Java"
Cookbook

CRELLY™

Copyright
Table of Contents

Index

Full Description
About the Author
Reviews

Reader reviews
Errata

Java Cookbook

lan Darwin

Publisher: O'Reilly
First Edition June 2001
ISBN: 0-59600-170-3, 882 pages

This book offers Java developers short, focused pieces of code that
are easy to incorporate into other programs. The idea is to focus on
things that are useful, tricky, or both. The book’s code segments
cover all of the dominant APIs and should serve as a great "jumping-
off place” for Java developers who want to get started in areas
outside their specialization.

Java Cookbook

Preface
Who This Book Is For
What's in This Book?
Platform Notes
Other Books
Conventions Used in This Book
Comments and Questions
Getting the Source Code
Acknowledgments

1. Getting Started: Compiling, Running, and Debugging
1.1 Introduction
1.2 Compiling and Running Java: JDK
1.3 Editing and Compiling with a Color-Highlighting Editor
1.4 Compiling, Running, and Testing with an IDE
1.5 Using Classes from This Book
1.6 Automating Compilation with jr
1.7 Automating Compilation with make
1.8 Automating Compilation with Ant
1.9 Running Applets
1.10 Dealing with Deprecation Warnings
.11 Conditional Debugging without #ifdef
.12 Debugging Printouts
.13 Using a Debugger
.14 Unit Testing: Avoid the Need for Debuggers
.15 Decompiling Java Class Files
.16 Preventing Others from Decompiling Your Java Files
.17 Getting Readable Tracebacks
.18 Finding More Java Source Code
.19 Program: Debug

e e e ==

2. Interacting with the Environment
2.1 Introduction
2.2 Getting Environment Variables
2.3 System Properties
2.4 Writing JDK Release-Dependent Code
2.5 Writing Operating System-Dependent Code
2.6 Using CLASSPATH Effectively
2.7 Using Extensions or Other Packaged APls
2.8 Parsing Command-Line Arguments

3. Strings and Things
3.1 Introduction
3.2 Taking Strings Apart with Substrings
3.3 Taking Strings Apart with StringTokenizer
3.4 Putting Strings Together with + and StringBuffer
3.5 Processing a String One Character at a Time
3.6 Aligning Strings
3.7 Converting Between Unicode Characters and Strings
3.8 Reversing a String by Word or Character

3.9 Expanding and Compressing Tabs

3.10 Controlling Case

3.11 Indenting Text Documents

3.12 Entering Non-Printable Characters

3.13 Trimming Blanks from the End of a String
3.14 Parsing Comma-Separated Data

3.15 Program: A Simple Text Formatter

3.16 Program: Soundex Name Comparisons

4. Pattern Matching with Regular Expressions
4.1 Introduction
4.2 Reqgular Expression Syntax
4.3 How REs Work in Practice
4.4 Using Reqular Expressions in Java
4.5 Testing REs Interactively
4.6 Finding the Matching Text
4.7 Replacing the Matching Text
4.8 Printing All Occurrences of a Pattern
4.9 Printing Lines Containing a Pattern
4.10 Controlling Case in match() and subst()
4.11 Precompiling the RE
4.12 Matching Newlines in Text
4.13 Program: Data Mining
4.14 Program: Full Grep

5. Numbers
5.1 Introduction
5.2 Checking Whether a String Is a Valid Number
5.3 Storing a Larger Number in a Smaller
5.4 Taking a Fraction of an Integer Without Using Floating Point
5.5 Ensuring the Accuracy of Floating-Point Numbers
5.6 Comparing Floating-Point Numbers
5.7 Rounding Floating-Point Numbers
5.8 Formatting Numbers
5.9 Converting Between Binary, Octal, Decimal, and Hexadecimal

5.10 Operating on a Series of Integers
5.11 Working with Roman Numerals
5.12 Formatting with Correct Plurals
5.13 Generating Random Numbers

5.14 Generating Better Random Numbers
5.15 Calculating Trigonometric Functions
5.16 Taking Logarithms

5.17 Multiplying Matrixes

5.18 Using Complex Numbers

5.19 Handling Very Large Numbers

5.20 Program: TempConverter

5.21 Program: Number Palindromes

6. Dates and Times
6.1 Introduction
6.2 Finding Today's Date
6.3 Printing Date/Time in a Specified Format
6.4 Representing Dates in Other Epochs

6.5 Converting YMDHMS to a Calendar or Epoch Seconds
6.6 Parsing Strings into Dates

6.7 Converting Epoch Seconds to DMYHMS

6.8 Adding to or Subtracting from a Date or Calendar
6.9 Difference Between Two Dates

6.10 Comparing Dates

6.11 Day of Week/Month/Year or Week Number

6.12 Calendar Page

6.13 High-Resolution Timers

6.14 Sleeping for a While

6.15 Program: Reminder Service

7. Structuring Data with Java
7.1 Introduction
7.2 Data Structuring Using Arrays
7.3 Resizing an Array
7.4 Like an Array, but More Dynamic
7.5 Data-Independent Access with Iterators
7.6 Structuring Data in a Linked List
7.7 Mapping with Hashtable and HashMap
7.8 Storing Strings in Properties and Preferences
7.9 Sorting a Collection
.10 Sorting in Java 1.1
.11 Avoiding the Urge to Sort
.12 Sets
.13 Finding an Object in a Collection
.14 Converting a Collection to an Array
.15 Rolling Your Own lterator
.16 Stack
.17 Multidimensional Structures
.18 Finally, Collections
.19 Program: Timing Comparisons

~ N NN N NN N NN

8. Object-Oriented Techniques
8.1 Introduction
8.2 Printing Objects: Formatting with toString()
8.3 Overriding the Equals Method
8.4 Overriding the Hashcode Method
8.5 The Clone Method
8.6 The Finalize Method
8.7 Using Inner Classes
8.8 Providing Callbacks via Interfaces
8.9 Polymorphism/Abstract Methods
8.10 Passing Values
8.11 Roll Your Own Exceptions
8.12 Program: Plotter

9. Input and Output
9.1 Introduction
9.2 Reading Standard Input
9.3 Writing Standard Output
9.4 Opening a File by Name
9.5 Copying a File

9.6 Reading a File into a String

9.7 Reassigning the Standard Streams

9.8 Duplicating a Stream as It Is Written

9.9 Reading/Writing a Different Character Set
9.10 Those Pesky End-of-Line Characters
9.11 Beware Platform-Dependent File Code
9.12 Reading "Continued" Lines

9.13 Scanning a File

9.14 Binary Data

9.15 Seeking

9.16 Writing Data Streams from C

9.17 Saving and Restoring Serialized Objects
9.18 Preventing ClassCastExceptions with SerialVersionUID
9.19 Reading and Writing JAR or Zip Archives
9.20 Reading and Writing Compressed Files
9.21 Program: Text to PostScript

9.22 Program: TarlList (File Converter)

10. Directory and Filesystem Operations

10.1 Introduction

10.2 Getting File Information
10.3 Creating a File

10.4 Renaming a File

10.5 Deleting a File

10.6 Creating a Transient File
10.7 Changing File Attributes
10.8 Listing a Directory

10.9 Getting the Directory Roots
10.10 Making New Directories
10.11 Program: Find

11. Programming Serial and Parallel Ports

11.1 Introduction

11.2 Choosing a Port

11.3 Opening a Serial Port

11.4 Opening a Parallel Port

11.5 Resolving Port Conflicts

11.6 Reading and Writing: Lock Step
11.7 Reading and Writing: Event-Driven
11.8 Reading and Writing: Threads
11.9 Program: Penman Plotter

12. Graphics and Sound

12.1 Introduction

12.2 Painting with a Graphics Object

12.3 Testing Graphical Components

12.4 Drawing Text

12.5 Drawing Centered Text in a Component
12.6 Drawing a Drop Shadow

12.7 Drawing an Image

12.8 Playing a Sound File

12.9 Displaying a Moving Image with Video
12.10 Drawing Text with 2D

12.11 Printing: JDK 1.1
12.12 Printing: Java 2
12.13 Program: PlotterAWT
12.14 Program: Grapher

13. Graphical User Interfaces

13.1 Introduction

13.2 Displaying GUI Components

13.3 Designing a Window Layout

13.4 A Tabbed View of Life

13.5 Action Handling: Making Buttons Work

13.6 Action Handling Using Anonymous Inner Classes
13.7 Terminating a Program with "Window Close"
13.8 Dialogs: When Later Just Won't Do

13.9 Getting Program Output into a Window
13.10 Choosing a File with JFileChooser

13.11 Choosing a Color

13.12 Centering a Main Window

13.13 Changing a Swing Program's Look and Feel
13.14 Program: Custom Font Chooser

13.15 Program: Custom Layout Manager

14. Internationalization and Localization

14.1 Introduction

14.2 Creating a Button with 118N Resources
14.3 Listing Available Locales

14.4 Creating a Menu with 118N Resources
14.5 Writing Internationalization Convenience Routines
14.6 Creating a Dialog with 118N Resources
14.7 Creating a Resource Bundle

14.8 JILTing Your Code

14.9 Using a Particular Locale

14.10 Setting the Default Locale

14.11 Formatting Messages

14.12 Program: Menulntl

14.13 Program: BusCard

15. Network Clients

15.1 Introduction

15.2 Contacting a Server

15.3 Finding and Reporting Network Addresses
15.4 Handling Network Errors

15.5 Reading and Writing Textual Data
15.6 Reading and Writing Binary Data
15.7 Reading and Writing Serialized Data
15.8 UDP Datagrams

15.9 Program: TFTP UDP Client

15.10 Program: Telnet Client

15.11 Program: Chat Client

16. Server-Side Java: Sockets

16.1 Introduction
16.2 Opening a Server for Business

16.3 Returning a Response (String or Binary)

16.4 Returning Object Information
16.5 Handling Multiple Clients
16.6 Network Logging

16.7 Program: A Java Chat Server

17. Network Clients 1l: Applets and Web Clients

17.1 Introduction

17.2 Embedding Java in a Web Page
17.3 Applet Technigques

17.4 Contacting a Server on the Applet Host
17.5 Making an Applet Show a Document
17.6 Making an Applet Run a CGI Script
17.7 Reading the Contents of a URL

17.8 Extracting HTML from a URL

17.9 Extracting URLs from a File

17.10 Converting a Filename to a URL
17.11 Program: Mkindex

17.12 Program: LinkChecker

18. Web Server Java: Servlets and JSP
18.1 Introduction
18.2 First Servlet: Generating an HTML Page
18.3 Servlets: Processing Form Parameters
18.4 Cookies
18.5 Session Tracking
18.6 Generating PDF from a Serviet
18.7 HTML Meets Java: JSP
18.8 JSP Include/Forward
18.9 JavaServer Pages Using a Servlet
18.10 Simplifying Your JSP with a JavaBean
18.11 JSP Syntax Summary
18.12 Program: CookieCutter
18.13 Program: JabaDot Web News Portal

19. Java and Electronic Mail
19.1 Introduction
19.2 Sending Email: Browser Version
19.3 Sending Email: For Real
19.4 Mail-Enabling a Server Program
19.5 Sending MIME Mail
19.6 Providing Mail Settings
19.7 Sending Mail Without Using JavaMail
19.8 Reading Email
19.9 Program: MailReaderBean
19.10 Program: MailClient

20. Database Access
20.1 Introduction
20.2 Text-File Databases
20.3 DBM Databases
20.4 JDBC Setup and Connection
20.5 Connecting to a JDBC Database

20.6 Sending a JDBC Query and Getting Results
20.7 Using JDBC Parameterized Statements
20.8 Using Stored Procedures with JDBC

20.9 Changing Data Using a ResultSet

20.10 Changing Data Using SQL

20.11 Finding JDBC Metadata

20.12 Program: JDAdmin

21. XML
21.1 Introduction
21.2 Transforming XML with XSLT
21.3 Parsing XML with SAX
21.4 Parsing XML with DOM
21.5 Verifying Structure with a DTD
21.6 Generating Your Own XML with DOM
21.7 Program: xml2mif

22. Distributed Java: RMI
22.1 Introduction
22.2 Defining the RMI Contract
22.3 RMI Client
22.4 RMI Server
22.5 Deploying RMI Across a Network
22.6 Program: RMI Callbacks
22.7 Program: RMIWatch

23. Packages and Packaging
23.1 Introduction
23.2 Creating a Package
23.3 Documenting Classes with Javadoc
23.4 Archiving with jar
23.5 Running an Applet from a JAR
23.6 Running an Applet with a JDK
23.7 Running a Program from a JAR
23.8 Preparing a Class as a JavaBean
23.9 Pickling Your Bean into a JAR
23.10 Packaging a Servlet into a WAR File
23.11 "Write Once, Install Anywhere"
23.12 Java Web Start
23.13 Signing Your JAR File

24. Threaded Java
24.1 Introduction
24.2 Running Code in a Different Thread
24.3 Displaying a Moving Image with Animation
24.4 Stopping a Thread
24.5 Rendezvous and Timeouts
24.6 Thread Communication: Synchronized Code
24.7 Thread Communication: wait() and notifyAll()

24.8 Background Saving in an Editor
24.9 Threaded Network Server

25. Introspection, or "A Class Named Class"

25.1 Introduction

25.2 Getting a Class Descriptor

25.3 Finding and Using Methods and Fields

25.4 Loading and Instantiating a Class Dynamically
25.5 Constructing a Class from Scratch

25.6 Performance Timing

25.7 Printing Class Information

25.8 Program: CrossRef

25.9 Program: AppletViewer

26. Using Java with Other Languages
26.1 Introduction
26.2 Running a Program
26.3 Running a Program and Capturing Its Output
26.4 Mixing Java and Scripts with BSF
26.5 Blending in Native Code (C/C++)
26.6 Calling Java from Native Code
26.7 Program: DBM

27. Afterword

Colophon

Preface

If you know a little Java™, great. If you know more Java, even better! This book is ideal for
anyone who knows some Java and wants to learn more.

| started programming in C in 1980 while working at the University of Toronto, and C served me
quite well through the 1980s and into the 1990s. In 1995, as the nascent language Oak was
being renamed Java, | had the good fortune to be told about it by my colleague J. Greg Davidson.
| sent an email to the address Greg provided, and got this mail back:

From scndprsn. Eng. Sun. COM j ag Wd NMar 29 19:43:54 1995
Date: Wed, 29 Mar 1995 16:47:51 +0800

From jag@cndprsn. Eng. Sun. COM (Janmes Gosl i ng)

To: ian@cooter. Canada. Sun. COM i an@larw nsys. com

Subj ect: Re: WebRunner

Cc: goltz@unne. East. Sun. COM

Content - Lengt h: 361

Status: RO

X-Lines: 9

> H . Afriend told ne about WebRunner(?), your extensible network
> browser. It and Gak(?) its extention | anguage, sounded neat. Can
> you please tell ne if it's available for play yet, and/or if any
> papers on it are available for FTP?

Check out http://java. sun.com
(oak got renaned to java and webrunner got renaned to
hotjava to keep the | awers happy)

| downloaded HotJava and began to play with it. At first | wasn't sure about this newfangled
language, which looked like a mangled C/C++. | wrote test and demo programs, sticking them a
few at a time into a directory that | called javasrc to keep it separate from my C source (as often
the programs would have the same name). And as | learned more about Java, | began to see its
advantages for many kinds of work, such as the automatic memory reclaim and the elimination of
pointer calculations. The javasrc directory kept growing. | wrote a Java course for Learning Tree,
and the directory kept growing faster, reaching the point where it needed subdirectories. Even
then, it became increasingly difficult to find things, and it soon became evident that some kind of
documentation was needed.

In a sense, this book is the result of a high-speed collision between my javasrc directory and a
documentation framework established for another newcomer language. In O'Reilly's Perl
Cookbook, Tom Christiansen and Nathan Torkington worked out a very successful design,
presenting the material in small, focused articles called "recipes.” The original model for such a
book is, of course, the familiar kitchen cookbook. There is a long history of using the term
"cookbook" to refer to an enumeration of how-to recipes relating to computers. On the software
side, Donald Knuth applied the "cookbook" analogy to his book The Art of Computer
Programming (Addison Wesley), first published in 1968. On the hardware side, Don Lancaster
wrote The TTL Cookbook (Sams). (Transistor-transistor logic, or TTL, was the small-scale
building block of electronic circuits at the time.) Tom and Nathan worked out a successful
variation on this, and | recommend their book for anyone who wishes to, as they put it, "learn
more Perl." Indeed, the work you are now reading intends to be a book for the person who wishes
to "learn more Java."

The code in each recipe is intended to be self-contained; feel free to borrow bits and pieces of
any of it for use in your own projects.

Who This Book Is For

I'm going to assume that you know the basics of Java. | won't tell you how to pri nt | n a string
and a number at the same time, or how to write a class that extends Appl et and prints your
name in the window. I'll presume you've taken a Java course or studied an introductory book
such as O'Reilly's Learning Java or Java in a Nutshell. However, Chapter 1 covers some
techniques that you might not know very well and that are necessary to understand some of the
later material. Feel free to skip around! Both the printed version of the book and the (eventual)
electronic copy are heavily cross-referenced.

What's in This Book?

Unlike my Perl colleagues Tom and Nathan, | don't have to spend as much time on the oddities
and idioms of the language; Java is refreshingly free of strange quirks. But that doesn't mean it's
trivial to learn well! If it were, there'd be no need for this book. My main approach, then, is to
concentrate on the Java APIs: I'll teach you by example what the APIs are and what they are
good for.

Like Perl, Java is a language that grows on you and with you. And, | confess, | use Java most of
the time nowadays. Things I'd once done in C are now -- except for device drivers and legacy
systems -- done in Java.

But Java is suited to a different range of tasks than Perl. Perl (and other scripting languages such
as awk and Python) are particularly suited to the "one-liner" utility task. As Tom and Nathan
show, Perl excels at things like printing the 42nd line from a file. While it can certainly do these
things, Java, because it is a compiled, object-oriented language, seems more suited to
"development in the large" or enterprise applications development. Indeed, much of the API
material added in Java 2 was aimed at this type of development. However, | will necessarily
illustrate many techniques with shorter examples and even code fragments. Be assured that
every line of code you see here has been compiled and run.

Many of the longer examples in this book are tools that | originally wrote to automate some
mundane task or another. For example, k| ndex (described in Chapter 1) reads the top-level
directory of the place where | keep all my Java example source code and builds a browser-
friendly index.html file for that directory. For another example, the body of the book itself was
partly composed in XML, a recent simplification that builds upon a decade of experience in SGML
(the parent standard that led to the tag-based syntax of HTML). It is not clear at this point if XML
will primarily be useful as a publishing format or as a data manipulation format, or if its prevalence
will further blur that distinction, though it seems that the blurring of distinctions is more likely.
However, | used XML here to type in and mark up the original text of some of the chapters of this
book. The text was then converted to FrameMaker input by the Xl For mprogram. This program
also handles -- by use of another program, CGet Var k -- full and partial code insertions from the

source directory. Xm For mis discussed in Chapter 21.

Let's go over the organization of this book. | start off Chapter 1 by describing some methods of
compiling your program on different platforms, running them in different environments (browser,
command line, windowed desktop), and debugging. Chapter 2 moves from compiling and
running your program to getting it to adapt to the surrounding countryside -- the other programs
that live in your computer.

The next few chapters deal with basic APIs. Chapter 3 concentrates on one of the most basic
but powerful data types in Java, showing you how to assemble, dissect, compare, and rearrange
what you might otherwise think of as ordinary text.

Chapter 4 teaches you how to use the powerful regular expressions technology from Unix in
many string-matching and pattern-matching problem domains. This is the first chapter that covers
a non-standard API -- there is not yet a regular expression API in standard Java -- so | talk about
several regular expression packages.

Chapter 5 deals both with built-in types such as | nt and doubl e, as well as the corresponding
API classes (I nt eger, Doubl e, etc.) and the conversion and testing facilities they offer. There is
also brief mention of the "big number" classes. Since Java programmers often need to deal in
dates and times, both locally and internationally, Chapter 6 covers this important topic.

The next two chapters cover data processing. As in most languages, arrays in Java are linear,
indexed collections of similar-kind objects, as discussed in Chapter 7. This chapter goes on to
deal with the many "Collections" classes: powerful ways of storing quantities of objects in the

j ava. uti | package. Additional data structuring and programming tips appear in Chapter 8.

The next few chapters deal with aspects of traditional input and output. Chapter 9 details the
rules for reading and writing files. (Don't skip this if you think files are boring, as you'll need some
of this information in later chapters: you'll read and write on serial or parallel ports in Chapter 11
and on a socket-based network connection in Chapter 15!) Chapter 10 shows you everything
else about files -- such as finding their size and last-modified time -- and about reading and
modifying directories, creating temporary files, and renaming files on disk. Chapter 11 shows
how you can use the | avax. conmAPI to read/write on serial and parallel ports without resorting
to coding in C.

Chapter 12 leads us into the GUI development side of things. This chapter is a mix of the lower-
level details, such as drawing graphics and setting fonts and colors, and very high-level activities,
such as controlling a playing video clip or movie. Then, in Chapter 13 | cover the higher-level
aspects of a GUI, such as buttons, labels, menus, and the like -- the GUI's predefined
components. Once you have a GUI (really, before you actually write it), you'll want to read
Chapter 14 so your programs can work as well in Akbar, Afghanistan, Algiers, Amsterdam, or
Angleterre as they do in Alberta or Arkansas or Alabama . . .

Since Java was originally promulgated as "the programming language for the Internet,” it's only
fair that we spend some of our time on networking in Java. Chapter 15, covers the basics of
network programming from the client side, focusing on sockets. We'll then move to the server
side in Chapter 16. In Chapter 17, you'll learn more client-side techniques. Some specialized
server-side techniques for the Web are covered in Chapter 18. Finally, programs on the Net
often need to generate electronic mail, so this section ends with Chapter 19.

Chapter 20 covers the Java Database Connectivity package (JDBC), showing how you can
connect to local or remote relational databases, store and retrieve data, and find out information
about query results or about the database.

Another form of storing and exchanging data is XML. Chapter 21 discusses XML's formats and
some operations you can apply using SAX and DOM, two standard Java APIs.

Chapter 22 takes the distributed notion one step further and discusses Remote Methods
Invocation, Java's standard remote procedure call mechanism. RMI lets you build clients, servers,

and even "callback” scenarios, using a standard Java mechanism -- the Interface -- to describe
the contract between client and server.

Chapter 23 shows how to create packages of classes that work together. This chapter also talks
about "deploying” or distributing and installing your software.

Chapter 24 tells you how to write classes that appear to do more than one thing at a time and let
you take advantage of powerful multiprocessor hardware.

Chapter 25 lets you in on such big secrets as how to write API cross reference documents
mechanically and how web browsers are able to load any old applet -- never having seen that
particular class before -- and run it.

Sometimes you already have code written and working in another language that can do part of
your work for you, or you want to use Java as part of a larger package. Chapter 26 shows you
how to run an external program (compiled or script) and also interact directly with "native code" in
C/C++.

There isn't room in an 800-page book for everything I'd like to tell you about Java. The Chapter
27 presents some closing thoughts and a link to my online summary of Java APIs that every Java
developer should know about.

No two programmers or writers will agree on the best order for presenting all the Java topics. To
help you find your way around, there are extensive cross-references, mostly by recipe number.

Platform Notes

In its short history, Java has gone through four major versions. The first official release is known
as Java JDK 1.0, and its last bug-fixed version is 1.0.2. The second major release is Java JDK
1.1, and the latest bug-fixed version is 1.1.9, though it may be up from that by the time you read
this book. The third major release, in December 1998, was to be known as Java JDK 1.2, but the
Sun marketing gremlins abruptly renamed JDK 1.2 at the time of its release to Java 2, and the
implementation is known as Java SDK 1.2. The current version as of this writing is Java 2 SDK
1.3 (JDK 1.3), which was released in 2000. Around the same time, two other packages, one low-
end and one high-end, were announced. At the low end, Java Micro Edition (JME) is designed for
tiny devices, such as Palm computers, telephones, and the like. At the high end, the Java 2
Enterprise Edition (J2EE) extends Java 2 by adding additional features for enterprise or large-
scale distributed commercial applications. One of the key features of the Enterprise Edition is
Enterprise JavaBeans™ (EJB). EJB has little in common with client-side JavaBeans except the
name. Many Java pundits (including myself) believe that EJB will become a significant player in
the development of large commercial applications, perhaps the most significant development of
this era.

As we go to press, Java 2 Version 1.4 is about to appear. It entered beta (which Sun calls "early
access") around the time of the book's completion, so | can only mention it briefly. You should
cast your sights on http://java.sun.com to see what's new in 1.4 and how it affects the
programs in the book.

This book is aimed at the Java 2 platform. By the time of publication, | expect that all Java
implementations will be fairly close to conforming to the Java 2 specification. | have used four
platforms to test this code for portability. The official "reference platform™ is Sun's Java 2 Solaris
Reference Implementation, which | used on a Sun SPARCStation running Solaris. To give a
second Unix flavor, I've tested with Kaffe* and with Sun's Linux JDK running under the

OpenBSD Unix-like system. For the mass market, I've used Sun's Java 2 Win32 (Windows
95/98/NT) implementation. And, “for the rest of us," I've run some of the programs on Apple's
MacOS Runtime for Java (MRJ) running under MacOS 8 on a Power Macintosh and a few on
MacOS X (which Apple wants you to pronounce "Oh Ess Ten," despite the way they've been
writing it for the last three years). However, since Java is portable, | anticipate that the examples
will work on MacOS X except where extra APIs are required. Not every example has been tested
on every platform, but all have been tested on at least one, and most on more than one.

[T Kaffe, the Swedish word for coffee, is an open source (GNU Public License) Java implementation that
runs on just about any Unix or Unix-like system, and has been ported to other platforms such as Win32.

The Java API consists of two parts, core APIs and non-core APIs. The core is, by definition,
what's included in the JDK that you download for free from http://java.sun.com. Non-core is
everything else. But even this "core" is far from tiny: it weighs in at around 50 packages and well
over a thousand public classes, each with up to 30 or more public methods. Programs that stick
to this core API are reasonably assured of portability to any Java 2 platform.

The non-core APIs are further divided into standard extensions and non-standard extensions. All
standard extensions have package names beginning with | avax. ,2 and reference
implementations are available from Sun. A Java licensee (like, say, Apple or Microsoft) is not
required to implement every standard extension, but if they do, the interface of the standard
extension should be adhered to. This book will call your attention to any code that depends on a
standard extension. There is little code that depends on non-standard extensions other than code
listed in the book itself (the major exception is the Regular Expressions APl used in Chapter 4).
My own package, com darwi nsys. uti |, contains some utility classes used here and there;
you will see an import for this at the top of any file that uses classes from it.

[21 Note that not all packages named j avax. are extensions: j avax. swi ng and its sub-packages -- the
Swing GUI packages -- used to be extensions, but are now core.

Other Books

There is a lot of useful information packed into this book. However, due to the breadth of topics, it
is not possible to give book-length treatment to any one topic. Because of this, the book also
contains references to many web sites and other books. This is in keeping with my target
audience: the person who wants to learn more about Java.

O'Reilly & Associates publishes one of the largest -- and, | think, the best -- selection of Java
books on the market. As the API continues to expand, so does the coverage. You can find the
latest versions and ordering information on O'Reilly's Java books in the back pages of this book
or online at http://java.oreilly.com, and you can buy them at most bookstores, both physical
and virtual. You can also read them online through a paid subscription service; see
http://safari.oreilly.com. While many are mentioned at appropriate spots in the book, a few
deserve special mention here.

First and foremost, David Flanagan's Java in a Nutshell offers a brief overview of the language
and API, and a detailed reference to the most essential packages. This is handy to keep beside
your computer.

Learning Java, by Patrick Niemeyer and Joshua Peck, contains a slightly more leisurely
introduction to the language and the APIs.

A definitive (and monumental) description of programming the Swing GUI is Java Swing, by
Robert Eckstein, Marc Loy, and Dave Wood.

Java Servlets, by Jason Hunter, and JavaServer Pages, by Hans Bergsten, are both ideal for the
server-side web developer.

Java Virtual Machine, by Jon Meyer and Troy Downing, will intrigue the person who wants to
know more about what's under the hood.

Java Network Programming and Java I/O, by Elliotte Rusty Harold, and Database Programming
with JDBC and Java, by George Reese, are also useful references.

There are many more; see the O'Reilly web site for an up-to-date list.
Other Java Books

Never consider releasing a GUI application unless you have read Sun's official Java Look and
Feel Design Guidelines (Addison Wesley). This work presents the views of a large group of
human factors and user-interface experts at Sun who have worked with the Swing GUI package
since its inception; they tell you how to make it work well.

Finally, while authors at other publishing houses might be afraid to mention a book that their
publisher might think of as competition to their own, | have found Patrick Chan's Java Developer's
Almanac (Addison Wesley) a useful addition to my library and a natural complement to my book.
While my book features much more detail and discussion than his short "examplets," the main
part of Patrick's book is a large alphabetical (by class, not by package) reference to the core API.
As the core part of his book was produced mechanically using Reflection, the book has a
relatively low cover price. By the way, | show you how to generate books like Patrick's (see
Section 25.8), but he doesn't show you how to write a book like mine.

General Programming Books

Donald E. Knuth's The Art of Computer Programming has been a source of inspiration to
students of computing since its first publication by Addison Wesley in 1968. Volume 1 covers
Fundamental Algorithms, Volume 2 is Seminumerical Algorithms, and Volume 3 is Sorting and
Searching. The remaining four volumes in the projected series were never completed. Although
his examples are far from Java (he invented a hypothetical assembly language for his examples),
many of his discussions of algorithms -- of how computers ought to be used to solve real
problems -- are as relevant today as 30 years ago.®!

B3I with apologies for algorithm decisions that are less relevant today given the massive changes in
computing power now available.

The Elements of Programming Style, by Kernighan and Plauger, set the style (literally) for a
generation of programmers with examples from various structured programming languages. Brian
Kernighan also wrote (with P. J. Plauger) a pair of books, Software Tools and Software Tools in
Pascal, which demonstrated so much good advice on programming that | used to advise all
programmers to read them. However, these three books are somewhat dated now; many times |
wanted to write a follow-on book in a more modern language, but instead defer to The Practice of
Programming, Brian's follow-on (co-written by Rob Pike) to the Software Tools series. This book
continues the Bell Labs (now part of Lucent) tradition of excellence in software textbooks. | have
even adapted one bit of code from their book, in Section 3.14.

Design Books

Peter Coad's Java Design (PTR-PH/Yourdon Press) discusses the issues of object-oriented
analysis and design specifically for Java. Coad is somewhat critical of Java's implementation of
the observable-observer paradigm and offers his own replacement for it.

One of the most famous books on object-oriented design in recent years is Design Patterns, by
Gamma, Helm, Johnson, and Vlissides (Addison Wesley). These authors are often collectively
called "the gang of four," resulting in their book sometimes being referred to as "the GOF book."
One of my colleagues called it "the best book on object-oriented design ever," and I think he's
probably not far off the mark.

Another group of important books on object-oriented design is the UML series by "the Three
Amigos" (Booch, Jacobson, and Rumbaugh). Their major works are the UML User Guide, UML
Process, and others. A smaller and more approachable book in the same series is Martin
Fowler's UML Distilled.

Conventions Used in This Book
This book uses the following conventions.
Programming Conventions

| use the following terminology in this book. A program means either an applet, a servlet, or an
application. An applet is for use in a browser. A servlet is similar to an applet but for use in a
server. An application is any other type of program. A desktop application (a.k.a. client) interacts
with the user. A server program deals with a client indirectly, usually via a network connection.

The examples shown are in two varieties. Those that begin with zero or more import statements,
a Javadoc comment, and a public class statement are complete examples. Those that begin with
a declaration or executable statement, of course, are excerpts. However, the full versions of
these excerpts have been compiled and run, and the online source includes the full versions.

Recipes are numbered by chapter and number, so, for example, Recipe 7.5 refers to the fifth
recipe in Chapter 7.

Typesetting Conventions
The following typographic conventions are used in this book:
Italic

is used for commands, filenames, and sample URLs. It is also used to define new terms
when they first appear in the text.

Constant width

is used in code examples to show partial or complete Java source code program listings.
It is also used for class names, method names, variable names, and other fragments of
Java code.

Many programs are accompanied by an example showing them in action, run from the command
line. These will usually show a prompt ending in either $ for Unix or > for Microsoft, depending on

which computer | was using that day. Text before this prompt character can be ignored; it will be
a pathname or a hostname, again depending on the system.

Comments and Questions

As mentioned earlier, I've tested all the code on at least one of the reference platforms, and most
on several. Still, there may be platform dependencies, or even bugs, in my code or in some
important Java implementation. Please report any errors you find, as well as your suggestions for
future editions, by writing to:

O'Reilly & Associates, Inc.

101 Morris Street

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)

(707) 829-0104 (fax)

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

There is an O'Reilly web site for the book, listing errata, examples, or any additional information.
You can access this page at:

http://www.oreilly.com/catalog/javacook/

| also have a personal web site for the book:

http://javacook.darwinsys.com

Both sites will list errata and plans for future editions. You'll also find the source code for all the
Java code examples to download; please don't waste your time typing them in again! For specific
instructions, see the next section.

Getting the Source Code

From my web site http://javacook.darwinsys.com, just follow the Download link and you will
be presented with three choices:

1. Download the entire source archive as a single large zip file

2. Download individual source files, indexed alphabetically as well as by chapter

3. Download the binary JAR file for the com dar wi nsys. uti | package needed to compile
many of the other programs

Most people will choose either #1 or #2, but anyone who wants to compile my code will need #3.
See Section 1.5 for information on using these files.

Downloading the entire source archive (#1) gives a large zip file that contains all the files from the
book (and more). This archive can be unpacked with jar (see Section 23.4), the free zip
program from Info-ZIP, the commercial WinZip or PKZIP, or any compatible tool. The files are
organized into subdirectories by topic; there is one for strings (Chapter 3), regular expressions

(Chapter 4), numbers (Chapter 5) and so on. The archive also contains the index by name and
index by chapter files from the download site, so you can easily find the files you need.

Downloading individual files is easy too: simply follow the links either by the file/subdirectory
name or by chapter. Once you see the file you want in your browser, use File->Save or the
equivalent, or just copy and paste it from the browser into an editor or IDE.

The files will be updated periodically, so if there are differences between what's printed in the
book and what you get, be glad, for you'll have received the benefit of hindsight.

Acknowledgments

My life has been touched many times by the flow of the fates bringing me into contact with the
right person to show me the right thing at the right time. Steve Munroe, with whom I've long since
lost touch, introduced me to computers -- in particular an IBM 360/30 at the Toronto Board of
Education that was bigger than a living room, had 32 or 64K of memory, and had perhaps the
power of a PC/XT -- in 1970. (Are you out there somewhere, Steve?) Herb Kugel took me under
his wing at the University of Toronto while | was learning about the larger IBM mainframes that
came later. Terry Wood and Dennis Smith at the University of Toronto introduced me to mini- and
micro-computers before there was an IBM PC. On evenings and weekends, the Toronto Business
Club of Toastmasters International (http://www.toastmasters.org) and Al Lambert's Canada
SCUBA School allowed me to develop my public speaking and instructional abilities. Several
people at the University of Toronto, but especially Geoffrey Collyer, taught me the features and
benefits of the Unix operating system at a time when | was ready to learn it.

Greg Davidson of UCSD taught the first Learning Tree course | attended, and welcomed me as a
Learning Tree instructor. Years later, when the Oak language was about to be released on Sun's
web site, Greg encouraged me to write to James Gosling and find out about it. James's reply of
March 29th, 1995, that the lawyers had made them rename the language to Java and that it was
"just now" available for download, is the prized first entry in my saved Java mailbox. Mike Rozek
took me on as a Learning Tree course author for a Unix course and two Java courses. After
Mike's departure from the company, Francesco Zamboni, Julane Marx, and Jennifer Urick in turn
provided product management of these courses. Jennifer also arranged permission for me to
"reuse some code" in this book that had previously been used in my Java course notes. Finally,
thanks to the many Learning Tree instructors and students who showed me ways of improving
my presentations. | still teach for "The Tree" and recommend their courses for the busy developer
who wants to zero in on one topic in detail over four days. Their web site is
http://www.learningtree.com.

Closer to this project, Tim O'Reilly believed in "the little Lint book™ when it was just a sample
chapter, enabling my early entry into the circle of O'Reilly authors. Years later, Mike Loukides
encouraged me to keep trying to find a Java book idea that both he and | could work with. And he
stuck by me when | kept falling behind the deadlines. Mike also read the entire manuscript and
made many sensible comments, some of which brought flights of fancy down to earth. Jessamyn
Read turned many faxed and emailed scratchings of dubious legibility into the quality illustrations
you see in this book. And many, many other talented people at O'Reilly & Associates helped put
this book into the form in which you now see it.

| also must thank my reviewers, first and foremost my dear wife Betty Cerar, who may still think
Java is some kind of caffeinated beverage that | drink while programming, but whose passion for
clear expression and correct grammar has benefited much of my writing. Jonathan Knudsen,
Andy Oram, and David Flanagan commented on the outline when it was little more than a list of
chapters and recipes, and yet were able to see the kind of book it could become, and to suggest
ways to make it better. Learning Tree instructor Jim Burgess read most of the book with a very

critical eye on locution, formulation, and code. Bil Lewis and Mike Slinn (mslinn@mslinn.com)
made helpful comments on multiple drafts of the book. Ron Hitchens (ron@ronsoft.com) and
Marc Loy carefully read the entire final draft. Editor Sue Miller helped shepherd the manuscript
through the somewhat energetic final phases of production. Sarah Slocombe read the XML
chapter in its entirety and made many lucid suggestions, though unfortunately time did not permit
me to include all of them. Each of these people made this book better in many ways, particularly
by suggesting additional recipes or revising existing ones. Any faults that remain are surely my
own.

I've used a variety of tools and operating systems in preparing, compiling, and testing the book.
The developers of OpenBSD (http://www.openbsd.orq), "the proactively secure Unix-like
system," deserve thanks for making a stable and secure Unix clone that is also closer to
traditional Unix than other freeware systems. | used the vi editor (vi on OpenBSD and vim on MS-
Windows) while inputting the original manuscript in XML, and Adobe FrameMaker to format the
documents. Each of these is an excellent tool in its own way. If you're wondering how | got from
XML to Frame, the answer will be given in Chapter 21.

No book on Java would be complete without a quadrium®! of thanks to James Gosling for
inventing the first Unix Emacs, the sc spreadsheet, the NeWS window system, and Java. Thanks
also to his employer Sun Microsystems (NASDAQ SUNW) for creating not only the Java
language but an incredible array of Java tools and API libraries freely available over the Internet.

[*1'|t's a good thing he only invented four major technologies, not five, or I'd have to rephrase that to avoid
infringing on an Intel trademark.

Thanks to Tom and Nathan, for the Perl Cookbook. Without them | might never have come up
with the format for this book.

Willi Powell of Apple Canada provided MacOS X access.

Thanks to the Tim Horton's Donuts in Bolton, Ontario for great coffee and for not enforcing the
20-minute table limit on the weird guy with the computer.

To each and every one of you, my sincere thanks.

1 Getting Started: Compiling, Running, and
Debugging

1.1 Introduction

This chapter covers some entry-level tasks that you simply need to know how to do before you
can go on -- it is said you must crawl before you can walk, and walk before you can ride a bicycle.
Before you can try out anything else in the book, you need to be able to compile and run your
Java, so | start there, showing several ways: the JDK way, the Mac way, and the Integrated
Development Environment (IDE) way. Then I'll discuss a few details about applets, in case you
are working on them. Deprecation warnings come next, as you're likely to meet them in
maintaining "old" Java code. ™

1 There is humor in the phrase "old Java code," which should be apparent when you realize that Java has
been in circulation for under five years at the time of this book's first printing.

If you're already happy with your IDE, you may wish to skip some or all of this material. It's here
to ensure that everybody can compile and debug their programs before we move on.

1.2 Compiling and Running Java: JDK
1.2.1 Problem

You need to compile and run your Java program.
1.2.2 Solution

This is one of the few areas where your computer's operating system impinges into Java's
portability, so let's get it out of the way first.

1.2.2.1 JDK

Using the command-line Java Development Kit (JDK) may be the best way to keep up with the
very latest improvements from Sun/JavaSoft. This is not the fastest compiler available by any
means; the compiler is written in Java and interpreted at compile time, making it a sensible
bootstrapping solution, but not necessarily optimal for speed of development. Nonetheless, using
Sun's JDK (or Java SDK), the commands are javac to compile and java to run your program. For
example:

C.\javasrc>j avac Hell owrl d.java

C.\javasrc>java Hell oWrl d
Hel o, World

C.\javasrc>

As you can see from the compiler's (lack of) output, this compiler works on the Unix "no news is
good news" philosophy: if a program was able to do what you asked it to, it shouldn't bother
nattering at you to say that it did so. Many people use this compiler or one of its clones. The javac
and java commands are available with the JDK on both Windows and Unix, and under MacOS X
if you have installed the bundled Developer Tools package.

There is an optional setting called CLASSPATH, discussed in Section 2.6, that controls where
Java looks for classes. CLASSPATH, if set, is used by both javac and java. In older versions of
Java you had to set your CLASSPATH to include "." even to run a simple program from the
current directory; this is no longer true on Sun's current Java implementations. It may be true on
some of the clones.

1.2.2.2 Command-line alternatives

Sun's javac compiler is the official reference implementation. But it is itself written in Java, and
hence must be interpreted at runtime. Recognizing the slowness of compilation as a significant
hindrance to developers, Sun's Java folk went back and rewrote the compiler from scratch,
discarding some old baggage and using new language features. This new compiler (still named
javac) was unveiled for early access in May 1999 and released later that year. It is about twice as
fast as the original Java compiler -- a big improvement -- but still slower than some other
compilers. Symantec's Java compiler and Microsoft's J++ (a Java-like language) are written in
C/C++, so they are quite a bit faster than an interpreted Java compiler.

In order to speed up my compilations, | have used Jikes, a freeware compiler written in C++.
Jikes is fast, free, and available both for MS-Windows and for Unix. It's also easy to install. For
MS-Windows (Win32), Linux, and other Unix systems, you can find binaries of the current version
on IBM's Jikes web site. If you are using OpenBSD, NetBSD, or FreeBSD, you should only need
to run:

cd /usr/ports/lang/jikes; sudo make install

or just download the package file and use pkg_add to get it installed. Visit

http://oss.software.ibm.com/developerworks/opensource/jikes/ for Jikes information
and downloads.

A key benefit of Jikes is that it gives much better error messages than the JDK compilers do. It
will alert you to slightly misspelled names, for example. Its messages are often a bit verbose, but
you can use the +E option to make it print them in a shorter format. Jikes has many other
command-line options, many that are the same as the JDK compiler's, but some that go beyond
them. See Jikes's online documentation for details.

An older C++-based Java compiler, Guavac, is not considered finished. Indeed, its author has
stopped maintaining it. Nonetheless, | was able to use Guavac 1.2 to compile many of the
examples in this book (note that the Guavac version number of 1.2 is unrelated to the Sun JDK
version number 1.2). See ftp://sunsite.org.uk/packages/guavac/for information on Guavac.

Another alternative technology is Kaffe, a product that Transvirtual
(http://www.transvirtual.com) licenses but also makes available in open source form under
the standard GNU Public License. Kaffe aims to be a complete JDK replacement, though it has
moved rather slowly past the JDK 1.1 level and is, as of this writing, still not quite a complete
Java 2 clone. Again, on OpenBSD there is a port, and on Linux there are RPMs available. Visit
Transvirtual's web site for the latest information on Kaffe.

One last freeware package is Japhar, a Java runtime clone, available from
http://www.japhar.org.

1.2.2.3 MacOS

The JDK is purely command-line-based. At the other end of the spectrum in terms of keyboard-
versus-visual, we have the Apple Macintosh. Whole books have been written about how great the
Mac is, and | won't step into that debate. | will, however, comment on how lamentable it is that
Apple let its Java implementation lag behind current standards. Users of MacOS 8 and 8.5 have
put up with Java 1.8 for several years. MacOS X (Release 10 of MacOS) is a new technology
base built upon a BSD Unix base. As such, it has a regular command line as well as all the
traditional Mac tools. And it features a full Java 2 implementation, including Swing.

For MacOS 8, if you've followed Apple's directions for installing the MacOS Runtime for Java
(MRJ), you can compile by dragging a file to, or double-clicking on, the "javac" icon (I've made
aliases for this icon and friends on my desktop). Once the dialog shown in Figure 1-1 appears,
you can click on "Do Javac" (or just press Enter on the keyboard), first changing any options if
you want.

Figure 1-1. MacOS 8 Javac window

" & Ffile Edit Help

Source Files
/lan 1GB/Desktop Fojder/lava files HelloWorldja - | Source Encoding

K1 § b] bebugging Tables
Destination Fold

Estination Forder CIDeprecation Warhings
[Mone 2]

M Wwarnings

Classpath
7ian 1GB/System Folder/Extensions /MR] Librarie -| — Recompiie All
flan 1GBAystem Folder/Extensions /MR Librarie [Clv¥erbose

[] oiptimize Coda

<l

lavaTiles

| 21tems, 8342 Wb avnilable

: B

Hello"Wasld AR

You will then see the Java console window stating that it ran javac (as shown in Figure 1-2).
This javac is a Mac port of the JDK version, so it also runs on "no news is good news." As this is
a Mac, you'll see the resulting class file appear in your destination folder as soon as it's been
created (which happens only if there are no compilation errors).

Figure 1-2. MacOS 8 compilation completed (MRJ)

" & File Edit View Special Help

lavarc

Source Files
Flan 1GE/Desktop Folder/lava files /HelloWorld ja[-] Source Encoding

JDebugging Tables

-

4w | »
Destination Folder

S At ArmIngGS

Java Console
Jouse —elosspath flan 1GE/System Folder Extens iors MR Libroe | as /MR

Exgzuting:
Dare

O-—— lavafiles — HE
2itans, 4342 WB swsilabla

HelloWerld javra EIILE

You now have a class file, and you want to run it. That's where the JBindery program comes in.
JBindery can do two things: run a Java class file directly or make it into a "clickable" runnable
program. We'll start it by dragging the class file onto the Jbindery icon; the program starts as

shown in Figure 1-3.

Figure 1-3. MacOS 8 JBindery window

IBindery - H

Command:
C(lass name: HelloWaorld
‘ Optional
parameters:
Claszpaih

Froperti
ﬁ Redirect stdout: | Message Window 3|

Redirect stdin: | Nowhere {/dev/null) % |

ACpEaranoe

LY

Secarily

ﬁpp%un |_Save settings... | | Run ||

As we are running a simple command-line program rather than a windowed application, after we
click on "Run," the JBindery screen is replaced by a Java Console showing the command output,

as in Figure 1-4.

Figure 1-4. MacOS 8 Java Console showing program output

Macintosh users who can run MacOS X have more choice. Since MacOS X is a hybrid of Unix
and MacOS X, they can use the command-line JDK tools directly and then build the application
using the "Build Application” tool. Figure 1-5 shows this running with the Application Look and
Feel Switcher from Section 13.13. This builds a folder or directory containing all the pieces
needed to make a clickable application. Or, they can use a full IDE, as discussed in Section 1.4.

Figure 1-5. MacOS X application builder

| @ Infswitchar Thy LGF AM

F’ﬂﬁiﬁi‘ e x Y s e T maige viles :
- . 1 e i
e 1 &% (e = o
Ermpi £ i ey - o
FETTR 1] mmck Vi Compater Homa Fascriwa, Apalicatiss
Clrssparh e [0 buid Today, # 16 A4 = Fodokee
SEa /S —— : : at—— Susonderen chass Toslay, .29 A4 Ak Duument |
Ll O |y D0 L P L LS T I D L L e 00) ~
(i L e R L Mt L1 ¥ dumentiere Al Today, ¥ 1§ AU dud N
) Sumsenliersn avs Today, %23 AU AN pras o FRY
1 —go—rr L Todaw, k03 4M ra k-] Do |
eco LK Swincher Today, #78 AM ANE a5 R
& java T MS-Windows O Mood T MacOs Today, 4§ AM 43 Dreumen |
211700, 1:52 CIEA Apple . im
Today, i:50 AW AN ek T
W] in. phpre| Today, .20 AW a5E Frogee.1 Fif
¥ [emages Trday, F40 AW Ee T e |
Fr———. 1 W itk Teday, 1055 am 21E KE Fachige |
[—— LNFSwiIhee lias Troday. F05 Al AN8 Deumen |
% e iotal it i Sl bl Toadaw, S Al 49 Dominipern] |
i 1} L] LHFSenches i Today, ¥02 AM 448 brea 5. File
Hsilp 1 LMFSwiIC perClas Todaw, oo Ak 408 Documen |
T vl o o 04 aaad bt 5 a1t R, CibLas B vl A e L VM Ap FranErieL Today, B:30 AM 1288 Orscument |
CEDEREFIN L PR FETR L S B DU Rl S P b LT T ¥

e B e % W

1.3 Editing and Compiling with a Color-Highlighting Editor
1.3.1 Problem

You are tired of command-line tools but not ready for an IDE.

1.3.2 Solution

Use a color-highlighting editor.
1.3.3 Discussion

It's less than an IDE (see the next recipe), but more than a command line. What is it? It's an
editor with Java support. Tools such as TextPad (http://www.textpad.com), Visual Slick Edit,
and others are low-cost windowed editors (primarily for MS-Windows) that have some amount of
Java recognition built in, and the ability to compile from within the editor. TextPad has quite a
number of file types that it recognizes, including batch files and shell scripts, C, C++, Java, JSP
(see Section 18.7), JavaScript (a client-side web technology), and many others. For each of
these, it uses color highlighting to show which part of the file being edited comprises keywords,
comments, quoted strings, and so on. This is very useful in spotting when part of your code has
been swallowed up by an unterminated / * comment or a missing quote. While this isn't the same
as the deep understanding of Java that a full IDE might possess, experience has shown that it
definitely aids programmer productivity. TextPad also has a "compile Java" command and a "run
external program" command. Both of these have the advantage of capturing the entire command
output into a window, which may be easier to scroll than a command-line window on some
platforms. On the other hand, you don't see the command results until the program terminates,
which can be most uncomfortable if your GUI application throws an exception before it puts up its
main window. Despite this minor drawback, TextPad is a very useful tool. Other editors that
include color highlighting include vim (an enhanced version of the Unix tool vi, available for MS-
Windows and Unix platforms; see http://www.vim.orq), the ever-popular Emacs editor, and
many others.

1.4 Compiling, Running, and Testing with an IDE
1.4.1 Problem

Several tools are too many.

1.4.2 Solution

Use an integrated development environment.

1.4.3 Discussion

Many programmers find that using a handful of separate tools -- a text editor, a compiler, and a
runner program, not to mention a debugger (see Section 1.13) -- is too many. An integrated
development environment (IDE#) integrates all of these into a single toolset with a (hopefully
consistent) graphical user interface. There are many IDEs to choose from, ranging from text
editors that allow you to compile and run a Java program, all the way up to fully integrated tools
with their own compilers and virtual machines. Class browsers and other features of IDEs round
out the purported ease-of-use feature-sets of these tools. It has been argued many times whether
an IDE really makes you more productive or if you just have more fun doing the same thing.
However, even the JDK maintainers at Sun admit (perhaps for the benefit of their advertisers)
that an IDE is often more productive, although it hides many implementation details and tends to
generate code that locks you into a particular IDE. Sun's Java Jumpstart CD (part of Developer
Essentials) said, at one time:

[21 1t takes too long to say, or type, Integrated Development Environment, so I'll use the term IDE from here
on. | know you're good at remembering acronyms, especially TLAs.

The JDK software comes with a minimal set of tools. Serious developers are
advised to use a professional Integrated Development Environment with JDK 1.2
software. Click on one of the images below to visit external sites and learn more.

This is followed by some (presumably paid) advertising links to Inprise/Borland JBuilder,
WebGain Visual Cafe, and Sybase PowerJ development suites.

| don't plan to debate the IDE versus the command-line process; I'm just going to show a few
examples of using a couple of the Java-based IDEs. One that runs on both MS-Windows and
Unix platforms is Forte, which is a free download from Sun. Originally created by NetBeans.com,
this IDE was so good that Sun bought the company, and now distributes the IDE for free. Forte is
also open sourced. You can download the compiled version from
http://www.sun.com/forte/ffj/ and the open source version from
http://www.netbeans.org.

Forte comes with a variety of templates. In Figure 1-6, | almost selected the MDI (multiple-
document interface) template, but instead opted for the Swing JFr ane template.

Figure 1-6. Forte: "New From Template" dialog

B Mew From Template - Template Chooser

L3 S—

& B Classas | Using this template vou can design a

@ = Sample Forms : JFrame application with pre-dafined
Apglication comman menu tams and contalning a
[MOH Agpication JDesktopPane that interal rames may

[E on i Cancal Disiog
[T

A JsP
&= [Ciher This template can be used as @ main
G 3 Swing Forms wirdow for MD| applications.

[Jepple :

[& Joialoy

JFrame

JrternaFrame

[& Pansi =

b added to at runtime.

| et = Cancel | Hep

Then in Figure 1-7, Forte lets me specify a class nhame and package name for the new program
I am building.

Figure 1-7. Forte: name that class

E¥ Mew From Template - Target Location

Ware ForteFrameDems
Select Package

Pleass s=lect a package 1or the newly crested obiject or enter the packais raine beloi

Ilj Filesystems
I - =0 ChforedfDevelopment

Package |mn.dn’wmsvag.|l|

In Figure 1-8, | am building the GUI using Forte's GUI builder. Select a visual component in the
upper right, and click on the form where you want it. While there are several things about Forte
that most people (including myself) find quirky, | do like the fact that it defaults to using a

Bor der Layout ; some other IDEs default to using no layout at all, and the resulting GUIs do not
resize gracefully.

Figure 1-8. Forte: GUI building

B Faste foe Java, Commursty Edition w. 1.0 (Build 843)

Filn Bl Y Proect Buld Debug Tooks Window Help

G|E == || (&0 i | [| (A1 S | Sering (dher | Boans

R e, plelclal el E?El_‘ w | (=l e a2l] e
Ediing | U1 Eciing Dm:m]m]wl
23] s [=l | 1 | =T
(T Fiesystems =] |[= reserrmecena arame) (|1 =
B & C ortedDevsiopmend | | B B Monvinml Cormponeny

2 13 com | = DorderLaycu

& 4 derwinzys -l = Budion] [Eulon]

package Com. darvineys. gais

w o
iy abdod S .

L4 public class ForteFrameDenms extends java. swing.dF
ramn [2,14,2,14 {1 2 |
measamansd]| TR LR :

PSR | I prblic ForteFramebems (] |
||} E initComponents |
| Proparties | Ewper) | 0 1 |
" T e e T3 0|
o foril Code Generalion v
o R R R R R
s ABEE SIS D D e o | He | BEe| Erm | ore | S | |[ERE® zam

| also like the way Forte handles GUI action handlers (see Section 13.5). You simply double-
click on the GUI control you want to handle actions for, and Forte creates an action handler for it
and puts you into the editor to type the code for the action handler. In this case | made a
deliberate typing error to show the effects; when | click the Build Project menu item, the offending
line of code is highlighted in bright red, both in the source code and in the error listing from the

compiler (see Figure 1-9).

Figure 1-9. Forte: compilation error highlighted

Do Fate loe-2ava, Commimdy € drion o 1.0 (Budd B3d) - i P [|

Filn Edl Y Proect Buald [Debug Tools Window Help
I_E| disimiel 2 nje ainie mcﬂ::le;ﬂ

getContentFane |).add (JButtond, Jmut

) C¥oriniDeveiopment | B B Menvid Compornnts || 5
= BorderL ot | B

& 4 derwineys HE: I
. il 52 }
o e private woid JEetboniBetioaPer formed | favs. aur. e
mamples 1§ 51 Symten.omh (1}
B [fubarial £ T I
L T rameteras 5-3 : i
| (D Feemystene [L i R
& T cor (F coted s el | stion il S (14 rr]ml-ﬂ wnkd Pﬂmtjﬂq AME. BV Il:n.dn:-uhle!
| sotcntzomn o tor i * Fyotem.exit ()3

o for !

Emﬁj [MEE AT I i .,Iﬂrm.j i 'ru..| Irﬁul.j Eiup.:l wrm [oo || T30S cam

Some people don't like the user interface of Forte. There are many popular IDEs for Java,
especially on the MS-Windows platform, and almost everybody who uses one has a favorite,
such as Borland JBuilder, WebGain Visual Cafe, or IBM Visual Age for Java. Most of them have a
free version and a Pro version. For up-to-date comparisons, you may want to consult the glossy
magazines, since IDEs are updated relatively often.

On MacOS X, the bundled Developer Tools includes a reasonably good IDE, shown in Figure 1-
10. MetroWerks CodeWarrior and other IDEs are also available for MacOS X.

Figure 1-10. MacOS X Developer Tools IDE: main windows

. & Project Buibder File FEdii Formai Mavigation Fied Project Build Debwp 50M Window Help Thi BaE AN
CEEC ST : :
i, B A o b
: | Aned . T]
| ! 4 & U0 R easaWtnsd 3 o

U e Project Builder Release Notes
0 Peadus anm i1 iandana

{oaF Tbmjavsd

Inpart jeea, bt

Pk g pheet o ek Fross |

piniy Toe) f

e " L™

BRI § = rew LBRELY L1 WL IE
a1
stV el

H

mubslie enebbo i mein (ML S0
L L2]

Figure 1-11 shows the MacOS X bundled IDE running a trivial application built using its default
frame-based template.

Figure 1-11. MacOS X Developer Tools IDE: application built and running

What about the speed of IDEs? One way to categorize an IDE is by whether it was written to be
as portable as Java or to run well on only one platform. Forte, JBuilder, and others are written in
Java and can, in theory, be run on any platform that has Java 2 support. Visual Cafe, IBM Visual
Age for Java, MetroWerks CodeWarrior, and others are built out of existing frameworks and
provided as compiled binaries; these have major components that depend on one or another
platform and cannot be "run anywhere." The native code IDEs tend to be a bit faster, although the
difference is diminishing as Java runtimes get better and as computers get faster. When was the
last time you bought a new computer system with a Pentium 133 processor?

1.5 Using Classes from This Book

1.5.1 Problem

You want to try out my examples and/or use my utility classes.
1.5.2 Solution

Download the latest zip file of the booksource files and unzip it. Install the class JAR file in your
CLASSPATH. Or download just the files you need.

1.5.3 Discussion

You can download the latest version of the source code for all the examples in the book from the
book web site, http://javacook.darwinsys.com. You will get two files. First is the source code,
in a file called javacooksrc.jar, which you should unzip someplace convenient or wherever you
like to keep source code. Second is a file called com-darwinsys-util.jar, which you need to set in
your CLASSPATH (see Section 2.6) or IDKHOME!/jre/lib/ext directory. The files are roughly
organized in per-chapter directories, but there is a lot of overlap and cross-referencing. Because
of this, | have prepared a cross-reference file named index-bychapter.html. There is also a
mechanically generated file called index-byname.html, which you can use if you know the name

of the file you want (and remember that Java source files almost always have the same name as
the public class they contain). The canonical index file, index.html, links to both these files.

Once you've set your CLASSPATH, you can compile. In most directories you can simply say
javac *.java or jikes *.java. Of course, not everybody likes typing those commands, so there is a
makefile for the make utility. make is standard on Unix and readily available for MS-Windows
from, for example, the GNUwin32 project (see http://sourceforge.net/projects/gnuwin32/).
There is also a top-level makefile that visits the subdirectories and runs make in each of them.
These makefiles have been tested with gmake (GNU make 3.79.1), BSD make (OpenBSD 2.8),
and they should work with almost any reasonably modern make program or equivalent.

There may also be times when you don't want to download the entire archive -- if you just need a
bit of code in a hurry -- so you can access those index files and the resulting directory, for
"anyplace, anytime access" on the same web site.

1.6 Automating Compilation with jr
1.6.1 Problem

You get tired of typing javac and java commands.
1.6.2 Solution

Use my jr script.

1.6.3 Discussion

Although it may be tedious, there is some logic behind the fact that the compilation command
(javac, jikes, etc.) requires you to include the filename extension, and the running command
(java) requires you to omit the filename extension -- you can't type java HelloWorld.class and
have it run the Hel | oVWr | d program from the current directory. The compiler is actually reading
a source file, while the java command is running a class, a class that might be located someplace

in your CLASSPATH (see Section 2.6). It is common for JDK users to use a batch script or
command file to automate this. Mine is called jr, for Java compile and Run. The Unix version is jr,
a shell script:

javac $1.java && java $*

The $* gets expanded to include $1 and any other arguments. The MS-Windows version is jr.bat

javac 9. | ava
if errorlevel 1 goto norun
java % W Y8 % b Y6

. horun

For people using MS-Windows who have no experience using batch files for compilation, fear not.
You could just copy this jr.bat file into the JIDKHOME/bin directory. But the problem then is that
when you deinstall that JDK version and install a new one, you'd lose jr. What | usually do on MS-

Windows is this: just create a directory that won't conflict with anything else, such as C:\bin ("bin"
being an old name for binary programs; by tradition all of one's own programs go there). Just add
this to your PATH setting, either in your autoexec.bat file or in your Control Panel settings. Copy
jr.bat into this directory, and you're done! From then on you can just give commands such as jr
HelloWorld. The script will run javac HelloWorld.java for you and, if there are no errors, it will run
java HelloWorld.

Feel free to improve upon this and to call it whatever you like.
1.7 Automating Compilation with make
1.7.1 Problem

You get tired of typing javac and java commands.

1.7.2 Solution

Use the make utility to direct your compilations.

1.7.3 Discussion

The Unix operating system has long had to deal with automating large or repetitive compilations.
The most enduring tool for this purpose is make, invented by Stu Feldman at Bell Laboratories in
the mid-1970s and still widely used. There have been literally dozens of make -like programs over
the years. The X Window System has imake, which is really a front-end to make. Linux and GNU
enthusiasts have gmake, and BSD systems feature BSD make; one or another will be installed
under the name make. The cygwin32 project features its own make, a version of gmake. make
consults a file called Makefile (or makefile) in the current directory to figure out what you want
done and how to do it. A makefile to build one Java program could be as simple as this:

al I :
javac Hell owrl d. java

Makefiles can be much more involved. One common feature is to parameterize a makefile so that
if you need to port the code to a new platform or you distribute your source code to others to port,
all the necessary makefile changes are in one place. For example, to use make variables to let
the user compile with either javac or Jikes, and to add a rule to remove the *.class files after a
round of debugging, the makefile might grow somewhat, as shown here. Note that lines beginning
with the pound sign (#) are comments for the reader and are ignored by make :

Makefile for Acrme FlutterBox program

Unconment one of these conpiler definitions:
#JAVAC= j avac

JAVAC= jikes +E

compi | e:
$(JAVAC) *.java

cl ean:
@m-f *.class

All modern Unix systems and most MS-Windows IDEs ship with some version of make. Java
became popular after the current fragmentation of Unix into multiple systems maintained by
different groups, so many current make programs do not come preconfigured with "convenience"
rules for Java; they all come with rules for C and other older languages. Thus you may want to
provide a "default" rule for compiling from FILE.java into FILE.class. The way you do this will vary
from one version of make to another, so please see your system's documentation. For one such
rule, see the file jmake.rules in the source distribution. For some slightly more involved, but still
relatively simple, examples of using make, consult the files named Makefile in the source
distribution.™!

B3I The one bit of make syntax that isn't explained is VARIABLE?=VALUE, which sets VARIABLE to VALUE
only if it is not set. This is often used in make to pass a variable down and allow it to have a default value in
the sub-makefile, but be overridden from the "main" makefile.

1.7.4 See Also

The sidebar Make Versus Ant.

Also, you may want to refer to the book Using Make and Imake (O'Reilly).
1.8 Automating Compilation with Ant

1.8.1 Problem

You get tired of typing javac and java commands.

1.8.2 Solution

Use the Ant program to direct your compilations.

1.8.3 Discussion

The intricacies of makefiles and their importabilities have led to the development of a pure-Java
solution for automating the build process. Ant is free software; it is available in source form or
ready-to-run from the Apache Foundation's Jakarta project web site, at
http://jakarta.apache.org/ant/. Like make, Ant uses a file or files -- written in XML -- listing
what to do and, if necessary, how to do it. These rules are intended to be platform-independent,
though you can of course write platform-specific recipes if necessary.

To use Ant you must create a 15-30 line file specifying various options. This file should be called
build.xml; if you call it anything else, you'll have to give a special command-line arguments every
time you run Ant. Example 1-1 shows the build script used to build the files in the starting
directory. See Section 21.1 for discussion of the XML syntax. For now, note that the <!- - tag
begins an XML comment, which extends to the - -> tag.

Example 1-1. Ant example file (build.xml)

<proj ect nanme="Java Cookbook Exanpl es" defaul t="conpile" basedir=".">
<l-- set global properties for this build -->
<property nanme="src" value="."/>

<property nane="buil d" val ue="build"/>

<l-- Specify the conpiler to use.
Using jikes is supported but requires rt.jar in classpath. -->
<property nanme="buil d. conpiler" val ue="nodern"/>

<target nane="init">

<l-- Create the tine stanp -->
<t st anp/ >
<l-- Create the build directory structure used by conpile -->
<nkdir dir="${build}"/>
</target>

<l-- specify what to conpile. This builds everything -->
<target nane="conpile" depends="init">

<l-- Conpile the java code from ${src} into ${build} -->
<javac srcdir="${src}" destdir="${build}"
cl asspat h="../comdarw nsys-util.jar"/>
</target>

</ proj ect>
When you run Ant, it produces a reasonable amount of naotification as it goes, similar to make :

$ ant conpile

Bui [dfile: build.xmn

Project base dir set to: /hone/ian/javasrc/starting

Executing Target: init

Executing Target: conpile

Compiling 19 source files to /hone/ian/javasrc/starting/build
Perform ng a Modern Conpil e

Copyi ng 22 support files to /hone/ian/javasrc/starting/build
Conpl eted in 8 seconds

$

Make Versus Ant

Both make and Ant have advantages and disadvantages, detractors and
advocates. I'll try to stay neutral, though | admit | have been using make
for 15 years longer than I've been using Ant.

make files are shorter. No contest. make has its own language instead of
using XML, so it can be a lot more terse. make runs faster; it's written in
C.

Ant files can do more. The javac task in Ant, for example, automatically
finds all the *.java files in subdirectories. With make, a sub-make is
normally required. And the | ncl ude directive for subdirectories differs
between GNU make and BSD make.

Ant has special knowledge of CLASSPATH, making it easy to set a
CLASSPATH in various ways for compile time. See the CLASSPATH
settina in Example 1-1. You may have to duplicate this in other ways --

shell scripts or batch files -- for manually running or testing your
application.

make is simpler to extend, but harder to do so portably. You can write a
one-line make rule for getting a CVS archive from a remote site, but you
may run into incompatibilities between GNU make, BSD make, etc.
There is a built-in Ant task for getting an archive from CVS using Ant; it
was written as a Java source file instead of just a series of command-line
commands.

make has been around much longer. There are millions (literally) more
make files than Ant files. Developers outside of Java have by and large
not heard of Ant; they almost all use make. Most non-Java open source
projects use make.

make is easier to start with. Ant's advantages make more sense on
larger projects. Yet of the two, only make has been used on the really
large projects. Telephone switch source code consists of hundreds of
thousands of source files containing tens or hundreds of millions of lines
of source code. make is used here. The use of Ant is growing steadily,
particularly now that most of the widely used Java IDEs (JBuilder, Visual
Age for Java, NetBeans Forte, and others), have interfaces to Ant. Most
Java open source projects use Ant.

make is included with most Unix and Unix-like systems and shipped with
many Windows IDEs. Ant is not included with any operating systems but
is included with many open source Java packages.

make has remained mostly compatible over its 20-year history. The Ant
developers are planning to break backward compatibility after only a
couple of years (in Version 2.0, due out later in 2001), though there is
another tool, Amber, that will provide compatibility with Ant in addition to
adding new features.

To sum up, make and Ant are both good tools. Use whichever one you
choose in your own projects, but be prepared to use both in code you
receive.

1.8.4 See Also

Make Versus Ant.

1.9 Running Applets

1.9.1 Problem

You want to run an applet.

1.9.2 Solution

Write some HTML and point a browser at it.
1.9.3 Discussion

An applet is simply a Java class that extends | ava. appl et . Appl et, and in doing so inherits
the functionality it needs to be viewable inside a web page in a Java-enabled web browser.™! All
that's necessary is an HTML page referring to the applet. This HTML page requires a minimum of
three attributes , or modifiers: the applet itself, and the width and height it needs on-screen, in
screen dots or pixels. This is not the place for me to teach you the syntax of HTML -- there is
some of that in Section 17.2 -- but I'll show my HTML applet template file. Many of the IDEs will
write a page like this for you if you use their "build new applet” wizards.

41 Includes Netscape, MS Explorer, Sun's HotJava demonstration browser, and others.

<HTM_>

<HEAD><TI| TLE>A Denonstrati on</ Tl TLE></ HEAD>

<BODY>

<H1>My TEMPLATE Appl et </ H1>

<APPLET CODE="CCC. cl ass" W DTH="200" HElI GHT="200">
</ APPLET>

</ BODY>

</ HTML>

You can probably intuit from this just about all you need to get started. For a little more detail, see
Section 17.2. Once you've created this file (replacing the CCC with the actual name of your
applet) and placed it in the same directory as the class file, you need only tell the browser to view
the HTML page, and the applet should be included in it.

All right, so the applet appeared and it even almost worked. Make a change to the Java source
and recompile. Click the browser's Reload button. Chances are you're still running the old
version! Browsers aren't very good at debugging applets. You can sometimes get around this by
holding down the Shift key while you click Reload. But to let you be sure, there is a program in the
JDK known as Appl et vi ewer, a kind of mini-browser. You need to give it the HTML file, just like
a regular browser. Sun's AppletViewer (shown in Figure 1-12 under MS-Windows) has an explicit
reload button that actually reloads the applet. And it has other features such as debugging hooks
and other information displays. It also has a View->Tag menu that lets you resize the window until
the applet looks best, and then you can copy and paste the tag -- including the adjusted WIDTH
and HEIGHT tags -- into a longer HTML document.

Figure 1-12. Sun JDK AppletViewer

Aml:l Viewer: Bull.. [W[=] E3

Aplet

Applat started.

The MacOS X runtime includes Apple's own implementation (shown in Figure 1-13), which is
more colorful but slightly less featureful -- | could not find the Reload item in its menu. It does,

however, let you load a new HTML file by typing (or browsing), so you can get the same effect as
Reload just by clicking on the Open button again.

Figure 1-13. Apple MacOS X applet launcher

Appdet Launcher

& O 6 Appler Viewe. ..

Thamks for pusking nry Buiton!

Neither the Sun version nor the Apple version is a full applet runtime; features such as jumping to
a new document do not work. But it is a good tool for debugging applets. Learn to use the
AppletViewer that comes with your JDK or IDE.

1.9.4 See Also

The bad news about applets is that they either can't use features of newer Java versions or they
run into the dreaded browser-incompatibility issue. In Section 23.6, | show using the Java Plug-
in to get around this. In Section 23.12, | talk about Java Web Start, a relatively new technique
for distributing applications over the Web in a way similar to how applets are downloaded.

1.10 Dealing with Deprecation Warnings

1.10.1 Problem

Your code used to compile cleanly, but now gives deprecation warnings.
1.10.2 Solution

You must have blinked :-). Either live with the warnings -- live dangerously -- or revise your code
to eliminate the warnings.

1.10.3 Discussion

Each new release of Java includes a lot of powerful new functionality, but at a price: during the
evolution of this new stuff, Java's maintainers find some old stuff that wasn't done right and
shouldn't be used anymore because they can't really fix it. In building JDK 1.1, for example, they
realized that the | ava. uti | . Dat e class had some serious limitations with regard to
internationalization. Accordingly, many of the Dat e class methods and constructors are marked
"deprecated." To deprecate something means, according to my Concise Oxford Dictionary of
Current English, to "express wish against or disapproval of." Java's developers are therefore
expressing a wish that you no longer do things the old way. Try compiling this code:

i mport java.util.Date;

/** Denonstrate deprecation warning */
public class Deprec {

public static void main(String[] av) {
/'l Create a Date object for May 5, 1986
/| EXPECT DEPRECATI ON WARNI NG
Date d = new Date(86, 04, 05); /1 May 5, 1986
Systemout.printin("Date is " + d);
}

What happened? When | compile it on Java 2, | get this warning:

C.\javasrc>javac Deprec.java

Not e: Deprec.java uses or overrides a deprecated API. Reconpile with
"-deprecation"” for details.
1 war ni ng

C.\javasrc>
So, we follow orders. Recompile with - depr ecat i on for details:

C.\javasrc>javac -deprecation Deprec.java
Deprec.java: 10: warning: constructor Date(int,int,int) in class
java. util.Date has
been deprecated
Date d = new Date(86, 04, 05); /1l May 5, 1986
N

1 war ni ng

C.\javasrc>

The warning is simple: the Dat e constructor that takes three integer arguments has been
deprecated. How do you fix it? The answer is, as in most questions of usage, to refer to the
Javadoc documentation for the class. In Java 2, the introduction to the Dat e page says, in part:

The class Dat e represents a specific instant in time, with millisecond precision.

Prior to JDK 1.1, the class Dat e had two additional functions. It allowed the
interpretation of dates as year, month, day, hour, minute, and second values. It
also allowed the formatting and parsing of date strings. Unfortunately, the API for
these functions was not amenable to internationalization. As of JDK 1.1, the

Cal endar class should be used to convert between dates and time fields and
the Dat eFor mat class should be used to format and parse date strings. The
corresponding methods in Dat e are deprecated.

And more specifically, in the description of the three-integer constructor, it says:

Date(int year, int nonth, int date)

Deprecated. As of JDK version 1.1, replaced by Cal endar . set (year + 1900,
nont h, dat e) or Gregori anCal endar (year + 1900, nont h, date).

As a general rule, when something has been deprecated, you should not use it in any new code
and, when maintaining code, strive to eliminate the deprecation warnings. As we shall see in
Section 2.2, there is already at least one example of a deprecation warning method that has
altogether stopped working.

The main areas of deprecation warnings in the standard API are Dat e (as mentioned), the JDK
1.0 event handling, and some methods -- a few of them important -- in the Thr ead class.

You can also deprecate your own code. Just put a doc comment with the @lepr ecat ed tag
immediately before the class or method you wish to deprecate. Using doc comments is described
in Section 23.3.

1.11 Conditional Debugging without #ifdef

1.11.1 Problem

You want conditional compilation and Java doesn't seem to provide it.
1.11.2 Solution

Use constants or command-line arguments, depending upon the goal.
1.11.3 Discussion

Some older languages such as C, PL/I, and C++ provide a feature known as conditional
compilation. Conditional compilation means that parts of the program can be included or excluded
at compile time based upon some condition. One thing it's often used for is to include or exclude
debugging print statements. When the program appears to be working, the developer is struck by
a fit of hubris and removes all the error checking :-). A more common rationale is that the
developer wants to make the finished program smaller -- a worthy goal -- or run faster by
removing conditional statements.

Although Java lacks any explicit conditional compilation, there is a kind of conditional compilation
implicit in the language. All Java compilers must do flow analysis to ensure that all paths to a
local variable's usage pass through a statement that assigns it a value first, that all returns from a
function pass out via someplace that provides a return value, and so on. Imagine what the
compiler will do when it finds an i f statement whose value is known to be false at compile time.
Why should it even generate code for the condition? True, you say, but how can the results of an
i f statement be known at compile time? Simple: through f i nal bool ean variables. Further, if
the value of the i f condition is known to be false, then the body of the i f statement should not
be emitted by the compiler either. Presto -- instant conditional compilation!

/1 1fDef.java
final bool ean DEBUG = fal se;
Systemout.printin("Hello, Wrld ");
if (DEBUG {
Systemout.printin("Life is a voyage, not a destination");
}

Compilation of this program and examination of the resulting class file reveals that the string
"Hello" does appear, but the conditionally printed epigram does not. The entire pri nt | n has
been omitted from the class file. So Java does have its own conditional compilation mechanism.

darian$ jr |fDef

jikes +E |fDef.java

java | f Def

Hel l o, World

darian$ strings IfDef.class | grep Life # not found!
darian$ javac |fDef.java # try another conpiler

darian$ strings IfDef.class | grep Life # still not found!
dari an$

What if we want to use debugging code similar to this, but have the condition applied at runtime?
We can use Syst em properties (Section 2.3) to fetch a variable. Section 1.12 uses my
Debug class as example of a class whose entire behavior is controlled this way.

But this is as good a place as any to interject about another feature, inline code generation. The

C world has a language keyword i nl i ne, which is a hint to the compiler that the function
(method) is not needed outside the current source file. Therefore, when the C compiler is
generating machine code, a calltothe i nl i ne function can be replaced by the actual

method body, eliminating the overhead of pushing arguments onto a stack, passing control,
retrieving parameters, and returning values. In Java, making a method final enables the compiler
to know that it can be inlined, or emitted in line. This is an optional optimization that the compiler
is not obliged to perform, but may for efficiency.

1.12 Debugging Printouts

1.12.1 Problem

You want to have debugging statements left in your code to be enabled at runtime.
1.12.2 Solution

Use my Debug class.
1.12.3 Discussion

Instead of using the conditional compilation mechanism of Section 1.11, you may want to leave
your debugging statements in the code, but enable them only at runtime, when a problem
surfaces. This is a good technique for all but the most compute-intensive applications because
the overhead of a simple | f statement is not all that great. Let's combine the flexibility of runtime
checking with the simple i f statement to debug a hypothetical f et ch() method (part of

Fet ch. j ava):

String nane = "poeni;

if (System getProperty("debug.fetch") !'= null) {
Systemerr.println("Fetching " + nane);

}

val ue = fetch(nane);

Then, we can compile and run this normally and the debugging statement will be omitted. But if
we run it with a - D argument to enable debug. f et ch, the printout will occur:

> java Fetch # See? No out put
> java -Ddebug. fetch Fetch

Fet chi ng poem

>

Of course this kind of i f statement is tedious to write in large quantities, so | have encapsulated
it into a Debug class, which is part of my com darwi nsys. uti | package. Debug. | ava
appears in full at the end of this chapter, in Section 1.19. My Debug class also provides the
string "debug". as part of the Syst em get Property() , sowe can simplify the previous

Fet ch example as follows (code in FetchDebug.java):

String nane = "poeni, val ue;

Fetch f = new Fetch();

Debug. println("fetch", "Fetching " + nane);
value = f.fetch(nane);

Running it behaves identically to the original Fet ch:

> java Fet chDebug # agai n, no out put
> java -Ddebug. fetch FetchDebug

Fet chi ng poem

>

1.13 Using a Debugger

1.13.1 Problem

That debugging printout code is still not enough.
1.13.2 Solution

Use a debugger.

1.13.3 Discussion

The JDK includes a command-line-based debugger, jdb, and there are any number of IDEs that
include their own debugging tools. If you've focused on one IDE, learn to use the debugger that it
provides. If you're a command-line junkie like me, you may want to learn at least the basic
operations of jdb.

Here is a buggy program. It has intentionally had bugs introduced so that you can see their

effects in a debugger.

/** This program exhibits some bugs, so we can use a debugger */
public class Buggy {
static String nane;

public static void main(String[] args) {
int n = name.length(); Il bug # 1

Systemout. println(n);

nanme += "; The end."; /'l bug #2
Systemout. println(name); // #3

}

Here is a session using jdb to find these bugs:

i an> java Buggy

Exception in thread "main" java.lang. Nul | Poi nt er Excepti on
at Buggy. mai n(Conpi | ed Code)

i an> j db Buggy
Initializing jdb.
Oxb2: cl ass(Buggy)
> run

run Buggy

running ...

mai n[1]

Uncaught exception

mai n[1] |i st

OCoOo~NOOThWwWN

10

: java.lang. Nul | Poi nt er Excepti on

at Buggy. nai n(Buggy. j ava: 6)

at sun.tool s. agent. Mai nThread. runMai n(Nati ve Met hod)
at sun.tool s. agent. Mai nThread. run(Mai nThr ead. j ava: 49)

i nt

n

public class Buggy {
static String nane;

public static void main(String[] args) {

= nane.length(); // bug # 1

System out. println(n);

nane += "; The end."; /'l bug #2

mai n[1] print Buggy. name

Buggy. nane = nul
mai n[1] hel p

** command |ist **
t hreads [t hreadgro
thread <thread id>
suspend [thread id

up] -
(s)] -

resune [thread id(s)] -

where [thread id]
wherei [thread id]
t hr eadgr oups

t hr eadgr oup <nane>

print <id> [id(s)]
dunp <id> [id(s)]

| ocal s
frame

cl asses
met hods <cl ass id>

stop in <class id>
a net hod

stop at <class id>
up [n franes]

| all -
| all -

[ist threads

set default thread

suspend threads (default: all)
resunme threads (default: all)

dunp a thread' s stack

dunp a thread's stack, with pc info
[ist threadgroups

set current threadgroup

print object or field
print all object information

print all local variables in current stack

list currently known cl asses
list a class's nethods

. <met hod>[(argunment _type,...)] -- set a breakpoint

:<line> -- set a breakpoint at a line

nove up a thread' s stack

in

down [n franes] -- nove down a thread' s stack

clear <class id>. <nethod>[(argunent _type,...)] -- clear a breakpoint
in a nethod

clear <class id>: <line> -- clear a breakpoint at a line

step -- execute current line

step up -- execute until the current nmethod returns
toits caller

st epi -- execute current instruction

next -- step one line (step OVER calls)

cont -- continue execution from breakpoi nt
catch <class id> -- break for the specified exception

i gnore <cl ass id> -- ignore when the specified exception
[ist [line nunber|nethod] -- print source code

use [source file path] -- display or change the source path
nenory -- report nenory usage

gc -- free unused objects

| oad cl assnane -- load Java class to be debugged

run <class> [args] -- start execution of a | oaded Java cl ass
I -- repeat |ast command

help (or ?) -- list comrands

exit (or quit) -- exit debugger

mai n[1] exit

i an>

There are many other debuggers available; a look in the current Java magazines will inform you
of them. Many of them will work remotely, since the Java debugging API (that which the
debuggers use) is network-based.

1.14 Unit Testing: Avoid the Need for Debuggers
1.14.1 Problem

You don't want to have to debug your code.

1.14.2 Solution

Use unit testing to validate each class as you develop it.

1.14.3 Discussion

Stopping to use a debugger is time-consuming. Better to test beforehand. The methodology of
unit testing has been around for a long time, but has been overshadowed by newer
methodologies. Unit testing is a tried and true means of getting your code tested in small pieces.
Typically, in an OO language like Java, unit testing is applied to individual classes, in contrast to
"black box" testing where the entire application is tested.

| have long been an advocate of this very basic testing methodology. Indeed, developers of the
software methodology known as Extreme Programming (XP for short; see
http://www.extremeprogramming.org) advocate writing the unit tests before you write the

code, and also advocate running your tests almost every time you compile. This group of
extremists has some very well-known leaders, including Gamma and Beck of Design Patterns
fame. While | am not yet ready to unconditionally endorse all aspects of Extreme Programming, |
certainly go along with their advocacy of unit testing.

Indeed, many of my classes come with a "built-in" unit test. Classes that are not main programs in
their own right often include a nai n method that just tests out the functionality of the class. Here
is an example:

/** A sinple class used to denonstrate unit testing. */
public class Person {

protected String full Nane;

protected String firstNane, |astNaneg;

/** Construct a Person using his/her first+l ast nanes. */
public Person(String firstNane, String |astNane) {
this.firstName = firstNane;
this.lastNane = | ast Nane;

}

/** Get the person's full name */
public String getFull Name() {
if (full Name !'= null)
return full Nane;

return firstName + " " + | ast Nane;

}

/** Sinple test program */
public static void main(String[] argv) {
Person p = new Person("lan", "Darwin");
String f = p.getFul |l Nane();
if ('f.equals("lan Darwi n"))
throw new I || egal St at eExcepti on("Nane concat enati on
br oken");
Systemout.printin("Fullnane " + f + " | ooks good");
}

What surprised me is that, before encountering XP, | used to think | did this often, but an actual
inspection of two projects indicated that only about a third of my classes had test cases, either
inside or externally. Clearly what is needed is a uniform methodology. That is provided by JUnit.

JUnit is a Java-centric methodology for providing test cases. You can freely download JUnit from
the obvious web site, http://www.junit.org. JUnit is a very simple but useful testing tool. It is
easy to use; you just write a test class that has a series of methods whose names begin with

t est . JUnit uses introspection (see Chapter 25) to find all these methods, and runs them for
you! There are extensions to JUnit for purposes as diverse as load testing and testing Enterprise
JavaBeans (EJB); there are links to these on the JUnit web site.

How do you get started using JUnit? All that's necessary is to write a test. Here | have excerpted
the test from my Per son class and placed it into a class Per sonTest . Note the obvious naming
pattern.

inport junit.framework.*;

/** A sinple test case for Person */
public class PersonTest extends Test Case {

/** JUnit test classes require this constructor */
public PersonTest(String name) {
super (nane) ;

}

public void test NameConcat() {
Person p = new Person("lan", "Darwin");
String f = p.getFul |l Nane();
assert Equal s(f, "lan Darwi n");

}

}
To run it, | need only compile the test and invoke the test harness | uni t:

dar oad. darw nsys. con® ji kes PersonTest.java
dar oad. darwi nsys. con$ java junit.textui.Test Runner PersonTest

Time: 0.188
K (1 tests)

dar oad. dar wi nsys. cont

The use of a full class name is a bit tedious, so | have a script named jtest that invokes this; | just
say jtest Person and it runs the previous command for me.

#1/ bi n/ sh
exec java junit.textui.Test Runner ${1}Test

1.14.4 See Also

If you prefer flashier GUI output, there are several JUnit variants (built using Swing and AWT; see
Chapter 13) that will run the tests with a GUI.

JUnit offers classes for building comprehensive test suites and comes with considerable
documentation of its own; download the program from the web site listed earlier.

Also, for testing graphical components, | have developed a simple component tester; it is
described in Section 12.3.

Remember: Test early, test often!
1.15 Decompiling Java Class Files
1.15.1 Problem

You lost the source code.

1.15.2 Solution
If you still have the class files, decompile them.
1.15.3 Discussion

Have you ever looked at a class file by accident? Open it in a text editor, for example, and you
might see this. You've never done this by accident, right? Sure, | believe you . . .

/\H\@/\C/\@@@)/\H\@AH\@]AH\@)AH\@)AH\@AH\@AH\@AH\@/\H\@/\H\@/\H
/\@/\H\@/\H\@/\H\@/\H\@/\H\@/\H\@/\H\@/\H\@
@GR ONC@N N @@ G

’\@’\G(\@. A@rca@rc@re o

/\@V/\@

A@\ @D

RGN

/\@\Y/\@

/\@[/\@:

There's no resemblance to the Java source file that you wrote and spent so long fussing over the
formatting of. What did it get you? Nothing here. The class file is a binary file that can't be
inspected easily. However, it is in a well-documented format, and there's the rub. Once a format
is known, files can be examined. One example of a Java program that examines other Java
programs is javap, which gives you the external view of a class file. I'll show you in Section 25.3
just how this part of javap works and how you can write your own tools that process other Java
classes. Meanwhile, this discussion is about decompilation. Let's suppose you have put some
meat through a meat grinder. It's been converted to zillions of little bits. It might, in fact, look a bit
like the class file seen here. Now suppose that unbeknownst to you, your paycheck fell into the
meat and went through the grinder. Ugh! But the real question is, can you put the paycheck back
together from the little pieces in the output? A related question is whether you can put a Java
source file back together from the little pieces in the class file.

The task seems impossible. The file appears inscrutable. How can it be un-ground? But computer
geeks like to work with files, and restoring structure to them is one part of that. When the
infamous Internet Worm struck in 1988, it was only a matter of hours before security experts had
taken the binary compiled program -- most OSes' equivalent of a class file -- and turned it back
into source code without any tools other than debuggers, dumps, and manuals. So it is possible
to take an object file and turn it back into some kind of source file. Now the ground-up paycheck,
if you find the pieces and tape it back together, will still have bumps (hot to mention the smell of
salami or pastrami as appropriate). And a decompiled file will have one major bump: no
comments! All the comments will be gone. But hopefully you can get back something that will
take the place of your lost source file.

The first tool for reverse compilation of Java class files was called Mocha. Written by the late
HanPeter van Vliet of the Netherlands, this tool showed a generation of early Java hackers that it
was possible to decompile Java. Here is Hel | oVr | d and its decompilation:

/**

* Your basic, mininmal, Hello Wrld type programin Java.
*/

public class Hellowrld {
public static void main(String[] argv) {
Systemout.printin("Hello, Wrld");

}

The result of compiling it and then decompiling it is:

/* Deconpiled by Mocha from Hell oWwrl d. cl ass */
/* Oiginally conpiled fromHell oWwrld.java */

i nport java.io.PrintStream

public class Hell owrld

{
public static void nmain(String astring[])
{
Systemout.printin("Hello, Wrld");
}
public Hellowrld()
{
}
}

Perhaps not as pretty, and with less of the abbreviation that is common practice in Java. The null
constructor for HelloWorld actually does exist in the compiled class (as you can verify by running
javap on it), so Mocha dutifully generates it.

Well, Mocha is OK, and the price is right -- it's free. However, | did mention that it's no longer
being maintained; it reportedly has problems with some of the class file constructs generated by
current compilers. The O'Reilly web site for this book includes a link to Mocha.

A newer tool is Jad, written in C++. Jad is free but closed source (available in binary only); see
http://www.qgeocities.com/SiliconValley/Bridge/8617/jad.html. There are also several
commercial decompilers that keep abreast of the latest versions of Java; check one of the Java
resource sites or magazines for the ones that are currently available.

1.16 Preventing Others from Decompiling Your Java Files
1.16.1 Problem

But | don't want people to be able to decompile my Java programs!

1.16.2 Solution

Obfuscate them.

1.16.3 Discussion

It has been said that for any weapon there is a defense, and for any defense there is a weapon. If
the weapon is a decompiler, then the defense is something called an obf uscat or . An
obfuscator takes your program and tries to make it obscure, so that decompilation either will not
work or will not be useful.

Because Mr. van Vliet, the late inventor of Mocha, did not release its source code, nobody else
can take it over and maintain it, as we don't have the source. Or do we? Of course! That's it! We'll
just run it through itself. Well, if you can download a copy, you can try it. But what you'll find is
that it doesn't work. The entire program has been obfuscated. Yes, Mr. van Vliet also wrote the
first Java obfuscator, partly in reaction to all the people who flamed him on the Net for releasing
Mocha. Due to his untimely death, his obfuscator is no longer available.

There are, of course, commercial obfuscation programs that will do some degree of obfuscation.
Some of them actually encrypt the file and use a custom class loader to decrypt it at runtime. |
suppose if you wanted to keep people from learning how your program worked, which you well
might for commercial or other reasons, you'd want to use one of these tools. Again, a Java
resource web site or a current Java developer's magazine would be the place to go for the latest
versions.

1.17 Getting Readable Tracebacks

1.17.1 Problem

You're getting an exception stack trace at runtime, but most of the important parts don't have line
numbers.

1.17.2 Solution
Disable JIT and run it again. Or use the current HotSpot runtime.
1.17.3 Discussion

When a Java program throws an exception, the exception propagates up the call stack until there
is a cat ch clause that matches it. If none is found, the Java interpreter program catches it and
prints a stack traceback showing all the method calls that got from the top of the program to the
place where the exception was thrown. You can print this traceback yourself in any catch clause:
the Thr owabl e class has several methods called pri nt St ackTrace().

The Just-In-Time (JIT) translation process consists of having the Java runtime convert part of
your compiled class file into machine language, so that it can run at full execution speed. This is a
necessary step for making Java programs run under interpretation and still be acceptably fast.
However, until recently its one drawback was that it generally lost the line numbers. Hence, when
your program died, you still got a stack traceback but it no longer showed the line numbers where
the error occurred. So we have the tradeoff of making the program run faster, but harder to
debug. The latest versions of Sun's Java runtime include the HotSpot Just-In-Time translator,
which doesn't have this problem.

If you're still using an older (or non-Sun) JIT, there is a way around this. If the program is getting
a stack traceback and you want to make it readable, you need only disable the JIT processing.
How you do this depends upon what release of Java you are using. In the JDK 1.2 (Java 2), you
need only set the environment variable JAVA_COMPILER to the value NONE, using the
appropriate set command.

C.\> set JAVA COVPI LER=NONE # DOS, Ms-W ndows
setenv JAVA COWPI LER NONE # UNI X Csh
export JAVA COVPI LER=NONE # UNI X Ksh, nodern sh

To make this permanent, you would set it in the appropriate configuration file on your system; on
Windows NT, you could also set this in the System Control Panel. You might well wish to make
this setting the default, since using the JIT does take longer for startup, in return for faster
execution. | ran JabaDex, my personal information manager application (see
http://www.darwinsys.com/jabadex/) six times, thrice with JIT and thrice without; the results
appear in Table 1-1.

Table 1-1. JIT and NOJIT timings

With JIT NOJIT
46 seconds 34 seconds
37 seconds 28 seconds
34 seconds 29 seconds
Average: 39 seconds Average: 30.3 seconds

As you can see, the average startup times are nearly 25% faster without JIT. Note that this
includes reading a 500-line file and scanning it; that part of the code would definitely benefit from
a JIT. Ideally we'd have selective control over JIT.

An easier way to disable JIT temporarily, and one that does not require changing the setting in
your configuration files or Control Panel, is the - D command-line option, which updates the
system properties. Just set | ava. conpi | er to NONE on the command line:

java -Dj ava. conpi |l er=NONE rmnyapp

Note that the - D command-line option overrides the setting of the JAVA_COMPILER environment
variable.

On earlier releases, there was a command-line flag - noj i t, but this was discontinued in favor of
the more verbose - D option.

As mentioned, Sun's new HotSpot JIT -- included in many JDK 1.2 and JDK 1.3 releases --
generally provides tracebacks even with JIT mode enabled.

1.18 Finding More Java Source Code
1.18.1 Problem

You want even more Java code examples to look at.
1.18.2 Solution

Use The Source, Luke.

1.18.3 Discussion

Java source code is everywhere. As mentioned in the Preface, all the code examples from this
book can be downloaded from the O'Reilly site (http://java.oreilly.com). What | didn't tell you,
but what you might have realized by extension, is that the source examples from all the O'Reilly
Java books are available there too: the Java Examples in a Nutshell book; the Java Swing book;
all of them.

Another valuable resource is the source code for the Java API. You may not have realized it, but
the source code for all the public parts of the Java API are included with each release of the Java
Development Kit. Want to know how | ava. uti| . ArrayLi st actually works? You have the

source code. Got a problem making a JTabl e behave? Sun's JDK includes the source for all the
public classes! Look for a file called src.zip or src.jar ; some versions unzip this and some do not.

If that's not enough, you can get the source for all of the JDK for free over the Internet just by
committing to the Sun Java Community Source License and downloading a large file. This
includes the source for the public and non-public parts of the API, as well as the compiler (written
in Java) and a large body of code written in "native" code (C/C++): the runtime itself and the
interfaces to the native library. For example, | ava. i 0. Reader has a method called r ead() ,
which reads bytes of data from a file or network connection. This is written in C because it
actually calls the r ead() system call for Unix, MS-Windows, MacOS, Palm, BeOS, or
whatever. The JDK source kit includes the source of all this stuff.

And ever since the early days of Java, there have been a number of web sites set up to distribute
free-software or open source Java, just as with most other modern "evangelized" languages such
as Perl, Python, Tk/Tcl, and others. (In fact, if you need native code to deal with some oddball
filesystem mechanism in a portable way, beyond the material in Chapter 10 of this book, the
source code for the above-mentioned languages' runtime systems might be a good place to look.)

I'd like to mention several web sites of lasting value:

Gamelan has been around almost forever (in Java time). The URL
http://www.gamelan.com still worked the last | checked, but the site has been
(naturally) commercialized, and is now part of http://www.developer.com.

The Giant Java Tree is more recent, and is limited to code that is covered by the GNU
Public License. There is a great deal of source code stored there, all of which can be
freely downloaded. See http://www.qgjt.org.

The CollabNet open source marketplace is not specific to Java, but offers a meeting
place for people who want open source code written and those willing to fund its
development. See http://www.collab.net.

SourceForge, also not specific to Java, offers free public hosting of open-sourced
projects. See http://www.sourceforge.com.

Finally, the author of this book maintains a small Java site at
http://www.darwinsys.com/java/, which may be of value. This is the prime spot to
obtain the JabaDex program, a longer (6,000-line) application that demonstrates some of
the principles and practices discussed in the book. There is also a listing of Java
resources and material related to this book.

As with all free software, please be sure that you understand the ramifications of the various
licensing schemes. Code covered by the GPL, for example, automatically transfers the GPL to
any code that uses even a small part of it. And even once looking at Sun's Java implementation
details (the licensed download mentioned previously) may prevent you from ever working on a
"clean-room" reimplementation of Java, the free-software Kaffe, or any commercial
implementation. Consult a lawyer. Your mileage may vary. Despite these caveats, the source
code is an invaluable resource to the person who wants to learn more Java.

1.19 Program: Debug

Most of the chapters of this book will end with a "Program” recipe that illustrates some aspect of
the material covered in the chapter. Example 1-2 is the source code for the Debug utility
mentioned in Section 1.12.

Example 1-2. Debug.java

package com darw nsys. util

/[** Wilities for debugging
*/
public class Debug {
/** Static nethod to see if a given category of debugging is

enabl ed.

* Enabl e by setting e.g., -Ddebug.fileio to debug file I/0O
operations.

* Use |ike this:

* i f (Debug.isEnabled("fileio"))

* Systemout.println("Starting to read file " + fil eNane);
*/
public static bool ean i sEnabl ed(String category) {

return System get Property("debug.” + category) != null;

}

/[** Static nmethod to println a given nessage if the
* given category is enabled for debuggi ng.
*/
public static void println(String category, String nmsg) {
i f (isEnabl ed(category))
System out . println(nsg);

/** Same thing but for non-String objects (think of the other
* formas an optimzation of this).
*/
public static void println(String category, Object stuff) ({
println(category, stuff.toString());
}

2 Interacting with the Environment

2.1 Introduction

This chapter describes how your Java program can deal with its immediate surroundings, what
we call the runtime environment . In one sense, everything you do in a Java program using
almost any Java API involves the environment. Here we focus more narrowly on things that
directly surround your program. Along the way we'll meet the Syst emclass, which knows a lot
about our system.

Two other runtime classes deserve brief mention. The first, | ava. | ang. Runt i ne, lies behind
many of the methods in the Syst emclass. Syst em exi t (), for example, just calls

Runt i me. exi t (). This is technically part of "the environment,” but the only time we use it
directly is to run other programs, which is covered in Section 26.2. The | ava. awt . Tool ki t
object is also part of the environment and is discussed in Chapter 12.

2.2 Getting Environment Variables

2.2.1 Problem

You want to get at environment variables from within your Java program.
2.2.2 Solution

Don't.

2.2.3 Discussion

The seventh edition of Unix, released in 1979, had an exciting new feature known as environment
variables. Environment variables are in all modern Unix systems and in most later command-line
systems such as the DOS subsystem underlying MS-Windows, but are not in Macintosh
computers, Palm Pilots, SmartCards, or other Java environments. Environment variables are
commonly used for customizing an individual computer user's runtime environment, hence the
name. To take one example that will be familiar to most readers, on Unix or DOS the environment
variable PATH determines where the system will look for executable programs. So of course the
issue comes up: "How do | get at environment variables from my Java program?"

The answer is that you can do this in some versions of Java, but you shouldn't. Java is designed
to be a portable runtime environment. As such, you should not depend on operating system
features that don't exist on every single Java platform. | just mentioned several Java platforms
that don't have environment variables.

Oh, all right, if you insist. There is a st at i ¢ method called getenv() in class
j ava. | ang. Syst em. Let's try it out. But remember, you made me do it. First, the code. All we
need is this line in a main program:

Systemout.println("Systemgetenv(\"PATH ") =" +
System get env(" PATH")) ;

Let's try compiling it:

C.\javasrc>javac CetEnv.java

Not e: Get Env.java uses or overrides a deprecated API. Reconpile with -
deprecation

for details.

That message is seldom welcome news. We'll do as it says:

C.\javasrc>javac -deprecation CetEnv.java
Cet Env. java: 9: Note: The nethod java.lang. String
getenv(java.lang. String) in class

j ava. | ang. Syst em has been deprecat ed.
Systemout.println("Systemgetenv(\"PATH") =" +
System get env (" PATH")) ;

AN

Note: Get Env.java uses or overrides a deprecated API. Please consult
t he

docunentation for a better alternative.

1 warni ng

But it's only a warning, right? What the heck. Let's try running the program!

C:\javasrc>java CetEnv
Exception in thread "main" java.lang.Error: getenv no | onger supported,
use
properties and -D instead: PATH
at java.l ang. System getenv(System j ava: 602)
at Cet Env. mai n(Get Env. j ava: 9)

Well, of all the non-backwards-compatible things! It used to work, in JDK 1.1, but it really and truly
doesn't work anymore in Java 2. | guess we'll just have to do what the error message tells us,
which is to learn about "properties and - D instead." In fact, that's our very next recipe.

2.3 System Properties

2.3.1 Problem

You need to get information from the system properties.

2.3.2 Solution

Use Syst em get Property() or System get Properties().
2.3.3 Discussion

What is a property anyway? A property is just a name and value pair stored in a
java.util.Properties object, which we'll discuss more fully in Section 7.8. So if | chose to,
| could store the following properties in a Pr operti es object called i an:

nanme=l an Darwi n
favorite_popsicle=cherry

favorite rock group=Fl eet wod Mac
favorite_ programm ng_| anguage=Java
penci | col or=green

The Properti es class has several forms of its retrieval method. You could, for example, say

i an. get Property("pencil col or") and get back the string "green”. You can also provide a
default: say i an. get Property("penci| color", "black"), and ifthe property has not
been set you would get the default value "black".

For now, we're concerned with the Syst emclass and its role as keeper of the particular
Properti es object that controls and describes the Java runtime. The Syst emclass has a static
Properti es member whose content is the merger of operating system specifics (os. nane, for
example), system and user tailoring (j ava. cl ass. pat h), and properties defined on the
command line (as we'll see in a moment). Note that the use of periods in these names (like
os.arch,os.versionand] ava. cl ass. pat h,] ava. | ang. ver si on) makes it look as
though there is a hierarchical relationship similar to that for class names. The Pr oper ti es class,
however, imposes no such relationships: each key is just a string, and dots are not special.

To retrieve one system-provided property, use Syst em get Property(). If you want them all,
use Syst em get Properties(). Accordingly, if | wanted to find out if the Syst em
Properti es had a property named "pencil color”, | could say:

String color = System getProperty("pencil color");

But what will that return? Surely Java isn't clever enough to know about everybody's favorite
pencil color? Right you are! But we can easily tell Java about our pencil color (or anything else we
want to tell it) using the - D argument.

The - D option argument is used to predefine a value in the system properties object. It must have
a name, an equals sign, and a value, which are parsed the same way as in a properties file (see
below). You can have more than one - D definition after your class name on the Java command.
On Unix or MS-Windows command-line mode, use this:

java -D'pencil col or=Deep Sea Green" SysPropDeno

Using MRJ or an IDE, put the variable's name and value in the appropriate dialog box when
running the program. The SysPr opDeno program is short; its essence is this one line:

System get Properties().list(Systemout);

When run this way, the program prints around 50 lines, looking something like:

java.library.path=/usr/local/linux-jdkl.2/jre/lib/i386/...
java. vm speci fi cation. vendor=Sun M crosystens |nc.

sun. i 0. uni code. encodi ng=Uni codeLittle

pencil col or=Deep Sea G een

file.encodi ng=ANSI X3. 4- 1968

j ava. speci fication.vendor=Sun M crosystens I|nc.
user. | anguage=en

The program also has code to extract just one or a few properties, so you can say:

$ java SysPropDeno os. arch
os.arch = x86

2.3.4 See Also

The Javadoc page for | ava. ut i | . Properti es lists the exact rules used in the | oad()
method, as well as other details.

Section 7.8 lists more details on using and naming your own Pr operti es files.

2.4 Writing JDK Release-Dependent Code
2.4.1 Problem

You need to write code that depends on the JDK release.
2.4.2 Solution

Don't do this.

2.4.3 Discussion

Although Java is meant to be portable, there are some significant variations in Java runtimes.
Sometimes you need to work around a feature that may be missing in older runtimes, but want to
use it if it is present. So one of the first things you want to know is how to find out the JDK release
corresponding to the Java runtime. This is easily obtained with Syst em get Property():

System out. println(System get Property("java. specification.version"));

Running this on Java 2 prints "1.2", as in JDK 1.2. Alas, not everyone is completely honest. Kaffe
1.5 certainly has some features of Java 2, but it is not yet a complete implementation of the Java
2 libraries. Yet it happily reports itself as "1.2" also. Caveat hactor!

Accordingly, you may want to test for the presence or absence of particular classes. One way to
do this is with Cl ass. f or Nane(" cl ass") , which throws an exception if the class cannot be
loaded -- a good indication that it's not present in the runtime's library. Here is code for this, from
an application wanting to find out whether the JDK 1.1 or later components are available:

[** Test for JDK >= 1.1 */
public class TestJDK11 {
public static void main(String[] a) {
/1 Check for JDK >= 1.1
try {
Cl ass.forNane("java. |l ang. refl ect. Constructor");
} catch (d assNot FoundException e) {
String failure =
"Sorry, but this version of M/App needs \n" +
"a Java Runtinme based on Java JDK 1.1 or later";
Systemerr.printin(failure);
throw new ||| egal Argunent Exception(failure);

}
Systemout.println("Happy to report that this is JDK1.1");

/'l rest of programwould go here...
return;

}
To check if the runtime includes the Swing components with their final names,™ you could use:

1 old-timers will remember that on the preliminary Swing releases, the name of this class was
com sun. j ava. swi ng. JButt on.

Cl ass. forNane("j avax. swi ng. JButton");

It's important to distinguish between testing this at compile time and at runtime. In both cases,
this code must be compiled on a system that includes the classes you are testing for -- JDK 1.1
and Swing, respectively. These tests are only attempts to help the poor backwaters Java runtime
user trying to run your up-to-date application. The goal is to provide this user with a message
more meaningful than the simple "class not found" error that the runtime will give. It's also
important to note that this test becomes unreachable if you write it inside any code that depends
on the code you are testing for. The check for Swing won't ever see the light of day on a JDK 1.1
system if you write it in the constructor of a JPanel subclass (think about it). Put the test early in
the main flow of your application, before any GUI objects are constructed. Otherwise the code will
just sit there wasting space on Java 2 systems and never getting run on Java 1.1 systems.

As for what the class C! ass actually does, we'll defer that until Chapter 25.

2.5 Writing Operating System-Dependent Code
2.5.1 Problem

You need to write code that depends on the underlying operating system.
2.5.2 Solution

Again, don't do this. Or, if you must, use Syst em properties.

2.5.3 Discussion

While Java is designed to be portable, there are some things that aren't. These include such
variables as the filename separator. Everybody on Unix knows that the filename separator is a
slash character (/) and that a backwards slash or backslash (\) is an escape character. Back in
the late 1970s, a group at Microsoft was actually working on Unix -- their version was called
Xenix, later taken over by SCO -- and the people working on DOS saw and liked the Unix
filesystem model. MS-DOS 2.0 didn't have directories, it just had "user numbers" like the system
it was a clone of, Digital Research CP/M (itself a clone of various other systems). So the
Microsoft folk set out to clone the Unix filesystem organization. Unfortunately, they had already
committed the slash character for use as an option delimiter, for which Unix had used a dash (-).
And the PATH separator (:) was also used as a "drive letter” delimiter, as in C: or A:. So we now
have commands like this:

Directory list

System command

Meaning Example PATH setting

Unix Is -R / R_ecursive listing of /, the top-level PATH=/bin:/usr/bin
directory
Directory with subdirectories option (i.e.,

DOS |[dir/s\ recursive) of \, the top-level directory (but |PATH=C:\windows;D:\mybins
only of the current drive)

Where does this get us? If we are going to generate filenames in Java, we need to know whether
to put a/ or a\ or some other character; the Mac, for example, uses : between filenames and
directories. Java has two solutions to this. First, when moving between Unix and Microsoft
systems, at least, it is permissive: either / or \ can be used, and the code that deals with the
operating system sorts it out. Second, and more generally, Java makes the platform-specific
information available in a platform-independent way. First, for the file separator (and also the
PATH separator), the | ava. i 0. Fi | e class (see Chapter 10) makes available some static
variables containing this information. Since the Fi | e class is platform-dependent, it makes sense
to anchor this information here. The variables are:

Name Type Meaning
separ at or static The system-dependent filename separator character, e.g.,
P String /or\
separ at or Char static The system-dependent filename separator character, e.g.,
char /or\
pat hSepar at or static The system-dependent path separator character,
String represented as a string for convenience

static

pat hSepar at or Char char

The system-dependent path separator character

Both filename and path separators are normally characters, but are also available in St ri ng
form for convenience.

A second, more general, mechanism is the system Properties object mentioned in Section 2.3.
You can use this to determine the operating system you are running on. Here is code that simply
lists the system properties; it can be informative to run this on several different implementations:

i nport java.util.?*;

/**

* Denonstrate System Properties

*/

public class SysPropDeno {

public static void main(String argv[]) {

Systemout.println("System Properties:");
Properties p = System getProperties();
p.list(Systemout);

Some OSes, for example, provide a mechanism called "the null device" that can be used to
discard output (typically used for timing purposes). Here is code that asks the system properties
for the "os.name", and uses it to make up a name that can be used for discarding data. If no null
device is known for the given platform, we return the name junk, which means that on such
platforms, we'll occasionally create, well, junk files. I just remove these files when | stumble
across them.

/** Sonme things that are System dependent.
* All nethods are static, |ike java.lang. Math.
*/
public class SysDep {
/** Return the name of the Null device on platforns which support
it,
* or "
*/
public static String getDevNull () {
String sys = System get Property("os. nanme");
if (sys==null || sys.indexOr("Mac") >= 0)
return "junk";
if (sys.startsWth("Wndows"))
return "NUL:";
return "/dev/null";

j nk" ot herw se.

}

2.6 Using CLASSPATH Effectively

2.6.1 Problem

You need to keep your class files in a common directory or you're wrestling with CLASSPATH.
2.6.2 Solution

Set CLASSPATH to the list of directories and/or JAR files that contain the classes you want.
2.6.3 Discussion

CLASSPATH is one of the more interesting aspects of using Java. You can store your class files
in any of a number of directories, JAR files, or zip files. Just like the PATH your system uses for
finding programs, the CLASSPATH is used by the Java runtime to find classes. Even when you
type something as simple as java HelloWorld, the Java interpreter looks in each of the places
named in your CLASSPATH until it finds a match. Let's work through an example.

The CLASSPATH can be set as an environment variable on systems that support this (at least
Unix and MS-Windows). You set it in the same syntax as your PATH environment variable. PATH
is a list of directories to look in for programs; CLASSPATH is a list of directories or JAR files to
look in for classes.

Alternatively, you can set your CLASSPATH right on the command line:
java -classpath \c:\ian\classes M/Prog

Suppose your CLASSPATH were set to C:\classes;. on MS-Windows, or ~/classes:. on Unix (on
the Mac, you can set the CLASSPATH with JBindery). Suppose you had just compiled a file
named HelloWorld.java into HelloWorld.class, and went to run it. On Unix, if you run one of the
kernel tracing tools (i r ace, st race, t russ, kt r ace) you would probably see the Java
program open (or st at , or access) the following files:

Some file(s) in the JDK directory;

Then ~/classes/HelloWorld.class, which it probably wouldn't find;
And ./HelloWorld.class, which it would find, open, and read into memory.

The "some file(s) in the JDK directory" is release-dependent. On JDK 1.2 it can be found in the
system properties:

sun. boot . cl ass. path =
C\JDKL.2\JRE\lib\rt.jar; C\JDKL. 2\ JRE\ i b\i 18n.jar; C\
JDK1. 2\ JRE\ cl asses

The file rt.jar is the RunTime stuff; i18n.jar is the internationalization; and classes is an optional
directory where you can install additional classes.

Suppose you had also installed the JAR file containing the supporting classes for programs from
this book, com-darwinsys-util.jar. You might then set your CLASSPATH to
C:\classes;C:\classes\com-darwinsys-util.jar; on MS-Windows, or ~/classes:~/classes/com-
darwinsys-util.jar:. on Unix. Notice that you do need to list the JAR file explicitly. Unlike a single
class file, placing a JAR file into a directory listed in your CLASSPATH does not suffice to make it
available.

Note that certain specialized programs (such as a web server running servlets; see Chapter 18)
may not use either bootpath or CLASSPATH as shown; they provide their own Cl asslLoader
(see Section 25.5 for information on class loaders).

Another useful part of the JDK is javap, which by default prints the external face of a class file: its
full name, its public methods and fields, and so on. If you ran a command like javap HellowWorld
under kernel tracing, you would find that it opened, seeked around in, and read from a file
\jdk\lib\tools.jar, and then got around to looking for your Hel | o\\or | d class, as previously. Yet
there is no entry for this in your CLASSPATH setting. What's happening here is that the javap
command sets its CLASSPATH internally to include the tools.jar file. If it can do this, why can't
you? You can, but not as easily as you might expect. If you try the obvious first attempt at doing a
set Property("]ava. cl ass. path") to itself plus the delimiter plus jdk/lib/tools.jar, you won't
be able to find the JavaP class (sun. t ool s. | ava. JavaP); the CLASSPATH is set in the

J ava. cl ass. pat h at the beginning of execution, before your program starts. You can try it
manually and see that it works if you set it beforehand:

C.\javasrc>java -classpath /jdkl.2/1ib/tools.jar sun.tools.javap.JavaP
Usage: javap <options> <cl asses>. ..

If you need to do this in an application, you can either set it in a startup script, as we did here, or
write C code to start Java, which is described in Section 26.6.

How can you easily store class files into a directory in your CLASSPATH? The javac command
has a - d dir option, which specifies where the compiler output should go. For example, using - d
to put the Hel | o\V\r | d class file into my /classes directory, | just say:

javac -d /classes Hell oWrl d. java

Then, as long as this directory remains in my CLASSPATH, | can access the class file regardless
of my current directory. That's one of the key benefits of using CLASSPATH.

Managing CLASSPATH can be tricky, particularly when you alternate among several JVMs, as |
do, or if you have multiple directories in which to look for JAR files. You may want to use some

sort of batch file or shell script to control this. Here is part of the script that | use. It was written for
the Korn shell on Unix, but similar scripts could be written in the C shell or as a DOS batch file.

These guys nust be present in ny classpath...
export CLASSPATH=/ hone/i an/ cl asses/ com darw nsys-util.jar:

Now a for loop, testing for .jar/.zipor [-d ...]

OPT_JARS="$HOWE/ cl asses $HOVE/ cl asses/ *. | ar
${IJAVAHOVE}/jrel/liblext/*.jar
/usr/local/antlr-2.6.0"

for thing in $OPT_JARS

do
if [-f $thing]; then //must be either a file...
CLASSPATH=" $CLASSPATH: $t hi ng"
else if [-d $thing]; then //or a directory
CLASSPATH=" $CLASSPATH: $t hi ng"
fi
done

CLASSPATH="$CLASSPATH: . "

This builds a minimum CLASSPATH out of com.darwinsys-util.jar, then goes through a list of
other files and directories to check that each is present on this system (I use this script on several
machines on a network), and ends up adding a dot (.) to the end of the CLASSPATH.

2.7 Using Extensions or Other Packaged APIs
2.7.1 Problem

You have a JAR file of classes you want to use.

2.7.2 Solution

On JDK 1.2 or later, simply copy the JAR into JDKHOME/jre/lib/ext/.
2.7.3 Discussion

The Java API has grown by leaps and bounds since its first public release in 1995. It is now
considered sufficiently functional for writing robust applications, but the areas to which it is being
applied continue to grow. There are many specialized APIs that may require more resources than
you have on a given Java platform. Many of the new APIs from Sun are in the form of standard
extensions and have package names beginning in j avax. to indicate that. Classes in packages
named | ava. or] avax. are treated as built-in classes by a web browser for purposes of applet

security, for example. Each extension is distributed in the form of a JAR file (see Section 23.4).

If you have Java 1.1 or some clone, you will need to add each such JAR file to your
CLASSPATH, as in Section 2.6.

In Java 2, as you accumulate these and other optional APIs contained in JAR files, you can
simply drop these JAR files into the Java Extensions Mechanism directory, typically something
like \jdk1.2\jre\lib\ext., instead of listing each JAR file in your CLASSPATH variable and watching
CLASSPATH grow and grow and grow. Effective with Java 2, the runtime looks here for any and

all JAR and zip files, so no special action is needed. In fact, unlike many other system changes,
you do not even need to reboot your computer, since this directory is scanned each time the JVM
starts up. You may, however, need to restart a long-running program such as an IDE for it to
notice the change. Try it and see first.

2.8 Parsing Command-Line Arguments

2.8.1 Problem

You need to parse command-line options. Java doesn't provide an API for it.
2.8.2 Solution

Look in the ar gs array passed as an argument to nmai n. Or use my Get Opt class.
2.8.3 Discussion

The Unix folk have had to deal with this longer than anybody, and they came up with a C-library
function called get opt . get opt processes your command-line arguments and looks for single-
character options set off with dashes and optional arguments. For example, the command:

sort -n -o outfile nyfilel yourfile2

runs the standard sort program. The - n tells it that the records are numeric rather than textual,
and the - o out f i | e tells it to write its output into a file named outfile. The remaining words,
myfilel and yourfile2, are treated as the input files to be sorted. On a Microsoft-based platform
such as Windows 95, command arguments are set of with slashes (/). We will use the Unix form
-- a dash -- in our API, but feel free to change the code to use slashes.

Asin C, the get opt () method is used in a whi | e loop. It returns once for each valid option
found, returning the value of the character that was found or zero when all options (if any) have
been processed.

Here is a program that uses my Get Opt class just to see if there is a - h (for help) argument on
the command line:

i nport com darwi nsys. util. Get Opt;

/** Trivial denonstration of GetOpt. If -h present, print help.
*/
public class Get OptSinmple {
public static void main(String[] args) {
CetOpt go = new GetOpt (" h");

char c;
while ((c = go.getopt(args)) !'=0) {
switch(c) {
case 'h':
hel pAndExi t (0);
br eak;
defaul t:

Systemerr.println("Unknown option in " +
args[go.getOptInd()-1]);

hel pAndExi t (1) ;
}
}
Systemout.printin();
}

/** Stub for providing help on usage
* You can wite a longer help than this, certainly.
*/
static void hel pAndExit (i nt returnVal ue) ({
Systemerr.println("This would tell you howto use this
programnt');
System exi t (returnVal ue);
}

}

The following longer demo program has several options:

i mport com darw nsys. util.GetOpt;

/** Sinple denonstration of GetOpt. Accept the '-n" and '-o outfile’
* options as shown for sort, and also -h for help.
*/
public class Get Opt Denp {
public static void main(String[] args) {
CGet Opt go = new CGet Opt ("hno: ") ;
bool ean nuneric_option = fal se;
String outFileNanme = "(standard output)"”;
char c;
while ((c = go.getopt(args)) !'= GetOpt. DONE) ({
switch(c) {
case 'h':
doHel p(0);
br eak;

n':
nuneric_option = true;
br eak;

case

0':
out Fi | eNane = go.optarg();
br eak;
defaul t:
Systemerr.println("Unknown option character
doHel p(1);

case

+ C);

}
}
Systemout.print("Options: ");
Systemout.print("Nuneric: " + nuneric_option + ' ");
Systemout.print("Qutput: " + outFileName + "; ");
Systemout.println("lnputs: ");
if (go.getOptlnd()-1 == args.length) {
doFil e("(standard i nput)");
} else for (int i=go.getOptind()-1; i<args.length; i++)
doFil e(args[i]);
}

/[** Stub for providing help on usage

* You can wite a longer help than this, certainly.
*/
static void doHel p(int returnVal ue) {
Systemerr.println("Usage: GetOptDeno [-h][-n][-0 outfile] file
)

}

/** Stub to denonstrate processine one file. */

static void doFile(String fil eNane) {
Systemout.println(fileNane + ' ');

}

System exi t (returnVal ue);

}

If we invoke it several times with different options, here's how it behaves:

C:\javasrc\environ>java CGet Opt Deno
Options: Nuneric: false Qutput: (standard output) ; Input: (standard
i nput)

C.\javasrc\environ>java Get Opt Denp -h
Usage: GetOptDeno [-h][-n][-0 outfile] file ...

C:\javasrc\environ> ava Get ptDeno -n a b ¢
Options: Nuneric: true Qutput: (standard output) ; Input: b c

C:\javasrc\environ> ava GetptDenmo -n -o resultfile filel file2
Options: Nunmeric: true Qutput: resultfile ; Input: file2

Here is a longer example using Get Opt :

public class Get Opt Test ({
public static void main(String argv[]) {
String goodArgChars = "o: h", goodArgs[] = {

“-h", "-0", "outfile", "infile"

1

String badArgChars = "fl1lo", badArgs[] = {
“-h", "-0", "outfile", "infile"

i

process(goodAr gChars, goodArgs);
process(badArgChars, goodArgs);
process(badArgChars, badArgs);

}

/** Private function, for testing. */
private static void process(String argChars, String[] args) {

Systemout.println("** START ** " + argChars + '(' +
args.length + ')");

Get Opt go = new Cet Opt (argChars);

char c;

while ((c = go.getopt(args)) !'= 0) {
Systemout. print("Found " + c);
if (go.optarg() !'= null)

}

Systemout.print("; Option " + go.optarg());
Systemout.printin();
}
for (int i=go.optind(); i<args.length; i++)
Systemout.println("Filename-like arg " + args[i]);

This program (which | used to test the Cet Opt class while | was writing it) demonstrates several
uses of get opt , some successful and some (by design) unsuccessful. It prints the successes
and failures as it goes:

$ java Get Opt Test
** START ** 0: h(4)

Found h

Found o; Option outfile
** START ** flo(4)

Bad option

Found o

Filename-1ike arg infile

At | east one user error found
** START ** flo(4)

Bad option

Found o

Filename-1ike arg infile
At | east one user error found

$

CGet Opt is an adequate tool for processing command-line options. You may come up with
something better and contribute it to the Java world; this is left as an exercise for the reader.

3 Strings and Things

3.1 Introduction

Character strings are an inevitable part of just about any programming task. We use them for
printing messages to the user, for referring to files on disk or other external media, and for
people's names, addresses, and affiliations. The uses of strings are many, almost without number
(actually, if you need numbers, we'll get to them in Chapter 5).

If you're coming from a programming language like C, you'll need to remember that St ri ng is a
defined type (class) in Java. That is, a string is an object, and therefore has methods. It is not an
array of characters and should not be thought of as an array. Operations like
fileNane.endsWth(".gif") andextensi on. equal s(".gi ") (and the equivalent
".gif".equal s(extension))are commonplace.

Notice that a given St r i ng object, once constructed, is immutable. That is, once | have said
String s = "Hello" + yourNane; then the particular object that reference variable s refers
to can never be changed. You can assign s to refer to a different string, even one derived from
the original, asins = s.trin().Andyou can retrieve characters from the original string using
char At (), butitisn't called get Char At () because there is not, and never will be, a

set Char At () method. Even methods like t oUpper Case() don't change the St ri ng; they
return a new St r i ng object containing the translated characters. If you need to change
characters within a St r i ng, you should instead create a St r i ngBuf f er (possibly initialized to
the starting value of the St r i ng), manipulate the St ri ngBuf f er to your heart's content, and
then convert that to St r i ng at the end, using the ubiquitous t oSt ri ng() method.

How can | be so sure they won't add a set Char At () method in the next release? Because the
immutability of strings is one of the fundamentals of the Java Virtual Machine. Remember that
Java is the one language that takes multiprocessing (threads) seriously. And takes security
seriously. Got that in mind? Good. Now think about applets, which are prevented from accessing
many local resources. Consider the following scenario: Thread A starts up another Thread B.
Thread A creates a string called s containing a filename, saves a reference s2 to it, and passes s
to some method that requires permission. This method will certainly call the Java Virtual
Machine's Secur i t yManager ™ object, if one is installed (as it certainly will be in an applet
environment). Then, in the nanoseconds between the time the Secur i t yManager passes its
approval on the named file and the time the 1/0O system actually gets around to opening the file,
Thread B changes the string referred to by s2, to refer to a system file. Poof! If you could do this,
the entire notion of Java security would be a joke. But of course, they thought of that, so you
can't. While you can, at any time, assign a new St r i ng reference to s, this never has any effect
on the string that s used to refer to. Except, of course, if s were the only reference to that
String, itis now eligible for garbage collection -- it may go up the pipe!

[securi tyManager is a class that is consulted on whether the current application is allowed to do certain
things, such as open local disk files, open arbitrary network connections, etc. Applets run with a more
restrictive security manager than do normal applications, for example.

Remember also that the St r i ng is a very fundamental type in Java. Unlike most of the other
classes in the core API, the behavior of strings is not changeable; the class is marked f i nal so it
cannot be subclassed. So you can't declare your own St r i ng subclass. Think if you could -- you
could masquerade as a St ri ng, but provide a set Char At () method! Again, they thought of
that. If you don't believe me, try it out:

/**
* |f this class could be conpiled, Java security would be a nyth.
*/
public class Wl flnStringsd othing extends java.lang. String {
public void setCharAt(int index, char newChar) {
/1 The inplenentation of this method
/Il is left as an exercise for the reader.
/1 Hnt: conpile this code exactly as-is before bothering!

}

Got it? They thought of that!

Of course you do need to be able to modify strings. There are methods that extract part of a

St ring; these are covered in the first few recipes in this chapter. And there is St r i ngBuf f er,
an important class that deals in characters and strings and has many methods for changing the
contents, including, of course, at oSt ri ng() method. Reformed C programmers should note
that Java strings are not arrays of chars as in C, so you must use methods for such operations as
processing a string one character at a time; see Section 3.5. Figure 3-1 shows an overview of
String, StringBuffer, and C-language strings.

Figure 3-1. String, StringBuffer, and C-language strings

String
et Hoa Ll e World inriutihle
StringBuffer
Pll : il Wia or motable
C-language “string” (really “char*”)
e H e |||] |0 Wio ril|{dW
null byte of end

While we haven't discussed the details of the | ava. i o package yet (we will, in Chapter 9), you
need to be able to read text files for some of these programs. Even if you're not familiar with

J ava. i o, you can probably see from the examples that read text files that a Buf f er edReader
allows you to read "chunks" of data, and that this class has a very convenient r eadLi ne()
method.

We won't show you how to sort an array of strings here; the more general notion of sorting a
collection of objects is discussed in Section 7.9.

3.2 Taking Strings Apart with Substrings

3.2.1 Problem

You want to break a string apart into substrings by position.
3.2.2 Solution

Use the St ri ng object's substring() method.

3.2.3 Discussion

The substring() method constructs a new St ri ng object made up from a run of characters
contained somewhere in the original string, the one whose substri ng() you called. The name
of this method, subst ri ng(), violates the stylistic dictum that words should be capitalized; if
Java were 100.0% consistent, this would be named subSt ri ng. But it's not; it's subst ri ng.
The subst ri ng method is overloaded: both forms require a starting index. The one-argument
form returns from st ar t | ndex to the end. The two-argument form takes an ending index (not a
length, as in some languages), so that an index can be generated by the St r i ng methods
indexO () orlastlndexO (). Note that the end index is one beyond the last character!

/1l File SubStringDeno.|ava
public static void main(String[] av) {

String a = "Java is great.";
Systemout. println(a);
String b = a.substring(5); /Il bis the String "is great."”

Systemout. println(b);

String ¢ = a.substring(5,7);// cis the String
Systemout.println(c);

String d = a.substring(5,a.length());// dis "is great."'
Systemout. println(d);

is
}
This prints the following when run:

> java SubStri ngDeno
Java is great.

is great.

is

is great.

>

3.3 Taking Strings Apart with StringTokenizer
3.3.1 Problem

You need to take a string apart into words or tokens.

3.3.2 Solution

Construct a St ri ngTokeni zer around your string and call its methods hasMor eTokens()
and next Token(). These implementthe | t er at or design pattern (see Section 7.5). In

addition, St ri ngTokeni zer implements the Enuner at | on interface (also in Section 7.5), but
if you use the methods thereof you will need to cast the results to St ri ng:

/1l StrTokDeno. | ava
StringTokeni zer st = new StringTokeni zer("Hello Wrld of Java");

whi l e (st.hasMoreTokens())
System out. println("Token:

+ st.next Token());

The St ri ngTokeni zer normally breaks the St ri ng into tokens at what we would think of as
"word boundaries” in European languages. Sometimes you want to break at some other
character. No problem. When you construct your St ri ngTokeni zer, in addition to passing in
the string to be tokenized, pass in a second string that lists the "break characters." For example:

/| StrTokDeno2.java
StringTokeni zer st = new StringTokeni zer("Hello, Wrld|of]|Java", ",

1)

whil e (st.hasMoreEl ements())
System out. println("Token:

+ st.nextElement());

But wait, there's more! What if you are reading lines like:
Fi r st Nane| Last nane| Conpany| PhoneNunber

and your dear old Aunt Begonia hasn't been employed for the last 38 years? Her "Company" field
will in all probability be blank. If you look very closely at the previous code example, you'll see
that it has two delimiters together (the comma and the space), but if you run it there are no "extra
tokens. That is, the St ri ngTokeni zer normally discards adjacent consecutive delimiters. For
cases like the phone list, where you need to preserve null fields, there is good news and bad
news. The good news is you can do it; you simply add a second argument of t r ue when
constructing the St r i ngTokeni zer , meaning that you wish to see the delimiters as tokens. The
bad news is that you now get to see the delimiters as tokens, so you have to do the arithmetic
yourself. Want to see it? Run this program:

[21 Unless, perhaps, you're as slow at updating personal records as | am.

/| StrTokDenp3.java
StringTokeni zer st =
new StringTokeni zer("Hell o, Wrld|of|Java”, ", |", true);

whil e (st. hasMoreEl ements())
System out. println("Token:

+ st.nextElement());

and you get this output:

C.\javasrc>java StrTokDenp3
Token: Hello

Token:
Token:

Token: World
Token: |
Token: of

Token: |

Token: Java

This isn't how you'd like St ri ngTokeni zer to behave, ideally, but it is serviceable enough most
of the time. Example 3-1 processes and ignores consecutive tokens, returning the results as an
array of strings.

Example 3-1. StrTokDemo4.java (StringTokenizer)
i mport java.util.*;

/** Show using a StringTokenizer including getting the delimters back
*/
public class StrTokDeno4 {

public final static int MAXFIELDS = 5;

public final static String DELIM= "|";

/** Processes one String, returns it as an array of fields */
public static String[] process(String line) {
String[] results = new String[MAXFI ELDS] ;

/1 Unless you ask StringTokenizer to give you the tokens,
/1 it silently discards nmultiple null tokens.
StringTokeni zer st = new StringTokeni zer(line, DELIM true);

int i =0;
/1 stuff each token into the current user
whi l e (st.hasMreTokens()) {
String s = st.nextToken();
if (s.equals(DELIM) {
i f (i++>=MAXFI ELDS)
/1 This is nmessy: See StrTokDeno4b which uses
/1 a Vector to allow any nunber of fields.
t hrow new ||| egal Argunent Exception("lnput line " +
line + " has too many fields");
conti nue;

resultsf[i] = s;
}

return results;

}

public static void printResults(String input, String[] outputs) {
Systemout.println("Input: " + input);
for (int i=0; i<outputs.length; i++)
Systemout.println("Qutput " + i + " was:

+ outputs[i]);
}

public static void main(String[] a) {
printResults("Al Bl C D', process("ABlCD));
printResults("Al|C D', process("A|CD"));
printResults("Al|| D E", process("A||DE"));

When you run this, you will see that A is always in Field 1, B (if present) in Field 2, and so on. In
other words, the null fields are being handled properly.

I nput: Al Bl C
Qutput 0 was: A
Qutput 1 was: B
Qutput 2 was: C
Qutput 3 was: D
Qut put 4 was: null

Input: A |CD
Qutput 0 was: A
Qut put 1 was: null
Qutput 2 was: C
Qutput 3 was: D
Qut put 4 was: nul |
Input: A||DE
Qutput 0 was: A
Qut put 1 was: null
Qut put 2 was: null
Qutput 3 was: D
Qutput 4 was: E

3.4 Putting Strings Together with + and StringBuffer

3.4.1 Problem

You need to put some St r i ng pieces back together.

3.4.2 Solution

Use string concatenation: the + operator. The compiler will construct a St r i ngBuf f er for you
and use its append() methods. Or better yet, construct it yourself. Conveniently, the append(
) method returns a reference to the St ri ngBuf f er itself, so that statements like the
.append(...).append(...) are fairly common. You might even see this third way in a
toString() method. Example 3-2 shows the three ways of concatenating strings.

Example 3-2. StringBufferDemo.java

/**
* StringBufferDeno: construct the same String three different ways.
*
/
public class StringBufferDeno {
public static void main(String[] argv) {
String s1 = "Hello" + ", " + "Wrld";
System out. println(sl);

/1 Build a StringBuffer, and append sonme things to it.
StringBuffer sb2 = new StringBuffer();

sb2. append("Hel | 0");

sb2. append(',");

sb2. append(' ');

sb2. append("Worl d");

/'l Get the StringBuffer's value as a String, and print it.
String s2 = sbh2.toString();
Systemout. println(s2);

/1 Now do the above all over again, but in a nore
/'l concise (and typical "real -world" Java) fashion.

StringBuffer sb3 = new StringBuffer().append("Hello").
append(',").append(' ').append("World");
Systemout.println(sb3.toString());

/'l Exercise for the reader: do it all again but wthout
/'l creating ANY tenporary vari abl es.

}

In fact, all the methods that modify more than one character of a St r i ngBuf f er 's contents --
(append() ,delete(),deleteCharAt(),insert(),replace(),andreverse())
-- return a reference to the St r i ngBuf f er to facilitate this style of coding.

3.5 Processing a String One Character at a Time
3.5.1 Problem

You want to process the contents of a string one character at a time.
3.5.2 Solution

Use af or loop and the St ring'schar At () method.

3.5.3 Discussion

A string's char At () method retrieves a given character by index number (starting at zero) from
within the St r i ng object. To process all the characters in a St r i ng, one after another, use a

f or loop ranging from zero to St ri ng. | engt h() - 1. Here we process all the characters in a
String:

/'l StrCharAt.java
String a = "A quick bronze fox leapt a | azy bovine";
for (int i=0; i < a.length(); i++)

Systemout.printin("Char " + i +

is " + a.charAt(i));

A checksum is a numeric quantity representing and confirming the contents of a file. If you
transmit the checksum of a file separately from the contents, a recipient can checksum the file --
assuming the algorithm is known -- and verify that the file was received intact. Example 3-3
shows the simplest possible checksum, computed just by adding the numeric value of each
character together. It should produce the value "1248" if the input is "an apple a day". Note that
on files, it will not include the values of the newline characters; to fix this, retrieve

System get Property("line.separator"); and add its character value(s) into the sum at
the end of each line. Or, give up on line mode and read the file a character at a time.

Example 3-3. CheckSum.java

/** CheckSum one file, given an open BufferedReader. */
public int process(BufferedReader is) {
int sum= 0;
try {
String inputlLine;

while ((inputLine = is.readLine()) !'=null) {
int i;
for (i=0; i<inputLine.length(); i++) {
sum += i nput Li ne. char At (i);
}
}

is.close();
} catch (1 CException e) {
System out. println("l OException:

} finally {
return sum
}

+ e);

}

3.6 Aligning Strings

3.6.1 Problem

You want to align strings left, right, or centered.
3.6.2 Solution

Do the math yourself, and use subst ri ng (Section 3.2) and a St r i ngBuf f er (Section 3.4).
Or, justuse my St ri ngAl i gn class, which is based on the | ava. t ext . For mat class.

3.6.3 Discussion

Centering, or left- or right-aligning text, comes up surprisingly often. Suppose you want to print a
simple report with centered page numbers. There doesn't seem to be anything in the standard
API that will do the job fully for you. But | have written a class called St ri ngAl i gn that will.
Here's how you might use it:

/* Align a page nunber on a 70-character line. */
public class StringAlignSinple {

public static void main(String[] args) {
/1 Construct a "formatter"” to center strings.
StringAlign formatter = new StringAlign(70,

StringAlign. JUST_CENTER);

/1l Try it out, for page "i"
Systemout.printin(formatter.format("- i -"));
/1l Try it out, for page 4. Since this formatter is
/1 optimzed for Strings, not specifically for page nunbers,
/1 we have to convert the nunber to a String
Systemout.printin(formatter.format(lnteger.toString(4)));

If we compile and run this class, it prints the two demonstration line numbers centered, as shown:

> jikes +E -d . StringAlignSinple.java
> java StringAlignSinple
-0 -
4

Here is the code for the St ri ngAl i gn class. Note that this class extends a class called For nat .
In the package | ava. t ext there is a series of For mat classes; they all have at least one
method called f or mat (). Itis thus in a family with numerous other formatters such as

Dat eFor mat , Nunber For mat , and others that we'll meet in upcoming chapters.

i mport java.text.?*;

/[** Bare-mninmum String formatter (string aligner). */
public class StringAlign extends Format {

/* Constant for left justification. */

public static final int JUST_LEFT = "'1";

/* Constant for centering. */

public static final int JUST _CENTRE = 'c';

/* Centering Constant, for those who spell "centre" the Anerican
way. */

public static final int JUST_CENTER = JUST_CENTRE;

/** Constant for right-justified Strings. */

public static final int JUST RIGHT = "r";

/** Current justification */
private int just;

/[** Current max |ength */
private int maxChars;

public StringAlign(int nmaxChars, int just) {
switch(just) {
case JUST LEFT:
case JUST_CENTRE:
case JUST_RI GHT:

this.just = just;
br eak;
defaul t:
throw new ||| egal Argunent Exception("invalid justification
arg.");
}
if (maxChars < 0) {
t hrow new ||| egal Argunment Excepti on(" maxChars nust be
positive.");
}
t hi s. maxChars = naxChars;
}

/** Format a String */
public StringBuffer format(
oj ect obj, StringBuffer where, FieldPosition ignore) {

String s = (String)obj;

String wanted = s.substring(0, Math.mn(s.length(),
maxChars)) ;

/1 1f no space left for justification, return maxChars' worth

*/
if (wanted.length() > maxChars) {
wher e. append(want ed) ;
}
/'l Else get the spaces in the right place.
el se switch (just) {
case JUST_RI GHT:
pad(where, maxChars - wanted.length());
wher e. append(want ed) ;
br eak;
case JUST_CENTRE:
int startPos = where.length();
pad(where, (maxChars - wanted.length())/2);
wher e. append(want ed) ;
pad(where, (maxChars - wanted.length())/2);
/1 Adjust for "rounding error”
pad(where, maxChars - (where.length() - startPos));
br eak;
case JUST LEFT:
wher e. append(want ed) ;
pad(where, maxChars - wanted.length());
br eak;
}
return where;
}
protected final void pad(StringBuffer to, int howvany) {
for (int i=0; i<howMany; i ++)
to. append(’ ');
}
[** Conveni ence Routine */
String format (String s) {
return format (s, new StringBuffer(), null).toString();
}
/** Parse(bject is required, but not useful here. */
public Object parseChject (String source, ParsePosition pos) {
return source,
}
}
3.6.4 See Also

The alignment of numeric columns is considered in Chapter 5.
3.7 Converting Between Unicode Characters and Strings

3.7.1 Problem

You want to convert between Unicode characters and St ri ngs.
3.7.2 Solution

Since both Java char s and Unicode characters are 16 bits in width, a char can hold any
Unicode character. The char At () method of St ri ng returns a Unicode character. The
StringBuffer append() method has a form that accepts a char . Since char is an integer
type, you can even do arithmetic on char s, though this is not necessary as frequently as in, say,
C. Nor is it often recommended, since the Char act er class provides the methods for which
these operations were normally used in languages such as C. Here is a program that uses
arithmetic on char s to control a loop, and also appends the characters into a St r i ngBuf f er
(see Section 3.4):

/**

* Conversion between Uni code characters and bytes
*/
public class UnicodeChars {
public static void main(String[] argv) {
StringBuffer b = new StringBuffer();
for (char ¢ = "a'; c<'d; c++) {
b. append(c);

}

b. append(' \u00a5'); /'l Japanese Yen synbol

b. append(' \ uOl1FC); /1 Roman AE with acute accent

b. append('\u0391'); /'l GREEK Capital Al pha

b. append(' \ u0O3A9") ; /'l GREEK Capital Onega

for (int i=0; i<b.length(); i++) {
Systemout.println("Character #" +i + " is " +

b.charAt (i));

}

Systemout. println("Accunul ated characters are " + b);
}

When you run it, the expected results are printed for the ASCII characters. On my Unix system,
the default fonts don't include all the additional characters, so they are either omitted or mapped
to irregular characters. We will see in Section 12.4 how to draw text in other fonts.

C.\javasrc\strings>java UnicodeChars

Character #0 is a

Character #1 is b

Character #2 is ¢

Character #3 is %

Character #4 is |

Character #5 is

Character #6 is)

Accumul ated characters are abc%)

My Windows system doesn't have most of those characters either, but it at least prints the ones it
knows are lacking as question marks (Windows system fonts are more homogenous than those
of the various Unix systems, so it is easier to know what won't work). On the other hand, it tries to
print the Yen sign as a Spanish capital Enye (N with a ~ over it). Amusingly, if | capture the

console log under MS-Windows into a file and display it under Unix, the Yen symbol now
appears:

Character #0 i
Character #1 i
Character #2 i
Character #3 i
Character #4 i
Character #5 i
Character #6 is 7
Accunmul ated characters are abc¥???

nuunuununuonuon
NNV KO T

N

3.7.3 See Also

The Uni code program in this book's online source displays any 256-character section of the
Unicode character set. Documentation listing every character in the Unicode character set can be
downloaded along with supporting documentation from the Unicode Consortium at
http://www.unicode.org.

3.8 Reversing a String by Word or Character
3.8.1 Problem

You wish to reverse a string, a character or word at a time.
3.8.2 Solution

You can reverse a string by character easily, using a St r i ngBuf f er . There are several ways to
reverse a string a word at a time. One natural way is to use a St r i ngTokeni zer and a stack.
St ack is a class (defined in j ava. uti | ; see Section 7.16) that implements an easy-to-use
last-in, first-out (LIFO) stack of objects.

3.8.3 Discussion
To reverse the characters in a string, use the St ri ngBuf f er reverse() method.

/1 StringRevChar.java
String sh = "FCGDAEB";
Systemout.printin(sh + " ->" + new StringBuffer(sh).reverse());

The letters in this example list the order of the sharps in the key signatures of Western music; in
reverse, it lists the order of flats. Alternately, of course, you could reverse the characters yourself,
using character-at-a-time mode (see Section 3.5).

A popular mnemonic or memory aid for the order of sharps and flats consists of one word for
each sharp instead of just one letter, so we need to reverse this one word at a time. Example 3-
4 adds each one to a St ack (see Section 7.16), then process the whole lot in LIFO order,
which reverses the order.

Example 3-4. StringReverse.java

String s = "Father Charles Goes Down And Ends Battle";

/1 Put it in the stack frontwards

Stack nyStack = new Stack();

StringTokeni zer st = new StringTokeni zer(s);

whi | e (st.hasMreTokens()) mnyStack. push(st.nextEl enent());

/1 Print the stack backwards
Systemout.print('"' +s +'"" + " backwards by word is:\n\t\"");

while (!'myStack.empty()) {
System out . print (nyStack. pop());

Systemout.print(' ');

}
Systemout.printin('"");

3.9 Expanding and Compressing Tabs

3.9.1 Problem

You need to convert space characters to tab characters in a file, or vice versa. You might want to
replace spaces with tabs to save space on disk, or go the other way to deal with a device or
program that can't handle tabs.

3.9.2 Solution
Use my Tabs class or its subclass EnTab.
3.9.3 Discussion

Example 3-5 is a listing of EnTab, complete with a sample main program. The program works a
character at a time; if the character is a space, we see if we can coalesce it with previous spaces
to output a single tab character. This program depends on the Tabs class, which we'll come to
shortly. The Tabs class is used to decide which column positions represent tab stops and which
do not. The code also has several Debug printouts. (Debug was introduced in Section 1.12.)

Example 3-5. Entab.java

i mport com darwi nsys. util . Debug;
i mport java.io.*;

/** entab- replace blanks by tabs and bl anks.

* Transnmuted from K& Sof t ware Tool s book into C
* Transmuted again, years later, into Java.

*/

public class EnTab {

/** Main program just create an EnTab program and pass
* the standard i nput or the naned file(s) through it.
*/
public static void main(String[] argv) throws | OException {
EnTab et = new EnTab(8);
if (argv.length == 0) /1 do standard input
et . ent ab(new Buf f er edReader (

new | nput St r eanReader (Systemin)));
else for (int i=0; i<argv.length; i++) { /1 do each file
et . ent ab(new Buff eredReader (new Fi | eReader (argv[i])));
}

}

/** The Tabs (tab | ogic handler) */
protected Tabs tabHandl er;

/** A synbolic constant for end-of-file */
public static int ECF = -1,

/** Constructor: just save the tab val ues.
* @rgunments n The nunber of spaces each tab is to repl ace.
*/
public EnTab(int n) {
t abHandl er = new Tabs(n);
}

/** putchar - convenience routine for printing one character */
protected void putchar(int ch) {

System out . print ((char)ch);
}

/** entab: process one entire file, replacing blanks w th tabs.
* @rgument is A BufferedReader opened to the file to be read.
*/

public void entab(BufferedReader is) throws | OException {

String |ine;
int ¢, col =0, newol;

/1 main | oop: process entire file one char at a tine.

do {
newcol = col
/1 1f we get a space, increnment columm count; if this
/1 takes us to a tab stop, output a tab character.

while ((c =is.read()) =" ") {
Debug. printl n("space", "CGot space at " + col);
newcol ++;

i f (tabHandl er.tabpos(newcol)) {
Debug. printl n("tab", "CGot a Tab Stop " + newcol);
putchar("\t");
col = newcol;
}
}
/1 1f we're just past a tab stop, we need to put the
/1 "leftover" spaces back out, since we just consuned

/1l themin the "while c ... =="' ")" |oop above.
while (col < newcol) {

Debug. printl n("pad", "Padding space at " + col);
putchar (" ");
col ++;

}

Debug. printIn("out", "End of loop, c is " + c);

/1 Now either we're at the end of the input file,
/1 or we have a plain character to output.
/1 1f the "plain" char happens to be \r or \n, then

/1 output it, but also set col back to 1.
/1 This code for \r and \n should satisfy Unix, Mac and NS
if (c !'= EOF) {

put char(c);

col =(c ="'\n"|] ¢c="\r"?1: col + 1);

}
} while (c !'= EOF);
Systemout. flush(); /'l output everything for this file.

}

As the comments state, this code was patterned after a program in Kernighan and Plauger's
classic work Software Tools. While their version was in a language called RatFor (Rational
Fortran), my version has been through several translations since then, though I've tried to
preserve the overall structure. This is not the most "natural" way of writing the code in Java,
which would be the line-at-a-time mode. I've left this C-language relic to provide some hints on
translating a working C program written in this character-at-a-time style into Java. This version
tries to work correctly on Windows, Unix, or the Macintosh, since it resets the column count
whenever it finds either a return (\ r) or a newline (\ n); see Section 2.5. Java is platform
independent, but it's possible to write platform-dependent code -- | would have done so were it
not for the code that handles both. The code still may not work on some odd platforms that don't
use either of the two line-ending characters.

The Det ab program in Example 3-6 doesn't have this problem, as it reads a line at a time.
Example 3-6. Detab.java

public void detab(BufferedReader is) throws | Oexception {

String line;

char c;

int col;

while ((line = is.readLine()) !=null) {
col = 0O;

for (int i=0; i<line.length(); i++) {
/1l Either ordinary character or tab.

if ((c=line.charAt(i)) '="\t") {
Systemout.print(c); // Odinary
++col ;
conti nue;

do { // Tab, expand it, nust put >=1 space
Systemout.print(' ');
} while (!tabpos(++col));
}
Systemout.printin();

The Tabs class provides two methods, set t abpos() andi st abst op().Example 3-7 is
the source for the Tabs class.

Example 3-7. Tabs.java

i nport com darwi nsys. util . Debug;

/** Basic tab-character handling stuff.
* <p>
* N.B. Can only handl e equal | y-spaced tab stops as witten.
*/
public class Tabs {
/** tabs every so often */
public final static int DEFTABSPACE = 8;
/** the current tab stop setting. */
protected int tabSpace = DEFTABSPACE
/** The longest |ine that we worry about tabs for. */
public final static int MAXLINE = 250;
/** the current tab stops */
prot ected bool ean[] tabstops;

/** Construct a Tabs object with a given tab stop settings */
public Tabs(int n) {

t abst ops = new bool ean[MAXLI NE] ;

t abSpace n;

settabs();

}

/** Construct a Tabs object with a default tab stop settings */
public Tabs() {

t abst ops = new bool ean[MAXLI NE] ;

settabs();

}

/** settabs - set initial tab stops */
public void settabs() {
int i;
for (i = 0; i < tabstops.length; i++) {
tabstops[i] = 0 == (i % tabSpace);
Debug. printl n("settabs", "Tabs[" + i + "]=" + tabstops[i]);

}

/** tabpos - returns true if given colum is a tab stop
* |f current input line is too long, we just put tabs whereever,
* no exception is thrown.
* @rgunment col - the current colum nunber
*/
bool ean tabpos(int col) {
if (col > tabstops.|ength-1)
return true
el se
return tabstops[col];

3.10 Controlling Case

3.10.1 Problem

You need to convert strings to upper case or lowercase, or to compare strings without regard for
case.

3.10.2 Solution

The St ri ng class has a number of methods for dealing with documents in a particular case.

t oUpper Case() andtolLower Case() each return a new string that is a copy of the current
string, but converted as the name implies. Each can be called either with no arguments or with a
Local e argument specifying the conversion rules; this is necessary because of
internationalization. Java provides significantly more internationalization and localization features
than ordinary languages, a feature that will be covered in Chapter 14. While the equal s()
method tells you if another string is exactly the same, there is also equal sl gnor eCase(),
which tells you if all characters are the same regardless of case. Here, you can't specify an
alternate locale; the system's default locale is used.

/| Case.]java

String nane = "Java Cookbook";
Systemout.printin("Normal :\t" + nane);

Systemout. println("Upper:\t" + nane.toUpperCase());
Systemout.println("Lower:\t" + nane.tolLowerCase());
String javaNane = "java cookBook"; // As if it were Java identifiers :-

i f (!nane.equal s(javaNane))
Systemerr.println("equals() correctly reports false");
el se
Systemerr.printin("equals() incorrectly reports true");
i f (name. equal sl gnoreCase(j avaNane))
Systemerr.println("equal slgnoreCase() correctly reports true");
el se
Systemerr.println("equal slgnoreCase() incorrectly reports
fal se");

If you run this, it prints the first name changed to uppercase and lowercase, then reports that both
methods work as expected.

C.\javasrc\strings>j ava Case

Nor mal : Java Cookbook

Upper: JAVA COOKBOOK

Lower: java cookbook

equal s() correctly reports fal se

equal sl gnoreCase() correctly reports true

3.11 Indenting Text Documents

3.11.1 Problem

You need to indent (or "undent" or "dedent") a text document.
3.11.2 Solution

To indent, either generate a fixed-length string and prepend it to each output line, or use a f or
loop and print the right number of spaces.

/'l lndent.java
/** the default nunber of spaces. */
static int nSpaces = 10;

while ((inputLine = is.readLine()) !'= null) {
for (int i=0; i<nSpaces; i++) Systemout.print(' ");
System out . println(inputLine);

}

A more efficient approach to generating the spaces might be to construct a long string of spaces
and use substring() to getthe number of spaces you need.

To undent, use subst r i ng to generate a string that does not include the leading spaces. Be
careful of inputs that are shorter than the amount you are removing! By popular demand, I'll give
you this one too. First, though, here's a demonstration of an Undent object created with an
undent value of 5, meaning remove up to five spaces (but don't lose other characters in the first
five positions).

$ java Undent

Hell o Worl d

Hell o Worl d

Hel | o

Hel | o
Hel | o

Hel | o
Hel | o

Hel | o

~C

$

| test it by entering the usual test string "Hello World", which prints fine. Then "Hello" with one
space, and the space is deleted. With five spaces, exactly the five spaces go. With six or more
spaces, only five spaces go. And a blank line comes out as a blank line (i.e., without throwing an
Except i on or otherwise going berserk). | think it works!

i nport java.io.?*;

[[

/** Undent - renove up to
*/
public class Undent {
/** the maxi nrum nunber of spaces to renove. */
protected i nt nSpaces;

n' | eadi ng spaces

Undent (int n) {
nSpaces = n;
}

public static void main(String[] av) {
Undent ¢ = new Undent (5);
switch(av.length) {
case 0: c.process(new BufferedReader (
new | nput St reanReader (Systemin))); break;
defaul t:
for (int i=0; i<av.length; i++)

try {
c. process(new BufferedReader (new Fi |l eReader (av[i])));

} catch (Fil eNot FoundException e) {
Systemerr.println(e);
}

}

/** process one file, given an open BufferedReader */
public void process(BufferedReader is) {

try {
String inputlLine;

while ((inputLine = is.readLine()) !'=null) {
int toRenove = O;
for (int i=0; i<nSpaces & i < inputLine.length();

i ++)
if (Character.isSpace(inputLine.charAt(i)))
++t oRenove;
System out . printl n(inputLine.substring(toRenove));
}
is.close();
} catch (1 COException e) {
Systemout.println("l OCException: " + e);
}
}
}

3.12 Entering Non-Printable Characters

3.12.1 Problem

You need to put non-printable characters into strings.

3.12.2 Solution

Use the backslash character and one of the Java string escapes.

3.12.3 Discussion

The Java string escapes are listed in Table 3-1.

Table 3-1. String escapes

To get: tléfse Notes
Tab \ t
Linefeed (Unix \ n See System get Property("line.separator"), which gives
newline) you the platform's line end.
Carriage return |\ r
Form feed \ f
Backspace \ b

Single quote \

Double quote |\ "

Unicode Four hexadecimal digits (no \ x as in C/C++). See
\ UNNNN .

character http://www.unicode.org for codes.

Octal(!) .

character \ NNN |Who uses octal (base 8) these days”

Backslash \\

Here is a code example that shows most of these in action:

/1 StringEscapes.java

Systemout.println("Java Strings in action:");

/1l Systemout.println("An alarmor alert: \a"); /1 not supported
Systemout.println("An alarmentered in Cctal: \007");
Systemout.println("A tab key: \t(what cones after)");
Systemout.println("A newine: \n(what cones after)");

System out. println("A Uni Code character: \u0207");

System out. println("A backsl ash character: \\");

If you have a lot of non-ASCII characters to enter, you may wish to consider using Java's input
methods, discussed briefly in the JDK online documentation.

3.13 Trimming Blanks from the End of a String

3.13.1 Problem

You need to work on a string without regard for extra leading or trailing spaces a user may have
typed.

3.13.2 Solution

Usethe Stringclasstrin() method.
3.13.3 Discussion

Example 3-8 usestri n() to strip an arbitrary number of leading spaces and/or tabs from
lines of Java source code in order to look for the characters / / + and / / - . These are special (to
me) Java comments | use to mark the parts of the programs in this book that | want to include in
the printed copy.

Example 3-8. GetMark.java (trimming and comparing strings)

/** the default starting mark. */

public final String startMark = "//+";

/** the default ending mark. */

public final String endvark = "//-";

/** True if we are currently inside marks. */
protected bool ean printing = fal se;

try {
String inputlLine;

while ((inputLine = is.readLine()) '= null) {
if (inputLine.trinm).equal s(startMark)) {
printing = true;
} else if (inputLine.trim).equal s(endMark)) {
printing = fal se;
} else if (printing)
System out . println(inputLine);
}
is.close();
} catch (1 Oexception e) {
/'l not shown
}

}
3.14 Parsing Comma-Separated Data
3.14.1 Problem

You have a string or a file of lines containing comma-separated values (CSV) that you need to
read in. Many MS-Windows-based spreadsheets and some databases use CSV to export data.

3.14.2 Solution
Use my CSV class or a regular expression (see Chapter 4).
3.14.3 Discussion

CSV is deceptive. It looks simple at first glance, but the values may be quoted or unquoted. If
quoted, they may further contain escaped quotes. This far exceeds the capabilities of the

StringTokeni zer class (Section 3.3). Either considerable Java coding or the use of regular
expressions is required. I'll show both ways.

First, a Java program. Assume for now that we have a class called CSV that has a no-argument
constructor, and a method called par se() that takes a string representing one line of the input
file. The par se() method returns a list of fields. For flexibility, this list is returned as an

| terator (see Section 7.5). | simply use the Iterator's hasNext () method to control the
loop, and its next () method to get the next object.

i nport java.util.?*;

/* Sinple denp of CSV parser class.
*/
public class CSVSi nmple {
public static void main(String[] args) {
CSV parser = new CSV();
Iterator it = parser. parse(
"\"LW", 86.25,\"11/4/1998\",\"2: 19PM ", +4. 0625") ;
while (it.hasNext()) {
Systemout.printin(it.next());
}

After the quotes are escaped, the string being parsed is actually the following:

"LU', 86.25,"11/4/1998", " 2: 19PM', +4. 0625
Running CSVSi npl e yields the following output:

> java CSVSi npl e
LU

86. 25

11/ 4/ 1998

2: 19PM

+4. 0625

>

But what about the CSV class itself? Oh yes, here it is. This is my translation of a CSV program
written in C++ by Brian W. Kernighan and Rob Pike that appeared in their book The Practice of
Programming. Their version commingled the input processing with the parsing; my CSV class
does only the parsing, since the input could be coming from any of a variety of sources. The main
work is done in par se(), which delegates handling of individual fields to advquot ed() in
cases where the field begins with a quote, and otherwise to advpl ai n().

i mport com darw nsys. util.*;
i mport java.util.*;

/** Parse commma-separated val ues (CSV), a comon Wndows file format.
* Sanple input: "LU', 86.25,"11/4/1998","2: 19PM', +4. 0625

* <p>

* Inner |ogic adapted froma C++ original that was

* Copyright (C 1999 Lucent Technol ogi es

* Excerpted from' The Practice of Progranm ng'

* by Brian W Kernighan and Rob Pi ke.

* <p>

* I ncluded by perm ssion of the http://tpop.awl .coml web site,

* whi ch says:

* "You may use this code for any purpose, as long as you | eave

* the copyright notice and book citation attached.” | have done so.
* @uthor Brian W Kernighan and Rob Pi ke (C++ original)

* @uthor lan F. Darwin (translation into Java and renoval of 1/0
*/

public class CSV {

public static final String SEP = ",";

/** Construct a CSV parser, with the default separator (°,'). */
public CSV() {

t hi s(SEP) ;
}

/** Construct a CSV parser with a given separator. Mist be
* exactly the string that is the separator, not a list of
* separator characters!

*/

public CSV(String sep) {

fieldsep = sep;

}

/** The fields in the current String */
protected ArrayList list = new ArrayList();

/** the separator string for this parser */
protected String fieldsep;

/** parse: break the input String into fields

* @eturn java.util.lterator containing each field
* fromthe original as a String, in order.
*/
public Iterator parse(String |ine)
{
StringBuffer sb = new StringBuffer();
[ist.clear); /1 discard previous, if any
int i =0;
if (line.length() == 0) {
[ist.add(line);
return list.iterator();
}
do {
sb. set Lengt h(0);
if (i <line.length() &k line.charAt(i) ==""")
i = advquoted(line, sb, ++i); /1 skip quote
el se
i = advplain(line, sb, i);
[ist.add(sb.toString());
| ++;
} while (i <line.length());
return list.iterator();
}

/** advquoted: quoted field; return index of next separator */
protected int advquoted(String s, StringBuffer sb, int i)
{

int j;

/1 Loop through input s, handling escaped quotes
/1 and | ooking for the ending " or , or end of |ine.

for (j =1i; j <s.length(); j++t) {
/1 found end of field if find unescaped quote.
if (s.charAt(j) ==""" & & s.charAt(j-1) !'="\\") {
int k = s.indexO(fieldsep, j);
Debug. println("csv", "j =" +j] +", k =" + k);
if (k ==-1) { /'l no separator found after this
field
k += s.length();
for (k -=1j,; k-- >0;
sb. append(s. char At (j ++));

} else {
--k; /1 omt quote from copy
for (k -=7j; k-- >0;) {

sb. append(s. char At (j ++));

}
++j ; /1 skip over quote
}
br eak;
sb. append(s. charAt(j)); /1 regular character.

return j;

}

/** advplain: unquoted field; return index of next separator */
protected int advplain(String s, StringBuffer sb, int i)

{

int j;

j = s.indexO(fieldsep, i); // look for separator
Debug. println("csv", "i =" +i +", j =" +7]),;
if (j ==-1) { /1 none found

sb. append(s. substring(i));
return s.length();

} else {
sb. append(s. substring(i, j));
return j;

}

}

In the online source directory you'll find CSVFile.java, which reads a file a line at a time and runs
it through par se(). You'll also find Kernighan and Pike's original C++ program.

We haven't discussed regular expressions yet (we will in Chapter 4). However, many readers
will be familiar with REs in a general way, so the following example will demonstrate the power of
REs as well as provide code for you to reuse. Note that this program replaces all the code in both
CSV.java and CSVFile.java. The key to understanding REs is that a little specification can match
a lot of data.

i mport com darwi nsys. util . Debug;
i mport java.io.*;
i mport org.apache.regexp. *;

/* Sinple deno of CSV matchi ng usi ng Regul ar Expressions.
* Does NOT use the "CSV' class defined in the Java CookBook.
* RE Pattern from Chapter 7, Mastering Regul ar Expressions (p. 205,
first edn.)
*/
public class CSVRE {

/** The rather involved pattern used to match CSV' s consists of
three

* alternations: the first matches quoted fields, the second
unquot ed,

* the third null fields

*/

public static final String CSV_PATTERN =

CNTCEAVTINANANN OV DAY YN 2 ([N T D)L 2L

public static void main(String[] argv) throws | OException,
RESynt axExcepti on

{
String |ine;

/1 Construct a new Regul ar Expression parser.
Debug. println("regexp", "PATTERN = " + CSV_PATTERN); // debug
RE csv = new RE(CSV_PATTERN);

Buf f eredReader is = new Buf f eredReader (new
I nput St r eanReader (Systemin));

/'l For each line...
while ((line = is.readLine()) !'=null) {
Systemout.printin("line =" + line +""'");

/'l For each field
for (int fieldNum= 0, offset = 0; csv.match(line, offset);
fiel dNum++) {

/1 Print the field (O=null, 1=quoted, 3=unquoted).
int n = csv.getParenCount()-1
i f (n==0) /1 null field

Systemout.printin("field[" + fieldNum+ "] = """);
el se
Systemout.printin("field[" + fieldNum+ "] = " +
csv.getParen(n) + "'");

/1 Skip what al ready nmatched.
of fset += csv.getParen(0).length();

}

It is sometimes downright scary how much mundane code you can eliminate with a single, well-
formulated regular expression.

3.15 Program: A Simple Text Formatter

This program is a very primitive text formatter, representative of what people used on most
computing platforms before the rise of standalone graphics-based word processors, laser
printers, and, eventually, desktop publishing, word processors, and desktop office suites. It simply
reads words from a file -- previously created with a text editor -- and outputs them until it reaches
the right margin, when it calls pri nt | n() to append a line ending. For example, here is an
input file:

I[t's a nice
day, isn't it, M. Myzzptllxy?

I think we should
go for a wal k.

Given the above as its input, the Fnt program will print the lines formatted neatly:

It's a nice day, isn't it, M. Myzzptllxy? |I think we should go for a

wal K.

As you can see, it has fitted the text we gave it to the margin and discarded all the line breaks
present in the original. Here's the code:

i mport java.io.*;
i mport java.util.*;

/**

* Fmt - format text (like Berkeley Unix fnt).
*/
public class Fnt {
/** The maxi num col um w dth */
public static final int COLW DTH=72;
/** The file that we read and format */
Buf f er edReader in;

/** |If files present, format each, else format the standard input.
*/
public static void main(String[] av) throws | OException {
if (av.length == 0)
new Fnt (Systemin).format();
else for (int i=0; i<av.length; i++)
new Fnt (av[i]).format();
}

/** Construct a Formatter given a filenanme */
public Fnt(String fnane) throws | OException {

in = new BufferedReader (new Fi | eReader (fnane));
}

/** Construct a Formatter given an open Stream */
public Fnt(lnputStreamfile) throws | OException {

i n = new BufferedReader (new I nput St reanReader (file));
}

/** Format the File contained in a constructed Fnt object */
public void format() throws | OException {

String w, f;
int col = 0;
while ((w=in.readLine()) !'=null) {
if (wlength() == 0) { [/ null line
Systemout.print("\n"); /1 end current line
if (col>0) {
Systemout.print("\n"); /1 output blank |ine
col = 0;
b
conti nue;
}

/1 otherwise it's text, so format it.
StringTokeni zer st = new StringTokeni zer(w);
whil e (st.hasMreTokens()) {

f = st.next Token();

if (col + f.length() > COLWDTH) {

Systemout.print("\n");
col = 0O;
}
Systemout.print(f + " ");
col += f.length() + 1;

}

}
if (col>0) Systemout.print("\n");
in.close();

}

A slightly fancier version of this program, Fnt 2, is in the online source for this book. It uses " dot
commands" -- lines beginning with periods -- to give limited control over the formatting. A family
of "dot command" formatters includes Unix's roff, nroff, troff, and groff, which are in the same
family with programs called runoff on Digital Equipment systems. The original for this is J.
Saltzer's runoff, which first appeared on Multics and from there made its way into various OSes.
To save trees, | did not include Fnt 2 here; it subclasses Fnt and overrides the f or mat ()
method to include additional functionality.

3.16 Program: Soundex Name Comparisons

The difficulties in comparing (American-style) names inspired the development of the Soundex
algorithm, in which each of a given set of consonants maps to a particular number. This was
apparently devised for use by the Census Bureau to map similar-sounding names together on the
grounds that in those days many people were illiterate and could not spell their parents' names
correctly. But it is still useful today: for example, in a company-wide telephone book application.
The names Darwin and Derwin, for example, map to D650, and Darwent maps to D653, which
puts it adjacent to D650. All of these are historical variants of the same name. Suppose we
needed to sort lines containing these names together: if we could output the Soundex numbers at
the front of each line, this would be easy. Here is a simple demonstration of the Soundex class:

/** Sinple denonstration of Soundex. */
public class SoundexSi nple {

[** main */
public static void main(String[] args) {
String[] nanes = {
"Darwi n, |an",
"Davi dson, Geg",
"Darwent, WIIiant,
"Derwi n, Daenon"

b
for (int i = 0; i< nanes.length; i++)
System out . printl n(Soundex. soundex(nanes[i]) + ' ' +
nanmes[i]);
}
}
Let's run it:

> jikes +E -d . SoundexSi npl e.|ava
> java SoundexSinple | sort
D132 Davi dson, G eg

D650 Darwi n, |an

D650 Derw n, Daenpbn
D653 Darwent, WIIliam
>

As you can see, the Darwin-variant names (including Daemon Derwin®!) all sort together and are
distinct from the Davidson (and Davis, Davies, etc.) names that normally appear between Darwin
and Derwin when using a simple alphabetic sort. The Soundex algorithm has done its work.

1 1n Unix terminology, a daemon is a server. The word has nothing to do with demons, but refers to a
helper or assistant. Derwin Daemon is actually a character in Susannah Coleman's "Source Wars" online
comic strip; see http://darby.daemonnews.org.

Here is the Soundex class itself; it uses St ri ngs and St ri ngBuf f er s to convert names into
Soundex codes. There is a JUnit test (see Section 1.14) online, SoundexTest.java.

i mport com darwi nsys. util . Debug;
/**

*

Soundex - the Soundex Al gorithm as described by Knuth

<p>

This class inplenents the soundex al gorithm as described by Donal d
Knuth in Volune 3 of <I>The Art of Conputer Progranm ng</I> The
algorithmis intended to hash words (in particular surnanes) into

a smal |l space using a sinple nodel which approximates the sound of
t he word when spoken by an English speaker. Each word is reduced
to a four character string, the first character being an upper case
letter and the remaining three being digits. Double letters are
collapsed to a single digit.

<h2>EXAVPLES</ h2>

Knut h' s exanpl es of various names and the soundex codes they map
to are:

Eul er, Ellery -> E460

CGauss, Ghosh -> &00

Hi | bert, Heilbronn -> H416

Knut h, Kant -> K530

L| oyd, Ladd -> L300

Lukasi ewi cz, Lissajous -> L222

<h2>LI M TATI ONS</ h2>

As the soundex algorithmwas originally used a l ong tine ago
inthe United States of Anerica, it uses only the English al phabet
and pronunci ation.

<p>

As it is mapping a | arge space (arbitrary length strings) onto a
smal | space (single letter plus 3 digits) no inference can be nade
about the simlarity of two strings which end up with the sane
soundex code. For exanple, both "Hilbert" and "Heil bronn" end up
with a soundex code of "H416"

<p>

The soundex() nethod is static, as it maintains no per-instance
state; this neans you never need to instantiate this class.

@ut hor Perl inplenentation by Mke Stok (<stok@ybercom net>) from
the description given by Knuth. 1lan Phillips (<i an@i pex.net>) and
Ri ch Pi nder (<rpinder@sc.usc.edu>) supplied ideas and spotted

E R T T B T T R R T . T T R R S N N . N N N N T N N N N N N R

* m st akes.
*/
public class Soundex {

/* 1nplenents the nmapping

* from AEH OUWBFPVCGIKQSXZDTLMNR
* to: 00000000111122222222334556
*/

public static final char[] MAP =

{
/l/A B D D E F G H I J K L M
IOIllllII2III3IIIOIII1III2IIIOIIIOIII2III2III4III5II
/INO P W R S T U V W X Y Z
‘5','0,'1,'2",'6','2",'3,'0","1",'0," 2,0, 2
i
/** Convert the given String to its Soundex code.
* @eturn null If the given string can't be mapped to Soundex.
*/

public static String soundex(String s) {

/1 Al gorithmworks on uppercase (mainfranme era).
String t = s.toUpperCase();

StringBuffer res = new StringBuffer();
char c, prev = '?";

/1 Main loop: find up to 4 chars that map.
for (int i=0; i<t.length() & res.length() < 4 &&
(c =t.charAt(i)) !'=","; i++) {

/1l Check to see if the given character is al phabetic.
/1 Text is already converted to uppercase. Al gorithm
/1 only handles ASCI| letters, do NOT use
Character.isLetter()!
/1 Also, skip double letters.
if (c>= A && c<="Z && c != prev) {
prev = c;

/1 First char is installed unchanged, for sorting.

if (i==0)
res. append(c);
el se {
char m= MAP[c-"A'];
Debug. printIn("inner", ¢ +" -->" + m;
if (m!="0")
res. append(m;
}
}
}
if (res.length() == 0)
return null;

for (int i=res.length(); i<4; i++)
res. append('0");
return res.toString();

4 Pattern Matching with Regular Expressions

4.1 Introduction

Suppose you have been on the Internet for a few years and have been very faithful about saving
all your correspondence, just in case you (or your lawyers, or the prosecution) need a copy. The
result is that you have a 50-megabyte disk partition dedicated to saved mail. And let's further
suppose that you remember that there is one letter, somewhere in there, from someone named
Angie or Anjie. Or was it Angy? But you don't remember what you called it or where you stored it.
Obviously, you will have to go look for it.

But while some of you go and try to open up all 15,000,000 documents in a word processor, I'll
just find it with one simple command. Any system that provides regular expression support will
allow me to search for the pattern:

An[™ dn]

in all the files. The "A" and the "n" match themselves, in effect finding words that begin with "An",
while the cryptic [* dn] requires the "An" to be followed by a character other than a space (to
eliminate the very common English word "an" at the start of a sentence) or "d" (to eliminate the
common word "and") or "n" (to eliminate Anne, Announcing, etc.). Has your word processor
gotten past its splash screen yet? Well, it doesn't matter, because I've already found the missing
file. To find the answer, | just typed the command:™

21 Non-Unix fans rejoice, for you can do this on Win32 using a package alternately called CygWin (after
Cygnus Software) or GnuWin32 (http://sources.redhat.com/cygwin/). Or you can use my G- ep
program in Section 4.9 if you don't have grep on your system. Incidentally, the name grep comes from an
ancient Unix line editor command g/ RE/ p, the command to globally find the RE (regular expression) in all
lines in the edit buffer and print the lines that match: just what the grep program does to lines in files.

grep 'An[” dn]' *

Regular expressions, or REs for short, provide a concise and precise specification of patterns to
be matched in text. Java 2 did not include any facilities for describing regular expressions in text.
This is mildly surprising given how powerful regular expressions are, how ubiquitous they are on
the Unix operating system where Java was first brewed, and how powerful they are in modern
scripting languages like sed, awk, Python, and Perl.

At any rate, there were no RE packages for Java when | first learned the language, and because
of this, | wrote my own RE package. More recently, | had planned to submit a JSR™! to Sun
Microsystems, proposing to add to Java a regular expressions API similar to the one used in this
chapter. However, the Apache Jakarta Regular Expressions project®! has achieved sufficient
momentum to become nearly a standard, but without the politics and meetings required of a JSR.
Accordingly, my JSR has not been submitted yet. Conveniently, the Jakarta folk used a similar
syntax to mine, so | was mostly able to migrate to theirs just by changing the imports. However,
the Apache code is vastly more efficient than mine and should be used whenever possible. Mine
was written for pedagogical display, and compiles the RE into an array of SubExpr essi on
objects. The Jakarta package, borrowing a trick from Java,™ compiles to an array of integer
commands, making it run much faster: around a factor of 3 or 4, even for simple cases like
searching for the string "java" in a few dozen files. There are in fact a half dozen or so regular
expression packages for Java; see Table 4-1.

[21 A JSR is a Java Standards Request, the process by which new standards are submitted by the Java
Community and discussed in public prior to adoption. See Sun's Java Community web site
(http://developer.java.sun.com/developer/community/).

B3I Apache has, in fact, two regular expressions packages. The second, Oro, provides full Perl5-style regular
expressions, AWK-like regular expressions, glob expressions, and utility classes for performing
substitutions, splits, filtering filenames, etc. This library is the successor to the OROMatcher, AwkTools,
PerlTools, and TextTools libraries from ORO, Inc. (http://www.oroinc.com).

41 Java perhaps got the idea from the UCSD P-system, which used portable bytecodes in the early 1980s
and ran on all the popular microcomputers of the day.

Table 4-1. Java RE packages

Package Notes URL
Richard Unknown license; not being |None; posted to advanced-
Emberson's maintained. java@berkeley.edu

Simple, but SLOW.

lan Darwin's RE Incomplete; didactic.

http://www.darwinsys.com/java/

Apache Jakarta
RegExp
Apache (BSD-like) license. |http://jakarta.apache.org/regexp/

(original by
Jonathan Locke)

Apache Jakarta Apache license. More http://iakarta.apache.org/oro/

ORO comprehensive?

Daniel Savarese |Unknown. http://www.cs.umd.edu/users/dfs/java/
"GNU Java e . . .

Regexp" GPL,; fairly fast. http://www.qgjt.org (Giant Java Tree)

The syntax of REs themselves is discussed in Section 4.2, hints on using them in Section 4.3,
and the syntax of the Java API for using REs in Section 4.4.

4.1.1 See Also

O'Reilly's Mastering Regular Expressions by Jeffrey E. F. Friedl is the definitive guide to all the
details of regular expressions. Most introductory Unix tomes include some discussion of REs;
O'Reilly's UNIX Power Tools devotes a chapter to them.

4.2 Regular Expression Syntax

4.2.1 Problem

You need to learn the syntax of regular expressions.
4.2.2 Solution

Consult Chapter 4 for a list of the regular expression characters that the Apache Regular
Expression APl matches.

Table 4-2. Regular expression syntax

| Subexpression Will match: | Notes

General

The letter a (and similarly
for any other Unicode

“ character not listed in this
table)

" Start of line/string

$ End of line/string

Any one character

"Character class"; any
one character from those
listed

[~

Normal (greedy)

multipliers ("greedy

Any one character not
from those listed

closures")
{mn} Multiplier (closure) for
m from mto n repetitions
{m} Multiplier for from m
repetitions on up
{n Multiplier for O up to n
' repetitions
N Multlpl_ler for 0 or more Short for { 0, }
repetitions
N Multlpl_ler for 1 or more Short for { 1, }
repetitions
5 Multiplier for 0 or 1

Reluctant (non-

greedy) multipliers

repetitions

Short for { 0, 1}

("reluctant

closures")

P Reluctant multiplier: O or
more

+2 Reluctant multiplier: 1 or
more

5 Reluctant multiplier: O or

Alternation and
grouping

1 times

()

Grouping

Escapes and
shorthands

Alternation

Escape character: turns
metacharacters off, and
turns following
alphabetics (t , w, d, and
s) into metacharacters.

\ t Tab character

\'w Character in a word Use \ w+ for a word
\d Numeric digit Use \ d+ for a number
\'s Whitespace Space, tab, etc., as determined by

j ava. | ang. Character.i sWitespace()

Inverse of above (\ Wis a

\WAD 1S non-word character, etc.)
POSIX-style
character classes
sal num] Alphanumeric characters
:al pha Alphabetic characters
. bl ank: Space and tab characters

[
[
[
[
[
[

:]
]
: space:] Space characters
]
]

.entrl Control characters
cdigit: Numeric digit characters
Printable and visible
. graph:
[+graph:] characters (not spaces)
cprint: Printable characters

: punct : Punctuation characters

[]
[]
[:1ower:] Lowercase characters
[:upper:] Uppercase characters

Hexadecimal digit

[-xdigit:] characters
[:javastart:] s:lt:r:ti?ife? Java language Not in POSIX
[:javapart:] Part of a Java identifier |Not in POSIX

These pattern characters can be used in any combination that makes sense. For example, a+
means any number of occurrences of the letter a, from one up to a million or a gazillion. The
pattern M s?\ . matches M. or M s. . And, . * means "any character, any number of times," and
is similar in meaning to most command-line interpreters' meaning of *.

It's important to remember that REs will match anyplace possible in the input, and that patterns
ending in a greedy closure will consume as much as possible without compromising any other
subexpressions.

Also, unlike some RE packages, the Apache package was designed to handle Unicode
characters from the beginning. Actually, it came for free, as its basic units are the Java char and
String variable, which are Unicode-based. In fact, the standard Java escape sequence \unnnn is
used to specify a Unicode character in the pattern. And we use methods of java.lang.Character to
determine Unicode character properties, such as whether or not a given character is a space.

4.3 How REs Work in Practice

4.3.1 Problem

You want to know how these metacharacters work in practice.

4.3.2 Solution

Wherein | give a few more examples for the benefit of those who have not been exposed to REs.

In building patterns, you can use any combination of ordinary text and the metacharacters or
special characters in Chapter 4. For example, the two-character RE ~T would match beginning
of line (*) immediately followed by a capital T, i.e., any line beginning with a capital T. It doesn't
matter whether the line begins with Tiny trumpets, or Titanic tubas, or Triumphant trombones, as
long as the capital T is present in the first position.

But here we're not very far ahead. Have we really invested all this effort in RE technology just to
be able to do what we could already do with the java.lang.String method startsWith() ? Hmmm, |
can hear some of you getting a bit restless. Stay in your seats! What if you wanted to match not
only a letter T in the first position, but also a vowel (a, e, i, 0, or u) immediately after it, followed by
any number of letters in a word, followed by an exclamation point? Surely you could do this in
Java by checking startsWith("T") and charAt(1) =='a’ || charAt(1) =="e’, and so on? Yes, but by
the time you did that, you'd have written a lot of very highly specialized code that you couldn't use
in any other application. With regular expressions, you can just give the pattern "T[aeiou]\w*.
That is, ~ and T as before, followed by a character classlisting the vowels, followed by any
number of word characters (\w*), followed by the exclamation point.

"But wait, there's more!" as my late great boss Yuri Rubinsky used to say. What if you want to be
able to change the pattern you're looking for at runtime? Remember all that Java code you just
wrote to match T in column 1 plus a vowel, some word-characters and an exclamation point?
Well, it's time to throw it out. Because this morning we need instead to match Q, followed by a
letter other than u, followed by a number of digits, followed by a period. While some of you start
writing a new function to do that, the rest of us will just saunter over to the RegExp Bar & Grille,
order a "Q[*u]\d+\. from the bartender, and be on our way.

Huh? Oh, the [*u] means "match any one character that is not the character u." The \d+ means
one or more numeric digits. Remember that + is a multiplier meaning one or more, and \d is any
one numeric digit. (Remember that \n -- which sounds as though it might mean numeric digit --
actually means a newline.) Finally, the \.? Well, . by itself is a metacharacter. Single
metacharacters are switched off by preceding them with an escape character. No, don't hit that
ESC key on your keyboard. The RE "escape" character is a backslash. Preceding a
metacharacter like . with escape turns off its special meaning. Preceding a few selected
alphabetic characters (n, r, t, s, w) with escape turns them into metacharacters. In some other
implementations, escape also precedes (,), <, and > to turn them into metacharacters.

One good way to think of regular expressions is as a "little language" for matching patterns of
characters in text contained in strings. Give yourself extra points if you've already recognized this
as the design pattern known as Interpreter. A regular expression API is an interpreter for
matching regular expressions.

As for how REs work in theory -- the logic behind it and the different types of RE engines -- the
reader is referred to the book Mastering Regular Expressions.

4.4 Using Regular Expressions in Java
4.4.1 Problem

You're ready to utilize regular expression processing to beef up your Java code.

4.4.2 Solution
Use the Apache Jakarta Regular Expressions Package, org.apache.regexp.
4.4.3 Discussion

As mentioned, the Apache project develops and maintains a regular expressions API. To ensure
that you get the latest version, | don't include it in the source archive for this book; you should
download it from http://jakarta.apache.org/regexp/. The good news is that it's actually easy
to use. If all you need is to find out whether a given string matches an RE, just construct the RE
and call its boolean match() method:

RE r = new RE(pattern); // Construct an RE object
bool ean found = r.match(input); // Use it to match an input.
if (found) {
/1 it matched... do sonmething with it...
}

A complete program constructing an RE and using it to mat ch() is shown here:

i nport org.apache. regexp. *;

/**
* Sinple exanple of using RE class.
*/
public class RES nmple {
public static void main(String[] argv) throws RESyntaxException {
String pattern = "~ Mul\\d+H\\.";
String input = "QA777. is the next flight. It is on tine.";

RE r = new RE(pattern); // Construct an RE object
bool ean found = r.match(input); // Use it to match an input.

Systemout.println(pattern +

(found ? " matches " : " doesn't match ") + input);

Remember This!

Remember that because an RE will be compiling strings that are also
compiled by javac, you will probably need two levels of escaping for any
special characters, including backslash, double quotes, and so on. For
example, the RE:

"You said it\."

has to be typed like this to be a Java language St r i ng:

"\"You said it\\.\""

The class RE provides the public APl shown in Example 4-1. Unix users and Perl regulars may
wish to skip this section, after glancing at the first few examples to see the syntactic details of
how we've adapted regular expressions into the form of a Java API.

Example 4-1. The Java Regular Expression API

/** The main public APl of org.apache.regexp. RE.
* Prepared in machi ne readabl e by javap and | an Darw n.
*/
public class RE extends Object {
/1 Constructors
public RE();

public RE(String patt) throws RESyntaxException;

public RE(String patt, int flg) throws RESyntaxException;
publ i c RE(REProgram patt);

public RE(REProgram patt, int flg);

public bool ean match(String in);

public boolean match(String in, int index);

publ i c bool ean match(Characterlterator where, int index);
public String[] split(String)[];

public String[] grep(Qoject[] in);

public String subst(String in, String repl);

public String subst(String in, String repl, int how);
public String getParen(int |evel);

public int getParenCount();

public final int getParenEnd(int |evel);

public final int getParenLength(int |evel);

public final int getParenStart(int |evel);

public int getMatchFl ags();

public void setMatchFl ags(int flg);

publ i c REProgram get Program);

public void setProgram REProgram prog);

}

This APl is large enough to require some explanation. As you can see, there are several forms of
the method called nat ch() thatreturntrue or f al se. The simplest usage is to construct an

RE and call its mat ch() method against an input string, as in Example 4-1. This compiles the
pattern given as the constructor argument into a form that can be compared against the mat ch(
) argument fairly efficiently, then goes through and matches it against the string. The overloaded
formmat ch(Stringin, i nt i ndex) isthe same, except that it allows you to skip characters
from the beginning. The third form, which takes a Char act er | t er at or as its argument, will be
covered in Section 4.8.

4.5 Testing REs Interactively
4.5.1 Problem
You want to try out REs interactively before committing them to Java code.

4.5.2 Solution

Use the provided REDeno program.
4.5.3 Discussion

REDenD is a program in the or g. apache. r egexp package that lets you see the code that a RE
compiles into, and also lets you watch it match interactively. You can change the RE or the string
being matched easily, as it is a GUI application. Just give the command:

> java org. apache. regexp. REDeno
Figure 4-1 shows the program in action.

Figure 4-1. REDemo in action

i RE Demn awal
Riges | #vpraREionl | 8 ["u] Car
Firing | bpped
B. OF_BFAMCH, opdata = @, mist = 41 Martches.
3. OFCROL, opdats = @, et = %
5. OFTATON, cpdets = 1, rext = 18, °0° in = opppp
10. OF RPOF, cpdsts = 2, newt = LT, [Betustgman] 1l = oo
17. DPOOPEN, opdits = I, rast = 59
FOERRES, cpdats = B, Faxt = 39

. P ESCAPE, opdets = 100, rext = 26
DFTERAMCE, opdets = 0, rext = 32

. POCOTO, opdets = @, et = 33

P RRAHDH, cpdwts = 0, rawt = F3

. DFTHOTHIMG, opdats = @, next = 30
OF_CLOGE, cpdats = 1, naxt = 41

BONARUE

In the upper-right box you type the RE you want to test, and below that a test string to match it
against. In the lower-left window, you see the compiled expression, and in the lower-right, you
see what matched. $0 is the entire match, and $1 and up are tagged subexpressions that

matched. Experiment to your heart's content. When you have the RE the way you want it, you
can paste it into your Java program. Remember to escape (backslash) any characters that are
treated specially by Java and RE, such as the backslash itself, double quotes, \ u, and others.

4.6 Finding the Matching Text
4.6.1 Problem

You need to find the text that matched the RE.
4.6.2 Solution

Sometimes you need to know more than just whether an RE matched an input string. In editors
and many other tools, you will want to know exactly what characters were matched. Remember
that with multipliers such as * , the length of the text that was matched may have no relationship
to the length of the pattern that matched it. Do not underestimate the mighty . *, which will
happily match thousands or millions of characters if allowed to. As you can see from looking at
the API, you can find out whether a given match succeeds just by using mat ch(), as we've
done up to now. But it may be more useful to get a description of what it matched by using one of
the get Paren() methods.

The notion of parentheses is central to RE processing. REs may be nested to any level of
complexity. The get Par en() methods let you retrieve whatever matched at a given

parenthesis level. If you haven't used any explicit parens, you can just treat whatever matched as
"level zero." For example:

/1 Part of REmatch.java

String patt = " u]\\d+\\.";

RE r = new RE(patt);

String line = "Order Qr300. Now ";
if (r.match(line)) {

Systemout.println(patt + " matches '" +
r.getParen(0) +
" in'" +1line + "'"); Match whence = RE. match(patt, |ine);

}

When run, this prints:
Q Mul\d+\. matches "Qr300." in "Order Qr300. Now "

It is also possible to get the starting and ending indexes and the length of the text that the pattern
matched (remember that \ d+ can match any number of digits in the input). You can use these in
conjunction with the St ri ng. substring() methods as follows:

/1 Part of REsubstr.java -- Prints exactly the sane as REmatch.java
if (r.match(line)) {
Systemout.println(patt + mat ches '" +
line.substring(r.getParenStart(0), r.getParenEnd(0)) +
"in + line + "' ");

o

}

Suppose you need to extract several items from a string. If the input is:

Smith, John
Adans, John Qui ncy

and you want to get out:

John Smith
John Qui ncy Adans

just use:

/1 from REmat chTwoFi el ds. j ava
/1l Construct an RE with parens to "grab" both fieldl and field2
REr =new RE("(.*), (.*)");
if (!'r.match(inputLine))

throw new ||| egal Argunent Exception("Bad input: " + inputlLine);
Systemout.println(r.getParen(2) + ' ' + r.getParen(l));

4.7 Replacing the Matching Text

As we saw in the previous recipe, regular expression patterns involving multipliers can match a
lot of input characters with a very few metacharacters. We need a way to replace the text that
matched the RE without changing other text before or after it. We could do this manually using
the St ri ng method subst ring(). However, because it's such a common requirement, the

regular expression API provides it for us in methods named subst (). In all these methods, you
pass in the string in which you want the substitution done, as well as the replacement text or
"right-hand side" of the substitution. This term is historical; in a text editor's substitute command,
the left-hand side is the pattern and the right-hand side is the replacement text.

/'l class SubDeno
/1 Quick deno of substitution: correct "denon" and ot her
/'l spelling variants to the correct, non-satanic "daenon".

/1l Make an RE pattern to match al nost any form (deanon, denon, etc.).
String patt = "d[ae]{1, 2} non";

/1 A test input.
String input = "Sone say Unix hath denons in it!";

/1 Run it froma RE instance and see that it works
RE r = new RE(patt);
Systemout.println(input +" -->" + r.sub(input, "daenon"));

Sure enough, when you run it, it does what it should:

C.\javasrc\RE> ava SubDeno
Sorme say Unix hath denons in it! --> Sone say Unix hath deanons in it!

4.8 Printing All Occurrences of a Pattern

4.8.1 Problem

You need to find all the strings that match a given RE in one or more files or other sources.
4.8.2 Solution

This example reads through a file using a Reader Char acter | t er at or , one of four
Characterlterator classes in the Jakarta RegExp package. Whenever a match is found, |
extract it from the Char act er |t er at or and print it.

The other character iterators are St r eantChar act er | t er at or (as we'll see in Chapter 9,
streams are 8-bit bytes, while readers handle conversion among various representations of
Unicode characters), Char act er Arraylterator,and St ri ngCharacter| terator. All of
these character iterators are interchangeable; apart from the construction process, this program
would work on any of them. Use a St ri ngChar acter |t er at or, for example, to find all
occurrences of a pattern in the (possibly long) string you get from a JText Ar ea's get Text ()

method, described in Chapter 13.

This code takes the get Par en() methods from Section 4.6, the subst ri ng method from the
Characterlterator interface, and the mat ch() method from the RE, and simply puts them
all together. | coded it to extract all the "names" from a given file; in running the program through

itself, it prints the words "import”, "org",

apache", "regexp"”, and so on.

> jikes +E -d . Readerlter.java
> java Readerlter Readerlter.java

i mport

org
apache
regexp

i mport

j ava

io

i mport

com

darw nsys
util

Debug
Denonstrate
t he

Char act er

| terator
interface
print

| interrupted it here to save paper. The source code for this program is fairly short:

i mport org.apache.regexp. *;
i mport java.io.*;
i mport com darwi nsys. util . Debug;

/** Denpnstrate the Characterlterator interface: print
* all the strings that match a given pattern froma file.
*/
public class Readerlter ({
public static void main(String[] args) throws Exception {
/1 The RE pattern
RE patt = new RE("[A- Za-z][a-z]+");
/1 A FileReader (see the 1/0O chapter)
Reader r = new Fil eReader (args[0]);
/'l The RE package ReaderCharacterlterator, a "front end"
/1 around the Reader object.
Characterlterator in = new ReaderCharacterlterator(r);
int end = O;

/1l For each match in the input, extract and print it.
while (patt.match(in, end)) {
/1l Get the starting position of the text
int start = patt.getParenStart(0);
/1l Get ending position; also updates for NEXT match
end = patt.get ParenEnd(0);
/1 Print whatever matched.
Debug. printl n("match", "start=" + start + "; end=" + end);
/1l Use Characterlterator.substring(offset, end);
Systemout. println(in.substring(start, end));

}
4.9 Printing Lines Containing a Pattern

4.9.1 Problem

You need to look for lines matching a given RE in one or more files.
4.9.2 Solution

As I've mentioned, once you have an RE package, you can write the grep program. | gave an
example of the Unix grep program earlier. grep is called with some optional arguments, followed
by one required regular expression pattern, followed by an arbitrary number of filenames. It prints
any line that contains the pattern, differing from Section 4.8, which only prints the matching text
itself. For example:

grep "[dD]arwi n" *.txt

searches for lines containing either "darwin" or "Darwin" on any line in any file whose name ends
in ".txt"." Example 4-1 is the source for the first version of a program to do this, called G- ep1. It
doesn't yet take any optional arguments, but it handles the full set of regular expressions that the
RE class implements. We haven't covered the | ava. i o package for input and output yet (see
Chapter 9), but our use of it here is simple enough that you can probably intuit it. Later in this
chapter, Section 4.14 presents a G ep2 program that uses my CGet Opt (see Section 2.8) to
parse command-line options.

51 on Unix, the shell or command-line interpreter expands *.txt to match all the filenames, but the normal
Java interpreter does this for you on systems where the shell isn't energetic or bright enough to do it.

i nport org. apache. regexp. *;
i nport java.io.?*;

/** A conmand-line grep-like program No options, but takes a pattern
* and an arbitrary list of text files.
*/
public class Gepl {
/** The pattern we're | ooking for */
protected RE pattern;
[** The Reader for the current file */
prot ect ed BufferedReader d;

/** Construct a Gep object for each pattern, and run it
* on all input files listed in argv.

*/

public static void main(String[] argv) throws Exception {

if (argv.length < 1) {
Systemerr.println("Usage: Gep pattern [fil enane]");
Systemexit(1l);

}

G epl pg = new Grepl(argv[0]);

if (argv.length == 1)
pg. process(new | nput St reanReader (System i n),
"(standard input", false);
el se
for (int i=1; i<argv.length; i++) {
pg. process(new Fi | eReader (argv[i]), argv[i], true);
}

public Gepl(String arg) throws RESyntaxException {
/1 conpile the regul ar expression
pattern = new RE(arg);

}

/** Do the work of scanning one file
@aram patt RE Regul ar Expression object
@aramifile Reader Reader object already open
@aramfileNane String Nanme of the input file
@aram printFil eNane Bool ean - true to print fil enane
before lines that match.
/
public void process(
Reader ifile, String fileNanme, bool ean printFileNane) {

* % F X X X X

String |ine;

try {
d = new BufferedReader(ifile);

while ((line = d.readLine()) != null) {
if (pattern.match(line)) {
if (printFileNane)
Systemout.print(fileName + ": ");
System out. println(line);

}
}
d.close();
} catch (1 Oexception e) { Systemerr.println(e); }

}
4.10 Controlling Case in match() and subst()

4.10.1 Problem
You want to find text regardless of case.
4.10.2 Solution

Use the f | ags static | nt variable RE.MATCH_CASEINDEPENDENT to indicate that matching
should be case-independent (“fold" or ignore differences in case) or RE_MATCH_NORMAL to
request normal, case-sensitive matching behavior. These flags can either be passed to the RE
constructor method, as in:

/1 CaselMat ch. | ava

RE r = new RE(pattern, RE. MATCH CASElI NDEPENDENT) ;
r.mat ch(i nput); /1 will match case-insensitively

or passed to the RE's set Vat chFl ags() method before calling mat ch(), asin:

r.set Mat chFl ags(RE. MATCH_NORMAL) ;
r.mat ch(i nput); /1 will match case-sensitively

If we print the results of both match operations
+ jikes +E -d . CaseMatch.java

+ java CaseMat ch

MATCH_CASEI NDEPENDENT mat ch true

MATCH NORMVAL match was fal se

The full source for this example is online as CaseMatch.java.

4.11 Precompiling the RE

4.11.1 Problem

You need to use the same RE many times over.
4.11.2 Solution

Precompile it using class r econpi | e and include the resulting code fragment into your Java
source code.

4.11.3 Discussion

Some REs never change. Those that don't can be precompiled to speed up your program's
initialization. The class r econpi | e (the only class in this APl whose name doesn't fit the Java
capitalization style rules) contains a main program that requires two arguments: a Java identifier
prefix and an RE pattern. When running it, remember that you should quote the RE pattern, as
many of the special characters are the same for the REs as they are for many command-line
interpreters. You run it by giving the java command, the full class name, the identifier prefix, and
the RE pattern as one command line. Once you've seen that the RE is correct, you can run the
command again, redirecting the results into a new Java file. You can then edit this file into a
complete program or copy it into an existing Java file.

> java org. apache.regexp.reconpile Nane "[A-Z][a-z] +"

/'l Pre-conpiled regular expression '[A-Z][a-z] +
private static char[] NanePatternlnstructions =

{
0x007c, 0x0000, 0x0019, 0x005b, 0x0001, 0x0005, 0x0041,
0x005a, 0x005b, 0x0001, 0x0005, 0x0061, 0x007a, 0x007c,
0x0000, 0x0006, 0x0047, 0x0000, Oxfff8, 0x007c, 0x0000,
0x0003, 0x004e, 0x0000, 0x0003, 0x0045, 0x0000, 0x0000,
b

private static RE NanePattern =
new RE(new REProgran(NanePatternlnstructions));
> java org. apache.regexp.reconpile Nane "[A-Z][a-z]+" > Nane.java
>

The stuff that looks like a dump listing (the numbers with Ox at the front) are not a compiled Java
program, but rather a compiled regular expression. It is there to speed up the runtime execution
of your program.

The file (Name.java in this example) can be edited to start a new Java program or copied into an
existing file. On some platforms, you can bypass that step and simply select the text with the

mouse, copy it, and paste it into an editor or IDE editing window. In either case, the goal is to
avoid manually retyping it; that would be error-prone and downright foolish.

4.12 Matching Newlines in Text
4.12.1 Problem

You need to match newlines in text.

4.12.2 Solution

Use\nor\r.

See also the flags constant RE.MATCH_MULTILINE, which makes newlines match as beginning-
of-line and end-of-line (* and $).

4.12.3 Discussion

While line-oriented tools from Unix such as sed and grep match regular expressions one line at a
time, not all tools do. The sam text editor from Bell Laboratories was the first interactive tool |
know of to allow multiline regular expressions; the Perl scripting language followed shortly. In our
API, the newline character by default has no special significance. The Buf f er edReader method
readLi ne() normally strips out whichever newline characters it finds. If you read in gobs of
characters using some method other than r eadLi ne(), you may have \ n in your text string.
Since it's just an ordinary character, you can match it with . * or similar multipliers, and, if you
want to know exactly where itis, \ n or \ r in the pattern will match it as well. In other words, to
this API, a newline character is just another character with no special significance. You can
recognize a newline either by the metacharacter \ n, or you could also refer to it by its numerical
value, \ u000a.

i nport org. apache. regexp. *;

/**
* Show | ine ending matchi ng usi ng RE cl ass.
*/
public class NLMatch {
public static void main(String[] argv) throws RESyntaxException {

String input = "I dream of engi nes\nnore engi nes, all day
| ong";

Systemout.println("I NPUT: " + input);

Systemout.printin();

String[] patt = {
"engi nes\ nnore engi nes",
"engi nes$"

}s

for (int i =0; i < patt.length; i++) {
Systemout.println("PATTERN " + patt[i]);

bool ean found;
RE r = new RE(patt[i]);

found = r.match(input);
Systemout. println("DEFAULT match " + found);

r.set Mat chFl ags(RE. MATCH _MJULTI LI NE) ;

found = r.match(input);

Systemout. println("MATCH MILTILINE match was " + found);
Systemout.printin();

}

If you run this code, the first pattern (with the embedded \ n) always matches, while the second
pattern (with $) matches only when MATCH_MULTILINE is set.

> java NLMat ch
I NPUT: | dream of engines
nore engi nes, all day | ong

PATTERN engi nes

nor e engi nes

DEFAULT match true

MATCH MULTI LI NE mat ch was true

PATTERN engi nes$
DEFAULT match fal se
MATCH MULTI LI NE mat ch was true

4.13 Program: Data Mining

Suppose that |, as a published author, want to track how my book is selling in comparison to
others. This information can be obtained for free just by clicking on the page for my book on any
of the major bookseller sites, reading the sales rank number off the screen, and typing the
number into a file, but that's tedious. As | somewhat haughtily wrote in the book that this example
looks for, "computers get paid to extract relevant information from files; people should not have to
do such mundane tasks." This program uses the regular expressions APl and, in particular,
newline matching to extract a value from an HTML page. It also reads from a URL (discussed
later in Section 17.7.) The pattern to look for is something like this (bear in mind that the HTML
may change at any time, so | want to keep the pattern fairly general):

Qui ckBookShop. web Sal es Rank:
26, 252
</ f ont >

As the pattern may extend over more than one line, | read the entire web page from the URL into
a single long string using my Fi | el O. reader AsString() method (see Section 9.6) instead
of the more traditional line-at-a-time paradigm. | then plot a graph using an external program (see
Section 26.2); this could (and should) be changed to use a Java graphics program. The
complete program is shown in Example 4-2.

Example 4-2. BookRank.java

i nport java.io.?*;
i nport comdarwi nsys.util.FilelQ

i mport java.net.*;

i mport java.text.?*;

i mport java.util.*;

i mport org.apache.regexp. *;

/** &aph of a book's sales rank on a given bookshop site.
*/

public class BookRank {
public final static String | SBN = "0937175307";
public final static String DATA FILE = "lint.sal es”;
public final static String GRAPH FILE = "lint.png";
public final static String TITLE = "Checking C Prog w Lint";
public final static String QUERY ="
"http://ww. qui ckbookshops. web/ cgi - bi n/ sear ch?i sbn=";

/** (rab the sales rank off the web page and log it. */
public static void main(String[] args) throws Exception {

/1l Looking for something like this in the input:

/1 Qui ckBookShop. web Sal es Rank:
/1 26, 252
11 </ f ont >

/1 From Patrick Killel ea <badrai g@ahoo. conr: match nunber wth

/1 comma included, just print as is. Loses if you fall bel ow
100, 000.

RE r = new RE("\..web Sal es Rank: \\s*(\\d*),*(\\d+)\\s");

/1 Read the given search URL | ooking for the rank infornmation.
/! Read as a single long string, so can match multi-line
entries.
/1 1f found, append to sales data file.
Buf f eredReader is = new BufferedReader (new | nput St r eanReader (
new URL(QUERY + | SBN). openStrean()));
String input = FilelOreaderToString(is);
if (r.match(input)) {
PrintWiter FH = new PrintWiter(
new Fil eWiter(DATA FILE, true));
String date = // “date +' %m % %1 9YM %S %"
new Si npl eDat eFormat ("MM dd hh nm ss yyyy ").
format (new Date());
FH. println(date + r.getParen(1l) + r.getParen(2));
FH. cl ose();

}
/1 Draw the graph, using gnuplot.

String gnuplot_cnd =
"set termpng\n" +
"set output \"" + GRAPH_FILE + "\"\n" +
"set xdata tinme\n" +
"set ylabel \"Amazon sales rank\"\n" +
"set bmargin 3\n" +
"set |logscale y\n" +
"set yrange [1:60000] reverse\n" +
"set tinmefmt \"%n %l %1 YM %S W\ "\n" +

"plot \"" + DATA FILE +
"\" using 1.7 title \"" + TITLE + "\" with |ines\n"

)

Process p = Runtine. get Runti me(

). exec("/usr/local/bin/gnuplot");

PrintWiter gp = new PrintWiter(p.getQutputStream));
gp. print (gnupl ot _cnd);
gp.close();

4.14 Program: Full Grep

Now that we've seen how the regular expressions package works, it's time to write G- ep2, a full-
blown version of the line-matching program with option parsing. Table 4-3 lists some typical
command-line options that a Unix implementation of grep might include.

Table 4-3. Grep command-line options

Option Meaning

Count only: don't print lines, just count them

pattern |Take pattern from file named after - f instead of from command line

-h Suppress printing filename ahead of lines

-1 Ignore case

-1 List filenames only: don't print lines, just the names they're found in
-n Print line numbers before matching lines

-S Suppress printing certain error messages

-V Invert: print only lines that do NOT match the pattern

We discussed the Get Opt class back in Section 2.8. Here we use it to control the operation of
an application program. As usual, since mai n() runs in a static context but our application main
line does not, we could wind up passing a lot of information into the constructor. Because we
have so many options, and it would be inconvenient to keep expanding the options list as we add
new functionality to the program, we use a kind of Col | ecti on called a Bi t Set to pass all the
true/false arguments: true to print line numbers, false to print filenames, etc. (Collections are
covered in Chapter 7.) A Bi t Set is much like a Vect or (see Section 7.4) but is specialized to
store only boolean values, and is ideal for handling command-line arguments.

The program basically just reads lines, matches the pattern in them, and if a match is found (or
not found, with - v), prints the line (and optionally some other stuff too). Having said all that, the

code is shown in Example 4-3.

Example 4-3. Grep2.java

i nport org. apache. regexp. *;
i nport com darw nsys. util.*;
i nport java.io.?*;

i nport java.util.?*;

/** A conmand-line grep-like program Sone options, and takes a pattern
* and an arbitrary list of text files.

*/
public class Gep2 {
/** The pattern we're | ooking for */
protected RE pattern;
[** The Reader for the current file */
prot ected BufferedReader d;
/** Are we to only count lines, instead of printing? */
protected bool ean countOnly = fal se;
/** Are we to ignore case? */
prot ected bool ean i gnoreCase = fal se;
/[** Are we to suppress print of filenanmes? */
protected bool ean dontPrintFileNanme = fal se;
/** Are we to only list nanes of files that match? */
protected boolean listOnly = fal se;
/[** are we to print line nunbers? */
prot ect ed bool ean nunbered = fal se;
/[** Are we to be silent bout errors? */
protected bool ean silent = fal se;
/** are we to print only lines that DONT match? */
protected bool ean inVert = fal se;

/** Construct a Grep object for each pattern, and run it

* on all input files listed in argv.

*/

public static void main(String[] argv) throws RESyntaxException {

if (argv.length < 1) {
Systemerr.println("Usage: Gep pattern [filenane...]");
Systemexit(1l);

}

String pattern = null;

CGet Opt go = new Get Qpt ("cf: hil nsv");
BitSet args = new BitSet();

char c;
while ((c = go.getopt(argv)) !'= 0) {

switch(c) {
case '

c':
args.set('C);
br eak;
case 'f':
try {
Buf f eredReader b = new BufferedReader
pattern = b.readLine();
b.close();
} catch (1 COException e) {
Systemerr.printin("Can't read pattern file
Systemexit(1l);

}

br eak;
case 'h':
args.set('H);
br eak;
i
args.set('1');
br eak;

case

case '’
args.set('L');
br eak;

case 'n':
args.set('N);
br eak;

case 's':
args.set('S);
br eak;

case 'v':
args.set('V);
br eak;

}
int ix = go.getOptlind();

if (pattern == null)
pattern = argv[ix-1];

G ep2 pg = new Gep2(pattern, args);

if (argv.length == iXx)
pg. process(new I nput St r eanReader (Systemin), "(standard
i nput™);
el se
for (int i=ix; i<argv.length; i++) {
try {
pg. process(new Fi |l eReader (argv[i]), argv[i]);
} catch(Exception e) {
Systemerr.println(e);
}
}
}

public Gep2(String arg, BitSet args) throws RESyntaxException {
/1 conpile the regul ar expression
if (args.get('C))
countOnly = true;
if (args.get('H))
dont PrintFil eName = true;
if (args.get('1"))
i gnoreCase = true;
if (args.get('L"))
[istOnly = true;
if (args.get('N))
nunbered = true;
if (args.get('S))
silent = true;
if (args.get('V))
inVert = true,
int caseMbde =
i gnor eCase?RE. MATCH_CASEI NDEPENDENT: RE. MATCH_NORVAL;
pattern = new RE(arg, caseMode);
}

/** Do the work of scanning one file

* @aram pat t RE Regul ar Expressi on obj ect

* @aram ifile Reader Reader object al ready open
* @aram fileNane String Nane of the input file
*/

public void process(Reader ifile, String fileNane) {

String |ine;
int matches = O;

try {
d = new BufferedReader(ifile);

while ((line = d.readLine()) != null) {
if (pattern.match(line)) {
if (countOnly)

mat ches++,;

el se {

if (!dontPrintFileNane)
Systemout.print(fileName + ": ");

System out. println(line);

}
} else if (inVert) {
System out. println(line);
}

}
if (countOnly)
Systemout.println(matches + " matches in " +
fil eNane);
d.close();
} catch (1 Oexception e) { Systemerr.println(e); }

5 Numbers

5.1 Introduction

Numbers are basic to just about any computation. They're used for array indexes, temperatures,
salaries, ratings, and an infinite variety of things. Yet they're not as simple as they seem. With
floating-point numbers, how accurate is accurate? With random numbers, how random is
random? With strings that should contain a number, what actually constitutes a number?

Java has several built-in types that can be used to represent numbers, summarized in Table 5-
1. Note that unlike languages like C or Perl, which don't specify the size or precision of numeric
types, Java -- with its goal of portability -- specifies these exactly, and states that they are the
same on all platforms.

Table 5-1. Numeric types

Built-in type Object wrapper Size (bits) Contents

byt e Byt e 8 Signed integer

short Short 16 Signed integer

i nt I nt eger 32 Signed integer

| ong Long 64 Signed integer

fl oat Fl oat 32 IEEE-754 floating point
doubl e Doubl e 64 IEEE-754 floating point
char Char act er 16 Unsigned Unicode character

As you can see, Java provides a numeric type for just about any purpose. There are four sizes of
signed integers for representing various sizes of whole numbers. There are two sizes of floating-
point numbers to approximate real numbers. There is also a type specifically designed to
represent and allow operations on Unicode characters.

When you read a string from user input or a text file, you need to convert it to the appropriate
type. The object wrapper classes in the second column have several functions, but one of the
most important is to provide this basic conversion functionality -- replacing the C programmer's
atoi/atof family of functions and the numeric arguments to scanf.

Going the other way, you can convert any number (indeed, anything at all in Java) to a string just
by using string concatenation. If you want a little bit of control over numeric formatting, Section
5.8 shows you how to use some of the object wrappers' conversion routines. And if you want full
control, it also shows the use of Nunber For mat and its related classes to provide full control of
formatting.

As the name object wrapper implies, these classes are also used to "wrap” a number in a Java
object, as many parts of the standard API are defined in terms of objects. Later on, Section 9.17
shows using an | nt eger object to save an i nt's value to a file using object serialization, and
retrieving the value later.

But | haven't yet mentioned the issues of floating point. Real numbers, you may recall, are
numbers with a fractional part. There is an infinity of possible real numbers. A floating-point
number -- what a computer uses to approximate a real number -- is not the same as a real
number. There are only a finite number of floating-point numbers: only 2732 different bit patterns

for f | oat s, and 2764 for doubl es. Thus, most real values only have an approximate
correspondence to floating point. The result of printing the real number 0.3, as in:

/| Real Val ues. | ava
Systemout.printin("The real value 0.3 is " + 0.3);

results in this printout:

The real value 0.3 is 0.29999999999999999

Surprised? More surprising is this: you'll get the same output on any conforming Java
implementation. | ran it on machines as disparate as a Pentium with OpenBSD and Kaffe, a
Pentium with Windows 95 and JDK 1.2, and a PowerPC Macintosh with MRJ. Always the same
answer.

One thing to be aware of is that the difference between a real value and its floating-point
approximation can accumulate if the value is used in a computation; this is often called rounding
error. Continuing the previous example, the real 0.3 multiplied by 3 yields:

The real 0.3 tinmes 3 is 0.89999999999999991

And what about random numbers? How random are they? You have probably heard the
expression "pseudo-random numbers." All conventional random number generators, whether
written in Fortran, C, or Java, generate pseudo-random numbers. That is, they're not truly
random! True randomness can only come from specially built hardware: an analog source of
Brownian noise connected to an analog-to-digital converter, for example.t This is not your
average PC! However, pseudo-random number generators (PRNG for short) are good enough for
most purposes, so we use them. Java provides one random generator in the base library

j ava. | ang. Mat h, and several others; we'll examine these in Section 5.13.

[For a low-cost source of randomness, check out http://lavarand.sgi.com. These folks use digitized
video of 1970s "lava lamps" to provide "hardware-based" randomness. Fun!

Java comes with a math library class | ava. | ang. Mat h plus several other areas of
mathematical functionality. The class | ava. | ang. Vat h contains an entire "math library” in one
class, including trigonometry, conversions of all kinds (including degrees to radians and back),
rounding, truncating, square root, minimum, and maximum. It's all there. Check the Javadoc for
j ava. | ang. Mat h.

The package | ava. Vat h contains support for "big numbers" -- those larger than the normal built-
in long integers, for example. See Section 5.19.

Java works hard to ensure that your programs are reliable. The usual ways you'd notice this are
in the common requirement to catch potential exceptions -- all through the Java API -- and in the
need to "cast" or convert when storing a value that might or might not fit into the variable you're
trying to store it in. I'll show examples of these.

Overall, Java's handling of numeric data fits well with the ideals of portability, reliability, and ease
of programming.

5.1.1 See Also

The Java Language Specification. The Javadoc page for | ava. | ang. MVat h.

5.2 Checking Whether a String Is a Valid Number

5.2.1 Problem

You need to check if a given string contains a valid number, and if so, convert it to binary
(internal) form.

5.2.2 Solution

Use the appropriate wrapper class's conversion routine and catch the
Nunber For mat Except i on. This code converts a string to a doubl e :

/1 StringToDoubl e.java
public static void main(String argv[]) {
String aNunmber = argv[O0]; /1 not argv[1]
doubl e resul t;
try {
result = Doubl e. par seDoubl e(aNunber) ;
} cat ch(Nunmber For mat Excepti on exc) {
Systemout.println("lnvalid nunber " + aNunber);
return;

}
System out. println("Nunber is

+ result);

}
5.2.3 Discussion

Of course, that lets you validate only numbers in the format that the designers of the wrapper
classes expected. If you need to accept a different definition of numbers, you could use regular
expressions (see Chapter 4) to make the determination.

There may also be times when you want to tell if a given number is an integer number or a
floating-point number. One way is to check for the characters . , d, or e in the input; if it is
present, convert the number as a doubl e, otherwise, convertitas ani nt:

/1 Get Nunber.java
Systemout.println("Input is
if (s.indexO('.") >0 ||
S.indexOr("d') >0 || s.indexO('e") >0)
try {
dval ue = Doubl e. par seDoubl e(s);

+s);

Systemout.println("lt's a double: " + dval ue);
return;

} catch (Nunber For mat Exception e) {
Systemout.printin("Invalid a double: " + s);

return;

else // did not contain . or d or e, so try as int.
try {
i val ue = I nteger.parselnt(s);
Systemout.printin("It's an int:

+ ival ue);

return;
} catch (Number For nat Exception e2) {
Systemout.println("Not a nunber:" + s);
}

}

A more involved form of parsing is offered by the Deci mal For mat class, discussed in Section
5.8.

5.3 Storing a Larger Number in a Smaller

5.3.1 Problem

You have a number of a larger type and you want to store it in a variable of a smaller type.
5.3.2 Solution

Cast the number to the smaller type. (A cast is a type listed in parentheses before a value that
causes the value to be treated as though it were of the listed type.)

For example, to casta | ong to ani nt, you need a cast. To cast a doubl etoaf | oat, you also
need a cast.

5.3.3 Discussion

This causes newcomers some grief, as the default type for a number with a decimal point is
doubl e, notf | oat . So code like:

float f = 3.0;

won't even compile! It's as if you had written:

double tnmp = 3.0;
float f = tnp;

You can fix it either by making f be a doubl e, by making the 3.0 be a f | oat , by putting in a
cast, or by assigning an integer value of 3:

double f = 3.0;

float f = 3. 0f;

float f = 3f;

float f = (float)3.0;
float f = 3;

The same applies when storing an i nt into a short, char, or byt e:

/| Cast Needed. | ava
public static void main(String argv[]) {
int i, k;
double j = 2.75;
i =; /| EXPECT COWPI LE ERROR

i = (int)j; /1 with cast; i gets 2

Systemout.printin("i =" + 1i);

byt e b;

b =1i; /| EXPECT COWPI LE ERROR
b = (byte)i; /'l with cast, i gets 2

Systemout.printin("b =" + b);
}

The lines marked EXPECT COMPILE ERROR will not compile unless either commented out or
changed to be correct. The lines marked "with cast" show the correct forms.

5.4 Taking a Fraction of an Integer Without Using Floating Point

5.4.1 Problem

You want to multiply an integer by a fraction without converting the fraction to a floating-point
number.

5.4.2 Solution

Multiply the integer by the numerator and divide by the denominator.

This technique should be used only when efficiency is more important than clarity, as it tends to
detract from the readability -- and therefore the maintainability -- of your code.

5.4.3 Discussion

Since integers and floating-point numbers are stored differently, it may sometimes be desirable
and feasible, for efficiency purposes, to multiply an integer by a fractional value without
converting the values to floating point and back, and without requiring a "cast":

/** Conpute the value of 2/3 of 5 */
public class FractMult {
public static void main(String u[]) {

double d1 = 0.666 * 5; /1l fast but obscure and inaccurate:
convert
Systemout.printin(dl); // 2/3 to 0.666 in progranmer’'s head

double d2 = 2/3 * b5; /'l wong answer - 2/3 == 0, 0*5.0 = 0.0
Systemout. println(d2);

double d3 = 2d/3d * 5; /1l "normal"
Systemout. println(d3);

double d4 = (2*5)/3d; /'l one step done as integers, al nost
sane answer
Systemout. println(d4);

int i5 = 2*5/3; /|l fast, approxinate integer answer
Systemout.println(ib);

Running it looks like this:

java FractMult
. 33
.0
. 333333333333333
. 3333333333333335

B WWWo wwLw

5.5 Ensuring the Accuracy of Floating-Point Numbers

5.5.1 Problem

You want to know if a floating-point computation generated a sensible result.

5.5.2 Solution

Compare with the INFINITY constants, and use i sNaN() to check for "not a number."

Fixed-point operations that can do things like divide by zero will result in Java notifying you
abruptly by throwing an exception. This is because integer division by zero is considered a logic
error.

Floating-point operations, however, do not throw an exception, because they are defined over an
(almost) infinite range of values. Instead, they signal errors by producing the constant
POSITIVE_INFINITY if you divide a positive floating-point number by zero, the constant
NEGATIVE_INFINITY if you divide a negative floating-point value by zero, and Nal, (Not a
Number) if you otherwise generate an invalid result. Values for these three public constants are
defined in both the Fl oat and the Doubl e wrapper classes. The value NaN has the unusual
property that it is not equal to itself, that is, NaN != NaN. Thus, it would hardly make sense to
compare a (possibly suspect) number against NaN, because the expression:

X == NaN

can therefore never be true. Instead, the methods Fl oat . i sNaN(f | oat) and
Doubl e. 1 sNaN(doubl e) must be used:

/1 1 nfNan.java
public static void main(String argv[]) {
double d 123;
doubl e e 0;
if (d/ e == Doubl e. POSI TI VE_I NFI NI TY)
Systemout. println("Check for POSITIVE I NFINITY works");
double s = Math.sqrt(-1);
if (s == Doubl e. NaN)
Systemout. println("Conparison with NaN i ncorrectly returns
true");
i f (Double.isNaN(s))
Systemout. println("Double.isNaN() correctly returns true");

Note that this, by itself, is not sufficient to ensure that floating-point calculations have been done
with adequate accuracy. For example, the following program demonstrates a contrived
calculation, Heron's formula for the area of a triangle, both in f | oat and in doubl e. The double
values are correct, but the floating-point value comes out as zero due to rounding errors. This is
because, in Java, operations involving only float values are performed as 32-bit calculations.
Related languages such as C automatically promote these to double during the computation,
which can eliminate some loss of accuracy.

/** Conmpute the area of a triangle using Heron's Fornul a.
* Code and val ues from Prof W Kahan and Joseph D. Darcy.
* See http://ww.cs. berkel ey. edu/ ~wkahan/ JAVAhur t . pdf .

* Derived fromlisting in Rick Gehan's Java Pro article (Cctober

1999).

* Sinplified and reformatted by | an Darwi n.
*/
public class Heron {
public static void main(String[] args) {
/1 Sides for triangle in float
float af, bf, cf;
float sf, areaf;

// Ditto in double
doubl e ad, bd, cd;
doubl e sd, aread

/1l Area of triangle in fl oat

af = 12345679. 0f ;
bf = 12345678. Of ;
cf = 1.01233995f,;

sf = (af +bf +cf)/2.0f;
areaf = (float)Math.sqgrt(sf * (sf - af) * (sf - bf) * (sf -

cf));
Systemout.println("Single precision: " + areaf);
/1 Area of triangle in double
ad = 12345679. 0;
bd = 12345678. 0;
cd = 1.01233995;
sd = (ad+bd+cd)/ 2. 0d;
aread = Mat h.sqrt(sd * (sd - ad) * (sd - bd) * (sd -
cd));
System out. println("Double precision: " + aread);
}
}

Let's run it. To ensure that the rounding is not an implementation artifact, I'll try it both with Sun's
JDK and with Kaffe:

$ java Heron

Single precision: 0.0

Doubl e precision: 972730. 0557076167
$ kaffe Heron

Single precision: 0.0

Doubl e precision: 972730. 05570761673

If in doubt, use doubl e !

5.6 Comparing Floating-Point Numbers
5.6.1 Problem

You want to compare two floating-point numbers for equality.
5.6.2 Solution

Based on what we've just discussed, you probably won't just go comparing two floats or doubles
for equality. You might expect the floating-point wrapper classes, Fl oat and Doubl e, to override
the equal s() method, and they do. The equal s() method returns true if the two values are
the same bit for bit, that is, if and only if the numbers are the same, or are both NaN. It returns
false otherwise, including if the argument passed in is null, or if one object is +0.0 and the other is
-0.0.

If this sounds weird, remember that the complexity comes partly from the nature of doing real
number computations in the less-precise floating-point hardware, and partly from the details of
the IEEE Standard 754, which specifies the floating-point functionality that Java tries to adhere to,
so that underlying floating-point processor hardware can be used even when Java programs are
being interpreted.

To actually compare floating-point numbers for equality, it is generally desirable to compare them
within some tiny range of allowable differences; this range is often regarded as a tolerance or as
epsilon. Example 5-1 shows an equal s() method you can use to do this comparison, as well
as comparisons on values of NaN. When run, it prints that the first two numbers are equal within
epsilon.

$ java Fl oat Cnp
True within epsilon 1.0E-7
$

Example 5-1. FloatCmp.java

/**

* Fl oati ng- poi nt conpari sons.

*

/
public class Float Cmp {
public static void main(String[] argv) {

double da = 3 * .3333333333;
doubl e db = 0.99999992857;

/'l Compare two nunbers that are expected to be close.
final double EPSILON = 0.0000001;
if (da == db) {
Systemout. println("Java considers " + da + "==" + db);
} else if (equal s(da, db, 0.0000001)) {
Systemout.printin("True within epsilon " + EPSILON);
} else {
Systemout. println(da +
}

1= " + db);

doubl e d1 = Doubl e. NaN;
doubl e d2 = Doubl e. NaN;
if (dl == d2)

Systemerr.println("Conparing two NaNs incorrectly returns
true.");
i f (!'new Doubl e(dl). equal s(new Doubl e(d2)))
Systemerr.println("Doubl e(NaN).equal (NaN) incorrectly
returns false.");

}

/** Conpare two doubles within a given epsilon */

public static bool ean equal s(doubl e a, double b, double eps) {
/1 1f the difference is less than epsilon, treat as equal.
return Math. abs(a - b) < eps;

}

Note that neither of the Syst em er r messages about "incorrect returns” prints. The point of this
example with NaNs is that you should always make sure values are not NaN before entrusting
them to Doubl e. equal s() .

5.7 Rounding Floating-Point Numbers

5.7.1 Problem

You need to round floating-point numbers to integer or to a particular precision.
5.7.2 Solution

If you simply cast a floating value to an integer value, Java will truncate the value. A value like
3.999999 casted to an i nt or | ong will give 3, not 4. To round these properly, use

Mat h. round(). There are two forms; if you give it a doubl e, you geta | ong result. If you give
itafloat,yougetanint.

What if you don't like the rounding rules used by r ound? If you wanted to round numbers greater
than 0.54 instead of the normal 0.5, you could write your own version of r ound():

/1 Round.java
/** Round a nunber up if its fraction exceeds this threshold. */
public static final double THRESHOLD = 0. 54;
/* Return the closest long to the argunent.
* ERROR CHECKI NG OM TTED.

*/
static long round(double d) {
long di = (1 ong)Math.floor(d); /1 integral value below (or ==) d
if ((d- di) > THRESHOLD)
return di + 1,
else return di;
}

If you need to display a number with less precision than it normally gets, you will probably want to
use a Deci nmal For mat object.

5.8 Formatting Numbers
5.8.1 Problem

You need to format numbers.
5.8.2 Solution

Use a Nunber For mat subclass.

There are several reasons why Java doesn't provide the traditional printf/ scanffunctions from the
C programming language. First, these depend on variable-length argument lists, which makes
strict type checking impossible. Second and more importantly, they mix together formatting and
input/output in a very inflexible way. Programs using printf/ scanf can be very hard to
internationalize, for example.

JDK 1.1 introduced a new package, | ava. t ext , which is full of formatting routines as general
and flexible as anything you might imagine. As with printf, there is an involved formatting
language, described in the Javadoc page. Consider the presentation of long numbers. In North
America, the number one thousand twenty-four and a quarter is written 1,024.25, in most of
Europe itis 1 024.25, and in some other part of the world it might be written 1.024,25. Not to
mention how currencies and percentages get formatted! Trying to keep track of this yourself
would drive the average small software shop around the bend rather quickly.

Fortunately, the | ava. t ext package includes a Local e class, and, furthermore, the Java
runtime automatically sets a default Local e object based on the user's environment; e.g., on the
Macintosh and MS-Windows, the user's preferences; on Unix, the user's environment variables.
(To provide a non-default locale, see Section 14.9.) To provide formatters customized for
numbers, currencies, and percentages, the Nunber For mat class has static factory methods that
normally return a Deci mal For mat with the correct pattern already instantiated. A

Deci mal For mat object appropriate to the user's locale can be obtained from the factory method
Nurmber For mat . get | nst ance() and manipulated using set methods. The method

set M ni nmum nteger Di gi t s(), a bit surprisingly, turns out to be the easy way to generate a
number format with leading zeros. Here is an example:

i nport java.text.?*;
i nport java.util.?*;

/*
* Format a nunber our way and the default way.
*/
public class NunfFormat?2 {
/[** A nunber to format */
public static final double data[] = {
0, 1, 22d/7, 100.2345678

b

/** The main (and only) nmethod in this class. */
public static void main(String av[]) {

/1 Get a format instance

Nunber For mat form = Nunber For mat . get I nstance();

/1 Set it to look Iike 999.99[99]

form set M ni mum nt eger Di gi ts(3);
form set M ni munfracti onDi gits(2);
form set Maxi munfracti onDi gits(4);

/1 Now print using it.
for (int i=0; i<data.length; i++)

Systemout.println(data[i] + "\tformats as " +
formformat(datal[i]));

}

This prints the contents of the array using the Nunber For mat instance f or m

$ java NunFor mat 2

0.0 formats as 000. 00

1.0 formats as 001. 00

3.142857142857143 formats as 003. 1429
100. 2345678 formats as 100. 2346

$

You can also construct a Deci mal For mat with a particular pattern, or change the pattern
dynamically using appl yPat t ern(). The pattern characters are shown in Table 5-2.

Table 5-2. DecimalFormat pattern characters

Character Meaning
Numeric digit (leading zeros suppressed)
0 Numeric digit (leading zeros provided)

Locale-specific decimal separator (decimal point)

; Locale-specific grouping separator (comma in English)

- Locale-specific negative indicator (minus sign)

% Shows the value as a percentage

; Separates two formats: the first for positive and the second for negative values

Escapes one of the above characters so it appears

Anything else |Appears as itself

The Nuntor mat Test program uses one Deci nal For mat toprint a number with only two
decimal places, and a second to format the number according to the default locale:

/1 Nuntor mat Test . j ava
[** A nunber to format */
public static final double intlNunber = 1024. 25;
[** Anot her nunber to format */
public static final double ourNunmber = 100.2345678;
Nurmber For mat def For m = Nunber For mat . get I nst ance();
Number For mat our For m = new Deci mal For mat (" ##0. ##") ;
/1 toPattern() shows the conbination of #0., etc
/1 that this particular |ocal uses to format wth
Systemout.println("def Form s pattern is " +
((Deci mal Format) def Form).toPattern());
Systemout.println(intl Nunber + " formats as " +
def Form f ormat (i nt| Nunber));

System out. printl n(ourNunmber + " formats as " +

our Form f or mat (our Nunber)) ;
System out . printl n(our Nunber +
def Form f or mat (our Nunber) +

formats as " +
using the default format");

This program prints the given pattern and then formats the same number using several formats:

$ java Nunfor mat Test

def Form s pattern is #, ##0. ###

1024.25 formats as 1,024.25

100. 2345678 formats as 100. 23

100. 2345678 formats as 100. 235 using the default fornat
$

5.8.3 See Also

O'Reilly's Java I/O, Chapter 16 .
5.9 Converting Between Binary, Octal, Decimal, and Hexadecimal

5.9.1 Problem

You want to display an integer as a series of bits, for example when interacting with certain
hardware devices. You want to convert a binary number or a hexadecimal value into an integer.

5.9.2 Solution

Theclass | ava. | ang. | nt eger provides the solutions. Use t oBi naryString() to convert
an integer to binary. Use val ueO () to convert a binary string to an integer:

/1 BinaryDigits.java

String bin = "101010";

Systemout.println(bin +

2));

int i = 42;

Systemout.println(i + as binary digits (bits) is " +
Integer.toBinaryString(i));

as an integer is + I nteger.val ueO (bin,

This program prints the binary as an integer, and an integer as binary:

$ java BinaryDigits

101010 as an integer is 42

42 as binary digits (bits) is 101010
$

5.9.3 Discussion

I nt eger.val ueO () is more general than binary formatting. It will also convert a string
number from any radix to i nt , just by changing the second argument. Octal is base 8, decimal is
10, hexadecimal 16. Going the other way, the | nt eger class includes t oBi naryString() ,
toCctal String(),andtoHexString().

The St ri ng class itself includes a series of static methods, val ueO (i nt),
val ued (doubl e), and so on, that also provide default formatting. That is, they return the given
numeric value formatted as a string.

5.10 Operating on a Series of Integers
5.10.1 Problem

You need to work on a range of integers.

5.10.2 Solution

For a contiguous set, use a f or loop.
5.10.3 Discussion

To process a contiguous set of integers, Java provides a f or loop. Loop control for the f or loop
is in three parts: initialize, test, and change. If the test part is initially false, the loop will never be
executed, not even once.

For discontinuous ranges of numbers, use aj ava. uti | .Bit Set .

The following program demonstrates all of these techniques:

import java.util.BitSet;

/** Qperations on series of nunmbers */
public class Nunferies {
public static void main(String[] args) {

/1 When you want an ordinal list of nunbers, use a for |oop
/] starting at 1.
for (int i =1; i <= 12; i++)

Systemout.println("Mnth # " + i);

/1 When you want a set of array indexes, use a for |oop
/1 starting at O.
for (int i =0; i < 12; i++)

Systemout.println("Month " + nonths[i]);

/1 For a discontiguous set of integers, try a Bit Set

/1l Create a BitSet and turn on a couple of bits.
BitSet b = new BitSet();

b. set (0); /1 January

b. set (3); /1 April

/1 Presumably this would be somewhere el se in the code.
for (int i =0; i<12; i++) {
if (b.get(i))
Systemout.println("Month " + nonths[i] +

requested");

}

/** The nanes of the nonths. See Dates/Tines chapter for a better
way */
protected static String nonths[] = {
"January", "February", "March", "April",
"May", "June", "July", "August",
"Septenber", "Cctober", "Novenber", "Decenber”
1

5.11 Working with Roman Numerals
5.11.1 Problem

You need to format numbers as Roman numerals. Perhaps you've just written the next Titanic or
Star Wars episode and you need to get the copyright date correct. Or, on a more mundane level,
you need to format page numbers in the front matter of a book.

5.11.2 Solution
Use my RonmanNunber For nat class:

/1 RomanNunber Si npl e. j ava

RomanNunber For mat nf = new RomanNunber Format ();

int year = Cal endar. getlnstance().get(Cal endar. YEAR);
Systemout.println(year + " ->" + nf.format(year));

The use of Cal endar to get the current year is explained in Section 6.2. Running
RomanNurber Si npl e looks like this:

+ jikes +E -d . RonmanNunber Si npl e. j ava
+ java RomanNunber Si npl e
2000 -> MV

5.11.3 Discussion

There is nothing in the standard API to format Roman numerals. However, the

j ava. text . For mat class is designed to be subclassed for precisely such unanticipated
purposes, so | have done just that and developed a class to format numbers as Roman numerals.
Here is a better and complete example program of using it to format the current year. | can pass a
number of arguments on the command line, including a " - " where | want the year to appear
(note that these arguments are normally not quoted; the " - " must be an argument all by itself,
just to keep the program simple). | use it as follows:

$ java RonanYear Copyright (c) - lan Darw n

Copyright (c) MM Ilan Darw n

$

The code for the RomanYear program is simple, yet it correctly gets spaces around the

arguments.

i nport java.util.?*;

/** Print the current year in Roman Nunerals */
public class RomanYear {

public static void main(String[] argv) {

RomanNunber Format rf = new RonmanNunber Format ();
Cal endar cal = Cal endar. getlnstance();
int year = cal.get(Cal endar. YEAR);

/1 1f no argunents, just print the year.
if (argv.length == 0) {
Systemout.println(rf.format(year));

return;
}
/!l Else a mcro-formatter: replace "-" arg with year, else
print.
for (int i=0; i<argv.length; i++) {
if (argv[i].equals("-"))
Systemout.print(rf.format(year));
el se
Systemout.print(argv[i]); /1l e.g., "Copyright"
Systemout.print(' ');
}
Systemout.printin();
}
}

Now here's the code for the RonmanNurnber For mat class. | did sneak in one additional class,
java. text.Fi el dPosition.AFi el dPosition simply represents the position of one
numeric field in a string that has been formatted using a variant of Nunber For mat . f ormat ().
You construct it to represent either the integer part or the fraction part; though of course, Roman
numerals don't have fractional parts. The Fi el dPosi t 1 on methods get Begi nl ndex() and
get Endl ndex() indicate where in the resulting string the given field wound up.

Example 5-2 is the class that implements Roman number formatting. As the comments indicate,
the one limitation is that the input number must be less than 4,000.

Example 5-2. RomanNumberFormat.java

i mport java.text.?*;
i mport java.util.*;

/**

* Roman Nunber class. Not localized, since Latin's a Dead Dead
Language

* and we don't display Roman Nunbers differently in different Local es.
* Filled with quick-n-dirty algorithmns.

*/

public class RomanNunber For mat extends Format {

/** Characters used in "Arabic to Roman", that is, format()
nmet hods. */
static char A2R[][] = {

{ 0 'M },

{O"C"D‘"M }l
{0 'X, 'L, 'C },
{0 "I', "V, 'X },

s

/** Format a given double as a Roman Nuneral; just truncate to a
* long, and call format(long).
*/
public String format(double n) {
return format((long)n);
}

/** Format a given long as a Roman Nuneral. Just call the
* three-argunment form
*/
public String format(long n) {
if (n <0]| n >= 4000)
t hrow new ||| egal Argunent Exception(n +

nmust be >= 0 && <
4000");
StringBuffer sb = new StringBuffer()
format (new I nteger((int)n), sb, new
Fi el dPosi ti on(Nunber For mat . | NTEGER
return sb.toString();
}

/* Format the given Nunmber as a Roman Nuneral, returning the
* Stringbuffer (updated), and updating the Fiel dPosition
* This nmethod is the REAL FORVATTI NG ENG NE.
* Method signature is overkill, but required as a subcl ass of
For mat .
*/
public StringBuffer format(Cbject on, StringBuffer sb,
Fi el dPosition fp) {
if (!'(on instanceof Number))
t hrow new ||| egal Argunent Exception(on +

nust be a Nunber
object");
if (fp.getField() != NunberFormat.| NTEGER FI ELD)
t hrow new ||| egal Argunent Exception(fp +
int n = ((Nunber)on).intValue();

/1l First, put the digits on a tiny stack. Must be 4 digits.
for (int 1=0; i<4; i++) {

int d=n%0;

push(d);

/1 Systemout.println("Pushed " + d);

n=n/ 10;
}

/1 Now pop and convert.
for (int 1=0; i<4; i++) {
int ch = pop();
/1 Systemout.println("Popped " + ch);
i f (ch==0)
conti nue;
else if (ch <= 3)
for(int k=1; k<=ch; k++)

sb. append(A2R[i][1]); // |

}
else if (ch == 4) {

sb. append(A2R[i 1[1]); I
sb. append(A2R[i]1[2]); 11V
else if (ch ==5)
sb. append(A2R[i][2]); IV
}
else if (ch <= 8) {
sb. append(A2R[i]1[2]); IV
for (int k=6; k<=ch; k++)
sb. append(A2R[i][1]); /11

}
else { /] 9
sb. append(A2R[i][1]):
sb. append(A2R[i][3]);
}

}

/1 fp.setBeginl ndex(0);
/1 fp.set Endl ndex(3);
return sb;

}

/** Parse a generic object, returning an Cbject */
public Object parseChject(String what, ParsePosition where) ({
t hrow new ||| egal Argunent Excepti on("Parsing not inplenented");
/1 TODO PARSI NG HERE
[l if (!'(what instanceof String)
/1 t hrow new ||| egal Argunent Exception(what + " nust be
String");
/1 return new Long(0);
}

/* 1nmplenent a toy stack */
protected int stack[] = new int[10];
protected int depth = 0;

/* 1nmplenent a toy stack */
protected void push(int n) {
stack[dept h++] = n;

}

/* 1nmplenent a toy stack */

protected int pop() {
return stack[--depth];
}

}
Several of the public methods are required because | wanted it to be a subclass of For nat ,
which is abstract. This accounts for some of the complexity, like having three different format

methods.

Note that the par seOhj ect () method is also required, but we don't actually implement parsing
in this version. This is left as the usual exercise for the reader.

5.11.4 See Also

The O'Reilly book Java I/O has an entire chapter on Nurber For mat , and develops an
Exponent i al Nunmber For mat subclass.

The online source has Scal edNunber For mat , which prints numbers with a maximum of four
digits and a computerish scale factor (B for bytes, K for kilo-, M for mega-, and so on).

5.12 Formatting with Correct Plurals

5.12.1 Problem

You're printing something like "\ used” +n +" [tens", butin English, "We used 1 items" is
ungrammatical. You want "We used 1 item".

5.12.2 Solution
Use a Choi ceFor mat or a conditional statement.

Use Java's ternary operator (cond ? t rueval : fal seval) in a string concatenation. Both zero
and plurals get an "s" appended to the noun in English ("no books, one book, two books"), so we
only need to test for n==1.

/1l Format Plurals.java
public static void main(String argv[]) {

report (0);
report(1);
report(2);
}
/** report -- using conditional operator */

public static void report(int n) {
Systemout.println("W used " + n + " itend + (n==1?"":"s"));
}

Does it work?

$ java FormatPlural s
We used O itens

We used 1 item

We used 2 itens

$

The final pri nt | n statement is short for:

if (n==1)
Systemout.printin("W used " + n + " itenl);
el se
Systemout.printin("W used " + n +

"itens");
This is a lot shorter, in fact, so the ternary conditional operator is worth learning.

In JDK 1.1 or later, the Choi ceFor nat is ideal for this. It is actually capable of much more, but
here I'll show only this simplest use. | specify the values 0, 1, and 2 (or more), and the string

values to print corresponding to each number. The numbers are then formatted according to the
range they fall into:

i mport java.text.?*;

/**

* Format a plural correctly, using a Choi ceFormat.

*/

public class Format Pl ural sChoi ce extends FormatPlurals {
static double[] limts = { 0, 1, 2 };
static String[] formats = { "itens", "itenl, "itens"};

static Choi ceFormat nyFormat = new ChoiceFormat (limts,
formats);

public static void main(String[] argv) {
report (0); /1 inherited nethod
report(1);
report (2);

}

This generates the same output as the basic version.
5.13 Generating Random Numbers
5.13.1 Problem

You need to generate random numbers in a hurry.
5.13.2 Solution

Use | ava. | ang. Mat h. randon() to generate random numbers. There is no claim that the
random values it returns are very good random numbers, however. This code exercises the
random() method:

/1 Randonl. j ava
/1 java.lang. Math.randonm{) is static, don't need to construct Math
Systemout.println("A randomfromjava.lang. Math is " + Math. randon{

)

Note that this method only generates double values. If you need integers, you need to scale and
round:

/** CGenerate randomints by scaling from Math. randon().
* Prints a series of 100 randomintegers from1 to 10, inclusive.
*/
public class Random nt {
public static void main(String[] a) {
for (int i=0; i<100; i++)
Systemout.println(1+(int)(Mth.randonm() * 10));

}

5.13.3 See Also

Section 5.14 is an easier way to get random integers. Also see the Javadoc documentation for
j ava. | ang. \Vat h, and the warning in this chapter's Introduction about pseudo-randomness
versus real randomness.

5.14 Generating Better Random Numbers
5.14.1 Problem

You need to generate better random numbers.

5.14.2 Solution

Construct a| ava. ut i | . Randomobject (not just any old random object) and call its next *()
methods. These methods include next Bool ean(), next Byt es() (which fills the given array
of bytes with random values), next Doubl e(), next Fl oat (), nextInt(),nextLong().
Don't be confused by the capitalization of Fl oat , Doubl e, etc. They return the primitive types
bool ean, f | oat, doubl e, etc., not the capitalized wrapper objects. Clear enough? Maybe an
example will help:

/1 Randon®.java
/1 java.util.Random net hods are non-static, do need to construct NMath
Random r = new Random();
for (int i=0; i<10; i++)
Systemout.println("A double fromjava.util.Randomis " +
r.next Double());
for (int i=0; i<10; i++)
Systemout.println("An integer fromjava.util.Randomis " +
r.nextlnt());

You can also use the | ava. uti | . Randomnext Gaussi an() method, as shown next. The
next Doubl e() methods try to give a "flat" distribution between and 1.0 in which each value
has an equal chance of being selected. A Gaussian or normal distribution is a bell-curve of values
from negative infinity to positive infinity, with the majority of the values around zero (0.0).

/1 RandonB. j ava
Random r = new Random();
for (int i=0; i<10; i++)
Systemout. println("A gaussi an random double is " + r.next Gaussi an(

),

To illustrate the different distributions, | generated 10,000 numbers first using next Randon{)

and then using next Gaussi an(). The code for this is in Random4.java (not shown here) and
is a combination of the previous programs with code to print the results into files. | then plotted

histograms using the R statistics package (see http://www.r-project.org). The results are

shown in Figure 5-1.

Figure 5-1. Flat (left) and Gaussian (right) distributions

Using nextRondom() Using nextGaussian()

1000 - 2000 -
1000 -
g w- £
U' T T L T 1 l]' L T T 1
0.0 0.4 0.8 =4 -2 0 2 4

5.14.3 See Also

The Javadoc documentation for | ava. uti | . Random, and the warning in the Introduction about
pseudo-randomness versus real randomness.

For cryptographic use, see class | ava. security. Secur eRandom, which provides
cryptographically strong pseudo-random number generators (PRNG).

5.15 Calculating Trigonometric Functions

5.15.1 Problem

You need to compute sine, cosine, and other trigonometric functions.
5.15.2 Solution

Use the trig functions in | ava. | ang. Vat h . Like j ava. | ang. Mat h. randon(), all the
methods of the Vat h class are static, so no Vat h instance is necessary. This makes sense, as
none of these computations maintains any state. Here is a program that computes a few
trigonometric values and displays the values of E and PI that are available in the math library:

/1 Trig.java

Systemout.printin("Java's Pl is " + Math.Pl);
Systemout.printin("Java's e is " + Math.E);
Systemout.println("The cosine of 1.1418 is " + Math.cos(1.1418));

Java 1.3 (Java 2 JDK 1.3) includes a new class, | ava. | ang. St ri ct Vat h, which is intended to
perform most of the same operations with greater cross-platform repeatability.

5.16 Taking Logarithms

5.16.1 Problem

You need to take the logarithm of a number.
5.16.2 Solution

For logarithms to base e, use j ava. | ang. Mat h's| og() function:

/'l Logarithmjava

doubl e soneVal ue;

/'l compute soneVal ue. ..

double I og e = Math. | og(soneVal ue) ;

For logarithms to other bases, use the identity that:

log (x]

]“gJJHJ - w

where x is the number whose logarithm you want, n is any desired base, and ¢ is the natural
logarithm base. | have a simple LogBase class containing code that implements this functionality:

/'l LogBase. java

public static double | og base(doubl e base, double value) {
return Math.log(value) / Math.|og(base);

}

5.16.3 Discussion
My | og_base function allows you to compute logs to any positive base. If you have to perform a
lot of logs to the same base, it is more efficient to rewrite the code to cache the | og(base) once.

Here is an example of using | og_base:

/| LogBaseUse. | ava

public static void main(String argv[]) {
doubl e d = LogBase. | og_base(10, 10000);
Systemout.println("logl0(10000) =" + d);

}

| 0g10(10000) = 4.0

5.17 Multiplying Matrixes
5.17.1 Problem

You need to multiply a pair of two-dimensional arrays, as is common in mathematical and
engineering applications.

5.17.2 Solution
Use the following code as a model.
5.17.3 Discussion

It is straightforward to multiply an array of a numeric type. The code in Example 5-3 implements
matrix multiplication.

Example 5-3. Matrix.java

/**

* Multiply two matrices.

* Only defined for int: clone the code (or wait for Tenpl ates)
* for long, float, and double.

*/

public class Matrix {

/[* Matrix-multiply two arrays together.
* The arrays MJST be rectangul ar.
* @ut hor Tom Christiansen & Nathan Tor ki ngt on, Perl Cookbook
ver si on.

*/
public static int[][] multiply(int[]J[] nl, int[][] nR) {
int mlrows = ni. | engt h;
int mlcols = ml[0].length;
int m2rows = n2.I| engt h;
int m2cols = n2[0] .| ength;
if (mlcols !'= n2rows)
t hrow new ||| egal Argunment Except i on(

int[][] result = new int[nlrows][nRcol s];

/1 multiply
for (int i=0; i<nlrows; i++)
for (int j=0; j<nRcols; j++)
for (int k=0; k<nicols; k++)
resul t[i][j] += mi[i][k] * nR[K][j];

return result;

public static void nmprint(int[]J[] a) {
int rows = a.length;
int cols = a[0].length;
Systemout. println("array["+rows+"]["+col s+"] = {");
for (int i=0; i<rows; i++) {
Systemout.print("{");
for (int j=0; j<cols; j++)
Systemout.print(" " + a[i][j] +".");
Systemout.printlin("},");
}

Systemout.printin(":;");
}
Here is a program that uses the VAt r i x class to multiply two arrays of i nt s:

/1 MatrixUse.|ava

int x[J[] ={
{3 2 31},
{5 9, 81},

b

int y[I[] ={
{ 4, 71},
{9 31},
{8 1},

b
int z[][] = Matrix.nultiply(x, y);

Mat ri x. mprint (x);
Matri x. mprint(y);
Matri x. mprint(z);

5.17.4 See Also

Consult a book on numerical methods for more things to do with matrixes. There are commercial
libraries that will do this for you, such as the Visual Numerics vni library, which can be

downloaded from http://www.vni.com.

5.18 Using Complex Numbers

5.18.1 Problem

You need to manipulate complex numbers, as is common in mathematical, scientific, or
engineering applications.

5.18.2 Solution

Java does not provide any explicit support for dealing with complex numbers. You could keep
track of the real and imaginary parts and do the computations yourself, but that is not a very well-
structured solution.

A better solution, of course, is to use a class that implements complex numbers. | provide just
such a class. First, an example of using it:

/| Conpl exDeno. j ava
Compl ex ¢ = new Conpl ex(3, 5);

Compl ex d = new Conpl ex(2, -2);
Systemout.println(c + ".getReal () = +
Systemout.println(c +" +" +d + " "
Systemout.printin(c + " + "
Systemout.println(c +

.getReal ());
c.add(d));

Conpl ex. add(c, d));
c.multiply(d));

+ 4+ +0

+ d +
+d + "

Example 5-4 is the complete source for the Conpl ex class, and shouldn't require much
explanation. To keep the API general, | provide -- for each of add, subtract, and multiply -- both a
static method that works on two complex objects, and a non-static method that applies the
operation to the given object and one other object.

Example 5-4. Complex.java

/** A class to represent Conplex Nunbers. A Conplex object is
* i mmut abl e once created; the add, subtract and nultiply routines
* return new y-created Conpl ex objects containing the results.
*

*/

public class Conplex {

/** The real part */
private double r;

/** The imagi nary part */
private double i;

/** Construct a Conplex */

Conpl ex(doubl e rr, double ii) {
r=rr;

/** Display the current Conplex as a String, for use in
* println() and el sewhere.
*/
public String toString() {
StringBuffer sb = new StringBuffer().append(r);
if (i>0)
sb. append(' +'); /1 else append(i) appends - sign
return sb. append(i).append('i').toString();
}
[** Return just the Real part */
public double getReal () {
return r;
}

/** Return just the Real part */

public double getlnmaginary() {
return i;

}

/** Return the magni tude of a conpl ex nunber */
public doubl e magnitude() {

return Math.sqrt(r*r + i*i);
}

/** Add anot her Conplex to this one */
publ i c Conpl ex add(Conpl ex other) {
return add(this, other);

}

/** Add two Conmpl exes */

public static Conplex add(Conplex cl, Complex c2) {
return new Conpl ex(cl.r+c2.r, cl.i+c2.i);

}

/** Subtract another Conplex fromthis one */
publ i c Conpl ex subtract(Conplex other) {
return subtract(this, other);

/** Subtract two Conpl exes */

public static Conplex subtract(Conplex cl, Conmplex c2) {
return new Conplex(cl.r-c2.r, cl.i-c2.i);

}

/** Multiply this Conplex tinmes another one */
public Conplex nultiply(Conplex other) {
return multiply(this, other);

/[** Multiply two Conpl exes */
public static Conplex multiply(Conplex cl, Conmplex c2) {
return new Conpl ex(cl.r*c2.r - cl.i*c2.i, cl.r*c2.i +
cl.i*c2.r);

}
}

5.19 Handling Very Large Numbers

5.19.1 Problem

You need to handle integer numbers larger than Long. MAX_VALUE or floating-point values larger
than Doubl e. MAX_VALUE.

5.19.2 Solution
Use the Bi gl nt eger or Bi gDeci nal values in package | ava. nat h:

/1 Bi gNuns. java

Systemout.println("Here's Long. MAX VALUE: " + Long. MAX VALUE);

Bi gl nteger blnt = new Bi gl nt eger ("3419229223372036854775807") ;
Systemout.println("Here's a bigger nunber: " + blnt);
Systemout.printin("Here it is as a double: " + blnt.doublevValue());

Note that the constructor takes the number as a string. Obviously you couldn't just type the
numeric digits, since by definition these classes are designed to represent numbers larger than
will fit in a Java | ong.

5.19.3 Discussion

Both Bi gl nt eger and Bi gDeci nal objects are immutable; that is, once constructed, they
always represent a given number. That said, there are a number of methods that return new
objects that are mutations of the original, such as negat e() , which returns the negative of the
given Bi gl nt eger or Bi gDeci nmal . There are also methods corresponding to most of the Java
language built-in operators defined on the base types i nt /| ong and f | oat /doubl e. The
division method makes you specify the rounding method; consult a book on numerical analysis
for details. Here is a simple stack-based calculator using Bi gDeci nal as its numeric data type:

i mport java. mat h. Bi gDeci mal ;
i mport java.util.Stack;

/** Atrivial reverse-polish stack-based cal culator for big nunbers */
public class Bi gNuntal ¢ {

/** an array of (Objects, simulating user input */
public static Qoject[] input = {
new Bi gDeci mal ("3419229223372036854775807. 23343"),
new Bi gDeci mal ("2.0"),

"y n

}s

public static void main(String[] args) {
Stack s = new Stack();
for (int i =0; i < input.length; i++) {
hject o =inputfi];
if (o instanceof BigDecinal)
s. push(o);
else if (o instanceof String) {
switch (((String)o).charAt(0)) {
case ' +':

s. push(((Bi gDecinmal)s. pop()).add((Bi gDeci mal)s. pop(
)));
br eak;
case '-'

s. push(((Bi gDeci mal)s. pop()).subtract ((Bi gDeci mal)s.pop()));
br eak;
case '*'

s. push(((Bi gDecimal)s.pop()).mltiply((BigbDecimal)s.pop()));
br eak;
case '/’

s. push(((Bi gDecinmal)s. pop()).divide((Bi gbDecimal)s.pop(),
Bi gDeci mal . ROUND_UP)) ;

br eak;
case '=":
Systemout. println(s.pop());
br eak;
defaul t:
throw new ||| egal St at eExcepti on(" Unknown OPERATOR
popped”) ;
} else {
throw new ||| egal St at eException("Syntax error in
i nput™);
}
}
}

Running this produces the expected (very large) value:

> jikes +E -d . BigNuntCal c.java
> java Bi gNuntal c
6838458446744073709551614. 466860
>

The current version has its inputs hardcoded, but in real life you can use regular expressions to
extract words or operators from an input stream (as in Section 4.8) or use the

St reamlokeni zer approach of the simple calculator (Section 9.13). The stack of numbers is
maintained using a j ava. uti | . St ack (Section 7.16).

Bi gl nt eger is mainly useful in cryptographic and security applications. Its method
i sProbabl yPrime() can create prime pairs for public key cryptography. Bi gDeci mal might
also be useful in computing the size of the universe.

5.20 Program: TempConverter

The program shown in Example 5-5 prints a table of Fahrenheit temperatures (still used in daily
life weather reporting in the United States) and the corresponding Celsius temperatures (used in
science everywhere, and in daily life in most of the world).

Example 5-5. TempConverter.java

i mport java.text.?*;

/* Print a table of fahrenheit and cel sius tenperatures
*/
public class TenpConverter {

public static void main(String[] args) {
TempConverter t = new TenpConverter();

t.start();

t.data();

t.end();
}
protected void start() {
}

protected void data() {
for (int i=-40; i<=120; i+=10) {
float ¢ = (i-32)*(5f/9);
print(i, c);

}

protected void print(float f, float c) {

Systemout.println(f +" " + c);
}
protected void end() {
}

}

This works, but these numbers print with about 15 digits of (useless) decimal fractions! The
second version of this program subclasses the first and uses a Deci nal For nmat to control the

formatting of the converted temperatures (Example 5-6).
Example 5-6. TempConverter2.java

i mport java.text.?*;

/* Print a table of fahrenheit and celsius tenperatures, a bit nore
neatly.
*/
public class TenpConverter2 extends TenpConverter {
prot ected Deci nmal For mat df;

public static void main(String[] args) {
TenmpConverter t = new TenpConverter2();
t.start();
t.data();
t.end();

}

/1 Constructor
public TenmpConverter2() {

df = new Deci mal For mat (" ##. ###") ;
}

protected void print(float f, float c) {

Systemout.printin(f +" " + df.format(c));
}
protected void start() {
System out . printl n("Fahr Centigrade.");
}
protected void end() {
Systemout.printin("------------------- ")
}

}
This works, and the results are better than the first version's, but still not right:

C.\javasrc\ nunbers>java TenpConverter?2
Fahr Cent i grade.

-40.0 -40
-30.0 -34.444
-20.0 -28.889
-10.0 -23.333
0.0 -17.778
10.0 -12. 222
20.0 -6.667
30.0 -1.111
40.0 4. 444
50.0 10

It would look neater if we lined up the decimal points, but Java has nothing in its standard API for
doing this. This is deliberate! They wanted to utterly break the ties with the ancient IBM 1403 line
printers and similar monospaced devices such as typewriters, "dumb" terminals,’? and DOS
terminal windows. However, with a bit of simple arithmetic, the Fi el dPosi ti on from Section
5.11 can be used to figure out how many spaces need to be prepended to line up the columns;
the arithmetic is done in pri nt (), and the spaces are put on in pr ependSpaces(). The
result is much prettier:

[21 My children are quick to remind me that "dumb" means "incapable of speech.” Nobody who has used,
say, a TTY33 or a DecWriter 100 dumb terminal will claim that they are incapable of speech. Intelligible
speech yes, but they certainly did talk at you while they were printing . . .

C.\javasrc\ nunbers>java TenpConverter3
Fahr Cent i grade.

-40 -40
- 30 -34. 444
-20 -28. 889
-10 -23. 333
0 -17.778
10 -12. 222
20 -6. 667
30 -1.111
40 4.444
50 10
60 15. 556
70 21.111

80 26. 667

And the code (Example 5-7) is only ten lines longer!
Example 5-7. TempConverter3.java

i mport java.text.?*;

/* Print a table of fahrenheit and cel sius tenperatures, w th deci mal
* points |lined up.
*/
public class TenpConverter3 extends TenpConverter?2 {
protected Fiel dPosition fp;
prot ected Deci nmal Format dff;

public static void main(String[] args) {
TenmpConverter t = new TenpConverter3();
t.start();
t.data();
t.end();

}

/1 Constructor
public TenmpConverter3() {
super();
df f = new Deci mal For mat (" ##. #");
fp = new Fi el dPosi ti on(Nunber For mat . | NTEGER FI ELD) ;

}

protected void print(float f, float c) {
String fs = dff .format(f, new StringBuffer(), fp).toString();
fs = prependSpaces(4 - fp.getEndlndex(), fs);

String cs = df.format(c, new StringBuffer(), fp).toString();
cs = prependSpaces(4 - fp.getEndlndex(), cs);

Systemout.println(fs +" " + cs);

}

protected String prependSpaces(int n, String s) {
String[] res = {

b

if (n<res.|ength)
return res[n] + s;
throw new ||| egal St at eExcepti on("Rebuild with bigger \"res\"
array.");

}
}

Remember, though, that the fields will line up only if you use a fixed-width font, such as Cour i er
or Luci daSansTypew it er. If you want to line it up in a graphical display, you'll need to use
Java's font capability (see Section 12.6) or use a JTabl e (see the Javadoc for

J avax. swi ng. JTabl e or the O'Reilly book Java Swing).

5.21 Program: Number Palindromes

My wife, Betty, recently reminded me of a theorem that | must have studied in high school but
whose name | have long since forgotten: that any positive integer number can be used to
generate a palindrome by adding to it the number comprised of its digits in reverse order.
Palindromes are sequences that read the same in either direction, such as the name "Anna" or
the phrase "Madam, I'm Adam" (being non-strict and ignoring spaces and punctuation). We
normally think of palindromes as composed of text, but the concept can be applied to numbers:
13531 is a palindrome. Start with the number 72, for example, and add to it the number 27. The
results of this addition is 99, which is a (short) palindrome. Starting with 142, add 241, and you
get 383. Some numbers take more than one try to generate a palindrome. 1951 + 1591 vyields
3542, which is not palindromic. The second round, however, 3542 + 2453, yields 5995, which is.
The number 17,892, which my son Benjamin picked out of the air, requires 12 rounds to generate
a palindrome, but it does terminate:

C.\javasrc\nunbers>java Palindrome 72 142 1951 17892
Trying 72

72->99

Trying 142
142->383

Trying 1951
Tryi ng 3542

1951- >5995

Trying 17892
Trying 47763
Tryi ng 84537
Tryi ng 158085
Trying 738936
Trying 1378773
Tryi ng 5157504
Trying 9215019
Trying 18320148
Trying 102422529
Trying 1027646730
Tryi ng 1404113931
17892->2797227972

C.\j avasr c\ nunber s>

If this sounds to you like a natural candidate for recursion, you are correct. Recursion involves
dividing a problem into simple and identical steps, which can be implemented by a function that
calls itself and provides a way of termination. Our basic approach, as shown in method
findPal i ndrone, is:

| ong findPalindrone(long num {
if (isPalindrome(nun))
return num
return findPalindronme(num + reverseNunber (num);

That is, if the starting number is already a palindromic number, return it; otherwise, add it to its
reverse, and try again. The version of the code shown here handles simple cases directly (single
digits are always palindromic, for example). We won't think about negative numbers, as these
have a character at the front that loses its meaning if placed at the end, and hence are not strictly
palindromic. Further, there are certain numbers whose palindromic forms are too long to fit in
Java's 64-bit | ong integer. These will cause underflow, which is trapped and then an error

message like "too big" is reported. Having said all that, Example 5-8 shows the code.
Example 5-8. Palindrome.java

/** Compute the Palindronme of a nunber by addi ng the nunber conposed of
* its digits in reverse order, until a Palindronme occurs.
* e.qg., 42->66 (42+24); 1951->5995 (1951+1591=3542; 3542+2453=5995).
* <P>TODO. Do we need to handl e negative nunbers?
*/
public class Palindrone {
public static void main(String[] argv) {
for (int i=0; i<argv.length; i++)

try {
long | = Long. parseLong(argv[i]);
if (I <0) {
Systemerr.println(argv[i] + " -> TOO SMALL");
conti nue;
}

Systemout.println(argv[i] + "->" + findPalindrone(l));
} catch (Nunber For mat Exception e) {
Systemerr.printin(argv[i] + "-> INVALID");
} catch (111 egal StateException e) {
Systemerr.println(argv[i] + "-> TOO Bl ¢ went
negative)");

}
}

/** find a palindrom c nunber given a starting point, by
* calling ourself until we get a nunber that is palindronc.
*/
static long findPalindronme(long num {
if (num < 0)
throw new ||| egal St at eExcepti on("went negative");
if (isPalindrome(num)
return num
Systemout.println("Trying " + nunj;
return findPalindrome(num + reverseNunber (nunj);

}

/** The nunber of digits in Long. MAX VALUE */
protected static final int MAX DDA TS = 19;

/1 digits array is shared by isPalindrone and reverseNunber,
/1 which cannot both be running at the sane tinme.

/* Statically allocated array to avoid newing each tinme. */
static long[] digits = new |l ong[MAX DI G TS| ;

/** Check if a nunmber is palindromc. */
static bool ean isPalindrone(long num {

if (num>= 0 & num <= 9)
return true;
int nDigits = 0;
while (num> 0) {
digits[nDi gits++] = num % 10;

num /= 10;
}
for (int i=0; i<nDigits/2; i++)
if (digits[i] !=digits[nDigits - i - 1])

return fal se;
return true;

}

static long reverseNunber (I ong nun {

int nDigits = 0;

while (num> 0) {
digits[nDi gits++] = num % 10;
num /= 10;

}

long ret = 0;

for (int i=0; i<nDigits; i++) {
ret *= 10;
ret += digits[i];

}

return ret;
}
5.21.1 See Also
People using Java in scientific or large-scale numeric computing should check out the Java

Grande Forum (http://www.javagrande.org), a discussion group that aims to work with Sun
to ensure Java's usability in these realms.

6 Dates and Times

6.1 Introduction

Yes, Java is Y2K safe. That was the first date-related question people asked before 2,000 AD
rolled around, so I'll answer it up front. The difficulties of date handling in Java arise not from Y2K
issues but from Y1970 issues.

When Java was devised in the early 1990s, there was already considerable awareness in the
computing industry of the impending problems with some old code. In fairness to practitioners of
the 1970s and 1980s, | must add that not all of us ignored the Y2K issue. | read a key early
warning sounded around 1974 in Datamation or JACM, and many of my colleagues from that
time forward (myself included) paid close attention to issues of date survivability, as did the
developers of the Java API.

In the earliest releases of Java, there was a class called Dat e designed for representing and
operating upon dates. Its problems were that it was Anglocentric -- like much of Java 1.0 -- and
that its dates began with the Unix time epoch: January 1, 1970. The year is an integer whose
minimum value 70 is treated as 1970, so 99 is 1999, 100 is 2000, and so on. Consequently, there
is no general Y2K problem with Java. The problem remains that those of us ancient enough to
have been born before that venerable year of 1970 in the history of computing -- the time when
Unix was invented -- found ourselves unable to represent our birth dates, and this made us
grumpy and irritable.

The Anglocentricity and 1970-centricity could have been vanquished with Java 1.1. A new class,
Cal endar , was devised, with hooks for representing dates in any date scheme such as the
western (Christian) calendar, the Hebrew calendar, the Islamic calendar, the Chinese calendar,
and even Star Trek Star dates. Unfortunately, there wasn't enough time to implement any of
these. In fact, only the G- egor i anCal endar class appears in Java 1.1, and Java 2 does little to
solve the problem (though it does fix the Dat e class to allow it to represent years before 1970.)
You may have to go to other sources to get additional Calendar classes; one source is listed in
Section 6.4.

The Cal endar class can represent any date, BC or AD, in the western calendar. A separate
Java i nt variable, with 32 bits of storage, is allocated for each item such as year, month, day,
and so on. Years are signed, negative numbers meaning before the calendar epoch and positive
numbers after it. The term epoch means the beginning of recorded time. In the western world, our
calendar epoch is the imaginary year 0, representing the putative birth year of Jesus Christ. This
is such an important event that the years before it are called Before Christ or BC, and dates since
then are called . . . well, not After Christ, but the Latin anno domini, meaning "in the year of our
Lord." Because that takes too long to say and write, we use the acronym AD, thus proving that
computerists take no blame whatsoever for inventing the use of acronyms. In the modern spirit of
political correctness, these terms have been renamed to BCE (Before Common Era) and CE
(Common Era), but to most westerners born before about 1980 they will always be BC and AD.
The G egor i anCal endar class, intended to represent western or Christian dates, also uses BC
and AD.

Where was 1? Oh yes, Java. As | nt s in Java are 32 bits, that allows 2731, or 2,147,483,648,
years. Let's say roughly two billion years. I, for one, am not going to worry about this new Y2B
menace -- even if I'm still around, I'm sure they'll have gone to a 64-bit integer by then.

Fortunately, in Java 2 (JDK 1.2), the Dat e class was changed to use long values, and it can now
represent a much wider range of dates. And what about this new Dat eFor mat class? Well, it

does provide a great deal of flexibility in the formatting of dates. Plus, it's bidirectional -- it can
parse dates too. We'll see it in action in Recipes Section 6.3 and Section 6.6.

Note also that some of these classes are in| ava. t ext while othersareinjava. util.
Package | ava. t ext contains classes and interfaces for handling text, dates, numbers, and
messages in a manner independent of natural languages, while | ava. ut i | contains the
collections framework, legacy collection classes, event model, date and time facilities,
internationalization, and miscellaneous utility classes. You'll need to import both packages in
most date-related programs.

6.2 Finding Today's Date

6.2.1 Problem

You want to find today's date.

6.2.2 Solution

Use a Dat e object'st oSt ri ng() method.
6.2.3 Discussion

The quick and simple way to get today's date and time is to construct a Dat e object with no
arguments in the constructor call, and call itst oSt ri ng() method:

/| DateO.java
Systemout.println(new java.util.Date());

However, for reasons just outlined, we want to use a Cal endar object. Just use

Cal endar . get I nstance(). get Ti ne(), which returns a Dat e object (even though the
name makes it seem like it should return a Ti ne value™), and print the resulting Dat e object,
either using itst oSt ri ng() method or a Dat eFor nat object. You might be tempted to
construct a G egor i anCal endar object, using the no-argument constructor, but if you do this,
your program will not give the correct answer when non-western locales get Cal endar
subclasses of their own (in some future release of Java). The static factory method

Cal endar . get I nst ance() returns a localized Cal endar subclass for the locale you are in.
In North America and Europe it will likely return a G- egor i anCal endar , but in other parts of the
world it might (someday) return a different kind of Cal endar .

1 just to be clear: Dat e's get Ti me() returns the time in seconds, while Cal endar's get Ti ne() returns
abDate.

Do not try to use a G egor i anCal endar'st oSt ring() method; the results are truly
impressive, but not very interesting. Sun's implementation prints all its internal state information;
Kaffe's inherits Coj ect'st oSt ri ng(), which just prints the class hame and the hashcode.
Neither is useful for our purposes.

/| Datel,.]ava]
ava. util.GegorianCal endar[ti me=932363506950, ar eFi el dsSet =t rue, ar eAl | Fi
el dsSet =t r ue,

| eni ent =t rue, zone=j ava. util. Si npl eTi neZone[i d=Aneri ca/ Los_Angel es, of f se
t =- 28800000,

dst Savi ngs=3600000, useDayl i ght =t rue, st art Year =0, st art Mbde=3, st art Mont h=
3, startDay=1,

start DayOf Week=1, st art Ti ne=7200000, endMbde=2, endMont h=9, endDay=-

1, endDayOf Week=1,

endTi me=7200000], fi rst DayOr Week=1, m ni mal Daysl nFi r st Week=1, ERA=1, YEAR=1
999, MONTH=6,

WEEK_OF_YEAR=30, WEEK_OF_MONTH=4, DAY_OF_MONTH=18, DAY_COF_YEAR=199, DAY_OCF_
WEEK=1,

DAY_OF_WEEK | N_MONTH=3, AM_PM=1, HOUR=10, HOUR_OF_DAY=22, M NUTE=51, SECOND=
46,

M LLI SECOND=950, ZONE_OFFSET=- 28800000, DST_OFFSET=3600000]

Cal endar'sget Ti me() returns a Dat e object, which can be passed to printl n() to print
today's date (and time) in the traditional (but non-localized) format:

/1 Date2.java
System out. println(Cal endar.getlnstance().getTinme());

To print the date in any other format, use a | ava. t ext . Dat eFor mat , which you'll meet in
Section 6.3.

6.3 Printing Date/Time in a Specified Format
6.3.1 Problem

You want to print the date and/or time in a specified format.
6.3.2 Solution

Use aj ava. t ext . Dat eFor nat .

6.3.3 Discussion

To print the date in the correct format for whatever locale your software lands in, simply use the
default Dat eFor mat formatter, which is obtained by calling Dat eFor mat . get | nst ance().

Suppose you want the date printed, but instead of the default format "Sun Jul 18 16:14:09 PDT
1999", you want it printed like "Sun 1999.07.18 at 04:14:09 PM PDT". A look at the Javadoc page
for Si npl eDat eFor mat -- the only non-abstract subclass of Dat eFor mat -- reveals that it has a
rich language for specifying date and time formatting. To use a default format, of course, we can
just use the Dat e object's t oSt ri ng() method, and for a localized default format, we use

Dat eFor mat . get | nst ance(). Butto have full control and get the "Sun 1999.07.18 at
04:14:09 PM PDT", we construct an instance explicitly, like so:

new Si npl eDat eFormat ("E yyyy.MM dd 'at' hh:nmmss a zzz");

E means the day of the week; yyyy, MVl and dd are obviously year, month, and day. The quoted
string ' at ' means the string "at". hh: mm ss is the time; a means A.M. or P.M., and zzz means

the time zone. Some of these are more memorable than others; | find the zzz tends to put me to
sleep. Here's the code:

/| Dat eDeno. | ava
Date dNow = new Date();

/* Sinple, Java 1.0 date printing */
Systemout.printin("It is now" + dNow.toString());

/'l Use a SinpleDateFormat to print the date our way.

Si npl eDat eFormat fornatter
= new Si npl eDat eFor mat

Systemout.printin("It is

("E yyyy.mM dd ' at’
+ formatter. format (dNow));

There are many format symbols; a list is shown in Table 6-1.

hh: mm ss a zzz");

Table 6-1. Simple DateFormat format codes

Symbol Meaning Presentation Example
G Era designator Text AD
y Year Number 2001
M Month in year Text and Number July or 07
d Day in month Number 10
h Hour in A.M./P.M. (1~12) Number 12
H Hour in day (0~23) Number 0
m Minute in hour Number 30
S Second in minute Number 43
S Millisecond Number 234
E Day in week Text Tuesday
D Day in year Number 360
F Day of week in month Number 2 (second Wed. in July)
W Week in year Number 40
wW Week in month Number 1
a A.M./P.M. marker Text PM
k Hour in day (1~24) Number 24
K Hour in A.M./P.M. (0~11) Number 0
z Time zone Text Eastern Standard Time
' Escape for text Delimiter
! Single quote Literal '

You can use as many of the given symbols as needed. Where a format can be used either in text
or numeric context, you can set it to longer form by repetitions of the character. For codes marked
"Text", four or more pattern letters will cause the formatter to use the long form, whereas fewer
will cause it to use the short or abbreviated form if one exists. Thus, E might yield Mon, whereas
EEEE would yield Monday. For those marked "Number", the number of repetitions of the symbol
gives the minimum number of digits. Shorter numbers are zero-padded to the given number of
digits. The year is handled specially: vy yields a two-digit year (98, 88, 00, 01 . . .), whereas
yyyy vyields a valid year (2001). For those marked "Text and Number", three or more symbols
causes it to use text, while one or two make it use a number: MVimight yield 01, while MvViViwould
yield January.

6.4 Representing Dates in Other Epochs

6.4.1 Problem

You need to deal with dates in a form other than the Gregorian Calendar used in the western
world.

6.4.2 Solution
Visit the IBM alphaWorks web site.
6.4.3 Discussion

As of Java 2, the only non-abstract Cal endar subclass is the G- egor i anCal endar, as
mentioned previously. However, others do exist. Check out the IBM alphaWorks web site
(http://alphaworks.ibm.com), which has a large collection of freely available Java software
(mostly without source code, alas). Search for "calendar”, and you'll find a set of calendars --
Hebrew, Islamic, Buddhist, Japanese, and even an Astronomical Cal endar class -- that covers
most of the rest of the world.

These work in a similar fashion to the standard G egor i anCal endar class, but have constants
for month names and other information relevant to each particular calendar.

6.5 Converting YMDHMS to a Calendar or Epoch Seconds

6.5.1 Problem

You have year, month, day, hour, minute, and maybe even seconds, and you need to convert it to
a Cal endar ora Dat e.

6.5.2 Solution

Use the Cal endar class's set (y, m d, h, n, s]) method, which allows you to set the
date/time fields to whatever you wish. Note that when using this form and providing your own
numbers or when constructing either a Dat e or a Gr egor i anCal endar object, the month value
is zero-based while all the other values are true-origin. Presumably, this is to allow you to print
the month name from an array without having to remember to subtract one, but it is confusing.

/'l GegCal Deno. java

G egori anCal endar d1 = new G egori anCal endar (1986, 04, 05); // May 5
G egori anCal endar d2 = new Gregori anCal endar(); /'] today

Cal endar d3 = Cal endar. getlnstance(); /1 today

Systemout.printin("It was then " + dl.getTinme());
Systemout.printin("It is now" + d2.getTinme());
Systemout.printin("It is now" + d3.getTinme())
d3. set (Cal endar. YEAR, 1915);

d3. set (Cal endar. MONTH, Cal endar. APRIL);

d3. set (Cal endar. DAY_OF_MONTH, 12);
Systemout.println("D3 set to " + d3.getTinme());

)

This prints the dates as shown:

It was then Mon May 05 00: 00: 00 PDT 1986
It is now Sun Jul 18 22:51:47 PDT 1999
It is now Sun Jul 18 22:51:47 PDT 1999
D3 set to Mon Apr 12 22:51:47 PDT 1915

6.6 Parsing Strings into Dates
6.6.1 Problem
You need to convert user input into Dat e or Cal endar objects.

6.6.2 Solution

Use a Dat eFor nat .
6.6.3 Discussion

The Dat eFor mat class introduced in Section 6.3 has some additional methods, notably
parse() ,which tries to parse a string according to the format stored in the given Dat eFor mat
object.

/| DateParsel.|ava
Si npl eDat eFormat fornmatter
= new Si npl eDat eFormat ("yyyy- Mt dd");
String input = args.length == 0 ? "1818-11-11" : args[O0];
Systemout.print(input + " parses as ");
Date t;
try {
t = formatter. parse(input);
Systemout.println(t);
} catch (ParseException e) {
System out . printl n("unparseabl e usi ng
}

+ formatter);

This will parse any date back to Year Zero and well beyond Year 2000.

What if the date is embedded in an input string? You could, of course, use the string's
substring() method to extract it, but there is an easier way. The Par sePosi t | on object
from | ava. t ext is designed to represent (and track) the position of an imaginary cursor in a
string. Suppose we have genealogical data with input strings representing the times of a person's
life:

BD: 1913-10-01 Vancouver, B.C
DD: 1983-06-06 Toronto, ON

This lists one person's birth date (BD) and place, and death date (DD) and place. We can parse
these using St ri ng. i ndexOr (' ') to find the space after the : character, Dat eFor mat
parse() to parse the date, and St ri ng. substring() to get the city and other geographic
information. Here's how:

/| Dat eParse?2.java
Si npl eDat eFormat formatter =
new Si npl eDat eFormat ("yyyy- MM dd");
String input[] = {
"BD: 1913-10-01 Vancouver, B.C. ",
"MD: 1948-03-01 Ottawa, ON',
"DD: 1983-06-06 Toronto, ON' };
for (int i=0; i<input.length; i++) {
String aLine = input[i];
String action;
swi tch(aLi ne. char At (0)) {
case 'B': action = "Born"; break;
case 'M: action "Married"; break;

case 'D: action "Di ed"; break;

/'l others...

default: Systemerr.printin("lnvalid code in " + aLine);
conti nue;

}

int p = aLine.indexO (" ");

Par sePosition pp = new ParsePosition(p);

Date d = formatter.parse(aLi ne, pp);

if (d==null) {
Systemerr.printin("lnvalid date in
conti nue;

+ alLi ne);

}

String location = aLine.substring(pp.getlndex());
System out . printl n(
action + " on" +d+ " in" + |ocation);

}

This works like | said it would:

Born on Wed Oct 01 00: 00: 00 PDT 1913 in Vancouver, B.C.
Married on Mon Mar 01 00: 00: 00 PST 1948 in Otawa, ON
D ed on Mon Jun 06 00:00: 00 PDT 1983 in Toronto, ON

Note that the polymorphic form of par se() that takes one argument throws a
Par seExcept i on if the input cannot be parsed, while the form that takes a Par sePosi ti on as
its second argument returns nul | to indicate failure.

6.7 Converting Epoch Seconds to DMYHMS
6.7.1 Problem
You need to convert a number of seconds since 1970 into a Dat €.

6.7.2 Solution

Just use the Dat e constructor.

6.7.3 Discussion

"The Epoch" is the time at the beginning of time as far as modern operating systems go. Unix
time, and some versions of MS-Windows time, count off inexorably the seconds since the epoch.
On systems that store this in a 32-bit integer, time is indeed running out. Let's say we wanted to
find out when the Unix operating system, whose 32-bit versions use a 32-bit date, will get into
difficulty. We take a 32-bit integer of all ones, and construct a Dat e around it. The Dat e
constructor needs the number of milliseconds since 1970, so we multiply by 1,000:

/** \When does the UNI X date get into trouble? */

public class Y2038 {
public static void main(String[] a) {

/1 This should yield 2038AD, the hour of doomfor the
/1 last remaining 32-bit UNI X systens (there will be
/1 mllions of 64-bit UN Xes by then).

| ong expiry = Ox7FFFFFFFL * 1000;
Systemout.printin("32-bit UNI X expires on " +
Long. toHexString(expiry) + " or " +
new java. util.Date(expiry));
/1 Way doesn't it?

/1l Try going fromnsec of current tine into a Date

long now = SystemcurrentTimreMIlis();

System out . println(
"Passing " + Long.toHexString(now) + " -->" +
new java. util . Date(now));

}

Sure enough, the program reports that 32-bit Unixes will expire in the year 2038 (you might think |
knew that in advance if you were to judge by the name | gave the class; in fact, my web site has
carried the Y2038 warning to Unix users for several years now). At least Unix system managers
have more warning than most of the general public had for the original Y2K problem.

> java Y2038

32-bit UNI X expires on 1f3fffffcl8 or Mon Jan 18 22:14:07 EST 2038

Passi ng e29cfel432 --> Fri Nov 03 19:08:25 EST 2000
>

At any rate, if you need to convert seconds since 1970 to a date, you know how.
6.8 Adding to or Subtracting from a Date or Calendar
6.8.1 Problem

You need to add or subtract a fixed amount to or from a date.

6.8.2 Solution

As we've seen, Dat e has a get Ti me() method that returns the number of seconds since the
epoch as a | ong. To add or subtract, you just do arithmetic on this value. Here's a code example:

/1 DateAdd.|ava
/** Today's date */
Date now = new Date();

long t = now. getTine();
t -= 700*24*60*60*1000;
Date then = new Date(t);

System out. println("Seven hundred days ago was " + then);

6.8.3 Discussion
A cleaner variant is to use the Cal endar's add() method:

i mport java.text.?*;
i mport java.util.*;

/** DateCal Add -- conpute the difference between two dates.
*/
public class DateCal Add {
public static void main(String[] av) {
/** Today's date */
Cal endar now = Cal endar. getlnstance();

/* Do "DateFormat" using "sinple" format. */
Si npl eDat eFor mat fornmatter
= new Si npl eDat eFormat ("E yyyy.MM dd 'at' hh:nmss a

zzz"),;
Systemout.println("It is now" +
formatter.format(now getTine()));
now. add(Cal endar . DAY_OF_YEAR, - (365 * 2));
Systemout.println("Two years ago was " +
formatter.format(now getTine()));
}
}

Running this reports the current date and time, and the date and time two years ago:

> java Dat eCal Add
It is now Fri 2000.11.03 at 07:16:26 PM EST
Two years ago was Wed 1998. 11.04 at 07:16:26 PM EST

6.9 Difference Between Two Dates

6.9.1 Problem

You need to compute the difference between two dates.

6.9.2 Solution

Convert to Dat e objects if necessary, call their get Ti ne() methods, and subtract. Format the
result yourself.

6.9.3 Discussion

There is no general mechanism in the API for computing the difference between two dates. This
is surprising, given how often it comes up in some types of commercial data processing.
However, it's fairly simple to implement this yourself:

i mport java.util.*;

/** DateDiff -- conpute the difference between two dates.
*
/
public class DateDi ff {
public static void main(String[] av) {
/** The ending date. This val ue
* doubl es as a Y2K countdown ti ne.
*
/
Date d1 = new G egorianCal endar (1999, 11, 31, 23,59).getTine();

/** Today's date */
Date d2 = new Date();

/] Get nsec from each, and subtract.
long diff = d2.getTine() - dl.getTinme();

Systemout.println("Di fference between " + d2 + "\n" +
"\tand Y2K is " +
(diff / (1000*60*60*24)) +
" days.");
}

Of course, I'm doing the final editing on this chapter long after the Y2K turnover, so it should print
a positive value, and it does:

> java DateDi ff
D fference between Fri Nov 03 19:24: 24 EST 2000

and Y2K is -307 days.
>

You saw Cal endar's add() method in Section 6.8, but that only adds to the day, month, or
year (or any other field) in the Cal endar object; it does not add two Cal endar dates together.

6.10 Comparing Dates

6.10.1 Problem

You need to compare two dates.

6.10.2 Solution

If the dates are in Dat e objects, compare with equal s() and one of before() orafter(
) . If the dates are in | ongs , compare with both == and one of < or >.

6.10.3 Discussion

While Dat e implements equal s() like any good class, it also provides bef or e(Dat e) and
af t er (Dat e) , which compare one date with another to see which happened first. This can be
used to determine the relationship among any two dates, as in Example 6-1.

Example 6-1. CompareDates.java

i mport java.util.*;
i mport java.text.?*;

public class ConpareDates {
public static void main(String[] args) throws ParseException {

Dat eFormat df = new Si npl eDat eFormat ("yyyy- MM dd");

/] Get Date 1
Date d1 = df.parse(args[0]);

/] Get Date 2
Date d2 = df.parse(args[1]);

String rel ation;
if (dl.equal s(d2))

relation = "the sane date as";
else if (dl. before(d2))

relation = "before";
el se

relation = "after";

Systemout.println(dl + " is + relation +' ' + d2);

}

Running Conpar eDat es with two close-together dates and the same date reveals that it seems
to work:

> java ConpareDates 2000-01-01 1999-12-31

Sat Jan 01 00: 00: 00 EST 2000 is after Fri Dec 31 00:00: 00 EST 1999
> java ConpareDates 2000-01-01 2000-01-01

Sat Jan 01 00: 00: 00 EST 2000 is the sane date as Sat Jan 01 00: 00: 00
EST 2000

It would be interesting to see if Dat eFor mat . parse() really does field rolling, as the
documentation says. Apparently so!

> javaConpar eDat es 2001-02-29 2001-03-01
Thu Mar 01 00:00: 00 EST 2001 is the sane date as Thu Mar 01 00: 00: 00
EST 2001

Sometimes the API gives you a date as a | ong. For example, the Fi | e class has methods
(detailed in Section 10.2) to give information such as when the last time a file on disk was
modified. Example 6-2 shows a program similar to Example 6-1, but using the | ong value
returned by the Fi | e's | ast Modi fi ed() method.

Example 6-2. CompareFileDates.java

import java.util.*;
i mport java.io.File;

public class ConpareFil eDates {
public static void main(String[] args) {
/1 Get the tinestanp fromfile 1
String f1 = args[O0];
long d1 = new File(fl).lastMdified();

/1 Get the tinestanp fromfile 2
String f2 = args[1];
long d2 = new File(f2).lastMdified();

String rel ation;
if (dl1 == d2)

relation = "the sane age as";
else if (dl < d2)

relation = "ol der than";
el se

relation = "newer than";
Systemout.printin(fl + " is

+ relation +' ' + f2);
}

Running Conpar eFi | eDat es on its source and class reveals that the class file is newer (that is,
more up to date). Comparing a directory with itself gives the result of "the same age", as you'd
expect:

> java ConpareFil eDat es ConpareFi | eDate.java Conpar eFi | eDat e. cl ass
ConpareFi |l eDate.java i s ol der thanConpareFil eDate. cl ass
> java ConpareFil eDates .

is the sane age as .

6.11 Day of Week/Month/Year or Week Number

6.11.1 Problem

You have a date and need to find what day of the week, month, or year that date falls on.
6.11.2 Solution

Use the Cal endar class's get () method, which has constants for retrieving most such values.

6.11.3 Discussion
The Cal endar class can return most of these:

/| Cal endar Deno. j ava
Cal endar ¢ = Cal endar. getlnstance(); /1 today
Systemout.println("Year: " + c.get(Cal endar. YEAR));
Systemout.println("Mnth: " + c.get(Cal endar. MONTH)) ;
Systemout.println("Day: " + c.get(Cal endar. DAY _OF MONTH));
Systemout.println("Day of week = " + c.get(Cal endar. DAY_OF WEEK)) ;
Systemout.println("Day of year =" + c.get(Cal endar. DAY_OF_YEAR));
Systemout.println("Wek in Year: " + c.get(Cal endar. WEEK _OF YEAR));
Systemout.println("Wek in Month: " + c.get(Cal endar. WVEEK_ OF MONTH)) ;
Systemout.println("Day of Wek in Mnth: " +

c. get (Cal endar. DAY_OF WEEK | N_MONTH));
Systemout.println("Hour: " + c.get(Cal endar. HOUR));
Systemout.printin("AMor PM " + c.get(Cal endar. AM PM);
System out. println("Hour (24-hour clock): " +

c. get (Cal endar. HOUR_OF_DAY)) ;
Systemout.printin("Mnute: " + c.get(Cal endar. M NUTE));
Systemout. println("Second: " + c.get(Cal endar. SECOND));

This chatty program shows most of the fields in the Cal endar class:

Year: 1999

Month: 6

Day: 19

Day of week = 2
Day of year = 200

Week in Year: 30

Week in Month: 4

Day of Week in Month: 3
Hour: 3

AMor PM 1

Hour (24-hour clock): 15
M nute: 18

Second: 42

6.12 Calendar Page

6.12.1 Problem

You want a calendar for a given month of a given year, or of the current month and year.
6.12.2 Solution

Use Cal endar . get () to find what day of the week the first of the month falls on, and format
accordingly.

6.12.3 Discussion

Like the output of the Unix cal command, it is often convenient to view a month in compact form.
The basic idea is to find what day of week the first of the month is and print blank columns for the

days of the week before the month begins. Then, print the numbers from 1 to the end of the
month, starting a new column after you get to the last day of each week.

Here's my program, compared to the Unix cal command:

dar oad. darwi nsys. con$ java Cal endar Page 6 2000
June 2000
Su Mo Tu W Th Fr Sa
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30
dar oad. darwi nsys. con$ cal 6 2000

June 2000
Su M Tu W Th Fr Sa
1 2 3

4 5 6 7 8 910
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30

The source code is simple and straightforward (Example 6-3).
Example 6-3. CalendarPage.java

i mport java.util.*;
i mport java.text.?*;

/** Print a nonth page.

* Only works for the Western cal endar.
*/

public class Cal endar Page {

/** The names of the nonths */
String[] nonths = {
"January", "February", "March", "April",
"May", "June", "July", "August",
"Septenber”, "Cctober”, "Novenber", "Decenber"
s

/** The days in each nonth. */

public final static int donf] = {
31, 28, 31, 30, /* jan feb mar apr */
31, 30, 31, 31, /* may jun jul aug */
30, 31, 30, 31 /* sep oct nov dec */

i

/** Conmpute which days to put where, in the Cal panel */
public void print(int mm int yy) {
/** The nunber of days to |eave blank at the start of this
nonth */
int leadGp = 0;

System out . print (nonths[mi); /1 print month and year

nmust

1)

be

Systemout.print(" ");

System out. print(yy);
Systemout.printin();

if (”fm7r< 0 || mm > 11)
t hrow new ||| egal Argunent Exception("Mnth " + mm+ " bad,
0-11");

G egori anCal endar cal endar = new Gregori anCal endar (yy, mm 1);
Systemout.printin("Su Mo Tu W Th Fr Sa");

/1 Conpute how much to | eave before the first.

/1l getDay() returns O for Sunday, which is just right.

| eadGap = cal endar. get (Cal endar . DAY_OF WEEK) - 1;

i nt dayslnMonth = don{mij;
if (cal endar.isLeapYear(cal endar. get(Cal endar. YEAR)) && mm ==

++days| nhont h;
/1 Blank out the |abels before 1st day of nonth

for (int i =0; i <leadGp; i++) {
System out. print (" ");
}

/1 Fill in nunbers for the day of nonth.
for (int i =1; i <= dayslnMnth; i++) {

/1l This "if" statenent is sinpler than fiddling with

Nunber For mat

if (i<=9)
Systemout.print(' ');
Systemout. print(i);

if ((leadGp + i) %7 == 0) /1 wap if end of l|ine.
Systemout.printin();

el se
Systemout.print(" ');

}
Systemout.printin();

/** For testing, a main program */
public static void main(String[] av) {

int nmonth, year;
Cal endar Page cp = new Cal endar Page();
/1 print the current nonth.

if (av.length == 2) {
cp.print(Integer.parselnt(av[0])-1,

I nteger. parselnt(av[1]));

} else {
Cal endar ¢ = Cal endar. getlnstance();
cp.print(c.get(Cal endar. MONTH), c.get(Cal endar. YEAR));

}
6.13 High-Resolution Timers

6.13.1 Problem
You need to time how long something takes.
6.13.2 Solution

Call system get TineM | | i s() twice, and subtract the first result from the second result.

6.13.3 Discussion

Needing a timer is such a common thing that, instead of making you depend on some external
library, the developers of Java have built it in. The Syst emclass contains a static method that
returns the current time (since 1970) in milliseconds. Thus, to time some event, use this:

long start = SystemgetTineMIlis();
nmethod to _be tined();

long end = SystemgetTimeMIlis(); |

ong el apsed = end - start; /1 time in nsec.

Here is a short example to measure how long it takes a user to press return. We divide the time in
milliseconds by a thousand to get seconds, and print it nicely using a Nunber For mat :

/1 Timer0.]ava
long t0O, t1;
Systemout.println("Press return when ready");
t0=SystemcurrentTimeMIIlis();
int b;
do {
b = Systemin.read();
} while (b!I'="\r" && b !'="\n");

t1=SystemcurrentTimeMIIlis();
doubl e deltaT = t1-tO0;
Systemout. println("You took " +
Deci nal Format . get I nstance().fornmat(deltaT/1000.) + " seconds.");

This longer example uses the same technique, but computes a large number of square roots and
writes each one to a discard file using the get DevNul | () method from Section 2.5:

i nport java.io.?*;
i nport java.text.?*;

/**
* Timer for processing sqrt and |/ O operations.
*/
public class Tiner {
public static void main(String argv[]) {
try {

new Timer().run();
} catch (1 CException e) {
Systemerr.println(e);
}
}

public void run() throws | OException {

Dat aCut put St ream n = new Dat aQut put St r ean(
new Buf f er edQut put St r ean{ new
Fi | eQut put St rean(SysDep. getDevNul I ())));
long t0O, t1;
Systemout.println("Java Starts at " +
(tO=SystemcurrentTineMIlis()));
doubl e k;
for (int i=0; i<100000; i++) {
k = 2.1 * Math.sqgrt((double)i);
n. witeDoubl e(k);
}
Systemout.println("Java Ends at " +
(tl=SystemcurrentTineMIlis()));
doubl e deltaT = t1-t0;
Systemout.println("This run took " +
Deci mal For mat . get I nstance().format(deltaT/1000.) + "
seconds.");

}
}

Finally, this code shows a simpler, but less portable, technique for formatting a "delta t" or time
difference. It works only for the English locale (or any other where the number one-and-a-half is
written "1.5"), but it's simple enough to write the code inline. | show it here as a method for
completeness, and confess to having used it this way on occasion:

/** Convert a long ("tinme_t") to seconds and thousandths. */
public static String nsToSecs(long t) {

return t/1000 + "." + t%000;
}

6.14 Sleeping for a While
6.14.1 Problem

You need to sleep for a while.
6.14.2 Solution

Use Thread. sl eep().

6.14.3 Discussion

You can sleep for any period of time from one millisecond up to the lifetime of your computer. As |
write this, for example, | have a chicken on the barbecue. My wife has instructed me (I'm as
helpless with anything in the kitchen beyond spaghetti as she is with anything computish made

since the days of MS-DOS Word Perfect) to check it every five minutes. Since I'm busy writing,
time tends to fly. So, | needed a reminder service, and came up with this in a jiffy:

/'l Rem nder. | ava

while (true) {
Systemout.println(new Date() + "\007");
Thr ead. sl eep(5*60*1000) ;

}

The 007 is not a throwback to the Cold War espionage thriller genre, but the ASCII character for a
bell code, or beep. Had | written it as a windowed application using a frame, | could have called
Tool ki t. beep() instead, and by toggling the state of set Vi si bl e(), a pop-up would
appear every five minutes.

With a bit more work, you could have a series of events, and wait until their due times, making a
sort of mini-scheduler entirely in Java. In fact, we'll do that in Section 6.15.

6.15 Program: Reminder Service

The Remi nder Ser vi ce program provides a simple reminder service. The | oad() method
reads a plain text file containing a list of appointments like the ones shown here, using a
Si npl eDat eFor nat ;

1999 07 17 10 30 Get sone sl eep.
1999 07 18 01 27 Finish this program
1999 07 18 01 29 Docunent this program

Example 6-4 shows the full program.
Example 6-4. ReminderService.java

i nport java.io.?*;

i nport java.text.?*;

i nport java.util.?*;

i nport javax.sw ng. *;

/**
* Read a file of rem nders, sleep until each is due, beep.
*/
public class Reni nder Service {
class Item{
Dat e due;
String nessage;
Item(Date d, String m {
due = d;
nessage = m

}
ArrayList | = new ArrayList();
public static void main(String argv[]) throws | Oexception {

Rem nder Servi ce rs = new Reni nderService();
rs.load();

rs.run();

}

protected void load() throws | OException {

Buf f eredReader is = new BufferedReader (
new Fi | eReader (" Rem nder Service.txt"));
Si npl eDat eFormat formatter =
new Si npl eDat eFormat ("yyyy MM dd hh m');
String aLi ne;
while ((aLine = is.readLine()) !'=null) {
Par sePosition pp = new ParsePosition(0);
Date date = formatter. parse(aLi ne, pp);
if (date == null) {
message("lnvalid date in " + alLine);
conti nue;
}
String nesg = aLine.substring(pp.getlndex());
| .add(new I ten(date, nesqg));

}

public void run() {
System out. println("Rem nderService: Starting at " + new Dat e(

));
while (!l.isEmty()) {
Date d = new Date();
Iltemi = (Item!|.get(0);
long interval = i.due.getTinme() - d.getTine();
if (interval > 0) {
Systemout.println("Sleeping until " + i.due);
try {
Thr ead. sl eep(interval);
} catch (InterruptedException e) {
Systemexit(1l); /1l unexpected intr
}
message(i.due + ": " + i.nessage);
} else
message("M SSED " + i.nmessage + " at " + i.due);
| . remove(0);
}
System exit(0);
}
voi d nessage(String nessage) {
System out. println("007" + nessage);
JOpt i onPane. showiessageDi al og(nul I,
nessage,
"Timer Alert", /1 titlebar
JOpt i onPane. | NFORMVATI ON_MESSAGE) ; /1 icon
}
}

| create a nested class | t emto store one notification, storing its due date and time and the
message to display when it's due. The | oad() method reads the file containing the data and
converts it, using the date parsing from Section 6.6. The r un() method does the necessary
arithmetic to sl eep() for the right length of time to wait until the next reminder is needed. The

reminder is then displayed both on the standard output (for debugging) and in a dialog window
using the Swing JOpt | onPane (see Section 13.8). The nessage() method consolidates
both displays, allowing you to add a control to use only standard output or only the dialog.

6.15.1 See Also

In JDK 1.3, the new class | ava. uti | . Ti ner can be used to implement much of the
functionality of this reminder program.

7 Structuring Data with Java

7.1 Introduction

Almost every application beyond "Hello World" needs to keep track of a certain amount of data. A
simple numeric problem might work with three or four numbers only, but in most applications
there are groups of similar data items. A GUI-based application may need to keep track of a
number of dialog windows. A personal information manager or PIM needs to keep track of a
number of, well, persons. An operating system (a real one) needs to keep track of who is allowed
to log in, who is currently logged in, and what those users are doing. A library needs to keep track
of who has books checked out and when they're due. A network server may need to keep track of
its active clients. There are several patterns here, and they all revolve around what has
traditionally been called data structuring.

There are data structures in the memory of a running program; there is structure in the data in a
file on disk; and there is structure in the information stored in a database. In this chapter we
concentrate on the first aspect: in-memory data. We'll cover the second aspect in Chapter 9,
and the third in Chapter 20.

If you had to think about in-memory data, you might want to compare it to a collection of index
cards in a filing box, or to a treasure hunt where each clue leads to the next. Or you might think of
it like my desk -- apparently scattered, but actually a very powerful collection filled with
meaningful information. Each of these is a good analogy for a type of data structuring that Java
provides. An array is a fixed-length linear collection of data items, like the card filing box: it can
only hold so much, then it overflows. The treasure hunt is like a data structure called a linked list.
Before Java 2 there was no standard linked list class, but you could (and still can) write your own
"traditional data structure" classes. Finally, the complex collection represents Java's

Col | ect i on classes, which are substantially revised and expanded in Java 2. A document
entitled Collections Framework Overview, distributed with the Java Development Kit
documentation (and stored as file /jdk1.x/docs/guide/collections/overview.html), provides a
detailed discussion of the Collections Framework. The framework aspects of Java collectionsare
summarized in Section 7.18.

Beware of some typographic issues. The word Ar r ays (in constant-width font) is short for the
classjava. util . Arrays, butin the normal typeface, the word "arrays" is simply the plural of
"array." (and will be found capitalized at the beginning of a sentence). Also, note that the Java 2
additions HashVap and HashSet follow the rule of having a "mid-capital" at each word boundary,
while the older Hasht abl e does not (the "t" is not capitalized).

There are several classes in | ava. uti | that are not covered in this chapter. All the classes
whose names begin with Abst r act are, in fact, abstract, and we discuss their non-abstract
subclasses. Bi t Set is used less frequently than some of the classes discussed here, and is
simple enough to learn on your own; | have examples of it in Recipes Section 2.8 and Section
5.10. The StringTokeni zer class is covered in Section 3.3.

We'll start our discussion of data structuring techniques with one of the oldest structures, the
array. Then we'll go through a variety of fancier structuring techniques using classes from
java. uti| . Atthe end, we'll discuss the overall structure of the Collections Framework that is
part of j ava. uti| .

7.2 Data Structuring Using Arrays

7.2.1 Problem

You need to keep track of a fixed amount of information and retrieve it (usually) sequentially.
7.2.2 Solution

Use an array.

7.2.3 Discussion

Arrays can be used to hold any linear collection of data. The items in an array must all be of the
same type. You can make an array of any built-in type or any object type. For arrays of built-ins
such as i nt's, bool eans, etc., the data is stored in the array. For arrays of objects, a reference
is stored in the array, so the normal rules of reference variables and casting apply. Note in
particular that if the array is declared as Obj ect [|, then object references of any type can be
stored in it without casting, though a valid cast is required to take an Cbj ect reference out and
use it as its original type. I'll say a bit more on two-dimensional arrays in Section 7.17;
otherwise, you should treat this as a review example.

i mport java.util.*;
public class Arrayl ({
public static void main(String argv[]) {

i nt nmonthLenl[]; /1 declare a reference
nmont hLenl = new int[12]; /1 construct it
int monthlen2[] = new int[12]; /1 short form

/'l even shorter is this initializer form

i nt monthLen3[] = {

31, 28, 31, 30,
31, 30, 31, 31,
30, 31, 30, 31,

s

final int MAX = 10;

Cal endar days[] = new Cal endar [MAX] ;

for (int i=0; i<MAX; i++) {
/1 Note that this actually stores G egorianCal endar
/1l etc. instances into a Cal endar Array
days[i] = Cal endar. getlnstance();

}

/1 Two- Di nensi onal Arrays
/1 \Want a 10-by-24 array

int ne[][] = new int[10][];
for (int i=0; i<10; i+4+)
me[i] = new int[24],;

/1 Remenber that an array has a
System out. println(nme. | ength);
Systemout. println(nme[0].length);

".length" attribute

Arrays in Java work nicely. The type checking provides reasonable integrity, and array bounds
are always checked by the runtime system, further contributing to reliability.

The only problem with arrays is: what if the array fills up and you still have data coming in?
Solution in Section 7.3.

7.3 Resizing an Array

7.3.1 Problem

The array filled up, and you got an Arr ay| ndexQut O BoundsExcept i on.

7.3.2 Solution
Make the array bigger.
7.3.3 Discussion

One approach is to allocate the array at a reasonable size to begin with, but if you find yourself
with more data than will fit, reallocate a new, bigger array and copy the elements into it./* Here is
code that does so:

1 you could copy it yourself using a f or loop if you wish, but Syst em ar r ayCopy() is likely to be faster
because it's implemented in native code.

i mport java.util.*;
/** Re-allocate an array, bigger... */
public class Array2 ({
public static void main(String argv[]) {
int nDates = 0;
final int MAX = 10;
Cal endar dates[] = new Cal endar[VAX];
Cal endar c;
while ((c=getDate()) != null) {

/1 if (nDates >= dates.length) {

/1 Systemerr.println("Too Many Dates! Sinplify your
[ifell™);

/1 Systemexit(1l); // w np out

/1 }

/1 better: reallocate, making data structure dynamc

if (nDates >= dates.length) {
Cal endar tnp[] = new Cal endar[dates.length + 10];
System arraycopy(dates, 0, tnp, 0O, dates.length);
dates = tnp; /1 copies the array reference
/1 old array will be garbage collected soon...

}

dat es[nDat es++] = c;

}

Systemout.println("Array size = + dates.length);

static int n;
/* Dummy nmethod to return a sequence of 21 Cal endar references,
* so the array should be sized >= 21.
*/
public static Calendar getDate() {

if (n++ > 21)

return null;
return Cal endar. getlnstance();

This technique will work reasonably well for simple linear collections of data. For data with a more
variable structure, you will probably want to use a more dynamic approach, as in Section 7.4.

7.4 Like an Array, but More Dynamic

7.4.1 Problem

You don't want to worry about storage reallocation; you want a standard class to handle it for you.
7.4.2 Solution

Use a Vector.Or,inJava 2, an ArraylLi st.
7.4.3 Discussion

A Vect or is just a standard class that encapsulates the functionality of an array but allows it to
expand automatically. You can just keep on adding things to it, and each addition will behave the
same. If you watch really closely you might notice a brief extra pause once in a while when
adding objects, as Vect or reallocates and copies. But you don't have to think about it.

However, because Vect or is a class and isn't part of the syntax of Java, you can't use Java's
array syntax; you must use methods to access the Vect or data. There are methods to add
objects, retrieve objects, find objects, and tell you how big the VVect or is and how big it can
become without having to reallocate. Like those of all the collection classes inj ava. uti |,

Vect or's storing and retrieval methods are defined in terms of | ava. | ang. Cbj ect . But since
(hj ect is the ancestor of every defined type, you can store objects of any type in a Vect or (or
any collection), and cast it when retrieving it. If you need to store a small number of built-ins (like
i nt,fl oat, etc.) into a collection containing other data, use the appropriate wrapper class (see
the Introduction to Chapter 5). To store bool eans, eitheruse a | ava. uti | . Bi t Set (see the
online documentation) or the Bool ean wrapper class.

Table 7-1 shows some of the most important methods of Vect or . Equally important, those
listed are also methods of the Li st interface, which we'll discuss shortly. This means that the
same methods can be used with the newer Ar r ayLi st class and several other classes.

Table 7-1. List access methods

Method signhature Usage

add(Cbj ect 0) Add the given element at the end

add(int i, Cbject o) Insert the given element at the specified position

clear() Remove all element references from the Col | ect i on

cont ai ns(Obj ect 0) True if the Vect or contains the given (hj ect
get(int i) Return the object reference at the specified position
i ndexO (Obj ect 0) Return the index where the given object is found, or -1

renove(Cbj ect 0)
Remove an object by reference or by position
renove(int i)

toArray() Return an array containing the objects in the Col | ecti on

This program, VVect or Denp, stores data in a Vect or and retrieves it for processing:

Vect or v = new Vector();
StructureDeno source = new StructurebDeno(15);

/1 Add lots of elenents to the Vector. ..
v.add(source.getDate());
v.add(source.getDate());
v.add(source.getDate());

/1l Process the data structure using a for |oop.

Systemout.println("Retrieving by index:");

for (int i =0; i<v.size(); i++) {
Systemout.printin("Element " + i + " =" + v.get(i));

}

Note that Vect or and Hasht abl e pre-date the Col | ect i ons framework, so they provide
methods with different names: Vect or provides addEl enent () and el ement At () . In new
code you should generally use the Col | ect i ons methods add() and get (). The equivalent
program done using an ArrayLi st (ArrayLi st Deno. | ava) looks like this:

ArrayList al = new ArrayList();

/1 Create a source of bjects
StructureDeno source = new StructurebDeno(15);

/1 Add lots of elenents to the ArrayList...
al . add(source.getDate());
al . add(source.getDate());
al . add(source.getDate());

/1l First print themout using a for |oop.

Systemout.println("Retrieving by index:");

for (int i =0; i<al.size(); i++) {
Systemout.printin("Element " + i + " =" + al.get(i));

}

As you can see, the structure is very similar. You might wonder, then, why they added

ArrayLi st and didn't just keep Vect or . One major difference is that the methods of Vect or
are synchronized, meaning that they can be accessed from multiple threads (see Section 24.6).
This does mean more overhead, though, so in a single-threaded application it may be faster to
use an ArraylLi st (see timing results in Section 7.19).

7.5 Data-Independent Access with Iterators

7.5.1 Problem

You want to write your code so that users don't have to know whether you store it in an Arr ay, a
Vector,an ArraylLi st, or even a doubly linked list of your own choosing.

7.5.2 Solution

Use one of the | t er at or interfaces.

7.5.3 Discussion

If you are making collections of data available to other classes, you may not want the other
classes to depend upon how you have stored the data, so that you can revise your class easily at
a later time. Yet you need to publish a method that gives these classes access to your data. It is
for this very purpose that the Enuner at i on and later the | t er at or interfaces were included in
the] ava. uti | package. These provide a pair of methods that allow you to iterate, or step
through all the elements of a data structure without knowing or caring how the data is stored. The
newer | t er at or interface also allows deletions, though classes that implement the interface are
free either to implement the use of deletions or to throw an

Unsupport edOper ati onExcept i on.

Here is | t er Deno, the previous Vect or demo rewritten to use an | t er at or to access the
elements of the data structure:

Vector v = new Vector();
Enuneration e;
St ruct ureDenp source = new StructurebDeno(15);

/1 Add lots of elenents to the Vector. ..
v. addEl enent (source. getDate());
v. addEl enent (source. getDate());
v. addEl enent (source. getDate())

)

/'l Process the data structure using an iterator.
int i =0;
Iterator it = v.iterator();

/'l Remai ning part of the code does not know or care
/1 if the data is an an array, a Vector, or whatever.
while (it.hasNext()) {

bject o = it.next();

Systemout.printin("Element " + i++ + " =" + 0);

To demystify the | t er at or and show that it's actually easy to build, we'll create our own
| terator in Section 7.15.

7.6 Structuring Data in a Linked List

7.6.1 Problem

Your data isn't suitable for use in an array.
7.6.2 Solution

Write your own data structure(s).

7.6.3 Discussion

Anybody who's taken Computer Science 101 (or any computer science course) should be familiar
with the concepts of data structuring, such as linked lists, binary trees, and the like. While this is
not the place to discuss the details of such things, I'll give a brief illustration of one of the more
common ones, the linked list. A linked list is commonly used when you have an unpredictably
large number of data items, wish to allocate just the right amount of storage, and usually want to
access them in the same order that you created them. Figure 7-1 is a diagram showing the
normal arrangement.

Figure 7-1. Linked list structure

head node node node
—= pext —— pexl ——= qnexl []
Jast node,
“nexi” is mul

Here is code that implements a simple linked list:

/**
* Linked list class, witten out in full using Java.
*/
public class LinkList {
public static void main(String argv[]) {
Systemout.printin("Here is a denp of a Linked List in Java");

Li nkList | = new LinkList();

| .add(new Qbject());

| .add("Hell 0");

Systemout.printin("Here is a list of all the elenents");
l.print();

if (I.lookup("Hello"))
Systemerr.println("Lookup works");

el se
Systemerr.println("Lookup does not work");

}

/* A TNode stores one node or itemin the linked list. */
cl ass TNode {
TNode next;
(bj ect dat a;
TNode(Obj ect 0) {
dat a 0;
next nul | ;

}
protected TNode root;

protected TNode | ast;

/** Construct a LinkList: initialize the root and | ast nodes. */
LinkList() {

r oot new TNode(this);

| ast r oot ;

}

/** Add one object to the end of the Iist. Update the "next"
* reference in the previous end, to refer to the new node.
* Update "last" to refer to the new node.
*/
voi d add(Obj ect 0) {
| ast. next = new TNode(0);
| ast = | ast. next;

}

public bool ean | ookup(Object o) {
for (TNode p=root.next; p != null; p = p.next)
if (p.data==0 || p.data.equal s(0))
return true;
return fal se;

}

void print() {
for (TNode p=root.next; p != null; p = p.next)
Systemout.println("TNode" + p + " =" + p.data);

©

}

This approach works reasonably well. But it turns out that many applications use linked lists. Why
should each programmer have to provide his or her own linked list class, each with a slightly
different set of bugs? You don't have to provide your own square root function or write your own
Remote Method Invocation services. Accordingly, Java 2 does include a Li nkedLi st class;
here is a similar program that uses it:

i mport java.util.*;

/**

* Denmp 1.2 java.util.LinkedList; sane exanple as mny ol der LinkLi st
cl ass.
*/
public class LinkedLi stDeno {
public static void main(String argv[]) {
Systemout.printin("Here is a deno of Java 1.2's LinkedLi st
class");

Li nkedLi st | = new LinkedList();
| . add(new Qbject());
| .add("Hell0");

Systemout.printin("Here is a list of all the elenents");
/1 Listlterator is discussed shortly.

Listlterator li =1.listlterator(0);

while (li.hasNext())

Systemout.printlin(li.next());

if (I.indexOr("Hello") < 0)
Systemerr.println("Lookup does not work");
el se
Systemerr.println("Lookup works");

}

As you can see, it does pretty much the same thing as my Li nkLi st , but uses the existing class
java.util.LinkedLi st instead of having you roll your own. The Li st | t er at or class used
here is an example of an | t er at or, which was discussed in Section 7.5.

7.7 Mapping with Hashtable and HashMap
7.7.1 Problem
You need a one-way mapping from one data item to another.
7.7.2 Solution

Use a HashMap, or the older Hasht abl e.

7.7.3 Discussion

HashMap (added in Java 2) and Hasht abl e provide a one-way mapping from one set of object
references to another. They are completely general purpose. I've used them to map AWT push
buttons (see Section 13.5) to the URL to jump to when the button is pushed; to map names to
addresses; and to implement a simple in-memory cache in a web server. You can map from
anything to anything. Here we map from company names to addresses; the addresses here are
St ri ng objects, but in real life they'd probably be Addr ess objects.

/1 HashDeno.j ava
/1l Construct and | oad the HashMap. This sinul ates | oading a database
/1l or reading froma file, or wherever the data is from

/1 The hashtabl e maps from conpany nane to conpany address.
/1 In a real application these would be an Address object.
HashMap h = new HashMap();

. put (" Adobe", "Muntain View, CA");

.put ("I1BM', "VWhite Plains, NY");

. put ("Learning Tree", "Los Angeles, CA");

.put ("O Reilly & Associ ates", "Sebastopol, CA");
. put ("Netscape", "Muntain View, CA");

.put ("Sun", "Muntain View, CA");

jun pien e Mien Mien Hiben o

/1 Two versions of the "retrieval" phase.

/1 Version 1: get one pair's value given its key

/1 (presumably the key would really conme fromuser input):
String queryString = "OReilly & Associ ates”;

Systemout. println("You asked about " + queryString + ".");
String resultString = (String)h.get(queryString);

Systemout.println("They are |ocated in: + resultString);

Systemout.printin();

/'l Version 2: get ALL the keys and pairs
/1 (maybe to print a report, or to save to disk)
Iterator it = h.values().iterator();
while (it.hasNext()) {
String key = (String) it.next();
Systemout. println("Conpany " + key + "; " +
"Address " + h.get(key));
}

}
7.8 Storing Strings in Properties and Preferences

7.8.1 Problem

You need to store keys and values that are both strings, possibly with persistence across runs of
a program. For example: program customization.

7.8.2 Solution

Useajava.util.Properties object(orajava.util.Prefs.Preferences objectin JDK
1.4).

7.8.3 Discussion

The Properti es class is similar to a HashVap or Hasht abl e (it extends the latter), but with
methods defined specifically for string storage and retrieval and for loading/saving. Properti es
objects are used throughout Java, for everything from setting the platform font names to
customizing user applications into different Local e settings as part of internationalization and
localization. When stored on disk, a Pr oper t i es object looks just like a series of nane=val ue
assignments, with optional comments. Comments are added when you hand-edit a Pr operti es
file, ignored when the Pr opert i es object reads itself, and lost when you ask the Properti es
object to save itself to disk. Here is an example of a Pr operti es file that could be used to
internationalize the menus in a GUI-based program:

Default properties for Menulntl
programtitl e=Denonstrate | 18N (Menulntl)
program nmessage=Wel cone to an English-localized Java Program
#

The File Menu

#

file.label =File Menu

file.new. | abel =New Fil e

file.new key=N

file.open. | abel =Cpen. . .

file.open. key=0

file.save. | abel =Save

file.save. key=S

file.exit.|abel =Exit

file.exit.key=Q

Here is another example, showing some personalization properties:

nanme=l an Darwi n
favorite_popsicle=cherry
favorite_rock group=Fl eetwood Mac
favorite_progranmm ng_| anguage=Java
penci | col or=green

A Properti es object can be loaded from a file. The rules are flexible: either =, : , or spaces can
be used after a key name and its values. Spaces after a non-space character are ignored in the
key. Backslash can be used to continue lines or to escape other characters. Comment lines may
begin with either # or | . Thus, a Properti es file containing the previous items, if prepared by
hand, could look like this:

Here is a list of properties
I first, ny nane
nanme |lan Darw n
favorite_popsicle = cherry
favorite_rock\ group \
FI eet wood Mac
favorite_programm ng_| anguage=Java
penci |\ color green

Fortunately, when a Pr oper t | es object writes itself to a file, it only uses the simple format:
key=val ue

Here is an example of a program that creates a Pr oper t i es object adds into it the list of
companies and their addresses from Section 7.7, and then loads additional properties from disk.
To simplify the 1/O processing, the program assumes that the Pr oper t i es file to be loaded is
contained in the standard input, as would be done using a command-line redirection on either
Unix or DOS.

i mport java.util.*;

public class PropsConpanies {
public static void main(String argv[]) throws java.io.| OException {
Properties props = new Properties();

/1l Get ny data.

props. set Property("Adobe", "Muntain View, CA");
props.setProperty("I1BM, "Wite Plains, NY");

props. set Property("Learning Tree", "Los Angeles, CA");
props.setProperty("O Reilly & Associ ates", "Sebastopol, CA");
props. set Property("Netscape", "Muntain View, CA");

props. set Property("Sun", "Muntain View, CA");

/1 Now | oad additional properties
props. | oad(Systemin);

/1 Now list the nerged Properties, using System out
props.list(System out);

Note that set Property() was added in JDK 1.2; prior to that, the put () method of parent
class HashTabl e was used.

Running it as:
j ava PropsConpani es < PropsDeno. dat

produces the following output:

-- listing properties --
Sony=Japan

Sun=Mount ai n View, CA

| BMEWhi te Pl ains, NY

Net scape=Mount ai n Vi ew, CA

Ni ppon_Kogaku=Japan

Acorn=Uni t ed Ki ngdom
Adobe=Mount ai n Vi ew, CA

Eri csson=Sweden

O Reilly & Associ at es=Sebast opol, CA
Learni ng Tree=Los Angel es, CA

In case you didn't notice in either the HashVap or the Proper t i es examples, the order that the
outputs appear in these examples is neither sorted nor even the same order we put them in. The
hashing classes and the Pr opert i es subclass make no claim about the order in which objects
are retrieved. If you need them sorted, see Section 7.9.

As a convenient shortcut, my Fi | eProperti es class includes a constructor that takes a
filename, and a no-argument | oad() method that takes a filename argument, as in:

Properties p = new comdarw nsys. util.FileProperties("PropsDeno.dat");

Note that constructing a Fi | eProperti es causes it to be loaded, and therefore the constructor
may throw a checked exception of class | OExcept i on.

The Preferences classjava. util.Prefs. Preferences (newin Java 2 SDK 1.4) is
intended to provide an easier-to-use mechanism for storing user customizations in a system-
dependent way (which might mean dot files on Unix, a preferences file on the Mac, or the MS-
Windows Registry on Microsoft systems). This new class provides a hierarchical set of nodes
representing a user's preferences. Data is stored in the system-dependent storage format but can
also be exported to or imported from an XML format.

Finally, though it is platform-specific, Cogent Logic produces a JNDI (Java Naming and Directory
Interface) service provider for accessing the MS-Windows registry, which can also be used for
preferences. JNDI is a general naming and directory lookup that, like

j avax. preferences. prefs, is better suited than Pr oper ti es for dealing with hierarchical
data. Cogent Logic's product gives you both local and (subject to security arrangements) remote
access to preferences on an MS-Windows system. See http://cogentlogic.com/jndi/.

7.9 Sorting a Collection

7.9.1 Problem

You put your data into a collection in random order or used a Pr oper t i es object that doesn't
preserve the order, and now you want it sorted.

7.9.2 Solution

Use the static method Arrays. sort() orCol | ections.sort(), optionally providing a
Conpar at or .

7.9.3 Discussion

If your data is in an array, you can sort it using the static sort () method of the Arr ays utility
class. If it is in a collection, you can use the static sort () method of the Col | ect i ons class.
Here is a set of strings being sorted, first in an Ar r ay and then in a Vect or:

public class SortArray {
public static void nmain(String[] unused) {

String[] strings = {
"pai nful ",
"mainly",
"gai ni ng",
"rai ndrops”

1

Arrays. sort(strings);

for (int i=0; i<strings.length; i++)
Systemout.println(strings[i]);

}

public class SortCollection {
public static void nmain(String[] unused) {
Vector v = new Vector();
v.add("pai nful ");
v.add("mai nly");
v. add("gai ni ng");
v.add("rai ndrops");

Col | ections.sort(v);
for (int i=0; i<v.size(); i++)
Systemout.println(v.elenentAt(i));

}

What if the default sort ordering isn't what you want? Well, there is a Conpar at or interface, and
you can create an object that implements it and pass that as the second argument to sort.
Fortunately, for the most common ordering next to the default, you don't have to; there is a public
constant St ri ng. CASE_| NSENSI TI VE_ORDER that can be passed as this second argument.
The St ri ng class defines it as "a Conpar at or that orders St r i ng objects as by

conpar eTol gnor eCase." But if you need something fancier, you need to write a Conpar at or .
Suppose that, for some strange reason, you need to sort strings the first character of each. One
way to do this would be to write this Conpar at or :

public class SubstringConparator inplenents java.util.Conparator {
public int conpare(Cbject ol, Object 02) {
String s1 = ol.toString().substring(1);

String s2 = 02.toString().substring(l);

return sl. conpareTo(s2);

/1 or, nore concisely:

/1 return ol.substring(l).equal s(o02.substring(l1));

}

Using it is just a matter of passing it as the Conpar at or argument to the correct form of sort (
), as shown here:

i mport java.util.?*;

public class SubstrConpDeno {
public static void main(String[] unused) {
String[] strings = {
"pai nful ",
"mai nly",
"gal ni ng",
"rai ndrops”
1
Arrays.sort(strings);
dunp(strings, "Using Default Sort");
Arrays.sort(strings, new SubstringConparator());
dunp(strings, "Using SubstringConparator");

}
static void dunp(String[] args, String title) {

Systemout.printlin(title);
for (int i=0; i<args.length; i++)
Systemout.println(args[i]);

}
Here is the output of running it:

$ java Substr ConpDenp
Using Default Sort

gai ni ng

mai nly

pai nf ul

rai ndr ops

Usi ng Subst ri ngConpar at or
rai ndr ops

pai nf ul

gai ni ng

mai nly

And this is all as it should be.

On the other hand, you may be writing a class and want to build in the comparison functionality,
so that you don't always have to remember to pass the Conpar at or with it. In this case, you can
directly implement the | ava. | ang. Conpar abl e interface. The St ri ng class, the wrapper
classes Byt e, Char act er, Doubl e, Fl oat, Long, Short,and | nt eger, as well as

Bi gl nt eger and Bi gDeci mal from | ava. math, Fil e fromjava.io,java.util.Date,and
java. text. Col | ati onKey all implement this interface, so arrays or Col | ect i ons of these

can be sorted without providing a Conpar at or . Classes that implement Conpar abl e are said to
have a "natural" ordering. The documentation strongly recommends that a class's natural
ordering be consistent with its equal s() method, and it is consistent with equal s() if and
only if el. conpar eTo((Obj ect) e2) ==0 has the same boolean value as

el. equal s((Object)e2) forevery instance el and e2 of the given class. This means that if
you implement Conpar abl e, you should also implement equal s(), and the logic of equal s(
) should be consistent with the logic of the conpar eTo() method. Here, for example, is part of
the appointment class Appt from a hypothetical scheduling program:

public class Appt inplenents Conparable {
// much code and variables onitted - see online version

/** conpareTo net hod, from Conparable interface.

* Conpare this Appointnent agai nst another, for purposes of
sorting.

* <P>Only date and tinme participate, not repetition!

* Consistent with equals().

* @eturn -1 if this<a2, +1 if this>a2, else 0.

*/

public int conpareTo(Object 02) {

Appt a2 = (Appt) o2;

if (year < a2.year)

return -1;

if (year > a2.year)
return +1;

if (month < a2. nonth)
return -1;

if (month > a2. nonth)
return +1;

if (day < a2.day)
return -1;

if (day > a2.day)
return +1;

i f (hour < a2.hour)
return -1;

i f (hour > a2.hour)
return +1;

if (mnute < a2.mnute)
return -1;

if (mnute > a2.mnute)
return +1;

return target.conpareTo(a2.target);

}

/** Conpare this appointnent agai nst another, for equality.
* Consistent with conpareTo(). For this reason, only
* date & tine participate, not repetition.
* @eturns true if the objects are equal, false if not.
*/
publ i c bool ean equal s(Cbj ect 02) {

Appt a2z = (Appt) o2;

if (year !'= a2.year ||

month !'= a2. nonth ||

day != a2.day ||
hour !'= a2. hour ||
mnute !'= a2. m nute)
return false;
return target.equal s(a2.target);

}

If you're still confused between Conpar abl e and Conpar at or , you're probably not alone. This
table summarizes the two "comparison” interfaces:

Interface name Description Method(s)

Provides a natural order to objects. Used |O)nt conpar eTo(Cbj ect

j ava. | ang. Conpar abl elin the class whose objects are being
sorted.

)

bool ean
equal s(Ohj ect c2)

Provides total control over sorting objects
of another class. Standalone; pass to
sort() method or Col | ecti on
constructor.

i nt conpar e(Cbj ect

j ava. uti |l . Conpar at or ol, Object 02);

7.10 Sorting in Java 1.1

7.10.1 Problem

You need to sort, but you're still running on Java 1.1.
7.10.2 Solution

Provide your own sort routine, or use mine.

7.10.3 Discussion

If you're still running on a Java 1.1 platform, you won't have the Arrays or Col | ecti ons
classes and therefore must provide your own sorting. There are two ways of proceeding: using
the system sort utility or providing your own sort algorithm. The former -- running the sort program
-- can be accomplished by running an external program, which will be covered in Section 26.2.
The code here re-casts the example from Section 7.9 into using our own Sor t . The actual
sorting code is not printed here; it is included in the online source files, since it is just a simple
adaptation of the QuickSort example from the Sorting program in Sun's Java QuickSort Applet
demonstration.

public class StrSortl 1 {
/** The list of strings to be sorted */
static public String a[] = {
"Querty”,
"lan",
"Java",
"CGosling",
"Al pha",
" Zul u"

/[** Sinple main programto test the sorting */
public static void main(String argv[]) {
Systemout.println("StrSort Deno in Java");
StringSort s = new StringSort();
dunp(a, "Before");
S. QuickSort(a, 0, a.length-1);
dunmp(a, "After");
}

static void dunp(String a[], String title) {
Systemout.println("***** " + title + " ***x*x").
for (int i=0; i<a.length; i++)
Systemout.println("a["+i+"]="+a[i]);

}
7.11 Avoiding the Urge to Sort

7.11.1 Problem
Your data needs to be sorted, but you don't want to stop and sort it periodically.

7.11.2 Solution

Not everything that requires order requires an explicit sort operation. Just keep the data sorted at
all times.

7.11.3 Discussion

You can avoid the overhead and elapsed time of an explicit sorting operation by ensuring that the
data is in the correct order at all times. You can do this manually or, in Java 2, by using a
TreeSet ora Tr eeMap. First, some code from a call tracking program that | first wrote on JDK
1.0 to keep track of people | had extended contact with. Far less functional than a Rolodex, my
Cal | Tr ak program maintained a list of people sorted by last name and first name. For each
person it also had the city, phone number, and email address. Here is a portion of the code that
was the event handler for the New User push button:

/** The list of User objects. */
Vector usrlList = new Vector();
/** The scrolling list */
java.awt . List visList = new List();
/** Add one (new) Candidate to the lists */
protected void add(Candidate c) {
String n = c.|astnaneg;
int i;
for (i=0; i<usrList.size(); i++)
if (n.conpareTo(((Candidate)(usrList.elementAt(i))).!lastnamne)
<= O)
br eak;
vi sLi st.add(c.getNane(), i);
usrlList.insertEl ementAt(c, i);
vi sList.select(i); /'l ensure current

}

This code uses the St ri ng class conpar eTo(St ri ng) routine. This has the same name and
signature as the conpar eTo(Obj ect) in Conpar abl e, but was added to the St ri ng class in
JDK 1.1, before the Conpar abl e interface was defined.

If | were writing this code today, on Java 2, | would probably use a Tr eeSet (which keeps
objects in order) or a Tr eelVap (which keeps the keys in order, and maps from keys to values;
the keys would be the name and the values would be the Candi dat e objects). These both insert
the objects into a tree in the correct order, so an | t er at or that traverses the tree always returns
the objects in sorted order. In addition, they have methods such as headSet () and headMap(
), which give a new object of the same class containing objects lexically before a given value.
Thetail Set() andtail Map() methods return objects greater than a given value, and
subSet () and subMap() returnarange. Thefirst() and!| ast() methods retrieve the
obvious components from the collection. The following program uses a Tr eeSet to sort some
names:

/1 TreeSet Deno.java
/* A TreeSet keeps objects in sorted order. W use a
* Conparator published by String for case-insensitive
* sorting order.
*/
TreeSet tm = new TreeSet (String. CASE | NSENSI Tl VE_CRDER) ;
tm add(" Gosl i ng");
tmadd("da Vinci");
tm add("van Gogh");
tmadd("Java To Go");
t m add(" Vanguard");
tm add(" Darwi n");
tm add(" Darwi n"); /1l TreeSet is Set, ignores duplicate. See Section
7.12.

/1 Since it is sorted we can ask for various subsets
Systemout. println("Lowest (al phabetically) is "™ + tmfirst());
/1 Print how many el enents are greater than "k"
Systemout.printin(tmtail Set ("k").toArray().length +

" elements higher than \"k\"");

/1 Print the whole list in sorted order
Systemout.println("Sorted list:");
java.util.lterator t = tmiterator();

while (t.hasNext())
Systemout.println(t.next());

One last point to note is that if you have a Hasht abl e or HashMap (and Java 2), you can convert
itto a Tr eelap , and therefore get it sorted, just by passing it to the Tr eelVap constructor:

TreeMap sorted = new TreeMap(unsortedHashMap) ;

7.12 Sets

7.12.1 Problem

You want to ensure that only one copy of each unique value is stored in a collection.
7.12.2 Solution

Use a Set .
7.12.3 Discussion

The Set interface is a collection that maintains only one instance of each value. If you add into it
an object that is equal (as defined by the equal s() method) to another object, only one of the
objects is maintained. By definition, it does not matter to you which of the two objects it keeps --
the one in the collection or the one being added -- since your objects' equal s() method
indicated they were both equal.

/'l SetDenv.java

HashSet h = new HashSet();

h. add(" One");

h. add(" Two") ;

h. add("One"); // DUPLI CATE

h.add(" Three");

Iterator it = h.iterator();

while (it.hasNext()) {
Systemout.printin(it.next());

}

Not surprisingly, only the three distinct values are printed.

7.13 Finding an Object in a Collection

7.13.1 Problem

You need to see whether a given collection contains a particular value.
7.13.2 Solution

Ask the collection if it contains an object of the given value.

7.13.3 Discussion

If you have created the contents of a collection, you probably know what is in it and what is not.
But if the collection is prepared by another part of a large application, or even if you've just been
putting objects into it and now need to find out if a given value was found, this recipe's for you.
There is quite a variety of methods, depending on which class of collection you have. The
following methods can be used:

Method Meaning Implementing classes
bi narySear ch() Fairly fast search Arrays, Col | ecti ons
Arrayli st, HashSet,
contains() Linear search Hasht abl e, Li nkLi st
Properties, Vect or

. Checks if the collection
containskey(), contains the object as a Key or Hashivap, Hashtabl e,
cont ai nsVal ue() Properties, TreeMap
as aVal ue
. Returns location where object [ArraylLi st, Li nkedLi st, Li st,
I ndexQr () is found St ack, Vect or
sear ch() Linear search St ack

This example plays a little game of "find the hidden number" (or "needle in a haystack"); the
numbers to look through are stored in an array. As games go, it's fairly pathetic: the computer
plays against itself, so you probably know who's going to win. | wrote it that way so | would know
that the data array contains valid numbers. The interesting part is not the generation of the
random numbers (discussed in Section 5.13). The array to be used with

Arrays. bi narySear ch() must be in sorted order, but since we just filled it with random
numbers, it isn't initially sorted. Hence we call Arrays. sort () on the array. Then we are in a
position to call Arrays. bi narySear ch(), passing in the array and the value to look for. If you
run the program with a number, it runs that many games and reports on how it fared overall. If
you don't bother, it plays only one game.

i mport java.util.*;

/[** Array Hunt "gane" (pathetic: conputer plays itself).
*/
public class ArrayHunt {
protected final static int MAX
protected final static int NEEDLE
i nt haystack[];
Random r;

4000; // how many randomints
1999; // value to | ook for

public static void main(String argv[]) {
ArrayHunt h = new ArrayHunt();
if (argv.length == 0)
h.play();
el se {
int won = O;
int games = Integer.parselnt(argv[0]);
for (int i=0; i<ganes; i++)
if (h.play())

++won;
System out. println("Conputer won " + won +
" out of " + games + ".");

}

/** Construct the hunting ground */
public ArrayHunt() {

haystack = new i nt[MAX];

r = new Random();

}

/** Play one gane. */

public boolean play() {
int i;
/1 Fill the array with random data (hay?)
for (i=0; i<MAX;, i++) {

haystack[i] = (int)(r.nextFloat() * MAX);
}

/'l Precondition for binarySearch() is that array be sorted!
Arrays. sort (hayst ack);

/'l Look for needle in haystack. :-)
i = Arrays. bi narySear ch(hayst ack, NEEDLE);

if (i >=0) { /1l found it - hurray, we w n!
Systemout.println("Value " + NEEDLE +
" occurs at haystack[" + 1 + "]");
return true;
} else { /1 not found, we |ose.

Systemout.println("Value " + NEEDLE +
" does not occur in haystack; nearest value is " +
haystack[-(i+2)] + " (found at " + -(i+2) + ")");
return false;

}
Note that the Col | ecti ons. bi narySear ch() works almost exactly the same way, except it

looks in a Col | ect i on, which must be sorted (presumably using Col | ecti ons. sort, as
discussed in Section 7.9).

7.14 Converting a Collection to an Array
7.14.1 Problem
You have a Col | ect i on but you need a Java language array.

7.14.2 Solution

Use the Col | ecti on method t oArray().
7.14.3 Discussion

If you have an ArrayLi st or other Col | ect i on and you need a Java language array, you can
get it just by calling the Col | ecti on'st oArray() method. With no arguments you get an
array whose type is Cbj ect [] . You can optionally provide an array argument, which is used for
two purposes:

1. The type of the array argument determines the type of array returned.

2. |If the array is big enough (you can control this with the Col | ecti on'ssi ze()
method), then this array is filled and returned. If the array is not big enough, a new array
is allocated instead. If you provide an array and there are objects in the Col | ecti on
that cannot be casted to this type, then you get an Ar r ay St or eExcept i on.

Example 7-1 shows code for converting an ArrayLi st to an array of type Obj ect .

Example 7-1. ToArray.java

i mport java.util.*;

/** ArraylList to array */
public class ToArray ({
public static void main(String[] args) {
ArrayList al = new ArrayList();
al . add(" Bl obbo");
al . add(" Cracked");
al . add(" Dunbo") ;
/1 al.add(new Date()); /1 Don"t mx and match!

/1 Convert a collection to Object[], which can store objects
/1 of any type.

oject[] ol = al.toArray();

Systemout.println("Array of Cbject has length " + ol.length);

/1 This would throw an ArrayStoreException if the |ine
/1 "al.add(new Date())" above were uncomment ed.

String[] sl = (String[]) al.toArray(new String[0]);
Systemout.println("Array of String has length " + ol.length);

}
7.15 Rolling Your Own Iterator
7.15.1 Problem

You have your own data structure, but you want to publish the data as an | t er at or to provide
generic access to it You need to write your own | t er at or .

7.15.2 Solution

Just implement (or provide an inner class that implements) the | t er at or (or Enuner at i on)
interface.

7.15.3 Discussion

To make data from one part of your program available in a storage-independent way to other
parts of the code, generate an | t er at or . Here is a short program that constructs, upon request,
an |t erat or for some data that it is storing, in this case in an array. The | t er at or interface
has only three methods: hasNext () ,next(),andrenove().

i mport java.util.*;
/** Denpnstrate the lIterator interface (newin 1.2).
*/
public class IterDeno inplenments Iterator ({
protected String[] data = { "one", "two", "three" };

protected int index = O;

/** Returns true if not at the end, i.e., if next() wll return
* an elenent. Returns false if next() will throw an exception.

*/

publ i ¢ bool ean hasNext() {
return (index < data.length);

}

/** Returns the next elenent fromthe data */
public Object next() {
if (index >= data.length)
t hrow new | ndexQut OF BoundsExcept i on(
"only " + data.length + " elenments");
return data[index++];

}

/** Renove the object that next() just returned.
* An lterator is not required to support this interface,
* and we certainly don't. :-)
*/
public void remove() {
t hrow new Unsupport edOper ati onExcepti on(
"This deno does not inplenment the renove nethod");

}

/** Sinple tryout */
public static void nmain(String unused[]) {
IterDenp it = new IterDenmo();
while (it.hasNext())
Systemout.printin(it.next());

}

The comments above the r enove() method remind me of an interesting point. This interface
introduces something new to Java, the optional method. Since there is no syntax for this and they
didn't want to introduce any new syntax, the developers of the Collections Framework decided on
an implementation using existing syntax. If they are not implemented, the optional methods are
required to throw an Unsuppor t edOper at i onExcept i on if they ever get called. My r enove(
) method does this. Note that Unsuppor t edOper at i onExcept i on is subclassed from

RunTi neExcept i on, so it is not required to be declared or caught.

This code is unrealistic in several ways, but it does show the syntax and how the | t er at or
interface works. In real code, the | t er at or and the data are usually separate objects (the

| t er at or might be an inner class from the data store class). Also, you don't even need to write
this code for an array; you can just construct an ArrayLi st object, copy the array elements into
it, and ask it to provide the | t er at or . However, | believe it's worth showing this simple example
of the internals of an | t er at or so you can understand both how it works and how you could
provide one for a more sophisticated data structure, should the need arise.

7.16 Stack
7.16.1 Problem
You need to process data in "last-in, first-out" (LIFO) or "most recently added" order.

7.16.2 Solution

Write your own code for creating a stack; it's easy. Or, use aj ava. ut i | . St ack.
7.16.3 Discussion

You need to put things into a holding area quickly, and retrieve them in last-in, first-out order. This
is a common data structuring operation and is often used to reverse the order of objects. The
basic operations of any stack are push() (add to stack), pop() (remove from stack), and
peek() (examine top element without removing). A simple stack for stacking only i nt s is in
class Toy St ack:

/** Toy Stack. */
public class ToyStack {

/** The maxi num stack depth */

protected int MAX DEPTH = 10;

/** The current stack depth */

protected int depth = 0O;

/* The actual stack */

protected int stack[] = new int[MAX DEPTH];

/* lInplenent a toy stack version of push */
protected void push(int n) {

st ack[dept h++] = n;
}

/* 1Inplenent a toy stack version of pop */
protected int pop() {

return stack[--depth];
}

/* Inplenent a toy stack version of peek */
protected int peek() {

return stack[depth];
}

}

If you are not familiar with the basic idea of a stack, you should work through the code here; if you
are, skip ahead. While looking at it, of course, think about what happens if pop() is called when
push() has never been called, or if push() is called to stack more data than will fit.

The j ava. uti | . St ack operation behaves in a similar fashion. However, instead of being built
just for one type of primitive, such as Java i nt , the methods of | ava. ut i | . St ack are defined
interms of | ava. | ang. Cbj ect so that any kind of object can be put in and taken out. A cast
will be needed when popping objects, if you wish to call any methods defined in a class below
bj ect .

For an example of aj ava. uti | . St ack in operation, Section 5.19 provides a simple stack-
based numeric calculator.

7.17 Multidimensional Structures

7.17.1 Problem

You need a two-, three-, or more dimensional array or ArrayLi st .

7.17.2 Solution
No problem. Java supports this.
7.17.3 Discussion

As mentioned back in Section 7.2, Java arrays can hold any reference type. Since an array is a
reference type, it follows that you can have arrays of arrays or, in other terminology,
multidimensional arrays. Further, since each array has its own length attribute, the columns of a
two-dimensional array, for example, do not all have to be the same length (see Figure 7-2).

Figure 7-2. Multidimensional arrays

Array

- JITYN

Here is code to allocate a couple of two-dimensional arrays, one using a loop and the other using
an initializer. Both are selectively printed.

/** Show Two- Di nrensi onal Array of Cbjects */
public class ArrayTwoDObj ects {

/** Return list of subscript nanes (unrealistic; just for deno). */
public static String[][] getArraylnfo() {
String info[][];
info = new String[10][10];
for (int i=0; i < info.length; i++) {
for (int j =0; j <info[i].length; j++) {
infol[i][j] = "String[" + i +"," +j +"]";
}
}

return info;

}

/** Return list of allowable paraneters (Applet nethod). */
public static String[][] getParaneterinfo() {
String paraminfo[][] = {
{"fontsize", "9-18", "Size of font"},

{"URL", "Where to downl oad"},

i
return param.info;

}

/** Run both initialization nmethods and print part of the results

*/

public static void main(String[] args) {
print("fromgetArraylnfo", getArraylnfo());
print("from getParaneterlnfo", getParaneterinfo());

}

/** Print selected elements fromthe 2D array */

public static void print(String tag, String[][] array) {
Systemout.printin("Array " + tag + " is " + array.length + " x

+
array[0] .l ength);

Systemout.println("Array[0][0] = + array[0][0]);
Systemout.println("Array[0][1] = + array[0][1]);
Systemout.println("Array[1][0] = + array[1][0]);
Systemout.println("Array[0][0] = + array[0][0]);
Systemout.println("Array[1][1] = + array[1][1]);

}

}

Running it produces this output:

> java ArrayTwoDbj ect s
Array fromgetArraylnfo is 10 x 10
Array[0][0] = String[O0, 0]

Array[0][1] = String[O0, 1]
Array[1][0] = String[1,0]
Array[0][0] = String[O0, 0]
Array[1][1] = String[1, 1]

Array from getParaneterinfo is 2 x 3

Array[0][0] = fontsize
Array[0][1] = 9-18
Array[1][0] = URL
Array[0][0] = fontsize

Array[1] [1]
>

The same kind of logic can be applied to any of the Col | ecti ons. You could have an
ArrayLi st of ArrayLi sts, oraVect or of linked lists, or whatever your little heart desires.

As Figure 7-2 shows, it is not necessary for the array to be "regular.” That is, it's possible for
each column of the 2D array to have a different height. That is why in the code example | used
array|[0] . | engt h for the length of the first column.

7.18 Finally, Collections

7.18.1 Problem

You're having trouble keeping track of all these lists, sets, and iterators.

7.18.2 Solution

There's a pattern to it. See Figure 7-3 and Table 7-2.

7.18.3 Discussion

Figure 7-3, in the fashion of the package-level class diagrams in the Java in a Nutshell books,
shows the collection-based classes from package | ava. uti |l .

Figure 7-3. The Collections Framework

 jovafong i javo.util

—Ilrtuf: |
|(nlulium
Object :

— bstractCollection - i AbstractSequentialist /| umum@a}
| =]

ity Frkimoo) 000 Gl J
: TreaMup Gal-- | E

| L WoakHashMap ________________ ¥y e i

—-—1 Hashtaoble @BH Properties l

[cuass | f"“‘““ﬂ‘“ﬁ L @ coneble @ serivizable
—— exlends ----- implements

7.18.4 See Also

The Javadoc documentation on Col | ecti ons, Arrays, Li st, Set, and the classes that
implement them provides more details than there's room for here. Table 7-2 may further help
you to absorb the regularity of the Collections Framework.

Table 7-2. Java Collections

Implementations

Interfaces Hashed table Linked list | Balanced tree
Resizable array

Set HashSet Tr eeSet

Li st ArraylLi st, Vector Li nkLi st

Map HashMap, Hasht abl e Tr eeMap

7.19 Program: Timing Comparisons

New developers sometimes worry about the overhead of these collections and think they should
use arrays instead of data structures. To investigate, | wrote a program that creates and
accesses 250,000 objects, once through a Java array and again through an ArrayLi st. This is
a lot more objects than most programs use. First the code for the Ar r ay version:

i mport com darw nsys. util .Mt abl el nt eger;

/** Time a bunch of creates and gets through an Array */
public class Array {
public static final int MAX = 250000;
public static void main(String[] args) {
Systemout.println(new Array().run());

public int run() {
Mut abl el nteger list[] = new Mit abl el nt eger [MAX] ;
for (int i=0; i<list.length; i++) {
list[i] = new Mitabl el nteger(i);

int sum = O;
for (int i=0; i<list.length; i++) {
sum += list[i].getValue();
}
return sum
}

And the ArraylLi st version:

i mport java.util.ArraylList;
i mport com darw nsys. util .Mt abl el nt eger;

/** Time a bunch of creates and gets through an Array */
public class ArraylLst {
public static final int MAX = 250000;
public static void main(String[] args) {
Systemout.println(new ArrayLst().run());
}

public int run() {
ArrayList list = new ArrayList();
for (int i=0; i<MAX; i++) {
[ist.add(new Mutabl elnteger(i));
}

int sum = O;

for (int i=0; i<MAX; i++) {
sum += ((Mutabl el nteger)list.get(i)).getValue();
}

return sum

}

The Vect or -based version, Ar r ayVec , is sufficiently similar that | don't feel the need to kill a
tree reprinting its code; it's online.

How can we time this? As covered in Section 25.6, you can either use the operating system's
time command, if available, or just use a bit of Java that times a run of your main program. To be
portable, | chose to use the latter, on an older, slower machine. Its exact speed doesn't matter,
since the important thing is to compare only versions of this program running on the same
machine.

Finally (drum roll, please) the results:

$ java Tinme Array

Starting class class Array
1185103928

runTi ne=4. 310

$ java Tine ArraylLst

Starting class class ArraylLst
1185103928

runTi ne=5. 626

$ java Tine ArrayVec
Starting class class ArrayVec
1185103928

runTi ne=6. 699

$

Notice that | have ignored one oft-quoted bit of advice, that of giving a good initial estimate on the
size of the ArrayLi st . 1 did time it that way as well; in this example, it made a difference of less
than four percent in the total runtime.

The bottom line is that the efficiency of ArrayLi st is almost as good (75%) as that of arrays.
The overhead of objects whose methods actually do some computation will almost certainly
outweigh it. Unless you are dealing with millions of objects per minute, you probably don't need to
worry about it. Vect or is slightly slower, but still only about two-thirds the speed of the original
array version.

8 Object-Oriented Techniques

8.1 Introduction

Java is an object-oriented (OO) language in the tradition of Simula-67, SmallTalk, and C++. It
borrows syntax from the latter and ideas from SmallTalk. The Java API has been designed and
built on the OO model. The Design Patterns (see the book of the same name) such as Factory
and Delegate are used throughout; an understanding of these, though not required, will help you
to better understand the use of the API.

8.1.1 Advice, or Mantras

There are any number of short bits of advice that | could give, and a few recurring themes that
arise when learning the basics of Java, and then learning more Java.

8.1.1.1* Use the API

Can't say this often enough. A lot of the things you need to do have already been done by the
good folks at JavaSoft. Learning the API well is a good grounds for avoiding that deadly
"reinventing the flat tire" syndrome -- coming up with a second-rate equivalent of a first-rate
product that was available to you the whole time. This is, in fact, part of this book's mission -- to
prevent you from reinventing what's already there. One example of this is the Collections API in
j ava. uti |, discussed in the previous chapter. It has a high degree of generality and regularity,
so there is usually very little reason to invent your own data structuring code.

8.1.1.2 Generalize

There is a trade-off between generality (and the resulting reusability), which is emphasized here,
and the convenience of application specificity. If you're writing one small part of a very large
application designed according to OO design techniques, you'll have in mind a specific set of use
cases. On the other hand, if you're writing "toolkit-style" code, you should write classes with few
assumptions about how they'll be used. Making code easy to use from a variety of programs is
the route to writing reusable code.

8.1.1.3 Read and write Javadoc

You've no doubt looked at the Java 2 online documentation in a browser, in part because | just
told you to learn the API well. Do you think Sun hired millions of tech writers to produce all that
documentation? No. That documentation exists because the developers of the API took the time
to write Javadoc comments, those funny / ** comments you've seen in code. So, one more bit of
advice: use Javadoc. We finally have a good, standard mechanism for API documentation. And
use it as you write the code -- don't think you'll come back and write it in later. That kind of
tomorrow never comes.

See Section 23.3 for details on using Javadoc.
8.1.1.4 Subclass early and often

| can't say this one enough either. Use subclassing. Use subclassing. Use subclassing. It is the
best basis not only for avoiding duplication of code, but for developing software that works. See
any number of good books on the topic of object- oriented design and programming for this. The

topic of Design Patterns has recently evolved as a special case of "doing OO design while
avoiding reinvention," hence a merger of these two bits of advice. That book is a good place to
start.

8.1.1.5 Use design patterns

In Section P.4 of Preface, | listed Design Patterns as one of the Very Important Books on
object-oriented programming, as it provides a powerful catalog of things that programmers often
reinvent. It is as important for giving a standard vocabulary of design as it is for its clear
explanations of how the basic patterns work and how they can be implemented.

Here are some examples from the standard API:

Pattern Meaning Examples in Java API
name
. get | nst ance (in Cal endar, For mat ,
Factory One class makes up instances for Local e...); socket constructor; RV
you, controlled by subclasses R ’
I nitial Context
Iterator Loop over all elements in | terator;older Enuneration

collection, visiting each exactly once

Singleton Only one instance may exist j ava. awt . Tool ki t

Capture and externalize an object's

Memento -
state for later reconstruction

Object serialization

Encapsulate requests, allowing
Command gueues of requests, undoable j ava. awt . Conmand
operations, etc.

Model represents data; View is what
the user sees; Controller responds
to user request

Model-View-
Controller

Observer/Observable; see also Servlet
Dispatcher (Section 18.9)

8.2 Printing Objects: Formatting with toString()

8.2.1 Problem

You want your objects to have a useful default format.

8.2.2 Solution

Override the t oSt ri ng() method inherited from | ava. | ang. Cbj ect .

8.2.3 Discussion

Whenever you pass an object to Syst em out . printl n() or any equivalent method, or
involve it in string concatenation, Java will automatically call its t oSt ri ng() method. Java
"knows" that every object has at oSt ri ng() method, since | ava. | ang. Obj ect has one and
all classes are ultimately subclasses of Obj ect . The default implementation, in

j ava. | ang. Obj ect, is neither pretty nor interesting: it just prints the class hame, an @ sign,

and the object's hashCode() value (see Section 8.4). For example, if you run this code:

/* Denonstrate toString() w thout an override */

public class ToStringWthout ({
int x, vy;

/** Sinple constructor */

public ToStringWthout(int anX, int aY) {
X = anX;, y = ay,
}

/** Main just creates and prints an object */
public static void main(String[] args) {

System out. println(new ToStri ngWt hout (42, 86));
}

}

you might see this uninformative output:

ToStri ngWt hout @90c747b

So, to make it print better, you should provide an implementation of t oSt ri ng() that prints the
class name and some of the important state in all but the most trivial classes. This gives you
formatting control in pri nt| n(), in debuggers, and anywhere your objects get referred to in a
St ri ng context. Here is the previous program done over with at oSt ri ng() method:

/* Denonstrate toString() with an override */
public class ToStringWth {

int x, vy;

/** Sinmple constructor */

public ToStringWth(int anX, int aY) {
X = anX;, y = ay,
}

/** CQverride toString */
public String toString() {
return "ToStringWth[" + x + "," +y + "]";

/** Main just creates and prints an object */
public static void main(String[] args) {

System out. println(new ToStri ngWth(42, 86));
}

}

This version produces the more useful output:

ToStringWth[42, 86]
8.3 Overriding the Equals Method
8.3.1 Problem

You want to be able to compare objects of your class.

8.3.2 Solution

Write an equal s() method.
8.3.3 Discussion

How do you determine equality? For arithmetic or boolean operators, the answer is simple: you
test with the equals operator (==). For object references, though, Java provides both == and the
equal s() method inherited from | ava. | ang. Cbj ect . The equals operator can be confusing,
as it simply compares two object references to see if they refer to the same object. This is not
what you want most of the time.

The inherited equal s() method is also not as useful as you might imagine. Some people seem
to start their life as Java developers thinking that the default equal s() will magically do some
kind of detailed, field-by-field or even binary comparison of objects. But it does not compare
fields! It just does the simplest possible thing: it returns the value of an == comparison on the two
objects involved! So, for anything useful, you will probably have to write an equals method. Note
that both the equal s and hashCode methods are used by hashes (Hasht abl e, HashMap; see
Section 7.7). So if you think somebody using your class might want to create instances and put
them into a hash, or even compare your objects, you owe it to them (and to yourself!) to
implement equal s() properly.

Here are the rules for an equal s() method:

=

It is reflexive: x. equal s(x) must be true.

It is symmetric: x. equal s(y) must be true if and only if y. equal s(x) is also true.

3. ltistransitive: if x. equal s(y) istrueandy. equal s(z) istrue, then x. equal s(z)
must also be true.

4. Itis consistent: multiple calls on x. equal s(y) return the same value (unless state
values used in the comparison are changed, as by calling a set method).

5. ltis cautious: x. equal s(nul |) must return false, rather than accidentally throwing a

Nul | Poi nt er Excepti on .

n

Here is a class that tries to implement these rules:

public class Equal sDenpo {
int intl;
Sonmed ass obj 1;

[** Constructor */

publ i ¢ Equal sDeno(int i, Somed ass 0) {
intl =1i;
obj1l = o;

}

publ i ¢ Equal sDeno() {
this(0, new SoneC ass());

}
/** Typical run-of-the-mll Equals nethod */
publ i ¢ bool ean equal s(Cbj ect o) {
if (o == null) /] caution
return false;
if (o ==this) /1 optimzation

return true;

/] Castable to this class?
if (!'(o instanceof Equal sDenp))
return fal se;

Equal sDeno ot her = (Equal sDenv) o; /1l OK, cast to this class
/1l conpare field-by-field
if (intl !'= other.intl) /1 conpare primtives
directly
return fal se;
if (!obj1l.equal s(other.objl)) /1 conpare objects using their
equal s

return fal se;
return true

}

And hereisa | uni t testfile (see Section 1.14) for the Equal sDeno class:

i mport junit.framework. *;

/** some junit test cases for Equal sDeno

*witing a full set is left as "an exercise for the reader”
* Run as: $ java junit.textui.TestRunner Equal sDenoTest

*/

public class Equal sDenbTest extends Test Case {

/** an object being tested */
Equal sDeno di;

/** anot her object being tested */
Equal sDeno d2;

[** init() method */
public void setUp() {
di new Equal sDeno();
dz2 new Equal sDeno();

}

/** constructor plunbing for junit */

publ i c Equal sDenpTest (String nane) {
super (nane) ;

}

public void testSymretry() {
assert (dl. equal s(dl));
}

public void testSymmretric()
assert (dl. equal s(d2) && d2.equal s(dl));
}

public void testCaution() {
assert(!dl. equal s(null));
}

With all that testing, what could go wrong? Well, some things still need care. What if the object is
a subclass of Equal sDenn? We castit and . . . compare only our fields! You probably should test
explicitly with get Cl ass() if subclassing is likely. And subclasses should call super . equal s(
) to test all superclass fields.

What else could go wrong? Well, what if either obj 1 or ot her . obj 1 is null? You might have just
earned a nice shiny new Nul | Poi nt er Except i on. So you also need to test for any possible
null values. Good constructors can avoid these, as I've tried to do in Equal sDenp, or else test for
them explicitly.

8.4 Overriding the Hashcode Method

8.4.1 Problem

You want to use your objects in a hash, and you need to write a hashCode().

8.4.2 Discussion

The hashCode() method is supposed to return an i nt that should uniquely identify different
objects.

A properly written hashCode() method will follow these rules:

1. ltisrepeatable: hashCode(x) must return the same i nt when called again unless set
methods have been called.

2. ltis symmetric: if x. equal s(y), then x. hashCode() must==y. hashCode(), i.e.,
either both return true, or both return false.

3. IfI'x.equal s(y), itis notrequired that x. hashCode() !=vy. hashCode(), but
doing so may improve performance of hash tables, i.e., hashes may call hashCode()
before equal s().

The default hashCode() on Sun's JDK returns a machine address, which conforms to Rule 1.
Conformance to Rules 2 and 3 depends, in part, upon your equal s() method. Here is a
program that prints the hashcodes of a small handful of objects:

/** Di splay hashCodes from sone objects */
public class PrintHashCodes {

/** Sonme objects to hashCode() on */
protected static Qbject[] data = {
new Print HashCodes(),
new j ava. awt . Col or (0x44, 0x88, 0xcc),
new Somed ass()

b

public static void main(String[] args) {
System out . println("About to hashCode
objects.");
for (int i=0; i<data.length; i++) {
Systemout.printin(datafi].toString() + " -->" +
datal[i].hashCode());

+ data.length +

Systemout.printin("A'l done.");
}
What does it print?
> jikes +E -d . PrintHashCodes.java
> java Print HashCodes
About to hashCode 3 objects.
Pri nt HoshCodes @®82741a0 --> -1742257760
java. awmt . Col or[r =68, g=136, b=204] --> -12285748
Somed ass@60b4lad --> -2046082643

Al |l done.
>

The hashcode value for the Col or object is interesting. It is actually computed as something like:
(r<<24 + g<<16 + b<<8 + al pha)

The "high bit" in this word having been set by shifting causes the value to appear negative when
printed as a signed integer. Hashcode values are allowed to be negative.

8.5 The Clone Method

8.5.1 Problem

You want to clone yourself. Or at least your objects.
8.5.2 Solution

Override Ooj ect . cl one() .

8.5.3 Discussion

To clone something is to make a duplicate of it. The cl one() method in Java makes an exact
duplicate of an object. Why do we need cloning? Java's method calling semantics are call-by-
reference, which allows the called method to modify the state of an object that is passed into it.
Cloning the input object before calling the method would pass a copy of the object, keeping your
original safe.

How can you clone? Cloning is not "enabled” by default in classes that you write.

Qbject 0 = new Qbject();
oj ect 02 = o.clone();

If you try calling cl one() without any special preparation, as in this excerpt from CloneO.java,
you will see a message like this (from the Jikes compiler; the javac message may not be as
informative):

Cl one0. java: 4:29:4:37: Error: Method "java.lang. Cbject clone();" in
class "javal/

| ang/ Gbj ect” has protected or default access. Therefore, it is not
accessible in
class "Clone0" which is in a different package.

You must take two steps to make your class cloneable:

1. Override Ooj ect'scl one() method.
2. Implement the empty Cloneable interface.

8.5.3.1 Using cloning

The class | ava. | ang. o] ect declares its clone protected and native . Protected classes can
be called by a subclass or those in the same package (i.e., | ava. | ang), but not by unrelated
classes. That is, you can call Coj ect . cl one() -- the native method that does the magic of
duplicating the object -- only from within the object being cloned. Here is a simple example of a
class with a clone method, and a tiny program that uses it:

public class Conel inplenents C oneabl e {

/** Clone this object. Just call super.clone() to do the work */
public Object clone() throws C oneNot SupportedException {

return super.clone();
}

int x;
transient int vy; /1 will be cloned, but not serialized

public static void nmain(String[] args) {
Clonel ¢ = new donel();

c.x = 100;
c.y = 200;
try {

bject d = c.clone();
Systemout.println("c=" + c);
Systemout.println("d=" + d);

} catch (C oneNot SupportedException ex) {
Systemout.printin("Now that's a surprise!l!");
Systemout. println(ex);

}

/** Display the current object as a string */
public String toString() {

}

return "Clonel[" + x +"," +y +"]";
}

The cl one() method in Cbj ect throws Cl oneNot Support edExcept i on. This is to handle
the case of inadvertently calling cl one() on a class that isn't supposed to be cloned. Since
most of the time you don't need to do anything with this exception, a clone method can simply
declare this exception in its t hr ows clause, and let the calling code deal with it.

Calling oj ect'scl one() does a stateful, shallow copy down inside the JVM. That is, it
creates a new object, and copies all the fields from the old object into the new. It then returns the

new reference as an (bj ect ; you need to cast it to the appropriate object type. So if that's all
there is, why do you even have to write this method? The reason is to give you a chance to do
any preservation of state that is required in cloning your objects. For example, if your class has
any references to other objects (and most real-world classes do), you may well want to clone
them as well! The default clone method simply copies all the object's state, so that you now have
two references to each object. Or you might have to close and reopen files, to avoid having two
threads (see Chapter 24) reading from or writing into the same file. In effect, what you have to
do here depends on what the rest of your class does.

Now suppose that you clone a class containing an array of objects. You now have two references
to objects in the array, but further additions to the array will only be made in one array or the
other. Imagine a VVect or, St ack, or other collection class being used in your class, and your
object gets cloned!

The bottom line is that most object references need to be cloned.

Even if you don't need cl one(), your subclasses may! If you didn't provide cl one() in a class
subclassed from Cbj ect , your subclasses will probably get the Obj ect version, which will cause
problems if there are collections or other mutable objects referred to. As a general rule, you
should provide cl one() even if only your own subclasses would need it.

8.5.3.2 Difficulty in the standard API

The j ava. uti| . Gbservabl e class (designed to implement the Model-View-Controller pattern
with AWT or Swing applications) contains a private Vect or but no clone method to deep-clone it.
Thus, Coser vabl e objects cannot safely be cloned, ever!

8.6 The Finalize Method

8.6.1 Problem

You want to have some action taken when your objects are removed from service.
8.6.2 Solution

Usefinalize() butdon'ttrustit; or, write your own end-of-life method.

8.6.3 Discussion

Developers coming from a C++ background tend to form a mental map that has a line of
equivalency drawn from C++ destructors to Java finalizers. In C++, destructors are called
automatically when you delete an object. Java, though, has no such operator as delete; objects
are freed automatically by a part of the Java runtime called the garbage collector, or GC. GC runs
as a background thread in Java processes and looks around every so often to see if there are
any objects that are no longer referred to by any reference variable. When it runs, as it frees
objects, it calls their f i nal i ze() methods.

For example, what if you (or some code you called) invoke Syst em exi t () ? In this case the
entire JVM will cease to exists (assuming there isn't an applet-style security manager to deny it
permission to do so) and the finalizer is never run. Similarly, a "memory leak" or mistakenly held
reference to your object will also prevent finalizers from running.

Can't you just ensure that all finalizers get run simply by calling
System runFinal i zersOnExi t (true) ? Not really! This method is deprecated (see Section
1.10); the documentation notes:

This method is inherently unsafe. It may result in finalizers being called on live
objects while other threads are concurrently manipulating those objects, resulting
in erratic behavior or deadlock.

So what if you need some kind of cleanup? You must take responsibility for defining a method
and invoking it before you let any object of that class go out of reference. You might call such a
method cl eanUp().

Java 2 SDK 1.3 introduced the runtime method addShut downHook() , to which you pass a
non-started Thr ead subclass object; if the virtual machine has a chance, it runs your shutdown
hook code as part of termination. This will normally work, unless the VM was terminated abruptly
as by a kill signal on Unix or a KillProcess on Win32, or the VM aborts due to detecting internal
corruption of its data structures.

The bottom line? There's no guarantee, but finalizers and shutdown hooks both have pretty good
odds of being run.

8.7 Using Inner Classes

8.7.1 Problem

You need to write a private class, or a class to be used in one other class at the most.
8.7.2 Solution

Use a non-public class or an inner class.

8.7.3 Discussion

A non-public class can be written as part of another class's source file, but is not included inside
that class. An inner class is Java terminology for a class defined inside another class. Inner
classes were first popularized with the advent of JDK 1.1 for use as event handlers for GUI
applications (see Section 13.5), but they have a much wider application.

Inner classes can, in fact, be constructed in several contexts. An inner class defined as a member
of a class can be instantiated anywhere in that class. An inner class defined inside a method can
only be referred to later in the same method. Inner classes can also be named or anonymous. A
named inner class has a full name that is compiler-dependent; the standard JVM uses a name
like Vai nCl ass$l nner Cl ass. cl ass for the resulting file. An anonymous inner class, similarly,
has a compiler-dependent name; the JVM uses Vai nCl ass$1. cl ass, Mai nCl ass$2. cl ass,
and so on.

These classes cannot be instantiated in any other context; any explicit attempt to refer to, say,
O her Mai nCl ass$l nner Cl ass, will be caught at compile time.

i nport java.awt.event.*;
i nport javax.swi ng. *;

public class Al d asses {
/** Inner class can be used anywhere in this file */
public class Data {
int x;
int y;
}
public void getResults() {

JButton b = new JButton("Press ne");
b. addActi onLi stener (new ActionListener() {
public void actionPerforned(Acti onEvent evt) {
Systemout. println("Thanks for pressing nme");
}

1)
}

/** Class contained in sane file as Al C asses, but can be used
* (with a warning) in other contexts.
*/
cl ass Anot herd ass {
/1 methods and fields here...
}

8.8 Providing Callbacks via Interfaces

8.8.1 Problem

You want to provide callbacks ; that is, have unrelated classes call back into your code.
8.8.2 Solution

One way is to use a Java interface.

8.8.3 Discussion

An interface is a class-like object that can contain only abstract methods and final fields. As we've
seen, interfaces are used a lot in Java! In the standard API, the following are a few of the
commonly used interfaces:

Runnabl e, Conpar abl e, and G oneabl e (inj ava. | ang)

Li st, Set, Map, and Enuneration/ | terator (inthe Collections API; see Chapter 7)
Act i onLi stener, WndowLi st ener, and others (in the AWT GUI; see Section 13.5)
Driver, Connection, Statenent,andResultSet (in JDBC; see Section 20.4)

The "remote interface" -- the contact between the client and the server -- is specified as
an | nterface (in RMI, CORBA, and EJB)

Subclass, Abstract Class, or Interface?

There is usually more than one way to skin a cat. Some problems can be
solved by subclassina, by use of abstract classes, or by interfaces. The

following general guidelines may help:

Use an abstract class when you want to provide a template for a
series of subclasses, all of which may inherit some of their
functionality from the parent class but are required to implement
some of it themselves. (Any subclass of a geometric Shapes
class might have to provide a conput eAr ea() method; since
the top-level Shapes class cannot do this, it would be abstract.
This is implemented in Section 8.9.)

Subclass whenever you want to extend a class and add some
functionality to it, whether the parent class is abstract or not. See
the standard Java APIs and the examples in Recipes Section
1.14, Section 5.11, Section 8.12, Section 9.8, and many
others throughout this book.

Subclass when you are required to extend a given class. Applets
(see Section 17.3), servlets (Section 18.2), and others use
subclassing to ensure "base" functionality in classes that are
dynamically loaded (see Section 25.4).

Define an interface when there is no common parent class with
the desired functionality, and when you want only certain
unrelated classes to have that functionality (see the

Power Swi t chabl e interface in Section 8.8).

Use interfaces as "markers" to indicate something about a class.
The standard APl uses Cl oneabl e (Section 8.5) and
Serializabl e (Section 9.17) as markers.

Suppose we are generating a futuristic building management system. To be energy-efficient, we
want to be able to remotely turn off (at night and on weekends) such things as room lights and
computer monitors, which use a lot of energy. Assume we have some kind of "remote control”
technology: it could be a commercial version of BSR's house-light control technology "X10"; it
could be BlueTooth or 802.11; it doesn't matter. What matters is that we have to be very careful
what we turn off. It would cause great ire if we turned off computer processors automatically --
people often leave things running overnight. It would be a matter of public safety if we ever turned
off the building emergency lighting.™ So we've come up with the design shown in Figure 8-1.

1 of course these lights wouldn't have remote power-off. But the computers might, for maintenance
purposes.

Figure 8-1. Classes for a building management system

Assat

1

r 1

Computerfisset BuildingAsset
BuildingLight
i
ComputerCPU ComputerMonitor E-. emees
Hnml.ﬂ'rls [rnergentjl.'qll

The code for these classes is not shown (it's pretty trivial) but it's in the online source. The top-
level classes -- those with names ending in Asset , and Bui | di ngLi ght -- are abstract classes.
You can't instantiate them, as they don't have any specific functionality. To ensure -- both at
compile time and at runtime -- that we can never switch off the emergency lighting, we need only
ensure that the class representing it, Ener gencyLi ght , does not implement the

Power Swi t chabl e interface.

Note that we can't very well use direct inheritance here. There is no common ancestor class that
includes both Conput er Moni t or and Roonli ght s that doesn't also include Conput er CPU and
Ener gencyLi ght . Use interfaces to define functionality in unrelated classes.

How we use these is demonstrated by the Bui | di ngManagenent class; this class is not part of
the hierarchy shown in Figure 8-1, but instead uses a collection (actually an array, to make the
code simpler for illustrative purposes) of Asset objects from that hierarchy.

Items that can't be switched must nonetheless be in the database, for various purposes (auditing,
insurance, and so on). In the method that turns things off, the code is careful to check whether
each object in the database is an instance of the Power Swi t chabl e interface. If so, the object is
casted to Power Swi t chabl e so that its power Down() method can be called. If not, the object
is skipped, thus preventing any possibility of turning out the emergency lights or shutting off a
machine that is busy running Seti@Home or a big Napster download. Or system backups.

/**

* Bui | di ngManagenent - control an energy-savi ng buil di ng.
* This class shows how we m ght control the objects in an office

* that can safely be powered off at nighttine to save energy - lots of
* it, when applied to a large office!
*/

public class Buil di ngManagenent {

Asset things[]

= new Asset [24];
int numtens = O;

/** goodNight is called froma tinmer Thread at 2200, or when we
* get the "shutdown" command fromthe security guard.
*/
public void goodN ght() {
for (int i=0; i<things.length; i++)
if (things[i] instanceof Power Switchabl e)
((Power Swi t chabl e)t hings[i]).power Down();

}

/1 goodMor ni ng() would be the sane, but call each one's power Up(

/[** Add a Asset to this building */

public void add(Asset thing) {
Systemout. println("Adding " + thing);
t hi ngs[num tens++] = thing;

}

/** The main program */
public static void main(String[] av) {
Bui | di ngManagenent bl = new Bui | di ngManagenent ();
b1. add(new RoonLi ght s(101)); /1 control lights in room 101
bl. add(new EnergencyLi ght (101)); /1 and energ. lights.
/1 add the conputer on desk#4 in room 101
bl. add(new Conput er CPU(10104));
/1 and its nonitor
b1. add(new Conput er Moni t or (10104));

/1 tinme passes, and the sun sets...
bl. goodN ght();

}

When you run this program, it shows all the items being added, but only the Power Swi t chabl e
ones being switched off:

> java Buil di ngManagenent

Addi ng RoonlLi ght s@dc77f 32

Addi ng EnergencylLi ght @e3b7f 32
Addi ng Comput er CPU@e637f 32
Addi ng Comput er Moni t or @f 1f 7f 32
Dousing lights in room 101
Dousi ng nonitor at desk 10104
>

8.9 Polymorphism/Abstract Methods

8.9.1 Problem
You want each of a number of methods in subclasses to provide its own version of a method.

8.9.2 Solution

Make the method abstract in the parent class; this makes the compiler ensure that each subclass
implements it.

8.9.3 Discussion

A hypothetical drawing program uses a Shape subclass for anything that is drawn. Shape has an
abstract method conput eAr ea(), which computes the exact area of the given shape:

public abstract class Shape {
protected int x, v;
public abstract double conputeArea();

}

A Rect angl e subclass, for example, has a conmput eAr ea() that multiplies width times height
and returns the result:

public class Rectangl e extends Shape {
doubl e wi dt h, height;
public doubl e conmputeArea() {
return width * height;
}

}

A Ci r cl e subclass returns T[x r

:public class Circle extends Shape {
doubl e radi us;
public double conmputeArea() {
return Math. Pl * radius * radius;
}

}

This system has a very high degree of generality. In the main program we can pass over a
collection of Shape objects and -- here's the real beauty -- call conput eArea() onany Shape
subclass object without having to worry about what kind of Shape it is. Java's polymorphic
methods automatically call the correct conput eAr ea() method in the class of which the object
was originally constructed:

/** Part of a mmin program using Shape objects */
public class Miin {

Col I ection al |l Shapes; /1 created in a Constructor, not shown

/** lterate over all the Shapes, getting their areas */
public double total Areas() {
Iterator it = all Shapes.iterator();
doubl e total = 0.0;
while (it.hasNext()) {
Shape s = (Shape)it.next();
total += s.conmputeArea();

}

return total;

This is a great boon for software maintenance: if a new subclass is added, the code in the main
program does not change. Further, all the code that is specific to, say, polygon handling, is all in
one place: in the source file for the Pol ygon class. This is a big improvement over older
languages, where type fields in a structure or record were used with case or switch statements
scattered all across the software. Java makes software more reliable and maintainable with the
use of polymorphism.

8.10 Passing Values

8.10.1 Problem

You need to pass a number like an i nt into a routine, and get back the routine's updated version
of that value in addition to the routine's return value.

This often comes up in working through strings; the routine may need to return a bool ean, say,
or the number of characters transferred, but also needs to increment an integer array or string
index in the calling class.

It is also useful in constructors, which can't return a value but may need to indicate that they have
"consumed" or processed a certain number of characters from within a string, such as when the
string will be further processed in a subsequent call.

8.10.2 Solution
Use a specialized class such as the one presented here.
8.10.3 Discussion

The | nt eger class is one of Java's predefined Nunber subclasses, mentioned in the
Introduction to Chapter 5. It serves as a wrapper for an i nt value, and also has st ati c
methods for parsing and formatting integers.

It's fine as it is, but you may want something simpler.

Here is a class | wrote, called Vut abl el nt eger, that is like an | nt eger but specialized by
omitting the overhead of Nunber and providing only the set, get, and i ncr operations, the
latter overloaded to provide a no-argument version that performs the increment (++) operator on
its value, and also a one-integer version that adds that increment into the value (analogous to the
+= operator). Since Java doesn't support operator overloading, the calling class has to call these
methods instead of invoking the operations syntactically, as you would on an i nt . For
applications that need this functionality, the advantages outweigh this minor syntactic restriction.
First let's look at an example of how it might be used. Assume you need to call a scanner function
called, say, par se(), and get back both a boolean (indicating whether or not a value was
found) and an integer value indicating where it was found:

i nport com darwi nsys. util.¥*;

/** Show use of Mutablelnteger to "pass back" a value in addition
* to a function's return val ue.

*/
public class StringParse {
[** This is the function that has a return val ue of true but
* al so "passes back" the offset into the String where a
* val ue was found. Contrived exanpl e!
*/
public static bool ean parse(String in,
char | ookFor, Mitabl el nt eger whereFound) ({
int i = in.indexdO (1 ookFor);
if (i == -1)
return fal se; /1 not found
wher eFound. set Val ue(i); /'l say where found
return true; /1 say that it was found

}

public static void main(String[] args) {
Mut abl el nteger m = new Mutabl el nteger();
String text = "Hello, Wirld";
char ¢ ='W,
if (parse(text, c, m)) {
Systemout.println("Character " + c +
+m + " in" + text);
} else {
System out. println("Not found");
}

found at offset

}

Now many OO purists will argue -- convincingly -- that you shouldn't do this. That you can always
rewrite it so there is only one return value. Either return and have the caller interpret a single
value (in this case, return the offset in the return statement, and let the user know that -1
indicates not found), or define a trivial wrapper class containing both the integer and the boolean.
However, there is precedent in the standard API: this code is remarkably similar to how the

Par sePosi ti on class (see Section 6.6) is used. Anyway, this functionality is requested often
enough that | feel justified in showing how to do it, accompanied by this disclaimer: try to avoid
doing it this way in new code!

Having said all that, here is the \Vut abl el nt eger class:

package com darw nsys. util;

/** A Mutablelnteger is Iike an Integer but nutable, to avoid the
* excess object creation involved in
* ¢ = new Integer(c.getlnt()+1)
* which can get expensive if done a |ot.
* Not subclassed fromlInteger, since Integer is final (for performance
=)
*/
public class Mitabl el nteger {
private int value = 0;

public Mitablelnteger() {
}

public Mitablelnteger(int i) {
value = i;

}
public void incr() {

val ue++;

}

public void decr() {
val ue- -;

}

public void setValue(int i) {
val ue = i;

}

public int getValue() {
return val ue;
}

public String toString() {
return Integer.toString(val ue);
}

public static String toString(int val) {
return Integer.toString(val);
}

public static int parselnt(String str) {
return Integer.parselnt(str);
}

}
8.10.4 See Also
As mentioned, this use of Mut abl el nt eger could be replaced with Par sePosi t 1 on. However,

Mut abl el nt eger has other uses; it makes a fine in-memory counter in a servlet (see Section
18.1).

8.11 Roll Your Own Exceptions

8.11.1 Problem

You'd like to use an application-specific exception class or two.
8.11.2 Solution

Go ahead and subclass Excepti on or Runt i neExcepti on.
8.11.3 Discussion

In theory you could subclass Thr owabl e directly, but that's considered rude. You normally
subclass Except i on (if you want a checked exception) or Runt i mneExcept i on (if you want an
unchecked exception). Checked exceptions are those that an application developer is required to
catch, or "throw away" by listing them in the t hr ows clause of the invoking method.

When subclassing either of these, it is customary to provide at least a no-argument and a one-
string argument constructor:

/** A ChessMoveException is throwmm when the user nakes an il egal
nove. */
public class ChessMoveExcepti on extends Runti meException {
publ i ¢ ChessMoveException () {
super();

publ i ¢ ChessMoveException (String nsg) {
super (nsg) ;
}

8.11.4 See Also

The Javadoc documentation for Except i on lists a very large number of subclasses; you might
look there first to see if there is one you can use.

8.12 Program: Plotter

Not because it is very sophisticated, but because it is simple, this program will serve as an
example of some of the things we've covered in this chapter, and will also, in its subclasses,
provide springboards for other discussions. This class describes a series of old-fashioned (i.e.,
common in the 1970s and 1980s) pen plotters. A pen plotter, in case you've never seen one, is a
device that moves a pen around a piece of paper and draws things. It can lift the pen off the
paper or lower it, and it can draw lines, letters, and so on. Before the rise of laser printers and ink-
jet printers, pen plotters were the dominant means of preparing charts of all sorts, as well as
presentation slides (this was, ah, well before the rise of programs like Harvard Presents and
Microsoft PowerPoint). Today few companies still manufacture pen plotters, but | use them here
because they are simple enough to be well understood from this brief description.

I'll present a high-level class that abstracts the key characteristics of a series of such plotters
made by different vendors. It would be used, for example, in an analytical or data-exploration
program to draw colorful charts showing the relationships found in data. But | don't want my main
program to worry about the gory details of any particular brand of plotter, so I'll abstract into a
Pl ot t er class, whose source is as follows:
/ *
Plotter abstract class. Mist be subcl assed
for X, DOS, Penman, HP plotter, etc.

Coordi nate space: X = 0 at left, increases to right.
Y = 0 at top, increases downward (sane as AW).

* % F X X X X

/

public abstract class Plotter {

public final int MAXX = 800;

public final int MAXY = 600;

/** Current X co-ordinate (sane reference frame as AWI!) */
protected int curx;

/** Current Y co-ordinate (sane reference franme as AWI!) */
protected int cury;

/** The current state: up or down */

prot ect ed bool ean penl sUp;

/** The current color */
protected int penCol or;

Plotter() {
penlsUp = true;
curx = 0; cury = 0;
}
abstract void rnmoveTo(int incrx, int incry);
abstract void noveTo(int absx, int absy);
abstract void penUp();
abstract void penDown();
abstract void penColor(int c);

abstract void setFont(String fNanme, int fSize);
abstract void drawstring(String s);

/* Concrete classes */

/** Draw a box of width w and height h */
public void drawBox(int w, int h) {

penDown() ;

rmoveTo(w, 0);

rmoveTo(O0, h);

rmoveTo(-w, 0);

rmoveTo(0, -h);

penUp();

/** Draw a box given an AWI Di nension for its size */

public void drawBox(java.awt. D nmension d) {
drawBox(d. wi dth, d. height);

}

/** Draw a box given an AWI Rectangle for its |ocation and size */
public void drawBox(java.awt. Rectangle r) {

moveTo(r.x, r.y);

drawBox(r.wi dth, r.height);

}

Note the wide variety of abstract methods. Those related to motion, pen control, or drawing are
left out, due to the number of different methods for dealing with them. However, the method for
drawing a rectangle (dr awBox) has a default implementation, which simply puts the currently
selected pen onto the paper at the last-moved-to location, draws the four sides, and raises the
pen. Subclasses for "smarter" plotters will likely override this method, but subclasses for less-
evolved plotters will probably use the default version. There are also two overloaded convenience
versions of this method, for the case where the client has an AWT Dimension for the size, or an
AWT Rectangle for the location and size.

To demonstrate one of the subclasses of this program, consider the following simple "driver"
program. The Cl ass. f or Nanme() near the beginning of main will be discussed in Section

25.4; for now you can take my word that it simply creates an instance of the given subclass,
which we store in a Pl ot t er reference named "r" and use to draw the plot:

,/** Main program driver for Plotter class.

* This is to simulate a | arger graphics application such as GiuPl ot.
*/
public class PlotDriver {

/** Construct a Plotter driver, and try it out. */
public static void main(String[] argv)

Plotter r ;
if (argv.length !'= 1) {
Systemerr.println("Usage: PlotDriver driverclass");

return;
}
try {
Cass ¢ = Cass.forName(argv[0]);
hject o = c.new nstance();
if (!(o instanceof Plotter))
t hrow new C assNot FoundExcepti on(" Not i nstanceof
Plotter");

r = (Plotter)o;
} catch (C assNot FoundException e) {
Systemerr.println("Sorry, "+argv[0]+" not a plotter
class");
return;
} catch (Exception e) {
e.printStackTrace();
return;

. penDown();

. penCol or (1) ;

. moveTo(200, 200);

. penCol or (2);

. drawBox (123, 200);

. rmoveTo(10, 20);

. penCol or (3);

. drawBox (123, 200);
-penUp();

. moveTo(300, 100);

. penDown();

.set Font (" Hel vetica", 14);
.drawstring("Hello World");
. penCol or (4);

. drawBox(10, 10);

—_ e e e ey e e e e e e e e e =

}

We'll see further examples of this Pl ot t er class and its relatives in several upcoming chapters.

9 Input and Output

9.1 Introduction

Most programs need to interact with the outside world, and one common way of doing so is by
reading and writing files. Files are normally on some persistent medium such as a disk drive, and,
for the most part, we shall happily ignore the differences between a hard disk (and all the
operating system-dependent filesystem types), a floppy or zip drive, a CD-ROM, and others. For
now, they're just files.

9.1.1 Correcting Misconceptions

Java's approach to input/output is sufficiently different from that of older languages (C, Fortran,
Pascal) that people coming from those languages are often critical of Java's I/O model. | can offer
no better defense than that provided in the preface to Elliotte Rusty Harold's book Java 1/O :

Java is the first programming language with a modern, object-oriented approach
to input and output. Java's I/O model is more powerful and more suited to real-
world tasks than any other major language used today. Surprisingly, however,
I/0O in Java has a bad reputation. It is widely believed (falsely) that Java I/O can't
handle basic tasks that are easily accomplished in other languages like C, C++,
and Pascal. In particular, it is commonly said that:

-- 1/O is too complicated for introductory students; or, more specifically, there's no
good way to read a number from the console.

-- Java can't handle basic formatting tasks like printing Pl with three decimal
digits of precision.

[Rusty's book shows] that not only can Java handle these two tasks with relative
ease and grace; it can do anything C and C++ can do, and a whole lot more.
Java's I/O capabilities not only match those of classic languages like C and
Pascal, they vastly surpass them.

The most common complaint about Java I/O among students, teachers, authors
of textbooks, and posters to conp. | ang. | ava is that there's no simple way to
read a number from the console (Syst em i n). Many otherwise excellent
introductory Java books repeat this canard. Some textbooks go to great lengths
to reproduce the behavior they're accustomed to from C or Pascal, apparently so
teachers don't have to significantly rewrite the tired Pascal exercises they've
been using for the last 20 years. However, new books that aren't committed to
the old ways of doing things generally use command-line interfaces for basic
exercises, then rapidly introduce the graphical user interfaces any real [desktop]
program is going to use anyway. Apple wisely abandoned the command-line
interface back in 1984, and the rest of the world is slowly catching up. Although
System i nand Syst em out are certainly convenient for teaching and
debugging, in 1999 no completed, cross-platform program should even assume
the existence of a console for either input or output.

The second common complaint about Java 1/O is that it can't handle formatted
output; that is, that there's no equivalent of pri nt f () in Java. In a very narrow
sense, this is true, because Java does not support the variable length arguments

lists a function like pri nt f () requires. Nonetheless, a number of misguided
souls (your author not least among them) [has] at one time or another embarked
on futile efforts to reproduce pri nt f () in Java. This may have been necessary
in Java 1.0, but as of Java 1.1, it's no longer needed. The | ava. t ext package,
described in Chapter 16 [of Rusty's book, and in Chapter 5 of the present work],
provides complete support for formatting numbers. Furthermore, the | ava. t ext
package goes way beyond the limited capabilities of pri nt f (). It supports not
only different precisions and widths, but also internationalization, currency
formats, grouping symbols, and a lot more. It can easily be extended to handle
Roman numerals, scientific or exponential notation, or any other number format
you may require.

The underlying flaw in most people's analysis of Java I/O is that they've confused
input and output with the formatting and interpreting of data. Java is the first
major language to cleanly separate the classes that read and write bytes
(primarily, various kinds of input streams and output streams) from the classes
that interpret this data. You often need to format strings without necessarily
writing them on the console. You may also need to write large chunks of data
without worrying about what they represent. Traditional languages that connect
formatting and interpretation of 1/0 and hard-wire a few specific formats are
extremely difficult to extend to other formats. In essence, you have to give up and
start from scratch every time you want to process a new format.

Furthermore, C'sprintf (), fprintf(),andsprintf() family only really
works well on Unix (where, not coincidentally, C was invented). On other
platforms the underlying assumption that every target may be treated as a file
fails, and these standard library functions must be replaced by other functions
from the host API.

Java's clean separation between formatting and 1/O allows you to create new
formatting classes without throwing away the I/O classes, and to write new I/O
classes while still using the old formatting classes. Formatting and interpreting
strings are fundamentally different operations from moving bytes from one device
to another. Java is the first major language to recognize and take advantage of
this.

To which | can only add, "Well said, Rusty.” What Rusty doesn't mention is an obvious corollary
of this flexibility: it can often take a bit more coding to do some of the command-line, standard-
in/standard-out operations. You'll see most of these in this chapter, and you'll see throughout the
book how flexible Java I/O really is.

This chapter covers all the normal input/output operations such as opening/closing and
reading/writing files. Files are assumed to reside on some kind of file store or permanent storage.
I don't discuss how such a filesystem or disk I/O system works -- consult a book on operating
system design for the general details, or a platform-specific book on system internals or
filesystem design for such details. Network filesystems such as Sun's Network File System (NFS,
common on Unix and available for Windows though products such as Hummingbird NFS),
Macintosh Appletalk File System (available for Unix via NetATalk), and SMB (MS-Windows
network filesystem, available for Unix with the freeware Samba program) are assumed to work
"just like" disk filesystems, except where noted. And while you could even provide your own
network filesystem layer using the material covered in Chapter 16, it is exceedingly difficult to
design your own network virtual filesystem, and probably better to use one of the existing ones.

9.1.2 Streams and Readers/Writers

Java provides two sets of classes for reading and writing. The St r eamsection of package

j ava. i o (see Figure 9-1) is for reading or writing bytes of data. Older languages tended to
assume that a byte (which is a machine-specific collection of bits, usually eight bits on modern
computers) is exactly the same thing as a "character” -- a letter, digit, or other linguistic element.
However, Java is designed to be used interanationally, and eight bits is simply not enough to
handle the many different character sets used around the world. Script-based languages like
Arabic and Indian languages, and pictographic languages like Chinese, Japanese, and Korean
each have many more than 256 characters, the maximum that can be represented in an eight-bit
byte. The unification of these many character code sets is called, not surprisingly, Unicode.
Actually, it's not the first such unification, but it's the most widely used standard at this time. Both
Java and XML use Unicode as their character sets, allowing you to read and write text in any of
these human languages. But you have to use Reader s and Wi t er s, not St r eans, for textual
data.

Figure 9-1. java.io classes

—1 ByteArraylnputSiream I

DatalnpatSiream .
| FilelnputStream | —r ! 5
—|II+u-1-pm5|mu1
PushbocklnputStreom | ;
H it | oomeemeommrerreel
| SoquenccingortStreom |
L i o

-| ByteArrayOutpulSireom I '

—| FileDutput Stream I - Fr—— I

—| FilterDutputSiream : 1_1 Fe— I

| ObjsctOutpasStroam l ------------------------
| Podoupestronn |

| BufferedReader }— vineMNuumberReader

| InptStreamReodes |—|—| FisRosdor

—f FitorReador f———{ PushbadkRosder

H chartrroykosder | | — uffeedWeitr

W [NN | SNNNN) WS S S—

; -1 PipedReader l —| CharArrayWriter
'| StringReader | —fﬁmun
il " ovtputsweamiriter |—{ raatiriter

B

ShingWriter
——{ FilePermission
BasicPermission f'—‘—(ﬁ-u‘rﬁubhl’mﬂ’sm)
[mass | Juesmacreass f (imaas)]
extans cewnn iplmet

You see, Unicode itself doesn't solve the entire problem. Many of these human languages were
used on computers long before Unicode was invented, and they didn't all pick the same
representation as Unicode. And they all have zillions of files encoded in a particular
representation that isn't Unicode. So conversion routines are needed when reading and writing to
convert between Unicode St ri ng objects used inside the Java machine and the particular
external representation that a user's files are written in. These converters are packaged inside a
powerful set of classes called Readers and Wi ters. Readers/ Wit ers are always used

instead of | nput St r eans/ Qut put St r eans when you want to deal with characters instead of
bytes. We'll see more on this conversion, and how to specify which conversion, a little later in this
chapter.

9.1.3 See Also

One topic not addressed here is the issue of hardcopy printing. Java includes two similar
schemes for printing onto paper, both using the same graphics model as is used in AWT, the
basic Window System package. For this reason, | defer discussion of printing to Chapter 12.

Another topic not covered here is that of having the read or write occur concurrently with other
program activity. This requires the use of threads, or multiple flows of control within a single
program. Threaded I/O is a necessity in many programs: those reading from slow devices such
as tape drives, those reading from or writing to network connections, and those with a GUI. For
this reason the topic is given considerable attention, in the context of multi-threaded applications,

in Chapter 24.

9.2 Reading Standard Input

9.2.1 Problem

Despite Rusty's comments, you really do need to read from the standard input, or console. One
reason is that simple test programs are often console-driven. Another is that some programs
naturally require a lot of interaction with the user and you want something faster than a GUI
(consider an interactive mathematics or statistical exploration program).

9.2.2 Solution

To read bytes, wrap a Buf f er edl nput St rean() around Syst em i n. For the more common
case of reading text, use an | nput St r eanReader and a Buf f er edReader .

9.2.3 Discussion

On most non-Macintosh desktop platforms, there is a notion of standard input -- a keyboard, a
file, or the output from another program -- and standard output -- a terminal window, a printer, a
file on disk, or the input to yet another program. Most such systems also support a standard error
output, so that error messages can be seen by the user even if the standard output is being
redirected. When programs on these platforms start up, the three streams are preassigned to
particular platform-dependent handles, or file descriptors. The net result is that ordinary programs
on these operating systems can read the standard input or write to the standard output or
standard error stream without having to open any files or make any other special arrangements.

Java continues this tradition, and enshrines it in the Java Standard Edition's Syst emclass. The
static variables Syst em i n, Syst em out, and Syst em err are connected to the three
operating system streams before your program begins execution (an application is free to
reassign these; see Section 9.7). So to read the standard input, you need only refer to the
variable Syst em i n and call its methods. For example, to read one byte from the standard input,
you call the read method of Syst em i n, which returns the byte in an i nt variable:

int b = Systemin.read();

But is that enough? No, because the r ead() method can throw an | O=xcept i on. So you
must either declare that your program throws an | O=xcept i on, as in:

public static void main(String ap[]) throws | Oexception {

Or, you can put a try/catch block around the read method:

int b =0;
try {
b = Systemin.read();
} catch (Exception e) {
System out . printl n(" Caught
}

Systemout.printin("Read this data: " + (char)b);

+e);

Note that | cavalierly convert the byt e to a char for printing, assuming that you've typed a valid
character in the terminal window.

Well, that certainly works, and gives you the ability to read a byte at a time from the standard
input. But most applications are designed in terms of larger units, such as a line of text. For
reading characters of text, using an input character converter so that your program will work with
multiple input encodings around the world, you'll want to use a Reader class. The particular
subclass that allows you to read lines of characters is a Buf f er edReader . But there's a hitch.
Remember that | said there are two categories of input classes, St r eans and Reader s? But |
also said that Syst em i nis a St r eam and you want a Reader . How to get from a St r eamto a
Reader ? There is a "crossover" class called an | nput St r eamreader that is tailor-made for this
purpose. Just pass your St r eam(like Syst em i n) to the | nput St r eanReader constructor,
and you get back a Reader , which you in turn pass to the Buf f er edReader constructor. The
usual idiom for writing this in Java is to nest the constructor calls:

Buf f eredReader is = new Buff eredReader (new
I nput St reanReader (System i n);

Then you can read lines of text from the standard input using the r eadLi ne() method. This
method takes no argument, and returns a St r i ng that is made up for you by r eadLi ne()
containing the characters (converted to Unicode) from the next line of text in the file. If there are
no more lines of text, then the constant nul | is returned.

i nport java.io.?*;

/**

* Read and print, using BufferedReader from Systemin, onto System out
*/

public class CatStdin {

public static void main(String av[]) {
try {
Buf f eredReader is = new Buff eredReader (
new | nput St r eanReader (Systemin));
String inputlLine;

while ((inputLine = is.readLine()) !'= null) {
System out . println(inputLine);

}

is.close();
} catch (1 OException e) {

System out. println("l OException:
}

+ e);

}

And because it's something that people ask me over and over, I'll show how to read an | nt eger
from the standard input:

i mport java.io.*;
/**
* Read an int from Standard | nput
*/
public class ReadStdinlnt {
public static void main(String[] ap) {
String line = null;
int val = 0;
try {
Buf f eredReader is = new BufferedReader (
new | nput St r eanReader (Systemin));
line = is.readLine();
val = Integer.parselnt(line);
} catch (Nunber For mat Exception ex) ({
Systemerr.println("Not a valid nunber:
} catch (1 OException e) {
Systemerr.println("Unexpected 10 ERROR " + e);
}

Systemout.println("l read this nunber:

+ line);

+ val);

}

There are many other things you might want to do with lines of text read from a Reader . In the
demo program shown in this recipe, | just printed them. In the demo program in Section 9.4, |
convert them to integer values using | nt eger . parsel nt () (also see Section 5.2) or using a
Deci mal For nat (Section 5.8). You can interpret them as dates (Section 6.6), or break them

into words with a St ri ngTokeni zer (Section 3.3). You can also process the lines as you read
them; several methods for doing so are listed in Section 9.13.

9.3 Writing Standard Output

9.3.1 Problem

You want your program to write to the standard output.
9.3.2 Solution

Use System.out.

9.3.3 Discussion

Again despite Rusty's quote, there are circumstances (such as a server program with no
connection back to the user's terminal) in which Syst em out can become a very important
debugging tool (assuming that you can find out what file the server program has redirected
standard output into; see Section 9.7).

System out is a PrintStream, so in every introductory text you see a program containing this
line, or one like it:™!

[T All the examples in this recipe are found in one file, PrintStandardOutput.java.

Systemout.printin("Hello Wrld of Java");

The pri nt | n method is polymorphic; there are forms of it for Obj ect (which obviously calls the
given object's t oSt ri ng() method), for St ri ng, and for each of the base types (i nt, f | oat,
bool ean, etc.). Each takes only one argument, so it is common to use string concatenation:

Systemout.println("The answer is " + myAnswer + " at this tinme.");

Remember that string concatenation is also polymorphic: you can "add" anything at all to a string,
and the result is a string.

Up to here | have been using a St r eam Syst em out . What if you wantto use a W i t er ? The
Print Witer class has all the same methods as Pr i nt St r eamand a constructor that takes a
St r earm so you can just say:

PrintWiter pw = new PrintWiter(Systemout);
pw.println("The answer is " + nyAnswer + " at this tine.");

One caveat with this string concatenation is that if you are appending a bunch of things, and a
number and a character come togetherat the front, they are added before concatenation due to
the precedence rules. So don't do this:

Systemout.printin(i +'=" + " the answer.");

Assuming that i is aninteger, theni + ' =" (i added to the equals sign) is a valid nhumeric
expression, which will result in a single value of type i nt . If the variable i has the value 42, and
the character = in a Unicode (or ASCII) code chart has the value 61, then this will print:

103 the answer.
that is, the wrong value, and no equals sign. Safer methods include using parentheses, using

double quotes around the equals sign, and using a St r i ngBuf f er (see Section 3.4) or a
MessageFor mat (see Section 14.11).

9.4 Opening a File by Name
9.4.1 Problem

The Java documentation doesn't have methods for opening files. How do | connect a filename on
disk with a Reader, Witer, or Streanf

9.4.2 Solution
Constructa Fi | eReader ,aFileWiter,aFilelnputStreamorakFileCutputStream
9.4.3 Discussion

The action of constructing a Fi | eReader, Fil eWiter, Fi |l el nput Stream or

Fi | eQut put St r eamcorresponds to the "open” operation in most I/O packages. There is no
explicit open operation, perhaps as a kind of rhetorical flourish of the Java API's object-oriented
design. So to read a text file, you'd create, in order, a Fi | eReader and a Buf f er edReader. To
write a file a byte at a time, you'd create a Fi | eQut put St r eanj and probably a

Buf f er edCut put St r eamfor efficiency:

/1 OpenFi |l eByNane. j ava
Buf f eredReader is = new BufferedReader (new Fi | eReader ("nyFile.txt"));
Buf f er edQut put St r eam byt esQut = new Buf f er edQut put St r ean(

new Fi | eQut put Stream("bytes.dat"));

byt esQut.close();

Remember that you will need to handle | O=xcept i on around these calls.
9.5 Copying a File

9.5.1 Problem

You need to copy a file in its entirety.

9.5.2 Solution

Use a pair of St r eans for binary data, or a Reader anda W i t er for text, and a whi | e loop to
copy until end of file is reached on the input.

9.5.3 Discussion

This is a fairly common operation, so I've packaged it as a set of methods in a class I've called
Fi | el Oin my utilities package com darwi nsys. ut i | . Here's a simple test program that uses it
to copy a source file to a backup file:

i mport comdarw nsys.util.FilelQ
i mport java.io.*;

public class Filel OTest {
public static void main(String[] av) {

try {
Filel O copyFile("FilelOjava", "Filel O bak");
Filel O copyFile("FilelOclass", "FilelOclass.bak");

} catch (Fil eNot FoundException e) {
Systemerr.println(e);

} catch (1 OException e) {

Systemerr.println(e);

}

How does Fi | el Owork? There are several forms of the copyFi | e method, depending on

whether you have two filenames, a filename and a Pri nt Wi t er, and so on. See Example 9-
1

Example 9-1. FilelO.java

package com darw nsys. util;
i mport java.io.*;

/**

* Some sinple file I-Oprimtives reinplenmented in Java.
* All nethods are static, since there is no state.

*/
public class Filel O {

/** Copy a file fromone fil enane to another */
public static void copyFile(String inNane, String out Name)
t hrows Fi |l eNot FoundExcepti on, | OException {
Buf f eredl nput Streamis =
new Buf f er edl nput St r eanm(new Fi | el nput St rean(i nNane)) ;
Buf f er edQut put Stream os =
new Buf f er edQut put St r ean{ new Fi | eQut put St r ean{ out Nane)) ;
copyFile(is, os, true);

}

/** Copy a file froman opened InputStreamto opened Qutput Stream
*/

public static void copyFile(lnputStreamis, QutputStream os,
bool ean cl ose)

t hrows | OException {

int b; /1 the byte read fromthe file
while ((b =is.read()) !=-1) {
os.wite(b);
}
is.close();
if (close)

os.close();

}

/** Copy a file froman opened Reader to opened Witer */
public static void copyFile(Reader is, Witer os, bool ean cl ose)
t hrows | OException {

int b; /1 the byte read fromthe file
while ((b =is.read()) !=-1) {
os.write(b);
}
is.close();
if (close)

os.close();

/[** Copy a file froma filenane to a PrintWiter. */
public static void copyFile(String inNanme, PrintWiter pw, bool ean
cl ose)
t hrows Fi |l eNot FoundExcepti on, | OException {
Buf f eredReader is = new BufferedReader (new Fi |l eReader (i nNane)) ;
copyFile(is, pw, close);

/** Open a file and read the first line fromit. */
public static String readLi ne(String i nNane)
t hrows Fi |l eNot FoundExcepti on, | OException {
Buf f eredReader is = new BufferedReader (new Fi | eReader (i nNane)) ;
String line = null;
line = is.readLine();
is.close();
return line;

}

/** The size of blocking to use */
protected static final int BLKSIZ = 8192;

/** Copy a data file fromone filenane to another, alternate
nmet hod.
* As the nane suggests, use my own buffer instead of letting
* the BufferedReader allocate and use the buffer.
*/
public void copyFileBuffered(String inName, String outNane) throws
Fi | eNot FoundException, | OException {
Input Streamis = new Fil el nput Strean(i nNane) ;
Qut put St ream os = new Fi | eQut put St r ean{ out Nane) ;

int count = O; /1l the byte count
byte b[] = new byte[BLKSI Z]; /1 the bytes read fromthe file
while ((count = is.read(b)) !'=-1) {

os.wite(b, 0, count);
}
is.close();
os.close();

/** Read the entire content of an Reader into a String */

public static String readerToString(Reader is) throws | OException {
StringBuffer sb = new StringBuffer();
char[] b = new char[BLKSI Z] ;
int n;

/1 Read a block. If it gets any chars, append them
while ((n =is.read(b)) > 0) {
sb. append(b, 0, n);

/1 Only construct the String object once, here.
return sb.toString();

}

/** Read the content of a Streaminto a String */
public static String inputStreanloString(lnputStreamis)

throws | OException {
return readerToString(new | nput StreanReader (is));
}

}

There is a test main program included in the online source, which copies the source and class
files of this program. When | ran it for testing, | followed up by using diff (a text file compare
program) on the text file and its backup, and cmp (a binary compare program) on the class files.
Both of these programs operate on the Unix "no news is good news" principle: if they say nothing,
it is because they found nothing of significance to report, i.e., no differences.

C.\javasrc\io>ava |1QUti l

C.\javasrc\io>diff 1QUtil.java IOUil-java. bak

C.\javasrc\io>np 1QUtil.class I1QU)il-class. bak

C.\javasrc\io>

But wait! Did you look closely at the body of copyText Fi | e() ? If you didn't, do it now. You'll
notice that | cheated, and just reused copyDat aFi | e(). Well, if I'm copying a file from one
place on disk to another, why go through the overhead of converting it from external form to
Unicode and back? Normally you won't have to. But if you have something like a network
filesystem mounted from Windows to Unix or vice versa, better to do it a line at a time.

9.6 Reading a File into a String

9.6.1 Problem

You need to read the entire contents of a file into a string.
9.6.2 Solution

Usemy Fi | el O reader ToString() method.

9.6.3 Discussion

This is not a common activity in Java, but there will be times when you really want to do it. For
example, you might want to load a file into a "text area" in a GUI. Or process an entire file looking
for multiline regular expressions (as in Section 4.13). Even though there's nothing in the
standard API to do this, it's still easy to accomplish with the r eader ToSt ri ng() method in
com darwi nsys. uti|.Filel O You just say something like the following:

Reader is = new Fil eReader (t heFil eNane) ;
String input = FilelQO readerToString(is);

The reader ToSt ri ng() method is fairly simple, based on what you've already seen:

/1l Part of comdarwinsys.util/FilelQ java

/** Read the entire content of an Reader into a String */

public static String readerToString(Reader is) throws | Oexception {
StringBuffer sb = new StringBuffer();
char[] b = new char[BLKSI Z];
int n;

/1 Read a block. If it gets any chars, append them
while ((n =is.read(b)) > 0) {

sb. append(b, 0, n);
}

/1 Only construct the String object once, here.
return sb.toString();

}

/** Read the content of a Streaminto a String */
public static String inputStreanmloString(lnputStreamis)
t hrows | OException {

return readerToString(new I nput StreanReader (is));
}

9.7 Reassigning the Standard Streams

9.7.1 Problem

You need to reassign one or more of the standard streams Syst em i n, Syst em out, or
Systemerr.

9.7.2 Solution

Construct an | nput St r eamor Pri nt St r eamas appropriate, and pass it to the appropriate
setmethod in the Syst emclass.

9.7.3 Discussion

The ability to reassign these streams corresponds to what Unix (or DOS command line) users
think of as redirection, or piping. This mechanism is commonly used to make a program read
from or write to a file without having to explicitly open it and go through every line of code
changing the read, write, print, etc., calls to refer to a different stream object. The open operation
is performed by the command-line interpreter in Unix or DOS, or by the calling class in Java.

While you could just assign a new Pri nt St r eamto the variable Syst em out , you'd be
considered antisocial, since there is a defined method to replace it carefully:

/1l Redirect.java

String LOGFI LENAME = "error.|og";

System set Err (new Print Strean(new Fi | eQut put St rean(LOGFI LENAME))) ;
Systemout.println("Please |ook for errors in " + LOGFI LENAVE);

/1 Now to see sonebody else's code witing to stderr. ..

int a[] = newint[5];

a[10] = O; /1 here cones an Arrayl ndexQut Of BoundsExcepti on

The stream you use can be one that you've opened, as here, or one you inherited:

System set Err (System out) ; /1 merge stderr and stdout to same out put
file.

It could also be a stream connected to or from another Pr ocess you've started (see Section
26.2), a network socket, or URL. Anything that can give you a stream can be used.

9.7.4 See Also

See Section 13.9, which shows how to reassign a file so that it gets "written" to a text window in
a GUI application.

9.8 Duplicating a Stream as It Is Written

9.8.1 Problem

You want anything written to a stream, such as the standard output Syst em out or the standard
error Syst em er r, to appear there but also be logged into a file.

9.8.2 Solution

Subclass Pri nt St r eamand have itswri t e() methods write to two streams. Then use
systemsetErr() orsetQut() asin Section 9.7 to replace the existing standard stream
with this "tee" Pr i nt St r eamsubclass.

9.8.3 Discussion

Classes are meant to be subclassed. Here we're just subclassing Pr i nt St r eamand adding a bit
of functionality: a second Pri nt St r eand | wrote a class called TeePr i nt St r ean named after
the ancient Unix command tee. That command allowed you to duplicate, or "tee off," a copy of the
data being written on a "pipeline” between two programs.

The original Unix tee command is used like this: the | character creates a pipeline in which the
standard output of one program becomes the standard input to the next. This often-used example
of pipes shows how many users are logged into a Unix server:

who | we -|
This runs the who program (which lists who is logged into the system, one name per line along
with the terminal port and login time) with its output, instead of going to the terminal, going into

the standard input of the word count (wc) program. Here wc is being asked to count lines, not
words; hence the - | option. To tee a copy of the intermediate data into a file, you might say:

who | tee wholist | we -|

which creates a file wholist containing the data. For the curious, the file wholist might look
something like this:

i an ttyCo Mar 14 09:59
ben ttyC3 Mar 14 10: 23
i an ttyp4 Mar 14 13:46 (daroad. darw nsys. con

So the previous commands would both print 3 as their output.

TeePrint St reamis an attempt to capture the spirit of the tee command. It can be used like this:

System set Err (new TeePrint Stream(Systemerr, "err.log"));
/1 ...lots of code that occasionally wites to Systemerr... O mght.

System set Err() is a means of specifying the destination of text printed to Syst em err
(there are also Syst em set Qut () and System set | n()). This code results in any
messages that printed to Syst em err to print both to wherever Syst em err was previously
directed (normally the terminal, but possibly a text window in an IDE) and into the file er r . | 0g.

This technique is not limited to the three standard streams. A TeePr i nt St r eamcan be passed
to any method that wants a Pr i nt St r eam Or, for that matter, an Cut put St r eam And you can
adapt the technique for Buf f er edl nput St reans, Print Wi ters, Buf f eredReader s, and
S0 on.

Since TeePr i nt St r eamis fairly simple, I'll list the main parts of it here (see the online source for
the complete version):

i mport java.io.*;

public class TeePrintStream extends PrintStream {
protected PrintStream parent;
protected String fil eNane;

/* Construct a TeePrintStreamgiven an existing Stream and a
filenane.
*/
public TeePrintStrean(PrintStreamos, String fn) throws | OException

{
this(os, fn, false);
}
/* Construct a TeePrintStreamgiven an existing Stream a fil enaneg,
* and a bool ean to control the flush operation.
*/
public TeePrintStream(PrintStreamorig, String fn,
bool ean flush) throws | OException {
super (new Fi | eQut put Strean(fn), flush);
fileNane = fn;
parent = orig;
}
[** Return true if either streamhas an error. */
public bool ean checkError() {
return parent.checkError() || super.checkError();
}
/** override wite(). This is the actual "tee" operation! */
public void wite(int x) {
parent.wite(Xx); /1l "wite once; super.wite(x); //
wite
sonewhere el se”
}

/[** override wite() */
public void wite(byte[] x, int o, int I) {
parent.wite(x, o, 1);

super.wite(x, o, |);

}

/** Close both streanms. */

public void close() {
parent.close();
super.close();

}

It's worth mentioning that | do not need to override all the polymorphic forms of pri nt () and
println(). Since these all ultimately use one of the forms of wr i t e(), if you override the
print/println methods to do the tee-ing as well, you can get several additional copies of the
data written out.

9.9 Reading/Writing a Different Character Set
9.9.1 Problem

You need to read or write a text file using a particular encoding.
9.9.2 Solution

Convert the text to or from internal Unicode by specifying a converter when you construct an
| nput St reanReader orPrintWiter.

9.9.3 Discussion

Classes | nput St r eanReader and Qut put St reanmV i t er are the bridge from byte-oriented
St r eans to character-based Reader s. These classes read or write bytes and translate them to
or from characters according to a specified character encoding. The Unicode character set used
inside Java (char and St ri ng types) is a 16-bit character set. But most character sets, such as
ASCII, Swedish, Spanish, Greek, Turkish, and many others, use only a small subset of that. In
fact, many European language character sets fit nicely into 8-bit characters. Even the larger
character sets (script-based and pictographic languages) don't all use the same bit values for
each particular character. The encoding, then, is a mapping between Unicode characters and a
particular external storage format for characters drawn from a particular national or linguistic
character set.

To simplify matters, the | nput St r eanReader and Qut put St ream\V i t er constructors are the
only places where you can specify the name of an encoding to be used in this translation. If you
do not, the platform's (or user's) default encoding will be used. Print Witers,

Buf f er edReader s, and the like all use whatever encoding the | nput St r eanReader or

CQut put St ream/ i t er class uses. Since these bridge classes only accept St r eamarguments
in their constructors, the implication is that if you want to specify a non-default converter to
read/write a file on disk, you must start by constructing not a Fi | eReader/ Fil eWiter, buta
Fi | el nput Streant Fi | eQut put St reani

/'l UseConverters.java
Buf f eredReader fronKanji = new BufferedReader (

new | nput St r eanReader (new Fi |l el nput Strean("kanji.txt"), "EUC JP"));
PrintWiter toSwedish = new PrinterWiter(

new Qut put StreanWiter(new Fil eCut put Strean("sverige.txt"),
"Cp278"));

Not that it would necessarily make sense to read a single file from Kanji and output it in a
Swedish encoding; for one thing, most fonts would not have all the characters of both character
sets, and at any rate, the Swedish encoding certainly has far fewer characters in it than the Kanji
encoding. Besides, if that were all you wanted, you could use a JDK tool with the ill-fitting name
native2ascii (see its documentation for details). A list of the supported encodings is also in the
JDK documentation, in the file docs/guide/internat/encoding.doc.html. A more detailed description
is found in Appendix B of Java I/O.

9.10 Those Pesky End-of-Line Characters
9.10.1 Problem
You really want to know about end-of-line characters.

9.10.2 Solution

Use \r and \ n in whatever combination makes sense.
9.10.3 Discussion

If you are reading text (or bytes containing ASCII characters) in line mode using the r eadLi ne(
) method, you'll never see the end-of-line characters, and so won't be cursed with having to
figure out whether \ n, \ r, or\ r\ n appears at the end of each line. If you want that level of detalil,
you have to read the characters or bytes one at a time, using the readline methods. The only time
I've found this necessary is in networking code, where some of the line-mode protocols assume
that the line ending is \r \ n. Even here, though, you can still work in line mode. When writing,
send a\ r\ n. When reading, use r eadLi ne() and you won't have to deal with the characters.

out put Socket . print("HELO " + nyNane + "\r\n");
String response = input Socket.readLine();

9.11 Beware Platform-Dependent File Code

9.11.1 Problem

Chastened by the previous recipe, you now wish to write only platform-independent code.
9.11.2 Solution

UsereadLine() andprintln().Neveruse\n by itself; use Fi | e. separ at or if you
must.

9.11.3 Discussion

As mentioned in Section 9.10, if you just use r eadLi ne() and println(), youwon't have
to think about the line endings. But a particular problem, especially for recycled C programmers
and their relatives, is using the \ n character in text strings to mean a newline. What is particularly

distressing about this code is that it will work -- sometimes -- usually on the developer's own
platform. But it will surely someday fail, on some other system.

/1 BadNew i ne. j ava
String nyNane;
public static void main(String argv[]) {
BadNewl i ne jack = new BadNewl i ne("Jack Adol phus Schmidt, 111");
Systemout. println(jack);
}
/**
* DONT DO TH'S. THI S | S BAD CODE.
*/
public String toString() {
return "BadNewl i neDenmo@ + hashCode() + "\n" + nyNane;
}

/1 The obvious Constructor is not shown for brevity; it's in the code

The real problem is not that it will fail on some platforms, though. What's really wrong is that it
mixes formatting and input/output, or tries to. Don't mix line-based display with t oSt ri ng() :
avoid "multiline strings" output from t oSt ri ng() or any other string-returning method. If you
need to write multiple strings, then say what you mean:

/1 GoodNewl i ne. java

String nyNane;

public static void main(String argv[]) {
GoodNewl i ne jack = new GoodNew i ne("Jack Adol phus Schmdt, 111");
jack. print(Systemout);

}

protected void print(PrintStreamout) {
out.println(toString()); /'l classnane and hashcode
out. println(nyNane); /1 print name on next |ine

}

9.12 Reading "Continued" Lines
9.12.1 Problem

You need to read lines that are continued with backslashes (\) or that are continued with leading
spaces (such as email or news headers).

9.12.2 Solution

Use my | ndent Cont Li neReader or EscCont Li neReader classes.

9.12.3 Discussion

This functionality is likely to be reused, so it should be encapsulated in general-purpose classes. |
offer the | ndent Cont Li neReader and EscCont Li neReader classes. EscCont Li neReader
reads lines normally, but if a line ends with the escape character (by default, the backslash), then
the escape character is deleted and the following line is joined to the preceding line. So if you
have lines like this in the input:

Here is sonething | wanted to say:\
Try and Buy in every way.
Go Team

and you read them using an EscCont Li neReader 'sreadLi ne() method, then you will get
the following lines:

Here is sonething | wanted to say: Try and Buy in every way.
Go Team

Note in particular that my reader does provide a space character between the abutted parts of the
continued line. An | OExcept i on will be thrown if a file ends with the escape character.

I ndent Cont Li neReader reads lines, but if a line begins with a space or tab, that line is joined
to the preceding line. This is designed for reading email or Usenet news ("message") header
lines. Here is an example input file:

From ian Tuesday, January 1, 2000 8:45 AM EST
To: Book-reviewers List
Recei ved: by darw nsys. com (OpenBSD 2. 6)
from | ocal host
at Tuesday, January 1, 2000 8:45 AM EST
Subject: Hey, it's 2000 and MY conputer is still up

When read using an | ndent Cont Li neReader, this text will come out with the continued lines
joined together into longer single lines:

From ian Tuesday, January 1, 2000 8:45 AM EST
To: Book-reviewers List
Recei ved: by darw nsys.com (OpenBSD 2.6) from | ocal host at Tuesday,

January 1,
2000 8:45 AM EST
Subject: Hey, it's 2000 and MY conputer is still up

This class has a set Cont | nueMbde(bool ean) method, which lets you turn continuation mode
off. This would normally be used to process the body of a message. Since the header and the
body are separated by a null line in the text representation of messages, we can process the
entire message correctly as follows:

I ndent Cont Li neReader is = new | ndent Cont Li neReader (
new StringReader (sanpl eTxt));
String aLi ne;
[l Print Mail/News Header
Systemout.println("----- Message Header ----- ");
while ((aLine = is.readLine()) !'= null && aLine.length() > 0) {
Systemout.println(is.getLineNunber() + ": " + alLine);

/1 Make "is" behave |ike normal BufferedReader

i s.setContinuati onvbde(fal se);

Systemout.printin();

/1 Print Message Body

Systemout.println("----- Message Body ----- ");

while ((aLine = is.readLine()) !'=null) {
Systemout.println(is.getLineNunber() + ": " + alLine);

Each of the three Reader classes is subclassed from Li neNunber Reader so that you can use
get Li neNumber (). This is a very useful feature when reporting errors back to the user who
prepared an input file; it can save them considerable hunting around in the file if you tell them the
line number on which the error occurred. The Reader classes are actually subclassed from an
abstract Cont Li neReader subclass, which I'll present first (Example 9-2). This class
encapsulates the basic functionality for keeping track of lines that need to be joined together, and
for enabling/disabling the continuation processing.

Example 9-2. ContLineReader.java
i mport java.io.*;

/** Subcl ass of LineNunber Reader to allow readi ng of continued |ines

* using the readLi ne() nethod. The other Reader nethods (readlint())
etc.)

* must not be used. Must subclass to provide the actua

i mpl enent ati on

* of readLine().

*/

public abstract class ContLi neReader extends LineNunber Reader {

/** Line nunber of first line in current (possibly continued) line

*/

protected int firstLi neNunber = 0;

/** True if handling continuations, false if not; false == "PRE"
node */

prot ected bool ean doConti nue = true;

/** Set the continuation node */

public void setContinuati onMode(bool ean b) {
doConti nue = b;

}

/** CGet the continuation node */

public bool ean isContinuation() {
return doConti nue;

}

/** Read one (possibly continued) line, stripping out the \ that
* marks the end of each line but the last in a sequence.

*/

public abstract String readLine() throws | OException;

/** Read one real line. Provided as a convenience for the
* subcl asses, so they don't enbarass thenselves trying to
* call "super.readLine()" which isn't very practical...
*/

public String readPhysicalLine() throws |OException {
return super.readLine();
}

/1 Can NOT override getLineNunber in this class to return the #
/1 of the beginning of the continued Iine, since the subcl asses
/1 all call super.getLineNunber. ..

/** Construct a ContLineReader with the default input-buffer size.
*/

*/

}

publ i c ContLi neReader (Reader in) ({
super (in);
}

/** Construct a ContlLineReader using the given input-buffer size.
publ i c ContLi neReader (Reader in, int sz) {
super (in, sz);
}
/1 Methods that do NOT work - redirect straight to parent
/** Read a single character, returned as an int. */

public int read() throws | OException {
return super.read();
}

/** Read characters into a portion of an array. */

public int read(char[] cbuf, int off, int len) throws |OException {
return super.read(cbuf, off, len);

}

publ i c bool ean markSupported() {
return fal se;
}

The Cont Li neReader class ends with code for handling the r ead() calls so that the class will
work correctly. The | ndent Cont Li neReader class extends this to allow merging of lines based
on indentation. Example 9-3 shows the code for the | ndent Cont Li neReader class.

Example 9-3. IndentContLineReader.java

i mport java.io.*;

/** Subcl ass of ContLineReader for |ines continued by indentation of
* followwing line (like RFC822 mail, Usenet News, etc.).

*/

public class IndentContLi neReader extends ContLi neReader ({

*/

/** Line nunber of first line in current (possibly continued) line

public int getLineNunber() {
return firstLi neNunber;
}

protected String prevLi ne;

/** Read one (possibly continued) line, stripping out the '\'s that
* mark the end of all but the |ast.
*/
public String readLine() throws | OException {
String s;

/1 1f we saved a previous line, start with it. El se,
/1 read the first line of possible continuation.
/1 1f non-null, put it into the StringBuffer and its |line

/1 nunber in firstLi neNunber.
if (prevLine !'=null) {

s = prevlLi ne;

prevLine = null;
}
else {

s = readPhysi cal Line();
}

/1 save the line nunber of the first |ine.
firstLi neNunber = super. getLi neNunber();

// Now we have one line. If we are not in continuation
/1 node, or if a previous readPhysicalLine() returned null
// we are finished, so return it
if (!doContinue || s == null)
return s;

/1 Qtherwi se, start building a stringbuffer
StringBuffer sb = new StringBuffer(s);

/1 Read as many continued lines as there are, if any.
while (true) {
String nextPart = readPhysical Line();
if (nextPart == null) {
/1 Egad! ECF within continued |ine.
/1 Return what we have so far
return sb.toString();

/1 1f the next line begins with space, it's continuation
if (nextPart.length() > 0 &&
Char acter.isWitespace(nextPart.charAt(0))) {

sb. append(next Part); /1 and add |ine.
} else {
/1l else we just read too far, so put in "pushback"
hol der
prevLi ne = nextPart;
br eak;
}
}
return sb.toString(); /1 return what's |eft
}

/* Constructors not shown */

/1 Built-in test case

protected static String sanpleTxt =
"From ian today now\n" +
"Recei ved: by foo.bar.comn" +
! at 12:34:56 January 1, 2000\ n" +
"X-Silly-Headers: Too Many\n" +
"This line should be line 5.\n" +
"Test nore indented |ine continues fromline 6:\n" +
" space indented.\n" +
" tab indented;\n" +
"\n" +

"This is line 10\ n" +

"the start of a hypothetical mnail/news nessage, \n" +
"that is, it follows a null line.\n" +

" Let us see howit fares if indented.\n" +

" al so space-indented.\n" +

"\n" +

"How about text ending wthout a new ine?";

/1 A sinple main programfor testing the class.
public static void main(String argv[]) throws | OException {
I ndent Cont Li neReader is = new | ndent Cont Li neReader (
new Stri ngReader (sanpl eTxt));
String aLi ne;
[l Print Mail/News Header

Systemout.println("----- Message Header ----- ");
while ((aLine = is.readLine()) !'= null && aLine.length() > 0)
{
Systemout.println(is.getLineNunber() + ": " + alLine);
/1 Make "is" behave |ike nornmal BufferedReader
i s.setContinuati onvbde(fal se);
Systemout.printin();
/1 Print Message Body
Systemout.println("----- Message Body ----- ");
while ((aLine = is.readLine()) !'=null) {
Systemout.println(is.getLineNunber() + ": " + alLine);
}
is.close();
}
}

9.13 Scanning a File

9.13.1 Problem

You need to scan a file with more fine-grained resolution than the r eadLi ne() method of the
Buf f er edReader class and its subclasses (discussed in Section 9.12).

9.13.2 Solution

Use a St reanTokeni zer, readl i ne() anda StringTokeni zer, regular expressions
(Chapter 4), or one of several scanning tools such as JavaCC.

9.13.3 Discussion

While you could, in theory, read the file a character at a time and analyze each character, that is
a pretty low-level approach. The r ead() method in the Reader class is defined to return i nt ,
so that it can use the time-honored value -1 (defined as EOF in Unix <stdio.h> for years) to
indicate that you have read to the end of the file.

voi d doFi | e(Reader is) {
int c;
while ((c=is.read()) !=-1) {

Systemout. print((char)c);
}

The cast to char is interesting. The program will compile fine without it, but may not print
correctly (depending on the contents of the file).

We discussed the St ri ngTokeni zer class extensively in Section 3.3. The combination of
readLine() and StringTokeni zer provides a simple means of scanning a file. Suppose
you need to read a file in which each line consists of a name like "user@host.domain”, and you
want to split the lines into the user part and the host address part. You could use this:

/'l ScanStringTok.java
protected voi d process(Li neNunber Reader is) {
String s = null;
try {
while ((s = is.readLine()) !'= null) {
StringTokeni zer st = new StringTokeni zer(s, "@, true);
String user = (String)st.nextEl ement();
st.nextEl ement();
String host = (String)st.nextEl ement();
Systemout.println("User nane: " + user +
": host part: " + host);

/1 Presunmably you woul d now do sonet hi ng
/1l with the user and host parts...

}

} catch (NoSuchEl enent Exception ix) {
Systemerr.printin("Line " + is.getLineNunber() +
": Invalid input + s);
} catch (1 Oexception e) {
Systemerr.println(e);
}

}

The St reamlokeni zer class in package | ava. uti | provides slightly more capabilities for
scanning a file. It will read characters and assemble them into words, or tokens. It will return
these tokens to you along with a "type code" describing the kind of token it found. This will either
be one of four predefined types (StringTokenizer. TT_WORD, TT_NUMBER, TT_WORD, or
TT_EOL for the end of line), or the ASCII value of an ordinary character (such as 40 for the space
character). Methods such as or di nar yChar act er () allow you to specify how to categorize
characters, while others such as sl ashSl ashCornment () allow you to enable or disable
features.

The example shows a St r eanTokeni zer used to implement a simple immediate-mode stack-
based calculator:

22+ =
4

22 71 =
3. 141592857

| read tokens as they arrive from the St r eamiokeni zer . Numbers get put on the stack. The four
operators (+, -, *, and /) are immediately performed on the two elements at the top of the stack,
and the result is put back on the top of the stack. The = operator causes the top element to be
printed, but is left on the stack so that you can say:

Here is the relevant code from Si npl eCal c:

public class SinpleCalc {
[** The StreanfTokenizer */
protected Streanilokenizer tf;

/** The variabl e nanme (not used in this version) */
protected String vari abl e;

/** The operand stack */

protected Stack s;

/** Construct a SinpleCalc froman existing Reader */
public SinpleCal c(Reader rdr) throws | COException {

tf = new StreaniTokeni zer(rdr);

/1 Control the input character set:

tf.slashSl ashComment s(true); /1 treat "//" as comments
tf.ordinaryChar('-"); /1 used for subtraction
tf.ordinaryChar('/"); /1 used for division
s = new Stack();

}

protected void doCalc() throws | CException {
int iType;
doubl e t np;

while ((iType = tf.nextToken()) !=tf.TT_EOF) {

switch(i Type) {

case StringTokenizer. TT_NUMBER:
/1 Found a nunber, push value to stack
push(tf.nval);
br eak;

case StringTokenizer. TT_WORD:
/1 Found a variable, save its nane. Not used here. */
variable = tf.sval;
br eak;

case ' +':
/1 Found + operator, performit imediately.
push(pop() + pop());

br eak;
case '-':
/1 Found + operator, performit (order matters).
tnp = pop();
push(pop() - tnp);
br eak;
case '*':

/1 Multiply works OK

push(pop() * pop());
br eak;
case '/’
/1 Handl e division carefully: order matters!
tmp = pop();
push(pop() / tnp);

br eak;
case '=':

Systemout. println(peek());

br eak;
defaul t:

Systemout.printin("Wat's this? i Type =" + iType);
}

}

While St r eaniTokeni zer is useful, it is limited in the number of different tokens that it knows
and has no way of specifying that the tokens must appear in a particular order. To do more
advanced scanning, you need to use some special-purpose scanning tools. Such tools have been
known and used for a long time in the Unix realm. The best-known examples are yacc and lex,
(discussed in the O'Reilly text lex & yacc). These tools let you specify the lexical structure of your
input using regular expressions (see Chapter 4). For example, you might say that an email
address consists of a series of alphanumerics, followed by an at sign (@), followed by a series of
alphanumerics with periods embedded, as:

narme: [A- Za- z0- 9] +@ A- Za- z0- 0.]

The tool will then write code that recognizes the characters you have described. There is also the
grammatical specification, which says, for example, that the keyword ADDRESS must appear,
followed by a colon, followed by a "name" token as previously defined.

One widely used scanning tool is JavaCC. Though still owned by Sun, it is being distributed and
supported by WebGain (http://www.webgain.com/products/metamata/java_doc.html).
JavaCC can be used to write grammars for a wide variety of programs, from simple calculators
such as the one earlier in this recipe, through HTML and CORBA/IDL, up to full Java and C/C++
compilers. Examples of these are included with the JavaCC distribution. Unfortunately, the
learning curve for parsers in general precludes providing a simple and comprehensive example
here. Please refer to the documentation and the numerous examples provided with the JavaCC
distribution.

That's all | have to say on scanning: simple line-at-a-time scanners using St r i ngTokeni zer,
fancier token-based scanners using St r eamlokeni zer , and grammar-based scanners based
on JavaCC and similar tools. Scan well and prosper!

9.14 Binary Data
9.14.1 Problem
You need to read or write binary data, as opposed to text.

9.14.2 Solution

Use a Dat al nput St r eamor Dat aQut put St r eam
9.14.3 Discussion

The St r eamclasses have been in Java since the JDK 1.0 release and are optimal for
reading/writing bytes, rather than characters. The "data" layer over them, comprising

Dat al nput St r eamand Dat aCut put St r eamn are configured for reading and writing binary
values, including all of Java's built-in types. Suppose that you want to write a binary integer plus a
binary floating-point value into a file and read it back later. This code shows the writing part:

i nport java.io.?*;
/** Wite sone data in binary. */
public class WiteBinary {
public static void main(String argv[]) throws | Oexception {
int i = 42;
double d = Math. Pl ;
String FILENAME = "binary. dat";
Dat aQut put St ream os = new Dat aCut put St r eam(
new Fi | eCut put St rean(FI LENAME)) ;
os.writelnt(i);
os.writeDoubl e(d);
os.close();
Systemout.printin("Wote " +i +", " +d+ " to file " +
FI LENAME) ;

}
}

The reading part is left as an exercise for the reader. Should you need to write all the fields from
an object, you should probably use an Obj ect Dat aSt r ean] see Section 9.17.

9.15 Seeking
9.15.1 Problem
You need to read from or write to a particular location in a file, such as an indexed file.
9.15.2 Solution

Use a RandomAccessFi | e.
9.15.3 Discussion

The class | ava. i 0. RandonmAccessFi | e allows you to move the read/write position to any
location within a file, or past the end when writing. This allows you to create or access "files with
holes" on some platforms and lets you read/write indexed or other database-like files in Java. The
primary methods of interest are voi d(| ong wher e), which moves the position for the next
read/write to wher e; i nt ski pByt es(i nt howrany) , which moves the position forward by
howrany bytes; and | ong get Fi | ePoi nt er (), which returns the position.

RandomAccessFi | e class also implements the Dat al nput and Dat aCut put interfaces, so
everything | said about Dat aSt r eans in Section 9.14 also applies here. This example reads a

binary integer from the beginning of the file, treats that as the position to read from, finds that
position, and reads a string from that location within the file.

i mport java.io.*;

/**
* Read a file containing an offset, and a String at that offset.
*/
public class ReadRandom {
final static String FILENAME = "random dat";
protected String fil eNane;
prot ect ed RandonAccessFil e seeker;

public static void main(String argv[]) throws | OException {
ReadRandom r = new ReadRandon{ FI LENANE) ;

Systemout.printin("Ofset is " + r.readOfset());
Systemout.println("Message is \"" + r.readMessage() +
II\II.II);

/** Constructor: save filenane, construct RandomAccessFile */
public ReadRandom(String fnane) throws | OException {

fileNane = fnane;

seeker = new RandomAccessFil e(fnane, "r");

}
[** Read the Ofset field, defined to be at location O in the file.
*/
public int readOfset() throws | OException {
seeker. seek(0);
return seeker.readlnt();
}
/** read the nessage at the given offset */
public String readMessage() throws | OException {
seeker.seek(readOfset()); /1 nove to where
return seeker.readLine(); /1 and read the String
}
}

9.16 Writing Data Streams from C

9.16.1 Problem

You need to exchange binary data between C and Java.
9.16.2 Solution

Use the network byte-ordering macros.

9.16.3 Discussion

The program that created the file random.dat read by the program in the previous recipe was not
written in Java, but in C. Since the earliest days of the TCP/IP protocol in the 1980s, and
particularly on the 4.2 BSD version of Unix, there was an awareness that not all brands of
computers store the bytes within a word in the same order, and there was a means for dealing
with it. For this early heterogeneous network to function at all, it was necessary that a 32-bit word
be interpreted correctly as a computer's network address, regardless of whether it originated on a
PDP-11, a VAX, a Sun workstation, or any other kind of machine then prevalent (there were no
"IBM PC" machines powerful enough to run TCP/IP at that time). So network byte order was
established, a standard for which bytes go in which order on the network. And the network byte
order macros were written: nt ohl for network-to-host order for a long (32 bits), ht ons for host-
to-network order for a short (16 bits), and so on. In most Unix implementations, these C macros
live in one of the Internet header files, although in some newer systems they have been
segregated out into a file like <machine/endian.h>, as on our OpenBSD system.

The designers of Java, working at Sun, were well aware of these issues, and chose to use
network byte order in the Java Virtual Machine. Thus a Java program can read an IP address
from a socket using a Dat al nput St r ean or write an integer to disk that will be read from C
using r ead() and the network byte order macros.

This C program writes the file random.dat read in Section 9.15. It uses the network byte order
macros to make sure that the long integer (32 bits on most C compilers on the IBM PC) is in the
correct order to be read as an i nt in Java.

/* Create the random access file for the RandomAccessFil e exanple
*/

#1 ncl ude <stdio. h>

#1 ncl ude <fcntl. h>

#1 ncl ude <stdlib. h>

#1 ncl ude <uni std. h>

#i ncl ude <sys/types. h>

#1 ncl ude <machi ne/ endi an. h>

const off _t OFFSET = 1234;

const char* FILENAME = "random dat";

const int MODE = 0644;

const char* MESSAGE = "Ye have sought, and ye have found!\r\n";

i nt

mai n(int argc, char **argv) {
int fd;
int java_ offset;

if ((fd = creat(FILENAME, MODE)) < 0) {
perror (Fl LENAVE) ;
return 1,

}

/* Java's DataStreans etc. are defined to be in network byte order,
* so convert OFFSET to network byte order.

*/

java_offset = htonl (OFFSET);

if (wite(fd, & ava_offset, sizeof java offset) < 0) {
perror("wite");

return 1;

}

if (lseek(fd, OFFSET, SEEK SET) < 0) {
perror("seek");
return 1;

}

if (wite(fd, MESSAGE, strlen(MESSAGE)) != strlen(MESSAGE)) {
perror("wite2");
return 1;

}

if (close(fd) < 0) {
perror("cl ose! ?");
return 1;

}

return O;

}

The same technique can be used in the other direction, of course, and when exchanging data
over a network socket, and anyplace else you need to exchange binary data between Java and
C.

9.17 Saving and Restoring Serialized Objects

9.17.1 Problem

You need to write and (later) read objects.

9.17.2 Solution

Use the object stream classes, Obj ect | nput St r eamand Cbj ect Qut put St r eam

9.17.3 Discussion

Object serialization is the ability to convert in-memaory objects to an external form that can be sent
serially (a byte at a time) and back again. The "and back again" may happen at a later time, or in
another JVM on another computer (even one that has a different byte order); Java handles
differences between machines. Obj ect | nput St r eamand Coj ect Cut put St r eamare
specialized stream classes designed to read and write objects. They can be used to save objects
to disk, as I'll show here, and are also useful in passing objects across a network connection, as
I'll show in Section 15.7. This fact was not lost on the designers of the remote methods
invocation, or RMI (see Chapter 22), which uses them for transporting the data involved in
remote method calls.

As you might imagine, if we pass an object such as My Dat a to the wri t eObj ect method, and
wr i t eCbj ect notices that one of the fields is itself an object such as a St r i ng, that data will
get serialized properly. In other words, wr i t eCoj ect works recursively. So, we will give it an
ArraylLi st of data objects. The firstisa | ava. ut i | . Dat e, for versioning purposes. All
remaining objects are of type MyDat a.

To be serializable, the data must implement the empty Ser i al i zabl e interface. Also, the
keyword t r ansi ent can be used for any data that should not be serialized. You might need to
do this for security, or to prevent attempts to serialize a reference to an object from a non-
serializable class. Here we use it to prevent the unencrypted passwords from being saved where
they might be readable:

i mport java.io.*;
i mport java.util.*;

class MyData inplenments Serializable {
String user Nane;
String passwordCypher;
transient String passwordd ear;
public MyData(String nane, String clear) {
user Name = nane;
/1l Save the clear text p/win the object, it won't get
serialized
passwor dCl ear = cl ear;
/1 So we must save the encryption! Encryption not shown here.
passwor dCypher = DES. encrypt (passwordC ear);

}

public class Serialize {
protected static final String FILENAVE = "serial.dat";

public static void main(String s[]) throws | OException {
ArrayList v = new ArrayList();
/1 CGather the data
MyData ul = new MyData("lan Darw n", "secret_java_cook");
v.add(new Date());
v.add(ul);
v. add(new MyDat a(" Abby Brant", "dujordian"));
/1 Save the data to disk.
hj ect Qut put Stream os = new Obj ect Qut put St r ean(
new Fi | eQut put St r ean(FI LENANME)) ;
os.wite(hject(v);
os.close();

}
9.17.4 See Also

There are many other ways to serialize objects, depending upon your interchange goals. One
way would be to write the individual data members into an XML file (see Chapter 21).

9.18 Preventing ClassCastExceptions with SerialVersionUID
9.18.1 Problem
Your class got recompiled, and you're getting Cl assCast Except i on s that you shouldn't.

9.18.2 Solution

Run serialver and paste its output into your classes before you start.
9.18.3 Discussion

When a class is undergoing a period of evolution, particularly a class being used in a networking
context such as RMI or servlets, it may be useful to provide a seri al Ver si onUl D value in this
class. This is a long integer that is basically a hash of the methods and fields in the class. Both
the object serialization API (see Section 9.17) and the JVM, when asked to cast one object to
another (common when using collections, as in Chapter 7), either look up or, if not found,
compute this value. If the value on the source and destination do not match, a

Cl assCast Except i on is thrown. Most of the time, this is the correct thing for Java to do.

However, there may be times when you want to allow a class to evolve in a compatible way, but
you can't immediately replace all instances in circulation. You must be willing to write code to
account for the additional fields being discarded if restoring from the longer format to the shorter,
and having the default value (null for objects, for numbers and false for boolean) if restoring from
the shorter format to the longer. If you are only adding fields and methods in a reasonably
compatible way, you can control the compatibility by providing a long i nt named

serial Ver si onUl D. The initial value should be obtained from a JDK tool called serialver, which
takes just the class name. Consider a simple class called Ser i al i zabl eUser:

/** Denp of a data class that will be used as a JavaBean or as a data
* class in a Servlet container; making it Serializable allows
* it to be saved ("serialized") to disk or over a network connecti on.
*/
public class Serializabl eUser inplenments java.io. Serializable {
public String nane;
public String address;
public String country;

// other fields, and nethods, here...

}

| first compiled it with two different compilers to ensure that the value is a product of the class
structure, not of some minor differences in class file format that different compilers might emit:

$ jikes +E SerializableUser..java

$ serialver Serializabl eUser

Serial i zabl eUser: static final |ong serial VersionU D
7978489268769667877L;

$ javac Serializabl eUser.java

$ serialver Serializabl eUser

Serial i zabl eUser: static final |ong serial VersionU D
7978489268769667877L;

Sure enough, the class file from both compilers has the same hash. Now let's change the file. | go
in with a line editor and add a new field phoneNumright after count ry:

$ ed Serializabl eUser.java
383
8
public String country;
a
public String phoneNum

w

408

q

i an: 145% jikes +E Serializabl eUser.|ava

i an: 146$ serial ver Serializabl eUser

Serial i zabl eUser: static final long serialVersionUD = -
8339341455288589756L;

Notice how the addition of the field changed the seri al Ver si onU D! Now, if | had wanted this
class to evolve in a compatible fashion, here's what | should have done before | started
expanding it. | copy and paste the original serialver output into the source file (again using a line
editor to insert a line before the last line):

$ ed Serializabl eUser.java
408
$i
static final long serial VersionU D = -7978489268769667877L;
w
472
q

$ jikes +E Serializabl eUser.java
$ serialver SerializableUser

Serializabl eUser: static final long serialVersionUD = -
7978489268769667877L;
$

Now all is well: | can interchange serialized versions of this file.

Note that serialver is part of the "object serialization” mechanism, and therefore only works on
classes that implement the Ser i al | zabl e interface described in Section 9.17.

9.19 Reading and Writing JAR or Zip Archives

9.19.1 Problem

You need to create and/or extract from a JAR archive or a file in the PkZip or WinZip format.
9.19.2 Solution

You could use the jar program in the Java Development Kit, since its file format is identical with
the zip format with the addition of the META-INF directory to contain additional structural
information. But since this is a book about programming, you are probably more interested in the
Zi pFi | e and Zi pEnt ry classes and the stream classes that they provide access to.

9.19.3 Discussion

The class | ava. util.zi p. Zi pFi |l eis notan I/O class per se, but a utility class that allows
you to read or write the contents of a JAR or zip-format file.2 When constructed, it creates a
series of Zi pEnt r y objects, one to represent each entry in the archive. In other words, the

Zi pFi | e represents the entire archive, and the Zi pEnt r v represents one entry, or one file that

has been stored (and compressed) in the archive. The Zi pEnt r y has methods like get Nane(

), which returns the name that the file had before it was put into the archive, and

get | nput St rean(), which gives you an | nput St r eamthat will transparently uncompress the
archive entry by filtering it as you read it. To create a Zi pFi | e object, you need either the name
of the archive file or a Fi | e object representing it:

[21 There is no support for adding files to an existing archive, so make sure you put all the files in at once, or
be prepared to re-create the file from scratch.

ZipFile zippy = new ZipFile(fil eName);

If you want to see whether a given file is present in the archive, you can call the get Entry()
method with a filename. More commonly, you'll want to process all the entries; for this, use the
Zi pFi | e object to get a list of the entries in the archive, in the form of an Enuner at i on (see
Section 7.5):

Enuneration all = zippy.entries();
while (all.hasMoreEl enents()) {
ZipEntry entry = (ZipEntry)all.nextEl enent();

We can then process each entry as we wish. A simple listing program could be:

if (entry.isDirectory())
println("Directory: "

el se
printIn("File:

+ e.getNane());

" + e.getNanme());

A fancier version would extract the files. The program in Example 9-4 does both: it lists by
default, but with the - x (extract) switch, it actually extracts the files from the archive.

Example 9-4. UnZip.java

i mport java.io.*;
i mport java.util.?*;
i mport java.util.zip.*;

/**

* UnZip -- print or unzip a JAR or PKZIP file using JDK1.1
java.util.zip.
* Final conmand-line version: extracts files.
*/
public class UnZip {
/** Constants for node listing or node extracting. */
public static final int LIST = 0, EXTRACT = 1;
/** Whet her we are extracting or just printing TOC */
protected int node = LIST;

/** The ZipFile that is used to read an archive */
protected Zi pFile zippy;

/** The buffer for reading/witing the ZipFile data */
protected byte[] b;

/** Sinple main program construct an UnZi pper, process each

* ZIP file fromargv[] through that object.

*/

public static void main(String[] argv) {
UnZip u = new UnZip();

for (int i=0; i<argv.length; i++) {
if ("-x".equals(argv[i])) {
u. set Mode(EXTRACT) ;
conti nue;
}
String candidate = argv[i];
/1 Systemerr.println("Trying path " + candi date);
if (candidate.endsWth(".zip") ||
candi dat e. endsWth(".jar"))
u. unzi p(candi dat e) ;
el se Systemerr.printin("Not a zip file? " + candidate);
}
Systemerr.printin("Al done!");

}

/** Construct an UnZip object. Just allocate the buffer */
unzZip() {

b = new byt e[8092];
}

/** Set the Mbde (list, extract). */
protected void setMdde(int m {
if (m==LIST ||
m == EXTRACT)
node = m

}

/** For a given Zip file, process each entry. */
public void unzZip(String fil eNane) {

try {
zi ppy = new ZipFile(fil eName);
Enuneration all = zippy.entries();

while (all.hasMoreEl enents()) {
getFile(((Zi pEntry)(all.nextElement())));

} catch (1 CException err) {
Systemerr.printin("1O Error: " + err);
return;

}

/** Process one file fromthe zip, given its nane.
* Either print the nanme, or create the file on disk.
*/
protected void getFile(Zi pEntry e) throws | OException {
String zi pNane = e.getNanme();
i f (nmode == EXTRACT) {
/1 doubl e-check that the file is in the zip
/1 if adirectory, nkdir it (renenber to
/1 create intervening subdirectories if needed!)
if (zipNanme.endsWth("/")) {
new Fil e(zi pNane).nkdirs();

return;
}
/'l Else nust be a file; open the file for output
Systemerr.printin("Creating " + zi pNane);
Fi | eQut put Stream os = new Fi | eQut put St reamn(zi pNane) ;
I nput Stream is = zippy.getlnputStreamn(e);
int n=0;
while ((n = is.read(b)) >0)
os.wite(b, 0, n);
is.close();
os.close();
} else
/'l Not extracting, just |ist
if (e.isDirectory()) {

Systemout.printin("Directory " + zi pNane);
} else {
Systemout.printin("File " + zipNane);

}
}

9.20 Reading and Writing Compressed Files

9.20.1 Problem

You need to read or write files that have been compressed using GNU zip, or gzip. These files
are usually saved with the extension .gz.

9.20.2 Solution
Use a GZi pl nput St r eamor GZi pQut put St r eamas appropriate.

9.20.3 Discussion

The GNU gzip/gunzip utilities originated on Unix and are commonly used to compress files.
Unlike the PkZip format discussed in Section 9.19, these programs do not combine the
functionality of archiving and compressing, and are therefore easier to work with. However,
because they are not archives, people often use them in conjunction with an archiver. On Unix,
tar and cpio are common, with tar and gzip being the de facto standard combination. Many web
sites and FTP sites make files available with the extension .tar.gz; such files originally had to be
first decompressed with gunzip and then extracted with tar. As this became a common operation,
modern versions of tar have been extended to support a - z option, which means to gunzip
before extracting, or to gzip before writing, as appropriate.

You may find archived files in gzip format on any platform. If you do, they're quite easy to read,
again using classes from the | ava. ut i | . zi p package. This program assumes that the gzipped
file originally contained text (Unicode characters). If not, you would treat it as a stream of bytes,
that is, use a Buf f er edl nput St r eaminstead of a Buf f er edReader .

i nport java.io.?*;
inport java.util.zip.*;

public class Read&I P {

public static void main(String argv[]) throws | Oexception {
String FILENAME = "file.txt.gz";

/'l Since there are 4 constructors here, | wote themall out in
full.

/'l Inreal life you would probably nest these constructor
calls.

FilelnputStream fin = new Fil el nput St rean(Fl LENAVE) ;

&ZI Pl nput Stream gzis = new GZI Pl nput Strean(fin);

I nput St reanReader xover = new | nput St reanReader (gzi s);

Buf f eredReader is = new BufferedReader (xover);

String line;
/1 Now read |ines of text: the BufferedReader puts themin
lines,
/'l the | nputStreanReader does Uni code conversion, and the
/'l &Zi plnput Stream "gunzi p"s the data fromthe FilelnputStream
while ((line = is.readLine()) != null)
Systemout.println("Read: " + line);

}

If you need to write files in this format, everything works as you'd expect: you create a
&Zi pCQut put St r eamand write on it, usually using it through a Dat aCut put St r eamor
Buf f er edReader .

9.20.4 See Also

The | nf | at er /Def | at er classes provide access to general-purpose compression and
decompression. The | nf | at er St r eam/Def | at er St r eamstream classes provide an 1/O-
based implementation of | nf | at er /Def | at er.

9.21 Program: Text to PostScript

There are several approaches to printing in Java. In a GUI application, or if you want to use the
graphical facilities that Java offers (fonts, colors, drawing primitives, and the like), you should
refer to Recipes Section 12.11 and Section 12.12. However, sometimes you simply want to
convert text into a form that will display nicely on a printer that isn't capable of handling raw text
on its own (such as most of the many PostScript devices on the market). The program in
Example 9-5 shows code for reading one or more text files, and outputting each of them in a
plain font with PostScript around it. Because of the nature of PostScript, certain characters must
be "escaped"; this is handled in t oPsSt ri ng(), which in turn is called from doLi ne(). There
is also code for keeping track of the current position on the page. The output of this program can
be sent directly to a PostScript printer.

Example 9-5. PSFormatter.java
i nport java.io.?*;

[** Text to PS */

public class PSFormatter {
/** The current input source */
prot ect ed BufferedReader br;
/** The current page nunber */

protected int pageNum

/** The current X and Y on the page */

protected int curX cur,;

/** The current |ine nunber on page */

protected int |ineNum

/** The current tab setting */

protected int tabPos = O;

public static final int INCH = 72; /1 PS constant: 72 pts/inch

/| Page paraneters

/** The left margin indent */
protected int |leftMargin = 50;
/** The top of page indent */
protected int topMargin = 750;
/** The bottom of page indent */
protected int botMargin = 50;

/1 FORVATTI NG PARAMETERS
protected int points = 12;
protected int |eading = 14;

public static void main(String[] av) throws | OException {
if (av.length == 0)
new PSFormatter (
new | nput St r eanReader (Systemin)).process();
else for (int i =0; i < av.length; i++) {
new PSFormatter(av[i]).process()
}

}

public PSFormatter(String fileNanme) throws | OException {
br = new BufferedReader (new Fil eReader (fil eNane))
}

public PSFormatter(Reader in) throws | COException {
if (in instanceof BufferedReader)
br (Buf f eredReader) i n;
el se
br

new Buf f er edReader (i n);

}

/** Main processing of the current input source. */
protected void process() throws | OException {

String |ine;
prol ogue(); /1l emt PostScript prologue, once.
startPage(); /1 emt top-of-page (ending previous)

while ((line = br.readLine()) !'=null) {

if (line.startsWth("\f") || line.trim).equals(".bp")) {
startPage();
conti nue;

doLi ne(line);

/1 finish |last page, if not already done.
if (lineNum!= 0)
println("showpage");
}

/** Handl e start of page details. */
protected void startPage() {
i f (pageNum++ > 0)
println("showpage");
[ineNum = 0O;
noveTo(| ef t Margi n, topMargin);
}

/** Process one line fromthe current input */
protected void doLine(String line) {
tabPos = 0;
/1 count |eading (not inbedded) tabs.
for (int i=0; i<line.length(); i++) {
if (line.charAt(i)=="\t")
t abPos++;
el se
br eak;
}
String I =1line.trinm); // renoves spaces AND tabs
if (I.length() == 0) {
++l i neNum
return;

}

noveTo(l eft Margin + (tabPos * | NCH),
topMar gi n- (1 i neNum++ * | eadi ng));

println(" (" + toPSString(l)+ ") show");

/1 1f we just hit the bottom start a new page
if (curY <= bot Margin)
startPage();
}

protected String toPSString(String o) {
StringBuffer sb = new StringBuffer();
for (int i=0; i<o.length(); i++) {
char ¢ = o.charAt(i);

switch(c) {
case '(': sb. append("\\("); break;
case ')': sb. append("\\)"); break;
defaul t: sb. append(c); break;

}

}
return sh.toString();

}

protected void println(String s) {
Systemout. println(s);
}

protected void noveTo(int x, int y) {
curX = Xx;

curyY =y,
println(x +

+y + + "noveto");

}

voi d prologue() {
println("% PS- Adobe") ;
println("/Courier findfont

+ points + scal efont setfont ");

}

The program could certainly be generalized more, and certain features (such as wrapping long
lines) could be handled. I could also wade into the debate among PostScript experts as to how
much of the formatting should be done on the main computer and how much should be done by
the PostScript program interpreter running in the printer. But perhaps | won't get into that
discussion. At least, not today.

9.21.1 See Also

As mentioned, Recipes Section 12.11 and Section 12.12 contain "better" recipes for printing
under Java.

9.22 Program: TarList (File Converter)

This program provides easy access to tar -format files using an interface similar to that used for
zip archives in Section 9.19. Unix users will be familiar with the tar program, an archiver first
written back in the mid-1970s. And JDK users might find the tar program syntax somewhat
familiar, as it was the basis for the command-line Java Archiver (jar) program in the JDK, written
20 years later. If you're not a Unix user, don't dismay: just think of this as an example of a whole
category of programs, those that need to repetitively read and write files in a special-purpose,
predefined format. MS-Windows is full of special-purpose file formats, as are many other
operating systems. Unlike jar, tar is just an archiver, not a combined archiver and compressor, so
its format is somewhat simpler. In this section we'll develop a program that reads a tar archive
and lists the contents. The Tar Li st program combines several reading methods with several
formatting methods. So the commands:

tar -xvf deno.tar
java TarlList deno.tar

should produce the same output. And indeed they do, at least for some files and some versions
of tar, when run on a small tar archive:

$ java TarlList deno.tar

-rWXr - Xr-x i an/ wheel 734 1999-10-05 19: 10 Tar Deno. cl ass
- rWXr - Xr-X i an/ wheel 431 1999-10-05 19: 10 TarlList.java
-rwr--r-- ian/ wheel 0 1999-10-05 19:10 a

-rwr--r-- ian/ wheel 0 1999-10-05 19:10 b link to a

| rwxr - xr-x ian/ wheel 0 1999-10-05 19:10 ¢ -> a

$ tar -tvf deno.tar

-rWXr - Xr-x i an/ wheel 734 1999-10-05 19: 10 Tar Deno. cl ass
- rWXr - Xr-X i an/ wheel 431 1999-10-05 19: 10 TarlList.java
-rwr--r-- ian/ wheel 0 1999-10-05 19:10 a

-rwr--r-- ian/ wheel 0 1999-10-05 19:10 b link to a

| rwxr - xr-x ian/ wheel 0 1999-10-05 19:10 ¢ -> a

$

This example archive contains five files. The last two items, b and c, represent two kinds of links,
regular and symbolic. Aregular link is simply an additional name for a filesystem entry. In Win-32
terms, a symbolic link closely approximates a LNK file, except it is maintained by the operating
system kernel instead of by a user-level programming library.

First let's look at the main program class, Tar Li st (Example 9-6), which is fairly simple. Its
mai n method simply looks for a filename in the command-line arguments, passes it to the

Tar Li st constructor, and callsthe | i st () method. The | i st () method delegates the
presentation formatting to a method called t oLi st For mat (), which demonstrates several
techniques. The Unix permissions, which consist of three octal digits (user, group, and other)
representing three permissions (read, write, and execute) is formatted using a simple f or loop
and an array of strings (see Section 7.2). A Deci nal For nat (see Section 5.8) is used to
format the "size" column to a fixed width. But since Deci nmal For mat apparently lacks the
capability to do fixed-width numeric fields with leading spaces instead of leading zeros, we
convert the leading zeros to spaces. A Dat eFor nat (see Section 6.3) is used to format the
date-and-time field. All of this formatting is done into a StringBuffer (see Section 3.4), which at
the very end is converted into a St r i ng and returned as the value of the t oLi st For mat ()
method.

Example 9-6. TarList.java

i nport java.io.?*;
i nport java.text.*; /1 only for formatting
i nport java.util.?*;

/**
* Denonstrate the Tar archive lister.
*
/
public class TarlList {
public static void main(String[] argv) throws | COException,
Tar Exception {
if (argv.length == 0) {
Systemerr.println("Usage: TarList archive");
Systemexit(1l);
}
new TarList(argv[0]).list();

/** The TarFile we are reading */
TarFile tf;

[** Constructor */

public TarList(String fileNane) {
tf = new TarFile(fil eNane);

}

/** Generate and print the listing */
public void list() throws |CException, TarException {
Enunmeration list = tf.entries();
while (list.hasMreEl ements()) {
TarEntry e = (TarEntry)list.nextEl enent();
Systemout. println(toListFornmat(e));

}

protected StringBuffer sb;

/** Shift used in formatting perm ssions */
protected static int shft[] ={ 6, 3, 0 };
/** Format strings used in permssions */
protected static String rw[] = {
ety trex", trwe", trwx”
1
/** Nunber Format used in formatting List formstring */
Nunber For mat si zeForm = new Deci mal For mat (" 00000000") ;
/** Date used in printing nmine */
Date date = new Date();
Si npl eDat eFor mat dat eForm =
new Si npl eDat eFormat ("yyyy- MM dd HH m') ;

/** Format a TarEntry the same way that UNI X tar does */
public String tolListFormat(TarEntry e) ({
sb = new StringBuffer();
switch(e.type) {
case TarEntry. LF_CLDNORVAL:
case TarEntry. LF_NORVAL:
case TarEntry. LF_CONTI G

case TarEntry. LF _LINK /1 hard link: sane as file
sb. append('-"); /1 'f' would be sensible
br eak;

case TarEntry.LF DI R
sb. append('d');
br eak;

case TarEntry. LF_SYM.I NK:
sb. append('1");

br eak;

case TarEntry.LF CHR /1 UNI X device file
sb. append(' c');
br eak;

case TarEntry. LF BLK /1 UNI X device file
sb. append(' b");
br eak;

case TarEntry. LF_FI FQO /1 UNI X naned pi pe
sb. append(' p');
br eak;

defaul t: /1 Can't happen?
sb. append(' ?');
br eak;

}

/1l Convert e.g., 754 to rwWxXrwr--
int node = e.getMde();
for (int 1=0; i<3; i++) {
sb. append(rwx[node >> shft[i] & 007]);

}
sb. append(’ ');

/1 owner and group
sb. append(e. get Unane()). append(' /") . append(e. get Ghane(

)) . append(" ");

Il size
/1 Decimal Format can't do "% 9d", so we do part of it ourselves

sb. append(’' ');
String t = sizeFormformat (e.getSize());
bool ean digit = fal se;
char c;
for (int i=0; i<8; i++) {
c =t.charAt(i);

if (!digit & i<(8-1) & c == "0")
sb. append(' '); /1 | eading space
el se {

digit = true;
sb. append(c);

}
sb. append(' ');

/1 ntime

/1l copy file's mine into Data object (after scaling

/1 from"sec since 1970" to "nsec since 1970"), and format it.
dat e. set Ti nre(1000*e. get Tine());

sb. append(dat eForm f or mat (dat e)) . append(' ');

sb. append(e. get Nane());
if (e.isLink())

sb. append(" link to ").append(e.getLinkNanme());
if (e.isSynLink())

sb. append(" -> ").append(e.getLinkNanme());

return sb.toString();
}

"But wait," you may be saying. "There's no I/O here!" Well, patient reader, your waiting is
rewarded. For here is class Tar Fi | e (Example 9-7). As its opening comment remarks, tar files,
unlike zip files, have no central directory, so you have to read the entire archive file to be sure of
having a particular file's entry, or to know how many entries there are in the archive. | centralize
this in a method called r eadFi | e(), but for efficiency | don't call this method until | need to;
this technique is known as lazy evaluation (there are comments in the ToDo file on how to make it
even lazier, at the cost of one more boolean variable). In this method | construct a
RandonmAccessFi | e (see Section 9.15) to read the data. Since | need to read the file
sequentially but then may need to seek back to a particular location, | use a file that can be
accessed randomly as well as sequentially. Most of the rest of the code has to do with keeping
track of the files stored within the archive.

Example 9-7. TarFile.java

i mport java.io.*;
i mport java.util.*;

/**

* Tape Archive Lister, patterned | oosely after java.util.Z pFile.

* Since, unlike Zip files, there is no central directory, you have to
* read the entire file either to be sure of having a particular file's
* entry, or to know how nmany entries there are in the archive.

public class TarFile {
/[** True after we've done the expensive read. */
protected bool ean read = fal se;
[** The list of entries found in the archive */
protected Vector list;

/** Size of header block on tape. */
public static final int RECORDSI ZE = 512;

/* Size of each block, in records */
protected int bl ocki ng;

/* Size of each block, in bytes */
protected int bl ocksi ze;

/** File containing archive */
protected String fil eNane;

/** Construct (open) a Tar file by name */
public TarFile(String name) {

fileName = nane;

list = new Vector();
read = fal se;

}

/** Construct (open) a Tar file by File */

public TarFile(java.io.File nane) throws | OException {
t hi s(name. get Canoni cal Path());

}

/** The main datastream */
prot ected RandomAccessFile is;

/** Read the Tar archive in its entirety.
* This is sem -lazy evaluation, in that we don't read the file
until we need to.
A future revision may use even | azier evaluation: in getEntry,
scan the list and, if not found, continue readi ng!
For now, just read the whole file.
/
protected void readFile() throws | OException, TarException {
is = new RandomAccessFil e(fil eNanme, "r");
TarEntry hdr;
try {
do {
hdr = new TarEntry(is);
if (hdr.getSize() < 0) {
Systemout.println("Size < 0");
br eak;

L N

}

/1l Systemout.println(hdr.toString());

list.addEl emrent (hdr);

/1l Get the size of the entry

int nbytes = hdr.getSize(), diff;

/1 Round it up to bl ocksize.

if ((diff = (nbytes % RECORDSI ZE)) != 0) {
nbytes -= diff; nbytes += RECORDSI ZE

}

/1 And skip over the data portion
/1l Systemout.println("Skipping " + nbytes + " bytes");
i s.skipBytes(nbytes);
} while (true);
} catch (ECFException e) {
/1 OK, just stop reading.

/1 Al done, say we've read the contents.
read = true;

}

/[* Close the Tar file. */
public void close() {
try {
is.close();
} catch (1 COException e) {
/1 nothing to do
}

}

/* Returns an enuneration of the Tar file entries. */
public Enuneration entries() throws | OException, TarException {

if ('read) {
readFile();
}
return list.elenents();
}
/** Returns the Tar entry for the specified nanme, or null if not
found. */

public TarEntry getEntry(String nane) {
for (int i=0; i<list.size(); i++) {
TarEntry e = (TarEntry)list.elementAt(i);
i f (name.equal s(e.getNane()))
return e;

}

return null;

}

/** Returns an I nputStream for reading the contents of the
* specified entry fromthe archive.
* May cause the entire file to be read.
*/
public InputStreamgetlnputStream(TarEntry entry) ({
return null;
}

/** Returns the path nanme of the Tar file. */
public String getNanme() {

return null;
}

/** Returns the nunber of entries in the Tar archive.
* May cause the entire file to be read.
*/
public int size() {
return O;

}

"But my patience is nearly at an end! Where's the actual reading?" Indeed, you may well ask. But
it's not there. The actual reading code is further delegated to Tar Ent r y's constructor, which we'll
see in a minute. Since Tar Fi | e is patterned after Zi pFi | e (see Section 9.19), it doesn't
extend any of the I/O classes. Like Zi pFi | e, a Tar Fi | e is an object that lets you get at the
individual elements within a tar-format archive, each represented by a Tar Ent r v object. If you
want to find whether a particular file exists in the archive, you can call the Tar Fi | e's get Entry(
) method. Or you can ask for all the entries, as we did previously in Tar Li st . Having obtained
one entry, you can ask for all the information about it, again as we did in Tar Li st . Or you could
ask for an | nput St r eam as we did for zip files. However, that part of the Tar Ent r y class has
been left as an exercise for the reader. Here, at last, is Tar Ent r y (Example 9-8), whose
constructor reads the archive header and stores the file's beginning location for you, for when you
get around to writing the get | nput St r eammethod.

As mentioned, | use lazy evaluation, simply reading the bytes into some byte arrays, and don't
convert them to strings or numbers until asked to. Notice also that the filenames and user/group
names are treated as byte strings and converted as ASCII characters when needed as St ri ngs.
This makes sense, because the tar file format only uses ASCII characters at present. Some Unix
implementations of tar explicitly look for null characters to end some of these strings; this will
need work from the Unix standards people.

Example 9-8. TarEntry.java
i nport java.io.?*;

/** One entry in an archive file.
* @ote
* Tar format info taken fromJohn G lnore's public domain tar program
* @#)tar.h 1.21 87/05/01 Publ i ¢ Domai n, which said:
* "Created 25 August 1985 by John G I nore, ihnp4!hoptoad! gnu."”
* John is now gnu@oad. com and by another path tar.h is GPL'd in G\NU
Tar .
*/
public class TarEntry {
/** \Where in the tar archive this entry's HEADER i s found. */
public long fileOfset = 0;

/** The maxi num size of a nanme */
public static final int NANVSI Z =1
public static final int TUNMLEN

00;
32,
public static final int TGNMLEN 32;

/1 Next fourteen fields constitute one physical record.

/| Padded to TarFil e. RECORDSI ZE bytes on tape/di sk.

/'l Lazy Evaluation: just read fields in raw form only fornmat when
asked.

[** File nane */

byt e[] nanme = new byt e[NAVSI Z] ;
/[** perm ssions, e.g., rWr-xr-x? */
byt e[] node = new byte[8];

[* user */

byte[] ui d
/* group */
byte[] gd
[* size */

new byt e[8];

new byt e[8];

byte[] size = new byte[12];

/* UNI X nodification tinme */

byte[] ntime = new byte[12];

/* checksumfield */

byte[] chksum = new byt e[8];

byt e type;

byte[] I i nkNarme = new byt e[NAMSI Z] ;
byte[] magi ¢ = new byte[8];

byte[] uname = new byt e[TUNVLEN] ;
byte[] gnanme = new byt e[TGNMLEN] ;

byte[] devmaj or
byte[] devmi nor

new byt e[8];
new byt e[8];

/1 End of the physical data fields.

/* The magic field is filled with this if unanme and gnane are
valid. */
public static final byte TMAA C[] = {
U e - T A N)
o, 0o, 0, 0, 0, 0, 0x20, 0x20, O
}; /* 7 chars and a null */

/* Type value for Normal file, Unix conpatibility */
public static final int LF_OLDNORVAL ='\0';

/* Type value for Nornmal file */

public static final int LF_NORVAL = '0';

/* Type value for Link to previously dunped file */
public static final int LF_LINK = "1

/* Type value for Symbolic link */

public static final int LF_SYMINK ="2";

/* Type value for Character special file */

public static final int LF CHR ="'3";

/* Type value for Block special file */

public static final int LF_BLK = "'4";

/* Type value for Directory */

public static final int LF DR ='5";
/* Type value for FIFO special file */
public static final int LF_FIFO ='6";

/* Type value for Contiguous file */
public static final int LF_ CONTIG="7";

/* Constructor that reads the entry's header. */
public TarEntry(RandomAccessFile is) throws | OException,
Tar Exception {

fileOfset = is.getFilePointer();

/1 read() returns -1 at EOF
if (is.read(nanme) < 0)
t hrow new EOFException();
/1 Tar pads to block boundary with nulls.
if (name[0] == '"\0")
t hrow new EOFException();

/1 OK, read remaining fields.
i s. read(node);
is.read(uid);
is.read(gid);

i s.read(size);
is.read(ntime);

i s.read(chksun;

type = is.readByte();
i s.read(linkName);

i s.read(magic);

i s.read(uname);

i s.read(gname);

i s.read(devmgjor);

i s.read(devm nor);

/1l Since the tar header is < 512, we need to skip it.
i s.skipBytes((int)(TarFile. RECORDSI ZE -
(is.getFilePointer() % TarFile. RECORDSI ZE)));

/]l TODO if checksun() fails,
/1 t hrow new Tar Exception("Failed to find next header");

/** Returns the nane of the file this entry represents. */
public String getNanme() {
return new String(nane).trinm();

public String get TypeNane() {
switch(type) {
case LF_O_LDNORVAL:
case LF_NORVAL:
return "file";
case LF_LINK
return "link win archive";
case LF_SYM.I NK
return "symink";
case LF_CHR
case LF_BLK:
case LF_FI FO
return "special file";
case LF DR
return "directory"”;
case LF_CONTI G
return "contig";
defaul t:
throw new ||| egal St at eExcepti on(" Tar Entry. get TypeNane: type

+ type + " invalid");
}
}
/** Returns the UNI X-specific "node" (type+perm ssions) of the
entry */

public int getMde() {
try {

return Integer.parselnt(new String(node).trin(),
0777,
} catch (111 egal Argunment Exception e) {
return O;
}
}

/** Returns the size of the entry */
public int getSize() {
try {
return Integer.parselnt(new String(size).trin(),
} catch (111 egal Argunment Exception e) {

return O;
}
}
/** Returns the nane of the file this entry is a link to,
* or null if this entry is not a |link
*/

public String getLinkNane() {
[/ if (isLink())
11 return null;
return new String(linkName).trin();

}

/** Returns the nodification tine of the entry */
public long getTime() {

try {

8)

8);

return Long. parseLong(new String(ntine).trin(),8);

} catch (111 egal Argunment Exception e) {
return O;
}

}

/** Returns the string nanme of the userid */
public String getUnane() {

return new String(uname).trin();
}

/** Returns the string name of the group id */
public String getGlane() {

return new String(gname).trin();
}

/** Returns the nuneric userid of the entry */
public int getuid() {
try {
return Integer.parselnt(new String(uid).trinm());
} catch (111 egal Argunment Exception e) {
return -1,
}

/** Returns the nuneric gid of the entry */
public int getgid() {
try {
return Integer.parselnt(new String(gid).trinm());
} catch (111 egal Argunment Exception e) {

&

return -1;

}

/** Returns true if this entry represents a file */
bool ean isFile() {

return type == LF_NORMAL || type == LF_OLDNORNAL;
}

/** Returns true if this entry represents a directory */
bool ean isDirectory() {

return type == LF DI R;
}

/** Returns true if this a hard link (to a file in the archive) */
bool ean isLink() {

return type == LF_LINK;
}

/** Returns true if this a synbolic link */
bool ean isSynmLink() {

return type == LF_SYM.I NK;
}

/** Returns true if this entry represents sone type of UN X speci al
file */
bool ean isSpecial () {
return type == LF CHR || type == LF_BLK || type == LF_FIFQ
}

public String toString() {
return "TarEntry[" + getName() + ']';
}

}
9.22.1 See Also

The Tar Fi | e example is one of the longest in the book. One could equally well use filter
subclassing to provide encryption. One could even, in theory, write a Java interface to an
encrypted filesystem layer, such as CFS (see ftp://research.att.com/dist/mab/cfs.ps) or to a
version-archiving system such as CVS (the Concurrent Versions System; see
http://www.cvs.org). CVS is a good tool for maintaining source code; most large open source
projects now use it (see http://www.openbsd.org/why-cvs.html). In fact, there is already a
Java-based implementation of CVS (see http://www.jcvs.org/). Either of these would be
substantially more clever than my little tarry friend, but, | suspect, contain rather more code.

For all topics in this chapter, Rusty's book Java I/O should be considered the antepenultimate
documentation. The penultimate reference is the Javadoc documentation, while the ultimate
reference is, if you really need it, the source code for the Java API, to which | have not needed to
make a single reference in writing this chapter.

10 Directory and Filesystem Operations

10.1 Introduction

This chapter is largely devoted to one class: | ava. i 0. Fi | e. The Fi | e class gives you the
ability to list directories, obtain file status, rename and delete files on disk, create directories, and
perform other filesystem operations. Many of these would be considered "system programming"”
functions on some operating systems. Java makes them all as portable as possible.

Note that many of the methods of this class attempt to modify the permanent file store, or disk
filesystem, of the computer you run them on. Naturally, you might not have permission to change
certain files in certain ways. This can be detected by the Java Virtual Machine's (or the browser's,
in an applet) Secur it yManager , which will throw an instance of the unchecked exception
Secur it yExcepti on. But failure can also be detected by the underlying operating system: if
the security manager approves it but the user running your program lacks permissions on the
directory, for example, then you will either get back an indication (such as false), or an instance of
the checked exception | OExcept i on. This must be caught (or declared in the t hr ows clause) in
any code that calls any method that tries to change the filesystem.

10.2 Getting File Information

10.2.1 Problem

You need to know all you can about a given file on disk.
10.2.2 Solution

Use aj ava.i o. Fi | e object.

10.2.3 Discussion

The Fi | e class has a number of "informational” methods. To use any of these, you must
construct a Fi | e object containing the name of the file it is to operate upon. It should be noted up
front that creating aFi | eobject has no effect on the permanent filesystem; it is only an object in
Java's memory. You must call methods on the Fi | e object in order to change the filesystem; as
we'll see, there are numerous "change" methods, such as one for creating a new (but empty) file,
one for renaming a file, etc., as well as many informational methods. Table 10-1 lists some of
the informational methods.

Table 10-1. java.io.File methods

Return type Method name Meaning

bool ean exists() True if something of that name exists
String get Canoni cal Pat h() Full name

String get Nanme() Relative filename

String get Parent () Parent directory

bool ean canRead() True if file is readable

bool ean canWite() True if file is writable

| ong | ast Modi fied() File modification time

| ong [ength() File size

bool ean isFile() True if it's a file

bool ean isDirectory() True if it's a directory (Note: it might be neither)

You can't change the name stored in a Fi | e object; you simply create a new Fi | e object each
time you need to refer to a different file.

i mport java.io.*;
i mport java.util.*;

/**
* Report on a file's status in Java
*/
public class FileStatus {
public static void main(String[] argv) throws | OException {

/1 Ensure that a filenane (or sonething) was given in argv[O]
if (argv.length == 0) {
Systemerr.println("Usage: Status filenane");
Systemexit(1l);

}
for (int i = 0; i< argv.length; i++) {
status(argv[i]);
}
}
public static void status(String fileNane) throws | OException {
Systemout.println("---" + fileNane + "---");

/1 Construct a File object for the given file.
File f = new File(fil eNane);

/1l See if it actually exists

if ('f.exists()) {
Systemout.printin("file not found");
Systemout.printin(); /1 Blank |ine
return;

}

[l Print full nane

System out. println("Canonical name " + f.getCanonical Path());

/1 Print parent directory if possible

String p = f.getParent();

if (p!=null) {
Systemout. println("Parent directory:

}

/1 Check if the file is readable

if (f.canRead()) {
Systemout.printin("File is readable.");

}

/1 Check if the file is witable

if (f.canWite()) {
Systemout.printin("File is witable.");

}

/1 Report on the nodification tine.
Date d = new Date();

d.setTinme(f.lastMdified());
Systemout.println("Last nodified " + d);

/1 See if file, directory, or other. If file, print size.
if (f.iskFile()) {
/1l Report on the file's size
Systemout.printin("File size is " + f.length() + "
bytes.");
} else if (f.isDirectory()) {
Systemout.println("lIt's a directory");
} else {
Systemout.println("l dunno! Neither a file nor a
directory!");

}

Systemout.printin(); /1 blank |ine between entries
}

When run with the three arguments shown, it produces this output:

C\javasrc\dir_file> ava FileStatus [Itnp/id /autoexec. bat
[

Canoni cal nane C:\

File is readable.

File is witable.

Last nodified Thu Jan 01 00:00: 00 GV 1970

It's a directory

---/tnp/id---
file not found

---/aut oexec. bat - - -

Canoni cal name C:.\ AUTOEXEC. BAT

Parent directory: \

File is readabl e.

File is witable.

Last nodified Fri Sep 10 15:40: 32 GVII 1999
File size is 308 bytes.

As you can see, the so-called " canonical name" not only includes a leading directory root of C:\ ,
but also has had the name converted to uppercase. You can tell | ran that on MS-Windows. On
Unix, it behaves differently:

$ java FileStatus / /tnp/id /autoexec. bat

[

Canoni cal nane /

File is readable.

Last nodified October 4, 1999 6:29:14 AM PDT
It's a directory

---/tnp/id---

Canoni cal nane /tnp/id
Parent directory: /tnp
File is readable.
File is witable.

Last nodified Cctober 8, 1999 1:01: 54 PM PDT
File size is 0 bytes.

---/aut oexec. bat - - -
file not found

$

On a typical Unix system there is no autoexec.bat file. And Unix filenames (like those on a Mac)
can consists of upper- and lowercase characters: what you type is what you get.

10.3 Creating a File

10.3.1 Problem

You need to create a new file on disk, but you don't want to write into it.
10.3.2 Solution

Useajava.i o. Fi | eobject's cr eat eNewri | e() method.

10.3.3 Discussion

You could easily create a new file by constructing a Fi | eCut put St reamor Fi | eWiter (see
Section 9.4). But then you'd have to remember to close it as well. Sometimes you want a file to
exist, but you don't want to bother putting anything into it. This might be used, for example, as a
simple form of interprogram communication: one program could test for the presence of a file,
and interpret that to mean that the other program has reached a certain state. Here is code that
simply creates an empty file for each name you give:

i nport java.io.?*;

/**
* Create one or nore files by nane.
* The final "e" is omtted in homage to the underlying UNI X system
call.
*/
public class Creat {
public static void main(String[] argv) throws | Oexception {

/'l Ensure that a filenane (or something) was given in argv[O0]
if (argv.length == 0) {
Systemerr.println("Usage: Creat filenane");
Systemexit(1l);

}

for (int i = 0; i< argv.length; i++) {
/1l Constructing a File object doesn't affect the disk, but
/'l the createNewFile() nethod does.
new File(argv[i]).createNewFile();

}

10.4 Renaming a File

10.4.1 Problem

You need to change a file's name on disk.

10.4.2 Solution

Useajava.i o. Fi | e object'srenaneTo() method.
10.4.3 Discussion

For reasons best left to the gods of Java, the r enaneTo() method requires not the name you
want the file renamed to, but another Fi | e object referring to the new name. So to rename a file
you must create two Fi | e objects, one for the existing name and another for the new name.
Then call the r enaneTo method of the existing-name's Fi | e object, passing in the second Fi | e
object. This is easier to see than to explain, so here goes:

i nport java.io.?*;

/**
* Renane a file in Java
*
/
public class Renane {
public static void main(String[] argv) throws | Oexception {

/'l Construct the file object. Does NOT create a file on disk!
File f = new Fil e("Renane.java~"); // backup of this source

file.
/'l Rename the backup file to "junk.dat"
/1 Renaming requires a File object for the target.
f.renaneTo(new File("junk.dat"));
}
}

10.5 Deleting a File

10.5.1 Problem

You need to delete one or more files from disk.
10.5.2 Solution

Useaj ava.io. Fi | e object's del et e() method,; it will delete files (subject to permissions)
and directories (subject to permissions and to the directory being empty).

10.5.3 Discussion

This is not very complicated. Simply construct a Fi | e object for the file you wish to delete, and
call its del et e() method:

i mport java.io.*;
/**
* Delete a file fromwi thin Java
*/
public class Delete {
public static void main(String[] argv) throws | OException {

/1 Construct a File object for the backup created by editing
/1 this source file. The file probably already exists.
/1 My editor creates backups by putting ~ at the end of the

namne.
File bkup = new File("Del ete.java~"
/1 Quick, now, delete it inmediately:
bkup. delete();
}
}

Just recall the caveat about permissions in the Introduction to this chapter: if you don't have
permission, you can get a return value of false or, possibly, a Securi t yExcept i on. Note also
that there are some differences between platforms. Windows 95 allows Java to remove a file that
has the read-only bit, but Unix does not allow you to remove a file that you don't have permission
on or to remove a directory that isn't empty. Here is a version of Del et e with error checking (and
reporting of success, t00):

i mport java.io.*;

/**

* Delete a file fromwi thin Java, with error handling.
*/

public class Delete2 {

public static void main(String argv[]) {
for (int i=0; i<argv.length; i++)
del ete(argv[i]);
}

public static void delete(String fileNane) {
try {

/1 Construct a File object for the file to be del eted.

File bkup = new File(fil eNane);

/1 Quick, now, delete it inmediately:

if (!bkup.delete())
Systemout.println("** Deleted " + fil eNane);

el se
Systemerr.printin("Failed to delete " + fil eNane);
} catch (SecurityException e) {

Systemerr.printin("Unable to delete " + fileNane +
"(" + e.getMessage() + ")");

}

Running it we get this:

$I1s -1d 2

-rwr--r-- 1 ian ian 0 Cct 8 16:50 a
drwxr-xr-x 2 ian ian 512 Ct 8 16:50 b
drwxr-xr-x 3 ian ian 512 Gt 8 16:50 c
$ java Delete2 ?

Del eted a

Del eted b

Failed to delete c

$I1s -1 c

total 2

drwxr-xr-x 2 ian ian 512 Cct 8 16:50 d
$ java Delete2 c/d ¢

Del eted c/d

Del eted ¢

$

10.6 Creating a Transient File

10.6.1 Problem

You need to create a file with a unique temporary filename or arrange for a file to be deleted
when your program is finished.

10.6.2 Solution
Useajava.io.Fi|eobjectscreateTenpFile() ordel eteOnExit() method.
10.6.3 Discussion

The Fi | e object has a creat eTenpFi | e method and a del et eOnExi t method. The former
creates a file with a unique name -- in case several users run the same program at the same time
on a server -- and the latter arranges for any file (no matter how it was created) to be deleted
when the program exits. Here we arrange for a backup copy of a program to be deleted on exit,
and we also create a temporary file and arrange for it to be removed on exit. Sure enough, both
files are gone after the program runs.

i mport java.io.*;

/**
* Work with tenporary files in Java.
*/
public class TenpFiles {
public static void main(String[] argv) throws | OException {

/1 1. Make an existing file tenporary

/1l Construct a File object for the backup created by editing

/1 this source file. The file probably already exists.

/1 My editor creates backups by putting ~ at the end of the
namne.

File bkup = new Fil e("Renane. java~");

/1 Arrange to have it del eted when the program ends.

bkup. del eteOnExit();

/Il 2. Create a new tenporary file.

/1 Make a file object for foo.tnp, in the default tenp
directory

File tnp = File.createTenpFile("foo", "tnp");

/'l Report on the filenane that it nmade up for us.

Systemout.println("Your tenp file is " + tnp.getCanoni cal Pat h(
));

/1 Arrange for it to be deleted at exit.

tnp. del eteOnExit();

/1 Now do sonething with the tenporary file, without having to

/1 worry about deleting it later

writeDat al nTenp(tnp. get Canoni cal Path());

}

public static void witeDatal nTenp(String tenpnam {
/1 This version is dumry. Use your imagination.
}

}

Notice that the cr eat eTenpFi | e method is like cr eat eNewri | e (see Section 10.3) in that it
does create the file. Also be aware that, should the Java Virtual Machine terminate abnormally,
the deletion will probably not occur. Finally, there is no way to undo the setting of

del et eOnExi t () short of something drastic like powering off the computer before the program
exits.

10.7 Changing File Attributes

10.7.1 Problem

You want to change attributes of a file other than its name.
10.7.2 Solution

Use set ReadOnl y() or set Last Modi fied().
10.7.3 Discussion

As we saw in Section 10.2, there are many methods that report on a file. By contrast, there are
only a few that change the file.

set ReadOnl y() turns on read-only for a given file or directory. It returns true if it succeeds,
otherwise false. There is no set ReadW i te() (atleast as of JDK 1.3; | don't know why this
method was overlooked). Since you can't undo a set ReadOnl y(), use this method with care!

set Last Mbdi fi ed() allows you to play games with the modification time of a file. This is
normally not a good game to play, but is useful in some types of backup/restore programs. This
method takes an argument that is the number of milliseconds (not seconds) since the beginning
of time (January 1, 1970). You can get the original value for the file by calling

get Last Modi fied() (see Section 10.2) or you can get the value for a given date by calling

the Dat e class's get Ti me() method (see Section 6.2). set Last Modi fi ed() returns true
if it succeeded, and false otherwise.

The interesting thing is that the documentation claims that "File objects are immutable," meaning
that their state doesn't change. But does calling set ReadOnl y() affect the return value of
canRead() ? Let's find out:

i mport java.io.*;

public class ReadOnly {
public static void main(String[] a) throws | OException {

File f = newFile("f");

if (!f.createNewFile()) {
Systemout.println("Can't create new file.");
return;

}

if (!'f.canWite()) {
Systemout.printin("Can't wite new filel");
return;

}

if (!f.setReadOnly()) {
Systemout.printin("Grr! Can't set file read-only.");
return;

}

if (f.canWite()) {
Systemout. println("Mst imutable, captain!");
Systemout.printin("But it still says canWite() after
set ReadOnl y");
return;
} else {
System out. println("Logical, captain!");
Systemout.println
("canWite() correctly returns false after
set ReadOnl y");
}
}
}

When | run it, this program reports what | (and | hope you) would expect:

$jr ReadOnly

+ jikes +E -d . ReadOnly.java

+ java ReadOnly

Logi cal, captain!

canWite() correctly returns false after setReadOnly

$

So, the immutability of a Fi | e object refers only to the pathname it contains, not to its read-only-
ness.

10.8 Listing a Directory

10.8.1 Problem

You need to list the filesystem entries named in a directory.
10.8.2 Solution

Useajava.io. Fileobjectslist() method.

10.8.3 Discussion

The j ava. i 0. Fi | e class contains several methods for working with directories. For example, to
list the filesystem entities named in the current directory, just write:

String nanes = new File(".").list()
This can become a complete program with as little as the following:

/** Sinple directory lister
*/
public class Ls {
public static void nmain(String argh_ny _aching fingers[]) {
String[] dir = new java.io.File(".").list(); /] Get list of

nanmes
java. util.Arrays.sort(dir); /1 Sort it (Data Structuring
chapter))
for (int i=0; i<dir.length; i++)
Systemout.printin(dir[i]); /1 Print the list
}
}

Of course, there's lots of room for elaboration. You could print the names in multiple columns
across the page. Or even down the page, since you know the number of items in the list before
you print. You could omit filenames with leading periods, as does the Unix Is program. Or print
the directory names first; | once used a directory lister called Ic that did this, and | found it quite
useful. By constructing a new Fi | e object for each nhame, you could print the size of each, as per
the DOS dir command or the Unix Is - command (see Section 10.2). Or you could figure out
whether each is a file, a directory, or neither. Having done that, you could pass each directory to
your top-level function, and you'd have directory recursion (the Unix find command, or Is -R, or
the DOS DIR/S command).

A more flexible way to list filesystem entries is with | i st (Fi | enaneFi | ter).

Fi l enaneFi | t er is atiny little interface, with only one method: bool ean accept (Fil e
inDir, StringfileNane). Suppose you want a listing of only Java-related files (*.java,
*.class, *.jar, etc.). Just write the accept () method so that it returns true for these files and
false for any others. Here is the Ls class warmed over to use a Fi | enaneFi | t er instance (my
Onl yJava class implements this interface) to restrict the listing:

i nport java.io.?*;

/**

* FNFilter - Ls directory lister nodified to use FilenaneFilter
*
/
public class FNFilter {
public static void nmain(String argh _ny_aching fingers[]) {
/'l CGenerate the selective list, with a one-use File object.
String[] dir = new java.io.File(".").list(new OnlyJava());

java. util.Arrays.sort(dir); /1 Sort it (Data Structuring
chapter))
for (int i=0; i<dir.length; i++)
Systemout.printin(dir[i]); /1 Print the list
}
}

/** This class inplenents the FilenaneFilter interface.
* The Accept nmethod only returns true for .java and .class files.
*/
class OnlyJava inplenents FilenaneFilter {
publ i ¢ bool ean accept(File dir, String s) {
if (s.endsWth(".java") || s.endsWth(".class") ||
s.endsWth(".jar"))
return true;
/'l others: projects, ... ?
return fal se;

}

The Fi | enaneFi | t er need not be a separate class; the online code example FNFi | t er 2
implements the interface directly in the main class, resulting in a slightly shorter file. In a full-scale
application, the list of files returned by the Fi | enaneFi | t er would be chosen dynamically,
possibly automatically based on what you were working on. As we'll see in Section 13.10, the
file chooser dialogs implement a superset of this functionality, allowing the user to select
interactively from one of several sets of files to be listed. This is a great convenience in finding
files, just as it is here in reducing the number of files that must be examined.

10.9 Getting the Directory Roots

10.9.1 Problem

You want to know about all the top-level directories, such as C:\ and D:\ on MS-Windows.
10.9.2 Solution

Use the static method Fi | e. | i st Root s().

10.9.3 Discussion

Speaking of directory listings, you surely know that all modern desktop computing systems
arrange files into hierarchies of directories. But you might not know that on Unix all filenames are
somehow "under" the single root directory named / , while on Microsoft platforms there is a root
directory named \ in each disk drive (A:\ for the first floppy, C:\ for the first hard drive, and other
letters for CD-ROM and network drivers). If you need to know about all the files on all the disks,
then, you should find out what "directory root" names exist on the particular platform. The static

method | i st Root s() returns (in an array of Fi | e objects) the available filesystem roots on
whatever platform you are running on. Here is a short program to list these, along with its output:

C.> type DirRoots.java
i nport java.io.?*;

public class DirRoots {
public static void main(String argh _ny _aching fingers[]) {
File[] drives = File.listRoots(); // Get list of nanes
for (int i=0; i<drives.length; i++)
System out. println(drives[i]); /1 Print the list

java DirRoots

As you can see, the program listed my floppy drive (even though the floppy drive was not only
empty, but left at home while | wrote this recipe on my notebook computer in a parking lot), the
hard disk drive, and the CD-ROM drive.

On Unix there is only one:

$ java DirRoots
/
$

One thing that is "left out” of the list of roots is the so-called UNC filename. UNC filenames are
used on Microsoft platforms to refer to a network-available resource that hasn't been mounted
locally on a particular drive letter. For example, my server (running Unix with the Samba SMB
fileserver software) is named dar i an (made from my surname and first name), and my home
directory on that machine is exported or shared with the name i an, so | could refer to a directory
named book in my home directory under the UNC name \\darian\ian\book. Such a filename would
be valid in any Java filename context (assuming you're running on MS-Windows), but you would
not learn about it from the Fi | e. | | st Root s() method.

10.10 Making New Directories

10.10.1 Problem

You need to create a directory.

10.10.2 Solution

Usejava.lio.Filesnkdir() ornkdirs() method.

10.10.3 Discussion

Of the two methods used for creating directories, nmkdi r () creates just one directory while
mkdi rs() creates any parent directories that are needed. For example, if /home/ian exists and
is a directory, then the calls:

new File("/hone/ian/bin").nkdir();
new File("/hone/ian/src").nkdir();

will succeed, whereas:

new Fil e("/hone/ian/once/tw ce/again”).nkdir();

will fail, assuming that the directory once does not exist. If you wish to create a whole path of
directories, you would tell Fi | e to make all the directories at once by using mkdi rs():

new Fil e("/hone/ian/once/tw ce/again").nkdirs();

Both variants of this command return t r ue if they succeed and f al se if they fail. Notice that it is
possible (but not likely) for mkdi rs() to create some of the directories and then fail; in this
case, the newly created directories will be left in the filesystem.

Notice the spelling: mkdi r () is all lowercase. While this might be said to violate the normal
Java naming conventions (which would suggest nkDi r () as the name), it is the name of the
underlying operating system call and command on both Unix and DOS (though DOS allows md
as an alias at the command-line level).

10.11 Program: Find

This program implements a small subset of the MS-Windows Find Filesdialog or the Unix find
command. However, it has much of the structure needed to build a more complete version of
either of these. It uses a custom filename filter controlled by the - n command-line option, which is

parsed using my Get Opt (see Section 2.8).

i nport com darw nsys. util.*;
i nport java.io.?*;
i nport java.io.?*;

/**
* Find - find files by nane, size, or other criteria. Non-GJ version.
*/
public class Find {
/** NMain program */
public static void main(String[] args) {
Find finder = new Find();
Cet Opt argHandl er = new GetOpt("n:s:");

int c;
while ((c = argHandl er.getopt(args)) != Get Opt. DONE) {
switch(c) {
case 'n': finder.filter.setNaneFilter(argHandl er. optarg(
)); break;
case 's': finder.filter.setSizeFilter(argHandl er. optar g(
)); break;
defaul t:

Systemout. println("Got: + C);

usage();
}
}
if (args.length == 0 || argHandler.getOptlind()-1 ==
args.length) {
finder.doNane(".");
} else {
for (int i = argHandler.getOptlnd()-1; i<args.|ength;
i ++)
finder.doNane(args[i]);

}
protected FindFilter filter = new FindFilter();

public static void usage() {
Systemerr. println(
"Usage: Find [-n nanefilter][-s sizefilter][dir...]");
Systemexit(1l);
}

/** doNane - handle one fil esystem object by nane */
private void doNanme(String s) {
Debug. printIn("flow', "doName(" + s + ")");
File f = new File(s);
if ('f.exists()) {
Systemout.println(s + " does not exist");
return;

}

if (f.iskFile())
doFil e(f);

else if (f.isDirectory()) {
/1l Systemout.println("d " + f.getPath());
String objects[] = f.list(filter);

for (int i=0; i<objects.length; i++)
doNane(s + f.separator + objects[i]);
} else
Systemerr.println("Unknown type: " + s);

}

/** doFile - process one regular file. */
private static void doFile(File f) {

Systemout.println("f " + f.getPath());
}

}

The program uses a class called Fi ndFi | t er to implement matching:

i mport java.io.*;
i mport org.apache.regexp. *;
i mport com darw nsys. util . Debug;

/** Class to encapsulate the filtration for Find.
* For now just setTTTFilter() nethods. Really needs to be a rea
* data structure to allow conmplex things Iike

* -n "*. htmM" -a\(-size <0 -ontime <5\).

*/

public class FindFilter inplenments FilenaneFilter ({
bool ean si zeSet;

int size;

String nane;

RE naneRE,

public FindFilter() {

}

void setSizeFilter(String sizeFilter) {
size = Integer.parselnt(sizeFilter);
sizeSet = true;

}

/** Convert the given shell wildcard pattern into internal form (an

RE) */

void setNaneFilter(String naneFilter) {
nanme = naneFilter;
StringBuffer sb = new StringBuffer('”");
for (int i =0; i <naneFilter.length(); i++) {
char ¢ = naneFilter.charAt(i);
switch(c) {

case '.': sb. append("\\."); break;
case '*': sb. append(".*"); break;
case '?': sb. append('."); break;
defaul t: sb. append(c); break;

}

}

sb. append(' $');

Debug. printl n("nanme", "RE=\"" + sb + "\".");

try {
naneRE = new RE(sb.toString());

} catch (RESynt axException ex) {
Systemerr.println("For shane!

}

+ ex);

}

/** Do the filtering. For now, only filter on name */
public bool ean accept(File dir, String fileNanme) {
File f = new File(dir, fileNane);
if (f.isDirectory()) {

return true; /1 allow recursion
}
if (name !'= null) {

return nanmeRE. mat ch(fil eNane);
}

/1 TODO size handling.

/] Catchall
return fal se;

Exercise for the reader: in the source directory, you'll find a class called Fi ndNun®i | t er, which
is meant to (someday) allow relational comparison of sizes, modification times, and the like, as
most f | nd services already offer. Make this work from the command line, and write a GUI front-
end to this program.

11 Programming Serial and Parallel Ports

11.1 Introduction

Peripheral devices are usually external to the computer.™ Printers, mice, video cameras,
scanners, data/fax modems, plotters, robots, telephones, light switches, weather gauges, Palm
Computing Platform devices, and many others exist "out there," beyond the confines of your
desktop or server machine. We need a way to reach out to them.

21 conveniently ignoring things like "internal modem cards" on desktop machines!

The Java Communications API not only gives us that, but cleverly unifies the programming model
for dealing with a range of external devices. It supports both serial (RS232/434, COM, or tty) and
parallel (printer, LPT) ports. We'll cover this in more detail later, but briefly, serial ports are used
for modems and occasionally printers, and parallel ports are used for printers and sometimes (in
the PC world) for Zip drives and other peripherals. Before USB (Universal Serial Bus) came
along, it seemed that parallel ports would dominate for such peripherals, as manufacturers were
starting to make video cameras, scanners, and the like. Now, however, USB has become the
main attachment mode for such devices. One can imagine that future releases of Java
Communications might expand the structure to include USB support (Sun has admitted that this
is a possibility) and maybe other bus-like devices.

This chapter® aims to teach you the principles of controlling these many kinds of devices in a
machine-independent way using the Java Communications API, which is in package
j avax. comm

[21 This chapter was originally going to be a book. Ironic, since my first book for O'Reilly was originally going
to be a chapter. So it goes.

I'll start this chapter by showing you how to get a list of available ports and how to control simple
serial devices like modems. Such details as baud rate, parity, and word size are attended to
before we can write commands to the modem, read the results, and establish communications.
We'll move on to parallel (printer) ports, and then look at how to transfer data synchronously
(using read/write calls directly) and asynchronously (using Java listeners). Then we build a simple
phone dialer that can call a friend's voice phone for you -- a simple phone controller, if you will.
The discussion ends with a serial-port printer/plotter driver.

11.1.1 The Communications API

The Communications API is centered around the abstract class ConmPor t and its two
subclasses, Seri al Port and Par al | el Port, which describe the two main types of ports found
on desktop computers. ConmPor t represents a general model of communications, and has
general methods like get | nput St rean() and get Qut put St rean{) that allow you to use
the information from Chapter 9 to communicate with the device on that port.

However, the constructors for these classes are intentionally non-public. Rather than constructing
them, you instead use the static factory method
CommPortldentifier.getPortldentifiers() togetalistof ports, let the user choose a
port from this list, and call this CormPor t | denti fi er'sopen() method to receive a
ConmPor t object. You cast the ConmPor t object to a non-abstract subclass representing a
particular communications device. At present, the subclass must be either Ser i al Port or
Paral | el Port.

Each of these subclasses has some methods that apply only to that type. For example, the
Seri al Port class has a method to set baud rate, parity, and the like, while the Par al | el Port
class has methods for setting the "port mode" to original PC mode, bidirectional mode, etc.

Both subclasses also have methods that allow you to use the standard Java event model to
receive notification of events such as data available for reading, output buffer empty, and type-
specific events such as ring indicator for a serial port and out-of-paper for a parallel port -- as we'll
see, the parallel ports were originally for printers, and still use their terminology in a few places.

11.1.2 About the Code Examples in This Chapter

Java Communication is a standard extension. This means that it is not a required part of the Java
API, which in turn means that your vendor probably didn't ship it. You may need to download the
Java Communications APl from Sun's Java web site, http://java.sun.com, or from your system
vendor's web site, and install it. If your platform or vendor doesn't ship it, you may need to find,
modify, compile, and install some C code. Try my personal web site, too. And, naturally enough,
to run some of the examples you will need additional peripheral devices beyond those normally
provided with a desktop computer. Batteries -- and peripheral devices -- are not included in the
purchase of this book.

11.1.3 See Also

Elliotte Rusty Harold's book Java I/O contains a chapter that discusses the Communications API
in considerable detail, as well as some background issues such as baud rate that we take for
granted here. Rusty also discusses some details that | have glossed over, such as the ability to
set receive timeouts and buffer sizes.

This book is about portable Java. If you want the gory low-level details of setting device registers
on a 16451 UART on an ISA or PCI PC, you'll have to look elsewhere; there are several books on
these topics. If you really need the hardware details for I/O ports on other platforms such as Sun
Workstations and Palm Computing Platform, consult either the vendor's documentation and/or
the available open source operating systems that run on that platform.

11.2 Choosing a Port

11.2.1 Problem

You need to know what ports are available on a given computer.

11.2.2 Solution

Use CormPortldentifier.getPortldentifiers() toreturn the list of ports.
11.2.3 Discussion

There are many kinds of computers out there. It's unlikely that you'd find yourself running on a
desktop computer with no serial ports, but you might find that there is only one and it's already in
use by another program. Or you might want a parallel port and find that the computer has only
serial ports. This program shows you how to use the static ConmPor t | dent i f i er method

get Portldentifiers().Thisgivesyouan Enunerati on (Section 7.5) of the serial and
parallel ports available on your system. My routine popul at e() processes this list and loads it

into a pair of JConboBoxes (graphical choosers; see Section 13.2), one for serial ports and
one for parallel (there is also a third, unknown, to cover future expansion of the API). The routine
nmakeGUl creates the JConboBoxes and arranges to notify us when the user picks one from
either of the lists. The name of the selected port is displayed at the bottom of the window. So that
you won't have to know much about it to use it, there are public methods get Sel ect edNane(),
which returns the name of the last port chosen by either JConboBox and

get Sel ectedl dentifier(), which returns an object called a CormPort | dentifier
corresponding to the selected port name. Figure 11-1 shows the port chooser in action.

Figure 11-1. The Communications Port Chooser in action

E=i Port Choases
Serial Ports | COM2 YI
Parallel Ports "|
Unikcrvown Ports | . -

YWour choice: COM2
oK |

Example 11-1 shows the code.
Example 11-1. PortChooser.java

i mport java.io.*;

i mport javax.conm *;

i mport java.awt.*;

i mport java.awt.event.*;
i mport javax.sw ng.*;

i mport java.util.*;

/**

* Choose a port, any port!
*
* Java Communi cations is a "standard extension” and nust be downl oaded
* and installed separately fromthe JDK before you can even conpile
this
* program
*
*/
public class Port Chooser extends JDialog i nplenents Itenlistener {
/** A mapping fromnanes to CormPortldentifiers. */
protected HashMap map = new HashMap();
[** The nanme of the choice the user nade. */
protected String sel ect edPort Nane;
[** The CommPortldentifier the user chose. */
protected ComPortldentifier selectedPortldentifier
/** The JConmboBox for serial ports */
prot ected JConboBox seri al Port sChoi ce;
/** The JConboBox for parallel ports */
prot ected JConboBox parall el PortsChoi ce;
/** The JConboBox for anything else */
prot ected JConboBox ot her
/** The Serial Port object */

protected Serial Port ttya;
/** To display the chosen */
protected JLabel choice;

/** Padding in the GJ */
protected final int PAD = 5;

[** This will be called fromeither of the JConboBoxes when the
* user selects any given item
*/
public void itenfstateChanged(ltenkvent e) ({
/1 Cet the nane
sel ect edPort Nanme =
(String)((JConboBox)e. get Source()).getSelectedlten();
/1 Get the given CommPortldentifier
sel ectedPortldentifier =
(CommPortldentifier)map. get(sel ect edPort Nane);
/1 Display the name.
choi ce. set Text (sel ect edPor t Nane) ;

}

/* The public "getter" to retrieve the chosen port by nane. */
public String getSel ectedNane() {

return sel ect edPort Nane;
}

/* The public "getter" to retrieve the selection by
CommPortldentifier. */
public CommPortldentifier getSelectedldentifier() {
return sel ectedPortldentifier,;
}

/** A test programto show up this chooser. */

public static void main(String[] ap) {
Port Chooser ¢ = new Port Chooser (null)
c.setVisible(true); /1 bl ocking wait
Systemout.println("You chose " + c.getSelectedNanme() +

" (known by " + c.getSelectedldentifier() + ").");

System exit(0);

}

/** Construct a PortChooser --make the GUI and popul ate the
ConboBoxes.
*/
publ i c Port Chooser (JFrane parent) ({
super (parent, "Port Chooser", true);

makeGUJl ();

popul ate();

finish@();
}

/** Build the GJU . You can ignore this for nowif you have not
* yet worked through the GJ chapter. Your nileage may vary.
*/

protected void nmakeGU () {

Cont ai ner cp = get Content Pane();

JPanel centerPanel = new JPanel ();
cp. add(Bor der Layout . CENTER, cent er Panel);

cent er Panel . set Layout (new Gi dLayout (0, 2, PAD, PAD));

cent er Panel . add(new JLabel ("Serial Ports", JLabel.R GHI));
seri al Port sChoi ce = new JConboBox();

cent er Panel . add(seri al Port sChoi ce);

seri al Port sChoi ce. set Enabl ed(f al se);

cent er Panel . add(new JLabel ("Paral l el Ports", JLabel.RI GHI));
par al | el Port sChoi ce = new JConmboBox();

cent er Panel . add(par al | el Port sChoi ce);

par al | el Port sChoi ce. set Enabl ed(f al se);

cent er Panel . add(new JLabel (" Unknown Ports", JLabel.RI GHT));
ot her = new JConboBox();

cent er Panel . add(ot her);

ot her . set Enabl ed(f al se);

cent er Panel . add(new JLabel (" Your choice:", JLabel . R GHI));
cent er Panel . add(choi ce = new JLabel ());

JButton okButton;
cp. add(Bor der Layout . SOQUTH, okButton = new JButton("OK"));
okBut t on. addAct i onLi st ener (new Acti onLi stener() {
public void actionPerformnmed(ActionEvent e) {
Port Chooser.this. dispose();
}

1)
}

/** Popul ate the ConboBoxes by asking the Java Comruni cati ons API
* what ports it has. Since the initial information comes from
* a Properties file, it may not exactly reflect your hardware.
*/
protected void populate() {
/1 get list of ports available on this particul ar conputer
/1 by calling static nethod in CormPortldentifier
Enuner ati on pList = CormmPortldentifier.getPortlidentifiers();

/1 Process the list, putting serial and parallel into
ConboBoxes
whi | e (pList.hasworeEl ements()) {
CommPortldentifier cpi =
(CommPortldentifier)pList.nextElenment();
/1l Systemout.println("Port "
map. put (cpi.getName(), cpi);
if (cpi.getPortType() == CommPortldentifier.PORT_SERI AL)

+ cpi.getNanme());

seri al Port sChoi ce. set Enabl ed(true);
seri al Port sChoi ce. addlten{cpi.getNanme());
} else if (cpi.getPortType() ==
CommPortldentifier. PORT_PARALLEL) {
par al | el Port sChoi ce. set Enabl ed(true);
par al | el Port sChoi ce. addl ten(cpi . get Nanme());

} else {
ot her . set Enabl ed(true);
ot her. addlten(cpi.getNarme());
}
}
seri al Port sChoi ce. set Sel ect edl ndex(-1);
par al | el Port sChoi ce. set Sel ect edl ndex(-1);

}

protected void finishGJ() {
seri al Port sChoi ce. addl t enli stener(this);
par al | el Port sChoi ce. addl t enlLi st ener (this);
ot her . addl t enlLi st ener (t hi s);
pack();
addW ndowLi st ener (new W ndowCl oser (this, true));

}

11.3 Opening a Serial Port

11.3.1 Problem

You want to set up a serial port and open it for input/output.
11.3.2 Solution

Use a CormPort | dentifier 'sopen() methodto geta Seri al Port object.

11.3.3 Discussion

Now you've picked your serial port, but it's not ready to go yet. Baud rate. Parity. Stop bits. These
things have been the bane of many a programmer's life. Having needed to work out the details of
setting them on many platforms over the years, including CP/M systems, IBM PCs, and IBM
System/370 mainframes, | can report that it's no fun. Finally, Java has provided a portable
interface for setting all these parameters.

The steps in setting up and opening a serial port are as follows:

1. Getthe name and ConmPor t | denti fier (which you can do using my Port Chooser
class).

2. Callthe CormPortldentifier'sopen() method; castthe resulting ConmPort object
toa Seri al Port object (this cast will fail if the user chose a parallel port!).

3. Set the serial communications parameters, such as baud rate, parity, stop bits, and the
like, either individually or all at once using the convenience routing
set Seri al Port Parans().

4. Callthe get | nput St reamand get Qut put St r eammethods of the Ser i al Port
object, and construct any additional St r eamor Wi t er objects (see Chapter 9).

You are then ready to read and write on the serial port. Example 11-2 is code that implements
all these steps for a serial port. Some of this code is for parallel ports, which we'll discuss in
Section 11.4.

Example 11-2. CommPortOpen.java

i mport java.awt.*;

i mport java.io.*;

i mport j avax.conm *;
i mport java.util.*;

/**

* (Qpen a serial port using Java Communi cati ons.
*
*/
public class ConmPort Qpen {
/** How long to wait for the open to finish up. */
public static final int TINMEOUTSECONDS = 30;
[** The baud rate to use. */
public static final int BAUD = 9600;
/** The parent Frane, for the chooser. */
protected Frane parent;
/** The input stream */
prot ected Datal nput Stream i s;
/** The output stream */
protected PrintStream os;
/** The last line read fromthe serial port. */
protected String response;
/** A flag to control debuggi ng output. */
prot ect ed bool ean debug = true;
[** The chosen Port Identifier */
CommPortldentifier thePortlD
[** The chosen Port itself */
CommPort thePort;

public static void main(String[] argv)
t hrows | OException, NoSuchPortException, PortlnUseException,
Unsupport edConmOper at i onException {

new CommPort Qpen(null).converse();

System exit(0);
}

[* Constructor */
publ i c CommPort Open(Frane f)
t hrows | OException, NoSuchPortException, PortlnUseException,
Unsupport edConmOper at i onException {

/1l Use the Port Chooser from before. Pop up the JD al og.
Port Chooser chooser = new Port Chooser(null);

String portName = null;
do {
chooser . set Vi si bl e(true);

/1 Dialog done. Get the port nane.
port Name = chooser. get Sel ect edNane();

if (portNane == null)

Systemout.println("No port selected. Try again.\n");
} while (portName == null);

/1 Cet the CommPortldentifier.
thePort1 D = chooser. get Sel ectedldentifier();

/1 Now actual |y open the port.
/1 This form of openPort takes an Application Name and a
ti meout .
/1
Systemout.println("Trying to open " + thePortlD.getName() +

")

switch (thePortlD. getPortType()) {
case CommPortldentifier. PORT_SERI AL:
thePort = thePortlD. open("Darw nSys DataComi',
TI MEOUTSECONDS * 1000) ;
Serial Port nyPort = (Serial Port) thePort;

/1 set up the serial port

myPort . set Seri al Port Par ans(BAUD, Seri al Port. DATABI TS_8,
Serial Port.STOPBI TS 1, Seri al Port.PARI TY_NONE);

br eak;

case CommPortldentifier. PORT_PARALLEL:
thePort = thePortlD. open("Darw nSys Printing",
TI MEOUTSECONDS * 1000) ;
Paral | el Port pPort = (Parallel Port)thePort;

/1l Tell APl to pick "best avail able node" - can fail!
/1l nyPort.set Mbde(Parallel Port.LPT_MODE_ANY) ;

/1 Print what the node is
int node = pPort.getMde();
switch (nmode) {
case Parallel Port.LPT_MODE _ECP:
Systemout.println("Mde is: ECP");
br eak;
case Parallel Port.LPT_MODE _EPP:
Systemout. println("Mde is: EPP");
br eak;
case Parallel Port.LPT_MODE N BBLE:
Systemout.println("Mde is: N bble Mde.");
br eak;
case Parallel Port.LPT_MODE PS2:
Systemout.println("Mde is: Byte node.");
br eak;
case Parallel Port.LPT_MODE_SPP:
Systemout.println("Mde is: Conpatibility node.");
br eak;
/1 ParallelPort.LPT_MODE ANY is a "set only" node;
/1 tells the APl to pick "best node"; will report the
/1 actual node it sel ected.
defaul t:
throw new ||| egal St at eExcepti on
("Parallel node " + node +

invalid.");

br eak;

defaul t: /1 Neither parallel nor serial??
throw new ||| egal St at eExcepti on("Unknown port type " +
t hePort1D);
}

/1 Get the input and output streans
/1l Printers can be wite-only
try {
is = new Datal nput Strean{thePort.getlnputStrean{));
} catch (1 COException e) {
Systemerr.println("Can't open input stream wite-only");

is = null;
}
0s = new PrintStrean(thePort.getQutputStrean{), true);
}
/** This method will be overridden by non-trivial subclasses
* to hold a conversation.
*/

protected void converse() throws | OException {
Systemout.println("Ready to read and wite port.");
/1 1nput/Qutput code not witten -- nust subcl ass.
/1 Finally, clean up.
if (is!=null)

is.close();
os.close();

}

As noted in the comments, this class contains a dummy version of the conver se method. In
following sections we'll expand on the input/output processing by subclassing and overriding this
method.

11.4 Opening a Parallel Port

11.4.1 Problem

You want to open a parallel port.

11.4.2 Solution

Use a CommPort | denti fier 'sopen() methodto geta Paral | el Port object.
11.4.3 Discussion

Enough of serial ports! Parallel ports as we know 'em are an outgrowth of the "dot matrix" printer
industry. Before the IBM PC, Tandy and other "pre-PC" PC makers needed a way to hook

printers to their computers. Centronics, a company that made a variety of dot matrix printers, had
a standard connector mechanism that caught on, changing only when IBM got into the act. Along

the way, PC makers found they needed more speed, so they built faster printer ports. And
peripheral makers took advantage of this by using the faster (and by now bidirectional) printer
ports to hook up all manner of weird devices like scanners, SCSI and Ethernet controllers, and
others via parallel ports. You can, in theory, open any of these devices and control them; the logic
of controlling such devices is left as an exercise for the reader. For now we'll just open a parallel
port.

Just as the Ser i al Port Open program set the port's parameters, the Par al | el Port Open
program sets the parallel port access type or "mode." Like baud rate and parity, this requires
some knowledge of the particular desktop computer's hardware. There are several common
modes, or types of printer interface and interaction. The oldest is "simple parallel port,” which the
API calls MODE_SPP. This is an output-only parallel port. Other common modes include EPP
(extended parallel port, MODE_ECP) and ECP (extended communciation port, MODE_ECP).
The API defines a few rare ones, as well as MODE_ANY, the default, and allows the API to pick
the best mode. In my experience, the APl doesn't always do a very good job of picking, either
with MODE_ANY or with explicit settings. And indeed, there may be interactions with the BIOS (at
least on a PC) and on device drivers (MS-Windows, Unix). What follows is a simple example that
opens a parallel port (though it works on a serial port also), opens a file, and sends it; in other
words, a very trivial printer driver. Now this is obviously not the way to drive printers. Most
operating systems provide support for various types of printers (the MacOS and MS-Windows
both do, at least; Unix tends to assume a PostScript or HP printer). This example, just to make
life simple by allowing us to work with ASCII files, copies a short file of PostScript. The intent of
the PostScript job is just to print the little logo in Figure 11-2.

Figure 11-2. PostScript printer output

- Java Cooldboolk

The PostScript code used in this particular example is fairly short:

% PS- Adobe

% Draw a circle of "Java Cookbook™
%sinplified from Chapter 9 of the Adobe Systens "Bl ue Book",
% Post Scri pt Language Tutorial and Cookbook

% center the origin
250 350 transl ate

/ Hel vet i ca- Bol dObl i que fi ndf ont
30 scal ef ont
set f ont

% print circle of Java

0.4 setlinew dth % make outlines not too heavy
20 20 340 {
gsave

rotate 0 O noveto
(Java) true charpath stroke

grestore
} for

% print "Java Cookbook"™ in darker outline
%fill w light gray to contrast w spiral
1.5 setlinew dth

0 0 noveto

(Java Cookbook) true charpath

gsave 1 setgray fill grestore

stroke

% now send it all to the printed page
showpage

It doesn't matter if you know PostScript; it's just the printer control language that some printers
accept. What matters to us is that we can open the parallel port, and, if an appropriate printer is
connected (I used an HP6MP, which supports PostScript), the logo will print, appearing near the
middle of the page. Example 11-3 is a short program that again subclasses ConmPor t Open,
opens a file that is named on the command line, and copies it to the given port. Using it looks like
this:

C.\javasrc\io\javaconmpjava Parall el Print javacook. ps
Mode is: Conpatibility node.
Can't open input stream wite-only

C.\javasrc\io\javacomp

The message "Can't open input stream" appears because my notebook's printer port is
(according to the Java Comm API) unable to do bidirectional I/0. This is in fact incorrect, as |
have used various printer-port devices that require bidirectional 1/0O, such as the Logitech
(formerly Connectix) QuickCam, on this same hardware platform (but under Unix and MS-
Windows, not using Java). This message is just a warning; the program works correctly despite it.

Example 11-3. ParallePrint.com

i nport java.awt.*;
i nport java.io.?*;
i nport javax.conm *;

/**

* Print to a serial port using Java Comruni cati ons.

*
*/
public class Parallel Print extends ComPort Open {

protected static String inputFileNane;

public static void nmain(String[] argv)
throws | OException, NoSuchPort Exception, PortlnUseException,
Unsupport edConmmOper at i onException {

if (argv.length I'= 1) {
Systemerr.println("Usage: ParallelPrint filenane");
Systemexit(1);

i nput Fi | eName = argv[0];
new Parallel Print(null).converse();

System exit(0);
}

[* Constructor */
public Parallel Print(Frame f)
t hrows | OException, NoSuchPortException, PortlnUseException,
Unsupport edConmOper at i onException {

super (f);
}
/**
* Hold the (one-way) conversation.
*/
protected void converse() throws | OException {

/1 NMake a reader for the input file.
Buf f eredReader file = new BufferedReader (
new Fi | eReader (i nput Fi | eNane)) ;

String |ine;
while ((line = file.readLine()) != null)
os.println(line);

/'l Finally, clean up.

file.close();
os.close();

11.5

Resolving Port Conflicts

11.5.1 Problem

Somebody else is using the port you want, and they won't let go!
11.5.2 Solution

Use a Por t Omner shi pLi st ener.

11.5.3 Discussion

If you run the CormPor t Open program and select a port that is opened by a native program such
as HyperTerminal on MS-Windows, you will get a Por t | nUseExcept i on after the timeout
period is up:

C:\javasrc\comport >j ava ComPort Open

Exception in thread "main" javax.conmm Portl|nUseException: Port
currently owned
by Unknown W ndows Application
at
j avax. comm ConmPort | dentifier.open(ComPortldentifier.java: 337)
at ConmPor t Qpen. mai n(CormPor t Open. j ava: 41)

If, on the other hand, you run two copies of CormPor t Cpen at the same time for the same port,
you will see something like the following:

C.\javasrc\ commport >j ava ComrPort Cpen
Exception in thread "nmain" javax.conmm Portl|nUseException: Port
currently owned
by Darw nSys Dat aConm
at
j avax. comm ConmPort |l dentifier.open(ComPortldentifier.java: 337)
at ConmPor t Qpen. mai n(CormPor t Open. j ava: 41)

C.\javasrc\ comport >

To resolve conflicts over port ownership, you can register a Por t Oaner shi pLi st ener so that
you will be told if another application wants to use the port. Then you can either close the port
and the other application will get it, or ignore the request and the other program will get a

Port | nUseExcepti on, as we did here.

What is this "listener"? The Event Listener model is used in many places in Java. It may be best
known for its uses in GUIs (see Section 13.5). The basic form is that you have to register an
object as a listener with an event source. The event source will then call a well-known method to
notify you that a particular event has occurred. In the GUI, for example, an event occurs when the
user presses a button with the mouse; if you wish to monitor these events, you need to call the
button object's addAct i onLi st ener () method, passing an instance of the Act | onLi st ener
interface (which can be your main class, an inner class, or some other class).

How does a listener work in practice? To simplify matters, we've again subclassed from our
command-line program CormmPor t Open to pop up a dialog if one copy of the program tries to
open a port that another copy already has open. If you run two copies of the new program
Port Owner at the same time, and select the same port in each, you'll see the dialog shown in

Figure 11-3.

Figure 11-3. Port conflict resolution

o =15
e o || Bl @S] Al

Exhvjavasrchioh javacomm* java Portluner One
Trying te open GOMI...
fn open succeeded.

iz3 Port Conflict (One) X

I've been asked (o give up the porl, should 17

0K Cancel

=

Tez o e 2 =] A

C:hvjavasrehiehjavacommtjava PortBuner Two
Irying to open COM1...

The trick to make this happen is simply to add a to the
object. You will then be called when any program gets ownership, gives
up ownership, or if there is a conflict. Example 11-4 shows the program with this addition.

Example 11-4. PortOwner.java

}

/** An inner class that handles the ports conflict resolution. */
cl ass MyResol ver inpl enents ConmPort Oaner shi pLi st ener {
prot ect ed bool ean owned = fal se;
public void ownershi pChange(int whaHoppen) {
swi tch (whaHoppen) {
case PORT_OWNED:
System out. println("An open succeeded.");
owned = true;
br eak;
case PORT_UNOMNED:
Systemout.println("A cl ose succeeded. ");
owned = fal se;
br eak;
case PORT_OWNERSH P_REQUESTED:
if (owned) {
if (JOptionPane. showConfirnDi al og(null,
"I"ve been asked to give up the port, should

[2",
"Port Conflict (" + nyNanme + ")",
JOpt i onPane. OK_CANCEL_OPTI ON) == 0)
thePort.close();
} else {
System out. printl n("Sonebody el se has the port");
}
}
}
}
public static void main(String[] argv)
t hrows | OException, NoSuchPortException, PortlnUseException,
Unsupport edConmOper at i onException {
if (argv.length !'=1) {
Systemerr.println("Usage: PortOaner anane");
Systemexit(1l);
}
new Port Oaner (argv[0]).converse();
System exit(0);
}

}

Note the single argument to owner shi pChange(). Do not assume that only your listener will
be told when an event occurs; it will be called whether you are the affected program or simply a
bystander. To see if you are the program being requested to give up ownership, you have to
check to see if you already have the port that is being requested (for example, by opening it
successfully!).

11.6 Reading and Writing: Lock Step

11.6.1 Problem

You want to read and write on a port, and your communications needs are simple.
11.6.2 Solution

Just use read and write calls.

11.6.3 Discussion

Suppose you need to send a command to a device and get a response back, and then send
another, and get another. This has been called a "lock-step" protocol, since both ends of the
communication are locked into step with one another, like soldiers on parade. There is no
requirement that both ends be able to write at the same time (see Recipes 10.7 and 10.8 for this),
since you know what the response to your command should be and don't proceed until you have
received that response. A well-known example is using a standard Hayes-command-set modem
to just dial a phone number. In its simplest form, you send the command string ATZ and expect
the response OK, then send ATD with the number, and expect CONNECT. To implement this, we
first subclass from CormPor t Open to add two functions, send and expect , which perform

reasonably obvious functions for dealing with such devices. See Example 11-5.
Example 11-5. CommPortModem.java

i nport java.awt.*;

i nport java.io.?*;

i nport javax.conm *;
i nport java.util.?*;

/**

* Subcl asses CommPort Open and adds send/ expect handling for dealing
* with Hayes-type nodens.
*
*/
public class ConmPort Modem ext ends CommPort Open {
/** The last line read fromthe serial port. */
protected String response;
/** A flag to control debuggi ng output. */
prot ect ed bool ean debug = true;

publ i ¢ ConmPort Moden(Frane f)
throws | OException, NoSuchPort Exception, PortlnUseExcepti on,
Unsupport edComrOper at i onExcepti on {
super (f);
}

/** Send a line to a PC-style nodem Send \r\n, regardl ess of
* what platformwe're on, instead of using println().
*/
protected void send(String s) throws | Oexception {
i f (debug) {
Systemout.print(">>> ");
Systemout. print(s);
Systemout.printin();
}
os.print(s);
os.print("\r\n");

/1l Expect the nodemto echo the conmand.
if (lexpect(s)) {

Systemerr.println("WARNING Mdem did not echo command.");
}

/1 The nodem sends an extra blank |ine by way of a pronpt.
/1 Here we read and discard it.
String junk = os.readLine();
if (junk.length() !'=0) {
System err. print("Warni ng unexpected response: ");
Systemerr. println(junk);

}

/** Read a line, saving it in "response".
* @eturn true if the expected String is contained in the
response, false if not.
*/
prot ected bool ean expect (String exp) throws | OException {
response = is.readLine();
i f (debug) {
Systemout.print("<<< ");
System out . print (response);
Systemout.printin();
}

return response. i ndexX (exp) >= 0;

}

Finally, Example 11-6 extends our ConmPor t Modemprogram to initialize the modem and dial a
telephone number.

Example 11-6. CommPortDial.java

i mport java.io.*;
i mport javax.conm *;
i mport java.util.*;

/**

* Dial a phone using the Java Conmuni cati ons Package.
*

*/
public class ConmPortDi al extends ConmPort Modem {

protected static String nunber = "000-0000";

public static void main(String[] ap)
t hrows | OException, NoSuchPort Exception, Portl nUseExcepti on,
Unsupport edConmOper at i onException {
if (ap.length == 1)
nunber = ap[O0];
new ComrmPortDi al ().converse();
System exit(0);
}

public ComPortDial ()

throws | OException, NoSuchPort Exception, PortlnUseExcepti on,
Unsupport edComrOper at i onException {
super(null);

}

protected void converse() throws | Oexception {
String resp; /'l the nodem response.

/1 Send the reset command
send("ATZ");

expect ("OK");
send(" ATDT" + nunber);
expect ("OK");

try {
Thr ead. sl eep(5000) ;

} catch (InterruptedException e) {
/1l nothing to do
}

is.close();
os.close();

11.7 Reading and Writing: Event-Driven

11.7.1 Problem

After the connection is made, you don't know what order to read or write in.
11.7.2 Solution

Use Java Communication Events to notify you when data becomes available.
11.7.3 Discussion

While lock-step mode is acceptable for dialing a modem, it breaks down when you have two
independent agents communicating over a port. Either end may be a person, as in a remote login
session, or a program, either a server or a client program. A client program, in turn, may be
driven by a person (as is a web browser) or may be self-driven (such as an FTP client transferring
many files at one request). You cannot predict, then, who will need to read and who will need to
write. Consider the simplest case: the programs at both end try to read at the same time! Using
the lock-step model, each end will wait forever for the other end to write something. This error
condition is known as a deadlock, since both ends are locked up, dead, until a person intervenes,
or the communication line drops, or the world ends, or the universe ends, or somebody making
tea blows a fuse and causes one of the machines to halt.

There are two general approaches to this problem: event-driven activity, wherein the
Communications API notifies you when the port is ready to be read or written, and threads-based
activity, wherein each "direction” (from the user to the remote, and from the remote to the user)

has its own little flow of control, causing only the reads in that direction to wait. We'll discuss each
of these.

First, Example 11-7 reads from a serial port using the event-driven approach.
Example 11-7. SerialReadByEvents.java

i mport java.awt.*;

i mport java.io.*;

i mport j avax.conm *;
i mport java.util.*;

/**
* Read froma Serial port, notifying when data arrives.
* Simulation of part of an event-I|ogging service.
*/
public class Serial ReadByEvents extends CommPort Open
i mpl enents Seri al Port Event Li st ener {

public static void main(String[] argv)
t hrows | OException, NoSuchPortException, PortlnUseException,
Unsupport edConmOper at i onException {

new Seri al ReadByEvents(nul). converse();

}

[* Constructor */
public Serial ReadByEvent s(Franme f)
t hrows | OException, NoSuchPortException, PortlnUseException,
Unsupport edConmOper at i onException {

super (f);
}

protected BufferedReader ifile;

/**

* Hold the conversation.

*/

protected void converse() throws | OException {

if (!(thePort instanceof SerialPort)) {
Systemerr.printin("But | wanted a SERI AL port!");
Systemexit(1l);

[l Tell the Comm APl that we want serial events.
((Serial Port)thePort).notifyOnDat aAvail abl e(true);
try {
((Serial Port)thePort).addEvent Li st ener(this);
} catch (TooManyLi st enersException ev) {
/1 "Cant Happen" error
Systemerr.println("Too many |isteners(!)
System exit(0);

+ ev);

}

/'l NMake a reader for the input file.

ifile = new BufferedReader (new | nput St reanReader (i s));

/1
}
public void serial Event(Serial Port Event ev) {
String line;
try {
line = ifile.readLine();
if (line == null) {
Systemout.println("ECF on serial port.");
System exit(0);
}
os.println(line);
} catch (1 CException ex) {
Systemerr.printin("1O Error " + ex);
}
}

}

As you can see, the seri al Event () method does the r eadLi ne() calls. "But wait!" | hear
you say. "This program is not a very meaningful example. It could just as easily be implemented
using the lock-step method of Section 11.6. True enough, gentle reader. Have patience with
your humble and obedient servant. Here is a program that will read from each and any of the
serial ports, whenever data arrives. The program is representative of a class of programs called "
data loggers," which receive data from a number (possibly a large number) of remote locations,
and log them centrally. One example is a burglar alarm monitoring station, which needs to log
activities such as the alarm being turned off at the close of the day, entry by the cleaners later,
what time they left, and so on. And then, of course, it needs to notify the operator of the
monitoring station when an unexpected event occurs. This last step is left as an exercise for the
reader.

Example 11-8 makes use of the Event Li st ener model and uses a unique instance of the
inner class Logger for each serial port it's able to open.

Example 11-8. SerialLogger.java

i nport java.io.?*;
i nport javax.conm *;
i nport java.util.?*;

/**

* Read fromnultiple Serial ports, notifying when data arrives on any.
*/

public class Serial Logger {

public static void nmain(String[] argv)
throws | OException, NoSuchPort Exception, PortlnUseExcepti on,
Unsupport edCommOper at i onExcepti on {

new Seri al Logger();

}

/* Constructor */
public Serial Logger()
throws | OException, NoSuchPort Exception, PortlnUseExcepti on,

Unsupport edConmOper at i onException {

/1 get list of ports available on this particular conputer,
/1 by calling static nethod in ComPortldentifier.
Enumer ati on pList = CommPortldentifier.getPortlidentifiers();

/1l Process the list, putting serial and parallel into
ConboBoxes
whi | e (pList.hasMoreEl ements()) {
CommPortldentifier cpi =
(CommPortldentifier)pList.nextElenent();
String nane = cpi.getNanme();
Systemout.print("Port " + name + " ");
if (cpi.getPortType() == CommPortldentifier.PORT_SERI AL)

Systemout.println("is a Serial Port: " + cpi);

Serial Port thePort;
try {

thePort = (Serial Port)cpi.open("Logger", 1000);
} catch (PortlnUseException ev) {

Systemerr.printin("Port in use: " + name);
conti nue;

}

/1 Tell the Comm APl that we want serial events.
t hePort. noti f yOnDat aAvai | abl e(true);
try {
t hePort . addEvent Li st ener (new Logger (cpi . get Nane(
), thePort));
} catch (TooManyLi st enersException ev) {
/1 "Cant Happen" error
Systemerr.println("Too many listeners(!) " + ev);
System exit(0);

}

/** Handl e one port. */

public class Logger inplenents Serial PortEventLi stener {
String port Nane;
Serial Port thePort;
Buf f eredReader ifile;

public Logger(String nane, SerialPort port) throws | OException

port Name = nane;
t hePort = port;
/1 NMake a reader for the input file.
ifile = new BufferedReader (
new | nput St r eanReader (t hePort.getlnputStream()));

public void serial Event(Serial Port Event ev) {
String |ine;
try {
line = ifile.readLine();
if (line == null) {

Systemout.println("ECF on serial port.");
System exit(0);

}

Systemout.println(portName + ": " + |ine);
} catch (1 Oexception ex) {

Systemerr.printiln("IO Error " + ex);

}

}

11.8 Reading and Writing: Threads

11.8.1 Problem

After the connection is made, you don't know what order to read or write in.
11.8.2 Solution

Use a thread to handle each direction.

11.8.3 Discussion

When you have two things that must happen at the same time or unpredictably, the normal Java
paradigm is to use a thread for each. We will discuss threads in detail in Chapter 24, but for
now, just think of a thread as a small, semi-independent flow of control within a program, just as a
program is a small, self-contained flow of control within an operating system. The Thread API
requires you to construct a method whose signature is publ i ¢ voi d run() to do the body of
work for the thread, and call the st art () method of the thread to "ignite" it and start it running
independently. This example creates a Thr ead subclass called Dat aThr ead, which reads from
one file and writes to another. Dat aThr ead works a byte at a time so that it will work correctly
with interactive prompts, which don't end at a line ending. My now-familiar conver se() method
creates two of these Dat aThr eads, one to handle data "traffic" from the keyboard to the remote,
and one to handle bytes arriving from the remote and copy them to the standard output. For each
of these the st art () method is called. Example 11-9 shows the entire program.

Example 11-9. CommPortThreaded.java

i nport java.io.?*;
i nport javax.conm *;
i nport java.util.?*;

/**
* This programtries to do I/Oin each direction using a separate
Thr ead.
*/
public class ConmPort Thr eaded extends ConmPort OQpen {

public static void nmain(String[] ap)
throws | OException, NoSuchPort Exception, PortlnUseExcepti on,
Unsupport edCommOper at i onException {
ComPort Thr eaded cp;

try {

cp = new CommPort Threaded();
cp.converse();

} catch(Exception e) {
Systemerr.println("You |lose!");
Systemerr.println(e);

}

publ i c CommPort Thr eaded()
t hrows | OExcepti on, NoSuchPortException, PortlnUseException,
Unsupport edConmOper at i onException {
super (nul ') ;

}

/** This version of converse() just starts a Thread in each
direction.

*/

protected void converse() throws | OException {

String resp; /1l the nodem response.

new Dat aThread(is, Systemout).start();
new Dat aThr ead(new Dat al nput St rean(Systemin), os).start();

}

/** This inner class handl es one side of a conversation. */
cl ass DataThread extends Thread {

Dat al nput St ream i nSt r eam

PrintStream pStream

/** Construct this object */

Dat aThr ead(Dat al nput Streamis, PrintStream os) ({
inStream = is;
pStream = os;

}

[** A Thread's run nethod does the work. */
public void run() {
byte ch = 0;
try {
while ((ch = (byte)inStreamread()) !=-1)
pStream print((char)ch);
} catch (1 COException e) {
Systemerr.println("lnput or output error: " + e);
return;

}
11.9 Program: Penman Plotter

This program in Example 11-10 is an outgrowth of the Pl ot t er class from Section 8.12. It
connects to a Penman plotter. These serial-port plotters were made in the United Kingdom in the

1980s, so it is unlikely that you will meet one. However, there are several companies that still
make pen plotters. See Figure 11-4 for a photograph of the plotter in action.

Figure 11-4. Penman plotter in action

Example 11-10. Penman.java

i mport java.io.*;
i mport javax.conm *;
i mport java.util.*;

/**

* A Plotter subclass for drawing on a Penman plotter.

* These were nmade in the UK and sold into North Anerican narkets.

* It isalittle "turtle” style robot plotter that conmunicates

* over a serial port. For this, we use the "Java Communi cati ons" API.
* Java Communi cations is a "standard extension” and nust be downl oaded
* and installed separately fromthe JDK before you can even conpile
this

* program

*

*/

public class Penman extends Plotter {
private final String OK PROWT = "\r\n!";
private final int MAX REPLY BYTES = 50; /1 paranoi d upper bound
private byte b, reply[] = new byte[22];
private Serial Port tty;
private Datal nputStreamis;
privat e Dat aCut put Stream os;

/** Construct a Penman plotter object */
public Penman() throws NoSuchPort Exception, Port | nUseExcepti on,
| OExcept i on, Unsupport edCommOper at i onExcepti on {
super();

i nit_com("COMR"); /1 setup serial comx

init_plotter(); /] set plotter to good state
}
private void init_plotter() {
send("1"); expect('!"); /!l eat VERSION etc., up to
send("1"); expect('!"); /1l wait for it!
send("H"); /1 find honme position
expect('!'); /1l wait for it!
send("A"); /1 Set to use absol ute coordi nates
expect('!');
curx = cury = 0;
penUp();
}
11
/1 PUBLI C DRAW NG RCUTI NES
11

public void setFont(String fNanme, int fSize) {
/1 Font nanme is ignored for now...

/1l Penman's size is in mm fsize in points (inch/72).

int size = (int)(fSize*25.4f/72);

send("S"+size + ","); expect (OK_PROVPT);
Systemerr.println("Font set request: " + fName + "/" + fSize);

}

public void drawString(String nmesg) {
send("L" + nesg + "\r"); expect(OK _PROVPT);
}

/** Move to a relative |ocation */

public void rnoveTo(int incrx, int incry){
nmoveTo(curx + incrx, cury + incry);

}

/** nove to absolute |ocation */

public void noveTo(int absx, int absy) {
Systemerr.println("noveTo ["+absx+","+absy+"]");
curx = absx;
cury = absy;

send("M + curx + "," + cury + ","); expect(OK PROVPT);
}
private void setPenState(bool ean up) {

penl sUp = up;

Systemerr.printin("Pen Up is ["+penlsUp+"]");
}

public void penUp() {
set PenSt at e(true);
send("U"); expect (OK _PROVPT);
}
public void penDown() {
set PenSt at e(f al se);
send("D"); expect (OK_PROVPT);

}
public void penColor(int c) {

penCol or = (c9%3) +1; /1 only has 3 pens, 4->1
Systemerr.println("PenColor is ["+penCol or+"]");
send("P" + ¢ + ","); expect(OK_PROWT);

}

11
/1 PRI VATE COVMUNI CATI ON ROUTI NES
11

private void init_com(String portNane) throws
| OExcepti on, UnsupportedConmOper ati onException {

/1 get list of ports available on this particular conputer.
/1 Enuneration pList = CormPortldentifier.getPortldentifiers(

/1 Print the list. A GJ programwould put these in a chooser!
/1 while (pList.hasMoreEl enents()) {
/1 CommPortldentifier cpi =

(CommPortldentifier)pList.nextElenent();

/1 Systemerr.println("Port
/1 }

+ cpi.getNanme());

/1 Open a port.
CommPortldentifier port =
CommPortldentifier.getPortldentifier(portNane);

/1 This form of openPort takes an Application Nanme and a

ti meout .

tty = (Serial Port) port.openPort("Penman Driver", 1000);

/1 set up the serial port

tty.set Serial PortParans(9600, Serial Port. DATABI TS 8,
Serial Port.STOPBI TS 1, Seri al Port.PARI TY_NONE);

tty. set Fl oncont r ol Mode(Seri al Port. FLOACTRL_RTSCTS_QUT]|
Serial Port. FLOACTRL_RTSCTS_QUT) ;

/1 Get the input and output streans
is new Dat al nput Strean{tty. getlnputStream));
0S new Dat aQut put Strean(tty. get Qut put Stream());

}

/** Send a conmand to the plotter. Although the argunent is a

String,

* we send each char as a *byte*, so avoid 16-bit characters!
* Not that it matters: the Penman only knows about 8-bit chars.
*/

private void send(String s) {
Systemerr.printin("sending " + s + "...");
try {

for (int i=0; i<s.length(); i++)
os.witeByte(s.charAt(i));
} catch(I Oexception e) {
e.printStackTrace();
}

}

/** Expect a given CHAR for a result */
private voi d expect(char s) {
byt e b;
try {
for (int i=0; i<MAX REPLY BYTES; i ++){
if ((b=1is.readByte()) ==s) {
return;
}

Systemerr.print((char)b);

}
} catch (1 COException e) {
Systemerr.println("Penman: expect (char "+s+"): Read

failed");
Systemexit(1l);
}
Systemerr.println("ARGHH ");
}
/** Expect a given String for a result */
private voi d expect(String s) {
byte ans[] = new byte[s.length()];
Systemerr.println("expect " +s + " ...");
try {
i s.read(ans);
} catch (1 COException e) {
Systemerr.println("Penman: expect(String "+s+"): Read
failed");
Systemexit(1l);
i
for (int i=0; i<s.length() &% i<ans.length; i++)
if (ans[i] !'= s.charAt(i)) {
Systemerr.println("M SVMATCH") ;
br eak;
}
Systemerr.println("GOr: " + new String(ans));
}
}

11.9.1 See Also

In the online source there is a program called JModem, which implements remote connections
(like tip or cu on Unix, or HyperTerminal on MS-Windows). It is usable, but too long to include in
this book.

There are other specialized APIs for dealing with particular devices. For communicating with
Palm Computing Platform devices, you can either use the Palm SDK for Java from Palm
Computing, or the third-party API jSyncManager by Brad Barclay, which can be obtained from
http://web.idirect.com/~warp/.

12 Graphics and Sound

12.1 Introduction

The G aphi cs class and the Conponent method pai nt () have survived virtually unchanged
since the early days of Java. Together they provide a basic but quite functional graphics
capability. The first printing APl was put forward in 1.1, and it was promptly replaced in Java 2
(things change quickly in the online world). Both printing APIs, fortunately, are based on use of
G aphi cs objects, so your drawing code does not have to change: only the details of getting the
right kind of G- aphi cs object change in moving from 1.1 to Java 2. The 2D (two-dimensional
graphics) package is also based on G- aphi cs: G aphi cs2Dis a subclass of G- aphi cs. To put
the 2D graphics in perspective, think about the tremendous boost that the Adobe PostScript
language gave to desktop publishing and printing. PostScript is both a scripting language and a
marking engine : it has the ability to make a terrific variety of marks on paper. Since Java is
already a comprehensive programming language, the 2D API needed only to add the marking
engine. This it did very well, using several ideas imported from PostScript via Adobe's
participation in the early design.

Also present from the beginning was the Audi oCl i p class, which represents a playable sound
file. In Java 2 this was extended to support additional formats (including MIDI) and to be usable
from within an application as well. Meanwhile, the Java Media Framework -- standard extension
J avax. nmedi a -- provides for playing (and eventually recording) of audio, video, and possibly
other media with much greater control over the presentation. You'll see examples in this chapter.

But first let's look at the G- aphi cs class. Many of the code examples in this chapter can be used
either in applications (which we'll see in Section 12.3) or in applets (discussed more in Chapter
17).

12.2 Painting with a Graphics Object
12.2.1 Problem

You want to draw something on the screen.

12.2.2 Solution

In your pai nt () method, use the provided G- aphi cs object's drawing methods:

/'l graphics/ Pai nt Deno. j ava
i nport java.awt.*;

public class Pai nt Deno ext ends Component {
int rectX = 20, rectY = 30;
int rectWdth = 50, rectHei ght = 50;

public void paint(Gaphics g) {

g.set Col or (Col or. red);

g.fillRect(rectX, rectY, rectWdth, rectHeight);
}
public Di nension getPreferredSize() {

return new Di nension(100, 100);

}
12.2.3 Discussion

The G aphi cs class has a large set of drawing primitives. For each of Rect(angle), Arc, Ellipse,
and Polygon, there is a draw method (draws just the outline) and a fill method (fills inside the
outline). You don't need both, unless you want the outline and the interior (fill) of a shape to be
different colors. The method dr awSt ri ng() and related methods let you print text on the
screen (see Section 12.4). There are also dr awii ne() , which draws straight line segments,
set Col or /get Col or, set Font /get Font , and many other methods. Too many to list here, in
fact; see Sun's online documentation for | ava. awt . Gr aphi cs.

12.2.3.1 When to draw?

A common beginner's mistake used to be to call get G- aphi cs() and call the G- aphi cs
object's drawing methods from within a main program or the constructor of a Conponent
subclass. Fortunately we now have any number of books to tell us that the correct way to draw
anything is with your component's paint method. Why? Because you can't draw in a window until
it's actually been created and (on most window systems) mapped to the screen, and that takes
much more time than your main program or constructor has. The drawing code needs to wait
patiently until the window system notifies the Java runtime that it's time to paint the window.

Where do you put your drawing code? This is one situation where you need to think about AWT
versus Swing. AWT, the basic windowing system (and the only one in JDK 1.1) uses a method
called pai nt () . This method is still available in Swing, but due to interaction with borders and
the like, it is recommended that you override pai nt Conponent () instead. Both are called with
a single argument of type G- aphi cs. Your pai nt Conponent () should start by calling

super . pal nt Conponent () with the same argument to ensure that components are painted
in proper back-to-front order, while pai nt () should not call its parent. Some examples in this
chapter use pai nt () and others use pai nt Conponent () ; the latter also usually extend
JPanel . This allows better interaction with Swing, and also allows you to place these as the main
component in a JFr ane by calling set Cont ent Pane() , which eliminates an extra layer of
container. (JFr ane's Cont ent Pane is discussed in Section 13.2.)

12.3 Testing Graphical Components
12.3.1 Problem

You don't want to have to write a little main program with a frame each time you write a subclass
of Conponent .

12.3.2 Solution

Use my ConpTest class, which has a main method that builds a frame and installs your
component into it.

12.3.3 Discussion

CompTest is a small main program that takes a class name from the command line, instantiates
it (see Section 25.4), and puts it in a JFr ane, alone with an Exit button and its action handler. It
also worries a bit over making sure the window comes out the right size. Many of these issues
relate to the GUI rather than graphics, and are deferred to Chapter 13.

The class to be tested must be a subclass of Conponent , or an error message will be printed.
This is very convenient for running small component classes, and | show a lot of these in this
chapter and the next. Using it is simplicity itself; for example, to instantiate the

Drawst ri ngDenp?2 class from Section 12.4, you just say:

java ConpTest DrawStri ngDenp2

This is shown on the left side of Figure 12-1. It's interesting to try running it on some of the
predefined classes. A JTr ee (Java's tree view widget, used in Section 19.10) no-argument
constructor creates a JTr ee that comes up with a demonstration set of data, as in Figure 12-1,
right.

Figure 12-1. CompTest showing DrawStringDemo?2 (left) and javax.swing.JTree (right)

" Draws [==/al imisicinh
dTree
@] colors
Hella |=va &= [sports
@&] food
Exit
| —— =TTl
Exit
I

Since little of this relates to the material in this chapter, | don't show the source for ConpTest ;
however, it's included in the online code examples for the book.

12.4 Drawing Text

12.4.1 Problem

You need to draw text in a component.
12.4.2 Solution

Simply call the drawSt ri ng () method in the G aphi cs class:

/'l graphics/Drawstri ngDeno. j ava
i nport java.awt.*;

public class DrawStri ngDeno extends Conponent {
int textX = 10, textY = 20;
public void paint(Gaphics g) {
g.drawsString("Hell o Java", textX, textY);

public Di nension getPreferredSize() {
return new Di nension(100, 100);
}

}

12.5 Drawing Centered Text in a Component
12.5.1 Problem

You want to draw text neatly centered in a component.

12.5.2 Solution

Measure the width and height of the string in the given font, and subtract it from the width and
height of the component. Divide by two, and use this as your drawing location.

12.5.3 Discussion

The program Dr awsSt r i ngDenp2 measures the width and height of a string (see Figure 12-2
for some attributes of the text). The program then subtracts the size of the text from the size of
the component, divides this by two, and thereby centers the text in the given component.

Figure 12-2. Font metrics

s!.rﬂglnin'rh
/1 file graphics/DrawStringDenn2.java
i mport java.awt.*;

public class DrawsStringDenp2 extends Conponent {
String nessage = "Hell o Java";

/** Paint is called (by AWI) when it's tinme to draw the text. */
public void paint(Gaphics g) {
/1 Cet the current Font, and ask it for its FontMetrics.
Font Metrics fm = get Font Metrics(getFont());

/1l Use the FontMetrics to get the width of the String.
/1 Subtract this fromw dth, divide by 2, that's our starting

poi nt .
int textX = (getSize().width - fmstringWdth(nmessage))/?2;
i f (textX<0) /1 1f string too long, start at O
textX = 0;

/1l Sane as above but for the height
int textY = (getSize().height - fmgetLeading())/2;
if (textY<0)

textY = 0;

/1 Now draw the text at the computed spot.
g.drawStri ng(nmessage, textX, textY);

}

public Di nension getPreferredSize() {
return new Di nension(100, 100);
}

}

This is so common that you'd expect Java to have encapsulated the whole thing as a service, and
in fact, Java does do this. What we have here is what most GUI component architectures call a
label. As we'll see in Chapter 13, Java provides a Label component that allows for centered (or

left- or right-aligned) text and supports the setting of fonts and colors; and JLabel , which
provides image icons in addition to or instead of text.

12.6 Drawing a Drop Shadow
12.6.1 Problem

You want to draw text or graphical objects with a "drop shadow" effect, as in Figure 12-3.

Figure 12-3. Drop shadow text

App | &t

Drop Snadovw

Apo et =tarted.

12.6.2 Solution

Draw the component twice, with the darker shadow behind and the "real” color, slightly offset, in
front.

12.6.3 Discussion

Program Dr opShadow does just this. It also uses a Font object from | ava. awt to exercise
some control over the typeface.

The program in Example 12-1 is unabashedly an Applet; to run it, you should invoke it as
appletviewer DropShadow.htm™! (the details of such HTML files are in Section 17.2).

1 1n all my applet examples | use a filename ending in htm instead of the more traditional html, because the
Javadoc program (see Section 23.3) will overwrite the html file without notice. Appl et Vi ewer doesn't
care either way.

Example 12-1. DropShadow.java

i nport java. appl et. *;
i nport java.awt.*;

/**

* DropShadow -- show overl apped pai nting.
*/
public class DropShadow ext ends Applet {
/** The label that is to appear in the w ndow */
protected String theLabel = null;
/** The wi dth and hei ght */
protected int w dth, height;
[** The nanme of the font */
protected String fontNane;
[** The font */
protected Font theFont;
[** The size of the font */
protected int fontSize = 18;
/** The offset for the drop shadow */
protected int theOfset = 3;
/[** True if we got all required paraneters */
protected boolean inittedOK = fal se;

/** Called fromthe browser to set up. W want to throw various
* kinds of exceptions but the APl predefines that we don't, so we
* limt ourselves to the ubiquitous Il egal Argunment Excepti on.
*/
public void init() {
/1 Systemout.println("In DropShadow init()");

t heLabel = getParaneter ("l abel");
if (theLabel == null)
t hrow new ||| egal Argunment Excepti on("LABEL is
REQUI RED") ;
/1 Now handl e font stuff.
font Nane = get Paraneter ("fontnane");
if (fontNane == null)
t hrow new I |1 egal Argunent Exception("FONTNAME i s

REQUI RED") ;
String s;
if ((s = getParaneter("fontsize")) !'= null)
fontSize = Integer. parselnt(s);
if (fontNane != null || fontSize = 0) {
t heFont = new Font (f ont Name, Font.BOLD + Font. | TALIC,
fontSi ze);
Systemout.println("Nane " + fontNane + ", font " +
t heFont) ;
if ((s = getParaneter("offset™)) !'= null)
theO fset = Integer.parselnt(s);

set Backgr ound(Col or. green);
inittedK = true;
}

/** Paint nmethod showi ng drop shadow effect */
public void paint(Gaphics g) {
if (linittedOK)
return;
g. set Font (t heFont) ;
g. set Col or (Col or. bl ack) ;

g.drawstri ng(t heLabel , theO fset+30, theOfset+50);
g.set Col or (Col or. white);
g.drawstri ng(t heLabel , 30, 50);

}

/** G ve Paraneter info to the AppletViewer, just for those
* writing HTML wit hout hardcopy docunentation :-)
*/
public String[][] getParanmeterinfo() {
String info[][] ={

{ "l abel™", "string", "Text to display" },
{ "fontnane", "nane", "Font to display it in" },
{ "fontsize", "10- 307", "Size to display it at" },

b

return info;
}

Standard AWT uses a very simple paint model for drawing. | guess that's why the method you
have to write is called pai nt (). Let's go back to the paper age for a moment. If you paint
something on a piece of paper and then paint over it with a different color, what happens? If
you're old enough to remember paper, you'll know that the second color covers up the first color.
Well, AWT works in pretty much the same way. No fair asking about water-based paints that run
together; Java's painting is more like fast-drying oil paints. The fact that AWT retains all the bits
(pixels, or picture elements) that you don't draw, plus the fact that methods like dr awSt ri ng()
have extremely good aim, make it very easy to create a drop shadow and to combine graphics
drawings in interesting ways.

Remember to draw from the back to the front, though. To see why, try interchanging the two calls
todrawst ring() inthe previous code.

A word of warning: don't mix drawing with added GUI components (see Chapter 13). For
example, say you had a paint method in an applet or other container and had add() ed a button
to it. This works on some implementations of Java, but not on others: only the painting or the
button will appear, not both. It's not portable, so don't do it -- you've been warned! Instead, you
should probably use multiple components; see the JFr ane's get Cont ent Pane() and

get @ assPane(), discussed in Chapter 8 of Java Swing, for details.

An alternative method of obtaining a drop shadow effect is covered Section 12.10.
12.7 Drawing an Image

12.7.1 Problem

You want to display an image, a preformatted bitmap, or raster file.

12.7.2 Solution

Use the Gr aphi cs drawi mage() method in your paint routine. Image objects represent
bitmaps. They are normally loaded from a file via get | nage(), but can also be synthesized
using cr eat el mage(). You can't construct them yourself, however: the | nage class is
abstract. Once you have an image, displaying it is trivial:

/1 File graphics/Draw mageDeno. j ava
public void paint(Gaphics g) {

g.drawl mage(0, 0, nylnmage, this);
}

12.7.3 Discussion

You can get an image by using a routine named, naturally, get | mage(). If your code will be
used only in an applet, you can use the Appl et method get | mage(), but if you want it to run
in an application as well, you need to use the Toolkit version. This form takes either a filename or
a URL. The filename, of course, when it turns up in an applet, will fail with a security exception
unless the user installs a policy file. Program Cet | mage shows the code for doing this both ways:

/*

* For Applet, invoke as:

<APPLET CODE="GCet| mage" W DTH="100" HElI GHT="100">
</ APPLET>

* For Application, just run it (has own nain).

*/

i mport java.awt.*;
i mport java.net.*; /1 for URL class

/** This program which can be an Applet or an Application,
* shows a formof Tool kit.getlnmage() which works the sane
* in either Applet or Application!

*/
public class Getlmage extends java. appl et. Applet {

| mage i mage;

public void init() {
| oadl mage();
}

public void | oadl mage() {
/1 Applet-only version:
/1 1mage = getl mage(get CodeBase(), "Duke.gif");

/1 Portable version: getC ass().getResource() works in either
/1 applet or application, 1.1 or 1.3, returns URL for file
namne.
URL url = getCd ass().getResource("Duke.gif");
i mage = getTool kit().getlmage(url);
/1 Shorter portable version: sane but avoids tenporary
vari abl es
/1 image = getTool kit().getlmge(get d ass(
) . get Resour ce(" Duke. gif"));

public void paint(Gaphics g) {
g. drawl mage(i mage, 20, 20, this);
}

public static void main(String args[]) {

Franme f = new Franme("Getlmage");

f. addW ndowLi st ener (new W ndowCl oser (f, true));
Cet | mage nyAppl et = new Cetlnmage();
f.add(nyAppl et);

myApplet.init();
f.setSize(100, 100);

f.setVisible(true);
myAppl et.start();

}

You may sometimes want to display an image more than once in the same panel. Example 12-
2 is a program that paints its background with the same image over and over. We use the
image's get Wdt h() and get Hei ght () methods to find the image's size, and the more
regular get Si ze() method on the component itself. As usual, we don't hardcode the window
size in the pai nt () method, since the user has the option of resizing with the mouse.

Example 12-2. TiledimageComponent.java

i mport com darw nsys. util.W ndowd oser;

i mport java.awt.*;
i mport java.awt.event.*;
i mport java.net.*;

/**

* Denp of Tiled I nmage
*/
public class Til edl mageConponent extends Contai ner {
Text Fi el d nameTF, passTF, domai nTF;
| mage im
String | MAGE_NAME = "background. gif";

/[** Set things up nicely. */
public Tiledl mageConmponent () {
Label I;

set Layout (new Fl owLayout ());
add(l = new Label ("Nane:", Label.CENTER));
add(nanmeTF=new Text Fi el d(10));

add(l = new Label ("Password:", Label.CENTER));
add(passTF=new Text Fi el d(10));
passTF. set EchoChar ("' *');

add(l = new Label ("Domai n: ", Label.CENTER));
add(domai nTF=new Text Fi el d(10));

im= getTool kit().getlmge(l MAGE_NAME);
}

[** paint() - just tile the background. */
public void paint(Gaphics g) {
/1 Systemout.println("In paint()");
if (im== null)
return;

int iw=imgetWdth(this), ih=imgetHeight(this);

if (iw<O0]| ih <0) /1 image not ready
return; /1l live to try again later.
int w= getSize().width, h = getSize().height;
/1l Systemout.println(iw+ "," +ih+";, " +w+ ", " + h),;
for (int i =0; i<wiw i+=iw) {
for (int j = 0; j<h+ih; j+=ih) {
/1 Systemout.println("draw mage(im"+i+","++")");
g.drawl mage(im i, j, this);
}

public static void main(String[] av) {
Frame f = new Frane("Ti | edl rageConponent Denp");
f.add(new Ti | edl nrageConponent());
f.setSize(200, 200);
f.setVisible(true);
f. addW ndowLi st ener (new W ndowC oser (f, true));

}

In the pai nt () method, we must check that the image not only is not null, but has a non-
negative width and height -- we are more careful than we were in the previous, somewhat
cavalier example. The image will be null only if something went very wrong in the constructor, but
it can have a negative size. How? In certain creation myths, time ran backward before the
beginning of time; therefore, before an image is fully created, its size is backwards, that is, it has
a width and height of -1. The get | nage() method doesn't actually get the image, you see. It
creates the | mage object, true, but it doesn't necessarily load all the bits: it starts a background
thread to do the reading, and returns. This dates from the days when the Web was slower and
took a long time to fully load an image. In particular, there might be some image file formats
(some kinds of TIFF files, perhaps) where you don't know the actual image size until you've read
the entire file. Thus, when get | mage() returns, the | nage object is created, but its size is set
to -1, -1. Since there are now two threads running (see Chapter 24), there are two possible
outcomes. Either the image-reading thread reads enough to know the width and height before
you need them, or you need them before the thread reads enough to know them. The curious-
looking code in pai nt () is defensive about this. You should be too.

But what if you really need the size of the image, for example to lay out a larger panel? If you
read a bit of the | rage documentation, you might think you can use the pr epar el nage()
method to ensure that the object has been loaded. Unfortunately, this method can get you stuck
in a loop if the image file is missing, because pr epar el mage will never return true! If you need
to be sure, you must construct a Vedi aTr acker object to ensure that the image has been
loaded successfully. That looks something like this:

/**

* This CODE FRAGVENT shows using a Medi aTracker to ensure

* that an | mage has been | oaded successfully, then obtaining

* its Wdth and Height. The Medi aTracker can track an arbitrary
* nunber of Images; the "0" is an arbitrary nunber used to track
* this particular imge.

*/

|l mge im

nt iMWdth, inHeight;

public void setlmge(lmge i) {

im=i;
Medi aTracker nmt = new Medi aTracker (this);
/1 use of "this" assunmes we're in a Conmponent subcl ass.
nt . addl mage(im 0);
try {

nt.waitForl X0);
} catch(InterruptedException e) {

throw new I || egal Ar gunent Excepti on(

"I nterrupt edExcepti on while | oading | mage");

}
if (m.isErrorlD0)) {
throw new ||| egal Ar gunent Except i on(
"Couldn't load i mage");
}
imNdth = imgetWdth(this);
i mHei ght = i m get Hei ght (this);

}

You can ask the MVedi aTr acker for its status at any time using the method st at us(i nt | D,
bool ean | oad) , which returns an integer made by or -ing together the values shown in Table
12-1. The boolean | oad flag, if true, tells the Medi aTr acker to start loading any images that
haven't yet been started. A related method, st at usAl | (), returns the inclusive or of any flags
applying to images that have started loading.

Table 12-1. MediaTracker status values

Flag Meaning
ABORTED Downloading of at least one item was aborted.
COMPLETE Downloading of all items completed without error.
ERRORED Something went wrong while downloading at least one item.
LOADING Downloading is ongoing.

You can shorten the previous code by using the Swing | nagel con class, which includes this
functionality. The | nagel con class has several constructor forms, one of which takes just a
filename argument. | magel con uses a Medi aTr acker internally; you can ask for its status
using the | magel con's get | nageLoadSt at us() method, which returns the same values as
Medi aTr acker 'sstatusAl |l ()/statusl D).

12.8 Playing a Sound File

12.8.1 Problem

You want a quick and easy way to "make noise" or play an existing sound file.
12.8.2 Solution

Get an Audi oCl | p object and use its pl ay() method.

12.8.3 Discussion

This might seem out of place in the midst of all this G- aphi cs code, but there's a pattern. We're
moving from the simpler graphical forms to more dynamic multimedia. You can play a sound file
using an Audi oCl i p to represent it. Back in the days of 1.0 and 1.1, you could do this only in an
applet (or using unsupported sun. | ava classes). But with Java 2, this capability was extended
to applications. Here is a program that plays either two demonstration files from a precompiled
list, or the list of files you give. Due to the applet legacy, each file must be given as a URL.

i nport java. appl et. *;
i nport java.net.*;

/** Sinple programto try out the "new Sound" stuff in JDKL1.2 --
* allows Applications, not just Applets, to play Sound.
*/
public class SoundPl ay {
static String def Sounds[] = {
"file:/l/javasrc/ graphics/test.wav",
"file:///nusic/mdi/Beet5th. md",
1
public static void main(String[] av) {
if (av.length == 0)
mai n(def Sounds) ;
else for (int i=0;i<av.length; i++) {
Systemout.printin("Starting " + av[i]);
try {
URL snd = new URL(av[i]);
/1l open to see if works or throws exception, close to

free fd's
/'l snd. openConnection().getlnputStrean().close();
Appl et . newAudi ol i p(snd).play();
} catch (Exception e) {
Systemerr.println(e);
}
}

/1 Wth this call, programexits before/during play.
/1l Wthout it, on sonme versions, program hangs forever after

pl ay.
}

/1 Systemexit(0);
}

As the code comment reports, you can open the URL to see if it succeeds; if this throws an
| OExcept i on, there is not much point in trying the newAudi oCl | p() call, and catching it this
way might allow you to print a better error message.

12.8.4 See Also

There are several limitations on the applet sound API. The JMFPlayer interface discussed in
Section 12.9 plays sound files with a volume control panel.

12.9 Displaying a Moving Image with Video
12.9.1 Problem

You want to display a video file within a Java program.

12.9.2 Solution
Use the Java Media Framework (JMF), a standard extension.
12.9.3 Discussion

Example 12-3 shows a program that displays a movie or other media file named on the
command line. JIMF is very flexible; this program will display (that is, play) an audio file with a
volume control if the media object that you name contains a sound clip instead of a movie.
Figure 12-4 shows JMFPlayer displaying a sound file and a movie.

Figure 12-4. JMFPlayer in action: audio (left), video (right)

Example 12-3. JMFPlayer.java
i mport com darw nsys. util.W ndowd oser;

i mport java. applet.*;
i mport java.awt.*;

i mport javax.sw ng.*;
i mport java.net.*;

i mport java.io.*;

i mport java.util.*;

i mport javax. nedia.*;

/**

* Denpnstrate sinple code to play a novie with Java Medi a Franewor k.
*/
public class JMFPl ayer extends JPanel inplenments ControllerlListener {

/** The pl ayer object */

Pl ayer thePlayer = null;

/** The parent Frame we are in. */

JFrame parentFrane = null;

/** Qur contentpane */

Cont ai ner cp;

/** The vi sual conponent (if any) */
Conmponent vi sual Conponent = nul | ;

/** The default control conponent (if any) */
Conmponent control Conponent = null;

[** The nanme of this instance's nedia file. */
String nedi aNane;

/** The URL representing this nedia file. */

URL t heURL;

/** Construct the player object and the GJ . */
public JM-Pl ayer (JFrame pf, String nedia) {

par ent Franme = pf;

nmedi aNane = nedi a;

/1l cp = getContentPane();

cp = this;
cp. set Layout (new BorderLayout());
try {

theURL = new URL(getC ass().getResource("."), nediaNane);
t hePl ayer = Manager. createPl ayer (t heURL) ;
t hePl ayer.addControl | erLi stener(this);

} catch (Mal formedURLException e) {

Systemerr.printin("JM- URL creation error: " + e);

} catch (Exception e) {
Systemerr.println("JM- Player creation error: " + e);
return;

}

Systemout.println("theURL = " + theURL);

/1 Start the player: this will notify our ControllerlListener
t hePl ayer.start(); /1 start playing

}

/** Called to stop the audio, as froma Stop button or nenuitem */
public void stop() {
if (thePlayer == null)

return;
t hePl ayer.stop(); /1 stop playing!
t hePl ayer. deal | ocate(); /1 free systemresources

}

/** Called when we are really finished (as froman Exit button). */
public void destroy() {
if (thePlayer == null)
return;
t hePl ayer.close();

}
/** Called by JMF when the Player has sonmething to tell us about.
*/
public synchronized void controllerUpdate(ControllerEvent event) {
/1 Systemout.println("controllerUpdate(" + event + ")");
if (event instanceof RealizeConpleteEvent) {
i f ((visual Conponent = thePl ayer. get Vi sual Conponent()) !=
nul 1)

cp. add(Bor der Layout . CENTER, vi sual Conponent);
if ((control Conponent =
t hePl ayer . get Contr ol Panel Conponent()) != null)
cp. add(Bor der Layout . SOUTH, contr ol Conponent);
/1 re-size the main w ndow
if (parentFrame !'= null) {
par ent Frane. pack();
par ent Frane. set Ti t | e(medi aNane) ;

}

public static void nmain(String[] argv) {
JFrane f = new JFranme("JM- Pl ayer Denp");
Cont ai ner franeCP = f. get Content Pane();
JMFPl ayer p = new JMFPl ayer(f, argv.length == 0 ?
"file:///C/music/mdi/beetbth.md" : argv[0]);
f rameCP. add(Bor der Layout . CENTER, p);
f.setSi ze(200, 200);
f.setVisible(true);
f. addW ndowlLi st ener (new W ndowC oser (f, true));

}

The optional Java Media Framework includes much more functionality than this example shows.
However, the ability to display a QuickTime or MPEG movie with only a few lines of code is one
of IMF's most endearing young charms. We load the media file from a URL and create a Pl ayer
object to manage it. If it makes sense for the given player to have a controller, it will have one,
and we add it to the bottom of the applet. Controllers may include volume controls,
forward/backward buttons, position sliders, etc. However, we don't have to care: we get a
component that contains all the appropriate controls for the kind of media clip we've created the
player for. If the given player represents a medium with a visual component (like a movie or a
bitmap image), we add this to the center of the applet.

12.9.4 See Also

Of course, there is much more to the JMF API than this. You can, for example, coordinate playing
of audio and video with each other or with other events.

12.10 Drawing Text with 2D
12.10.1 Problem

You want fancier drawing abilities.
12.10.2 Solution

Use a G aphi cs2D object.

12.10.3 Discussion

The subject of the 2D graphics added in Java 2 could be the subject of an entire book, and in
fact, it is. Java 2D Graphics by Jonathan Knudsen (O'Reilly) covers every imaginable aspect of
this comprehensive new graphics package. Here I'll just show one example, that of drawing text
with a textured background.

The G aphi cs2Dclass is a direct subclass of the original Java G aphi cs object. In fact, in Java
2, your pai nt () method is always called with an instance of G aphi cs2D. So, it suffices to
begin your paint method by casting appropriately:

public void paint(Gaphics g) {
G aphics2D g2 = (Graphics2D) g;

You can then use any G- aphi cs2D methods or any regular G- aphi cs methods, getting to them
with the object reference g2. One of the additional methods in G- aphi cs2Dis set Paint (),
which can take the place of set Col or () to draw with a solid color. However, it can also be
called with several other types, and in this case we pass in an object called a Text ur ePai nt ,
which refers to a pattern. Our pattern is a simple set of diagonal lines, but any pattern or even a
bitmap from a file (see Section 12.7) can be used. Figure 12-5 shows the resulting screen (it
looks even better in color).

Figure 12-5. TexturedText: a tiny sample of the 2D API

ETnulumllT ext

5
YRR St v S N, W N
. - i 4 = W W
5 W oE S w & & pess s 8
B A E B B & w8
ettt i e AT L
= rd
= e

The program that produced this is shown in Example 12-4.
Example 12-4. TexturedText.java

i mport java.awt.*;
i mport java.awt.event.*;
i mport java.awt.inmage.*;

[** Text with a Texture
*/
public class TexturedText extends Conponent {
/** The inmage we draw in the texture */
prot ected Bufferedl mage bim
/** The texture for painting. */
Text urePai nt tp;
/** The string to draw. */
String nesg = "Stripey";
[** The font */
Font nyFont = new Font ("Lucida Regul ar”, Font.BOLD, 72);

/** "main progrant nethod - construct and show */
public static void main(String av[]) {
/1l create a TexturedText object, tell it to show up
final Frame f = new Franme(" TexturedText");
TexturedText conmp = new TexturedText();
f.add(conmp);
f.addW ndowLi st ener (new W ndowAdapter() {
public void w ndowC osi ng(WndowEvent e) {
f.setVisible(fal se);
f.dispose();
System exit(0);
}
1)
f.pack();
f.setLocation(200, 200);

f.setVisible(true);
}

protected static Color[] colors = {
Col or.green, Color.red, Color.blue, Color.yellow,
i

/** Construct the object */
public TexturedText() {
super();
set Backgr ound(Col or. white);
int wwdth = 8, height = 8§;
bi m = new Buf f er edl mage(w dt h, hei ght,
Buf f er edl nage. TYPE_| NT_ARGB) ;
G aphi cs2D g2 = bimcreateG aphics();
for (int 1=0; i<width; i++) {
g2.setPaint(colors[(i/2)%olors.length]);
g2.drawLi ne(0, i, i, 0);
g2. drawLi ne(wi dth-i, height, width, height-i);
}
Rectangl e r = new Rectangl e(0, 0, bimgetWdth(),
bimgetHeight());
tp = new TexturePaint(bim r);
}

public void paint(Gaphics g) {
G aphi cs2D g2 = (G aphi cs2D)g;
g2. set Render i ngHi nt (Render i ngH nts. KEY_ANTI ALI ASI NG,
Render i ngHi nts. VALUE_ANTI ALI AS_ON) ;
g2.setPaint(tp);
g2. set Font (nmyFont) ;
g2.drawsStri ng(nesg, 20, 100);
}

public Dinmension getM ni munSi ze() {
return new Di nensi on(250, 100);
}

public Dinmension getPreferredSize() {
return new Di nensi on(320, 150);
}

}
12.10.4 See Also

| have not discussed how to scale, rotate, or otherwise transmogrify an image using the
Af fineTransf or mclass in Java 2D graphics, as this is beyond the scope of this book. Consult
the previously mentioned Java 2D Graphics.

12.11 Printing: JDK 1.1
12.11.1 Problem

You need to generate hardcopy, and you're using JDK 1.1.

12.11.2 Solution

Use | ava. awt . Print Job. Or, upgrade to JDK 1.2.

12.11.3 Discussion

The JDK 1.1 API puts your program in the driver's seat: you decide what to print and when to
print it. But first, you have to let the user pick a printer, which you can do by calling the Toolkit
method get Pri nt er Job(). This pops up a platform-specific print chooser dialog, and if the
user picks a printer, you get back a Pr i nt Job object (otherwise you get back null). Your
program is in charge of pagination (breaking the data into pages) and drawing each page onto a
print buffer. How? For each page you want to print, call the Pri nt Job's get G- aphi cs()
method to retrieve a G- aphi cs object. Use it as you will; any of its draw or fill methods will draw,
not to the screen, but onto paper. Your best bet is to pass it to your pai nt () method, if you
have one. This is one of the few places where you do call pai nt () directly. When the page is
done, call the G- aphi cs object's di spose() method. When the whole print job is done, call
the Print Job's end() method, and you're finished -- the data is on its way to the printer.

Here's a little program that displays a simple graphical component called a DenmoG-XCanvas.
When you click the Print button at the bottom, the program prints the contents of the
DenpbG-XCanvas (this is shown graphically in Figure 12-6). When you click on the Print button
in the main window, the printer dialog shown at the bottom of the figure appears. Example 12-5
is the code that makes it all happen. (The push button and the addAct | onLi st ener code will
be explained in Chapter 13; suffice it to say that this causes an action to be performed when the
button is pressed.)

Example 12-5. PrintDemoGfx (JDK 1.1 version)

i nport java.awt.*;
i nport java.awt.event.*;
i nport javax.sw ng. *;

/** PrintDenmoGFx -- Construct and print a G xDenoCanvas. JDK1.1
VERSI ON. */
public class PrintDenmoGx1 1 {

/** Sinple denmo nmain program */
public static void main(String[] av) {
final JFrane f = new JFranme("Printing Test Dunmy Frane");

/'l Construct the object we want to print. Contrived:
/1 this object would already exist in a real program
final GxDenoCanvas thing = new (& xDenoCanvas(500, 300);
f. get Content Pane().add(thing, BorderlLayout.CENTER);

JButton printButton = new JButton("Print");
f.get Content Pane().add(printButton, BorderLayout.SOUTH);

print Button. addActi onLi st ener (new ActionListener() {
public void actionPerfornmed(ActionEvent e) {

).getPrintJob(f,

1)
f. pack(

PrintJob pjob = Tool kit.getDefaultTool kit(
"Printing Test", null);

if (pjob == null)
return; /'l user cancell ed

/1l Fetch the Print G aphics object
G aphi cs pg = pjob.getGaphics();

/1 Now (drumroll please), ask "thing" to paint itself
/1 on the printer, by calling its paint() nmethod wth
/1 a Printjob Gaphics instead of a Wndow G aphi cs.

t hi ng. pai nt (pg);

pg. di spose(); // end of this page

pj ob.end(); /1 end of print job.

)

f.setVisible(true);

}

One limitation of the 1.1 API is that it offers no way to print without a screen connection for the
GUI-based printer dialog, so you can't use the 1.1 API in a background job or cron job on Unix, or
in a service on other platforms. For that, use the Java 2 API.

Figure 12-6. PrintDemoGfx program in action (main screen and MS-Windows print dialog)

I-"rlnr.lnq Test Dummy Frame

Print

Print E ﬂ

Frakes
Propeities

Name

Stabus: Diatault prikes; Ready
Tupe AdobePSD el adlPazlS ciplPrirter
Wihene Wdasizntlp

Comment [T Pt b file
Print range Cipies
= Al 9993 pages Mumber of copies |'| Ef

" Pages fiom |1 1o [9933
- | 1| zlz 3i:l [T Coliate

| Q. I Cancel

12.12 Printing: Java 2

12.12.1 Problem

You need to generate hardcopy, and you're using Java 2.
12.12.2 Solution

Usejava.awt . print. PrinterJob.
12.12.3 Discussion

Like its predecessor, the Java 2 printing APl makes you divide the data into pages. Again, you
start by getting a Pri nt er Job object to control your printing. You'll usually want to let the user
pick a printer, which you do by calling the Pri nt er Job's method pri nt er Di al og(). This
pops up a platform-specific print chooser dialog, and if the user picks a printer, you get back a
Print er Job object (otherwise, again, you get back null). If you don't call pri nt er Di al og()
and there is a default printer, your job will be sent to that printer (if there isn't a default printer, |
don't know what happens). Unlike the 1.1 API, however, Java is in charge of what to print and in

what order, though your program is still responsible for pagination and drawing each page onto a
print buffer. You need to provide an object that implements the Pri nt abl e interface (see
Section 8.8). In this example, we pass an anonymous inner class (see Section 8.7); this is not
required but as usual makes the code more succinct by eliminating having to write another class
in another file and by keeping the action and the result together. Java calls this object's pri nt (

) method once for each page the user has requested. This is more efficient than the 1.1 method,
since if the user wants to print only page 57, you only get called once to print that page (in 1.1,
you'd have to generate the intervening 56 pages and have the print system discard them). Note
that the official documentation calls the third argument a pagel ndex, but it's really a page
number. Trust me. Presumably it's called a pagel ndex to remind you that in some printing jobs
(such as this book), there are unnumbered pages and pages with those funny little roman
numerals at the front (see Section 5.11).

The screen shots in Figure 12-6 apply equally to this version of the program. And the source
code is similar; see Example 12-6.

Example 12-6. PrintDemoGfx (Java 2 version)

i mport java.awt.*;

i mport java.awt.event.*;
i mport java.awt.print.*;
i mport javax.sw ng. *;

/[** PrintDenoGx -- Construct and print a G xDenpCanvas. Java 2
VERSI ON. */
public class PrintDenoGx {

/[** Sinple denp main program */
public static void main(String[] av) throws PrinterException {
final JFrame f = new JFrame("Printing Test Dunmy Frane");

/1 Construct the object we want to print. Contrived:
/1 this object would already exist in a real program
final G xDenpCanvas thing = new G xDenpCanvas(400, 300);

f.get Content Pane(). add(thing, BorderLayout.CENTER);

JButton printButton = new JButton("Print");
f.get Content Pane().add(printButton, BorderlLayout.SOUTH);

print Button. addActi onLi st ener (new Acti onLi stener() {
public void actionPerformnmed(ActionEvent e) {
try {
PrinterJob pjob = PrinterJob.getPrinterJob();
pj ob. set JobNane(" Deno& x - G aphi cs Deno
Printout");
pj ob. set Copi es(1);
/1 Tell the print systemhow to print our pages.
pj ob. setPrintabl e(new Printable() {
/** called fromthe printer systemto print
each page */
public int print(Gaphics pg, PageFormat pf,
i nt pageNunm) {
i f (pageNunr0) /1 we only print one
page

return Printabl e. NO SUCH PACE; /1
ie., end of job

/1 Now (drumroll please), ask "thing" to
paint itself
/1 on the printer, by calling its paint()

met hod with
/1 a Printjob Graphics instead of a W ndow
G aphi cs.
t hi ng. pai nt (pg) ;
/1 Tell print systemthat the page is ready
to print
return Printabl e. PAGE EXI STS;
}
1)
if (pjob.printDialog() == false) /'l choose
printer
return; /'l user cancell ed
pjob.print(); /1 Finally, do the
printing.
} catch (PrinterException pe) {
JOpt i onPane. showivessageDi al og(f,
"Printer error" + pe, "Printing error”,
JOpt i onPane. ERROR_MESSACGE) ;
}
}
1)
f.pack();

f.setVisible(true);

}
12.12.4 See Also

The Java 2 API has other useful methods in the Pri nt er Job class; see the documentation.
There are also Paper , PageFor mat , and Book classes that describe a physical page, a page
by size and orientation, and a collection of pages, respectively.

Both Java printing APIs require you to think in "page mode." That is, you must know where the
page breaks are and request the start of each new page. This is optimal for graphically oriented
programs, and less optimal for "report writing" applications; handling pagination for yourself can
become quite a tedium. See the Har dCopyW i t er class in O'Reilly's Java Examples in a
Nutshell for code that neatly paginates and prints plain text.

Another means of printing is to directly generate PostScript files or Acrobat PDF files. See
Recipes Section 9.21 and Section 18.6 for these alternate paths to printing.

12.13 Program: PlotterAWT

In Section 8.12, we discussed a series of Pl ot t er classes. The Pl ot t er AWT class shown in

Example 12-7 extends that to provide a "plot preview" service: before being plotted on a
(probably slow) plotter, the plot is displayed in an AWT window using the Gr aphi cs drawing
primitives.

Example 12-7. PlotterAWT .java

i mport java.awt.*;
i mport java.awt.event.*;

/**
* A Plotter subclass for drawing into an AWI Wndow. Reflecting back
* to AWI gives us a "known working" plotter to test on.
* You can also steal this as a basis for your own plotter driver!
*/
public class Plotter AWl extends Plotter {
Frame f;
| mage os;
PCanvas p;
G aphics g;
Font font;
Font Metrics fontMetrics;
PlotterAWI() {
super();
f = new Frane("Plotter");
p = new PCanvas(os, MAXX, MAXY);
-add(p) ;
. pack();
.setVisible(true);
. addW ndowLi st ener (new W ndowAdapter() {
public void w ndowC osi ng(WndowEvent e) {
/1 1f we do setVisible and di spose, then the C ose

—h —h —h —h

conpl etes
Plotter AW. this. f.setVisible(false);
Plotter AWI. t his.f.dispose();
System exit(0);
}
1)

g = p.getsG aphics();

}

public void drawBox(int w, int h) {
g.drawRect (curx, cury, w, h);
p.repaint();

}

public void rnmoveTo(int incrx, int incry)({
nmoveTo(curx += incrx, cury +=incry);

}
public void nmoveTo(int absx, int absy){
if (!penlsUp)
g. drawLi ne(curx, cury, absx, absy);
curx = absx;
cury = absy;
}

public void setdir(float deg){}
void penUp(){ penlsUp = true; }
void penDown(){ penlsUp = false; }

voi d penCol or(int c){

switch(c) {

case 0: g.setColor(Color.white); break;
case 1: g.setColor(Color. bl ack); break;
case 2: ¢g.setColor(Color.red); break;
case 3: ¢.setColor(Color.green); break;
case 4: ¢.setColor(Color.blue); break;
default: g.setCol or(new Color(c)); break;
}

void setFont (String fNane, int fSize) {
font = new Font (f Nane, Font.BOLD, fSize);
fontMetrics = p.getFontMetrics(font);

void drawString(String s) {
g.drawsString(s, curx, cury);
curx += fontMetrics.stringWdth(s);

}

/** A Menber C ass that contains an off-screen Inmage that is

* drawn into; this conponent's paint() copies fromthere to
* the screen. This avoids having to keep a list of all the

* things that have been drawn.

*/
cl ass PCanvas extends Canvas {
int w dth;
i nt height;
PCanvas(lmage im int x, int y) {
wi dth = x;
hei ght = vy;

set Backgr ound(Col or. white);
set For egr ound(Col or. red);

}

public G aphics getGsGaphics() {
checkOs();
return g;

}

private void checkOs() {
/1 This createlmage fails nysteriously if done in a
constructor!
0os = createl nage(w dth, height);
/1 Systemout.println("PCanvas. checkOS(): inmage= " + 0S);

if (os == null)
t hrow new ||| egal Argunment Excepti on("creat el nage
failed");
g = os.getGaphics();
}

public void paint(G aphics pg) {
pg. draw mage(os, 0, O, null);

public Di nmension getPreferredSize() {
return new Di nension(w dth, height);
}

}
12.14 Program: Grapher

Grapher is a simple program to read a table of numbers and graph them. The input format is two
or more lines that each contain an X and a Y value. The output is an on-screen display that can
also be printed. Figure 12-7 shows the results of running it with the following simple data; the
first column is the X coordinate and the second is the Y coordinate of each point. The program
scales the data to fit the window.

N e
N 00~ Ol
~N oo

Figure 12-7. Grapher in action

E Grapher !EIE
o

Example 12-8 shows the code.
Example 12-8. Grapher.java

i mport com darw nsys. util . Debug;
i mport java.awt.*;

i mport java.awt.event.*;

i mport javax.sw ng.*;

i mport java.io.*;

i mport java.util.*;

[** Sinmple Gaphing program
*
/
public class G apher extends JPanel {
/** Multiplier for range to allow roomfor a border */
public final static float BORDERFACTOR = 1. 1f;

/* Small inner class to hold x, y. Called Apoint to differentiate
* fromjava. awt . Poi nt.
*/
cl ass Apoint {
float x;
float vy;

public String toString() {
return "Apoi nt ("+x+", " +y+")";
}

/** The list of Apoint points. */
protected Vector data;

[** The m ni num and naxi num X val ues */
protected float mnx = Integer. MAX VALUE, maxx
[** The m ni num and nmaxi num Y val ues */
protected float mny = Integer. MAX VALUE, maxy
/** The nunber of data points */

protected int n;

/** The range of X and Y val ues */

protected fl oat xrange, yrange;

I nt eger. M N_VALUE;

I nt eger. M N_VALUE;

public Gapher() {
data = new Vector();
}

/** Read the data file named. Each line has an x and a vy

coordi nate. */

)

public void read(String fname) {
Li neNunber Reader is = null;

try {
i s = new Li neNunber Reader (new Fi | eReader (f nane));

String txt;
/! Read the file aline at a tine, parse it, save the data.
while ((txt = is.readLine()) != null) {
StringTokeni zer st = new StringTokeni zer (txt);
try {
Apoint d = new Apoint();
d.x = Fl oat. parseFl oat (st. next Token(
d.y = Fl oat. parseFl oat (st. next Token(
dat a. add(d);
} cat ch(Nunmber For mat Excepti on nfe) ({
Systemerr.println("lnvalid nunber on line " +
i s.getLineNunmber());
} /1 XXX catch out of range exception

)
)

} catch (Fil eNot FoundException e) {

Systemerr.printin("File " + fname + " unreadable: " + e);
} catch (1 COException e) {

Systemerr.printin("I/Oerror on line " + is.getLineNunber (

}

n = data.size();

if (n<2) {
Systemerr.println("Not enough data points!");
return;

}

/1 find min & max

for (int i=0; i < n; i++)

Apoint d = (Apoint)data.elementAt(i);

if (d.x < mnx) mnx = d.x;
if (d.x > maxx) maxx = d.x;
if (d.y <mny) mny = d.vy;
if (d.y > maxy) maxy = d.y;

}

/1 Conpute ranges
Xrange = (maxx - mnx) * BORDERFACTOR;
yrange = (maxy - mny) * BORDERFACTOR,

Debug. printl n("range", "mnx,x,r =" + mnx + '+ maxx + '+
Xrange);
Debug. println("range", "mny,y,r =" + mny + '+ maxy + '+
yrange);
}

/[** Called when the w ndow needs painting.
* Conmputes X and Y range, scales.
*/
public void pai nt Conponent (G aphics g) {
super . pai nt Conponent (g);
Dinension s = getSize();
if (n<2) {
g.drawsString("Insufficient data", 10, 40);
return;

}

/1 Conpute scale factors
float xfact s.width / xrange;
float yfact s. height / yrange;

/1 Scal e and plot the data
for (int i=0; i <n; i++) {
Apoint d = (Apoint)data.elementAt(i);
float x = (d.x-mnx) * xfact;
float vy = (d.y-mny) * yfact;
Debug. println("point”, "AT " +i +" " +d + "; " +
"X ="+ x +"; y =" +y);
/1 Draw a 5-pixel rectangle centered, so -2 both x and vy.
/1 AW nunbers Y fromO down, so invert:
g.drawRect (((int)x)-2, s.height-2-(int)y, 5, 5);

}

public Dinmension getPreferredSize() {
return new Di nensi on(150, 150);
}

public static void main(String[] rgs) {
final JFrame f = new JFranme(" G apher");
f.addW ndowLi st ener (new W ndowAdapter() {
public void w ndowC osi ng(WndowEvent e) {
f.setVisible(fal se);
f.dispose();
System exit(0);
}

3):
G apher g = new Grapher();

f . set Cont ent Pane(Q) ;
f.setLocation(100, 100);
f.pack();

if (rgs.length == 0)

g.read(" G apher.dat");
el se

g.read(rgs[0]);
f.setVisible(true);

}

Most of the complexity of Gr apher lies in determining the range and scaling. You could obviously
extend this to draw fancier drawings such as bar charts and the like. If pie charts interest you, see
Chart Bean in the online source.

13 Graphical User Interfaces

13.1 Introduction

Java has had windowing capabilities since its earliest days. The first version made public was the
Abstract Windowing Toolkit, or AWT. AWT used the native toolkit components, so it was relatively
small and simple. AWT suffered somewhat from being a "least common denominator"; a feature
could not be added unless it could be implemented on all major platforms that Java supported.
The second major implementation was the Swing classes, released in 1998 as part of the Java
Foundation Classes. Swing is a full-function, professional-quality GUI toolkit designed to enable
almost any kind of client-side GUI-based interaction. AWT lives on inside, or rather underneath,
Swing, and for this reason many programs begin by importing both | ava. awt and

j avax. swi ng.

This chapter presents a few elements of Java windowing for the developer whose main exposure
to Java has been on the server side. The examples are shown using Swing, rather than the
obsolescent AWT components. For a slightly more detailed presentation, the reader is referred to
Learning Java. For a very thorough presentation on all aspects of Swing, | recommend the
O'Reilly book Java Swing, by Robert Eckstein, Marc Loy, and Dave Wood. At 1252 pages it's not
an overnight read. But it is comprehensive.

Java's event model has evolved over time, too. In JDK 1.0, the writer of a windowed application
had to write a single large event-handling method to deal with button presses from all the GUI
controls in the window. This was simple for small programs, but did not scale well. My JabaDex
application had one large event handler method that tried to figure out which of 50 or 60 GUI
controls had caused an event, which was tedious and error prone. In JDK 1.1, the new delegation
event model was introduced. In this model, events are given only to classes that request them,
which is done by registering a listener. This is discussed in Section 13.5 and shown in Section
13.5. At the same time, the language was extended ever so slightly to include the notion of inner
classes . An inner class is simply a class whose definition is contained inside the body of another
class. We use examples of two types of inner classes here; for details on the half-dozen different
categories of inner classes, the reader is referred to Java in a Nutshell.

For this chapter, | make the assumption that you have at least a basic understanding of what GUI
components are, which ones should be used where, and so on. | will refer to JBut t on, JLi st ,
and JFr ane, to name a few, without saying much more about their basics or functionality. If this
stuff is mysterious to you, consult a good book on GUI design, such as the Java Look and Feel
Design Guidelines.

Most of the GUI construction techniques in this chapter can be done for you, in some cases more
quickly, by an integrated development environment (IDE). | have always believed, however, that
understanding what goes on inside the code should be a prerequisite for being allowed to use an
IDE. Those who disagree may be inclined to skip this chapter, go press a few buttons, and have
the computer do the work for them. But you should at least skim this chapter to see what's going
on, so you'll know where to look when you need it later.

13.2 Displaying GUI Components

13.2.1 Problem

You want to create some GUI components and have them appear in a window.

13.2.2 Solution

Create a JFr ane and add the components to its Cont ent Pane.

13.2.3 Discussion

The older Abstract Windowing Toolkit (AWT) had a simple frame component that allowed you to
add components directly to it. "Good" programs always created a panel to fit inside the frame,
and populated that. But some less-educated heathens often added components directly to the
frame. The Swing JFr ane is more complex; it comes with not one but two containers already
constructed inside it. The Cont ent Pane is the main container; you should normally use it as your
JFrane's main container. The G assPane has a clear background and sits over the top of the
Cont ent Pane; its primary use is in temporarily painting something over top of the main

Cont ent Pane. Because of this, you need to use the JFr ane's get Cont ent Pane() method:

i mport java.awt.*;
i mport javax.sw ng.*;

public class Content Pane extends JFrame {
public ContentPane() {
Cont ai ner cp = get Content Pane();
/1 now add Conponents to "cp"...

}

Then you can add any number of components (including containers) into this existing container,
using the Cont ai ner's add() method:

i mport java.awt.*;
i mport java.awt.event.*;
i mport javax.sw ng.*;

[** Just a Franme

*/

public class JFraneDeno extends JFrane {
bool ean unsavedChanges = fal se;
JButton quitButton;

/** Construct the object including its GJ */
public JFrameDeno() {
super (" JFr aneDenp") ;
get Cont ent Pane().add(quitButton = new JButton("Exit"));

/1l These "action handlers" will be explained later in the
chapter.
qui t But t on. addAct i onLi st ener (new Acti onListener() {
public void actionPerformnmed(ActionEvent e) {
set Vi si bl e(fal se);
di spose();
System exit(0);
}

1)
addW ndowLi st ener (new W ndowAdapter() {

public void w ndowC osi ng(WndowEvent e) {

set Vi si bl e(fal se);
di spose();
System exit (0);

1)
pack();

This code compiles fine. But when we try to run it, of course, there is no main method. We need
to create one:

public class JFraneDenoMain {
/1 W need a main programto instantiate and show.
public static void main(String[] args) {
new JFrameDeno().setVisible(true);
}

Now we can run it and have it display. But there are two problems: it starts off tiny (on MS-
Windows) or huge (on X Windows). And, when we do resize it, only the buttons show, and it
always takes up the full size of the window. To solve these problems, we need to discuss layout
management, a topic to which we now turn our attention.

13.3 Designing a Window Layout
13.3.1 Problem

The default layout isn't good enough.

13.3.2 Solution

Learn to deal with a layout manager.

13.3.3 Discussion

The container classes such as Panel have the ability to contain a series of components. But
there are many ways of arranging the components within a window. Rather than clutter up each
container with a variety of different layout computations, the designers of the Java APl used a
sensible design pattern to divide the labor. A layout manager is an object that performs the layout
computations for a container.t™ There are five common layout manager classes in the AWT
package (see Table 13-1), plus a few more specialized ones in | avax. swi ng. Plus, as we'll
see in Section 13.15, it's not that big a deal to write your own!

[The Layout Manager specification is actually a Java interface, rather than a class, for historical reasons.
In fact, it's two interfaces: quoting the code, interface Layout Manager 2 extends Layout Manager . The
extra features of the second interface don't concern us here; we want to concentrate on using the layout
managers.

Table 13-1. Layout managers

Name Notes Default on

. (J) Panel ,
Fl owLayout Flows across the container (J) Appl et
Bor der Layout |Five "geographic" regions (J) F_r ane,

(J) Wndow
Gi dLayout Regular grid (all items same size) None
Car dLayout D?splay one of many components at a time; useful for None
wizard-style layouts

G i dBagLayout |Very flexible but maximally complex None

Since we've broached the subject of layout management, | should mention that each component
has a method called get Pref erredSi ze() , which the layout managers use in deciding how
and where to place components. A well-behaved component overrides this method to return
something meaningful. A button or label, for example, will indicate that it wishes to be large
enough to contain its text and/or icon plus a bit of space for padding. And, if your JFr ane is full of
well-behaved components, you can set its size to be "just the size of all included components,
plus a bit for padding,” just by calling the pack() method, which takes no arguments. The
pack() method goes around and asks each embedded component for its preferred size (and
any nested container's get Pref erredSi ze() will ask each of its components, and so on).
The JFr ane is then set to the best size to give the components their preferred sizes as much as
is possible. If not using pack(), you need to call the set Si ze() method, which requires
either a width and a height, or a Di nensi on object containing this information.

A Fl owlLayout is the default in JPanel and Appl et/ JAppl et . It simply lays the components
out along the "normal” axis (left to right in European and English-speaking locales, right to left in
Hebrew or Arabic locales, and so on, as set by the user's Local e settings). The overall collection
of them is centered within the window.

The default for JFr ane and JW ndowis Bor der Layout . This explains the problem of the single
button appearing in the JFr aneDeno class at the end of the previous recipe. Bor der Layout

divides the screen into the five areas shown in Figure 13-1. If you don't specify where to place a
component, it goes into the Center. And if you place multiple components in the same region
(perhaps by adding several components without specifying where to place them!), only the last
one appears.

Figure 13-1. BorderLayout's five regions

ez Al M[=]E3
1 _Maorth

\est | Canter | East
South

So we can fix the previous version of the JFr aneDeno in one of two ways. Either we can use a
Fl owLayout , or specify Bor der Layout regions for the label and the button. The former being
simpler, we'll try it out:

i nport java.awt.*;
i nport javax.sw ng. *;

public class JFraneFl owLayout extends JFrane {
public JFraneFl owLayout () {
Cont ai ner cp = get Content Pane();

/1 Make sure it has a Fl owLayout | ayoutmanager.
cp. set Layout (new Fl owLayout ());

/1 now add Conponents to "cp"...
cp. add(new JLabel ("Wonderful ?"));
cp. add(new JButton("Yes!"));
pack();

}

/1 W need a main programto instantiate and show.
public static void main(String[] args) {

new JFrameFl owLayout ().setVisible(true);
}

13.3.4 See Also
| have not discussed the details of the advanced layouts. For an example of a dialog layout using

nested panels, see the font chooser in Section 13.14. For an example of a G| dBaglLayout,
see the GUI network client in Section 17.4. For more details, see the AWT and Swing books.

13.4 A Tabbed View of Life

13.4.1 Problem

These layouts don't include a tab layout, and you need one.
13.4.2 Solution

Use a JTabbedPane.

13.4.3 Discussion

The JTabbedPane class acts as a combined container and layout manager. It implements a
conventional tab layout, which looks like Figure 13-2.

Figure 13-2. JTabbedPane: two views in Java Look and one in MS-Windows Look

= 1ab.. M=IED [=} Tab. =] F3 (=3 Tab... [=]E3

First | Second | First Second 'Flr51'| Bat nnﬁ]

Oone WO one

To add a tab to the layout, you do not use set Layout (). You simply create the JTabbedPane
and call its addTab() method, passing ina St ri ng and a Conponent . Example 13-1 is the
code for our simple program.

Example 13-1. TabPaneDemo.java
i nport javax.sw ng. *;

public class TabPaneDeno {
prot ect ed JTabbedPane tabPane;
publ i ¢ TabPaneDermo() {
t abPane = new JTabbedPane();
t abPane. add(new JLabel ("One", JLabel.CENTER), "First");
t abPane. add(new JLabel (" Two", JLabel.CENTER), "Second");

}

public static void main(String[] a) {
JFranme f = new JFrane("Tab Denp");
f. get Cont ent Pane() . add(new TabPaneDeno().tabPane);
f.setSize(120, 100);
f.setVisible(true);

}
13.4.4 See Also

The third screen shot in Figure 13-2 shows the program with a MS-Windows look and feel,
instead of the default Java look and feel. See Section 13.13 for how to change the look and feel
of a Swing-based GUI application.

13.5 Action Handling: Making Buttons Work
13.5.1 Problem

Your button doesn't do anything when the user presses it.
13.5.2 Solution

Add an Act i onLi st ener to do the work.

13.5.3 Discussion

There are about half-dozen different types of event listeners. The most common is the

Act i onLi st ener, used by push buttons, text fields, and certain other components to indicate
that the user has performed a high-level action such as activating a push button or pressing
Return in a text field. The paradigm (shown in Figure 13-3) is that you create a Li st ener
object, register it with the event source (such as the push button) and wait. Later, when and if the
user pushes the button, the button will call your Li st ener .

Figure 13-3. AWT listener relationships

oddhctionlistener [ActionListener): void J_' octionPerformed {ActionEvent): void

Here's some simple code in which pushing a button causes the program to print a friendly
message. This program is an applet (see Section 17.3), so it can use the showSt at us()
method to print its text:

i mport java. applet.*;
i mport java.awt.*;
i mport java.awt.event.*;

[** Denonstrate use of Button */
public class ButtonDenp extends Applet inplenents ActionListener {
Button bil;

public ButtonDeno() {
add(bl = new Button("A button"));
b1. addActi onLi st ener (this);

}

public void actionPerformed(Acti onEvent event) ({
showsSt at us(" Thanks for pushing nmy button!");
}

}

This version does not use an inner class to handle the events, but does so itself by directly
implementing the Act i onLi st ener interface. This works for small programs, but as an
application grows, quickly becomes unserviceable; how do you sort out which button was
pressed? To solve this problem, we normally use an inner class as the action handler, and have a
different class for each button. First, let's write the previous code with two buttons, so you'll see
what | mean:

i mport java. applet.*;
i mport java.awt.*;
i mport java.awt.event.*;

/** Denonstrate use of two buttons, using a single ActionListener
* being the class itself.
*/
public class ButtonDenp2a extends Applet inplenents ActionListener {
Button bl, b2;

public void init() {
add(bl = new Button("A button"));
b1. addActi onLi st ener (this);

add(b2 = new Button("Another button"));
b2. addAct i onLi st ener (this);

}

public void actionPerformnmed(ActionEvent e) {
if (e.getSource() == bl)
showSt at us(" Thanks for pushing nmy first button!");
el se
showSt at us(" Thanks for pushing nmy second button!");

Now here it is using a member inner class, that is, a class that is a named part of another class:

i nport java. appl et. *;
i nport java.awt.*;
i nport java.awt.event.*;

/** Denonstrate use of two buttons, using a single ActionListener
* made of a naned inner class
*/
public class ButtonDenp2b extends Applet {
Button bl, b2;
Acti onLi stener handler = new ButtonHandler();

public void init() {
add(bl = new Button("A button"));
bl. addActi onLi st ener (handl er);

add(b2 = new Button("Another button"));
b2. addAct i onLi st ener (handl er) ;

}

cl ass ButtonHandl er inplenments ActionListener {
public void actionPerfornmed(ActionEvent e) {
if (e.getSource() == bl)
showSt at us(" Thanks for pushing ny first button!");
el se
showSt at us(" Thanks for pushing ny second button!");

}

Note that merely breaking the action handling code into its own class doesn't really contribute
much to readability. But there is a way to use inner classes that does promote readability and
maintainability. We create an inner class (see Section 8.7) for each event source: each button,
each menu item, and so on. Sounds like a lot of work. And it would be, if you used the previous
method. But there is a shorter way, using anonymous inner classes, described next.

13.6 Action Handling Using Anonymous Inner Classes
13.6.1 Problem

You want action handling with less creation of special classes.

13.6.2 Solution

Use anonymous inner classes.

13.6.3 Discussion

Anonymous inner classes are declared and instantiated at the same time, using the new operator
with the name of an existing class or interface. If you name a class, it will be subclassed; if you
name an interface, the anonymous class will extend | ava. | ang. Cbj ect and implement the
named interface. The paradigm is:

b. addAct i onLi st ener (new Acti onLi stener() {
public void actionPerformnmed(ActionEvent e) {
showSt at us(" Thanks for pushing nmy second button!");
}
1)

Did you notice the }) ; by itself on the last line? Good, because it's important. The } terminates
the definition of the inner class, while the) ends the argument list to the addAct i onLi st ener
method; the single argument inside the brackets is an argument of type Act i onLi st ener that

refers to the one and only instance created of your anonymous class. Example 13-2 contains a
complete example.

Example 13-2. ButtonDemoZ2c.java

i mport java. applet.*;
i mport java.awt.*;
i mport java.awt.event.*;

/** Denonstrate use of Button */
public class ButtonDenp2c extends Applet {
But t on b;

public void init() {
add(b = new Button("A button"));
b. addAct i onLi st ener (new Acti onLi stener() {
public void actionPerformnmed(ActionEvent e) {
showSt at us(" Thanks for pushing nmy first button!");
}

1)
add(b = new Button("Anot her button"));
b. addAct i onLi st ener (new Acti onLi stener() {
public void actionPerformnmed(ActionEvent e) {
showSt at us(" Thanks for pushing nmy second button!");
}

1)
}

The real benefit of these anonymous inner classes, by the way, is that they keep the action
handling code in the same place that the GUI control is being instantiated. This saves a lot of
looking back and forth to see what a GUI control really does.

Those Act i onLi st ener objects have no instance name and appear to have no class name: is
that possible? The former yes, but not the latter. In fact, class names are assigned to anonymous
inner classes by the compiler. After compiling and testing But t onDenp2c with JDK 1.2, | list the
directory in which | ran the program:

C:\javasrc\gui >ls -1 ButtonDeno2c*
But t onDenp2c$1. cl ass

But t onDenp2c$2. cl ass

But t onDenp2c. cl ass

But t onDeno2c. ht m

But t onDenn2c. j ava

C:\javasrc\gui >

Those first two are the anonymous inner classes. Note that a different compiler might assign
different names to them; it doesn't matter to us. A word for the wise: don't depend on those
names!

13.6.4 See Also

Most IDEs (see Section 1.2) have drag-and-drop GUI builder tools that will make this task
easier, at least for simpler projects.

13.7 Terminating a Program with "Window Close"

13.7.1 Problem

Nothing happens when you click on the close button on the title bar of an AWT Fr ane. When you
do this on a Swing JFr ane, the window disappears but the application does not exit.

13.7.2 Solution

Add a W ndowLi st ener ; have it exit the application.
13.7.3 Discussion

Main windows -- subclasses of | ava. awt . W ndow, such as (J) Franes and (J) D al ogs --
are treated specially. Unlike all other Conponent subclasses, W ndow and its subclasses are not
initially visible. This is sensible, as they have to be packed or resized, and you don't want the user
to watch the components getting rearranged. Once you call a W ndows set Vi si bl e(true)
method, all components inside it become visible. And you can listen for W ndowEvent s on a

W ndow.

The W ndowlLi st ener interface contains a plenitude of methods to notify a listener when
anything happens to the window. You can be told when the window is activated (gets keyboard
and mouse events) or deactivated. Or you can find out when the window is iconified or de-
iconified: these are good times to suspend and resume processing, respectively. You can be
notified the first time the window is opened. And, most importantly for us, you can be notified
when the user requests that the window be closed. (Some sample close buttons are show in
Figure 13-4.) The wi ndowCl osi ng method of your W ndowlLi st ener is called when the user
clicks on the close button (this depends on the window system and, on X Windows, on the
window manager) or sends the close message from the keyboard (normally Alt-F4).

Figure 13-4. Some close buttons

[=1 Close Me M[=] B3 . W|CIose Mol NS

Try Tillebar Close

Try Titlebar Close

| wWindowCloserDe mo : '_'wmdmn:losetﬂ-

Try Tillebar Cose

The method signature is:
public void w ndowC osi ng(W ndowEvent) ;

But this method comes from the interface W ndowLi st ener, which has half a dozen other
methods. If you define a W ndowLi st ener and implement only this one method, the compiler
will declare your class abstract and refuse to instantiate it. You might start by writing stub or
dummy versions (methods whose body is just the two characters { }), but you'd then be doing
more work than necessary, since there's already an "adapter"” class that does this for all methods
in the Li st ener interface. So you really need only to subclass from W ndowAdapt er, and

override the one method, wi ndowCl osi ng, that you care about. Figure 13-5 shows this model.

Figure 13-5. WindowListener, WindowAdapter, and my WindowCloser

windewActivated (): void
windewClased (): void
windowClosing (): void
windawDeactivated (): void
windawDeicanified (): void
windowlconified [} vaid
windewOpened (}: void

inplements

WindowAdapter ()
windowActivated (}: void
windowClosed (]: void
windowClosing (J: void
windowDenctivoted ()2 vaid
windowDaiconified (): vaid
windowlconified () void
windowOpened (}: vaid

WindowCloser { Window)
WindowCloser | Window, boalean)
windewClesing (WindowEvent): void

Let's put this all together in some code examples. Class W ndowDeno puts up a frame and, when
you ask it to close, it does so. The online source includes class \W ndowbDeno2, which is the
same, but implemented as a Swing JFr ane.

i nport java.awt.*;
i nport java.awt.event.*;

/* Show an exanple of closing a W ndow.
*/
public class WndowDeno extends Frane {

public static void main(String[] argv) {
Frame f = new WndowDeno();
f.setVisible(true);

}
public W ndowDeno() {
set Si ze(200, 100);
addW ndowLi st ener (new W ndowDenoAdapter());

}

/** Naned | nner class that closes a Wndow. */

cl ass W ndowDenoAdapt er ext ends W ndowAdapter {
public void w ndowC osi ng(WndowEvent e) {
System out . printl n(" Goodbye!");

W ndowDeno. t hi s. set Vi si bl e(fal se); /1 wi ndow wi | |
cl ose
W ndowDeno. t hi s. di spose(); /1 and be freed up.
System exit(0);
}
}
}

Since making a \W ndow close -- and optionally exit the program -- is a common operation, I've
encapsulated this into a small class called \WW ndowCl oser , which I've put into my public
package com darwi nsys. uti|.Most AWT and Swing books have similar classes. Example
13-3 contains my W ndowCl oser class.

Example 13-3. WindowCloser.java

package com darw nsys. util;

i mport java.awt.W ndow,
i mport java.awt.event.*;

/** A WndowCl oser - watch for Wndow C osing events, and
* follow themup with setVisible(false) and dispose().
*/

public class WndowC oser extends W ndowAdapter {

[** The wi ndow we cl ose */

W ndow wi n;

[** True if we are to exit as well. */
bool ean doExit = fal se;

public W ndowC oser (W ndow w) {
this(w, false);

public W ndowC oser (W ndow w, bool ean exit) {
wn=w
doExit = exit;
}
public void w ndowC osi ng(WndowEvent e) {
Wi n. set Vi si bl e(fal se);
wi n. di spose();
if (doExit)
System exit(0);

}
Using it is straightforward:

i mport java.awt.*;
i mport java.awt.event.*;

/* Show an exanpl e of closing a W ndow.
*/
public class WndowCd oserDeno {

[* Mai

n net hod */

public static void nmain(String[] argv) {
Frame f = new Frane("C ose M");

f.

f.
f.
f.

}

add(new Label ("Try Titlebar C ose", Label.CENTER));
set Si ze(100, 100);

setVisible(true);

addW ndowLi st ener (new W ndowCl oser (f, true));

13.7.4 See Also

I've mentioned di spose() several times without saying much about it. The di spose()
method (inherited from \W ndow) causes the underlying (operating system-specific) window
system resources to be released without totally destroying the \W ndow. If you later call pack()
orset Vi si bl e(true) onthe W ndow, the native resources will be re-created. It's a good idea
to di spose() awindow if you won't be using it for a while, but not if there's a good chance
you'll need it again soon.

There may be cases in which you don't even need a window closer. The Swing JFr ane has a
set Defaul t C oseOper ati on() method, which controls the default behavior. You can pass it
one of the values defined in the W ndowConst ant s class:

WindowConstants.DO_NOTHING_ON_CLOSE

Ignore the request.

WindowConstants.HIDE_ON_CLOSE

Hide the window (default).

WindowConstants.DISPOSE_ON_CLOSE

Hide and dispose the window.

WindowConstants.EXIT_ON_CLOSE

JDK 1.3 (and later!). Exit the application on close, obviating the need for a
W ndowLi st ener!

The action set by set Def aul t Cl oseOper ati on() will be performed after your
actionPerforned() method (the last, if more than one) returns.

There are several other multi-method interfaces, including Mbuseli st ener and
Component Li st ener, and an Adapt er class for each of these.

13.8 Dialogs: When Later Just Won't Do

13.8.1 Problem

You need a bit of feedback from the user right now.
13.8.2 Solution
Use a JOpt | onPane method to show a prebuilt dialog.

13.8.3 Discussion

It's fairly common to want to confirm an action with the user or to bring some problem to their
attention right away, rather than waiting for them to read a logfile that they might or might not get
around to. These pop-up windows are called Dialogs. The JOpt | onPane class has a number of
show. . . Di al og() methods that let you display most prebuilt dialogs, including those shown in

Figure 13-6.

Figure 13-6. JOptionPane in action

Testing 1 2 3. _ [O] =] Coded Message El
Gvemeamessage | Goodbye! | o

This is your message: etaocin shrdlu

[l

The simplest form is showivessageDi al og(), and its first argument is the owning Fr ane or
JFrane. If you don't know it, pass null, but Java doesn't guarantee to give input focus back to
your main window when the dialog is dismissed. The second argument is the message text, and
the third is the title bar title. Last but not least is code telling which of several prebuilt bitmaps
should be displayed. This program produces the "Coded Message" dialog in the figure:

i nport java.awt.*;
i nport java.awt.event.*;
i nport javax.sw ng. *;

/**

* Denonstrate JOptionPane

*/

public class JOpti onDenp extends JFrane {

/'l Constructor
JOptionDenmo(String s) {
super(s);

Cont ai ner cp = get Content Pane();
cp. set Layout (new Fl owLayout ());

JButton b = new JButton("G ve nme a nessage");
b. addActi onLi stener (new ActionListener() {
public void actionPerfornmed(ActionEvent e) {
JOpt i onPane. showivessageDi al og(
JOpti onDeno. t hi s,
"This is your nessage: etaoin shrdlu", "Coded
Message",
JOpt i onPane. | NFORMATI ON_MESSAGE) ;

}
1)
cp. add(b);

b = new JButton(" CGoodbye!");
b. addActi onLi stener (new ActionListener() {
public void actionPerfornmed(ActionEvent e) {
System exit(0);
}
1)

cp. add(b);

// the main w ndow
set Si ze(200, 150);

pack();

public static void main(String[] arg) {
JOptionDeno x = new JOpti onDeno("Testing 1 2 3...");
x.setVisible(true);

}

There are several other ways of using the JOpt | onPane class. For example, you can call its
showDi al og() method with a list of strings; each will be displayed on a push button in the
dialog. This method blocks until the user selects one of the buttons; the return value of the
method is an i nt telling which button the user clicked on (it returns the array index of the string
whose button was pressed). There is also showl nput Di al og(), which lets you prompt the
user for a data value. Very, very convenient!

13.8.4 See Also

JDi al og lets you write arbitrary complicated dialogs. You subclass them in a manner similar to

JFr ane, specifying whether you want an application-modal or nonmodal dialog (a modal dialog

locks out the rest of the application, which is less convenient for the user but much easier for the
programmer). See the Java Swing book for information on JDi al og.

13.9 Getting Program Output into a Window
13.9.1 Problem

You want to capture an input/output stream and display it in a text field.
13.9.2 Solution

Use an interconnected pair of piped streams and a Thr ead to read from the input half, and write
it to the text area. You may also want to redirect Syst em out and Syst em err to the stream;
see Section 9.7.

13.9.3 Discussion

The Pi pedl nput St r eamand Pi pedQut put St r eamprovide two streams (see Chapter 9) that
are connected together by a buffer and are designed to provide communication between multiple
threads (see Section 24.1).

As you'll see in Chapter 19, | am fairly aggressive in the pursuit of SPAM perpetrators. | have a
program called Test CpenMai | Rel ay , derived from the mail sender in Section 19.3, that | use
to test whether remote servers are willing to accept mail from unknown third parties and forward it
as their own. This gives these bastard messages a parent, just as many birds will glibly nest on a
cuckoo's egg that has been snuck into their nest. This is the GUI for that program; both this and
the main program are online in the email directory.

In the constructor, | arrange for the main class to write to the Pi pedCut put St r eany the call to
Test Openhai | Rel ay. process() passing the ps argument arranges this. That method will
write its own output to the stream in addition to assigning standard output and standard error, so
we should see anything it tries to print. To avoid long (possibly infinitely long!) delays, | start an
additional thread to read from the pipe buffer. Figure 13-7 shows three windows: the program
output window (the goal of this whole exercise), a terminal window from which | copied the IP
address (some parts of the text in this window have been deliberately obfuscated), and another
command window in which | started the GUI program running.

Figure 13-7. TestOpenMailRelayGUI in action

Teals for Opein Mail Relays = | e
I sl 202,99, 125 66 Try
F50 AUTH=LTGIN Tl
DEEUGC SMTP SENT: MAIL FROM:<spam-magnerBdawinsys. coms>
DEBUG SMTP RCVD: 250 Sender <spam-magnet Sdamwin sy s cami: Ok

GDEELG ZMTP SENT ROPT T < ian@d arminiiys cam>
DEBUG ZMTP RCWD: 250 Recipient «<isn@darwinsys.cam> Ok

wWerified &ddresses - & |
ianddarwinsys |
DEELIG ZMTR "FN"I' I'ﬂle

DEBUG SMTP RCVD: 354 Ok Send dara ending with <CRLF=. <CALF> = 1=l
DERUG SMTP SENT 31—
CEEUC SMTP ROVD: 250 Message recelved 2O010331183328 AAL11 43S darand darwinsps com al—s-
DEBUG SMTP SENT: QUIT o] ===
[[= lal—e-

=L T s ooe with SHTF Microsoft Exchange Internet Mail Sarvice Version 9. BRIl T raTmal ==
5.2653.13

’ 1d HOFYRMRH: Sat., 31 Her 2000 9133003 0600 fnadi La—r—rarmal —=—
Feraived! From ai— | imirg Lo ks i -

F 1
et “1d mipd | 30768 ":-M Mar .':1 l-l EEH l.'l"J 2001 e ted
RS TRaI I .Y TRt Y | %

uls SHIF by —n .
Fecaived: From -+--°" - {L

[b, |] oo P 1 | [et i 2

claroad deruinsgs con ¥ wi Tests], jave

daroad daruirnsge oo T e

v T DperMai 1 Ralay

+ jikes +£ —d , TestDpendallPelsy, jeva

+ java TestOpenHal IPel gy ...|

[v | o e
Lﬁ @ . E,'E'._f lm g:ru::snu: }%Trlmmﬂ | Hlﬂal D?]ll IE :

The code is shown in Example 13-4. Note that there's a problem that causes an | O=xcept i on
at the end of the first file; hopefully this will be corrected by the time you download the source
code.

Example 13-4. TestOpenMailRelayGUl.java

i nport java.awt.*

i mport java.awt.event.*;
i mport javax.sw ng.*;
i mport java.io.*;

/[** QU for TestOpenMailRelay, lets you run it nultiple tinmes in one
JWM
to avoid startup del ay.

*
*
* Starts each in its own Thread for faster return to ready state.
*
*

Uses Pipedl/CStreans to capture systemout/err into a w ndow.
*/
public class Test OpenMi |l Rel ayGUJl extends JFrane {

/** The one-line textfield for the user to type Host nane/IP */
JText Fi el d host Text Fi el d;

[** Multi-line text area for results. */

JText Area results;

/** The piped streamfor the main class to wite into "results" */
Print Stream ps;

/** The piped streamto read from"ps" into "results" */

Dat al nput Stream i i s;

/[** This inner class is the action handl er both for pressing
* the "Try" button and al so for pressing <ENTER> in the text
* field. It gets the IP nane/address fromthe text field
* and passes it to process() in the main class.

*/
Acti onLi stener runner = new ActionListener() {
public void actionPerfornmed(Acti onEvent evt) ({
new Thread(new Runnable() {
public void run() {

String host = hostTextField.getText().trim);
ps.println("Trying " + host);

Test OpenMai | Rel ay. process(host, ps);

}
}).start();

s

/** Construct a GJ and sone I/O plunbing to get the output
* of "TestQpenMail Rel ay” into the "results" textfield.
*/
public Test QpenMail Rel ayGUJI () throws | OException {
super ("Tests for Open Miil Rel ays");
Pi pedl nput Stream i s;
Pi pedQut put St r eam os;
JPanel p;
Cont ai ner cp = get Content Pane();
cp. add(Border Layout . NORTH, p = new JPanel ());

/1 The entry | abel and text field.

p. add(new JLabel ("Host:"));

p. add(host Text Fi el d = new JText Fi el d(10));
host Text Fi el d. addAct i onLi st ener (runner);

JButton b;

p. add(b = new JButton("Try"));
b. addActi onLi st ener (runner);

results = new JText Area(20, 60);

/1 Add the text area to the main part of the w ndow (CENTER).
/1 Wap it in a JScrollPane to nmake it scroll automatically.
cp. add(Bor der Layout . CENTER, new JScrol | Pane(results));

pack(); /1 end of GUI portion
/1l Create a pair of Piped Streans.

is = new Pipedl nput Stream);
0S new Pi pedQut put Strean(is);

iis = new Datal nput Strean(is);
ps = new Print Strean(os);

/1 Construct and start a Thread to copy data from"is" to "os"
new Thread() {
public void run() {

try {
String |ine;
while ((line =iis.readLine()) !'=null) {

resul ts. append(line);
resul ts. append("\n");

}
} catch(l OException ex) {
resul ts. append("\n");
resul ts. append("*** Input or Qutput error
***\n“);
resul ts. append(ex.toString());
return;

}
}.start();

13.10 Choosing a File with JFileChooser

13.10.1 Problem

You want to allow the user to select a file by name using a traditional windowed file dialog.
13.10.2 Solution

Use a JFi | eChooser .

13.10.3 Discussion

The JFi | eChooser dialog provides a fairly standard file chooser. It has elements of both an MS-
Windows chooser and a Mac chooser, with more resemblance to the former than the latter. If you
want to have control over what files appear, you need to provide one or more Fi | eFi | t er

subclasses. Each Fi | eFi | t er subclass instance passed into the JFi | eChooser 's
addChoosabl eFi | eFi I ter() method becomes a selection in the chooser's "Files of Type:"
choice. The default is "All Files (*.*)". Figure 13-8 shows my demo program in action.

Figure 13-8. JFileChooserDemo in action

Choase file...

Open =]l -

Laak in: Cljavasre v o €} O BR

CICoRBA -
CJcvs

(] ChartBean

[ColumnLayout

[Contrib

] oEm

[FastSeart

CJJoEC

—-

Filae namea: Dpen

Files of tyvpe

[All Files () - cancel

Let's look at the code for using the JFi | eChooser:

i nport com darw nsys. util.*;

i nport javax.sw ng. *;

i nport java.awt.event.*;
i nport java.io.?*;

i nport java.util.?*;

/** A sinple deno of a JFileChooser in action. */
public class JFil eChooserDeno extends JPanel {

[** Constructor */
public JFi |l eChooser Deno(JFrane f) {

final JFranme frane = f;

final JFi |l eChooser chooser = new JFil eChooser();

JFileFilter filter = new JFileFilter();

filter.addType("java");

filter.addType("class");

filter.addType("jar");

filter.setDescription("Java-related files");

chooser . addChoosabl eFil eFilter(filter);

JButton b = new JButton("Choose file...");

add(b);

b. addActi onLi stener (new ActionListener() {
public void actionPerfornmed(ActionEvent e) {
int returnVal = chooser.showOpenDi al og(frane);
if (returnVal == JFil eChooser. APPROVE OPTI ON) {

Systemout.println("You chose a file nanmed: " +
chooser . get Sel ectedFil e().getPath());
} else {
Systemout.println("You did not choose a file.");
}

}
1)

public static void main(String[] args) {
JFrame f = new JFrane("JFi | eChooser Demp");
f.get Cont ent Pane().add(new JFil eChooser Deno(f));
. pack();
.setVisible(true);
. addW ndowLi st ener (new W ndowCl oser (f, true));

—h —h —h

}

In this example, | setup a Fi | eFi | t er for Java files. Note that Fi | eFi | t er exists both in
javax.swi ng. filechooser and] ava. i o (an older version, not for use here; see Section
10.8). The j avax. swi ng. fi |l echooser. Fi | eFi | t er interface has only two methods:
bool ean accept (File) and String get Description().Thisis enough for a totally
fixed-function file filter: you could hardcode the list of extensions that should be accepted, for
example. The following class is similar in spirit to the Ext ensi onFi | eFi | t er included in the
JDK demo directory; Sun claims that its version will be moved into

j avax.swi ng. fil echooser in a subsequent release of Swing.

i mport java.io.File;
i mport java.util.*;

/** A sinple FileFilter class that works by fil enane extension,
* ike the one in the JDK deno called ExtentionFilter, which
* has been announced to be supported in a future Swi ng rel ease.
*/
class JFileFilter extends javax.swing.filechooser.FileFilter {
protected String description;
protected ArrayList exts = new ArrayList();

public void addType(String s) {
exts. add(s);
}

/** Return true if the given file is accepted by this filter. */
public bool ean accept(File f) {
/1 Little trick: if you don't do this, only directory names
/1 ending in one of the extensions appear in the w ndow.
if (f.isDirectory()) {
return true;

} else if (f.isFile()) {
I[terator it = exts.iterator();
while (it.hasNext()) {
if (f.getName().endsWth((String)it.next()))
return true;

}

/1 Afile that didn't match, or a weirdo (e.g. UN X device
file?).
return fal se;
}

/** Set the printable description of this filter. */
public void setDescription(String s) {

description = s;
}

/** Return the printable description of this filter. */
public String getDescription() {

return description;
}

13.11 Choosing a Color

13.11.1 Problem

You want to allow the user to select a color from all the colors available on your computer.
13.11.2 Solution

Use Swing's JCol or Chooser .

13.11.3 Discussion

OK, so it may be just glitz or a passing fad, but with today's displays, the 13 original AWT colors
are too limiting. Swing's JCol or Chooser lets you choose from zillions of colors. From a
program's view, it can be used in three ways:

Construct it and place it in a panel
Callits Construct Di al og() and geta JDi al og back
Callits showDi al og() and get back the chosen color

We'll use the last method, since it's the simplest and the most likely to be used in a real
application. The user has several methods of operating the chooser, too:

Swatches mode
The user can pick from one of a few hundred color variants.
HSB mode

This one's my favorite. The user picks one of Hue, Saturation, or Brightness to be nailed
down; by adjusting another by slider, there is a huge range of different pixel values to
choose from, by clicking (or, more fun, dragging) in the central area. See Figure 13-9.

RGB mode

The user picks Red, Green, and Blue components by sliders.

Figure 13-9. JColorChooser: HSB view in action

Preview
L

n Sample Text Sample Texd

| oK || camcal | Raso

Example 13-5 contains a short program that makes it happen.
Example 13-5. JColorDemo.java

i mport com darw nsys. util.*;

i mport javax.sw ng.*;
i mport java.awt.*;
i mport java.awt.event.*;

/
Colors - denmo of Sw ng JCol or Chooser .

Swi ng' s JCol or Chooser can be used in three ways:
Construct it and place it in a panel;

Call its ConstructDi alog() and get a JDi al og back
Call its showbDi al og() and get back the chosen col or
</ UL>

you'd nost likely use it in a real application.

Oiginally appeared in the Linux Journal, 1999.
/
public class JCol or Denb extends JFrane

{

E I T T T T T T

/** A canvas to display the color in. */
JLabel denv;

<P>W use the last nmethod, as it's the sinplest, and is how

/**

The | atest chosen Col or */

Col or | ast Chosen;

/**

publ

Color. ..

/**

publ

}

Constructor - set up the entire GUJI for this program*/
ic JColorDemo() {
super ("Swi ng Col or Denp");
Cont ai ner cp = get Content Pane();
JButton jButton;
cp. add(Bor der Layout . NORTH, jButton = new JButton(" Change
"))
jButton. set Tool Ti pText ("Click here to see the Col or Chooser");
j Butt on. addAct i onLi st ener (new ActionLi stener() {
public void actionPerformnmed(Acti onEvent actionEvent)

{
Col or ch = JCol or Chooser. showDi al og(

JCol or Deno. t hi s, /1 parent
"Swi ng Deno Col or Popup”, Il title
get Background()); /1 default

if (ch!=null)
deno. set Backgr ound(ch);

}

1)
cp. add(Bor der Layout . CENTER, deno =
new MyLabel ("Your One True Col or", 200, 100));
deno. set Tool Ti pText ("This is the last col or you chose");
pack();
addW ndowLi st ener (new W ndowCl oser (this, true));

good old main */
ic static void main(String[] argv)

new JCol orDenmo().setVisible(true);

13.11.4 See Also

This program introduces set Tool Ti pText (), a method to set the text for pop-up "tooltips"
that appear when you position the mouse pointer over a component and don't do anything for a
given time (initially half a second). Tooltips originated with Macintosh Balloon Help, and were
refined into ToolTips under Microsoft Windows.™ Tooltips are easy to use; the simplest form is
shown here. For more documentation, see Chapter 3 of the Java Swing book.

[21 see? | even said something nice about Microsoft. | do believe in credit where credit's due.

13.12 Centering a Main Window

13.12.1 Problem

You want your main window to be centered on the screen.

13.12.2 Solution

First, be aware that some users on some platforms would rather that you didn't do this, as they
have existing "placement" schemes. However, at least on MS-Windows, this technique is useful.

Subtract the width and height of the window from the width and height of the screen, divide by
two, and go there.

13.12.3 Discussion

The code for this is pretty simple. The part that might take a while to figure out is the Di nensi on
of the screen. There is a method get ScreenSi ze() in the Toolkit class, and a static method
get Def aul t Tool kit (). (The Toolkit class relates to the underlying windowing toolkit; there
are several subclasses of it, one for X Windows on Unix, another for Macintosh, etc.) Put these
together and you have the Di nensi on you need.

Centering a W ndow is such a common need that | have packaged it in its own little class
Uti | GJ , justas | did for the W ndowCl oser class in Recipe 13.6. Here is the complete source
for Ut i | GU, which I'll use without comment from now on:

package com darw nsys. util;
i nport java.awt.*;

[** WUilities for GU work.
*/
public class Uil GJ {
/** Centre a Wndow, Franme, JFrame, Dialog, etc. */
public static void centre(Wndow w) {
/'l After packing a Frane or Dialog, centre it on the screen.
Di nension us = w. getSize(),
them = Tool ki t. get Def aul t Tool kit (). get ScreenSi ze();
int newX = (themwidth - us.width) / 2;
int newy = (them hei ght- us.height)/ 2;
w. set Locat i on(newX, newyY);
}
/** Center a Wndow, Frame, JFrane, Dialog, etc.,
* but do it the American Spelling Way :-)
*/
public static void center(Wndow w) {
Uil GJ.centre(w;
}

}
To use it after the relevant import, you can simply say, for example:

nmyFrane. pack();
Uil GJ.centre(nyFrane);
nmyFrane. set Vi si bl e(true);

13.13 Changing a Swing Program's Look and Feel
13.13.1 Problem

You want to change the look and feel of an application.

13.13.2 Solution

Use the static Ul Manager . set LookAndFeel () method. Maybe.

13.13.3 Discussion

If you wish to specify the entire look and feel for a program, set it with the static

U Manager . set LookAndFeel () method; the name you pass in must be the full name (as a
string) of a class that implements a Java look and feel. The details of writing a look and feel class
are beyond this book; refer to the book Java Swing or the Sun documentation. But using these
classes is easy. For example:

U Manager . set LookAndFeel ("] avax. swi ng. pl af . net al . Met al LookAndFeel ") ;

This must appear before you create the GUI of the program, and can throw an exception if the
class name is invalid.

People sometimes like to show off the fact that you can change the look and feel on the fly. You
call set LookAndFeel () as previously, and then call the static
SwingUtilities.updateConponent Tree() foryour JFr ane and all detached trees, such
as dialog classes. But before you rush out to do it, please be advised that the official Sun position
is that you shouldn't! The official Java Look and Feel Design Guideline book says, on page 23
(first edition):

Because there is far more to the design of an application than the look and feel of
components, it is unwise to give end users the ability to swap look and feel while
[running] your application. Switching look and feel designs in this way only swaps
the look and feel designs from one platform to another. The layout and
vocabulary used are platform-specific and do not change. For instance, swapping
look and feel designs does not change the titles of the menus.

The book does recommend that you let users specify an alternate look and feel, presumably in
your properties file, at program startup time. Even so, the capability to switch while an application
is running is too tempting to ignore; even Sun's own Swing Demonstration (included with the Java
SDK) offers a menu item to change its look and feel. Figure 13-10 is my nice little program in
the Java style; see Example 13-6 for the source code.

Figure 13-10. Java, MS-Windows, and Motif look and feel under MS-Windows

=% LNF Switcher _ o] x]
& Jawa | MSWindows | Motif | MacOS

LNF Switcher _[O]x]

© Java @ MS-Windows © Motif © MacOs

B LNF Switcher = i=1E3

Java ME-Windows = Mot MacOsS SREN Ok

Figure 13-11 shows what happens when you request a look and feel that is unavailable on the
current platform.

Figure 13-11. Look and feel request refused on MS-Windows

f51 UI Fatlure | %]

i seflookindFeel didntwork: jawa lang Classhotf oundException: com sun fava swing plafrmac MaclockAndFaal

There's a bit of a cheat here: | had to resize it to get the disabled OPEN LOOK radio button to
appear, due to what | think is a bug in JDK 1.2. If | try the MacOS look and feel under MS-
Windows, | get the error dialog shown in Figure 13-11.

The OPEN LOOK design alluded to in the code is, well, not written yet. Vaporware. That's why it's
grayed out.

Under MacOS X, the default look and feel is, of course, the MacOS X look and feel. You can also
select the Java or Motif look, but not the MS-Windows look. See Figure 13-12.

Figure 13-12. Look and feel switcher under MacOS X

806 LMF Switcher
® Java O MS-Windows O Motif) MacOs
8068 LNF Switcher

¥ lava 0 MS-Windows 0 Motif ¢ MacDS

Example 13-6 shows the code that implements the look and feel switcher. It's pretty
straightforward based on what we've seen already. The only neat trick is that I've set the selected
button back to what it was if the look and feel that the user selected is not available.

Example 13-6. LNFSwitcher.java

i nport com darw nsys. util.*;

i nport java.awt.*;

i nport java.awt.event.*;

i nport java.io.?*;

i nport javax.sw ng. *;

i nport javax.sw ng. pl af.*;

i nport javax.sw ng. pl af. netal . *;

/**

* A Look-and-feel swtcher.
*
/

public class LNFSwi tcher {
[** The frame. */
protected JFrane theFrane;
/** Its content pane */
prot ected Contai ner cp;

/[** Start with the Java | ook-and-feel, if possible */
final static String PREFERREDLOOKANDFEELNAME =

"j avax.sw ng. pl af . met al . Met al LookAndFeel ";
protected String curlLF = PREFERREDLOOKANDFEELNANE;
prot ected JRadi oButton previ ousButton;

/** Construct a program.. */
public LNFSwitcher() {
super();
t heFrane = new JFrane("LNF Switcher");
t heFr ane. addW ndowLi st ener (new W ndowCl oser (t heFrane, true));
cp = theFrane. get Content Pane();
cp. set Layout (new Fl owLayout ());

Butt onG oup bg = new ButtonGoup();

JRadi oButton bJava = new JRadi oButton("Java");
bJava. addAct i onLi st ener (new LNFSett er (
"j avax. sw ng. pl af . nret al . Met al LookAndFeel ", bJava));
bg. add(bJava) ;
cp. add(bJava);

JRadi oButt on bMSW = new JRadi oButton(" M- W ndows") ;
bMSW addAct i onLi st ener (new LNFSett er (
"com sun. j ava. swi ng. pl af . wi ndows. W ndowsLookAndFeel ",
bMBW) ;
bg. add(biVBW ;
cp. add(bvMBW ;

JRadi oButton bMdtif = new JRadi oButton("Mtif");
bMoti f. addAct i onLi st ener (new LNFSett er (
"com sun. j ava. swi ng. pl af . notif. ModtifLookAndFeel ", bMtif));
bg. add(bMotif);
cp. add(bMotif);

JRadi oButton bMac = new JRadi oButton("MacOS");
bMac. addAct i onLi st ener (new LNFSett er (
"com sun. j ava. swi ng. pl af . nac. MacLookAndFeel ", bMac));
bg. add(bMac) ;
cp. add(bMac) ;

/1 Following is a **hypot hetical ** addition!
JRadi oButton bOL = new JRadi oButton(" OPEN LOXK");
bCOL. addAct i onLi st ener (new LNFSet t er (

"com dar w nsys. openl ook. OpenLookAndFeel ", bQL));
bCL. set Enabl ed(f al se); /1 since it IS hypothetical
bg. add(bQL);
cp.add(bQ.);

/1 W "know' that the Java Look-and-feel is the default.
previ ousButton = bJava;

bJava. set Sel ect ed(true);

t heFr ane. pack();
t heFrane. set Vi si bl e(true);

}

/* Class to set the Look and Feel on a frame */
class LNFSetter inplenments ActionListener {
String theLNFNane;
JRadi oButton thi sButton;

/** Called to setup for button handling */
LNFSetter (String | nfName, JRadi oButton ne) ({
t heLNFNanme = | nf Nane;
thi sButton = ne;

}

/** Called when the button actually gets pressed. */
public void actionPerformnmed(ActionEvent e) {

try {
U Manager . set LookAndFeel (t heLNFNane) ;

Swi ngUtilities.updateConponent TreeUl (t heFrane);
} catch (Exception evt) {
JOpt i onPane. showiessageDi al og(nul I,
"set LookAndFeel didn't work: " + evt,
"U Failure", JOptionPane. | NFORVATI ON_MESSAGE) ;
previ ousButton. set Sel ect ed(true); /'l reset the
GU to agree

}

previ ousButton = thisButton;

}

public static void main(String[] argv) {
new LNFSwi t cher();
}

13.14 Program: Custom Font Chooser
13.14.1 Problem

You want to allow the user to select a font, but standard Java doesn't yet include a Font Chooser
dialog.

13.14.2 Solution
Use my Font Chooser dialog class.

13.14.3 Discussion

As we saw in Section 12.4, you can manually select a font by calling the | ava. awt . Font
class constructor, passing in the name of the font, the type you want (plain, bold, italic, or
bold+italic), and the point size:

Font f = new Font ("Hel vetica", Font.BOLD, 14);
setfont(f);

But this is not very flexible for interactive applications. You normally want the user to be able to
choose fonts with the same ease as using a File Chooser dialog. Until the Java API catches up
with this, you are more than welcome to use the Font Chooser that | wrote when faced with a
similar need.

The source code is shown in Example 13-7; it ends, as many of my classes do, with a short
main method that is both a test case and an example of using the class in action. The display is

shown in Figure 13-13.

Example 13-7. FontChooser.java

i mport com darw nsys. util.*;

i mport java.awt.*;
i mport java.awt.event.*;
i mport javax.sw ng.*;

/** A font selection dialog. AW version.
* <p>Note: can take a LONGtine to start up on systens
*with (literally) hundreds of fonts.

*/

public class Font Chooser extends Dial og {
[** The font the user has chosen */
protected Font resultFont;
/** The resulting font nanme */
protected String resultNane;
/** The resulting font size */
protected int resultSize;
/** The resul ting bol dness */
prot ect ed bool ean i sBol d;
/** The resulting italicness */
protected boolean isltalic;

/** The list of Fonts */
protected String fontList[];
/** The file nanme chooser */
protected List fNaneChoice
/** The file size chooser */
protected List fSizeChoice;
/** The bold and italic choosers */
Checkbox bol d, italic;
/** The list of font sizes */
protected String fontSizes[] = {
"g", "io0", "11", "12", "14", "1e6", "18", "20", "24",
*30", "36", "40", "48", "60", "72"
}
/** The di splay area. Use a JLabel as the AW | abel doesn't always
* honor setFont() in atinely fashion :-)

*/
protected JLabel previewArea;

/** Construct a Font Chooser -- Sets title and gets
* array of fonts on the system Builds a GJ to |et
* the user choose one font at one size.

*/
publ i c Font Chooser (Franme f) {
super (f, "Font Chooser", true);

Contai ner cp = this; /1 or getContentPane() in Sw ng

Panel top = new Panel ();
t op. set Layout (new Fl owLayout ());

f NaneChoi ce = new List(8);
t op. add(f NaneChoi ce) ;

Tool kit tool kit = Tool kit.getDefaul tToolkit();

/1 For JDK 1.1: returns about 10 names (Serif, SansSerif, etc.)

/1 fontList = toolkit.getFontList();

/1 For JDK 1.2: a nuch longer list; nost of the nanes that cone

/1 with your CS (e.g., Arial), plus the Sun/Java ones (Lucida,

/1 Lucida Bright, Lucida Sans...)

fontLi st = G aphi csEnvironnent. get Local G aphi csEnvironment().
get Avai | abl eFont Fam | yNanes();

for (int i=0; i<fontList.length; i++)
f NaneChoi ce. add(fontList[i]);
f NaneChoi ce. sel ect (0);

fSi zeChoi ce = new List(8);
t op. add(f Si zeChoi ce) ;

for (int i=0; i<fontSizes.length; i++)
f Si zeChoi ce. add(font Si zes[i]);
f Si zeChoi ce. sel ect (5);

cp. add(Bor der Layout . NORTH, top);

Panel attrs = new Panel ();

top. add(attrs);

attrs. setLayout (new Gi dLayout (0, 1));
attrs.add(bold =new Checkbox("Bold", false));
attrs.add(italic=new Checkbox("ltalic", false));

previ ewArea = new JLabel ("Qnerty Yuiop", JLabel .CENTER);
previ ewAr ea. set Si ze(200, 50);
cp. add(Bor der Layout . CENTER, previ ewAr ea) ;

Panel bot = new Panel ();

Button okButton = new Button("Apply");
bot . add(okBut t on) ;
okBut t on. addAct i onLi st ener (new Acti onLi stener() {
public void actionPerfornmed(ActionEvent e) {
previ ewFont ();

di spose();
set Vi si bl e(fal se);
}
1)

Button pvButton = new Button("Preview');
bot . add(pvBut t on) ;
pvBut t on. addAct i onLi st ener (new ActionListener() {
public void actionPerformnmed(ActionEvent e) {
previ ewFont ();
}

1)

Button canButton = new Button("Cancel");

bot . add(canBut t on) ;

canBut t on. addAct i onLi st ener (new ActionLi stener() {
public void actionPerformnmed(ActionEvent e) {

/1 Set all values to null. Better: restore previous.
result Font = nul | ;

resul t Name = nul | ;

resultSize = 0;

i sBold = fal se;
isltalic = fal se;

di spose();
set Vi si bl e(fal se);
}
1)

cp. add(Bor der Layout . SOUTH, bot);
previewFont(); // ensure viewis up to date!

pack();
set Locati on(100, 100);
}

/** Called fromthe action handlers to get the font info,
* puild a font, and set it.
*/
protected void previewFont() {
resul t Name = f NameChoi ce. get Sel ectedltem);
String resultSi zeNanme = fSi zeChoi ce. get Sel ectedlten();

int resultSize = Integer.parselnt(resultSi zeNane);
isBold = bold.getState();
isltalic = italic.getState();

int attrs = Font.PLAIN,

if (isBold) attrs = Font.BOLD;

if (isltalic) attrs |= Font.ITALIC,

resul t Font = new Font(resultNanme, attrs, resultSize);

/1 Systemout.println("resultNane = " + resultName + "; " +
/1 "resultFont =" + resultFont);

previ ewAr ea. set Font (resul t Font) ;

pack(); /1 ensure Dialog is big enough.

}

/** Retrieve the selected font nane. */

public String getSel ectedNanme() {
return resul t Nane;
}

/** Retrieve the selected size */

public int getSelectedSize() {
return resultSize;

}

/** Retrieve the selected font, or null */
public Font getSel ectedFont() {

return result Font;
}

/[** Sinple main programto start it running */
public static void main(String[] args) {
final JFrame f = new JFrame("Dumy");
final Font Chooser fc = new Font Chooser (f);
final Container cp = f.getContentPane();
cp. set Layout (new GridLayout (0, 1)); /1 one vertical colum

JButton theButton = new JButton("Change font");
cp. add(t heButton);

final JLabel thelLabel = new JLabel ("Java is great!");
cp. add(t heLabel);

/1 Now that theButton and thelLabel are ready, nmake the action
listener
t heBut t on. addAct i onLi st ener (new ActionListener() {
public void actionPerformnmed(ActionEvent e) {
fc.setVisible(true);
Font nyNewFont = fc.getSel ectedFont();
System out. println("You chose " + myNewront);
t heLabel . set Font (myNewFont) ;
f.pack(); /1 again
fc.dispose();
}
1)

f.pack();

f.setVisible(true);
f.addW ndowLi st ener (new W ndowCl oser (f, true));

Figure 13-13. Font Chooser in action

Font Chooser B

dlaloginput bold =] [14 -]
dialoginpul bolditalic 16

disloginput italic 18

Garamond b ¥ Boid

Gill Sans 24 [+ talic
Hasttenschweiler

i ol -
Qwerty Yuiop

13.15 Program: Custom Layout Manager
13.15.1 Problem

None of the standard layout managers does quite what you need.
13.15.2 Solution

Roll your own. All you need to do is implement the methods of the | ava. awt . Layout Manager
interface.

13.15.3 Discussion

While many people are intimidated by the thought of writing their own layout manager, it beats the
alternative of using only "the big five" layouts (Bor der Layout , CondLayout , Fl owLayout ,

Gri dBagLayout,and G i dLayout). Bor der Layout isn't quite flexible enough, and

Gri dBagl ayout is too complex for many applications. Suppose, for instance, that you wanted to
lay out an arbitrary number of components in a circle. In a typical X Windows or MS-Windows
application, you would write the geometry calculations within the code for creating the
components to be drawn. This would work, but the code for the geometry calculations would be
unavailable to anybody who needed it later. The Layout Manager interface is another great
example of how the Java API's design promotes code reuse: if you write the geometry
calculations as a layout manager, then anybody needing this type of layout could simply
instantiate your Ci r cl eLayout class to get circular layouts.

As another example, consider the layout shown in Figure 13-14, where the labels column and
the textfield column have different widths. Using the big five layouts, there's no good way to get
this and still ensure that the columns line up and that you have control over the relative widths.
Suppose you wanted the label field to take up 40% of the panel and the entry field to take up
60%. I'll implement a simple layout manager here, both to show you how easy it is and to give
you a useful class for making panels like the one shown.

Figure 13-14. EntryLayout in action

HEnhpLu_rm.lt D emonztration - [O =]
lan

bz

Here are the methods for the Layout Manager interface:

Method name Description

Like get PreferredSi ze() for a component: the "best" size

pref erredLayout Si ze() for the container

m ni munLayout Si ze() Same, but for the minimum workable size

Perform the layout calculations, and resize and reposition all the

| ayout Cont ai ner . .
y () components at the current size of the container

Associate a constraint with a given component (you normally

addLayout Conponent () store these mappings inaj ava. uti| . HashVap())

r enmovelLayout Conmponent (

)

Remove a component from the Hashap

If you don't need Const r ai nt objects (like Bor der Layout . NORTHor a G i dBagConst r ai nt
object), you can ignore the last two methods. Well, you can't ignore them completely. Since this is
an interface, you must implement them. But they can be as simple as { } , that is, a null-bodied
method.

That leaves only three serious methods. The first, pr ef er redLayout Si ze(), will normally
loop through all the components -- either in the HashMap if using constraints, or in array returned
by the container's get Conponent s() method -- asking each for its preferred size and adding
them up, while partly doing the layout calculations. And i ni nuniayout Si ze() is the same,
for the smallest possible layout that will work. It may be possible for these methods to delegate
either to a common submethod or to invoke | ayout Cont ai ner (), depending upon how the
given layout policy works.

Finally, the most important method is | ayout Cont ai ner (). This method needs to examine all
the components and decide where to put them and how big to make each one. Having made the
decision, it can use set Bounds() to set each one's position and size.

Other than a bit of error checking, that's all that's involved. Here's an example, Ent r yLayout ,
that implements the multi-column layout shown in Figure 13-14. Quoting its Javadoc
documentation:

A simple layout manager, for Entry areas like:

Login:

Password:

Basically two (or more) columns of different, but constant, widths.

Construct instances by passing an array of the column width percentages (as
doubles, fractions from 0.1 to 0.9, so 40%, 60% would be {0.4, 0.6}). The length
of this array uniquely determines the number of columns. Columns are forced to
be the relevant widths. As with GridLayout, the number of items added must be
an even multiple of the number of columns. If not, exceptions may be thrown!

First, let's look at the program that uses this layout to produce Figure 13-14. This program
simply creates a JFr ane, gets the cont ent Pane container, and sets its layout to an instance of
Ent rylLayout , passing an array of two doubl es representing the relative widths (decimal

fractions, not percentages) into the Ent r yLayout constructor. Then we add an even number of
components, and call pack() -- which will in turn call our pr ef erredLayout Si ze() -- and
set Vi si bl e(true).

i mport java.awt.*;
i mport java.awt.event.*;
i mport javax.sw ng.*;

/** Testbed for EntrylLayout |ayout manager.
*/
public class EntrylLayout Test ({

/** "main progrant nethod - construct and show */
public static void main(String[] av) {
final JFrame f = new JFranme("EntrylLayout Denopnstration");
Cont ai ner cp = f.getContentPane();
double widths[] ={ .33, .66 };
cp. set Layout (new EntryLayout (W dt hs));
cp. add(new JLabel ("Logi n:", Sw ngConstants. Rl GHT));
cp. add(new JText Fi el d(10));
cp. add(new JLabel ("Password: ", Swi ngConstants. Rl GHT));
cp. add(new JPasswor dFi el d(20));
cp. add(new JLabel ("Security Domain:", Sw ngConstants. Rl GHT));
cp. add(new JText Fi el d(20));
/1 cp.add(new JLabel ("Monkey wrench in works"));
f.pack();
. addW ndowLi st ener (new W ndowCl oser (f, true));
. set Locati on(200, 200);
.setVisible(true);

—h —h —h

}

Nothing complicated about it. The last JLabel ("Monkey wrench in works") is commented out
since, as noted, the Layout Manager throws an exception if the number of components is not
evenly divisible by the number of columns. It was put in during testing and then commented out,
but was left in place for further consideration.

Finally, let's look at the code for the layout manager itself, shown in Example 13-8. After some
constants and fields and two constructors, the methods are listed in about the same order as the
discussion earlier in this recipe; the dummy add/remove component methods, then the
preferredSi ze() and m ni nuniayout Si ze() methods (which delegate to

conput eLayout Si ze), and, finally, | ayout Cont ai ner, which does the actual laying out of the
components within the container. As you can see, the entire Ent r yLayout layout manager class
is only about 140 lines, including a lot of comments.

Example 13-8. EntryLayout.java

/| package com darwi nsys. entryl ayout;

i mport java.awt.*;
i mport java.util.*;

/** A sinple | ayout manager, for Entry areas |ike:
* <PRE>
* Logi n:

* Passwor d:

* </ PRE>
* CREE
*/
public class EntrylLayout inplenents Layout Manager ({

*/

/** The array of widths, as decimal fractions (0.4 == 40%
protected final double[] w dthPercentages;

/** The nunber of colums. */
protected final int COLUWS,;

/** The default padding */

protected final static int HPAD = 5, VPAD = 5;
/** The actual padding */

protected final int hpad, vpad,

[** True if the list of widths was valid. */
prot ected bool ean vali dWdths = fal se;

etc.).

/** Construct an EntrylLayout with wi dths and paddi ng specifi ed.

* @aram w dt hs Array of doubl es specifying colum w dths.
* @aramh Hori zontal paddi ng between itens

* @aramyv Vertical padding between itens

*/

public EntrylLayout (double[] widths, int h, int v) {
COLUWNS = wi dt hs. | engt h;
wi dt hPer cent ages = new doubl e[COLUWNS] ;
for (int i=0; i<widths.length; i++) {
if (wdths[i] >= 1.0)
t hrow new ||| egal Argunment Except i on(

"EntrylLayout: wi dths nmust be fractions < 1");

wi dt hPercentages[i] = widths[i];

}
val i dWdths = true;

hpad = h;
vpad = v;
}
/** Construct an EntrylLayout with wi dths and with default paddi ng
anmount s.
* @aram w dt hs Array of doubl es specifying colum w dths.
*/

public EntrylLayout (double[] w dths) {
thi s(w dths, HPAD, VPAD);
}

/** Adds the specified conponent with the specified constraint

* to the layout; required by Layout Manager but not used.
*/

public void addLayout Conponent (Stri ng nanme, Conponent conp) ({

/1 nothing to do
}

/** Renpbves the specified conponent fromthe | ayout;
* required by Layout Manager, but does not hing.

*/

public void renovelLayout Conponent (Conponent conp) {

/1 nothing to do
}

/** Calcul ates the preferred size dinmensions for the specified
panel
* given the conponents in the specified parent container. */
public Di nmension preferredLayout Si ze(Cont ai ner parent) {
/1 Systemout.println("preferredLayout Si ze");
return conputel ayout Si ze(parent, hpad, vpad);

}

[** Find the m ni num D nension for the
* specified container given the conponents therein.
*/
public Di nmension m ni munLayout Si ze(Cont ai ner parent) {
/1 Systemout.println("m ni munLayout Si ze");
return conputel ayout Si ze(parent, 0, 0);

}

/** The wi dth of each columm, as found by conputlLayout Size(). */
int[] widths;

/** The hei ght of each row, as found by conputlLayoutSize(). */
int[] heights;

/** Conmpute the size of the whole ness. Serves as the guts of
* preferredLayout Si ze() and m ni nunLayout Si ze().
*/
protected D nension conputel ayout Si ze(Cont ai ner parent, int hpad,
int vpad) {
if (!validWdths)
return null;
Conponent[] conponents = parent.get Conponents();
Di nensi on cont Si ze = parent.getSize();
int preferredWdth = 0, preferredHei ght = O;
wi dt hs = new i nt [COLUWNS] ;
hei ghts = new i nt[conponents.|length / CO_LUWS] ;
/1l Systemout.println("Gid: " + widths.length + ", " +
hei ghts. | engt h) ;

int i;
/1l Pass One: Conpute |argest w dths and heights.
for (i=0; i<conponents.length; i++) {
int row =i / w dthPercentages.|ength;
int col =i % w dthPercent ages. | engt h;
Conmponent ¢ = conponents[i];
Di nension d c.getPreferredSi ze();
wi dt hs[col] Mat h. max(wi dths[col], d.w dth);
hei ghts[row] = Mat h. max(hei ghts[row], d.height);

}

/1 Pass two: aggregate them

for (i=0; i<widths.length; i++)
preferredWdth += widths[i] + hpad,

for (i=0; i<heights.length; i++)
preferredHei ght += heights[i] + vpad;

/1 Finally, pass the suns back as the actual size.

return new Di nension(preferredWdth, preferredHeight);
}

/** Lays out the container in the specified panel. */
public void | ayout Cont ai ner (Cont ai ner parent) {

/1 Systemout.println("layoutContainer:");

if (!validWdths)

return;

Conponent[] conponents = parent.get Conponents();

D mensi on cont Si ze = parent.getSize();

for (int i=0; i<conmponents.length; i++) {

int row =i / COLUWNS;
int col = % COLUWNS;
Conponent = conponents[i];

[
cC =
Dinmension d = c.getPreferredSi ze();
int colWdth = (int)(contSize.width *
wi dt hPer cent ages[col]);
Rectangl e r = new Rect angl e(
col == 07?0 :
hpad * (col-1) + (int)(contSize.width *
wi dt hPer cent ages[col -1]),
vpad * (row) + (row * heights[row) + (heights[row-

d. hei ght),
col Wdth, d.height);
/1l Systemout.println(c.getClass() + "-->" +7r);
c.set Bounds(r);
}
}
}

13.15.4 See Also

As mentioned in the Introduction, there are a number of good books on window programming with
Java. These discuss the many Swing components not covered here, such as JTabl e,

JScrol | Pane, JLi st, and JTr ee, and many more. My JabaDex application contains examples
of many of these, and some are used in later recipes in this book; for example, JTr ee is
discussed in Section 19.10.

14 Internationalization and Localization

14.1 Introduction

"All the world's a stage," wrote William Shakespeare. But not all the players upon it speak the
great Bard's native tongue. To be usable on a global scale, your software needs to communicate
in many different languages. The menu labels, button strings, dialog messages, title bar titles,
and even command-line error messages must be settable to the user's choice of language. This
is the topic of internationalization and localization. Because these words take a long time to say
and write, they are often abbreviated by their first and last letters and the count of omitted letters,
that is, 118N and L10N.M

1 Sometimes written LON by those who can't count, or who think that L10N that looks too much like "lion."

Java provides a Local e class to discover/control the internationalization settings. A default
Local e is inherited from operating system runtime settings when Java starts up, and can be
used most of the time!

lan's Basic Steps: Internationalization

Internationalization and localization consist of:

Sensitivity training (Internationalization or 118N): making your
software sensitive to these issues

Language lessons (Localization or L10ON): writing configuration
files for each language

Culture lessons (optional): customizing the presentation of
numbers, fractions, dates, and message-formatting

See also the relatively new book Java Internationalization, by Andy Deitsch and David Czarnecki
(O'Reilly).

14.2 Creating a Button with 118N Resources

14.2.1 Problem

You want your program to take "sensitivity lessons” so it can communicate well internationally.
14.2.2 Solution

Your program must obtain all control and message strings via the internationalization software.
Here's how:

1. Geta ResourceBundl e.

Resour ceBundl e b = Resour ceBundl e. get Bundl e(" Menus") ;

I'll talk about Resour ceBundl e in Section 14.7, but briefly, a Resour ceBundl| e
represents a collection of name-value pairs (resources). The names are names you
assign to each GUI control or other user interface text, and the values are the text to
assign to each control in a given language.

2. Use this Resour ceBundl! e to fetch the localized version of each control name.

Old way:

sonmePanel . add(new JButton("Exit"));

New way:

rb = ResourceBundl e. get Bundl e("W dget s") ;

try { label = rb.getString("exit.label"); }

catch (M ssingResourceException e) { label="Exit"; } // fallback
sonmePanel . add(new JButton(l abel));

This is quite a bit of code for one button, but distributed over all the widgets (buttons,
menus, etc.) in a program, it can be as little as one line with the use of convenience

routines, which I'll show in Section 14.4.
14.2.2.1 What happens at runtime?
The default locale is used, since we didn't specify one. The default locale is platform-dependent:

Unix/POSIX: LANG environment variable (per user)
Windows 95: Start->Control Panel->Regional Settings
Others: see platform documentation

Resour ceBundl e. get Bundl e() locates a file with the named resource bundle name (Venus
in the previous example), plus an underscore and the locale name (if any locale is set), plus

another underscore and the locale variation (if any variation is set), plus the extension .properties.
If a variation is set but the file can't be found, it falls back to just the country code. If that can't be
found, it falls back to the original default. Table 14-1 shows some examples for various locales.

Table 14-1. Property filenames for different locales

Locale Filename
Default locale Menus. Properties
Swedish Menus_sv. properties
Spanish Menus_es. properties
French Menus_fr. properties
French-Canadian Menus_fr_CA. properties

Locale names are two-letter ISO language codes (lowercase); locale variations are two-letter ISO
country codes (uppercase)

14.2.2.2 Setting the locale

On Windows, go into the Control Panel. Changing this setting entails a reboot, so exit any editor
windows.

On Unix, set your LANG environment variable. For example, a Korn shell user in Mexico might
have this line in his or her .profile :

export LANG=es_ MX

On either system, for testing a different locale, you need only define the locale in the System
Properties at runtime using the command-line option - D, as in:

java -Duser. | anguage=es Browser

to run the program named Br owser in the Spanish locale.

14.3 Listing Available Locales

14.3.1 Problem

You want to see what locales are available.
14.3.2 Solution

Call Local e. get Avai | abl eLocal es().
14.3.3 Discussion

A typical runtime may have dozens of locales available. The program Li st Local es uses the
method get Avai | abl eLocal es() and prints the list:

/'l File ListLocales.java
Local e[] list = Local e. get Avai |l abl eLocal es();
for (int i=0; i<list.length; i++)
Systemout.printin(list[i]);

}
The list is far too long to show here, as you can judge by the first few entries:

> java ListLocal es
en
en_US
ar

ar _AE
ar_BH
ar_DZ
ar _EG
ar _1Q
ar_JO
ar _KwW
ar LB
ar_LY

ar _MA
ar_ oM
ar QA
ar_SA
ar_SD
ar_SY
ar _TN
ar_YE
be

be BY

On my system the complete list has an even dozen dozen (144) locales, as listed by the
command java ListLocales | wc -I.

14.4 Creating a Menu with 118N Resources

14.4.1 Problem

You want to internationalize an entire Venu.

14.4.2 Solution

Get the Menu's label, and each Venul t enls label, from a Resour ceBundl e.

14.4.3 Discussion

Fetching a single menu item is the same as fetching a button:

rb = get Resour ceBundl e(" W dgets");

try { label = rb.getString("exitMenu.label"); }

catch (M ssingResourceException e) { label="Exit"; } // fallback
sonmeMenu. add(new JMenul ten{ | abel));

This is a lot of code, so we typically consolidate it in convenience routines (see Section 14.5).
Here is sample code, using our convenience routines:

JMenu fm = nkMenu(rb, "file");

fm add(nkMenulten(rb, "file", "open"));
fmadd(nmkMenulten(rb, "file", "new'));
fmadd(nkMenultem(rb, "file", "save"));
fm add(nkMenulten(rb, "file", "exit"));
nb. add(fm;

Menu um = nkMenu(rb, "edit");

um add(nkMenul ten{rb, "edit", "copy"));
um add(nkMenul ten(rb, "edit", "paste"));
nb. add(um ;

14.5 Writing Internationalization Convenience Routines

14.5.1 Problem

You want convenience.
14.5.2 Solution

I've got it.

14.5.3 Discussion

Convenience routines are mini-implementations that can be more convenient and effective than
the general-purpose routines. Here | present the convenience routines to create buttons, menus,
etc. First, a simple one, nkMenu() :

/** Conveni ence routine to make up a Menu with its name L1ON d */
Menu nkMenu(Resour ceBundl e b, String nenuName) {

String | abel;

try { label = b.getString(nmenuNane+".|abel"); }

catch (M ssingResour ceException e) { |abel =nenuNane; }

return new Menu(l abel);

}

There are many such routines that you might need; | have consolidated several of them into my
class 118N.java , which is part of the com darw nsys. uti| package. All methods are st ati c,
and can be used without having to instantiate an 118N object because they do not maintain any
state across calls. The method nmkBut t on() creates and returns a localized But t on, and so
on. The method nkDi al og is slightly misnamed, since the JOpt | onPane method
showMessageD al og() doesn't create and return a Di al og object, but it seemed more
consistent to write it as shown here:

package com darw nsys. util;

i mport java.util.?*;
i mport javax.sw ng.*;

/** Set of convenience routines for internationalized code.
* Al conveni ence nethods are static, for ease of use.

*/

public class 118N {

[/ ** Conveni ence routine to make a JButton */
public static JButton nkButton(ResourceBundle b, String name) {
String | abel;
try { label = b.getString(nanme+".|abel"); }
catch (M ssi ngResour ceException e) { |abel =nane; }
return new JButton(l abel);

[** Conveni ence routine to make a JMenu */

public static JMenu nkMenu(ResourceBundl e b, String nanme) ({
String nenuLabel;
try { nenuLabel = b.getString(nane+".|abel"); }
catch (M ssi ngResour ceException e) { nmenulLabel =nane; }
return new JMenu(nmenulLabel);

/** Conveni ence routine to make a JMenultem */
public static JMenultem nkMenul t en{ Resour ceBundl e b,
String nenu, String nanme) ({

String m Label;

try { m Label = b.getString(nmenu + + nane + ".label"); }
catch (M ssi ngResour ceException e) { m Label =nane; }

String key = null;

try { key = b.getString(nenu + + nane + ".key"); }
catch (M ssi ngResour ceException e) { key=null; }

if (key == null)
return new JMenul tem(m Label);
el se
return new JMenul tenm(m Label , key.charAt(0));

}

/** Show a JOptionPane nmessage dial og */
public static void nkDi al og(ResourceBundl e b, JFrane parent,
String dialogTag, String titleTag, int nessageType) ({
JOpt i onPane. showivessageDi al og(
parent,
get String(b, dialogTag, "D ALOG TEXT M SSI NG " +

di al ogTag),
getString(b, titleTag, "D ALOG TI TLE M SSI NG' +
titleTag),
nmessageType) ;
}

/** Just get a String (for dialogs, labels, etc.) */
public static String getString(ResourceBundle b, String nane,
String dflt) {
String result;

try {
result = b.getString(nane);

} catch (M ssingResourceException e) {
result = dflt;
}

return result;

}

14.6 Creating a Dialog with 118N Resources
14.6.1 Problem

You want to internationalize a dialog.

14.6.2 Solution

Use a Resour ceBundl e.

14.6.3 Discussion

This is similar to the use of Resour ceBundl e in the previous recipes, and shows the code for an
internationalized version of the JOpt | onDeno program from Section 13.8.

package com darw nsys. util;

i mport java.awt.*;

i mport java.awt.event.*;
i mport javax.sw ng.*;

i mport java.util.?*;

/**
* 118N d JOpti onPane
*/
public class JOpti onDeno extends JFrame {

Resour ceBundl e rb;

/1 Constructor
JOptionDeno(String s) {
super(s);

Cont ai ner cp = get Content Pane();
cp. set Layout (new Fl owLayout ());

rb = ResourceBundl e. get Bundl e(" W dgets");

JButton b = 118N. nkButton(rb, "getButton");
b. addAct i onLi st ener (new Acti onLi stener() {
public void actionPerformnmed(ActionEvent e) {
JOpt i onPane. showivessageDi al og(

JOpti onDeno. t hi s,
rb.getString("dialogl.text"),
rb.getString("dialogl.title"),
JOpt i onPane. | NFORMATI ON_MESSAGE) ;

}
1)
cp. add(b);

b = I 18N. nkButton(rb, "goodbye");
b. addAct i onLi st ener (new Acti onLi stener() {
public void actionPerformed(ActionEvent e) {
System exit(0);

1)
cp. add(b);

// the nmain w ndow
set Si ze(200, 150);
pack();

public static void main(String[] arg) {
JOptionDenp x = new JOpti onDeno("Testing 1 2 3...");
X.set Vi sible(true);

14.7 Creating a Resource Bundle
14.7.1 Problem

You need to create a resource bundle for use by 118N.
14.7.2 Solution

A resource bundle is just a collection of names and values. You can write a
java.uti|.ResourceBundl e subclass, but it is easier to create them as textual Pr operti es
files (see Section 7.8), which you then load with Resour ceBund! e. get Bundl e(). The files
can be created using any text editor. Leaving it in a text file format also allows user customization;
a user whose language is not provided for, or who wishes to change the wording somewhat due
to local variations in dialect, will have no trouble editing the file.

Note that the resource bundle text file should not have the same name as any of your Java
classes. The reason is that the Resour ceBundl e constructs a class dynamically, with the same
name as the resource files. You can confirm this by running java -verbose on any of the programs
that use the 118N class from this chapter.

14.7.3 Discussion

Here is a sample for a simple browser (see the Venul nt| program in Section 14.12):

Default Menu properties
The File Menu
file.label =File Menu
file.new. | abel =New Fil e
file.new key=N

Creating the default properties file will usually not be a problem, but creating properties files for
other languages might. Unless you are a large multinational corporation, you will probably not
have the resources (pardon the pun) to create resource files in-house. If you are shipping
commercial software, you need to identify your target markets and understand which of these are
most sensitive to wanting menus and the like in their own languages. Then, hire a professional
translation service that has expertise in the required languages to prepare the files. Test them
well before you ship, as you would any other part of your software.

If you need special characters, multiline text, or other complex entry, remember that a
Resour ceBundl e is also a Properti es file.

As an alternate approach, the next recipe describes a program that automates some of the work
of isolating strings, creating resource files, and translating them to other languages.

14.8 JILTing Your Code

Nothing to do with jilting your lover, JILT is Sun's Java Internationalization and Localization
Toolkit, Version 2.0. JILTing your code means processing it with JILT, which facilitates 118N and
L10N'ing the Java classes. JILT has four GUI-based tools, which can be used independently,
started from a GUI front-end called JILKIT. Figure 14-1 shows JILT in action.

Figure 14-1. JILT in action

Project Tools Help
NiE% &8 & €
e

@ Chjavasroi1BniinBefore java

The tools are listed in Table 14-2.

Table 14-2. JILT programs

Tool Function
18N Verifier |Tests program for international use and suggests improvements.
_Il\{loeslsage Finds and allows you to edit hardcoded or inconsistent messages.

Translator |Translates messages in a resource bundle file into a given locale/language.

Resource Merges multiple resource files into a new resource bundle. Can also find
Tool differences between resource files.

It's worth noting that the time to learn these tools may overshadow their benefits on small
projects, but on large projects will likely prove worthwhile.

Version 2 of the Translator ships with a Chinese dictionary, but you can provide your own
dictionaries as well.

The Java Internationalization and Localization Toolkit can be downloaded for free from Sun's
Java page, http://java.sun.com/products/.

14.9 Using a Particular Locale

14.9.1 Problem

You want to use a locale other than the default in a particular operation.
14.9.2 Solution

Use Local e. get | nst ance(Local e).

14.9.3 Discussion

Classes that provide formatting services, such as Dat eFor nat and Nurber For mat , provide an
overloaded get | nst ance() method that can be called either with no arguments or with a
Local e argument.

To use these, you can use one of the predefined locale variables provided by the Local e class,
or you can construct your own Local e object giving a language code and a country code:

Local e. FRANCE; /'l predefined
new Local e("en", "UK"); /1 English, UK version

Local e | ocal el
Local e | ocal e2

Either of these can be used to format a date or a number, as shown in class UselLocal es :

i mport java.text.?*;
i mport java.util.?*;

[** Use sone | ocal es
* choices or -Duser.lang= or -Duser.region=.
*/
public class UselLocal es {
public static void main(String[] args) {

Local e. FRANCE; /'l predefined
new Local e("en", "UK"); /1 English, UK

Local e frLocal e
Local e ukLocal e
Ver si on

Dat eFor mat def aul t Dat eFor matt er = Dat eFor mat . get Dat el nst ance(
Dat eFor mat . MEDI UM) ;

Dat eFormat frDateFormatter = DateFormat. get Dat el nst ance(
Dat eFor mat . MEDI UM frLocal e);

Dat eFor mat ukDat eFormatter = Dat eFor mat . get Dat el nst ance(
Dat eFor mat . MEDI UM ukLocal e);

Date now = new Date();

Systemout.println("Default: " + ' ' +
def aul t Dat eFormatter. f or mat (now)) ;

Systemout. println(frLocal e.getDi splayName() + ' ' +
frDat eFormatter. format(now));

System out . printl n(ukLocal e. get Di spl ayNane() + ' ' +

ukDat eFormat ter. f or mat (now)) ;
}
The program prints the locale name and formats the date in each of the locales:

$ java Uselocal es

Default: Nov 30, 2000
French (France) 30 nov. 00
English (UK) Nov 30, 2000
$

14.10 Setting the Default Locale

14.10.1 Problem

You want to change the default Local e for all operations within a given Java runtime.

14.10.2 Solution

Set the system property user . | anguage, or call Local e. set Defaul t ().

14.10.3 Discussion

Here is a program called Set Local e, which takes the language and country codes from the
command line, constructs a Local e object, and passes itto Local e. set Defaul t (). When
run with different arguments, it prints the date and a number in the appropriate locale:

C:\javasrc\i 18n>java SetlLocal e en US
6/ 30/ 00 1:45 AM
123. 457

C:\javasrc\i 18n>java SetlLocale fr FR
30/ 06/ 00 01: 45
123, 457

The code is similar to the previous recipe in how it constructs the locale.

i mport java.text.?*;
i mport java.util.*;

/** Change the default |ocale */
public class SetlLocal e {
public static void main(String[] args) {

switch (args.length) {
case O:
Local e. set Def aul t (Local e. FRANCE) ;
br eak;
case 1:
t hrow new ||| egal Argunment Exception();
case 2:
Local e. set Def aul t (new Local e(args[0], args[1]));
br eak;
defaul t:
Systemout. println("Usage: SetlLocal e [|anguage
[country]]");
/'l FALLTHROUGH
}

Dat eFor mat df

= Dat eFormat . getl nstance();
Nunber For mat nf =

Nurmber For mat . get | nst ance();

Systemout. println(df.format(new Date()));
System out. println(nf.format(123.4567));

}
14.11 Formatting Messages
14.11.1 Problem

Messages may need to be formatted differently in different languages.

14.11.2 Solution

Use a MessageFor mat object.

14.11.3 Discussion

In English, for example, we say "file not found." But in other languages the word order is different:
the word for "not found" might need to precede the word for "file." Java provides for this using the
MessageFor nat class. Suppose we want to format a message as follows:

$ java MessageFor mat Denol nt |

At 3:33:02 PMon 01-Jul -00, nyfile.txt could not be opened.

$ java -Duser.| anguage=es MessageFor mat Denol nt |

A 3:34:49 PM sobre 01-Jul -00, no se puede abrir la fila nyfile.txt.
$

The MessageFor mat in its simplest form takes a format string with a series of numeric indexes,
and an array of objects to be formatted. The objects are inserted into the resulting string, where
the given array index appears. Here is a simple example of a MessageFor mat in action:

i mport java.text.?*;
public class MessageFor mat Deno {

static Object[] data = {

new java.util.Date(),
"nyfile. txt",
"coul d not be opened"
i
public static void main(String[] args) {
String result = MessageFor mat. f or mat (
"At {O,tine} on {0,date}, {1} {2}.", data);
Systemout.println(result);
}

}

>

But we still need to internationalize this, so we'll add some lines to our widget's properties files. |
the default (English) version:

These are for MessageFor nmat Deno

#

fil edi al ogs. cant open. string=coul d not be opened

filedi al ogs. cantopen.format=At {O,tinme} on {0,date}, {1} {2}.

In the Spanish version, we'll add these lines:

These are for MessageFor nmat Deno

#

fil edi al ogs. cant open. string=no se puede abrir la fila

filedial ogs. cantopen. format=A {0,ti ne} sobre {0,date}, {2} {1}.

Then MessageFor mat Denp needs to have a Resour ceBundl e, and get both the format string
and the message from the bundle. Here is VessageFor mat Denol nt | :

i mport java.text.?*;
i mport java.util.*;

public class MessageFor mat Denol ntl {

static ohject[] data = {
new Date(),
"nyfile. txt",
nul |

}s

public static void main(String[] args) {
Resour ceBundl e rb = ResourceBundl e. get Bundl e(" W dgets");
data[2] = rb.getString("fil edial ogs. cantopen.string");
String result = MessageFor mat. f or mat (
rb.getString("fil edi al ogs. cantopen.format"), data);
Systemout.println(result);

}

There is more to the MessageFor nmat than this; see the Javadoc page for more details and
examples.

14.12 Program: Menulntl

Menul nt | (shown in Example 14-1) is a complete version of the menu code presented in
Section 14.4.

Example 14-1. Menulntl.java

i mport java.awt.*;

i mport java.awt.event.*;
i mport javax.sw ng.*;

i mport java.util.*;

/** This is a partly-internationalized version of MenuDeno.
* To try it out, use

* java Menul ntl
* java -Duser.| anguage=es Menul nt |
*/

public class Menulntl extends JFrane {

/** "main progrant nethod - construct and show */
public static void main(String[] av) {
/1 create an Menulntl object, tell it to show up
new Menulntl ().setVisible(true);

}

/** Construct the object including its GJ */
public Menulntl() {

super ("Menul ntl Test");

JMenul tem m ; /1 used in various spots

Cont ai ner cp = get Content Pane();
cp. set Layout (new Fl owLayout ());

JLabel | ab;
cp.add(lab = new JLabel ());

addW ndowLi st ener (new W ndowAdapter() {
public void w ndowC osi ng(WndowEvent e) {
set Vi si bl e(fal se);
di spose();
System exit(0);
}
1)
JMenuBar nb = new JMenuBar();
set JMenuBar (mb) ;

ResourceBundl e b = Resour ceBundl e. get Bundl e(" Menus") ;
String titlebar;

try { titlebar = b.getString("program'+".title"); }
catch (M ssi ngResourceException e) { titlebar="Menulntl Denmo";

}
setTitle(titlebar);
String nessage;
try { nessage = b.getString("prograni+". nessage"); }
catch (M ssi ngResour ceException e) {
nmessage="Wel cone to the world of Java";
| ab. set Text (nessage) ;
JMenu fm = nkMenu(b, "file");
fmadd(m = nkMenultenm(b, "file", "open"));
/1 In finished code there would be a call to
/1 m.addActionListener(...) after *each* of
/'l these nkMenultem call s!
fmadd(m = nkMenultenm(b, "file", "new'));
fmadd(m = nkMenultenm(b, "file", "save"));
fmadd(m = nkMenultenm(b, "file", "exit"));
m . addAct i onLi st ener (new Acti onLi stener() {
public void actionPerformnmed(ActionEvent e) {
Menul ntl .this.setVisible(fal se);
Menul ntl.this.dispose();
System exit(0);
}
1)
nb. add(fm;
JMenu vm = nkMenu(b, "view');
vm add(m = nkMenulten(b, "view', "tree"));
vm add(m = nkMenulten(b, "view', "list"));
vm add(m = nkMenulten(b, "view', "longlist"));
nb. add(vn ;
JMenu hm = nkMenu(b, "help");
hm add(m = nkMenultenm(b, "help", "about"));
/1 nb.set Hel pMenu(hn ; /1 needed for portability (Mtif,
etc.).

// the nmain w ndow

JLabel jlI = new JLabel ("Menu Deno W ndow');
jl.setSize(200, 150);

cp.add(jl);

pack();

[** Conveni ence routine to make a JMenu */

public JMenu nkMenu(ResourceBundle b, String nane) {
String nenuLabel;
try { nenuLabel = b.getString(nane+".|abel"); }
catch (M ssingResour ceException e) { nmenulLabel =nane; }
return new JMenu(nmenulLabel);

[** Conveni ence routine to nmake a JMenultem */
public JMenultem nkMenul t en(ResourceBundl e b, String nmenu, String
nane) {

String m Label;
try { m Label = b.getString(nmenu + + nane + ".label"); }
catch (M ssi ngResour ceException e) { m Label =nane; }
String key = null;
try { key = b.getString(nenu + + nane + ".key"); }
catch (M ssi ngResour ceException e) { key=null; }

if (key == null)
return new JMenul tem(m Label) ;
el se
return new JMenul tenm(m Label , key.charAt(0));

}
14.13 Program: BusCard

This program may seem a bit silly, but it's a good example of configuring a variety of user
interface controls from a resource bundle. The BusCar d program allows you to create a digital

business card (“interactive business card") on-screen (see Figure 14-2). The labels for all the
GUI controls, event the pull-down menu, are loaded from a Resour ceBundl e.

Figure 14-2. BusCard program in action

File Edit Yiew Optionz Help

EJuua Consultant -
Conzultant
s AN enBel Comalbant e
[[nternet Firewalls/Server Setup g
FAX: +1 555-555-5555 i Enail: ianfdarwinsys.com

Example 14-2 shows the code for the BusCar d program.

Example 14-2. BusCard.java

i mport j
i mport j
i mport j
i mport j

ava. awt . *;

ava. awt . event . *;
ava. util.*;
avax. swi ng. *;

/** Display your business-card information in a Java w ndow.
*

* This

is afirst attenpt. The next version should use a

Gi dBagLayout .

*/

public class BusCard extends JFrane {

JLabel naneTF;
JConboBox j obChoi ce;
JButton B1, B2, B3, B4;

/**

publ

/**

publ

"mai n progrant nethod - construct and show */
ic static void main(String[] av) {

/1 create a BusCard object, tell it to show up
new BusCard().setVisible(true);

Construct the object including its GJ */
ic BusCard() {
super();

Cont ai ner cp = get Content Pane();
cp. set Layout (new Gri dLayout (0, 1));

addW ndowLi st ener (new W ndowAdapter() {
public void wi ndowC osi ng(WndowEvent e) {
set Vi si bl e(fal se);
di spose();
System exit(0);
}
1)

JMenuBar nb = new JMenuBar();
set JMenuBar (mb) ;

Resour ceBundl e b = Resour ceBundl e. get Bundl e(" BusCard") ;

JMenu aMenu;
aMenu = | 18N. nkMenu(b, "filenmenu");
nb. add(aMenu) ;
JMenultem m = 118N nkMenul tem(b, "filenmenu", "exit");
aMenu. add(m) ;
m . addAct i onLi st ener (new Acti onLi stener() {
public void actionPerformnmed(ActionEvent e) {
System exit(0);
}

1)

aMenu = | 18N. nkMenu(b, "editnenu");

nb. add(aMenu) ;

aMenu = | 18N. nkMenu(b, "viewrenu");

nb. add(aMenu) ;

aMenu = | 18N. nkMenu(b, "optionsnmenu");

nb. add(aMenu) ;

aMenu = | 18N. nkMenu(b, "hel pnmenu");

nb. add(aMenu) ;

/1 mb. set Hel pMenu(aMenu) ; /'l needed for portability
(Motif, etc.).

setTitle(l18N. getString(b, "card"+".conmpany", "TITLE"));

JPanel pl = new JPanel ();
pl. set Layout (new GidLayout (0, 1, 50, 10));

naneTF = new JLabel ("My Nane", JLabel.CENTER);

naneTF. set Font (new Font (" hel vetica", Font.BOLD, 18));

naneTF. set Text (1 18N. get Stri ng(b, "card"+".nynane", "MNAME"));
pl. add(naneTF);

j obChoi ce = new JComboBox();
j obChoi ce. set Font (new Font (" hel vetica", Font.BOLD, 14));

/1 Get Job Titles ofromthe Properties file |oaded into "b"!
String next;

int i=1;
do {
next = [18N.getString(b, "job_title" + i++, null);
if (next '= null)
j obChoi ce. addl t em(next) ;
} while (next !'= null);

pl. add(j obChoice);
cp. add(pl);

JPanel p2 = new JPanel ();
p2. set Layout (new GidLayout (2, 2, 10, 10));

Bl = new JButton();

Bl. set Label (1 18N. get String(b, "buttonl.label”, "BUTTON
LABEL"));

p2. add(Bl);

B2 = new JButton();

B2. set Label (1 18N. get String(b, "button2.label”, "BUTTON
LABEL"));

p2. add(B2);

B3 = new JButton();

B3. set Label (1 18N. get String(b, "button3.label”, "BUTTON
LABEL"));

p2. add(B3);

B4 = new JButton();
B4. set Label (1 18N. get String(b, "button4.label”, "BUTTON
LABEL"));

p2. add(B4);
cp. add(p2);

pack();
}
14.13.1 See Also
Other things may need to be internationalized as well:
Character comparisons

These are set separately on Unix/POSIX; on other operating systems, they depend on
the default Local e.

Date and Time Formats

See Gregori anCal endar and Dat eFor mat in Recipe 6.0.
Number Formats

Seejava. util . Nunber For mat in Recipe 5.7.
Message insertions

These appear in different orders in different languages (something the C-language
printf() could never handle). See | ava. uti| . MessageFor mat in Recipe 14.10.

14.13.2 Internationalization Caveats

Internationalizing your menus and push buttons is only one step. You also need to
internationalize message text in dialogs as well as help files (see the JavaHelp API at
http://java.sun.com/products/javahelp/).

Some items such as AWT Fi | eDi al og use native components; their appearance depends on
the native operating system (your application can change its own default locale, but not the
system's; therefore, if your customer has a differently internationalized copy of the same OS, the
file dialogs will appear differently).

14.13.3 Documentation

A short, readable, non-Java-specific introduction to the overall topic of internationalization is The
Guide to Translation and Localization, written by the staff of Lingo Systems and published by the
IEEE Computer Society. For more on Java 118N, see the online documentation that ships with the
JDK; start at jdk1.x/docs/guide/intl/index.html. See also the O'Reilly book Java
Internationalization.

14.13.4 The Last Word

Good luck. Bonne chance. Buena suerte . . .

15 Network Clients

15.1 Introduction

Java can be used to write several types of networked programs. In traditional socket-based code,
the programmer is responsible for the entire interaction between the client and server. In higher-
level types, such as RMI, CORBA, and EJB, the software takes over increasing degrees of
control. Sockets are often used for connecting to "legacy" servers; if you were writing a new
application from scratch, you'd be better off using a higher-level service.

It may be helpful to compare sockets with the telephone system. Telephones were originally used
for analog voice traffic, which is pretty unstructured. Then it began to be used for some "layered"
applications; the first widely popular one was facsimile transmission, or FAX. Where would FAX
be without the widespread availability of voice telephony? The second wildly popular layered
application is dialup TCP/IP. This coexisted with the World Wide Web to become popular as a
mass-market service. Where would dialup IP be without widely deployed voice lines? And where
would the Internet be without dialup 1P?

Sockets are like that too. The Web, RMI, JDBC, CORBA, and EJB are all layered on top of
sockets.

Ever since the alpha release of Java (originally as a sideline to the HotJava browser) in May of
1995, Java has been popular as a programming language for building network applications. It's
easy to see why, particularly if you've ever built a networked application in C. First, C
programmers have to worry about the platform they are on. Unix uses synchronous sockets,
which work rather like normal disk files vis-a-vis reading and writing, while Microsoft OSes use
asynchronous sockets, which use callbacks to notify when a read or write has completed. Java
glosses over this distinction for you. Further, the amount of code needed to set up a socket in C is
intimidating. Just for fun, Example 15-1 shows the "typical" C code for setting up a client socket.
And remember, this is only the Unix part. And only the part that makes the connection. To be
portable to MS-Windows, there would need to be additional conditional code (using C's #i f def
mechanism). And C's #i ncl ude mechanism requires that exactly the right files be included and
in exactly the right order; Java's i nport mechanism lets you use * to import a whole section of
the API, and the imports can be listed in any order you like.

Example 15-1. C client setup

/*
* Sinple denonstration of code to setup a client connection in C,
*/

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <netinet/in.h>
#i ncl ude <net db. h>
#i ncl ude <stdi o. h>
#i ncl ude <string. h>
#i ncl ude <fcntl. h>

i nt
mai n(int argc, char *argv[])
{

char* server_name = "l ocal host";

struct hostent *host i nfo;
i nt sock;
struct sockaddr _in server;

/* Look up the renote host's I P address */
host i nfo = get host bynane(server _nane);
if (host _info == NULL) {
fprintf(stderr, "%: unknown host: %\n", argv[O],
server_nane) ;
exit(1l);
}

/* Create the socket */

if ((sock = socket (AF_I NET, SOCK STREAM 0)) < 0) {
perror("creating client socket");
exit(2);

}

/* Set up the server's socket address */

server.sin_famly = AF_I| NET;

mencpy((char *)&server.sin_addr, host _info->h_addr,
host i nfo->h_| ength);

server.sin_port = htons(80);

/* Connect to the server */
i f (connect(sock, (struct sockaddr *)&server, sizeof server) < 0) {
perror("connecting to server");

exit(4);
}
/* Finally, we can read and wite on the socket. */
[* ... %

(void) close(sock);

}

In the first recipe, we'll see how to do the connect in essentially one line of Java (plus a bit of
error handling). Then we'll cover error handling and transferring data over a socket. Next, we'll
take a quick look at a dat agr amor UDP client that implements most of the TFTP (trivial file
transfer protocol) that has been used for two decades to boot diskless workstations. We'll end
with a program that connects interactively to a text-based server such as Telnet or email.

A common theme through most of these client examples is to use existing servers, so we don't
have to generate both the client and the server at the same time. With one exception, all of these
are services that exist on any standard Unix platform. If you can't find a Unix server near you to
try them on, let me suggest that you take an old PC, maybe one that's underpowered for running
the latest Microsoft software, and put up a free, open source Unix system on it. My personal
favorite is OpenBSD, and the market's overall favorite is Linux. Both are readily available on CD-
ROM, can be installed for free over the Internet, and offer all the standard services used in the
client examples, including the time servers and TFTP. Both have free Java implementations
available.

15.2 Contacting a Server

15.2.1 Problem

You need to contact a server using TCP/IP.

15.2.2 Solution

Just create a Socket , passing the hostname and port number into the constructor.
15.2.3 Discussion

There isn't much to this in Java, in fact. When creating a socket, you pass in the hostname and
the port number. The | ava. net . Socket constructor does the get host bynane() and the
socket () system call, sets up the server's sockaddr i n structure, and executes the
connect () call. All you have to do is catch the errors, which are subclassed from the familiar
| OExcept i on . Example 15.2 sets up a Java network client, using | OExcept i on to catch
errors.

Example 15-2. Connect.java (simple client connection)

i nport java.net.*;

/*
* A sinple denonstration of setting up a Java network client.
*/
public class Connect {
public static void main(String[] argv) {
String server_nane = "l ocal host";

try {
Socket sock = new Socket (server_nane, 80);

/* Finally, we can read and wite on the socket. */
Systemout.println(" *** Connected to " + server_nane +

***");
/[* . do the 1/O here .. */
sock.close();
} catch (java.io.lOexception e) {
Systemerr.println("error connecting to " +
server_nanme + ": " + e);
return;
}
}
}

15.2.4 See Also

Java supports other ways of using network applications. You can also open a URL and read from
it (see Section 17.7). You can write code so that it will run from a URL, when opened in a web
browser, or from an application (see Recipe 17.9).

15.3 Finding and Reporting Network Addresses

15.3.1 Problem

You want to look up a host's address name or number, or get the address at the other end of a
network connection.

15.3.2 Solution

Get an | net Addr ess object.

15.3.3 Discussion

The | net Addr ess object represents the Internet address of a given computer or host. There are
no public constructors; you obtain an | net Addr ess by calling the static byNane() method,
passing in either a hostname like www.darwinsys.com or a network address as a string, like
"1.23.45.67". All the "lookup” methods in this class can throw the checked exception
UnknownHost Except i on, which must be caught or declared on the calling method's header.
None of these methods actually contacts the remote host, so they do not throw the other
exceptions related to network connections.

The method get Host Address() gives you the numeric IP address (as a string) corresponding
to the | net Addr ess. The inverse is get Host Nane() , which reports the name of the
| net Addr ess. This can be used to print the address of a host given its name, or vice versa:

/'l From I net Addr Deno. j ava
String i pNunber = "123.45.67.89";
String hostNanme = "www. darw nsys. coni';
Systemout. println(hostNane + "'s address is " +
I net Addr ess. byName(host Nane) . get Host Address());
Systemout. println(i pNunmber + "'s nane is " +
I net Addr ess. byName(i pNunber) . get Host Nane());

You can also get an | net Addr ess from a Socket by calling its get | net Address() method.
You can construct a Socket using an | net Addr ess instead of a hostname string. So, to
connect to port number "myPortNumber” on the same host as an existing socket, you'd use:

I net Address renpote = theSocket. getlnet Address();
Socket anot her Socket = new Socket (renpte, myPort Nunber);

Finally, to look up all the addresses associated with a host -- a server may be on more than one
network -- use the static method get Al | ByNane(host), which returns an array of
| net Addr ess objects, one for each IP address associated with the given name.

There is a static method get Local Host () , which returns an | net Addr ess equivalent to
"localhost" or 127.0.0.1. This can be used to connect to a server on the same machine as the
client.

15.3.4 See Also

There is not yet a way to look up services, i.e., to find out that the HTTP service is on port 80. Full
implementations of TCP/IP have always included an additional set of resolvers; in C, the call
get servbynanme("http", "tcp”); would look up the given service™ and return a ser vent

(service entry) structure whose s_por t member would contain the value 80. The numbers of
established services do not change, but when services are new or installed in non-routine ways, it
is convenient to be able to change the service number for all programs on a machine or network
(regardless of programming language) just by changing the services definitions. Java should
provide this capability in a future release.

1 The location where it is looked up varies. It might be in a file named/etc/services on Unix, or the services
file under \windows or \winnt under MS-Windows; in a centralized registry such as Sun's Network
Information Services (NIS, formerly YP); or in some other platform- or network-dependent location.

15.4 Handling Network Errors
15.4.1 Problem
You want more detailed reporting than just | O=xcept i on if something goes wrong.

15.4.2 Solution

Catch a greater variety of exception classes. There are several subclasses of

Socket Except i on; the most notable of these are Connect Except i on and

NoRout eToHost Except i on. The names are self-explanatory: the first means that the
connection was refused by the machine at the other end (the server machine), and the second
completely explains the failure. Example 15-3 is an excerpt from the Connect program,
enhanced to handle these conditions.

Example 15-3. ConnectFriendly.java

/* Cdient with error handling */
public class ConnectFriendly {
public static void main(String[] argv) {

String server_nane = argv.length == 1 ? argv[0] : "local host";
int tcp_port = 80;
try {

Socket sock = new Socket (server_name, tcp_port);

/* Finally, we can read and wite on the socket. */
Systemout.println(" *** Connected to " + server_nane + "

***")

[* ... %
sock. close();

} catch (UnknownHost Exception e) {
Systemerr.println(server _nane + " Unknown host");
return;

} catch (NoRout eToHost Exception e) {
Systemerr.println(server _nane + " Unreachable");
return;

} catch (Connect Exception e) {

Systemerr.println(server _nane + " connect refused");
return;

} catch (java.io.lOexception e) {
Systemerr.println(server _nane +
return;

[[

+ e.get Message());

15.5 Reading and Writing Textual Data
15.5.1 Problem

Having connected, you wish to transfer textual data.
15.5.2 Solution

Construct a Buf f er edReader or Print Wit er from the socket's get | nput St rean{) or
get Qut put Strean().

15.5.3 Discussion

The Socket class has methods that allow you to get an | nput St r eamor Cut put St r eamto
read from or write to the socket. There is no method to fetch a Reader or Wit er, partly
because some network services are limited to ASCII, but mainly because the Socket class was
decided on before there were Reader and Wit er classes. You can always create a Reader
froman | nput St reamora Wit er from an Qut put St r eamusing the conversion classes. The
paradigm for the two most common forms is:

Buf f eredReader is = new Buff eredReader (
new | nput St r eanReader (sock. getlnputStrean()));
PrintWiter os = new PrintWiter(sock.getQutputStream(), true);

Here is code that reads a line of text from the "daytime" service, a service offered by full-fledged
TCP/IP suites (such as those included with most Unixes). You don't have to send anything to the
Dayt i me server; you simply connect and read one line. The server writes one line containing the
date and time, and then closes the connection.

Running it looks like this. | started by getting the current date and time on the local host, then ran
the Dayt i neText program to see the date and time on the server (machine "darian" is my local
server):

C.\javasrc\ net wor k>dat e

Current date is Sun 01-23-2000

Enter new date (mmdd-vyy):
C.\javasrc\network>tinme

Current tinme is 1:13:18.70p

Enter new tine:

C.\javasrc\ networ k>j ava Dayti neText darian
Time on darian is Sun Jan 23 13: 14: 34 2000

The code is in class Dayt i neText , shown in Example 15-4.

Example 15-4. DaytimeText.java

/**

* DaytimeText - connect to the Daytinme (ascii) service.
*/
public class Dayti meText {
public static final short TINME PORT = 13;

public static void main(String[] argv) {
String host Nane;
if (argv.length == 0)
host Nanme = "l ocal host";
el se
host Nane = argv[O0];

try {
Socket sock = new Socket (host Nanme, TI ME_PORT);

Buf f eredReader is = new Buff eredReader (new
I nput St r eanReader (sock. getl nput Strean()));
String renoteTinme = is.readLine();
Systemout.printin("Tine on " + hostNane + " is " +
renot eTi me) ;
} catch (1 COException e) {
Systemerr.println(e);
}

The second example, shown in Example 15-5, shows both reading and writing on the same
socket. The Echo server simply echoes back whatever lines of text you send it. It's not a very
clever server, but it is a useful one: it helps in network testing, and also in testing clients of this

type!

The conver se() method holds a short conversation with the Echo server on the named host;
if no host is named, it tries to contact | ocal host , a universal alias™ for "the machine the
program is running on."

[21 |t used to be universal, when most networked systems were administered by fulltime systems people who
had been trained or served an apprenticeship. Today there are so many machines on the Internet that don't
have | ocal host configured properly that there is a web site, http://localhost.com, which tells you about
this problem if you type "localhost" into a web browser on a misconfigured machine.

Example 15-5. EchoClientOneLine.java

/**

* EchoC ientOneLine - create client socket, send one |ine,
* read it back. See also Echodient.java, slightly fancier.
*/
public class Echod ient OneLi ne {

/** What we send across the net */

String nesg = "Hell o across the net”;

public static void main(String[] argv) {
if (argv.length == 0)
new EchoC i ent OneLi ne().converse("local host");
el se
new EchoC i ent OneLi ne().converse(argv[O0]);

/** Hol d one conversation across the net */
protected void converse(String hostName) {
try {
Socket sock = new Socket (host Nanme, 7); // echo server.
Buf f eredReader is = new Buf f er edReader (new
I nput St r eanReader (sock. getl nput Strean()));
PrintWiter os = new PrintWiter(sock.getQutputStrean(),

true);
/1 Do the CRLF ourself since println appends only a \r on
/1 platforns where that is the native |line ending.
os.print(nmesg + "\r\n"); os.flush();
String reply = is.readLine();
Systemout.println("Sent \"" + nmesg + "\"");
Systemout.printin("Got \"" + reply + "\"");
} catch (1 COException e) {
Systemerr.println(e);
}
}
}

It might be a good exercise to isolate the reading and writing code from this method into a
Net Wi t er class, possibly subclassing Print Wit er and adding the \ r\ n and the flushing.

15.6 Reading and Writing Binary Data
15.6.1 Problem

Having connected, you wish to transfer binary data.
15.6.2 Solution

Construct a Dat al nput St r eamor Dat aCut put St r eamfrom the socket's get | nput St r ean(
) orget Qut put Strean().

15.6.3 Discussion

The simplest paradigm is:

Dat al nput Stream i s = new Dat al nput St rean{ sock. getl nput Strean());
Dat aCut put Stream i s = new Dat aQut put St r ean(sock. get Qut put Strean());

If the volume of data might be large, insert a buffered stream for efficiency. The paradigm is:

Dat al nput Stream i s = new Dat al nput St r ean(

new Buf f er edl nput St r ean(sock. get I nput Streanm()));
Dat aQut put Stream i s = new Dat aQut put St r ean(

new Buf f er edQut put St r ean{ sock. get Qut put Streanm()));

This program uses another standard service that gives out the time, this time as a binary integer
representing the number of seconds since 1900. Since the Java Dat e class base is 1970, we
convert the time base by subtracting the difference between 1970 and 1900. When | used this
exercise in a course, most of the students wanted to add this time difference, reasoning that 1970

is later. But if you think clearly, you'll see that there are fewer seconds between 1999 and 1970
than there are between 1999 and 1900, so subtraction gives the correct number of seconds. And
since the Dat e constructor needs milliseconds, we multiply the number of seconds by 1,000.

The time base difference is the number of years multiplied by 365.25, multiplied by the number of
seconds in a day. The earth's mean orbital period is approximately 365.23 days, but when you
factor in the leap years correctly, you can use exactly 365 1/4 days per year in such calculations.

The integer that we read from the server is a C-language unsi gned i nt . But Java doesn't
provide an unsigned integer type; normally when you need an unsigned number, you use the
next-larger integer type, which would be | ong. But Java 2 also doesn't give us a method to read
an unsigned integer from a data stream. The Dat al nput St r eammethod r ead| nt () reads
Java-style signed integers. There are r eadUnsi gnedByt e() methods and

readUnsi gnedShort () methods, but no readUnsi gnedl nt () method. Accordingly, we
synthesize the ability to read an unsigned | nt (which must be stored in a | ong, or else you'd
lose the signed bit and be back where you started from) by reading unsigned bytes and
reassembling them using Java's bit-shifting operators.

$ date

Fri Mar 30 10: 02: 28 EST 2001

$ java DaytinmeBi nary darian

Renote tinme i s 3194953367

BASE DI FF i s 2208988800

Tinme diff == 985964567

Time on darian is Fri Mar 30 10:02: 47 EST 2001
$

Looking at the output, you can see that the server agrees within a few seconds. So the date
calculation code in Example 15-6 is probably correct.

Example 15-6. DaytimeBinary.java

/**
* DaytimeBinary - connect to the Daytinme (ascii) service.
*/
public class DaytinmeBinary {
/** The TCP port for the binary tinme service. */
public static final short TINME PORT = 37,
/** Seconds between 1970, the time base for Date(long) and Tine.
* Factors in leap years (up to 2100), hours, mnutes, and seconds.
* Subtract 1 day for 1900, add in 1/2 day for 1969/ 1970.
*/
protected static final | ong BASE DAYS =
(long) (((1970 - 1900) * 365.25) - 1 + .5);
/* Seconds since 1970 */
public static final long BASE D FF = (BASE DAYS * 24 * 60 * 60);
/** Convert from seconds to mlliseconds */
public static final int MSEC = 1000;

public static void main(String[] argv) {
String host Nane;
if (argv.length == 0)
host Name = "l ocal host";
el se

host Nane = argv[O0];

try {
Socket sock = new Socket (host Nanme, TI ME_PORT);

Dat al nput Stream i s = new Dat al nput St r ean(new
Buf f er edl nput St r ean{ sock. get I nput Stream()));
/1 Need to read 4 bytes fromthe network, unsigned.
/1 Do it yourself; there is no readUnsignedint().
/1 Long is 8 bytes on Java, but we are using the
/'l existing daytime protocol, which uses 4-byte ints.
| ong renoteTine = (
((long) (is.readUnsi gnedByte() & Oxff) << 24) |
((long)(is.readUnsi gnedByte() & Oxff) << 16) |
((long)(is.readUnsi gnedByte() & Oxff) << 8) |
((long) (is.readUnsi gnedByte() & Oxff) << 0));
Systemout.println("Renote tinme is + renoteTi nme);
Systemout.println("BASE DI FF is " + BASE DI FF);
Systemout.printin("Tine diff ==" + (renoteTine -
BASE_DI FF)) ;
Date d = new Date((renoteTinme - BASE D FF) * NMSEC);
Systemout.println("Tine on " + hostNane + " is " +
d.toString());
} catch (1 COException e) {
Systemerr.println(e);
}

}

15.7 Reading and Writing Serialized Data
15.7.1 Problem

Having connected, you wish to transfer serialized object data.
15.7.2 Solution

Construct an Cbj ect | nput St r eamor Cbj ect Cut put St r eamfrom the socket's
get I nput Strean() orget Qut put Strean().

15.7.3 Discussion

Object serialization is the ability to convert in-memory objects to an external form that can be sent
serially (a byte at a time). This is discussed in Section 9.17.

This program (and its server) operate one service that isn't normally provided by TCP/IP, as it is
Java-specific. It looks rather like the Dayt | neBi nary program in the previous recipe, but the
server sends us a Dat e object already constructed. You can find the server for this program in
Section 16.4; Example 15-7 shows the client code.

Example 15-7. DaytimeObject.java

/**

* DaytimeQbj ect - connect to the Daytinme (ascii) service.

*/

public class Dayti ne(bject {
/** The TCP port for the object tine service. */
public static final short TIME PORT = 1951;

public static void main(String[] argv) {
String host Nane;
if (argv.length == 0)
host Nanme = "l ocal host";
el se
host Nane = argv[O0];

try {
Socket sock = new Socket (host Nanme, TI ME_PORT);

oj ectlnput Streami s = new Obj ect | nput St rean(new
Buf f er edl nput St r ean{ sock. get I nput Stream()));

/'l Read and validate the (bject
hject o = is.readject();
if (!(o instanceof Date))
t hrow new ||| egal Argunment Excepti on("Wanted Date, got "
+ 0);

/1 Valid, so cast to Date, and print
Date d = (Date) o;
Systemout.println("Tine on
d.toString());
} catch (C assNot FoundException e) {
Systemerr.println("Wanted date, got |INVALID CLASS (" + e +

+ hostNane + " is " +

"))
} catch (1 Oexception e) {
Systemerr.println(e);
}

}

| ask the operating system for the date and time, and then run the program, which prints the date
and time. The server and my desktop are within about ten seconds of agreement:

C:\javasrc\ net wor k>dat e

Current date is Sun 01-23-2000

Enter new date (nm dd-yy):
C:\javasrc\network>tinme

Current time is 2:52:35.43p

Enter new tine:

C.\javasrc\ net wor k>j ava Dayti meQbj ect

Ti me on | ocal host is Sun Jan 23 14:52:25 GMVI' 2000
C:\javasrc\ net wor k>

15.8 UDP Datagrams

15.8.1 Problem

You need to use a datagram connection (UDP) instead of a stream connection (TCP).

15.8.2 Solution
Use Dat agr anSocket and Dat agr anPacket .
15.8.3 Discussion

Datagram network traffic is a kindred spirit to the underlying packet-based Ethernet and IP
(Internet protocol) layers. Unlike a stream-based connection such as TCP, datagram transports
such as UDP transmit each "packet" or chunk of data as a single entity with no necessary relation
to any other. A common analogy is that TCP is like talking on the telephone, while UDP is like
sending postcards, or maybe FAX messages.

The differences show up most in error handling. Packets can, like postcards, go astray. When
was the last time the postman rang your bell to tell you that the post office had lost one of several
postcards it was supposed to deliver to you? It doesn't happen, right? Because they don't keep
track of them. On the other hand, when you're talking on the phone and there's a noise burst --
like somebody yelling in the room, or even a bad connection -- you can ask the person at the
other end to repeat what they just said.

With a stream-based connection like a TCP socket, the network transport layer handles errors for
you: it asks the other end to retransmit. With a datagram transport such as UDP, you have to
handle retransmission yourself. Kind of like numbering the postcards you send, so that you can
go back and resend any that don't arrive -- a good excuse to return to your vacation spot,
perhaps.

lan's Basic Steps: UDP Client

UDP is a bit more involved, so I'll list the basic steps for generating a
UDP client:

1. Create a Dat agr anSocket with no arguments (the form that
takes two arguments is used on the server).

2. Optionally connect () the socketto an | net Addr ess (see
Section 15.3) and port number.

3. Create one or more Dat agr anPacket objects; these are
wrappers around a byte array that contains data you want to send
and is filled in with data you receive.

4. If youdid notconnect () the socket, provide the | net Addr ess
and port when constructing the Dat agr anPacket .

5. Set the packet's length, and use sock. send(packet) to send
data to the server.

6. Use sock.receive() toretrieve data.

Another difference is that datagram transmission preserves message boundaries. That is, if you
write 20 bytes and then write 10 bytes when using TCP, the program reading from the other end
will not know if you wrote one chunk of 30 bytes, two chunks of 15, or even 30 individual
characters. With a Dat agr anSocket , you construct a Dat agr anPacket object for each buffer,

and its contents are sent as a single entity over the network; its contents will not be mixed
together with the contents of any other buffer. The Dat agr anPacket object has methods like
get Lengt h(),setPort(), andso on.

Example 15-8 is a short program that connects via UDP to the Dayt i ne date and time server

used in Section 15.5. Since there is no real notion of "connection" with UDP, even services that
only send you data must be contacted by sending an empty packet, which the UDP server uses
to return its response.

Example 15-8. DaytimeUDP.java

public class Dayti neUDP {
/** The UDP port nunber */
public final static int DAYTI ME_PORT = 13;

/** A buffer plenty big enough for the date string */
protected final static int PACKET_SIZE = 100;

/1 main program
public static void main(String[] argv) throws | OException {
if (argv.length < 1) {
Systemerr.println("usage: java DayTi me host");
Systemexit(1l);
}
String host = argv[O];
I net Addr ess servAddr = | net Address. get ByNane(host);
Dat agr anSocket sock = new Dat agr anSocket () ;

/1 Allocate the data buffer
byte[] buffer = new byte[PACKET_SI ZE] ;

/1 The udp packet we will send and receive
Dat agr anPacket packet = new Dat agr anPacket (
buf fer, PACKET_SI ZE, servAddr, DAYTI MVE_PORT);

/* Send enmpty max-length (-1 for null byte) packet to server */
packet . set Lengt h(PACKET_SI ZE-1) ;

sock. send(packet);

Debug. println("net", "Sent request");

/'l Receive a packet and print it.
sock. recei ve(packet);

Debug. println("net", "Cot packet of size " + packet. getLength(
));
Systemout.print("Date on " + host + " is " +
new String(buffer, 0, packet.getlLength()));
}
}

I'll run it to my server just to be sure that it works:

$ jikes +E -d . Dayti meUDP. | ava

$ java Dayti meUDP dari an

Date on darian is Sat Jan 27 12:42:41 2001
$

15.9 Program: TFTP UDP Client

This program implements the client half of the TFTP application protocol, a well-known service
that has been used in the Unix world for network booting of workstations since before Windows
3.1. I chose this protocol because it's widely implemented on the server side, so it's easy to find a
test server for it.

The TFTP protocol is a bit odd. The client contacts the server on the well-known UDP port
number 69, from a generated port number, and the server responds to the client from a
generated port number. Further communication is on the two generated port numbers.

B3I When the application doesn't care, these are usually made up by the operating system. For example,
when you call a company from a pay phone or cell phone, the company doesn't usually care what number
you are calling from, and if it does, there are ways to find out. Generated port numbers generally range from
1024 (the first non-privileged port; see Chapter 16) to 65535 (the largest value that can be held in a 16-bit
port number).

Getting into more detail, as shown in Figure 15-1, the client initially sends a read request with
the filename, and reads the first chunk of data. The read request consists of two bytes (a short)
with the read request code (short integer with a value of 1, defined as OP_RRQ), two bytes for
the sequence number, then the ASCII filename, null terminated, and the string octet, also null
terminated. The server verifies that it can open the file and, if so, sends the first data packet
(OP_DATA), and then reads again. This read-acknowledge cycle is repeated until all the data is
read. Note that each packet is 516 bytes (512 bytes of data, plus 2 bytes for the packet type and
2 more for the packet number) except the last, which can be any length from 4 (zero bytes of
data) to 515 (511 bytes of data). If there is a network 1/O error, the packet is re-sent. If a given
packet goes astray, both client and server are supposed to perform a timeout cycle. This client
does not, but the server does. You could add timeouts using a thread; see Section 24.5. The
client code is shown in Example 15-9.

Figure 15-1. The TFTP protocol packet formats

p oo shrimg E05 sheing E0S
"OP BRI 0l Tlenorme 0 reode 0
Fiytes n bytes 1 byte o bytes | byte
. opcode sty E0s striny E0S
write request
(0P_WRQ) 02 filesom 0 mede 0
2 bytes n bytes | byte n byfes | byte
epentle
st blocki dota
(OP_DATA) g
Hoytes 2hytes o byies, 0= ns 812
opcode
acknowledgment
(OP_ACK) ¥ | bokd
2 bytos 2 bytes
cpente slring BO%
EFror % : 0
(OP_ERROR) $ | .o arrsiring
Zhytes Fhytes n bytes I byte

Example 15-9. RemCat.java

i mport java.io.*;
i mport java.net.*;

*

~

EEE S

~

RentCat - renotely cat (DOS type) a file, using the TFTP protocol
Inspired by the "rcat" exercise in Learning Tree Course 363,
<I>UNI X Networ k Progranmm ng</1>, by Dr. Chris Brown.

Note that the TFTP server is NOT "internationalized"; the name and
node in the protocol are defined in terns of ASCI I, not Uni Code.

public class RentCat {
/** The UDP port nunber */
public final static int TFTP_PORT = 69;
/** The node we will use - octet for everything. */
protected final String MODE = "octet"”;

/** The offset for the code/response as a byte */
protected final int OFFSET_REQUEST = 1

/** The offset for the packet nunmber as a byte */
protected final int OFFSET_PACKETNUM = 3;

/** Debugging flag */
protected static bool ean debug = fal se;

/** TFTP op-code for a read request */
public final int OP_RRQ = 1,
/** TFTP op-code for a read request */

OP_WRQ = 2
[** TFTP op-code for a read request */
OP_DATA =3,
[** TFTP op-code for a read request */
OP_ACK = 4,
[** TFTP op-code for a read request */
OP_ERROR = 5
protected final static int PACKET = 516; Il == 2+ 2 + 512

protected String host;

protected | net Address servAddr;
prot ect ed Dat agr anSocket sock;
protected byte buffer[];

prot ect ed Dat agranPacket inp, outp;

/** The main programthat drives this network client.
* @aram argv[0] hostnanme, running TFTP server
* @aramargv[l..n] filenane(s), mnmust be at |east one
*/
public static void main(String[] argv) throws | OException {
if (argv.length < 2) {
Systemerr.println("usage: java RenCat host
filenane[...]");
Systemexit(1l);

}
i f (debug)
Systemerr.println("Java RenCat starting");
RentCat rc = new RentCat (argv[0]);
for (int i =1; i<argv.length; i++) {
i f (debug)

}

Systemerr.println("-- Starting file " +
argv[0] + ":" + argv[i] + "---");
rc.readFile(argv[i]);

RentCat (String host) throws | OException {

}

super();

t hi s. host = host;

servAddr = I net Address. get ByNane(host);

sock = new Dat agr anSocket ();

buf fer = new byt e[PACKET] ;

i np = new Dat agr anPacket (buf fer, PACKET);

out p = new Dat agr anPacket (buffer, PACKET, servAddr, TFTP_PORT);

void readFile(String path) throws | OException {

/* Build a tftp Read Request packet. This is nessy because the
* fields have variable |l ength. Numbers nust be in
* network order, too; fortunately Java just seens
* naturally smart enough :-) to use network byte order
*/
buffer[0] = O;
buf f er [OFFSET_REQUEST] = OP_RRQ /1 read request
int p=2; /1 nunber of chars into buffer

/1 Convert filename String to bytes in buffer , using "p" as an
/1 offset indicator to get all the bits of this request

/1 in exactly the right spot.

pat h. get Bytes(0, path.length(), buffer, p); // file nane

p += path.length();

buf fer[p++] = 0; /1 null byte term nates string

/1 Simlarly, convert MODE ("octet") to bytes in buffer
MODE. get Byt es(0, MODE.length(), buffer, p);

p += MODE. |l ength();

buf fer[p++] = 0; /1 null term nate

/* Send Read Request to tftp server */
out p. set Lengt h(p) ;
sock. send(out p) ;

/* Loop readi ng data packets fromthe server until a short
* packet arrives; this indicates the end of the file.
*/
int len = 0;
do {
sock. recei ve(inp);
i f (debug)
Systemerr. println(
"Packet # " +

Byte.toString(buffer[OFFSET_PACKETNUM) +

"RESPONSE CODE "+

Byte.toString(buffer[OFFSET_REQUEST]));

i f (buffer[OFFSET_REQUEST] == OP_ERROR) {
Systemerr.println("rencat ERROR " +
new String(buffer, 4, inp.getLength()-4));

return;

}
i f (debug)
Systemerr.println("Got packet of size
i np.getLength());

(LI

/* Print the data fromthe packet */
Systemout.wite(buffer, 4, inp.getLength()-4);

/* Ack the packet. The bl ock nunber we
* want to ack is already in buffer so
we just change the opcode. The ACK is
sent to the port number which the server
just sent the data from NOT to port
TFTP_PORT.
/
buf f er[OFFSET_REQUEST] = OP_ACK
out p. set Lengt h(4);
outp.setPort(inp.getPort());
sock. send(out p) ;
} while (inp.getLength() == PACKET);

* % Xk

i f (debug)
Systemerr.println("** ALL DONE** Leaving |oop, |ast size "
+
i np.getLength());
}
}

To test this client, you would need a TFTP server. If you are on a Unix system that you
administer, you can enable the TFTP server to test this client just by editing the file /etc/inetd.conf
and restarting (or just reloading, with kill -HUP) the inetd server. inetd is a program that listens for
a wide range of connections and starts the servers only when a connection from a client comes
along (a kind of lazy evaluation). Beware of security holes; don't turn a TFTP server loose on the
Internet without first reading a good security book, such as O'Reilly's Building Internet Firewalls. |
set up the traditional /tftpboot directory, put this line in my inetd.conf, and reloaded inetd:

tftp dgramudp wait root /usr/libexec/tftpd tftpd -s /tftpboot

(On MS Windows/NT, you could probably enable this from the Services Control Panel.) Then |
put a few test files, one of them named foo, into the /tftpboot directory. Running:

$ java RentCat |ocal host foo

produced what looked like the file. But just to be safe, | tested the output of RenCat against the
original file, using the Unix diff comparison program. No news is good news:

$ java RenCat local host foo | diff - /tftpboot/foo

So far so good. Let's not slip this program on an unsuspecting network without exercising the
error handling at least briefly:

$ java RenCat | ocal host nosuchfile
rentat ERROR: File not found
$

15.10 Program: Telnet Client

This program is a simple Telnet client. Telnet, as you probably know, is the oldest surviving
remote login program in use on the Internet. It began on the original ARPAnet and was later
translated for the Internet. A Unix command-line client lives on, and there are several windowed
clients in circulation. For security reasons, the use of Telnet as a means of logging in remotely
over the Internet has largely been superseded by SSH (see http://www.openssh.com).
However, a Telnet client remains a necessity for such purposes as connecting locally, as well as
debugging textual socket servers and understanding their protocols. For example, it is common to
connect from a Telnet client to an SMTP (email) server; you can often intuit quite a bit about the
SMTP server even if you wouldn't normally type an entire mail session interactively.

When you need to have data copied in both directions at more or less the same time -- from the
keyboard to the remote program, and from the remote program to the screen -- there are two
approaches. Some 1/O libraries in C have a function called pol | () orsel ect () that allows
you examine a number of files to see which ones are ready for reading or writing. Java does not
support this model. The other model, which works on most platforms and is the norm in Java, is
to use two threads,™ one to handle the data transfer in each direction. That is our plan here; the
class Pi pe encapsulates one thread and the code for copying data in one direction; two
instances are used, one to drive each direction of transfer independently of the other.

1 A thread is one of (possibly) many separate flows of control within a single process; see Section 24.2.

This program allows you to connect to any text-based network service. For example, you can talk
to your system's SMTP (simple mail transport protocol) server, or the Dayt i ne server (port 13)
used in several earlier recipes in this chapter.

$ java Tel net darian 13
Host darian; port 13
Connected K

Sat Apr 28 14:07:41 2001
nNC

$

The source code is shown in Example 15-10.

Example 15-10. Telnet.java

i nport java.net.?*;
i nport java.io.*;
/**

* Telnet - very mininmal (no options); connect to given host and
service

*/
public class Tel net {
String host;
i nt portNum

public static void main(String[] argv) {
new Telnet().tal kTo(argv);
}

private void tal kTo(String av[]) {
if (av.length >= 1)
host = av[O0];

el se
host = "l ocal host";
if (av.length >= 2)
port Num = I nteger. parselnt(av[1]);
el se portNum = 23;
Systemout.println("Host " + host + "; port " + portNun);

try {
Socket s = new Socket (host, portNum;

/1 Connect the renote to our stdout
new Pi pe(s.getlnputStream(), Systemout).start();

/1 Connect our stdin to the renote
new Pi pe(Systemin, s.getQutputStrean()).start();

} catch(I Oexception e) {
Systemout.println(e);
return;

}
System out. println("Connected OK");

}

/** This class handl es one side of the connection. */
/* This class handl es one half of a full-duplex connection.
* Line-at-a-tinme node. Streans, not witers, are used.
*/
cl ass Pi pe extends Thread {
Dat al nput Stream i s;
Print Stream os;

/1 Constructor

Pi pe(InputStreamis, QutputStream os) {
this.is = new Datal nput Strean(is);
this.os = new PrintStrean{os);

}

/1 Do sonething nethod
public void run() {
String |ine;
try {
while ((line = is.readLine()) !'=null) {
os.print(line);
os.print("\r\n");
os.flush();

}
} catch(I Oexception e) {

t hrow new Runti meExcepti on(e. get Message());
}

}
15.11 Program: Chat Client

This program is a simple Chat program. You can't break in on ICQ or AIM with it, because they
each use their own protocol;™! this one simply writes to and reads from a server, locating the

server with the applet method get CodeBase(). The server for this will be presented in

Chapter 16. How does it look when you run it? Figure 15-2 shows me chatting all by myself
one day.

51 For an open source program that "AIMs" to let you talk to both from the same program, check out Jabber,
at http://www.jabber.org.

Figure 15-2. Chat client in action

as Chat: lan Darwin's Toy Chal Room Applel

ChatHaster: Welcoms! youu're the fir=t one hers
localhost: Hello everybody

localhost: I lowve talking o myself....

localhost: ... it Juarantess me a captive audiencal

B F
[Ll:lgnuli Message here: | |

]'u'-"&mg: Applet Windos

The code is reasonably self-explanatory. We read from the remote server in a thread to make the
input and the output run without blocking each other; this is discussed in Chapter 24. The
reading and writing are discussed in this chapter. The program is an applet (see Section 17.3)
and is shown in Example 15-11.

Example 15-11. ChatClient.java

i mport java. applet.*;

i mport java.awt.*;

i mport java.awt.event.*;
i mport java.io.*;

i mport java.net.*;

/** Sinple Chat Room Appl et.
* Witing a Chat Room seens to be one of many obligatory rites (or
W ongs)
* of passage for Java experts these days.
* <pP>
* This one is a toy because it doesn't inplenment nmuch of a conmand
prot ocol , which
* means we can't query the server as to * who's logged in,
* or anything fancy like that. However, it works OK for small groups.
* <pP>
* Uses client socket w two Threads (nmain and one constructed),
* one for reading and one for witing.
* <pP>
* Server nultiplexes nessages back to all clients.
* <pP>
* TODO in V2: use Java's Miulti Cast Socket, if it works OK on '95.
*/
public class Chat Room ext ends Applet ({
[** The state */
prot ected bool ean | oggedl n;
/* The Frane, for a pop-up, durable Chat Room */
protected Frame cp;

/** The default port nunber */

protected static int PORTNUM = 7777,

/** The actual port nunber */

protected int port;

[** The network socket */

protected Socket sock;

/** BufferedReader for reading from socket */

prot ected BufferedReader is;

/[** PrintWiter for sending lines on socket */

protected PrintWiter pw,

[** TextField for input */

protected TextField tf;

/** Text Area to display conversations */

protected TextArea ta;

/** The Login button */

protected Button lib;

/** The LogQUT button */

protected Button | ob;

[** The TitleBar title */

final static String TITLE = "Chat: lan Darwin's Toy Chat Room
Appl et™;

/** The nessage that we paint */

protected String pai nt Message;

/[** Init, inherited from Applet */
public void init() {
pai nt Message = "Creating Wndow for Chat";
repaint();
cp = new Frane(Tl TLE);
cp. set Layout (new BorderLayout());
String portNum = get Paraneter("port");
port = PORTNUM
if (portNum == null)

port = Integer. parselnt(portNum;
/1 The CU
ta = new Text Area(14, 80);
ta. set Edi t abl e(fal se); /'l readonly

t a. set Font (new Font (" Monospaced", Font.PLAIN, 11));
cp. add(Bor der Layout . NORTH, ta);

Panel p = new Panel ();
Button b;

/1 The login button
p.add(lib = new Button("Login"));
lib.setEnabl ed(true);
lib.request Focus();
i b.addActi onLi st ener (new ActionListener() {
public void actionPerformed(ActionEvent e) {
login();
i b.setEnabl ed(false);
| ob. set Enabl ed(true);
tf.request Focus(); /1 set keyboard focus in right
pl ace!

1)

/1 The | ogout button
p. add(! ob = new Button("Logout"));
| ob. set Enabl ed(f al se);
| ob. addAct i onLi st ener (new Acti onListener() {
public void actionPerformnmed(ActionEvent e) {
[ogout ();
i b.setEnabl ed(true);
| ob. set Enabl ed(f al se);
lib.request Focus();

1)

p. add(new Label ("Message here:"));
tf = new TextFiel d(40);
tf.addActi onLi st ener (new ActionListener() {
public void actionPerformnmed(ActionEvent e) {
if (loggedln) {
pw. printl n(Chat. CVvD BCAST+tf.getText());
tf.setText("");

1)

p. add(tf);

cp. add(Bor der Layout . SQUTH, p);

cp. addW ndowLi st ener (new W ndowAdapter() {

public void w ndowC osi ng(WndowEvent e) {
/1 1f we do setVisible and di spose, then the C ose

conpl et es
Chat Room t hi s. cp. set Vi si bl e(fal se);
Chat Room t hi s. cp. di spose()
[ogout ();
}
1)
cp. pack();

/1l After packing the Franme, centre it on the screen
Di nension us = cp.getSize(),
t hem = Tool ki t. get Def aul t Tool kit ().getScreenSi ze();
int newX = (themwidth - us.width) / 2;
int newy = (them height- us.height)/ 2;
cp. set Locati on(newX, newy);
cp.setVisible(true);
pai nt Message = "W ndow shoul d now be vi si bl e";
repaint();

[** LOG ME IN TO THE CHAT */
public void login() {
if (1oggedln)
return;
try {
sock = new Socket (get CodeBase().getHost(), port);
i s = new BufferedReader (new
I nput St r eanReader (sock. getl nput Strean()));
pw = new PrintWiter(sock.getQutputStrean(), true);

} catch(l Oexception e) {

showSt atus("Can't get socket: " + e);
cp. add(new Label ("Can't get socket: " + e));
return;

}

/1 construct and start the reader: from server to textarea
/1 make a Thread to avoid | ockups.
new Thread(new Runnable() {
public void run() {
String |ine;
try {
while (loggedin & ((line = is.readLine()) !=

nul 1))
ta. append(line + "\ n");
} catch(I Oexception e) {
showSt at us(" GAAl LOST THE LINK!I!");
return;
}
}
}).start();
/1 FAKE LOA N FOR NOW
pw. println(Chat.CvD LOG N + "Appl et User");
| oggedl n = true;
}

/** Log ne out, Scotty, there's no intelligent life here! */
public void logout() {
if (!l oggedln)
return;
| oggedl n = fal se;
try {
if (sock !'= null)
sock. close();
} catch (1 CException ign) {
/1 so what?
}

}

/1 1t is deliberate that there is no STOP nethod - we want to keep
/1 going even if the user noves the browser to another page.

/1 Anti-social? Maybe, but you can use the CLOSE button to kill

/1 the Frame, or you can exit the Browser.

/** Paint paints the small w ndow that appears in the HTM,
* telling the user to | ook el sewhere!
*/
public void paint(Gaphics g) {
Dinension d = getSize();
int h = d. height;
int w=d. width;
g.fillRect (0, O, w, 0);
g. set Col or (Col or. bl ack) ;
g. drawst ri ng(pai nt Message, 10, (h/2)-5);

15.11.1 See Also

This chat applet might not work on all browser flavors; you might need the Java Plug-in. See
Section 23.6.

There are many better-structured ways to write a chat client, including RMI, Java's Remote
Methods Interface (see Section 22.1) and the Java Messaging Services, part of the Java 2
Enterprise Edition.

If you need to encrypt your socket connection, check out Sun's JSSE (Java Secure Socket
Extension).

For a good overview of network programming from the C programmer's point of view, see the
book Unix Network Programming by the late W. Richard Stevens. Despite the book's name, it's
really about socket and TCP/IP/UDP programming, and covers all parts of the (Unix version)
networking API and protocols such as TFTP in amazing detalil.

16 Server Side Java: Sockets

16.1 Introduction

Sockets form the underpinnings of all networking protocols. JDBC, RMI, CORBA, EJB, and the
non-Java RPC (Remote Procedure Call), the foundation of the Network File System, or NFS: all
of these are implemented by connecting various types of sockets together. Socket connections
can be implemented in many languages, not just Java: C, C++, Perl, and Python are also
popular, and many others are possible. A client or server written in any one of these languages
can communicate with its opposite written in any of the other languages. Therefore, it's worth
taking a quick look at how the Ser ver Socket behaves, even if you wind up utilizing the higher-
level services such as RMI, JDBC, CORBA, or EJB.

The discussion looks first at the Ser ver Socket itself, then at writing data over a socket in
various ways. Finally, there is a complete implementation of a usable network server written in
Java: the chat server from the client in the previous chapter.

16.2 Opening a Server for Business
16.2.1 Problem

You need to write a socket-based server.

16.2.2 Solution

Create a Ser ver Socket for the given port number.

16.2.3 Discussion

The Ser ver Socket represents the "other end” of a connection, the server that waits patiently for
clients to come along and connect to it. You construct a Ser ver Socket with just the port
number;™ since it doesn't need to connect to another host, it doesn't need a particular host's
address as the client socket constructor does.

1 you can't just pick any port number for your own service, of course. There are certain well-known ports
listed in your services file, such as 22 for Secure Shell, 25 for SMTP, and hundreds more. Also, on server-
based operating systems, ports below 1024 are considered "privileged" ports, and require root or
administrator privilege to create. This was an early form of security mechanism; today, with zillions of single-
user desktops connected to the Internet, it provides little, but the restriction remains.

Assuming the Ser ver Socket constructor doesn't throw an exception, you're in business. Your
next step is to await client activity, which you do by calling accept (). This call blocks until a
client connects to your server; at that point, the accept () returns to you a Socket object (not
a Ser ver Socket) that is connected in both directions to the Socket object on the client (or its
equivalent, if written in another language). Example 16-1 shows the code for a socket-based
server.

Example 16-1. Listen.java

/**

* Listen -- nmake a ServerSocket and wait for connections.

*/

public class Listen {
/** The TCP port for the service. */
public static final short PORT = 9999;

public static void main(String[] argv) throws | Oexception {
Server Socket sock;
Socket client Sock;

try {
sock = new Server Socket (PORT) ;
while ((clientSock = sock.accept()) !'= null) {
/'l Process it.
process(client Sock) ;
}

} catch (1 Oexception e) {
Systemerr.println(e);
}

}

/** This would do sonething with one client. */
static void process(Socket s) throws | CeException {
Systemout.println("Accept fromclient " + s.getlnet Address(
));
/'l The conversation woul d be here.
s.close();

You would normally use the socket for reading and writing, as shown in the next few recipes.

You may want to listen only on a particular network interface . While we tend to think of network
addresses as computer addresses, the two are not the same. A network address is actually the
address of a particular network card, or network interface connection, on a given computing
device. A desktop computer, laptop, Palm handheld, or cellular phone might have only a single
interface, hence a single network address. But a large server machine might have two or more
interfaces, usually when it is connected to several networks. A network router is a box (either
special-purpose, e.g., Cisco, or general-purpose, e.g., a Unix host) that has interfaces on multiple
networks and has both the capability and the administrative permission to forward packets from
one network to another. A program running on such a server machine might want to provide
services only to its inside network or its outside network. One way to accomplish this is by
specifying the network interface to be listened on. Suppose you wanted to provide a different view
of web pages for your intranet than you provided to outside customers. For security reasons, you
probably wouldn't run both these services on the same machine. But if you wanted to, you could
do this by providing the network interface addresses as arguments to the Ser ver Socket
constructor.

However, to use this form of the constructor, you don't have the option of using a string for the
network address's name, as you did with the client socket; you must convert it to an

| net Addr ess object. You also have to provide a backlog argument, which is the number of
connections that can queue up to be accepted before clients are told that your server is too busy.
The complete setup is shown in Example 16-2.

Example 16-2. ListenInside.java

/**

* Listenlnside -- nmake a server socket that listens only on
* a particular interface, in this case, one called "inside"
*/
public class Listenlnside {
/** The TCP port for the service. */
public static final short PORT = 9999
[** The nanme of the network interface. */
public static final String |INSIDE HOST = "acnew dget s-insi de"
/** The nunber of clients allowed to queue */
public static final int BACKLOG = 10;

public static void main(String[] argv) throws | OException {
Server Socket sock
Socket client Sock;

try {
sock = new Server Socket (PORT, BACKLOG

| net Addr ess. get ByNane(| NSI DE_HOST)) ;
while ((clientSock = sock.accept()) !'=null) {

/1 Process it.
process(client Sock);

} catch (1 COException e) {
Systemerr.println(e);
}

}

/** This would do sonmething with one client. */
static void process(Socket s) throws | OException {
Systemout.println("Accept frominside " + s.getlnet Address(
)
/] The conversation woul d be here.
s.close();

}

The | net Addr ess. get ByNane() looks up the given hostname in a system-dependent way,
referring to a configuration file in the /etc or \windows directory, or to some kind of resolver such
as the Domain Name Service. Consult a good book on networking and system administration if
you need to modify this data.

16.3 Returning a Response (String or Binary)

16.3.1 Problem

You need to write a string or binary data to the client.

16.3.2 Solution

The socket gives you an | nput St r eamand an Qut put St r eam Use them.

16.3.3 Discussion

The client socket examples in the previous chapter called the get | nput St rean() and

get Qut put St rean{) methods. These examples do the same. The main difference is that they
get the socket from a Ser ver Socket 'saccept () method, and that normally the server
creates or modifies the data and writes it to the client. Example 16-3 is a simple Echo server,
which the Echo client of Section 15.5 can connect to. This server handles one complete
connection with a client, then goes back and does the accept () to wait for the next client.

Example 16-3. EchoServer.java

/**
* EchoServer - create server socket, do I-Oon it.
*/
public class EchoServer ({
[** Qur server-side rendezvous socket */
protected Server Socket sock;
/** The port nunber to use by default */
public final static int ECHOPORT = 7;
/** Flag to control debugging */
prot ected bool ean debug = true;

[** main: construct and run */

public static void main(String[] argv) {
new EchoSer ver (ECHOPORT) . handl e() ;

}

/** Construct an EchoServer on the given port nunber */
public EchoServer(int port) {

try {
sock = new Server Socket (port);

} catch (1 COException e) {
Systemerr.printin("l/Oerror in setup");
Systemerr.println(e);

Systemexit(1l);

}

/[** Thi s handl es the connections */
protected void handle() {
Socket ios = null;
Buf f eredReader is = null;
PrintWiter os = null;
while (true) {
try {
i os = sock.accept();
Systemerr.println("Accepted from" +
i 0s. get |l net Address().getHost Nane());
i s = new BufferedReader (
new | nput St r eanReader (i 0s. getl nput Stream),
"8859_1"));
0s = new PrintWiter(
new Qut put StreamNiter (
ios.getQutputStrean(), "8859 1"), true);
String echoli ne;
while ((echoLine = is.readLine()) != null) {
Systemerr.println("Read " + echolLine);
os. print(echoLine + "\r\n");

Systemerr.println("Wote + echolLi ne);

}

Systemerr.printin("A'l done!");
} catch (1 Oexception e) {

Systemerr.println(e);

} finally {
try {
if (is !=null)
is.close();
if (os !'=null)
os.close();
if (ios !'= null)

ios.close();
} catch (1 Oexception e) {
/'l These are unlikely, but mght indicate that
/1l the other end shut down early, a disk filled up
/1 but wasn't detected until close, etc.
Systemerr.printin("IO Error in close");

}
}
/ * NOTREACHED*/

}

To send a string across an arbitrary network connection, some authorities recommend sending
both the carriage return and the newline character. This explains the \ r \ n in the code. The
reason is that if the other end is a DOS program or a Telnet-like program, it may be expecting
both characters. On the other hand, if you are writing both ends, you can simply use pri nt | n(
) , followed always by an explicit f | ush() before you read, to prevent the deadlock of having
both ends trying to read with one end's data still in the Pri nt Wi t er's buffer!

If you need to process binary data, use the data streams from | ava. | o instead of the
readers/writers. | need a server for the Dayt i neBi nary program of Section 15.6. In operation,
it should look like the following.

C.\javasrc\ network>j ava Dayti nmeBi nary

Reme tinme is 3161316799

BASE DI FF i s 2209032000

Tinme diff == 952284799

Tinme on |ocal host is Sun Mar 05 19:33:19 GVI 2000

C.\javasrc\network>tinme
Current tinme is 7:33:23.84p
Enter new tine:

C.\javasrc\ net wor k>dat e
Current date is Sun 03-05-2000
Enter new date (mmdd-vyy):

C.\j avasrc\ net wor k>

Well, it happens that | have such a program in my arsenal, so | present it in Example 16-4. Note
that it directly uses certain public constants defined in the client class. Normally these are defined
in the server class and used by the client, but | wanted to present the client code first.

Example 16-4. Dayti

/**

* Dayti meServer
*/

meServer.java (binary server protocol)

- send the binary tine.

public class Dayti neServer {
/** Qur server-side rendezvous socket */

Server Socket
/** The port
public final

sock;
nunber to use by default */
static int PORT = 37,

/** main: construct and run */

public stati
new Dayt
}

/** Construc
public Dayti
try {

sock
} catch
Syst
Syst
}
}

[** Thi s han
protected vo

Socket i
Dat aCut p
while (t
try
PORT) ;
i n seconds
first!
} ca

c void main(String[] argv) {
i meServer (PORT) . runService();

t an EchoServer on the given port number */
meServer (int port) {

= new Server Socket (port);

(1 OException e) {

emerr.printIn("l1/Oerror in setup\n" + e);
emexit(l);

dl es the connections */
idrunService() {

os = null;

ut Streamos = null;
rue) {

{

Systemout.println("Waiting for connection on port " +

i os = sock.accept();
Systemerr.println("Accepted from" +
i 0s. get |l net Address().getHost Nane());
os = new Dat aQut put St rean(i os. get Qut put Stream());
long tine = SystemcurrentTineMIlis();

time /= DaytinmeBi nary. VSEC, /1 Daytine Protocol is

// Convert to Java tinme base
time += Dayti neBi nary. BASE Dl FF;

/1 Wite it, truncating cast to int since it is using
/1 the Internet Daytine protocol which uses 4 bytes.
/1 This will fail in the year 2038, along with al

/1 32-bit tinmekeeping systens based from 1970.

/1l Renenber, you read about the Y2038 crisis here

os.witelnt((int)tinme);
os.close();

tch (1 OException e) {
Systemerr.println(e);

}

16.4 Returning Object Information
16.4.1 Problem

You need to return an object.

16.4.2 Solution

Create the object you need, and write it using an Obj ect Cut put St r eamcreated on top of the
socket's output stream.

16.4.3 Discussion

In the previous chapter, you saw a program that read a Dat e object over an
Obj ect | nput St r eam This code is the other end of that process, the Dayt i neChj ect Ser ver.

Example 16-5 is a server that constructs a Dat e object each time it's connected to, and returns
it.

Example 16-5. DaytimeObjectServer.java

/*

*/

public class Dayti neCbj ect Server {
/** The TCP port for the object tine service. */
public static final short TIME PORT = 1951;

public static void main(String[] argv) {
Ser ver Socket sock;
Socket client Sock;
try {
sock = new Server Socket (TI ME_PORT) ;
while ((clientSock = sock.accept()) !'=null) {
System out. println("Accept from" +
cli ent Sock. get I net Address());
hj ect Qut put Stream os = new Obj ect Qut put St r ean(
client Sock. get Qutput Strean({));

/1 Construct and wite the Object
os.witeChject(new Date());

os.close();

}

} catch (1 CException e) {
Systemerr.println(e);
}

16.5 Handling Multiple Clients
16.5.1 Problem

Your server needs to handle multiple clients.
16.5.2 Solution

Use a thread for each.

16.5.3 Discussion

In the C world, there are several mechanisms that allow a server to handle multiple clients. One is
to use a special system call sel ect () orpol | (), which notifies the server when any of a set
of file/socket descriptors is ready to read, ready to write, or has an error. By including its
rendezvous socket (equivalent to our Ser ver Socket) in this list, the C-based server can read
from any of a number of clients in any order. Java does not provide this call, as it is not readily
implementable on some Java platforms. Instead, Java uses the general-purpose Thr ead
mechanism, as described in Section 24.9. Threads are, in fact, one of the other mechanisms
available to the C programmer on most platforms. Each time the code accepts a hew connection
from the Ser ver Socket , it immediately constructs and starts a new thread object to process that
client.”

[21 There are some limits to how many threads you can have, which affect only very large, enterprise-scale
servers. You can't expect to have thousands of threads running in the standard Java runtime. For large,
high-performance servers, you may wish to resort to native code (see Section 26.5) using sel ect () or

poll().

The code to implement accepting on a socket is pretty simple, apart from having to catch
| CExcepti ons:

/** Run the nmain |loop of the Server. */
void runServer() {
while (true) {

try {
Socket clntSock = sock.accept();

new Handl er (cl nt Sock).start();
} catch(I Cexception e) {
Systemerr.println(e);
}

To use a thread, you must either subclass Thr ead or implement Runnabl e. The Hand! er class
must be a subclass of Thr ead for this code to work as written; if Hand! er instead implemented
the Runnabl e interface, the code would pass an instance of the Runnabl e into the constructor
for Thr ead, as in:

Thread t = new Thread(new Handl er (cl nt Sock));
t.start();

But as written, Handl er is constructed using the normal socket returned by the accept () call,
and normally calls the socket's get | nput St rean() and get Qut put St rean() methods and
holds its conversation in the usual way. I'll present a full implementation, a threaded echo client.
First, a session showing it in use:

$ java EchoServer Threaded

EchoServer Thr eaded ready for connections.

Socket starting: Socket[addr=local host/127.0.0.1, port=2117, | ocal port =7]
Socket starting:

Socket [addr =dari an/ 192. 168. 1. 50, por t =13386, | ocal port =7]

Socket starting:

Socket [addr =dari an/ 192. 168. 1. 50, port =22162, | ocal port =7]

Socket ENDED: Socket[addr=darian/192.168. 1.50, port=22162, | ocal port =7]
Socket ENDED: Socket[addr=darian/192.168. 1.50, port=13386, | ocal port =7]
Socket ENDED: Socket[addr=I ocal host/127.0.0.1, port=2117, | ocal port =7]

Here, | connected to the server once with my EchoCl | ent program and, while still connected,
called it up again (and again) with an operating system-provided Telnet client. The server
communicated with all the clients concurrently, sending the answers from the first client back to
the first client, and the data from the second client back to the second client. In short, it works. |
ended the sessions with the end-of-file character in the program, and used the normal disconnect
mechanism from the Telnet client. Example 16-6 is the code for the server.

Example 16-6. EchoServerThreaded.java

/**
* Threaded Echo Server, sequential allocation schene.
*/
public class EchoServer Threaded {
public static final int ECHOPORT = 7;

public static void main(String[] av)

{
new EchoServer Threaded().runServer();
}
public void runServer()
{

Ser ver Socket sock;
Socket client Socket ;

try {
sock = new Server Socket (ECHOPORT) ;

System out . printl n("EchoServer Threaded ready for
connections.");

/* Wait for a connection */
whi | e(true)
cli ent Socket = sock.accept();
/* Create a thread to do the conmmunication, and start
it */
new Handl er (cl i ent Socket).start();

} catch(I Cexception e) {
/* Crash the server if 10 fails. Sonething bad has happened

*/
Systemerr.println("Could not accept " + e);
Systemexit(1l);
}
}
/** A Thread subclass to handl e one client conversation. */
cl ass Handl er extends Thread {
Socket sock;
Handl er (Socket s) {
sock = s;
}
public void run()
{
Systemout. println("Socket starting: " + sock);
try {
Dat al nput Stream i s = new Dat al nput St r eam(
sock. getlnputStrean());
PrintStream os = new Print Strean(
sock. get Qutput Stream(), true);
String line;
while ((line = is.readLine()) !=null) {
os.print(line + "\r\n");
os.flush();
sock.close();

} catch (1 Oexception e) {
Systemout.printin("IO Error on socket " + e);
return;

}

Systemout. println("Socket ENDED. " + sock);

}
}
}

There can be a performance issue if there are a lot of short transactions, since each client causes
the creation of a new threaded object. If you know or can reliably predict the degree of
concurrency that will be needed, an alternative paradigm involves the pre-creation of a fixed
number of threads. But then how do you control their access to the Ser ver Socket ? A look at
the Ser ver Socket class documentation reveals that the accept () method is not
synchronized, meaning that any number of threads can call the method concurrently. This could
cause bad things to happen. So | use the synchr oni zed keyword around this call to ensure that
only one client runs in it at a time, because it updates global data. When there are no clients
connected, you will have one (randomly selected) thread running in the Ser ver Socket object's
accept () method, waiting for a connection, plus n-1 threads waiting for the first thread to
return from the method. As soon as the first thread manages to accept a connection, it goes off
and holds its conversation, releasing its lock in the process so that another randomly chosen
thread is allowed into the accept () method. Each thread's r un() method has an indefinite
loop beginning with an accept () and then holding the conversation. The result is that client
connections can get started more quickly, at a cost of slightly greater server startup time. Doing it
this way also avoids the overhead of constructing a new Handl er or Thr ead object each time a
request comes along. This general approach is similar to what the popular Apache web server

does, though it normally creates a number of identical processes (instead of threads) to handle
client connections. Accordingly, | have modified the EchoSer ver Thr eaded class shown in

Example 16-7 to work this way.

Example 16-7. EchoServerThreaded?2.java

/**

* Threaded Echo Server, pre-allocation schene.
*/
public class EchoServer Threaded2 {

public static final int ECHOPORT = 7;
public static final int NUM THREADS = 4;

/** Main nmethod, to start the servers. */
public static void main(String[] av)

{
}

[** Constructor */
publ i c EchoServer Threaded2(int port, int numlhreads)

{

new EchoSer ver Thr eaded2(ECHOPORT, NUM THREADS) ;

Ser ver Socket servSock;
Socket client Socket;

try {
servSock = new Server Socket (ECHOPORT) ;

} catch(l Oexception e) {
/* Crash the server if 10O fails. Something bad has happened
*/
Systemerr.println("Could not create ServerSocket " + e);
Systemexit(1l);
return; [* NOTREACHED* /
}

/1 Create a series of threads and start them
for (int i=0; i<nunThreads; i++) {

new Thread(new Handl er (servSock, i)).start();
}

}

/** A Thread subclass to handl e one client conversation. */
cl ass Handl er extends Thread {

Ser ver Socket servSock;

i nt threadNunber;

/** Construct a Handler. */
Handl er (Server Socket s, int i) {
super();
servSock = s;
t hreadNunber = i;
set Name("Thread " + threadNunber);

public void run()

{
/* Wait for a connection */
while (true){
try {
Systemout.printin(getName() + " waiting");
/1 Wait here for the next connection.
synchroni zed(servSock) {
Socket clientSocket = servSock.accept();
}
Systemout.printin(getNane() + " starting, IP=" +
client Socket. getlnet Address());
Dat al nput Stream i s = new Dat al nput St r eam(
client Socket.getlnputStrean());
PrintStream os = new Print Strean(
client Socket.getQutputStream(), true);
String |ine;
while ((line = is.readLine()) !=null) {
os.print(line + "\r\n");
os.flush();
}
Systemout.println(getNane() + " ENDED ");
client Socket.close();
} catch (1 Oexception ex) {
Systemout.printin(getNane() + ": 10O Error on
socket " + ex);
return;
}
}
}
}
}

16.6 Network Logging

16.6.1 Problem

Your class is running inside a server container, and its debugging output is hard to obtain.
16.6.2 Solution

Use a network-based logger like the one shown here.

16.6.3 Discussion

Getting the debug output from a desktop client is fairly easy on most operating systems. But if the
program you want to debug is running in a "container" like a servlet engine or EJB server, it can
be difficult to obtain debugging output, particularly if the container is running on a remote
computer. It would be convenient if you could have your program send messages back to a
program on your desktop machine for immediate display. Needless to say, it's not that hard to do
this with Java's socket mechanism. | have written a small, simple API to handle this type of
logging function. The program being debugged is the "client" from a socket point of view -- even

though it may be running in a server-side container such as a web server or application server --
since the "network client" is the program that initiates the connection. The program that runs on
your desktop machine is the "server" program for sockets, since it waits for a connection to come
along.

Example 16-8 is a simple client program called Net LogSi npl e.
Example 16-8. NetLogSimple.java

/* A sinple exanple of using the NetLog program

* Unrealistic in that it's standalone; this APl is
* intended for use inside another program possibly
* a servlet or EJB.

*/

public class NetLogSi mple {

public static void main(String[] args) throws java.io.| OException {
Systemout. println("NetLogSi nple: Starting...");

/1l Get the connection to the NetlLog
Net Log nl = new NetLog();

/1 Show sending a String
nl.log("Hello Java");

/1 Show sendi ng Obj ects
nl.log(new java.util.Date());
nl.log(nl);

/1 Show sending null and ""
nl.log(null);

nl.log("");

(normal ly an accident...)

/1 Al done, close the |og
nl.close();

System out. println("NetLogSi nple: Done...");
}
In Figure 16-1, | show both the server and client running side by side.

Figure 16-1. NetLog server and client

Eineboswe.
Metl onServer

0: Thread 0 START, IP=insbuctorn144.19.74.25

0: Hella Java

0= Thu Agr 26 10:01:44 EDT 2001

0:Metlo ab698a -
vaind 5MS-DOS Prompt_
0: gruall stringh

C:shomesiansnet log>java HetLogSimple
0: Thread 0 ENDED etLogSimple: Starting...
tLogSimple: Done...

sshomesiannet Log >

The client-side API and the server code are both online. Example 16-9 shows the code for the
key parts of the server.

Example 16-9. NetLogServer.java

public class NetLogServer ({

*/

public static final int PORT = 65432;
public static final int NUM THREADS = 8;

JFrane theFrane;
JText Area t heText Area;

/** Main nmethod, to start the servers. */
public static void main(String[] av)

{
}

[** Constructor */
public NetLogServer(int port, int nunThreads)

{

new Net LogSer ver (PORT, NUM THREADS) ;

Ser ver Socket servSock;
Socket client Socket ;

try {
servSock = new Server Socket (PORT) ;

} catch(I Oexception e) {
/* Crash the server if 10O fails. Something bad has happened
Systemerr.println("Could not create Server Socket "
Systemexit(1l);
return; /*NOTREACHED*/

+ e);

}
// Build the GUJ - nust be before Handl er constructors!
theFrane = new JFrame("NetLog Server");

t heText Area = new JText Area(24, 80);
t heFr ane. get Cont ent Pane(). add(new JScrol | Pane(t heText Area));

// Now start the Threads

for (int i=0; i<nunThreads; i++) {
new Thread(new Handl er (servSock, i)).start();
}

t heFr ane. pack();
t heFrane. set Vi si bl e(true);
t heFr ane. addW ndowLi st ener (new W ndowAdapter() {
public void wi ndowC osi ng(WndowEvent we) ({
System exit(0);
}

1)

public synchronized void log(int tid, String s) {
StringBuffer sb = new StringBuffer()
sb. append(tid);
sb. append(": ");

if (s == null) {
sb. append("(null)");

}

else if (s.length() == 0) {
sb. append(" (null string)");

}

el se
sb. append(s);

sb. append('\n');

t heText Area. append(sb.toString());
t heText Area. set Car et Posi ti on(t heText Area. get Text().length());
t heFrane.toFront();

}

/** A Thread subclass to handl e one client conversation. */
cl ass Handl er extends Thread {

Ser ver Socket servSock

int tid;

/** Construct a Handler. */
Handl er (Ser ver Socket s, int i) {

super();

servSock = s;

tid =1i;

set Name("Thread " + tid);
}
public void run()
{

/* Wait for a connection */
while (true){
try {
/1 log(tid, getName() + " waiting");
Socket client Socket = servSock.accept();
log(tid,getName() + " START, |P=" +
cl i ent Socket . getl net Address());
Buf f eredReader is = new BufferedReader (

new
I nput St reanReader (cl i ent Socket. getlnputStrean()));
String line;
while ((line = is.readLine()) !=null) {
/1l Systemout.println(">>" + line);
log(tid,line);
}
log(tid,getNanme() + " ENDED ");
client Socket.close();
} catch (1 Oexception ex) {
log(tid, getName() + ": 1O Error on socket " +
ex);
return;

16.6.4 See Also

If you want to run this on a network, you need to be very aware of security issues. One very
common form of attack is a simple denial-of-service, during which the attacker makes a lot of
connections to your server in order to slow it down. If you had extended this program by writing
the log to disk, the attacker could fill up your disk by sending lots of garbage. However, because
this example displays the log on the screen, you would see this happening. Don't leave the server
running while you're not around to watch it!

The Apache Foundation Jakarta Project (http://jakarta.apache.orq) offers | og4j , which
provides a similar service but is more fully fleshed out; it can write to a file, an Qut put St r eamor
W iter,oraremote | og4j, Unix Syslog or NT Event Logger server. Java 2 SDK (JDK 1.4)
includes a new Event Logger mechanism.

16.7 Program: A Java Chat Server

This program implements a simple chat server (Example 16-10) that works with the chat applet
from Section 15.11. It accepts connections from an arbitrary number of clients; any message
sent from one client is broadcast to all clients. In addition to Ser ver Socket s, it demonstrates
the use of threads (see Chapter 24). And since there are interactions among clients, this server
needs to keep track of all the clients it has at any one time. | use an ArrayLi st (see Section
7.4) to serve as an expandable list, and am careful to use the synchr oni zed keyword around
all accesses to this list to prevent one thread from accessing it while another is modifying it (this is
discussed in Chapter 24).

Example 16-10. ChatServer.java

/** Sinple Chat Server to go with our Trivial Chat dient.
*

* Does not inplenent any form of "anonynous ni cknanes" - probably
* a good thing, given how a few peopl e have abused anonynous
* chat roons in the past.
*
/
public class Chat Server {

/** What | call nyself in system nessages */

protected final static String CHATMASTER I D = "Chat Master";
/** What goes between any handl e and the nessage */
protected final static String SEP = ": *;

[** The Server Socket */

protected Server Socket servSock;

/** The list of ny current clients */

protected ArraylList clients;

/** Debuggi ng state */

private bool ean DEBUG = fal se;

/** Main just constructs a Chat Server, which should never return */
public static void main(String[] argv) {
System out. println("Darwi nSys Chat Server 0.1 starting...");
Chat Server w = new Chat Server();
w. runServer(); /1 should never return.
Systemout. println("**ERROR* Chat Server 0.1 quitting");

}

/** Construct (and run!) a Chat Service */
Chat Server () {
clients = new ArrayList();
try {
servSock = new Server Socket (Chat . PORTNUM ;
System out. println("Darwi nSys Chat Server Listening on port

Chat . PORTNUM ;
} catch(I Oexception e) {
l og("10O Exception in ChatServer.<init>");
System exit(0);

}

public void runServer() {
try {
while (true) {
Socket us = servSock.accept();
String hostNanme = us. getl net Address().getHost Nane();
Systemout.println("Accepted from" + hostName);
Chat Handl er cl = new Chat Handl er (us, host Nane);
synchroni zed (clients) {
clients.add(cl);
cl.start();
if (clients.size() == 1)
cl . send(CHATMASTER | D
el se {
cl.send(CHATVMASTER I D, "Wl cone! you're the
[atest of " +
clients.size() + " users.");

}

}

} catch(1 OException e) {
l og("1 0O Exception in runServer: " + e);
System exit(0);

protected void log(String s) {
System out. println(s);
}

/[** Inner class to handl e one conversation */
protected class Chat Handl er extends Thread {
[** The client socket */
protected Socket client Sock;
/** BufferedReader for reading from socket */
prot ected BufferedReader is;
/[** PrintWiter for sending lines on socket */
protected PrintWiter pw,
[** The client's host */
protected String clientlP;
/[** String handle */
protected String |ogin;

[* Construct a Chat Handler */
publ i ¢ Chat Handl er (Socket sock, String clnt) throws | CException

{
client Sock = sock;
clientlP = clnt;
i s = new BufferedReader (
new | nput St r eanReader (sock. get I nput Streanm()));
pw = new PrintWiter(sock.getQutputStrean(), true);
}
/** Each ChatHandler is a Thread, so here's the run() nethod,
* whi ch handl es this conversation.
*/
public void run() {
String |ine;
try {
while ((line = is.readLine()) !'=null) {
char ¢ = line.charAt(0);
l[ine = line.substring(l);
switch (c) {
case Chat.CMD LCOG N:
if (!Chat.isValidLogi nName(line)) {
send(CHATMASTER I D, "LOGAN" + line + "
i nvalid");
log("LOE@ N INVALID from™"™ + clientlP);
conti nue;
}
login = line;

br oadcast (CHATMASTER I D, login +
" joins us, for a total of " +
clients.size() + " users");

br eak;

case Chat.CVD _MESG

if (login == null) {
send(CHATMASTER I D, "please login first");
conti nue;

}

int where = line.indexO (Chat. SEPARATOR) ;

String recip = line.substring(0, where);

String nesg = line.substring(where+l);

log("MESG " + login + "-->" + recip + ": "+
nesg) ;
Chat Handl er cl = | ookup(recip);
if (cl == null)
psend(CHATMASTER I D, recip + " not | ogged
in.");
el se
cl . psend(l ogi n, nesg);
br eak;

case Chat.CVD QUIT:
br oadcast (CHATMASTER I D, "Goodbye to "
close();
return; // END OF THI S CHATHANDLER

case Chat.CVD BCAST
if (login!= null)
br oadcast (|1 ogin, line);
el se
log("B<L FROM " + clientlP);
br eak;
defaul t:
[og("Unknown cnd " + ¢ + " from" + login +"@
+ clientlP);

}

}
} catch (1 COException e) {
[og("10O Exception: "
} finally {
/1l the sock ended, so we're done, bye now
/1 Can NOT send a good-bye nessage, until we have
/1 a sinple command-based protocol in place.
Systemout.printin(login + SEP + "All Done");
synchroni zed(clients) {
clients.renmove(this);

+ e);

if (clients.size() == 0) {
System out . printl n(CHATMASTER I D + SEP +
"Imso lonely I could cry...");
} else if (clients.size() ==1) {

Chat Handl er last = (ChatHandl er)clients. get(0);
| ast. send(CHATMASTER I D,
"Hey, you're talking to yourself again");
} else {
br oadcast (CHATMASTER | D,
"There are now " + clients.size() + "
users");

}

protected void close() {
if (clientSock == null) {
| og("cl ose when not open");
return;
}
try {

client Sock. close();
clientSock = null
} catch (1 OException e) {
| og("Failure during close to " + clientlP)

}