A, B, or C, provided you press the key quickly enough. You can use the
MODE key to shift into a separate mode to make the input of alphabetics quicker or to force
each key to represent only the number on its face. You can also use the MODE key to select
a screen that contains special symbols. The RIM wireless handheld, on the other hand, has
a larger set of keys that include alphabetics, with numbers and special characters accessible
via a mode shift. When you use the TextBox or TextField components, you don't need to

92

J2ME in a Nutshell

concern yourself with the details of the keypad or keyboard, because the mapping from key
strokes to Unicode characters is handled for you in a manner appropriate to the device that
your MIDlet is running on.

When you are using the cell phone emulator, you will probably find it tedious and quite time-
consuming to use the phone's keypad to enter text. In the real world, this would not be quite
so difficult, because you are probably used to using the real keypad of your own phone, but it
is inconvenient to use such a slow approach when developing MIDlets. To alleviate this
problem, the emulators allow you use your PC's keyboard to edit the content of the TextBox
instead of having to resort to the mouse. The quickest way to enter this mode is to press the
Return key on your keyboard. This replaces the MIDlet's screen with a full-screen editor that
accepts keystrokes from your keyboard, as shown in Figure 4-5. When you have finished
editing, you can return to normal mode by pressing Return again. You can also abandon any
changes you have made by pressing the Escape key. Another way to enter and leave full-
screen editing mode is to use the mouse to "press" the key that corresponds to the SELECT
action on the emulator's keypad. In the case of the default color phone, this is the round white
button just below the screen, as shown in Figure 4-5. The full-screen editing facility is, of
course, not available on real devices, and you should perform some testing without using this
facility before deciding that your MIDlets are error-free.

Figure 4-5. Using the emulator's full-screen editor to enter text into a TextBox

hat's one smal st
p for mran, one oy
bzap for mankindg

Use mmdkgmn ':T o
press Meis erwlator keypad buttan
{the Select button) do enter

h o8 fultscreen editing mods.

4.2.2 Displaying the TextBox

Once you've created the TextBox, the next step is to make it visible to the user, which
requires two lines of code:

display = Display.getDisplay(this);
display.setCurrent (textBox) ;

The static getDisplay() method of Display gets the pisplay object for the MIDlet passed
as its only argument. Since this call is made directly from the MIDlet's startapp () method,
it is appropriate to use this as the MIDlet reference. It is necessary to call getDisplay ()
only once in the lifetime of a MIDlet, because the returned reference is valid until the MIDlet
is destroyed. Most MIDlets, therefore, simply store the reference in an instance variable, as
shown in this example. To make the TextBox visible, the Display setCurrent () method is
used with the TextBox reference supplied as the argument. The TextBox will appear on the
user's screen sometime shortly after the setCurrent () method returns.

93

J2ME in a Nutshell

4.2.3 Accessing Resources in the MIDlet JAR File

For this example, instead of hard-coding the text to be displayed in the TextBox, [put it into a
text file that is included in the MIDIlet JAR file. Separating text from code is a useful
technique that can be used to allow tailoring of a MIDlet suite to meet locale- or customer-
specific requirements, such as the need to translate text in the user interface into other
languages. The only problem with this approach is getting access to the file while the MIDlet
is executing.

To solve this problem, the CLDC version of the class java.lang.Class provides an
implementation of the J2SE method getResourceAsStream():

public InputStream getResourceAsStream(String name) ;

Given the name of a resource, this method returns an InputStream that can be used to read its
content. To use this method, however, you need to have a class object on which to invoke it
and a properly formed resource name.

__ CLDC/MIDP does not provide an implementation of the other J2SE
= method that is commonly used to access resources in JAR files:

public URL getResource (String name)

Supporting this method would require the URL class, which is not part of
either CLDC or MIDP. Another reason for not providing it is that it is
of limited use even in J2SE, because some web browsers did not
support it for applets but did implement getResourceAsStream().
Therefore, probably much less existing code uses getResource () than
getResourceAsStream().

There are two different ways to specify the resource: with a relative name or an absolute
name. To see how the resource name is constructed, you need to keep in mind how the JAR
file is logically arranged. The simplest way to understand the layout is simply to imagine the
JAR file expanded out into a filesystem hierarchy. This is usually very easy to do, because
most JAR files are constructed from a filesystem anyway. In this example, the MIDlet class
file is in a package called oralch4 and, therefore, in terms of a filesystem layout, the class file
would be called ora\ch4\TextBoxMIDlet.class. The text file is called text.txt and was placed in
a package called oralch4\resources. Therefore, the filesystem pathnames for these two files
would be:

ora\ch4\TextBoxMIDlet.class
ora\ch4\resources\text.txt

For the purposes of this example, we want to access the latter of these files while executing
the code of the former. The simplest way to do this is to use an absolute resource name for the
text file, which can be created by taking the logical pathname of the file, replacing all the "\"
characters with "/", and prefixing the result with a "/" to form an absolute pathname:

/ora/ch4/resources/text.txt

94

J2ME in a Nutshell

When you use an absolute resource name, you can invoke the getResourceAsStream()
method of any class in the same JAR file to get an InputStream for the resource. In this
example, the simplest approach to take is to use the class object of the MIDlet itself. Hence,
one way to locate the text file is to write the following:

InputStream is = getClass() .getResourceAsStream (
"/ora/ch4d/resources/text.txt");

Alternatively, you can use a relative resource name. Normally, you use a resource name that
is relative to the class whose code is using it, so in this case you need a resource name relative
to ora\ch4\TextBoxMIDlet.class. If you view the JAR as a filesystem, it is easy to see that the
appropriate relative resource name would be resources/text.txt. Note that relative resource
names do not begin with a "/" character. Because this name is relative to
TextBoxMIDlet.class, you need to use the class object of that class (or, in fact, any other
class in the same package, since all such classes are in the same directory in a filesystem
representation of the JAR file structure). Hence, to use a relative pathname, you would code
the following:

InputStream is = getClass().getResourceAsStream("resources/text.txt");

Relative resource names are a little more flexible than absolute names because they are
unaffected by package name changes, provided that you keep the relative locations of the
class file and the target file unchanged. Hence, if the MIDlet were moved from the package
ora.ch4 into a different package called ora.chs, the relative resource name would continue
to work, provided that the text file is moved to ora/ch8/resources. No code changes would
need to be made, other than to change the package line at the top of the source file and
recompile. If you use absolute resource names, changing the package hierarchy requires that
you search for and change all affected instances of getResourceAsstream().

Once you have an InputStream for the resource, you can use the usual mechanisms to load
its content. Here, we simply wrap the InputStream with an InputStreamReader to convert
the content of the file into Unicode characters and read it into a StringBuffer a piece at a
time.

The MIDP specification allows you to use getResourceAsStream() to access anything in
the JAR file apart from the class files. This includes the JAR's manifest file, which can be
obtained as follows:

InputStream is = getClass().getResourceAsStream("/META-INF/MANIFEST.MF") ;
4.2.4 Commands

The TextBoxMIDlet example allows you to view and edit text, but there is no way to tell the
MIDIet to save your changes in persistent storage, and it is not possible to terminate the
MIDlet in an orderly manner. To provide this functionality, you need to use Commands.
Commands are a feature of the pisplayable class, so you can add them to any user interface,
even those created using the low-level API.

4.2.4.1 Creating Commands

The command class has a single constructor:

95

J2ME in a Nutshell

public Command (String label, int type, int priority);

The 1abel argument supplies the text that will be used to represent the command in the user
interface, and the type and priority arguments are hints that the MIDP implementation can
use when deciding where the command will be placed. The type and priority arguments are
required because of the diversity of the devices on which MIDP is intended to be used.
Following construction, you cannot change the label, type and priority attributes of a
Command.

If you were writing a J2SE application using AWT or Swing, you would add a command
action to the user interface by creating a button or a menu item and connecting to it a listener
that would perform the action associated with the command upon activation by the user. The
limited capabilities of most MIDP devices make it impossible to rely on the general
availability of anything that resembles a menu, nor do you have the screen space to display
more than a couple of buttons. Cell phones, for example, typically have only two soft keys to
which application actions can be assigned. PalmOS applications are more fortunate: they have
access to a traditional pull-down menu system and a larger number of buttons that can be
drawn on the screen.

Clearly, a portable MIDlet cannot be coded in such a way as to assign command actions
explicitly to individual menus or buttons, because these may not be available on any given
device. On the other hand, forcing all MIDlets to work to the lowest common denominator
(i.e., two soft keys) would be overly restrictive, especially for PDAs. For this reason, the
responsibility for mapping Commands to GUI resources rests with the MIDP implementation,
which is specific to each platform and, therefore, aware of what is available. MIDlets can use
the type and priority constructor arguments to supply hints to the MIDP implementation
regarding the semantic meanings of Commands and their relative importance, so that those
likely to be most frequently used can be made most easily accessible to the user.

The type argument is used to convey the meaning of a Command in terms of a small set of
commonly required application operations. The possible values for this argument and their

interpretations are given in Table 4-1.

Table 4-1. The Command type Parameter

type
Paramter ' Meaning
Value
Implies agreement by the user for some operation to be performed. Commands of this type would
OK) .
normally be placed to be easily accessible to the user.
BACK Replaces the currently displayed screen with the one that preceded it.
Abandons an operation before it has been initiated. This command, along with the OK command,
is typically made available while setting up the parameters for the operation. It might also be
CANCEL y L . .
available on an Alert screen used to explicitly prompt the user for confirmation of an operation
that might not easily be reversible.
STOP Stops an operation that is already in progress.
EXIT Requests that the MIDlet stop all outstanding operations and terminate in an orderly manner.
HELP Requests general or context-sensitive help.
Relates to the function of the current screen, but does not fit into one of the specific categories
SCREEN) . o) . .
listed previously. Most application-specific actions are of this type.
ITEM Indicates a command that is associated with a particular user interface component.

96

J2ME in a Nutshell

4.2.4.2 Adding Commands to the user interface

Once you have created a command object, the next step is to arrange for it to appear in the user
interface. This is achieved by calling the addCommand () method of Displayable:

public void addCommand (Command cmd) ;

MIDP platforms are allowed to follow their own rules when determining how to represent
Commands in the user interface. In general, however, the choice is made first based on the
Command type and then on the priority, where lower priority values tend to result in a more
favorable placement. The order in which commands are added to a Displayable is not usually
of any significance in the determination of placement, and the label text is not used at all,
because the semantic meaning of the command is supposed to be conveyed via the type
attribute.

On a cell phone, for example, the type might be used to favor well-known operations (such as
OK, CANCEL, BACK, etc.) that the user would normally expect to be able to access via a
soft key. Where the number of these commands exceeds the number of soft keys available, the
phone might use the priority to determine which commands should be installed on the soft
keys, with lower values increasing the likelihood of assignment to a soft key. The remaining
commands would then be placed on a menu that would itself be accessible via a soft key.
When the number of commands does not exceed the number of soft keys, they can all be
allocated a soft key. When a platform has both soft keys and pull-down menus, it may choose
to place commands on menus as well as, or instead of, on soft keys, with the choice again
being made usually based on the type and priority attributes.

Some commands, such as EXIT, might need to appear on more than one application screen.
When this is the case, it is not necessary to create a dedicated instance for each screen,
because a single command can be added to any number of screens:

Command exitCommand = new Command ("Exit", Command.EXIT, O0);
forml.addCommand (exitCommand) ;
form?2.addCommand (exitCommand) ;

4.2.4.3 Responding to user activation of Commands

In order to be notified when the user activates a Command, you have to register a
CommandListener with the Displayable to which the command was added. You do this by
invoking its setCommandListener () method:

public void setCommandListener (CommandListener 1);

CommandListener is an interface with a single method:

public void commandAction (Command c, Displayable d)

The commandAction() method is called when any command on the Displayable is
activated. The first argument is the more useful, because it allows you to determine which
operation the user wants to perform. The pisplayable argument is useful if you add the same
Command to more than one screen, and the resulting action is dependent on the current screen.

97

J2ME in a Nutshell

It can also be useful if the action needs a reference to the screen in order to perform its
assigned function.

Note that the setCommandListener () method allows only a single CommandListener to be
registered at a time. Calling this method again replaces any existing listener with the new one,
and calling it with a nul1 argument removes the previous listener. This is very different from
J2SE event handling, which normally allows you to add as many listeners as you like and
requires you to register with the component itself rather than an enclosing container. Although
it is very flexible, the J2SE model tends to result in the creation of lots of small event handler
classes, which is very expensive in terms of memory and class-loading time; it is therefore not
suitable for small-memory devices. MIDlets can get away with only one listener per screen
and, if the MIDIet itself implements the CommandListener interface, this won't even entail
creating a new class. If a MIDlet has several screens, it can choose to create a single listener
class for each, or it can save even that overhead by subclassing the screen class to implement
CommandListener, as follows:

public class MyTextBox extends TextBox implements CommandListener ({
public MyTextBox (String title, String text, int maxSize,
int constraints) {
super (title, text, maxSize, constraints);
setCommandListener (this) ;
// Add Commands (not shown)

// Handle command actions
public void commandAction (Command c, Displayable d) ({

// Code not shown
}

4.2.4.4 A Command example

We can easily illustrate the use of commands by extending the TextBoxMIDlet example to
include four operations:

¢ An Exit command that terminates the MIDlet.

e An OK command that prints a message to standard output. (In a real MIDlet, this
would obviously do something a little more useful!)

¢ A Clear command that removes all of the text from the TextBox.

e A Reverse command that reverses the text in the TextBox.

The implementation of this modified example is shown in Example 4-2.
Example 4-2. Adding Commands to the TextBoxMIDlet Example

package ora.chi4;
import javax.microedition.lcdui.Command;
import javax.microedition.lcdui.CommandListener;

import javax.microedition.lcdui.Displayable;

import Jjavax.microedition.lcdui.*;

98

J2ME in a Nutshell

public class TextBox2MIDlet extends TextBoxMIDlet implements
CommandListener ({

// Exit command
private static final Command EXIT COMMAND =
new Command ("Exit", Command.EXIT, 0);

// OK command
private static final Command OK_COMMAND =
new Command ("OK", Command.OK, O0);

// Clear text box content
private static final Command CLEAR COMMAND =
new Command("Clear", Command.SCREEN, 1);

// Reverse the content of the text box
private static final Command REVERSE COMMAND =

new Command ("Reverse", Command.SCREEN, 1);
protected void startApp() {
boolean firstTime = !started;

super.startApp();

// If this is the first execution of startApp, install commands
if (firstTime) {
textBox.addCommand (OK COMMAND) ;
textBox.addCommand (EXIT COMMAND) ;
textBox.addCommand (CLEAR COMMAND) ;
textBox.addCommand (REVERSE COMMAND) ;
textBox.setCommandListener (this) ;

}

// Command implementations.
public void commandAction (Command c, Displayable d) {
if (c == EXIT COMMAND) {
destroyApp (true) ;
notifyDestroyed();
} else if (c == OK COMMAND) {
System.out.println ("OK pressed");
} else if (¢ == CLEAR COMMAND) {
textBox.setString (null);
} else if (c == REVERSE COMMAND) {
String str = textBox.getString();
if (str != null) {
StringBuffer sb = new StringBuffer (str);
textBox.setString (sb.reverse () .toString());

Notice that this example is implemented by deriving it directly from the TextBoxMIDlet class
from the previous example. Of course, you wouldn't normally have to do this in the real
world, but here it serves to show how easy it is to add command handling to an existing class,
and you don't need to replicate code that you saw earlier!

The four commands are defined as static class members, for example:

99

J2ME in a Nutshell

private static final Command EXIT COMMAND = new Command ("Exit",
Command.EXIT, 0);

Since commands are simply constant-valued objects, you can usually define them in this way
and then reuse them wherever you need to, which would include adding the same instance to
more than one screen, if necessary. You can see from Example 4-2 that the EXIT and OK
commands use the standard types Command.EXIT and Command.OK, respectively, which allows
the device on which the MIDIlet will be run to represent them in whatever way it would
normally present EXIT and OK actions. By constrast, the other two commands are of type
Command . SCREEN, because they are application-defined actions that have no generic meaning.
Notice that the OK and EXIT actions have priority 0, whereas the other two have priority 1.
This hints to the device that if it has no built-in preferences, we would rather have the OK and
EXIT actions more quickly accessible to the user than Clear and Reverse. However, there is
no guarantee that the device will take this hint.

Making these operations available from the user interface is a simple matter of adding the
Command instances to the TextBox and registering the MIDlet class itself as the

CommandListener:

textBox.addCommand (OK_COMMAND) ;
textBox.addCommand (EXIT COMMAND) ;
textBox.addCommand (CLEAR COMMAND) ;
textBox.addCommand (REVERSE COMMAND) ;
textBox.setCommandListener (this) ;

The last step is to implement the CommandListener interface by providing a commandaction
method, which is responsible for carrying out the operations associated with the Commands.
The commandAction method shown in Example 4-2 is typical of most event handling in
MIDlets. Because there is only a single command handler for each screen, its first task is to
determine which operation the user wants to perform. To do this, it examines the first method
argument to see which Command has been activated. The neatest way to do this is with a
switch statement, but this is not possible because command is not an integral value. Instead,
MIDlet event handlers tend to consist of if statements that compare the first method
argument with each of the possible commands. Once the correct operation is found, the code
that performs the required function is trivial.

You can try this example by selecting TextBox2MIDlet from the MIDlet suite for this
chapter. On the default color phone, the result is shown in Figure 4-6.

Figure 4-6. Commands on a typical cell phone

Tologl
Thie iz = ticke

Other commands acressible
via the right saff key

“Fxit” cammand aswigned
for the feft snﬁey

100

J2ME in a Nutshell

4.2.4.5 Command placement

The default color phone, like most cell phones, has two soft keys to which commands can be
assigned, but the TextBox used in this example has four commands. As a result, the Exit
command has been mapped to the left soft key, and the right key provides access to a menu of
the remaining three Commands, as shown in Figure 4-7. The fact that the Exit command has
been given its own key in preference to the OK command is a feature of this particular MIDP
implementation. The result might not be the same on other devices, and the menu might also
not look the same as it does in Figure 4-7. The MIDlet developer, of course, has no real
control over these decisions and can only provide hints in the form of the type and priority
arguments to the Command constructor.

Figure 4-7. Command assigned to a separate menu

3 Reverge

4.2.4.6 Command placement on a PalmOS device

The same MIDlet looks slightly different when run on a PalmOS platform, where the larger
screen space means that more commands can be assigned to buttons that are always visible to
the user. Figure 4-8 shows two views of this MIDlet running on a PalmOS-based handheld. In
this case, three of the four commands have been assigned to buttons below the TextBox.
Commands are assigned to buttons based on their types, as listed here in descending order of
preference:

e Command.BACK

e Command.OK

e Command.CANCEL
e Command.STOP

e Command.SCREEN
e Command.CANCEL

Figure 4-8. Commands on a PalmOS device

Go_Edit_Options | | Actions L) Edit Options |
7| About lava HEQ ffor man, one That's o | Bearn App... B
9 Clear 1, giant leap fc) OK
Reverse Exit

Ok || Claar | | Reverse

101

J2ME in a Nutshell

If the number of commands exceeds the number of buttons that can be created in the button
area, the command priority is also taken into account when assigning commands to buttons.
Note, however, that commands of type Command.EXIT and Command.HELP are never mapped
to buttons.

PalmOS also has pull-down menus, and, as these two views show, the application-specific
Ccommands have been assigned to the Actions menu, while the OK and Exit commands appear
on a menu labeled Go. In this implementation, the Actions menu is used to hold
application-specific commands of type Command.SCREEN or Command.ITEM. If both types of
command are installed in the same screen, they all appear on the same menu, with Commands of
the same type grouped together, and the two groups separated by a horizontal line, as shown
in Figure 4-9. Commands of type Command.BACK, Command.OK, Command.CANCEL,
Command. STOP, and Command.EXIT are placed on the Go menu, and Command . HELP appears in
the Option menu.

Figure 4-9. Grouping of commands on pull-down menus

“Search” commond fas ——
type ommand TEM 0 | ememee s

“Ulear” and “Reverse” commants—
have type Command SCREEN

Reverse

4.2.5 Forms and Items

Form 1S a subclass of screen that can be used to construct a user interface from simpler
elements such as text fields, strings, and labels. Like TextBox, Form covers the entire screen
and inherits from its superclasses the ability to have a title, display a Ticker, and be
associated with commands. The elements that you can add to a Form are all derived from the
abstract class Ttem:

public abstract class Item {
public String getLabel();
public void setLabel (String label);

On its own, Ttem provides only the ability to store and retrieve a text label, but because each
component that can be added to a Form is derived from Item, it follows that all of them can
have an associated label. The implementation displays this somewhere near the component in
such a way as to make the association between the label and the component clear. The
components that MIDP provides are described briefly in Table 4-2; each of them will be
discussed in greater detail in later sections of this chapter.

Table 4-2. Iltems That Can Be Added to a Form
Item Description
StringItem |An item that allows a text string to be placed in the user interface
TextField A single-line input field much like the full-screen TextBox

A version of TextField that is specialized for the input of dates; it includes a visual helper

DateField . . .
that simplifies the process of choosing a date

102

J2ME in a Nutshell

A component that can be used to show the progress of an ongoing operation or allow selection

Gauge .
of a value from a contiguous range of values

A component that provides a set of choices that may or may not be mutually exclusive and

ChoiceGrou . . .
P therefore may operate either as a collection of checkboxes or radio buttons

ImageItem A holder that allows graphic images to be placed in the user interface

The rForm class has two constructors:

public Form(String title);
public Form(String title, Item[] items);

The first constructor creates an empty Form with a given title, which may be null in the
unlikely event that no title is required; the second constructor can be used to install an initial
set of Ttems on the Form. The Items that are associated with the Form are held in an internal
list, the order of which determines how they are placed on the form. Form has three methods
that allow items to be added to the end of this internal list, which causes them to appear on the
Form itself:

public void append(Item item);
public void append(Image image);
public void append(String string);

The second and third methods provide a quick and convenient way to include an image or
string on the Form: just create and append an ImageItem containing a supplied Image or a
StringItem containing the given string.

Unlike an AWT container, Form does not have the concept of a separate layout manager that
you can select to control how items are arranged on the screen. Instead, Form has a few simple
rules that determine how items are arranged:

e Items that involve user input (that is, TextField, DateField, Gauge, and
ChoiceGroup) are laid out vertically, with the first item in the Form's internal list at the
top of the screen, the second one directly below it, and so on.

e Adjacent stringItems and ImageItems that have a null or empty label are laid out
horizontally. If there is insufficient space to fit a complete stringItem in the
horizontal space remaining in a row, the text is wrapped to the next line, and the
implementation breaks at whitespace where possible. If there is insufficient space to fit
an entire ImageItem, the image is simply clipped.

e sStringItems and ImageItems with a nonempty label cause a line break before the
label is rendered.

e Newlines in stringItems cause a line break. A similar effect can be obtained using
layout directives of the ImageItem class, as described in Section 4.2.11, later in this
chapter.

e The width of the Form is always the same as that of the screen. The Form may,
however, be taller than the screen. If so, the implementation provides a means for the
user to scroll the Form vertically. Horizontal scrolling is not provided.

e Where it is necessary to scroll vertically, the implementation attempts to ensure that
scrolling never obscures the label associated with a visible item, if the item has one.

103

J2ME in a Nutshell

To clarify how these rules work in practice, let's look at a simple example that places strings
and TextFields on a Form.. The code that builds the Form is shown in Example 4-3. You can
run it by selecting FormExampleMIDlet from the MIDlet suite in Chapter4.jad.

Example 4-3. A Demonstration of Form Layout Rules

Form form = new Form("Item Layout");

form.append("Hello") ;
form.append ("World") ;

form.append ("\nLet's start\na new line\n");
form.append ("This is quite a long string that may not fit on one line");

form.append (new TextField("Name", "J. Doe", 32, TextField.ANY));
form.append ("Address") ;
form.append (new TextField(null, null, 32, TextField.ANY));

The first four append () calls add text strings to the Form, the results of which can be seen in
the leftmost two screenshots in Figure 4-10. These screenshots show the MIDlet running on
the relatively small screen of the default color phone emulator from the Wireless Toolkit. The
top line of the screen holds the two separate items "Hello" and "World", which have been laid
out horizontally because they are string items. Note that, even though they were added
separately, no space has been left between them.

The next item to be added begins and ends with newline characters; you can see that it is
placed vertically below the first two items because of the leading newline, and the trailing
newline also causes a line break. Notice that in this string, and in the next, rather longer, one,
the text is automatically wrapped, and line breaks are placed between words.

Figure 4-10. Form layout on a cell phone

Foantl BT | Fall D | T aaall [
e Layoun em Layout | e=rm Lot
Iciard et's stort Paaine:
e's start ey fine J. Do
new lins hiz iz quie a long |
| jhddress
his is quilte a kang string bl may not |
ring theat ey rot t an ane line | | |
| *
* 1 |

Since the Form is too large to fit on the screen, the implementation draws an arrow at the
bottom to indicate that the screen can be scrolled vertically, as has been done in the middle
and right views.

Following the text strings, a TextField is added:

form.append (new TextField("Name", "J. Doe", 32, TextField.ANY))

The constructor supplies both the Ttem label ("Name") and the initial content of the field itself
("J. Doe"). As you can see, the label has been placed below the previous text string, even
though the string did not end with a newline, but above the input field itself. If you scroll the
screen up and down, you'll find that it is impossible to arrange for the label to be visible
without the text field, and vice versa.

104

J2ME in a Nutshell

The last two items are the text string "Address" and another TextField. Because this device's
screen is so narrow, it would be difficult to see the difference between the effect of the code
used here:

form.append ("Address") ;
form.append (new TextField(null, null, 32, TextField.ANY));

and the apparently similar:

form.append (new TextField("Address", null, 32, TextField.ANY));

which includes the string "Address" as the item's label. To see the difference, you need to run
this example using the PalmOS emulator. Because this emulator has a much larger screen, it
can lay out the items differently, as shown in Figure 4-11.

Figure 4-11. Form layout on a PDA

Chapterd:ltem Layout

HelloWarld
Let's start
a new line
Thiz iz quite along
string that rmay not fit
on one line
Name: 1 Duel
Address

Most of the items are shifted over to the right side of the screen, leaving mostly blank space to
the left. This is because the MIDP for PalmOS implementation allocates the left side of the
screen to the label part of each rtem and places the active part of the Ttem to the right. Hence,
all the strings (which are actually stringItems with no label) appear on the right side of the
screen. The only Ttem with a real label is the first TextField, and its label has been placed on
the left of the input field itself, rendered in a bold font, and been appended with a colon.
Compare this to the next TextField: the "Address" string was added as a separate string and
not installed as the Ttem label, and it therefore appears above the input field itself. Although
the difference between using a label and using a separate text string was hard to detect with
the cell phone emulator, here it becomes very obvious and underlines the fact that the Ttem
label should be used instead of installing a separate a text string to describe the following
input field. Another important reason to take advantage of the T1tem label is the automatic font
highlighting provided for the label. You cannot achieve this in any other way, because the
high-level API does not allow you to select fonts or colors.

Form has a small number of other methods, in addition to the three variants of append(),
that allow the list of Ttems it contains to be manipulated:

105

J2ME in a Nutshell

public void delete(int index);

public Item get (int index);

public void insert (int index, Item item);
public void set(int index, Item item);
public int size();

Most of these methods use an index argument to specify the list position to be operated on,
where the first item has index 0. The delete () method removes the Ttem at the given index;
like all the other methods that change the Ttem list, it causes the screen layout to be updated
immediately to reflect the change. The get () method returns the Ttem at the given index
without modifying the list at all. The insert () method places a new Item at the given index
within the list, moving the Ttem at that index and greater indices down by one position. The
set () method, by contrast, replaces the Ttem at the index supplied as its first argument and
does not affect any other Item in the Form. Finally, the size () method returns the number
of Items on the Form.

, A single Command or Ticker instance can be shared between multiple

— screens simply by adding it to each screen in turn. However, an Item is
allowed to be on only one Form at any given time. If you try to add the
same Item to another Form without first removing it from the original,
an IllegalStateException 18 thrown.

4.2.6 Item State Changes

Since Form is subclassed indirectly from Displayable, it is possible to add a Command to a
Form to allow the user to request that values entered into it be processed. The logic for this
processing is implemented in the commandaction method of a CommandListener attached to
the Form, as illustrated in Example 4-2. Sometimes, however, it is necessary to take action as
soon as the value in an input field is changed. Changes in the state of Ttems that accept user
input are notified to an TtemStateListener registered with the Form. TtemStateListener 18
an interface with a single method, which is called when any Item on the Form has a state
change to report:

public void itemStateChanged(Item item);

An TtemStateListener is registered using the following Form method:

public void setItemStatelistener (ItemStatelListener 1);

As was the case with CommandListeners, only one ItemStateListener can be associated
with a Form at any time and calling setTtemStateListener() removes any listener that
was previously installed. Calling this method with the argument null removes any existing
listener.

The conditions under which the TtemstateListener is notified of a state change are specific
to each individual type of Ttem; these conditions are described in the sections that follow. It is
important to note, however, that only user actions result in the listener's itemStateChanged
method being called. Changing the state of an Item programmatically does not cause
notification to the listener.

106

J2ME in a Nutshell

4.2.7 High-Level APl User Interface Components

In the rest of this section, we take a closer look at each of the Ttems you can use with the Form
class, together with the TextBox and List components. TextBox and List are derived from
Screen, so they are not suitable for use with Forms, but they have Form-based counterparts
that are sufficiently similar that they are best described together.

The examples used in this section are all part of a single MIDlet called TtemMIDlet. You can
run it with the Wireless Toolkit by opening the project called chapter4 and pressing the Run
button, then selecting TtemmIDlet. This displays a screen (actually a 1ist) that has an entry
that runs the example for each of the following sections. To run the example code for these
sections, simply highlight the appropriate entry in the list and press the SELECT button on the
emulated phone's keypad, as shown in Figure 4-5."

4.2.8 Stringltems

StringTtem, the simplest of the MIDP user interface components, provides the ability to
place a string or pair of strings on a Form. Initial values for both strings may be supplied to the
constructor:

public StringItem(String label, String text)

The label part is the label that is inherited by all Ttems from their base class; its value can be
retrieved or changed using the Ttem getLabel () and setLabel () methods. StringItem
provides similar methods for its own text attribute:

public String getText ()
public void setText (String text)

Either or both of the label and text string may be null.

A technique often used when adding text to a Form is simply to use the variant of the append
method that accepts a string argument:

form.append ("Name") ;

This code, in fact, amounts to the use of a StringItem with a null label and so could also be
written like this:

form.append(new StringItem(null, "Name"));

It might seem strange to provide a component that displays two text strings, when the same
effect could apparently be achieved by creating a component that supports only one string and
the ability to place two of them next to each other. In fact, this would not lead to the same
result, because the label and text string parts of a stringItem are not equivalent. The
difference between the label and the text is the same for stringItem as it is for the label and
content of any Item, namely:

A small number of examples in this section produce output on the MIDlet's standard output stream. When using the Wireless Toolkit, this stream
usually directs its output to the Wireless Toolkit console. However, if you use the PalmOS device emulator, this information is written to a separate
file instead. To examine the file content, you must stop the emulator. For further details, see Chapter 9.

107

J2ME in a Nutshell

e The layout management code of the MIDP platform should attempt to display the label
close to the text and ensure that they are either both visible or both not visible when
scrolling takes place.”

e The platform may choose to render the label differently from the content to make clear
the distinction between them.

As described in Section 4.2.5, the layout policy for stringItems required by the MIDP
specification results in a horizontal arrangement, unless a line break is forced by the use of
newline characters within the label or text, or if there is insufficient space to fit the entire
StringItem in the current line. Additionally, the Sun reference implementations force a line
break before a StringItem that has a non-null label.

A typical example in which it would be advantageous to use both the label and text attributes
of a stringTtem is a labeled item in which the content can be updated by the MIDlet but
must not by the user. Such a stringItem might be used to show the state of a connection to a
web server:

StringItem status = new StringItem("Status ", "Not connected");
status.setText ("Connecting"); // Change the state

In Example 4-3, you've already seen several examples of the use of StringItem created
indirectly by appending a string to a Form. ItemMIDlet includes a screen that has a few
more SstringItem examples. The code that creates this Form is shown in Example 4-4.

Example 4-4. Using Stringltem

Form form = new Form("StringItem");
form.append(new StringItem("State ", "OK"));
form.append (new StringItem(null, "No label\n"));
form.append (new StringItem(null, "Line\nbreak"));
form.append (new StringItem("Label", "Text."));
form.append (new StringItem("Label2 ", "Text2."));

The results of running this example on both the default color phone and on the PalmOS
device are shown in Figure 4-12. The first stringItem uses both the label and text attributes.
Notice that the color phone doesn't distinguish between the label and the text in any way,
whereas the PalmOS MIDP implementation uses a bold font to represent the label, adds a
colon, and places all the labels in a dedicated area on the left side of the screen. The second
StringItem contains only the text and is placed immediately after the text of the first
stringItem, with no line break. Because the text ends with a newline character, however, it
is followed by a line break.

Figure 4-12. Stringltems on the default phone and PalmOS emulators

Chopterd:5tringltem

State: OKMolabel
Lirie
break

Label: Text.

Label2: Textl

2 Unfortunately, at the time of writing, the MIDP implementation used in the Wireless Toolkit does not do this.

108

J2ME in a Nutshell

The third example shows the effect of embedding a newline in the text, which results in a line
break on the screen. Although it isn't illustrated here, you can also include a newline in the
label part, and the effect is the same. The final two examples illustrate an important difference
in the handling of labels between the PalmOS platform and the cell phone version. In the first
case, the label and text are set up as follows:

form.append (new StringIltem("Label", "Text."));

As you can see, the color phone does not interpose any whitespace between the label and text,
whereas the PalmOS version displays them with a clear gap, owing to its special handling for
labels. In most cases, you want to clearly separate the label from the text; you can do this by
adding a space at the end of the label:

form.append(new StringItem("Label2 ", "Text2."));

This produces the desired effect on the color phone and also works on the PalmOS platform,
which strips out trailing whitespace before appending the colon that marks the end of the
label, as you can see on the right side of Figure 4-12.

4.2.9 TextFields and TextBoxes

TextField and TextBox are two very similar components that have almost the same
programming interface. The differences between them are as follows:

e TextBox is derived from screen and therefore occupies the entire display. TextField
is an Item that occupies space on a Form. Usually, a TextField appears as a single-
line input field, but some implementations spread its content over extra lines if a single
line is not sufficient.

e TextBox does not have a way to report changes in its content to a listener, but
modifications to a TextField are reported to the TtemStateListener associated with
the Form on which the TextField is displayed.

Since the specifics of TextBox have already been covered, the rest of this section focuses on
the common features of these two components and illustrates them with TextFields.

4.2.9.1 Construction

TextField has only one constructor:

public TextField(String label, String text, int maxSize,
int constraints);

The 1abel and text arguments specify, respectively, the Ttem label to be placed near the
component and the string to be placed initially in the TextField; either or both of these
arguments may be null. The constraints argument can be used to limit the type of data that
can be entered into the TextField. See Section 4.2.9.3, later in this chapter, for details.

The maxsize argument determines the maximum number of characters that the TextField

can hold. The MIDP implementation is allowed to place an upper limit on the allowed values
of maxsize and may therefore impose a lower limit than the one specified in the constructor.

109

J2ME in a Nutshell

The actual limit applied to a particular TextField can be obtained by calling the
getMaxSize () method. The maximum size is applied whenever the field content is changed,
that is:

e When the initial value is set at construction time

e When a new value is supplied by calling the setstring () method

e When some or all of the field content is modified using the insert or setChars
methods

e As the user amends the content of the TextField by adding characters anywhere in
the string

In the first three cases, the result of attempting to install a value whose length exceeds the
capacity of the TextField is an IllegalArgumentException. If the user tries to type more
characters than the field can hold, the extra characters are ignored, and the device may supply
audible feedback.

The capacity of the TextField can be changed by calling the setMaxsize () method. If the
number of characters in the TextField exceeds the new capacity, it is truncated to the
maximum size.

4.2.9.2 Field content changes and listener notification

If the Form that contains the TextField has an ItemStateListener installed, it will be
notified of changes made by the user to its content. You can get the value held in the
TextField by calling its getString() or getChars() methods, which return a string or
an array of characters, respectively:

public String getString()
public int getChars(char[] chars)

To use the getchars() method, you have to allocate the character array to be filled. The
return value of this method is the number of characters of the array that were used. If the array
1S too short to hold the content of the TextField, an ArrayIndexOutOfBoundsException 1S
thrown. You can avoid this by using the size () method to get the number of characters that
are currently in the TextField:

char[] chars = new char|[textField.size()];
int copied = textField.getChars (chars);

The following code extract shows how a listener might use getstring() to retrieve the last
value that the user entered as a String:

public void itemStateChanged(Item item) {
if (item instanceof TextField) {
System.out.println ("Text field content: <" +
((TextField)item) .getString() + ">");

The point at which the TtemStateListener is called following a change in the content of the
TextField is implementation-dependent. The MIDP specification requires only that this

110

J2ME in a Nutshell

should happen no later than when the user moves the input focus away from the TextField or
activates a command on the Form. The reference implementation provides notification when
the user completes an editing operation in the TextField; the MIDP for PalmOS version does
it after any character has been inserted or deleted.

The TextField (and TextBox) API contains several methods that allow programmatic
changes to its content.” All of these methods throw an T1legalArgumentException and
leave the TextField content unchanged if the result of performing the requested operation
would make the content inconsistent with the constraint, if any, applied to the TextField.
This means, for example, that an exception would be thrown if an attempt were made to insert
non-numeric characters into a TextField to which the TextField.NUMERIC constraint has
been applied. Constraints are described in Section 4.2.9.3.

The following are the methods that enable programmatic changes to TextField and
TextBoxes:

public void delete(int offset, int length)

Removes length characters from the TextField, starting with the character at
position offset.

public wvoid insert(char[] chars, int offset, int length, int
position)

Inserts the characters from chars[offset] through chars[offset + length - 1]
into the TextField, starting at the given position. The characters that originally
occupied offsets position and higher are moved to the right to make room for the
new characters. An IllegalArgumentException iS thrown if this operation would
make the content of the TextField exceed its maximum size.

public void insert (String src, int position)

Inserts the characters that make up the given string into the TextField, starting at
the given position. The characters that originally occupied offsets position and
higher are moved to the right to make room for the new characters. An
IllegalArgumentException 1s thrown if this operation would make the content of
the TextField exceed its maximum size.

public void setChars(char[] chars, int offset, int length)

Replaces the content of the TextField with chars[offset] through chars[offset +
length - 1] of the given character array. An I1legalArgumentException is thrown
if this operation would make the content of the TextField exceed its maximum size.

As noted earlier, TextBox does not have any way of notifying application code that its content has changed because it is not an I tem and therefore
cannot be associated with an ITtemStatelistener. Application code normally retrieves the content of a TextBox (using getString() or
getChars ()) only when prompted to do so by the activation of a Command attached to the TextBox.

111

J2ME in a Nutshell

public void setString(String src)

Replaces the content of the TextField with the characters from the given string. An
IllegalArgumentException 18 thrown if this operation would make the content of
the TextField exceed its maximum size.

Note that programmatic changes are not notified to TtemStateListeners.

In general, application code that modifies the content of a TextField uses either the
setString() or setChars() methods to replace its entire content. Less frequently, it is
necessary to insert content starting at the location of the TextField's insertion point, which is
indicated on the screen by a cursor, otherwise known as a caret. You can get the offset of the
cursor within the TextField using the following method:

public int getCaretPosition();

The following code could be used to insert three characters starting at the cursor position:
textField.insert ("ABC", textField.getCaretPosition());

4.2.9.3 Constraints

The constraints argument of the constructor or the setConstraints method can be used to
limit the characters that the user can type into a TextField. The effect of each constraint may
be device-dependent. Table 4-3 describes what these constraints do in the MIDP reference
implementation.

Table 4-3. TextField Input Constraints
Constraint Value Effect
TextField.ANY Allows any characters to be typed into the input field.

Limits the user's input to a legal email address. The format of a valid email
address may vary from device to device, so vendors are expected to implement
this in a manner appropriate to the network to which their device will be
connected. In the reference implementation, the constraint has no effect.

TextField.EMAILADDR

Limits input to integer values. The first character may be a minus sign, and the
other characters must be digits 0 through 9. On a cell phone, the implementation
typically forces the keypad into a mode where it assumes that each key press
represents the number on the face of the key when this constraint is applied.

TextField.NUMERIC

Specifies that the field should contain a phone number. The format of a valid
phone number may vary from device to device and network to network. The
reference implementation provides a default implementation of this constraint
that is described later in this section.

TextField.PHONENUMBER

Although this constraint signifies that the input field should only be allowed to

T Field.URL
extiield.U hold a valid URL, it has no effect in the reference implementation.

112

J2ME in a Nutshell

This constraint may be specified in conjunction with TextField.ANY or
TextField.NUMERIC to convert the TextField into a field intended to
hold a password, for example:

TextField.PASSWORD TextField.PASSWORD | TextField.ANY

The implementation usually displays the content of a password field differently
from that of a plain TextField. Typically, the characters are displayed as
asterisks for security reasons.

When input is constrained, the user cannot type any characters that would result in the field
content becoming inconsistent with the constraint. Calling a method to change the field
content results in an IllegalArgumentException if the result would not match the
constraint.

You can change the constraint associated with a TextField or TextBox at any time by calling
the setConstraints () method:

public void setConstraints (int constraints);

When this method is called, the current content of the control is checked to ensure that it is
consistent with the new constraints; if not, the field is cleared.

The effect of some of the constraint values can be seen by launching the TtemMIDlet and
selecting the TextField example. This example contains four TextFields with different
constraints, as shown in Figure 4-13.

Figure 4-13. TextFields with various input constraints

T il [
extField TextField
o i T T
] e
— piumber 12345
1234 567 840 Password[™ |
Back 4 Exil fBack " Eit

The first field, shown at the top on the left side of Figure 4-13, has constraint TextField.ANY,
which permits any characters to be entered. If you start typing into this field, either by
clicking with the mouse on the emulator's onscreen keypad or using your PC keyboard, the
display switches to a full-screen TextBox that you can use to type and edit the value that you
want, as shown in Figure 4-14. To enter the displayed value into the TextField, press the
Save soft key, or press Back to abandon editing and leave the field content unchanged.

Figure 4-14. Full-screen TextBox for entering or editing a value

T amill BEC [)
Ay
1

Hack =

113

J2ME in a Nutshell

The second TextField has the TextField.PHONENUMBER constraint. In the reference
implementation, this constraint limits the characters that can be typed to the digits 0 through 9
and the characters +, *, and #. This constraint also causes the content of the TextField to be
displayed so that it looks like a telephone number by separating the digits into groups
separated by space characters. The appropriate grouping depends entirely on the part of the
world in which the cell phone or PDA is being used, since different conventions apply in
different countries. The reference implementation uses the following rules:

o If the first digit is zero, the number is assumed to be for international dialing and is
represented in the form "0xx xxx xxxx ... ".

o If'the first digit is 1, the number is formatted as "1 xxx xxx Xxxx ... ".

o In all other cases, the number is displayed as "xxx xxx xxx ...".

Note that the spaces used to separate the number groups are purely visual and do not appear in
the TextField content. For example, if the TextField displayed "044 171 1234567", the
result of calling the getstring () method would be "0441711234567". Similarly, an attempt
to store a value containing spaces would result in an T1legalArgumentException. If you run
this example using the Wireless Toolkit, you can observe the results of typing different values
into this field or any of the other fields by looking at the Wireless Toolkit console, to which a
message is written whenever any of the fields calls the TtemstateListener registered with
this screen.

The third field has the constraint TextField.NUMERIC applied to it. As you can verify for
yourself, this field will allow you to type only positive and negative integer values and zero.

The final field is set up with the constraint TextField.PASSWORD|TextField.NUMERIC,
which limits the user to numeric values but also displays each character that is typed as an
asterisk, as shown on the right side of Figure 4-13. On PalmOS, a field that includes the
constraint TextField.PASSWORD is handled slightly differently. When the field is empty, its
content is shown as "-Prompt-", as shown on the left side of Figure 4-15. When an attempt is
made to enter a value, a separate window opens up to allow you to type the required
password. As you can see from the screen shot in Figure 4-15, this window displays the actual
password value instead of disguising it. Once a password has been entered, the TextField
displays "-Assigned-", as shown at the right side of the figure.

Figure 4-15. Password fields on the PalmOS platform

Ay | Any: Any: |
Phone: 1234567290 Phone: 12234547000 Phong: 12MEETES)
Musmaber: 12345 Phpmber: 1235 Mumnber: 1IME
Passusord: | Frompt-] Possweord: |-Frompt-] Password: | -fssigned-;
Enter a passward:
1224
(o) + (o) (Gowel) Bk *

4.2.10 DateFields

DateField is a component that allows you to display and edit the value of an object of type
Date. The DateField class has two constructors:

114

J2ME in a Nutshell

public DateField(String label, int mode)
public DateField(String label, int mode, TimeZone timeZone)

The date and time value held in a Date object is always relative to midnight UTC on January
1, 1970. When displaying the time, a correction needs to be made for the time zone in which
the user is working. On the east coast of the United States, for example, a pate value that
corresponds to 9:00 P.M. on January 31, 2002 (UTC), would need to be displayed as 4:00
P.M., January 31, 2002, and in Tokyo, it would need to be shown as 6:00 A.M., February 1,
2002. You can use the timeZone argument to supply a TimeZone object that can be used to
determine how to display the date and time for a specific location in the world. If this
argument is not supplied (or is null), the device's default Timezone is used, which should
properly display local time. Therefore, it should be necessary to supply a TimeZone value
only when the date and time for a different time zone are to be displayed.

| The pateField component works with any valid TimeZone object and

e therefore should be able to properly display the date and time anywhere
in the world. However, the CLDC specification requires only that the
time zone for GMT be supported. Practical considerations dictate that a
device also support the time zone in which it normally operates, but
there is no guarantee that other time zones will be available.

The mode argument determines what the pateField will display and takes one of the
following values:

DateField. TIME

The pateField should display only the time.
DateField. DATE

The pateField should display only the date.
DateField. DATE _TIME

The pateField should display both the date and time.
An example of a pDateField in each of these three modes can be seen by running the
ItemMIDlet and selecting the pateField screen. The result is shown in Figure 4-16. The left
side of this figure shows DateFields configured with mode pateField.TIME at the top and

DateField.DATE at the bottom, while the bottom DateField on the right side has mode
DateField.DATE TIME.

115

J2ME in a Nutshell

Figure 4-16. DateFields on the default color phone

14Ot 2001

+ Exit

DateField allows the user to edit the date and/or time that it displays. In the reference
implementation, if you start pressing keys or press the SELECT button on the emulator
keypad while a DateField has the input focus, a full-screen editor appears. There are separate
editors for dates and times, as shown in Figure 4-17.

Figure 4-17. DateField date and time editing helper components on the default color phone
emulator

Tl)
[T
1 Detaberd -
123456
TR OO INIIZE
1415 16 17 18 1920 o
IS T 1 =
78 7 7031 -
Back 4 Savy Black Save

Note that pateField is derived from Ttem and not from TextField, so it is not possible to
gain access to the characters displayed on the screen as would be the case with TextField.

Like all ttems, when the user changes the date and/or time displayed by a pateField, the
change is reported to the ItemStateListener, if any, registered with the Form that the
DateField is displayed on. The value of the pate object associated with the pateField can
be obtained or changed using the following methods:

public void setDate (Date date);
public Date getDate();

When the setDate method is called, the pateField does not store a reference to the pate
that is passed to it. Instead, it copies the value so that changes made within the pateField
component are not reflected in the pate object supplied. Similarly, the value returned by
getDate () 1s a newly created object that reflects the date and/or time in the DateField at
the time of the method call.

The setpate method may be called with argument null. In this case, the pateField is
considered to be in an uninitialized state and does not display a valid value. The pateField is
also in this state following construction and until setDate () is called with a valid pate. The
getDate method returns null when the DateField is in this state, and, in the reference
implementation, the time part displays the string <t ime> while the date part displays <date>.

DateField has a very simple programming interface, but there are some traps waiting for the
unwary. The nature of these traps depends on the mode in which the pateField is operating.

116

J2ME in a Nutshell

4.2.10.1 DateField in DATE_TIME mode

This is the simplest case to handle. The only possible problem here arises from the fact that
the pateField does not preserve the seconds and milliseconds value of the Date object that is
passed to it. As a consequence of this, for example, if the setDate () method is called with a
pate object for 10:04:03 P.M. on January 31, 2002, and no changes are made by the user, the
value returned by the getDate () method corresponds to 10:04 P.M. on the same date.

4.2.10.2 DateField in DATE mode

In this mode, the pateField works only with the year, month, and date parts of the time and
does not preserve the time elements. Therefore, the value returned by getbate() in this
mode reports zero values for the time.

4.2.10.3 DateField in TIME mode

TIME mode causes the greatest inconvenience. According to the specification, in this mode,
the pate passed to the setDate () method must have the date parts initialized to the "epoch"
date, January 1, 1970, and the pate returned by getDate () contains this same date. The
problem with this is that code like the following does not necessarily work as you might want
it to:

// Current date and time
// We want to display only the time

Date now = new Date()
dateField.setDate (now)

Ideally, the setpate method would ignore the date and display only the time. Unfortunately,
the specification excludes this possibility. For predictable results, you have to pass in a Date
value with the date parts set to those for the epoch. In the reference inplementation, if you fail
to do this, the pateField considers its content to be invalid and puts itself into the
uninitialized state, as if setDate (null) had been called. The following code extract can be
used to create a Date object that contains the current time and the year, month, and day values
for the epoch, without assuming what the epoch date is:

// Get Calendar for the epoch date and time
Calendar baseCal = Calendar.getInstance();
Date baseDate = new Date(0);
baseCal.setTime (baseDate) ;

// Get Calendar for now and use the epoch
// values to reset the date to the epoch.
Calendar cal = Calendar.getInstance();
Date now = new Date();

cal.setTime (now) ;

// Set the year, month and day in month from the epoch
cal.set (Calendar.YEAR, baseCal.get (Calendar.YEAR)) ;
cal.set (Calendar.MONTH, baseCal.get (Calendar.MONTH)) ;
cal.set (Calendar.DATE, baseCal.get (Calendar.DATE));

117

J2ME in a Nutshell

4.2.10.4 Changing the DateField mode

Under most circumstances, the DateField mode would not be changed following
construction. If required, however, the mode can be changed using the setInputMode ()
method:

public void setInputMode (int mode) ;

where the mode argument is DateField.DATE, DateField.TIME, Of DateField.DATE TIME.
Changing the mode affects the visual appearance of the component and may also affect the
Date value that it contains, as follows:

Changing to DateField. DATE mode

The time part is reset to 00:00 A.M. on the date contained in the pateField.
Changing to DateField. TIME mode

The date part is reset to the epoch date, January 1, 1970.
4.2.11 Imageltems

ImageIten lets you place an image on a Form with some limited control over how it is placed
relative to other Items. The TmageTItem class has a single constructor:

public Imageltem(String label, Image image, int layout, String altText)

Adding an TmageItem to a Form causes the optional label and the image to be placed subject
to the constraints specified by the 1ayout argument. The device is free to ignore the layout
argument and apply its own layout rules. It may also use the text supplied by the altText
argument in place of the image when, in the words of the MIDP specification, "the image
exceeds the capability of the device to display it."

The image is supplied in the form of an Tmage object, which will be described in detail when
we discuss the low-level API in Chapter 5. There are several ways to create an Image,
including loading data over a network connection, using graphics primitives to compose the
Image from lines, points, curves and solid shapes, and loading encoded data from a file. For
the purposes of illustration, we will use the last of these methods in this chapter because it is
easy to demonstrate and creates an immutable image, which is a requirement for TmageItem.*

To load an image from a file, use the following static method of the Tmage class:

public static Image createlmage (String name) throws IOException

name 18 a resource name that corresponds to the location of the file in the MIDIet suite's JAR
file. The name parameter is used as the argument to the getResourceAsStream() method
that was described in Section 4.2.3, earlier in this chapter. Although

An immutable image is one that cannot be changed in situ. Some methods of building an Image produce an immutable Image, while others result
in one that is mutable. As you'll see in Chapter 5, an immutable Image can always be obtained from a mutable one, so any Image you create can be
used in conjunction with an ImageItem, either directly or after being made immutable.

118

J2ME in a Nutshell

getResourceAsStream() can be given either an absolute or relative resource name,
the name parameter should always be absolute in this case, because a relative name would not
be interpreted as being relative to your MIDlet's class (and, in fact, the class relative to which
a relative resource name would be interpreted is implementation-dependent). The indicated
file must contain an image encoded in Portable Network Graphics (PNG) format, since this is
the only graphics file format that MIDP devices are required to support. Most of
the commonly used utilities that allow you to design graphics or manipulate images provide
the option to save in PNG format.

The 1ayout parameter is a bitmask made up from legal combinations of the following values:
Imageltem.LAYOUT _DEFAULT

The image should be placed according to the platform's default layout policy.
Imageltem.LAYOUT_LEFT

The image should be left-justified in the space available to it.
Imageltem.LAYOUT_RIGHT

The image should be right-justified in the space available to it.
Imageltem.LAYOUT_CENTER

The image should be centered in the space available to it.
Imageltem.LAYOUT_NEWLINE_BEFORE

A line break should occur before the image is drawn.
Imageltem.LAYOUT_NEWLINE_AFTER

A line break should occur after the image is drawn.
When ravoutr DEFAULT is used, the device places the image according to implementation-
dependent rules. In the reference implementation, this value causes the ImageItem to be
handled in the same way as stringTItem -- that is, it is placed on the same horizontal line as
the Ttem that precedes it, providing that both of the following conditions are met:

e The tmageItem does not contain a nonempty label, because this always forces a line
.];“f: 1;)ace remaining in the current line is not less than the width of the image.

If these conditions are not met, a line break occurs before the optional label and image are
drawn. The remaining layout constraints may be mixed together subject to the following

rules:

e LAYOUT LEFT, LAYOUT RIGHT, and LAYOUT CENTER are mutually exclusive. They
determine how the image is placed within the remaining space on the current line.

119

J2ME in a Nutshell

LAYOUT NEWLINE BEFORE and LAYOUT NEWLINE AFTER can be used separately or
together; they may also be used in conjunction with either LavyouT DEFAULT or one of
LAYOUT LEFT, LAYOUT RIGHT, Or LAYOUT CENTER. Because LAYOUT DEFAULT has
value 0, a 1layout value of LAYOUT NEWLINE BEFORE is equivalent to
LAYOUT NEWLINE BEFORE | LAYOUT DEFAULT.

As a shorthand, you can add an image to a Form using the following Form method:

public void append(Image image) ;

This is equivalent to creating and appending an ImageItem with layout LAYOUT DEFAULT and
no label, that is:

form.append (new Imageltem(null, image, ImagelItem.LAYOUT DEFAULT, null));

You can see some examples of TmageTtems by selecting the TmageItem entry from the list
presented by ItemMIDlet. The result of running this example on the default color phone is
shown in Figure 4-18 and on the PalmOS platform in Figure 4-19.

Figure 4-18. Imageltems as shown by the default color phone emulator

Figure 4-19. Imageltems displayed by MIDP for PalmOS

Chapterd:imnageltern

Center:
Left:
Right:
Default:
B
i

The top four lines all contain ImageItems that have both an image and a label. These
components were created as follows:

Image red = Image.createImage ("/ora/ch4/resources/red.png");
Image blue = Image.createImage ("/ora/chd4/resources/blue.png");

// Imageltems with labels

form.

form

.append (new Imageltem
form.
form.

append (new Imageltem("Center", red, ImagelItem.LAYOUT CENTER, null));

(("Left", red, Imageltem.LAYOUT LEFT, null));
append (new ImagelItem("Right", red, ImagelItem.LAYOUT RIGHT, null));
append (new ImagelItem("Default", red, Imageltem.LAYOUT DEFAULT, null));

120

J2ME in a Nutshell

The 1ayout arguments used here do not include LAYOUT NEWLINE BEFORE, so the images
directly follow their labels. However, each ImageTtem is placed on a line of its own even
though LAYOUT NEWLINE AFTER is not specified, because each has a label, which forces a line
break.

If you compare Figure 4-18 and Figure 4-19, you'll notice that the image placements on the
default color phone do not correspond to those requested by the 1ayout argument: they all
appear to be left-aligned, whereas the PalmOS implementation places them properly. This is
not inconsistent with the MIDP specification, which allows a device to treat the layout
parameter as a hint. It serves to illustrate that you cannot rely on having images placed exactly
where you want them.

The last five ImageItemns differ from the first four in two respects:

e They do not have labels.
e Three of them have 1ayout values that include both LaAYOUT NEWLINE BEFORE and
LAYOUT NEWLINE AFTER.

The code used to add these components is as follows:

form.append (new Imageltem(null, blue, agelItem.LAYOUT NEWLINE BEFORE |
Imageltem.LAYOUT CENTER | Imageltem. LAYOUT NEWLINE AFTER, null));
form.append (new Imageltem(null, blue, mageltem.LAYOUT NEWLINE BEFORE |
ImageItem.LAYOUT DEFAULT | ImagelItem.LAYOUT NEWLINE AFTER, null));
form.append (new Imageltem(null, blue, Imageltem.LAYOUT NEWLINE BEFORE |
ImageItem.LAYOUT RIGHT | Imageltem.LAYOUT NEWLINE AFTER, null));
form.append (new Imageltem(null, blue, Imageltem.LAYOUT DEFAULT, null));
form.append (new ImagelItem(null, blue, Imageltem.LAYOUT DEFAULT, null));

Because these TmageItems do not include labels, they would normally be laid out on a single
line with no line breaks. The LAYOUT NEWLINE BEFORE and LAYOUT NEWLINE AFTER values
cause each image to be preceded and followed by a line break. Note that only a single line
break is used between each pair of images, even though it might appear that two newlines
have been requested (i.e., one after each image and one before the image that follows it). The
last two ImageItems are created with the 1ayout argument set to LAYOUT DEFAULT only. As a
result, no line breaks are added, and, as you can see, they appear on the same line. The line
break before the first TmageItem is due to the LAYOUT NEWLINE AFTER part of the layout
attribute of the ImageItem on the line above.

Notice that the default color phone has obeyed the positioning constraints when placing these
ImageItems, as you can see from the right side of Figure 4-18. At the time of writing, the
MIDP reference implementation honors the LAYOUT RIGHT and LAYOUT CENTER constraints
only if the layout attribute also includes both LAYOUT NEWLINE BEFORE and
LAYOUT NEWLINE AFTER.

4.2.12 Gauges
A Gauge provides a way to represent a single selected value from a contiguous range of

integers starting from 0 and ranging up to an application-supplied maximum. The Gauge class
has a single constructor:

121

J2ME in a Nutshell

public Gauge (String label, boolean interactive, int maxValue,
int initialValue);

The maxvalue and initialvalue arguments specify, respectively, the largest value of the
range covered by the gauge and the value that will be displayed initially. The minimum value
is always implicitly zero, and the current value must always be positive and not greater than
the maximum.

The interactive argument determines whether the user can adjust the value in the gauge. To
use a gauge as a slider, you should set this argument to true. Adjustments made by the user
are reported to the TtemStateListener attached to the Form on which the gauge is displayed.
If interactive is false, the value of the gauge can be adjusted only under application control.
In this mode, the gauge acts more like a progress bar.

The current value of a gauge can be obtained or changed using the following methods:

public int getValue();
public void setValue (int value);

The value passed to the setvalue () method must be nonnegative and less than or equal to
the maximum value. The maximum value can itself be manipulated using similar methods:

public int getMaxValue();
public void setMaxValue (int value);

The value passed to setMaxvalue () must be greater than 0. If the new maximum value is
less than the current value, the current value is reduced to the new maximum. Note that, as
with all programmatic changes, this change in the current value is not reported to
ItemStatelListeners.

There is also a method that allows you to determine whether a gauge is interactive:

public boolean isInteractive();

However, you cannot change this attribute: a gauge is either always interactive or always not
interactive.

If you run the TtemMIDlet and select the Gauge example, you'll see a screen displaying three
gauges, all of which have a maximum value of 100, as shown in Figure 4-20. The code used
to create this Form is as follows:

Form form = new Form("Gauge");

form.append (new Gauge (null, true, 100, 50));
form.append (new Gauge (null, true, 100, 25));
form.append (new Gauge (null, false, 100, 50))

’

122

J2ME in a Nutshell

Figure 4-20. Gauges as shown by the default color phone

T auil [=3
Gauge |

Tl

Back T Eul

The top two gauges are interactive, and the bottom one is not. Notice first that the Gauge that
has the focus is distinguished from the the others in that its bars are fully drawn, while those
of the other two are not. Also, the two interactive gauges have bars that increase in size from
left to right, but the noninteractive one has bars of constant height.

These gauges represent their complete range using 10 bars, so that each bar corresponds to a
range of 10 values. For a larger value range, each bar would correspond to a wider range of
values. On the default color phone, the number of filled bars gives a guide to the current value
of the gauge, but the user can see only an approximation of the real value, because each bar
represents more than one possible value (a range of 10 possible values, in this case). On other
devices, the gauge might use a different total number of bars to represent the same total value
range, or it might not use bars at all. On the PalmOS platform, for example, both interactive
and noninteractive gauges are represented quite differently from those on the default color
phone, as shown in Figure 4-21.

Figure 4-21. Gauges on the PalmOS platform

Chapterd:Gauge

1 50
= p
I

On the default color phone, you can use the up and down arrow keys to move the input focus
from gauge to gauge. When an interactive gauge has the focus, you can use the left and right
arrow keys to adjust the current value up or down; horizontal arrows are drawn on the screen
as a visual cue, as you can see at the bottom of the left screenshot in Figure 4-20. When the
gauge is at its maximum value, the right-pointing arrow is not shown, and the right arrow key
has no effect; the left arrow and key show similar behavior when the gauge is at its minimum
value. No visual cues are shown when the input focus is assigned to a noninteractive gauge, as
is the case in the right screen shot in Figure 4-20, because the user cannot change the value of
this gauge.

If you change the value of either of the top two gauges with the arrow keys, you'll notice that
a message is written to the Wireless Toolkit console window to reflect every value change.
This value is obtained by calling the Gauge.getvalue() method from the Form's
itemStateChanged () method:

123

J2ME in a Nutshell

public void itemStateChanged(Item item) {
if (item instanceof Gauge) {

int value = ((Gauge)item).getValue();
System.out.println ("Gauge value set to " + value);
} else {

// Other code not shown here

}

You have to click the right or left arrow key 10 times to affect the visual representation of the
gauge, but the TtemsStateListener is notified of each individual change.

An interactive gauge generally is used to allow the user to select one of a range of values, and
the MIDlet usually interacts with it only when the user changes the value or when it is
necessary to set a new value programmatically. By contrast, when the gauge is used as a
progress bar, the MIDlet updates it regularly to reflect the state of an operation that it is
performing.

4.2.13 ChoiceGroups and Lists

ChoiceGroup and List are two similar components that present the user with a set of choices
and allow one or more them to be selected. The relationship between them is similar to that
between TextField and TextBox: ChoiceGroup is an Item to be used as part of a Form,
while List is derived from screen and is therefore a freestanding component that occupies
the entire screen. Most of the programming interface is common and is described by an
interface called choice. For simplicity, we'll cover the common features by examining
ChoiceGroup and then look at how List differs from it.

4.2.13.1 Creating a ChoiceGroup

There are two types of ChoiceGroup, distinguished by the number of items within the group
that can be selected at the same time. The choice between these two types is made when the
ChoiceGroup i8 created with one of its two constructors:

public ChoiceGroup (String label, int choiceType);
public ChoiceGroup (String label, int choiceType, String[] strings,
Image[] images);

The choiceGroup parameter takes one of the following values, defined in the interface
Choice, which ChoiceGroup implements:

Choice. EXCLUSIVE

Creates an exclusive ChoiceGroup in which only one item can be selected and which,
therefore, acts like a collection of radio buttons

Choice. MULTIPLE

Creates a multiple-selection ChoiceGroup, which is like a set of check boxes, in which
any number of items can be selected.

124

J2ME in a Nutshell

You can see examples of both types of ChoiceGroup by running the ItemMIDlet and
choosing the ChoiceGroup entry. The result of running this on the default color phone is
shown in Figure 4-22, with an EXCLUSIVE ChoiceGroup on the left and a MULTIPLE
ChoiceGroup on the right.

Figure 4-22. ChoiceGroups on the default color phone

[F et E T il [=]
I hoieeGroup eeGroup
Choose one hoose any

e | Use S3L

Bl Green [

I Blue
Chooze any Enabile tracing
Back Exif Bk T E:it

There are two ways to initialize a ChoiceGroup: the selections can be added using the second
of the constructors shown above, or they can be added following construction. The left
ChoiceGroup in Figure 4-22 was initialized at construction time:

Image red = Image.createImage ("/ora/ch4/resources/red.png");
Image green = Image.createImage ("/ora/chd4/resources/green.png");
Image blue = Image.createImage ("/ora/chd/resources/blue.png");

// Exclusive choice group

String[] strings = new String[] { "Red", "Green", "Blue" };

Image[] images = new Image[] { red, green, blue };

ChoiceGroup exGroup = new ChoiceGroup ("Choose one",
ChoiceGroup.EXCLUSIVE, strings, images);

Each element of a ChoiceGroup consists of a string and an optional Image that the device
may display near the string, although it is not obliged to display the tmage at all. When using
the constructor to initialize a ChoiceGroup, the following rules must be followed:

e The strings argument must not be nu11 and no element of the strings array can be
null. This restriction implies that image-only entries are not supported.

e The images argument may be nul1l if images are not required.

e If the images argument is not null, it must have the same number of elements as the
strings array. The image at index N of the images array corresponds to the string at
element N of the strings array. Images must be immutable. Any element in the
images array may be null if an image is not required for that entry of the
ChoiceGroup.

The device is responsible for rendering the ChoiceGroup in such a way as to visually
distinguish an EXCLUSIVE ChoiceGroup from a MULTIPLE one. As shown in Figure 4-22, the
default color phone achieves this by following the common convention of using a circle to
represent a radio button in the ExCLUSTVE group and a square for a check box in the MULTIPLE
group. This is not the only way to achieve this differentiation, however, as you can see in
Figure 4-23, later in this chapter, which shows the same ChoiceGroups as those in
Figure 4-22 as they appear on the PalmOS platform. Note that the EXCLUSIVE ChoiceGroup is
represented in the form of a popup menu, which shows only the selected item when the menu
is not visible. This figure also illustrates that a platform is not obliged to use Images even if
they are supplied.

125

J2ME in a Nutshell

An alternative way to initialize a ChoiceGroup is to add entries after construction. This is
how the multiple-choice group shown on the right side of Figure 4-22 was created:

ChoiceGroup multiGroup = new ChoiceGroup ("Choose any",
ChoiceGroup.MULTIPLE) ;

multiGroup.append("Use SSL", null);

multiGroup.append ("Reconnect on failure", null);

multiGroup.append ("Enable tracing", null);

The append () method supplies both the string and the optional image, in that order:

public int append(String string, Image image) ;

This method requires that the string argument is not null. The image argument may be
null if no image is required; if it is not null, the Image that it refers to must be immutable.
The value returned by this method is the index of the entry created within the choiceGroup,
so the first call in the code example would return 0, the second would return 1, and so on. The
append () method is one of several methods from the choice interface that can be used to
change the content of the ChoiceGroup at any time. The other methods are described in
Section 4.2.13.4, a little later in the chapter.

4.2.13.2 Handling selection

When a choiceGroup has the input focus, the user can navigate from item to item within it
with the up and down arrow keys (or their equivalents) on the phone keypad. These internal
navigation operations are not visible to application code. To change the selected state of an
entry, the user must press the device's SELECT button. The location of the SELECT button on
the default color phone is shown in Figure 4-5. The effect that this has depends on the
ChoiceGroup type:

MULTIPLE ChoiceGroup

Pressing the SELECT button when an element that is not currently selected has the
focus results in that element being selected, but it does not affect the state of any other
item. Pressing the SELECT button for an item that is already selected has the effect of
deselecting it.

EXCLUSIVE ChoiceGroup:

Because only one item in an exclusive group may be selected at any time, selecting an
element clears the previous selection. Attempting to select an element that is already
selected has no effect. (It does not deselect the entry; this would result in no element
being selected, which is not allowed.)

Changes in the selection state of an element within a ChoiceGroup are reported to the
ItemStateListener of the Form on which the ChoiceGroup is displayed. In the case of a
multiple-selection group, notification occurs whenever an element is selected or deselected.
For an exclusive group, selecting one element implicitly deselects another element, but only
one notification takes place.

126

J2ME in a Nutshell

Handling state changes using an TtemStateListener is appropriate for applications where an
immediate response is required, perhaps to update some other part of the user interface to
reflect the user's selection. On the other hand, the choiceGroup might be part of a larger input
form whose contents will be processed as a single unit when all fields have been filled in. In
this case, you add a Command (typically Command.0OK) to the Form and implement the logic of
the Form in its commandAction () method. Whichever approach you take, you need to be
able to find out which elements of the choiceGroup are selected. ChoiceGroup has three
methods that can be used to get the current selection state:

public boolean isSelected(int index);
public int getSelectedIndex();
public int getSelectedFlags (boolean[] flags);

The isselected() method returns true if the element with the given index is selected,
false if it is not. This method is most often used with multiple-selection ChoiceGroups
where each check box represents a different program action that is likely to be independent of
the others. Typical code for this case might look like this:

public static final int USE SSL = 0;
public static final int RECONNECT ON FAILURE = 1;
public static final int TRACING ENABLED = 2;

do {
if (multiGroup.isSelected(USE SSL)) {
// Connect using SSL
} else {
// Connect using vanilla sockets

}
if (failed && multiGroup.isSelected (TRACING ENABLED)) {
// Log failure

}
} while (failed && multiGroup.isSelected (RECONNECT ON FAILURE)) ;

In the case of an EXCLUSIVE ChoiceGroup, since only one element can be selected, the
getSelectedIndex () method can be used to determine its index:

public static final int RED = O0;
public static final int GREEN = 1;
public static final int BLUE = 2;

int index = exGroup.getSelectedIndex();
if (index == RED) {
// Act on red selection

This method always returns -1 if it is called for a multiple-choice choiceGroup because there
could be more than one selected element. It also returns -1 if the choiceGroup has no
elements at all (which is unlikely in practice).

If you need to get the selection state of every element in the ChoiceGroup, the
getSelectedFlags () method should be used. This method requires an array of booleans
that has at least as many elements as there are items in the ChoiceGroup; it sets each entry in
the array to true or false depending on whether the corresponding entry is selected. The
return value is the number of items that are selected. Before invoking this method, you need

127

J2ME in a Nutshell

to allocate a boolean array of the appropriate size. If the number of elements in the
ChoiceGroup 1s not constant, you can use the size () method to find out how many there
are:

boolean[] flags = new boolean[multiGroup.size()];
int count = multiGroup.getSelectedFlags(flags);
do {
if (flags[USE SSL]) {
// Connect using SSL
} else {
// Connect using vanilla sockets

}
if (failed && flags[TRACING ENABLED]) {
// Log failure

}
} while (failed && flags[RECONNECT ON FAILURE]) ;

This technique works for both types of ChoiceGroup.

Finally, to get the value of an element within the ChoiceGroup, use the getString()
method:

public String getString(int index);

The following code extract returns either "Red", "Green", or "Blue":

String color = exGroup.getString(exGroup.getSelectedIndex());

The code that handles selection changes for the ChoiceGroups used in the TtemMIDlet is
shown in Example 4-5.

Example 4-5. Handling Selection Changes in a ChoiceGroup or List Component

// Handles the selection for a Choice
private void handleChoiceSelection (Choice choice) {
int count = choice.size();
boolean|[] states = new boolean[count];
int selCount = choice.getSelectedFlags (states);
if (selCount > 0) {
System.out.println("Selected items:");
for (int i = 0; 1 < count; i++) {
if (states[i]) {
System.out.println ("\t" + choice.getString(i));

}

} else {
System.out.println ("No selected items.");
}
int selectedIndex = choice.getSelectedIndex();
System.out.println("Selected index is " + selectedIndex);

This method, which is called from the ItemStateListener attached to the Form in which the
ChoiceGroups are contained, is given an argument of type Choice instead of ChoiceGroup.
When it is invoked, however, the calling code passes a reference to the ChoiceGroup. This is
acceptable, because ChoiceGroup implements the choice interface. The benefit of requiring

128

J2ME in a Nutshell

an argument of type Choice instead of ChoiceGroup is that this same code can also be used to
handle selection changes for the 1.ist component, which also implements Choice.

The aim of this code is simply to demonstrate a couple of ways of handling selection changes.
The first part of this code uses the getselectedFlags() method to get an array of
booleans that shows which elements are selected. The code then loops over the returned
array, gets the strings corresponding to selected entries, and prints them. The second part of
the method uses the getSelectedIndex() method to access directly the index of the
selected item, which, as noted above, returns a meaningful result only for an EXCLUSIVE
ChoiceGroup. Selecting the Green item in the ChoiceGroup example and pressing the
SELECT button results in the following output in the Wireless Toolkit console:

Selected items:
Green
Selected index is 1

Because this is an EXCLUSIVE ChoiceGroup, only one item can ever be selected, so the
getSelectedIndex () method is able to return its index. Selecting Use SSL in the multiple-
choice ChoiceGroup gives this result:

Selected items:
Use SSL
Selected index is -1

Here, getselectedIndex () has returned -1 because the type is MULTIPLE. Selecting another
entry in the same ChoiceGroup results in the following:

Selected items:

Use SSL

Enable tracing
Selected index is -1

As you can see, the getSelectedFlags () method returns all the selected items.

4.2.13.3 Setting and changing the selection

The selection state of the elements within a ChoiceGroup can be changed programmatically
using the following methods:

public void setSelectedIndex (int index, boolean selected);
public void setSelectedFlags (boolean[] flags);

The effect of the setSelectedIndex() method depends on the ChoiceGroup type. In the
multiple-choice case, this method selects or deselects the element at the given index,
depending on the value of the selected argument. In an exclusive ChoiceGroup, however,
this method has an effect only if the selected argument has value true. In this case, it
selects the element at index and deselects the element that was previously selected. If
selected 18 false, the call is ignored. This happens because an exclusive ChoiceGroup must
always have one selected element, so it is not possible simply to deselect the element that is
currently selected without selecting another element at the same time.

129

J2ME in a Nutshell

You can set the selected state of all the elements in a ChoiceGroup by calling the
setSelectedFlags () method, passing it an array of booleans containing true for those
elements that are to be selected and false for those that are not. The boolean array must
contain an entry for each element in the ChoiceGroup:

public boolean[] initialStates = new boolean[3];
initialStates[RECONNECT ON FAILURE] = true; // Select just this element
multiGroup.setSelectedFlags (initialStates);

In the multiple-choice case, any number of entries in the array can be true. Since exclusive
ChoiceGroups can have only one element selected, in this case the boolean array must have
exactly one entry with value true. If this is not the case, the following selection rules apply:

o Ifthe array has no entries set to true, the first entry in the choiceGroup is selected.
e If the array has more than one entry set to true, the element in the ChoiceGroup
corresponding to the first t rue entry is selected.

Note that changing the selection using these methods does not result in notification to the
Form's TtemStatelListener.

4.2.13.4 Changing the content of a ChoiceGroup

The content of a ChoiceGroup can be changed at any time using the following methods:

public int append(String string, Image image);

public void insert (int index, String string, Image image);
public void set (int index, String string, Image image);
public void delete(int index);

The append () method, which has already been discussed, adds a new element to the end of
the ChoiceGroup. The insert () method is similar, except that it places the new entry at the
given index, moving the element at that index and all higher indexes down to make room for
the new one. This method can also be used to add an element at the end of the choiceGroup
by supplying the size of the ChoiceGroup as the insertion index:

multiGroup.insert (multiGroup.size(), "New Entry", null);

Insertion indexes greater than size() are invalid and cause an
IndexOutOfBoundsException to be thrown.

The set () method replaces the content of an existing element with new values. Both the
string and image parts of the element are changed: it is not possible to change only one of
these attributes by supplying nu11 for the other. For all of these methods, the image argument
may be null if no image is required, but the string argument must not be nu11. If an image
is supplied, it must be immutable.

Finally, an element can be removed from the ChoiceGroup using the delete () method:

public void delete(int index);

130

J2ME in a Nutshell

Changing the content of a ChoiceGroup may have an effect on its selection state. The rules
that apply are as follows:

e Adding an item using the append () method has no effect on the selection. The only
exception to this is an EXCLUSIVE ChoiceGroup that was previously empty. In this
case, the newly added element is selected.

o Inserting an element using the insert () method preserves the selected state of each
existing item in the list, but, of course, the indexes of the selected items may change.
As an example of this, if elements 2 and 3 are selected and a new element is inserted at
index 2, the selected item indexes change to 3 and 4. As a special case, as with the
append () method, if an EXCLUSIVE ChoiceGroup was previously empty, the new
element is selected.

e Replacing an item using the set () method gives the new item the same selected state
as the item that it replaced.

Deleting an item has no effect on the selection state of other items, except when the selected
element in an EXCLUSIVE ChoiceGroup is deleted. In this case, if the deleted item is not at the
end of the list, the item that replaces it is selected (that is, the selected index remains the
same). If the selected item is the last item, then the element that becomes the last item is
selected instead.

4.2.13.5 The List component

List is a full-screen version of ChoiceGroup that shares most of its programming interface.
The common functionality is grouped into an interface called Choice, which has the
following methods:

public int append(String string, Image image);

public void delete(int index);

public Image getImage (int index);

public int getSelectedFlags (boolean[] flags);

public int getSelectedIndex();

public String getString(int index);

public void insert (int index, String string, Image image);
public boolean isSelected(int index);

public void set(int index, String string, Image image) ;
public void setSelectedFlags (boolean[] flags);

public void setSelectedIndex (int index, boolean selected);
public int size();

List has two constructors that mirror those of ChoiceGroup and work in exactly the same
way:

public List(String title, int type);
public List(String title, int type, String[] strings, Image[] images);

The only difference is that the first parameter is used to set the title of the List's screen,
whereas it is used as the label for a choiceGroup.

As well as supporting the ExcLUsIVE and MULTIPLE modes of operation, List has a third

mode, selected by setting the type to Choice.IMPLICIT, which cannot be used with
ChoiceGroup. IMPLICIT mode creates a List that behaves somewhat like a standard list (e.g.,

131

J2ME in a Nutshell

the Swing JList component), with the restriction that only one element can be selected at
a time. This mode is often used to create a menu, and, in fact, this is how the list of MIDlets in
a MIDlet suite is presented when you launch the Java VM (see Figure 3-8). If you select
the List item from the menu presented by ItemMIDlet, you'll see an IMPLICIT List, as
shown on the left side of Figure 4-23. The code used to create this list is very similar to
the corresponding ChoiceGroup code:

List list = new List ("List", List.IMPLICIT):;

Image red = Image.createlImage ("/ora/ch4/resources/red.png");
Image green = Image.createImage ("/ora/chd4/resources/green.png");
Image blue = Image.createImage ("/ora/ch4/resources/blue.png");

list.append("Red", red);
list.append ("Green", green);
list.append ("Blue", blue);

Figure 4-23. List component on the default color phone

[rr———
ICholceGroup

FohoDge O
@ Red

1 Bl
K-hoose sy
EI_EN'.is " Ext

The same List as displayed on the PalmOS platform is shown in Figure 4-24. As you can
see, the cell phone emulator displays both the string and the image associated with each
element in the list, whereas the PalmOS implementation ignores the image, as it did in the
case of the choiceGroup.

Figure 4-24. List component on the PalmOS platform

Chapterd:List
Fed

Gresn
-+ Blue

The tmMpLIcIT and EXCLUSIVE modes are very similar, in that both require exactly one
element of the list to be selected at any time. In fact, all previous comments regarding
EXCLUSIVE mode made in connection with ChoiceGroup also apply to the TMpPLICIT mode of
List. The difference between these modes can be seen by comparing the TMPLICIT List on
the left side of Figure 4-23 with the EXCLUSIVE ChoiceGroup on the right. As you can see,
the choiceGroup has a separate radio button that indicates which element is selected, whereas
the List does not. This means that the highlighted element in the ChoiceGroup (Green) need
not be the same as the selected element (Red). In the case of an tMpLICIT list, however, the
highlighted element is implicitly considered to be the selected element, which is why this is
referred to as TMPLICIT mode.

Since List is not an ITtem, changes in its selection state cannot be notified to application code

via an TtemStateListener. In fact, there is no way to detect when the selected element of a
List changes, in any of its modes, until the user activates a Command installed on the List

132

J2ME in a Nutshell

that would prompt application code to examine its selection state.” In the case of an IMPLICIT
List, however, if the user presses the SELECT key on the cell phone keypad or presses the
arrow to the left of each item on the PalmOS platform (refer to Figure 4-24), the List's
CommandListener, if there is one, is notified of a selection change. Usually, when the
commandAction () method of the CommandListener is called, it is passed a reference to the
application-supplied command that was activated and the pisplayable to which the Command
was attached. In this case, however, there is no application Command associated with the
selection action, so the List provides a private Command called List.SELECT COMMAND,
which indicates that the commandaction() method has been called as a result of an
IMPLICIT List selection. The pisplayable argument passed to commandAction () refers to
the List itself.

To associate a CommandListener with a List, you use the setCommandListener () method
inherited from Displayable:

List list = new List ("List", Choice.IMPLICIT)
list.setCommandListener (new CommandListener () {
public void commandAction (Command c, Displayable d) {
// Handle notification from the List

}
1)

The ItemMIDlet commandAction() method includes a case that detects the List selection
change:

public void commandAction (Command c, Displayable d) {
if (¢ == List.SELECT_COMMAND) {
// Selection made in the IMPLICIT LIST
handleChoiceSelection ((Choice)d);
} else {
// Other cases not shown

}

Because 1ist implements the Choice interface, you can use the same methods to handle the
selection as those shown in connection with ChoiceGroup. In fact, the previous code uses the
same handleChoiceSelection () method as was used to handle the choiceGroup selection
in Example 4-5. Notice that a reference to the List is obtained by casting the Displayable to
an object of type choice. This is correct because the notification comes from the List (the
Displayable), which implements Choice.

. Note carefully that this discussion applies only to Lists created with

— type IMPLICIT. The CommandListener will not be notified of any
selection change for Lists of type MULTIPLE or EXCLUSIVE. For these
types, it is necessary to attach to the List a Command that notifies
application code that the List selection should be checked.

Strictly speaking, this is not true, because you could periodically examine the selection state from a background thread or on expiration of a Timer,
but such tactics are not likely to be useful in a real application!

133

J2ME in a Nutshell

The behavior of the choice methods concerned with selection handling in the rMpLICIT
mode is the same as that for ExcLUsIVE mode, as described in the earlier sections
Section 4.2.13.2 and Section 4.2.13.3.

4.2.14 Alerts

Alert is a subclass of screen that behaves much like a dialog, albeit with very limited
functionality. When an alert is displayed by calling the pisplay setCurrent () method, it
covers some or all of the device screen and receives all key and pointer events generated by
user action while it is visible. An Alert may be modal or nonmodal. In this context, an Alert
is modal if it remains displayed until the user explicitly dismisses it. A nonmodal dialog, by
contrast, is displayed for a limited maximum time period before being closed automatically.

alert has several attributes that determine its appearance and behavior:
Title

This attribute is inherited from screen. An Alert is not required to have a title.
String

This attribute contains the message that the aAlert displays to the user. Line breaks
may be created within the message by including newline characters.

Image

An optional image may be provided to be displayed along with the message. The way
in which the image is displayed, and whether it is displayed at all, is device-dependent.

Timeout

Specifies how long the alert is displayed. A default timeout is applied if no explicit
timeout value is set. The distinguished value alert.FOREVER is used to indicate that
the alert should be displayed until the user dismisses it. There is no requirement for
the device to provide a means for the user to remove an Alert with a finite timeout
value before the timeout expires. This feature should be used with care to ensure that
the user does not have to wait an unduly long period for a simple confirmation
message to time out and dismiss itself.

Type

This attribute, which is of type AlertType, conveys the intent of the Alert to the
platform. The platform may use this attribute to tailor the alert's visual appearance to
help the user distinguish between errors, warnings, and informational messages. The
platform may also generate an appropriate sound to draw the user's attention to the
alert. An alert is not required to have an AlertType, and the platform is not required
to act upon it even if it does. The available types are:

AlertType.ALARM
AlertType.CONFIRMATION

134

J2ME in a Nutshell

AlertType.ERROR
AlertType.INFO
AlertType.WARNNG

Note that the conFIRMATION type is intended to confirm to the user that an action
previously requested has been completed, not to solicit something like a Yes, No, or
Cancel response before an action is performed. In fact, it is not possible to construct an
Alert that accepts any input. If you want to get confirmation from a user before
performing an action, you must construct and display a Form containing the
appropriate Commands to allow the user to approve or cancel the proposed action.

You can see all the available a1ert types and how the timeout works by selecting the alert
example from the rtemMIDlet. This example lets you configure the attributes of an alert
and display the result. When the example starts, you see a Form containing two
ChoiceGroups. Figure 4-25 shows how this looks on the default color phone, where you need
to scroll to see all of the Form.

Figure 4-25. Configuring an Alert on the default color phone

T omill | Tl [T sl [
Ulert lert lert

inecul lert Type itfeeoL

Oreyer _IForener
Boursed 52 COMNFIRMATION FiBounded 115
Ll Ty ERFICR D |
IMEC ==n DEII]DUD [

ok o Meru ack T Menu ack *4* Menul

The first choiceGroup, shown on the left side of Figure 4-25, lets you select the timeout for
the Alert, which can be either Alert.FOREVER or a value specified in seconds. If you select
the second item in the ChoiceGroup, a Gauge appears so that you can adjust the timeout
value, as shown on the right side of the figure. The second choiceGroup allows you to choose
the AlertType. On the PalmOS platform, this Form has a more compact representation,
shown in Figure 4-26, but the functionaility is the same.

Figure 4-26. Configuring an Alert on the PalmOS platform

Chapterd:Alert Chapterd:Alert

_) Timeout: w EBounded %z
Timeouwt: w Foraver

Alert Type: [N 9
COMFIRMATION w WARMING

Alert Type:

Once you've configured the alert, you can use the OK command to display it. On the
PalmOS platform, this is available as a button on the Form, but on other devices you might
need to access a soft-key menu to locate it. Pressing the OK button displays the alert, and,
on some devices, a sound plays (the specific sound may depend on the AlertType). If you
experiment with different types, you'll notice that, with the exception of the text message
(which is constructed by TtemMiDlet to remind you of the parameters that you selected),
there is no difference in appearance on the default color phone. The alerts all look like the one
shown on the upper left side of Figure 4-27. The exception is when you select a timeout of

135

J2ME in a Nutshell

Alert.FOREVER: you get a command button labeled Done that allows you to dismiss the
Alert at any time.

On the PalmOS platform, however, the alerts use different icons to indicate the AlertType.
Furthermore, as you can see from Figure 4-27, when a finite timeout is selected, the time
remaining until the Alert is dismissed counts down in a small circle in its bottom left. When
the timeout value is set to Alert.FOREVER, there is a Done button in this area instead.

Figure 4-27. Various Alerts on the default color phone and the PalmOS platform

F ol B | | Chapterd-filert |

Alert! Timeout: - Bourded 9:

L
Alert Type: YAEMNG
Alert bipe ALARM
Timeout = 113

Alert Type: WARNING

Timesut =9
Timeowt: - Eoureded % Timeowt: w Forevar
] Alert Type: w [one

Chopterd:Alert! Chapterd:flert!
1 Alert type: ALARMN fillert type: None
Timneaur = 35 Tirneaut = nons

- Only alerts with the timeout set to Alert.FOREVER can be dismissed

e by the user; the others remain displayed until their timeout expires. You
can't get around this by trying to add your own Done button, because
Alert overrides the addCommand and setCommandListener methods of
Displayable and throws an I1legalStateException if you try to add
a Command or install a CommandListener.

The code used to create and display an alert is simple:

Alert alert = new Alert ("Alert Title", "This is an Alarm", alarmImage,
AlertType.ALARM) ;
Display.getDisplay(this) .setCurrent (alert);

As you can see, you use the Display setCurrent () method to display an Alert, just as you
would any other type of Displayable. The alert partially or completely covers the screen
that was active when the setCcurrent () method is called. When the Alert is dismissed, the
original screen is redisplayed. In some cases, though, it might be appropriate to show a
different screen once the alert has closed. You can arrange for this to happen by using a
different form of setCurrent ():

public void setCurrent (Alert alert, Displayable displayable);

136

J2ME in a Nutshell

This method first displays the given alert; when it closes, the Displayable given as the
second argument appears instead of the screen that was originally displayed. As a special
case, passing null for the pDisplayable reverts to the original screen -- that is, it behaves just
like the single-argument variant of setCurrent ().

alert has several methods that you can use to customize it after creation or to get some of its
attributes. The AlertType can be obtained or changed using the following methods:

public void setAlertType (AlertType alertType);
public AlertType getAlertType();

You can get or change the text string and image using similar methods:

public void setString(String string);
public String getString();

public void setImage (Image image) ;
public Image getImage();

When an alert is created, a default timeout is applied, which you can get using the
getDefaultTimeout () method:

public int getDefaultTimeout();

Note that this is not a static method, so you have to create an Alert before you can use it.
There is no method to change the default timeout. The returned value is in milliseconds.

Finally, you can get or change the actual timeout for a specific alert using the following
methods, where the time is again measured in milliseconds:

public int getTimeout();
public void setTimeout (int timeOut) ;

If you call setTimeout () with the argument Alert.FOREVER, then the Alert will be modal.

. An Alert with timeout set to Alert.FOREVER is described in the MIDP

— specification as a modal dialog, but it is not modal in the same sense
that a J2SE Dialog or Jbialog is. In particular, when you display a
J2SE modal dialog by calling its show() or setvisible() method,
control is not returned until the dialog is dismissed. The same is not true

of alert. That is, in the following code the setCurrent () method
returns control immediately; it does not wait for the alert to be
dismissed:

Alert alert = new Alert ("Modal", "Modal Alert", null,
AlertType.ALARM) ;

alert.setTimeout (Alert.FOREVER); //Make the Alert "modal"

Display.getDisplay (this) .setCurrent (alert)

// Returns IMMEDIATELY

In fact, the aAlert may not actually have been displayed when it returns,
as discussed in Section 4.1.1, earlier in this chapter.

137

J2ME in a Nutshell

4.2.15 Playing Sounds

MIDP does not currently have an API for playing arbitrary sounds, but it is possible to create
a small set of sounds on devices that support it by using the AlertType method on its own.
The alertType method has a public method that plays its associated sound:

public boolean playSound(Display display);

where display is the Display object associated with the MIDlet. The following code extract
requests that the device play the sound associated with an ALaARM:

AlertType.ALARM.playSound(Display.getDisplay (this));

The device is not obliged to play any sounds or to generate a different sound for each
AlertType. If the playsound() method actually plays a sound, it returns true. You can
experiment with the various sounds by selecting the sounds example from TtemMIDlet,
choosing each sound in turn from the List component that the MIDlet displays, and using the
SELECT key (or its equivalent) to play it. The return value of the playSound() method is
written to the Wireless Toolkit console. If you are running this example on a PalmOS device,
and you don't hear any sounds, be sure to enable System Sounds using the Prefs applet from
the main screen.

138

J2ME in a Nutshell

Chapter 5. The Low-Level MIDlet User Interface API

The high-level API provides enough functionality for you to create, with relatively little
effort, MIDlets with user interfaces that work unchanged across a wide range of devices.
The price to be paid for this, however, is that you are restricted to using the components
provided in the javax.microedition.lcdui package, and you have very little control over
the appearance of your MIDlet.

The low-level API gives you almost exactly the opposite situation. To use it, you need to put
much more effort into creating the user interface, but in return you get pixel-level access to
the screen, you have control over colors (or shades of gray) and fonts; and you can respond
directly to the user's key presses or pointer actions. This section takes a detailed look at the
low-level API, which is useful for writing simple games or drawing charts. It may be used on
its own or mixed with screens built using Form and the other classes covered in the previous
chapter.

5.1 The Canvas Class

canvas is the basic building block of the low-level API. Because it is derived directly from
Displayable, it inherits the ability to have associated commands, but it does not provide a title
or the ability to contain other components. canvas gives you direct access to the screen of
a MIDP device, apart from the area used to draw Command buttons or labels, as shown in
Figure 5-1. In the figure, the black area is the part of the screen occupied by the canvas itself.

Figure 5-1. The Canvas class

Carmvs ushle u'rm_q areg

Unlike the user interface components that we have seen so far, canvas is an abstract class. To
use Canvas, you have to subclass it and implement the paint method to draw whatever you
want to appear on the screen. This method is called with a single argument, which is an
instance of another low-level API class called Graphics. This class provides methods that
allow you to draw lines, rectangles, and arcs, fill areas with a solid color, and render text onto
the device's screen. The canvas class also has methods -- which you can override -- to receive
notification of key presses and use of the pointer (on those devices that have one).

5.1.1 Screen Attributes

The low-level API is intended to give you much greater control over the screen and keypad of
a MIDP device than the high-level API does. In doing so, however, it makes it more likely
that you will inadvertently create a MIDlet that is device-dependent because it relies on the
dimensions of the screen or on a feature that is not universally available. To make it easier to
write code that adapts itself to its environment, the canvas and Display classes provide

139

J2ME in a Nutshell

methods, described in the following sections, to allow you to query the attributes that
distinguish one device from another.

5.1.1.1 Display methods
The pisplay class provides the following methods:
public boolean isColor()
This method returns true if the device has a color display, false if not.
public int numColors()

If the isColor () method returns true, numColors () can be used to get the number
of different colors the device supports. When isColor () returns false, numColors (
) returns the number of shades of gray that the device's display can provide. As you'll
see later, you can treat a grayscale device as if it supported color, and the color values
you use will be converted to a shade of gray that approximates the brightness of the
original color. However, you might be able to obtain better results in some cases by
coding your MIDlet to work in grayscale if the device does not support color.

5.1.1.2 Canvas methods
The canvas class provides the following methods:

public int getWidth()
public int getHeight(')

These methods return the width and height of the canvas, which corresponds to the
usable part of the device's screen.

public boolean hasRepeatEvents()

While all MIDP platforms provide keyboard input, some (especially cell phones) do
not support the concept of repeated keys. If this method returns true, your MIDlet
will be notified when the user holds down a key long enough for the device to
consider it a repeated key. Key handling and the mechanism by which the MIDlet is
informed of repeated keys are covered in Section 5.10.1, later in this chapter.

public boolean hasPointerEvents()
public boolean hasPointerMotionEvents()

Cell phones are usually limited to input via the keypad, but more functional devices,
such as PDAs, usually also have some kind of pointing device (such as a stylus) used
in conjunction with a touch screen. If such a pointer is available, the
hasPointerEvents () method returns true, and the MIDlet can expect to be notified
when the user touches the screen with the pointer or lifts the pointer away from the
screen. Additionally, if the hasPointerMotionEvents () method returns true, the
platform might periodically deliver notifications to the MIDIet if the user drags the
pointer while it is in contact with the screen. For maximum portability, MIDlets

140

J2ME in a Nutshell

should not rely on the availability of a pointer and should not assume, even if a pointer
is available, that pointer motion events will be available.

public boolean isDoubleBuffered()

This method returns true if the MIDP implementation provides double buffering, so
that graphics operations performed in the canvas paint () method are applied to an
offscreen buffer instead of directly to the screen. The advantage of double buffering is
that it can make screen updates look much smoother because the user never sees
partially updated frames that can result in display flashing or temporary
inconsistencies while the display is being redrawn. If isDoubleBuffered() returns
false, a MIDIlet can still attempt to alleviate display problems of this type by
performing its own double buffering. The disadvantage of this, however, is that
allocating an off-screen buffer may require more memory than the platfom can make
available to the MIDlet.

You can obtain the values of these attributes for the emulated devices supported by the
Wireless Toolkit by building and running the chapter5 project from this book's example
source code. Select the MIDlet called AttributesMIDlet, which uses the high-level API to
show these attributes; it creates (but does not display) a canvas from which the attribute
values are obtained, as shown in Example 5-1.

Example 5-1. Getting Display and Canvas Attributes for a Device

package ora.chb5;

import Jjavax.microedition.lcdui.Canvas;

import javax.microedition.lcdui.Command;

import javax.microedition.lcdui.CommandListener;
import javax.microedition.lcdui.Display;

import javax.microedition.lcdui.Displayable;
import javax.microedition.lcdui.Form;

import javax.microedition.lcdui.Graphics;

import javax.microedition.lcdui.StringItem;
import javax.microedition.midlet.MIDlet;

public class AttributesMIDlet extends MIDlet implements CommandListener {

// The MIDlet's Display object
private Display display;

// Flag indicating first call of startApp
protected boolean started;

// Exit command
private Command exitCommand;

protected void startApp() {
if (!started) {
display = Display.getDisplay(this);
Canvas canvas = new DummyCanvas();

141

J2ME in a Nutshell

// Build a Form displaying the Display and Canvas attributes.
Form form = new Form("Attributes");

exitCommand = new Command ("Exit", Command.EXIT, 0);
form.addCommand (exitCommand) ;

boolean isColor = display.isColor();

form.append (new StringItem(isColor ? "Colors: " : "Grays: ",
String.valueOf (display.numColors())));

form.append(new StringItem("Width: ", String.valueOf
(canvas.getWidth())));

form.append(new StringItem("Height: ", String.valueOf
(canvas.getHeight ())));

form.append(new StringItem("Pointer? ", String.valueOf
(canvas.hasPointerEvents())));

form.append(new StringItem("Motion? ", String.valueOf
(canvas.hasPointerMotionEvents())));

form.append(new StringItem("Repeat? ", String.valueOf
(canvas.hasRepeatEvents())));

form.append(new StringItem("Buffered? ", String.valueOf
(canvas.isDoubleBuffered())));

form.setCommandListener (this) ;
display.setCurrent (form) ;
started = true;

}

protected void pauselpp() {
}

protected void destroyApp (boolean unconditional) {

}

public void commandAction (Command c, Displayable d) {
if (¢ == exitCommand) {
// Exit. No need to call destroyApp
// because it is empty.
notifyDestroyed();

}

// A Canvas that has no painting logic
static class DummyCanvas extends Canvas {
protected void paint (Graphics g) {

// Do nothing
}

The results of running this MIDlet on the default color phone and a color PalmOS platform
are shown in Figure 5-2. Notice that, as expected, the cell phone does not provide pointer
events, but the PalmOS device does. The cell phone also has far fewer colors available than
this particular PDA. On the other hand, the cell phone implementation of MIDP provides
automatic screen double-buffering, whereas that on the PDA does not. Finally, note that the
PDA screen size is reported as 160 pixels wide and 142 pixels high, although the physical
screen of this device is actually 160 pixels in each direction. The missing 18 pixels on the
vertical axis are not available to MIDlets because they are reserved for Command buttons.

142

J2ME in a Nutshell

Figure 5-2. Display and Canvas attributes on two emulated devices

[wertl = F ol = | t::u!mﬂ!l_______
Attribuwtes tiributes |

Colors: 256 gt 100 :;I::: ?2336

Vit S5 mei? falze Height: 142

Height: 100 otion’? false | Poimter?: trus
Forntet? falze epeat? falze MotionT: trus

piotion? falze utfared? trug Repeat?: true

Eait . o t ; Buffered?: false

5.2 Painting and the Graphics Class

When the platform determines that the content of a canvas needs to be drawn onto the screen,
it calls the paint () method, which the MIDIlet developer is required to implement:

protected void paint (Graphics g)
This method is called at the following times:

e When the canvas becomes visible as a result of the Display setCurrent () method
being invoked

e When some or all of the canvas reappears after being partly or wholly obscured by an
Alert or a system screen, such as a menu of Commands opened from a soft button

e As a result of application code requesting that the screen be repainted following a
change in the data that it is rendering

The Graphics object passed to the paint () method provides methods that allow graphics
operations, such as line and text rendering and color filling, to be performed on its target. The
target is either the screen itself or, in the case of a platform that supports double buffering, an
off-screen image that will be copied to the screen when the paint() method returns.
Implementing this method is the only way to get a Graphics object that can access the screen;
unlike the J2SE component class, canvas does not have a getGraphics () method that can
be used to get access on demand to the screen space that it occupies. Therefore, all screen
updates must be performed in the paint () method. The MIDP specification prohibits
holding a reference to the Graphics object passed to paint () for use elsewhere.'

When the visibility of a canvas changes, the following methods are called:

protected void showNotify()
protected void hideNotify()

The MIDP specification guarantees that the paint () method will not be invoked before
showNotify () is called and, following return from hideNotify(), any further calls to the
paint () method will be preceded by another call to showNotify(). This essentially
amounts to the statement that paint () is called only when the canvas is visible. The default
implementations of these methods do nothing. Subclasses may override the showNotify()
method to perform any initialization required prior to the canvas being displayed, while
hideNotify () typically reverses the steps taken by showNotify().

It is also possible to get a Graphics object that allows you to draw onto a mutable Image. Graphics objects obtained in this way are valid for
use at any time, and a persistent reference to one can be kept. For further discussion on this topic, refer to Section 5.9.

143

J2ME in a Nutshell

As an example of typical use of these methods, a "Space Invaders"-type game might use the
showNotify () method to start a timer to control the regular movement of the aliens across
the screen and hideNotify() to stop the timer. This would ensure that resources are not
wasted moving aliens while the game is not in use. This technique is used in an example
shown later in this chapter (see Section 5.6.1).

5.3 Graphics Attributes

The Graphics class provides operations that let you do the following:

e Draw straight lines, arcs, and rectangles

o Fill the space occupied by an arc or a rectangle

e Render images

e Draw text presented in the form of a string or as character data

All these operations use a coordinate system to indicate at least their starting point, and most
of them also use one or more attributes of the Graphics object that act as implicit parameters.
When the paint () method is called, the attributes of the Graphics object that is passed to it
have well-defined values that can be modified if necessary. The attributes and their initial
values are listed in Table 5-1. A more detailed description of each attribute and the way in
which it is used are found in later sections.

Table 5-1. Graphics Attributes

Attribute Use Initial Value
Cli The clip sets the region of the Canvas within which graphics|Depends on the reason
P operations have any effect. The clip is discussed in Section 5.7. paint () was invoked

The color that will be used when drawing or filling shapes or

Color rendering text. See Section 5.3.2 for further details. Black

Font The font used when rendering text. Fonts are discussed in Section 5.8. ?:; t to the platform's default

Stroke Determines whether lines, rectangles, and arcs are drawn using solid Set to draw a solid line

Style or dotted strokes, as described in Section 5.4.1.

Orici The position of the coordinate point (0, 0) relative to the top left of the| The top left corner of the
neimn Canvas. Canvas

5.3.1 The Coordinate System

The Graphics class uses a coordinate system in which the origin is situated at the top left
corner of the canvas. Along the x-axis, coordinates increase from 0 on the left side of the
Canvas to their maximum value on the right. Similarly, the value of the y coordinate increases
toward the bottom of the canvas, as shown on the left side of Figure 5-3.

Figure 5-3. The Graphics coordinate syatem

{0, 01 100, 0] oo 0o @ (@3
x EEEN
(011 . 4.1
YYD, 141) oy 0n @y 3y

144

J2ME in a Nutshell

It is important to note that the coordinates do not refer to the locations of the pixels
themselves but to the intersection points of an imaginary grid that occupies the space between
the pixels, as shown on the right in Figure 5-3. In the figure, the pixels themselves are shown
as filled squares. The coordinate location (0, 0), corresponding to the origin, does not strictly
refer to the pixel at the top left corner of the grid, but to the grid intersection point just to the
left of and above it. Similarly, (1, 0) refers to the grid intersection point just to the top right of
that pixel, which is also at the top-left of the pixel to its right. Although this might seem a
trivial and rather technical distinction, it becomes important when describing how line
drawing and color fill operations work, as will be seen in Section 5.4. For the sake of clarity,
and notwithstanding the fact that it is slightly innacurate to do so, this book usually refers to
"the pixel at (0, 0)" when what is really meant is "the pixel whose top left corner is at (0, 0)."

The MIDP specification requires that pixels be approximately square, as shown in Figure 5-3.
In reality, a device need not have square pixels. If it does not, the MIDP platform or the host
operating system is expected to group device pixels logically so that they appear square to a
MIDlet. If, for example, a particular device has pixels that are four times as long as they are
tall, the software is required to map a request from a MIDlet to set the color of the pixel at (0,
0) into hardware operations that set the color of that hardware pixel and the three below it to
the requested color. Furthermore, the screen size as reported by the Canvas getwidth () and
getHeight () methods are expressed in terms of logical, square pixels, so a MIDlet does not
need to be concerned about any mapping that is taking place.

5.3.2 Colors and Grayscale

The Graphics operations that draw and fill shapes, lines, and text use the color attribute as an
implicit parameter to determine the color to be used for each affected pixel. This attribute can
be set using one of the following Graphics methods, of which the second is the one most
commonly used:

public void setColor (int color)
public void setColor (int red, int green, int blue)
public void setGrayScale (int value)

The color model specified by MIDP represents a color as an RGB value with 8 bits to
represent each of the red, green, and blue components. Numerically lower values represent
less of the corresponding color and therefore produce a darker effect. The second
setColor() method lets you set the color by specifying these component values
individually, so that the following setting gives a pure, bright red:

setColor (255, 0, 0)

This setting is a combination of red and green that produces yellow:

setColor (255, 255, 0)

The other setColor () method uses its integer argument to encode the color components as
follows:

00 RR GG BB

145

J2ME in a Nutshell

Using this encoding, the bright red with RGB components (255, 0, 0) is represented as
0x00FF0000, yellow is 0xOOFFFF00, black is 0, and white is OxOOFFFFFF. The current
MIDP specification does not support transparency, so colors are always opaque, and there is
no alpha value to encode.”

The availability of 24 bits to encode a color means that a total of 16,581,375 colors can be
represented. Most MIDP devices cannot display anywhere near that number of colors, and
some cannot display color at all. When a pixel is drawn, the color value is mapped to the
nearest available color that the device can actually represent. This mapping is not visible to
the MIDlet, which does not have direct access to the actual pixel data.

On a device that uses grayscale instead of color (that is, one for which the pisplay
isColor() method returns false), the pixel value is converted to a gray value that
approximates the brightness of the actual color. This automatic conversion means that a
MIDlet originally intended for a color device can also be used on one that does not support
color. Grayscale values are encoded using integer values 0 to 255 inclusive, where 0 is the
darkest (black) and 255 the brightest (white). A MIDlet that can work directly with grayscale
values can use the setGrayScale() method instead of setColor() to set the Graphics
color attribute.

There are several Graphics methods that retrieve the value of the color attribute:

public int getColor()

public int getRedComponent ()
public int getGreenComponent ()
public int getBlueComponent ()
public int getGrayScale()

The getcolor () method returns the color attribute in the same integer encoding as that used
by setColor (y. The getRedComponent (), getGreenComponent (), and
getBlueComponent () methods return the individual red, green, and blue parts of the color.
The getGrayscale () method returns a grayscale value in the range 0-255 that approximates
the brightness of the current color.

If the color attribute was actually set using setGrayScale(), getGrayScale () returns the
actual grayscale value, and the other four methods return RGB values for a device-dependent
color that approximates the brightness of the supplied gray. In the MIDP reference
implementation, the mapping from grayscale to the returned color is a simple one: the red,
green, and blue components are all set to the grayscale value. That is to say, the following
code prints "127" for all three color components:

g.setGrayScale (127);
System.out.println("Red = " + g.getRedComponent() + ", green = " + g.
getGreenComponent () + ", blue = " + g.getBlueComponent());

The same might not be true for other implementations.

2 In J2SE, the alpha channel represents the transparency of a color; it is usually held in the top 8 bits of a color when encoded as an integer. An opaque
red pixel, for example, would actually be encoded as OXFFFF0000, while 0xOOFF0000 would be a transparent red that would be invisible! Note also
that MIDP does not have a Color class: colors are always represented as integers or integer triplets.

146

J2ME in a Nutshell

5.4 Drawing Lines and Arcs

The Graphics class methods that let you draw straight lines, rectangles, and arcs are very
similar to those available in J2SE. There are, of course, none of the advanced features
provided by Java 2D. Even some of the more basic features, such as convenience methods
that let you draw polygons and polylines, are missing, although some of them can easily be
simulated.

The drawing primitives work by determining the set of pixels that will be affected and setting
each of them to the value of the current color attribute as set by setColor() or
setGrayScale(). Because there is no support for transparency and color blending, no
account is taken of the initial state of an affected pixel.

Perhaps surprisingly, no provision is made for an "exclusive-or" drawing mode, in which the
new pixel value is combined with the existing one using a bitwise exclusive-or operation. This
is not an issue, in practice, because MIDlets have access to a Graphics object only in the
paint () method, when everything must be redrawn, whether it has moved or not. By
contrast, it is possible in J2SE to get a Graphics object at any time, and, therefore, parts of
the screen can be updated directly, without having to wait for the paint () method to be
called.

5.4.1 Lines and Rectangles

The simplest shape you can draw on a canvas is a straight line:

public void drawline(int x1, int y1, int x2, int y2)

This method draws a line between the two pixels at (x1, y1) and (x2, y2). Usually, both these
points would be within the bounds of the canvas, but this is not a requirement. It is possible
to draw a line in which one or both of the points are off the canvas, in which case only the
part of the line that crosses the canvas is actually rendered.

The boundaries of the line include both the given endpoints. For example, the following
method call actually affects 4 pixels:

g.drawLine (0, 0, 3, 0);

The pixels at both (0, 0) and (3, 0) are filled, as well as those in between, as shown in
Figure 5-4.

Figure 5-4. Drawing a straight line

oo KN @20 Fo Mo

0.1 1

w2 a2y Gn “wiy

The drawLine () method plots a single point if the start and end points are the same.

147

J2ME in a Nutshell

The actual pixels that are affected by the drawLine () operation depend on the Graphics
stroke style. This attribute is set using the setstrokestyle() method, which requires a
single parameter that takes one of the following values:

Graphics.SOLID
Draws a solid line in which all affected pixels are set to the current Graphics color.
Graphics.DOTTED

Draws a line in which only a subset of the pixels that would be set in Graphics.SOLID
mode are affected.

You can see the difference between these two modes by building and running the chapter5
project from this book's source code examples. Launch the MIDlet called GraphicMIDlet,
then select "Lines" from the examples list that appears. The result of running this example on
the default color phone is shown in Figure 5-5.

Figure 5-5. Drawing straight lines on a Canvas

The code that produced the lines in Figure 5-5 looks like this:

public void paint (Graphics g) {
int width = getWidth();
int height = getHeight();

// Fill the background using black
g.setColor (0);
g.fillRect (0, 0, width, height);

// White horizontal line
g.setColor (OXFFFFFF) ;
g.drawLine (0, height/2, width - 1, height/2);

// Yellow dotted horizontal line
g.setStrokeStyle (Graphics.DOTTED) ;

g.setColor (OXFFFF0O0) ;

g.drawLine (0, height/4, width - 1, height/4);

// Solid diagonal line in brightest gray
g.setGrayScale (255) ;

g.setStrokeStyle (Graphics.SOLID) ;
g.drawLine (0, 0, width - 1, height - 1);

You'll notice that the canvas used here has a black background, which is due to
the fillrRect () call that is made at the start of the paint() method, after setting

148

J2ME in a Nutshell

the current color to black. Because canvas does not have any painting logic of its own,
the MIDlet itself is responsible for filling its background. If this is not done, the canvas will
be transparent, which might be useful in some cases. In this case, failing to fill the background
would result in the drawing operations being overlaid on top of the list from which the Lines
example was selected. (The fi11rect () method will be described shortly.)

Each invocation of drawLine () is preceded by calls to setColor() to set the appropriate
color and setstrokestyle() to select a solid or dotted line. It is not always necessary to
call these methods repeatedly, because the value of a Graphics attribute is preserved over
graphics operations (but not between invocations of the paint () method itself). In the case
of the last line, which extends from the top left side of the canvas to the bottom right,
the drawing color is set using the setGrayscale () method instead of setColor (). Passing
the value 255 results in the selection of the brightest gray that the display can support, which
is very likely to be white.

Drawing a rectangle is just as easy as drawing a straight line:

public void drawRect (int x, int y, int width, int height)

The point (x, y) represents the top left corner of the rectangle, and the width and height
arguments obviously determine its width and height, respectively. As with straight lines, the
rectangle outline touches both the start and end pixels on all sides, so that the top of the
rectangle consists of a line drawn from the point (x, y) to the point (x + width - 1, y)
inclusive. Whether some or all of the pixels on the rectangle boundary are set depends on
whether the stroke style is SOLID or DOTTED, as shown on the left of Figure 5-6.

Figure 5-6. Drawing dotted and solid rectangles and rounded rectangles.

T“IIII!EE.
-l

Eiach Exit

This screenshot at the left of Figure 5-6 is the result of selecting the Rectangles item from the
GraphicsMIDlet, the code for which follows:

public void paint (Graphics g) {
int width = getWidth();
int height = getHeight();

// Create a white background
g.setColor (Oxffffff);
g.fillRect (0, 0, width, height);

// Draw a solid rectangle
g.setColor (0);
g.drawRect (width/4, 0, width/2, height/4);

// Draw a dotted rectangle inside the solid rectangle.

g.setStrokeStyle (Graphics.DOTTED) ;
g.drawRect (width/4 + 4, 4, width/2 - 8, height/4 - 8);

149

J2ME in a Nutshell

// Draw a rounded rectangle
g.setStrokeStyle (Graphics.SOLID) ;
g.drawRoundRect (width/4, height/2, width/2, height/4, 16, 8);

Note that all rectangles are drawn with their sides parallel to those of the canvas. The MIDP
Graphics class does not provide any rotation operations that could be used to create a
rectangle with its sides at an arbitrary angle to the drawing axes.

The rectangles at the top of Figure 5-6 both have sharp corners, but you can also draw a
rectangle with rounded corners, as shown at the bottom of the figure. To achieve this effect,
use the drawRoundRect () method, which requires two extra parameters in addition to those
required to describe the rectangle itself:

public void drawRoundRect (int x, int y, int width, int height,
int arcWidth, int arcHeight)

To understand how these extra parameters work, imagine that the rounded edges form part of
an ellipse placed at the corners of the rectangle, as shown in the diagram on the right of
Figure 5-6. The horizontal diameter of this ellipse is given by the arcwidth parameter and the
vertical diameter by arcHeight. The rounded rectangle at the bottom of the screenshot was
drawn by the following line of code:

g.drawRoundRect (width/4, height/2, width/2, height/4, 16, 8);

which results in a corner that is wider than it is tall. To get a circular corner, the arcwidth and
arcHeight values should be equal.

As well as rectangular outlines, you can also draw rectangles and rounded rectangles that are
filled with a solid color, using the following methods:

public void fillRect (int x, int y, int width, int height)
public void fillRoundRect (int x, int vy, int width, int height,
int arcWidth, int arcHeight)

The parameters required are the same as those for the corresponding draw methods. However,

the boundaries of a drawn rectangle and a filled rectangle are not exactly the same, as shown
in Figure 5-7.

150

J2ME in a Nutshell

Figure 5-7. Outline differences between drawn and filled rectangles

oa 0o @ 30 Wn Ko

{0.1] (51

0.3 L% 23 33 43 53

0.2 (51

g.drawRect (0, 0, 4, 2)

0o no @ B39 Wn Ko

{01 (51

{0 (52

03 13 23 33 Wi 65

gfillRect {0, 0, 4, 2)

The rectangle at the top of Figure 5-7 was drawn using this code:
g.drawRect (0, 0, 4, 2)

Because an outline touches the pixels at each end, this rectangle includes the points (0, 0), (4,
0), (0, 2), and (4, 2). By contrast, a filled rectangle created using the same arguments uses the
width and height values to describe the exact area to be filled: 4 pixels wide and 2 pixels
down, as shown at the bottom in Figure 5-7. You can see that a drawn rectangle occupies one
more pixel each to the right and at the bottom than a filled rectangle.

You can see this for yourself by selecting the RectangleFills example from GraphicsMIDlet.
This creates a rectangle drawn with a dotted outline and a filled rectangle, using identical
arguments for each. Magnified versions of the top left and bottom right corners of these
rectangles are shown in Figure 5-8. The figure clearly shows that the color fill does not reach
the right side or the bottom of the drawn rectangle, but it does cover the top and left of it.

Figure 5-8. Drawn and filled rectangles

5.4.2 Arcs

Elliptical or circular arcs, including complete circles and ellipses, can be drawn either in
outline or filled using the following methods:

public void drawArc(int x, int y, int width, int height, int startAngle,
int arcAngle)

151

J2ME in a Nutshell

public void fillArc(int x, int y, int width, int height, int startAngle,
int arcAngle)

The overall shape of the arc is determined by its bounding rectangle, specified by the x, v,
width, and height arguments; if the width and height values are the same, the arc is a circle
or part of a circle. The portion of the ellipse or circle to be drawn is controlled by the
startAngle and arcAngle arguments, both of which are measured in degrees. The
startAngle argument specifies where the arc begins; it is measured relative to the the three
o'clock position on the bounding rectangle. The angle through which the arc turns from its
starting position is given by the arcaAngle argument. For both parameters, a positive value
indicates a clockwise turn; a negative value indicates a counterclockwise turn. The Arcs
example in the GraphicsMIDlet draws three arcs with different start and turning angles, as
shown in Figures Figure 5-9 and Figure 5-10.

Figure 5-9. Drawing arcs

The arc in the top left corner is a counterclockwise rotation of 90° from the default starting
point at the three o'clock position on the bounding box. For the sake of clarity, the bounding
boxes for all the arcs are drawn also so that you can see how the arcs are positioned within
them. The code that creates this arc looks like this:

g.drawArc (0, 0, width/2, height/2, 0, 90);

Since the width and height of the bounding box are equal, this arc is part of a circle. The
second arc is similar, but it has a negative arcaAngle so that it turns through 90° in a
clockwise direction:

g.drawArc (width/2, 0, width/2, height/2, 0, -90);

The line drawing on the top left of Figure 5-10 shows how this arc is drawn.

Finally, the larger arc at the bottom of Figure 5-9 starts 90° clockwise from the 3 o'clock
position (so that startangle is -90) and sweeps through a complete clockwise half-turn:

g.drawArc (0, height/2, width, height/2, -90, -180)

In this case, the bounding box is twice as wide as it is high, so this is an elliptical arc. The
angles used in this example are shown at the bottom of Figure 5-10.

152

J2ME in a Nutshell

Figure 5-10. Drawing arcs

Boundling rectamgle

N S

Arc angfe

I
I
b
:
.1.
I

|

'.

.

gaeawhic (0, 0, 100, 30, 0, -0

" gedrawhec 0, 0, 100, 30, -90, -180);

A filled arc is described in the same way as an arc outline. The pie-shaped region extending
from the center of the arc to the start and end points is filled with the current Graphics color.
Figure 5-11 shows the result of selecting the FilledArcs example from the GraphicsMIDlet,
which fills the same arcs as those drawn in the previous example.

Figure 5-11. Filled arcs

5.5 Translating the Graphics Origin

The origin of the Graphics object that you get in the paint () method is initially placed at
the top left of the canvas. However, you can move it to any location you choose using the
translate() method:

public void translate(int x, int vy)

This method relocates the origin to the point (x, y) as measured in the coordinates that apply
before this call is made. If the paint () method begins with the following statements:

g.drawLine (0, 0, 20, 0);
g.translate (10, 10);
g.drawLine (0, 0, 20, 0);

a line is first drawn along the top of the canvas from (0, 0) to (20, 0), the origin is shifted so
that (0, 0) is at the point (10, 10) relative to the top left corner of the Canvas, and finally
another line is drawn. This line stretches from (0, 0) to (20, 0) in the new coordinate system,
which is the same as (10, 10) to (30, 10) relative to the the canvas itself. Figure 5-12
illustrates the effect of moving the origin.

153

J2ME in a Nutshell

Figure 5-12. Translating the Graphics origin

{0, 01

Tramslate arigin fo {10, 100 | {10, 10]

Once you have moved the origin, the effect of another transiate () call is cumulative with
respect to the first. This means that, for example, the following code results in the origin being
moved to (10, 10) and then back to its initial location:

g.translate (10, 10);
g.translater(-10, -10);

The following code moves to the origin to (15, 15) relative to the top left-hand corner of the
Canvas:

g.translate (10, 10);
g.translate(5, 5);

The origin can be moved outside the bounds of the canvas, if necessary. For example:

g.translate(-10, -10);
g.drawLine (10, 10, 30, 10);

The previous code moves the origin to a point that is above and to the left of the corner of the
canvas and then draws the same straight line along the top of the canvas as the original
example in this section.

Translating the origin is commonly used for the following reasons:

e To give the appearance of scrolling the screen over an image that is too large to be
displayed all at once. To implement scrolling, you catch key presses or pointer actions,
respond by moving the origin in the paint () method in the opposite direction from
the motion requested by the user, and then paint the canvas again. Moving the origin
causes everything on the canvas to be drawn in a different location.

e As a way to use the same code to draw a shape in different locations on the Canvas.
This allows you to have a method that draws a complex shape using coordinates based
at (0, 0) and then call it to draw one copy at (10, 10) and another copy at (50, 40). You
do this by translating the origin first to (10, 10) and then by a further amount of (40,

30):
g.translate (10, 10);
drawMyShape (g); // Draw at (10, 10)
g.translate (40, 30);
(g):

drawMyShape (g // Draw at (50, 40)

You can get the position of the origin relative to the canvas using the following methods:

154

J2ME in a Nutshell

public int getTranslateX()
public int getTranslateY()

These methods let you move the origin to a specific location without needing to keep track of
where it is. For example, no matter where the origin has been translated to, the following
operation always moves it back to the top left corner of the canvas:

g.translate (-g.getTranslateX (), -g.getTranslateY());

Similarly, this operation moves it to absolute coordinates (x, y) relative to the canvas:

g.translate (x-g.getTranslateX (), y-g.getTranslateY());
5.6 A Simple Animation MIDlet

So far, all the canvas examples have involved drawing shapes onto the screen when the
platform calls the paint () method. If the content of the canvas is static, it is sufficient to
draw it only when the platform detects that the screen content has been partly or completely
overwritten by an aAlert, or when a different MIDlet screen is shown and then removed. If
you want to display dynamic content, however, you can't wait for the platform to call paint (
) , because you need to repaint the canvas whenever the dynamic content changes.

For example, suppose you wanted to create a simple animation that involves moving small
blocks around the screen. In order to do this, you might create a class to represent each block
by recording its x and y coordinates and its speeds along the x and y axes:

class Block {
int x; // X position
int y; // Y position
int xSpeed; // Speed in the X direction
int ySpeed; // Speed in the Y direction

The canvas paint () method then fills its background with an appropriate color and loops
over the set of blocks, drawing a filled rectangle for each, using its current coordinates to
determine the location of its corresponding rectangle. Example 5-2 shows how you might
implement this for a set of square blocks represented by an array of B1ock objects in an array
called blocks.

Example 5-2. Painting Blocks onto a Canvas

protected void paint (Graphics g) {
// Paint with the background color
g.setColor (background) ;
g.fillRect (0, 0, width, height);

// Draw all of the blocks
g.setColor (foreground) ;
synchronized (this) {
for (int 1 = 0, count = blocks.length; i < count; i++) {
g.fillRect (blocks[i].x, blocks[i].y, SIZE, SIZE);
}

155

J2ME in a Nutshell

Each time this method is called, it paints all the blocks at their current locations. In order to
create movement, you need to start a timer that periodically calls a method that updates the
coordinates of each block and then causes the canvas to be painted again. The problem with
this is that you cannot call the canvas paint () method directly, because there is no way to
get a Graphics object that would allow you to draw on the screen. Fortunately, the canvas
class provides a method that you can call at any time to request a repaint operation:

public final void repaint()

Invoking this method does nof result in an immediate call to paint (). Instead, the platform
arranges for paint () to be invoked sometime in the near future. Using this method, you can
arrange for each block to be moved to its new location and redrawn using code like that
shown in Example 5-3.

Example 5-3. Moving and Redrawing Blocks

public synchronized void moveAllBlocks() {
// Update the positions and speeds
// of all of the blocks
for (int 1 = 0, count = blocks.length; i < count; i++) {
blocks[i] .move();

// Request a repaint of the screen
repaint ();

This code updates the x and y coordinates of each Block by calling its move () method
(which we don't show here because it is of little interest); it then invokes the canvas
repaint () method. Even though this code involves an invocation of repaint () for each
block, this does not result in the same number of paint () calls, because the platform merges
multiple repaint () requests into a single call to paint() to mimimize the amount of
drawing required. The code shown above is scheduled as a TimerTask, which, as described in
Chapter 3, is executed in a thread associated with a Timer. Painting, on the other hand, is
performed in a system thread that also handles keyboard and pointer input events; these are
discussed later in this chapter. Because both the moveAl1Blocks () and paint () methods
need to access the Block objects that hold the current locations of the blocks to be drawn,
they are both synchronized to ensure thread safety.

You can see how this code works in practice by selecting the AnimationMIDlet from the
Chapter5 project in the Wireless Toolkit. When this MIDlet starts, it displays two Gauges
that let you select the number of frame updates per second (from 1 to 10) and the number of
blocks to display (in the range 1 to 4), as shown on the left side of Figure 5-13. Once you
have set the parameters, select the Run command to start the animation.

156

J2ME in a Nutshell

Figure 5-13. A MIDlet that performs simple animation

Tuaitl 5=
A imation

Frarh.'! rate

-nDEIUDD D[II]

Flocks

Exil *a* Run
5.6.1 The Canvas showNotify() and hideNotify() Methods

The animation in this example is driven by a timer. When should this timer be started and
stopped? The simplest possible approach is to start it when the startapp () method is called
for the first time and stop it in destroyapp (). This might be appropriate if the Canvas were
always visible, but that is not the case here, because the canvas has a Setup command that
allows the user to switch back to the configuration screen to change the frame update rate or
the number of blocks to be drawn. While the configuration screen is displayed, it would be a
waste of time to continue to move the blocks on the canvas because it is not visible. The most
efficient approach in cases like this is to start the timer when the canvas becomes visible and
stop it when it is hidden. You can easily implement this policy by overriding the following
Canvas methods:

protected void showNotify()
protected void hideNotify()

The platform makes the following guarantees with respect to these methods:

e The showNotify() method is called just before the canvas is made visible. Before
this method is called, no invocations of paint () occur.

e The nideNotify() method is called after the canvas has been removed from the
screen. The paint () method is not called between a call to hideNotify () and the
next invocation of showNotify ().

As an example of how these methods are typically used, Example 5-4 shows the code that
controls the animation in this example. Note that showNotify() starts the Timer for the
TimerTask that moves the blocks, and hideNotify () stops it, so no time is wasted moving
the blocks when the canvas is not visible. Since the canvas implementations of showNotify (
) and hideNotify() are empty, there is no need to include calls to super.showNotify ()
and super.hideNotify() when overriding them.

Example 5-4. Using showNotify() and hideNotify() to Control Animation

// Notification that the canvas has been made visible

protected void showNotify() {
// Start the frame timer running
startFrameTimer ();

157

J2ME in a Nutshell

// Notification that the canvas is no longer visible
protected void hideNotify() {

// Stop the frame timer

stopFrameTimer ();

}

// Starts the frame redraw timer
private void startFrameTimer () {
timer = new Timer();

updateTask = new TimerTask() {
public void run() {
moveAllBlocks ();

}
}i
long interval = 1000/frameRate;
timer.schedule (updateTask, interval, interval);

}

// Stops the frame redraw timer
private void stopFrameTimer() {
timer.cancel();

}
5.7 The Graphics Clip

Although the previous animation example works, it is rather inefficient. The main problem
lies with the way the paint () method interacts with the moveal1Blocks () method. When
the frame timer expires, moveAl1Blocks () updates the coordinates of all the blocks and then
arranges for paint () to be called, which then redraws the whole screen. Redrawing the
entire screen is, of course, highly inefficient, because most of it has not changed. In fact, when
a block moves, all that you really need to do is use the background color to paint the area that
it used to occupy and then redraw the block in its new location. Because you can't get hold of
a Graphics object to do this directly within moveal1Blocks(), you need some way to
communicate to the paint () method that it doesn't need to repaint everything. Fortunately,
there is a simple way to do this that requires small modifications to both moveal1Blocks ()
and the paint () method.

In Example 5-3, moveAllBlocks () signals that a repaint is required by calling the canvas
repaint () method. The variant of repaint () that it uses signals to paint () that the
whole screen needs to be redrawn, but there is a second version that can be used to pass more
information:

public void repaint (int x, int y, int width, int height)
This method defines a rectangle that needs to be repainted, instead of the whole screen. Using

this method, moveal1Blocks () can be rewritten as shown in Example 5-5 to indicate that
only the old and new positions of each block need to be redrawn.

158

J2ME in a Nutshell

Example 5-5. Using repaint() to Restrict the Areas to be Redrawn

public synchronized void moveAllBlocks() {
// Update the positions and speeds of all of the blocks and repaint
// only the part of the screen that they occupy
for (int 1 = 0, count = blocks.length; i < count; i++) {
// Request a repaint of the current location
Block block = blocks[i];
repaint (block.x, block.y, SIZE, SIZE);

blocks[i] .move();

// Request a repaint of the new location
repaint (block.x, block.y, SIZE, SIZE);

Notice that repaint () is called once before the block moves, to arrange for the original
location to be redrawn, and once afterwards.

The next step is to change the paint () method to take into account the information supplied
to repaint(). But paint() doesn't have any parameters that describe the area to be
repainted, so how is this information passed to it? The answer to this question is an attribute
of the Graphics object called the clip. In MIDP, the clip is a rectangular subset of the
drawing surface (the canvas in this case), outside of which drawing operations are ignored.>

The effect of the clip can be seen in Figure 5-14, which shows a canvas 40 pixels wide and
60 pixels tall, with a clip indicated by the dotted rectangle covering a subset of its surface.

Figure 5-14. The Graphics clip

{0, 0)—= -—[40,0)
{10, 15) (30, 15)
_______ ¥
] : — Lonvos
1
' :
: (30,300
(0, 0)—m oo *‘\—\M‘:- - [40, 30}
(10,30 !
1
ﬂip—r: 1
' :
(10, 50)
{0, 60) —= =— (40, &0}

If the following line of code were to be executed in the paint () method:

g.drawLine (0, 30, 40, 30);

only the part of the line that lies within the clip is actually drawn -- that is, the segment from
(10, 30) to (30, 30). The parts of the line from (0, 30) to (10, 30) and from (30, 30) to (40, 30),
which are dotted in Figure 5-14, are not drawn at all.

3 In J2SE, the clip doesn't have to be rectangular, but that is a Java 2D feature that is not supported by MIDP.

159

J2ME in a Nutshell

When repaint () is called with no arguments, or when the platform first displays a canvas,
the Graphics clip is set to cover the entire surface of the canvas. However, when the other
repaint () method is called, the clip is set according to its arguments. To set the clip shown
in Figure 5-14, for example, the following call is made:

repaint (10, 15, 20, 35);

Now suppose that the moveallBlocks () method moves a single square block of size 4
pixels from (0, 0) to (4, 4). In performing this operation, it executes the following pair of
repaint ()y calls:

repaint (0, 0, 4, 4)
repaint (4, 4, 4, 4)

// Repaint the old location of the block
// Repaint the new location of the block

When several repaint () calls are made, the clip is set to the smallest rectangle that covers
all the areas to be redrawn. In this case, the clip covers the area from (0, 0) to (8, 8). So what
effect does this have on the paint () method? Recall from Example 5-2 that the first
operation performed by the paint () method is to fill the entire surface of the canvas with
its background color:

g.setColor (background) ;
g.fillRect (0, 0, width, height);

In the case of a device with a screen measuring 96 pixels by 100 pixels (i.e., the default color
phone), this involves setting the color of 9,600 individual pixels. However, when the
repaint () method sets a clipping rectangle that covers only the area occupied by the block
in its old and new locations, the same fillRrRect () call operates only within the clip -- that
is, it fills only the rectangle from (0, 0) to (8, 8), a total of 64 pixels -- even though its
arguments still specify that all 9600 pixels should be painted. Setting the clip, then, gives a
benefit even if no changes are made to the paint () method.

You can sometimes improve matters even more by taking account of the clip when
implementing the paint () method. If, for example, your canvas contains an image or a
sequence of drawing operations that takes a relatively long time to draw, you don't need to do
anything to keep them from being drawn when the clip is set to exclude them: all Graphics
operations automatically restrict themselves to the area covered by the clip. However, making
this check costs a small amount of time. If you can inspect the clip yourself and determine
that an operation does not need to be performed, you may improve the performance of your
MIDlet. You can get the bounds of the clip using the following methods:

public int getClipX()
public int getClipY()
public int getClipWidth()
public int getClipHeight ()

Using this information, you may be able to save a small amount of time in the paint ()
method by explicitly restricting the fil11rRect () operation to the clip, as follows:

160

J2ME in a Nutshell

// Get the clipping rectange

int clipX = g.getClipX();

int clipY = g.getClipY();

int clipWidth = g.getClipwWidth();
int clipHeight = g.getClipHeight();

// Paint with the background color - only

// the area within the clipping rectangle
g.setColor (background) ;

g.fillRect(clipX, clipY, clipWidth, clipHeight) ;

As a general rule, when implementing a Canvas paint () method, consider taking account of
the clip to skip time-consuming operations or those that involve nontrivial calculations.

5.8 Rendering Text
The Graphics class has four methods that you can use to draw text on a canvas:
public void drawChar (char ¢, int x, int y, int anchor)

Renders the single character given as the first argument. The position of the character
is determined by the x, y, and anchor arguments, as described below.

public void drawChars(char[] chars, int offset, int length,
int x, int y, int anchor)

Draws characters chars[offset] through chars[offset + length - 1] using the
positioning information given by the last three arguments.

public void drawString(String str, int x, int y, int anchor)

Renders the string str at the given location. This is the method most commonly used
to draw text.

public void drawSubstring(String str, int offset, int length,
int x, int y, int anchor)

Draws the part of the string given by the first argument that occupies the character
poﬁﬁonSoffsettO(offset—%length-—lL

The text is drawn in the color set by the last setColor() or setGrayScale() call. Its
position and style are affected by the font property of the Graphics object and the location
parameters passed to the drawing method. These parameters are described in the following
sections.

5.8.1 Fonts

The font determines the shape and size of the text it is used to render. The font attribute can
be set or read using the following Graphics methods:

public void setFont (Font font)
public Font getFont ()

161

J2ME in a Nutshell

In contrast to desktop systems, MIDP devices generally support only a very limited set of
fonts, one of which is considered to be the system default font. The default font is installed
automatically in the Graphics object passed to the paint () method. You can also obtain a
reference to it using the following static method of the Font class:

public static Font getDefaultFont ()
A font has three independent attributes that determine the appearance of rendered text:
Face

The font face describes the overall appearance of the characters it renders. The MIDP
specification defines three different font faces, each with an associated constant --
defined by the Font class -- that can be used to select it:

Font. FACE_MONOSPACE

A constant-width font.
Font.FACE_PROPORTIONAL
A proportional font.

Font.FACE_SYSTEM

The "system" font face. The MIDP specification does not define what is meant by the
system font. In the case of the default color phone emulator in the Wireless Toolkit, it
is the same as the proportional font.

Style

The style property determines whether text is rendered in bold, italics, or underlined.
The Font class defines four values to specify the font style:

Font.STYLE PLAIN
Font.STYLE BOLD
Font.STYLE ITALIC
Font.STYLE UNDERLINE

Styles may be combined using the logical OR operator so that, for example,
STYLE BOLD | STYLE ITALIC represents a bold italic font, and STYLE UNDERLINED
gives underlined plain text. Combining sTYLE pLAIN with any of the other style
constants is allowed but has no effect, because sTYLE PLAIN has the value 0.

Size
The size argument can have one of the following values:

SIZE SMALL
SIZE MEDIUM
SIZE LARGE

162

J2ME in a Nutshell

Unlike J2SE, MIDP does not allow a MIDlet to request a particular font size; instead,
it restricts it to this narrow set of unspecific values that the platform can interpret as it
chooses. This argument is not a bitmask, so combining size values is not allowed.

Font objects can be obtained by calling the following static Font method:

public static Font getFont (int face, int style, int size)

This method returns a font chosen by the platform based on the arguments supplied. The
device may not have fonts that satisfy all possible combinations of these arguments, however,
so the platform is permitted to substitute one that does not have all the required characteristics
when it cannot provide an exact match.

Since Fonts can be obtained only from the getFont () or getDefaultFont () methods and
cannot be directly instantiated, the platform can minimize the number of active Font objects
(and therefore reduce memory usage and garbage collection) by returning a single instance in
response to getFont () calls that specify identical attributes. As a consequence, it is possible
to determine whether two fonts are the same by comparing references instead of using the
equals() operator.4

Fonts have several characteristic measurements, shown in Figure 5-15, that are affected by the
face, style, and size attributes. MIDP provides methods that return these measurements in the
Font class, rather than having separate classes such as the J2SE FontMetrics and
LineMetrics classes.

Figure 5-15. Font measurements

Font height|

Advaee

The font height is the distance that should be left between between the top of one line of text
and the top of the line immediately below it to ensure no vertical overlap and satisfactory
readability. The font height includes a certain amount of space, known as leading
(pronounced ledding), that appears below the text itself. There is no way to get the leading
value, but the font height itself can be obtained by calling the following method:

public int getHeight ();

The getBaselinePosition() method returns the distance from the top pixel line of
characters from this Font to the baseline. As shown in Figure 5-15, the baseline is the
horizontal line along which text characters are placed. If you were writing longhand on a
ruled page, the ruled lines would coincide with the baseline.

4 . . .
Note, however, that fonts that are considered equal need not have been created with the same set of attributes.

163

J2ME in a Nutshell

The following methods let you measure the advance (i.e., the width) of one or more text
characters as rendered by a font:

public int charWidth (char c)

public int charsWidth(char[] ¢, int offset, int length)
public int stringWidth (String str)

public int substringWidth(String str, int offset, int length)

In a proportional font, characters have varying widths. The charwidth () method returns the
width of the single character passed as its argument, while the other three return the total
width of a string or a character array. Note that the width of a set of characters is not
necessarily the same as the sum of the widths of its individual characters, because the
platform may perform kerning (i.e., placing some characters closer together than their
individual widths). Also, in some languages (such as Arabic), a single font character may be
used to represent several characters from the string being rendered. The widths returned by all
these methods include the intercharacter spacing required for readability, which appears on
the right side of each character.

5.8.2 Text Positioning

In J2SE, you place text by supplying the coordinates of the point on the baseline at which you
want rendering to start. MIDP has a more flexible scheme that lets you specify the location of
one of several different anchor points on the bounding box of the text instead of restricting
you to using the position of the baseline. Each text drawing method has an anchor argument
that is constructed by combining a vertical position constant with a horizontal position
constant to describe the point whose coordinates are given by the x and y method arguments.
Figure 5-16 shows the vertical and horizontal text positioning values that can be used when
rendering text. These values are constants defined by the Graphics class.

Figure 5-16. Text anchor points

Bounding bax
op—r = emmmee M
ermr.'nu_.é.S..Qmﬁi..Iﬁthm
Battom —wg - --------- g 3
Loft Heante Right

The following line of code draws the string "Hello, world" with the top left corner of its
bounding box at coordinates (0, 0), in the top left corner of the canvas:

g.drawString ("Hello, world", 0, 0, Graphics.TOP | Graphics.LEFT);

To right-justify the same string at the top of the canvas, you instead write:

g.drawString ("Hello, world", canvas.getWidth(), O,
Graphics.TOP | Graphics.RIGHT) ;

Because the anchor argument allows you to specify which part of the bounding box the

coordinates refer to, you don't need to calculate for yourself how wide the text is in order to
right-justify it, as would be necessary in J2SE. The same feature also makes it easy to center

164

J2ME in a Nutshell
text horizontally on the screen. The following line of code achieves this by placing the center
point of the top of the bounding box halfway across the top line of the canvas:

g.drawString ("Hello, world", canvas.getWidth()/2, O,
Graphics.TOP | Graphics.HCENTER) ;

| Although the Graphics class defines a constant called VCENTER, you

e cannot use it to vertically center text, because this operation is not
supported by any of the text drawing methods. The VCENTER constraint
can, however, be used when positioning an Image, as you'll see later in
this chapter.

Bear in mind when positioning text that the anchor argument identifies a point on the
bounding box, and the x and y coordinates specify where that point should be placed on the
canvas.” If you insist on using J2SE conventions, you could write code like the following:

g.drawString ("Hello, world", 0, font.getBaselinePosition(),
Graphics.BASELINE | Graphics.LEFT);

This has the same effect as:

g.drawString ("Hello, world", 0, 0, Graphics.TOP | Graphics.LEFT);

You can see more examples of text positioning by running the GraphicsMmIiDlet that we used
earlier in this chapter and selecting Text from the example list. Running this example on the
default color phone and the PalmOS platform produces the results shown in Figure 5-17.

Figure 5-17. Text drawing and positioning

hulti-font smd we

Bttam right

The two lines of text at the top left of the screen were drawn as follows:

// Top left of canvas
g.setColor (Oxffffff);
g.drawString ("Top left", 0, 0, Graphics.TOP | Graphics.LEFT);

// Draw another string one line below

Font font = g.getFont();

g.drawString ("Below top left", 0, font.getHeight(),
Graphics.TOP | Graphics.LEFT);

The x and y coordinates are, of course, relative to the origin of the Graphics object. For the sake of brevity, we are equating the origin with the
top left corner of a Canvas, but this need not be the case, because the Graphics origin could have been moved by calling the translate ()
method. As you'll see later in this chapter, a Graphics object can also be used to draw text onto a mutable Image, using the same concept of anchor
points

165

J2ME in a Nutshell

The first string is placed at the top left corner of the canvas by placing the top left corner
(Graphics.TOP | Graphics.LEFT) of its bounding box at coordinates (0, 0). The second
line of text is intended to be drawn immediately below it. To do this, you use the same anchor
point and x coordinate, but you increase the y coordinate by the height of the font. Refer to
Figure 5-15 if necessary to see why this is the correct thing to do.

The text at the bottom right is positioned as follows:

// Bottom right of canvas
g.drawString ("Bottom right", width, height, Graphics.BOTTOM |
Graphics.RIGHT) ;

width and height are, respectively, the width and height of the canvas in pixels.

The remainder of this example, which produces the text in the middle of the canvas,
illustrates how to mix different fonts and colors in the same text line. Since each drawing
operation uses the current font and color attributes of the Graphics object, you need to
perform a separate operation for each font and color change. The first part of the string is
drawn by the following code:

String str = "Multi-font ";

font = Font.getFont(Font.FACE_PROPORTIONAL, Font.STYLE UNDERLINED,
Font.SIZE_LARGE);

g.setFont (font) ;

g.drawString(str, 0, height/2, Graphics.LEFT | Graphics.BASELINE) ;

This code selects a large proportional font with underlining enabled and draws the text with
its baseline at the middle point of the canvas, starting on its left side. To draw the rest of the
text, you need to use the same anchor constraint, but you have to adjust the x coordinate by
the amount of horizontal space taken up by the first string, which you can get using the Font
stringWidth () method. Let's select a different font (bold and italic with no underlines) and
change the drawing color:

int x = font.stringWidth (str);

g.setColor (0x00££00) ;

g.setFont (Font.getFont (Font.FACE PROPORTIONAL, Font.STYLE BOLD |
Font.STYLE ITALIC,

Font.SIZE MEDIUM)) ;
g.drawString("and multi-color", x, height/2, Graphics.LEFT |
Graphics.BASELINE) ;

As you can see in Figure 5-17, if the text being rendered is too wide to fit on the screen, it is
simply clipped. The low-level API does not provide automatic line wrapping; if you need this
capability, you have to provide it for yourself.

5.9 Images
You have already seen that some of the components provided by the high-level user interface
API allow you to display images. You can create a suitable Tmage object by loading it from a

resource in a MIDlet suite's JAR file encoded in PNG format. This section looks at other ways
to create Tmage objects and discuss how you can use Tmages with the low-level API.

166

J2ME in a Nutshell

5.9.1 Creating Images

The Image class has four static methods that can be used to create an Image:

public static Image createImage
public static Image createlmage
public static Image createlmage
public static Image createImage

String name) ;

byte[] data, int offset, int length);
int width, int height);

Image source);

—~ e~~~

The first and second methods build an Image from data stored either in a named resource
within the MIDlet's JAR file (as described in Section 4.2.11) or as part of a byte array in
memory. The image data must be in an encoding format that is both self-identifying (typically
because it begins with a well-known sequence of bytes, such as "GIF" or "PNG") and
supported by the platform. At the present time, the only encoding format that MIDP devices
are required to support is Portable Network Graphics (PNG), which is a public domain
replacement for the popular GIF format.

The first of these methods is normally used to load images that are included as part of the
MIDlet installed on the device. The second is useful for creating an Image from data read into
a byte array from the network or data stored in and retrieved from the device's permanent
storage.® In both cases, the image created is immutable, that is, you cannot make any changes
to it. Immutable images are required by high-level API components such as TmageItem, since
they don't need to be concerned about having to redraw the image on the screen in the event
of changes being made.

The third method creates a mutable image of the given width and height, in which every pixel
is initialized to white. This method is used to create a buffer that you can use to create an
image programmatically, using the same Graphics drawing methods that you would use to
draw on a canvas. Having created a mutable image in this way, you can use the fourth
method to create an immutable copy of it so that it can be used in connection with the high-
level API.

5.9.2 Drawing Images

Once you have an image (either mutable or immutable), you can draw it onto a Canvas in its
paint () method using the following Graphics method:

public void drawImage (Image image, int x, int y, int anchor);

The x, y, and anchor arguments are used in the same way here as they are when drawing text:
the anchor argument defines an anchor point on the bounding box of the image, and the x and
y arguments specify the location relative to the origin of the Graphics object at which the
anchor point should be placed. The legal values for the anchor argument are the same as
those described earlier for text, except that BASELINE cannot be used (since images do not
have the concept of a baseline), but vCENTER (Which is not valid for text) can be used instead,
to vertically center the image relative to the given location. If an image is too wide or too tall
to fit on the screen when drawn at the specified location, it is clipped at boundaries of the
canvas. Images are never scaled to fit them into a smaller space, and there is no API that
would allow a MID]et to request that an image be scaled.

6 Both networking and local storage are described in Chapter 6.

167

J2ME in a Nutshell

An example that illustrates image drawing can be seen by running the chapter5 project in the
Wireless Toolkit, launching tmageMIiDlet, and selecting Drawlmage. This example displays a
Canvas with a paint () method that loads an image from the MIDlet JAR file and draws it
in one of three positions, as shown in Figure 5-18.

Figure 5-18. Drawing images using drawlmage()

The implementation of the canvas and its paint () method is shown in Example 5-6.

If you examine the paint () method, you'll see that there are three drawImage () calls that
determine where the image will be drawn. The choice of which to use depends on a counter
that is incremented each time the method is executed. To force the canvas to repaint, use the
Back command to return to the selection list on the previous screen and then reselect
DrawlImage.

Example 5-6. Canvas That Paints an Image in Three Different Locations

class DrawImageCanvas extends Canvas {
static Image image;

int count;
public void paint (Graphics g) {
int width = getWidth();
int height = getHeight();
// Fill the background using black
g.setColor (0);
g.fillRect (0, 0, width, height);

// Load an image from the MIDlet resources

if (image == null) {
try {
image = Image.createImage ("/ora/ch5/resources/earth.png");

} catch (IOException ex) {
g.setColor (Oxffffff);
g.drawString("Failed to load image!"™, 0, 0, Graphics.TOP |
Graphics.LEFT) ;
return;

7 This image of the earth was taken by the astronaut crew of Apollo 8 on Christmas, 1969, and was obtained from the historical image archive of
the National Aeronautical and Space Administration.

168

J2ME in a Nutshell

[

switch (count % 3) {

case O0:
// Draw the image at the top left of the screen
g.drawImage (image, 0, 0, Graphics.TOP | Graphics.LEFT);
break;

case 1:
// Draw it in the bottom right corner
g.drawImage (image, width, height, Graphics.BOTTOM |
Graphics.RIGHT) ;
break;
case 2:
// Draw it in the center
g.drawImage (image, width/2, height/2, Graphics.VCENTER |
Graphics.HCENTER) ;
}

count++;

When the MIDlet first appears, the image is drawn by this method call:

g.drawImage (image, 0, 0, Graphics.TOP | Graphics.LEFT);

which places the top left of the image at coordinate location (0, 0), as can be seen on the left
of Figure 5-18. The second time, this drawImage () call is executed:

g.drawImage (image, width, height, Graphics.BOTTOM Graphics.RIGHT) ;

Now the image appears at the bottom right of the screen. The last call is more interesting:

g.drawImage (image, width/2, height/2, Graphics.VCENTER |
Graphics.HCENTER) ;

Here the anchor argument is VCENTER | HCENTER, which refers to the center of the image
itself, and the drawImage () call places this point halfway across and halfway down the
Canvas -- in other words, the image is centered on the canvas. Note that none of these
examples require you to know the size of the image in order to place it properly. If you need
this information, you can get it from the Tmage getwidth () and getHeight () methods.

5.9.3 Creating an Image Programmatically

If you create a mutable Tmage, you can use Graphics methods to draw onto it and then copy
the result to the screen. This technique can be used to improve performance by drawing
complex shapes that do not change or change rarely offline so that they can be quickly copied
to the screen when required in the paint() method of the canvas class. This same
technique, when taken to its extreme, can also be used to implement double buffering for
those devices that do not directly support it (i.e., those for which the canvas
isDoubleBuffered() method returns false).

To draw on a mutable Image, you first need to get a Graphics object using the following
method:

public Graphics getGraphics();

169

J2ME in a Nutshell

This method throws an I1legalStateException if it is invoked on an immutable Image. The
returned Graphics object has its coordinate origin at the top left corner of the Tmage, and a
clip covers its surface. The object is initialized with the default font, the current color is black,
and its stroke style is set to draw solid lines. These attributes are the same as those installed in
the Graphics object passed to the paint () method. An important difference between these
two, however, is that you can retain a reference to the object returned by getGraphics()
indefinitely, and it remains valid, whereas the Graphics object used in the paint () method
should not be used once paint () returns.

An example that uses the technique of drawing onto a mutable image can be seen by selecting
the ImageGraphics example from the list offered by the tmagemIDlet. The example creates a
pattern using colored lines as shown in Figure 5-19. The code that creates this pattern is
shown in Example 5-7.

Figure 5-19. Drawing onto a mutable Image

Example 5-7. Drawing on a Mutable Image

public void paint (Graphics g) {
int width = getWidth();
int height = getHeight();

// Create an Image the same size as the Canvas.
Image image = Image.createlImage (width, height);
Graphics imageGraphics = image.getGraphics();

// Fill the background of the image black
imageGraphics.fillRect (0, 0, width, height);

// Draw a pattern of lines

int count = 10;

int yIncrement = height/count;

int xIncrement = width/count;

for (int i = 0, x = xIncrement, y = 0; i1 < count; i++) {
imageGraphics.setColor (0xCO + ((128 + 10 * i) << 8) +

((128 + 10 * i) << 16));

imageGraphics.drawLine (0, y, x, height);
y += yIncrement;
x += xIncrement;

}

// Add some text
imageGraphics.setFont (Font.getFont (Font.FACE PROPORTIONAL,
Font.STYLE UNDERLINED, Font.SIZE SMALL));
imageGraphics.setColor (0xf£f££00) ;
imageGraphics.drawString ("Image Graphics", width/2, 0, Graphics.TOP |
Graphics.HCENTER) ;

170

J2ME in a Nutshell

// Copy the Image to the screen
g.drawImage (image, 0, 0, Graphics.TOP | Graphics.LEFT);

The paint () method creates a blank image that is exactly the same size as the canvas and
uses getGraphics () to get a Graphics object that can be used to draw on it. The process of
drawing the line pattern and the text that appears at the top of the image is exactly the same as
would be used if they were being drawn directly onto the canvas itself. Finally, the content of
the image is copied to the canvas itself and therefore to the screen, using the drawImage ()

method of the canvas Graphics and supplying the Tmage object as the source:

g.drawImage (image, 0, 0, Graphics.TOP | Graphics.LEFT);

This example is a demonstration of double buffering, because the graphics are first drawn in
an off-screen buffer (the Tmage) and then copied onto the screen. For devices that do not
implement automatic double buffering, this technique can improve the appearance of a
MIDlet by hiding screen updates from the user until they are complete. A possible
disadvantage of this technique is that it requires more memory than direct screen updates.

5.10 Event Handling

So far, you have seen how to use the Canvas, Image, and Graphics classes to draw lines,
shapes, and images onto the screen. The low-level API also provides the ability for a MIDlet
to detect and respond to user input from the keypad and a pointing device, if the device has
one.

5.10.1 Key Handling

High-level API user interface components like TextBox and TextField automatically handle
interaction with the user via the keypad (or its equivalent), so that the MIDlet just has to wait
for the user to indicate that input is complete and read the content of the control as a string
or an array of characters. If you are using the low-level API, however, the only way to
respond to keyboard input is by overriding the following methods of the canvas class:

protected void keyPressed(int keyCode)
protected void keyReleased (int keyCode)
protected void keyRepeated(int keyCode)

The keyPressed() and keyReleased() methods are, fairly obviously, called when the
user presses and releases a key. If the user holds a key down for a device-dependent time,
some platforms periodically call the keyRepeated () method, passing it the same argument
as that supplied to the previous keypressed() call. Since not all devices have a repeating
keyboard, a MIDlet can determine whether to expect these events by calling the canvas
hasRepeatEvents () method and adjusting its behavior appropriately.

Unlike PC keyboards, which are more or less standardized, the wide range of different
devices supported by MIDP brings with it a similar range of keypads, many of which have
only a very small number of keys. Examples of typical keypads can be seen in Figures
Figure 3-2 and Figure 3-3. The low-level API assumes only that the device has the minimal
set of keys required by the MIDP specification:

171

J2ME in a Nutshell

e The digits 0 through 9
e The star or asterisk character (*)
e The pound or hash character (#)

The canvas class defines constants that represent these keys, listed in Table 5-2. The MIDP
platform vendor is required to ensure that these constant values are passed as the keyCode
argument when keyPressed(), keyRepeated(), and keyReleased() are called
whenever the keys that correspond to them are pressed or released. The actual values are, in
fact, the Unicode values for the corresponding characters so that, for example, the following
expression has the value true:

Canvas.KEY NUMO == '0Q'

Table 5-2. Standard Key Codes and Game Actions

Key Code/Action Meaning Key Code/Action Meaning

KEY NUMO Number key 0 KEY POUND The pound key (#)
KEY NUM1 Number key 1 Up Game action UP

KEY NUM2 Number key 2 DOWN Game action DOWN
KEY NUM3 Number key 3 LEFT Game action LEFT
KEY NUM4 Number key 4 RIGHT Game action RIGHT
KEY NUM5 Number key 5 FIRE Game action FIRE
KEY NUM6 Number key 6 GAME A Custom game action A
KEY NUM7 Number key 7 GAME B Custom game action B
KEY NUMS8 Number key 8 GAME C Custom game action C
KEY NUM9 Number key 9 GAME D Custom game action D
KEY STAR The star key (¥)

The example source code for this book contains a MIDlet that displays the key codes
generated by the keys of a MIDP device. In the Wireless Toolkit, run the chapter5 project
and select EventsMIDlet. As you press and hold down a key, the screen displays both the
numeric value of the keyCode argument passed to the keyPressed() method and the name
of the canvas constant that corresponds to it, if there is one. The screen shot on the left side of
Figure 5-20 shows the result of pressing the 1 key on the keypad of the default color phone.
As you can see, the key code itself has value 49, which is the Unicode value for the character
1, and it has been identified as Canvas.KEY NUMI.

Figure 5-20. Key codes and game actions on cell phones

T antl B ITml B | Famill EEh
| keyCode 10
loeyCocie 49 beylode -1 | e
KEY _hUkH e |
= §
Exit =l

Portable MIDlets must rely only on the key codes (that is, the constants whose names begin
with "KEY ") listed in Table 5-2. Devices with larger keyboards might be capable of
returning additional key codes when other keys are pressed. For example, the RIM wireless
handheld keyboard, shown in Figure 3-2, includes keys that represent alphabetic characters as
well as the standard number keys. If you run the EventsMIDlet on this emulated device, you

172

J2ME in a Nutshell

will find that the alphabetic keys also generate key codes (which also happen to be the
Unicode characters that correspond to the characters on the key faces), but making use of
them (or relying on their values) would introduce device-dependent assumptions into the
MIDlet.

Games (and even some more serious applications) usually require movement keys and a FIRE
button, and many MIDP devices have keys that are obvious candidates to be used for these
functions. On the default color phone, for example, the cluster of arrow keys could be used to
indicate which way to move, and the circular SELECT button at their center could be the
FIRE button. On other devices, such as the RIM wireless handheld, there aren't any keys that
immediately seem ideal for these functions. The canvas class defines nine constants, shown
in the "Key Code/Action" columns of Table 5-2, that can be used to identify a set of game
actions in a platform-independent way, so that MIDlets do not need to be concerned about
how they are mapped to keys on the keypad. Five of these values (up, LEFT, DOWN, RIGHT, and
FIRE) have obvious meanings and should be available on all MIDP devices. The remaining
four (GaME A, GAME B, GAME C, and GaME D) can be used for game-specific functions. Because
not all devices will necessarily be able to map keys to these functions (and those that map
some of them may not provide all four), they should be used only to provide a quick and
convenient way for the user to access functionality that is also accessible by more portable
means, such as Commands attached to the canvas.

Because the mapping of game actions to key codes is platform-dependent, MIDlets do not
detect them by examining the keyCode argument of the keyPressed() method. In other
words, the following code is incorrect:

if (keyCode == Canvas.FIRE) ({
// NOT CORRECT!!!
}

Instead, there are two canvas methods that can be used to test whether a given key code
represents a game action:

public int getGameAction (int keyCode)
public int getKeyCode (int gameAction)

The getGameaction() method converts a key code to the corresponding game action and
returns 0 if the key is not mapped to an action:

protected void keyPressed(int keyCode) ({
if (getGameAction (keyCode) == Canvas.FIRE) {
// FIRE action
}

The getkeyCode () method does just the opposite: given a game action, it returns the key
code for the key that is mapped to that action. This method would normally be used during
initialization to get the mappings for the game actions that a MIDlet uses; this avoids method
calls in the keyPressed () method. For example:

173

J2ME in a Nutshell

int fireKey = getKeyCode (Canvas.FIRE) ;
int upKey = getKeyCode (Canvas.UP);
int downKey = getKeyCode (Canvas.DOWN) ;

protected void keyPressed(int keyCode) {

if (keyCode == fireKey) {
// FIRE action
} else if (keyCode == upKey) {

// UP actions
}

The advantage of using getKeyCode () in this way is that the code in the keyPressed()
method will run slightly faster than if it called getGameaction () each time a key is pressed.
The downside is that if the platform allows the user to change the mapping between game
actions and keys, the MIDlet will no longer work as expected if any of the game actions that it
uses are remapped.

The EventsMIDlet uses the getGameaction () method to check each key code passed to its
keyPressed () method to determine whether it is a game action; it displays the action name
if it is. By experimenting with this MIDlet on the different emulated devices in the Wireless
Toolkit, you can see how device-dependent the mapping between game actions and keys is.
You can see an example of this in Figure 5-20. The middle screenshot demonstrates that on
the default color phone, the UP arrow key, which is mapped to the up game action, has key
code -1, whereas on the Motorola cell phone, shown on the right, the same game action is
mapped from the key with key code -10.

The low-level key handling API is much more primitive than the facilities available from
TextBox and TextField. In particular, the small number of standard key codes makes it
impossible to provide alphabetic input in a platform-independent way. In fact, in the MIDP
reference implementation, the keyboard input features used by the high-level components are
actually built on the same key handling described in this section. In order to provide
alphabetic and other characters, the high-level API implementation maintains internal shift
state information and maps the key presses to the appropriate Unicode character values. For
example, on the default color phone, the star key can be used to shift input modes. Pressing
this key causes the internal state information to be changed, and a different lookup table is
used to convert keycodes to characters. Furthermore, because each key has more than one
legend engraved on it, more complex logic is needed to determine whether pressing the key
labeled 2 should generate the code for 2 or for one of the letters A, B, or C. This process, is,
of course, device-dependent since it requires knowledge of the keyboard layout, which is
customized by device vendors.

If you have developed GUI applications using J2SE, you have almost certainly at some time
had to develop or purchase custom components to provide functionality that isn't provided by
Swing and/or AWT. Writing nontrivial custom components on the MIDP platform, however,
is almost impossible. As far as the high-level API is concerned, the methods that you need to
access or override to change the behavior of an existing component are all either private or
package private, making them inaccessible to third-party code. There is, therefore, no base
class like Component or JComponent from which you can start constructing a custom
component. You can use the low-level API to develop more sophisticated user interfaces, but,
as just noted, providing fully featured key input is very complex. Even if you take the trouble

174

J2ME in a Nutshell

to implement it properly, you can't take something built for the low-level API and use it with
a Form, so the component could not be used in the high-level API. Furthermore, there is no
concept of Container or layout manager in MIDP, so it is not practical to build small
components that you can plug into a canvas without having first to reinvent much of the
infrastructure provided by the high-level API. Some device vendors have solved this problem
by creating their own custom components or offering toolkits that make it possible to write
your own. Using these facilities will, of course, make your MIDlet nonportable to other
devices.

5.10.2 Using the Pointer

MIDlets running on devices that have a pointing device can detect pointer state changes by
overriding the following canvas methods:

protected void pointerPressed(int x, int vy)
protected void pointerDragged(int x, int y)
protected void pointerReleased(int x, int y)

In all cases, the x and y arguments give the position of the pointer relative to the top left
corner of the canvas. A MIDlet can determine whether the pointerPressed() and
pointerReleased() methods will be called by‘uﬁngihe Canvas hasPointerEvents ()

method; hasPointerMotionEvents() indicates whether pointerDragged() will be
called.

The EventsMIDlet reports pointer events on devices that support them by displaying the x
and y values passed to the three previous methods on the canvas. If you run this MIDlet
under the Wireless Toolkit and select the PalmOS device, you can click and drag the mouse
on the emulator's screen to generate pointer events. If you click on the screen and drag the
mouse around, you will notice the following:

e A continuous stream of events is generated as the pointer moves around, but the
stream does not necessarily report every point that the pointer traverses. The faster you
move the pointer, the further apart successive pairs of (x, y) values will be.

e If you drag the pointer from the top of the screen to the bottom, the y value stops
increasing when you move out of the drawing area of the canvas, which excludes the
area allocated to Command buttons.

e If you drag the pointer outside the screen and even outside the emulator window, you
will still get pointer events, provided that one of the coordinates is within the range of
valid values for the canvas. If, for example, you start from the center of the canvas
and drag the pointer out to the right, you will continue to receive events in which the y
coordinate changes, but the x coordinate remains at its maximum value. If you then
drag the pointer up, the y coordinate decreases to zero, but negative values are not
returned. Starting from the center and dragging up, down, or left gives similar results.
If you release the mouse (i.e., lift the pointer) when it is outside the screen area, the
pointerReleased() method is still called, as evidenced by the fact that coordinates
are no longer displayed on the screen.

175

J2ME in a Nutshell

5.11 Multithreading and the User Interface

If you have developed J2SE GUI applications with Swing, you know that you have to be very
careful when manipulating Swing components, because, with the exception of a few special
cases, they are not thread-safe. The end result of this is that, although the application may be
multithreaded, any logic that affects the user interface must be executed in the event thread.
The MIDP user interface components, however, are completely thread-safe, so you can create
and manipulate them from any thread. This makes writing MIDlets much simpler than
building Swing applications. Nevertheless, there are a few things that you need to be aware of
with regard to multithreaded MIDlets. We'll cover those in this section.

5.11.1 Serialization of User Interface Events
Although application code can freely access user interface components from arbitrary threads,
the user interface code itself arranges for all of its own event handling to be serialized. Thus,

only one of the following may be happening at any given time:

e Painting of any user interface component by calling its paint () method

e Reporting of a key event in the Canvas keyPressed(), keyRepeated(), Or
keyReleased () methods
e Reporting of pointer events in the pointerPressed(), pointerDragged(), and

pointerReleased() methods

This serialization is achieved by running all these methods in a single thread, which we'll refer
to here as the event thread. From the MIDlet point of view, this can be a great benefit, because
MIDlets that construct a user interface during initialization (which is not performed in the
event thread) and then simply react to user interface events do not need to concern themselves
with multithreading issues at all. All of their event handling is automatically serialized.

Note, however, that TimerTasks are run in the threads of their associated Timers and
therefore are not synchronized with the event thread. Since the user interface components
themselves are thread-safe, the only implications of this are that the MIDlet must be careful
when modifying its internal state in methods that execute as a result of timer events. This
applies especially to MIDlets that use the low-level API, where the canvas paint () method
might use state that is being updated in a separate thread. You saw an example of this in the
AnimationMIDlet shown earlier in this chapter, where the section of the paint () code that
needs to use the locations of the blocks on the screen (see Example 5-2) is synchronized so
that it does not run at the same time as the section of code that moves the blocks, which is
shown in Example 5-3.

5.11.2 Running Code in the Event Thread

Although the MIDP user interface components are thread-safe and therefore can be updated
from any thread, it is sometimes useful to arrange for MIDlet code to be run in the event
thread. This might come in handy if the MIDlet has a thread that obtains data from a network
connection and then needs to update internal data structures that are also used by the user
interface. You could handle this by applying locks around the code that performs the update
and in the painting code, as we did with the AnimationMIDlet, or you could perform all the
updates in the event thread itself, which removes the need for locking. You can implement the
latter approach using the following method of the pisplay class:

176

J2ME in a Nutshell

public void callSerially(Runnable runnable);

The code to be executed in the event thread should be implemented in the run () method of
the Runnable passed to the callserially() method:

Display.getDisplay (midletReference) .callSerially (new Runnable() {
public void run() {
// Code to be run in the event thread goes here
}
}):

The platform does not make any guarantees about when this code will be run, apart from the
following:

o If there are any pending paint operations to be performed on the display, they will be
completed before any code scheduled using callserially() isrun.

e If more than one call of callserially() is made, the run() methods of the
Runnable objects are executed in the same order as the callserially () calls.

Since all pending paint operations are guaranteed to be complete before the code in the run (
) method is executed, you can use this mechanism to interleave code that creates the next
stage of an animation with the painting operations. As an example, instead of running the
frame updates for the AnimationMIDlet from a timer, you could instead include the
following code in its startapp () method:

display.callSerially(new Runnable() {
public void run() {
// Move all of the blocks to their new locations.
// This method calls repaint()
moveAllBlocks ();

// Schedule this code to run again
display.callSerially(this);
}
}):

When the callserially() method is invoked for the first time, it calls moveAl1Blocks ()
to place all the blocks in their new positions. Since this method calls repaint () internally,
when it returns, there will be a pending paint operation. Finally, it uses the callserially()
method to cause itself to be scheduled again. However, the platform guarantees that the paint
operation will be completed before code scheduled using callserially(), so the painting
and animation code runs alternately, like this:

1. First call to Runnable calls moveArllBlocks() (and repaint()) and
callSerially().

2. paint () method updates the screen.

3. On completion of paint (), Runnable is called again. This calls moveAl11Blocks (),
repaint (),andcallSerially().

4. paint () method updates the screen.
Runnable is called again.

e

177

J2ME in a Nutshell

And so on. This produces screen updates at the maximum rate that the platform can sustain
because there is no apparent timer delay. In the MIDP reference implementation, however,
calling repaint () does not cause an invocation of paint () to be scheduled immediately.
There is a short delay to allow subsequent repaint () operations to be serviced at the same
time. As a result, the previous code results in one frame update in each paint cycle, which is
approximately every 30 milliseconds in the reference implementation.

Another way to produce the same effect is to create a separate thread that does nothing other
than call moveal11Blocks () in a loop:

public void run() {
while (!stopped) {
moveAllBlocks ();
}

stopped is set to true when the MIDlet's destroyapp () method is called. As it stands, this
code would not work well, because it would simply spin, updating the positions of all the
blocks and scheduling repaints that occur in a separate thread at a much lower frequency. You
really need to wait for the repaint operation to complete after each invocation of
moveAllBlocks (), to synchonize it with the repaint cycle. The following canvas method
can be used to arrange this:

publlic void serviceRepaints()

serviceRepaints () works by blocking until all pending repaint operations on the Canvas
have been completed. Therefore, the following code (where the run () method is assumed to
be a method of the canvas subclass in question) would implement an animation rate of one
frame per paint cycle:

public void run() {
while (!stopped) {
moveAllBlocks ();
serviceRepaints(); // Block until painting done

178

J2ME in a Nutshell

Chapter 6. Wireless Java: Networking and Persistent
Storage

The devices that the J2ME platform is intended for are, by their nature, reliant for their
usefulness on the ability to communicate with the outside world. Cell phones, of course, serve
no real purpose other than to exist on a network, while PDAs would be much less useful if
you could not connect them occasionally to a desktop computer to save your new customer
orders or upload more appointments from your departmental calendar. As important as
networking is, however, there is a certain cost to be paid for it in terms of the resources
needed for the software that implements the various networking protocols in use today. Given
the relatively small amount of memory and processing power available in cell phones and the
smaller PDAs, compromises have to be made in order to provide networking support for the
type of hardware on which profiles designed for the CLDC are run. The same constraints do
not exist for the larger devices that host CDC profiles. Not surprisingly, then, these two
different profile families incorporate completely different communication software
architectures. This chapter looks at networking and communications in the context of the
CLDC configuration and MIDP, which differs greatly from its CDC equivalent, covered in
Chapter 7.

This chapter also looks at another essential feature for a mobile device: the ability to store
information and access it from applications running on that device. The type of storage
available, and the amount of space available, varies greatly from device to device. In order to
make software written for the J2ME platform as portable as possible, MIDP includes a
package that provides a simple and platform-independent mechanism for accessing whatever
type of persistent storage is available on the device that the application is running on. The end
of this chapter, brings together both the networking and storage threads by showing you how
to create a small database of book details that resides on your cell phone or in your PDA and
can also be updated from the Internet on demand.

6.1 A Networking Architecture for Small Devices

J2SE contains a low-level networking infrastructure implemented in the java.net package,
layered on top of which are higher-level facilities such as RMI, CORBA, Jini, and the rest of
the enterprise networking APIs. Since networking and communications are fundamental to
any mobile device, they fall within the scope of the CLDC. Rather than specifying that mobile
devices should use some or all of the java.net package to provide these features, the CLDC
specification instead defines a completely new framework as the basis for all the external
connectivity to be supplied by the profiles that depend on it. This choice was made for the
following reasons:

Memory requirements
The java.net package contains 21 classes, 5 interfaces, and 8 exceptions, in addition
to referencing other APIs from the core packages, not all of which are guaranteed to

be available in any given profile. The memory requirement for this set of classes was
judged to be too great for the small footprint devices that CLDC is designed for.

179

J2ME in a Nutshell

Consistency

The J2SE networking classes support both low-level socket programming and access
to web servers using HTTP, which is layered above the socket interfaces. The
programming model for these two modes of operation is different, however. For
example, to make a socket-level connection, you need an InetAddress object and a
port number with which you construct a socket; on the other hand, to connect to a
web server using HTTP, you need a urL from which you can then obtain a
URLConnection. The differences are even greater when it comes to using a serial
device, because you need to install an extra package and use yet another programming
model. Given the diversity of devices and communication mechanisms that the CLDC
might be required to support, a more uniform API was clearly required.

Implementation flexibility

Within the java.net package, most of the API revolves around classes that are
directly accessed by the application programmer. For example, all socket-based
programs use the socket class, while any application that requires HTTP obtains an
instance of the HttpURLConnection class. In the context of J2ME, however, the
mechanism by which a particular device provides these facilities might be device-
specific: the HTTP implementation for a handheld with direct connectivity to the
Internet is probably nothing like that for a cell phone that does not have similar
connectivity. Although the J2SE networking package provides mechanisms that allow
the actual classes that provide the low-level implementation details to be substituted
by application code and by the J2SE platform vendor, the means by which this is
achieved is different for sockets and for URL-based protocols like HTTP. Instead of
using the same approach, the CLDC designers decided to use an architecture based
entirely around interfaces, so that application code would not be tied to particular
classes. Thus, vendors are free to provide socket and HTTP implementations that are
appropriate for their specific devices.

The CLDC Generic Connection Framework (GCF) is implemented in the
javax.microedition.io package; its class hierarchy is shown in Chapter 14.

6.1.1 Connection and Connector

The most basic interface in this package is Connection, which represents a connection of any
kind. At this level, all you can do is open or close the connection. In fact, the Connection
interface has only one method:

public interface Connection {
public void close() throws IOException;

}

Connection doesn't need an open () method because you can't use a Connection to obtain a
Connection. Instead, all connections are obtained from the Connector class, which has
three static open () methods that can be used for this purpose:

public static Connection open (String name) ;
public static Connection open (String name, int mode);
public static Connection open (String name, int mode, boolean timeouts);

180

J2ME in a Nutshell

The name parameter specifies the type of connection that is required. Its general format is:

scheme:address;parameters

The scheme determines the protocol or device type to be used, address is a protocol- or
device-specific identifier for the resource to be accessed, and parameters provides any extra
information that is required to open a connection of the required type. Although the CLDC
specification defines the GCF itself, it does not require implementations to provide support
for any fixed set of protocols and, therefore, does not specify any particular scheme names
that might be used, although it does give examples. Sun's CLDC reference implementation
includes unofficial and unsupported implementations of various schemes, the names of which
are very likely to be adopted by profiles that include official support for them. Here are a few
examples that show how the name parameter is typically constructed for a given protocol:

socket://www.amazon.com: 80
http://www.amazon.com/index.html
comm: 0;baudrate=28800;parity=even

At the time of writing, the only officially supported protocol is HTTP, which is specified by
MIDP. Examples that use HTTP and some of the other schemes provided by the CLDC
reference implementation will be shown later in this chapter.

The remaining parameters of the open () method specify attributes of the connection itself.
The optional mode parameter can take one of the values Connector.READ, Connector.WRITE,
or Connector.READ WRITE. If you don't specify a value, Connector.READ WRITE 1S
assumed. Not all devices support both reading and writing; for example, some printers might
not recognize a read mode. If you attempt to use a mode that the device does not support
(which might include the default), an T11egalArgumentException is thrown. The optional
timeout parameter can be used to indicate that application code can make use of timeouts on
read or write operations if they are supported by the implementation. If the device or protocol
implementation supports timeouts, and this parameter is true, an InterruptedIOException
is thrown from any method that experiences a timeout. This is typically used to ensure that an
attempt to read from a network connection does not block indefinitely. Note, however, that
the length of the timeout period cannot be set by the application.

6.1.2 Types of Connection

The InputConnection and OutputConnection interfaces are derived directly from
Connection. They add the ability to obtain input and output streams to access whatever
underlies the connection. InputConnection provides two methods that provide streams for
input:

public InputStream openInputStream() throws IOException
public DatalInputStream openDatalnputStream() throws IOException

OutputConnection has the corresponding methods for output streams:

public OutputStream openOutputStream() throws IOException
public DataOutputStream openDataOutputStream() throws IOException

181

J2ME in a Nutshell

InputStream and OutputStream provide direct, byte-level access to the underlying data
stream, whereas DataInputStream and DataOutputStream allow you to work in terms of
primitive Java data types such as int, char, and string.

Although most communications mechanisms support both input and output, these interfaces
are kept separate. Thus, devices or protocols that are inherently unidirectional, at least as far
as data transfer is concerned, can return a subinterface of connection that either does not
allow reading or does not allow writing, as appropriate. Where bidirectional, stream-based
data communication is supported, the implementation can return a st reamConnection, which
combines the methods of InputConnection and OutputConnection in a single interface:

public interface StreamConnection extends InputConnection,
OutputConnection;

In the CLDC reference implementation, the socket scheme returns a StreamConnection
from the connector open method, because a socket can be used both to send and receive
data.

A streamConnection offers the ability to transfer a sequence of bytes from a sender to a
receiver, but it leaves the interpretation of the content of the byte stream to the
communicating parties. If there is a more ordered structure to the data that is being
exchanged, the protocol can use the ContentConnection interface, which adds the following
methods to those of streamConnection:

public long getLength();
public String getType();
public String getEncoding();

This interface envisages the exchange of information with defined message boundaries, so
that it is meaningful to have a getLength () method that can return the length of the next
message in the input stream. The getType () method allows different data types to be
distinguished, while the getEncoding() method allows the use of different schemes for
encoding 16-bit Unicode character data into an 8-bit byte stream. The means by which the
message boundaries, data type, and encoding are communicated from the sender to the
receiver depend entirely on the underlying protocol. One protocol that can provide this
information is HTTP, so it is perhaps not surprising that the HttpConnection interface
extends ContentConnection. HttpConnection and the MIDP implementation of HTTP are
described later in this chapter.

There are two more interfaces in the javax.microedition.io package shown in Chapter 14
that we haven't yet covered: DatagramConnection and StreamConnectionNotifier. Both
these interfaces are derived directly from connection, because neither of them is associated
with a data stream. DatagramConnection is concerned with sending and receiving discrete
packets of data (called datagrams) without setting up a connection between the sender and the
receiver. DatagramConnection and the associated Datagram class are discussed in more
detail in Section 6.3. Finally, streamConnectionNotifier is used when implementing a
server when using sockets, which is the subject of the next section.

182

J2ME in a Nutshell

6.2 Sockets

Sockets are the lowest level of network communication that most programmers encounter,
although real enthusiasts might choose to delve into the murky details of transport and
network layers -- and some even survive the experience! Because the socket API is so simple,
widely known, and universally available, it is often used as the basis for distributed
applications involving one or more clients talking to a single server, exchanging information
using a very basic application-level protocol. In this situation, the use of a higher-level
abstract such as RMI, CORBA, or one of the Java Enterprise products would not be justified.
All this notwithstanding, CLDC does not require the provision of a socket interface to the
network, and neither does MIDP. Part of the reason is that sockets are usually used in
connection with Internet protocols such as TCP/IP, but many mobile devices do not have a
direct connection to the Internet, and, therefore, the device's host software almost certainly
does not include a TCP/IP protocol stack. Making sockets part of MIDP would have required
manufacturers to add this software to their devices (which has an associated cost) or
necessitated its inclusion in the MIDP reference implementation, which is not economically
possible on many platforms because of the memory requirements. Socket support is, however,
under consideration for the next version of MIDP, which is being developed under the Java
Community Process as JSR 118. You can obtain information about JSR 118 from
http://www.jcp.org/jsr/detail/118.jsp.

At the present time, therefore, applications that use sockets work on some devices, such as
PDAs with modems, but not on others and thus cannot be considered portable. However,
because sockets are likely to be supported in the next version of MIDP, we'll take advantage
of the socket implementation in the CLDC 1.0 reference release to illustrate how sockets fit
into the GCF by showing a simple application that retrieves some data from a web server.

6.2.1 Client Sockets

The steps required to open a socket connection to a web server and read some data from it are
as follows:

Build the appropriate name string and invoke the Connector open () method.
Get an output stream and use it to send a request message to the server.

Open an input stream and read the response.

Close both streams and the socket.

b

The naming scheme for sockets uses the fixed string "socket://" followed by the server name
and port, separated by a colon. Here's how you might open a socket to a web server given the
server's name and a string containing its port number (usually 80) in variables called server
and port, respectively:

StreamConnection socket;

try {
String name = "socket://" + server + ":" + port;
socket = (StreamConnection)Connector.open (name,

Connector.READ WRITE) ;
} catch (Exception ex) {
// Handle failure to connect here...

}

183

J2ME in a Nutshell

If the address you supply is invalid, or the server is not accessible, the open() method
throws an exception. For the sake of brevity, the error handling is not shown here. The
protocol implementation for sockets returns a st reamConnection, which means that you can
send and receive data by getting a pair of output and input streams. In this example, we're
going to send a message to the server to request a copy of its home page, which we can do as
follows:

// Send a message to the server
String request = "GET / HTTP/1.0\n\n";
os = socket.openOutputStream();
os.write (request.getBytes());
os.close();

The streamConnection openOutputStream() nKﬁhOdIBanSan,OutputStreamthat\Ve
can use to send the HTTP message "GET / HTTP/1.0" to the server, which is a request for the
server to send its home page. Note that you can't write the message string directly to the
output stream, because it contains Unicode characters, and the server is expecting to receive a
stream of bytes. To perform the conversion, we use the string getBytes () method, which
creates an array of bytes that represents the original string in the default encoding of the host
platform. As long as the request string contains only ASCII characters, which is the case here,
this gives the correct result, because ASCII characters are valid in every character encoding.
Writing data to the output stream does not necessarily result in it being sent immediately to
the server, because the protocol implementation is allowed to buffer unsent data. To force the
message to be sent, you can use the OutputStream flush() method or close the
OutputStream.

The next step is to read the response from the server. Since we've asked for the server's home
page, we have no way of knowing in advance how much data we have to read before we have
the whole page. Because the server sends an HTTP reply, we could look for the content-
Length header, which, if it is present, tells us how much data to expect. In this example,
however, we are simply treating the socket connection as a byte stream, so we don't want to
try to interpret the reply. The following code takes the simplest possible approach and reads
up to 128 bytes from the socket, discarding anything else that might follow:

// Read the server's reply, up to a maximum of 128 bytes.
is = socket.openInputStream();
final int MAX LENGTH = 128;
byte[] buf = new byte[MAX LENGTH];
int total = 0;
while (total < MAX LENGTH) {
int count = is.read(buf, total, MAX LENGTH - total);
if (count < 0) {
break;
}
total += count;
}
is.close();
String reply = new String(buf, 0, total);

Notice that rather than simply performing a single read for 128 bytes, this code loops around
reading data in chunks until it fills its input buffer or reaches the end of the input stream
(which causes the read() method to return -1). This is necessary because networks don't
always deliver data in a single chunk, and the protocol implementation is not bound to buffer

184

J2ME in a Nutshell

data until it has enough to satisfy the application's read () request. In the general case, when
you ask for N bytes of data from an Inputstream obtained from a network connection, you
should expect to receive anything between 1 and N bytes.

An alternative way to achieve the same thing is to get a DataInputstream from the socket
instead of an InputStream. You can then use the readrFully () method, which blocks until
its buffer is full, all the data is read, or an error occurs:

DataInputStream dis = socket.openDatalnputStream();
final int MAX LENGTH = 128

byte[] buf = new byte[MAX LENGTH];

int total = dis.readFully (buf);

The first of these two approaches allows you to do something with the data as you receive it,
but the second commits you to waiting until everything has been received. Which you choose
will depend on the needs of your application.

Finally, the bytes that have been read are converted to a Unicode string using a constructor of
the string class that accepts a byte array. As before, this relies on the returned message being
encoded either in the receiver's default encoding or in ASCII. Unless you know in advance
what encoding the web server used, this is the best you can do. Even if you knew the
encoding, as you almost certainly would if you used HTTP to transfer the page, you still
might not be able to correctly convert the incoming byte stream to Unicode, because neither
CLDC nor MIDP makes any guarantees about which character conversion tables are available
on any given device.

After reading all the data, both the input and output stream and the socket itself must be
closed. In order to make sure that all of these resources are freed up even when an error
occurs, the usual practice is to perform cleanup operations inside a finally block, like this:

StreamConnection conn = null;

InputStream is = null
OutputStream os = null;
try |
// Code shown above
} finally {
// Close the input stream, if we opened it
if (is !'= null) {
is.close();
is = null;

}
// Repeat for the output stream and the socket.

Ensuring that resources are properly released is of much greater
@ importance in the J2ME environment because of the limited resources
available. It is surprising how quickly you can run out of memory as a
result of forgetting to close an I/O stream or a network connection. It is
also good practice to get into the habit of helping the garbage collector
by nulling references that are no longer required, as shown in the
finally block above. Regrettably, it is also possible to find yourself
short of memory even if you never leak any, as you'll see when we
discuss how to analyze the content of an HTML page in Section 6.4.

185

J2ME in a Nutshell

To try out the code you've just seen, start the RunMIDlet application from the J2ME Wireless
Toolkit, point it at the Chapter6.jad file in the ora\ch6 directory of this book's example code,
and select the socket application from the list of MIDlets. This application lets you supply
the name and port address of a web server and then fetches and displays the beginning of the
server's home page. In Figure 6-1, the application was pointed at O'Reilly's web server, which
listens on port 80 at http://www.oreilly.com/. The right side of the diagram captures the result,
showing the HTTP headers preceding the O'Reilly home page.

Figure 6-1. Using a socket to connect to a web server

T " —
Socket Clent erver Reply
SErYEr mames: TTPA .1 200 0K

ale: Sun, 05 Aug
2001 00:4%: 25 GMT

e areily com

Server port: iy
El pachef 314
Exit Ok Back &

6.2.2 Server Sockets

So much for client sockets, but what happens if you want to create a server and listen for
incoming calls? The programming model for server sockets differs in several ways from that
of client sockets. First, the name that you give to the Connector open () method contains the
port that you want the server to listen on, but it does not specify the hostname. A server
implicitly listens on the host it is running on, so there is no need to give a hostname; the
protocol implementation uses this fact to distinguish a request to create a server socket from a
request for a client socket. To listen on port 80, for example, you would use the following
name:

socket://:80

The biggest difference with server sockets is that the Connector open() method doesn't
return a StreamConnection object that you can use to send and receive data. This is because
a server differs from a client in two important ways:

e When a server is started, it isn't connected to a client at all. Instead, it needs to register
a port to listen on and then wait for a client to connect to that port.

e In general, a server supports many clients, either one after another or in parallel.
Therefore, it needs several different sockets, one for each client that it communicates

with.
Instead of returning a StreamConnection, the open() method returns a
StreamConnectionNotifier. StreamConnectionNotifier 1S an interface, derived from
Connection, that has only one method (in addition to the close () method inherited from
Connection):
public StreamConnection acceptAndOpen() throws IOException

Once it has created its sStreamConnectionNotifier, a server typically enters a loop in which
it calls acceptandopen (). This method returns when a client connects to the server, and its
return value is a StreamConnection object that represents the server's end of the connection.

186

J2ME in a Nutshell

This object behaves in exactly the same way as the client's socket, so the server can use the
same coding pattern as the client to send and receive data on the connection.

Because servers usually have to handle more than one client at a time, they usually create a
new thread to process each connection. Thus, they avoid holding up all connections while
waiting for an event on any one of them. Here is a typical coding pattern for a J2ME socket
server:

StreamConnectionNotifier serverSocket =
(StreamConnectionNotifier)Connector.open ("socket://:8000") ;
for (;;) {
// Get the next connection
final StreamConnection socket =
(StreamConnection) serverSocket.acceptAndOpen();

// Handle the connection in a new thread
Thread t = new Thread() {
public void run() {
OutputStream os = null;
try {
os = socket.openOutputStream();
// Communicate with client here
} catch (IOException ex) {
// Handle error

} finally {
if (os !'= null) {
try {
os.close();
os = null;

} catch (IOException ex) {
}

}

try |
socket.close();

} catch (IOException ex) {

}

}
b
t.start();

All you need to add to this code is the server-specific processing in the thread that is created
to handle each connection.

- At the time of writing, the reference version of MIDP recognizes client
= sockets, but it does not allow you to create server sockets. If you
attempt to do so, the Connector open() method returns null. You
can test J2ME socket servers if you use the CLDC reference
implementation, however, because it does support them.

6.3 Datagrams

In addition to stream sockets, the CLDC reference implementation contains support for
datagrams. Datagrams and stream sockets differ in several ways:

187

J2ME in a Nutshell

Data stream versus message passing

A stream socket sends a continuous stream of data from a sender to a receiver, with no
provision for marking record boundaries. Datagrams are sent in discrete packets; data
sent in one packet is never delivered in the same read as data from another packet.

Connection-oriented versus connectionless

When a stream socket is used, a connection, along which all the data flows, is created
between the sender and the receiver. As a result, there is no need to specify where
each message is going. A datagram socket does not use a connection; each message is
individually addressed, and different messages may go to different destinations.
Likewise, a datagram socket may receive messages from any number of different
sources, but a stream socket receives data from only a single sender.

Reliability

Data sent using a stream socket is guaranteed to be delivered to the receiver, unless the
intervening network fails. In that case, the receiver is notified that its connection to the
sender has been lost. Furthermore, the individual bytes are delivered in the order in
which they were sent, without duplication. A datagram socket makes no such
promises. Messages may be lost or duplicated, or may not arrive in the order in which
they were sent.

Because they do not incur the relatively large cost of setting up a connection before
communication can commence, datagrams are typically used for lightweight protocols where
total reliability is not required.

The CLDC datagram sockets uses the same naming scheme as stream sockets, but the
protocol name is datagram instead of socket. The following code prepares a datagram
listener to receive incoming datagrams addressed to port number 32767:

DatagramConnection receiver =
(DatagramConnection)Connector.open ("datagram://:32767") ;

On the other hand, this call creates a Connection that allows datagrams to be sent to port
32767 on a host called target:

DatagramConnection sender =
(DatagramConnection)Connector.open ("datagram://target:32767") ;

The object returned by these calls is a batagramConnection, which is derived directly from
the primitive Connection interface (see Chapter 14). This means that it does not have
methods that return input and output streams to allow you to send and receive data -- which is
appropriate, because, as mentioned above, datagrams do not form a data stream of any kind.

6.3.1 Sending a Datagram
To send a datagram, you have to obtain a pDatagram object, populate it with the data to be

sent, and invoke the send () method. The patagramConnection interface has four methods
that you can use to get a Datagram object:

188

J2ME in a Nutshell

int size)

int size, String address)

byte[] buf, int size)

byte[] buf, int size, String address)

public Datagram newDatagram
public Datagram newDatagram
public Datagram newDatagram
public Datagram newDatagram

—~ o~~~

The first two of these methods allocate both the patagram object and an associated data
buffer with the given size; the last two just create a batagram that points to a preallocated
buffer. Notice that when you supply your own buffer, you also need to specify the buffer size.
This allows you to restrict incoming data to only a portion of the actual buffer. Needless to
say, the size parameter must not be larger than the buffer itself.

Two of these methods allow you supply an address parameter. By default, all datagrams are
sent to the address that was specified in the open() call, but this can be overridden by
supplying a different address when you create each datagram. For example:

DatagramConnection sender =
(DatagramConnection) Connector.open ("datagram://target:32767") ;
Datagram dgram = sender.newDatagram(64);

sender.send(dgram); // Send to port 32767 on target
dgram = sender.newDatagram (64, "datagram://anotherHost:12345");
sender.send(dgram); // Send to port 12345 on anotherHost

The patagram interface has a number of methods that allow you to manipulate the data buffer
or the destination address of the datagram. The getData () method returns a reference to the
data buffer, which is useful if you didn't supply your own buffer when creating the datagram:

byte[] buffer = dgram.getData();

String message = "Hello, world\n";

byte[] dataBytes = message.getBytes();

System.arraycopy (dataBytes, 0, buffer, 0, dataBytes.length);
dgram.setLength (dataBytes.length) ;

sender.send (dgram); // Send "Hello, world\n"

An alternative, and probably more sensible, way to do this uses the setbata () method to
replace the patagranm's data buffer with a new one:

byte[] dataBytes = "Hello, world\n".getBytes();
dgram.setData (dataBytes, 0, dataBytes.length);
sender.send (dgram) ;

An interesting feature of the patagram interface is that it extends both pataoutput and
DataInput, wWhich means that you can use the methods of these interfaces to store Java data
types in the output buffer and retrieve them at the receiving end. For example, the following
code:

dgram.writeUTF ("Hello, world\n");
dgram.writelong (System.currentTimeMillis());
sender.send (dgram) ;

sends a datagram containing a greeting along with the current time, which the receiver can
extract in a similar way:

String greeting = dgram.readUTF();
long time = dgram.readLong();

189

J2ME in a Nutshell

When using these methods, you need to ensure that the buffer is large enough for the data to
be written into it.

Finally, you can change the destination address associated with a Datagram using its
setAddress () method, where the address string is in the same format as the one passed to
the connector open() method:

dgram.setAddress ("datagram://differentHost:11223");
sender.send(dgram); // Send to port 11223 on differentHost

6.3.2 Receiving Datagrams

To receive a datagram, you first have to allocate a batagram object with a buffer large enough
for the data that you expect to receive. This can be something of a difficult problem in the
general case, but applications tend to exchange data with a known maximum size, which can
be used when calling the newbatagram() method. The DatagramConnection interface
provides two methods, getMaximumLength() and getNominalLength(), that return the
theoretical maximum size and nominal size (whatever that is supposed to mean) of a
datagram. However, these are not likely to be of great use, because the protocol that is usually
used to send datagrams (the User Datagram Protocol, or UDP for short) can support almost 64
KB in a single message. Calling getMaximumLength () and allocating a buffer of the size
that it returns is not a good idea; not only is it wasteful of space, but it is also likely to require
more heap space than a typical CLDC device has available!

The following code snippet shows how to receive datagrams:

DatagramConnection receiver =
(DatagramConnection) Connector.open ("datagram://:32767") ;
byte[] buffer = new byte[256];
Datagram dgram = receiver.newDatagram(buffer, buffer.length);
for (;7;) |
dgram.setLength (buffer.length);
receiver.receive (dgram) ;
int length = dgram.getLength();
System.out.println ("Datagram received. Length is " + length);

// Show the content of the datagram.
for (int i = 0; i < length; i++) {

System.out.print (buffer[i] + " ");
}

Once this code obtains a DatagramConnection from the Connector open() method, it
allocates a 256-byte buffer, gets a Datagram object pointing at the buffer, and enters a loop
calling the patagramConnection receive () method. This method blocks until a datagram
is received and then reads it into the buffer, setting the patagram length field to reflect the
amount of data received; this can subsequently be retrieved using the getLength () method.
Notice that at the top of the loop, the setLength () method is called to reset the length field
to allow use of the whole buffer. This is necessary because receipt of a smaller datagram of,
say 40 bytes, would change the length field; on the next pass of the loop, only 40 bytes of the
buffer would be available to receive the next message.

190

J2ME in a Nutshell

, The intended result of using a buffer that is too small to receive a

— datagram that has been sent to it is currently not clear from the CDLC
documentation. In the J2SE implementation of datagrams, any data that
doesn't fit into the receive buffer is simply discarded without warning.
At the time of writing, if the CDLC implementation receives a datagram
that is too large for the buffer, it throws an T0OException from the
receive () method.

6.3.3 Replying to the Sender

So far, I've given the impression that datagram connections are opened either for sending or
receiving, depending on the format of the address passed to the Connector open () method.
In fact, this is not the case: no matter how you open the connection, you can use it to both
send and receive datagrams. It is quite common for a program to listen for an incoming
datagram, process it, and send a reply to the sender. A very simple example of this is the
Internet daytime protocol, which 1is described in RFC 867 (available from
http://www.ietf.org/rfc/rfc867.txt). To implement this protocol, you simply have to listen for
incoming datagrams on port 13 and send a message back to the caller containing the time of
day in any text format you choose. The content of the incoming datagram is ignored (and, in
fact, there needn't be any data). This is such a simple protocol that it requires only a few lines
of code:

Calendar cal = Calendar.getInstance();
DatagramConnection receiver =
(DatagramConnection)Connector.open ("datagram://:13") ;
byte[] buffer = new byte[256];
Datagram dgram = receiver.newDatagram(buffer, buffer.length);
for (;;) {
dgram.setlLength (buffer.length);

// Wait for som