

Building Java™ Enterprise Applications Volume I: Architecture

Brett McLaughlin

Publisher: O'Reilly

First Edition March 2002

ISBN: 0-569-00123-1, 318 pages

Volume 1 of this advanced 3-volume guide explores the infrastructure issues so important to
good application design. It isn't just a book about Entity Beans and JNDI. It takes you step by
step through building the back end, designing the data store so that it gives you convenient
access to the data your application needs; designing a directory; figuring out how to handle
security and where to store security credentials you need; and so on.

Table of Contents
Preface ...
 Organization ...
 Software and Versions ..
 Conventions Used in This Book
 Comments and Questions ..
 Acknowledgments ...

1
1
3
3
4
5

1. Introduction ..
 1.1 Building Java Enterprise Applications
 1.2 Architecture ...
 1.3 What You'll Need ...

6
6
8

10

2. Blueprints ...
 2.1 Forethought Brokerage
 2.2 The Data Layer ..
 2.3 The Business Layer ..
 2.4 The Presentation Layer
 2.5 Finalizing the Plans ..
 2.6 What's Next? ..

13
13
19
23
26
27
27

3. Foundation ...
 3.1 Designing the Data Stores
 3.2 Databases ..
 3.3 Directory Servers ...
 3.4 What's Next? ..

28
28
37
47
55

4. Entity Basics ..
 4.1 Basic Design Patterns ..
 4.2 Coding the Bean ..
 4.3 Deploying the Bean ..
 4.4 What's Next? ..

56
56
57
66
69

5. Advanced Entities ..
 5.1 IDs, Sequences, and CMP
 5.2 Details, Details, Details
 5.3 Data Modeling ...
 5.4 Filling in the Blanks ...
 5.5 What's Next? ..

70
70
85
89
91
91

6. Managers ..
 6.1 Managers and Entities ..
 6.2 The LDAPManager Class
 6.3 What's Next? ..

92
92
98

119

7. Completing the Data Layer
 7.1 Odds and Ends ...
 7.2 Checkpoint ...
 7.3 Populating the Data Stores
 7.4 What's Next? ..

120
120
128
130
135

8. Business Logic ..
 8.1 The Façade Pattern ..
 8.2 The UserManager ...
 8.3 State Design ..
 8.4 What's Next? ..

137
137
144
152
163

9. Messaging and Packaging
 9.1 Messaging on the Server
 9.2 Messaging on the Client
 9.3 Packaging ..
 9.4 What's Next? ..

164
164
172
175
178

10. Beyond Architecture ...
 10.1 Flexibility ...
 10.2 Decision Point ..
 10.3 What's Next? ...

179
179
182
183

A. SQL Scripts ..
 A.1 The User Store ..
 A.2 The Accounts Store ...
 A.3 Events and Scheduling
 A.4 Starting Over ...
 A.5 Primary Keys ...
 A.6 Creating Types ..

185
186
191
196
198
201
204

B. SQL Deployment ..
 B.1 Cloudscape ...
 B.2 InstantDB ..
 B.3 MySQL ...
 B.4 Oracle ..
 B.5 PostgreSQL ..

206
206
208
210
211
213

C. Directory Server Setup ..
 C.1 iPlanet ..
 C.2 OpenLDAP ...

215
215
221

D. Application Server Setup
 D.1 BEA Weblogic ..

225
225

E. Supplemental Code Listings
 E.1 Entity Beans ..
 E.2 Application Exceptions

228
228
267

Colophon ..

270

Building Java™ Enterprise Applications Volume I: Architecture

1

Preface
If you're basing your livelihood on Java these days, you are going to run across at least one
enterprise application programming project; if it hasn't come upon you already, it's just around
the corner. I've been faced with more than twenty at this point in my career, and see many
more in my future. Each time I get into these projects, I find myself paging through book after
book and searching the Web, looking for the same information time after time. Additionally,
I've developed a bit of a toolkit for handling common enterprise tasks.

What I have determined is that there are many terrific books on specific technologies like
Enterprise JavaBeans, servlets, and the Java Message Service. These books cover the details
of these APIs and explain how to use them. I have also found, though, that there is no
resource in existence that describes connecting these components in an intelligent way. No
coherent examples are documented and explained that tell how best to code façade patterns,
attach entity beans to directory servers, use servlets and JSP with EJB without killing
performance, or a host of other common tasks. At the same time, these very issues are the
heart of my job description, and probably of many other programmers' as well.

Rather than simply write a short article or two and fall short of really addressing the topic
(something I see lots of people doing), I convinced O'Reilly & Associates to put forth an
exhaustive series on enterprise programming in Java. I'm proud to say that you have in your
hands the first volume of that series. It covers the back-end of application programming and
explains databases, entity beans, session beans, the Java Message Service, JNDI, RMI, LDAP,
and a whole lot more.

The topic will be extended in the next two volumes, which are already planned. The second
volume will cover traditional web applications, including HTTP, HTML, servlets, JSP, and
XML presentation solutions. The third volume will detail the web services paradigm,
demonstrating the use of UDDI, SOAP, WSDL, and other emerging technologies.

In each volume, you will find extensive code (the code listings in this book, without
comments, total well over 100 pages, about 30% of the actual book), without needless
instruction or banter. I've gotten straight to the point, and tried to let you see code, not
discussion of code, whenever possible. I hope that you enjoy the series, and that it aids you in
your own enterprise application programming.

Organization

This book starts from the back of an enterprise application, moves from introduction into
design and planning, through the database and directory server, and into the code you'll need
to use this data. Here are concise descriptions of each chapter.

Chapter 1

This chapter expands on the basic information in this Preface. It provides a blueprint
for the series as well as the topics included in the chapters of this book.

Building Java™ Enterprise Applications Volume I: Architecture

2

Chapter 2

As suggested by the title, this chapter presents the vital planning and requirements
phase of enterprise programming. It explains how decisions are made and how
business needs are mapped to technical requirements, and outlines the process of
taking a vague description and converting it to a technical blueprint.

Chapter 3

This chapter starts to dig into technical details. It takes the blueprints from Chapter 2
and begins to implement these in terms of data storage. You'll learn how to handle
issues surrounding relational databases, write the SQL to create the data store, and
develop constraints for the database. You'll also learn about directory servers and
create a directory for the book's sample application.

Chapter 4

This chapter details the basics of entity beans in terms of enterprise programming.
You'll create your first entity bean for the sample application, learn about IDs and
sequences, and set the groundwork for the rest of the application.

Chapter 5

This chapter deals with more advanced concepts. IDs and sequences will be handled in
a more generic fashion, and you'll mix session beans with entity beans, learn about
information maps, and delve into more advanced CMP entity beans.

Chapter 6

This chapter introduces the manager component, explaining how data can be
abstracted into Java components. Specifically, you'll write code to provide access to
the directory server created earlier, and tie this component in with already-developed
entity beans and databases.

Chapter 7

This chapter puts the finishing touches on the data access layer. You'll deal with
threading and multiple directory server instances, as well as client applications.
Finally, testing will be put in place to ensure that everything is working correctly to
this point.

Chapter 8

This chapter moves from the data layer into the business layer. It further explains
using the manager component, specifically with session beans. You'll also find out the
best approaches to connecting your session beans to the entities and managers already
in place

Building Java™ Enterprise Applications Volume I: Architecture

3

Chapter 9

This chapter completes the business layer with a discussion of using JMS and
message-driven beans. You'll create a messaging layer in your application as well as
clients that interact with it. Finally, basic packaging issues are detailed and related to
the components already developed.

Chapter 10

This final chapter gives some general advice for moving beyond this first volume into
web applications and web services. It also provides some practical information and
resources for continuing in your application development.

Appendixes

The appendixes cover deployment of SQL scripts, installation of directory servers,
application server setup and configuration, and supplemental code listings. These are
chock-full of technical details that didn't easily fit into the chapters.

Software and Versions

This book covers a variety of APIs, but all fall underneath the Java 2 Enterprise Edition
(J2EE) umbrella. I've used the 1.3 version of this platform, which is the "latest and greatest"
available. You can download J2EE 1.3 and find out more about it online at
http://java.sun.com/j2ee/.

The nature of application programming in the enterprise requires an application server on
which to deploy your components. This requires a lot of vendor-specific deployment and
packaging details. I've avoided these paradigms throughout the book, instead focusing on the
vendor-neutral code that you will need to write. However, the appendixes at the end of this
book detail deployment of various vendors' tools, specifically BEA Weblogic, the most
popular large-scale application server available. This is a J2EE 1.3 application server, so you
will be set with it or any other 1.3-compatible server.

The source for the examples in this book is contained completely within the book itself. Both
source and binary forms of all examples (including extensive Javadoc not necessarily
included in the text) are available online at http://www.newinstance.com/.

Conventions Used in This Book

I use the following font conventions in this book:

Italic is used for:

• Unix pathnames, filenames, and program names
• Internet addresses, such as domain names and URLs
• Object names and classes
• New terms where they are defined

Building Java™ Enterprise Applications Volume I: Architecture

4

Constant width is used for:

• Command lines and options that should be typed verbatim
• Names and keywords in Java programs, including method names, variable names, and

class names
• XML element names and tags, attribute names, and other XML constructs that appear

as they would within an XML document

Constant width bold is used for:

• Highlighting emphasized areas in code

EJB names are printed in roman. (An EJB name is not necessarily the name of a class or any
other Java object.)

This icon signifies a note relating to the nearby text.

This icon signifies a warning relating to the nearby text.

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

There is a web page for this book, where we list errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/javentappsv1

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly Network,
see our web site at:

http://www.oreilly.com/

Also visit the author's web site, http://www.newinstance.com/.

Building Java™ Enterprise Applications Volume I: Architecture

5

Acknowledgments

I have to think Mike Loukides and Kyle Hart, my right-hand man and woman at O'Reilly, for
helping guide a very difficult book to its end. The first words of this book were actually
written in November of 1999 (yes, you read that right!), so it's been a long time coming.
Thanks also to Diana Reid at BEA for support and much-needed help on getting things
running with BEA Weblogic.

I'd be in a heap of trouble without the support of my extended family: Gary and Shirley
Greathouse, Quinn and Joni Greathouse, Larry and Judy McLaughlin, Shannon McLaughlin,
and Sarah Jane Burden. Also to Laura and Laura Jordan, who made me an uncle with the
addition of little Nathan (Nate to those who he drools on), who provided much-needed laughs
when things got tough. I love all of you.

Of course, the biggest debt of gratitude lies with my wife. She simply makes life worth
getting up for, never complains (too much) when I work long hours, and is always excited
when I finish even though she has no idea what all this Java stuff is about. And, as if all that
isn't enough, in June she's giving me a baby boy! If I take longer to answer mail this summer
(2002), it's only because I'm learning to be a daddy with little Dean, my upcoming first child.
Can you tell I'm excited? I love you Leigh and Dean (one day he'll realize this was the first
time his name was in print).

Again, to the Lord who got me this far: Even so, come Lord Jesus.

Building Java™ Enterprise Applications Volume I: Architecture

6

Chapter 1. Introduction
Java has become a confusing world. Five years ago, there were few decisions to make once
you started programming in Java—you used AWT for graphical user interfaces, sockets for
network programming, and hacked together everything else you needed. Since then, though,
the APIs available for the Java language have grown, and grown. . . and grown. Now you can
dabble in Swing, servlets, Enterprise JavaBeans (EJB), JavaMail, and more. Additionally,
there are now packages of APIs, like the Java 2 Micro Edition (J2ME) and Java 2 Enterprise
Edition (J2EE). While these packages seem to be nicely wrapped bundles of useful APIs, they
don't help the average developer figure out how to piece together the APIs contained in these
packages. Though it's simple to find documentation on the individual APIs, getting the "big
picture" is difficult, at best. One of the most interesting, but difficult, aspects of Java today is
building Java enterprise applications using the J2EE package.

All of this has led the folks at O'Reilly to be interested in a book specifically focused on
building enterprise applications with these APIs. Instead of small, piecemeal examples, we've
found that readers want large applications built from the ground up, and explanations of
design decisions. Additionally, readers have been adamant about seeing more than just the
Java part of the picture; they want to know how to set up a database, and get an LDAP store
running, and integrate these. How does a UDDI registry fit into the equation? I'm going to
address all of these issues in this series (yes, I said series!) of books, Building Java Enterprise
Applications. You hold Volume I in your hands.

So, this chapter is a true introduction. Not only will it introduce you to what I'll be covering in
this book and the materials you'll need to follow along, but it will also tell you how this series
is going to be put together. You'll see what's coming in Volumes II and III, how the examples
are structured, and what topics will be covered in this book as well as future ones.

I'm glad you're willing to come along with me as we try something new. And, with that, let's
get down to the details of building enterprise applications.

1.1 Building Java Enterprise Applications

From the first page of the first chapter to the last page of the last index, this series is going to
focus on building applications. That probably sounds redundant, since you picked up this
book knowing the title, but let me explain what I mean. First, I'm not going to explain the
basics of the technologies used in this book. If you don't know what an entity bean is, or
haven't ever written a SQL statement, or want to learn about JSPs, this book isn't for you. I'd
recommend you pick up a copy of the O'Reilly book on the subject you want to learn about,
and start there. Section 1.3.3 at the end of this chapter is a good reference for linking a subject
to the right O'Reilly book.

Second, this book is aimed squarely at the enterprise developer, and especially at someone
who has an existing or upcoming project that uses all or part of the J2EE platform. I'll explain
later what constitutes an enterprise application, but this book will be most helpful if you have
some real business problems to solve and can apply the concepts in these chapters directly to
them.

Third, I expect you to be comfortable with (and hopefully, desirous of) lots of code. I'm going
to try to keep explanations to the bare minimum on basic concepts, and instead focus on

Building Java™ Enterprise Applications Volume I: Architecture

7

tougher problems, real-world issues that aren't covered in other books, and typical mistakes I
see in day-to-day programming. If you're not ready to wade through a lot of code (thousands
of lines in this volume, for starters), you might want to set this down and pick it up again once
you've had a little more experience (as if any real programmer would put something down
because it's over their head!).

Fourth, this book focuses on writing applications from the ground up, using only Java as the
programming language. While many enterprise applications do have to deal with legacy code
or non-Java system integration, that is a topic well unto itself. To keep things clear and
concise, this book deals with systems that are entirely based on the Java programming
language. While the third volume on web services will certainly touch on integration with
other languages, this architecture volume does not.

And finally, I'm hoping that you're willing to work through this volume, and even the rest of
the series, chapter by chapter, example by example. I'll be taking you through the building of
a non-trivial application in this book, and continue on with that example over the next two
volumes. Although all the code covered will be available online, I've presented things in a
manner that assumes you're going through the code with me. So even if you don't usually do
this sort of thing, you might want to try it for this book, as it will really help you out. Also, the
next two volumes will assume that you've got the code from this book working, as we'll be
building on top of that infrastructure. To help you see how things will fit together, let's now
walk through the three volumes that will make up this series.

Lest any of you go to the bank on the description of the series presented
here, I should warn you that as with all plans, things may change.
Additionally, the folks at O'Reilly have had lots of discussion about
whether to first put out a volume on traditional web applications
(servlets, JSP, HTML) or on web services (SOAP, UDDI, WSDL). So,
if you've got an opinion, let us know! There are details on getting in
touch with us in the Preface of this book, and I look forward to hearing
your thoughts.

1.1.1 Volume I: Architecture

This first volume focuses on application architecture and serves as the foundation for the next
two volumes. I'll dive a little further into the specifics of what this book covers in the next
section.

Any enterprise application has two baseline components: design and data stores. The first of
these components, design, turns out to be more about concepts and theory than about actual
programming. In fact, most developers rush right through this step because they want to get to
coding, and almost inevitably end up paying a price for that haste later on. In light of that, this
book pays a lot of attention to design decisions involved in enterprise applications.
Additionally, it lays out the process flow for database interaction, and sets up connectors for
allowing our later work with web applications and web services to interact with the
infrastructure set up in this book.

Additionally, this volume will spend a lot of time detailing how to develop data stores for use
in these applications. Obviously, this involves databases, from designing tables and columns

Building Java™ Enterprise Applications Volume I: Architecture

8

to dealing with database sequences and triggers. Since each database has its own unique
features, appendixes are included to offer advice on vendor-specific variations in SQL and on
how to optimize your code for specific databases. Additionally, I'll spend a good bit of time
delving into directory services and explaining how authentication data should be handled
differently from application data. This will set the stage for the EJBs discussed in this book,
which are also used heavily in the second and third volumes.

1.1.2 Volume II: Web Applications

The second volume in the series will continue where Volume I leaves off, adding a web
application front-end to the architecture designed in the first book. In this volume, web
application means using J2EE technologies (servlets, JDBC, JSPs) and HTML to construct an
HTTP-accessible application front-end. In addition to explaining how these APIs fit together,
this volume will also connect these front-end components to the back-ends created in Volume
I. RMI, EJBs, JDBC, and more will be explained in light of the web application.

I'll also explain how various XML-based solutions like XSL and XML transformations can
provide alternatives to HTML user interfaces. Although not completely integrated into the
J2EE platform, XML and related technologies are becoming a vital part of any large-scale
application, especially one that serves both static and dynamic content. I'll also look at XML
data binding, RSS, and other means of communicating content between application front-
ends.

Finally, some of the satellite components of J2EE, such as JavaMail, will be explained and
discussed in relation to a functioning web application. While not critical for typical
applications, these APIs can be immensely helpful in implementing an additional layer of
communication between your applications and the end user. By the end of this volume, you'll
not only have a complete understanding of web applications, but you'll have built a front-to-
back practical solution (using the example code of Volumes I and II).

1.1.3 Volume III: Web Services

The third volume in this series will focus specifically on web services. It takes the business
components discussed in Volume I (EJBs and other Java classes) and explains how they can
be converted into web services using technologies such as SOAP and WSDL. Issues related to
security, communication, and service registration will be explored. This is presented as a
contrast to the web application interface discussed in Volume II.

This volume will also discuss the considerations involved with transmitting data across a
network. Custom data types, large amounts of information, and object serialization are all
important considerations, and will be given detailed coverage. You'll also learn how UDDI
registries and WSDL are important not only in allowing component access, but also in
restricting that access to only those methods you want to expose. Finally, exposing EJBs will
be covered in detail.

1.2 Architecture

Now that you have a good idea of how the volumes in this series progress, I want to focus on
what will be covered in this book. This description follows the flow of the book itself, and lets

Building Java™ Enterprise Applications Volume I: Architecture

9

you know where to turn if you're looking for something specific. I'll also give you a little
more detail here than what is in the Preface.

1.2.1 Databases

After walking through some design issues, the first technical topic in this book is that of
databases. Although almost every Java developer working on enterprise applications has used
a database, very few are competent database developers. In other words, programmers know
how to create rows and columns, but have very little understanding of the best way to tune
tables, of how to perform database normalization, or of making a database work in an
efficient, useful way.

In the chapters on database design and setup, I'll show how to create a database structure via
the Structured Query Language (SQL). More importantly, I'll focus on how to set up a good
relational structure and examine how EJBs need to access the data. This discussion should
allow you to move from using a database to mastering one, at least in the context of enterprise
applications. Discussions will be applicable to any database vendor.

1.2.2 Directory Servers

While traditional relational databases are still the prevalent force for data storage in enterprise
applications, alternative data mediums are becoming popular. XML-based databases and
object-oriented databases are in direct competition with relational databases, and directory
servers offer a complementary solution to existing databases. For data that is read far more
often than it is written, directory servers excel in performance. Examples of this sort of data
are authentication credentials, such as usernames and passwords, which tend to be
performance-driven. In other words, the less time a user waits to log in, the better your
application is perceived.

This book takes an extensive look at directory servers in order to show you how to develop
systems that integrate multiple types of data stores. I'll explain how to set up the directory
store schema (which is analogous to the tables and columns of a relational database) and how
to populate the directory store. I'll also show you how the Java Naming and Directory
Interface (JNDI) can provide fast access to a directory server. Finally, I'll cover the tricky
issues that surround using multiple data stores: replication, data overlap, and keeping data in
sync and uncorrupted.

1.2.3 Enterprise JavaBeans

Once you've got a data store (actually, a couple of them) in place, I'll finally move on to Java,
and accessing that data through Java. In addition to the JNDI access for directory servers,
you'll learn how to use Enterprise JavaBeans (EJB) to interact with a database. I'll cover
setting up your EJB container, writing entity beans for data access, and using session beans to
provide a layer between your entity beans and the rest of your application. Finally, I'll detail
how message-driven beans can allow communication between components that was almost
impossible in earlier versions of the EJB specification.

Of course, we'll quickly move beyond these basics. I'll demonstrate the impact that EJB 2.0
has on your enterprise applications, and cover more complex issues such as using database
sequences, direct access to entity beans, and how the container affects your EJB design. I'll

Building Java™ Enterprise Applications Volume I: Architecture

10

also detail the ins and outs of Remote Method Invocation (RMI) and how to make it perform
at its best. Several chapters will be devoted to the EJB layer, so you'll have plenty of Java
code to sink your teeth into: entity beans, session beans, and message-driven beans will all be
explored in relation to the enterprise application.

1.3 What You'll Need

Before getting into the thick of things, let's take a moment to cover what you'll need to work
through this book. Most crucial are the APIs involved, but also important are the application
server, the tools I'll refer to, and all the support facilities for writing enterprise applications.
You'll also probably have your own set of tools (code editors, HTML editors, etc.), and you
should not have too much trouble adapting to any of the instructions for specific products that
you use.

1.3.1 APIs

First and foremost, this book is focused on the 1.3 version of the J2EE specification. You can
download the J2EE specification from Sun online at http://java.sun.com/j2ee. I also highly
recommend that you download the J2EE SDK (essentially the reference implementation),
which can be used for running the example code.

Let me say a word about application servers. There are as many application server vendors as
there are colors, and picking one isn't always a trivial task. Additionally, trying to cover the
nuances of each application server in a single book is simply impossible; you'll always find a
vendor or version that doesn't fit the instructions, and in those cases a book's instructions can
cause confusion instead of resolving it. To keep this to a minimum, I've taken two steps. First,
the content in the chapters of this book is focused on APIs, code, and deployment descriptors,
and will work on any J2EE 1.3 application server. In other words, the chapters are all vendor-
neutral. However, this leaves a lot of vendor-specific detail up in the air, as most application
servers have specific instructions for setup and deployment. To accommodate this, the
appendixes in this book will show you how to get the examples to work using the BEA
Weblogic application server.

If you work in an environment where another application server is in use, you can take your
applications and deploy them to that application server, using the specific vendor's
documentation. The result is an application that is as portable as it can be in today's world of
too-many variations on the J2EE theme. Additionally, as demand and time dictate,
instructions for working with other popular application servers will be posted online at this
book's web site, http://www.newinstance.com/. I'm going to handle this process much like an
open source project, so if you go online and don't see your vendor covered, I welcome your
help and will work with you to get instructions online for your application server. Hopefully,
this will be the best compromise between getting you timely and accurate information, and
not creating confusion throughout the book's text.

There is also specific software needed for chapters that go beyond Java; for example, you'll
need a directory server for the LDAP chapters and a database for the data store chapters. I'll
discuss specific alternatives in those chapters and explain what factors can influence your
choices in these areas. I try to always recommend (at a minimum) an open source option and a
popular commercial alternative. More often than not, one of these will result in a good match
for your needs.

Building Java™ Enterprise Applications Volume I: Architecture

11

1.3.2 Tools and Utilities

I also recommend a few tools and utilities for this book. While you can certainly make your
own choices here, I'll let you know what has worked for me. First, you'll want a Java
Integrated Development Environment (IDE). While I often use wordpad, vi, or Emacs for
editing code, large projects demand keeping up with three, four, or more active files. It's here
that an IDE can really help out. I prefer jEdit, available for free at http://www.jedit.org/. There
are tons of helpful plug-ins, Java syntax highlighting is included, and it has good support with
new versions coming out fast and often.

I also recommend that you have a tool for working with databases that allows fast SQL
querying. Here, I am fond of a commercial tool, SQL Navigator, which is available for
purchase at http://www.quest.com/sql_navigator/. This tool allows interactive querying, a nice
interface for setting up your database schema, and a lot more. It's also particularly useful
when dealing with Oracle, its preferred database, as it allows you to use PL/SQL, triggers, and
other features specific to Oracle. Outside of SQL Navigator, there are many other free tools
available for working with databases.

Finally, quite a bit of XML will be in play throughout the EJB chapters. It's needed to write
deployment descriptors, and I'll also examine using XML for properties and configuration
information. Additionally, many application servers add vendor-specific XML descriptors that
you'll need at deployment time. I recommend an XML editor to make validation of these files
easy. While you can (as I did until recently) write some command-line tools using an XML
parser to handle this task, I again have recently taken up using an IDE. jEdit works well here,
and I have also had some success with XMLSpy, available at http://www.xmlspy.com/. All
these tools are optional, and I won't dwell on them in the text, but they can really increase
productivity and make life a little easier.

1.3.3 Related Works

In addition to everything I've said so far, I'm a big advocate of books as an aid in learning and
programming. A famous preacher, Lester Roloff, once said, "The best memory is the pencil."
I tend to agree, as I'm constantly making notes about this method or that class, trying to
remember what they do. However, there are a lot of books already written with these notes
categorized, indexed, and explained in detail, so I'll provide you a short list of books that may
be helpful as you work through this volume.

Generally, these are books on the technologies that are detailed in this work, and will help you
get up to speed on the basics of these technologies. Many times, I assume you have
knowledge of the topics in these books, and they are all worthwhile additions to your library.

• Enterprise JavaBeans, by Richard Monson-Haefel
• Database Programming with JDBC and Java, by George Reese
• Java Enterprise in a Nutshell, by David Flanagan, Jim Farley, William Crawford, and

Kris Magnusson
• Java Message Service, by Richard Monson-Haefel and David Chappell
• MySQL and mSQL, by Randy Jay Yarger, George Reese, and Tim King
• Oracle Design, by Dave Ensor and Ian Stevenson

Building Java™ Enterprise Applications Volume I: Architecture

12

All of these are published by O'Reilly. Obviously there are many other helpful books out
there, but these should get you started. Armed with this information, you're ready to move
beyond introduction into the world of enterprise application programming.

Building Java™ Enterprise Applications Volume I: Architecture

13

Chapter 2. Blueprints
Let's begin to delve into enterprise applications. With some basic knowledge of the Java APIs
and related technologies (such as XML) that are involved with these applications, you are as
qualified as the next programmer to start building applications! This is a new frontier, even
though it's been three or four years since the J2EE specification was released. That may sound
a bit far-fetched, but technology is moving at an incredible rate, as are the APIs that support
it. Just two years ago, applications had far fewer tools, technologies, and specifications upon
which to build. For these reasons, you start with most other programmers on a generally level
playing field. And as each phase of building an application is addressed, I discuss the
principles that will guide you in your own applications, using any combination of APIs and
tools.

However, discussing these complex applications in the abstract is like talking about music
(which is like dancing about architecture, according to Miles Davis). In other words, trying to
describe how to build an application without in fact building one is nearly impossible. For that
reason, this entire series discusses the Java APIs and code within the context of a large,
enterprise application that will be accessible through a web interface (in Volume II) and as a
web service (in Volume III). Starting in this chapter, I will detail a fictional company,
Forethought Brokerage, and discuss the application they are building (or rather, that you are
building for them). Beginning with only a set of requirements, you will construct the
Forethought application from the ground up, including data storage, API selection, and of
course implementation. At the end of the series, the application will finally be ready to run,
complete with several advanced features that are usable in your own applications. In this first
volume, you'll build a data store that includes a database, a directory server, and numerous
Enterprise JavaBeans.

This chapter begins the process by presenting a set of requirements. I will take these
requirements and design blueprints for the application, "roughing out" each portion of the
application and explaining each decision made. With this set of blueprints in hand, it's
possible to detail each section of the application. Additionally, in a commercial environment,
multiple teams could work on different portions of the application in parallel; this is possible
only with a well-designed set of plans for the application, agreed upon before development
begins. Although you are the only developer working on the example application, following
this practice will teach you how to design your own applications so that multiple
programmers can work on them. Once a general set of requirements is laid out and met, I'll
run through a brief survey of the key technologies used throughout the rest of this book. If
you are familiar with databases, directory servers, enterprise Java, and XML, you can
probably skim these later sections of the chapter. However, if you're new to enterprise
programming, these descriptions will help prepare you for the chapters that follow.

I will also go beyond just the data and business layers, which this book focuses on, and
describe the presentation layer of the application. This will apply to the web interface detailed
in Volume II, but will also give you perspective on how things fit together, and provide you
with a good idea of how to proceed if you don't want to wait for the next volume in the series.

2.1 Forethought Brokerage

Like any good building, an application begins with a set of requirements, often having little to
do with implementation details. The first challenge of constructing an application, then, is to

Building Java™ Enterprise Applications Volume I: Architecture

14

translate these requirements into technological outlines and a plan for action. While this can
be simple when the person or group defining these requirements is technical, it is far more
often the case that this mapping of requirements to an application blueprint is the most
difficult portion of architecting an application. A marketing or product management group
explaining their needs rarely has an idea of what is technically feasible, or even possible, with
today's programming languages. Additionally, these initial requirements have a way of
changing during a project, resulting in a moving target for completing a "successful"
application. In fact, this is the first lesson in building an application: an application that meets
the initial set of requirements is not automatically a success! Instead, it must anticipate the
changing of requirements and be able to adapt in kind. For this reason, a flexible architecture
and well-designed set of blueprints can lead to customer sign-off, protecting the application
designer from these changes, or at least providing a reasonable window of change when
requirements do evolve. This is the kind of architecture and blueprint that must be developed
for Forethought Brokerage.[1]

2.1.1 The Company

Forethought Brokerage has been serving their clients in a traditional investment brokerage
sense for nearly 20 years. Specializing in long-term clients and customer service, the
brokerage has until recently run their entire operation largely through a paper office, using
carbon receipts, conference calls, and face-to-face meetings. They have monitored their
clients' funds through frequent phone calls, monitoring the market, and by sweat and hard
work. Although this has succeeded in building their client base and keeping them in business
for almost 20 years, it has also caused some problems. They have had to remain a locally
based business, as they have no facility to handle clients around the country and the world,
and their established pattern of personal consultations begins to break down over distance.
Additionally, monitoring funds in 24 time zones instead of one is a significant increase in
workload.

Forethought has also had a longtime fear of problems related to the paper trail on which their
office relies. Even though Forethought has an offsite storage location, searches through
paperwork and misfiled receipts have caused many a late night for partners and immeasurable
stress for clients. The company realizes that the computer age has taken over in business, and
wants to move into an electronic form of communication and storage. This would also enable
them to establish additional offices and expand geographically while using one unified
computer system for their records, and would allow clients to access their profiles and
investments online, as many have requested. With this recognition of their problems,
Forethought has begun to define the desired functionality of the application they want built.

2.1.2 Identified Needs

Forethought's product management and marketing groups (usually made up of the proverbial
"pointy-haired bosses") have determined their company's needs and are ready to supply these
needs to you, the lead architect and developer of their new application. These needs must be
met for the application to be any sort of success, and many of them must be mapped from a
business requirement to a technical one. Let's take a look at what the application requires.

1 Forethought Brokerage is a completely fictional company, and any resemblance to an existing or future company is purely accidental and
unintentional.

Building Java™ Enterprise Applications Volume I: Architecture

15

2.1.2.1 Online accessibility

First and foremost, Forethought wants to move to a web-based solution for their clients and
employees (they won't make it to web services until Volume III). As offices open in new
locations, these offices should be able to operate within the Forethought system through
simple Internet access. Additionally, online accessibility means that agents away from the
office can still access their clients' investments. Forethought also wants a means of securing
access to the application, through a username and password, at a minimum. They also would
like any other security appropriate for the privileged information that clients and brokers
would view online.

Forethought has also determined that using a simple web browser should be sufficient to
access the application. This enables easy rollout of the application, and avoids any costs of
delivering disks or CDs with special software to clients wanting to access their accounts
online. Since any user with a PC can be expected to have a web browser on their computer,
Internet access to the application through a browser is ideal.

2.1.2.2 Supports wireless devices

As the company expands, agents need to travel more, both between offices and to clients that
are geographically dispersed. With this travel comes a need to communicate, which of course
is most common through mobile phones. Forethought wants to take advantage of today's
wireless phones, and use Internet access as a means of supplying remote agents information
about their clients quickly. An agent on the road should be able to use a WAP or HDML
phone to connect to the Forethought web application and quickly gain basic information about
a client and his or her accounts.

The same thinking applies to employees with Palm Pilot or other handheld devices.
Delivering content to these Internet-capable devices should be possible with the application.
Of course, like any company, Forethought wants to keep maintenance costs as low as
possible, while still providing content to these varying devices. In other words, reusability of
the application's content is important.

2.1.2.3 Handles scheduling

Scheduling is also an important aspect of Forethought's needs. As mentioned, employees
(particularly brokers) will be traveling, so the tracking of meetings, appointments, and events
will be critical to the company's success. Without the ability to determine where a broker must
be at what time, that broker is useless to the company. Additionally, brokers shouldn't be tied
to their calendar applications on a specific desktop computer. Laptops, multiple desktops, and
wireless devices should all be able to access the same shared schedule, allowing the broker to
check and maintain his schedule from anywhere he can access the Forethought application via
the Internet.

2.1.2.4 Stores information about employees as well as clients

In addition to providing clients online access to their accounts, the application should also be
able to serve Forethought as an information and intranet service. In other words, referencing
details about other brokers could help an agent give referrals to clients who are moving, and
could also help management monitor employees across the country and the world. This sort of

Building Java™ Enterprise Applications Volume I: Architecture

16

dual-purpose application, where both clients and internal workers use the provided services, is
becoming more and more common.

2.1.2.5 "Fast performance and standards compliance"

All too often, marketing and management groups toss a statement like "standards-based" or
"performance-driven" into an application's requirements. It would seem that these types of
statements are meant to appease the technical nature of the developers working on the
application, but in fact these statements are nebulous at best, and often entirely useless. How
fast must the application respond? Is a World Wide Web Consortium (W3C) recommendation
a standard? Are de facto standards like the Simple API for XML (SAX) standard? What sort
of benchmarks should be performed? All of these questions are left ambiguously defined with
vague requirements like "fast performance and standards compliance."

While the knowledge of these issues by the marketing and product groups is often as
indeterminate as the questions themselves, the points are worth noting. Choosing a technology
or solution that is not supportable or that may be antiquated in several years will leave you
having to explain your bad decisions to upper management. While this is not a blanket
recommendation to accept all standards hook, line, and sinker, it is a good idea to justify all
decisions made. As an example, using large portions of the J2EE specification makes a lot of
sense, as Sun will certainly support Java and the J2EE platform for many years to come.
However, if a part of this or any other specification doesn't stand up to the task it's designed
for, other solutions should be examined, even if they are not "as standard." Just make sure you
justify straying from the well-trodden path. At the end of the day, or week, or project, you are
accountable for your decisions. Ensure that you can explain all of them.

2.1.3 Proposed Solutions

With the requirements set out by Forethought, it is time to look at solving each problem, and
then turning the solutions into a single coherent application. However, the last task (creating
one logical application design) is often much harder than solving the individual problems that
requirements pose. While a database may be a better means of storing data in one case, a
directory server may be more appropriate in another. Combining both data sources is the
complex problem. The same goes for handling multiple presentation layers created from
similar content. You should look at solving the specific problems first, and then design an
overall application to incorporate the various solutions you decide upon.

You will also need to determine which technologies and APIs should be used. As this is a
book on Java, the decisions recommended shouldn't come as a great surprise—of course we
will use Java! However, in a company not already sold on Java, you would need to justify this
decision just as you would justify using XML, or servlets, or EJB. If you aren't sure about
Java or need an introductory text comparing the language with other popular programming
languages, check out Exploring Java, by Patrick Niemeyer, or Java in a Nutshell, by David
Flanagan (both from O'Reilly).

2.1.3.1 Java and J2EE for web delivery

Java has arguably become the language of choice for network programming. While Perl, PHP,
and Python are becoming more common, Java still has a strong, solidified position in the

Building Java™ Enterprise Applications Volume I: Architecture

17

enterprise application space. The language is also certainly more web-oriented than C, C++,
or Microsoft's C#.

With the release of the Java 2 Enterprise Edition (J2EE), Sun gave many programmers a
major missing piece of the Java puzzle: a guideline for developing enterprise applications.
More than just a collection of APIs, the J2EE platform also comes with the Application
Programming Model (APM), which specifies how applications should be built and pieces
together many APIs that puzzled many developers for years. While parts of the APM are
questionable or appear to be unfinished, the net effect is that more programmers than ever
before have embraced Java, admitting that it has officially "matured." For these reasons, we
will use the J2EE APIs and the APM as a starting point for our application. The J2EE APIs
include servlets, JSP, EJB, and JMS. While we may use only parts of some of these APIs and
discard others altogether, starting with this proven model allows us to deliver Forethought's
application online to their clients and other employees, the first requirement of the
application.

2.1.3.2 JSP, XML, and XSL for content and presentation

In addition to online accessibility, Forethought wanted to be able to deliver their new
application to wireless devices, and particularly to brokers in the field. The decision to make
here is how to separate content from presentation, and try to reuse the content with different
presentations. Before going further, I should define my terms a little more concretely. Content
is the business data that is viewed by an application client (a wireless phone, handheld
organizer, web browser, and others). The key phrase in this definition is "business data": this
is typically the balance of an account, a user's personal information, or an employee's
scheduled meetings. However, this is raw data, without markup. In other words, the content of
a page might consist of this information:

Brett Hund
Broker
2545550289
Waco
1212 City River Drive
Waco, Texas
76712

This is an entry for a broker. It contains the broker's name and title on the first two lines, his
phone number on the third line, office on the fourth, and office address on the final three
lines. In any Java enterprise application, servlets are usually the best choice for obtaining
content from a data store or set of business components and then handing that content off to a
presentation technology. Servlets are covered in greater detail in Volume II on web
applications.

You'll also want to turn that content into presentation. Presentation here refers to a formatted
HTML page, a WML deck for a wireless phone, or any other formatted data suitable for
display to a user. Typically, using JSP, servlets, and now XML and XSL are all excellent
choices for turning simple content into a fancier presentation. I'll focus on these concepts in
Volume II as well.

Building Java™ Enterprise Applications Volume I: Architecture

18

2.1.3.3 Services architecture

With Forethought's requirement for scheduling, you will have to do your first bit of true
creative work. Java, J2EE, XML, and XSL all require programming, but they are built upon
proven concepts. However, there are no stock APIs for handling scheduling, and a set of tools
and utilities for this aspect of the application will have to be created from scratch. This
quickly turns into a complex problem: consider business logic that sets up introductory
meetings with new clients, but must assure that a potential broker has no existing meetings
already set up at the desired time.

Additionally, building the scheduling component into a more robust services framework can
really pay off over the long term. By services framework, I mean a system that allows any
component that corresponds to a specific set of guidelines (such as a particular Java interface)
to be integrated into an application. Although this is not a book on component development
and won't go too heavily into this framework, some groundwork to generalize how
components interact with applications will be detailed and coded. Years down the line, all
your components will mesh into a common system instead of existing piecemeal throughout
the application. The business logic to handle appointments and client interaction is covered in
Chapter 9, and scheduling and services are covered in Chapter 10.

2.1.3.4 Storing data

The requirement of storing information about clients and employees is one of the simplest to
handle. It requires a decision about the medium for data storage. The two most prevalent
options are relational databases (RDBMS) and directory servers (often using the Lightweight
Directory Access Protocol, or LDAP). Although there are other options, such as object-
oriented database management systems (OODBMS), they are not as well-accepted or proven
technologies, and therefore are not the best solution for Forethought's traditional data needs.

In the case of the Forethought application, you don't necessarily have to choose one or the
other—in fact, using both a database and a directory server makes a lot of sense. Pure data
storage, such as handling employees' and clients' personal information, is definitely in the
realm of the database. This sort of information, used often in both read (view) and write
(update) operations, is best suited for storage in an RDBMS, which is optimized for general
access. However, Forethought also needs security for their application, through a username
and password combination. This information is read far more often than it is written, and
authentication is typically expected to be a fast operation. The reasons that make a database
ideal for general information make it poor for authentication data: its stability for writing
results in slower reading. Here, a directory server tuned for fast searches and frequent reads is
a perfect fit. Therefore, a combination approach is well suited in this case, and solves the
problem of data storage for the application. Databases and directory servers are covered in
Chapter 3.

As for accessing this data, proven solutions exist, all within the J2EE programming model.
Enterprise JavaBeans (EJB) is perfect for database access and is covered in Chapter 4 and
Chapter 5. Directory servers can be accessed most easily through the Java Naming and
Directory Interface (JNDI). Usable within any Java code, beans could also be written to
provide directory server access; however, for reasons discussed in Chapter 6, it is often better
to use normal Java classes for this facet of an application.

Building Java™ Enterprise Applications Volume I: Architecture

19

2.1.3.5 Servlets, EJB, caching, and performance

The last requirement discussed, that of "fast performance and standards compliance," is a bit
vague. However, all the solutions discussed so far are based on these very premises: Java,
J2EE, XML, XSL, and all the rest are accepted standards. And using a directory server for
authentication was a decision made for performance reasons. In other words, good design
decisions generally involve these principles, even without marketing or product management
reminding you of them. I'll also detail using caching and design patterns that can improve
performance as we go along.

At this point, the individual requirements of the application have all been addressed, and you
now face the difficult task of integrating these solutions into a larger, complete system. I've
tried to discuss each component separately from those around it: the data storage is dealt with
separately from the services and data access, which is separated from the business logic,
which is then separated from content, which is in turn separated from presentation. Each
portion of the application operates in isolation and supplies data to the next layer as needed.
This architecture can allow easy updates and additions of functionality over time. It also
makes debugging simple, since a problem can be quickly isolated to a specific application
layer. With these concepts in mind, let's now look at designing our complete application, layer
by layer. The rest of the book is split into sections that correspond to each of these layers.

2.2 The Data Layer

The foundation of any application is the data that it contains and utilizes. Without data, there
is no need for an application! Unfortunately, designing a data layer does not produce
immediate visible results—no screens appear, no business logic occurs, and management is
rarely impressed with entity-relationship diagrams. Because of this, the data layer is often
designed and implemented hastily, leaving the rest of the application to suffer and compensate
for early mistakes. Instead of taking this precarious approach, this book covers the data layer
first and attempts to design it soundly.

In addition to data storage, data access is typically part of the data layer. However, these
different functions can be separated from each other; do not be tempted to model your data
differently because of a product or technique used in the data access layer. More often than
not, the data of an application outlasts the application itself. Data formatted for a specific
product or application server may be completely unusable for other products that expect data
in a standard format.[2] Only after the data has been modeled and the storage mediums
designed should data access be considered. This section covers databases and directory
servers as well as data access methods.

2.2.1 Databases

Once you decide to use a relational database, the number of decisions left decreases quite a
bit. First, you must choose a database vendor. Second, the database must be accessible

2 I emphasize this point because there are several application servers out there that require modifications to the database in order to "perform
optimally"; for example, the Persistence PowerTier EJB Server used to suggest adding columns in database tables for the OCA attribute, as well as
modeling data in an OO rather than relational format. These types of changes may improve application performance over the short term but almost
always cause problems in the long run, and should be avoided at all costs.

Building Java™ Enterprise Applications Volume I: Architecture

20

through a JDBC (Java Database Connectivity) driver.[3] Then, the data design must be
determined, and finally, the data schema should be populated.

Determining what database to use can be very difficult; the data of an application often
outlasts other parts of an application, or becomes used by other applications, over time. This
means that your database vendor (and your resulting relationship with the vendor) will play a
critical role. Often, though, this decision is taken out of the developer's hands; many large
companies establish a standard vendor and simply purchase new licenses for additional
database instances as needed. In these cases, you will simply need to become familiar with the
selected vendor. However, in the case where no standard exists, there are numerous options.
Trying to recommend a single option for all cases is impossible; instead, certain conditions
favor specific vendors. On large systems, and particularly on Sun Solaris hardware, Oracle is
an excellent choice. Linux servers and clusters often use Oracle as well, and open source
solutions like MySQL, PostgreSQL, and InstantDB are also popular. Microsoft platforms tend
to work best with the Microsoft database offering, MS SQL Server. And there are many,
many other vendors to choose from, such as Sybase, Cloudscape, mSQL, and Interbase.
While the example code shown in this book utilizes only standard ANSI SQL and should
work on any of these databases, the appendixes cover various database-specific SQL idioms.

JDBC drivers are available for each of these vendors. Additionally, the JDBC-ODBC bridge
driver can be used to access databases on Windows systems if a native JDBC driver is not
available, but this situation is rare. In fact, Java has become so prevalent that almost all
databases supply a JDBC driver with installation, and application servers (particularly EJB
servers) provide JDBC drivers as well.

As for designing the data schema, I'll leave that for the next chapter. For now it is enough to
know that aside from the usernames and passwords that will be stored in an LDAP directory
server, we will house all application data in a single database instance. I'm also not going to
deal with replication or high availability at the database level in this book; these topics are
books unto themselves, and shouldn't affect the overall application design. However, this is by
no means a recommendation against employing these techniques—data reliability is an
important issue, and some sort of redundancy should be built into your application, especially
at the data level.

2.2.2 Directory Servers

Using a directory server is not quite as complex as using a database; while the techniques
involved are less established, there are fewer options and chances for misuse. The most
common problem is attempting to use a directory server as a wholesale replacement for a
database. By deciding to store only authentication information in the directory server, that
problem has already been avoided in the Forethought application. While there are certainly
situations in which other information could be housed in a directory server, keeping things
simple is usually a good idea, and this is what is being done for Forethought.

Since LDAP services were first created at the Universities of Michigan and Berkeley, there
has been a well-established set of standard object types and structures defined for use.[4]

3 While these are portrayed as two independent decisions, it is possible that the second decision can affect the first. If you are writing a Java
application and your database has no stable JDBC driver, you may have to rethink the database vendor. That said, with the prevalence of Java today,
this is not as large a problem as it was years ago.
4 The longer story of directory servers is rooted in the history of X.509. However, that's pretty dry stuff, so I'm going to leave it to interested parties to
research this information on their own. You can start by checking out http://www.openldap.org/.

Building Java™ Enterprise Applications Volume I: Architecture

21

Directory servers are structured like a tree, unlike the relational structure of an RDBMS, and
usually come prepopulated with a top-level organization node, as well as groups and users
(often called People) nodes. It's always a good idea to use these existing structures when
possible and to extend them when new structures are needed, instead of creating brand-new
object types. You'll get to look at this in a lot more detail in Chapter 3 and Chapter 6.

Unlike databases, there are not as many established choices for LDAP directory services. In
the commercial space, Netscape's iPlanet Directory Server has been the dominant choice since
its inception. Many application servers are now coming with bundled directory services, but
as of this writing, those offerings were weak at best. The only commercial bundled server that
seemed promising was Oracle's directory server, bundled as part of the Oracle 8i suite of
servers. Excepting that case, if you need a commercial solution, Netscape remains the best
option. For the open source fans out there (of which I'm one!), openLDAP is a great solution.
Written in C, it's robust and proven, and has work in it from some of the original LDAP gurus
at Michigan and Berkeley. As with the databases, the appendixes in the back of this book will
cover vendor-specific idioms in directory server setup and deployment.

2.2.3 Data Access

The final part of the data layer is providing access to the data stores. While this decision is
primarily specific to the application you are writing (in this case, the Forethought system), it
is the one application component that may be used by other applications, sometimes without
your foreknowledge. As three-tiered and n-tiered application architectures become more
prevalent, companies become less willing to directly expose their data stores. In the past,
other companies or applications that needed to access data were given direct access to a
company's database, usually through some particular port. By far the most common example
of this is SQL*net, which provides an unencrypted channel for SQL queries to be executed,
returning the results in the same fashion. Obviously, an unencrypted channel is not a very
secure means of exposing data; it also requires any security restrictions or filtering to be
implemented at the database level to protect sensitive data. Attempts to rectify this deficiency
(such as Oracle's Secure Networking product, which encrypts the SQL*net communication)
have proven to be extremely sensitive, and not always easy to configure and use.

With the ability to create a pure data access layer through coded modules in an application,
direct access can be turned off, or completely disallowed from the start. Instead, other
companies and applications can make requests of the data access layer just as the original
application's business layer would (this is discussed in the next section). Because this is code,
it can be customized for the specific needs of the company; for instance, only users who
authenticate through the data access layer could be allowed to query the database. Any other
filtering could also be done at this level, rather than involving the data storage mechanism
itself. Let's look at some potential access layers for the application now.

2.2.3.1 Java Database Connectivity (JDBC)

The most common method of interacting with a database is through JDBC, the Java Database
Connectivity API. This API, part of the J2EE platform, allows programmatic interaction with
any SQL-based database. As already mentioned, any database used in an enterprise
application should have a suitable JDBC driver (or else you may want to select another
database vendor!). JDBC also allows security to be used, as any connection requires a

Building Java™ Enterprise Applications Volume I: Architecture

22

username and password. A single Java class using JDBC can connect to a database with
multiple sets of permissions, allowing user-specific data access.

JDBC is most commonly used for accessing data directly from servlets or from standalone
Java classes. While it is often more complicated to write good JDBC code than to use EJB
entity beans, particularly container-managed persistence beans (discussed next), the resulting
code is very fast and flexible. Another advantage of using JDBC directly, as opposed to an
EJB solution, is that you can explicitly control caching, allowing rapid access to commonly
used data. In the Forethought application, certain components, such as the scheduler, can
really benefit from this caching. It is in this portion of the Forethought application that JDBC
could be used directly. Additionally, using JDBC in this way does not require the overhead of
an EJB server handling data requests. It is also worth mentioning that most other solutions for
accessing databases (particularly EJB entity beans) actually use JDBC, wrapping it in an
abstraction layer. In other words, JDBC and EJB are not competing APIs; EJB actually allows
encapsulation of JDBC. For more on JDBC, you can pick up a copy of Database
Programming with JDBC and Java, by George Reese (O'Reilly).

2.2.3.2 EJB entity beans

Another solution for accessing databases is Enterprise JavaBeans (EJB). EJB is built just for
this type of task, particularly entity beans. Entity beans are intended to represent data in Java,
without any business logic wrapping the data. In fact, the business layer (using servlets or EJB
session beans, discussed later) would use data from entity beans to perform business logic
computations. Used as a pure-Java data representation, entity beans can be extremely useful.

Entity beans in EJB 2.0 come in two flavors: bean-managed persistence (BMP) and container-
managed persistence (CMP). BMP beans essentially allow the developers to do whatever they
want within the EJB framework. BMP beans are usually made up almost entirely of JDBC
code, and simply take advantage of the EJB container for access to data sources, performance,
and passivation and activation. CMP beans, however, are quite a different story. A CMP bean
only allows the developer to write the mapping of a database's data to Java variables. All
interaction with the database (through JDBC) is handled by the container. Usually tools are
provided with an EJB server or container to take a CMP bean and generate the container
classes that handle database communication. The container then deploys both the developer's
code and the generated classes, allowing the bean to behave (at runtime) identically to a BMP
bean.

Much of the basic database access for the Forethought application, such as obtaining
employee records and updating client accounts, can be handled through simple CMP beans. In
addition to avoiding a lot of tedious JDBC code, this solution cuts down on the pure volume
of code that has to be developed and maintained, which is always a win for upper
management: more work in less time! Only when you need to perform queries and operations
that are too complex for simple CMP access would you need to look at using BMP beans. For
more information on Enterprise JavaBeans, you can pick up Enterprise JavaBeans by Richard
Monson-Haefel (O'Reilly).

2.2.3.3 Java Naming and Directory Interface (JNDI)

So far, I've discussed only database access. We still need to deal with data access to the
directory server, which contains authentication information for the application. JDBC

Building Java™ Enterprise Applications Volume I: Architecture

23

obviously doesn't help here, since LDAP directory servers are not databases, and thus are not
accessible with JDBC. As I mentioned earlier, JNDI is the solution to this problem. Like
JDBC, it provides a means of writing code that is vendor-neutral[5] and that works across all
types of a service.[6] In the Forethought case, this provides the perfect analog to JDBC for
directory service access. As JNDI is also part of the J2EE platform, it is also available to you
(since we already decided to use J2EE). You can find out more about JNDI in Java Enterprise
in a Nutshell, by David Flanagan et al. (O'Reilly).

With data access APIs established, all communication to the Forethought data can be funneled
through either JDBC classes, EJB entity beans, or JNDI. Making this decision at this point in
application design prevents you from having to backtrack, or worry about loopholes in
security to the database and directory server. With that structure in place, the data layer is
finalized; Figure 2-1 shows the completed data layer architecture.

Figure 2-1. The Forethought data layer

2.3 The Business Layer

Next in the design process is the task of creating a business layer. This portion of the
application is wedged between presentation (what the user sees) and data (what the
application depends on). The business layer, then, does just what it implies: it performs
business (logic). Data on its own is rarely relevant, and often makes no sense without some
context applied to it. In the same fashion, the presentation layer must have something to
present (no rocket science here!). In this business layer, then, data is manipulated,
transformed, and converted into content suitable for presentation.

The core of this layer is the code that actually executes business logic. This code maps to a
company's business processes; in the best case, a single module of code represents a single
business process. These modules can then be called to obtain a client's outstanding balance,
for example. This figure is rarely stored in the database, but instead is calculated from the
client's purchases subtracted from his or her assets. This allows the raw data to be masked
from the presentation layer of an application; instead of asking for data and performing
calculations, the application needs to request only the business process that results in a client's
account balance, and format the result.

5 This is a small oversimplification. In fact, JNDI services require information about the services it connects to, usually a hostname and port, and
sometimes a username and password. These values would change across products, assuming the products were not running on the exact same machine
and port number. However, using property files, even this bit of vendor-specific code can be removed.
6 In this case, I am referring to LDAP, or RMI, or a filesystem as a type of service. While JNDI code should work with all vendors' products in one
type (such as any LDAP server), it will not work across types; in other words, the same code won't function for access to LDAP, flat files, and RMI,
but it will work for Netscape, Oracle, and openLDAP.

Building Java™ Enterprise Applications Volume I: Architecture

24

2.3.1 Business Logic

With entity beans in place for handling data access to most of our application, it makes sense
to continue to leverage EJB for the business logic in our application. In this case, EJB session
beans are a good fit. Session beans are complementary to entity beans and are designed
specifically for handling business tasks. Additionally, they can be easily modularized,
allowing mapping from a single business task to a session bean (as mentioned earlier, this is
optimal). In this way, session beans can be "strung together" in logical ways, creating
complete business processes. In this case, I am using the term business process to refer to a
series of individual tasks. For example, obtaining a client's account balance or checking for
availability of a new stock might be a business task; however, the complete business process
of checking the balance, ensuring that enough is left to make a purchase, and then buying the
stock comprises multiple individual tasks. Because each session bean can access the entity
beans for the data it needs, one session bean may be used in multiple business processes
without having to modify the single business task.

The biggest decision to be made regarding session beans is the type of bean to use for each
task; session beans come in two flavors, stateful and stateless. Stateful session beans reside in
memory once they are created and maintain information across requests. Stateless session
beans, on the other hand, are "fire-and-forget" beans, which execute a request and are then
disposed of until requested again. All information in the bean is trashed between requests.
While stateful beans can be helpful for processes or tasks that span multiple requests, they are
often slower and obviously require more memory in the virtual machine. Stateless session
beans, though, are very fast, and often only a few instances are needed to serve hundreds of
requests. These qualities make them ideal for most business tasks, and preferable for better
application performance.

2.3.1.1 Stateless session beans

We have not yet identified all the business processes, so determining exactly what business
tasks should be modeled in stateless session beans is a bit difficult at this point. However, I
will go ahead and set out some general guidelines for the use of stateless session beans.

First, unless there is a reason not to use stateless session beans, you should use them. Using
stateless beans over stateful ones in the general case can drastically increase application
performance. Because the EJB container can share stateless session bean instances across all
EJB clients, it can maximize performance, as well as cache the instances in some cases.

Second, stateless session beans should rarely be used for accessing the directory server. While
entity beans are used for database access, session beans would have to use JNDI for LDAP
access. In this situation, connecting to the LDAP service is often more time-consuming than
the actual operations once connected. This is a perfect example of a good case for using
stateful session beans—connecting once and holding the connection open across requests can
help avoid the initial delay of connecting to the LDAP service for each request. Another
option (which I'll lay out in Chapter 5) is simply to use a standalone Java class for LDAP
access, avoiding the overhead of EJB altogether.

Finally, when using stateless session beans, similar operations should be combined into one
bean. Although the bean doesn't persist data across requests, it can be used multiple times
over one request and bean lookup. For this reason, multiple methods that operate on the same

Building Java™ Enterprise Applications Volume I: Architecture

25

logical data can be consolidated into a single bean. This can really clean up code and clarify
what different components are used for.

2.3.1.2 Stateful session beans

I've emphasized this quite a bit, but I'll say once more that you don't want to use stateful
session beans for many of our business processes. However, there are times when the
persistent nature of these beans, the very facet that makes them dangerous to overuse, is very
helpful. One case is as a connector to LDAP for other components, as previously mentioned.
Another case is when you are handling large data sets that require paging. Consider that a
broker needs to list clients who meet a certain set of criteria, such as living in Chicago and
having positive account balances. If the number of results is fairly large, it makes sense to
show only a few matches at a time (say, 20) and allow the broker to move through pages of
results. In this case, performing the query each time wastes time and resources; instead, a
stateful session bean could obtain all results from the query, and then supply methods
(getNextPage(), getPreviousPage(), etc.) for moving through the results. Storing the
complete data set allows this to occur quickly, as the application needs to pause only at the
initial search (a wait that users are accustomed to when performing searches), while
functioning quickly on the paging commands. As we delve into the implementation of the
Forethought application, we will watch for these situations and use stateful session beans
where appropriate.

2.3.2 Messaging

The last portion of the business layer is the messaging required for a scheduler component.
For this part of the application, we will use EJB 2.0's message-driven beans. Like session
beans, these services may use entity beans for data access. It is also likely that many services
will interact directly with the data layer through JDBC, which allows a different server than
the one containing the EJB container to house these services and cuts down on RMI traffic
required for EJB utilization. It also allows the EJB server to devote most of its resources to
serving application clients; clients waiting for search results are much more impatient than an
employee checking her next meeting. This correctly distributes the processing of the
application in accordance with the user patterns. Communication between components that
are interdependent, or that trigger the starting or stopping of tasks, is based on messaging.
Using the Java Message Service, alone or through message-driven beans, provides a means of
handling this communication without getting hung up on network and latency issues.

With the session beans and messaging architecture in place, the business layer is complete.
You may have noticed that it was much simpler to design this layer than the data access layer,
where many more decisions had to be made. While this observation holds true at this early
stage of overall architecture, when the implementation occurs, defining business logic
modules will later consume much more time than creating database tables and relationships.
However, at this point, there is simply a large "black box" of business logic wedged between
presentation and data, and we will flesh it out later. Figure 2-2 shows the business layer,
separating the various technologies discussed.

Building Java™ Enterprise Applications Volume I: Architecture

26

Figure 2-2. The Forethought business layer

2.4 The Presentation Layer

Last, but not least, is the presentation layer. As with the data layer, creating the presentation
layer is another difficult task, as there are many decisions to be made. Additionally, this layer
often has the most constraints upon it: clients have a variety of browsers and versions of
browsers, as well as other Internet-capable devices; output may need to be in a specific
format; speed of display may be a factor; and so on. In the Forethought application, the
presentation layer must be able to serve multiple types of clients, and do it in a way that
doesn't force a lot of duplication of content. JSP, XML, and XSL are all part of the solutions
that will be examined for solving this problem.

As I'll be spending Volume II on the subject of presentation, I'll leave these details for a later
discussion. However, this is not entirely for the sake of another book; it is also to show you
that the details of the data and business layers are often completely isolated from the
presentation layer. This means that two groups could design these at different times, or you
could even develop a set of data stores and business rules without worrying about presentation
until later (the approach taken by this book). This method forces you to uncouple these layers,
which is critical to good application design. It also allows an easy conversion of an
application to a set of web services; since your business layer is not specifically aimed at a
web application, it is easy to expose beans and other business components as web services
down the line. So I'll leave this area intentionally open for interpretation. Of course, this
doesn't prevent a basic diagramming of how the presentation layer (be it servlets, web
services, Java Swing, or anything else) interacts with the other layers in the application.
Figure 2-3 shows this basic interaction.

Figure 2-3. The Forethought presentation layer

Building Java™ Enterprise Applications Volume I: Architecture

27

2.5 Finalizing the Plans

By now it may seem that I have spent an eternity doing nothing but talking about the
Forethought application. In reality, I have barely scratched the surface of a complete
application design. Most companies require functional specifications, detailing what an
application will do and the business needs it should serve. Often, technical design documents
that specify the details in even more depth are required before a development team can begin
work on a project. In some cases, an appropriate team might have to be assembled, which may
involve contracting and consulting resources hired to supplement full-time employees. In
other words, enjoy that I spent only a chapter on this subject, rather than a whole book! It's a
luxury you would have only with a fictional company.

In any case, I have outlined the Forethought application well enough to give you an idea of
the technologies and general techniques that will be used. Additionally, minimal architecture
diagrams have been taking shape. With the data, business, and presentation layers all sketched
out, the three separate layers can be combined into a single, overall application architecture.
This complete picture is shown in Figure 2-4.

Figure 2-4. Completed Forethought application architecture

You can see that because of the separation between the layers, there is really no work to be
done to "connect" these layers together. Java RMI and EJB services connect the business
layer to the data layer, running through EJB and JNDI data access code. Connections between
the presentation layer and the business layer can happen via RMI, normal Java network
communication, or perhaps SOAP and similar protocols for web services interfaces. It's
finally time, then, to close the book (proverbially of course!) on the application design for
now, and move on to implementation.

2.6 What's Next?

With the application designed and blueprints in place, you are now ready to begin filling in
the details. The foundation is always the most critical portion of a house, as all other
construction must be supported by it. In enterprise applications, particularly those on the Web,
data itself is this fundamental layer. Data is the focus of the next chapter, and databases and
directory servers are discussed as two options for storing this critical substance. Then, the data
schema will be designed, the tables created, and preparations will be put in place for the rest
of the application code.

Additionally, I will highlight how designing a data store is often almost completely unrelated
to the specific application itself. By remaining general in the storage design and
implementation, the foundation can be used and reused without having to be altered for
different applications of the data, even for those applications you have yet to consider. This is
key to the ever-changing landscape of web applications.

Building Java™ Enterprise Applications Volume I: Architecture

28

Chapter 3. Foundation
Enough talk—it's finally time to get on with some implementation. If you're much of
a developer this is probably exciting news; all developers must take part in application design,
and may even grow to enjoy it, but there's nothing like getting your hands dirty with some
actual code. However, it isn't quite time to open your favorite IDE or editor and start punching
out Java code. In fact, we'll get through this entire chapter without looking at a single line of
Java. Instead, this chapter focuses on the data stores, creating the medium for holding the
application's data. There's plenty of technical material, though, so don't get too worried just
yet.

As mentioned in the first two chapters, the design of an application is its blueprint, and is
crucial to its success. Now that you have this blueprint, you need to lay the foundation of the
application with the data storage. Literally everything else in the application (as well as in
other applications that may potentially use the Forethought data) depends on the decisions
made here. I'll begin by discussing the overall design of the data. This involves defining the
schema for the data without worrying about whether the data will be stored in a database,
directory server, or any other specific technology.

Once you've determined how the information for the entire application will be laid out, you
can begin to decide where specific data needs to be stored. In the case of the Forethought
application, it has already been decided that data will be stored in one database (ignoring
replication issues) and one directory server (ignoring failover instances). This simplifies the
decision-making process quite a bit. The authentication data should be stored in the directory
server, and the rest of the data housed within a database. All that is left, then, is designing the
actual physical layout of the database and LDAP store, and implementing these designs. This
will be detailed in the last part of the chapter.

3.1 Designing the Data Stores

The first step in the actual design of the data store is to identify each major section that we
need to think about. Like the rest of the application design so far, good design is more about
breaking up large pieces into small pieces than performing any mystical process. In the last
chapter, the application was broken up into layers (data, business, and presentation); this
chapter concentrates on the first of those, the data layer. That layer was broken up into the
data itself, and data access; now the data can be broken up even further, into database tables
and directory server objects. Through this process, a complex application becomes a series of
small, manageable tasks that when put together make up a lot more than the sum of their
parts.

So with that in mind, let's segregate the data. The first division is probably the easiest to
handle: user data. Only basic information is required, so it's simple to determine that users
should have their names and basic contact information stored in the database. In addition to
user data, authentication data is a necessity. While authentication data will reside in a
directory server, it still must contain a unique key that can be related back to the users in the
database. This authentication data must also define permissions as well as simple username
and password combinations.

Once this basic information about application users is in place, you can move on to the
business details that Forethought is so concerned about. This is the account information that

Building Java™ Enterprise Applications Volume I: Architecture

29

Forethought's clients are interested in, as well. There is a need to store accounts of the
company's clients, transactions that involve those accounts, and investments the clients make.
I'm distinguishing between transactions, where clients either deposit or withdraw funds, and
investments, where clients invest money and yield either a profit or a loss. Then, like the
authentication information, this information must have a tie to the user data store.

Finally, the application must be able to store information about events for scheduling
purposes. For the sake of the example, this information will contain only a basic description
of the meeting, the meeting time, and the attendees. It's worth noting that in many cases, you
could easily add a much richer set of details for the data objects, such as users' email
addresses and preferences, account histories, and complex event tracking such as departments
and locations. However, you get the idea, and keeping the example simple enables you to
carry this book under your arm instead of in a wheelbarrow.

3.1.1 Users

The first portion of the data store is the easiest to design. Storing information about users is
generally not a difficult task; the most complex part of the job is determining what
information needs to be stored. For the purposes of the example application, this information
is fairly limited. Here's a list of this basic information and how it could be logically grouped:

• Username for application
• User's "real" name

o First name
o Last name

• User's home office
o City
o State

Even this simple list contains enough information to distinguish users from each other. While
an application client might have the same first and last name as another client, you should
build rules into the application to ensure the uniqueness of their usernames. For now we'll
simply assume that the mechanism that creates usernames, either programmatically or by
letting the user select one, can be coded to utilize this sort of constraint and inform the user if
errors occur.

3.1.1.1 Data constraints

With this basic step complete, it's time to make some decisions about constraints set upon the
data. For example, usernames should be unique. The issue, then, is whether this constraint
belongs at the application level or at the data layer. Your initial impulse may be to place the
constraint at the database (or directory server) level, rather than in Java code.

However, this type of constraint can often result in error messages returned to Java programs
that are difficult to deal with at runtime. Additionally, the error message returned is often
vendor-specific. While Oracle may supply an ORA-1302 error code, PostgreSQL may return
the string "Uniqueness constraint: duplicate data." And a directory server might use an
entirely different format for error reporting. As you can see, although the data is protected
from invalidity, the corresponding Java code still needs to perform some checks of its own.

Building Java™ Enterprise Applications Volume I: Architecture

30

The code that creates users will need to specifically check for and handle this error condition.
This is something I'll explain later.

At the same time, usernames may need to be at least four characters long (for example). This
is another, similar constraint, but must be handled completely differently. First, the
mechanism for length checking is not as standardized as the check for uniqueness. Some
databases allow a data length (both minimum and maximum) to be directly defined. Other
databases provide for triggers to be coded that perform these checks and generate errors, if
needed. And still other databases provide no means for this sort of check at all. In these cases,
where generic means are either nonexistent or insufficient, the answer is to code, code, code.

So, the answer to where data constraints belong is a mixed message. In almost all cases, if a
constraint is set on data, it should be at least checked for specifically, if not completely
handled, at the application level. And in the cases where a database offers a general way
(preferably across databases) to enforce constraints at a lower level, those means should be
used in addition to application code.

3.1.1.2 User types

Another requirement of the Forethought application is the ability to represent both clients and
employees in a similar fashion. While there is certainly a temptation to store these users in
two separate areas of the data store, you should not give in; the information being stored about
employees and clients is exactly the same (username, first name, and last name). In fact, there
is rarely a time when the core information about disparate groups of people is significantly
different. The only difference here is that an employee has an associated office record, but
simply adding a separate structure for office data takes care of that requirement and still
allows the use of a single structure for both clients and employees.

Records, Structures, and Other Database
Terms

As you've probably noticed, quite a few terms get thrown around when talking about
databases. First, the entire database can be referred to as a data store. This is
actually a generic term that can refer to any form of data storage, such as a relational
database, object-oriented database, LDAP directory server, or even a set of flat files.
Then, you have a data structure (or just structure). This refers to a physical structure
within the data store that can hold compound data. In relational databases, a data
structure almost always refers to a table. This table defines the way that data is
stored; it gives it structure. Finally, you have data records . These records exist
within a structure; in the context of a relational database, these are the rows in
a database table. Keep these terms in mind as you continue on through the chapter,
and things will make a lot more sense to you.

Using one structure for both types of users is not only simple, it also makes more advanced
reporting possible. For example, you can find all employees and clients with the same last
name without having to perform time-consuming unions or joins of data in multiple areas of
the data store. Additionally, each constraint set on a table or LDAP object is generally limited
to that structure, and trying to maintain constraints such as the uniqueness of usernames

Building Java™ Enterprise Applications Volume I: Architecture

31

becomes much more difficult across multiple data structures. Overall, using a single structure
for similar data will almost always result in better code and faster processing.

As for the process of differentiating between clients and employees, it is trivial to break up
users using established data design techniques. It makes sense to create a new data structure
and populate it with user types (clients and employees), and have each entry in the user
structure reference the appropriate entry for that user. In addition to allowing a single
structure for users, this technique also makes it simple to later add additional user types (for
example, leads or potential clients). It's also easy to find out if an office reference should be
examined: if a user is an employee, there will be an entry in the offices structure; if the user is
a client, there won't.

3.1.1.3 Unique keys, characters, and IDs

As a final design note, I need to address unique keys in data structures. A fairly well
understood rule in database design, and one that also applies to directory services, is that data
can be organized more efficiently when there is a unique piece of data for each row or entry in
a structure. In addition to providing a simple way to ensure that the same set of data is not
entered twice, the unique identifier allows most data stores to index the data in the structure.
Indexing generally improves performance of the data store, and can drastically improve the
speed of searches and queries using those structures. Finally, a unique identifier for each entry
allows that identifier to be used in other structures that reference the original.

In databases, this unique piece of data is usually known as a primary key, and when used in a
referencing structure, a foreign key. For example, in the users structure, you could use the
username as the primary key, since it has already been established that this piece of data
should be unique for each user. The username could then be used to associate data in other
tables to a particular user. The end result is a set of relations between the structures, thus the
term relational database.

However, many structures will not have data that must be unique. In the offices structure,
assume that all that is being stored is the city and state where the office is located. It is
reasonable to think that two offices might be in the same city and state (consider huge cities
like Dallas, New York City, and San Francisco). In these cases, there needs to be an
additional piece of data for the primary key. Best practice is to call this piece of data XXX_ID
where XXX is the name of the data being represented. For the offices data, this results in
OFFICE_ID. Most databases provide an auto-numbering facility for these sorts of columns,
allowing the database to handle assignment of the ID whenever data is inserted. Other
databases, like Oracle, allow a sequence or counter to be created to handle these numbers, and
the next value of the sequence can be obtained and then used for the new piece of data being
inserted.

The result is two types of primary keys: the first, applicable to users, is a character value, and
the second, applicable to user types and offices, is numeric. As already mentioned, these
values are used heavily for indexing, and a numeric value is always easier to index on than a
textual one. Additionally, numeric values usually require less space than textual ones
(consider that even high-precision numbers will take less storage than an eight-character
username). This observation results in another best practice: when possible, numeric primary
keys are preferred over character-based ones. In the users table, you can either stay with using
the username, or add another piece of data, called simply USER_ID, to hold a numeric ID for

Building Java™ Enterprise Applications Volume I: Architecture

32

each user and serve as the primary key. Because the user information store will be used more
often than any other piece of data, it makes sense to choose the latter and provide a numeric
primary key for the table.

With all these decisions made, we have touched on several important topics in data design. In
fact, designing the rest of the data storage will be simpler with these principles under your
belt. Before moving on to user permissions, though, take a look at Figure 3-1, which shows
the user data without any database- or LDAP-specific structures.

Figure 3-1. The Forethought user store

3.1.2 Permissions

The next segment of data to look at is the authentication system. Again, there are quite a few
traditional best practices that can help out here. Generally, authentication can be broken up
into permissions, with each permission specifying access rights to a resource or group of
resources. A user's authentication rights, then, are determined by the permissions assigned to
that user. What is left is the simpler task of designing storage for these permissions.

Simple names can be used for the permissions. These should be self-describing and somewhat
representative of the permission's purpose. However, there is a fine line here; if these names
become "too" readable, they can cause application performance to deteriorate. A name like
EMPLOYEE_LOGIN works well, but can easily get out of hand:
NEW_EMPLOYEE_APPLICATION_LOGIN. Moderation is the key here. Additionally, to avoid
having to index on these character values, it makes sense to have a PERMISSION_ID column
that allows building of references and can keep performance high.

3.1.2.1 Granularity

The biggest decision to make in the area of permissions is not directly related to the storage of
the data at all, but to the meaning of the data. It's usually best to consider data as neutral, or
application-independent. In other words, while data is certainly used by various applications,
it stands on its own. It is only when the data is given context by the application that it has
meaning. This is precisely the reason that until now, I have not made any reference to the
application using the data, or to optimizing data for a specific business task. These sorts of
optimizations, or any decisions made at the data layer based on the business logic of an
application, usually result in an application that performs well only in a specific context, and
can also make sharing the data with other applications very difficult. Data that is tuned for a

Building Java™ Enterprise Applications Volume I: Architecture

33

specific use may cause problems when used in ways not originally intended; since these
unexpected uses almost always arise, preparing for these contingencies is a good idea.

However, we have to break that rule in permission handling (the first thing you do upon
learning a good rule is to break it, right?). This deviation occurs for two reasons. First, the
way in which permissions are used at the application level directly affects how they are
stored, as you will see in a moment. Second, it is slightly less onerous to make decisions
about permissions based on the application they are used within. This is because permissions
are an intrinsic part of an application, and generally are not used by other applications. And
when they are used by other applications, it tends to be in the same fashion; certainly
permissions are worthless except for authentication purposes!

In this case, the decision to make is about the granularity of permissions. Granularity refers to
how specific the permissions are; the more precise a permission's use, the more granular it is.
For example, a permission called EMPLOYEE, which allows a user to log into the application,
view client records, run reports, update accounts, and add clients, is not very granular: it is
broad and sweeping in nature. However, if that permission were broken into LOGIN,
VIEW_CLIENTS, RUN_REPORTS, UPDATE_ACCOUNTS, and ADD_CLIENTS, you would have a much
more granular set of permissions. This latter method is generally a better one; too often,
coarse-grained permissions like EMPLOYEE become umbrellas for lots of things that shouldn't
be lumped together. For example, someone in the accounting department may find that he
needs to delete accounts. Because the authentication structure has only the EMPLOYEE
permission, the ability to delete records is then added to that permission. However, now every
employee has that right, which was not intended: certainly not everyone should be able to
delete client accounts! In this application, then, I will assume that a single permission applies
to a specific resource, such as accounts. Further, most permissions will apply to a specific use
of that resources, such as deletion. Thus, you can expect to see permission names like
DELETE_ACCOUNTS, MODIFY_CLIENTS, and ADD_OFFICES.

3.1.2.2 Groups, roles, and permissions

This added granularity introduces some complexity into the maintenance of a user's
permissions. As mentioned previously, sets of permissions are often assigned together; the
EMPLOYEE permission was an example of such a set. With the more granular approach, adding
an employee would result in the need to assign five, ten, or even more permissions to that
employee. It would be preferable is to add the entire set of permissions and be able to
maintain the set as a whole, rather than as individual permissions. We can accomplish this
result with the introduction of groups, or roles.

A group (often called a role) is used to define a logical set of permissions. Users then have
these groups or roles assigned to them. In addition to allowing administrators to manage sets
of permissions, the use of roles makes the task of removing a user's permissions much
simpler. Consider the case where no roles are used. An employee is hired and given ten
permissions that all employees receive, including ADD_CLIENTS and RUN_REPORTS. The new
employee is also a broker, and is given five more permissions associated with brokers.
Among these, one is RUN_REPORTS. This is the same permission already granted to the user
(through her entry as an employee), and is a part of both the broker and the employee
permission sets. This causes no problems when creating the user, since the duplicate
permission is already found and is not duplicated. The problem, though, arises in removal.
Let's say that the employee does well, and is promoted from broker to manager. The broker

Building Java™ Enterprise Applications Volume I: Architecture

34

permissions are removed at this point, and the employee is given manager permissions. What
is the problem? The employee can no longer run reports! Removing individual permissions
results in the RUN_REPORTS permission being removed, because it was present in both the
employee and broker sets of permissions. This is, of course, incorrect, as the manager is
certainly still an employee and should be able to run reports. However, in the case where roles
are used, the permissions are assigned to the roles, and the roles to the user. Then, when the
BROKER role is removed, the EMPLOYEE role remains, ensuring that the manager still has all
permissions associated with employees. Here, roles (or groups) save us a tremendous amount
of administrative headaches.

The only difference between a group and a role is that group is usually used when discussing
directory servers, and role is usually referenced in regards to databases. I'll use the term role
for now; when a determination is made later about which type of storage to use at the physical
data layer, I'll use the term appropriate for that data structure. For now, though, it's possible to
complete the permissions data storage by having a structure for permissions, a structure for
roles, and by joining structures that connect permissions to roles and roles to users. Figure 3-2
shows this scheme (although without the users table that would be joined in, as that was
shown in Figure 3-1).

Figure 3-2. Authentication data for the Forethought application

3.1.3 Accounts

All that's left now is to define data storage for client accounts. First, let's assume that for any
single client, there may be multiple accounts. Thus, in the accounts structure, you can define
an account ID and then relate that structure to the users structure defined earlier (see
Figure 3-1). You can also decide to allow for different types of accounts: money market,
stock-based, interest-bearing, and so on. In the same way that a structure was created for user
types, you can create one for account types. The same referential schema can be set up, as
well. Now you just need to add a field for storing the account balance to the accounts data
structure.

There are two basic operations involved with these accounts: transactions and investments.
Transactions represent clients depositing and withdrawing funds. These are fairly static
processes, as no interest is involved; money is simply added to or removed from the account
balance. Investments are not quite as simple. First, you need to store information about the
funds that clients can invest in. These aren't tied to any specific client, so are stored
separately, with an ID, name, and description. Those funds are then used in investments.
Investments consist of an ID (as always, used in indexing), the fund invested in, the initial
amount invested, the yield on that fund, and then a reference to the client's account (through

Building Java™ Enterprise Applications Volume I: Architecture

35

the account ID). Putting all this information together results in a robust way of tracking each
client's investments while allowing funds to be stored separately and reused across clients.
The complete account structure is shown in Figure 3-3.

Figure 3-3. Forethought clients account data

3.1.4 Scheduling and Events

When it comes to dealing with storage for scheduling and events, things get much easier. First
of all, an event can be represented as a single object. The description, location, purpose, time,
and other details can all be defined as properties (rows in a database table, or attributes in an
LDAP object class) of the event. Once the event object is in place, all that's left is to relate the
event to various users, the attendees of the event. In other words, this is the simplest task yet.

To handle the relationship between an event and users, an attendee object needs to be created.
This object will not hold any additional details about the event or contact numbers for the
attendee—this information is all stored in other places within the data store. Instead, it will
provide the link between an event (identified by the event ID, a primary key) and a user
(identified by the user ID, a primary key). The table is completely meaningless on its own, as
it is simply a series of numeric IDs, but it is integral to the overall scheduling process. Figure
3-4 shows this structure isolated from the USERS object. Although it seems to make even less
sense without the link to that table, it's helpful to isolate the different portions of the
application. In just a moment, the complete picture will be examined and the relations filled in
between the various portions of the data store.

Figure 3-4. Forethought events scheduling

You may have noticed that there is no SCHEDULER table or object within the Forethought data
store. As a practical matter, a schedule is simply an ordered series of events. But the ordering
and the criteria for which events to contain are business-driven. So while events should be

Building Java™ Enterprise Applications Volume I: Architecture

36

stored within the data store, a schedule is actually a derived object that will be created by the
code, as I'll detail later on. For now, it's enough to say that no table needs to exist for
schedules; the simple events table and attendees relations will suffice.

This completes our look at the individual pieces of the data schema, at least in terms of the
Forethought example. There are some other things you may need to add for practical
applications; I'll look briefly at these before continuing to the physical design.

3.1.5 Odds and Ends

When it comes to reality, a book can only give you part of the picture. However, I'll now try
to point out some of the things that I won't be able to completely cover in this book. If any of
these apply to your specific application, you can add them to the data model.

First, most applications need to capture additional information about users. Addresses, phone
numbers, pager numbers, places of work, and social security numbers are often optional or
required information. This data can either be added to the users structure or broken out into
multiple structures. Usually, data like a social security number is tied to the user structure
itself; however, data like an address is often broken into a separate structure. Using a separate
structure for an address is common, as people often have different addresses for home and
work. In these cases, a table with address types is probably appropriate.

The storage of office information is also rather poorly designed. In the example, the city and
state of each office is stored with the office data. This means that states are probably
duplicated (for offices in the same state), and possibly cities are as well. This isn't such a good
idea, as this duplicated data can add up over the life of an application. Adding addresses
causes even more duplication. A better idea is to create a states table, and then possibly a
location or city structure, with a city and a reference to the states structure. Finally, using the
ID of the city in the offices and addresses structure completes the picture. In this way, data
redundancy is minimized. It also eases management; a change to the name of a city or even
state (it happens; just ask Russia) can be made in one data structure, and that change will
affect all related records.

These are only a few items that were glossed over; you can probably think of 10 or 15 more
that are related to your application or your background. Feel free to modify, add, and delete as
needed. For now, though, it's time to move on to physical data design. Figure 3-5 shows the
completed logical design, with all the references I discussed in place, linking all of the
structures together.

Building Java™ Enterprise Applications Volume I: Architecture

37

Figure 3-5. Complete Forethought data layout

3.2 Databases

With the general data model done, we can now begin to cover the implementation details. In
other words, we are finally through all the high-level talk and into the meat! In this section,
you'll pick apart the data model and determine what portions belong in a database. You can
then look at actually creating the tables, rows, columns, and keys that you'll need in the
database to represent the data. Once you've accomplished that, we'll spend the next section
looking at directory servers and performing the same task for the data that belongs in that
physical medium.

Of course, the language of choice for databases is the Structured Query Language (SQL), and
we'll use it to deal with databases here. Most databases now come with tools to make the
creation of data structures simple; these are usually graphical and present a visual means of
creating data structures. Additionally, a number of third- party tools are good for this sort of
task (like SQL Navigator, already mentioned in Chapter 1). I'll focus on using pure SQL in
this section, so the code will work on any database, on any platform, without you having to
learn or buy a specific vendor's tool.

Building Java™ Enterprise Applications Volume I: Architecture

38

Vendor-Specific SQL
The acronym SQL is used fairly generically in the text. When referenced, this
implies the use of ANSI-92 SQL. However, most database vendors provide
extensions to SQL, and often even additional data types. While these additional
constructs can improve performance on a specific database, it makes the resulting
SQL vendor-dependent. While that may be good for databases, it isn't so good for
authors.

An example of this sort of extension is Oracle's VARCHAR2 data type. ANSI SQL
provides CHAR and VARCHAR data types. CHARs always take up a precise length; for
example, a field declared as CHAR(12) would always result in 12 characters. The
text "Modano" would actually be stored as "Modano " (note the extra 6 spaces): the
padding ensures a 12-character length. This of course results in a lot of wasted
space. So VARCHAR was defined to allow dynamic length. "Modano" would stay
"Modano" in a field of length 6, 12, or 20. Oracle, though, adds a VARCHAR2 data
type that is optimized even further than the standard SQL type VARCHAR. In the text,
when VARCHAR is used, Oracle users would be wise to convert to VARCHAR2. These
types of optimizations are almost endlessly varied from database to database,
however, and can't all be covered here.

As if that weren't enough, some databases do not support certain data types and
constructs. These features are often important in ensuring data integrity, so think
twice before using those databases for any purpose other than testing or prototyping.
Additionally, there is no common symbol or convention for adding comments into
your SQL scripts across databases; many (Oracle, Cloudscape, etc.) allow the use of
a double hyphen (--), but there are other variations, such as InstantDB, that allow
the use of a semicolon (;).

All SQL statements here will work on any database that accepts standard ANSI
SQL. However, when vendor-specific optimizations can dramatically affect
performance, they will be noted in the text, and examples of SQL for a specific
database will be shown if appropriate. Additionally, you should check Appendix A
and your database's documentation for additional enhancements that can be made.
Finally, the examples that can be obtained from http://www.newinstance.com/
contain different SQL scripts that will run on a variety of different databases.

3.2.1 User Storage

Now that you've made it through all the preliminary steps, you can start creating tables. The
first group of data schema that I focused on in the design was the user store. This consisted of
a structure for users, the offices that the users worked in, and a related table for representing
the types of users, employees and clients. As you have almost certainly guessed, each of these
structures maps to a table in the database we will use. Beyond that, there is little complexity
left in designing the data storage.

First, you need to map each column to the appropriate data type. The ID columns all can
become integers, as they should simply be numeric values without decimal places. All the
columns that contain textual values (the type of user, the city where an office is located, the

Building Java™ Enterprise Applications Volume I: Architecture

39

user's first name, and so on) can become VARCHAR columns. This allows them to contain text,
but by avoiding the CHAR type, no unnecessary spaces are added to the columns' contents. The
one exception to this is in the state column for offices. I'd recommend using two-letter
abbreviations for all 50 states within the U.S., and since two characters are always needed,
using the CHAR data type is appropriate.

Another simple decision is which columns can have null values and which cannot. In the
case of the user store, every single column should be required (you will see some optional
columns when I get to the accounts store). The user's name, information about offices and
user types, and relations between the tables are all required pieces of information.

We have already discussed and diagrammed the relationships between the various tables, and
primary and foreign key constraints will put these relationships into action. The scripts in
Examples Example 3-1 and 3-2 include these constraints. Be sure that your database supports
referential integrity; if it doesn't, make the changes indicated in Appendix A. In the case of the
Forethought database, referential integrity will ensure that users are not assigned to
nonexistent user types, for example. It also will help when deleting an office if it was
relocated or the company was downsized. You can easily make changes to the employees
affected by this change (those in the deleted office) when referential integrity is in place. On
the other hand, if this feature is not supported by your database, costly searches through all
users in the database have to be performed in such cases. While databases that do not support
foreign key constraints are great for debugging, prototyping, and in particular for
experimenting (for example, on a laptop in an airplane), they are rarely suitable for production
applications.

The final detail to point out is that I do not recommend creating a column for the user's
username. Remember that I discussed storing usernames, passwords, and authentication data
in the Forethought directory server, instead of the database. However, the rest of the user
information is stored in the database. What you need, then, is a way to relate user information
in the database with the same user's data in the directory server. While there is nothing to be
done at a physical level, some programmatic constraints can be put in place with a little
planning.[1] To facilitate implementing these constraints, you can add a column to your USERS
table in the database called USER_DN. This will store the distinguished name (DN) of the user
in the LDAP directory server. The user's DN in this arena serves as a unique identifier, and
can be used to bridge the information gap between the database and directory server. Java
code can then locate a user in the database by using the LDAP DN, or locate a user in the
directory server by using the USER_DN column of the USERS table in the database.

With data types, relationships, and a link between the database and directory server decided
upon, you're ready to create the database schema. Example 3-1 shows the completed SQL
script for creating the discussed tables and relationships.

1 Although there is no way to relate databases to directory servers yet, companies like Oracle may provide this means soon. Because Oracle 8/9i and
other "all-in-one" products of that nature often contain a database and directory server in the same package, it would not be surprising to see these
relationships between differing physical data stores become available.

Building Java™ Enterprise Applications Volume I: Architecture

40

Example 3-1. SQL Script to Create the User Store

-- USER_TYPES table
CREATE TABLE USER_TYPES (
 USER_TYPE_ID INT PRIMARY KEY NOT NULL,
 USER_TYPE VARCHAR(20) NOT NULL
);

-- OFFICES table
CREATE TABLE OFFICES (
 OFFICE_ID INT PRIMARY KEY NOT NULL,
 CITY VARCHAR(20) NOT NULL,
 STATE CHAR(2) NOT NULL
);

-- USERS table
CREATE TABLE USERS (
 USER_ID INT PRIMARY KEY NOT NULL,
 OFFICE_ID INT,
 USER_DN VARCHAR(100) NOT NULL,
 USER_TYPE_ID INT NOT NULL,
 FIRST_NAME VARCHAR(20) NOT NULL,
 LAST_NAME VARCHAR(30) NOT NULL,
 CONSTRAINT OFFICE_ID_FK FOREIGN KEY (OFFICE_ID)
 REFERENCES OFFICES (OFFICE_ID),
 CONSTRAINT USER_TYPE_ID_FK FOREIGN KEY (USER_TYPE_ID)
 REFERENCES USER_TYPES (USER_TYPE_ID)
);

If you are watching closely, you may note something a little odd here, at least if you are
familiar with SQL. The OFFICE_ID column in the USERS table does not have the NOT NULL
clause, as you might expect:

CREATE TABLE USERS (
 USER_ID INT PRIMARY KEY NOT NULL,
 OFFICE_ID INT,
-- and so on...

Omitting the NOT NULL clause is somewhat unusual, as you generally would want to require
users to be related to an entry in the OFFICES table. However, this table will also store
Forethought clients, which do not have associated offices. To allow for this, the NOT NULL
clause is removed, so that clients (without offices) can leave a null value in the OFFICE_ID
column. At the same time, the foreign key constraint will ensure that if a value is present, it
must refer to an existing entry in the OFFICES table. This issue is fairly typical; although you
want to require data when appropriate, be sure not to add in constraints that will cause you
trouble later on.

With that minor problem handled, you can get back to the table design and database-specific
optimizations. As already mentioned, Oracle adds a data type, VARCHAR2, that can greatly
improve the performance of a database when that type is used instead of the standard ANSI
SQL VARCHAR data type. Additionally, Oracle's integer type is called INTEGER, not INT.

Building Java™ Enterprise Applications Volume I: Architecture

41

Example 3-2 shows the original SQL script shown in Example 3-1 converted over to use these
updated data types. Of course, this version of the script will work only on Oracle databases.[2]

Example 3-2. Oracle Version of Script to Create the User Store

-- USER_TYPES table
CREATE TABLE USER_TYPES (
 USER_TYPE_ID INTEGER PRIMARY KEY NOT NULL,
 USER_TYPE VARCHAR2(20) NOT NULL
);

-- OFFICES table
CREATE TABLE OFFICES (
 OFFICE_ID INTEGER PRIMARY KEY NOT NULL,
 CITY VARCHAR2(20) NOT NULL,
 STATE CHAR(2) NOT NULL
);

-- USERS table
CREATE TABLE USERS (
 USER_ID INTEGER PRIMARY KEY NOT NULL,
 OFFICE_ID INTEGER,
 USER_DN VARCHAR2(100) NOT NULL,
 USER_TYPE_ID INTEGER NOT NULL,
 FIRST_NAME VARCHAR2(20) NOT NULL,
 LAST_NAME VARCHAR2(30) NOT NULL,
 CONSTRAINT OFFICE_ID_FK FOREIGN KEY (OFFICE_ID)
 REFERENCES OFFICES (OFFICE_ID),
 CONSTRAINT USER_TYPE_ID_FK FOREIGN KEY (USER_TYPE_ID)
 REFERENCES USER_TYPES (USER_TYPE_ID)
);

Once you've run the appropriate script against your database, the complete user store should
be set up and ready for use.

If you had any errors when running the SQL scripts or are unsure of
how to execute these scripts against your database, consult the
appendixes of this book. Appendix A contains the contents of the SQL
scripts optimized for a variety of different databases. These scripts, as
mentioned earlier, are also all available online at this book's web site,
http://www.newinstance.com/. As for deployment of the script, your
database should have documentation on the tools and steps to execute a
SQL script against your particular database. Additionally, Appendix B
has a concise set of instructions for a variety of databases, and may
allow you to get up and running quickly. If you are still receiving errors
after using the scripts in the appendix and following the deployment
instructions, consult your database vendor.

A data model diagram (also called an entity-relationship or ER diagram) detailing the result of
the work so far is shown in Figure 3-6. It notes the tables, primary keys, and relationships
between tables. The abbreviation FK is used to represent a foreign key, a column that

2 The VARCHAR2 data type is allowed by all versions of the Oracle database. This includes not only 8i and 9i, but Oracle WebDB and Oracle Lite
as well.

Building Java™ Enterprise Applications Volume I: Architecture

42

references a value in another table. If you have vendor-specific tools to view your database
schema graphically, it should resemble this figure.[3]

Figure 3-6. Database diagram for the user store

3.2.2 Accounts Storage

It's time to move on and look at building the accounts store. You may have noticed that I
skipped over user permissions and the rest of the application's authentication data; that
information will reside in the directory server instead of the database layer, so I'll discuss it
later in the chapter. For now, let's move on to dealing with accounts, funds, investments, and
the rest within the database.

As with the user store, relatively few decisions are left after the extensive design discussions,
and the remaining decisions are fairly simple. First, you must determine the data type for each
column. Again, you can use integers for all of the ID columns. The character-based columns
in this case are all VARCHAR data types, as none are fixed width (as the STATE column in the
OFFICES table was). There are also several columns to which you should assign the SQL
FLOAT data type, such as the balance of an account, the amount of a transaction, and the yield
on an investment. These are all decimal numbers that will be used in calculations within the
application's business logic. Finally, assign the DATE data type to the column that stores the
time a transaction occurs.

Unlike the user store, though, several columns within the accounts store can have null
values, and therefore do not need the NOT NULL keywords added to their definitions within the
SQL script. The description of a fund and the yield of an account are two examples. A fund
may be entered into the system without additional description, and an investment, at least
initially, probably does not have any yield. Later in the life of the investment, the yield can be
added in.[4]

The various ID columns on each table are made the primary keys for those tables. Then
foreign keys are set up to relate the various tables to each other, as the diagram in Figure 3-4
details. Also note that a relationship is set up between the ACCOUNTS table and the USERS table
that essentially "bridges" the user store with the accounts store. It also ensures that accounts

3 Most databases come with simple tools for this sort of graphical database browsing, and additional tools can usually be downloaded for free or
purchased commercially. If you don't have a tool that gives you this capability, look into obtaining one. The resulting view is helpful in seeing
relationships between various tables and the data that they contain.
4 Another option here would be to require the YIELD column and assign it a default value of 1.00, which essentially means that all calculations
simply return the value of the initial amount invested. However, this removes the ability to differentiate between new investments (without a yield)
and investments that truly do have a yield of 1.00. It also results in a column having dual meanings, which isn't a very good idea.

Building Java™ Enterprise Applications Volume I: Architecture

43

are deleted when users are removed, and that no account is created without a user who "owns"
the account. Similar constraints are enforced for funds and investments.

Example 3-3 is the SQL script that will create the accounts storage for the Forethought
application.

Example 3-3. SQL Script to Create the Accounts Store

-- ACCOUNT_TYPES table
CREATE TABLE ACCOUNT_TYPES (
 ACCOUNT_TYPE_ID INT PRIMARY KEY NOT NULL,
 ACCOUNT_TYPE VARCHAR(20) NOT NULL
);

-- ACCOUNTS table
CREATE TABLE ACCOUNTS (
 ACCOUNT_ID INT PRIMARY KEY NOT NULL,
 USER_ID INT NOT NULL,
 ACCOUNT_TYPE_ID INT NOT NULL,
 BALANCE FLOAT NOT NULL,
 CONSTRAINT USER_ID_FK FOREIGN KEY (USER_ID)
 REFERENCES USERS (USER_ID),
 CONSTRAINT ACCOUNT_TYPE_ID_FK FOREIGN KEY (ACCOUNT_TYPE_ID)
 REFERENCES ACCOUNT_TYPES (ACCOUNT_TYPE_ID)
);

-- TRANSACTIONS table
CREATE TABLE TRANSACTIONS (
 TRANSACTION_ID INT PRIMARY KEY NOT NULL,
 ACCOUNT_ID INT NOT NULL,
 AMOUNT FLOAT NOT NULL,
 DATE_TIME DATE NOT NULL,
 CONSTRAINT ACCOUNT_ID_FK FOREIGN KEY (ACCOUNT_ID)
 REFERENCES ACCOUNTS (ACCOUNT_ID)
);

-- FUNDS table
CREATE TABLE FUNDS (
 FUND_ID INT PRIMARY KEY NOT NULL,
 NAME VARCHAR(20) NOT NULL,
 DESCRIPTION VARCHAR(200)
);

-- INVESTMENTS table
CREATE TABLE INVESTMENTS (
 INVESTMENT_ID INT PRIMARY KEY NOT NULL,
 FUND_ID INT NOT NULL,
 ACCOUNT_ID INT NOT NULL,
 INITIAL_AMOUNT FLOAT NOT NULL,
 YIELD FLOAT,
 CONSTRAINT FUND_ID_FK FOREIGN KEY (FUND_ID)
 REFERENCES FUNDS (FUND_ID),
 CONSTRAINT ACCOUNT_ID_FK2 FOREIGN KEY (ACCOUNT_ID)
 REFERENCES ACCOUNTS (ACCOUNT_ID)
);

The data diagram in Figure 3-7 shows the tables and relationships created by the script
detailed in Example 3-3 (as well as those in Appendix A).

Building Java™ Enterprise Applications Volume I: Architecture

44

Figure 3-7. Database diagram for the accounts store

3.2.3 Scheduling and Events Storage

Handling the creation of the events store turns out to be a piece of cake; there are only two
tables involved, both of which are very basic. The first, the EVENTS table, simply needs an ID
for the primary key and a couple of columns for details. The first column will store the event
description, and the second the date and time of the event. As mentioned in Section 3.1.5
earlier, you may want to add additional columns, such as an event name, information about
the location, or any other relevant information. The table here is kept simple for the sake of
example.

With that table in place, all that's left is to relate an event to a group of attendees, which
should relate to the USERS table. For this, you need a many-to-many relationship, where an
event may have many users attending, and a user may attend many events. To facilitate this
type of relationship, a join table, which simply connects an event to a user, can be used. It
does not have a primary key column;[5] instead, it has foreign keys relating to the EVENTS table
and the USERS table. In this way, two one-to-many relationships create a many-to-many
relationship and join the two tables desired. Example 3-4 shows a SQL script that creates the
two tables and shows the relationships described between the other application tables.

Example 3-4. SQL Script to Create Events Store

-- EVENTS table
CREATE TABLE EVENTS (
 EVENT_ID INT PRIMARY KEY NOT NULL,
 DESCRIPTION VARCHAR(50) NOT NULL,
 DATE_TIME DATE NOT NULL
);

-- ATTENDEES table
CREATE TABLE ATTENDEES (
 USER_ID INT NOT NULL,
 EVENT_ID INT NOT NULL,

 CONSTRAINT AT_USER_ID_FK FOREIGN KEY (USER_ID)
 REFERENCES USERS (USER_ID),
 CONSTRAINT EVENT_ID_FK FOREIGN KEY (EVENT_ID)
 REFERENCES EVENTS (EVENT_ID)
);

5 It isn't uncommon to create a compound primary key out of all foreign keys in the table. However, in most databases this neither improves nor
degrades performance, so I'm generally agnostic on the practice.

Building Java™ Enterprise Applications Volume I: Architecture

45

Figure 3-8 is the result of the script in Example 3-4.

Figure 3-8. Database diagram for the events store

Note that this figure, like Figure 3-6 and Figure 3-7, doesn't include relationships with other
tables. For example, the USER_ID column and the relationship with the USERS table are
omitted. Instead, the figure shows only the specific data related to the events store. For a
complete schema diagram, refer to Figure 3-9.

3.2.4 Connecting the Dots

Once you have executed all three SQL scripts against your database, the physical database
model should be complete. Again, I recommend that you use some type of visual tool to
confirm that all the relationships between tables are in place, and that the columns are of the
correct data types and sizes. Figure 3-9 shows a diagram that represents the completed data
model for the Forethought application.

Figure 3-9. Completed data model for Forethought database

Building Java™ Enterprise Applications Volume I: Architecture

46

3.2.5 Seed Data

Although you'll add most of the data for your application through the entity beans and LDAP
components detailed in the following chapters, some data will need to be seeded manually.
This is necessary because some tables will not be accessible to bean clients. In the
Forethought application, the two examples of this are the USER_TYPES and ACCOUNT_TYPES
tables. The entity beans for these tables (detailed in Chapter 4 and Appendix E) provide only
local interfaces, so a client can't use them from an application. Example 3-5 shows a simple
SQL script to add some initial data for these tables.

Example 3-5. Seeding Data in the Type Tables

INSERT INTO USER_TYPES VALUES (1, 'Client');
INSERT INTO USER_TYPES VALUES (2, 'Employee');

INSERT INTO ACCOUNT_TYPES VALUES (1, 'Everyday');
INSERT INTO ACCOUNT_TYPES VALUES (2, 'Investment');
INSERT INTO ACCOUNT_TYPES VALUES (3, 'Investment Plus');
INSERT INTO ACCOUNT_TYPES VALUES (4, 'Money Market');
INSERT INTO ACCOUNT_TYPES VALUES (5, 'Savings');

In any production system, a process should be put in place for backing
up data. I don't cover this sort of operation, as the process differs for
various database vendors. However, you should consult your
documentation for a means to back up your data schema, or at least take
some type of snapshot of the data.

While details of accomplishing this task are beyond the scope of this
book, it is assumed you will perform backup-related operations with
your own applications. At this point in the Forethought application,
backup should occur. While no data has yet been entered, recovering the
database's structure while it is clean can be a real timesaver, especially
if the steps to execute SQL against your database are complex or require
specific tools to be installed. Even if you don't back up your work on the
Forethought sample application, you should realize that this is one point
where a backup should occur.

3.2.6 Cleaning Up

As a final bit of aid in database design, you should always develop SQL scripts for clearing
out the structures in your database. This is not only to clear out the data, but the actual tables,
rows, and constraints as well. Often in development, you will work, re-work, and re-work
again; being able to easily clear out your database schema and re-create it becomes a handy
tool in these situations. Finally, a common tendency in design is to add a table, add another
table, remove the first table, make some changes, and add again. This back-and-forth method
of design often results in a non-repeatable creation process; in other words, you have no
scripts that can re-create the final database schema from scratch. The lack of scripts to re-
create the database makes deployment onto testing and production systems very difficult. By
cleaning out your schema and testing your scripts from an empty start, you can ensure these

Building Java™ Enterprise Applications Volume I: Architecture

47

problems don't occur in your applications. Example 3-6, then, is a SQL script for dropping all
tables[6] in the Forethought database schema.

Be aware that dropping a table will dispose of all the data within that
table. If you are re-creating the structure after inserting data into it
(either yourself or by following the examples throughout this book),
that data will be lost upon running these scripts. If you do need to
preserve existing data, be sure to back up or export that data before
running the example SQL scripts.

Example 3-6. Cleaning Out the Forethought Database Schema

-- Drop all tables
DROP TABLE ATTENDEES;
DROP TABLE EVENTS;
DROP TABLE INVESTMENTS;
DROP TABLE FUNDS;
DROP TABLE TRANSACTIONS;
DROP TABLE ACCOUNTS;
DROP TABLE ACCOUNT_TYPES;
DROP TABLE ATTENDEES;
DROP TABLE EVENTS;
DROP TABLE USERS;
DROP TABLE USER_TYPES;
DROP TABLE OFFICES;

3.3 Directory Servers

Now that the database is ready to go, it's time to round out the data storage by working with a
directory server, which at least in this case is much simpler than working with a database.
Almost all directory servers come with several predefined data structures; in this example
application, these structures are almost completely sufficient for our needs. In this section I'll
discuss what information you'll need to store in the directory and how you can use pre-built
and custom structures to handle these data needs.

Briefly, though, let me discuss directory servers at a high level. This is by no means a
complete overview of directory servers or LDAP, but it should at least get you through this
chapter. First, you should realize that a directory server is laid out hierarchically, instead of in
the relational manner of a database. Here is where all of those tree structures you studied in
college finally start to pay off. An instance of a directory server is identified uniquely by its
organization. The organization in a directory server is analogous to a database schema in an
RDBMS. So if you named your database schema "Forethought" (for you Oracle users, the
SID might be "FTHT"), your directory server would have an organization of "Forethought" as
well.

6 Realize that dropping tables results in the constraints and relationships between those tables also being dropped. Additionally, the order of the drops
is relevant, as tables without foreign keys must be deleted before the tables that depend on them.

Building Java™ Enterprise Applications Volume I: Architecture

48

Database Schema, LDAP Schema
I've spent most of this chapter talking about database schemas, which you are
probably familiar with. However, in this section, I am referring to LDAP schemas.
The word schema in this context has a subtly different meaning that you should be
aware of. A database schema consists of a specific set of tables, relationships,
triggers, and other constructs, and deals with the way information can be stored.
However, there is no change to the actual rules of the database itself; tables, rows,
and columns are well-defined database features. An LDAP schema, however, refers
to the actual structure of object types in the database. For example, the default
LDAP schema contains a user object called inetOrgPerson (mentioned in the
upcoming Section 3.3.1), which inherits from organizationalPerson, and on up
the object chain. But if additional information storage was needed, such as a
yearsEmployed field, a new object could be created. I'll call this object
applicationOrgPerson, and presumably it would extend inetOrgPerson. In this case,
I have changed the LDAP structure available, otherwise known as the LDAP
schema. The difference is that instead of creating instances of existing objects, as in
a database schema, I am creating actual objects themselves. Understanding this
difference will help in your comprehension of the LDAP and directory server
discussions in this chapter and the rest of the book.

As if that weren't enough, terminology also differs from directory server to database
server. A table in a database is an object class in a directory server. A field, or
column, in the table becomes an attribute of the object class. And rows in the table
become objects in the directory server. In each section, the appropriate terms are
being used; as a rule of thumb, think of the directory server as Java-centric, and
you'll do just fine, while the database section follows the terms you are familiar with
from RDBMS systems.

Second, directory servers do not have tables and rows; they have objects and object instances.
This should seem quite simple to you as a Java developer, and makes directory servers easy to
deal with from Java. You define object types and then populate those types, using attributes
(similar to database table columns). These objects are then placed under organizational units.
An organizational unit is a group of like objects and is analogous to a database table. The
object instances under this organizational unit are then similar to the rows in a database table.
Finally, these units are connected to an organization, giving identity to the objects that they
contain.

The result is a partitioned data store that can store quite a bit of data while still maintaining a
good amount of organization and structure. Of course, when you connect these objects,
groups, units, and the directory server organization itself, you get a nice hierarchical data
structure, which is of course what a directory server is. When used to complement the
relational structure of a database, you end up with a nice strong data storage facility. It's
helpful to use your knowledge about databases, and their relationship to a directory server, to
understand how all these pieces fit together. Figure 3-10 shows this relationship pictorially,
and should help you get an idea of how the two data store structures relate.

Building Java™ Enterprise Applications Volume I: Architecture

49

Figure 3-10. Relating a database to a directory server

Finally, there must be a way to navigate through this structure; since the hierarchy is the key
part of the structure, each object can be defined by the object's path to the root of the tree. In
other words, each object has an identifier, as does its group, organizational unit, organization,
and every other directory service structure. Piecing these together can result in a pathway
leading from an object in the tree back to the top-level organization. This path, when strung
together into a string, is called a distinguished name; it is unique within the tree (which is why
it's called distinguished). Figure 3-11 shows how an object's distinguished name is built,
starting with the object and moving to the root of the tree.

Figure 3-11. Building a distinguished name

The result is similar to referencing a database table by the schema name, table name, and
primary key of a particular row in that table. It also looks and behaves a lot like a Unix path or
a URL. I know this is all a bit sketchy, so let's look at some application to help you
understand how this all fits together.

3.3.1 Users and Passwords

In any enterprise application, you'll end up spending a lot of time dealing with users. Of
course, an application without users is about as useful as one of those plastic "spork" things
(remember those? The little fork/spoon combinations that never did either job very well?). In
Section 3.2, we came up with tables to hold data about the user type, the offices a user could
work in, and the user himself. However, I left the username out, and mentioned a decision to
store that piece of information in the directory server. I also stated that the user's password
should be stored in the directory as well.

In the database, every piece of data required the creation of a storage facility (a table) for the
data. In directory servers, the same holds true, and you need an organizational unit to hold

Building Java™ Enterprise Applications Volume I: Architecture

50

users. However, you can use the default organizational unit of People for this task.[7] Each user
will then have a user ID (UID) stored as a property of the user object. This UID becomes the
key for the user, and is part of each user's distinguished name (DN). So, for a user with a UID
of bhull, the corresponding DN would be uid=bhull,ou=People,o=forethought.com. Here, the
"uid" refers to "user ID", "ou" refers to "organizational unit", and "o" refers to the
"organization". Figure 3-12 shows how this DN relates to the overall directory structure.

Figure 3-12. A user entry in the directory server

All the application users can then "hang" off the People organizational unit. This also allows
you to take advantage of your directory server for other applications by using this same
organizational unit for those applications' users as well. For this reason, creating an
organizational unit specifically for this application (for example, ou=Online
Brokerage,o=forethought.com) and then adding users to that structure isn't a very good idea;
the directory tree would likely end up cluttered with various applications, with user
information stored under each. This method of storing all users under a generic People branch
allows you to use the same user information for a variety of applications.

The default object used to store a person, inetOrgPerson, contains attributes for all the
information you'll need to record for users: a username, a password, and the ability to
reference the user object from groups (which I'll talk about next). In this case, then, the
default LDAP schema suits our needs perfectly. You can use the uid attribute for the
username, and the userpassword attribute for the password. All other fields can be left
unused, as they aren't really relevant to the Forethought application.

However, the inetOrgPerson object isn't quite perfect for this application's needs; while it has
attributes for all the information you need to store, the attributes we want to use (for user ID
and user password) are not required attributes. The only required attributes for the
inetOrgPerson object class are sn (the surname or last name of the user), cn (the common
name or first name of the user), and objectclass (filled in automatically by the directory
server). You need to add the username and password attributes to the set of required
information to ensure no users are created without at least a username and password.

3.3.1.1 Structural constraints versus programmatic constraints

At this point, you can either add constraints to your LDAP schema at a physical level (like the
constraints in Section 3.2) or decide to enforce the constraints later at a programmatic level.
As in the database design, it is preferable to add these constraints into the LDAP schema. This
approach ensures that no invalid data gets into the directory server and makes programming
tasks easier down the line. However, you don't have much control over this particular design.
First, it is a bad idea to actually change the default inetOrgPerson object class itself. I will

7 Almost every directory server's default installation will have a pre-built People organizational unit, with a DN of ou=People,o=forethought.com.
If your server does not, consult Appendix C for details on creating that unit.

Building Java™ Enterprise Applications Volume I: Architecture

51

talk a bit more about this in the next section, but for now suffice it to say that changing the
default object classes is a bad idea, and that extending these object classes and creating new
ones is much better. Doing so also keeps the core directory server compatible with other
standard directory server schemas.

However, I already mentioned that the proposed parent class, the inetOrgPerson object class,
has the uid and userpassword attributes as allowed attributes. Extending this object does not
allow us to change those from optional to required attributes, as that would essentially break
the inheritance chain. This rule is similar to the Java rule that doesn't allow member variables
in a parent class to be made more accessible in a derivative class (such as moving from
private to protected, or protected to public). Its consequence is that extending the
inetOrgPerson object class and then adding additional constraints on existing attributes
impossible. So in this case, you have to use programmatic constraints instead of physical
ones. This means that the default inetOrgPerson object class will suffice as-is for our needs.
Next, I will look at extending object classes and creating new ones in order to handle users'
authentication data.

3.3.2 Permissions and Roles

With the user object class in place, you can now tackle permissions and roles that determine
how users can interact with the Forethought application and what portions of the application
they can access. As in the case of storing users, it is a good idea to see if any existing
structures map well to the application requirements. In this case, we need an object class to
store a single permission, and then another object class that represents a role, which should be
able to reference multiple permissions. Finally, a role should be assignable to multiple users,
creating the last link between users and their individual access rights.

Default LDAP schemas do not provide any sort of permissions object class, but the default
object class groupOfUniqueNames seems to be a close match for a role. This object can be
given a name and can hold references to one or more users (under the
ou=People,o=forethought.com branch of the LDAP tree). Additionally, most directory
servers come preconfigured with an organizational unit called Groups, resulting in a branch
whose DN would be ou=Groups,o=forethought.com. The ability to both reference users and
have default storage makes using an LDAP group to represent roles possible. However, you
still need to handle permissions, and then build a link to them from the groupOfUniqueNames
object class or a derivative of that class.

The task, then, is to create an object class from scratch. This is actually not as big a deal as it
might seem. You can use a simple name; in this case the name forethoughtPermission works
well. It would be possible to simply use permission, as that is descriptive enough, but
prefacing it with "forethought" ensures that there is no ambiguity about the role of the new
object class. If another application using this directory server needed a different type of
permission, it could create another class with the same purpose and assign it the name
<applicationName>Permission, keeping the two object classes distinct.[8] You also need to
decide on the parent class for the new object class. Since you are not extending any existing
functionality, the default base class top can be used as a parent. You should always try to
extend the existing object class hierarchy and avoid creating new top-level objects. This is the

8 If this doesn't seem like a common case, think again: directory servers are often used across entire companies, and applications often share data.
Additionally, many applications do have different criteria they must store for a permission, such as to whom the permission can be granted. Therefore,
keeping object class names succinct is not as important as keeping them distinct.

Building Java™ Enterprise Applications Volume I: Architecture

52

very reason that the top object class is named what it is: it should be the single top- level
class. The required attributes for this new class should simply be a name and the
objectClass attribute that all objects must have (inherited from the top object class). You
can now create a new object class in your directory server called forethoughtPermission.
Assign the top object class as its parent, and add the cn attribute to its set of required
attributes. While cn (common name) is used for a user's first name, it is used for naming other
objects as well. In this application, it will be used for naming the groups later on. You should
also add the description attribute to the list of optional attributes for the new object class so
that a lengthier description of the permission's purpose can be added to instances of the class.
Save the new object class, and you are ready to move back to looking at groups that will
represent user roles.

While directory servers and LDAP are more standardized than
databases are, the process of making changes to the LDAP schema is
different for each vendor. In some, like the iPlanet directory server, a
handy GUI is provided to make changes easy. In others, like
OpenLDAP, ldif files must be used. Appendix C covers two of the most
important directory servers, and includes details on installation,
configuration, and modifying the LDAP schema. Refer to this appendix
for instructions related to your specific product.

Since the groupOfUniqueNames object class already has an attribute to store user references
(in the form of holding each user's DN), all that's needed to make it suitable for use is a
similar facility for referencing permissions. This facility effectively makes the
groupOfUniqueNames object class a "many-to-many join table" between users and
permissions in the data scheme. To create the link between a group and the new permissions
object class, you need to add an attribute to the group. Creating an attribute is similar to
creating an object class; you just need to specify the attribute type. The LDAP type "case-
ignore string" should be chosen here,[9] as this allows DNs for permission object class
instances to be used as values for the attribute. This, then, is the link between the groups in the
application (roles) and permissions (forethoughtPermission object instances). If your
directory server has a means to specify that the attribute can occur multiple times within an
object class, select this option as well; these groups will usually have references to more than
one permission instance. Name the new attribute uniquePermission. While permission
would be descriptive, prepending it with the word "unique" indicates that permissions are not
duplicated within the same group.

With this attribute added, you can now deal with the group object class. As discussed, the
default object, groupOfUniqueNames, is a good starting point, but not sufficient for our needs.
You'll need to add to the object class the ability to have the uniquePermission attribute as
part of the object class's definition. However, adding an attribute to an existing object class
brings up an important design issue related to directory servers.

3.3.2.1 Addition versus extension

At this point, there is a design decision to make. The directory server allows you either to add
the uniquePermission attribute to the set of allowed attributes for groupOfUniqueNames, or

9 Some directory servers, most notably iPlanet, offer a "Distinguished Name" LDAP type, which should be used. This will ensure that only valid DNs
are supplied as values for the attribute. For more details on specific directory servers, check out Appendix C.

Building Java™ Enterprise Applications Volume I: Architecture

53

to extend the groupOfUniqueNames class and create a new descendant object class where you
can make the desired change. The latter choice, extension, is always preferred; this is one of
the very few design principles that is absolute. Changing a default LDAP object class is very
dangerous, as it causes your directory server's schema to immediately become incompatible
with all other directory servers. While you could certainly make the changes in these other
directory servers, you lose the ability to communicate through common structures, and
communication between a modified directory server and an unmodified one, perhaps for
sharing groups (groupOfUniqueNames objects), would be made impossible.[10] So instead, you
need to extend your directory server schema. Create a new object class and call it
groupOfForethoughtNames, with the parent object groupOfUniqueNames. You then need to
add the custom attribute, uniquePermission, to the set of required attributes for the new
object class. Once you have added this attribute, the groups object class is ready to use. The
object class hierarchy for these new object classes is shown in Figure 3-13 (note that only
relevant attributes are shown for each class). Attributes above the line in each object class are
required, and those below are optional. The connecting lines represent potential references
between object class instances.

Figure 3-13. Object class hierarchy for the Forethought LDAP schema

3.3.3 Directory Hierarchy

Now that all of your object classes are in place and the LDAP schema is complete, you can
create the object instances needed for storing Forethought data. Depending on the directory
server you are using, some of these may already exist in your directory hierarchy. At the top
of your tree, you should have an organization called "forethought.com" where the DN is
o=forethought.com.[11] Underneath this top level, you want to be able to store users,
permissions, and groups. As discussed earlier, most servers come with a preconfigured
organizational unit for users called People; if it doesn't exist, you should create this unit. The
end result is a unit with a DN of ou=People, o=forethought.com. All the users (instances of
the inetOrgPerson object class) will then reside under this unit. We've already discussed user
DNs, identified by their user ID, the uid attribute.

10 I'm exaggerating slightly here; good programmers can program for these sorts of aberrant solutions and allow communication across heterogeneous
object classes. However, it is still bad practice, and cannot be discouraged enough.
11 If you are using an internationally aware directory server, the DN may be a little longer. A country reference is sometimes present, resulting in
the DN looking more like o=forethought.com, c=US (for the United States). You can substitute your country code as appropriate.

Building Java™ Enterprise Applications Volume I: Architecture

54

Object Class Hierarchy, Directory Hierarchy
Like the difference between an LDAP schema and a database schema, distinguishing
between object class hierarchies and directory hierarchies is a subtle thing. The
object class hierarchy of a directory server is the set of physical objects that are
allowed to exist within the schema. There are almost always many more of these
physical objects, the object classes, than actual object instances in use. However, the
object instances and the treelike structure of data that they make up comprise the
actual directory hierarchy, sometimes called (even more confusingly) simply the
object hierarchy. The best analogy here is to closely relate a directory server to the
Java language. Each object class is some compiled Java object, sitting around in
byte code available for use in an application. However, most applications don't use
every available class; instead they use a subset of these classes and create instances.
There are multiple instances of some classes, and only single instances of others.
This same principle applies in a directory server.

In the case of the Forethought application, then, you first modified the default LDAP
schema, adding additional attributes and object classes. This completed the work on
the object class hierarchy. In this section, you added additional organizational units
and prepared a place for instances of the inetOrgPerson, forethoughtPermission, and
groupOfForethoughtNames to reside. The result is a complete directory hierarchy. It
is important to understand the difference, as reading through this chapter can be
quite confusing without that distinction. The figures in these sections can help you
grasp these differences.

When storing permissions and groups, you can use the same model. Create two additional
organizational units directly under the forethought.com organization, Permissions and Groups
(for many directory servers, the Groups unit is already configured for you, like the People
unit was). Instances of the groupOfForethoughtNames object class, identified by a name (the
cn attribute), will then have DNs similar to
cn=Administrators,ou=Groups,o=forethought.com. In the same manner, permissions will
have DNs like cn=Add Users,ou=Permissions,o=forethought.com. Again, consult
Appendix C for specific details on creating these additional organizational units. Figure 3-14
shows the completed Forethought directory hierarchy, ready to use in your application. Note
that the entries for users, permissions, and groups are for example purposes only, and
shouldn't be in your directory server; they seek to show where data will be added (in the next
chapters).

Figure 3-14. Completed Forethought directory hierarchy, with illustrative entries

Building Java™ Enterprise Applications Volume I: Architecture

55

With this hierarchy in place, you are ready to move on. It's been a long ride, but it's finally
time to move on to some actual code.

3.4 What's Next?

You've made it through the creation of the data storage mediums, a major milestone in
application design. As I have said several times, this portion of the framework will govern
much of the rest of the application. Most notably, the data access layer is purely a reflection of
the work already done here. We'll discuss this access in the next chapter, and work on
allowing programmatic access to the data stores discussed here. This access will serve the rest
of the application as well as components from other applications that may need data from the
Forethought application.

Also in the next chapter, you'll get your first look at Enterprise JavaBeans, and in particular
entity beans. We'll also examine the role of JNDI for allowing access to the directory server
structures created in this chapter. In other words, we'll be running the gamut of Java
approaches to accessing data in databases and directory servers. Once finished, you will have
a functioning data layer for the application, with both a solid foundation and a set of sturdy
beams, struts, and scaffolding upon which to build. Let's go onto this additional structure now
(or at least after you've refilled your coffee and taken a deep breath).

Building Java™ Enterprise Applications Volume I: Architecture

56

Chapter 4. Entity Basics
This chapter will look at entity beans as a means of accessing the Forethought application's
data storage. I'll begin with simple entity beans to provide application entry points to the
database, and address many questions common to entity bean development. Should you pass
around the entity bean? Should you access the data exclusively through session beans, or
directly through the entity beans? What are details objects, façade patterns, and good
principles of entity bean design? All these questions will be answered, as I discuss not just
writing EJB code, but writing effective EJB code.

At the end of this chapter, you will have the first entity bean created and deployed, ready for
use. More importantly, you will have a good understanding of basic entity bean programming
practices; you'll have looked at using container-managed persistence, package and class
naming, handling method exposure through the remote interface, and more. In other words,
you'll be ready for any basic entity bean problem that comes along, as well as for the
advanced topics I'll address in Chapter 5.

4.1 Basic Design Patterns

To access the data that will be stored in the database, you can use EJB's entity bean
functionality. Keep in mind, however, that this is not by any means a book on how to write
Enterprise JavaBeans; for that I recommend Richard Monson-Haefel's excellent book,
Enterprise JavaBeans (O'Reilly). Here, I'll simply focus on using EJBs correctly, and detail
some useful design patterns.

In addition to looking at some design patterns and actual code, you must be familiar with two
technologies that are intrinsic to EJBs: RMI and JNDI. Remote Method Invocation, or RMI, is
the basis of all Enterprise JavaBeans calls. In a nutshell, RMI causes a remote call to a Java
object over the network[1] to behave exactly like a local call. The Java Naming and Directory
Interface, or JNDI, allows objects to be bound into a namespace and then referenced by other
objects. The namespace in this case is purely an abstract concept, but organization of Java
objects and information in this manner does work well; all components of an application can
use this single means of storage. Of course, like any other technology, RMI and JNDI require
resources. JNDI requires memory in which to store the objects bound into its contexts, and
both require runtime resources to operate. For example, looking up an object in the JNDI
registry is more time-consuming than referencing a local object, and executing an RMI call is
more expensive in terms of resources than executing a local method invocation. As always,
you must focus on logical tradeoffs, and use both technologies only when needed. As usual,
you should have a good reason for everything. And now, assuming that you are comfortable
with these technologies, let's look at entity beans in detail.

First, you need to address access to entity beans (yes, I'm getting to the code; just be patient!).
This might seem like a simple topic, but debates have been raging for years on various email
lists concerning the means of accessing entity beans. The arguments center over whether
entity beans should be accessed directly by an application (be it a servlet, Java application, or
some other code fragment), or whether these calls should pass through a session bean, which

1 In reality, EJB servers are often on the same physical hardware as the servlet engine making the RMI calls, especially in development. On the other
hand, production environments often have EJB servers on multiple machines, requiring RMI calls between session and entity beans as well as from
the servlet engine to the EJB layer. In either case, I use the generic term "network communication" to refer to any communication to the EJB layer; I'll
spend more time on this in Section 4.2.3.

Building Java™ Enterprise Applications Volume I: Architecture

57

then "proxies" the call to the entity bean. In the latter case, more RMI communication is
involved, more JNDI lookups occur, and serialization may be necessary in passing returned
values. However, accessing entity beans through some sort of proxy is still the preferred
means of access.

While it might seem that I am jumping the gun, this topic will affect the way you code entity
beans. First, the proxy method of accessing beans allows the entity beans to be more "basic"
in nature. In other words, an entity bean can assume that the preparatory work in dealing with
data, such as validation, type checking, and so forth, is done by the time it gets that data. The
bean also doesn't have to worry about data conversion, such as from a Java String into a data
type appropriate for that bean. These sorts of situations are common when a servlet
communicates directly with data entities, but if you assume that session beans play an
intermediary role, these are not problems for entity beans. I won't look at implementing this
design pattern (called the façade design pattern) with session beans right now, but I will in
later chapters. For now, it is enough to know that the application's entity beans only need to
read and write data, and that the data is appropriate for use by the time it is handed off to these
beans.

4.2 Coding the Bean

It's finally time to write some code. If you are new to EJB, you should pick up the
aforementioned Enterprise JavaBeans and skim through Chapter 4 before continuing on. That
should give you enough of a basic foundation to understand this chapter, as I'm going to move
through the basic entity bean code pretty quickly.

I'll start the entity bean work with the office data structure. Remember the OFFICES table from
last chapter? The table structure is shown again in Figure 4-1 for reference.

Figure 4-1. The office data structure

I'll use this structure for the first entity bean, as it has a very simple structure. It also does not
depend on any other objects (i.e., it has no foreign keys), a subject I will address in the next
chapter. Dependent objects introduce some additional considerations, but I will look at those
when we start to code beans for tables with foreign keys, like the USERS table. For the time
being, it's enough to know that this office structure is as simple as it gets. You need to store
the ID (an int), the city (a String), and the state (another String).

As this bean is simple in nature, it is a perfect candidate for container-managed persistence
(CMP). There are no special JDBC calls that need to be made, no multiple-table queries, and
no explicit data caching that needs to be performed. In the absence of these special cases,
CMP is almost always a better choice than bean-managed persistence (BMP). While CMP
beans are not truly portable yet, as each container generates specific implementation classes
for that product, the basic classes I'll look at in a CMP bean are portable. In other words, you
won't be able to take a complete JAR file (with implementation classes) from BEA Weblogic
and deploy it on Lutris Enhydra, but you will be able to take the user-coded classes from this
chapter and use them to generate classes for both BEA Weblogic and Lutris Enhydra. The

Building Java™ Enterprise Applications Volume I: Architecture

58

resultant JARs can then be deployed on the respective application servers. This adds a bit of
work, but is as close to complete portability as is possible in today's EJB containers. It does
allow us to write vendor-neutral code and not have to focus on a specific application server in
this chapter.

All these reasons add up to a good case for using CMP instead of BMP. Additionally, the EJB
2.0 specification makes CMP an even more attractive solution, offering almost complete
portability in all aspects of CMP entity beans.

While the process of creating the "skeleton" classes for a CMP entity
bean (the home and remote interfaces, the primary key, and the
implementation class) is vendor-neutral, the means of generating
container classes and deploying into a specific application server varies
widely from product to product. In this book, I focus on BEA Weblogic,
the most prevalent application server in use today, as it would be
impossible to cover the ever-growing number of application servers.
However, it should be fairly trivial to take the instructions for the
Weblogic server and relate them to your own application server.

I've moved any steps specific to Weblogic to the appendixes, leaving
only vendor-neutral code in the chapters' content. This should make it
easier to see what is general code, and what is platform-specific.
Appendix D, then, covers installation and setup of the Weblogic
application server for this book.

4.2.1 Adapters and Entity Beans

In preparing to code CMP entity beans, it turns out that most of the EJB callbacks that must
be implemented are empty in almost all cases; the container will generate the code for these
callbacks at deployment time. Instead of coding these methods into each entity bean
implementation, wasting time and space in these beans and generally adding a lot of clutter,
you can create an adapter class to handle this task for you. This concept, initially presented in
Richard Monson-Haefel's book, is used here for the clarity it provides in later code.
Example 4-1 is a slightly modified version of Richard's EntityAdapter class, which provides
default, empty implementations of the required entity bean callbacks. The entity bean
implementation classes in this chapter will extend this class, rather than implementing the
javax.ejb.EntityBean interface directly.

Building Java™ Enterprise Applications Volume I: Architecture

59

Example 4-1. The EntityAdapter Helper Class

package com.forethought.ejb.util;

import javax.ejb.EntityBean;
import javax.ejb.EntityContext;

public class EntityAdapter implements EntityBean {

 protected EntityContext entityContext;

 public void ejbActivate() {
 }

 public void ejbPassivate() {
 }

 public void ejbLoad() {
 }

 public void ejbStore() {
 }

 public void ejbRemove() {
 }

 public void setEntityContext(EntityContext entityContext) {
 this.entityContext = entityContext;
 }

 public void unsetEntityContext() {
 entityContext = null;
 }

 public EntityContext getEntityContext() {
 return entityContext;
 }
}

If you have any implementation classes that need to provide special behavior for a callback,
you can override the adapter class; overriding still allows you to leave out any callbacks that
are not implemented, keeping code clean. In addition, I've introduced the
com.forethought.ejb package in this class. All the entity beans created for the example can
be put into this base package, in a subpackage using the bean's name (for example, office or
user), with the EntityAdapter class in the util subpackage of the same structure. So entity
and session beans end up prefaced with com.forethought.ejb.office or
com.forethought.ejb.shoppingCart. This is the same naming scheme you'll see in Sun's
PetStore and most other enterprise applications.

In addition to package naming, I follow standard practices for the actual bean class names.
This entails using the actual name of the data object as the name of an entity bean's remote
interface. In the case of an office, the interface name simply becomes Office. The home
interface has "Home" appended to it, resulting in OfficeHome, and the bean implementation
itself gets the word "Bean" added to it, resulting in OfficeBean. And with this last detail
covered, you're ready to move to the bean code for the office classes.

Building Java™ Enterprise Applications Volume I: Architecture

60

4.2.2 The Remote Interface

Once the naming has been determined, it is simple to code the remote interface, which is
always a good starting point in EJB coding. In this case, coding the remote interface is a
matter of simply providing a few accessors and mutators[2] for the data fields in the office
structure. Additionally, you should notice that no methods are provided to modify the ID of an
office. That data is intrinsic to the database and is used in indexing, but has no business
meaning; as a result, it should never be modified by an application. The only time this
information is ever fed to an entity bean is in the finder methods, where an office is located by
its primary key (findByPrimaryKey() in the home interface), and in the creation of an
office, where it is required for row creation (the create() method in the remote interface).
I'll look at this in Chapter 5 and discuss how you can avoid even these situations of directly
dealing with a database-specific value.

Additionally, you will notice that the ID of the office is returned as an Integer, instead of the
Java primitive int type. An Integer is returned for two important reasons. First, CMP 2.0
introduces container-managed relationships (sometimes called CMR, or CMP relationships).
This is a way of letting an EJB container manage relationships between entity beans (like the
Office bean here, and the User bean in Appendix D). When these relationships are used, the
container is responsible for generating additional classes to handle them, similar to a container
generating implementation classes for your CMP beans. When these classes are generated,
though, most containers make several assumptions; the first is that the primary key value on
an entity bean is stored as a Java object (java.lang.Integer), and not as a primitive type
(int). While this is not true in all EJB containers, it is in most. For this reason alone, it is
better to use Integer instead of int when dealing with primary key types.

Using an Integer with primary keys also has a nice side effect. Because Java programmers
are almost always more accustomed to working with the int data type, using Integer makes
the primary key value stand out. The result is that developers think a little bit more about
working with the value, resulting in primary keys being handled with care, as they should be.
Therefore, you will note that the getId() method in the remote interface of the Office bean
returns an Integer, not an int, and the create() method in the bean's home interface
requires an Integer as well.

Something else to note is the apparent naming discrepancy between the database columns and
the entity bean. You can see from Figure 4-1 that the primary key column in the database is
OFFICE_ID, and the field name, as well as related methods, in the Java class is simply ID (or
id as a method variable). This discrepancy may seem a little odd, but turns out to be perfectly
natural. In the database layer, simply using ID as the column name can result in some very
unclear SQL statements. For example, consider this SQL selecting all users and their offices:

SELECT FIRST_NAME, LAST_NAME, CITY, STATE
 FROM USERS u, OFFICES o
 WHERE u.OFFICE_ID = o.OFFICE_ID

2 Throughout this book, the terms accessor and mutator are used; you may be more familiar with the terms getter and setter. However, as I'm a dog
person, and my wife is a veterinary technician, we both realize that a setter is an animal, not a Java term. So an accessor provides access to a variable
(the getXXX() style methods), and a mutator modifies a variable (the setXXX() style methods).

Building Java™ Enterprise Applications Volume I: Architecture

61

There is no ambiguity; the join occurs between the OFFICE_ID columns of each table.
However, consider the following SQL, which would produce the equivalent results when the
OFFICES table's primary key column was named ID:

SELECT FIRST_NAME, LAST_NAME, CITY, STATE
 FROM USERS u, OFFICES o
 WHERE u.OFFICE_ID = o.ID

This is certainly not as clear; add to this statement joins with five, ten, or even more additional
tables (something quite common even in medium-size systems), and the joins between
columns in different tables can become a nightmare. In the example's naming system,
columns in one table are always joined to columns in other tables with the same name; there is
no room left for mistakes.

However, using this same naming in Java results in some odd code. Consider that it is
common to use the lowercased name of a class as the name of an object class. For example,
an instance of the class Office is often called office. If the ID method variable is named
officeId, this practice can result in the rather strange code fragment shown here:

// Get an instance of the Office class
Integer keyValue = office.getOfficeId();

It seems a bit redundant to call getOfficeID() on an office; while this might be a
meaningful method on an instance of the User class, it doesn't make a lot of sense on the
Office class. Here, this is only a minor annoyance, but it could occur hundreds of times in
hundreds of classes in a complete application, becoming quite a nuisance. There are enough
annoyances in programming without adding to the list, so you should stick to using database
conventions in the database, and Java conventions in the application. It takes a little extra
concentration during implementation, but is well worth it in the long run.

So, with no further talk, Example 4-2 is the remote interface for the Office bean.

Example 4-2. The Remote Interface for the Office Bean

package com.forethought.ejb.office;

import java.rmi.RemoteException;
import javax.ejb.EJBObject;

public interface Office extends EJBObject {

 public Integer getId() throws RemoteException;

 public String getCity() throws RemoteException;
 public void setCity(String city) throws RemoteException;

 public String getState() throws RemoteException;
 public void setState(String state) throws RemoteException;
}

Building Java™ Enterprise Applications Volume I: Architecture

62

Lest you fall into an ugly trap, be sure not to use a capital "D" in the
getId() method (calling it getID() is incorrect). This rule holds true
when looking at the bean implementation class, as well. While you may
prefer this style (as I do), it will cause problems in your container's
CMP process. The container converts the first letter of the variable (the
"I" in "Id") to lowercase, takes the resultant name ("id"), and matches
that to a member variable. If you use getID(), you'll then be forced to
use a member variable called "iD", which is obviously not what you
want. So stick with the uppercase-lowercase convention, and save
yourself some trouble.

There's also a growing trend to name remote interfaces <Bean-Name>Remote, so that the
remote interface for our office entity bean would be called OfficeRemote. This convention is
a response to the local interfaces introduced in EJB 2.0 (which I'll discuss in the next chapter).
However, I'm not a big fan of this, for a couple of reasons. First and foremost, I like to make
the most common case the simplest; since beans most commonly have a remote interface, I
make the naming of the remote interface the simplest for a client to work with. Why type
"OfficeRemote" when 99 out of 100 cases, you can just type "Office"? Then, if a local
interface is needed, the name of that class can be OfficeLocal. The one time this name is
used instead of the remote interface, the name change is a clear indication of the use of a local
interface. So stick with the bean name for your remote interfaces; programmers writing bean
clients will thank you for the simplicity later.

4.2.3 The Local Interface

At this point, you need to stop a minute and think about how your bean is going to be used.
It's clear that any application clients that need to work with offices will require the remote
interface you just coded. However, because offices are related to users (refer back to
Figure 3-9 if you're unsure of why this is so), you will also have some entity bean-to-entity
bean communication. In this case, the overhead of RMI communication becomes
unnecessary, and a local interface can improve performance drastically. It's important to
understand that there is nothing to prevent a bean from providing both local interfaces (for
inter-bean communication) and remote interfaces (for client-to-bean communication).

It's also trivial to code the local interface of a bean once you have the remote interface.
Example 4-3 shows this interface, and it's remarkably similar to the remote interface from the
previous section. You'll use this local interface later, in the User bean, which will have
a persistence relationship with the Office bean.

Building Java™ Enterprise Applications Volume I: Architecture

63

Example 4-3. The Office Bean Local Interface

package com.forethought.ejb.office;

import javax.ejb.EJBException;
import javax.ejb.EJBLocalObject;

public interface OfficeLocal extends EJBLocalObject {

 public Integer getId() throws EJBException;

 public String getCity() throws EJBException;
 public void setCity(String city) throws EJBException;

 public String getState() throws EJBException;
 public void setState(String state) throws EJBException;
}

4.2.4 The Primary Key

Primary keys in beans where only one value is used are a piece of cake. In the case of the
Office bean, the primary key is the OFFICE_ID column, named simply id in the Java code
you've seen so far. All you need to do is identify the field used for the primary key in the ejb-
jar.xml deployment descriptor (I'll detail this more fully in a moment). Your entry will look
something like this:

<ejb-name>OfficeBean</ejb-name>
<home>com.forethought.ejb.office.OfficeHome</home>
<remote>com.forethought.ejb.office.Office</remote>
<local-home>com.forethought.ejb.office.OfficeLocalHome</local-home>
<local>com.forethought.ejb.office.OfficeLocal</local>
<ejb-class>com.forethought.ejb.office.OfficeBean</ejb-class>
<persistence-type>Container</persistence-type>
<prim-key-class>java.lang.Integer</prim-key-class>
<reentrant>False</reentrant>

<abstract-schema-name>OFFICES</abstract-schema-name>
<cmp-field><field-name>id</field-name></cmp-field>
<cmp-field><field-name>city</field-name></cmp-field>
<cmp-field><field-name>state</field-name></cmp-field>
<primkey-field>id</primkey-field>

If you do come across a case where more than one value is used for a primary key, you can
code an actual Java class. However, this situation is fairly rare, so I won't cover it here. The
majority of cases require you to simply add to your deployment descriptor for handling
primary keys. You'll also notice (again) that the java.lang.Integer type is used; as already
discussed, EJB containers generally must work in Java object types, rather than in primitives.

4.2.5 The Home Interface

The home interface is also simple to code. For now, the ID of the office to create is passed
directly to the create() method. Later, you'll remove that dependency, and the ID will be
determined independently of the application client. You also can add the basic finder,
findByPrimaryKey(), which takes in the Integer primary key type. Example 4-4 shows this
code listing.

Building Java™ Enterprise Applications Volume I: Architecture

64

Example 4-4. The Home Interface for the Office Bean

package com.forethought.ejb.office;

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;
import javax.ejb.FinderException;

public interface OfficeHome extends EJBHome {

 public Office create(Integer id, String city, String state)
 throws CreateException, RemoteException;

 public Office findByPrimaryKey(Integer officeID)
 throws FinderException, RemoteException;
}

Like the remote interface, many folks have taken to calling the remote home interface <Bean-
Name>HomeRemote (in this case OfficeHomeRemote), again in deference to local interfaces.
And in the same vein, I recommend against it for the same reasons as the remote interface. It's
best to leave the remote home interface as-is, and use OfficeLocalHome as needed.

4.2.6 The Local Home Interface

Just as you coded up a local interface for persistence relationships and bean-to-bean
communication, you should create a corresponding local home interface. This is extremely
similar to the remote home interface, and bears little discussion. Example 4-5 is the Office
bean's local home interface.

Example 4-5. The Local Home Interface for the Office Bean

package com.forethought.ejb.office;

import javax.ejb.CreateException;
import javax.ejb.EJBException;
import javax.ejb.EJBLocalHome;
import javax.ejb.FinderException;

public interface OfficeLocalHome extends EJBLocalHome {

 public OfficeLocal create(Integer id, String city, String state)
 throws CreateException, EJBException;

 public OfficeLocal findByPrimaryKey(Integer officeID)
 throws FinderException, EJBException;
}

4.2.7 The Bean Implementation

Last, but not least, Example 4-6 is the bean implementation class. Notice that it extends the
EntityAdapter class instead of directly implementing EntityBean, like other examples you
may find. Because the bean's persistence is container-managed, the accessor and mutator
methods are declared abstract. The container will handle the method implementations that
make these updates affect the underlying data store.

Building Java™ Enterprise Applications Volume I: Architecture

65

Example 4-6. The Implementation for the Office Bean

package com.forethought.ejb.office;

// EJB imports
import javax.ejb.CreateException;

import com.forethought.ejb.util.EntityAdapter;

public abstract class OfficeBean extends EntityAdapter {

 public Integer ejbCreate(Integer id, String city, String state)
 throws CreateException {

 setId(id);
 setCity(city);
 setState(state);

 return null;
 }

 public void ejbPostCreate(int id, String city, String state)
 throws CreateException {

 // Empty implementation
 }

 public abstract Integer getId();
 public abstract void setId(Integer id);

 public abstract String getCity();
 public abstract void setCity(String city);

 public abstract String getState();
 public abstract void setState(String state);
}

Take special note of the throws CreateException clause on the ejbCreate() and
ejbPostCreate() methods. I have several books on EJB 2.0 on my desk right now that
omit this clause; however, leaving it out causes several application servers, including the
J2EE reference implementation, to fail on deployment. Therefore, be sure to have your bean
creation methods throw this exception. It also makes sense in that the subclasses of the
Office class that the container creates need to be able to report errors during bean creation,
and a CreateException gives them that ability. Since a subclass can't add new exceptions to
the method declaration, the throws clause must exist in your bean class.

Also, be sure that your creation methods use the other methods in the class for assignment. A
common mistake is to code the ejbCreate() method like this:

public Integer ejbCreate(Integer id, String city, String state)
 throws CreateException {

 this.id = id;
 this.city = city;
 this.state = state;

 return null;
}

Building Java™ Enterprise Applications Volume I: Architecture

66

This was common in EJB 1.1, but doesn't work so well in EJB 2.0. You want to be sure that
you invoke the container-generated methods, which will handle database access. Invoking the
container-generated methods also means you don't have to explicitly define member variables
for the class, so that's one less detail to worry about. Also note that the creation method
invokes setId(), which I earlier said wouldn't be made available to clients. That remains
true, because even though it's in the bean's implementation class, the remote interface does not
expose the method, keeping it hidden from the client.

One final note before moving on: you should notice in this book's source code (downloadable
from http://www.newinstance.com/) that the methods in the bean implementation are not
commented, as they are in the remote interface. This is a fairly standard practice; methods are
commented (and therefore available in Javadoc) in interfaces, but these comments are not
duplicated in the implementation, which generally makes implementation classes simpler to
move through. If there are details specific to the implementation that need to be documented,
they are suitable for commenting; however, such comments usually are made in the code and
are preceded with the double-slash (//), rather than being Javadoc-style comments. Such
practices are followed in all the EJBs in this chapter and the rest of the book.

4.3 Deploying the Bean

At this point, you've completed the code for your entity bean, and now you need to deploy the
bean. This involves creating a deployment descriptor for the bean and then wrapping the
entire bean into a deployable unit. I'll cover each of these steps in the following sections.

4.3.1 Deployment Descriptors

To wrap all these classes into a coherent unit, you must create an XML deployment
descriptor. These descriptors replace the horrible serialized deployment descriptors from EJB
1.0. XML deployment descriptors eliminate one vendor-dependent detail: the descriptor is
standardized across all application servers. Notice that the document type definition (DTD)
referred to in the DOCTYPE declaration refers to a Sun file, ensuring that no vendors add their
own tags or extensions to the descriptor. If your server requires you to use a different DTD,
you may have a serious problem on your hands; you may want to consider switching to a
standards-based application server immediately. And if DTDs, elements, tags, and these other
XML terms are Greek to you, pick up Java and XML(O'Reilly), by yours truly, to get answers
to your XML-related questions.

Example 4-7, the deployment descriptor for the office entity bean, contains entries only for
that bean, detailing its home, remote, implementation, and primary key classes. These are all
required elements for an entity bean, as is specifying that the bean is not reentrant and
specifying the persistence type, which in our case is container-managed. Later on, we'll add
entries for numerous other entity beans that we will code and add to the application. Because
we are deploying a CMP bean, the fields that must be handled by the container are listed; in
this case, these are all the fields in the OfficeBean class. We also give the bean a name to be
used, OfficeBean.

If you are familiar with EJB deployment descriptors, you might notice that I have left out the
assembly-descriptor element and related subelements that allow permission specification
for beans and their methods. That's so you can focus on the bean right now, and deal with

Building Java™ Enterprise Applications Volume I: Architecture

67

security later. Don't worry, though; I'll get to all of this before we're done with our
application. Leaving it out for now will allow the container to generate default permissions.

Example 4-7. The Office Entity Bean Deployment Descriptor

<?xml version="1.0"?>

<!DOCTYPE ejb-jar
 PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN"
 "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>
 <enterprise-beans>
 <entity>
 <description>
 This Office bean represents a Forethought office,
 including its location.
 </description>
 <display-name>OfficeBean</display-name>
 <ejb-name>OfficeBean</ejb-name>
 <home>com.forethought.ejb.office.OfficeHome</home>
 <remote>com.forethought.ejb.office.Office</remote>
 <local-home>com.forethought.ejb.office.OfficeLocalHome</local-home>
 <local>com.forethought.ejb.office.OfficeLocal</local>
 <ejb-class>com.forethought.ejb.office.OfficeBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.Integer</prim-key-class>
 <reentrant>False</reentrant>

 <abstract-schema-name>OFFICES</abstract-schema-name>
 <cmp-field><field-name>id</field-name></cmp-field>
 <cmp-field><field-name>city</field-name></cmp-field>
 <cmp-field><field-name>state</field-name></cmp-field>
 <primkey-field>id</primkey-field>
 </entity>
 </enterprise-beans>
</ejb-jar>

A word to the wise here: it might seem that the XML would be clearer
with some reorganization. For example, the prim-key-class element
might be easier to find if it were right below the other class entries
(home, remote, and ejb-class). However, moving it will cause an
error in deployment! The ejb-jar_2_0.dtd file specifies the order of
elements, and is completely inflexible in this respect. This is a typical
limitation of DTDs, as opposed to other constraint representations in
XML such as XML Schemas. If these elements not in the correct order
shown in the example, you will encounter errors in deployment.

4.3.2 Wrapping It Up

The process of creating the Office entity bean is finally complete (at least in its current form).
You now need to create a deployable JAR file, and then create the container classes to add
implementation details to your bean, such as SQL and JDBC code. First, ensure that your
directory structure is set up correctly. The Java source files can all be in a top-level directory.

Building Java™ Enterprise Applications Volume I: Architecture

68

You should then create a directory called META-INF/, and place the ejb-jar.xml deployment
descriptor inside it. Next, compile your source files:

galadriel:/dev/javaentI $ javac -d build \
 ch04/src/java/com/forethought/ejb/util/*.java \
 ch04/src/java/com/forethought/ejb/office/*.java

Setting up your classpath for these compilations can be either really
simple or really difficult. Many application servers provide a script that
can be run to set up all the environment variables. Running this script
takes care of all the classpath issues for you, and your compilations will
be a piece of cake (refer to Appendix D and Appendix E for these
details for the Sun J2EE reference implementation). Or, you may have
to manually add the entries needed to your classpath. You should
consider creating your own script in these cases, and then bothering
your server vendor until they provide you with a prebuilt script.
Unfortunately, the libraries are packaged differently with every server
(for example, in Weblogic there is one giant JAR, and in jBoss there are
individual JARs for each API), so I can't tell you exactly what to type.
Just look for a script; it's almost always there.

Correct any errors you receive by referring to the text. Once you've compiled the source, you
should have the directory structure shown in Figure 4-2. Notice that I have build/ and deploy/
directories in place before compilation and deployment to segregate my files. You should
create these as well (or use your own structure, of course).

Figure 4-2. Directory structure for office entity bean

Building Java™ Enterprise Applications Volume I: Architecture

69

Next, you need to create a JAR file of these classes and the deployment descriptor. Create it
with the name forethoughtEntities.jar, as shown:

galadriel:/dev/javaentI $ cd build

galadriel:/dev/javaentI/build $ jar cvf ../deploy/forethoughtEntities.jar
 com \ META-INF/ejb-jar.xml
added manifest
adding: com/(in = 0) (out= 0)(stored 0%)
adding: com/forethought/(in = 0) (out= 0)(stored 0%)
adding: com/forethought/ejb/(in = 0) (out= 0)(stored 0%)
adding: com/forethought/ejb/office/(in = 0) (out= 0)(stored 0%)
adding: com/forethought/ejb/office/Office.class(in = 439) (out=280)
(deflated 36%)
adding: com/forethought/ejb/office/OfficeBean.class(in = 805) (out= 445)
(deflated 44%)
adding: com/forethought/ejb/office/OfficeHome.class(in = 480) (out= 260)
(deflated 45%)
adding: com/forethought/ejb/util/(in = 0) (out= 0)(stored 0%)
adding: com/forethought/ejb/util/EntityAdapter.class(in = 831) (out= 388)
(deflated 53%)
adding: META-INF/ejb-jar.xml(in = 1038) (out= 430)(deflated 58%)

With this archive ready for use, you can refer to Appendix D for instructions on taking the
JAR from its current state to a deployable, CMP entity bean and descriptor.

4.4 What's Next?

You should now have a good idea of common architectural problems related to basic entity
beans. Primary keys, package naming, deployment descriptors, and more should all be at your
fingertips. Once you've mastered these concepts, you're ready to look at some more
interesting subjects. In the next chapter, I'll cover handling primary key values, detail objects,
and more. So make sure that you understand the basics in this chapter, and keep reading.

Building Java™ Enterprise Applications Volume I: Architecture

70

Chapter 5. Advanced Entities
In this chapter, we'll dig into some more interesting entity bean topics. I'll start by looking at
how entity beans can and should abstract database IDs and sequences from business-oriented
clients. You'll see how session beans can be used for these sorts of tasks, learn about database
access through JDBC in beans, and put all these pieces into a coherent whole. From there I'll
move on to discussing entity bean value objects, serialization of these objects, and decreasing
RMI traffic.

I'll also discuss when to use container-managed persistence (CMP) and when to use bean-
managed persistence (BMP). This leads you from accessing the database to accessing the
directory server set up for usernames and authentication data. I'll also cover the variety of
ways you can access a directory server. At this point, the Java Naming and Directory Interface
(JNDI) will enter the picture, too. By the end of this chapter, you'll have several new entity
beans, a session bean, a more advanced Office bean, and a thorough understanding of entity
bean architecture.

5.1 IDs, Sequences, and CMP

The most common problem in working with entity beans is dealing with primary keys. The
underlying principle is that EJB components should represent business objects and business
entities. In other words, if something isn't used in the business of an application, it shouldn't
be visible to the bean developer. What that means in terms of the entity beans so far is that
you need to hide the details of offices' ID fields: they have no business meaning, and are
useful only at the database level. Therefore, you don't want a user to pass in a value when
creating a new office. Instead, the bean implementation (hidden to the bean client) should
assign a viable ID at office creation. Straying from this principle will result in session beans
and servlets having to deal with IDs that have no meaning outside of the database layer. The
only use for an office's ID is in locating the office or in tying in the office to a related
structure, like a user. For this reason, it is OK to allow a bean client to find out an office's ID,
but it's not OK for that client to create the office by specifying an ID. This is in contrast to the
current OfficeHome interface, which has a create() method that looks like this:

public Office create(Integer id, String city, String state)
 throws CreateException, RemoteException;

The most common (and unfortunately, the worst) way to create an ID has been for developers
to code logic into their entity bean's ejbCreate() method that directly interfaces with the
database. This logic varies from selecting a random number to obtaining the next number
from a database sequence (particularly common in Oracle databases) or retrieving the highest
value in use and adding 1. There are so many different problems with this approach, though,
that it should immediately be thrown out as an option in your bean programming. The first
and most important problem is that this method is not vendor-neutral or database-neutral, and
leaves your code working only on the specific setup you are using. Additionally, going to the
database for a sequence value or the highest existing value results in additional JDBC calls,
slowing the entire application. And the logic of picking a random or semi-random number is
unreliable, at best.

Another solution is based on a popular white paper on persistence by Scott Ambler, available
at http://www.sdmagazine.com/documents/s=751/sdm9912p/9912p.htm. In this excellent

Building Java™ Enterprise Applications Volume I: Architecture

71

paper, Ambler details a solution using a HIGH and LOW pair of variables and creating a
surrogate key. Basically, this uses a guaranteed approach: instead of getting the next available
value for a key, it gets a variable that is guaranteed to be safe for the key value. This can
result in lots of gaps in primary key values, which in extremely large databases may cause
problems by running out of usable keys in the data type's range (but only in very large
databases!). The biggest problem with this approach is not in implementation of the pattern,
but in converting it into a bean. Should it be an entity bean? A stateless session bean? A
simple Java class? It becomes tricky. In any case, this solution, where the HIGH and LOW
values are stored in the database, does provide a vendor-neutral means of handling the ID
problem. Connections to the database are obtained through the container instead of in a
database-specific way. I won't use this complex solution here; check out Ambler's white paper
if you are interested in his approach. Instead, we will look at some simpler ways to solve the
problem in an EJB-based application

A slightly more popular approach is to take the same concept of storing allowed key values in
a database, but using exact values instead of guaranteed values. That is, instead of storing a
safe value, a single table (I'll call it PRIMARY_KEYS) stores the next available value for the
primary key of each table. Getting a key value, then, simply involves requesting the value for
a specific table name. For example, sequence.getNextValue("OFFICES") would return the
next viable primary key value for the OFFICES table. Like Ambler's solution, the concept is
not overly difficult to grasp, but the details surrounding an implementation are. The biggest
issue is ensuring that stale data is never returned; two JDBC calls requesting a new key value
for the same table must never overlap and return identical values. For this reason, using a
bean makes a lot of sense; EJB transaction isolations can protect you from this unwanted
situation by locking the database at each request. This ensures that each request is serviced
one at a time. The bean would then obtain a value and immediately update the database by
incrementing the available value; only then could other requests be serviced.

The last question is whether to use an entity or session bean. As you've been working with
entity beans to this point, it might seem natural to use one; you would make it a bean-
managed persistence entity bean, as each method call should trigger an update, something that
normally happens only on an EJB's ejbLoad() call. Most containers hold onto entity beans,
so this call usually does not occur on every method invocation. However, there is no real
advantage in using an entity bean, as the callbacks it receives become meaningless in this
context. Additionally, problems can occur when the same entity bean is loaded into two
containers (common in a load-balanced situation); since the normal EJB callbacks aren't used,
you can end up playing with fire when trying to manage instances in the bean pool, in
passivation, or waiting to be created. All this leads to a good case for using a session bean,
and a stateless one, at that. Most memory-efficient, stateless session beans can be brought into
and out of existence quickly, and caching issues become irrelevant. Each call to a stateless
session bean's method results in an instance being created and then thrown away;[1] no
conflicts should arise, even across servers in a clustered environment. It's also possible to use
transaction levels to make sure that the database is effectively locked, ensuring that no two
requests get the same primary key value.

In addition to offering complete vendor-independence, this solution won't cause your database
to have the gaps that the high/low approach results in. And by using session beans and
isolation levels, you avoid concurrency issues, which solves the problem of hiding IDs from

1 This is a bit of an oversimplification. In actuality, the container often keeps pools of stateless beans around to service requests, and rarely throws
them away.

Building Java™ Enterprise Applications Volume I: Architecture

72

clients. It's now time to implement the idea. We first need to create a new table, and allow
storage of a table name or key name, and the next available primary key value. We need to
create a session bean that provides a method to get a valid ID given a key name, and then
implement the bean in a way that uses JDBC to connect to the table, get the next value, and
update the table. Add this bean to our deployment descriptor, modify our entity bean code to
use it, and we're in business. So let's put some code to our talk.

5.1.1 Making It Work

The starting point to this solution is a new table in the database. This table is probably the
simplest yet: it has only two columns, no ID, and does not need to reference any other tables.
Example 5-1 shows the SQL used to create this table. All the PRIMARY_KEYS table needs is a
KEY_NAME column to hold the table name that the key is for, and a NEXT_VALUE column to
hold the next valid primary key for that table. Finally, there is some Forethought-specific
work to do by adding entries for all the tables in the application, starting each value off at 1.
Create this table in your database, using the SQL in Example 5-1.

The script in Example 5-1 assumes that you have no existing data;
therefore the counters for all tables start at 1. If you need to use this
structure for an application with existing data, you will need to make
some small modifications. For each table, find the highest existing value
in use, and start with a number at least 1 greater than that value. So if
your table has primary keys ranging as high as 2012, you want to start
that table's primary key value at 2013.

Additionally, this script drops any existing PRIMARY_KEYS table. If you
already use this structure, and then run this script, you run the risk of
duplicating primary key values. Be careful!

Example 5-1. SQL Script for Primary Keys Storage

-- Drop any existing PRIMARY_KEYS table
DROP TABLE PRIMARY_KEYS;

-- PRIMARY_KEYS table
CREATE TABLE PRIMARY_KEYS (
 KEY_NAME VARCHAR(20) PRIMARY KEY NOT NULL,
 NEXT_VALUE INT NOT NULL
);

-- Add initial values for each table
INSERT INTO PRIMARY_KEYS VALUES ('USER_TYPES', 1);
INSERT INTO PRIMARY_KEYS VALUES ('OFFICES', 1);
INSERT INTO PRIMARY_KEYS VALUES ('USERS', 1);
INSERT INTO PRIMARY_KEYS VALUES ('ACCOUNT_TYPES', 1);
INSERT INTO PRIMARY_KEYS VALUES ('ACCOUNTS', 1);
INSERT INTO PRIMARY_KEYS VALUES ('TRANSACTIONS', 1);
INSERT INTO PRIMARY_KEYS VALUES ('FUNDS', 1);
INSERT INTO PRIMARY_KEYS VALUES ('INVESTMENTS', 1);

With this table created, we can start writing the session bean to access the data in the table,
ensuring that it is usable by the various entity beans in the application.

Building Java™ Enterprise Applications Volume I: Architecture

73

Before getting too carried away, realize that this scenario assumes that
all the applications accessing your database will use this sequencing
facility. If you are going to have concurrent access from other Java (or
non-Java) components, the IDs in the PRIMARY_KEYS table can become
stale. In this case, you will need to take a different approach.

5.1.1.1 Adapters and session beans

First, it's time to save some time and effort by writing another utility class. Like entity beans,
session beans have several callback methods that often are never coded in standard beans.
Although there aren't as many methods for session beans, it is still a pain to write empty
method implementations for tens or even hundreds of session beans in an application. Writing
a SessionAdapter class, similar to the EntityAdapter class, allows us to avoid this hassle
and keep session bean code clean and concise. Example 5-2 shows this class; there is nothing
new here, just a session bean version of Example 4-1.

Example 5-2. The SessionAdapter Utility Class

package com.forethought.ejb.util;

import javax.ejb.SessionBean;
import javax.ejb.SessionContext;

public class SessionAdapter implements SessionBean {

 protected SessionContext sessionContext;

 public void ejbActivate() {
 }

 public void ejbPassivate() {
 }

 public void ejbRemove() {
 }

 public void setSessionContext(SessionContext sessionContext) {
 this.sessionContext = sessionContext;
 }

 public void unsetSessionContext() {
 sessionContext = null;
 }

 public SessionContext getSessionContext() {
 return sessionContext;
 }
}

All of your session bean implementations can then extend the SessionAdapter utility class,
allowing them to ignore any callbacks that are not explicitly used in the implementation. This
paves the way for building the actual bean used in sequence retrieval.

Building Java™ Enterprise Applications Volume I: Architecture

74

5.1.1.2 The application exception

Before writing the session bean itself, you should take a moment to define a new application
exception. In EJB-land, application exceptions are used to report problems that are not
directly caused by RMI, network communication, and container-related issues. Since the
sequence bean will need to perform SQL calls, JNDI lookups, and other subsystem work, it
should be able to report problems with these operations in a way that distinguishes them from
more generic errors. Example 5-3 is a very simple example of an appropriate application
exception.

Example 5-3. The Sequence Application Exception

package com.forethought.ejb.sequence;

public class SequenceException extends Exception {

 public SequenceException(String message) {
 super("Sequence Bean Exception: " + message);
 }
}

This is about as simple an application exception as you will find; however, it does serve to
distinguish exceptions related to the sequence bean's actions from network and EJB problems.
This results in better error handling for clients (i.e., other entity beans) of this bean.

Still, this application is pretty simplistic, and doesn't offer much in the way of error reporting.
Although you don't want to have to write sophisticated exception code for every application
exception you need to write, you should sense a base exception class on the horizon.
Example 5-4 is just that, and will be used as the superclass of all the Forethought application
exceptions.

Example 5-4. The ForethoughtException Class

package com.forethought;

import java.io.PrintStream;
import java.io.PrintWriter;

public class ForethoughtException extends Exception {

 /** The root cause generating this exception */
 private Throwable cause;

 public ForethoughtException(String msg) {
 super(msg);
 }

 public ForethoughtException(String msg, Throwable cause) {
 super(msg);
 this.cause = cause;
 }

Building Java™ Enterprise Applications Volume I: Architecture

75

 public String getMessage() {
 if (cause != null) {
 return super.getMessage() + ": " + cause.getMessage();
 } else {
 return super.getMessage();
 }
 }

 public void printStackTrace() {
 super.printStackTrace();
 if (cause != null) {
 System.err.print("Root cause: ");
 cause.printStackTrace();
 }
 }

 public void printStackTrace(PrintStream s) {
 super.printStackTrace(s);
 if (cause != null) {
 s.print("Root cause: ");
 cause.printStackTrace(s);
 }
 }

 public void printStackTrace(PrintWriter w) {
 super.printStackTrace(w);
 if (cause != null) {
 w.print("Root cause: ");
 cause.printStackTrace(w);
 }
 }

 public Throwable getCause() {
 return cause;
 }
}

You can now make a few slight modifications to the SequenceException to take advantage
of these new facilities:

package com.forethought.ejb.sequence;

import com.forethought.ForethoughtException;

public class SequenceException extends ForethoughtException {

 public SequenceException(String message) {
 super("Sequence Bean Exception: " + message);
 }

 public SequenceException(String message, Throwable cause) {
 super("Sequence Bean Exception: " + message, cause);
 }
}

By extending this base exception, it is possible to take in a root cause exception, as the
ForethoughtException handles printing out the stack trace and message of the root cause
exception. You now have a good facility in place for reporting errors.

Building Java™ Enterprise Applications Volume I: Architecture

76

5.1.1.3 The local interface

Next, code the local interface. Notice that I said local interface, not remote interface. By now
you should realize that the Sequence bean being developed here is of use only to entity beans;
it has no business meaning. Because of that, it needs to be accessible only to entity beans.
Furthermore, because entity beans are already process-intensive, you should look to cut down
on processing whenever possible. It therefore makes sense to locate the Sequence bean within
the same container as your entity beans. Session beans may be put into other containers, and
servlets and JSP beans may be spread out over multiple machines, but your entity beans
should all have local (and therefore the fastest) access to the Sequence bean. To accommodate
this, you should use local interfaces for the bean, as detailed in this section.

In this particular session bean, coding the actual local interface is a trivial task. You need only
one method, which takes in a key name (generally a table name) and returns the next primary
key value for that key. You can call this method getNextValue(), and the bean itself
Sequence, as it provides sequence values for entity beans. Example 5-5 shows the local
interface for the Sequence session bean. Notice that it throws the new SequenceException
when things related to the sequencing logic go wrong.

Example 5-5. The Sequence Local Interface

package com.forethought.ejb.sequence;

import javax.ejb.EJBException;
import javax.ejb.EJBLocalObject;

public interface SequenceLocal extends EJBLocalObject {

 public Integer getNextValue(String keyName)
 throws EJBException, SequenceException;

}

As you would expect, this method returns an Integer (not an int), which is the correct type
for the primary key values used in the Forethought bean classes. This avoids constantly
having to convert from ints to Integers and back.

5.1.1.4 The home interface

The local home interface for the Sequence bean is equally simple; remember that session
beans do not have finder methods (findByXXX() methods), and that stateless session beans
must have a create() method that takes no parameters. This single create() method is
the only one needed by the bean. As in the previous section, this will be a local interface,
albeit a home one, which allows the bean to be located in the same container as the entity
beans in the application. Example 5-6 is this local home interface for the Sequence bean.

Building Java™ Enterprise Applications Volume I: Architecture

77

Example 5-6. The Sequence Local Home Interface

package com.forethought.ejb.sequence;

import javax.ejb.CreateException;
import javax.ejb.EJBLocalHome;

public interface SequenceLocalHome extends EJBLocalHome {

 public SequenceLocal create() throws CreateException;
}

With both local interfaces for the bean complete, you can move on to the implementation.
Remember that session beans do not have primary key classes or fields, so you don't need to
worry about those things for the Sequence session bean.

5.1.1.5 The bean

The real work is done in the implementation of the bean class, which is shown in
Example 5-7. The ejbCreate() method stays empty, and doesn't perform any specific
action. The getNextValue() method, though, has quite a bit of database interaction and
logic within it.

First, the method declares an int, called returnValue, that will store the key value to return
to the calling program. Then it constructs the two queries, to be used as prepared statements,
for getting the current value and then updating it. Then the work begins. First, an
InitialContext is obtained from the container.

The example code in this and other chapters obtains the
InitialContext by directly instantiating the object. This assumes that
you are using an application server that supports this facility, which
involves a jndi.properties file being in the application server classpath
and generally requires Java 2. Most recent releases from vendors
provide this functionality. However, if you have problems with this or
your server does not support obtaining an InitialContext in this way,
consult your vendor documentation for another means of obtaining the
object in your application server.

The JNDI context is used to look up a JDBC javax.sql.DataSource.[2] I'll discuss binding
the DataSource into JNDI in a minute; for now, assume that it's there and bound to the name
jdbc/forethoughtDB. You should use the ENC context to obtain the JDNI context, a feature
introduced in EJB 1.1. Adding to the power of JNDI, the comp/env name and all names bound
below it (like comp/env/jdbc/forethoughtDB) are intended for application use, as we are doing
here. Once we have the DataSource, it is trivial to obtain a JDBC Connection object. The
ease of getting a connection this way, as opposed to using the JDBC DriverManager facility,
is evident in the code sample; therefore, binding resources to JNDI in this manner is highly
recommended.

2 As you can see by the javax.sql instead of the java.sql package prefix, this is part of the JDBC standard extension. All J2EE-compliant
application servers should support this, and make it available to your applications.

Building Java™ Enterprise Applications Volume I: Architecture

78

The ENC What?
The ENC context, or environment context, is a utility introduced in EJB 1.1 and
available in all EJB 2.0 implementations. It defines a common means for objects to
be bound into the JNDI registry, specifically for use by Enterprise JavaBeans. The
ENC context reserves the JNDI name java:comp/env for use by beans, and allows
objects to be bound in that context or subcontexts. For example, by binding an
object to the name myObject through the EJB deployment descriptor, the object is
made available (by the application server) as java:comp/env/myObject. Any object
that can be bound into JNDI can be bound into this context; it is simply a specific
application of JNDI.

While constants can be wired into JNDI this way, it is most common to bind
references to other beans or database connections and resources to the ENC context.
Application servers generally provide tools for binding these special objects into
JNDI. Most common are URLs (java.net.URL), JDBC database sources
(javax.sql.DataSource), JavaMail connections (javax.mail.Session), and JMS
connections (javax.jms.QueueConnectionFactory and
javax.jms.TopicConnectionFactory). These bindings allow the server or
container to use factories to generate these objects and tie them in with other server
resources more efficiently than developers can code them themselves. Using the
ENC context to obtain resources is always preferable to manually obtaining handles
to these resources.

With a database connection available, it's simple to turn these query strings into JDBC
PreparedStatement objects. The first is executed, and the value saved for returning to the
caller program. The second is then executed to update the database with the next available
primary key value. At this point, it's important to note why the key value isn't returned
directly, and is instead assigned to the returnValue variable created earlier. Returning
immediately would leave both the PreparedStatement and Connection objects open. While
some containers and databases happily take care of closing these objects, many do not, and
the result is that after five or ten invocations, all the available connections to a database are
used up and errors start occurring. Always be sure to close any open database connection
objects.

Example 5-7. The Sequence Implementation

package com.forethought.ejb.sequence;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import javax.ejb.CreateException;
import javax.ejb.EJBException;
import javax.ejb.SessionBean;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.sql.DataSource;

Building Java™ Enterprise Applications Volume I: Architecture

79

import com.forethought.ejb.util.SessionAdapter;

public class SequenceBean extends SessionAdapter {

 /** The query to get the next value from the keys table */
 private static final String selectQuery =
 new StringBuffer("SELECT NEXT_VALUE ")
 .append(" FROM PRIMARY_KEYS ")
 .append(" WHERE KEY_NAME = ?")
 .toString();

 /** The query to update the next value in the keys table */
 private static final String updateQuery =
 new StringBuffer("UPDATE PRIMARY_KEYS ")
 .append(" SET NEXT_VALUE = ? ")
 .append(" WHERE KEY_NAME = ?")
 .toString();

 public void ejbCreate() throws CreateException {
 // No action required for stateless session beans
 }

 public int getNextValue(String keyName) throws SequenceException {
 int returnValue;

 Connection con = null;
 PreparedStatement pstmt = null;
 ResultSet rs = null;
 try {
 Context context = new InitialContext();
 DataSource ds =
 (DataSource)
 context.lookup("java:comp/env/jdbc/forethoughtDB");
 con = ds.getConnection();

 pstmt = con.prepareStatement(selectQuery);
 pstmt.setString(1, keyName);
 rs = pstmt.executeQuery();

 if (rs.next()) {
 returnValue = rs.getInt("NEXT_VALUE");

 pstmt = con.prepareStatement(updateQuery);
 pstmt.setInt(1, returnValue + 1);
 pstmt.setString(2, keyName);
 pstmt.executeUpdate();
 } else {
 // Close connections before throwing the exception
 try {
 rs.close();
 } catch (Exception ignored) { }
 try {
 pstmt.close();
 } catch (Exception ignored) { }
 try {
 con.close();
 } catch (Exception ignored) { }

 throw new SequenceException("Could not obtain a key " +
 "value for the key name " + keyName);
 }

Building Java™ Enterprise Applications Volume I: Architecture

80

 } catch (NamingException e) {
 throw new SequenceException("Error getting JNDI " +
 "resources: " + e.getMessage(), e);
 } catch (SQLException e) {
 throw new SequenceException("Error in SQL: " +
 e.getMessage(), e);
 } finally {
 try {
 rs.close();
 } catch (Exception ignored) { }
 try {
 pstmt.close();
 } catch (Exception ignored) { }
 try {
 con.close();
 } catch (Exception ignored) { }
 }

 return new Integer(returnValue);
 }
}

Any problems that occur are handled by the SequenceException. In this simple case, a
message indicates what happened. However, you could easily add the ability to nest
exceptions (and pass the originating exception into the SequenceException constructor),
type-specific error messages, and any other information you wanted to make available for
clients.

I earlier mentioned that the approach described here works only if you
have all access for primary keys moving through the Sequence bean. If
you do not, there are still some simple (albeit less efficient) approaches
to solving the problem of primary keys. The simplest is to change the
getNextValue() method to take in a database table name, rather than
a key:

public Integer getNextValue(String tableName);

Then, instead of using the PRIMARY_KEYS table, you could simply get
the highest ID value in the supplied table. The following SQL statement
takes care of this:

SELECT MAX(ID) FROM [tableName];

Returning this value with 1 added would retrieve a viable primary key.
However, this approach requires entity bean knowledge of database
table names (which is not great design), and also requires the MAX
function for each getNextValue() method invocation, which is
expensive. However, it is still preferable to a vendor-specific solution
that is not portable across databases.

At this point, don't feel bad if you need to take a deep breath. I've flown through more EJB,
JNDI, and JDBC in the last code listing than in the first few chapters combined. If you were

Building Java™ Enterprise Applications Volume I: Architecture

81

hazy on any of the concepts, it would be a good idea to refresh your EJB skills with the
aforementioned Enterprise JavaBeans or Java Enterprise in a Nutshell. It only gets thicker
from here, as we dive further into EJB and deployment, RMI, and JNDI.

5.1.2 Deploying the Sequence Bean

If you're ready to move on, take a look at modifying your deployment descriptor to include an
entry for the new session bean. Example 5-8 shows the modified descriptor. You should
declare the bean as stateless, and of course enclose it within the session element to indicate
the type of bean. Also be sure to use the localized versions of the home and remote tags.

Example 5-8. Updating the Deployment Descriptor

<?xml version="1.0"?>

<!DOCTYPE ejb-jar
 PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN"
 "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>
 <enterprise-beans>
 <!-- Office bean definition -->

 <session>
 <description>
 This Sequence bean allows entity beans to obtain primary key
 values as if from a sequence.
 </description>
 <ejb-name>SequenceBean</ejb-name>
 <local-home>com.forethought.ejb.sequence.SequenceLocalHome
 </local-home>
 <local>com.forethought.ejb.sequence.SequenceLocal</local>
 <ejb-class>com.forethought.ejb.sequence.SequenceBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 <resource-ref>
 <description>Connection to the Forethought database.</description>
 <res-ref-name>jdbc/forethoughtDB</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
 </session>
 </enterprise-beans>
</ejb-jar>

Perhaps the most important portion of the Sequence bean addition is the resource-ref entry.
This allows resources, like the JDBC DataSource used in the implementation, to be bound
into the JNDI ENC context. The object is bound to the JNDI name jdbc/forethoughtDB,
which in turn is made available through the JNDI context java:comp/env/jdbc/forethoughtDB.
Finally, the descriptor indicates that the container should handle authentication, allowing
security principals to be used normally (something I'll get to later). At this point, the bean is
ready to deploy, although the entity bean doesn't take advantage of it yet.

Building Java™ Enterprise Applications Volume I: Architecture

82

It is a good idea at this point to actually deploy the Sequence session
bean, along with the Office entity bean. You can compile these classes,
wrap them up in the JAR archive (as I talked about in the previous
chapter), and deploy the JAR into your container (as described in
Appendix D). Although you haven't added any functionality to your
entity bean or taken advantage of the new session bean, you can head
off any errors here. Choosing not to do this widens the window of errors
that may occur. It's better to catch small mistakes and typos in your
code or descriptor now, by deploying the beans before continuing.

5.1.3 Integrating the Changes

Now that the sequencing functionality is available to the application, you just need to take
advantage of it. With the need for an ID eliminated from entity beans' clients, you first need to
change the home interface's create() method, as I talked about earlier. This simply
involves removing the id variable from the method signature. That change results in the
following create() signature in the OfficeHome class:

public Office create(String city, String state)
 throws CreateException, RemoteException;

You should make the same change to the OfficeLocalHome interface:

public OfficeLocal create(String city, String state)
 throws CreateException, EJBException;

The next change in the code is the bean implementation itself. The ejbCreate() and
ejbPostCreate() methods both should have the id variable removed from their method
signatures. Be sure you change both of these, as it's easy to forget the ejbPostCreate()
method. Finally, this bean needs to access the new Sequence bean and use it to obtain an ID
value for a new office. This is a replacement for accepting the value from a bean client.
Modify your bean's ejbCreate() method as shown in Example 5-9. Once you've added the
necessary import statements to deal with JNDI, RMI, and the Sequence bean, you are ready
to access the next primary key value through the functionality just provided.

Example 5-9. The OfficeBean Using the Sequence Bean for ID Values

package com.forethought.ejb.office;

import javax.ejb.CreateException;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import com.forethought.ejb.sequence.SequenceException;
import com.forethought.ejb.sequence.SequenceLocal;
import com.forethought.ejb.sequence.SequenceLocalHome;
import com.forethought.ejb.util.EntityAdapter;

Building Java™ Enterprise Applications Volume I: Architecture

83

public class OfficeBean extends EntityAdapter {

 public Integer ejbCreate(String city, String state)
 throws CreateException {
 // Get the next primary key value
 try {
 Context context = new InitialContext();

 // Note that RMI-IIOP narrowing is not required
 SequenceLocalHome home = (SequenceLocalHome)
 context.lookup("java:comp/env/ejb/SequenceLocalHome");
 SequenceLocal sequence = home.create();
 String officeKey =
 String)context.lookup("java:comp/env/constants/OfficeKey");
 Integer id = sequence.getNextValue(officeKey);

 // Set values
 setId(id);
 setCity(city);
 setState(state);

 return null;
 } catch (NamingException e) {
 throw new CreateException("Could not obtain an " +
 "InitialContext.");
 } catch (SequenceException e) {
 throw new CreateException("Error getting primary key value: " +
 e.getMessage());
 }
 }

 public void ejbPostCreate(String city, String state) {
 // Empty implementation
 }

 public abstract Integer getId();
 public abstract void setId(Integer id);

 public abstract String getCity();
 public abstract void setCity(String city);

 public abstract String getState();
 public abstract void setState(String state);
}

Notice that you had to explicitly add a throws CreateException clause to the modified
ejbCreate() method; although the Office home interface already has this (and therefore, no
changes are needed in that respect), you must add it to the bean to allow it to throw the
Exception[3] within the method. You'll also notice that the code relies heavily on JNDI and
the ENC context for information: first for obtaining the Sequence bean's home interface, and
second for obtaining the constant for the key name of the OFFICES table. While both of these
could be obtained in more "normal" ways, such as looking up the JNDI name of the home
interface, and using a Java constant for the key name, using the environment context adds
options for the deployer. For example, changing the name of the OFFICES table would not
affect the bean; the deployer could change the CMP mapping and the JNDI constant for the

3 If this is confusing, note that the CreateException that the home interface declares is thrown by the remote stub when problems occur with
network communication, RMI, and other client-side components. Therefore, for the server-side component to throw the same Exception,
the throws clause must be added to the bean method declaration.

Building Java™ Enterprise Applications Volume I: Architecture

84

table name, but no recompilation would be needed. The same thing applies to the Sequence
bean; it can be deployed into a different container, bound to a different JNDI name, or
changed in a variety of other fashions, all without bothering the code. Deploying the beans
with a different XML deployment descriptor is all that is needed to modify the bean that is
returned from the ENC context. And finally, several different Exceptions that can occur are
caught and re-thrown as CreateExceptions. Once the bean and key name are obtained
through JNDI, it's a piece of cake to use the getNextValue() method coded earlier to obtain
the next available primary key value.

With these code changes in place, all that's left is to handle binding these objects into the ENC
context. The simplest change is adding an environment entry for the OFFICES table key name;
adding a reference to the Sequence bean for use by the Office bean is only slightly more
complex. The first task is accomplished through the env-entry (environment entry) element.
The second is done with the ejb-local-ref (EJB reference) element. Note that the local
version of this is used to accommodate the local interfaces used in the Sequence bean. Also
ensure that the value of the ejb-link element in your ejb-local-ref matches the ejb-name
of the bean you are referencing; this means using the value SequenceBean in both cases.
Make the following changes to the deployment descriptor:

<entity>
 <description>
 This Office bean represents a Forethought office,
 including its location.
 </description>
 <display-name>OfficeBean</display-name>
 <ejb-name>OfficeBean</ejb-name>
 <home>com.forethought.ejb.office.OfficeHome</home>
 <remote>com.forethought.ejb.office.Office</remote>
 <local-home>com.forethought.ejb.office.OfficeLocalHome</local-home>
 <local>com.forethought.ejb.office.OfficeLocal</local>
 <ejb-class>com.forethought.ejb.office.OfficeBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.Integer</prim-key-class>
 <reentrant>False</reentrant>

 <abstract-schema-name>OFFICES</abstract-schema-name>
 <cmp-field><field-name>id</field-name></cmp-field>
 <cmp-field><field-name>city</field-name></cmp-field>
 <cmp-field><field-name>state</field-name></cmp-field>
 <primkey-field>id</primkey-field>

 <env-entry>
 <env-entry-name>constants/OfficeKey</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>OFFICES</env-entry-value>
 </env-entry>
 <ejb-local-ref>
 <ejb-ref-name>ejb/SequenceLocalHome</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <local-home>com.forethought.ejb.sequence.SequenceLocalHome</local-home>
 <local>com.forethought.ejb.sequence.SequenceLocal</local>
 <ejb-link>SequenceBean</ejb-link>
 </ejb-local-ref>
</entity>

Building Java™ Enterprise Applications Volume I: Architecture

85

Compiling and repackaging the session and entity beans with these changes is a piece of cake.
Simply compile the SessionAdapter.java, SequenceException.java, SequenceLocal.java,
SequenceBean.java, and SequenceLocalHome.java classes, and recompile the Office.java,
OfficeHome.java, and OfficeBean.java source files. JAR these and the previously compiled
EntityAdapter classes into forethoughtEntities.jar along with the modified ejb-jar.xml
deployment descriptor. You might wonder at the name "forethoughtEntities". But there's a
session bean in there, right? Absolutely! The JAR file doesn't represent entity beans, it
represents business entities. In this case, it takes a session bean to represent these entities. If
there were ten session beans, two entity beans, and three standalone Java classes that
represented the entities, they would be in the JAR file. In other words, the naming in the
application is functional, not typological. Staying with this pattern will help you keep your
application well documented, rather than technically documented; this difference can save
other developers and deployers time and effort in understanding the application's
organization. So just like that (well, it was a little harder than that!), you have handled the
problem of primary keys and sequence values for entity beans.

5.2 Details, Details, Details

Continuing on with a look at common problems in EJB, it's time to move to one area that is
fairly well understood: the overhead of RMI traffic. More often than not, more time is spent
waiting for networks to respond than on actual processing when dealing with EJB. So far, I
have spent a lot of time talking about creating a new entity, such as the Forethought office. In
that case, very little "back-and-forth" traffic occurs:

Object ref = context.lookup("java:comp/env/ejb/OfficeHome");
OfficeHome home = (OfficeHome)
 PortableRemoteObject.narrow(ref, OfficeHome.class);
Office office = home.create("Dallas", "TX");

In this case, once the home interface of the bean is located, a single call creates the new
office. However, when obtaining information about an office, more calls are needed:

String city = office.getCity();
String state = office.getState();

While these two calls look pretty harmless, each requires a round-trip RMI call. The remote
stub has its method invoked, initiates a remote method invocation, waits for a response, and
returns that response. All this depends on network latency and all the other costly issues that
surround any network transmission. While even this doesn't seem too bad, take a look at a
slightly more complex object:

String sku = product.getSKU();
String name = product.getName();
String description = product.getDescription();
float price = product.getPrice();
// etc...

Here, multiple trips over the network are required for these simple method calls, and the
application quickly becomes bogged down waiting on even the fastest networks. This is a
common peril in using EJB. Happily, though, it can easily be remedied.

Building Java™ Enterprise Applications Volume I: Architecture

86

Instead of returning field-level values through these calls, you can set your beans up to return
object maps. In this case, an object map is a normal Java object that corresponds to the entity
returning it. This object is then used to find out information about the entity. In this way, a
single remote call occurs, and a local object map is returned. This map has all the information
a client might need to query about the entity, and therefore this information can be obtained
through local calls, instead of expensive remote calls. Let's look at doing this with the Office
bean and see exactly how this problem can be handled.

5.2.1 The OfficeInfo Class

All you need to do to utilize object maps is create a class, very similar to the actual
OfficeBean class, but without all of the EJB semantics. The class then needs to provide
simple accessor and mutator methods for these fields (with just an accessor for the id field).
Since these methods will be calls on a local object, rather than a remote stub, they give a
performance gain. The only other requirement for the class is that it implements
java.io.Serializable; this requirement must be fulfilled by any object that can be returned
via RMI. The code for this class is shown in Example 5-10.

Example 5-10. The OfficeInfo Details Class

package com.forethought.ejb.office;

import java.io.Serializable;

public class OfficeInfo implements Serializable {

 /** The ID of this office */
 private int id;

 /** The city this office is in */
 private String city;

 /** The state this office is in */
 private String state;

 OfficeInfo(int id, String city, String state) {
 this.id = id;
 this.city = city;
 this.state = state;
 }

 public int getId() {
 return id;
 }

 public String getCity() {
 return city;
 }

 public void setCity(String city) {
 this.city = city;
 }

 public String getState() {
 return state;
 }

Building Java™ Enterprise Applications Volume I: Architecture

87

 public void setState(String state) {
 this.state = state;
 }
}

This code is very similar to the Office remote interface. That should make perfect sense: you
want the functionality of the entity bean's remote interface, without the penalties for use that
RMI imposes. As this class is essentially a part of the bean, you should include it in the same
package, com.forethought.ejb.office. Additionally, any bean client that uses the Office
bean will already have to import the OfficeHome and Office classes, both in the same
package; adding another import for this new class in the same package is no big deal.

There is one difference in the details object as compared to the remote
interface: the type of the primary key. Note that the method getId()
in the details object returns an int, not an Integer. Again, this is by
design rather than accident. First, because the details object is
immutable, there is not as much need to differentiate the data type by
using an object instead of a primitive. More importantly, the details
object is simply snapshot data, often thrown away after a single use, and
is intended to be convenient. This would move you towards providing
the easier data type (int) for use, rather than the more complex data
type (Integer). This may seem a little odd at first, but I've found it to
be perfectly intuitive in an actual application.

Also notice that the constructor for the class is package-protected, which means that a client
application will not be able to perform the following operation:

// Create a new office in an ILLEGAL WAY!!
OfficeInfo officeInfo = new OfficeInfo(2459, "Portland", "Oregon");

This innocent-looking code fragment is a real problem; it gives the client the impression of
creating a new office, but has no effect on a data store anywhere else in the application. Only
the Office bean can create a new details object, and the client is then only allowed to set
values on an existing object:

// Create a new office, the RIGHT WAY!
Office office = officeHome.create("Portland", "OR");

// Get the detail object for a bean
OfficeInfo officeInfo = office.getInfo();

// Change the details of the office
officeInfo.setCity("Boston");
officeInfo.setState("MA");

// Set these changes back to the database
office.setInfo(officeInfo);

This provides easy access to data for the user without lots of RMI, but also protects that user
from making mistakes in office creation.

Building Java™ Enterprise Applications Volume I: Architecture

88

The final note is the name of the class used. I've called this class OfficeInfo. The
methodology or design pattern outlined in this section is often called the details pattern, or the
value pattern. Following that name, the class in this case would be called OfficeDetails , or
OfficeValue. However (and maybe this is just me), the term "details" seems to imply that
there is a view of the entity somewhere else that is not detailed. Of course, this isn't the case.
And the term "value" implies a single value for a single field, rather than a set of values that
compose a complex object. For these reasons, the term "information" seems more applicable;
the class provides information about an entity. And as I'm a programmer, I've naturally
shortened "information" to "info." The end result is that I use OfficeInfo for the class name,
and it clearly represents the purpose of the class.

5.2.2 Modifying the Entity Bean

So now you have a class that provides a map of the office entity. However, you'll need to
make some modifications to your bean classes to put it into use. First, you should add a means
of obtaining the map of an entity, as well as a means of retrieving it. Of course, this is the key;
once this object is retrieved via RMI, the information on the entity can be obtained through
local method calls. Example 5-11 shows the modified Office class, the bean's remote
interface.

Example 5-11. The Modified Office Remote Interface

package com.forethought.ejb.office;

import java.rmi.RemoteException;
import javax.ejb.EJBObject;

public interface Office extends EJBObject {

 public OfficeInfo getInfo() throws RemoteException;
 public void setInfo(OfficeInfo officeInfo) throws RemoteException;

 // Other accessor and mutator methods not included for brevity
}

One change you do not want to make is to add a new create() method for the home
interface of the bean. While it might make sense, at least at first thought, to add a means of
creating an office through supplying a details object, this breaks down on closer inspection. It
would require the client to create an OfficeInfo instance and pass in an ID value; of course,
this practice goes against everything I've been talking about with regard to sequences, and
isn't such a good idea. In fact, the only object that should create details objects is the bean
implementation, which needs to return the map of its data. Clients should never create
instances of OfficeInfo; instead, they should obtain them from the getInfo() method of
the Office remote interface. In this sense, it works a lot like obtaining a remote interface
through a home interface: the client uses the home interface as a factory. In the same way, the
client uses the remote interface as a provider for the details object.

Finally, you need to add the implementation of the remote interface methods. The accessor
and mutator methods that deal with the OfficeInfo class are very simple, and the required
changes to the OfficeBean class are shown here:

Building Java™ Enterprise Applications Volume I: Architecture

89

 public OfficeInfo getInfo() {
 return new OfficeInfo(getId().intValue(), getCity(), getState());
 }

 public void setInfo(OfficeInfo officeInfo) {
 setId(new Integer(officeInfo.getId()));
 setCity(officeInfo.getCity());
 setState(officeInfo.getState());
 }

Remember that the get/setId(), get/setCity(), and get/setState() methods are all
local in the bean class, so no RMI traffic is occurring in these methods.

Compile all these classes (including the new OfficeInfo.java source file), add them to the
forethoughtEntities.jar archive, and ensure that you can still deploy the Forethought entities.
Once that is in place, you're ready to go on. However, there are still a few items related to the
details pattern worth mentioning (just so you remain the expert among your friends!).

5.2.3 Leaving Out Details

You should realize that there are times when details objects are not useful. In the Office bean,
the details object was supplied for use by clients through the bean's remote interface.
However, you should not duplicate these accessor methods on the Office bean's local
interface. Because local interfaces allow for (essentially) in-JVM calls, the reasons for using
details objects become null and void. It's simpler to just directly access the variables needed
through normal local interface methods.

So in this case, a details object is not warranted. By the time values are copied into the details
object and that object is serialized, the single call needed to operate with a local object (as is
the case when using local interfaces) would have been just as efficient. For that reason, simple
objects like the Forethought "type" objects do not use details objects. In your own
applications, you will need to make these sorts of decisions all the time; rarely is any advice
absolute.

As another example of when details objects should be left out, consider the UserType and
AccountType beans (I haven't discussed these other than by reference in the data design, but
they are in Appendix E). Both of these beans provide only local interfaces, as they are used
internally by other beans but never directly by a client. Because of this restriction, and
because the beans will always interact locally, the advantages of using details objects become
inconsequential, just as in the Office bean. This is even more the case because both of these
objects represent only two database fields: an ID and a type. Again, it is better to leave out use
of the details objects (as is done in the code in Appendix E).

5.3 Data Modeling

A final couple of words on entity beans are merited before moving on. The Office bean has
remained very simple so far, allowing you to overlook a few problems related to dealing with
entity beans in a large application. This simplicity exists for two reasons: first, the bean stands
on its own, and second, it is a frequently changed object. These two facts are discussed in the
following sections.

Building Java™ Enterprise Applications Volume I: Architecture

90

5.3.1 Independent and Dependent Data Objects

The fact that an office is a complete entity means that it is an independent data object. In other
words, a Forethought office does not depend on any other data to be complete. Additionally,
an office has meaning on its own. A states table, for example, might not have this quality; for
our purposes, a state's name and abbreviation are not really useful on their own, and the state
has purpose only within the context of another entity that references the states table. In this
case, you would want the client to deal with the overall office entity, perhaps setting its name,
and the bean would then use the states bean to work with that entity. In that way, the states
entity becomes a dependent object. On the other hand, the office entity is an independent
object.

It is also important to understand that just because an entity is used by another entity, it is not
necessarily dependent. The office entity is again a perfect example: it is referenced by the
users entity, specifying the office the user works in. But the office entity is not dependent,
because it has business meaning on its own. There are many cases where the office may need
to be used alone, such as locating the nearest Forethought office. Because of these uses, you
don't want to prevent access to the office entity; however, you would prevent similar access
for states.

EJB 2.0 provides for relationships between beans, and it is here that dependent objects begin
to play an important role in the application. The new CMP 2.0 in the EJB specification allows
for much easier handling of this information, as you'll see in examples in the appendixes and
throughout the rest of the book. Because that's a fairly routine EJB practice, though, I'll leave
further details about bean relationships to basic EJB books, and not address it here. Other than
a few additional abstract methods and a few entries in a deployment descriptor, the container
takes care of all the relationship work, so there's no special work required on your part.

5.3.2 When Entity Beans Don't Make Sense

The second characteristic of offices in the Forethought application is that they are often
changed, updated, added, and deleted. This makes them good candidates for entity beans, as
such actions can occur in transactions. However, there are times when an entity bean is
overkill. A good example in our application is the USER_TYPES table, which, at least in the
Forethought application, acts more like a constants pool than an entity. It will most likely be
populated with some initial data that is never changed; the table's only purpose is to read these
values ("Employee" or "Client") and nothing else. The expensive RMI calls that are involved
with EJBs and transactions are essentially wasted on this table, as they aren't ever taken
advantage of, yet they are still paid for. The same principles apply to the ACCOUNT_TYPES
table, which acts as a constants pool for accounts.

However, the decision of how to handle the table is still difficult. Reading the previous
paragraph, it may seem that you should just use JDBC and not worry about it. It's not that
easy, however. On the one hand, when almost all of the entities in the database are
represented by entity beans (as in the Forethought application), you have already committed a
lot of resources to EJB. In that respect, changing two classes to JDBC units of work, while
leaving ten or more as EJB, counteracts most of the advantages of using JDBC on its own.
Additionally, you have the extremely useful ENC context available in your beans, which is
not as easily accessible in straight JDBC classes. On the other hand, as the number of classes
that directly use JDBC grows, the balance begins to shift. A good rule of thumb is that when

Building Java™ Enterprise Applications Volume I: Architecture

91

you have half as many JDBC candidates as you do full-blown entity beans, go ahead and use
straight JDBC for those classes, and entity beans for the rest. You will see quite a
performance improvement. However, this isn't the case in this application, so I don't suggest
changing any classes to straight JDBC; the performance gain would be negligible.

The bottom line here, though, is that it isn't always an automatic choice to use entity beans for
every case of data access. In fact, in many applications where transactions aren't crucial and
financial information isn't being transferred, you may not want to use EJB at all. Of course,
the Forethought application both needs transactions and sends financial computations across
the wire, so you should use EJB.

5.4 Filling in the Blanks

Well, I've spent quite a while discussing how to handle Forethought offices in this chapter. Of
course, there is a lot more than just an office to be dealt with in the application; there are also
data entities for users, funds, accounts, and the other data structures created in the database.
Trying to detail beans for the numerous tables in even this sample application would take
another fifty pages or so. Of course, doing so would cloud the point of this chapter, which is
EJB design and related patterns.

Appendix E is full of supplemental code that was used in this book but didn't fit into a
chapter, and it's where the entity bean code for the rest of the Forethought entities lies. You
can also download the code for the entire book from http://www.newinstance.com/. You
should take the time now to enter in all this code, or download it, compile it, and add it to the
forethoughtEntities.jar archive. Deploy this into your EJB container to ensure it is ready for
use, and then continue. The rest of the book assumes that you have available not only the
Office bean, but all of the Forethought entity beans detailed in Appendix E, and you will have
problems if they are not. You can also see some of the additional concepts discussed in this
and the previous chapter in action in these supplemental code listings. For example, handling
dependent objects, like the user's type in the User bean, is a perfect example, and you'll see
how that works.

5.5 What's Next?

I've covered a lot of EJB concepts in this chapter, rarely taking a break. Hopefully you've
been able to get everything working with the help of the appendixes, and now have the
complete set of Forethought entities available for use. Even more importantly, you should
have an understanding of the advanced concepts in EJB, and of how to use them in your own
applications.

In the next chapter, you'll complement your work on entity beans, the base of the Forethought
application, with access to a directory server, which completes the application foundation.
We'll look at JNDI again and see how it can help in accessing LDAP providers, as well as
beans and Java objects bound to the registry. By the end of the next chapter, you'll have a
complete data layer, and can move on to the business layer of the application. So buckle up,
fire up your directory server, and let's get to it.

Building Java™ Enterprise Applications Volume I: Architecture

92

Chapter 6. Managers
Now that you have your database accessible through entity beans, you're ready to move on to
providing access to the Forethought directory server. Like the entity beans, classes that
provide LDAP access are at a lower level of the application than that which clients will
access. The classes from the last chapter, and in this one, will never be touched directly by
application clients, or even by the first tier of the application. The application's business layer
will utilize these tools to access raw data and assemble that data into meaningful
computations and groupings.

In this chapter, then, I'll start by comparing entities with a new type of component, managers.
You'll see why using a manager for directory server access makes more sense than using a set
of entities. You'll then construct a basic class to allow access to a directory server. From there,
I'll move on to adding some performance tweaks to your existing code, ensuring that the
application doesn't spend unnecessary amounts of time waiting for a connection to the
directory server to be established. I'll also explain the process of managing connections to
multiple servers, and touch on caching and persistence at the connection layer. This will finish
up the manager class, and you'll finally have a complete data layer.

6.1 Managers and Entities

So far, I have talked exclusively about entity components. Each instance of an entity
component represents a corresponding data object, and can also store related data objects,
such as the User entity bean (from Appendix E). That bean provides a means to get an Office
entity directly from the User entity. In other words, a single object instance in Java maps
directly to a data entity from the data store. Entities work extremely well when you have data
objects that you need to work with as a whole; for example, you'll almost always have to work
with more than just the user's first name; you'll also need the last name, distinguished name
(DN), and other information about that user. However, this will not always be the case when
dealing with data.

Remember that in the directory server, all that is being stored is the username, password, and
information about groups that a user is in. This data is accessed through a username, generally
asking only for a password match in return. In other words, data is supplied to the server, and
if the data matches, a confirmation occurs; otherwise, a denial occurs:

// Obtain the username and password from the request
String username = request.getUsername();
String password = request.getPassword();

// Get LDAP connection object
LDAPManager manager =
 new LDAPManager("ldap://galadriel.middleearth.com", 389);

// Validate user
if (manager.authenticate(username, password)) {
 // Allow access to application
} else {
 // Deny access
}

Building Java™ Enterprise Applications Volume I: Architecture

93

In this code fragment, there is clearly no need to obtain a Java representation of the user's data
object from the directory server. Instead, it is just as simple to connect to the directory server
and authenticate the user. The user's credentials are either accepted or denied, and the
application flow can continue. Since no other information about the user is stored in the
directory server, there isn't a need to operate upon a data object.

This is a perfect example of when you should use the manager component. In a sense, a
manager is like a wrapper for dealing with specific entities. It is best used when an actual
entity does not need to be accessed directly, but instead operations need to be performed upon
specific parts of it. A manager can be used as part of the façade pattern that I mentioned in
Chapter 4, or in lieu of coding entities at all. In either case, though, keep in mind that a
manager does not perform business logic; it merely allows simple queries and updates to
underlying data. For example, the following is a typical method for a manager to provide:

public class LDAPManager {

 public void addUser(String username, String password) {
 // Method implementation
 }
}

This code simply operates upon data without doing anything business-specific. However, the
following method would not be a valid method for a manager component to provide, as it
performs business logic and data manipulation rather than simple data access:

public class LDAPManager {

 /**
 * <p>
 * This will remove all users that are of the user type "client".
 * </p>
 */
 public void removeClients() {
 // Method implementation
 }
}

Think about it this way: the first method, addUser(), is applicable to any application, since
all directory servers in all applications have users (otherwise, a directory server wouldn't be
used). The second method, removeClients(), is not useful in any case, though. It depends,
first, on there being different types of users in the directory server. Further, it requires that one
of those types be "client". Finally, it might even require that database access be performed to
link users with their types, if types are stored in the database. This is clearly a method that
belongs in the business layer rather than in the data layer.

This type of component can be presented as either a session bean that accesses entity beans, or
as a standalone Java class that does not use entity beans at all. I'll look at both and explain
which is most appropriate for handling access to directory servers.

6.1.1 Managers as Session Beans

The most common type of manager component you will come across is the session bean
manager. Almost all of these types of managers occur in beans used for data administration.

Building Java™ Enterprise Applications Volume I: Architecture

94

Remember that you don't want to allow any direct access to your entity beans, as it would
expose too much information about the underlying data structure. Direct access also requires
validation at the entity bean level, and it makes managing beans extremely complex, as both
session and entity beans would have to be made available to the application layer. What is
needed is an abstraction layer, sandwiched between application and business logic and raw
data.

Session beans provide that abstraction. So far, I have mainly discussed session beans in the
context of performing business logic and computations. In a similar way, session bean
managers normally use multiple entity beans, piecing data from various tables and sources
together to generate meaningful business results. However, they perform data logic, providing
access to database rows or directory server stores rather than doing business-related
computations. With that in mind, you can apply these concepts to the Forethought application.

You already know that the application will need to manage investments, funds, users, and
more. Many times, even a simple investment consists of data in many places; the Fund bean,
the Investment bean, the User bean, the Account bean, and more are all involved in this rather
basic operation. However, these all depend on even more basic data in the database. As an
example, take a fund from the application. While Forethought clients don't need to manipulate
this data, the brokers need to be able to add and delete funds, or update information about the
funds. There is no business logic involved here, just straight data manipulation. In this case, a
manager comes into play. A session bean can provide a proxy-like access to the Fund entity
bean, but the methods on the session bean, which I'll refer to as FundManager, are simple:
add(), remove(), update(), and others. In fact, you'll find that almost all manager beans
have these same method names, which provides a simple means of using any manager.

Now that you've seen the case for session bean managers, you should already be guessing that
almost all of the Forethought entity beans will have complementary managers in the business
layer. There will be a UserManager to administrate new users in the database (which will be
used in tandem with the LDAPManager to manage users, as they are stored in both the database
and the directory server), the FundManager that I just discussed, an OfficeManager, and so
on. I'll look at the code for each of these later. Figure 6-1 shows the flow of data into a
manager component and how it interacts with entity beans and the underlying database. You
can compare this to the flow I'll look at next, when a Java class (that is not a session bean) is
used as a manager.

Figure 6-1. Session bean acting as a manager to an entity bean

Building Java™ Enterprise Applications Volume I: Architecture

95

6.1.2 Managers as Java Classes

The case of using a normal Java class, where "normal" simply means the class isn't a bean or
other specific format, is a bit different from the session bean case. Often, the primary
difference is not as much in the manager class itself, but in what is actually being managed.
This means that bean manager components generally use entity beans for data access, making
the manager's code pretty simple. The data access actually occurs in the entity bean. However,
managers that are not session beans generally access a data store directly, which means that
their implementation is often more complex to code.

The advantage of this type of manager component is that it can dramatically improve
performance, at least in certain areas. I've already talked about the dangers of overusing RMI
in Enterprise JavaBeans, and shown how local interfaces can often help improve performance.
Add to that the EJB container transaction and security processes, and you have quite a bit of
overhead. If you are working with a database, where entity beans provide significant
advantages to counterbalance these penalties, beans make perfect sense. However, other types
of data stores do not fit into that model. Directory servers are one of those types of stores;
there is simply no advantage to using beans in this case. Transactions become essentially
meaningless, and even when beans are used, they must be bean-managed and coded
completely by hand.

It would be unfair not to point out that some application servers provide
hooks into directory servers, often requiring little to no coding.
However, these servers are not J2EE-required or even standard APIs or
methods, which means that your code is not at all portable.
Additionally, you lose an element of control; remember that there were
lots of modifications made to the default directory server schema. Even
if your application server provides these sorts of hooks, it may not
support the custom object classes used in the Forethought application or
those that you may need in your own applications. So what is the moral
of this story? Learn JNDI and the javax.naming.directory package
that I cover in this chapter, and code directory server access on your
own (or use the code provided in this chapter).

When dealing with a directory server, it simply makes more sense to create a standard Java
class, use JNDI directly, and not pay the performance penalties associated with EJB.
Additionally, you gain some other advantages. Using a manager component results in the
developer having complete control over the connection to the directory server. It also allows
you to stretch the rules of object-oriented (OO) programming a bit, resulting in even better
performance. Let me explain this in more detail.

Consider the case of operating upon a user in the directory server. In a strict object-oriented
environment, a user would be added through the manager. The result of this method would
probably be the new user object itself (making the manager act much like a constructor and
the Java new keyword):

User user = LDAPManager.createUser("bmclaugh", "Brett", "McLaughlin");

Building Java™ Enterprise Applications Volume I: Architecture

96

Then additional operations, such as modifying the user's attributes, would be performed upon
that user object, rather than through the manager itself:

user.joinGroup("administrators");

out.println(user.getFirstName() + " " + user.getLastName());
user.setUID("bmclaughlin");

While this approach is very object-oriented, it turns out to be a bad idea, and here's why: the
user object now has to manage the directory server connection itself. Remember that when
you get an entity bean's remote interface, connections to the database are taking place behind
the scenes; as previously mentioned, it's better to allow the manager to handle those
connections. If the manager creates objects, though, each object must also be able to handle
connecting to the directory.

The only other option is for created objects to reference the manager that created them; that
approach has its own set of problems, though. While it is possible to have the LDAP user
object maintain a reference to its manager, you then have to start worrying about distributing
the components; what happens if the LDAP user object is serialized and sent across the
network, for example? The reference to its manager would become meaningless. The related
code would need permission and group objects as well, so now you have four objects (the
manager, user, group, and permission objects) that have to deal with JNDI calls and directory
service interaction. This strategy becomes even more complex if you want to try and employ
any connection pooling or caching at all. In other words, this object-oriented approach, where
operations on an object are accomplished through methods on that object, breaks down. It
makes sense to take a slightly different tack.

So instead of using this OO approach, you can bend the rules a bit. (It's OK to do this as long
as you know what rules you are bending and why they should be bent.) Here you need to have
all calls upon any objects in the directory go through the manager component. In a strictly OO
environment, you would have code similar to this:

// Connect to LDAP directory server
LDAPManager manager = new LDAPManager("galadriel.middleearth.com");

// Create new user
LDAPUser user = manager.getUser("shirlbg");
user.setPassword(userPassword);

// Add the user to a group
LDAPGroup clients = manager.getGroup("clients");
clients.addMember(user);

To illustrate how this approach increases in complexity the more that clients access the
manager and obtain objects, Figure 6-2 shows how the flow moves from client to directory
server. Note how each object returned from the manager results in another component that
must access the directory server.

Building Java™ Enterprise Applications Volume I: Architecture

97

Figure 6-2. Manager object returning LDAP objects to client (strict OO approach)

However, it's possible to change that approach, and instead have all the LDAP-related
methods invoked on the manager component. So you will have code that looks more like this:

// Connect to LDAP directory server
LDAPManager manager = new LDAPManager("galadriel.middleearth.com");

// Create new user
manager.updateUser("shirlbg", "Shirley", "Greathouse", userPassword);

// Add the user to a group
manager.assignUser("shirlbg", "clients");

You can see that the program control here has been inverted; instead of using the manager to
get individual objects, and then operating upon those objects, the manager actually maintains
control and manipulates any objects needed internally, behind the scenes.[1] This makes the
client's job much simpler; although there are more methods on the manager component, the
client only has to deal with that single component.

The other major advantage, besides simplicity, is that the manager component is the only
object that needs to deal with connections. This brings back the possibility of using
connection pooling, caching, and other performance-driven enhancements that were overly
complex in the more OO environment. This approach is clearly superior, and the small change
in mentality involved with always operating upon the manager object is well worth the
advantages gained in performance and usability. Figure 6-3 shows this new program flow,
which is quite a bit different (and notably simpler) than what it was in Figure 6-2. This flow is
exactly the flow desired, and it is how the LDAPManager class will be modeled.

Figure 6-3. Manager object handling all interaction with a directory server (less OO approach)

1 It is actually possible to not create any objects internally, or at the least to use only the Sun-provided JNDI objects, rather than user-friendly objects
like the LDAPUser and LDAPGroup classes shown in the first code sample. This is exactly the approach taken with the LDAPManager class,
reducing garbage collection and overhead from excessive object creation.

Building Java™ Enterprise Applications Volume I: Architecture

98

6.2 The LDAPManager Class

With the basic principles of manager classes under your belt, you're ready to look at the
LDAPManager class. This chapter involves a rapid run through some LDAP and JNDI
concepts that you should already be familiar with; if you get lost in the details of the code
samples, pick up Java Enterprise in a Nutshell, which spends a lot of time on JNDI. Once
you've got a handle on the basics, the code itself should illustrate any tricky issues.

The LDAPManager class belongs in a package structure that mirrors the
com.forethought.ejb package: com.forethought.ldap. There are a few constants that can
be defined right off the bat. First, the default port for LDAP, 389, is stored, which allows
clients to specify only a hostname, and possibly authentication credentials, when connecting,
rather than also having to specify the default port when appropriate. Additionally, some basic
member variables are defined: one for the hostname to connect to, and one for the port. These
variables are used when the manager needs to connect and reconnect to the directory server,
or authenticate users when a connection is already in place. Finally, the manager needs to
store a connection object itself, a javax.naming.directory.DirContext instance.

6.2.1 Skeletons and Outlines

Using JNDI for directory server access will require a bit of a change in thinking. Everything
in JNDI revolves around the idea of a Context; this should seem familiar, as I discussed
getting an InitialContext object in Chapter 5. While this was taken for granted in that
chapter, I need to talk a little more about it here. First, it's possible to outline this new
manager class and see how the Context object fits into the bigger picture. Example 6-1 shows
the bare-bones skeleton of the LDAPManager class. It provides several constructors, all
deferring to an overloaded constructor, which uses the provided information to obtain a
DirContext instance. Fire up your editor and type in the code listing; you'll be adding to this
class throughout the rest of the chapter.[2]

Example 6-1. The LDAPManager Skeleton

package com.forethought.ldap;

import java.util.Properties;
import java.util.LinkedList;
import java.util.List;
import javax.naming.Context;
import javax.naming.NameNotFoundException;
import javax.naming.NamingEnumeration;
import javax.naming.NamingException;
import javax.naming.directory.Attribute;
import javax.naming.directory.AttributeInUseException;
import javax.naming.directory.Attributes;
import javax.naming.directory.BasicAttribute;
import javax.naming.directory.BasicAttributes;
import javax.naming.directory.DirContext;
import javax.naming.directory.InitialDirContext;
import javax.naming.directory.ModificationItem;
import javax.naming.directory.NoSuchAttributeException;

2 I'm cheating a bit in this code listing; you will add quite a few methods to the LDAPManager class throughout this chapter, and adding each
needed import statement as we go would be fairly confusing. Instead, all the needed import statements for the class are included in Example 6-1. Be
sure to include all of them, as they are required for later methods.

Building Java™ Enterprise Applications Volume I: Architecture

99

import javax.naming.directory.SearchControls;
import javax.naming.directory.SearchResult;

public class LDAPManager {

 /** The default LDAP port */
 private static final int DEFAULT_PORT = 389;

 /** The connection, through a <code>DirContext</code>, to LDAP */
 private DirContext context;

 /** The hostname connected to */
 private String hostname;

 /** The port connected to */
 private int port;

 public LDAPManager(String hostname, int port,
 String username, String password)
 throws NamingException {

 context = getInitialContext(hostname, port, username, password);

 // Only save data if we got connected
 this.hostname = hostname;
 this.port = port;
 }

 public LDAPManager(String hostname, int port)
 throws NamingException {

 this(hostname, port, null, null);
 }

 public LDAPManager(String hostname) throws NamingException {
 this(hostname, DEFAULT_PORT);
 }
}

Nothing really surprising here; it's apparent that the interesting action is in the
getInitialContext() method. In the last chapter, the entity beans needed only a basic
InitialContext object. This object provided the beans access to the application server's
default JNDI provider, which was either specified in a jndi.properties file or through a
specific programmatic means. In both cases, the naming system was controlled by the
application server. In other words, the bean code only requested a connection to the
application server's naming provider, and was not concerned with how the server dealt with
naming. However, this manager needs to take some of that control back.

Lest you get confused, the code in Example 6-1 will not yet compile,
because there is no implementation of the getInitialContext()
method. I'll detail this method in the next section, so things will work
out then; however, expect compilation errors at this point.

Building Java™ Enterprise Applications Volume I: Architecture

100

6.2.2 Naming in Detail

A naming service is simply a means of binding objects to arbitrary names and allowing clients
to look up objects by those names. This is used instead of (for example) a memory address,
which is how references in Java usually work. The details of handling these object-to-name
mappings are fairly flexible; anything from a filesystem to a directory server to an RMI
registry is allowed. This means that the client doesn't have to worry about how the objects are
bound, but instead just needs to access those objects. As if that didn't make it easy enough for
programmer types, the bulk of JNDI complexity is left to the service provider, usually the
application server vendor. Sun makes life even easier by supplying providers for many
naming services. So while the service provider gets to spend lots of time implementing the
javax.naming.spi interfaces, the client merely needs to provide a URL for the provider and
the context factory class, and then use the naming service. For a lot more on JNDI, as well as
related topics, you can pick up Java Enterprise in a Nutshell.

This means that most times, a naming service is used for the functionality it provides, and the
actual details of how objects are bound become irrelevant. This is the case in application
servers, and it also held true in the last chapter; you don't care how the server stores entity
bean mappings, as long as you can look them up by their JNDI names. In fact, many servers
provide multiple naming service providers, and allow the server deployer (usually a system
administrator) to select an RMI registry, filesystem, or even directory server to store those
mappings. As it doesn't affect the code that the objects are looked up in, these details don't
usually bother us geeks in the cubes.

Extending Directory Server Usage
As mentioned, many application servers can interact with directory servers; some of
these allow you to use a directory server for the JNDI mappings in the core
application. In other words, while all application servers must provide a naming
service to bind entity beans and other objects to names, some allow the use of a
directory server for this purpose. Of course, in the core application, the medium in
which the mappings are stored doesn't affect the code already written. However, you
might want to take advantage of this functionality if your vendor offers it; a
directory server is a much more robust solution for a naming service than the simple
RMI registries that most servers provide as a default.

If you do decide to use a directory server, you are certainly welcome to use the
Forethought directory server already discussed and installed. Generally, the server
will either use the server as-is, or provide a simple script to configure the directory
server for naming use. The latter is more common, creating some custom (and
vendor-specific) structures to aid in naming. In either case, your code remains
portable across application servers and JNDI service providers. This is simply one
way you can increase your application's stability and use your directory server for
more than just user authentication.

However, in the case of using the Forethought directory server, you will need to focus on
these often-irrelevant details about a service provider; you will need to use a specific type of
naming service, and functionality is secondary. Here, you aren't looking for a means to map
objects to names, but rather to interface with objects in a specific medium. For that reason,

Building Java™ Enterprise Applications Volume I: Architecture

101

you should not use the generic means of obtaining an InitialContext that I have talked
about so far, but instead specifically define the context factory to use. That provider is Sun's
LDAP (v3) context factory, which is specifically designed for use with a directory server; the
relevant class is com.sun.jndi.ldap.LdapCtxFactory. The result is that with this class and
a provider URL, your code can connect to a directory server. As a side effect, you end up
using JNDI. This isn't a bad thing, either. Instead of choosing to use JNDI, which happens to
use a directory server for mappings, you are using a directory server, and accessing that server
in a vendor-neutral way that just happens to involve using JNDI. Sorry to drag you through all
these details, but hopefully it helps you see exactly why you need to not only use JNDI, but
also to supply a specific context factory class instead of relying on an application server to
handle that detail. In addition to that specificity, you also need to use a
javax.naming.directory.DirContext, specifically designed for LDAP access, instead of
the more generic javax.naming.Context object used in the last chapter.

The end result? Well, it's only about fifteen lines of code, but it establishes a connection to a
directory server and returns that connection in the form of a DirContext object instance. This
method replaces the context factory variable with Sun's LDAP provider instead of one of the
vendor-specific classes you might see in your server's example code. It takes in the hostname
and port number to connect to, as well as a username and password. The username and
password can be null (the overloaded constructors pass in the null value when no username
or password is provided), but if they are non-null, authentication to the directory server also
occurs in this method. This authentication turns out to be vital; the user supplied will be the
user under which actions like adding users, assigning permissions, and deleting groups are
performed. If that user doesn't have sufficient permissions to perform these actions, the
actions will fail. You'll see that when using the manager, the directory manager user is usually
preferred for this initial connection. Add the following method, which puts all of these details
into action, to the LDAPManager class:

private DirContext getInitialContext(String hostname, int port,
 String username, String password)
 throws NamingException {

 String providerURL =
 new StringBuffer("ldap://")
 .append(hostname)
 .append(":")
 .append(port)
 .toString();

 Properties props = new Properties();
 props.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.ldap.LdapCtxFactory");
 props.put(Context.PROVIDER_URL, providerURL);

 if ((username != null) && (!username.equals(""))) {
 props.put(Context.SECURITY_AUTHENTICATION, "simple");
 props.put(Context.SECURITY_PRINCIPAL, username);
 props.put(Context.SECURITY_CREDENTIALS,
 ((password == null) ? "" : password));
 }

 return new InitialDirContext(props);
}

Building Java™ Enterprise Applications Volume I: Architecture

102

Once a constructor invokes this method, the manager component has a DirContext to operate
upon. But how does this relate to the directory server's structure? JNDI does not use semantics
like "connection" or "organizational unit." So just as it is important to understand how service
providers work, it is vital to grasp how the JNDI structures—the Context objects—relate to
the directory server structure.

When the getInitialContext() method returns a DirContext instance, that instance is
mapped to the very top level of the directory server's structure. In the Forethought case, this is
the "root" of the tree where the organization is "forethought.com" (o=forethought.com).
Objects bound to the naming service are then referred to in JNDI as subcontexts. Each
subcontext is bound to a name, the object's DN. So for the user whose username is "shirlbg"
and whose DN is uid=shirlbg,ou=People,o=forethought.com, the object is bound to the
subcontext uid=shirlbg,ou=People,o=forethought.com under the top-level context. The DN
of an object identifies not only the path to that object in the directory, but also the mapping of
that object under the top-level directory context. Figure 6-4 shows how the JNDI contexts
relate to the directory server hierarchy (you will remember this structure from Figure 3-11).

Figure 6-4. Mapping JNDI contexts to the Forethought directory server

The only other item you will have to deal with in detail is the
javax.naming.directory.Attribute class. Each instance of this class represents a specific
attribute for an object class. Thus, the common name, or cn, attribute of the inetOrgPerson
object class can be retrieved, modified, and deleted using the Attribute class. Figure 6-5
takes a specific entry from the Forethought directory server, the sample user Shirley
Greathouse[3] that I have been using in the examples in this chapter, and shows how its
attributes relate to the JNDI Attribute class.

Figure 6-5. Attributes and directory server entries

6.2.3 Users

Now that you have a skeleton to build on, you simply need to add support for the object types
used in the Forethought application: users, groups, and permissions. I'll start with users, as
they are basic to any application. There are three main tasks when dealing with users. First,
you need to convert from the user's username, which the application works with, to the user's

3 If your directory server doesn't have this entry yet, don't worry. I'm just using this as a sample, and you will populate your server and database in
the next chapter.

Building Java™ Enterprise Applications Volume I: Architecture

103

distinguished name, which JNDI works with. Next, you will learn to add and delete users.
Finally, you'll code a method that allows you to authenticate a user, which is part of the login
process used later on in the application. I'll detail these tasks one at a time.

6.2.3.1 Getting the distinguished name

As mentioned in previous JNDI discussions, the contexts within JNDI related to the directory
server are all identified by a distinguished name (DN). This means that while all user-related
methods should take and return usernames (or group names, or permission names), they must
pass DNs to the JNDI methods. Therefore, your first task is to create two methods: one that
converts a username to a user's DN, and one that converts from a DN to a username. Both of
these depend on knowing where within the directory hierarchy users are stored, so that a
constant can be defined (USERS_OU) that specifies the organizational unit that users are bound
under.

With that constant in place, it's trivial to code a getUserDN() method, which takes in a user's
username and returns the DN. Since a username becomes the uid attribute, the DN of the
username "gqg10012" can easily be constructed as uid=gqg1001,
ou=People,o=forethought.com, where ou=People,o=forethought.com is the organizational
unit represented by the USERS_OU constant. It becomes a simple matter of String
concatenation.[4]

Converting from a DN to a username with the getUserUID() method simply involves
reversing the process and splitting the username from its surroundings (the string "uid="
before it and a comma directly after it). There is also some minor error checking; in the case
of a relative DN, such as uid=shirlbg (you'll see this in searches detailed a little later on), if no
trailing comma is found, the end variable is simply set to the length of the userDN string. In
either case, you will get the desired result. So add the constant and two methods shown here
to your LDAPManager source; they will be used in all of the other user methods:

/** The OU (organizational unit) to add users to */
private static final String USERS_OU =
 "ou=People,o=forethought.com";

private String getUserDN(String username) {
 return new StringBuffer()
 .append("uid=")
 .append(username)
 .append(",")
 .append(USERS_OU)
 .toString();
}
private String getUserUID(String userDN) {
 int start = userDN.indexOf("=");
 int end = userDN.indexOf(",");

 if (end == -1) {
 end = userDN.length();
 }
 return userDN.substring(start+1, end);
}

4 In the actual method, a StringBuffer is used; this is Java 101, in essence. You should never, ever concatenate Java Strings directly with
the + operator. Instead, use a buffer to perform any needed concatenation, and then convert that buffer with the toString() method. Not
following this advice will result in a horribly large String pool, drastically reducing application performance.

Building Java™ Enterprise Applications Volume I: Architecture

104

6.2.3.2 Adding and deleting

With conversion in place, you can now move to the next task, adding and deleting users. Both
of these operations are keyed upon the target user's username, which becomes a DN by virtue
of the getUserDN() method just coded. When adding a user, you will need to require a
password, as well as a first name and last name. The first and last names of the user are not
used functionally, as these values are stored in the database and are available through the User
entity bean. However, the cn (common name) and sn (surname) attributes are required for the
inetOrgPerson object class that users are stored within. While you could fill these attributes
with meaningless values or even the username, using accurate first and last names helps
describe the users a little better. Also remember that adding a user will involve both the
database and directory server, so your code will have the first and last name values available
when users are added, and that code can take care of supplying these values easily.

The key operation in adding a user is invoking the createSubcontext() method on the
manager's DirContext. This binds the set of user attributes the code creates to the user's DN.
An instance of the javax.naming.directory.Attribute class discussed earlier represents
each of the user's attributes. You also will use the javax.naming.directory.Attributes
class[5] to hold the various attributes. In other words, an Attributes instance holds
Attribute instances, which as a group are supplied when creating a new entry in the
directory server. To create these, you will need to instantiate implementations of the two
interfaces; the BasicAttributes and BasicAttribute classes (also in the
javax.naming.directory package) fit the bill perfectly.

So you will need to create a new BasicAttribute for all of the attributes used in the new
object class. This includes the cn, sn, givenName, userPassword, and uid attributes. The
other attribute you will need to worry about is the objectClass attribute. It specifies the
object class hierarchy that the new object will have; we discussed directory hierarchies and
object class hierarchies in Chapter 3. Creating this attribute and adding the object classes to
the hierarchy also reveals something important about the Attribute class: it can have
multiple values. This will also be important when looking at adding users to groups, which
involves assigning multiple values (user DNs) to a group's uniqueMember attribute. Once all
of the individual Attribute objects are created, they must be assigned to the Attributes
object. Finally, this container is passed on to the createSubcontext() method, and the
result is a new entry in the LDAP tree. You should also note that the addUser() method, as
well as almost all of the methods in the LDAPManager class, throws a NamingException. This
exception can occur when connections have failed, and also when an object already exists
with the supplied DN. Later, you'll code business objects that create users, and handle these
errors and report problems back to the user in a more meaningful format. For now, just throw
the error back to the client component. Add this method to the LDAPManager source file, and
the manager will be equipped to add new users to the directory:

public void addUser(String username, String firstName,
 String lastName, String password)
 throws NamingException {

 // Create a container set of attributes
 Attributes container = new BasicAttributes();

5 Actually, both the Attribute and Attributes classes are interfaces, but you will see that this is not a problem, as the manager code will use
implementations of these as needed.

Building Java™ Enterprise Applications Volume I: Architecture

105

 // Create the objectclass to add
 Attribute objClasses = new BasicAttribute("objectClass");
 objClasses.add("top");
 objClasses.add("person");
 objClasses.add("organizationalPerson");
 objClasses.add("inetOrgPerson");

 // Assign the username, first name, and last name
 String cnValue = new StringBuffer(firstName)
 .append(" ")
 .append(lastName)
 .toString();
 Attribute cn = new BasicAttribute("cn", cnValue);
 Attribute givenName = new BasicAttribute("givenName", firstName);
 Attribute sn = new BasicAttribute("sn", lastName);
 Attribute uid = new BasicAttribute("uid", username);

 // Add password
 Attribute userPassword =
 new BasicAttribute("userpassword", password);

 // Add these to the container
 container.put(objClasses);
 container.put(cn);
 container.put(sn);
 container.put(givenName);
 container.put(uid);
 container.put(userPassword);

 // Create the entry
 context.createSubcontext(getUserDN(username), container);
}

Deleting users, or any type of subcontext, is a much simpler task. All you need to do is
identify the name that the subcontext is bound to (in this case, the user's DN), and invoke the
destroySubcontext() method on the manager's DirContext object. Additionally, while
the method still throws a NamingException, it should trap one specific problem, the
NameNotFoundException. This exception is thrown when the requested subcontext does not
exist within the directory; however, because ensuring that the DN for the user specified
doesn't exist is the point of the deleteUser() method, this problem is ignored. Whether the
specified user is deleted, or did not exist prior to the method call, is irrelevant to the client.
Add the deleteUser() method shown here to your source code:

public void deleteUser(String username) throws NamingException {
 try {
 context.destroySubcontext(getUserDN(username));
 } catch (NameNotFoundException e) {
 // If the user is not found, ignore the error
 }
}

Any other exceptions that might result, such as connection failures, are still reported through
the NamingException that can be thrown in the method.

With these two methods in place, all user manipulation can be handled. You will notice,
though, that I haven't discussed any methods to allow user modification. It would seem that
without these methods, a user's password could not be changed, and their first or last name

Building Java™ Enterprise Applications Volume I: Architecture

106

could not be updated. However, this is not the case. Instead of providing a method to allow
those operations, it is easier to require components using the manager to delete the user and
then re-create that user with the updated information. While this might seem a bit of a pain,
keep in mind that you will have a component that handles all user actions and abstracts both
this manager and the entity beans from the application layer. In other words, ease of use is not
the primary concern in the manager. The advantage in not providing update methods is that it
keeps the manager clear and simple; additionally, for the sake of only four attributes (if you
count the username, which should not change anyway), update methods are simply not worth
the trouble.

6.2.3.3 Authenticating the user

The last task the manager needs to perform that directly involves users (and only users; I'll
look at working with users and other objects together a little later) is authentication. When a
user first accesses the Forethought application, he or she will eventually try to access
protected resources. At that point, authentication needs to occur; permissions and groups can
be looked up, but first the user must provide a username and password. These, of course, must
be pushed back to the directory server, and the manager should let the client component know
if the username and password combination is valid.

The code for this is a piece of cake; in fact, you've already written it! Remember that the
getInitialContext() method took a username and password in addition to a hostname
and port number. You can use this same method with the username and password supplied to
the new authentication method, isValidUser(). The method then simply catches any
exceptions that may occur. If there are no errors, a successful context was obtained and the
user is valid; if errors occur, then problems resulted from authentication, and the user is
rejected.

Any exception results in the isValidUser() method returning false,
indicating that a login has failed. In a strict sense, this can return some
false negatives; if the connection to a directory server has dropped, for
example, the method returns false. This is somewhat deceptive, and in
an industrial-strength application, a reconnection might be attempted in
this case. However, in even medium-sized applications, a downed
directory server will cripple an application anyway, so denying a user
access is still the right thing to do. In other words, while the false
result may not indicate a failed authentication, it does indicate that the
user should not be allowed to continue.

You also need to be sure that you don't overwrite the existing DirContext instance, the
member variable called context in the LDAPManager class, with any returned DirContext
instance obtained in this method. If that happened, the credentials used in this method would
determine what actions could be performed by the other methods. Few, if any, users other
than the Directory Manager would be able to add, delete, and modify objects in the directory.
You could end up with a very subtle bug that causes all operations on the directory to

Building Java™ Enterprise Applications Volume I: Architecture

107

suddenly begin to fail. To avoid this, your code should create a local DirContext object
(local to the method) called context,[6] and use that for obtaining a new context.

This object is then automatically thrown away when the method exits. Enter in this method, as
shown here:

public boolean isValidUser(String username, String password) {
 try {
 DirContext context =
 getInitialContext(hostname, port, getUserDN(username),
 password);
 return true;
 } catch (NamingException e) {
 // Any error indicates couldn't log user in
 return false;
 }
}

Realize that in this example, assuming that your directory server is running on an unencrypted
port, the user's password will be sent across the network as clear text. There is still a lot of
protection in place, though, as the clients for this manager component will be within the
application itself (in the servlet/login layer, which will be covered in detail in Volume II).
However, you can increase security even further by installing your directory server on the
SSL-enabled port, which by default is 636. This will allow encryption of all communication
to the server, adding additional layers of protection for your users' passwords.

6.2.4 Groups

The next task involving directory servers is dealing with groups. The manager needs to allow
clients to supply simple group names as opposed to group DNs, just as with users. Next, the
manager needs to provide analogs to the addUser() and deleteUser() methods for
adding and removing groups. You don't have to worry about group authentication. Later in
this chapter, when we look at operations that involve more than one object (groups and users,
permissions and groups, etc.), I'll look at some more group operations; for now, though, the
conversion of group names and adding and deleting groups is all that is required.

6.2.4.1 Getting the distinguished name

As when dealing with users, you must first create a means to convert between a group's name
(which is also the value of its cn attribute) and its distinguished name. First, define the
GROUPS_OU constant, referring to the organizational unit under which groups are stored. Then,
the manager can build the same sort of formula with String concatenation that was used to
get the user DN. For a group called "clients", the DN becomes
cn=clients,ou=Groups,o=forethought.com. Add the new constant and methods to your source
file, as shown here:

6 Although this object shares the same name as the LDAPManager class's member variable, Java's rules of scoping take care of keeping the two
distinct; one stays around in memory (the member variable) and one exists only for the duration of the isValidUser() method.

Building Java™ Enterprise Applications Volume I: Architecture

108

/** The OU (organizational unit) to add groups to */
private static final String GROUPS_OU =
 "ou=Groups,o=forethought.com";

private String getGroupDN(String name) {
 return new StringBuffer()
 .append("cn=")
 .append(name)
 .append(",")
 .append(GROUPS_OU)
 .toString();
}

private String getGroupCN(String groupDN) {
 int start = groupDN.indexOf("=");
 int end = groupDN.indexOf(",");

 if (end == -1) {
 end = groupDN.length();
 }

 return groupDN.substring(start+1, end);
}

6.2.4.2 Adding and deleting

Next, the manager needs to add and delete groups, just as it offers the ability to add and delete
users. The only differences here are the object class hierarchy and the required attributes. The
class hierarchy runs from the top-level object, appropriately named top, to
groupOfUniqueNames, the default group object class, to groupOfForethoughtNames, the
custom object class created in Chapter 3. The required attributes for a group are only its
objectClass and cn (the group name). Add the method shown here:

public void addGroup(String name, String description)
 throws NamingException {

 // Create a container set of attributes
 Attributes container = new BasicAttributes();

 // Create the objectclass to add
 Attribute objClasses = new BasicAttribute("objectClass");
 objClasses.add("top");
 objClasses.add("groupOfUniqueNames");
 objClasses.add("groupOfForethoughtNames");

 // Assign the name and description to the group
 Attribute cn = new BasicAttribute("cn", name);
 Attribute desc = new BasicAttribute("description", description);

 // Add these to the container
 container.put(objClasses);
 container.put(cn);
 container.put(desc);

 // Create the entry
 context.createSubcontext(getGroupDN(name), container);
}

Building Java™ Enterprise Applications Volume I: Architecture

109

Just like deleting a user, deleting a group is a piece of cake. All we need to do is convert the
group's name to the appropriate DN, and then destroy that subcontext:

public void deleteGroup(String name) throws NamingException {
 try {
 context.destroySubcontext(getGroupDN(name));
 } catch (NameNotFoundException e) {
 // If the group is not found, ignore the error
 }
}

And, as simple as that, you are finished with basic group interactions.

6.2.5 Permissions

This is starting to sound like something from the department of redundancy department, but
you now need to duplicate the functionality for working with groups and users to allow the
manager to add and remove permissions. This should be a piece of cake at this point.

6.2.5.1 Getting the distinguished name

By now, you should know the formula by heart. Find out the organizational unit under which
permissions should exist, and create a PERMISSIONS_OU constant. Determine what attribute
the permission's name is stored as (in this case, cn); look at the permission's name and DN
(for the name "addUser", the DN is cn=addUser, ou=Permissions,o=forethought.com), and
code the appropriate conversion methods. The code to add to your source is shown here:

/** The OU (organizational unit) to add permissions to */
private static final String PERMISSIONS_OU =
 "ou=Permissions,o=forethought.com";

private String getPermissionDN(String name) {
 return new StringBuffer()
 .append("cn=")
 .append(name)
 .append(",")
 .append(PERMISSIONS_OU)
 .toString();
}

private String getPermissionCN(String permissionDN) {
 int start = permissionDN.indexOf("=");
 int end = permissionDN.indexOf(",");

 if (end == -1) {
 end = permissionDN.length();
 }

 return permissionDN.substring(start+1, end);
}

6.2.5.2 Adding and deleting

There is not much surprising here either. The class hierarchy is the simplest yet, starting at the
top object class and moving on to the custom class forethoughtPermission. The required

Building Java™ Enterprise Applications Volume I: Architecture

110

attributes are the objectClass and cn of the permission, and you can throw in a
description value for good measure. Add in the following method:

public void addPermission(String name, String description)
 throws NamingException {

 // Create a container set of attributes
 Attributes container = new BasicAttributes();

 // Create the objectclass to add
 Attribute objClasses = new BasicAttribute("objectClass");
 objClasses.add("top");
 objClasses.add("forethoughtPermission");

 // Assign the name and description to the group
 Attribute cn = new BasicAttribute("cn", name);
 Attribute desc = new BasicAttribute("description", description);

 // Add these to the container
 container.put(objClasses);
 container.put(cn);
 container.put(desc);

 // Create the entry
 context.createSubcontext(getPermissionDN(name), container);
}

Same song, third verse. Converting a permission's name to its DN and destroying that
subcontext takes care of the deletePermission() method. Add this in now:

public void deletePermission(String name) throws NamingException {
 try {
 context.destroySubcontext(getPermissionDN(name));
 } catch (NameNotFoundException e) {
 // If the permission is not found, ignore the error
 }
}

With manipulation of these three basic object types complete, it's time to move on to adding
some glue between the types. We'll now look at adding users to groups and permissions to
groups, joining these objects in the directory in a usable way.

6.2.6 Tying It Together

It's time to build some more useful features into the manager. Assignment operations will be
used far more often than simple addition and deletion methods, so in this section, I discuss
establishing links between users and groups and between groups and permissions.

It's important at this point to get an idea of how the Forethought application will use groups
and permissions. First, it is possible to establish that users will never have individual
permissions assigned to them; I talked about this in some detail in Chapter 3. In fact, the
inetOrgPerson object class has no attribute for assigning permissions at all. Instead,
permissions will be assigned to groups, and then groups will have users assigned to them.
This ends up as a rather standard-looking schema, where the groups in the directory act as a
join table. Figure 6-6 illustrates this relationship.

Building Java™ Enterprise Applications Volume I: Architecture

111

Figure 6-6. Relating permissions to users

In the Forethought application, both groups and permissions are required. A group provides a
coarse-grained security mechanism. Group membership implies a general area of operation;
for example, a user may be assigned to the Employee, Broker, and Manager groups. This
doesn't necessarily say that the user can create a new fund; that level of access would be
associated with a specific permission. However, many components, such as a company
directory component, would allow anyone in the Employee group some level of access; this is
an example of a coarse-grained access control. Permissions, in contrast, are intended to be
much more granular. While a group may provide access to a specific component, a permission
might determine the data returned from that component. For example, all members of the
Employee group can access the company directory, but only users with the updateUsers
permission are given access to an "Update" link in the directory form. This isn't to say that
groups cannot be used for this sort of access, just that it is more common to ask for a specific
permission, as that permission might be assigned to multiple groups. With that in mind, you're
ready to create relationships between users, groups, and permissions.

6.2.6.1 Addition and removal of users

As you can see from Figure 6-6, one half of the bridge between users and permissions is the
assignment of a user to a group. I will look at this part of the bridge here; in the next section,
we'll build the other half.

First, the manager needs to handle the addition of a user to a group; this merely requires the
client to supply the username and group name. Like the other manager methods, conversions
from a username to a user DN and from a group name to a group DN are handled by the
utility methods getUserDN() and getGroupDN().

The membership of a user in a group is stored within the group's uniqueMember attribute.
Adding a user to a group entails simply locating the group and adding the user's DN to that
group's uniqueMember attribute. You'll remember that attributes in an object class can have
multiple values, which is the case here. You should create a new BasicAttribute, assign it
the attribute name "uniqueMember", and then give it the value of the supplied user's
distinguished name. This method also introduces a new JNDI class: the
javax.naming.directory.ModificationItem class. When a context has attributes
modified in a directory server, JNDI clients need to use the modifyAttributes() method of
the DirContext class. This method takes as an argument the name of the context to modify
(the group's DN), and an array of ModificationItem objects. Conveniently, this allows
modification of multiple attributes in one method call; in this case, though, the manager is
making only a single change.

Building Java™ Enterprise Applications Volume I: Architecture

112

The constructor of a ModificationItem takes as arguments the type of modification and the
attribute being modified (an instance of the Attribute class, or rather one of its
implementations). The DirContext class provides constants for the types of modifications
allowed; these constants are summarized in Table 6-1.

Table 6-1. The DirContext constants for modification types
Constant Purpose Example

ADD_ATTRIBUTE Adds a new value to the attribute
supplied. Adds a member to a group.

REMOVE_ATTRIBUTE Removes a value from the attribute
supplied. Removes a member from a group.

REPLACE_ATTRIBUTE Replaces an existing value with
the supplied value.

Replaces the last name of a user with
a (different) married name.

In the case of adding a user, you should use the ADD_ATTRIBUTE constant; for deleting, use
REMOVE_ATTRIBUTE. You can create an array of requested modifications (an array of one, in
both adding and deleting), create the attribute class and value to be added, drop that attribute
into the array of modifications, and then invoke the modifyAttributes() method with the
group's DN and modification. The only other note is that when adding a user, you should
ignore the AttributeInUseException; this indicates that the attribute, in the case of
ADD_ATTRIBUTE, is already added. In other words, the user is already a member of the
supplied group. This is fine, so no error needs to be reported back to the client. In the case of
deletion, the same process occurs; however, in that case the code should ignore the
NoSuchAttribute exception, which indicates that the user requested for removal wasn't in
the requested group to begin with. This is all you need to know to implement the
assignUser() and removeUser() methods, which are shown here:

public void assignUser(String username, String groupName)
 throws NamingException {

 try {
 ModificationItem[] mods = new ModificationItem[1];

 Attribute mod =
 new BasicAttribute("uniqueMember",
 getUserDN(username));
 mods[0] =
 new ModificationItem(DirContext.ADD_ATTRIBUTE, mod);
 context.modifyAttributes(getGroupDN(groupName), mods);
 } catch (AttributeInUseException e) {
 // If user is already added, ignore exception
 }
}

public void removeUser(String username, String groupName)
 throws NamingException {

 try {
 ModificationItem[] mods = new ModificationItem[1];

 Attribute mod =
 new BasicAttribute("uniqueMember",
 getUserDN(username));

Building Java™ Enterprise Applications Volume I: Architecture

113

 mods[0] =
 new ModificationItem(DirContext.REMOVE_ATTRIBUTE, mod);
 context.modifyAttributes(getGroupDN(groupName), mods);
 } catch (NoSuchAttributeException e) {
 // If user is not assigned, ignore the error
 }
}

6.2.6.2 Verification of group memberships

Once groups and users are tied together, the next logical step is to be able to verify,
programmatically, what these ties are for a certain user. Assigning user "shirlbg" to the
"clients" group doesn't do much good if clients can't later determine whether she is in that
group. Therefore, the manager needs a userInGroup() method. This method will take a
username and group name as arguments, and return true if the specified user is in the
supplied group, false if not. It also makes sense to provide a means of obtaining all users
within a group, the getMembers() method. This ability is useful in two cases: first, as an
administration utility, and second, as a means of not having to constantly access the directory
server with userInGroup() method invocations.

In both of these cases, the manager code will use the getAttributes() method that the
DirContext class provides. This method takes a subcontext identifier (in this case, the DN of
the group being checked), and optionally an array of Strings, each with the name of an
attribute to search for. If no array is provided, all attributes on the specified subcontext are
returned. Providing this array is a good idea, though, as it reduces the attributes that must be
searched within the directory. In both of these methods, only values for the uniqueMember
attribute are needed. These values are provided as an array to the getAttributes() method;
the array is a list of one, the single value "uniqueMember". This method returns an
Attributes object with all the requested values. Here, though, this is a list of one, containing
just the single Attribute class correlating to the uniqueMember attribute.

The work isn't quite complete yet; remember that a single LDAP attribute can have multiple
values. Because of this, you can't get a single value from the Attribute instance; instead you
need to iterate through all of the values for that attribute. The NamingEnumeration class aids
in moving through these values. At this point, the two methods slightly diverge: the
userInGroup() method returns true as soon as it finds an entry that matches the user's DN;
the getMembers() method adds all returned members to a List and returns that List to the
invoking component.

If you check the JNDI documentation, you will notice that the
Attribute class provides a method called get() that takes a Java
Object and returns a boolean indicating whether the Attribute has
that object value. You might be tempted to use that method in the
userInGroup() method instead of running through a
NamingEnumeration and performing comparisons. However, the get(
) method provides no means of performing a case-insensitive
comparison, and instead would perform case-sensitive String
comparison; since the DNs in a directory are case-insensitive, this
would cause problems. Use the code as-is, or be prepared for some
nasty surprises!

Building Java™ Enterprise Applications Volume I: Architecture

114

You can add these two new methods, shown here, to your LDAPManager source file:

public boolean userInGroup(String username, String groupName)
 throws NamingException {

 // Set up attributes to search for
 String[] searchAttributes = new String[1];
 searchAttributes[0] = "uniqueMember";

 Attributes attributes =
 context.getAttributes(getGroupDN(groupName),
 searchAttributes);
 if (attributes != null) {
 Attribute memberAtts = attributes.get("uniqueMember");
 if (memberAtts != null) {
 for (NamingEnumeration vals = memberAtts.getAll();
 vals.hasMoreElements();
) {
 if (username.equalsIgnoreCase(
 getUserUID((String)vals.nextElement()))) {
 return true;
 }
 }
 }
 }
 return false;
}

public List getMembers(String groupName) throws NamingException {
 List members = new LinkedList();

 // Set up attributes to search for
 String[] searchAttributes = new String[1];
 searchAttributes[0] = "uniqueMember";

 Attributes attributes =
 context.getAttributes(getGroupDN(groupName),
 searchAttributes);
 if (attributes != null) {
 Attribute memberAtts = attributes.get("uniqueMember");
 if (memberAtts != null) {
 for (NamingEnumeration vals = memberAtts.getAll();
 vals.hasMoreElements();
 members.add(
 getUserUID((String)vals.nextElement()))) ;
 }
 }
 return members;
}

While this handles any lookups from the group side, it still leaves one task undone from the
user angle: clients need to be able to find all the groups that a user is in. This task is little
trickier than it appears; remember that the group object has knowledge about the users
belonging to it, but users have no easy means of tracing the relationship the other way. (Refer
back to Figure 6-6 if you need to.) As a result, it is not possible to locate a user and look up
the user's groups through an attribute, as you could to find the members of a group. To
address this issue, I'll now introduce the search() method on the DirContext object. This
method is for cases just like this, where the developer needs to "take control" and directly
specify search criteria that go beyond the simple relationships discussed so far. The search()

Building Java™ Enterprise Applications Volume I: Architecture

115

method takes three parameters: the context to start searching at, a search filter, and a
SearchControls object, which specifies constraints on how searching is performed.

The context allows you to narrow the portion of the directory searched; obviously, broader
searches, which start at the root or high up in the tree, take more time to perform. In this case,
you are looking specifically for groups, and know that all groups are located under the
organizational unit Groups. In fact, there is already a constant for that subcontext, GROUPS_OU.
So the context is taken care of.

The next piece of information, the search filter, becomes the key in most searches. The first
step in building this filter is identifying the criteria (not necessarily in code format, but with
simple words), which in this case is fairly simple. First, you want to locate all groups, as you
are interested only in group objects. It is possible to isolate these objects by their
objectClass attribute, which you know will always be groupOfForethoughtNames. The
filter format for this is simply (objectClass= groupOfForethoughtNames). All search
criteria must be enclosed in parentheses; this allows combination of expressions, which you'll
want in just a moment. Within those parentheses simply provide the attribute name, the equals
sign, and the value you are searching for. Wildcards are also acceptable, so a criterion of
(cn=s*) would return all users whose cn attribute starts with the letter "s". This would
include "Shirley Greathouse" as well as "Sergei Zubov". Adding to this filter, you need to
request that for all the groups found, return only those whose uniqueMember attribute
contains the DN of the user supplied. This portion of the search criteria, then, becomes
(uniqueMember=userDN), where userDN is the supplied user's distinguished name. Finally,
you need to tie the two search criteria together through reverse polish notation,[7] where the
format of an expression is (operator operand operand). The operands are the two
expressions, and the operator is the ampersand (&), which indicates a logical AND. The result
of this rather strange discussion is the expression
(&(objectClass=groupOfForethoughtNames)(uniqueMember= userDN)). So now you
have the second item in the search criteria.

Directory Names and Directory Names
So far, I have used Java Strings for specifying the names of subcontexts in the
various JNDI methods, including the getAttributes() method and the search(
) method. However, this is only one way to deal with directory subcontext names;
the javax.naming.Name class provides another. This class allows for a greater
degree of manipulation of JNDI names, as it has methods to allow composition of a
name. In other words, you can take multiple Name objects and compose them into a
single (new) Name, perhaps adding an organizational unit (ou=People) to a directory
server's root (o=forethought.com). This is especially usefully when working with
programs that browse directories, needing to add a new context name to an existing
context name. All of the methods you have seen that take a simple String for a
context's name also will accept a JNDI Name object. In the application so far, though,
you have always known the exact name of the desired subcontext, and so have not
needed this additional functionality. You can certainly use both forms of naming in
your own JNDI-based applications.

7 If you've ever used a graphical or higher-end mathematical calculator, you've probably dealt with this; reverse polish calculators were very popular
in the early 90's. I have no idea if they are still popular today, as I left high school and college well behind me!

Building Java™ Enterprise Applications Volume I: Architecture

116

All that's left is the SearchControls object, which allows for constraining the search to only
part of a tree in order to limit the number of results and the time spent in searching. I will
touch on it here only briefly, so consult the JNDI documentation for more information about
this useful class. In this case, you'll use it to limit the scope of the search. Recall that all
groups are directly under the Groups organizational unit, which was specified as the context
to start searching at. This enables the code to specify that it wants only one level of the LDAP
tree to be searched, as opposed to the entire tree, which is the default option. Figure 6-7 shows
the difference, and it is obvious that you will get performance gains from this constraint.

Figure 6-7. Searching an entire tree versus searching only one level deep

On the left side of Figure 6-7, you see the result of searching all of a tree below the starting
point, specified by the constant SearchControls.SUBTREE_SCOPE. Compare this to searching
only one level deep, using the SearchControls.ONELEVEL_SCOPE, which is shown on the
right. This is the only option to set on the search constraints; then, the manager is finally ready
to search the directory. The result of the search is a NamingEnumeration instance, which the
manager can iterate through, converting each returned group DN into a simple name and
adding the name to the groups list. This completed list is then returned to the invoker of the
method.

It is important to note that the values returned, all of type
javax.naming.directory.SearchResult, have names that are DNs.
What is actually interesting is the DN itself, in that it is relative to the
starting context of the search. In other words, the name of the group
"Administrators" is not reported as
cn=Administrators,ou=Groups,o=forethought.com, because the starting
context was ou=Groups,o=forethought.com. Relative to that context,
the group's name becomes simply cn=Administrators. When this is sent
to our getGroupCN() method, the check to set the end variable to the
length of the input String, when there is no trailing comma in the
group's DN, comes into play. Failing to do that check would result in
the returned String either being gibberish, or creating an error before it
was even sent back to the caller.

Enter this method as shown here:

Building Java™ Enterprise Applications Volume I: Architecture

117

public List getGroups(String username) throws NamingException {
 List groups = new LinkedList();

 // Set up criteria to search on
 String filter = new StringBuffer()
 .append("(&")
 .append("(objectClass=groupOfForethoughtNames)")
 .append("(uniqueMember=")
 .append(getUserDN(username))
 .append(")")
 .append(")")
 .toString();

 // Set up search constraints
 SearchControls cons = new SearchControls();
 cons.setSearchScope(SearchControls.ONELEVEL_SCOPE);

 NamingEnumeration results =
 context.search(GROUPS_OU, filter, cons);

 while (results.hasMore()) {
 SearchResult result = (SearchResult)results.next();
 groups.add(getGroupCN(result.getName()));
 }
 return groups;
}

With this method in place, you have all the tools needed to determine whether a user is in a
group, as well as to find the members of a group and the groups of a user. You can now move
on to permissions.

6.2.6.3 Assignment and revocation of permissions

The other half of the bridge between users and permissions is the link from groups to
permissions. As with assigning a user to a group, the manager needs to allow assignment of a
permission to a group and revocation of a permission from a group. In fact, other than some
semantics ("assign" instead of "add", and "revoke" instead of "remove"), the methods to
assign and revoke permissions to and from groups are nearly identical to the addition and
removal of users to and from groups. The only other significant change is the attribute being
modified: uniquePermission as compared to uniqueMember. I won't bore you with
explanation of concepts already covered, and instead I'll just show you the code that needs to
be added to the LDAPManager class:

public void assignPermission(String groupName, String permissionName)
 throws NamingException {

 try {
 ModificationItem[] mods = new ModificationItem[1];

 Attribute mod =
 new BasicAttribute("uniquePermission",
 getPermissionDN(permissionName));
 mods[0] = new ModificationItem(DirContext.ADD_ATTRIBUTE, mod);
 context.modifyAttributes(getGroupDN(groupName), mods);
 } catch (AttributeInUseException e) {
 // Ignore the attribute if it is already assigned
 }
}

Building Java™ Enterprise Applications Volume I: Architecture

118

public void revokePermission(String groupName, String permissionName)
 throws NamingException {

 try {
 ModificationItem[] mods = new ModificationItem[1];

 Attribute mod =
 new BasicAttribute("uniquePermission",
 getPermissionDN(permissionName));
 mods[0] =
 new ModificationItem(DirContext.REMOVE_ATTRIBUTE, mod);
 context.modifyAttributes(getGroupDN(groupName), mods);
 } catch (NoSuchAttributeException e) {
 // Ignore errors if the attribute doesn't exist
 }
}

6.2.6.4 Verification of permissions

In addition to finding out if a certain group has a particular member, you also need to be able
to determine if a group has a particular permission assigned to it. In the same vein, the
manager needs to be able to obtain all of the permissions assigned to a particular group.
Fortunately, the two methods needed, hasPermission() and getPermissions(), are
simple cut-and-paste operations from the userInGroup() and isMember() methods. Just
change the attribute searched on from uniqueMember to uniquePermission, and you're home
free. Enter in the methods as shown here:

public boolean hasPermission(String groupName, String permissionName)
 throws NamingException {

 // Set up attributes to search for
 String[] searchAttributes = new String[1];
 searchAttributes[0] = "uniquePermission";

 Attributes attributes =
 context.getAttributes(getGroupDN(groupName),
 searchAttributes);
 if (attributes != null) {
 Attribute permAtts = attributes.get("uniquePermission");
 if (permAtts != null) {
 for (NamingEnumeration vals = permAtts.getAll();
 vals.hasMoreElements();
) {
 if (permissionName.equalsIgnoreCase(
 getPermissionCN((String)vals.nextElement()))) {
 return true;
 }
 }
 }
 }

 return false;
}

Building Java™ Enterprise Applications Volume I: Architecture

119

public List getPermissions(String groupName) throws NamingException {
 List permissions = new LinkedList();

 // Set up attributes to search for
 String[] searchAttributes = new String[1];
 searchAttributes[0] = "uniquePermission";

 Attributes attributes =
 context.getAttributes(getGroupDN(groupName),
 searchAttributes);
 if (attributes != null) {
 Attribute permAtts = attributes.get("uniquePermission");
 if (permAtts != null) {
 for (NamingEnumeration vals = permAtts.getAll();
 vals.hasMoreElements();
 permissions.add(
 getPermissionCN((String)vals.nextElement()))) ;
 }
 }

 return permissions;
}

You've now added the needed functionality to interact with the Forethought directory server
(or any other directory server, with very small changes). There are some higher-level
interactions you'll need, such as finding out if a specific user has a specific permission, but I'll
leave these computations to session beans and other components layered on top of the
LDAPManager component.

6.3 What's Next?

You're almost finished with the Forethought data layer, which is a major milestone in any
application development. In the next chapter, I'll spend some time looking at a few odds and
ends. These little details will make the application perform a little better and be easier to use,
and will help you in your other programming tasks. From there, you will populate the
database and directory server. In addition to seeding the application with data, this will show
you how clients interact with the programming constructs already developed.

Building Java™ Enterprise Applications Volume I: Architecture

120

Chapter 7. Completing the Data Layer
You've made it through the first section of the application, the data structure. Of course, this is
simply the raw information used in the application. While it's almost time to begin coding the
next tier of the application, the business layer, it's worth taking a moment to make sure things
are working correctly, and perform a few optimizations and clean-up tasks.

In this chapter, I'll first look at several items that can help improve the efficiency,
performance, and cleanliness of the application code discussed so far. As in the creation of
any application, a lot of ground has been covered very quickly. It is worth taking a short break
from adding features in order to really wrap up the data layer; those who inherit your code
some day will be glad you did. From there, I'll move on to showing you how to realistically
test your application, and write a client for the various beans and the LDAP manager that are
in place. This also gives you a chance to populate your data stores, so the examples in the rest
of the book will be using the same data as in my version of the application. More importantly,
if you're not familiar with using RMI, JNDI, and contexts with your beans, you'll see this sort
of client in action. At the end of the chapter, you can say you've got a complete, functional,
polished data layer, which is quite an accomplishment.

7.1 Odds and Ends

So far, you have concentrated completely on data layer functionality; while this results in a
working application, it doesn't necessarily produce a good application. To start with, look
again at the LDAPManager class. The biggest problem in this manager component is that, at
best, it does a mediocre job of managing connections to the directory server. When dealing
with entity beans, this was a minor issue; the EJB container was handling all database
connections, and was presumably using some connection pools and object caching to improve
performance. However, with the LDAP manager, there is no container to take care of these
details. This means that when users complain of latency when accessing your directory server,
the blame falls squarely on your shoulders (and mine).

Currently, each client of the directory server interacts with the manager by invoking the
LDAPManager constructor and using the new keyword. However, each invocation of the
constructor results in a new connection being created to the directory server. Not only does
this add overhead to the clients, but it also could easily result in ten, fifteen, or even more
connections to the same directory server being open at any point in time. So clients pay for a
new connection, but then accessing the server is slowed because multiple connections are
vying for the same server and data. This is not scalable in any reasonable way. In this section,
I'll detail some minor changes to the manager component that will enable connection sharing
and reuse. These simple changes will take the LDAPManager component from simply
functional to scalable in a high-volume, distributed application.

7.1.1 Connection Sharing

The simplest change to make to the manager component is to move the connection from an
instance level to a class level. In this way, the manager can create a single connection for all
instances, instead of a connection for each instance. There are actually two ways to handle
this. The first involves moving the DirContext instance in the class from a normal member
variable to a static variable of the class. The second is to actually turn the manager into a

Building Java™ Enterprise Applications Volume I: Architecture

121

singleton, and share a single LDAPManager instance (not just the DirContext object) for all
requests. Figure 7-1 illustrates the difference between these two approaches.

Figure 7-1. Sharing the DirContext instance versus sharing the LDAPManager instance

At first glance, these might seem identical; however, the difference is in the information that
becomes shared. In the approach on the left in Figure 7-1, sharing just the DirContext, no
other instance variables are shared. The problem here is that it is possible to end up with a
connection (the DirContext object) that is shared, but local variables (like the port and
hostname variables) that are different for various clients. This is certainly not a desired result,
and can become quite confusing to a client. In contrast, the approach on the right, sharing a
single LDAPManager instance, allows clients to share instance information as well. This
ensures that the hostname, port, and other instance variables are kept in sync across all clients,
reducing confusion. This approach is obviously preferable to simply sharing a connection, as
the instance variables are used in methods like isValidUser() and need to be managed
across all clients.

To effect this change, then, you should create a static variable in the LDAPManager class that
will be the single, shared instance. Add this variable to the source file:

/** The LDAPManager instance object */
private static LDAPManager instance = null;

/** The connection, through a <code>DirContext</code>, to LDAP */
private DirContext context;

/** The hostname connected to */
private String hostname;

/** The port connected to */
private int port;

Once this variable is in place, you also need to ensure that clients cannot create instances on
their own; otherwise, this shared connection becomes useless, as some clients will use it and
others will create their own manager instances. The simplest means of preventing this
problem is to make the constructor for the class inaccessible. You can change the accessor
from public to protected to effect this change. You can then also discard all of the
overloaded constructors, as the overloading will be on the method that returns the shared
instance. Make the changes shown here:

Building Java™ Enterprise Applications Volume I: Architecture

122

protected LDAPManager(String hostname, int port,
 String username, String password)
 throws NamingException {

 context = getInitialContext(hostname, port, username, password);

 // Only save data if we got connected
 this.hostname = hostname;
 this.port = port;
}

// All other constructors are removed

Now, you can create the analog of these constructors, a set of methods that returns this shared
instance. Call this method getInstance(); this is the standard practice when using the
singleton pattern. This method has the same arguments supplied to it as your old constructors,
and it's simple to overload these, providing three versions of getInstance(), as well. This
method should also be made static so that clients can access it, as shown here:

// Get the shared instance
LDAPManager manager =
 LDAPManager.getInstance("galadriel.middleearth.com",
 389);

manager.addUser("shirlbg", "Shirley", "Greathouse", "nellbell");
// other manager operations

All that's left, then, is the implementation. Since the instance variable was assigned an initial
value of null, getInstance() can check against this value to see if a new instance needs to
be created, or if an existing one can be returned. If an instance does need to be created, some
synchronization is called for. You should synchronize here to ensure that two simultaneous
requests don't both create new instances, as that would result in dual instances being supplied
to clients. Once the code is in a synchronized block, it again compares the instance variable
to null. Why? For the exact same reason discussed previously. If two requests come in and
both find the instance variable equal to null, one will obtain the object lock and create a
new LDAPManager instance; the second, once it obtains the lock, should not create a new
instance. Thus, a second comparison within the synchronized block ensures that only one
instance is created. Finally, the ready-for-use instance is returned, as it was either ready to use
in the first place or was newly created. It is this set of operations that results in the class being
a singleton. A single instance is being made available to all clients, rather than direct object
instantiation occurring. Enter these changes as they are shown here:

Building Java™ Enterprise Applications Volume I: Architecture

123

public static LDAPManager getInstance(String hostname,
 int port,
 String username,
 String password)
 throws NamingException {

 if (instance == null) {
 synchronized (LDAPManager.class) {
 if (instance == null) {
 instance =
 new LDAPManager(hostname, port,
 username, password);
 }
 }
 }
 return instance;
}

public static LDAPManager getInstance(String hostname, int port)
 throws NamingException {

 return getInstance(hostname, port, null, null);
}

public static LDAPManager getInstance(String hostname)
 throws NamingException {

 return getInstance(hostname, DEFAULT_PORT, null, null);
}

The result of this is that only one connection to a directory server is used for all clients.
Therefore, clients requesting an instance of the manager get faster responses, as they are not
waiting for a new connection to be made. Response time for all methods is also reduced, as
multiple connections are not competing for the same resources.

To clarify, the instance of the LDAPManager class will be shared across
all clients in the same Java virtual machine (JVM). If you have multiple
JVMs on the same machine, or if your application is spread across
multiple servers (both common occurrences in enterprise applications),
multiple instances of the manager component will occur. However, the
result is still a drastic improvement in performance. This situation also
doesn't require a change in your code, other than perhaps raising some
synchronization issues, which I address now.

7.1.2 Synchronization

All of you Java threading experts out there are probably just dying to throw some
synchronized keywords into the rest of the manager code now. However, hold off on that;
the manager doesn't need them. Let me explain a little further. Now that there is only a single
shared instance, it is possible that multiple clients will request the same method with the same
data. Imagine that the user with username "gqg10012", first name "Gary", last name
"Greathouse", and password "hunting" is requested for addition by two different clients, at the
same time.

Building Java™ Enterprise Applications Volume I: Architecture

124

While you could synchronize all of the manager's methods, particularly the addXXX() and
assignXXX() methods, this really isn't such a good idea. It adds a lot of overhead, as only
one thread can invoke the method at a time. More pointedly, is it really that common for the
same exact user or group to be added to an application at the same time? In fact, is it common
for any object to be added very often to the directory? The truth of the matter is that it is not.
Generally, a single client adds users in batches, or rarely; in these cases, synchronization is
not an issue.

Since you will rarely encounter threading problems, synchronizing all of the manager's
methods is certain to slow down all clients for the sake of a very small percentage of them. In
the very odd occasion that you do run into this problem, a NamingException will be thrown,
and clients can easily handle that case. But clearly, an occasional error is well worth it for the
sake of greatly speeding up the rest of your application. Leave the methods as-is; your users
will thank you for it.

7.1.3 Multiple Directory Servers

There is one more issue to address before leaving the LDAP manager component, and that is
the very subtle problem left in the manager code. It is illustrated in Figure 7-2, and should
worry you quite a bit.

Figure 7-2. The issue with multiple directory servers

What happens here is that client 1 requests an instance of LDAPManager, with the hostname
and port of directory server 1. An instance is created, and returned to client 1. Now, because
this is a particularly robust application, directory server 2 is used as well. Perhaps a different

Building Java™ Enterprise Applications Volume I: Architecture

125

user class is stored here, or entirely different information altogether; in either case, two
servers are used for performance and scalability. So client 2 requests a connection, through
the LDAPManager component, to directory server 2. The LDAPManager class receives the
hostname and port for this server, and as its instance variable is already created (and
therefore non-null), it happily returns the instance connected to directory server 1. And
then...well, things get pretty ugly.

To prevent this situation, you should make a final modification to the way shared instances
are handled. Instead of maintaining a single instance, the manager needs to maintain a single
instance per hostname, port number, and credentials combination. This is not particularly hard
to do; the manager can store instances in a Java Map structure, using a unique key for each
combination of connection information. First, add the needed import statements:

import java.util.Properties;
import java.util.HashMap;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
// Other import statements...

Additionally, you need to change the single instance variable to the Map structure:

/** The LDAPManager instance object */
private static Map instances = new HashMap();

Finally, change the getInstance() method, the version that is called by all of the others.
The change requires that a key value first be constructed for the map, which will be unique for
each combination of server details and authentication credentials. The method should also
ensure that no NullPointerExceptions occur by checking the values of the username and
password variables before using them. It then checks to see whether an instance exists for
that key, and returns that instance if it does; if not, the method creates one and returns that.
Make the changes shown here:

public static LDAPManager getInstance(String hostname,
 int port,
 String username,
 String password)
 throws NamingException {

 // Construct the key for the supplied information
 String key = new StringBuffer()
 .append(hostname)
 .append(":")
 .append(port)
 .append("|")
 .append((username == null ? "" : username))
 .append("|")
 .append((password == null ? "" : password))
 .toString();

Building Java™ Enterprise Applications Volume I: Architecture

126

 if (!instances.containsKey(key)) {
 synchronized (LDAPManager.class) {
 if (!instances.containsKey(key)) {
 LDAPManager instance =
 new LDAPManager(hostname, port,
 username, password);
 instances.put(key, instance);
 return instance;
 }
 }
 }

 return (LDAPManager)instances.get(key);
}

7.1.4 Error Reporting

Last, but not least, there are some details left unfinished with regard to error reporting. So far,
I haven't covered error conditions in the manager, other than the basic NamingException that
can occur. For example, consider the isValidUser() method, whose signature is shown
here:

public boolean isValidUser(String username, String password);

This method simply returns true or false, depending on whether the credentials supplied
result in a successful authentication. However, is it accurate to have only two possible results
from this set of credentials? Table 7-1 lists the possibilities that can occur, and indicates a
third result that the isValid() method currently masks.

Table 7-1. Results from user credentials check
Username Password Current result Desired result
Valid Invalid False False
Valid Valid True True
Invalid Invalid False ???

As you can see, a client cannot distinguish between an invalid user, who should be denied
access, and a valid user with an incorrect password, who might be given a chance to request
their password by email, for example. You therefore need a means of reporting the condition
where the username supplied is not found. Because this is an exceptional case, using an
Exception class makes perfect sense:

public boolean isValidUser(String username, String password)
 throws UserNotFoundException;

You can extend the basic ForethoughtException class discussed in Chapter 5 to report this
problem; you simply need to store some information specific to the error being reported. In
this case, holding the username that was specified can make the error message much more
informative. Additionally, a first name and last name are stored, in the event that this
exception is later used by methods that search by a user's complete name rather than
username. Example 7-1 shows this new exception class, which inherits from
ForethoughtException.

Building Java™ Enterprise Applications Volume I: Architecture

127

Example 7-1. The UserNotFound Exception Class

package com.forethought.ldap;

import com.forethought.ForethoughtException;

public class UserNotFoundException extends ForethoughtException {

 /** The username searched for */
 private String username;

 /** The user's first name searched for */
 private String firstName;

 /** The user's last name searched for */
 private String lastName;

 public UserNotFoundException(String username) {
 super("A user with the username " + username +
 " could not be found.");
 this.username = username;
 }

 public UserNotFoundException(String firstName, String lastName) {
 super("A user with the name " + firstName +
 " " + lastName + " could not be found.");
 this.username = username;
 }

 public String getUsername() {
 return username;
 }

 public String getFirstName() {
 return firstName;
 }

 public String getLastName() {
 return lastName;
 }
}

With these two exceptions ready for use, you can go back and update the isValidUser()
method to use the new exception system:

public boolean isValidUser(String username, String password)
 throws UserNotFoundException {
 try {
 DirContext context =
 getInitialContext(hostname, port, getUserDN(username),
 password);
 return true;
 } catch (javax.naming.NameNotFoundException) {
 throw new UserNotFoundException(username);
 } catch (NamingException e) {
 // Any other error indicates couldn't log user in
 return false;
 }
}

Building Java™ Enterprise Applications Volume I: Architecture

128

Finally, it's time to compile and close up shop on the LDAPManager class, and populate your
application's data store.

7.2 Checkpoint

You are now ready to prepare a client to access your beans and manager, and populate the
data stores. Before coding this test client, ensure that you have all your Java classes set up and
ready for use. As this is a book about enterprise applications, usually distributed across
multiple machines, this is not as simple as in a traditional, standalone application. Often
certain classes are on one server, while others are on another server; there are backups, load-
balanced servers, fail-over servers, and so on. The Forethought application has a fairly
simplistic setup: all classes are located on a single server. This represents the logical unit,
which in your own applications may be a single physical server, or may be multiple servers.
For example, you might have entity beans on one server, session beans on another, your web
server on a third, and then have multiple machines for backup on top of those.

Additionally, you will have clients that are presumably separate from the server. I will assume
that any clients are physically separate from the server and its code, as that is the typical case
in enterprise applications. The trick, then, is getting the right classes on the server for the
server to operate, and then the right classes on the client to allow access to the server. Server
classes are simple: for the most part, you'll just throw everything on the server. With EJB, for
example, the remote and home interface, the primary key class, a value class (if there is one),
and the implementation class should all be on the server. The task of setting the client up,
though, is not as simple.

In the case of a web client, nothing is needed on the client, as a simple web browser is used
and all program execution occurs on the server. However, you aren't quite to that point yet;
you need a client that can operate upon your EJB entity beans directly. Therefore, the client
must be able to access the remote interface of the EJBs locally. But to get to the remote
interface, you need to also make the home interface available for looking up beans.
Additionally, if finders are used, the primary key class is often required on the client. And
finally, the value objects that are used by the client to cut down on all that RMI traffic need to
be present. So for EJB work, all but the implementation classes are needed on both server and
client, and the implementation classes are also needed on the server. Any beans not directly
accessed by clients, like our Sequence bean, are also kept only on the server. And for
directory server access, our LDAPManager class needs to reside on the client. While that class
is not technically needed on the server yet, you should go ahead and put it there as well: you'll
have session beans that use it later.

So you now need to check and ensure that all of your classes are in the right place. Figure 7-3
shows the structure you should have in place on your server.

Building Java™ Enterprise Applications Volume I: Architecture

129

Figure 7-3. Server class hierarchy

Once you have the server setup, you can create a similar organization for your client's classes.
This is shown in Figure 7-4.

Figure 7-4. Client class hierarchy

Building Java™ Enterprise Applications Volume I: Architecture

130

If you have only a single physical machine at your disposal, you can use
the CLASSPATH environment variable on your system to mimic this
client/server setup. For example, if you have a directory called
serverclasses/ and one called clientclasses/, you could put your server
classes in the former and client classes in the latter. Then open up two
(different) console windows or DOS prompts. In the server window, set
the CLASSPATH variable to include only the serverclasses/ classes, and in
the client window, make only the clientclasses/ classes available to the
JVM. This effectively mimics the setup of two different machines, and
will allow you to test your configuration as if you had two servers.

7.3 Populating the Data Stores

Once everything is in place, you are ready to get to data population. Example 7-2 shows a
client class, called EntityCreator, that connects to the application server, creates a lot of
sample data, and then does the same for the directory server. While the class is fairly long, it
does almost nothing very exciting. Your work through the first chapters should make this all
fairly simple stuff by now. Enter in the source code and compile it, and get ready to test the
application data stores.

Example 7-2. The EntityCreator Data Population Class

package com.forethought.client;

import java.rmi.RemoteException;
import java.util.Properties;
import javax.ejb.CreateException;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.rmi.PortableRemoteObject;

// Office bean
import com.forethought.ejb.office.Office;
import com.forethought.ejb.office.OfficeHome;

// User bean
import com.forethought.ejb.user.User;
import com.forethought.ejb.user.UserHome;

// Fund bean
import com.forethought.ejb.fund.Fund;
import com.forethought.ejb.fund.FundHome;

// Account bean
import com.forethought.ejb.account.Account;
import com.forethought.ejb.account.AccountHome;

// LDAP Manager
import com.forethought.ldap.LDAPManager;

Building Java™ Enterprise Applications Volume I: Architecture

131

public class EntityCreator {

 public static void main(String[] args) {
 try {
 // Get an InitialContext
 Context context = new InitialContext();
 Object ref = null;

 // Look up the Office bean
 System.out.println("Looking up the Office bean.");
 ref = context.lookup("forethought.OfficeHome");
 OfficeHome officeHome = (OfficeHome)
 PortableRemoteObject.narrow(ref, OfficeHome.class);

 // Create offices
 Office dallasOffice = officeHome.create("Dallas", "TX");
 Office chicagoOffice = officeHome.create("Chicago", "IL");
 Office bostonOffice = officeHome.create("Boston", "MA");
 Office denverOffice = officeHome.create("Denver", "CO");
 Office newYorkOffice = officeHome.create("New York", "NY");
 Office sanFranciscoOffice = OfficeHome.create("San Francisco",
 "CA");
 Office sanJoseOffice = officeHome.create("San Jose", "CA");
 System.out.println("Created Forethought Offices.\n");

 // Look up the Funds bean
 System.out.println("Looking up the Fund bean.");
 ref = context.lookup("forethought.FundHome");
 FundHome fundHome = (FundHome)
 javax.rmi.PortableRemoteObject.narrow(ref,
 FundHome.class);

 // Create funds
 fundHome.create("Industrial Select",
 "This fund is based on industrial stocks such as oil, " +
 "gas, and other utilities.");
 fundHome.create("Money Market Fund",
 "This fund is based on money market accounts, and is " +
 "intended to provide a steady rate of return over time.");
 fundHome.create("Stable Economic",
 "This fund is focused on commodoties that are stable " +
 "and have predictable (albeit smaller) yields.");
 fundHome.create("Technology Saver",
 "This fund is concentrated on technology stocks, but " +
 "larger and proven ones (Fortune 1000 companies).");
 fundHome.create("Technology Select",
 "This fund is concentrated on technology stocks and " +
 "high yield investments.");
 fundHome.create("Universal",
 "This fund is spread through proven stocks across the " +
 "board, basing selection on yield rather than industry.");
 System.out.println("Created Forethought Funds.\n");

 // Get LDAPManager to add users and groups/permissions
 System.out.println("Looking up the LDAP Manager.");
 LDAPManager manager =
 LDAPManager.getInstance("localhost", 389,
 "cn=Directory Manager",
 "forethought");

Building Java™ Enterprise Applications Volume I: Architecture

132

 // Create permissions in LDAP
 manager.addPermission("Add User",
 "Add a new Forethought user");
 manager.addPermission("Edit User",
 "Edit a Forethought user");
 manager.addPermission("Delete User",
 "Delete a Forethought user");
 manager.addPermission("Login",
 "Login to the Forethought application.");
 manager.addPermission("Update Profile",
 "Update a user's own profile.");
 manager.addPermission("Change Password",
 "Change a user's own password.");
 manager.addPermission("Manage Funds",
 "Add a new Forethought fund.");
 manager.addPermission("View Funds",
 "View Forethought funds.");
 manager.addPermission("View Brokers",
 "View Forethought brokers");
 manager.addPermission("View Internal News",
 "View Forethought internal news.");
 System.out.println("Added Forethought Permissions.\n");

 // Create groups in LDAP
 manager.addGroup("Application Users",
 "Users of the Forethought application");
 manager.addGroup("Clients", "Forethought clients");
 manager.addGroup("Employees", "Forethought employees");
 manager.addGroup("Managers", "Forethought managers");
 manager.addGroup("Brokers", "Forethought brokers");
 manager.addGroup("Administrators",
 "Forethought application administrators");
 System.out.println("Added Forethought Groups.\n");

 // Create groups-permission links
 manager.assignPermission("Application Users", "Login");
 manager.assignPermission("Application Users",
 "Update Profile");
 manager.assignPermission("Application Users",
 "Change Password");

 manager.assignPermission("Clients", "View Funds");
 manager.assignPermission("Clients", "View Brokers");

 manager.assignPermission("Employees", "View Internal News");

 manager.assignPermission("Managers", "Edit User");

 manager.assignPermission("Brokers", "Manage Funds");

 manager.assignPermission("Administrators", "Login");
 manager.assignPermission("Administrators", "Add User");
 manager.assignPermission("Administrators", "Edit User");
 manager.assignPermission("Administrators", "Delete User");

 System.out.println("Assigned Forethought Permissions.\n");

 // Add users
 manager.addUser("shirlbg", "Shirley", "Greathouse", "nellie");
 manager.addUser("gqg10012", "Gary", "Greathouse", "chunk");
 manager.addUser("bsturm", "Bob", "Sturm", "shaft");

Building Java™ Enterprise Applications Volume I: Architecture

133

 manager.addUser("danm", "Dan", "McDowell", "tablespoon");
 manager.addUser("rhyner", "Mike", "Rhyner", "wolf");
 manager.addUser("greggo", "Greg", "Williams", "motorcycle");
 manager.addUser("norm", "Norm", "Hitzges", "chophouse");
 System.out.println("Added Forethought Users to LDAP.\n");

 // Assign users to groups
 manager.assignUser("shirlbg", "Application Users");
 manager.assignUser("shirlbg", "Clients");

 manager.assignUser("gqg10012", "Application Users");
 manager.assignUser("gqg10012", "Clients");

 manager.assignUser("bsturm", "Employees");
 manager.assignUser("bsturm", "Brokers");

 manager.assignUser("danm", "Employees");
 manager.assignUser("danm", "Brokers");

 manager.assignUser("rhyner", "Employees");
 manager.assignUser("rhyner", "Managers");

 manager.assignUser("greggo", "Employees");
 manager.assignUser("greggo", "Managers");

 manager.assignUser("norm", "Administrators");

 System.out.println("Assigned Forethought Users to Groups.\n");

 // Look up the User bean
 System.out.println("Looking up the User bean.");
 ref = context.lookup("forethought.UserHome");
 UserHome userHome = (UserHome)
 javax.rmi.PortableRemoteObject.narrow(ref,
 UserHome.class);

 // Create users (without offices)
 System.out.println("Creating Forethought clients.");
 User shirley=userHome.create("uid=\"shirlbg\",ou=\"People\"," +
 "o=\"forethought.com\"",
 "Client", "Shirley", "Greathouse", null);
 User gary = userHome.create("uid=\"gqg10012\",ou=\"People\"," +
 "o=\"forethought.com\"",
 "Client", "Gary", "Greathouse", null);

 // Create users (with offices)
 System.out.println("Creating Forethought employees.");
 userHome.create("uid=\"bsturm\",ou=\"People\"," +
 "o=\"forethought.com\"",
 "Employee", "Bob", "Sturm", bostonOffice);
 userHome.create("uid=\"danm\",ou=\"People\"," +
 "o=\"forethought.com\"",
 "Employee", "Dan", "McDowell", denverOffice);
 userHome.create("uid=\"rhyner\",ou=\"People\"," +
 "o=\"forethought.com\"",
 "Employee", "Mike", "Rhyner", chicagoOffice);
 userHome.create("uid=\"greggo\",ou=\"People\"," +
 "o=\"forethought.com\"",
 "Employee", "Greg", "Williams", sanJoseOffice);

Building Java™ Enterprise Applications Volume I: Architecture

134

 userHome.create("uid=\"norm\",ou=\"People\"," +
 "o=\"forethought.com\"",
 "Employee", "Norm", "Hitzges", dallasOffice);
 System.out.println("Created Forethought Users.\n");

 // Look up the Account bean
 System.out.println("Looking up the Account bean.");
 ref = context.lookup("forethought.AccountHome");
 AccountHome accountHome = (AccountHome)
 javax.rmi.PortableRemoteObject.narrow(ref,
 AccountHome.class);

 // Create accounts
 accountHome.create("Everyday", 900, shirley);
 accountHome.create("Money Market", 2500, shirley);
 accountHome.create("Savings", 5000, shirley);

 accountHome.create("Investment Plus", 10000, gary);
 accountHome.create("Money Market", 5000, gary);
 System.out.println("Created Forethought Accounts.\n");
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Compile this class (ensuring that you have your environment set up with the EJB and LDAP
classes, or by using the compileClients target in the Ant build file), and run it. You can use
the createEntities target of the supplied Ant build file to accomplish this, as shown here:

C:\dev\javaentI>ant createEntities
Buildfile: build.xml

init:

prepare:

compileUtilityClasses:
 [echo] Compiling the Forethought utility classes.

compileSequenceBean:
 [echo] Compiling the Forethought Sequence Bean classes.

compileTypeBeans:
 [echo] Compiling the Forethought Typed Bean classes.

compileOfficeBean:
 [echo] Compiling the Forethought Office Bean classes.

compileUserBean:
 [echo] Compiling the Forethought User Bean classes.

compileFundBean:
 [echo] Compiling the Forethought Fund Bean classes.

compileAccountBean:
 [echo] Compiling the Forethought Account Bean classes.

compileTransactionBean:
 [echo] Compiling the Forethought Transaction Bean classes.

Building Java™ Enterprise Applications Volume I: Architecture

135

compileLDAPClasses:
 [echo] Compiling the Forethought LDAP classes.

compile:

compileClients:
 [echo] Compiling Forethought application clients.

createClientJar:
 [echo] Creating the Forethought client jar.
 [jar] Updating jar: C:\dev\javaentI\output\forethoughtClient.jar

createEntities:
 [echo] Creating the Forethought entities...
 [java] Looking up the Office bean.
 [java] Created Forethought Offices.
 [java]
 [java] Looking up the Fund bean.
 [java] Created Forethought Funds.
 [java]
 [java] Looking up the LDAP Manager.
 [java] Added Forethought Permissions.
 [java]
 [java] Added Forethought Groups.
 [java]
 [java] Assigned Forethought Permissions.
 [java]
 [java] Added Forethought Users to LDAP.
 [java]
 [java] Assigned Forethought Users to Groups.
 [java]
 [java] Looking up the User bean.
 [java] Creating Forethought clients.
 [java] Creating Forethought employees.
 [java] Created Forethought Users.
 [java]
 [java] Looking up the Account bean.
 [java] Created Forethought Accounts.
 [java]

BUILD SUCCESSFUL

Total time: 15 seconds

And, as simple as that, you have a structure with data in place, ready for use. I'd encourage
you to use a database query tool to verify that the data has been inserted into your database,
and any tools that your directory server provides to do the same for your data store. Of course,
you could take a moment to write some simple Java classes to perform these tasks; certainly
the work done here should make that job fairly easy. You can also write a client to use the
LDAPManager class to view various users, groups, and permissions in the directory. Once you
are confident that your data stores are populated, it's time to move on to the next section of the
application.

7.4 What's Next?

You are finally ready to move on to the business tier of the application, where business logic
is handled. The business tier is made up largely of session beans, and you'll use it to build out
the infrastructure of the Forethought application. This tier will of course rest upon the

Building Java™ Enterprise Applications Volume I: Architecture

136

structure already in place, and will use this foundation for access to the database and directory
server. Expect to deal with lots of logic for handling user administration, investments,
transactions, account queries, and more in the next section of the book; we'll also look at the
Java Messaging Service (JMS) to handle communication of time-sensitive data. Make sure
your entity beans and LDAPManager classes are ready to go, and dive into the next chapters.

Building Java™ Enterprise Applications Volume I: Architecture

137

Chapter 8. Business Logic
You have now completed the data layer of your application, and are ready to dive into
the usiness layer. If you recall from Chapter 2, the business layer incorporates your
application's business logic. Specifically, you will need to provide access to your entity beans,
business calculations, and a scheduling facility. In this chapter, I'll detail the access to entity
beans already in place, and discuss how to handle more complex business tasks. Chapter 9
then details the scheduling process.

First, I'll discuss the façade pattern, in which you use session beans to access entity beans.
This access method is used instead of allowing direct access to entity beans, and is key to a
sound strategy in building enterprise applications. I'll also outline the problems and penalties
associated with this approach, giving you the information you need to make good decisions in
your own applications. This pattern goes hand in hand with the manager component discussed
in Chapter 6 when working with directory servers. I'll illustrate the pattern with a simple
example, an OfficeManager session bean.

From there, I'll move on to slightly more complex session beans. You'll see how a single
session bean can perform operations on multiple beans and on other Java components. You'll
build a UserManager component, which will administer users, and will operate upon the User
entity bean as well as the LDAPManager directory server component. This should give you an
idea of how to handle these more complex tasks.

Finally, I'll spend some time detailing the difference between stateless and stateful beans, and
demonstrate how stateful beans can generally be converted into simpler, more efficient
stateless session beans. You'll also see how helper classes can make stateless beans appear as
stateful ones, allowing your clients to get simple interfaces while your beans remain fast and
lightweight. I'll explore these concepts in developing an AccountManager component for
working with user accounts.

Before Going On
At this point, you need to make sure you have some components in place. In
addition to the code covered in the first seven chapters, you also need to make sure
that the other Forethought entity beans are in place and available for access. These
beans are detailed in Appendix E. These should be deployed in your EJB container,
as many will be referred to in this chapter. You can either type these beans in
yourself, or download the source code from the book's web site,
http://www.newinstance.com/.

8.1 The Façade Pattern

I've already mentioned the façade pattern in several earlier chapters, but never truly delved
into the pattern's details. It's appropriate to do that now, and see why an extra layer of
abstraction is necessary. In practice, most developers instinctively know that they should use a
layer of session beans that prevent direct entity bean access, but then convince themselves to
abandon this approach because they cannot justify it. I'll try and provide you some
justification for that decision here.

Building Java™ Enterprise Applications Volume I: Architecture

138

8.1.1 Data Schema Exposure

The most obvious rationale for using session beans to abstract entity beans is that the
approach also abstracts the structure of your data stores. To understand this better, you may
want to take a second look at the actual structure of the Forethought database schema, and the
SQL used to create it. Figure 8-1 shows the Forethought OFFICES table to serve as an
example.

Figure 8-1. The Forethought OFFICES table

The presumption is that you do not want to expose the inner workings of your application's
data store, or even the specifics of how that data is stored. In other words, letting users (also
known as potential hackers) know your database schema is a bad idea. Problems in this area
arise when allowing direct access to the entity bean layer. The methods in entity beans
typically map directly to underlying fields in the data schema, as shown in Figure 8-2.

Figure 8-2. Mapping the Office entity bean to the OFFICES table

As you can see, for each column in the OFFICES table, a corresponding method exists in the
Office entity bean. The same, of course, occurs for the rest of the database schema.

It is trivial to examine entity beans and then extrapolate the data schema from them, which is
precisely the situation you are trying to avoid in application design. This problem is simplified
by the introduction of session beans that abstract these details. For example, consider an
OfficeManager bean that provides methods to add, update, and delete Forethought offices.
The remote interface for this bean is shown in Example 8-1.

Building Java™ Enterprise Applications Volume I: Architecture

139

Example 8-1. The OfficeManager Remote Interface

package com.forethought.ejb.office;

import java.rmi.RemoteException;
import javax.ejb.EJBObject;

public interface OfficeManager extends EJBObject {

 public OfficeInfo get(String city, String state) throws
 RemoteException;

 public OfficeInfo add(String city, String state) throws
 RemoteException;

 public void update(OfficeInfo officeInfo) throws RemoteException;

 public boolean delete(String city, String state) throws
 RemoteException;
 public boolean delete(OfficeInfo officeInfo) throws RemoteException;
}

This interface manages to hide some of the details of database schema implementation. While
it might seem obvious to you that the OFFICES table contains a CITY and STATE text column,
you are seeing through the eyes of someone who already knows the database schema.
Figure 8-3 shows how this exact session bean might map to several different database
implementations; therefore, it does hide the database schema by providing logical methods on
entities, instead of physical methods.

Figure 8-3. Mapping the OfficeManager to different database schemas

You can see that it's no longer obvious exactly how the database is laid out. Using session
beans and the façade design pattern will aid in security by providing this layer of obfuscation[1]
over the data schema.

1 Obfuscation means "to make so confused or opaque as to be difficult to perceive or understand." It's often used to describe the process of scrambling
bytecode so that it cannot be decompiled, and is used here to represent the same concept with respect to the database schema in use.

Building Java™ Enterprise Applications Volume I: Architecture

140

Finally, for those of you still unsure why this is worth going on about, let me explain why this
obfuscation is so critical. Many of you are probably wondering why it is important to abstract
your database schema from your presentation layer; wouldn't the developers and designers of
one layer work with, or even be the same people as, the developers and designers of the other?
That would seem to be the case, at least in many situations. In fact, you will code the
Forethought application from front to back, so it might seem silly to go to this trouble.

However, as the era of service-based computing takes off, this process becomes vital. Instead
of providing complete applications, the J2EE specification (as well as Microsoft's .NET
platform, UDDI, SOAP, and other developments) indicates that organizations are focusing
more on components than on complete applications. Interchanging data components from one
application and company with presentation components from another application and
company is becoming common and even standard. As a result, it is unsafe to assume that only
you or your company's developers will be accessing your business layer and EJBs. You
should assume that your EJB layer will be exposed to many others, some of whom you want
to provide access but not application information to. For all of these reasons, a sound design
of the business layer can save you some trouble, even make you a hero, when your pointy-
haired boss insists that now the beans you worked on must be accessible by a new partner, but
that the partner doesn't get database schema information. Suddenly, the work done on your
session beans really begins to pay off!

I'll run briefly through the rest of the OfficeManager classes, as the actual implementation is
fairly trivial. Example 8-2 is the home interface for the bean.

Example 8-2. The OfficeManager Home Interface

package com.forethought.ejb.office;

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;

public interface OfficeManagerHome extends EJBHome {

 public OfficeManager create() throws CreateException,
RemoteException;
}

As you can see, this is a stateless session bean, which is the most efficient session bean. I'll
discuss this more later. You can see from the implementation class in Example 8-3 that no
state is required for the bean to function, and therefore using a stateless bean makes sense in
this case.

Example 8-3. The OfficeManager Implementation Class

package com.forethought.ejb.office;

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;
import javax.naming.Context;
import javax.naming.InitialContext;

import com.forethought.ejb.util.SessionAdapter;

Building Java™ Enterprise Applications Volume I: Architecture

141

public class OfficeManagerBean extends SessionAdapter {

 public void ejbCreate() throws CreateException {
 // No action required for stateless session beans
 }

 public OfficeInfo get(String city,String state) throws RemoteException{
 Office office = getOffice(city, state);
 if (office != null) {
 return office.getInfo();
 } else {
 return null;
 }
 }

 public OfficeInfo add(String city, String state) {
 try {
 // Get an InitialContext
 Context context = new InitialContext();

 // Look up the Office bean
 OfficeHome officeHome = (OfficeHome)
 context.lookup("java:comp/env/ejb/OfficeHome");
 Office office = officeHome.create(city, state);

 return office.getInfo();
 } catch (Exception e) {
 // Any problems - just return null
 return null;
 }
 }

 public void update(OfficeInfo officeInfo) throws RemoteException {
 Office office = getOffice(officeInfo.getId());
 office.setInfo(officeInfo);
 }

 public boolean delete(String city, String state) {
 Office office = getOffice(city, state);
 return delete(office);
 }

 public boolean delete(OfficeInfo officeInfo) {
 Office office = getOffice(officeInfo.getId());
 return delete(office);
 }

 private Office getOffice(int id) {
 try {
 // Get an InitialContext
 Context context = new InitialContext();

 // Look up the Office bean
 OfficeHome officeHome = (OfficeHome)
 context.lookup("java:comp/env/ejb/OfficeHome");
 Office office = officeHome.findByPrimaryKey(new Integer(id));

 return office;

Building Java™ Enterprise Applications Volume I: Architecture

142

 } catch (Exception e) {
 // Any problems - just return null
 return null;
 }
 }

 private boolean delete(Office office) {
 if (office == null) {
 return true;
 }

 try {
 office.remove();
 return true;
 } catch (Exception e) {
 // any problems - return false
 return false;
 }
 }

 private Office getOffice(String city, String state) {
 try {
 // Get an InitialContext
 Context context = new InitialContext();

 // Look up the Office bean
 OfficeHome officeHome = (OfficeHome)
 context.lookup("java:comp/env/ejb/OfficeHome");
 Office office = officeHome.findByLocation(city, state);

 return office;
 } catch (Exception e) {
 // Any problems - just return null
 return null;
 }
 }
}

You'll notice that this bean uses a new finder method on the Office entity bean,
findByLocation(). You can add this method to your OfficeHome class:

public Office findByLocation(String city, String state)
 throws FinderException, RemoteException;

Here's the relevant addition for the ejb-jar.xml file:

<query>
 <query-method>
 <method-name>findByLocation</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 <method-param>java.lang.String</method-param>
 </method-params>
 </query-method>
 <ejb-ql>
 <![CDATA[WHERE city = ?1 AND state = ?2]]>
 </ejb-ql>
</query>

Building Java™ Enterprise Applications Volume I: Architecture

143

Before leaving the façade pattern behind, there are a few other details related to this first
business-related bean worth detailing. First, notice that the manager beans are placed within
the same package as the related entity bean. This provides logical groupings of managers and
the related entities, and also makes access from manager component to entity bean simple
(notice that there weren't a lot of import statements required in the source code).

Additionally, the method names have been changed a bit; instead of create(), setCity(),
and getState(), the more conventional method names add(), update(), and delete()
are used. This is more in line with an administrative component, and moves away from the
strict conventions required in CMP entity beans. It also provides an easier-to-use interface for
client code.

8.1.2 Performance Penalties

In the interests of full disclosure, you should be aware that the façade pattern, with all of its
positives, does have some negatives. The significant problem with using this pattern is that it
can introduce some performance penalties into your applications. Using an extra bean for
communication (the session manager component) means that additional RMI calls must be
made. This, of course, causes increases in network traffic, serialization of arguments, and all
of the costs that any RMI call has. If both entity beans and session beans reside in the same
EJB container on a single server, these costs shrink to almost nothing;[2] however, this is often
not the case. It's more common to have session beans in one EJB container and entity beans in
another, often on completely different physical machines.

However, even this problem can be overcome. Instead of packaging all entity beans and
deploying them on one server, and packaging all session beans and deploying them on
another, you can use more logical (and sensible) groupings to improve performance.
Remember that you packaged a session bean, the SequenceBean, with the Forethought
entities already. In this same fashion, manager components that implement the façade design
pattern can be packaged with entity beans, ensuring that RMI communication is as fast as
possible; this also provides logical divisions between entities and their accessor classes (the
manager components) and business-driven components (the rest of the session beans).
Figure 8-4 shows this configuration in action. Here, the manager components are packaged in
the forethoughtEntities.jar archive, and in that way, become simple entities.

Figure 8-4. Logical separation of beans

Additionally, almost all manager components turn out to be stateless; in other words, each
method of the component operates on its own without any saved information. Using stateless
components also helps to offset penalties incurred through using the façade pattern. As
mentioned several times, stateless session beans outperform all other types of entity beans

2 In fact, most advanced EJB containers have optimizations for these "in-VM" calls, and will essentially drop the calls off the RMI stack and make
the calls locally, removing any RMI penalties at all.

Building Java™ Enterprise Applications Volume I: Architecture

144

substantially. Interestingly enough, entity beans consume the most resources of any bean, as
often one single instance is shared for containers (although there are as many variations on
this theme as there are container vendors). So it is safe to make your manager session beans
stateless.

These changes address the major downside of using the façade pattern; there are really no
other penalties (other than some extra coding) to this approach. Clearly it makes sense, then,
to implement it in the Forethought application as well as in your own.

8.2 The UserManager

Once offices are set up, the next logical step is to deal with Forethought users. Users are
crucial to any application, which makes the UserManager component a critical part of the
Forethought application. This particular manager component will also illustrate some of the
important reasons for using managers at all. Chief among those reasons are data source
transparency and data format transparency. Both offer advantages to the manager clients and
provide many of the security and ease-of-use benefits discussed earlier with regard to the
OfficeManager.

8.2.1 Data Source Transparency

In the case of Forethought offices, all information related to an office is stored in a single
table, in a single data source: the Forethought RDBMS OFFICES table, which we set up in
Chapter 3. While extremely convenient, this is most often not the case. It's a lot more
common to find that a single logical entity (like a user) has its information stored in multiple
tables (like the USERS and USER_TYPES tables), and even in multiple data sources (like the
Forethought database and the Forethought directory server). As a result, working with one
logical piece of data often requires operating upon multiple physical pieces of data. This can
become quite a pain for application clients: they must use JDBC to connect to a database,
SQL to select from and join together tables, and then JNDI to operate upon a directory server;
finally, the resultant information has to be spliced together in some meaningful form. As a
good developer, you should seek to avoid this complexity.

The User entity bean and the LDAPManager component have already alleviated some of
these problems; these two components abstract all the details of connection and specific SQL
and LDAP statements from the client. However, a client (or piece of code) would still have to
know that the core information about a user is in the database, and therefore an entity bean is
needed, while the authentication information is in a directory server, so the manager is
employed. Add to that the need to not only utilize the User entity bean, but the UserType and
possibly Office entity beans as well, and things are only marginally better than they were
without beans and managers at all. What is obviously needed here is another level of
abstraction. As the saying goes, "Everything in programming can be solved with another layer
of abstraction." It is here that UserManager-type components come in. By providing a single
component for working with users, the data sources involved with that component are hidden
from the client. For example, consider the process of adding a new user. Figure 8-5 shows that
while the client makes one single method invocation (to add()), the UserManager bean
actually operates upon the directory server as well as multiple entity beans. This transparency
of data source not only results in the client having a much easier means of adding a user, but
also removes any exposure of the underlying data schema.

Building Java™ Enterprise Applications Volume I: Architecture

145

Figure 8-5. The UserManager's add() method in action

8.2.2 Data Format Transparency

In addition to data source transparency, designers of complex systems often need to worry
about data format transparency. Data format transparency basically means that a client does
not have to make distinctions in data that characterize best practices in data storage. In other
words, a client does not have to worry about how data is actually stored. The back-end can be
designed according to the best practices in data storage; the client doesn't know or care about
the details. In other words, a client can act logically without having to think physically. Of
course, I've been addressing this logical-versus-physical concern for this entire chapter, so
there should be no surprises here. Consider that a client will be dealing with a user most often
by that user's username (such as "gqg10012"). However, the directory server and database
deal with the user's distinguished name (such as
uid=gqg10012,ou=People,o=forethought.com). Forcing the client to worry about that
lengthier and less meaningful format is clearly not desired. Your manager components can
hide these format details.

As an example, the UserManager component allows users to be specified by their usernames,
and then internally handles conversion to distinguished names. Of course, you already have a
method to do just this in the LDAPManager component. To accommodate new needs here, it
makes sense to make that method public. Additionally, there is no compelling need to require
an instance of LDAPManager to be available for using the method; as a result, the method can
be modified to be static, as well:

public static String getUserDN(String username) {
 return new StringBuffer()
 .append("uid=")
 .append(username)
 .append(",")
 .append(USERS_OU)
 .toString();
}

You'll want to make this change in your own manager component (including the
getGroupDN() and getPermissionDN() methods). With that done, the UserManager
component, as well as any other session bean dealing with users, can have interactions with
users based simply on a supplied username. As a result, clients don't need to deal with, or
even be aware of, the format in which usernames are stored in the data sources. In this way,
your managers provide data format transparency. Of course, this same principle could be
applied to allowing complete names to be specified ("Mike Rhyner" would become "Mike"
and "Rhyner" as first and last names), state conversions ("Texas" would become "TX"), and
so forth. In these ways, manager components can allow you to simplify the job of a client.

Building Java™ Enterprise Applications Volume I: Architecture

146

8.2.3 Getting to It

You're now ready to look at the code that composes the UserManager component, and
everything will become crystal clear. As always, I start with the remote interface. This is very
similar to the OfficeManager interface in the standard methods that it provides for working
with Forethought users. However, as users are a bit different than other Forethought entities,
you will notice a few extra methods, as shown in the code listing in Example 8-4. In addition
to providing two flavors of user creation (one with an office, and one without), there are
methods to authenticate a user and to change a user's password. Both of these deal specifically
with the authentication credentials of a user, and are common tasks in any application in
which security is used. Of course, these are fairly trivial "pass-through" style methods, in
which calls are made to the LDAPManager component to achieve the requested result.

Example 8-4. The UserManager Remote Interface

package com.forethought.ejb.user;

import java.rmi.RemoteException;
import javax.ejb.EJBObject;

// Office bean
import com.forethought.ejb.office.OfficeInfo;

// UserType bean
import com.forethought.ejb.userType.UnknownUserTypeException;

// LDAPManager component
import com.forethought.ldap.UserNotFoundException;

public interface UserManager extends EJBObject {

 public UserInfo get(String username) throws RemoteException;

 public UserInfo add(String username, String password,
 String firstName, String lastName,
 String userType)
 throws RemoteException, UnknownUserTypeException;

 public UserInfo add(String username, String password,
 String firstName, String lastName,
 String userType, OfficeInfo officeInfo)
 throws RemoteException, UnknownUserTypeException;

 public void update(UserInfo userInfo)
 throws RemoteException, UnknownUserTypeException;

 public boolean setPassword(String username, String oldPassword,
 String newPassword)
 throws RemoteException, UserNotFoundException;

 public boolean authenticate(String username, String password)
 throws RemoteException, UserNotFoundException;

 public boolean delete(String username) throws RemoteException;
 public boolean delete(UserInfo userInfo) throws RemoteException;
}

Building Java™ Enterprise Applications Volume I: Architecture

147

Example 8-5 shows the home interface for the UserManager component.

Example 8-5. The UserManager Home Interface

package com.forethought.ejb.user;

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;

public interface UserManagerHome extends EJBHome {

 public UserManager create() throws CreateException, RemoteException;
}

Note that several of these methods throw a UserNotFoundException; I mentioned this class
and its use in Chapter 7. However, I left the details of putting the class into use in the
LDAPManager component to you, as an exercise. Here's my modified version of the
isValidUser() method of LDAPManager, which issues this exception if authentication is
attempted with a nonexistent username:

public boolean isValidUser(String username, String password)
 throws UserNotFoundException {

 try {
 DirContext context =
 getInitialContext(hostname, port, getUserDN(username),
 password);
 return true;
 } catch (NamingException e) {
 // See if this was a missing user
 if (e instanceof javax.naming.AuthenticationException) {
 javax.naming.AuthenticationException ae =
 (javax.naming.AuthenticationException)e;
 if (ae.getResolvedObj() == null) {
 throw new UserNotFoundException(username);
 }
 }
 // Any error indicates couldn't log user in
 return false;
 }
}

There are certainly other ways to handle this problem that return the same result, but this was
the simplest I found. Since users with invalid passwords will have related resolved objects, a
test against null determines whether the authentication problem was in the supplied password
or the supplied username. You should make an equivalent change in your own LDAPManager
component before coding the UserManager's implementation class.

Additionally, you'll notice that this new manager has a method to update a user's password,
setPassword(). This makes perfect sense; however, no such method exists on the
LDAPManager component. You'll need to add this method into that class, as shown here:

Building Java™ Enterprise Applications Volume I: Architecture

148

public boolean updatePassword(String username, String oldPassword,
 String newPassword)
 throws UserNotFoundException {

 // Ensure this is a valid user, with a valid (old) password
 boolean isValidUser = isValidUser(username, oldPassword);
 if (!isValidUser) {
 return false;
 }

 try {
 // Get the user
 DirContext userContext =
 (DirContext)context.lookup(getUserDN(username));

 ModificationItem[] mods = new ModificationItem[1];

 // Create new password attribute
 mods[0] = new ModificationItem(DirContext.REPLACE_ATTRIBUTE,
 new BasicAttribute("userPassword", newPassword));

 // Replace old with new
 userContext.modifyAttributes("", mods);

 return true;
 } catch (NamingException e) {
 e.printStackTrace();
 return false;
 }
}

Why All the Back and Forth?
If you are following along with the code in this book, you may be wondering why I
am doing a lot of "back and forth" with adding methods, changing home interfaces,
updating existing methods, and so on. I certainly could have made any later changes
to my own code appear in earlier chapters (through the magic of editing and book
production). However, this book is about enterprise application programming, and
the constant refining of code is very much a part of that process. In other words, I'm
trying to give you at least a semi-realistic view of how real-life programming works.
Of course, you can download completed code for all classes online at
http://www.newinstance.com/ if you don't want to deal with these issues.

All that's left at this point is the session bean's implementation class. There is very little
explanation needed for this class; if you followed along in Chapter 6 and Chapter 7, you can
quickly pick up the code shown in Example 8-6. In a nutshell, the component acts as a client
to various entity beans and LDAP components, piecing together disparate functions into one
logical method. You should examine the groupings used for each method, and see how the
underlying data sources and data formats are harnessed into easy-to-use methods for manager
clients.

Building Java™ Enterprise Applications Volume I: Architecture

149

Example 8-6. The UserManager Implementation Class

package com.forethought.ejb.user;

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import com.forethought.ejb.util.SessionAdapter;

// Office bean
import com.forethought.ejb.office.OfficeInfo;

// UserType bean
import com.forethought.ejb.userType.UnknownUserTypeException;

// LDAPManager component
import com.forethought.ldap.LDAPManager;
import com.forethought.ldap.UserNotFoundException;

public class UserManagerBean extends SessionAdapter {

 /** <p> Required method for allowing bean lookups. </p> */
 public void ejbCreate() throws CreateException {
 // No action required for stateless session beans
 }

 public UserInfo get(String username) throws RemoteException {
 User user = getUser(username);
 if (user != null) {
 return user.getInfo();
 } else {
 return null;
 }
 }

 public UserInfo add(String username, String password,
 String firstName, String lastName,
 String userType)
 throws RemoteException, UnknownUserTypeException {

 // Simply delegate, without an office
 return add(username, password, firstName, lastName, userType,
 null);
 }

 public UserInfo add(String username, String password,
 String firstName, String lastName,
 String userType, OfficeInfo officeInfo)
 throws RemoteException, UnknownUserTypeException {

 boolean addedToDirectory = false;
 LDAPManager manager = null;
 try {
 // Add user to directory server
 manager = getLDAPManager();
 manager.addUser(username, firstName, lastName, password);
 addedToDirectory = true;

Building Java™ Enterprise Applications Volume I: Architecture

150

 // Get an InitialContext
 Context context = new InitialContext();

 // Add user to database
 UserHome userHome = (UserHome)
 context.lookup("java:comp/env/ejb/UserHome");
 User user = userHome.create(LDAPManager.getUserDN(username),
 userType, firstName, lastName,
 officeInfo);

 return user.getInfo();
 } catch (NamingException e) {
 /*
 * If added to directory, but not to database, remove back from
 * directory server
 */
 if (addedToDirectory) {
 try {
 manager.deleteUser(username);
 } catch (Exception ignored) {
 // If this dies, we're done
 }
 }
 } catch (CreateException e) {
 if (addedToDirectory) {
 try {
 manager.deleteUser(username);
 } catch (Exception ignored) {
 // If this dies, we're done
 }
 }
 }

 // If we got here, things failed
 return null;
 }

 public void update(UserInfo userInfo)
 throws RemoteException, UnknownUserTypeException {

 // This only involves database fields, so no LDAP access needed
 User user = getUser(userInfo.getId());
 user.setInfo(userInfo);
 }

 public boolean setPassword(String username, String oldPassword,
 String newPassword)
 throws UserNotFoundException {

 try {
 LDAPManager manager = getLDAPManager();
 return manager.updatePassword(username, oldPassword,
 newPassword);
 } catch (NamingException e) {
 return false;
 }
 }

Building Java™ Enterprise Applications Volume I: Architecture

151

 public boolean authenticate(String username, String password)
 throws UserNotFoundException {

 try {
 return getLDAPManager().isValidUser(username, password);
 } catch (NamingException e) {
 return false;
 }
 }

 public boolean delete(String username){
 User user = getUser(username);
 return delete(user);
 }

 public boolean delete(UserInfo userInfo) {
 User user = getUser(userInfo.getId());
 return delete(user);
 }

 private User getUser(int id) {
 try {
 // Get an InitialContext
 Context context = new InitialContext();

 // Look up the User bean
 UserHome userHome = (UserHome)
 context.lookup("java:comp/env/ejb/UserHome");
 User user = userHome.findByPrimaryKey(new Integer(id));

 return user;
 } catch (Exception e) {
 // Any problems - just return null
 return null;
 }
 }

 private User getUser(String username) {
 try {
 // Get an InitialContext
 Context context = new InitialContext();

 // Look up the User bean
 UserHome userHome = (UserHome)
 context.lookup("java:comp/env/ejb/UserHome");
 User user =
 userHome.findByUserDn(LDAPManager.getUserDN(username));

 return user;
 } catch (Exception e) {
 // Any problems - just return null
 return null;
 }
 }

 private boolean delete(User user) {
 if (user == null) {
 return true;
 }

Building Java™ Enterprise Applications Volume I: Architecture

152

 try {
 user.remove();
 return true;
 } catch (Exception e) {
 // Any problems - return false
 return false;
 }
 }

 private LDAPManager getLDAPManager() throws NamingException {
 /**
 * This could be set up to read from a properties file, but I have
 * kept it simple for example purposes.
 */
 LDAPManager manager =
 LDAPManager.getInstance("localhost", 389,
 "cn=Directory Manager",
 "forethought");
 return manager;
 }
}

Almost all of the code shown is fairly straightforward: simple JNDI lookups for entity beans
and operations upon those beans make up most of the class. Use of the LDAPManager
component makes up almost all of the rest of the code. As you can see, the process of using
two (or more) data sources, formats, or types is all abstracted nicely in the UserManager bean,
and allows the client to happily add, delete, and update users without worrying about physical
data storage details.

8.3 State Design

Continuing on with the Forethought business logic, I want to spend some time on the issue of
stateful versus stateless beans. I refer to it as an issue because it almost always manages to
come up when working with session beans, and can have a drastic effect on your application's
performance. Specifically, stateless session beans are much more efficient than stateful
session beans.

For a more detailed discussion on the issue, you can check out Richard Monson-Haefel's
Enterprise JavaBeans, which spends a great deal of print on how a container handles these
two kinds of beans. I'll briefly sum up the relevant portions here. A stateless session bean is a
very lightweight bean, since it needs to carry around only EJB-mandated variables, not
programmer-defined ones. As a result, most containers have pools of stateless beans. Because
no single client needs to have access to a specific stateless bean instance (no state is being
kept, remember), a single instance can serve two, three, ten, or even a hundred clients. This
allows the bean pool to be kept small, and negates a frequent need to grow or shrink the pool,
which would take valuable processor cycles.

A stateful bean is just the opposite: an instance is tied to the client that invoked its create()
method. This means that an instance must exist for every client accessing the stateful bean.
Therefore, the bean pools must be larger, or must frequently be grown as more requests come
in. The end result is longer process times, more beans, and fewer clients being served. The
moral of this technology tale is that if at all possible, you should use stateless session beans.

Building Java™ Enterprise Applications Volume I: Architecture

153

The following sections demonstrate these principles, and specifically how a bean that appears
to be a better stateful bean can easily be converted into a stateless one. This should provide
you with some good ideas about state design and some handy tips on how to convert your
own stateful beans into stateless ones.

8.3.1 Starting Stateful

Take the case of an AccountManager bean that will handle a single user's accounts. For this
exercise, I'll keep the methods required for the bean simple. Example 8-7 shows the remote
interface for this bean.

Example 8-7. The AccountManager Remote Interface

package com.forethought.ejb.account;

import java.rmi.RemoteException;
import java.util.List;
import javax.ejb.EJBObject;

// Account bean
import com.forethought.ejb.account.AccountInfo;

// AccountType bean
import com.forethought.ejb.accountType.UnknownAccountTypeException;

public interface AccountManager extends EJBObject {

 public AccountInfo add(String type, float balance)
 throws RemoteException, UnknownAccountTypeException;

 public AccountInfo get(int accountId) throws RemoteException;

 public List getAll() throws RemoteException;

 public AccountInfo deposit(AccountInfo accountInfo, float amount)
 throws RemoteException;

 public AccountInfo withdraw(AccountInfo accountInfo, float amount)
 throws RemoteException;

 public float getBalance(int accountId) throws RemoteException;

 public boolean delete(int accountId) throws RemoteException;
}

As you can see, the manager operates upon a single account for a single user. This design
allows a client to simply pass in the user's username one time (using the create() method),
and worry about details of the account independently of keeping up with a username.
Example 8-8 shows this method in the manager's home interface.

Building Java™ Enterprise Applications Volume I: Architecture

154

Example 8-8. The AccountManager Home Interface

package com.forethought.ejb.account;

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;

public interface AccountManagerHome extends EJBHome {

 public AccountManager create(String username)
 throws CreateException, RemoteException;
}

This interface provides a means to create a new account or to find all existing accounts for a
given username. Because the bean is keeping up with the account's user and the account's ID,
both required for entity bean interaction, the bean must be stateful. That is, since each
individual method uses the data, this information must be kept in the bean instance between
requests. For a better understanding of these details, review the bean's implementation code in
Example 8-9.

Example 8-9. The AccountManager Implementation Class

package com.forethought.ejb.account;

import java.rmi.RemoteException;
import java.util.Collection;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import javax.ejb.CreateException;
import javax.ejb.FinderException;
import javax.ejb.EJBHome;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import com.forethought.ejb.util.SessionAdapter;

// Account bean
import com.forethought.ejb.account.Account;
import com.forethought.ejb.account.AccountHome;
import com.forethought.ejb.account.AccountInfo;

// AccountType bean
import com.forethought.ejb.accountType.UnknownAccountTypeException;

// User bean
import com.forethought.ejb.user.User;
import com.forethought.ejb.user.UserHome;

// LDAPManager (for utility method)
import com.forethought.ldap.LDAPManager;

Building Java™ Enterprise Applications Volume I: Architecture

155

public class AccountManagerBean extends SessionAdapter {

 /** Username related to this account */
 private String username;

 /** User bean for this account's user */
 private User user;

 /** <p> Required method for allowing bean lookups. </p> */
 public void ejbCreate(String username)
 throws CreateException, RemoteException {

 this.username = username;

 try {
 // Get an InitialContext
 Context context = new InitialContext();

 // Look up the Account bean
 UserHome userHome = (UserHome)
 context.lookup("java:comp/env/ejb/UserHome");
 this.user =
 userHome.findByUserDn(LDAPManager.getUserDN(username));
 } catch (NamingException e) {
 throw new CreateException("Could not load underlying User
 bean.");
 } catch (FinderException e) {
 throw new CreateException("Could not locate specified user.");
 }
 }

 public AccountInfo add(String type, float balance)
 throws UnknownAccountTypeException {

 try {
 // Get an InitialContext
 Context context = new InitialContext();

 // Look up the Account bean
 AccountHome accountHome = (AccountHome)
 context.lookup("java:comp/env/ejb/AccountHome");
 Account account = accountHome.create(type, balance, user);
 return account.getInfo();
 } catch (RemoteException e) {
 return null;
 } catch (CreateException e) {
 return null;
 } catch (NamingException e) {
 return null;
 }
 }

 public AccountInfo get(int accountId) throws RemoteException {
 return getAccount(accountId).getInfo();
 }

Building Java™ Enterprise Applications Volume I: Architecture

156

 public List getAll() {
 List accounts = new LinkedList();
 try {
 Integer userId = user.getId();

 // Get an InitialContext
 Context context = new InitialContext();

 // Look up the Account bean
 AccountHome accountHome = (AccountHome)
 context.lookup("java:comp/env/ejb/AccountHome");
 Collection userAccounts = accountHome.findByUserId(userId);
 for (Iterator i = userAccounts.iterator(); i.hasNext();) {
 Account account = (Account)i.next();
 accounts.add(account.getInfo());
 }
 } catch (Exception e) {
 // Let fall through to the return statement
 }
 return accounts;
 }

 public AccountInfo deposit(AccountInfo accountInfo, float amount)
 throws RemoteException {

 // Look up bean, to ensure most current view of data
 Account account = getAccount(accountInfo.getId());
 AccountInfo info = account.getInfo();

 // Update balance
 info.setBalance(info.getBalance() + amount);
 try {
 account.setInfo(info);
 } catch (UnknownAccountTypeException neverHappens) { }
 return info;
 }

 public AccountInfo withdraw(AccountInfo accountInfo, float amount)
 throws RemoteException {

 // Look up bean, to ensure most current view of data
 Account account = getAccount(accountInfo.getId());
 AccountInfo info = account.getInfo();

 // Update balance
 info.setBalance(info.getBalance() - amount);
 try {
 account.setInfo(info);
 } catch (UnknownAccountTypeException neverHappens) { }
 return info;
 }

 public boolean delete(int accountId) {
 try {
 Account account = getAccount(accountId);
 account.remove();
 return true;
 } catch (Exception e) {
 return false;
 }
 }

Building Java™ Enterprise Applications Volume I: Architecture

157

 public float getBalance(int accountId) throws RemoteException {
 return getAccount(accountId).getBalance();
 }

 private Account getAccount(int id) {
 try {
 // Get an InitialContext
 Context context = new InitialContext();

 // Look up the Account bean
 AccountHome accountHome = (AccountHome)
 context.lookup("java:comp/env/ejb/AccountHome");
 Account account = accountHome.findByPrimaryKey(new
 Integer(id));

 return account;
 } catch (Exception e) {
 // Any problems - just return null
 return null;
 }
 }
}

This is all basic EJB material, and shouldn't cause you any problems. You'll notice that this
class also uses a new finder method on the Account bean:

public Collection findByUserId(Integer userId)
 throws FinderException, RemoteException;

The accompanying query element in the Account bean's entry in the ejb-jar.xml descriptor
would look like this:

<query>
 <query-method>
 <method-name>findByUserId</method-name>
 <method-params>
 <method-param>java.lang.Integer</method-param>
 </method-params>
 </query-method>
 <ejb-ql>
 <![CDATA[WHERE userLocal.id = ?1]]>
 </ejb-ql>
</query>

To deploy the AccountManager bean, you would use this (additional) XML entry in your ejb-
jar.xml deployment descriptor:

<session>
 <description>
 This AccountManager bean allows administration of Forethought accounts.
 </description>
 <ejb-name>AccountManagerBean</ejb-name>
 <home>com.forethought.ejb.account.AccountManagerHome</home>
 <remote>com.forethought.ejb.account.AccountManager</remote>
 <ejb-class>com.forethought.ejb.account.AccountManagerBean</ejb-class>
 <session-type>Stateful</session-type>
 <transaction-type>Container</transaction-type>

Building Java™ Enterprise Applications Volume I: Architecture

158

 <ejb-ref>
 <ejb-ref-name>ejb/AccountHome</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <home>com.forethought.ejb.account.AccountHome</home>
 <remote>com.forethought.ejb.account.Account</remote>
 <ejb-link>AccountBean</ejb-link>
 </ejb-ref>
</session>

Additions to your application server's vendor-specific descriptors should be equally simple.
With this bean in stateful form ready for use, it's time to see how it can be turned into a better-
performing stateless session bean.

8.3.2 Going Stateless

To move this bean into stateless territory, you first need to change the home interface's
create() signature. Since stateless beans can't maintain any information between method
calls, passing in a username (or any other data) to the create() method is useless. Make the
following change:

 public AccountManager create()
 throws CreateException, RemoteException;

Once this change has been made, you need to determine which methods advertised by the
bean require a username for operation. In other words, browse through your bean's
implementation class and note any method that uses the username or user method variable.
Once you've determined the methods in this category, you will need to change the signature
for those methods in the remote interface:

public interface AccountManager extends EJBObject {

 public AccountInfo add(String username, String type, float balance)
 throws RemoteException, UnknownAccountTypeException;

 public AccountInfo get(int accountId) throws RemoteException;

 public List getAll(String username) throws RemoteException;

 public AccountInfo deposit(AccountInfo accountInfo, float amount)
 throws RemoteException;

 public AccountInfo withdraw(AccountInfo accountInfo, float amount)
 throws RemoteException;

 public float getBalance(int accountId) throws RemoteException;

 public boolean delete(int accountId) throws RemoteException;
}

In this case, only two methods require this information, so it's not terribly inconvenient.
However, in many cases conversion from stateful to stateless requires a parameter to be added
to ten, twenty, or more methods. Even though this example is somewhat trivial, I want to
continue the discussion assuming that it is a major issue to have to keep the username around
for these multiple method calls. Before getting to the solution, though, you'll need to update

Building Java™ Enterprise Applications Volume I: Architecture

159

your bean implementation class to operate without maintaining state. First, add a utility
method to the end of the class:

private User getUser(String username) throws RemoteException {
 try {
 // Get an InitialContext
 Context context = new InitialContext();

 // Look up the Account bean
 UserHome userHome = (UserHome)
 context.lookup("java:comp/env/ejb/UserHome");
 User user = userHome.findByUserDn(LDAPManager.getUserDN(username));
 return user;
 } catch (NamingException e) {
 throw new RemoteException("Could not load underlying User bean.");
 } catch (FinderException e) {
 throw new RemoteException("Could not locate specified user.");
 }
}

Then remove the username and user member variables, and modify three methods (those
affected by the change to stateless):

public void ejbCreate() throws CreateException {
 // Nothing to be done for stateless beans
}

public AccountInfo add(String username, String type, float balance)
 throws UnknownAccountTypeException {

 try {
 // Get an InitialContext
 Context context = new InitialContext();

 // Get the correct user
 User user = getUser(username);

 // Look up the Account bean
 AccountHome accountHome = (AccountHome)
 context.lookup("java:comp/env/ejb/AccountHome");
 Account account = accountHome.create(type, balance, user);
 return account.getInfo();
 } catch (RemoteException e) {
 return null;
 } catch (CreateException e) {
 return null;
 } catch (NamingException e) {
 return null;
 }
}

public List getAll(String username) {
 List accounts = new LinkedList();

 try {
 User user = getUser(username);
 Integer userId = user.getId();

 // Get an InitialContext
 Context context = new InitialContext();

Building Java™ Enterprise Applications Volume I: Architecture

160

 // Look up the Account bean
 AccountHome accountHome = (AccountHome)
 context.lookup("java:comp/env/ejb/AccountHome");
 Collection userAccounts = accountHome.findByUserId(userId);
 for (Iterator i = userAccounts.iterator(); i.hasNext();) {
 Account account = (Account)i.next();
 accounts.add(account.getInfo());
 }
 } catch (Exception e) {
 // Let fall through to the return statement
 }
 return accounts;
}

Finally, don't forget to change your deployment descriptor:

<session>
 <description>
 This AccountManager bean allows administration of Forethought
 accounts.
 </description>
 <ejb-name>AccountManagerBean</ejb-name>
 <home>com.forethought.ejb.account.AccountManagerHome</home>
 <remote>com.forethought.ejb.account.AccountManager</remote>
 <ejb-class>com.forethought.ejb.account.AccountManagerBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 <ejb-ref>
 <ejb-ref-name>ejb/AccountHome</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <home>com.forethought.ejb.account.AccountHome</home>
 <remote>com.forethought.ejb.account.Account</remote>
 <ejb-link>AccountBean</ejb-link>
 </ejb-ref>
 <ejb-ref>
 <ejb-ref-name>ejb/UserHome</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <home>com.forethought.ejb.user.UserHome</home>
 <remote>com.forethought.ejb.user.User</remote>
 <ejb-link>UserBean</ejb-link>
 </ejb-ref>
 </session>

All things considered, these changes are relatively simple to make, and have the net effect of
making your bean faster, more efficient, and only marginally harder to use.

However, as I mentioned, there are times when the changes to the bean's remote interface are
more difficult. Passing in a username or any other piece of data ten, twenty, or more times to a
bean's methods can result in pain for the developer, and less-clear code. In these cases, a
simple helper class on the client can make a stateless session bean behave just as a stateful
one did. Example 8-10 shows this principle in action, detailing the AccountManagerHelper
utility class.

Building Java™ Enterprise Applications Volume I: Architecture

161

Example 8-10. An AccountManager Helper Class

package com.forethought.client;

import java.rmi.RemoteException;
import java.util.List;
import javax.ejb.CreateException;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.rmi.PortableRemoteObject;

// Account bean
import com.forethought.ejb.account.AccountInfo;
import com.forethought.ejb.account.AccountManager;
import com.forethought.ejb.account.AccountManagerHome;

// AccountType bean
import com.forethought.ejb.accountType.UnknownAccountTypeException;

public class AccountManagerHelper {

 /** The username for this account's user */
 private String username;

 /** The <code>AccountManager</code> bean instance */
 private AccountManager manager;

 public AccountManagerHelper(String username)
 throws CreateException, NamingException, RemoteException {

 this.username = username;

 Context context = new InitialContext();

 // Get the stateless bean instance
 Object ref = context.lookup("forethought.AccountManagerHome");
 AccountManagerHome accountManagerHome = (AccountManagerHome)
 PortableRemoteObject.narrow(ref, AccountManagerHome.class);
 this.manager = accountManagerHome.create();
 }

 public AccountInfo add(String type, float balance)
 throws RemoteException, UnknownAccountTypeException {

 return manager.add(username, type, balance);
 }

 public AccountInfo get(int accountId) throws RemoteException {
 return manager.get(accountId);
 }

 public List getAll() throws RemoteException {
 return manager.getAll(username);
 }

 public AccountInfo deposit(AccountInfo accountInfo, float amount)
 throws RemoteException {

 return manager.deposit(accountInfo, amount);
 }

Building Java™ Enterprise Applications Volume I: Architecture

162

 public AccountInfo withdraw(AccountInfo accountInfo, float amount)
 throws RemoteException {

 return manager.withdraw(accountInfo, amount);
 }

 public boolean delete(int accountId) throws RemoteException {
 return manager.delete(accountId);
 }

 public float getBalance(int accountId) throws RemoteException {
 return manager.getBalance(accountId);
 }
}

Looking at the methods available on this helper class, you should realize pretty quickly that it
mirrors the remote interface of the AccountManager session bean; however, it looks like the
stateful bean version, rather than the new stateless version. The constructor for the class then
takes the place of the old stateful bean's create() method from the home interface. This
class then maintains a bean instance, the username for the manager, and delegates to the
session bean. All of the same exceptions are passed through to the client, so the interface is
very similar; the only difference is that context lookups are handled within the helper class.
This makes the client code even simpler, as this code fragment shows:

// Look up the AccountManager bean
System.out.println("Looking up the AccountManager bean.");
AccountManagerHelper accountHelper =
 new AccountManagerHelper("gqg10012");

// Create an account
AccountInfo everydayAccount = accountHelper.add("Everyday", 5000);
if (everydayAccount == null) {
 System.out.println("Failed to add account.\n");
 return;
}
System.out.println("Added account.\n");

// Get all accounts
List accounts = accountHelper.getAll();
for (Iterator i = accounts.iterator(); i.hasNext();) {
 AccountInfo accountInfo = (AccountInfo)i.next();
 System.out.println("Account ID: " + accountInfo.getId());
 System.out.println("Account Type: " + accountInfo.getType());
 System.out.println("Account Balance: " +
 accountInfo.getBalance() + "\n");
}

// Deposit
accountHelper.deposit(everydayAccount, 2700);
System.out.println("New balance in everyday account: " +
 accountHelper.getBalance(everydayAccount.getId()) + "\n");

// Withdraw
accountHelper.withdraw(everydayAccount, 500);
System.out.println("New balance in everyday account: " +
 accountHelper.getBalance(everydayAccount.getId()) + "\n");

Building Java™ Enterprise Applications Volume I: Architecture

163

// Delete account
accountHelper.delete(everydayAccount.getId());
System.out.println("Deleted everyday account.");

You may find that helper classes like this can simplify your own client code, even if you don't
need to provide stateful session bean masquerading, where a stateless bean is made to look
like a stateful one. In any case, this approach provides the best of both session bean types: the
performance of a stateless bean with the interface of a stateful one. This technique will allow
you to convert all of your application's stateful session beans into stateless ones, which will
yield some dramatic performance improvements.

8.4 What's Next?

You now have the tools to build the back-end of almost any enterprise application you may
come across, and apply your knowledge to most of the problems you will encounter in the
enterprise Java space. In the next chapter, though, I want to move beyond the basics into the
less-used realm of the Java Message Service (and specifically, message-driven beans).
Although it is still somewhat unusual to see these kinds of beans in action, you will find that
JMS offers several attractive features. I'll detail these and how they can help in asynchronous
tasks in the next chapter, which focuses specifically on messaging in enterprise applications.

Building Java™ Enterprise Applications Volume I: Architecture

164

Chapter 9. Messaging and Packaging
Up until now, everything detailed in the Forethought application has been based on
synchronous processing. This simply means that an event is triggered by some client, then
responded to by an application component, and finally an answer is returned to that client. For
example, when a Java class requests that a new user be created, the UserManager accesses the
User bean, that bean interacts with the database, and an acknowledgment is triggered back up
the calling stack. The extensive coverage of this type of interaction is justified, as you will be
dealing with synchronous processing far more often than not.

However, there are times when you want more of a listener paradigm. In this case, an
application component waits for certain types of events and responds only when those events
occur. That component is called a listener, because it listens for application events. When it is
activated, it takes some sort of action, often interacting with various other components in the
application. It typically does not send any acknowledgment when its actions are done, making
it asynchronous in operation. I'll detail this sort of behavior in this chapter, focusing on the
scheduling component of the Forethought application. Meetings will be added to the
Forethought queue and reported to a scheduling client, which simply spits these meetings
back out to waiting recipients.

Additionally, this chapter will wrap up some loose ends by detailing the final packaging of the
enterprise beans detailed in this and previous chapters. This will fill in the blanks on assembly
descriptors, method permissions, and other deployment descriptor options previously left
uncovered. At the end of this chapter, you'll have a complete, working application foundation,
ready for use.

9.1 Messaging on the Server

To begin the discussion on messaging, I want to focus on the scheduling component of the
Forethought application. Specifically, I want to look at messaging components on the server.
By "the server," I simply mean the back-end of the application, as distinguished from any set
of application clients. This may or may not be a separate physical machine, but in either case,
it is distinct from application clients such as desktop programs or other application interface
tools. Once you understand how this messaging operates within the application, you will be
ready for the next section, where clients are discussed and built.

9.1.1 Premise

First, let's revisit the scheduler facility for the Forethought application. The application should
be able to store events that are important to the company. As you recall from Chapter 3, the
EVENTS table is set up for just such a purpose. Then, users in the Forethought application are
associated with these events and become attendees (not surprisingly, stored in the ATTENDEES
table). This is all fairly basic material.

Scheduling comes into play when you realize that individual employees will probably run
some type of calendar or scheduling software on their computers. For the sake of this
discussion, assume that this software is customizable, and that you can add features to it. That
is important, as it allows the messaging and scheduling components in the application to be
hooked into their desktop software. Given that assumption, the task becomes clear.

Building Java™ Enterprise Applications Volume I: Architecture

165

Each time a new event is added to the data store, a message should be fired off. This message
should indicate that a new event has been created, and also include the attendees for that
event. Since you should already have an Event entity bean (from Appendix E), it is fairly easy
to extrapolate the need for a session bean to handle the addition of data to that bean, as
discussed in the last chapter. I'll call this session bean Scheduler. While it could have been
called EventManager, I've used a different name to indicate that it is not a simple
administrative component, as the other manager beans were. This component will handle
creation of events, and then send off a Java Message Service (JMS) message indicating this
creation.

The purpose of this message is simple: it allows any application client subscribed to the same
JMS topic to which these messages are sent to consume the new message. The client can
examine the new event, and if the event has a certain individual as an attendee, it can sound
an alarm, send email, or otherwise notify the relevant attendee. I'll delve into specific
examples of these actions in Section 9.2. However, understand that once your component
makes these messages available through JMS, the possibilities for client interaction become
nearly limitless.

9.1.2 The EventManager Bean

Actually putting these principles into practice is not nearly as complex as you might expect.
First, you should already have the Event bean coded from Appendix E. You'll then need to
code up a manager session bean to allow access to this entity. I've kept this bean extremely
simple, as it's not the focus of this discussion. Example 9-1 shows the remote interface for this
new manager.

Example 9-1. The EventManager Remote Interface

package com.forethought.ejb.event;

import java.rmi.RemoteException;
import java.util.Collection;
import java.util.Date;
import javax.ejb.EJBObject;

public interface EventManager extends EJBObject {

 public EventInfo addEvent(String description, Date dateTime,
 Collection attendees)
 throws RemoteException;

 public boolean removeEvent(EventInfo eventInfo) throws RemoteException;
}

Example 9-2 is the home interface for the new manager.

Building Java™ Enterprise Applications Volume I: Architecture

166

Example 9-2. The EventManager Home Interface

package com.forethought.ejb.event;

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;

public interface EventManagerHome extends EJBHome {

 public EventManager create()
 throws CreateException, RemoteException;
}

Example 9-3 is the implementation class for this bean, and introduces some basic JMS
concepts.

Example 9-3. The EventManager Bean

package com.forethought.ejb.event;

import java.rmi.RemoteException;
import java.util.Collection;
import java.util.Date;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;
import javax.jms.JMSException;
import javax.jms.ObjectMessage;
import javax.jms.Topic;
import javax.jms.TopicConnection;
import javax.jms.TopicConnectionFactory;
import javax.jms.TopicPublisher;
import javax.jms.TopicSession;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import com.forethought.ejb.util.SessionAdapter;

public class EventManagerBean extends SessionAdapter {

 /** <p> Required method for allowing bean lookups. </p> */
 public void ejbCreate() throws CreateException {
 // No action required for stateless session beans
 }

 public EventInfo addEvent(String description, Date dateTime,
 Collection attendees)
 throws RemoteException {

 try {
 // Get an InitialContext
 Context context = new InitialContext();

 // Add event to database
 EventHome eventHome = (EventHome)
 context.lookup("java:comp/env/ejb/EventHome");
 Event event = eventHome.create(description, dateTime,
 attendees);
 EventInfo eventInfo = event.getInfo();

Building Java™ Enterprise Applications Volume I: Architecture

167

 // Get topic factory
 TopicConnectionFactory factory =
 (TopicConnectionFactory)context.lookup(
 "java:comp/env/jms/TopicFactory");
 Topic topic =
 (Topic)context.lookup("java:comp/env/jms/SchedulerTopic");

 // Connect to topic
 TopicConnection connection = factory.createTopicConnection();

 // Send off notification of this event creation
 TopicSession session =
 connection.createTopicSession(false,
 javax.jms.Session.AUTO_ACKNOWLEDGE);
 TopicPublisher publisher = session.createPublisher(topic);

 // Send message
 ObjectMessage message = session.createObjectMessage();
 message.setStringProperty("Action", "create");
 message.setObject(eventInfo);
 publisher.publish(message);
 connection.close();

 return eventInfo;
 } catch (NamingException e) {
 throw new RemoteException(e.getMessage());
 } catch (CreateException e) {
 throw new RemoteException(e.getMessage());
 } catch (JMSException e) {
 throw new RemoteException(e.getMessage());
 }
 }

 public boolean removeEvent(EventInfo eventInfo) throws
 RemoteException {
 Event event = getEvent(eventInfo.getId());

 boolean deleted = delete(event);
 if (deleted) {
 try {
 // Get an InitialContext
 Context context = new InitialContext();

 // Get topic factory
 TopicConnectionFactory factory =
 (TopicConnectionFactory)context.lookup(
 "java:comp/env/jms/TopicFactory");
 Topic topic =
 (Topic)context.lookup("java:comp/env/jms/SchedulerTopic");

 // Connect to topic
 TopicConnection connection =
 factory.createTopicConnection();

 // Send off notification of this event
 TopicSession session =
 connection.createTopicSession(false,
 javax.jms.Session.AUTO_ACKNOWLEDGE);
 TopicPublisher publisher = session.createPublisher(topic);

Building Java™ Enterprise Applications Volume I: Architecture

168

 // Send message
 ObjectMessage message = session.createObjectMessage();
 message.setStringProperty("Action", "delete");
 message.setObject(eventInfo);
 publisher.publish(message);
 connection.close();
 } catch (JMSException e) {
 throw new RemoteException(e.getMessage());
 } catch (NamingException e) {
 throw new RemoteException(e.getMessage());
 }
 }

 return deleted;
 }

 private Event getEvent(int id) {
 try {
 // Get an InitialContext
 Context context = new InitialContext();

 // Look up the User bean
 EventHome eventHome = (EventHome)
 context.lookup("java:comp/env/ejb/EventHome");
 Event event = eventHome.findByPrimaryKey(new Integer(id));

 return event;
 } catch (Exception e) {
 // Any problems - just return null
 return null;
 }
 }

 private boolean delete(Event event) {
 if (event == null) {
 return true;
 }
 try {
 event.remove();
 return true;
 } catch (Exception e) {
 // any problems - return false
 return false;
 }
 }
}

While the bulk of this code is the same manager-style coding you've seen in previous
chapters, there is some messaging tucked into the addEvent() and removeEvent()
methods. I won't go into any detail about how JMS works, as both Enterprise JavaBeans and
Java Message Service (both from O'Reilly) cover this in depth. However, you should be able
to see that in both creation and deletion, notification is sent out to anyone listening on the
Forethought topic.

In this example, I've chosen to use the ObjectMessage type, which allows any serializable
object to be sent as the body of the message. Of course, the information map for the event
class (EventInfo) is a perfect fit here, and one more reason to use these value objects. That
class, in turn, contains a List of UserInfo objects, so even more information is stuffed into

Building Java™ Enterprise Applications Volume I: Architecture

169

the message body. Additionally, some indication of what action has occurred needs to be
included. Rather than putting this application-specific data into the information map, a string
property of the message is set, which will be decoded by message recipients. The result is a
simple yet useful message that is broadcast upon creation and deletion of events in the
Forethought system. This completes the EventManager bean, and allows us to move on to a
message-driven bean that will consume and use these messages.

9.1.3 Business Logic and Messaging Logic

As in the case of using pure JMS, described in the last section, I am not going to discuss the
basics of message-driven beans. Instead, I'll simply show you a new bean for your
application, the Scheduler bean, which consumes messages from the EventManager bean just
created. One nice thing about message-driven beans is that they are completely server-based
components. This means that no remote or home interface is required. Given that,
Example 9-4 jumps straight to the implementation code for this new bean.

Example 9-4. The Scheduler Bean

package com.forethought.ejb.scheduler;

import java.util.Iterator;
import java.util.List;
import javax.ejb.EJBException;
import javax.ejb.MessageDrivenBean;
import javax.ejb.MessageDrivenContext;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.ObjectMessage;
import javax.jms.Session;
import javax.jms.Topic;
import javax.jms.TopicConnection;
import javax.jms.TopicConnectionFactory;
import javax.jms.TopicSession;
import javax.jms.TopicPublisher;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

// Event bean
import com.forethought.ejb.event.EventInfo;

// User bean
import com.forethought.ejb.user.UserInfo;

public class SchedulerBean implements MessageDrivenBean {

 /** The context for the message-driven bean, set by the EJB container
*/
 private MessageDrivenContext messageContext;

 /** Required creation method for message-driven beans */
 public void ejbCreate() {
 // No action required for message-driven beans
 }

Building Java™ Enterprise Applications Volume I: Architecture

170

 /** Required removal method for message-driven beans */
 public void ejbRemove() {
 messageContext = null;
 }

 /** Required method for container to set context */
 public void setMessageDrivenContext(MessageDrivenContext
 messageContext) {
 this.messageContext = messageContext;
 }

 public void onMessage(Message message) {
 try {
 // Convert to the correct message type
 ObjectMessage objectMessage = (ObjectMessage)message;

 // Dissect message
 String action = objectMessage.getStringProperty("Action");
 EventInfo eventInfo = (EventInfo)objectMessage.getObject();

 // Dispatch
 sendEventNotification(action, eventInfo);
 } catch (JMSException e) {
 throw new EJBException(e);
 } catch (NamingException e) {
 throw new EJBException(e);
 }
 }

 private void sendEventNotification(String action, EventInfo eventInfo)
 throws JMSException, NamingException {

 // Ignore deleted events
 if (action.equalsIgnoreCase("delete")) {
 return;
 }

 // Ensure that at least one employee involved
 boolean hasEmployee = false;
 for (Iterator i = eventInfo.getAttendees().iterator();
 i.hasNext();) {
 UserInfo userInfo = (UserInfo)i.next();
 if (userInfo.getType().equals("Employee")) {
 hasEmployee = true;
 break;
 }
 }
 if (!hasEmployee) {
 return;
 }

 // Get the client topic destination
 Context context = new InitialContext();
 TopicConnectionFactory factory =
 (TopicConnectionFactory)context.lookup(
 "java:comp/env/jms/TopicFactory");
 Topic topic =
 (Topic)context.lookup("java:comp/env/jms/EmployeeTopic");

 // Connect to topic
 TopicConnection connection = factory.createTopicConnection();

Building Java™ Enterprise Applications Volume I: Architecture

171

 // Send off notification of this event
 TopicSession session =
 connection.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);
 TopicPublisher publisher = session.createPublisher(topic);

 // Build message
 ObjectMessage message = session.createObjectMessage();
 message.setObject(eventInfo);
 publisher.publish(message);

 // Close up
 connection.close();
 }
}

As you can see, this bean does some basic data filtering but not much more. It uses the
onMessage() method to consume any and all messages from the EventManager bean or any
other publisher to the Scheduler topic. It then sends out new messages to the Employee topic
(introduced for the first time here), using another ObjectMessage, through the
sendEventNotification() method. Given that this bean does little more than resend
messages, you are probably wondering why it even exists. This is a good question, and has a
good answer.

The EventManager bean could have easily sent messages directly to the Employee topic,
handling filtering on its own. However, that assumes that no other action needs to be taken.
For example, a more advanced Scheduler bean might update a company-wide directory server
with the event information, log the changes to a static text file, and update a scheduling
database using entity beans. This logic is specific to scheduling, not simple creation and
addition of events. If all of this scheduling logic were added into the EventManager
component, it would quickly become unclear what code in that bean was specifically event-
related, and what code was scheduling-related. In other words, the bean would quickly cease
to be a simple manager/administrative component.

Further, that scenario presumes that only the EventManager takes action related to scheduling.
It's plausible that other beans, Java classes, or messaging clients might also be able to update
events, change attendees, or perform other scheduling-related actions. By taking all
scheduling-related code and placing it in a separate bean, any additional logic can be
maintained in a single place (the Scheduler bean). Finally, this design allows changes to
scheduling logic to occur without having to make the EventManager unavailable; if this
happened, the EventManager would simply be sending messages out that would be consumed
at a later date (or not at all, as the case may be). In any case, it should be clear that separating
your messaging logic from your data logic is critical, and explains the reasoning behind a
separate Scheduler bean. Don't be fooled by the simplicity of the current Scheduler
implementation; things in a real-world system would quickly become more complex than
shown here.

You should now follow the appendixes' and your server's instructions to deploy these new
components, including the message-driven bean. Once those resources are in place, it's time to
look at writing a standalone Java client that takes these messages and does something with
them.

Building Java™ Enterprise Applications Volume I: Architecture

172

9.2 Messaging on the Client

At this point, handling messaging from the client perspective is a piece of cake. It's simply a
matter of connecting to the messaging service (through your application server's messaging
middleware) and listening to a specific Topic or Queue. To ensure that you can get some
sample code up and running to see how this works, I've included Example 9-5, a simple
listener class.

Example 9-5. The JMSTester Class

package com.forethought.client;

import java.util.Date;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.ObjectMessage;
import javax.jms.Session;
import javax.jms.TextMessage;
import javax.jms.Topic;
import javax.jms.TopicConnection;
import javax.jms.TopicConnectionFactory;
import javax.jms.TopicSession;
import javax.jms.TopicSubscriber;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

// Event bean
import com.forethought.ejb.event.EventInfo;

// User bean
import com.forethought.ejb.user.UserInfo;

public class JMSTester implements MessageListener {

 public JMSTester(String factoryName, String topicName)
 throws JMSException, NamingException {

 Context context = getInitialContext();

 // Get topic factory
 TopicConnectionFactory factory =
 (TopicConnectionFactory)context.lookup(factoryName);
 Topic topic = (Topic)context.lookup(topicName);

 // Connect to topic
 TopicConnection connection = factory.createTopicConnection();

 // Send off notification of this event creation
 TopicSession session =
 connection.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);
 TopicSubscriber subscriber = session.createSubscriber(topic);

 subscriber.setMessageListener(this);

Building Java™ Enterprise Applications Volume I: Architecture

173

 System.out.println("Starting connection listener on '" +
 topicName + "'...");
 connection.start();
 }

 public void onMessage(Message message) {
 try {
 ObjectMessage objectMessage = (ObjectMessage)message;
 String action = objectMessage.getStringProperty("Action");
 if (action == null) {
 action = "NO ACTION SPECIFIED";
 }
 Object obj = objectMessage.getObject();

 EventInfo info = (EventInfo)obj;
 String description = info.getDescription();
 Date dateTime = info.getDateTime();
 System.out.println("[" + action + "]");
 System.out.println(" * Description: " + description);
 System.out.println(" * Date: " + dateTime);
 } catch (JMSException e) {
 e.printStackTrace();
 }

 }

 public static void main(String[] args) {
 try {
 new JMSTester("forethought.TopicFactory", args[0]);

 while (true) {
 Thread.sleep(1000);
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 private Context getInitialContext() throws NamingException {
 // Insert application-specific connection details here if needed
 return new InitialContext();
 }
}

This is loosely based on code from both Enterprise JavaBeans and Java Message Service, so
thanks to Richard Monson-Haefel and Dave Chappell for the good work. You can start this
client up and simply specify the JNDI name of the messaging topic to listen to. You also
might want to add some logic to add a few events, as shown here:

 // Look up the EventManager bean
 System.out.println("Looking up the EventManager bean.\n");
 ref = context.lookup("forethought.EventManagerHome");
 EventManagerHome eventManagerHome = (EventManagerHome)
 PortableRemoteObject.narrow(ref, EventManagerHome.class);
 EventManager eventManager = eventManagerHome.create();

 // Create an event
 java.text.DateFormat formatter =
 java.text.DateFormat.getDateInstance();
 List attendees = new LinkedList();

Building Java™ Enterprise Applications Volume I: Architecture

174

 attendees.add(userManager.get("shirlbg"));
 attendees.add(userManager.get("gqg10012"));
 EventInfo eventInfo =
 eventManager.addEvent("Lunch Meeting",
 formatter.parse("February 1, 2002 11:30am CST"),
 attendees);
 if (eventInfo != null) {
 System.out.println("Created new event (#1).\n");
 } else {
 System.out.println("Could not create event #1.");
 return;
 }

 List clients = new LinkedList();
 clients.add(userManager.get("shirlbg"));
 clients.add(userManager.get("rhyner"));
 clients.add(userManager.get("greggo"));
 EventInfo eventInfo2 =
 eventManager.addEvent("Round Table",
 formatter.parse("March 8, 2002 1:45pm CST"),
 clients);
 if (eventInfo2 != null) {
 System.out.println("Created new event (#2).\n");
 } else {
 System.out.println("Could not create event #2.");
 return;
 }

 // Remove event
 deleted = eventManager.removeEvent(eventInfo);
 if (!deleted) {
 System.out.println("Could not delete event #1.");
 return;
 }
 System.out.println("Deleted event #1.");

 deleted = eventManager.removeEvent(eventInfo2);
 if (!deleted) {
 System.out.println("Could not delete event #2.");
 return;
 }
 System.out.println("Deleted event #2.\n");

Several sample classes are included with the book's downloadable code (online at
http://www.newinstance.com/), and those examples include classes that add events as shown.
These events trigger messages from the EventManager bean, and those messages are then
received by the Scheduler bean. In the previous example, the first event is not passed on to the
Employee topic because it involves two clients; the second event, though, should be received
by the Employee topic. Both deletions are ignored by the Scheduler bean and are not passed
on to the Employee topic.

To see this code in action, open up several windows. Run the JMSTester in two, one
connecting to the forethought.EmployeeTopic and one connecting to the
forethought.SchedulerTopic. You can then see both sets of event notifications. Finally (in a
third window or shell), run the code that creates events, as shown previously. You should see
the messages appear in both shells running the listener sample application:

Building Java™ Enterprise Applications Volume I: Architecture

175

Starting connection listener on 'forethought.SchedulerTopic'...
[create]
 * Description: Lunch Meeting
 * Date: Fri Feb 01 00:00:00 CST 2002
[create]
 * Description: Round Table
 * Date: Fri Mar 08 00:00:00 CST 2002
[delete]
 * Description: Lunch Meeting
 * Date: Fri Feb 01 00:00:00 CST 2002
[delete]
 * Description: Round Table
 * Date: Fri Mar 08 00:00:00 CST 2002

Here's the same sample listening to a different topic:

C:\dev\javaentI>java com.forethought.client.JMSTester
forethought.EmployeeTopic
Starting connection listener on 'forethought.EmployeeTopic'...
[NO ACTION SPECIFIED]
 * Description: Round Table
 * Date: Fri Mar 08 00:00:00 CST 2002

As you can see, everything is behaving just as planned. You could embed the relevant
listening component of JMSTester in a calendar application, an alarm clock program, or any
other desktop program that would help employees know when meetings are set and when they
are about to occur. The possibilities are limited only by your own programming imagination.

9.3 Packaging

So far, I've left the details of method permissions, as well as roles and transactions, out of
deployment discussions, primarily to avoid confusing an already complex set of issues. With
the coding in this book done, though, it's time to circle back around and deal with these issues,
as they complete the Forethought deployment descriptors.

First, realize that all these options exist within the assembly-descriptor element, which
itself exists as a child of the root element in the descriptor, ejb-jar. It should follow right
after the enterprise-beans element. This is all basic information, though, so I won't dwell
on it; I assume you can use your server's tools and DTDs to determine the basics of the XML
formatting. You should also realize that the entire assembly-descriptor element is optional
in a deployment descriptor. That said, the only good reason for leaving the assembly-
descriptor out is the case where you are developing beans, but someone else in your
organization is actually deploying your beans. In other words, no application should have
deployed beans (in production) without assembly descriptors for those beans.

9.3.1 Security Roles

The first option you have is to define one or more security roles. As is detailed in Enterprise
JavaBeans, these roles are merely logical; there are no predefined roles in the EJB 2.0
specification that can be used. Instead, the role names used here are mapped at deployment
time to actual security parameters in the application environment. Furthermore, these logical
roles are most often associated with actual physical roles when the web access layer is

Building Java™ Enterprise Applications Volume I: Architecture

176

defined. Because authentication is handled in the web tier (or web services tier) more often
than not, it is often premature at this point to assume too much about security.

In the case of the Forethought application, everything defined so far is accessible by any
administrator. Because I have left the Forethought business logic concerning investments,
transactions, and other business-specific details out, this is the only role I define in the
descriptor:

 <assembly-descriptor>
 <security-role>
 <description>
 The Administrator role is used for any user that must perform data
 access and direct manipulation of the Forethought data. It allows
 use of the manager beans in the Forethought application.
 </description>
 <role-name>Administrator</role-name>
 </security-role>
 </assembly-descriptor>

9.3.2 Method Permissions

Next , you can define one or more method permissions. These permissions use the roles
defined in the security-role element, and so naturally follow the placement of those
elements. This is also well covered in various EJB books, and involves simply mapping the
logical roles in your application to specific bean methods:

 <assembly-descriptor>
 <security-role>
 <description>
 The Administrator role is used for any user that must perform data
 access and direct manipulation of the Forethought data. It allows
 use of the manager beans in the Forethought application.
 </description>
 <role-name>Administrator</role-name>
 </security-role>

 <method-permission>
 <role-name>Administrator</role-name>
 <method>
 <ejb-name>UserManagerBean</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 </assembly-descriptor>

As a warning, some application servers (including the J2EE SDK) do not handle the wildcard
(*) very well, and report errors with this sort of declaration. However, these are not errors, as
the EJB specification states that wildcards are acceptable values for the method-name
element.

I won't spend any more time on roles or permissions, as there are no real design strategies to
speak of yet. Future volumes will cover linking the web application tier and web services tier
with beans, and coordinating method permissions in that respect. At this point, though, you
can define as few or as many logical roles as you like to get familiar with this portion of the
XML descriptor.

Building Java™ Enterprise Applications Volume I: Architecture

177

9.3.3 Container Transactions

The last option is to define one or more container transactions. For the beans detailed in this
book, you should require that a transaction exist for each and every entity bean in the
application. This is a fairly basic principle; you always want transaction safety in place when
dealing with your database.

However, there is a little more to be worked out with regard to the various session beans in
the application. First, take the Sequence bean; this bean is always used in the various entity
beans' ejbCreate() methods. Therefore, the Supports value is sufficient. This value
ensures that if a transaction exists, it will be used; however, if a non-transactional component
is in use, it will not require a new transaction to be committed. This value is in use any time a
component (like the Sequence bean) is operating upon application data that does not have to
be kept pristine. For example, a primary key value that is one or two values too high is of no
consequence. Use an entry like this for the Sequence bean:

 <container-transaction>
 <method>
 <ejb-name>SequenceBean</ejb-name>
 <method-name>getNextValue</method-name>
 </method>
 <trans-attribute>Supports</trans-attribute>
 </container-transaction>

All of your entity beans should also require transactions. Even if the calling component does
not have a transaction in existence, one should be required for operating on business data.
This is defined in a similar way as shown previously, with only a different value for the
transaction attribute:

 <container-transaction>
 <method>
 <ejb-name>UserBean</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 <container-transaction>
 <method>
 <ejb-name>OfficeBean</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>

Finally, you need to decide how to manage transactions for your façade and manager beans,
which expose this data to application clients. Here, you will most likely see these beans called
from nontransactional components, such as servlets, Java classes, or web services. Because
these beans often deal with multiple data sources (users, office, and types, for example), they
should also work within transactions. Therefore, the Required transaction attribute value
would seem appropriate here, as well.

However, you must decide how to handle the case in which one manager (such as
AccountManager) might use another manager (such as UserManager). The two options are to
use the same transaction throughout (a value of Required), or to require a new transaction for

Building Java™ Enterprise Applications Volume I: Architecture

178

the scope of each manager (a value of RequiresNew). I prefer to have each manager executing
within its own transaction. This keeps data consistency, but also allows a manager's actions to
be separated from another manager's actions. My deployment entries would then look like
this:

 <container-transaction>
 <method>
 <ejb-name>UserManagerBean</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>RequiresNew</trans-attribute>
 </container-transaction>
 <container-transaction>
 <method>
 <ejb-name>AccountManagerBean</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>RequiresNew</trans-attribute>
 </container-transaction>

I realize that this is hardly an exhaustive discussion of transactions and security. However,
these issues are either very basic (allowing or disallowing access, requiring or not requiring a
transaction), or incredibly complex (manually handling rollbacks, relational data integrity,
multi-phase commits). As a result, these topics must be either handled briefly, as I have done,
or in depth in books focused on transactions or security. I'll leave it to you to decide if you
need the additional complexity in your applications. If you do, I highly recommend Java
Security by Scott Oaks and Database Programming with JDBC and Java by George Reese
(both from O'Reilly), which focus extensively on these topics .

9.4 What's Next?

After adding JMS capabilities and packaging information to your application programming
toolkit, you really do have the tools to build almost any Java enterprise application
conceivable. While there is certainly an endless array of variables that will change in your
own programming, you should feel confident that you have the knowledge and techniques
required to handle those changes. From here, it's a short ride to handling application front-
ends.

In the next chapter, I'll address that very issue. While this volume does not cover web
applications, web services, or other front-end paradigms, I don't want to leave you without
some guidance on where to go from here. Chapter 10 should give you some direction, as well
as an impetus to explore more than just the application foundations discussed in this volume.
I'll also include some discussion on why so many of the decisions in this book were made,
answer some of those "why?" questions still floating around, and really have you ready to
take on enterprise applications.

Building Java™ Enterprise Applications Volume I: Architecture

179

Chapter 10. Beyond Architecture
You now have a solid application backbone in place. You may be expecting another five or
ten chapters detailing how to write a GUI or HTML interface, servlets and JavaServer Pages
for application logic, a web services interface, or any number of other layers. However, the
Building Java Enterprise Applications series is geared at teaching you solid application
design. For that reason, this chapter marks the end of this volume, and leaves discussion of
application front-ends for Volumes II and III.

If this doesn't make much sense to you, consider that any application backbone, like the
Forethought application used throughout the book, should be easily segregated into several
discrete layers. Figure 10-1 illustrates this, and should remind you of the discussions from
Chapter 2.

Figure 10-1. Application layering

As you can see, a web services front-end relies on the same back-end as does a traditional
J2EE web application (servlets, JSP, etc.). If you design your application backbone
specifically for presentation through a web application, then using that same backbone for a
web application can become awkward and kludgy. By the same token, a backbone built to
work specifically with a web services presentation layer can cause problems when converting
or adding a web presentation layer using HTML, WML, and other markup languages. The
best approach, then, is to design your application's infrastructure to be wholly independent of
any specific presentation layer. That is the approach endorsed and detailed in this book, and
the reasoning behind why this volume does not discuss front-end issues.

In this chapter, I'll explain further how some of the decisions made in previous chapters are
critical to the layers you will add on top of the application infrastructure. I'll begin by
discussing how decisions made in these "lower" application layers can improve the flexibility
of your application. From there, I'll move on to some general discussion on how to determine
what sort of application front-end you may want to add to your own applications. This
provides a natural progression into future volumes, and some advice on how to proceed with
your application programming.

10.1 Flexibility

The first thing you should always consider in developing applications is maintaining
flexibility in your design. I realize that I have devoted the last nine chapters to this principle,
but it's well worth repeating. I'll briefly run over the salient points in relation to application
architecture here, for use in your own programming projects. You can also see these in effect
in the various code samples throughout the book, as well as in Appendix E.

Building Java™ Enterprise Applications Volume I: Architecture

180

10.1.1 Data Modeling Versus Entity Modeling

The first consideration in design flexibility is in how you model your data. In the Forethought
case, this refers to the way that your database and directory server expose the contained
information to the rest of the application. When you are developing a single application, this
detail is not as important as it is when you have multiple entry points into the application. For
example, when not only servlets access the data layer but also session beans, a web service
client, and possibly CORBA components, the issue becomes much more important. In these
cases, the model used to expose data must be generic enough to support these multiple points
of entry.

Specifically, you will need to decide if your entity beans and data access components model
your data, or model your entities. I realize that this may seem like a confusing distinction to
make. However, consider the User bean. It is possible to expose the information about a user
as a data model, with its ID, user DN, username, first and last name, related office ID, and so
forth. You can then expose offices the same way, and programmatically build the link
between users and offices. In other words, you simply provide access to the data model, and
then have your Java components handle any joins, links, etc. The problem here is that you
have exposed data without giving it any context, allowing application components to misuse
the data, interpret it incorrectly, or even provide clients with data you don't want them to have
(like user passwords or database IDs).

A better approach is to provide this data as entities; the difference is that an entity is data with
some specific context. For example, instead of getting the ID of a user's office, a client would
only be able to get the actual office object (the Office bean in an EJB application). In this
way, your data layer doesn't provide database IDs and the like, but instead provides entities
that protect this database-specific information from users. Extending this case even further,
using session beans (through the façade pattern as well as simple business objects) provides
even greater insulation over your data layer. In this way, you can handle security, data
integrity, and relationships between pieces of data in your application backbone; front-ends
for the data layer do not have to worry about how data is interpreted, as that interpretation is
handled before it ever sees the data. In retrospect, it should be obvious how this principle was
applied throughout the application design in this book. Additionally, CMP in EJB 2.0 makes
this even easier with persistence relationships, removing the need for entity beans to ever
directly interact with other tables' IDs.[1]

10.1.2 Single Point of Access

Another important point to keep in mind is the number of access points that your application
backbone will provide. By access points, I do not mean user interfaces or client interactions,
but data access points. For example, a servlet front-end and a web service front-end that both
use the same data layer (like the one outlined in this book) use the same access point, because
they go through the same session and entity beans to get at the data. Changing the way that
this access point functions affects all front-ends using it for access, which is exactly what you
want.

However, when multiple access points are present, things get more complex. For example,
consider the use of the Sequence session bean. This bean depends upon the PRIMARY_KEYS

1 Actually, container-generated classes for your CMP beans may have to interact with these IDs. However, the interfaces and simple abstract classes
that you write are free of these sorts of details.

Building Java™ Enterprise Applications Volume I: Architecture

181

table, which in turn assumes that primary keys are always obtained through this table. If
another access point were provided for the Forethought tables (through another set of entity
beans not using the Sequence bean, direct JDBC access, or even non-Java access), the primary
key values in the PRIMARY_KEYS table become stale and invalid. In fact, continuing to use the
Sequence bean can then result in errors because of duplicate primary key values.

This rather sticky situation isn't the only reason to avoid multiple access points. You also
introduce significant security risks; a change to access rights in one access point doesn't affect
security in the others. This means that every transactional change, every security access
change, and every database or directory server change must be propagated to every single
access point available. Therefore, you would do well to provide a single means of data access,
and then enforce that rule. This was an assumption made in the Forethought application
design, and many decisions in effect in this book would be invalidated if multiple access
points were to be provided.

One final note is in order, though: a single access point does not mean that you cannot mix
APIs like JDBC, EJB, and even newer technologies like JDO (Java Data Objects, not covered
in this book). An access point can use any and all of these various APIs, but does so in a way
that integrates, rather than segregates, methodologies. Your effort to limit access points does
not limit the technologies you use; it simply limits the number of entry points provided for
other application clients. Although at first glance limiting the access points might seem to
decrease flexibility, you can actually allow more types of clients to access your application
because you know you can maintain control and configuration over your data layer.

10.1.3 Standardized Access APIs

The final point I want to make in terms of providing flexibility is in your choice of APIs. I
realize that because you have chosen Java for your programming, you may already have
chosen standardized APIs like the J2EE API set, JAXP, WSDL, UDDI, and the like.
However, for those of you who want to understand why a decision was made, or who must
justify a decision to managers (and that should cover just about all of you), it's worth pointing
out that by using a set of established APIs, you ensure that application clients can easily
communicate with your application infrastructure.

As an example, you may want to expose a portion of your data to other companies or
businesses. In the Forethought case, this might be other brokerages or financial institutions
that can leverage your investment data. For this to occur, those external entities must be able
to communicate with your application. Rather than expecting those clients to work with
proprietary data formats, proprietary APIs, and a whole set of application-specific idioms, you
can simply inform these clients that you provide (for example) session beans via RMI/IIOP
for data access. Transaction levels and security rights all still apply, and it becomes fairly
trivial for companies to implement cross-company communications. This is only possible
through the use of standard, accepted APIs for application access.

By the same token, you would want the same convenience when your code must interact with
other companies' data. Rather than having to write thousands of lines of code to interpret
company- or vendor-specific paradigms, you can use the techniques in this and other Java and
XML books to make these tasks simple. Just as you would prefer this sort of setup for your
coding, you should take the same steps to allow others to interact with your code. Even if you
never need to interact with external code, maintenance and upkeep are simplified when

Building Java™ Enterprise Applications Volume I: Architecture

182

standard programming techniques using documented APIs are in play. Again, some rather
simple (and logical) decisions early on can greatly increase the flexibility of your applications
in the long run.

10.2 Decision Point

I don't want to leave you completely on your own in terms of what to program next.
Obviously, you need some sort of user interface on top of the infrastructure put together so
far, and of course it needs to fit in with the architecture described up to this point. The two
most common application front-end paradigms, as of this writing, are the standard web
application (servlets, JSP) and the web services framework (SOAP, UDDI, WSDL). I'll
briefly touch on each. This will also give you some insight as to what the next volumes will
cover.

10.2.1 Web Applications

A web application, in the context of this book, is meant to refer to a J2EE-centric application
programming model. This means that servlets are used for application logic, and either
provide presentation on their own or defer to some other presentation technology. Popular
options in this area are JavaServer Pages (JSP), frameworks like Apache Turbine
(http://jakarta.apache.org/turbine), and Apache Cocoon (http://xml.apache.org/cocoon). While
these are just a few of many examples for handling content and presentation, they all build on
the J2EE core APIs (usually servlets), and well-understood Java and XML APIs like SAX,
DOM, and JDOM.

If you don't know what type of front-end you want to provide to the end user, this is almost
certainly the best choice. It is the most common, and as a result you can easily find resources
on the relevant technologies. Books like Java Servlet Programming and JavaServer Pages
(both from O'Reilly) provide good introductions to these APIs, and will get you quickly up
and running. Additionally, building web services and other front-ends can most easily be done
upon an existing web application. And, obviously, a web application provides access through
any standard web browser, as well as providing easy inroads into web-enabled phones, PDAs,
and other mobile devices.

If you do decide to move into the web application world, you should employ the same
principles endorsed in this book. Start with a layer for application logic, using servlets. Ensure
that any content is handled independently of presentation details, so the same data can be
shown to an HTML browser, an XML viewer, or a WML phone; this is in the same vein as
the clean separation of data and business logic detailed in this book. From there, move into
presentation technologies, and try not to code in such a way that only specifically formatted
content is accepted. In other words, developing an engine for converting data into presentation
is a better idea than simply taking very specific data and creating a very specific screen for
viewing. I will focus on these very ideas in Volume II of this series, Web Applications.

10.2.2 Web Services

Coming in a close second to the traditional web application is the web services paradigm. I
should start by saying that web services are still young enough that any predictions here or
anywhere else are just that: predictions. Don't depend on them, as things could easily change a
year, a month, or even a week from now. That said, it does appear that web services are going

Building Java™ Enterprise Applications Volume I: Architecture

183

to play an important part in the next generation of web-enabled applications. The emergence
of semi-standards like WSDL and full-blown standards like UDDI and SOAP offer a lot of
promise to a higher degree of application interoperation than what is currently available.

If you do want to web-service-enable your application, you should probably start by adding
some application logic on top of what was discussed in this book. Remember, the more
context you can add to your data, the more useful it becomes to other companies. A book is
more useful than a collection of titles and ISBN numbers, and a "library" (in some object
form) is generally more useful than just a book. Although it is certainly possible to expose
EJBs directly as web services, it is generally a better idea to add some layer of functionality
on top of these beans.

You should also begin to dig into the various web services specifications, like SOAP and
UDDI. You may also want to check out related books, like Programming Web Services with
SOAP (O'Reilly), a language-independent look at web applications, and Java & XML
(O'Reilly), which covers SOAP, WSDL, and UDDI for Java specifically. You can also find
example code online at locations like http://xml.apache.org/soap. Many application server
vendors, like BEA Weblogic and Lutris Enhydra, also offer web services "packs" or add-ons
to their server products, which provide tools to aid in conversion from beans and Java classes
to web services. I won't cover web services in detail until Volume III of this series, in order to
let some of the glitter shake off the paradigm in favor of stability and proven techniques.

10.3 What's Next?

Despite all of the information covered, it can still be confusing to decide what to do next.
With over a thousand lines of code in this book, you still do not have a complete application.
And while I hope you pick up Volume II of this series when it becomes available, I certainly
wouldn't advise you not to press on in the interim. So, in closing, I want to provide some
suggestions on how to proceed in your enterprise application programming.

First, take some time to understand the supplemental code in Appendix E. While I didn't
cover all of this in detail in the various chapters, there is quite a bit of information stuffed in
between curly braces and brackets. The code (particularly when downloaded from
http://www.newinstance.com/) is loaded with comments and Javadoc, and illustrates some
concepts in addition to those explicitly covered in the text of the book. You can also gain a
good bit of insight about container-managed persistence in EJB 2.0, the nuts and bolts of the
Java Message Service and message-driven beans, and more. I've included all of this code in
printed form in Appendix E, so take advantage of the listings.

Next, try to find something at your job to apply these concepts to. Your own assignments in
the enterprise application space should allow you a test bed for the concepts mentioned here
and for techniques of your own. My ideas all stem from actual problems I've had to solve; you
should assemble your own toolkit of similar ideas and programming idioms. In other words,
practice makes perfect, and you need to do more than simply read through this book to master
application programming in Java.

Finally, don't wait on a book to start building out your application. Develop a servlet front-
end, code up some JSPs, or delve into web services, using either the Forethought backbone or
an application of your own. This will put you ahead of those who won't venture into new
territory without a roadmap, and you may find yourself teaching them before long. Future

Building Java™ Enterprise Applications Volume I: Architecture

184

volumes of this series, or other books, may cause you to make changes down the line;
however, you will have a sound understanding of what led you to these changes, and that
experience is invaluable. Most of all, enjoy yourself, and I'll see you online.

Building Java™ Enterprise Applications Volume I: Architecture

185

Appendix A. SQL Scripts
This appendix contains the SQL scripts that are specific to a variety of different databases. In
addition to adding enhancements that will improve performance on a specific database, these
scripts omit any constructs that are not supported by a specific database (for example,
the InstantDB script does not employ foreign keys, a feature still under development). If you
are having trouble with the standard SQL scripts provided in Chapter 3 or Chapter 5, check to
see if a script for your specific database is included here.[A] All of the scripts shown here are
available for download online by visiting http://www.newinstance.com/.

Additionally, many of these scripts contain information that is not SQL, but instead is an
instruction set for the database. For example, the Cloudscape database needs connection
information specified at the head of any SQL script run against it, and InstantDB needs
information about the JDBC driver to use. For each of the databases covered here, specific
deployment details are covered in Appendix B. Any additional information specified in
the examples in this appendix is also used in Appendix B as part of deployment.

Finally, the scripts used to create the accounts storage assume that the scripts to create
the user store have already been run. In other words, if you are using Cloudscape, you must
execute the script in Example A-1 before executing the one in Example A-6. This is because
the foreign key constraint on the USER_ID in the ACCOUNTS table references a column that
must already exist from the USERS table. Errors will result if the user store has not already
been created. Again, following the steps outlined in Appendix B will ensure these problems
do not arise.

A If your database is not covered here, please feel free to send a working SQL script (for both the users and accounts storage) to me directly at
brett@newInstance.com. If I can ensure that it works, I will be happy to include it online and in updated versions of this book. I welcome people
helping me to support a large number of databases.

Building Java™ Enterprise Applications Volume I: Architecture

186

A.1 The User Store

The SQL scripts in this section duplicate the functionality of the script shown in Example 3-1,
and create the storage for user information.

A.1.1 Cloudscape

Example A-1 is a version of the SQL script that works on the Cloudscape Java database.

Example A-1. SQL Script for Creating the User Store on Cloudscape Databases

-- USER_TYPES table
CREATE TABLE USER_TYPES (
 USER_TYPE_ID INT PRIMARY KEY NOT NULL,
 USER_TYPE VARCHAR(20) NOT NULL
);

-- OFFICES table
CREATE TABLE OFFICES (
 OFFICE_ID INT PRIMARY KEY NOT NULL,
 CITY VARCHAR(20) NOT NULL,
 STATE CHAR(2) NOT NULL
);

-- USERS table
CREATE TABLE USERS (
 USER_ID INT PRIMARY KEY NOT NULL,
 OFFICE_ID INT NOT NULL,
 USER_DN VARCHAR(100) NOT NULL,
 USER_TYPE_ID INT NOT NULL,
 FIRST_NAME VARCHAR(20) NOT NULL,
 LAST_NAME VARCHAR(30) NOT NULL,
 CONSTRAINT OFFICE_ID_FK FOREIGN KEY (OFFICE_ID)
 REFERENCES OFFICES (OFFICE_ID),
 CONSTRAINT USER_TYPE_ID_FK FOREIGN KEY (USER_TYPE_ID)
 REFERENCES USER_TYPES (USER_TYPE_ID)
);

Building Java™ Enterprise Applications Volume I: Architecture

187

A.1.2 InstantDB

Example A-2 is a version of the SQL script that creates the user store for an InstantDB
database, and in particular work on the version of InstantDB that ships with Lutris EAS,
Version 4.1.

Example A-2. SQL Script for Creating the User Store on InstantDB Databases

; Load InstantDB JDBC drivers
d org.enhydra.instantdb.jdbc.idbDriver;
o jdbc:idb=forethought.prp;

; USER_TYPES table
e CREATE TABLE USER_TYPES (
 USER_TYPE_ID INT PRIMARY KEY NOT NULL,
 USER_TYPE VARCHAR(20) NOT NULL
);

; OFFICES table
e CREATE TABLE OFFICES (
 OFFICE_ID INT PRIMARY KEY NOT NULL,
 CITY VARCHAR(20) NOT NULL,
 STATE CHAR(2) NOT NULL
);

; USERS table
e CREATE TABLE USERS (
 USER_ID INT PRIMARY KEY NOT NULL,
 OFFICE_ID INT NOT NULL,
 USER_DN VARCHAR(100) NOT NULL,
 USER_TYPE_ID INT NOT NULL,
 FIRST_NAME VARCHAR(20) NOT NULL,
 LAST_NAME VARCHAR(30) NOT NULL
);

; Close up
c close;

Building Java™ Enterprise Applications Volume I: Architecture

188

A.1.3 MySQL

Example A-3 is a version of the SQL script that creates the user store on a MySQL database.

Example A-3. SQL Script for Creating the User Store on MySQL Databases

-- USER_TYPES table
CREATE TABLE USER_TYPES (
 USER_TYPE_ID INT PRIMARY KEY NOT NULL,
 USER_TYPE VARCHAR(20) NOT NULL
);

-- OFFICES table
CREATE TABLE OFFICES (
 OFFICE_ID INT PRIMARY KEY NOT NULL,
 CITY VARCHAR(20) NOT NULL,
 STATE CHAR(2) NOT NULL
);

-- USERS table
CREATE TABLE USERS (
 USER_ID INT PRIMARY KEY NOT NULL,
 OFFICE_ID INT NOT NULL,
 USER_DN VARCHAR(100) NOT NULL,
 USER_TYPE_ID INT NOT NULL,
 FIRST_NAME VARCHAR(20) NOT NULL,
 LAST_NAME VARCHAR(30) NOT NULL,
 CONSTRAINT OFFICE_ID_FK FOREIGN KEY (OFFICE_ID)
 REFERENCES OFFICES (OFFICE_ID),
 CONSTRAINT USER_TYPE_ID_FK FOREIGN KEY (USER_TYPE_ID)
 REFERENCES USER_TYPES (USER_TYPE_ID)
);

Building Java™ Enterprise Applications Volume I: Architecture

189

A.1.4 Oracle

The SQL script shown in Example A-4 creates the user store on Oracle databases, and in
particular Version 8.x of the database.

Example A-4. SQL Script for Creating the User Store on Oracle Databases

-- USER_TYPES table
CREATE TABLE USER_TYPES (
 USER_TYPE_ID INTEGER PRIMARY KEY NOT NULL,
 USER_TYPE VARCHAR2(20) NOT NULL
);

-- OFFICES table
CREATE TABLE OFFICES (
 OFFICE_ID INTEGER PRIMARY KEY NOT NULL,
 CITY VARCHAR2(20) NOT NULL,
 STATE CHAR(2) NOT NULL
);

-- USERS table
CREATE TABLE USERS (
 USER_ID INTEGER PRIMARY KEY NOT NULL,
 OFFICE_ID INTEGER NOT NULL,
 USER_DN VARCHAR2(100) NOT NULL,
 USER_TYPE_ID INTEGER NOT NULL,
 FIRST_NAME VARCHAR2(20) NOT NULL,
 LAST_NAME VARCHAR2(30) NOT NULL,
 CONSTRAINT OFFICE_ID_FK FOREIGN KEY (OFFICE_ID)
 REFERENCES OFFICES (OFFICE_ID),
 CONSTRAINT USER_TYPE_ID_FK FOREIGN KEY (USER_TYPE_ID)
 REFERENCES USER_TYPES (USER_TYPE_ID)
);

Building Java™ Enterprise Applications Volume I: Architecture

190

A.1.5 PostgreSQL

Example A-5 is an SQL script that creates the user store on PostgreSQL databases.

Example A-5. SQL Script for Creating the User Store on PostgreSQL Databases

-- USER_TYPES table
CREATE TABLE USER_TYPES (
 USER_TYPE_ID INT PRIMARY KEY NOT NULL,
 USER_TYPE VARCHAR(20) NOT NULL
);

-- OFFICES table
CREATE TABLE OFFICES (
 OFFICE_ID INT PRIMARY KEY NOT NULL,
 CITY VARCHAR(20) NOT NULL,
 STATE CHAR(2) NOT NULL
);

-- USERS table
CREATE TABLE USERS (
 USER_ID INT PRIMARY KEY NOT NULL,
 OFFICE_ID INT NOT NULL,
 USER_DN VARCHAR(100) NOT NULL,
 USER_TYPE_ID INT NOT NULL,
 FIRST_NAME VARCHAR(20) NOT NULL,
 LAST_NAME VARCHAR(30) NOT NULL,
 CONSTRAINT OFFICE_ID_FK FOREIGN KEY (OFFICE_ID)
 REFERENCES OFFICES (OFFICE_ID),
 CONSTRAINT USER_TYPE_ID_FK FOREIGN KEY (USER_TYPE_ID)
 REFERENCES USER_TYPES (USER_TYPE_ID)
);

Building Java™ Enterprise Applications Volume I: Architecture

191

A.2 The Accounts Store

The SQL scripts in this section handle the creation of the accounts store under different
databases, and are equivalent to the script shown in Example 3-3 of the text.

A.2.1 Cloudscape

The SQL script shown in Example A-6 creates the accounts store and constraints on
Cloudscape databases.

Example A-6. SQL Script for Creating the Accounts Store on Cloudscape Databases

-- ACCOUNT_TYPES table
CREATE TABLE ACCOUNT_TYPES (
 ACCOUNT_TYPE_ID INT PRIMARY KEY NOT NULL,
 ACCOUNT_TYPE VARCHAR(20) NOT NULL
);
-- ACCOUNTS table
CREATE TABLE ACCOUNTS (
 ACCOUNT_ID INT PRIMARY KEY NOT NULL,
 USER_ID INT NOT NULL,
 ACCOUNT_TYPE_ID INT NOT NULL,
 BALANCE FLOAT NOT NULL,
 CONSTRAINT USER_ID_FK FOREIGN KEY (USER_ID)
 REFERENCES USERS (USER_ID),
 CONSTRAINT ACCOUNT_TYPE_ID_FK FOREIGN KEY (ACCOUNT_TYPE_ID)
 REFERENCES ACCOUNT_TYPES (ACCOUNT_TYPE_ID)
);
-- TRANSACTIONS table
CREATE TABLE TRANSACTIONS (
 TRANSACTION_ID INT PRIMARY KEY NOT NULL,
 ACCOUNT_ID INT NOT NULL,
 AMOUNT FLOAT NOT NULL,
 DATE_TIME DATE NOT NULL,
 CONSTRAINT ACCOUNT_ID_FK FOREIGN KEY (ACCOUNT_ID)
 REFERENCES ACCOUNTS (ACCOUNT_ID)
);

-- FUNDS table
CREATE TABLE FUNDS (
 FUND_ID INT PRIMARY KEY NOT NULL,
 NAME VARCHAR(20) NOT NULL,
 DESCRIPTION VARCHAR(200)
);

-- INVESTMENTS table
CREATE TABLE INVESTMENTS (
 INVESTMENT_ID INT PRIMARY KEY NOT NULL,
 FUND_ID INT NOT NULL,
 ACCOUNT_ID INT NOT NULL,
 INITIAL_AMOUNT FLOAT NOT NULL,
 YIELD FLOAT,
 CONSTRAINT FUND_ID_FK FOREIGN KEY (FUND_ID)
 REFERENCES FUNDS (FUND_ID),
 CONSTRAINT ACCOUNT_ID_FK2 FOREIGN KEY (ACCOUNT_ID)
 REFERENCES ACCOUNTS (ACCOUNT_ID)
);

Building Java™ Enterprise Applications Volume I: Architecture

192

A.2.2 InstantDB

Example A-7 is an SQL script that creates the accounts store for InstantDB databases.

Example A-7. SQL Script for Creating the Accounts Store on InstantDB Databases

; Load InstantDB JDBC drivers
d org.enhydra.instantdb.jdbc.idbDriver;
o jdbc:idb=forethought.prp;

; ACCOUNT_TYPES table
e CREATE TABLE ACCOUNT_TYPES (
 ACCOUNT_TYPE_ID INT PRIMARY KEY NOT NULL,
 ACCOUNT_TYPE VARCHAR(20) NOT NULL
);

; ACCOUNTS table
e CREATE TABLE ACCOUNTS (
 ACCOUNT_ID INT PRIMARY KEY NOT NULL,
 USER_ID INT NOT NULL,
 ACCOUNT_TYPE_ID INT NOT NULL,
 BALANCE FLOAT NOT NULL
);

; TRANSACTIONS table
e CREATE TABLE TRANSACTIONS (
 TRANSACTION_ID INT PRIMARY KEY NOT NULL,
 ACCOUNT_ID INT NOT NULL,
 AMOUNT FLOAT NOT NULL,
 DATE_TIME DATE NOT NULL
);

; FUNDS table
e CREATE TABLE FUNDS (
 FUND_ID INT PRIMARY KEY NOT NULL,
 NAME VARCHAR(20) NOT NULL,
 DESCRIPTION VARCHAR(200)
);

; INVESTMENTS table
CREATE TABLE INVESTMENTS (
 INVESTMENT_ID INT PRIMARY KEY NOT NULL,
 FUND_ID INT NOT NULL,
 ACCOUNT_ID INT NOT NULL,
 INITIAL_AMOUNT FLOAT NOT NULL,
 YIELD FLOAT
);

; Close up
c close;

Building Java™ Enterprise Applications Volume I: Architecture

193

A.2.3 MySQL

Example A-8 is an SQL script that creates the accounts store on MySQL databases.

Example A-8. SQL Script for Creating the Accounts Store on MySQL Databases

-- ACCOUNT_TYPES table
CREATE TABLE ACCOUNT_TYPES (
 ACCOUNT_TYPE_ID INT PRIMARY KEY NOT NULL,
 ACCOUNT_TYPE VARCHAR(20) NOT NULL
);

-- ACCOUNTS table
CREATE TABLE ACCOUNTS (
 ACCOUNT_ID INT PRIMARY KEY NOT NULL,
 USER_ID INT NOT NULL,
 ACCOUNT_TYPE_ID INT NOT NULL,
 BALANCE FLOAT NOT NULL,
 CONSTRAINT USER_ID_FK FOREIGN KEY (USER_ID)
 REFERENCES USERS (USER_ID),
 CONSTRAINT ACCOUNT_TYPE_ID_FK FOREIGN KEY (ACCOUNT_TYPE_ID)
 REFERENCES ACCOUNT_TYPES (ACCOUNT_TYPE_ID)
);

-- TRANSACTIONS table
CREATE TABLE TRANSACTIONS (
 TRANSACTION_ID INT PRIMARY KEY NOT NULL,
 ACCOUNT_ID INT NOT NULL,
 AMOUNT FLOAT NOT NULL,
 DATE_TIME DATE NOT NULL,
 CONSTRAINT ACCOUNT_ID_FK FOREIGN KEY (ACCOUNT_ID)
 REFERENCES ACCOUNTS (ACCOUNT_ID)
);

-- FUNDS table
CREATE TABLE FUNDS (
 FUND_ID INT PRIMARY KEY NOT NULL,
 NAME VARCHAR(20) NOT NULL,
 DESCRIPTION VARCHAR(200)
);

-- INVESTMENTS table
CREATE TABLE INVESTMENTS (
 INVESTMENT_ID INT PRIMARY KEY NOT NULL,
 FUND_ID INT NOT NULL,
 ACCOUNT_ID INT NOT NULL,
 INITIAL_AMOUNT FLOAT NOT NULL,
 YIELD FLOAT,
 CONSTRAINT FUND_ID_FK FOREIGN KEY (FUND_ID)
 REFERENCES FUNDS (FUND_ID),
 CONSTRAINT ACCOUNT_ID_FK2 FOREIGN KEY (ACCOUNT_ID)
 REFERENCES ACCOUNTS (ACCOUNT_ID)
);

Building Java™ Enterprise Applications Volume I: Architecture

194

A.2.4 Oracle

The SQL script shown in Example A-9 creates the storage for accounts information on Oracle
databases.

Example A-9. SQL Script for Creating the Accounts Store on Oracle Databases

-- ACCOUNT_TYPES table
CREATE TABLE ACCOUNT_TYPES (
 ACCOUNT_TYPE_ID INTEGER PRIMARY KEY NOT NULL,
 ACCOUNT_TYPE VARCHAR2(20) NOT NULL
);

-- ACCOUNTS table
CREATE TABLE ACCOUNTS (
 ACCOUNT_ID INTEGER PRIMARY KEY NOT NULL,
 USER_ID INTEGER NOT NULL,
 ACCOUNT_TYPE_ID INTEGER NOT NULL,
 BALANCE FLOAT NOT NULL,
 CONSTRAINT USER_ID_FK FOREIGN KEY (USER_ID)
 REFERENCES USERS (USER_ID),
 CONSTRAINT ACCOUNT_TYPE_ID_FK FOREIGN KEY (ACCOUNT_TYPE_ID)
 REFERENCES ACCOUNT_TYPES (ACCOUNT_TYPE_ID)
);

-- TRANSACTIONS table
CREATE TABLE TRANSACTIONS (
 TRANSACTION_ID INTEGER PRIMARY KEY NOT NULL,
 ACCOUNT_ID INTEGER NOT NULL,
 AMOUNT FLOAT NOT NULL,
 DATE_TIME DATE NOT NULL,
 CONSTRAINT ACCOUNT_ID_FK FOREIGN KEY (ACCOUNT_ID)
 REFERENCES ACCOUNTS (ACCOUNT_ID)
);

-- FUNDS table
CREATE TABLE FUNDS (
 FUND_ID INTEGER PRIMARY KEY NOT NULL,
 NAME VARCHAR2(20) NOT NULL,
 DESCRIPTION VARCHAR2(200)
);

-- INVESTMENTS table
CREATE TABLE INVESTMENTS (
 INVESTMENT_ID INTEGER PRIMARY KEY NOT NULL,
 FUND_ID INTEGER NOT NULL,
 ACCOUNT_ID INTEGER NOT NULL,
 INITIAL_AMOUNT FLOAT NOT NULL,
 YIELD FLOAT,
 CONSTRAINT FUND_ID_FK FOREIGN KEY (FUND_ID)
 REFERENCES FUNDS (FUND_ID),
 CONSTRAINT ACCOUNT_ID_FK2 FOREIGN KEY (ACCOUNT_ID)
 REFERENCES ACCOUNTS (ACCOUNT_ID)
);

Building Java™ Enterprise Applications Volume I: Architecture

195

A.2.5 PostgreSQL

Example A-10 is an SQL script that creates the accounts store on PostgreSQL databases.

Example A-10. SQL Script for Creating the Accounts Store on PostgreSQL Databases

-- ACCOUNT_TYPES table
CREATE TABLE ACCOUNT_TYPES (
 ACCOUNT_TYPE_ID INT PRIMARY KEY NOT NULL,
 ACCOUNT_TYPE VARCHAR(20) NOT NULL
);

-- ACCOUNTS table
CREATE TABLE ACCOUNTS (
 ACCOUNT_ID INT PRIMARY KEY NOT NULL,
 USER_ID INT NOT NULL,
 ACCOUNT_TYPE_ID INT NOT NULL,
 BALANCE FLOAT NOT NULL,
 CONSTRAINT USER_ID_FK FOREIGN KEY (USER_ID)
 REFERENCES USERS (USER_ID),
 CONSTRAINT ACCOUNT_TYPE_ID_FK FOREIGN KEY (ACCOUNT_TYPE_ID)
 REFERENCES ACCOUNT_TYPES (ACCOUNT_TYPE_ID)
);

-- TRANSACTIONS table
CREATE TABLE TRANSACTIONS (
 TRANSACTION_ID INT PRIMARY KEY NOT NULL,
 ACCOUNT_ID INT NOT NULL,
 AMOUNT FLOAT NOT NULL,
 DATE_TIME DATE NOT NULL,
 CONSTRAINT ACCOUNT_ID_FK FOREIGN KEY (ACCOUNT_ID)
 REFERENCES ACCOUNTS (ACCOUNT_ID)
);

-- FUNDS table
CREATE TABLE FUNDS (
 FUND_ID INT PRIMARY KEY NOT NULL,
 NAME VARCHAR(20) NOT NULL,
 DESCRIPTION VARCHAR(200)
);

-- INVESTMENTS table
CREATE TABLE INVESTMENTS (
 INVESTMENT_ID INT PRIMARY KEY NOT NULL,
 FUND_ID INT NOT NULL,
 ACCOUNT_ID INT NOT NULL,
 INITIAL_AMOUNT FLOAT NOT NULL,
 YIELD FLOAT,
 CONSTRAINT FUND_ID_FK FOREIGN KEY (FUND_ID)
 REFERENCES FUNDS (FUND_ID),
 CONSTRAINT ACCOUNT_ID_FK2 FOREIGN KEY (ACCOUNT_ID)
 REFERENCES ACCOUNTS (ACCOUNT_ID)
);

Building Java™ Enterprise Applications Volume I: Architecture

196

A.3 Events and Scheduling

With the user and accounts stores in place, all that's left to add to the core database schema is
the storage for events. This includes the EVENTS and ATTENDEES table. The scripts in this
section are database-specific versions of the SQL script shown in Example 3-4.

A.3.1 Cloudscape

Example A-11 is the Cloudscape version of the SQL script that creates the events and
scheduling storage.

Example A-11. SQL Script for Creating the Events Store on Cloudscape Databases

-- EVENTS table
CREATE TABLE EVENTS (
 EVENT_ID INT PRIMARY KEY NOT NULL,
 DESCRIPTION VARCHAR(50) NOT NULL,
 DATE_TIME DATE NOT NULL
);
-- ATTENDEES table
CREATE TABLE ATTENDEES (
 USER_ID INT NOT NULL,
 EVENT_ID INT NOT NULL,
 CONSTRAINT AT_USER_ID_FK FOREIGN KEY (USER_ID)
 REFERENCES USERS (USER_ID),
 CONSTRAINT EVENT_ID_FK FOREIGN KEY (EVENT_ID)
 REFERENCES EVENTS (EVENT_ID)
);

A.3.2 InstantDB

The InstantDB-specific SQL for creating the events store is shown in Example A-12.

Example A-12. SQL Script for Creating the Events Store on InstantDB Databases

; Load InstantDB JDBC drivers
d org.enhydra.instantdb.jdbc.idbDriver;
o jdbc:idb=forethought.prp;

; EVENTS table
e CREATE TABLE EVENTS (
 EVENT_ID INT PRIMARY KEY NOT NULL,
 DESCRIPTION VARCHAR(50) NOT NULL,
 DATE_TIME DATE NOT NULL
);
; ATTENDEES table
e CREATE TABLE ATTENDEES (
 USER_ID INT NOT NULL,
 EVENT_ID INT NOT NULL,
 CONSTRAINT AT_USER_ID_FK FOREIGN KEY (USER_ID)
 REFERENCES USERS (USER_ID),
 CONSTRAINT EVENT_ID_FK FOREIGN KEY (EVENT_ID)
 REFERENCES EVENTS (EVENT_ID)
);
; Close up
c close;

Building Java™ Enterprise Applications Volume I: Architecture

197

A.3.3 MySQL

Example A-13 is an SQL script that creates the events storage on MySQL databases.

Example A-13. SQL Script for Creating the Events Store on MySQL Databases

-- EVENTS table
CREATE TABLE EVENTS (
 EVENT_ID INT PRIMARY KEY NOT NULL,
 DESCRIPTION VARCHAR(50) NOT NULL,
 DATE_TIME DATE NOT NULL
);

-- ATTENDEES table
CREATE TABLE ATTENDEES (
 USER_ID INT NOT NULL,
 EVENT_ID INT NOT NULL,
 CONSTRAINT AT_USER_ID_FK FOREIGN KEY (USER_ID)
 REFERENCES USERS (USER_ID),
 CONSTRAINT EVENT_ID_FK FOREIGN KEY (EVENT_ID)
 REFERENCES EVENTS (EVENT_ID)
);

A.3.4 Oracle

An Oracle-specific script for creating the events storage is shown in Example A-14.

Example A-14. SQL Script for Creating the Events Store on Oracle Databases

-- EVENTS table
CREATE TABLE EVENTS (
 EVENT_ID INTEGER PRIMARY KEY NOT NULL,
 DESCRIPTION VARCHAR2(50) NOT NULL,
 DATE_TIME DATE NOT NULL
);

-- ATTENDEES table
CREATE TABLE ATTENDEES (
 USER_ID INTEGER NOT NULL,
 EVENT_ID INTEGER NOT NULL,
 CONSTRAINT AT_USER_ID_FK FOREIGN KEY (USER_ID)
 REFERENCES USERS (USER_ID),
 CONSTRAINT EVENT_ID_FK FOREIGN KEY (EVENT_ID)
 REFERENCES EVENTS (EVENT_ID)
);

Building Java™ Enterprise Applications Volume I: Architecture

198

A.3.5 PostgreSQL

The SQL script for PostgreSQL databases is shown in Example A-15.

Example A-15. SQL Script for Creating the Events Store on PostgreSQL Databases

-- EVENTS table
CREATE TABLE EVENTS (
 EVENT_ID INT PRIMARY KEY NOT NULL,
 DESCRIPTION VARCHAR(50) NOT NULL,
 DATE_TIME DATE NOT NULL
);

-- ATTENDEES table
CREATE TABLE ATTENDEES (
 USER_ID INT NOT NULL,
 EVENT_ID INT NOT NULL,
 CONSTRAINT AT_USER_ID_FK FOREIGN KEY (USER_ID)
 REFERENCES USERS (USER_ID),
 CONSTRAINT EVENT_ID_FK FOREIGN KEY (EVENT_ID)
 REFERENCES EVENTS (EVENT_ID)
);

A.4 Starting Over

With every creation comes at least one deletion. You'll probably find that you need to clear
out your database and re-create it from time to time. In an effort to make this easy for you, the
scripts to perform this action are presented below. Just be careful; the data in your database
will be completely wiped out by these SQL scripts, with no warning. The following scripts are
database-specific analogs to Example 3-6 in the text.

A.4.1 Cloudscape

The SQL script shown in Example A-16 deletes all of the tables and constraints for
Cloudscape databases.

Example A-16. SQL Script for Deleting All Tables on Cloudscape Databases

-- Drop all tables
DROP TABLE INVESTMENTS;
DROP TABLE FUNDS;
DROP TABLE TRANSACTIONS;
DROP TABLE ACCOUNTS;
DROP TABLE ACCOUNT_TYPES;
DROP TABLE USERS;
DROP TABLE USER_TYPES;
DROP TABLE OFFICES;

Building Java™ Enterprise Applications Volume I: Architecture

199

A.4.2 InstantDB

Example A-17 is an SQL script that deletes the user and accounts storage on InstantDB
databases.

Example A-17. SQL Script for Deleting All Tables on InstantDB Databases

; Load InstantDB JDBC drivers
d org.enhydra.instantdb.jdbc.idbDriver;
o jdbc:idb=forethought.prp;

; Drop all tables
e DROP TABLE INVESTMENTS;
e DROP TABLE FUNDS;
e DROP TABLE TRANSACTIONS;
e DROP TABLE ACCOUNTS;
e DROP TABLE ACCOUNT_TYPES;
e DROP TABLE USERS;
e DROP TABLE USER_TYPES;
e DROP TABLE OFFICES;

; Close up
c close;

A.4.3 MySQL

Example A-18 is an SQL script that deletes the Forethought data store on MySQL databases.

Example A-18. SQL Script for Deleting All Tables on MySQL Databases

-- Drop all tables
DROP TABLE INVESTMENTS;
DROP TABLE FUNDS;
DROP TABLE TRANSACTIONS;
DROP TABLE ACCOUNTS;
DROP TABLE ACCOUNT_TYPES;
DROP TABLE USERS;
DROP TABLE USER_TYPES;
DROP TABLE OFFICES;

A.4.4 Oracle

The SQL script shown in Example A-19 deletes the storage for Forethought information on
Oracle databases.

Example A-19. SQL Script for Deleting All Tables on Oracle Databases

-- Drop all tables
DROP TABLE INVESTMENTS;
DROP TABLE FUNDS;
DROP TABLE TRANSACTIONS;
DROP TABLE ACCOUNTS;
DROP TABLE ACCOUNT_TYPES;
DROP TABLE USERS;
DROP TABLE USER_TYPES;
DROP TABLE OFFICES;

Building Java™ Enterprise Applications Volume I: Architecture

200

A.4.5 PostgreSQL

Example A-20 is the SQL script used to delete the Forethought data store on PostgreSQL
databases.

Example A-20. SQL Script for Deleting All Tables on PostgreSQL Databases

-- Drop all tables
DROP TABLE INVESTMENTS;
DROP TABLE FUNDS;
DROP TABLE TRANSACTIONS;
DROP TABLE ACCOUNTS;
DROP TABLE ACCOUNT_TYPES;
DROP TABLE USERS;
DROP TABLE USER_TYPES;
DROP TABLE OFFICES;

Building Java™ Enterprise Applications Volume I: Architecture

201

A.5 Primary Keys

The storage described in Chapter 5 for primary key generation requires an additional table in
the database schema. The scripts in this section are product-specific versions of the SQL
script shown in Example 5-1.

Since this table is added in Chapter 5, this section is presented after
Section A.4 in this appendix. The scripts shown previously do not drop
the table created in this section; instead, this script drops any existing
table and then re-creates the storage. If you decide to use this
methodology, be sure you do not rerun this script once the table it
creates is in use; it effectively resets the primary key counters, and can
cause duplicate keys to be added to the database. Another approach
would be to write some more advanced SQL to determine the highest
ID value, and then start the key values at a number greater than that
found. However, this advanced SQL is beyond the scope of this book.

A.5.1 Cloudscape

The SQL script shown in Example A-21 creates the primary key storage table on Cloudscape
databases.

Example A-21. SQL Script for Creating the Primary Key Table on Cloudscape Databases

-- Drop any existing PRIMARY_KEYS table
DROP TABLE PRIMARY_KEYS;

-- PRIMARY_KEYS table
CREATE TABLE PRIMARY_KEYS (
 KEY_NAME VARCHAR(20) PRIMARY KEY NOT NULL,
 NEXT_VALUE INT NOT NULL
);

-- Add initial values for each table
INSERT INTO SEQUENCES VALUES ('USER_TYPES', 1);
INSERT INTO SEQUENCES VALUES ('OFFICES', 1);
INSERT INTO SEQUENCES VALUES ('USERS', 1);
INSERT INTO SEQUENCES VALUES ('ACCOUNT_TYPES', 1);
INSERT INTO SEQUENCES VALUES ('ACCOUNTS', 1);
INSERT INTO SEQUENCES VALUES ('TRANSACTIONS', 1);
INSERT INTO SEQUENCES VALUES ('FUNDS', 1);
INSERT INTO SEQUENCES VALUES ('INVESTMENTS', 1);

Building Java™ Enterprise Applications Volume I: Architecture

202

A.5.2 InstantDB

Example A-22 is an SQL script that creates the primary key storage on InstantDB databases.

Example A-22. SQL Script for Creating the Primary Keys Table on InstantDB Databases

; Load InstantDB JDBC drivers
d org.enhydra.instantdb.jdbc.idbDriver;
o jdbc:idb=forethought.prp;

; Drop any existing PRIMARY_KEYS table
e DROP TABLE PRIMARY_KEYS;

; PRIMARY_KEYS table
e CREATE TABLE PRIMARY_KEYS (
 KEY_NAME VARCHAR(20) PRIMARY KEY NOT NULL,
 NEXT_VALUE INT NOT NULL
);

; Add initial values for each table
e INSERT INTO SEQUENCES VALUES ('USER_TYPES', 1);
e INSERT INTO SEQUENCES VALUES ('OFFICES', 1);
e INSERT INTO SEQUENCES VALUES ('USERS', 1);
e INSERT INTO SEQUENCES VALUES ('ACCOUNT_TYPES', 1);
e INSERT INTO SEQUENCES VALUES ('ACCOUNTS', 1);
e INSERT INTO SEQUENCES VALUES ('TRANSACTIONS', 1);
e INSERT INTO SEQUENCES VALUES ('FUNDS', 1);
e INSERT INTO SEQUENCES VALUES ('INVESTMENTS', 1);

; Close up
c close;

A.5.3 MySQL

Example A-23 is an SQL script that creates primary key value storage on MySQL databases.

Example A-23. SQL Script for Creating the Primary Key Table on MySQL Databases

-- Drop any existing PRIMARY_KEYS table
DROP TABLE PRIMARY_KEYS;

-- PRIMARY_KEYS table
CREATE TABLE PRIMARY_KEYS (
 KEY_NAME VARCHAR(20) PRIMARY KEY NOT NULL,
 NEXT_VALUE INT NOT NULL
);

-- Add initial values for each table
INSERT INTO SEQUENCES VALUES ('USER_TYPES', 1);
INSERT INTO SEQUENCES VALUES ('OFFICES', 1);
INSERT INTO SEQUENCES VALUES ('USERS', 1);
INSERT INTO SEQUENCES VALUES ('ACCOUNT_TYPES', 1);
INSERT INTO SEQUENCES VALUES ('ACCOUNTS', 1);
INSERT INTO SEQUENCES VALUES ('TRANSACTIONS', 1);
INSERT INTO SEQUENCES VALUES ('FUNDS', 1);
INSERT INTO SEQUENCES VALUES ('INVESTMENTS', 1);

Building Java™ Enterprise Applications Volume I: Architecture

203

A.5.4 Oracle

The SQL script shown in Example A-24 creates the storage for Forethought primary keys on
Oracle databases.

Example A-24. SQL Script for Creating the Primary Key Table on Oracle Databases

-- Drop any existing PRIMARY_KEYS table
DROP TABLE PRIMARY_KEYS;

-- PRIMARY_KEYS table
CREATE TABLE PRIMARY_KEYS (
 KEY_NAME VARCHAR2(20) PRIMARY KEY NOT NULL,
 NEXT_VALUE INTEGER NOT NULL
);

-- Add initial values for each table
INSERT INTO SEQUENCES VALUES ('USER_TYPES', 1);
INSERT INTO SEQUENCES VALUES ('OFFICES', 1);
INSERT INTO SEQUENCES VALUES ('USERS', 1);
INSERT INTO SEQUENCES VALUES ('ACCOUNT_TYPES', 1);
INSERT INTO SEQUENCES VALUES ('ACCOUNTS', 1);
INSERT INTO SEQUENCES VALUES ('TRANSACTIONS', 1);
INSERT INTO SEQUENCES VALUES ('FUNDS', 1);
INSERT INTO SEQUENCES VALUES ('INVESTMENTS', 1);

A.5.5 PostgreSQL

Example A-25 is an SQL script that creates the Forethought primary key store on PostgreSQL
databases.

Example A-25. SQL Script for Creating the Primary Key Table on PostgreSQL Databases

-- Drop any existing PRIMARY_KEYS table
DROP TABLE PRIMARY_KEYS;

-- PRIMARY_KEYS table
CREATE TABLE PRIMARY_KEYS (
 KEY_NAME VARCHAR(20) PRIMARY KEY NOT NULL,
 NEXT_VALUE INT NOT NULL
);

-- Add initial values for each table
INSERT INTO SEQUENCES VALUES ('USER_TYPES', 1);
INSERT INTO SEQUENCES VALUES ('OFFICES', 1);
INSERT INTO SEQUENCES VALUES ('USERS', 1);
INSERT INTO SEQUENCES VALUES ('ACCOUNT_TYPES', 1);
INSERT INTO SEQUENCES VALUES ('ACCOUNTS', 1);
INSERT INTO SEQUENCES VALUES ('TRANSACTIONS', 1);
INSERT INTO SEQUENCES VALUES ('FUNDS', 1);
INSERT INTO SEQUENCES VALUES ('INVESTMENTS', 1);

Building Java™ Enterprise Applications Volume I: Architecture

204

A.6 Creating Types

Chapter 7 detailed using SQL to populate the various "type" tables (USER_TYPES and
ACCOUNT_TYPES). As explained in the text, this was necessary because only local interfaces
were available for the relevant entity beans. This section provides the SQL scripts for that task
on various databases.

A.6.1 Cloudscape

The SQL script shown in Example A-26 creates the user and account type data on Cloudscape
databases.

Example A-26. SQL Script for Creating Type Data on Cloudscape Databases

-- Create User Types
INSERT INTO USER_TYPES VALUES (1, 'Client');
INSERT INTO USER_TYPES VALUES (2, 'Employee');

-- Create Account Types
INSERT INTO ACCOUNT_TYPES VALUES (1, 'Everyday');
INSERT INTO ACCOUNT_TYPES VALUES (2, 'Investment');
INSERT INTO ACCOUNT_TYPES VALUES (3, 'Investment Plus');
INSERT INTO ACCOUNT_TYPES VALUES (4, 'Money Market');
INSERT INTO ACCOUNT_TYPES VALUES (5, 'Savings');

A.6.2 InstantDB

Example A-27 is an SQL script that creates types on InstantDB databases.

Example A-27. SQL Script for Creating Type Data on InstantDB Databases

; Load InstantDB JDBC drivers
d org.enhydra.instantdb.jdbc.idbDriver;
o jdbc:idb=forethought.prp;

; Create User Types
e INSERT INTO USER_TYPES VALUES (1, 'Client');
e INSERT INTO USER_TYPES VALUES (2, 'Employee');

; Create Account Types
e INSERT INTO ACCOUNT_TYPES VALUES (1, 'Everyday');
e INSERT INTO ACCOUNT_TYPES VALUES (2, 'Investment');
e INSERT INTO ACCOUNT_TYPES VALUES (3, 'Investment Plus');
e INSERT INTO ACCOUNT_TYPES VALUES (4, 'Money Market');
e INSERT INTO ACCOUNT_TYPES VALUES (5, 'Savings');

Building Java™ Enterprise Applications Volume I: Architecture

205

A.6.3 MySQL

Example A-28 is an SQL script that creates type data on MySQL databases.

Example A-28. SQL Script for Creating Type Data on MySQL Databases

-- Create User Types
INSERT INTO USER_TYPES VALUES (1, 'Client');
INSERT INTO USER_TYPES VALUES (2, 'Employee');

-- Create Account Types
INSERT INTO ACCOUNT_TYPES VALUES (1, 'Everyday');
INSERT INTO ACCOUNT_TYPES VALUES (2, 'Investment');
INSERT INTO ACCOUNT_TYPES VALUES (3, 'Investment Plus');
INSERT INTO ACCOUNT_TYPES VALUES (4, 'Money Market');
INSERT INTO ACCOUNT_TYPES VALUES (5, 'Savings');

A.6.4 Oracle

The SQL script shown in Example A-29 creates the storage for Forethought types on Oracle
databases.

Example A-29. SQL Script for Creating Type Data on Oracle Databases

-- Create User Types
INSERT INTO USER_TYPES VALUES (1, 'Client');
INSERT INTO USER_TYPES VALUES (2, 'Employee');

-- Create Account Types
INSERT INTO ACCOUNT_TYPES VALUES (1, 'Everyday');
INSERT INTO ACCOUNT_TYPES VALUES (2, 'Investment');
INSERT INTO ACCOUNT_TYPES VALUES (3, 'Investment Plus');
INSERT INTO ACCOUNT_TYPES VALUES (4, 'Money Market');
INSERT INTO ACCOUNT_TYPES VALUES (5, 'Savings');

A.6.5 PostgreSQL

Example A-30 is an SQL script used to create user and account types on PostgreSQL
databases.

Example A-30. SQL Script for Creating the Type Data on PostgreSQL Databases

-- Create User Types
INSERT INTO USER_TYPES VALUES (1, 'Client');
INSERT INTO USER_TYPES VALUES (2, 'Employee');

-- Create Account Types
INSERT INTO ACCOUNT_TYPES VALUES (1, 'Everyday');
INSERT INTO ACCOUNT_TYPES VALUES (2, 'Investment');
INSERT INTO ACCOUNT_TYPES VALUES (3, 'Investment Plus');
INSERT INTO ACCOUNT_TYPES VALUES (4, 'Money Market');
INSERT INTO ACCOUNT_TYPES VALUES (5, 'Savings');

Building Java™ Enterprise Applications Volume I: Architecture

206

Appendix B. SQL Deployment
This appendix contains deployment details about specific databases. If you are having trouble
executing the SQL scripts covered in Chapter 3 or Chapter 5 or Appendix A, this appendix
can be used as a helpful reference. The instructions in this chapter are supplied merely as a
convenience, and are only one of many ways that SQL can be executed against databases.
You should consult the vendor documentation for your database to see alternatives to the
methods provided here.

The instructions in each section cover a means of deploying SQL scripts into a database. In
this context, deployment refers simply to executing the SQL against the database so that
tables, columns, and relationships are generated. If you are following along with the examples
(and hopefully you are!), you will want to execute the SQL for your database (from
Appendix A) against your instance. Once this is done, the entity beans and other code that
utilize the database are ready to be used. As in the other appendixes, new versions of these
products are always appearing; these may cause small inconsistencies in the instructions
provided here. Please be tolerant of these mistakes; if major problems arise, I'll attempt to
correct them in later revisions and editions. I also welcome you letting me know about
problems you find via the email addresses listed in the Preface; if you have a different
database, you can also send me instructions on deployment for that product, and I'll test it and
seek to include it in future editions.

B.1 Cloudscape

Cloudscape was initially released by Informix as free for development, testing, and use. More
recently, IBM acquired Cloudscape, and unfortunately removed free downloads from the
Cloudscape web site. As a result, you'll have to get Cloudscape in one of the various
application servers that include it for sample usage, such as BEA Weblogic or the J2EE
reference implementation. If you have an older version from a previous download, I'd
recommend using MySQL or PostgreSQL instead, as opposed to sticking with an old copy of
the free version of Cloudscape.

To create and set up the Forethought database, I highly recommend using the Cloudview
graphical tool bundled with Cloudscape. You can start this tool by setting your classpath to
include cloudscape.jar and tools.jar from the Cloudscape release, and executing the following
command:

C:\dev\javaentI\appB\cloudscape>java COM.cloudscape.tools.cview

Once the tool has started, you should use the File New Database... menu option to create
the database. Enter in the directory you wish to use; for Weblogic users, I'd recommend
selecting the same directory in which the preconfigured databases exist. This is generally
$WL_HOME/samples/eval/cloudscape/data. Append to this the name of the database,
ForethoughtDB, as shown in Figure B-1.

Building Java™ Enterprise Applications Volume I: Architecture

207

Figure B-1. Creating the Forethought database with Cloudview

After some whirring on your hard drive, you'll be placed on the main database screen. The
right pane allows you to type in SQL statements and execute those statements against the
database. You can also load an SQL script from disk, which is exactly what you should
choose, by clicking the notepad icon. Load the Cloudscape version of the
database_schema_users.sql script. Click the lightning bolt icon, which will execute this
script, creating several tables. Repeat this process for the other database scripts from the
various database-related chapters.

Some versions of Cloudscape "choke" on the
database_schema_users.sqlscript if the PRIMARY_KEYS table does not
already exist, as the first line of that script tries to drop this table. If this
happens, simply comment out that line and rerun the script, and things
will work normally. You can then uncomment the DROP line so that
future executions create the PRIMARY_KEYS table from scratch.

You can verify that tables have been created by clicking the Tables option on the left window
pane, and viewing the various names and columns. Your view of the new database should
look similar to that shown in Figure B-2.

Building Java™ Enterprise Applications Volume I: Architecture

208

Figure B-2. Viewing the Forethought database in Cloudview

Once you're satisfied that all these tables have been created, you're ready to continue with the
code examples in the book.

I show Cloudscape running on Windows; of course, the same goes for
Unix platforms, and shouldn't cause those users any trouble. Just use the
equivalent scripts for your platform, and create your database using
Cloudview in the same fashion.

B.2 InstantDB

Once InstantDB has been downloaded and installed (it is available online at
http://instantdb.enhydra.org/), you need to add the InstantDB libraries to your Java classpath.
Because InstantDB is 100% Java, this is literally all it takes to get the database ready for use.
The relevant library files are contained within idb.jar and idbf.jar, both located in the classes
subdirectory of the InstantDB installation. InstantDB also requires the Java JTA classes, as
well as the JDBC standard extensions. These two JAR files, jta-spec1_0_1.jar and jdbc2_0-
stdext.jar, can be downloaded from Sun's web site at http://java.sun.com/products/jta and
http://java.sun.com/products/jdbc, respectively. Add these two libraries to your classpath as
well. Finally, the various utilities, including the one used to execute SQL scripts, are
contained in another InstantDB archive, idbexmpl.jar, which is also in the classes
subdirectory of the InstantDB installation. The resulting classpath is shown as follows:

/java/instantdb (bmclaugh)> echo $CLASSPATH
/java/instantdb/classes/idb.jar:/java/instantdb/classes/idbf.jar:
/java/instantdb/classes/idbf.jar:
/java/instantdb/classes/jta-spec1_0_1.jar:
/java/instantdb/classes/jdbc2_0-stdext.jar

Building Java™ Enterprise Applications Volume I: Architecture

209

The Java class used to execute SQL scripts is org.enhydra.instantdb.ScriptTool. This
program takes an SQL script (slightly modified with some InstantDB-specific instructions, as
seen in Appendix A) and a properties file, and echoes the results out to the console. First,
though, you need to create this properties file, which specifies options such as temporary
directories and where the database files should be stored. A sample properties file, referenced
in the SQL scripts in Appendix A, is shown in Example B-1.

Example B-1. Forethought Properties File

! Path where index tables are held.
indexPath=./indexes

! Path where system tables are held.
systemPath=./system

! Path where database tables are held.
tablePath=./tables

! Path where results set tables are held.
tmpPath=./tmp

! Non-zero means paths are relative to the properties file.
relativeToProperties=1

! The amount of each column to cache.
cacheAmount=512

! Determines whether to cache columns in tables based on an
! absolute number of rows, or the percentage number of rows in the table.
cacheCondition=CACHE_ROWS

! Percentage of free space in an index that must be present before
! the index reorganizes itself.
indexLoad=5

! Number of rows to read into the disk read ahead buffer.
rowCacheSize=128

! Non-zero means trace output also directed to console.
traceConsole=1

! Relative or absolute path where exporting and tracing goes.
traceFile=./trace.log

! Bitmap of various items that can be traced.
traceLevel=2

With this in place, create a directory for the Forethought database and associated files; for
example, /java/InstantDB/forethought. Ensure that the two SQL scripts
(database_schema_users.sql and database_schema_accounts.sql) and the Forethought
properties file (forethought.prp) are in this directory. Then execute the ScriptTool class with
the SQL script as the argument:

Building Java™ Enterprise Applications Volume I: Architecture

210

/java/instantdb (bmclaugh)> java org.enhydra.instantdb.ScriptTool
 database_schema_users.sql
Enhydra InstantDB - Version 3.20 beta 1
The Initial Developer of the Original Code is Lutris Technologies Inc.
Portions created by Lutris are Copyright (C) 1997-2000 Lutris
 Technologies, Inc.

All Rights Reserved.

Connected to jdbc:idb:forethought.prp
Driver InstantDB JDBC Driver
Version Version 3.20

...

Database forethought is shutting down...
Database forethought shutdown complete.

Note that you did not have to explicitly create the Forethought database; the directory and
properties file provide the only required information needed, and then scripts can be executed
against that database. Now, execute the same command for the accounts script
(database_schema_accounts.sql), and you are ready to go. InstantDB also provides a tool for
graphical browsing of the database, the org.enhydra.instantdb.DBBrowser class. This
allows you to select a properties file (forethought.prp in our case) and then browse the
database structure.

Once you move through Chapter 5 and Chapter 7, you will need to follow the same
instructions. Run the ScriptTool on the database_schema_keys.sql script to create the
primary key value table, and the database_schema_createTypes.sql script to create the type
data.

B.3 MySQL

To use MySQL, download the package from http://www.mysql.org/ and install it. I've got a
mysql user with access to the scripts, and the /usr/local/mysql/bin directory in that user's path.
I've also set my root MySQL user's password to a non-empty password; you should do this
too, with the command mysqladmin -u root password [new password]. You can then
create the Forethought database with the following command:

[localhost:~] mysql% mysqladmin -u root -p create forethought
Enter password:

You won't get any visible output, but don't be concerned; this does create the database. You're
now ready to connect to the database and run the SQL scripts. Use the mysql command for
this, as shown:

[localhost:~] mysql% mysql -u root -p forethought
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 16 to server version: 3.23.37

Type 'help;' or '\h' for help. Type '\c' to clear the buffer

mysql> source database_schema_users.sql
Query OK, 0 rows affected (0.00 sec)

Building Java™ Enterprise Applications Volume I: Architecture

211

Query OK, 0 rows affected (0.01 sec)

Query OK, 0 rows affected (0.00 sec)

Query OK, 1 row affected (0.01 sec)

mysql> source database_schema_accounts.sql
Query OK, 0 rows affected (0.01 sec)

Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.01 sec)

Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.01 sec)

mysql> exit
Bye

In the same manner, you can use the source command to execute the keys script, the data
types script, and the script that drops tables. In my example, the scripts are in the same
directory that I ran the mysql command from; you'll need to modify the path to the script if
this isn't the case in your setup.

B.4 Oracle

Unlike many of the databases in this appendix, particularly the Java-based ones such as
InstantDB and Cloudscape, creating a new database with Oracle is not such a trivial matter. In
fact, entire books have been written about configuration and maintenance of Oracle databases!
So in this section, the assumption is made that the database has already been created and set
up. The global name of the database is ftht.middleearth.com ("ftht" instead of "forethought"
because there is an eight-character limit on global names, and "middleearth.com" because it's
my home network's domain), and the SID is FTHT. Other than these basic parameters,
specific configuration items like rollback sizes and TEMP tablespaces are left to you or your
DBA.

Additionally, the examples shown assume that a user has been created in the database, with
the username "forethought" and the password "forethought". This user (for simplicity's sake)
has been given the role DBA. This makes connecting, creating tables, and other administrative
duties possible without explicitly granting many permissions (like CREATE SESSION,
ALTER ANY TABLE, etc.).

Deployment and execution of SQL scripts in Oracle is usually done through the use of the
Oracle SQL*Plus tool, with the database to modify up and running. You connect as the user
able to administrate the database schema; here the user "forethought" is used. You should be
in the directory where the SQL scripts you want to execute are located.

Each SQL script can be run by prepending the name of the script with the @ symbol. Creating
the database schema, then, can be done as shown here:

Building Java™ Enterprise Applications Volume I: Architecture

212

SQL*Plus: Release 8.1.6.0.0 - Production on Tue Sep 19 20:42:35 2000

(c) Copyright 1999 Oracle Corporation. All rights reserved.

Enter user-name: forethought
Enter password:

Connected to:
Oracle8i Enterprise Edition Release 8.1.6.0.0 - Production
With the Partitioning option
JServer Release 8.1.6.0.0 - Production

SQL> @database_schema_users.sql

Table created.

Table created.

Table created.

SQL> @database_schema_accounts.sql

Table created.

Table created.

Table created.

Table created.

Table created.

SQL>

This rather uninteresting output is a sign that things went correctly. The same principles can
be followed for the Oracle SQL scripts outlined throughout the rest of the book.

There is one note to make regarding database_schema_keys.sql and
database_schema_createTypes.sql. Because both of these scripts cause rows to be inserted,
you will need to issue an explicit database commit (Oracle does not, by default, auto-commit).
Here's how to handle the keys script, as an example:

C:\projects\javaapps\oracle>sqlplus forethought/forethought@forethought

SQL*Plus: Release 8.1.6.0.0 - Production on Fri Sep 29 10:31:11 2000

(c) Copyright 1999 Oracle Corporation. All rights reserved.

Connected to:
Oracle8i Enterprise Edition Release 8.1.6.0.0 - Production
With the Partitioning option
JServer Release 8.1.6.0.0 - Production

Building Java™ Enterprise Applications Volume I: Architecture

213

SQL> @database_schema_keys.sql
DROP TABLE PRIMARY_KEYS
 *
ERROR at line 1:
ORA-00942: table or view does not exist

Table created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

1 row created.

SQL> commit;

Commit complete.

SQL> exit
Disconnected from Oracle8i Enterprise Edition Release 8.1.6.0.0 -
 Production With the Partitioning option
JServer Release 8.1.6.0.0 - Production

C:\projects\javaapps\oracle>

B.5 PostgreSQL

PostgreSQL, along with mySQL, is a popular open source option for Unix-flavored systems
like Linux, Solaris, and my own Mac OS X. You can download the distribution from
http://www.postgresql.org/ (for U.S. users, the best mirror site is
http://www.us.postgresql.org/). Installation instructions are included in the distribution and
are also available at the web site. Install the database and then start it as shown here:

[localhost:~] postgres% /usr/local/pgsql/bin/postmaster -D
/usr/local/pqsql/data

Once you've got the database running, presumably with the "postgres" user (as the installation
instructions recommend), you need to create the Forethought database:

Building Java™ Enterprise Applications Volume I: Architecture

214

[localhost:~] postgres% /usr/local/pgsql/bin/createdb forethought
CREATE DATABASE

The next step is to connect to the database and run your SQL scripts against it. This is done
with the psql tool, a handy utility for just this purpose. Run this script, specifying the
database to connect to and the file with SQL to execute:

[localhost:~] postgres% psql -f database_schema_users.sql forethought
NOTICE: CREATE TABLE/PRIMARY KEY will create implicit index
'user_types_pkey' for
table 'user_types'
psql:database_schema_users.sql:5: NOTICE: CREATE TABLE/PRIMARY KEY will
create
implicit index 'user_types_pkey' for table 'user_types'
CREATE
NOTICE: CREATE TABLE/PRIMARY KEY will create implicit index 'offices_pkey'
for
table 'offices'
psql:database_schema_users.sql:12: NOTICE: CREATE TABLE/PRIMARY KEY will
create
 implicit index 'offices_pkey' for table 'offices'
CREATE
NOTICE: CREATE TABLE/PRIMARY KEY will create implicit index 'users_pkey'
for table
'users'
NOTICE: CREATE TABLE will create implicit trigger(s) for FOREIGN KEY
check(s)
psql:database_schema_users.sql:26: NOTICE: CREATE TABLE/PRIMARY KEY will
create
 implicit index 'users_pkey' for table 'users'
psql:database_schema_users.sql:26: NOTICE: CREATE TABLE will create
implicit
trigger(s) for FOREIGN KEY check(s)
CREATE
INSERT 18781 1

Your input should look similar. This lets you know exactly what is going on at the database
level. Repeat the process for the accounts SQL (from Chapter 3), the keys SQL (from
Chapter 5), and the types data (Chapter 7). You're now set for the rest of the book's examples .

Building Java™ Enterprise Applications Volume I: Architecture

215

Appendix C. Directory Server Setup
This appendix covers deployment of LDAP directory servers from several vendors. Although
there are not nearly as many varieties of directory servers as there are databases, there is a
huge degree of difference between creating and administrating a directory server schema on
each vendor's product. The most common vendors are included here;[A] if you don't have a
license for the commercial products, you can use the free, open source OpenLDAP product in
your applications.

For each product, an arbitrary platform is chosen. This is often the most appropriate platform
(for example, OpenLDAP is most commonly run on Linux, Solaris, or other Unix-flavored
platforms); however, in some cases (such as iPlanet), the platform is simply a matter of
convenience. In cases where a Windows installation and configuration is shown, you should
be able to easily convert the instructions to Unix. For Unix installs, you will need to consult
the documentation to see if the product will run on Windows; you also may need to download
a Unix-style shell for Windows, such as the Cygnus tools, located at http://www.cygwin.com/.
These tools often allow you to execute Unix programs on Windows platforms.

Installation for each product is briefly described. If specific parts of the installation involve
configuration used in the book's example, those steps are highlighted. For example, in
installing the iPlanet Directory Server, the organization of the server must be set
(o=forethought.com); in such cases, the needed installation points are highlighted. In all other
cases, you should use the overview given here as well as the product's documentation to
perform an appropriate installation on your platform.

C.1 iPlanet

iPlanet's Directory Server product is the most popular commercial solution for LDAP
services, and it provides a simple administration console that makes configuration much
easier than in many other products (such as OpenLDAP, which works off of textual LDIF
files). It also has strong integration if other iPlanet products are being used (such as the
iPlanet web server or iPlanet application server). It has versions for Windows and most
popular Unix platforms, including Linux.

C.1.1 Installation

Installing the iPlanet directory server on Unix and on Windows is an almost identical
process.[B] The primary difference is in launching the install. On Windows, simply clicking the
downloaded executable (named d50diu.exe or something similar, depending on the version;
some versions also come zipped instead of as an executable) starts the GUI install. On Unix,
expanding the archive (named d50diu.tar.gz or something similar) results in a directory with a
binary to start the install. Running this binary will start the graphical installation.

When walking through the prompts, be sure to select both the server and the console tools in
the setup type screen. Once you have installed the server, you may want to install just the

A If your directory server is not covered here, please feel free to send instructions for creating users, groups, and permissions to me directly at
brett@newInstance.com. If I can ensure that it works, I will be happy to include it online and in updated versions of this book.
B This assumes that you are either on a local Unix machine or have X Windows access to the machine; in these cases, you can use the supplied GUI
for installation. While it is highly recommended that you not install programs that require root access without local access to the machine,
the installation program does have a text mode. You can simply follow the prompts, as it mirrors the graphical install.

Building Java™ Enterprise Applications Volume I: Architecture

216

console on any remote administration machines. With the console, you can use the graphical
tools to administrate the server from any machine with a TCP/IP connection to the directory
server.

You will need to select a directory and set of features to install; ensuring that only the root
user on Unix systems has access to the directory server is a very good idea. If this is your first
directory server on your network, you will need to set up this instance as the configuration
directory server . The configuration directory server will hold information about all iPlanet
and Netscape server products across your network. If you already have an existing directory
server functioning in this capacity, you should enter its access information at this point, as
shown in Figure C-1.

Figure C-1. Selecting an existing configuration directory server

You can also select another directory server in which to store user and group information.
However, you probably want this server (and any replicants you might set up) to store the
application information, so be sure to select "Store data in this directory server" at that
prompt.

Finally, you will need to set the hostname, port, and organization of this new server instance.
As discussed in Chapter 3, you should use the default port of 389 unless you have a good
reason not to.[C] Finally, set the organization of the instance to Forethought's domain,
forethought.com, by using o=forethought.com as the directory server suffix.

You will need to select an administration password, the domain you are administrating (if you
selected the instance as the configuration directory server), and the password for the directory
manager. Be sure to take note of the passwords used, especially for the directory manager
(cn=DirectoryManager); you will need it for the sample code. To follow along with the book,
use the password "forethought" for this instance. Next, select the options that do not import
any sample data for the server instance. Finally, select a port for the administration services to

C Two such reasons come to mind. First, using SSL over LDAP typically is accomplished by using port 636 for communication. Second, using
nonstandard ports is sometimes considered a security enhancement for many applications. If you do choose to change the port here, you will need to
make this change in all the code examples throughout the rest of the book to match the port used here.

Building Java™ Enterprise Applications Volume I: Architecture

217

run on (port 9999 is used in the examples in the book). With all these options set, you can
finish up the installation of your iPlanet directory server.

Once installation has completed (assuming that no errors have occurred), you should start up
the directory server and administration server. On Windows, this will be set to happen
automatically at startup, and will also occur after installation is complete (of course, like most
Microsoft programs, you will need to restart your computer first). You can manually control
the services through the Services program under the Control Panel. For Unix systems, you can
run ns-slapd and admind to start the directory server instance and administration server,
respectively; you should consider adding these commands to a startup script so the directory
service will run every time your machine reboots.[D] Once these services have been started, you
are ready to add your application-specific configuration items.

C.1.2 Object Class Hierarchy

The iPlanet directory server boasts the easiest-to-use configuration manager. Making the
changes to the LDAP schema described in Chapter 3 is very simple using this interface. First,
launch the iPlanet Console (mine is Version 5.0). You will need to enter in the hostname and
port of the directory server you want to manage, and then enter in the admin user's password.

Once logged in, expand the server tree of the machine you are connecting to; you should see
entries for both Administration Server and Directory Server under <hostname>/Server
Group. Double-clicking on the Directory Server entry will open up the directory server
management console.

In the directory server management tool, click on the Configuration tab; you should see the
Schema folder in the tree view on the left. Click on this folder, and you are ready to add new
object classes to the LDAP schema.

C.1.2.1 The forethoughtPermission object class

Since the inetOrgPerson object class is used as-is, the first task is to create the
forethoughtPermission object class described in the text. Clicking the Create... button will
open up the Create Object Class dialog. Here, you can enter all the information for the new
object class. Type in the name of the new class (forethoughtPermission), and leave the default
parent of top. In addition to the required attribute of objectClass, you should add cn, which
will store the name of the permission. Then add the description attribute to the allowed
attributes, so a human-readable description of the permission can be entered. This is in
addition to the aci attribute, inherited from the top object class. With these tasks done, you
are ready to add the new class to the LDAP schema by clicking the OK button; your dialog
box should now look like Figure C-2.

D While this technique is useful for development (starting up both the directory server and administration server on reboot), you should strongly
consider not starting the administration server automatically once you move the server into production. Always running the administration server is an
open invitation for hackers to try and crack your directory server instance. It is recommended that you automatically start only the directory server
itself in these situations. The same practice is a good idea on Windows machines, as well.

Building Java™ Enterprise Applications Volume I: Architecture

218

Figure C-2. Creating the forethoughtPermission object class

Once this is in place, you are ready to create the groupOfForethoughtNames class and its
related attributes.

C.1.2.2 The groupOfForethoughtNames object class

The first task in creating the groupOfForethoughtNames object class is to add the
uniquePermission attribute to the LDAP schema. From the screen where you clicked
Create... to create a new object class, click the Attributes tab up top, and then click the
Create... button here. Enter the name of the new attribute (uniquePermission), and then select
DN for the Syntax option. This will ensure that a DN is supplied in a valid format, which will
of course refer to an instance of our forethoughtPermission object class. You should also
check the box allowing multiple values, so multiple permissions can be linked to each group.
Your screen should now be similar to Figure C-3.

Building Java™ Enterprise Applications Volume I: Architecture

219

Figure C-3. Adding the uniquePermission attribute to the LDAP schema

Once you've set all the options, clicking OK will add the attribute to your LDAP schema. This
also gets you ready to perform your original task, creating the new object class for user groups
(or roles).

The process of creating the groupOfForethoughtNames object class is identical to that of
creating the forethoughtPermission object class. Go back to the Object Classes tab in the
configuration section of the manager tool. Click the Create... button, and enter in the
information about the new object class: the name, groupOfForethoughtNames; the parent,
groupOfUniqueNames; and the additional optional attribute, uniquePermission. Then OK the
changes, and your LDAP schema is ready for use. Figure C-4 shows this final step in schema
modification.

Building Java™ Enterprise Applications Volume I: Architecture

220

Figure C-4. Creating the groupOfForethoughtNames object class

After following all the steps outlined here, you are ready to add the extra organizational units
required in the Forethought application.

C.1.3 Directory Hierarchy

The iPlanet directory server does not have any of the organizational units detailed in
Chapter 3 set up by default. To view the hierarchy currently in place for your server, click on
the Directory tab in the top-left section of the manager tool. This will move you from
configuration to the directory structure itself. You will see several iPlanet- specific objects
(NetscapeRoot, schema, etc.), but it is the first entry, forethought.com, that you are concerned
with. Expand the organization, and you will see any existing organizational units that are in
place.

Right-clicking on the forethought.com organization icon will open up a pop-up window;
selecting "New >" will open up a submenu; finally, select "Organizational Unit...". Here, enter
the information for the first new unit, People: the name and, optionally, a description.
Figure C-5 shows the completed dialog. Finally, click OK, and you should see the new
organization unit added to the directory browser.

Building Java™ Enterprise Applications Volume I: Architecture

221

Figure C-5. Creating the People organization unit

Repeat this process for the Groups and Permissions organizational units. Once that is done,
you are ready for the programmatic tasks detailed in Chapter 4 and Chapter 5.

C.2 OpenLDAP

You can get openLDAP from http://www.openldap.org/. It's both free and open source, so
licensing and deployment are non-issues with this software. As of this writing, the latest
version for general use is 2.0.18. Once you've downloaded the archive, expand it into a
directory like openldap-2.0.18/.

C.2.1 Installation

Installation is detailed in the INSTALL document included in the source distribution.
Basically, you'll need to execute these commands (output is not shown):

[localhost:~/openldap-2.0.17] bmclaugh% ./configure

[localhost:~/openldap-2.0.17] bmclaugh% make depend

[localhost:~/openldap-2.0.17] bmclaugh% make

[localhost:~/openldap-2.0.17] bmclaugh% make test

[localhost:~/openldap-2.0.17] bmclaugh% su root -c 'make install'

Note that this last step requires root access; this is typical for all installations of software like
this (as well as the databases detailed in Appendix B). Once this is done, you should have a
ready-to-run LDAP directory server.

You should then modify the slapd.conf file to use Forethought-specific names. This file is
located in the root directory of your installation. Modify it to have this entry:

Building Java™ Enterprise Applications Volume I: Architecture

222

database ldbm
suffix "dc=forethought,dc=com"
rootdn "cn=Manager,dc=forethought,dc=com"
rootpw secret

C.2.2 Object Class Hierarchy

You now need to create the Forethought-specific object classes and attributes. While iPlanet
offers a GUI for these tasks, you will need to dive into LDIF and the openLDAP
configuration file formats by hand. This is a little more complex, but offers you more control
over your directory server's object class and data hierarchies.

C.2.2.1 The forethoughtPermission object class

First, create the forethoughtPermission object class; this is simple, as no new attributes are
required. You should start by creating a new file; I suggest calling it forethought.schema, as it
will add Forethought extensions to the openLDAP default schema definitions. Add to this
new file the following definition:

objectclass (2.1.1.1.1 NAME 'forethoughtPermission'
 DESC 'Forethought application permission objects'
 SUP top
 MUST ('cn')
 MAY 'description')

The objectclass keyword defines the type of object that you are creating. The rest of the
entry details this new class. First, a unique identifier should be provided. I picked an arbitrary
number that is probably not in use in your own openLDAP installation. Then, the name of the
class is supplied. I've also added a description for use by other administrators. SUP indicates
the superclass for the object class; MUST defines required attributes; and MAY defines optional
attributes. The values for each of these attributes are fairly self-explanatory; additionally,
longer explanations can be found in the relevant sections of the chapters and in the earlier
sections on iPlanet configuration. In a nutshell, you want a required name and optional
description for this new object class.

C.2.2.2 The groupOfForethoughtNames object class

Creating the groupOfForethoughtNames object class follows the same general outlines. First,
though, you need to add a new attribute, uniquePermission. This will reference the
forethoughtPermission object class you just created. Add this entry to the schema
configuration file you just created:

attributetype (2.1.1.1.2 NAME 'uniquePermission'
 DESC 'Link to a forethoughtPermission object'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)

As in the case of defining an object class, a unique object identifier is supplied, as well as the
name of the new attribute. The DESC is obviously a description. You then just need to supply
the syntax (type) of the attribute. You can see how this lengthy number relates to a syntax by
viewing Table 6-3 in the openLDAP administration guide, online at
http://www.openldap.org/doc/admin/schema.html#Extending%20Schema. In this case, the

Building Java™ Enterprise Applications Volume I: Architecture

223

syntax refers to a distinguished name (DN). This will link to the DN of an instance of the
forethoughtPermission object class.

With this attribute in place, you can create the groupOfForethoughtNames object class:

objectclass (2.1.1.1.3 NAME 'groupOfForethoughtNames'
 DESC 'Forethought application group objects'
 SUP groupofuniquenames
 MAY 'uniquePermission')

This should be self-explanatory. The one important point is that when declaring a superclass
(in this case, groupOfUniqueNames), you automatically get all the required and optional
attributes from that class. So the MUST and MAY keywords only supplement this existing set of
attributes. For this reason, you only need to add the new attribute to the definition for the
uniquePermission attribute.

With these three entries, add a reference to your new schema configuration file into the
openLDAP slapd.conf file. Look for an entry like this:

include schema
 include /usr/local/openldap/schema/core.schema
 include /usr/local/openldap/schema/cosine.schema
 include /usr/local/openldap/schema/inetorgperson.schema

Add to it your filename:

include schema
 include /usr/local/openldap/schema/core.schema
 include /usr/local/openldap/schema/cosine.schema
 include /usr/local/openldap/schema/inetorgperson.schema
Forethought schema definitions
 include /usr/local/openldap/schema/forethought.schema

Start your directory server, and the new Forethought objects and attributes will be available
for use.

C.2.3 Directory Hierarchy

You will need to create three organizational units in your directory to match the Forethought
structure: Groups, People, and Permissions. This is a trivial task in openLDAP; it simply
requires that you define a file with these entries using the LDIF format. Here is just such a
file:

People organizational unit
 dn: ou=People,dc=forethought,dc=com
 cn: People
 objectClass: organizationalUnit

Groups organizational unit
 dn: ou=Groups,dc=forethought,dc=com
 cn: Groups
 objectClass: organizationalUnit

Building Java™ Enterprise Applications Volume I: Architecture

224

Permissions organizational unit
 dn: ou=Permissions,dc=forethought,dc=com
 cn: Permissions
 objectClass: organizationalUnit

You can then use the ldapadd command to add the entries in your LDIF file to your (running)
directory server:

[localhost:~/openldap-2.0.17] bmclaugh% ldapadd -f forethought.ldif -x
 -D "cn=Manager,dc=forethought,dc=com" -w [password]

You now have both the required object classes and directory hierarchy to proceed with the
Forethought application.

Building Java™ Enterprise Applications Volume I: Architecture

225

Appendix D. Application Server Setup
This appendix covers deployment of EJB components into EJB containers. For the sake of
keeping this book under 1000 pages, I've detailed the setup of only the BEA Weblogic
application server. This is the most prevalent production application server, and is also
valuable because the way it handles vendor-specific deployment descriptors is representative
of how most application servers operate.

D.1 BEA Weblogic

Installation of Weblogic is covered by the vendor's very thorough online and printed
documentation. I've had no problem installing Weblogic on Windows, Linux, and Solaris, and
found the process simple on all three platforms.

D.1.1 Configuration

Once you have an installation, you will need to set up the JDBC and JMS connections for use
by code throughout the book. While Weblogic offers a web-based administration console, I
find it easier to simply modify the server configuration file directly. You can find this file in
the configuration directory for your specific server installation domain.

For example, I created a domain called middleearth. This resulted in a middleearth directory
under the configuration root: [InstallationRoot]/bea/wlserver6.1/config/middleearth. Within
this directory, the config.xml file controls the server configuration. You will need to make
several additions to this file. I've highlighted the portions of my own configuration file that
you will need to duplicate:

<?xml version="1.0" encoding="UTF-8"?>

<Domain Name="middleearth">
 <Application Deployed="true" Name="certificate"
 Path=".\config\middleearth\applications">
 <WebAppComponent Name="certificate" Targets="frodoWL"
 URI="certificate.war"/>
 </Application>
 <Log FileName="config/middleearth/logs/wl-domain.log"
 Name="middleearth"/>
 <Application Deployed="true" Name="DefaultWebApp"
 Path=".\config\middleearth\applications">
 <WebAppComponent Name="DefaultWebApp" Targets="frodoWL"
 URI="DefaultWebApp"/>
 </Application>
 <Application Deployed="true" Name="forethoughtEntities"
 Path=".\config\middleearth\applications">
 <EJBComponent Name="forethoughtEntities" Targets="frodoWL"
 URI="forethoughtEntities.jar"/>
 </Application>
 <JTA Name="middleearth"/>
 <SNMPAgent Name="middleearth"/>
 <PasswordPolicy Name="wl_default_password_policy"/>
 <JDBCDataSource JNDIName="jdbc.forethoughtDB" Name="ForethoughtDB"
 PoolName="forethoughtPool" Targets="frodoWL"/>
 <Realm FileRealm="wl_default_file_realm" Name="wl_default_realm"/>

Building Java™ Enterprise Applications Volume I: Architecture

226

 <!-- CustomRealm elements left out for brevity -->

 <Server ListenPort="7001" Name="frodoWL" NativeIOEnabled="true"
 TransactionLogFilePrefix="config/middleearth/logs/">
 <KernelDebug Name="frodoWL"/>
 <WebServer DefaultWebApp="DefaultWebApp"
 LogFileName="./config/middleearth/logs/access.log"
 LoggingEnabled="true" Name="frodoWL"/>
 <ExecuteQueue Name="default" ThreadCount="15"/>
 <Log FileName="config/middleearth/logs/weblogic.log"
 Name="frodoWL"/>
 <ServerStart Name="frodoWL"/>
 <ServerDebug Name="frodoWL"/>
 <SSL Enabled="true" ListenPort="7002" Name="frodoWL"
 ServerCertificateChainFileName="config/middleearth/ca.pem"
 ServerCertificateFileName="config/middleearth/democert.pem"
 ServerKeyFileName="config/middleearth/demokey.pem"/>
 </Server>

 <!-- CustomRealm elements left out for brevity -->

 <JDBCConnectionPool CapacityIncrement="5"
 DriverName="COM.cloudscape.core.JDBCDriver" InitialCapacity="15"
 MaxCapacity="50" Name="forethoughtPool"
 Properties="user=none;password=none;server=none"
 Targets="frodoWL" TestTableName="OFFICES"
 URL="jdbc:cloudscape:forethoughtDB"/>
 <ApplicationManager Name="middleearth"/>
 <JMSServer Name="ForethoughtJMSServer"
 Store="ForethoughtJMSFileStore" Targets="frodoWL">
 <JMSTopic JNDIName="forethought.EmployeeTopic" Name="Employee
 Topic"/>
 <JMSTopic JNDIName="forethought.SchedulerTopic" Name="Scheduler
 Topic"/>
 </JMSServer>
 <Security GuestDisabled="false" Name="middleearth"
 PasswordPolicy="wl_default_password_policy"
 Realm="wl_default_realm"/>
 <FileRealm Name="wl_default_file_realm"/>
 <JMSFileStore Directory="./config/middleearth/jmsStore"
 Name="ForethoughtJMSFileStore"/>
 <JMSConnectionFactory JNDIName="forethought.TopicFactory"
 Name="Forethought Topic Factory" Targets="frodoWL"
 UserTransactionsEnabled="true"/>

 <!-- CustomRealm elements left out for brevity -->
</Domain>

You can see the JMS and JDBC stores. You need to define the store, and then link it with the
name of the server you want it available for. In my setup, the server is named frodoWL.

Be sure to make these changes offline, as any changes to this file are lost at the next startup
when the server is running.

D.1.2 Deployment Descriptors

BEA Weblogic requires a weblogic-ejb-jar.xml descriptor for every ejb-jar.xml descriptor in a
deployed unit. This essentially "decodes" the ejb-jar.xml, providing vendor-specific details for
the container. Additionally, another descriptor is required for beans that use container-

Building Java™ Enterprise Applications Volume I: Architecture

227

managed persistence. This is typically called weblogic-cmp-rdbms-jar.xml, although you can
override this name if you choose. So, for a given JAR file, you may have as many as three
deployment descriptors specifically related to your beans.

However, these descriptors are extremely verbose (XML generally is), and the value of
reprinting them in this appendix is limited. You can view and download these descriptors, as
well as the standard ejb-jar.xml descriptor (discussed in Appendix E), online at
http://www.newinstance.com/. They are fairly self-explanatory, and have all been extensively
tested with the 6.x family of BEA Weblogic products.

Building Java™ Enterprise Applications Volume I: Architecture

228

Appendix E. Supplemental Code Listings
Code listings that are mentioned, but not included, in the text of this book are included in this
appendix. All the code in this appendix, as well as in the body of the book, can also be
downloaded from the book's web site at http://www.newinstance.com/. The code in this
appendix is vendor-neutral, and should be compileable by following steps in the chapters and
other appendixes. The code listings are organized by topic; while this usually corresponds to
chapters, each section specifies the areas of the text where the code fits in.

Additionally, this book commonly makes modifications to code shown earlier to facilitate
later needs. For example, while Chapters Chapter 4 and Chapter 5 detail the Forethought
entity beans, later chapters modify these same beans. It becomes difficult, at best, to track
these changes in an appendix. To simplify things, then, the code in this appendix is always the
final version of the code. In other words, a User entity bean listed here in reference to
Chapter 4 or Chapter 5 actually includes any changes made in later chapters. For this reason,
you may find yourself looking at code referred to by an early chapter, but which has
modifications from later chapters that are beyond your current understanding. Don't worry
about it; the later chapters in the book ensure that you have a complete grasp of what is going
on in all classes. If you want to see the code as it develops, chapter by chapter, you can
download the code from http://www.newinstance.com/, where the classes are made available
on a chapter-by-chapter basis.

E.1 Entity Beans

The following entity beans complete the set of Forethought entities begun in Chapter 4 and
Chapter 5. You should also notice that the deployment descriptor, ejb-jar.xml, contains entries
for all Forethought entity beans; this includes those beans discussed in Chapter 4 and
Chapter 5, including the Office entity bean and the Sequence session bean. Thus, you will
need these classes, as well as the EntityAdapter and SessionAdapter classes, to compile
these beans.

E.1.1 The UserType Bean

Example E-1 is the local interface for the UserType entity bean. Since this bean is never
directly exposed to the client, it has only local interfaces, accessed by the User bean.

Example E-1. The UserTypeLocal Interface

package com.forethought.ejb.userType;

import javax.ejb.EJBException;
import javax.ejb.EJBLocalObject;

public interface UserTypeLocal extends EJBLocalObject {

 public Integer getId() throws EJBException;

 public String getType() throws EJBException;
 public void setType(String type) throws EJBException;
}

Building Java™ Enterprise Applications Volume I: Architecture

229

Example E-2 is the local home interface for the UserType entity bean. It defines a finder for
user types by the type (the USER_TYPE column), as well as the primary key value.

Example E-2. The UserTypeLocalHome Interface

package com.forethought.ejb.userType;

import javax.ejb.CreateException;
import javax.ejb.EJBException;
import javax.ejb.EJBLocalHome;
import javax.ejb.FinderException;

public interface UserTypeLocalHome extends EJBLocalHome {

 public UserTypeLocal create(String type)
 throws CreateException, EJBException;

 public UserTypeLocal findByPrimaryKey(Integer userTypeID)
 throws FinderException, EJBException;

 public UserTypeLocal findByType(String type)
 throws FinderException, EJBException;
}

Example E-3 is the implementation class for the UserType entity bean.

Example E-3. The UserTypeBean Implementation Class

package com.forethought.ejb.userType;

import javax.ejb.CreateException;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import com.forethought.ejb.sequence.SequenceException;
import com.forethought.ejb.sequence.SequenceLocal;
import com.forethought.ejb.sequence.SequenceLocalHome;
import com.forethought.ejb.util.EntityAdapter;

public abstract class UserTypeBean extends EntityAdapter {

 public Integer ejbCreate(String type) throws CreateException {
 // Get the next primary key value
 try {
 Context context = new InitialContext();

 // Note that RMI-IIOP narrowing is not required
 SequenceLocalHome home = (SequenceLocalHome)
 context.lookup("java:comp/env/ejb/SequenceLocalHome");
 SequenceLocal sequence = home.create();
 String userTypeKey =
 (String)context.lookup("java:comp/env/constants/UserTypeKey");
 Integer id = sequence.getNextValue(userTypeKey);

Building Java™ Enterprise Applications Volume I: Architecture

230

 // Set values
 setId(id);
 setType(type);

 return null;
 } catch (NamingException e) {
 throw new CreateException("Could not obtain an " +
 "InitialContext.");
 } catch (SequenceException e) {
 throw new CreateException("Error getting primary key value: " +
 e.getMessage());
 }
 }

 public void ejbPostCreate(String type) {
 // Empty implementation
 }

 public abstract Integer getId();
 public abstract void setId(Integer id);

 public abstract String getType();
 public abstract void setType(String type);
}

E.1.2 The User Bean

Example E-4 is the remote interface for the User entity bean. Note how the user's office is
exposed. The office is represented by an Office bean and is a relationship field. You cannot
expose a relationship field directly because it deals with local interfaces and not remote ones.
Instead, the office is set through the office's remote interface. You can check out the code in
the bean implementation that translates these values into local interface calls on the Office
bean implementation in Example E-9. The same principles also apply to the user's UserType
relationship.

Example E-4. The User Remote Interface

package com.forethought.ejb.user;

import java.rmi.RemoteException;
import javax.ejb.EJBObject;

// Office bean
import com.forethought.ejb.office.Office;
import com.forethought.ejb.office.OfficeInfo;

// UserType bean
import com.forethought.ejb.userType.UnknownUserTypeException;

public interface User extends EJBObject {

 public UserInfo getInfo() throws RemoteException;
 public void setInfo(UserInfo userInfo)
 throws RemoteException, UnknownUserTypeException;

 public Integer getId() throws RemoteException;

 public String getUserDn() throws RemoteException;
 public void setUserDn(String userDn) throws RemoteException;

Building Java™ Enterprise Applications Volume I: Architecture

231

 public Office getOffice() throws RemoteException;
 public void setOffice(Office office) throws RemoteException;

 public String getType() throws RemoteException;
 public void setType(String type)
 throws RemoteException, UnknownUserTypeException;

 public String getFirstName() throws RemoteException;
 public void setFirstName(String firstName) throws RemoteException;

 public String getLastName() throws RemoteException;
 public void setLastName(String lastName) throws RemoteException;
}

Example E-5 is a local interface for the User bean. Just as the Office bean provides local
interfaces for use by the User bean in persistence relationships, this bean provides local
interfaces for use by the Account bean in persistence relationships.

Example E-5. The UserLocal Interface

package com.forethought.ejb.user;

import javax.ejb.EJBException;
import javax.ejb.EJBLocalObject;

// Office bean
import com.forethought.ejb.office.OfficeLocal;

// UserType bean
import com.forethought.ejb.userType.UnknownUserTypeException;

public interface UserLocal extends EJBLocalObject {

 public Integer getId() throws EJBException;

 public String getUserDn() throws EJBException;
 public void setUserDn(String userDN) throws EJBException;

 public OfficeLocal getOfficeLocal() throws EJBException;
 public vod setOfficeLocal(OfficeLocal officeLocal)
 throws EJBException;

 public String getType() throws EJBException;
 public void setType(String type)
 throws EJBException, UnknownUserTypeException;

 public String getFirstName() throws EJBException;
 public void setFirstName(String firstName) throws EJBException;

 public String getLastName() throws EJBException;
 public void setLastName(String lastName) throws EJBException;
}

Example E-6 is the information map for the User entity bean, used by both the local and
remote interfaces.

Building Java™ Enterprise Applications Volume I: Architecture

232

Example E-6. The UserInfo Class

package com.forethought.ejb.user;

import java.io.Serializable;

// Office bean
import com.forethought.ejb.office.OfficeInfo;

public class UserInfo implements Serializable {

 private int id;
 private String officeCity;
 private String officeState;
 private String type;
 private String userDn;
 private String firstName;
 private String lastName;

 UserInfo(int id, String userDn, String type,
 String firstName, String lastName, OfficeInfo officeInfo) {

 this.id = id;
 this.userDn = userDn;
 this.type = type;
 this.firstName = firstName;
 this.lastName = lastName;
 this.officeCity = officeInfo.getCity();
 this.officeState = officeInfo.getState();
 }

 public int getId() {
 return id;
 }

 public String getUserDn() {
 return userDn;
 }

 public void setUserDn(String userDn) {
 this.userDn = userDn;
 }

 public String getOfficeCity() {
 return officeCity;
 }

 public void setOfficeCity(String officeCity) {
 this.officeCity = officeCity;
 }

 public String getOfficeState() {
 return officeState;
 }

 public void setOfficeState(String officeState) {
 this.officeState = officeState;
 }

Building Java™ Enterprise Applications Volume I: Architecture

233

 public String getType() {
 return type;
 }

 public void setType(String type) {
 this.type = type;
 }

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }
}

Example E-7 is the home interface for the User entity bean.

Example E-7. The UserHome Interface

package com.forethought.ejb.user;

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;
import javax.ejb.FinderException;

// Office bean
import com.forethought.ejb.office.Office;

// UserType bean
import com.forethought.ejb.userType.UnknownUserTypeException;

public interface UserHome extends EJBHome {

 public User create(String userDn, String type,
 String firstName, String lastName, Office office)
 throws CreateException, RemoteException, UnknownUserTypeException;

 public User findByPrimaryKey(Integer userID)
 throws FinderException, RemoteException;

 public User findByUserDn(String userDn)
 throws FinderException, RemoteException;

 public User findByName(String firstName, String lastName)
 throws FinderException, RemoteException;
}

Example E-8 is the local home interface for the User bean. See the description for
Example E-5 if you aren't clear on why this is needed.

Building Java™ Enterprise Applications Volume I: Architecture

234

Example E-8. The UserLocalHome Interface

package com.forethought.ejb.user;

import javax.ejb.CreateException;
import javax.ejb.EJBException;
import javax.ejb.EJBLocalHome;
import javax.ejb.FinderException;

// Office bean
import com.forethought.ejb.office.Office;

// UserType bean
import com.forethought.ejb.userType.UnknownUserTypeException;

public interface UserLocalHome extends EJBLocalHome {

 public UserLocal create(String userDN, String type,
 String firstName, String lastName, Office
 office)
 throws CreateException, EJBException, UnknownUserTypeException;

 public UserLocal findByPrimaryKey(Integer userID)
 throws FinderException, EJBException;

 public UserLocal findByUserDn(String userDn)
 throws FinderException, EJBException;

 public UserLocal findByName(String firstName, String lastName)
 throws FinderException, EJBException;
}

Example E-9 is the implementation class for the User entity bean.

Example E-9. The UserBean Implementation Class

package com.forethought.ejb.user;

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBException;
import javax.ejb.FinderException;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.rmi.PortableRemoteObject;

import com.forethought.ejb.util.EntityAdapter;

// Sequence bean
import com.forethought.ejb.sequence.SequenceException;
import com.forethought.ejb.sequence.SequenceLocal;
import com.forethought.ejb.sequence.SequenceLocalHome;

// Office bean
import com.forethought.ejb.office.Office;
import com.forethought.ejb.office.OfficeHome;
import com.forethought.ejb.office.OfficeLocal;
import com.forethought.ejb.office.OfficeLocalHome;

Building Java™ Enterprise Applications Volume I: Architecture

235

// UserType bean
import com.forethought.ejb.userType.UnknownUserTypeException;
import com.forethought.ejb.userType.UserTypeLocal;
import com.forethought.ejb.userType.UserTypeLocalHome;

public abstract class UserBean extends EntityAdapter {

 public Integer ejbCreate(String userDn, String type,
 String firstName, String lastName, Office
 office)
 throws CreateException, UnknownUserTypeException {

 // Get the next primary key value
 try {
 Context context = new InitialContext();
 // Note that RMI-IIOP narrowing is not required
 SequenceLocalHome home = (SequenceLocalHome)
 context.lookup("java:comp/env/ejb/SequenceLocalHome");
 SequenceLocal sequence = home.create();
 String userKey =
 (String)context.lookup("java:comp/env/constants/UserKey");
 Integer id = sequence.getNextValue(userKey);

 // Set values
 setId(id);
 setUserDn(userDn);
 setFirstName(firstName);
 setLastName(lastName);

 return null;
 } catch (NamingException e) {
 throw new CreateException("Could not obtain an " +
 "InitialContext: " + e.getMessage());
 } catch (SequenceException e) {
 throw new CreateException("Error getting primary key value: " +
 e.getMessage());
 }
 }

 public void ejbPostCreate(String userDn, String type,
 String firstName, String lastName,
 Office office)
 throws CreateException, UnknownUserTypeException {

 // Handle CMP relationships
 setOffice(office);
 setType(type);
 }

 public UserInfo getInfo() throws RemoteException {
 OfficeInfo officeInfo = null;
 Office office = getOffice();
 if (office != null) {
 officeInfo = office.getInfo();
 }

Building Java™ Enterprise Applications Volume I: Architecture

236

 UserInfo userInfo =
 new UserInfo(getId().intValue(), getUserDn(),
 getUserTypeLocal().getType(),
 getFirstName(), getLastName(),
 officeInfo);

 return userInfo;
 }

 public void setInfo(UserInfo userInfo)
 throws UnknownUserTypeException {
 setUserDn(userInfo.getUserDn());
 setFirstName(userInfo.getFirstName());
 setLastName(userInfo.getLastName());
 setType(userInfo.getType());
 }

 public String getType() {
 return getUserTypeLocal().getType();
 }

 public void setType(String type) throws UnknownUserTypeException {
 try {
 Context context = new InitialContext();
 UserTypeLocalHome userTypeLocalHome =
 (UserTypeLocalHome)context.lookup(
 "java:comp/env/ejb/UserTypeLocalHome");
 UserTypeLocal userTypeLocal =
 userTypeLocalHome.findByType(type);
 setUserTypeLocal(userTypeLocal);
 } catch (NamingException e) {
 throw new EJBException("Error looking up UserType bean: " +
 e.getMessage());
 } catch (FinderException e) {
 // Couldn't find supplied type
 throw new UnknownUserTypeException(type);
 }
 }

 public Office getOffice() {
 OfficeLocal officeLocal = getOfficeLocal();
 if (officeLocal == null) {
 return null;
 }

 // Construct primary key for this office
 Integer officeID = getOfficeLocal().getId();

 try {
 // Find the remote interface for this office
 Context context = new InitialContext();
 OfficeHome officeHome =
 (OfficeHome)context.lookup(
 "java:comp/env/ejb/OfficeHome");
 Office office = officeHome.findByPrimaryKey(officeID);
 return office;
 } catch (NamingException e) {
 throw new EJBException("Error looking up Office bean: " +
 e.getMessage());

Building Java™ Enterprise Applications Volume I: Architecture

237

 } catch (RemoteException e) {
 throw new EJBException("Error looking up Office bean: " +
 e.getMessage());
 } catch (FinderException shouldNeverHappen) {
 // This should never happen; the ID from an office's remote
 // interface should match an office's ID in a local interface
 throw new EJBException("Error matching remote Office to " +
 "local Office: " + shouldNeverHappen.getMessage());
 }
 }

 public void setOffice(Office office) {
 try {
 // Handle case where no office supplied
 if (office == null) {
 setOfficeLocal(null);
 return;
 }

 // Construct primary key for this office
 Integer officeID = office.getId();

 // Find the local interface for this office
 Context context = new InitialContext();
 OfficeLocalHome officeLocalHome =
 (OfficeLocalHome)context.lookup(
 "java:comp/env/ejb/OfficeLocalHome");
 OfficeLocal officeLocal =
 officeLocalHome.findByPrimaryKey(officeID);
 setOfficeLocal(officeLocal);
 } catch (NamingException e) {
 throw new EJBException("Error looking up Office bean: " +
 e.getMessage());
 } catch (RemoteException e) {
 throw new EJBException("Error looking up Office bean: " +
 e.getMessage());
 } catch (FinderException shouldNeverHappen) {
 // This should never happen; the ID from an office's remote
 // interface should match an office's ID in a local interface
 throw new EJBException("Error matching remote Office to " +
 "local Office: " + shouldNeverHappen.getMessage());
 }
 }
 public abstract Integer getId();
 public abstract void setId(Integer id);

 public abstract String getUserDn();
 public abstract void setUserDn(String userDn);

 public abstract UserTypeLocal getUserTypeLocal();
 public abstract void setUserTypeLocal(UserTypeLocal userTypeLocal);

 public abstract OfficeLocal getOfficeLocal();
 public abstract void setOfficeLocal(OfficeLocal officeLocal);

 public abstract String getFirstName();
 public abstract void setFirstName(String firstName);

 public abstract String getLastName();
 public abstract void setLastName(String lastName);
}

Building Java™ Enterprise Applications Volume I: Architecture

238

The User bean is the first bean to use CMP relationships so far. CMP
relationships are well documented in various EJB books, and turn out to
be simple to understand. Several other beans in this appendix use these
relationships as well, so you should be able to pick things up by
following the examples.

You should also note that for the first time in this book, the
ejbPostCreate() method is used in this bean. The EJB 2.0
specification dictates that CMP relationships cannot be dealt with in the
ejbCreate() method; instead, they must be handled by the
ejbPostCreate() method. This allows the container to make some
assumptions about what classes and resources must be available for
each method invocation. As a result, the two relationship-based
methods, (setOffice() and setUserType(), are invoked by
the ejbPostCreate() method in this bean.

E.1.3 The AccountType Bean

Example E-10 is the AccountType entity bean's local interface. Like the UserType bean, it
also has only local interfaces exposed.

Example E-10. The AccountTypeLocal Interface

package com.forethought.ejb.accountType;

import javax.ejb.EJBException;
import javax.ejb.EJBLocalObject;

public interface AccountTypeLocal extends EJBLocalObject {

 public Integer getId() throws EJBException;

 public String getType() throws EJBException;
 public void setType(String type) throws EJBException;
}

The local home interface for the AccountType bean is shown in Example E-11.

Example E-11. The AccountTypeLocalHome Interface

package com.forethought.ejb.accountType;

import javax.ejb.CreateException;
import javax.ejb.EJBException;
import javax.ejb.EJBLocalHome;
import javax.ejb.FinderException;

public interface AccountTypeLocalHome extends EJBLocalHome {

 public AccountTypeLocal create(String type)
 throws CreateException, EJBException;

Building Java™ Enterprise Applications Volume I: Architecture

239

 public AccountTypeLocal findByPrimaryKey(Integer accountTypeID)
 throws FinderException, EJBException;

 public AccountTypeLocal findByType(String type)
 throws FinderException, EJBException;
}

Example E-12 is the implementation class for the AccountType bean.

Example E-12. The AccountTypeBean Implementation Class

package com.forethought.ejb.accountType;

import javax.ejb.CreateException;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import com.forethought.ejb.sequence.SequenceException;
import com.forethought.ejb.sequence.SequenceLocal;
import com.forethought.ejb.sequence.SequenceLocalHome;
import com.forethought.ejb.util.EntityAdapter;

public abstract class AccountTypeBean extends EntityAdapter {

 public Integer ejbCreate(String type) throws CreateException {
 // Get the next primary key value
 try {
 Context context = new InitialContext();

 // Note that RMI-IIOP narrowing is not required
 SequenceLocalHome home = (SequenceLocalHome)
 context.lookup("java:comp/env/ejb/SequenceLocalHome");
 SequenceLocal sequence = home.create();
 String accountTypeKey =
 (String)context.lookup(
 "java:comp/env/constants/AccountTypeKey");
 Integer id = sequence.getNextValue(accountTypeKey);

 // Set values
 setId(id);
 setType(type);

 return null;
 } catch (NamingException e) {
 throw new CreateException("Could not obtain an " +
 "InitialContext.");
 } catch (SequenceException e) {
 throw new CreateException("Error getting primary key value: " +
 e.getMessage());
 }
 }

 public void ejbPostCreate(String type) {
 // Empty implementation
 }

 public abstract void setId(Integer id);
 public abstract Integer getId();

Building Java™ Enterprise Applications Volume I: Architecture

240

 public abstract String getType();
 public abstract void setType(String type);
}

E.1.4 The Fund Bean

Example E-13 is the remote interface for the Fund entity bean.

Example E-13. The Fund Remote Interface

package com.forethought.ejb.fund;

import java.rmi.RemoteException;
import javax.ejb.EJBObject;

public interface Fund extends EJBObject {

 public FundInfo getInfo() throws RemoteException;
 public void setInfo(FundInfo fundInfo) throws RemoteException;

 public Integer getId() throws RemoteException;

 public String getName() throws RemoteException;
 public void setName(String name) throws RemoteException;

 public String getDescription() throws RemoteException;
 public void setDescription(String description)
 throws RemoteException;
}

Example E-14 is the local interface for the Fund bean, and is used in container-managed
relationships.

Example E-14. The Fund Local Interface

package com.forethought.ejb.fund;

import javax.ejb.EJBException;
import javax.ejb.EJBLocalObject;

public interface FundLocal extends EJBLocalObject {

 public Integer getId() throws EJBException;

 public String getName() throws EJBException;
 public void setName(String name) throws EJBException;

 public String getDescription() throws EJBException;
 public void setDescription(String description)
 throws EJBException;
}

Example E-15 shows the information class (FundInfo) for the Fund entity bean.

Building Java™ Enterprise Applications Volume I: Architecture

241

Example E-15. The FundInfo Class

package com.forethought.ejb.fund;

import java.io.Serializable;

public class FundInfo implements Serializable {

 private int id;
 private String name;
 private String description;

 protected FundInfo(int id, String name, String description) {
 this.id = id;
 this.name = name;
 this.description = description;
 }

 public int getId() {
 return id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getDescription() {
 return description;
 }

 public void setDescription(String description) {
 this.description = description;
 }
}

The home interface for the Fund entity bean is shown in Example E-16.

Example E-16. The FundHome Interface

package com.forethought.ejb.fund;

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;
import javax.ejb.FinderException;

public interface FundHome extends EJBHome {

 public Fund create(String name, String description)
 throws CreateException, RemoteException;

 public Fund findByPrimaryKey(Integer fundID)
 throws FinderException, RemoteException;

Building Java™ Enterprise Applications Volume I: Architecture

242

 public Fund findByName(String name)
 throws FinderException, RemoteException;
}

The local home interface for the Fund bean is shown in Example E-17.

Example E-17. The FundLocalHome Interface

package com.forethought.ejb.fund;

import javax.ejb.CreateException;
import javax.ejb.EJBException;
import javax.ejb.EJBLocalHome;
import javax.ejb.FinderException;

public interface FundLocalHome extends EJBLocalHome {

 public FundLocal create(String name, String description)
 throws CreateException, EJBException;

 public FundLocal findByPrimaryKey(Integer fundID)
 throws FinderException, EJBException;

 public FundLocal findByName(String name)
 throws FinderException, EJBException;
}

Example E-18 is the Fund bean's implementation class.

Example E-18. The FundBean Implementation Class

package com.forethought.ejb.fund;

import javax.ejb.CreateException;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import com.forethought.ejb.sequence.SequenceException;
import com.forethought.ejb.sequence.SequenceLocal;
import com.forethought.ejb.sequence.SequenceLocalHome;
import com.forethought.ejb.util.EntityAdapter;

public abstract class FundBean extends EntityAdapter {

 public Integer ejbCreate(String name, String description)
 throws CreateException {
 // Get the next primary key value
 try {
 Context context = new InitialContext();

 // Note that RMI-IIOP narrowing is not required
 SequenceLocalHome home = (SequenceLocalHome)
 context.lookup("java:comp/env/ejb/SequenceLocalHome");
 SequenceLocal sequence = home.create();
 String fundKey =
 (String)context.lookup(
 "java:comp/env/constants/FundKey");
 Integer id = sequence.getNextValue(fundKey);

Building Java™ Enterprise Applications Volume I: Architecture

243

 // Set values
 setId(id);
 setName(name);
 setDescription(description);

 return null;
 } catch (NamingException e) {
 throw new CreateException("Could not obtain an " +
 "InitialContext.");
 } catch (SequenceException e) {
 throw new CreateException("Error getting primary key value: " +
 e.getMessage());
 }
 }

 public void ejbPostCreate(String name, String description) {
 // Empty implementation
 }

 public FundInfo getInfo() {
 FundInfo fundInfo =
 new FundInfo(getId().intValue(), getName(), getDescription());
 return fundInfo;
 }

 public void setInfo(FundInfo fundInfo) {
 setName(fundInfo.getName());
 setDescription(fundInfo.getDescription());
 }

 public abstract Integer getId();
 public abstract void setId(Integer id);

 public abstract String getName();
 public abstract void setName(String name);

 public abstract String getDescription();
 public abstract void setDescription(String description);
}

E.1.5 The Account Bean

Example E-19 is the Account bean's remote interface.

Example E-19. The Account Remote Interface

package com.forethought.ejb.account;

import java.rmi.RemoteException;
import javax.ejb.EJBObject;

// AccountType bean
import com.forethought.ejb.accountType.UnknownAccountTypeException;

// User bean
import com.forethought.ejb.user.User;

public interface Account extends EJBObject {

 public AccountInfo getInfo() throws RemoteException;

Building Java™ Enterprise Applications Volume I: Architecture

244

 public void setInfo(AccountInfo accountInfo)
 throws RemoteException, UnknownAccountTypeException;

 public Integer getId() throws RemoteException;

 public User getUser() throws RemoteException;
 public void setUser(User user) throws RemoteException;

 public String getType() throws RemoteException;
 public void setType(String type)
 throws RemoteException, UnknownAccountTypeException;

 public float getBalance() throws RemoteException;
 public void setBalance(float balance) throws RemoteException;
}

Example E-20 is the local interface for the Account bean, used in CMP relationships.

Example E-20. The AccountLocal Interface

package com.forethought.ejb.account;

import javax.ejb.EJBException;
import javax.ejb.EJBLocalObject;

// AccountType bean
import com.forethought.ejb.accountType.UnknownAccountTypeException;

// User bean
import com.forethought.ejb.user.UserLocal;

public interface AccountLocal extends EJBLocalObject {

 public Integer getId() throws EJBException;

 public UserLocal getUserLocal() throws EJBException;
 public void setUserLocal(UserLocal userLocal) throws EJBException;

 public String getType() throws EJBException;
 public void setType(String type)
 throws EJBException, UnknownAccountTypeException;

 public float getBalance() throws EJBException;
 public void setBalance(float balance) throws EJBException;
}

The information map for the Account bean is shown in Example E-21.

Example E-21. The AccountInfo Class

package com.forethought.ejb.account;

import java.io.Serializable;

// User bean
import com.forethought.ejb.user.UserInfo;

Building Java™ Enterprise Applications Volume I: Architecture

245

public class AccountInfo implements Serializable {

 private int id;
 private UserInfo userInfo;
 private String type;
 private float balance;

 AccountInfo(int id, String type, float balance, UserInfo userInfo) {

 this.id = id;
 this.type = type;
 this.balance = balance;
 this.userInfo = userInfo;
 }

 public int getId() {
 return id;
 }

 public UserInfo getUserInfo() {
 return userInfo;
 }

 public void setUserInfo(UserInfo userInfo) {
 this.userInfo = userInfo;
 }

 public String getType() {
 return type;
 }

 public void setType(String type) {
 this.type = type;
 }

 public float getBalance() {
 return balance;
 }

 public void setBalance(float balance) {
 this.balance = balance;
 }
}

The home interface for the Account bean is shown in Example E-22.

Example E-22. The AccountHome Interface

package com.forethought.ejb.account;

import java.rmi.RemoteException;
import java.util.Collection;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;
import javax.ejb.FinderException;

// AccountType bean
import com.forethought.ejb.accountType.UnknownAccountTypeException;

Building Java™ Enterprise Applications Volume I: Architecture

246

// User bean
import com.forethought.ejb.user.User;

public interface AccountHome extends EJBHome {

 public Account create(String type, float balance, User user)
 throws CreateException, RemoteException,
 UnknownAccountTypeException;

 public Account findByPrimaryKey(Integer accountID)
 throws FinderException, RemoteException;

 public Collection findByBalance(float minBalance, float maxBalance)
 throws FinderException, RemoteException;
}

Example E-23 shows the Account bean's local home interface.

Example E-23. The AccountLocalHome Interface

package com.forethought.ejb.account;

import java.util.Collection;
import javax.ejb.CreateException;
import javax.ejb.EJBException;
import javax.ejb.EJBLocalHome;
import javax.ejb.FinderException;

// User bean
import com.forethought.ejb.user.User;

// AccountType bean
import com.forethought.ejb.accountType.UnknownAccountTypeException;

public interface AccountLocalHome extends EJBLocalHome {

 public AccountLocal create(String type, float balance, User user)
 throws CreateException, EJBException, UnknownAccountTypeException;

 public AccountLocal findByPrimaryKey(Integer accountID)
 throws FinderException, EJBException;

 public Collection findByBalance(float minBalance, float maxBalance)
 throws FinderException, EJBException;
}

Example E-24 is the implementation class for the Account bean.

Example E-24. The AccountBean Implementation Class

package com.forethought.ejb.account;

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBException;
import javax.ejb.FinderException;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

Building Java™ Enterprise Applications Volume I: Architecture

247

import javax.rmi.PortableRemoteObject;

import com.forethought.ejb.util.EntityAdapter;

// Sequence bean
import com.forethought.ejb.sequence.SequenceException;
import com.forethought.ejb.sequence.SequenceLocal;
import com.forethought.ejb.sequence.SequenceLocalHome;

// AccountType bean
import com.forethought.ejb.accountType.AccountTypeLocal;
import com.forethought.ejb.accountType.AccountTypeLocalHome;
import com.forethought.ejb.accountType.UnknownAccountTypeException;

// User bean
import com.forethought.ejb.user.User;
import com.forethought.ejb.user.UserInfo;
import com.forethought.ejb.user.UserLocal;
import com.forethought.ejb.user.UserLocalHome;
import com.forethought.ejb.user.UserHome;

public abstract class AccountBean extends EntityAdapter {

 public Integer ejbCreate(String type, float balance, User user)
 throws CreateException, UnknownAccountTypeException {

 // Get the next primary key value
 try {
 Context context = new InitialContext();
 // Note that RMI-IIOP narrowing is not required
 SequenceLocalHome home = (SequenceLocalHome)
 context.lookup("java:comp/env/ejb/SequenceLocalHome");
 SequenceLocal sequence = home.create();
 String accountKey =
 (String)context.lookup("java:comp/env/constants/AccountKey");
 Integer id = sequence.getNextValue(accountKey);

 // Set values
 setId(id);
 setBalance(balance);

 return null;
 } catch (NamingException e) {
 throw new CreateException("Could not obtain an " +
 "InitialContext: " + e.getMessage());
 } catch (SequenceException e) {
 throw new CreateException("Error getting primary key value: " +
 e.getMessage());
 }
 }

 public void ejbPostCreate(String type, float balance, User user)
 throws UnknownAccountTypeException {

 // Handle CMP relationships
 setType(type);
 setUser(user);
 }

Building Java™ Enterprise Applications Volume I: Architecture

248

 public AccountInfo getInfo() throws RemoteException {
 AccountInfo accountInfo =
 new AccountInfo(getId().intValue(),
 getAccountTypeLocal().getType(),
 getBalance(), getUser().getInfo());

 return accountInfo;
 }

 public void setInfo(AccountInfo accountInfo)
 throws UnknownAccountTypeException {

 setType(accountInfo.getType());
 setBalance(accountInfo.getBalance());
 setUser(accountInfo.getUserInfo());
 }

 public void setType(String type) throws UnknownAccountTypeException {
 try {
 Context context = new InitialContext();
 AccountTypeLocalHome accountTypeLocalHome =
 (AccountTypeLocalHome)context.lookup(
 "java:comp/env/ejb/AccountTypeLocalHome");
 AccountTypeLocal accountTypeLocal =
 accountTypeLocalHome.findByType(type);
 setAccountTypeLocal(accountTypeLocal);
 } catch (NamingException e) {
 throw new EJBException("Error looking up AccountType bean: " +
 e.getMessage());
 } catch (FinderException e) {
 // Couldn't find supplied type
 throw new UnknownAccountTypeException(type);
 }
 }

 public String getType() {
 return getAccountTypeLocal().getType();
 }

 public void setUser(User user) {
 try {
 // Construct primary key for this user
 Integer userID = user.getId();

 // Find the local interface for this office
 Context context = new InitialContext();
 UserLocalHome userLocalHome =
 (UserLocalHome)context.lookup(
 "java:comp/env/ejb/UserLocalHome");
 UserLocal userLocal =
 userLocalHome.findByPrimaryKey(userID);
 setUserLocal(userLocal);
 } catch (NamingException e) {
 throw new EJBException("Error looking up User bean: " +
 e.getMessage());
 } catch (RemoteException e) {
 throw new EJBException("Error looking up User bean: " +
 e.getMessage());

Building Java™ Enterprise Applications Volume I: Architecture

249

 } catch (FinderException shouldNeverHappen) {
 // This should never happen; the ID from an office's remote
 // interface should match an office's ID in a local interface
 throw new EJBException("Error matching remote User to " +
 "local User: " + shouldNeverHappen.getMessage());
 }
 }

 private void setUser(UserInfo userInfo) {
 try {
 // Construct primary key for this user
 Integer userID = new Integer(userInfo.getId());

 // Find the local interface for this office
 Context context = new InitialContext();
 UserLocalHome userLocalHome =
 (UserLocalHome)context.lookup(
 "java:comp/env/ejb/UserLocalHome");
 UserLocal userLocal =
 userLocalHome.findByPrimaryKey(userID);
 setUserLocal(userLocal);
 } catch (NamingException e) {
 throw new EJBException("Error looking up User bean: " +
 e.getMessage());
 } catch (FinderException shouldNeverHappen) {
 // This should never happen; the ID from an office's remote
 // interface should match an office's ID in a local interface
 throw new EJBException("Error matching remote User to " +
 "local User: " + shouldNeverHappen.getMessage());
 }
 }

 public User getUser() {
 // Construct primary key for this office
 Integer userID = getUserLocal().getId();

 try {
 // Find the remote interface for this office
 Context context = new InitialContext();
 UserHome userHome =
 (UserHome)context.lookup(
 "java:comp/env/ejb/UserHome");
 User user = userHome.findByPrimaryKey(userID);
 return user;
 } catch (NamingException e) {
 throw new EJBException("Error looking up User bean: " +
 e.getMessage());
 } catch (RemoteException e) {
 throw new EJBException("Error looking up User bean: " +
 e.getMessage());
 } catch (FinderException shouldNeverHappen) {
 // This should never happen; the ID from a user's remote
 // interface should match a user's ID in a local interface
 throw new EJBException("Error matching remote User to " +
 "local User: " + shouldNeverHappen.getMessage());
 }
 }

 public abstract Integer getId();
 public abstract void setId(Integer id);

Building Java™ Enterprise Applications Volume I: Architecture

250

 public abstract UserLocal getUserLocal();
 public abstract void setUserLocal(UserLocal userLocal);

 public abstract AccountTypeLocal getAccountTypeLocal();
 public abstract void setAccountTypeLocal(AccountTypeLocal
 accountTypeLocal);

 public abstract float getBalance();
 public abstract void setBalance(float balance);
}

E.1.6 The Transaction Bean

The remote interface for the Transaction bean is shown in Example E-25.

Example E-25. The Transaction Remote Interface

package com.forethought.ejb.transaction;

import java.rmi.RemoteException;
import java.util.Date;
import javax.ejb.EJBObject;

// Account bean
import com.forethought.ejb.account.Account;

public interface Transaction extends EJBObject {

 public TransactionInfo getInfo() throws RemoteException;
 public void setInfo(TransactionInfo transactionInfo)
 throws RemoteException;

 public Integer getId() throws RemoteException;

 public Account getAccount() throws RemoteException;
 public void setAccount(Account account) throws RemoteException;

 public float getAmount() throws RemoteException;
 public void setAmount(float amount) throws RemoteException;

 public Date getDateTime() throws RemoteException;
 public void setDateTime(Date dateTime) throws RemoteException;
}

Example E-26 is the Transaction bean's information/value class.

Example E-26. The TransactionInfo Class

package com.forethought.ejb.transaction;

import java.io.Serializable;
import java.util.Date;

// Account bean
import com.forethought.ejb.account.AccountInfo;

Building Java™ Enterprise Applications Volume I: Architecture

251

public class TransactionInfo implements Serializable {

 private int id;
 private AccountInfo accountInfo;
 private float amount;
 private Date dateTime;

 TransactionInfo(int id, float amount, Date dateTime,
 AccountInfo accountInfo) {
 this.id = id;
 this.amount = amount;
 this.dateTime = dateTime;
 this.accountInfo = accountInfo;
 }

 public int getId() {
 return id;
 }

 public AccountInfo getAccountInfo() {
 return accountInfo;
 }

 public void setAccountInfo(AccountInfo accountInfo) {
 this.accountInfo = accountInfo;
 }

 public float getAmount() {
 return amount;
 }

 public void setAmount(float amount) {
 this.amount = amount;
 }

 public Date getDateTime() {
 return dateTime;
 }

 public void setDateTime(Date dateTime) {
 this.dateTime = dateTime;
 }
}

Example E-27 shows the home interface for the Transaction bean.

Example E-27. The TransactionHome Interface

package com.forethought.ejb.transaction;

import java.rmi.RemoteException;
import java.util.Date;
import java.util.Collection;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;
import javax.ejb.FinderException;

// Account bean
import com.forethought.ejb.account.Account;

Building Java™ Enterprise Applications Volume I: Architecture

252

public interface TransactionHome extends EJBHome {

 public Transaction create(float amount, Date dateTime, Account account)
 throws CreateException, RemoteException;

 public Transaction findByPrimaryKey(Integer transactionID)
 throws FinderException, RemoteException;

 public Collection findByAmount(float minAmount, float maxAmount)
 throws FinderException, RemoteException;
}

Example E-28 is the Transaction bean's implementation class.

Example E-28. The TransactionBean Implementation Class

package com.forethought.ejb.transaction;

import java.rmi.RemoteException;
import java.util.Date;
import javax.ejb.CreateException;
import javax.ejb.EJBException;
import javax.ejb.FinderException;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.rmi.PortableRemoteObject;

import com.forethought.ejb.util.EntityAdapter;

// Sequence bean
import com.forethought.ejb.sequence.SequenceException;
import com.forethought.ejb.sequence.SequenceLocal;
import com.forethought.ejb.sequence.SequenceLocalHome;

// Account bean
import com.forethought.ejb.account.Account;
import com.forethought.ejb.account.AccountHome;
import com.forethought.ejb.account.AccountInfo;
import com.forethought.ejb.account.AccountLocal;
import com.forethought.ejb.account.AccountLocalHome;

public abstract class TransactionBean extends EntityAdapter {

 public Integer ejbCreate(float amount, Date dateTime, Account account)
 throws CreateException {

 // Get the next primary key value
 try {
 Context context = new InitialContext();
 // Note that RMI-IIOP narrowing is not required
 SequenceLocalHome home = (SequenceLocalHome)
 context.lookup("java:comp/env/ejb/SequenceLocalHome");
 SequenceLocal sequence = home.create();
 String transactionKey =
 (String)context.lookup(
 "java:comp/env/constants/TransactionKey");
 Integer id = sequence.getNextValue(transactionKey);

Building Java™ Enterprise Applications Volume I: Architecture

253

 // Set values
 setId(id);
 setAmount(amount);
 setDateTime(dateTime);

 return null;
 } catch (NamingException e) {
 throw new CreateException("Could not obtain an " +
 "InitialContext: " + e.getMessage());
 } catch (SequenceException e) {
 throw new CreateException("Error getting primary key value: " +
 e.getMessage());
 }
 }

 public void ejbPostCreate(float amount, Date dateTime,
 Account account) {
 // Handle CMP relationships
 setAccount(account);
 }

 public TransactionInfo getInfo() throws RemoteException {
 TransactionInfo transactionInfo =
 new TransactionInfo(getId().intValue(), getAmount(),
 getDateTime(),
 getAccount().getInfo());
 return transactionInfo;
 }

 public void setInfo(TransactionInfo transactionInfo) {
 setAmount(transactionInfo.getAmount());
 setDateTime(transactionInfo.getDateTime());
 setAccount(transactionInfo.getAccountInfo());
 }

 public Account getAccount() throws RemoteException {
 // Construct primary key for this account
 Integer accountID = getAccountLocal().getId();

 try {
 // Find the remote interface for this account
 Context context = new InitialContext();
 AccountHome accountHome =
 (AccountHome)context.lookup(
 "java:comp/env/ejb/AccountHome");
 Account account = accountHome.findByPrimaryKey(accountID);
 return account;
 } catch (NamingException e) {
 throw new EJBException("Error looking up Account bean: " +
 e.getMessage());
 } catch (RemoteException e) {
 throw new EJBException("Error looking up Account bean: " +
 e.getMessage());
 } catch (FinderException shouldNeverHappen) {
 // This should never happen; the ID from an account's remote
 // interface should match an account's ID in a local interface
 throw new EJBException("Error matching remote Account to " +
 "local Account: " + shouldNeverHappen.getMessage());
 }
 }

Building Java™ Enterprise Applications Volume I: Architecture

254

 public void setAccount(Account account) {
 try {
 // Construct primary key for this account
 Integer accountID = account.getId();

 // Find the local interface for this account
 Context context = new InitialContext();
 AccountLocalHome accountLocalHome =
 (AccountLocalHome)context.lookup(
 "java:comp/env/ejb/AccountLocalHome");
 AccountLocal accountLocal =
 accountLocalHome.findByPrimaryKey(accountID);
 setAccountLocal(accountLocal);
 } catch (NamingException e) {
 throw new EJBException("Error looking up Account bean: " +
 e.getMessage());
 } catch (RemoteException e) {
 throw new EJBException("Error looking up Account bean: " +
 e.getMessage());
 } catch (FinderException shouldNeverHappen) {
 // This should never happen; the ID from an account's remote
 // interface should match an account's ID in a local interface
 throw new EJBException("Error matching remote Account to " +
 "local Account: " + shouldNeverHappen.getMessage());
 }
 }

 public void setAccount(AccountInfo accountInfo) {
 try {
 // Construct primary key for this account
 Integer accountID = new Integer(accountInfo.getId());

 // Find the local interface for this account
 Context context = new InitialContext();
 AccountLocalHome accountLocalHome =
 (AccountLocalHome)context.lookup(
 "java:comp/env/ejb/AccountLocalHome");
 AccountLocal accountLocal =
 accountLocalHome.findByPrimaryKey(accountID);
 setAccountLocal(accountLocal);
 } catch (NamingException e) {
 throw new EJBException("Error looking up Account bean: " +
 e.getMessage());
 } catch (FinderException shouldNeverHappen) {
 // This should never happen; the ID from an account's remote
 // interface should match an account's ID in a local interface
 throw new EJBException("Error matching remote Account to " +
 "local Account: " + shouldNeverHappen.getMessage());
 }
 }

 public abstract Integer getId();
 public abstract void setId(Integer id);

 public abstract AccountLocal getAccountLocal();
 public abstract void setAccountLocal(AccountLocal accountLocal);

 public abstract float getAmount();
 public abstract void setAmount(float amount);

Building Java™ Enterprise Applications Volume I: Architecture

255

 public abstract Date getDateTime();
 public abstract void setDateTime(Date dateTime);
}

E.1.7 The Investment Bean

Example E-29 is the Investment bean's remote interface.

Example E-29. The Investment Remote Interface

package com.forethought.ejb.investment;

import java.rmi.RemoteException;
import javax.ejb.EJBObject;

// Account bean
import com.forethought.ejb.account.Account;

// Fund bean
import com.forethought.ejb.fund.Fund;

public interface Investment extends EJBObject {

 public InvestmentInfo getInfo() throws RemoteException;
 public void setInfo(InvestmentInfo investmentInfo)
 throws RemoteException;

 public Integer getId() throws RemoteException;

 public Fund getFund() throws RemoteException;
 public void setFund(Fund fund) throws RemoteException;

 public Account getAccount() throws RemoteException;
 public void setAccount(Account account)
 throws RemoteException;

 public float getInitialAmount() throws RemoteException;
 public void setInitialAmount(float initialAmount)
 throws RemoteException;

 public float getYield() throws RemoteException;
 public void setYield(float yield) throws RemoteException;
}

Example E-30 is the Investment bean's information class.

Example E-30. The InvestmentInfo Class

package com.forethought.ejb.investment;

import java.io.Serializable;

// Account bean
import com.forethought.ejb.account.AccountInfo;

// Fund bean
import com.forethought.ejb.fund.FundInfo;

Building Java™ Enterprise Applications Volume I: Architecture

256

public class InvestmentInfo implements Serializable {

 private int id;
 private FundInfo fundInfo;
 private AccountInfo accountInfo;
 private float initialAmount;
 private float yield;

 protected InvestmentInfo(int id, float initialAmount, float yield,
 AccountInfo accountInfo, FundInfo fundInfo) {

 this.id = id;
 this.initialAmount = initialAmount;
 this.yield = yield;
 this.accountInfo = accountInfo;
 this.fundInfo = fundInfo;
 }

 public int getId() {
 return id;
 }

 public FundInfo getFundInfo() {
 return fundInfo;
 }

 public void setFundInfo(FundInfo fundInfo) {
 this.fundInfo = fundInfo;
 }

 public AccountInfo getAccountInfo() {
 return accountInfo;
 }

 public void setAccountInfo(AccountInfo accountInfo) {
 this.accountInfo = accountInfo;
 }

 public float getInitialAmount() {
 return initialAmount;
 }

 public void setInitialAmount(float initialAmount) {
 this.initialAmount = initialAmount;
 }

 public float getYield() {
 return yield;
 }

 public void setYield(float yield) {
 this.yield = yield;
 }
}

The home interface for the Investment bean is shown in Example E-31.

Building Java™ Enterprise Applications Volume I: Architecture

257

Example E-31. The InvestmentHome Interface

package com.forethought.ejb.investment;

import java.rmi.RemoteException;
import java.util.Collection;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;
import javax.ejb.FinderException;

// Account bean
import com.forethought.ejb.account.Account;

// Fund bean
import com.forethought.ejb.fund.Fund;

public interface InvestmentHome extends EJBHome {

 public Investment create(float initialAmount, Account account,
 Fund fund)
 throws CreateException, RemoteException;

 public Investment findByPrimaryKey(Integer investmentID)
 throws FinderException, RemoteException;

 public Collection findByInitialAmount(float minAmount, float maxAmount)
 throws FinderException, RemoteException;

 public Collection findByYield(float minYield, float maxYield)
 throws FinderException, RemoteException;
}

Example E-32 shows the Investment bean's implementation class.

Example E-32. The InvestmentBean Implementation Class

package com.forethought.ejb.investment;

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBException;
import javax.ejb.FinderException;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.rmi.PortableRemoteObject;

import com.forethought.ejb.util.EntityAdapter;

// Sequence bean
import com.forethought.ejb.sequence.SequenceException;
import com.forethought.ejb.sequence.SequenceLocal;
import com.forethought.ejb.sequence.SequenceLocalHome;

// Account bean
import com.forethought.ejb.account.Account;
import com.forethought.ejb.account.AccountHome;
import com.forethought.ejb.account.AccountInfo;
import com.forethought.ejb.account.AccountLocal;
import com.forethought.ejb.account.AccountLocalHome;

Building Java™ Enterprise Applications Volume I: Architecture

258

// Fund bean
import com.forethought.ejb.fund.Fund;
import com.forethought.ejb.fund.FundHome;
import com.forethought.ejb.fund.FundInfo;
import com.forethought.ejb.fund.FundLocal;
import com.forethought.ejb.fund.FundLocalHome;

public abstract class InvestmentBean extends EntityAdapter {

 public Integer ejbCreate(float initialAmount, Account account,
 Fund fund)
 throws CreateException {

 // Get the next primary key value
 try {
 Context context = new InitialContext();
 // Note that RMI-IIOP narrowing is not required
 SequenceLocalHome home = (SequenceLocalHome)
 context.lookup("java:comp/env/ejb/SequenceLocalHome");
 SequenceLocal sequence = home.create();
 String investmentKey =
 (String)context.lookup("java:comp/env/constants/InvestmentKey");
 Integer id = sequence.getNextValue(investmentKey);

 // Set values
 setId(id);
 setInitialAmount(initialAmount);

 // Initial yield is always 1.0
 setYield(1);

 return null;
 } catch (NamingException e) {
 throw new CreateException("Could not obtain an " +
 "InitialContext: " + e.getMessage());
 } catch (SequenceException e) {
 throw new CreateException("Error getting primary key value: " +
 e.getMessage());
 }
 }

 public void ejbPostCreate(float initialAmount, Account account,
 Fund fund)
 throws CreateException {

 // Handle CMP relationships
 setAccount(account);
 setFund(fund);
 }

 public InvestmentInfo getInfo() throws RemoteException {
 InvestmentInfo investmentInfo =
 new InvestmentInfo(getId().intValue(), getInitialAmount(),
 getYield(), getAccount().getInfo(),
 getFund().getInfo());

 return investmentInfo;
 }

Building Java™ Enterprise Applications Volume I: Architecture

259

 public void setInfo(InvestmentInfo investmentInfo) {
 setInitialAmount(investmentInfo.getInitialAmount());
 setYield(investmentInfo.getYield());
 setAccount(investmentInfo.getAccountInfo());
 setFund(investmentInfo.getFundInfo());
 }

 public Account getAccount() throws RemoteException {
 // Construct primary key for this account
 Integer accountID = getAccountLocal().getId();

 try {
 // Find the remote interface for this office
 Context context = new InitialContext();
 AccountHome accountHome =
 (AccountHome)context.lookup(
 "java:comp/env/ejb/AccountHome");
 Account account = accountHome.findByPrimaryKey(accountID);
 return account;
 } catch (NamingException e) {
 throw new EJBException("Error looking up Account bean: " +
 e.getMessage());
 } catch (RemoteException e) {
 throw new EJBException("Error looking up Account bean: " +
 e.getMessage());
 } catch (FinderException shouldNeverHappen) {
 // This should never happen; the ID from an account's remote
 // interface should match an account's ID in a local interface
 throw new EJBException("Error matching remote Account to " +
 "local Account: " + shouldNeverHappen.getMessage());
 }
 }

 public void setAccount(Account account) {
 try {
 // Construct primary key for this account
 Integer accountID = account.getId();

 // Find the local interface for this account
 Context context = new InitialContext();
 AccountLocalHome accountLocalHome =
 (AccountLocalHome)context.lookup(
 "java:comp/env/ejb/AccountLocalHome");
 AccountLocal accountLocal =
 accountLocalHome.findByPrimaryKey(accountID);
 setAccountLocal(accountLocal);
 } catch (NamingException e) {
 throw new EJBException("Error looking up Account bean: " +
 e.getMessage());
 } catch (RemoteException e) {
 throw new EJBException("Error looking up Account bean: " +
 e.getMessage());
 } catch (FinderException shouldNeverHappen) {
 // This should never happen; the ID from an account's remote
 // interface should match an account's ID in a local interface
 throw new EJBException("Error matching remote Account to " +
 "local Account: " + shouldNeverHappen.getMessage());
 }
 }

Building Java™ Enterprise Applications Volume I: Architecture

260

 public void setAccount(AccountInfo accountInfo) {
 try {
 // Construct primary key for this account
 Integer accountID = new Integer(accountInfo.getId());

 // Find the local interface for this account
 Context context = new InitialContext();
 AccountLocalHome accountLocalHome =
 (AccountLocalHome)context.lookup(
 "java:comp/env/ejb/AccountLocalHome");
 AccountLocal accountLocal =
 accountLocalHome.findByPrimaryKey(accountID);
 setAccountLocal(accountLocal);
 } catch (NamingException e) {
 throw new EJBException("Error looking up Account bean: " +
 e.getMessage());
 } catch (FinderException shouldNeverHappen) {
 // This should never happen; the ID from an account's remote
 // interface should match an account's ID in a local interface
 throw new EJBException("Error matching remote Account to " +
 "local Account: " + shouldNeverHappen.getMessage());
 }
 }

 public Fund getFund() throws RemoteException {
 // Construct primary key for this fund
 Integer fundID = getFundLocal().getId();

 try {
 // Find the remote interface for this fund
 Context context = new InitialContext();
 FundHome fundHome =
 (FundHome)context.lookup("java:comp/env/ejb/FundHome");
 Fund fund = fundHome.findByPrimaryKey(fundID);
 return fund;
 } catch (NamingException e) {
 throw new EJBException("Error looking up Fund bean: " +
 e.getMessage());
 } catch (RemoteException e) {
 throw new EJBException("Error looking up Fund bean: " +
 e.getMessage());
 } catch (FinderException shouldNeverHappen) {
 // This should never happen; the ID from a fund's remote
 // interface should match a fund's ID in a local interface
 throw new EJBException("Error matching remote Fund to " +
 "local Fund: " + shouldNeverHappen.getMessage());
 }
 }

 public void setFund(Fund fund) {
 try {
 // Construct primary key for this fund
 Integer fundID = fund.getId();

 // Find the local interface for this fund
 Context context = new InitialContext();
 FundLocalHome fundLocalHome =
 (FundLocalHome)context.lookup(
 "java:comp/env/ejb/FundLocalHome");

Building Java™ Enterprise Applications Volume I: Architecture

261

 FundLocal fundLocal =
 fundLocalHome.findByPrimaryKey(fundID);
 setFundLocal(fundLocal);
 } catch (NamingException e) {
 throw new EJBException("Error looking up Fund bean: " +
 e.getMessage());
 } catch (RemoteException e) {
 throw new EJBException("Error looking up Fund bean: " +
 e.getMessage());
 } catch (FinderException shouldNeverHappen) {
 // This should never happen; the ID from a fund's remote
 // interface should match a fund's ID in a local interface
 throw new EJBException("Error matching remote Fund to " +
 "local Fund: " + shouldNeverHappen.getMessage());
 }
 }

 public void setFund(FundInfo fundInfo) {
 try {
 // Construct primary key for this fund
 Integer fundID = new Integer(fundInfo.getId());

 // Find the local interface for this fund
 Context context = new InitialContext();
 FundLocalHome fundLocalHome =
 (FundLocalHome)context.lookup(
 "java:comp/env/ejb/FundLocalHome");
 FundLocal fundLocal =
 fundLocalHome.findByPrimaryKey(fundID);
 setFundLocal(fundLocal);
 } catch (NamingException e) {
 throw new EJBException("Error looking up Fund bean: " +
 e.getMessage());
 } catch (FinderException shouldNeverHappen) {
 // This should never happen; the ID from a fund's remote
 // interface should match a fund's ID in a local interface
 throw new EJBException("Error matching remote Fund to " +
 "local Fund: " + shouldNeverHappen.getMessage());
 }
 }

 public abstract Integer getId();
 public abstract void setId(Integer id);

 public abstract FundLocal getFundLocal();
 public abstract void setFundLocal(FundLocal fundLocal);

 public abstract AccountLocal getAccountLocal();
 public abstract void setAccountLocal(AccountLocal accountLocal);

 public abstract float getInitialAmount();
 public abstract void setInitialAmount(float initialAmount);

 public abstract float getYield();
 public abstract void setYield(float yield);
}

Building Java™ Enterprise Applications Volume I: Architecture

262

E.1.8 The Event Bean

Example E-33 is the remote interface for the Event bean.

Example E-33. The Event Remote Interface

package com.forethought.ejb.event;

import java.rmi.RemoteException;
import java.util.Collection;
import java.util.Date;
import javax.ejb.EJBObject;

public interface Event extends EJBObject {

 public EventInfo getInfo() throws RemoteException;
 public void setInfo(EventInfo eventInfo) throws RemoteException;

 public Integer getId() throws RemoteException;

 public String getDescription() throws RemoteException;
 public void setDescription(String description)
 throws RemoteException;

 public Date getDateTime() throws RemoteException;
 public void setDateTime(Date dateTime) throws RemoteException;

 public Collection getAttendees() throws RemoteException;
 public void setAttendees(Collection attendees) throws RemoteException;
}

Example E-34 is the information map for the Event bean.

Example E-34. The EventInfo Class

package com.forethought.ejb.event;

import java.io.Serializable;
import java.rmi.RemoteException;
import java.util.Collection;
import java.util.Date;
import java.util.Iterator;
import java.util.LinkedList;

// User bean
import com.forethought.ejb.user.User;
import com.forethought.ejb.user.UserInfo;

public class EventInfo implements Serializable {

 private int id;
 private String description;
 private Date dateTime;
 private Collection attendees;

Building Java™ Enterprise Applications Volume I: Architecture

263

 protected EventInfo(int id, String description, Date dateTime,
 Collection attendees) throws RemoteException {
 this.id = id;
 this.description = description;
 this.dateTime = dateTime;

 // Convert attendees to correct type
 this.attendees = new LinkedList();
 for (Iterator i = attendees.iterator(); i.hasNext();) {
 Object obj = i.next();
 User user = (User)obj;
 this.attendees.add(user.getInfo());
 }
 }

 public int getId() {
 return id;
 }

 public String getDescription() {
 return description;
 }

 public void setDescription(String description) {
 this.description = description;
 }

 public Date getDateTime() {
 return dateTime;
 }

 public void setDateTime(Date dateTime) {
 this.dateTime = dateTime;
 }

 public Collection getAttendees() {
 return attendees;
 }

 public void setAttendees(Collection attendees) {
 this.attendees = attendees;
 }

 public void addAttendee(UserInfo userInfo) {
 if (attendees == null) {
 attendees = new LinkedList();
 }
 if (attendees.contains(userInfo)) {
 return;
 }
 attendees.add(userInfo);
 }

 public void removeAttendee(UserInfo userInfo) {
 if (attendees == null) {
 return;
 }
 attendees.remove(userInfo);
 }
}

Building Java™ Enterprise Applications Volume I: Architecture

264

Example E-35 is the home interface for the Event bean.

Example E-35. The EventHome Interface

package com.forethought.ejb.event;

import java.rmi.RemoteException;
import java.util.Collection;
import java.util.Date;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;
import javax.ejb.FinderException;

public interface EventHome extends EJBHome {

 public Event create(String description, Date dateTime,
 Collection attendees)
 throws CreateException, RemoteException;

 public Event findByPrimaryKey(Integer eventID)
 throws FinderException, RemoteException;

 public Collection findByDescription(String description)
 throws FinderException, RemoteException;
}

Finally, Example E-36 shows the bean implementation class for handling events.

Example E-36. The EventBean Implementation Class

package com.forethought.ejb.event;

import java.rmi.RemoteException;
import java.util.Collection;
import java.util.Date;
import java.util.Iterator;
import java.util.LinkedList;
import javax.ejb.CreateException;
import javax.ejb.EJBException;
import javax.ejb.FinderException;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import com.forethought.ejb.sequence.SequenceException;
import com.forethought.ejb.sequence.SequenceLocal;
import com.forethought.ejb.sequence.SequenceLocalHome;
import com.forethought.ejb.util.EntityAdapter;

// User bean
import com.forethought.ejb.user.User;
import com.forethought.ejb.user.UserHome;
import com.forethought.ejb.user.UserInfo;
import com.forethought.ejb.user.UserLocal;
import com.forethought.ejb.user.UserLocalHome;

Building Java™ Enterprise Applications Volume I: Architecture

265

public abstract class EventBean extends EntityAdapter {

 public Integer ejbCreate(String description, Date dateTime,
 Collection attendees)
 throws CreateException {
 // Get the next primary key value
 try {
 Context context = new InitialContext();

 // Note that RMI-IIOP narrowing is not required
 SequenceLocalHome home = (SequenceLocalHome)
 context.lookup("java:comp/env/ejb/SequenceLocalHome");
 SequenceLocal sequence = home.create();
 String eventKey =
 (String)context.lookup(
 "java:comp/env/constants/EventKey");
 Integer id = sequence.getNextValue(eventKey);

 // Set values
 setId(id);
 setDescription(description);
 setDateTime(dateTime);

 return null;
 } catch (NamingException e) {
 throw new CreateException("Could not obtain an " +
 "InitialContext.");
 } catch (SequenceException e) {
 throw new CreateException("Error getting primary key value: " +
 e.getMessage());
 }
 }

 public void ejbPostCreate(String description, Date dateTime,
 Collection attendees) {
 // Handle CMP relationships
 setAttendees(attendees);
 }

 public EventInfo getInfo() throws RemoteException {
 EventInfo eventInfo =
 new EventInfo(getId().intValue(), getDescription(),
 getDateTime(),
 getAttendees());
 return eventInfo;
 }

 public void setInfo(EventInfo eventInfo) {
 setDescription(eventInfo.getDescription());
 setDateTime(eventInfo.getDateTime());
 setAttendees(eventInfo.getAttendees());
 }

 public Collection getAttendees() {
 try {
 Collection attendeesLocal = getAttendeesLocal();
 Collection attendees = new LinkedList();

Building Java™ Enterprise Applications Volume I: Architecture

266

 // Get the UserHome interface
 Context context = new InitialContext();
 UserHome userHome =
 (UserHome)context.lookup(
 "java:comp/env/ejb/UserHome");

 // Convert each local User into a remote User
 for (Iterator i = attendeesLocal.iterator(); i.hasNext();) {
 UserLocal userLocal = (UserLocal)i.next();

 // Construct primary key for this office
 Integer userID = userLocal.getId();

 User user = userHome.findByPrimaryKey(userID);
 attendees.add(user);
 }

 return attendees;
 } catch (NamingException e) {
 throw new EJBException("Error looking up User bean: " +
 e.getMessage());
 } catch (RemoteException e) {
 throw new EJBException("Error looking up User bean: " +
 e.getMessage());
 } catch (FinderException shouldNeverHappen) {
 // This should never happen; the ID from a user's remote
 // interface should match a user's ID in a local interface
 throw new EJBException("Error matching remote User to " +
 "local User: " + shouldNeverHappen.getMessage());
 }
 }

 public void setAttendees(Collection attendees) {
 try {
 // Handle case where no attendees supplied
 if (attendees == null) {
 setAttendeesLocal(null);
 return;
 }

 // Get the local User home interface
 Context context = new InitialContext();
 UserLocalHome userLocalHome =
 (UserLocalHome)context.lookup(
 "java:comp/env/ejb/UserLocalHome");

 Collection attendeesLocal = new LinkedList();
 // Convert each remote User to a local User
 for (Iterator i = attendees.iterator(); i.hasNext();) {
 // Construct primary key for this office
 Integer userID;
 Object obj = i.next();

 if (obj instanceof User) {
 userID = ((User)obj).getId();
 } else if (obj instanceof UserInfo) {
 userID = new Integer(((UserInfo)obj).getId());
 } else {
 throw new EJBException("Invalid object type in " +
 "attendee list.");
 }

Building Java™ Enterprise Applications Volume I: Architecture

267

 // Find the local interface for this user
 UserLocal userLocal =
 userLocalHome.findByPrimaryKey(userID);
 attendeesLocal.add(userLocal);
 }

 setAttendeesLocal(attendeesLocal);

 } catch (NamingException e) {
 throw new EJBException("Error looking up User bean: " +
 e.getMessage());
 } catch (RemoteException e) {
 throw new EJBException("Error looking up User bean: " +
 e.getMessage());
 } catch (FinderException shouldNeverHappen) {
 // This should never happen; the ID from a user's remote
 // interface should match a user's ID in a local interface
 throw new EJBException("Error matching remote User to " +
 "local User: " + shouldNeverHappen.getMessage());
 }
 }

 public abstract Integer getId();
 public abstract void setId(Integer id);

 public abstract String getDescription();
 public abstract void setDescription(String description);

 public abstract Date getDateTime();
 public abstract void setDateTime(Date dateTime);

 public abstract Collection getAttendeesLocal();
 public abstract void setAttendeesLocal(Collection attendeesLocal);
}

E.1.9 Deployment Descriptors

The ejb-jar.xml deployment descriptor is required for packaging of enterprise beans. There
are three deployment units detailed in this book: forethoughtEntities.jar,
forethoughtLogic.jar, and forethoughtScheduling.jar. Each of these has its own ejb-jar.xml.
However, deployment descriptors are both boring and verbose (they take a lot of space), so I
am not reprinting those descriptors here. The chapters discuss fragments of these, and you can
download and view the complete descriptors from the book's web site,
http://www.newinstance.com/.

E.2 Application Exceptions

Here are some additional exceptions that extend the ForethoughtException class, which
was defined in Chapter 5. Session beans and other components throughout the rest of the book
use these exceptions.

E.2.1 Entity Exceptions

The exceptions in the following code listings are all used in reporting the specific problem
associated with a specified entity (an office, user, account, and so forth) to session bean

Building Java™ Enterprise Applications Volume I: Architecture

268

clients. Example E-37 is the exception for reporting that a fund being searched for cannot be
located.

Example E-37. The FundNotFoundException Class

package com.forethought.ejb.fund;

import com.forethought.ForethoughtException;

public class FundNotFoundException extends ForethoughtException {

 /** The fund name that was not found */
 private String fundName;

 public FundNotFoundException(String fundName) {
 super("A fund with the name " + fundName +
 " could not be found.");
 this.fundName = fundName;
 }

 public String getFundName() {
 return fundName;
 }
}

Example E-38 is the exception reported when an unknown user type is specified.

Example E-38. The UnknownUserTypeException Class

package com.forethought.ejb.userType;

import com.forethought.ForethoughtException;

public class UnknownUserTypeException extends ForethoughtException {

 /** The user type specified */
 private String userType;

 public UnknownUserTypeException(String userType) {
 super("There is no user type called " + userType +
 " in the Forethought application.");
 this.userType = userType;
 }

 public String getUserType() {
 return userType;
 }
}

Building Java™ Enterprise Applications Volume I: Architecture

269

Example E-39 is the exception for reporting invalid account types.

Example E-39. The UnknownAccountTypeException Class

package com.forethought.ejb.accountType;

import com.forethought.ForethoughtException;

public class UnknownAccountTypeException extends ForethoughtException {

 /** The account type specified */
 private String accountType;

 public UnknownAccountTypeException(String accountType) {
 super("There is no account type called " + accountType +
 " in the Forethought application.");
 this.accountType = accountType;
 }

 public String getAccountType() {
 return accountType;
 }
}

Building Java™ Enterprise Applications Volume I: Architecture

270

Colophon
Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical
topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Building Java Enterprise Applications Volume I: Architecture is a
kangaroo rat. There are about 20 species of kangaroo rat (genus Dipodomys, family
Heteromyidae) found in western North America. Some of these species are endangered. These
small mammals are equipped with long, narrow feet that enable them to get about with long,
strong hops. They can travel as far as two meters per hop. Their tufted tails, which are
approximately as long as their bodies, are used as rudders. The forearms of kangaroo rats are
so short that they often disappear within their fur. Most kangaroo rats have a color similar to
the sand or soil of their environment, with black or white facial markings and two stripes
running down the back. Albino kangaroo rats do occasionally appear. Like all of their
relatives in the Heteromyidae family, kangaroo rats have large, fur-lined pouches in their
cheeks into which they stuff food to carry back to their nests. They eat grass, plant greenery,
and seeds. It is not uncommon to find evidence of a visit by a kangaroo rat in vegetable
gardens. Remarkably, they are able to obtain all the water they need from the food that they
eat. Kangaroo rats are able to live their entire lives without ever drinking water.

Kangaroo rats are nocturnal animals. They tend to be antisocial and belligerent. Kangaroo rat
fights frequently occur. During these fights they jump in the air and kick at each other with
their powerful legs. Kicking, in this case kicking sand, also comes in handy when cornered by
enemies such as rattlesnakes or coyotes. While the enemy has sand in its eyes, the kangaroo
rat makes his hopping getaway.

Kangaroo rats build their subterranean nests beneath small bushes or trees. They line the nests
with leaves or grass, and build in numerous tunnels and escape outlets.

Emily Quill was the production editor and copyeditor for Building Java Enterprise
Applications Volume I: Architecture. Jane Ellin was the proofreader, and Catherine Morris
provided quality control. Sue Willing and Philip Dangler provided production assistance. Joe
Wizda wrote the index.

Hanna Dyer designed the cover of this book, based on a series design by Edie Freedman. The
cover image is a 19th-century engraving from the Dover Pictorial Archive. Emma Colby
produced the cover layout with QuarkXPress 4.1 using Adobe's ITC Garamond font.

Melanie Wang designed the interior layout, based on a series design by David Futato. Neil
Walls converted the files from Microsoft Word to FrameMaker 5.5.6 using tools created by
Mike Sierra. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont's TheSans Mono Condensed. The illustrations that appear in
the book were produced by Robert Romano and Jessamyn Read using Macromedia FreeHand
9 and Adobe Photoshop 6. The tip and warning icons were drawn by Christopher Bing. This
colophon was written by Clairemarie Fisher O'Leary.

	Cover
	Table of Contents
	Preface
	Organization
	Software and Versions
	Conventions Used in This Book
	Comments and Questions
	Acknowledgments

	1. Introduction
	1.1 Building Java Enterprise Applications
	1.2 Architecture
	1.3 What You'll Need

	2. Blueprints
	2.1 Forethought Brokerage
	2.2 The Data Layer
	2.3 The Business Layer
	2.4 The Presentation Layer
	2.5 Finalizing the Plans
	2.6 What's Next?

	3. Foundation
	3.1 Designing the Data Stores
	3.2 Databases
	3.3 Directory Servers
	3.4 What's Next?

	4. Entity Basics
	4.1 Basic Design Patterns
	4.2 Coding the Bean
	4.3 Deploying the Bean
	4.4 What's Next?

	5. Advanced Entities
	5.1 IDs, Sequences, and CMP
	5.2 Details, Details, Details
	5.3 Data Modeling
	5.4 Filling in the Blanks
	5.5 What's Next?

	6. Managers
	6.1 Managers and Entities
	6.2 The LDAPManager Class
	6.3 What's Next?

	7. Completing the Data Layer
	7.1 Odds and Ends
	7.2 Checkpoint
	7.3 Populating the Data Stores
	7.4 What's Next?

	8. Business Logic
	8.1 The Façade Pattern
	8.2 The UserManager
	8.3 State Design
	8.4 What's Next?

	9. Messaging and Packaging
	9.1 Messaging on the Server
	9.2 Messaging on the Client
	9.3 Packaging
	9.4 What's Next?

	10. Beyond Architecture
	10.1 Flexibility
	10.2 Decision Point
	10.3 What's Next?

	A. SQL Scripts
	A.1 The User Store
	A.2 The Accounts Store
	A.3 Events and Scheduling
	A.4 Starting Over
	A.5 Primary Keys
	A.6 Creating Types

	B. SQL Deployment
	B.1 Cloudscape
	B.2 InstantDB
	B.3 MySQL
	B.4 Oracle
	B.5 PostgreSQL

	C. Directory Server Setup
	C.1 iPlanet
	C.2 OpenLDAP

	D. Application Server Setup
	D.1 BEA Weblogic

	E. Supplemental Code Listings
	E.1 Entity Beans
	E.2 Application Exceptions

	Colophon

