DR

My stupid release 20020
For all the people which doesn’t have money to buy a good book

Book Description

The Java Cookbook isacomprehensive collection of problems, solutions, and practical
examples for anyone programming in Java. Developers will find hundreds of tried-and-
true Java"recipes' covering dl of the mgjor APIsaswdll as some APIsthat aren't aswell
documented in other Java books.

The Java Cookbook, like the bestsdling Perl Cookbook, coversalot of ground, and
offers Java devel opers short, focused pieces of code that can be easily incorporated into
other programs. The idealis to focus on things that are useful, tricky, or both. The book
includes code segments covering many specidized APIs--like media and servlets--and
should serve as a gredt "jumping-off place" for Java developers who want to get sarted in
aress outside of their specidization.

The book provides quick solutions to particular problems that can be incorporated into
other programs, but that aren't usually programsin and of themselves.

g =) = < T 11

WHhO ThiS BOOK IS FOFeeiiieiece ettt 12
What's in ThiS BOOK?couiiiiieiiie st 12
PIAFOrM NOLES ... et b e e 14
(@11 g 1T gl = ToTo ST 15
Conventions Used in ThiS BOOK.........c.ccocuiiiiiiinine s 17
Getting the SOUICE COE.........ooiieiiiiiece e 18
ACKNOWIEAGMENTS ... 19
Chapter 1. Getting Started: Compiling, Running, and Debuggingc............ 21
I 11 {0 To [T4 1o o ISR 21
1.2 Compiling and Running Java: JDKcccoiririninieeieiesese e 22
1.3 Editing and Compiling with a Color-Highlighting Editorccccceevveun... 26
1.4 Compiling, Running, and Testing with an IDEcccccccevoeveeieceececeee 27
1.5 Using Classes from ThiS BOOKcccoeeiirirnieneneseese e 31
1.6 Automating Compilation With Jr ..o 32
1.7 Automating Compilation With Makeccceeeveeieciesecce e 33
1.8 Automating Compilation With ANt ..o 34
1.9 RUNNING APPIETS ... 36
1.10 Dealing with Deprecation Warningscccccevoeevereeseeieseesiessesseesseseesnes 38
1.11 Conditional Debugging without #ifdef...........cccovviiiii i 40
1.12 Debugging PriNTOULS ..o 41
I RS U LS T o Jr= T D= o 18 o o 1] S 42
1.14 Unit Testing: Avoid the Need for Debuggerscccvvceevievieesiescieesiens 44
1.15 Decompiling Java Class Files ... 46
1.16 Preventing Others from Decompiling Your Java Files............cccccceuveunee. 48
1.17 Getting Readable Tracebacks........ccccevveieiieiecie e 49
1.18 Finding More Java SoUrce COdeccoeririreninieeieieseese st 50
1.19 Program: DEDUQG ..o 52
Chapter 2. Interacting with the Environment..............ccooeoeveeveeie e 53
P20 R [1 oo (3 Tox 1 To] o SRR 53
2.2 Getting Environment Variables..........ccooiiii e 53
G YAy (=] 0 4 I e (0] 0= 1[I 55
2.4 Writing JDK Release-Dependent Codecccccvvveevieiiiieviecciee s cie e 56
2.5 Writing Operating System-Dependent Code.........cccooeveienerenineneneeene 57
2.6 Using CLASSPATH EffeCtiVelYccccoveiiiiere e 59
2.7 Using Extensions or Other Packaged APIS ... 61
2.8 Parsing Command -Line ArgumMENTScccoerererieriieieeiesese s 62
Chapter 3. Strings and ThiNGSc.ccceieeiece e 66
1 0 I 11 o To 11 ox 1T o ISP 66
3.2 Taking Strings Apart with SUDSEINGS ... 68
3.3 Taking Strings Apart with StringTOKENIZErccceveiieiiiiie e 69
3.4 Putting Strings Together with + and StringBuffer ..., 72
3.5 Processing a String One Character at a Timeccccceevevecveeveeccie e 73
3.6 AlIGNING STIHNGS ..o bt 74
3.7 Converting Between Unicode Characters and Stringscccccveevevveenee. 76

3.8 Reversing a String by Word or Character..........ccccceeoeveevecceseece e, 78

3.9 Expanding and Compressing TabsS........cccoverineeiinin e 79
3.10 CONrolliNG CASEcveeiierierieeieeee e 82
3.11 Indenting TeXt DOCUMENLScccceeiieeiieciesieee et 83
3.12 Entering Non-Printable Characters.........ccoceovreneninneeneeesee e 85
3.13 Trimming Blanks from the End of & Stringccceovveienenenenineseeeeee 86
3.14 Parsing Comma-Separated Data...........ccccceecvereerecieseese e 87
3.15 Program: A Simple Text Formatterccccvvveveeiie e 91
3.16 Program: Soundex Name COMPAIISONSccccererreeriereerierenrereseseseenes 93
Chapter 4. Pattern Matching with Regular EXpressionscccccocceveevvvieeseennene 96
vt R [01 (oo [¥ Tox 1o [PV URRRPRR 96
4.2 Regular EXPresSion SYNTAX..... ..o 98
4.3 HOW RES WOIK iN PracCliCecoouvieiiiiiesiesieseseseeee e 100
4.4 Using Regular EXpressions iN JAVAccccceeeieeieieeseesie e seesie e 101
4.5 Testing RES INtEractiVely..........cooeiiiiieiieeeee s 103
4.6 Finding the MatChing TeXt.......ccviriiieereeee s 104
4.7 Replacing the Matching TeXtcccvieiieiiieccece e 105
4.8 Printing All Occurrences of a Pattern.........coccoovevereeneeneneeneee e 106
4.9 Printing Lines Containing a Pattern.........c.ccocvviriiiienene e 107
4.10 Controlling Case in match() and subst()cccoceveeveeveecese e, 109
4.11 Precompiling the REoooiiie ettt 109
4.12 Matching NeWliNeS iN TEXL ...ccviiiieieeieree s 110
4.13 Program: Data MiNINGcccceeeerieiesieseesee e esee e e e s 112
4.14 Program: FUIl GreP ...ttt nnee s 114
Chapter 5. NUMDEIS ... 118
5.1 INFOAUCTION ...ttt s 119
5.2 Checking Whether a String Is a Valid Number ..o 121
5.3 Storing a Larger Number in a Smaller.........ccocooeiiiiiiinineseeees 122
5.4 Taking a Fraction of an Integer Without Using Floating Point................ 123
5.5 Ensuring the Accuracy of Floating-Point Numbersccccccvvveveeeenee. 124
5.6 Comparing Floating -Point NUMDEIS ..o 126
5.7 Rounding Floating-Point NUMDbBErS..........cccooiiiiiiiie e 127
5.8 Formatting NUMDEISovvieceee e e 128
5.9 Converting Between Binary, Octal, Decimal, and Hexadecimal............ 130
5.10 Operating on a Series Of INTEGETrScovviriririeieeere e 131
5.11 Working with Roman NUMEIaIScccccceveeieeieseese e 132
5.12 Formatting with Correct PIUralscccooeeiiiie i 136
5.13 Generating Random NUMDEIS ... 137
5.14 Generating Better Random NUMDErsS........c.cccevvvievecce e 138
5.15 Calculating Trigonometric FUNCLIONScccoveieieevicce e 139
5.16 Taking LOGarithmsScooiiiiieeeeeee e 139
5.17 MUltipIYiNG MaIFIXESocvirieieiriieieeeieesie sttt 140
5.18 Using CompleX NUMDEIScov i 142
5.19 Handling Very Large NUMDEISccooiriiiiereeereeee e 144
5.20 Program: TEMPCONVEITENcooiiiiieerieeee et 145
5.21 Program: Number Palindromes.........cccoccvvieieeieneese e 149

Chapter 6. Dates and TIMES.......cccecieieiiececie e s sae e nne s 152

(G I 0T [V Tod 1] o ISR 152
6.2 FINAING TOAAY'S DALcoeiiiiieerieeeeeeee et 153
6.3 Printing Date/Time in a Specified Format.........c.cccoeovvvevievieiievecce e 155
6.4 Representing Dates in Other EPOCHS ... 156
6.5 Converting YMDHMS to a Calendar or Epoch Seconds............cccceeueuee. 157
6.6 Parsing Strings iNt0 DAtES........c.cccvvieieiecece e 157
6.7 Converting Epoch Seconds to DMYHMS ... 159
6.8 Adding to or Subtracting from a Date or Calendar..........cccccecevvvevvreennens 160
6.9 Difference Between TWO DatesS........ccceviiirininenieneeeeeeee s 161
6.10 ComMPAring DAtES.....c.cciiuieiiieieccee et 162
6.11 Day of Week/Month/Year or Week NUMDETccccviiiiieieneneneeeees 164
(O 2 O 1 (=T o F= Tl == o [OSSPSR 165
6.13 High-ReSOIUtION TIMEISoceeiice et 167
6.15 Program: REMINAEr SEIVICEcoociiieiiieieeie e 170
Chapter 7. Structuring Data With JAVAcccevirereninenceee e 172
4% L1 (o o (3 Tod 1T o ISR 172
7.2 Data Structuring USING AITAYScccueieerierieneeniesee e see e saesee e sseseeseeas 173
7.3 RESIZING AN AITAY ...ttt sn e 174
7.4 Like an Array, but More DYNamIC.........ccccceveeieeieseese et 176
7.5 Data-Independent Access wWith Iterators.........cccoceeveeevee e ccee e 177
7.6 Structuring Data in @ Linked LiSt ..o 178
7.7 Mapping with Hashtable and HashMapccccoceevvivesececcece e 181
7.8 Storing Strings in Properties and Preferences........ccccocevcveveeccecvee e, 182
7.9 SOrtiNg @ COllECHION ... 184
7.10 SortiNg IN JAVA 1.1 ...t n e nne s 188
7.11 Avoiding the Urge t0 SOItccvceiieiececece et 189
7. 02 SIS .ttt e b b e be e ane e nne e sare e 190
7.13 Finding an Object in @ ColleCtioncoccoviverinieniceee e 191
7.14 Converting a Collection t0 an Array........cccccoeeeeieereeeeseeseeiee e see e 193
7.15 ROIlING YOUr OWN ITEIAtOrcocviiieieeieeeeree e 194
4 TS - VoSS 195
7.17 Multidimensional STTUCIUIESccoviieiiirere e 196
7.18 Finally, COlleCtiONSccveiecece e 198
7.19 Program: Timing COMPATISONScccueiuereerierierierieseseeeeseessessessessesseseeneas 200
Chapter 8. Object-Oriented TEChNIQUESc.coveieeiecee e 202
S 70 R [a1 o To [FTox 1 T0] o TP 202
8.2 Printing Objects: Formatting with toString()cccceoeveiereneninineseeeees 204
8.3 Overriding the Equals Methodccccveoeieere e 205
8.4 Overriding the Hashcode Method ... 207
8.5 The Clone Methodcoiiiiiieeee e e 209
8.6 The Finalize Method..........ccccv oo 211
8.7 USING INNET CIASSESc.eeeiieieiieesie ettt ene 212
8.8 Providing Callbacks via Interfaces.........ccccoeiriinenincn e 213
8.9 Polymorphism/Abstract Methodscocveriiiririeieeese e 216
8.10 PASSING VAIUESoceeceeeiece ettt et 217

8.11 Roll Your OWN EXCEPLIONSccvuiiiieieeieeie et 220

8.12 Program: PIOTEEYocieeee ettt 220
Chapter 9. INput and OULPULccoiireririeeeee e 224
9.1 INFOAUCTION ...ttt sttt st 225
9.2 Reading Standard INPUL.........cocoiiriineie e 229
9.3 Writing Standard OULPULeeiiieieeresie et 231
9.4 Opening a File BY NaMEcoeeieeceee e 232
9.5 CoPYING A FIIE oo e 233
9.6 Reading a File iNt0 & STriNGccceiiieriirerereeeeeeeee e 236
9.7 Reassigning the Standard Streams.........cccccevveveeieesecce e 237
9.8 Duplicating a Stream as It IS WHteN.........cccceevieiii e 238
9.9 Reading/Writing a Different Character Set..........ccoviiiiiinnnineneeeees 240
9.10 Those Pesky End-of-Line Charactersccceccvvveveeveseeneece e 241
9.11 Beware Platform-Dependent File Code........cccccevveevveceveeieccieceeeecee 241
9.12 Reading "ContinUed" LINEScceiiiiriie et 242
9.13 SCANNING @ FilE ... 247
S I 2 = TV - | - S 250
9.15 SEEKINGeotieii ittt p e nas 251
9.16 Writing Data Streams from C........cccooiiiiiiininieeeeeee e 252
9.17 Saving and Restoring Serialized ObJecCtSccccccevvevevieerecie e 254
9.18 Preventing ClassCastExceptions with SerialVersionUID 255
9.19 Reading and Writing JAR Or Zip ArChIiVEScccceieiiienereneseeeeeees 257
9.20 Reading and Writing Compressed FilesScccccvevveveveeseece e 260
9.21 Program: Text t0 POSISCIPL.......ccccvieiie e 261
9.22 Program: TarList (File CONVEIEr)ccciiiiririeieeeeeese e 264
Chapter 10. Directory and Filesystem Operationscccceevevvevesieeseeseeseennens 276
(O J0¢ R [a1 0 T [T i o] o [PPSR 276
10.2 Getting File INfOrmationccoceeoeieiiniie e 276
10.3 Creating @ File ..o 279
10.4 RENAMING @ FIl c..ooveee et 280
10.5 Deleting @ Fle ... 281
10.6 Creating & TranSieNt File ..o 282
10.7 Changing File AttrDULESccceiieseeec e 284
10.8 LiStiNg @ DIFECLOIY.....cciiiciieiie ettt ettt st ene e 285
10.9 Getting the DIreCtory ROOLScccoceiiriineneneseeeeie e 287
10.10 MaKing NEW DIF€CLOMESveeceeveeerieeieeiesieeieseeseeseeseesieeaesseesseeaesseeseens 288
10.11 Program: FINAcoeoiiecie ettt 288
Chapter 11. Programming Serial and Parallel POrts..........ccccoooeiiiiniiineneene 292
10 00 I 1 {0 To 1§ o 1o] [PPSR 292
I3 2 @ To T 1< g To J= W o | AP O SPRS 294
11.3 Opening @ Serial POt ... 297
11.4 Opening a Parallel POrt ... 301
11.5 Resolving Port CoNfliCtSccooeeieeieee e 304
11.6 Reading and Writing: LOCK SEEPcocuvieeiiiiiiiieneseeeee e 307
11.7 Reading and Writing: EVENT-DIrivVeN..........ccocvivernieierenese e 309
11.8 Reading and Writing: Threads.........cccccveveeieieeseee e 313

11.9 Program: Penman PIOtErccoveiiiiiceecece e 315

Chapter 12. Graphics and SOUNcccoveriiniininienee e 320
022 I 1] 0T [T 1 [o PSS 320
12.2 Painting with @ Graphics ODJECTcccceiiiieieeseee e 321
12.3 Testing Graphical COMPONENTS.........ccoieeriiriiireereee e 322
12.4 DIaWiNg TEXE ..ccueeeeieieiesie sttt st sr e 323
12.5 Drawing Centered Text in @ COMPONENt........ccceeevereereeieseere e 323
12.6 Drawing a Drop ShadOwccccciiiieiieciicce e 324
12.7 Drawing @n IMAJEcceverueriiririeiee ettt 327
12.8 Playing @ SOUNA Fileccveiiee e 331
12.9 Displaying a Moving Image with Videoccccccevivivieve i 332
12.10 Drawing TexXt With 2Dcccooiiieieieierese e 335
12.11 Printing: IDK L1 ..ottt 337
12.12 PriNtING: JAVA 2 ..ottt ettt neenesnnenne s 339
12.13 Program: PIOEEIAWT ..ot 342
12.14 Program: Grapher ...t 344

Chapter 13. Graphical User INterfacesccovevieveiceeieeie e 348
IR 20 1 (0o [{1 [o PR UUSPRR 348
13.2 Displaying GUI COMPONENLScccevveriiriirieriinienieeeeee e 349
13.3 Designing a WINdOW LayOuULccceeuviieieeie e 351
13.5 Action Handling: Making Buttons WOorKcccevvviieveciie v 354
13.6 Action Handling Using Anonymous Inner Classes..........ccccvvverereennn. 356
13.7 Terminating a Program with "Window CloSe"ccceivevievievveiieseennns 357
13.8 Dialogs: When Later Just WoNn't DO........ccoeviveieeiie e 361
13.9 Getting Program Output into & WINOW..........ccceeeeieieienineneneeeeeee 363
13.10 Choosing a File with JFIIE@CNROOSETcccecceieere e 366
13.11 ChOOSING @ COlON....c.uiiiiciicieeie et nre s 369
13.12 Centering a Main WINGOW..........cccoeiiririnenineeeeeeeeee e 371
13.13 Changing a Swing Program's Look and Feelccccocoinininininnene. 372
13.14 Program: Custom FONt ChOOSETcccccuveieiieieee e 376
13.15 Program: Custom Layout Managercccceeveererriieeneeeieesee e 381

Chapter 14. Internationalization and Localization............ccceeevnernineneccennenn 387
I 50 R [a1 0T [U [i) o [PPSR 387
14.2 Creating a Button with 118N RESOUICES.........ccceeviviiiieiiecieecee e 388
14.3 Listing Available LOCAIESccocereieie e 389
14.4 Creating a Menu with [18N RESOUICESccceeeveeiereerieeeseeseeee e 390
14.5 Writing Internationalization Convenience Routinescccceeevevveeee. 391
14.6 Creating a Dialog with ILBN RESOUICES.........ccceririeieerienienereeie e 393
14.7 Creating a Resource BUNAIecccoocveeeieece i 394
14.8 JILTING YOUTI COUE ..ottt sttt nne s 395
14.9 Using a Particular LOCAIEccoiiiiireeeeeeeese e 396
14.10 Setting the Default LOCAIEccceieiiiireiereeeeee e 397
14.11 FOrmatting MESSAQJEScccvvererieeieeeieceeste e sreesre e e e e ste e e e e nesreenrean 398
14.12 Program: MenUINL........c.coioiriiieeee e 400
14.13 Program: BUSCArcccoiiririiieieieses st 402

Chapter 15. NetWOrk ClENtS........ccccieie et 406

15,1 INEEOAUCTION .ot e e e e et e e e e e e e e e e e e e eaeeeeaaaaennees 406

15.2 CONACHING @ SEIVEToueeeieieeie ittt sae e e e 408
15.3 Finding and Reporting Network AddreSses..........ccccevevenenenenenesennenn. 409
15.4 Handling NEetWOIK EFTOrSocoveiieieeeeceese et 410
15.5 Reading and Writing Textual Dataccccooeveeneninieneee e 411
15.6 Reading and Writing Binary Datacccccverireririeieresee e 414
15.7 Reading and Writing Serialized Dataccccceveeveneeiecee e 416
15.8 UDP DatagramsS........ccceiiiieiiiir e esireessieesssiaee e s sse e ssne s sneesssseessnneas 417
15.9 Program: TETP UDP CHENL.....cccoeoiiiiieee e 419
15.10 Program: Telnet CleNtcccceveeieeeceee e 423
15.11 Program: Chat Clientccooiieiiiiiec et 425
Chapter 16. Server-Side Java: SOCKELSccccviriiininiceeeee e 431
16.1 INEFOAUCTION ...ttt s 431
16.2 Opening a Server for BUSINESScccviieiiiiieceeseee e 431
16.3 Returning a Response (String or BINAry)cccceoeveieneneneneneseseee, 434
16.4 Returning ODbject INfOrmMation............cccoviriieneneneeeeeee e 437
16.5 Handling Multiple CHENtS.........cccceeieeieieecece e 438
16.6 NEtWOIK LOGOING ...oiveeieiiiiieieee ettt 443
16.7 Program: A Java Chat SErver ... 446
Chapter 17. Network Clients Il: Applets and Web Clientscccccevveveeeenen. 452
17.0 INTrOTUCTION ...ttt n e s nne s 452
17.2 Embedding Java in @ Web Page........cccocviirinirinineeeesese e 452
17.3 Applet TECHNIQUES.......oceeeeee et 454
17.4 Contacting a Server on the Applet HOStccccoviviieecece e, 456
17.5 Making an Applet Show a DOCUMENT.........ccooiriririieieeee e 459
17.6 Making an Applet Run @ CGI SCIPLcooveieieereeeseese e 460
17.7 Reading the Contents of @ URLcccoceeiiiiiiieseeeceece e 461
17.8 Extracting HTML from @ URLccoooiiiiiiieeeeeee e 462
17.9 Extracting URLS from @ Fileooiiiiiie e 464
17.10 Converting a Filename to @ URLcccocoviiiiievececeee e 466
17.11 Program: MKINAEX........c.coeeiiriiiierieeiesee et 467
17.12 Program: LINKCNECKETccoiiiieiieese e 471
Chapter 18. Web Server Java: Servlets and JSPccccccvevevveve e 478
18.1 INtrOTUCTION ...ttt ettt e e e nne s 478
18.2 First Servlet: Generating an HTML Pagecccooeieiinenenenencceceee, 479
18.3 Servlets: Processing Form Parameterscccocvecvveeneecesieeseeseeseennens 482
18.4 COOKIES ...ttt et n e nae s 485
18.5 SESSION TIACKING ...eeeeiiieriesiceieeeeee e 488
18.6 Generating PDF from @ Serviet.........ccoveiveciieeseeeceeee e 493
18.7 HTML MeEEetS Java: JSP ..ot 499
18.8 JSP INCIUAE/FOIWAIT.......cc.eeiieeeeiieesieeie e 503
18.9 JavaServer Pages Using a Servlet.......cccviirennieneierene e 504
18.10 Simplifying Your JSP with a JavaBean...........c.ccccceeveveeienieereccie e 505
18.11 JSP SYNtaxX SUMIMATY......ccceiiiiiiieiieeieeiee e see e e sseesneesneeenees 508
18.12 Program: COOKIECUIETcereeeeieieriesie sttt 509
18.13 Program: JabaDot Web News Portal..........ccccocvevvieeiecce e 510

Chapter 19. Java and Electronic Malilcccoceiieiiiiieiecie e 520

19.1 INtrOTUCTION ...ttt et re e ae e s enne s 520
19.2 Sending Email: BrOWSEr VEISIONcccoocvierierireninieiesie s 520
19.3 Sending Email: FOr Realccooeeiiiieceee et 525
19.4 Mail-Enabling a Server Programcenenieneesese e 527
19.5 Sending MIME Mall ..o 533
19.6 Providing Mail SEttiNgSccovveiieieee e 535
19.7 Sending Mail Without Using JavaMalil..........cccccccevvuviiieneesiecsie e 536
19.8 Reading EMall........c.cooiiiiiiiieeeee e 540
19.9 Program: MailReaderBeancccecvveereeieseese e 544
19.10 Program: MailCHENtcccueiiiiiiecee ettt 548
Chapter 20. Database ACCESSccvirireeieeee e 559
20.1 INrOAUCTION ...ttt ettt bbb 559
20.2 TeXt-File DatabaSescccvrereriieieie ettt 560
20.3 DBM DaAt@bhases.....cccceveeriiriesiieiieeie e sie et ee et eee e s e nae e sns 565
20.4 JDBC Setup and CONNECTION........ccoreririerienieriereeeese e 568
20.5 Connecting to a JDBC Database..........cccccceeveeieieesecce e 570
20.6 Sending a JDBC Query and Getting ReSUItSccccoeveeneniinceniccee 573
20.7 Using JDBC Parameterized Statementsccccvvveeerieneneeeneneienennes 575
20.8 Using Stored Procedures with JDBC.cccccovveeveece e 579
20.9 Changing Data Using a ReSUItSeL.........ccccccviveiiieciiececee e 579
20.10 Changing Data USING SOQLccoiiiiiiiireereeeee e 580
20.11 Finding JDBC Metadataccccceeeerieeieeieesieeeeseesieeee e see e sns 582
20.12 Program: IDAAMIN.......c.cooiiiiece e nnee s 588
Chapter 21. XML ...t 595
211 INFOAUCTION ...ttt ettt 595
21.2 Transforming XML With XSLTccoooeiiiieceseee e 597
21.3 Parsing XML WIth SAX ..o 599
21.4 Parsing XML With DOMcoooieieeie et 601
21.5 Verifying Structure With @ DTDocceiiiiiceecececeeeee e 603
21.6 Generating Your Own XML with DOMccccooiiiininineereneeeieeee e 604
21.7 Program: XIMIZ2MIf ..ot s 606
Chapter 22. Distributed Java: RMIccccvoiiiieiieie e 609
22,0 INEFOTAUCTION .ttt st 609
22.2 Defining the RMI CONTFACT........ccooiiieieresie e 610
22.3 RMI ClIBNT ..ottt sttt st 612
224 RMI SEIVET ...ttt st sn e sae e e ene e neennee s 613
22.5 Deploying RMI ACross a NetWOrKccccooeririiirieeeese e 615
22.6 Program: RMI Callbacksccccveeiieiiee e 616
22.7 Program: RMIWALCH ..o e 620
Chapter 23. Packages and Packagingcccoeverininieninieieesese e 626
Y22 700 R [11 o o 11 o 1 o T o 0SS 626
23.2 Creating @ PACKAQEe.......ccvccueieeiecie ettt 627
23.3 Documenting Classes with Javadoc...........ccoceevvreeneniinneenene e 627
23.4 ArChIVING WIEN JAI ..o 631
23.5 Running an Applet from a JAR.......ccooi e 632

23.6 Running an Applet With @ JDK.........ccccveiiiieiececeeceee e 632

23.7 Running a Program from @ JAR ..o 636
23.8 Preparing a Class as a JavaBean ... 636
23.9 Pickling Your Bean int0 @ JARcccooveieieeie et 640
23.10 Packaging a Servlet into a WAR File ... 641
23.11 "Write Once, Install ANYWhere"coooveiieienieseee e 642
23.12 JAVA WED SEAIt....cciiiceieeieeee e s 642
23.13 Signing Your JAR Flec.eeoieee e 648
Chapter 24. Threaded JAVAcccooerererieieeee e 650
24. 1 INFOAUCTION ...ttt ettt s b e 650
24.2 Running Code in a Different Thread...........cccooevvieiiecieccie e 651
24.3 Displaying a Moving Image with ANimMation...........ccccccevererenenenienieenns 654
24.4 Stopping @ TAread.......cccvee e 657
24.5 Rendezvous and TIMEOULSccccerererereresesesesee et 660
24.6 Thread Communication: Synchronized Code.........ccccveierininenienieenns 661
24.7 Thread Communication: wait() and notifyAll()ccocceverevininieninieens 666
24.8 Background Saving in an Editor...........cccveiieieceesece e 672
24.9 Threaded NEetWOIK SEIVET ... 673
Chapter 25. Introspection, or "A Class Named Class".........ccccccevvvieenerieneennns 682
25.1 INFOAUCTION ...ttt bbb 682
25.2 Getting @ Class DEeSCIIPLONeiiieeiiecie et 683
25.3 Finding and Using Methods and Fields ... 684
25.4 Loading and Instantiating a Class Dynamically.........ccccccocvevvneennreenee. 687
25.5 Constructing a Class from ScratCh ..o 689
25.6 Performance TIMINGcoeoerieeeieeriesiesee st 691
25.7 Printing Class INfOrmationcccveeiieie e 693
25.8 Program: CroSSRET ...ttt 695
25.9 Program: APPIEEVIEWET ..o 700
Chapter 26. Using Java with Other Languages..........cccvveeenenenenenicseseenens 707
26.1 INFOAUCTIONeeeiieieiesieste ettt s 707
26.2 RUNNING @ PrOQIamcoiiiiiieeieeie et 707
26.3 Running a Program and Capturing ItS OUIPULcccoevverenenenenennns 710
26.4 Mixing Java and Scripts With BSFcccccceviviiineieee e 713
26.5 Blending in Native Code (C/CH+) .o 717
26.6 Calling Java from Native COde..........ccocoieririririnieieeiesese e 723
26.7 Program: DBM ...ttt 723
Chapter 27. AfEIWOITcooieiiece et 727
COlOPNON <.t 728

10

Preface

If you know a little Java™, great. If you know more Java, even better! This book is ideal for
anyone who knows some Java and wants to learn more.

| started programming in C in 1980 while working at the University of Toronto, and C served me
quite well through the 1980s and into the 1990s. In 1995, as the nascent language Oak was
being renamed Java, | had the good fortune to be told about it by my colleague J. Greg Davidson.
| sent an email to the address Greg provided, and got this mail back:

From scndprsn. Eng. Sun. COM j ag Wed Mar 29 19:43:54 1995
Date: Wed, 29 Mar 1995 16:47:51 +0800

From jag@cndprsn. Eng. Sun. COM (Janes Gosl i ng)

To: i an@cooter. Canada. Sun. COM i an@larw nsys.com

Subj ect: Re: WebRunner

Cc: goltz@unne. East. Sun. COM

Content-Length: 361

Status: RO

X-Lines: 9

H. Afriend told ne about WebRunner(?), your extensible network
browser. It and Gak(?) its extention | anguage, sounded neat. Can
you please tell ne if it's available for play yet, and/or if any
papers on it are available for FTP?

V V V V

Check out http://java.sun.com
(oak got renaned to java and webrunner got renanmed to
hotjava to keep the | awers happy)

| downloaded HotJava and began to play with it. At first | wasn't sure about this newfangled
language, which looked like a mangled C/C++. | wrote test and demo programs, sticking them a
few at a time into a directory that | called javasrc to keep it separate from my C source (as often
the programs would have the same name). And as | learned more about Java, | began to see its
advantages for many kinds of work, such as the automatic memory reclaim and the elimination of
pointer calculations. The javasrc directory kept growing. | wrote a Java course for Learning Tree,
and the directory kept growing faster, reaching the point where it needed subdirectories. Even
then, it became increasingly difficult to find things, and it soon became evident that some kind of
documentation was needed.

In a sense, this book is the result of a high-speed collision between my javasrc directory and a
documentation framework established for another newcomer language. In O'Reilly's Perl
Cookbook, Tom Christiansen and Nathan Torkington worked out a very successful design,
presenting the material in small, focused articles called "recipes." The original model for such a
book is, of course, the familiar kitchen cookbook. There is a long history of using the term
"cookbook" to refer to an enumeration of how-to recipes relating to computers. On the software
side, Donald Knuth applied the "cookbook" analogy to his book The Art of Computer
Programming (Addison Wesley), first published in 1968. On the hardware side, Don Lancaster
wrote The TTL Cookbook (Sams). (Transistor-transistor logic, or TTL, was the small-scale
building block of electronic circuits at the time.) Tom and Nathan worked out a successful
variation on this, and | recommend their book for anyone who wishes to, as they put it, "learn
more Perl." Indeed, the work you are now reading intends to be a book for the person who wishes
to "learn more Java."

11

The code in each recipe is intended to be self-contained; feel free to borrow bits and pieces of
any of it for use in your own projects.

Who This Book Is For

I'm going to assume that you know the basics of Java. | won't tell you how to pri nt | n a string
and a number at the same time, or how to write a class that extends Appl et and prints your
name in the window. I'll presume you've taken a Java course or studied an introductory book
such as O'Reilly's Learning Java or Java in a Nutshell. However, Chapter 1 covers some
techniques that you might not know very well and that are necessary to understand some of the

later material. Feel free to skip around! Both the printed version of the book and the (eventual)
electronic copy are heavily cross-referenced.

What's in This Book?

Unlike my Perl colleagues Tom and Nathan, | don't have to spend as much time on the oddities
and idioms of the language; Java is refreshingly free of strange quirks. But that doesn't mean it's
trivial to learn well! If it were, there'd be no need for this book. My main approach, then, is to
concentrate on the Java APIs: I'll teach you by example what the APIs are and what they are
good for.

Like Perl, Java is a language that grows on you and with you. And, | confess, | use Java most of
the time nowadays. Things I'd once done in C are now -- except for device drivers and legacy
systems -- done in Java.

But Java is suited to a different range of tasks than Perl. Perl (and other scripting languages such
as awk and Python) are particularly suited to the "one-liner" utility task. As Tom and Nathan
show, Perl excels at things like printing the 42nd line from a file. While it can certainly do these
things, Java, because it is a compiled, object-oriented language, seems more suited to
"development in the large" or enterprise applications development. Indeed, much of the API
material added in Java 2 was aimed at this type of development. However, | will necessarily
illustrate many techniques with shorter examples and even code fragments. Be assured that
every line of code you see here has been compiled and run.

Many of the longer examples in this book are tools that | originally wrote to automate some
mundane task or another. For example, Vk| ndex (described in Chapter 1) reads the top-level
directory of the place where | keep all my Java example source code and builds a browser-
friendly index.html file for that directory. For another example, the body of the book itself was
partly composed in XML, a recent simplification that builds upon a decade of experience in SGML
(the parent standard that led to the tag-based syntax of HTML). It is not clear at this point if XML
will primarily be useful as a publishing format or as a data manipulation format, or if its prevalence
will further blur that distinction, though it seems that the blurring of distinctions is more likely.
However, | used XML here to type in and mark up the original text of some of the chapters of this
book. The text was then converted to FrameMaker input by the Xni For mprogram. This program
also handles -- by use of another program, Get Var k -- full and partial code insertions from the

source directory. Xl For mis discussed in Chapter 21.

Let's go over the organization of this book. | start off Chapter 1 by describing some methods of
compiling your program on different platforms, running them in different environments (browser,
command line, windowed desktop), and debugging. Chapter 2 moves from compiling and

running your program to getting it to adapt to the surrounding countryside -- the other programs
that live in your computer.

12

The next few chapters deal with basic APIs. Chapter 3 concentrates on one of the most basic
but powerful data types in Java, showing you how to assemble, dissect, compare, and rearrange
what you might otherwise think of as ordinary text.

Chapter 4 teaches you how to use the powerful regular expressions technology from Unix in
many string-matching and pattern-matching problem domains. This is the first chapter that covers
a non-standard API -- there is not yet a regular expression API in standard Java -- so | talk about
several regular expression packages.

Chapter 5 deals both with built-in types such as i nt and doubl e, as well as the corresponding
API classes (I nt eger, Doubl e, etc.) and the conversion and testing facilities they offer. There is
also brief mention of the "big number" classes. Since Java programmers often need to deal in
dates and times, both locally and internationally, Chapter 6 covers this important topic.

The next two chapters cover data processing. As in most languages, arrays in Java are linear,
indexed collections of similar-kind objects, as discussed in Chapter 7. This chapter goes on to
deal with the many "Collections” classes: powerful ways of storing quantities of objects in the
java. uti| package. Additional data structuring and programming tips appear in Chapter 8.

The next few chapters deal with aspects of traditional input and output. Chapter 9 details the
rules for reading and writing files. (Don't skip this if you think files are boring, as you'll need some
of this information in later chapters: you'll read and write on serial or parallel ports in Chapter 11
and on a socket-based network connection in Chapter 15!) Chapter 10 shows you everything
else about files -- such as finding their size and last-modified time -- and about reading and
modifying directories, creating temporary files, and renaming files on disk. Chapter 11 shows
how you can use the | avax. conmAPI to read/write on serial and parallel ports without resorting
to coding in C.

Chapter 12 leads us into the GUI development side of things. This chapter is a mix of the lower-
level details, such as drawing graphics and setting fonts and colors, and very high-level activities,
such as controlling a playing video clip or movie. Then, in Chapter 13 | cover the higher-level
aspects of a GUI, such as buttons, labels, menus, and the like -- the GUI's predefined
components. Once you have a GUI (really, before you actually write it), you'll want to read

Chapter 14 so your programs can work as well in Akbar, Afghanistan, Algiers, Amsterdam, or
Angleterre as they do in Alberta or Arkansas or Alabama . . .

Since Java was originally promulgated as "the programming language for the Internet," it's only
fair that we spend some of our time on networking in Java. Chapter 15, covers the basics of
network programming from the client side, focusing on sockets. We'll then move to the server
side in Chapter 16. In Chapter 17, you'll learn more client-side techniques. Some specialized
server-side techniques for the Web are covered in Chapter 18. Finally, programs on the Net
often need to generate electronic mail, so this section ends with Chapter 19.

Chapter 20 covers the Java Database Connectivity package (JDBC), showing how you can
connect to local or remote relational databases, store and retrieve data, and find out information
about query results or about the database.

Another form of storing and exchanging data is XML. Chapter 21 discusses XML's formats and
some operations you can apply using SAX and DOM, two standard Java APIs.

Chapter 22 takes the distributed notion one step further and discusses Remote Methods
Invocation, Java's standard remote procedure call mechanism. RMI lets you build clients, servers,

13

and even "callback" scenarios, using a standard Java mechanism -- the Interface -- to describe
the contract between client and server.

Chapter 23 shows how to create packages of classes that work together. This chapter also talks
about "deploying" or distributing and installing your software.

Chapter 24 tells you how to write classes that appear to do more than one thing at a time and let
you take advantage of powerful multiprocessor hardware.

Chapter 25 lets you in on such big secrets as how to write API cross reference documents
mechanically and how web browsers are able to load any old applet -- never having seen that
particular class before -- and run it.

Sometimes you already have code written and working in another language that can do part of
your work for you, or you want to use Java as part of a larger package. Chapter 26 shows you

how to run an external program (compiled or script) and also interact directly with "native code" in
C/C++.

There isn't room in an 800-page book for everything I'd like to tell you about Java. The Chapter
27 presents some closing thoughts and a link to my online summary of Java APIs that every Java
developer should know about.

No two programmers or writers will agree on the best order for presenting all the Java topics. To
help you find your way around, there are extensive cross-references, mostly by recipe number.

Platform Notes

In its short history, Java has gone through four major versions. The first official release is known
as Java JDK 1.0, and its last bug-fixed version is 1.0.2. The second major release is Java JDK
1.1, and the latest bug-fixed version is 1.1.9, though it may be up from that by the time you read
this book. The third major release, in December 1998, was to be known as Java JDK 1.2, but the
Sun marketing gremlins abruptly renamed JDK 1.2 at the time of its release to Java 2, and the
implementation is known as Java SDK 1.2. The current version as of this writing is Java 2 SDK
1.3 (JDK 1.3), which was released in 2000. Around the same time, two other packages, one low-
end and one high-end, were announced. At the low end, Java Micro Edition (JME) is designed for
tiny devices, such as Palm computers, telephones, and the like. At the high end, the Java 2
Enterprise Edition (J2EE) extends Java 2 by adding additional features for enterprise or large-
scale distributed commercial applications. One of the key features of the Enterprise Edition is
Enterprise JavaBeans™ (EJB). EJB has little in common with client-side JavaBeans except the
name. Many Java pundits (including myself) believe that EJB will become a significant player in
the development of large commercial applications, perhaps the most significant development of
this era.

As we go to press, Java 2 Version 1.4 is about to appear. It entered beta (which Sun calls "early
access") around the time of the book's completion, so | can only mention it briefly. You should

cast your sights on http://java.sun.comto see what's new in 1.4 and how it affects the
programs in the book.

This book is aimed at the Java 2 platform. By the time of publication, | expect that all Java
implementations will be fairly close to conforming to the Java 2 specification. | have used four
platforms to test this code for portability. The official "reference platform" is Sun's Java 2 Solaris
Reference Implementation, which | used on a Sun SPARCStation running Solaris. To give a
second Unix flavor, I've tested with Kaffe™® and with Sun's Linux JDK running under the

14

OpenBSD Unix-like system. For the mass market, I've used Sun's Java 2 Win32 (Windows
95/98/NT) implementation. And, "for the rest of us," I've run some of the programs on Apple's
MacOS Runtime for Java (MRJ) running under MacOS 8 on a Power Macintosh and a few on
MacOS X (which Apple wants you to pronounce "Oh Ess Ten," despite the way they've been
writing it for the last three years). However, since Java is portable, | anticipate that the examples
will work on MacOS X except where extra APIs are required. Not every example has been tested
on every platform, but all have been tested on at least one, and most on more than one.

[Kaffe, the Swedish word for coffee, is an open source (GNU Public License) Java implementation that
runs on just about any Unix or Unix-like system, and has been ported to other platforms such as Win32.

The Java API consists of two parts, core APIs and non-core APIs. The core is, by definition,
what's included in the JDK that you download for free from http://java.sun.com. Non-core is
everything else. But even this "core" is far from tiny: it weighs in at around 50 packages and well
over a thousand public classes, each with up to 30 or more public methods. Programs that stick
to this core API are reasonably assured of portability to any Java 2 platform.

The non-core APIs are further divided into standard extensions and non-standard extensions. All
standard extensions have package names beginning with | avax. ,%2 and reference
implementations are available from Sun. A Java licensee (like, say, Apple or Microsoft) is not
required to implement every standard extension, but if they do, the interface of the standard
extension should be adhered to. This book will call your attention to any code that depends on a
standard extension. There is little code that depends on non-standard extensions other than code
listed in the book itself (the major exception is the Regular Expressions AP| used in Chapter 4).
My own package, com darwi nsys. uti |, contains some utility classes used here and there;
you will see an import for this at the top of any file that uses classes from it.

21 Note that not all packages named | avax. are extensions: | avax. swi ng and its sub-packages -- the
Swing GUI packages -- used to be extensions, but are now core.

Other Books

There is a lot of useful information packed into this book. However, due to the breadth of topics, it
is not possible to give book-length treatment to any one topic. Because of this, the book also

contains references to many web sites and other books. This is in keeping with my target
audience: the person who wants to learn more about Java.

O'Reilly & Associates publishes one of the largest -- and, | think, the best -- selection of Java
books on the market. As the API continues to expand, so does the coverage. You can find the
latest versions and ordering information on O'Reilly's Java books in the back pages of this book
or online at http://java.oreilly.com, and you can buy them at most bookstores, both physical
and virtual. You can also read them online through a paid subscription service; see

http://safari.oreilly.com. While many are mentioned at appropriate spots in the book, a few
deserve special mention here.

First and foremost, David Flanagan's Java in a Nutshell offers a brief overview of the language
and API, and a detailed reference to the most essential packages. This is handy to keep beside
your computer.

Learning Java, by Patrick Niemeyer and Joshua Peck, contains a slightly more leisurely
introduction to the language and the APIs.

A definitive (and monumental) description of programming the Swing GUI is Java Swing, by
Robert Eckstein, Marc Loy, and Dave Wood.

15

Java Servlets, by Jason Hunter, and JavaServer Pages, by Hans Bergsten, are both ideal for the
server-side web developer.

Java Virtual Machine, by Jon Meyer and Troy Downing, will intrigue the person who wants to
know more about what's under the hood.

Java Network Programming and Java /O, by Elliotte Rusty Harold, and Database Programming
with JDBC and Java, by George Reese, are also useful references.

There are many more; see the O'Reilly web site for an up-to-date list.
Other Java Books

Never consider releasing a GUI application unless you have read Sun's official Java Look and
Feel Design Guidelines (Addison Wesley). This work presents the views of a large group of
human factors and user-interface experts at Sun who have worked with the Swing GUI package
since its inception; they tell you how to make it work well.

Finally, while authors at other publishing houses might be afraid to mention a book that their
publisher might think of as competition to their own, | have found Patrick Chan's Java Developer's
Almanac (Addison Wesley) a useful addition to my library and a natural complement to my book.
While my book features much more detail and discussion than his short "examplets," the main

part of Patrick's book is a large alphabetical (by class, not by package) reference to the core API.

As the core part of his book was produced mechanically using Reflection, the book has a
relatively low cover price. By the way, | show you how to generate books like Patrick's (see
Section 25.8), but he doesn't show you how to write a book like mine.

General Programming Books

Donald E. Knuth's The Art of Computer Programming has been a source of inspiration to
students of computing since its first publication by Addison Wesley in 1968. Volume 1 covers
Fundamental Algorithms, Volume 2 is Seminumerical Algorithms, and Volume 3 is Sorting and
Searching. The remaining four volumes in the projected series were never completed. Although
his examples are far from Java (he invented a hypothetical assembly language for his examples),
many of his discussions of algorithms -- of how computers ought to be used to solve real
problems -- are as relevant today as 30 years ago.&

Bl with apologies for algorithm decisions that are less relevant today given the massive changes in
computing power now available.

The Elements of Programming Style, by Kernighan and Plauger, set the style (literally) for a
generation of programmers with examples from various structured programming languages. Brian
Kernighan also wrote (with P. J. Plauger) a pair of books, Software Tools and Software Tools in
Pascal, which demonstrated so much good advice on programming that | used to advise alll
programmers to read them. However, these three books are somewhat dated now; many times |
wanted to write a follow-on book in a more modern language, but instead defer to The Practice of
Programming, Brian's follow-on (co-written by Rob Pike) to the Software Tools series. This book
continues the Bell Labs (now part of Lucent) tradition of excellence in software textbooks. | have
even adapted one bit of code from their book, in Section 3.14.

Design Books

16

Peter Coad's Java Design (PTR-PH/Yourdon Press) discusses the issues of object-oriented
analysis and design specifically for Java. Coad is somewhat critical of Java's implementation of
the observable-observer paradigm and offers his own replacement for it.

One of the most famous books on object-oriented design in recent years is Design Patterns, by
Gamma, Helm, Johnson, and Vlissides (Addison Wesley). These authors are often collectively
called "the gang of four," resulting in their book sometimes being referred to as "the GOF book."

One of my colleagues called it "the best book on object-oriented design ever," and | think he's
probably not far off the mark.

Another group of important books on object-oriented design is the UML series by "the Three
Amigos" (Booch, Jacobson, and Rumbaugh). Their major works are the UML User Guide, UML

Process, and others. A smaller and more approachable book in the same series is Martin
Fowler's UML Distilled.

Conventions Used in This Book

This book uses the following conventions.

Programming Conventions

| use the following terminology in this book. A program means either an applet, a servlet, or an
application. An applet is for use in a browser. A servlet is similar to an applet but for use in a
server. An application is any other type of program. A desktop application (a.k.a. client) interacts
with the user. A server program deals with a client indirectly, usually via a network connection.

The examples shown are in two varieties. Those that begin with zero or more import statements,
a Javadoc comment, and a public class statement are complete examples. Those that begin with
a declaration or executable statement, of course, are excerpts. However, the full versions of
these excerpts have been compiled and run, and the online source includes the full versions.

Recipes are numbered by chapter and number, so, for example, Recipe 7.5 refers to the fifth
recipe in Chapter 7.

Typesetting Conventions
The following typographic conventions are used in this book:
Italic

is used for commands, filenames, and sample URLSs. It is also used to define new terms
when they first appear in the text.

Constant width

is used in code examples to show partial or complete Java source code program listings.
It is also used for class names, method names, variable names, and other fragments of
Java code.

Many programs are accompanied by an example showing them in action, run from the command
line. These will usually show a prompt ending in either $ for Unix or > for Microsoft, depending on

17

which computer | was using that day. Text before this prompt character can be ignored; it will be
a pathname or a hostname, again depending on the system.

As mentioned earlier, I've tested all the code on at least one of the reference platforms, and most
on several. Still, there may be platform dependencies, or even bugs, in my code or in some

important Java implementation. Please report any errors you find, as well as your suggestions for
future editions, by writing to:

O'Reilly & Associates, Inc.

101 Morris Street

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)

(707) 829-0104 (fax)

To ask technical questions or comment on the book, send email to:

bookqguestions@oreilly.com

There is an O'Reilly web site for the book, listing errata, examples, or any additional information.
You can access this page at:

http://www.oreilly.com/catalog/javacook/

| also have a personal web site for the book:

http://javacook.darwinsys.com

Both sites will list errata and plans for future editions. You'll also find the source code for all the
Java code examples to download; please don't waste your time typing them in again! For specific
instructions, see the next section.

Getting the Source Code

From my web site http://javacook.darwinsys.com, just follow the Download link and you will
be presented with three choices:

1. Download the entire source archive as a single large zip file

2. Download individual source files, indexed alphabetically as well as by chapter

3. Download the binary JAR file for the com darwi nsys. uti| package needed to compile
many of the other programs

Most people will choose either #1 or #2, but anyone who wants to compile my code will need #3.
See Section 1.5 for information on using these files.

Downloading the entire source archive (#1) gives a large zip file that contains all the files from the
book (and more). This archive can be unpacked with jar (see Section 23.4), the free zip
program from Info-ZIP, the commercial WinZip or PKZIP, or any compatible tool. The files are
organized into subdirectories by topic; there is one for strings (Chapter 3), regular expressions

(Chapter 4), numbers (Chapter 5) and so on. The archive also contains the index by name and
index by chapter files from the download site, so you can easily find the files you need.

18

Downloading individual files is easy too: simply follow the links either by the file/subdirectory
name or by chapter. Once you see the file you want in your browser, use File->Save or the
equivalent, or just copy and paste it from the browser into an editor or IDE.

The files will be updated periodically, so if there are differences between what's printed in the
book and what you get, be glad, for you'll have received the benefit of hindsight.

Acknowledgments

My life has been touched many times by the flow of the fates bringing me into contact with the
right person to show me the right thing at the right time. Steve Munroe, with whom I've long since
lost touch, introduced me to computers -- in particular an IBM 360/30 at the Toronto Board of
Education that was bigger than a living room, had 32 or 64K of memory, and had perhaps the
power of a PC/XT -- in 1970. (Are you out there somewhere, Steve?) Herb Kugel took me under
his wing at the University of Toronto while | was learning about the larger IBM mainframes that
came later. Terry Wood and Dennis Smith at the University of Toronto introduced me to mini- and
micro-computers before there was an IBM PC. On evenings and weekends, the Toronto Business
Club of Toastmasters International (http://www.toastmasters.org) and Al Lambert's Canada
SCUBA School allowed me to develop my public speaking and instructional abilities. Several
people at the University of Toronto, but especially Geoffrey Collyer, taught me the features and
benefits of the Unix operating system at a time when | was ready to learn it.

Greg Davidson of UCSD taught the first Learning Tree course | attended, and welcomed me as a
Learning Tree instructor. Years later, when the Oak language was about to be released on Sun's
web site, Greg encouraged me to write to James Gosling and find out about it. James's reply of
March 29th, 1995, that the lawyers had made them rename the language to Java and that it was
"just now" available for download, is the prized first entry in my saved Java mailbox. Mike Rozek
took me on as a Learning Tree course author for a Unix course and two Java courses. After
Mike's departure from the company, Francesco Zamboni, Julane Marx, and Jennifer Urick in turn
provided product management of these courses. Jennifer also arranged permission for me to
"reuse some code" in this book that had previously been used in my Java course notes. Finally,
thanks to the many Learning Tree instructors and students who showed me ways of improving
my presentations. | still teach for "The Tree" and recommend their courses for the busy developer
who wants to zero in on one topic in detail over four days. Their web site is
http://www.learningtree.com.

Closer to this project, Tim O'Reilly believed in "the little Lint book" when it was just a sample
chapter, enabling my early entry into the circle of O'Reilly authors. Years later, Mike Loukides
encouraged me to keep trying to find a Java book idea that both he and | could work with. And he
stuck by me when | kept falling behind the deadlines. Mike also read the entire manuscript and
made many sensible comments, some of which brought flights of fancy down to earth. Jessamyn
Read turned many faxed and emailed scratchings of dubious legibility into the quality illustrations
you see in this book. And many, many other talented people at O'Reilly & Associates helped put
this book into the form in which you now see it.

| also must thank my reviewers, first and foremost my dear wife Betty Cerar, who may still think
Java is some kind of caffeinated beverage that I drink while programming, but whose passion for
clear expression and correct grammar has benefited much of my writing. Jonathan Knudsen,
Andy Oram, and David Flanagan commented on the outline when it was little more than a list of
chapters and recipes, and yet were able to see the kind of book it could become, and to suggest
ways to make it better. Learning Tree instructor Jim Burgess read most of the book with a very
critical eye on locution, formulation, and code. Bil Lewis and Mike Slinn (mslinn@mslinn.com)
made helpful comments on multiple drafts of the book. Ron Hitchens (ron@ronsoft.com) and
Marc Loy carefully read the entire final draft. Editor Sue Miller helped shepherd the manuscript

19

through the somewhat energetic final phases of production. Sarah Slocombe read the XML
chapter in its entirety and made many lucid suggestions, though unfortunately time did not permit
me to include all of them. Each of these people made this book better in many ways, particularly
by suggesting additional recipes or revising existing ones. Any faults that remain are surely my
own.

I've used a variety of tools and operating systems in preparing, compiling, and testing the book.
The developers of OpenBSD (http://www.openbsd.orq), "the proactively secure Unix-like
system," deserve thanks for making a stable and secure Unix clone that is also closer to
traditional Unix than other freeware systems. | used the vi editor (vi on OpenBSD and vim on MS-
Windows) while inputting the original manuscript in XML, and Adobe FrameMaker to format the
documents. Each of these is an excellent tool in its own way. If you're wondering how | got from
XML to Frame, the answer will be given in Chapter 21.

No book on Java would be complete without a quadrium* of thanks to James Gosling for
inventing the first Unix Emacs, the sc spreadsheet, the NeWS window system, and Java. Thanks
also to his employer Sun Microsystems (NASDAQ SUNW) for creating not only the Java
language but an incredible array of Java tools and API libraries freely available over the Internet.

Blips a good thing he only invented four major technologies, not five, or I'd have to rephrase that to avoid
infringing on an Intel trademark.

Thanks to Tom and Nathan, for the Perl Cookbook. Without them | might never have come up
with the format for this book.

Willi Powell of Apple Canada provided MacOS X access.

Thanks to the Tim Horton's Donuts in Bolton, Ontario for great coffee and for not enforcing the
20-minute table limit on the weird guy with the computer.

To each and every one of you, my sincere thanks.

20

Chapter 1. Getting Started: Compiling, Running,
and Debugging

1.1 Introduction

1.2 Compiling and Running Java: JDK

1.3 Editing and Compiling with a Color-Highlighting Editor

1.4 Compiling, Running, and Testing with an 1DE

1.5 Using Classes from This Book

1.6 Automating Compilation with jr

1.7 Automating Compilation with make

1.8 Automating Compilation with Ant

1.9 Running Applets

1.10 Dealing with Deprecation Warnings

1.11 Conditional Debugging without #ifdef

1.12 Debugqing Printouts

1.13 Using a Debuqgger

1.14 Unit Testing: Avoid the Need for Debuggers

1.15 Decompiling Java Class Files

1.16 Preventing Others from Decompiling Your Java Files

1.17 Getting Readable Tracebacks

1.18 Finding More Java Source Code

1.19 Program: Debug

1.1 Introduction

21

This chapter covers some entry-level tasks that you simply need to know how to do before you
can go on -- it is said you must crawl before you can walk, and walk before you can ride a bicycle.
Before you can try out anything else in the book, you need to be able to compile and run your
Java, so | start there, showing several ways: the JDK way, the Mac way, and the Integrated
Development Environment (IDE) way. Then I'll discuss a few details about applets, in case you

are working on them. Deprecation warnings come next, as you're likely to meet them in
maintaining "old" Java code.

[There is humor in the phrase "old Java code," which should be apparent when you realize that Java has
been in circulation for under five years at the time of this book's first printing.

If you're already happy with your IDE, you may wish to skip some or all of this material. It's here
to ensure that everybody can compile and debug their programs before we move on.

1.2 Compiling and Running Java: JDK

1.2.1 Problem

You need to compile and run your Java program.
1.2.2 Solution

This is one of the few areas where your computer's operating system impinges into Java's
portability, so let's get it out of the way first.

1.2.2.1 JDK

Using the command-line Java Development Kit (JDK) may be the best way to keep up with the
very latest improvements from Sun/JavaSoft. This is not the fastest compiler available by any
means; the compiler is written in Java and interpreted at compile time, making it a sensible
bootstrapping solution, but not necessarily optimal for speed of development. Nonetheless, using
Sun's JDK (or Java SDK), the commands are javac to compile and java to run your program. For
example:

C.\javasrc>javac Hel |l oWrl d.java

C.\javasrc>java Hel |l oWorl d
Hel | o, Worl d

C.\javasrc>

As you can see from the compiler's (lack of) output, this compiler works on the Unix "no news is
good news" philosophy: if a program was able to do what you asked it to, it shouldn't bother
nattering at you to say that it did so. Many people use this compiler or one of its clones. The javac
and java commands are available with the JDK on both Windows and Unix, and under MacOS X

if you have installed the bundled Developer Tools package.

There is an optional setting called CLASSPATH, discussed in Section 2.6, that controls where
Java looks for classes. CLASSPATH, if set, is used by both javac and java. In older versions of
Java you had to set your CLASSPATH to include "." even to run a simple program from the
current directory; this is no longer true on Sun's current Java implementations. It may be true on
some of the clones.

22

1.2.2.2 Command-line alternatives

Sun's javac compiler is the official reference implementation. But it is itself written in Java, and
hence must be interpreted at runtime. Recognizing the slowness of compilation as a significant
hindrance to developers, Sun's Java folk went back and rewrote the compiler from scratch,
discarding some old baggage and using new language features. This new compiler (still named
javac) was unveiled for early access in May 1999 and released later that year. It is about twice as
fast as the original Java compiler -- a big improvement -- but still slower than some other
compilers. Symantec's Java compiler and Microsoft's J++ (a Java-like language) are written in
C/C++, so they are quite a bit faster than an interpreted Java compiler.

In order to speed up my compilations, | have used Jikes, a freeware compiler written in C++.
Jikes is fast, free, and available both for MS-Windows and for Unix. It's also easy to install. For
MS-Windows (Win32), Linux, and other Unix systems, you can find binaries of the current version
on IBM's Jikes web site. If you are using OpenBSD, NetBSD, or FreeBSD, you should only need
to run:

cd /usr/ports/lang/jikes; sudo nmake install

or just download the package file and use pkg add to get it installed. Visit

http://oss.software.ibm.com/developerworks/opensource/jikes/ for Jikes information
and downloads.

A key benefit of Jikes is that it gives much better error messages than the JDK compilers do. It
will alert you to slightly misspelled names, for example. Its messages are often a bit verbose, but
you can use the +E option to make it print them in a shorter format. Jikes has many other
command-line options, many that are the same as the JDK compiler's, but some that go beyond
them. See Jikes's online documentation for details.

An older C++-based Java compiler, Guavac, is not considered finished. Indeed, its author has
stopped maintaining it. Nonetheless, | was able to use Guavac 1.2 to compile many of the
examples in this book (note that the Guavac version number of 1.2 is unrelated to the Sun JDK
version number 1.2). See ftp://sunsite.org.uk/packages/quavac/for information on Guavac.

Another alternative technology is Kaffe, a product that Transvirtual
(http://www.transvirtual.com) licenses but also makes available in open source form under
the standard GNU Public License. Kaffe aims to be a complete JDK replacement, though it has
moved rather slowly past the JDK 1.1 level and is, as of this writing, still not quite a complete
Java 2 clone. Again, on OpenBSD there is a port, and on Linux there are RPMs available. Visit
Transvirtual's web site for the latest information on Kaffe.

One last freeware package is Japhar, a Java runtime clone, available from
http://www.japhar.org.

1.2.2.3 MacOS

The JDK is purely command-line-based. At the other end of the spectrum in terms of keyboard-
versus-visual, we have the Apple Macintosh. Whole books have been written about how great the
Mac is, and | won't step into that debate. | will, however, comment on how lamentable it is that
Apple let its Java implementation lag behind current standards. Users of MacOS 8 and 8.5 have
put up with Java 1.8 for several years. MacOS X (Release 10 of MacOS) is a new technology
base built upon a BSD Unix base. As such, it has a regular command line as well as all the
traditional Mac tools. And it features a full Java 2 implementation, including Swing.

23

For MacOS 8, if you've followed Apple's directions for installing the MacOS Runtime for Java
(MRJ), you can compile by dragging a file to, or double-clicking on, the "javac" icon (I've made

aliases for this icon and friends on my desktop). Once the dialog shown in Figure 1-1 appears,
you can click on "Do Javac" (or just press Enter on the keyboard), first changing any options if
you want.

Figure 1-1. MacOS 8 Javac window

" & File Edit Help

Source Files

/lan 1GB/Desktop Fajder/lava files fHelloworldja -| Source Encoding
K1 | [»] bebugging Tables
Destination Folder

[l Deprecation Warhings

(one 3)
Fwarnings

Classpath

7lan 1GB/System Folder/Extensions /MR] Librariel -| — Pecompiie All

fan 1GB System Folder/Extensions AR Librarie [C]¥erbose

[¥] optimize Code

LT

lawa Tiles

| itemns, $Fid BB available

3=
3

HE“I:II:II d s

You will then see the Java console window stating that it ran javac (as shown in Figure 1-2).
This javac is a Mac port of the JDK version, so it also runs on "no news is good news." As this is
a Mac, you'll see the resulting class file appear in your destination folder as soon as it's been
created (which happens only if there are no compilation errors).

Figure 1-2. MacOS 8 compilation completed (MRJ)

" ® File Edit View Special Help

lavar

Source Files
Aan 1GB/Desktop Folder/lava files/HelloWorld Ja[- | Source Encoding

[Bebugging Tables

-

4w L]
Destination Folder

i P
aArnings
Java Console o

Jaums —classpath Jlan 10B/Sysiem Folder Extens ions MR Libraeias ARIC]

Executing:
Dare

O =———lavafiles —— B

Zitams, 4342 MB awilable
EIJLE
HelloWerld jasa

You now have a class file, and you want to run it. That's where the JBindery program comes in.
JBindery can do two things: run a Java class file directly or make it into a "clickable™ runnable
program. We'll start it by dragging the class file onto the Jbindery icon; the program starts as

shown in Figure 1-3.

Figure 1-3. MacOS 8 JBindery window

IBindery - H

Command:
C(lass name: HelloWaorld

‘ Optional
parameters:

ﬁ Redirect stdout: [Message Window Bl

Redirect stdin: | Nowhere {/dev/null) % |

hpplication [Save Settings..]|[Hl.lu

As we are running a simple command-line program rather than a windowed application, after we
click on "Run," the JBindery screen is replaced by a Java Console showing the command output,
asin Figure 1-4.

Figure 1-4. MacOS 8 Java Console showing program output

o JavaCgnszole HBE

Macintosh users who can run MacOS X have more choice. Since MacOS X is a hybrid of Unix
and MacOS X, they can use the command-line JDK tools directly and then build the application
using the "Build Application"” tool. Figure 1-5 shows this running with the Application Look and
Feel Switcher from Section 13.13. This builds a folder or directory containing all the pieces

needed to make a clickable application. Or, they can use a full IDE, as discussed in Section 1.4.

Figure 1-5. MacOS X application builder

| Infawichas Thu LiF o7 AM

i Ealld gaea Apqiitanan
F’ﬁfﬂiﬁ'ﬂ' MO K ;' Mren egeetien | MR il ’
. B 1 123 =
e 1 % [] o
i o b g -t =
yrroTeTn 1] mmek Vi Compaier Homa Fascriwn Spolicitisns
Clesipath T |F buid Teday, 16 A - Fode
o e) - e SumonDierio sy Tosday, 325 A4l LR] |.h.lu\.|rnc||I:‘
LA B 0 T Cone T AT L, LS Bt LA Lk L e e 01 | ~
[TSTT T 2 Emaniieren Rim Towlay, % 13 Al LN HimL
R Today. %234l AN e FRY
iyl ot Todas. 503 4M kR Doscumen |
aco LK Swancher Today, %78 AU AN pwas . FEe
® Jva O MSindows D) Mond) MarDS Today, 141 AU AKE Documen; |
201700, 1:52 ru SIEA gl im
™ Today, 130 AU AN e i
W] . plagr| Today, 520 AW 588 Fruje.. Fi|
FoL emagen Today, #4353 aM - *rdohe I
F——— 1 W mivaricher Teduy, 1005 A 116 KE Fuchage |
e /it Pk P o oy g LMFS A IEheE lias Toddw. F0E AL 108 Dot |
$ i N i o | Wl bt Todas, Fid Al A¥E Dowmen |
d ! L LMFS e b v Today, 02 4M 4" hrvan 5. File
Finip 1 UMFSwit se b Todaw, o0 Ak 40 Do |
Tiia pLLAL W 5 0. i 1o7 woiEag Fics 7L K, ety vl S R T ta] Vg Froeies Today, B:71 AM 1288 Oocument |
AN S B F 54 D i T e . Tt e L Sl L4 LN - LM Bl 1

I TP 7 e

1.3 Editing and Compiling with a Color-Highlighting Editor
1.3.1 Problem
You are tired of command-line tools but not ready for an IDE.

1.3.2 Solution

26

Use a color-highlighting editor.

1.3.3 Discussion

It's less than an IDE (see the next recipe), but more than a command line. What is it? It's an
editor with Java support. Tools such as TextPad (http://www.textpad.com), Visual Slick Edit,
and others are low-cost windowed editors (primarily for MS-Windows) that have some amount of
Java recognition built in, and the ability to compile from within the editor. TextPad has quite a
number of file types that it recognizes, including batch files and shell scripts, C, C++, Java, JSP
(see Section 18.7), JavaScript (a client-side web technology), and many others. For each of
these, it uses color highlighting to show which part of the file being edited comprises keywords,
comments, quoted strings, and so on. This is very useful in spotting when part of your code has
been swallowed up by an unterminated / * comment or a missing quote. While this isn't the same
as the deep understanding of Java that a full IDE might possess, experience has shown that it
definitely aids programmer productivity. TextPad also has a "compile Java" command and a "run
external program" command. Both of these have the advantage of capturing the entire command
output into a window, which may be easier to scroll than a command-line window on some
platforms. On the other hand, you don't see the command results until the program terminates,
which can be most uncomfortable if your GUI application throws an exception before it puts up its
main window. Despite this minor drawback, TextPad is a very useful tool. Other editors that
include color highlighting include vim (an enhanced version of the Unix tool vi, available for MS-
Windows and Unix platforms; see http://www.vim.org), the ever-popular Emacs editor, and
many others.

1.4 Compiling, Running, and Testing with an IDE

1.4.1 Problem

Several tools are too many.

1.4.2 Solution

Use an integrated development environment.
1.4.3 Discussion

Many programmers find that using a handful of separate tools -- a text editor, a compiler, and a
runner program, not to mention a debugger (see Section 1.13) -- is too many. An integrated
development environment (IDEX2) integrates all of these into a single toolset with a (hopefully
consistent) graphical user interface. There are many IDEs to choose from, ranging from text
editors that allow you to compile and run a Java program, all the way up to fully integrated tools
with their own compilers and virtual machines. Class browsers and other features of IDEs round
out the purported ease-of-use feature-sets of these tools. It has been argued many times whether
an IDE really makes you more productive or if you just have more fun doing the same thing.
However, even the JDK maintainers at Sun admit (perhaps for the benefit of their advertisers)
that an IDE is often more productive, although it hides many implementation details and tends to
generate code that locks you into a particular IDE. Sun's Java Jumpstart CD (part of Developer
Essentials) said, at one time:

211t takes too long to say, or type, Integrated Development Environment, so I'll use the term IDE from here
on. | know you're good at remembering acronyms, especially TLAs.

27

The JDK software comes with a minimal set of tools. Serious developers are
advised to use a professional Integrated Development Environment with JDK 1.2
software. Click on one of the images below to visit external sites and learn more.

This is followed by some (presumably paid) advertising links to Inprise/Borland JBuilder,
WebGain Visual Cafe, and Sybase PowerJ development suites.

| don't plan to debate the IDE versus the command-line process; I'm just going to show a few
examples of using a couple of the Java-based IDEs. One that runs on both MS-Windows and
Unix platforms is Forte, which is a free download from Sun. Originally created by NetBeans.com,
this IDE was so good that Sun bought the company, and now distributes the IDE for free. Forte is
also open sourced. You can download the compiled version from
http://www.sun.com/forte/ffj/ and the open source version from
http://www.netbeans.org.

Forte comes with a variety of templates. In Figure 1-6, | almost selected the MDI (multiple-
document interface) template, but instead opted for the Swing JFr ane template.

Figure 1-6. Forte: "New From Template" dialog

E¥ Mew From Template - Template Chooser

= Ceewss 0 |=
& O Classes | Lging thiz termplate you can design a
@ 3 Sample Forms | JFrame application wath pre-defined
Application Comman menu tems and containing a
[Mol Apkcation JDesktopPane thal internal framas may
[& o ¢ Cancel Dialog
o = P be added to al runtime.
e JEF
&= [Cther This termplate can be vsed a5 a main
@ 3 Swing Forms wiirrdlaw for MO applications.
B ssppiet :
[& Joisloy
JFrame
[B araernsFrame
& ware -
| Nt » Cancel | Hep

Then in Figure 1-7, Forte lets me specify a class name and package name for the new program
| am building.

Figure 1-7. Forte: name that class

28

E¥ Mew From Template - Target Location

Wane ForteFrameDems
Select Package
Preaze select a package far the newly created object or enter the packape ramme belos

IG Filesystams
I 2 =0 CiforledfDevelopment

Package |mn.dn’wmsvsg.|l|

In Figure 1-8, | am building the GUI using Forte's GUI builder. Select a visual component in the
upper right, and click on the form where you want it. While there are several things about Forte
that most people (including myself) find quirky, | do like the fact that it defaults to using a

Bor der Layout ; some other IDEs default to using no layout at all, and the resulting GUIs do not
resize gracefully.

Figure 1-8. Forte: GUI building

P Facte toa Java, Commurdity Edition ». 1.0 (Build 29)
Fin B “erw Propo Bad Debug Tooks Windoe Help
=R = T AR R s i | : b3 = [- (A1 | Sweng | Swng (Gther) | eans
T el SRR Ed | e | R st Rt Bl B B
Catng | GUA Belting Dm!m]m]ml
EEIREE =10 = | EFEE =01) | PR =lo x|
[Fleyetems o | = roterramerenc 1arame; || 1 5
§ @ G ¥ortnifDevmiopmnent | | B B Mo visumd Cormponenty
& 3 com “il| =3 onderLaycu
& 9 derwinays il | = Bution] [Buon]
L-R= T
&g FoeFrmenenc |||
: S :;::lw | nacksge com, dArvinEyn., mIls =
L T_rassiera,
L (O Flemystems [0
Hrpund bt Sks .
L4 pulilic class ForreFrameleno extends javex.swing.dJF
e [2,14,2,14 | s |
mecdmemsH] (TR [s g
minimumay| (75, 27) L public ForteframeDoss (] |
e initComponents | ;
.w I:I k| P pack |17
| Properties [UiExperd) | =y 1 —
w L = Tl I—p_
Gt o Goneration 1 |
L]

e e T e e T B B L A R T T |
Hea| AR AG T 0 Fa. e | St | Bl Ew | Ere | wire | @ce || FEQ e

| also like the way Forte handles GUI action handlers (see Section 13.5). You simply double-
click on the GUI control you want to handle actions for, and Forte creates an action handler for it
and puts you into the editor to type the code for the action handler. In this case | made a
deliberate typing error to show the effects; when | click the Build Project menu item, the offending
line of code is highlighted in bright red, both in the source code and in the error listing from the

compiler (see Figure 1-9).

Figure 1-9. Forte: compilation error highlighted

29

T Faete o3 awa Comimtrsdy Ediion . 10 (Buskd furdh
Fin Erd vVew Pomd Bed [Debug Tools Virdow Help

'!.'.:llﬂ

l_El

.“.’BE?J#

nca:la;ﬂ

=L Nm-m.ul‘mm'uix i
= BorderL | Eg
=1 Buttonit | Bution) il)

LT} EAit ke Ay

ol Tyotem-omit [();

R Compies

conas iy

Syscen.exit|0)
x

Fypken.ex1t{0] ;

Wi ARE AP O I

wetContentFane |).add (JBattond, Jmut

private wiid JBeltaniletiosPer formed [§aes. AL e
Symten.oxat (iH} s

Pl T e e e ﬂmam-e!

¥ For CeFramelepn, Jave L5110 1] - Dndefine

o, daculoyd Sgad /Far CeFoaaebemo. javn [51:1) Tnualid

&
bt
"l

A Ir.j Hes | gra [Be. So | BED sum

Some people don't like the user interface of Forte. There are many popular IDEs for Java,
especially on the MS-Windows platform, and almost everybody who uses one has a favorite,
such as Borland JBuilder, WebGain Visual Cafe, or IBM Visual Age for Java. Most of them have a
free version and a Pro version. For up-to-date comparisons, you may want to consult the glossy
magazines, since IDEs are updated relatively often.

On MacOS X, the bundled Developer Tools includes a reasonably good IDE, shown in Figure 1-
10. MetroWerks CodeWarrior and other IDEs are also available for MacOS X.

Figure 1-10. MacOS X Developer Tools IDE: main windows

" @ Froject Builder File Edit

Formal Mavigacion Fird Pooject Build Debwg 5CM Window Help

Thy 8:25 A8

CHECTEY TR

“e = R

I
B Crowps & Filer : “

¥Ehle
|a ClEnjwa i
L] W =-|
[l WFEARE. pIOpTH
F D Mealats

[T YT

: 4 & 1T Rdraiafedeeny 3

 Project Builder Release Notes
ann [i] han e

b s

inpart Joma,oet®|

kil paass Jan ateri Fross |
winine Tanl) {
sl [M
Ll 0w e LB L Re 0 war L L

e 11
sl i pila el
H

sl e shalic veid mean{Seing sms[]) [
R Lo #]
S

4 4y |’|;: :

b Dby

il

am

30

Figure 1-11 shows the MacOS X bundled IDE running a trivial application built using its default
frame-based template.

Figure 1-11. MacOS X Developer Tools IDE: application built and running

e |lo World!

What about the speed of IDEs? One way to categorize an IDE is by whether it was written to be
as portable as Java or to run well on only one platform. Forte, JBuilder, and others are written in
Java and can, in theory, be run on any platform that has Java 2 support. Visual Cafe, IBM Visual
Age for Java, MetroWerks CodeWarrior, and others are built out of existing frameworks and
provided as compiled binaries; these have major components that depend on one or another
platform and cannot be "run anywhere." The native code IDEs tend to be a bit faster, although the

difference is diminishing as Java runtimes get better and as computers get faster. When was the
last time you bought a new computer system with a Pentium 133 processor?

1.5 Using Classes from This Book

1.5.1 Problem

You want to try out my examples and/or use my utility classes.
1.5.2 Solution

Download the latest zip file of the booksource files and unzip it. Install the class JAR file in your
CLASSPATH. Or download just the files you need.

1.5.3 Discussion

You can download the latest version of the source code for all the examples in the book from the
book web site, http://javacook.darwinsys.com. You will get two files. First is the source code,
in a file called javacooksrc.jar, which you should unzip someplace convenient or wherever you

like to keep source code. Second is a file called com-darwinsys-util.jar, which you need to set in
your CLASSPATH (see Section 2.6) or JDKHOME/jre/lib/ext directory. The files are roughly
organized in per-chapter directories, but there is a lot of overlap and cross-referencing. Because

of this, | have prepared a cross-reference file named index-bychapter.html. There is also a
mechanically generated file called index-byname.html, which you can use if you know the name

31

of the file you want (and remember that Java source files almost always have the same name as
the public class they contain). The canonical index file, index.html, links to both these files.

Once you've set your CLASSPATH, you can compile. In most directories you can simply say
javac *.java or jikes *.java. Of course, not everybody likes typing those commands, so there is a
makefile for the make utility. make is standard on Unix and readily available for MS-Windows
from, for example, the GNUwin32 project (see http://sourceforge.net/projects/gnuwin32/).
There is also a top-level makefile that visits the subdirectories and runs make in each of them.

These makefiles have been tested with gmake (GNU make 3.79.1), BSD make (OpenBSD 2.8),
and they should work with almost any reasonably modern make program or equivalent.

There may also be times when you don't want to download the entire archive -- if you just need a

bit of code in a hurry -- so you can access those index files and the resulting directory, for
"anyplace, anytime access" on the same web site.

1.6 Automating Compilation with jr

1.6.1 Problem

You get tired of typing javac and java commands.
1.6.2 Solution

Use my jr script.

1.6.3 Discussion

Although it may be tedious, there is some logic behind the fact that the compilation command
(javac, jikes, etc.) requires you to include the filename extension, and the running command
(java) requires you to omit the filename extension -- you can't type java HelloWorld.class and
have it run the Hel | o\\or | d program from the current directory. The compiler is actually reading
a source file, while the java command is running a class, a class that might be located someplace
in your CLASSPATH (see Section 2.6). It is common for JDK users to use a batch script or

command file to automate this. Mine is called jr, for Java compile and Run. The Unix version is jr,
a shell script:

javac $1.java && java $*

The $* gets expanded to include $1 and any other arguments. The MS-Windows version is jr.bat

javac 9%.j ava

if errorlevel 1 goto norun

java % W 9B % Y Y6

:norun

For people using MS-Windows who have no experience using batch files for compilation, fear not.

You could just copy this jr.bat file into the JDKHOME/bin directory. But the problem then is that
when you deinstall that JDK version and install a new one, you'd lose jr. What | usually do on MS-

32

Windows is this: just create a directory that won't conflict with anything else, such as C:\bin ("bin"
being an old name for binary programs; by tradition all of one's own programs go there). Just add
this to your PATH setting, either in your autoexec.bat file or in your Control Panel settings. Copy
jr.bat into this directory, and you're done! From then on you can just give commands such as jr
HelloWorld. The script will run javac HelloWorld.java for you and, if there are no errors, it will run
java HelloWorld.

Feel free to improve upon this and to call it whatever you like.

1.7 Automating Compilation with make

1.7.1 Problem

You get tired of typing javac and java commands.

1.7.2 Solution

Use the make utility to direct your compilations.

1.7.3 Discussion

The Unix operating system has long had to deal with automating large or repetitive compilations.
The most enduring tool for this purpose is make, invented by Stu Feldman at Bell Laboratories in
the mid-1970s and still widely used. There have been literally dozens of make -like programs over
the years. The X Window System has imake, which is really a front-end to make. Linux and GNU
enthusiasts have gmake, and BSD systems feature BSD make; one or another will be installed
under the name make. The cygwin32 project features its own make, a version of gmake. make
consults a file called Makefile (or makefile) in the current directory to figure out what you want
done and how to do it. A makefile to build one Java program could be as simple as this:

al | :
javac Hell owsrl d.java

Makefiles can be much more involved. One common feature is to parameterize a makefile so that
if you need to port the code to a new platform or you distribute your source code to others to port,
all the necessary makefile changes are in one place. For example, to use make variables to let
the user compile with either javac or Jikes, and to add a rule to remove the *.class files after a
round of debugging, the makefile might grow somewhat, as shown here. Note that lines beginning
with the pound sign (#) are comments for the reader and are ignored by make:

Makefile for Acne FlutterBox program

Uncomrent one of these conpiler definitions:
#JAVAC= j avac

JAVAC= jikes +E

conpi l e:
$(JAVAC) *.java

cl ean:
@m-f *.class

33

All modern Unix systems and most MS-Windows IDEs ship with some version of make. Java
became popular after the current fragmentation of Unix into multiple systems maintained by
different groups, so many current make programs do not come preconfigured with “"convenience"
rules for Java,; they all come with rules for C and other older languages. Thus you may want to
provide a "default" rule for compiling from FILE.java into FILE.class. The way you do this will vary
from one version of make to another, so please see your system's documentation. For one such
rule, see the file jmake.rules in the source distribution. For some slightly more involved, but still
relatively simple, examples of using make, consult the files named Makefile in the source
distribution. =

Bl The one bit of make syntax that isn't explained is VARIABLE?=VALUE, which sets VARIABLE to VALUE
only if it is not set. This is often used in make to pass a variable down and allow it to have a default value in
the sub-makefile, but be overridden from the "main" makefile.

1.7.4 See Also

The sidebar Make Versus Ant.

Also, you may want to refer to the book Using Make and Imake (O'Reilly).
1.8 Automating Compilation with Ant

1.8.1 Problem

You get tired of typing javac and java commands.

1.8.2 Solution

Use the Ant program to direct your compilations.
1.8.3 Discussion

The intricacies of makefiles and their importabilities have led to the development of a pure-Java
solution for automating the build process. Ant is free software; it is available in source form or
ready-to-run from the Apache Foundation's Jakarta project web site, at
http://jakarta.apache.org/ant/. Like make, Ant uses a file or files -- written in XML -- listing
what to do and, if necessary, how to do it. These rules are intended to be platform-independent,
though you can of course write platform-specific recipes if necessary.

To use Ant you must create a 15-30 line file specifying various options. This file should be called
build.xml; if you call it anything else, you'll have to give a special command-line arguments every
time you run Ant. Example 1-1 shows the build script used to build the files in the starting
directory. See Section 21.1 for discussion of the XML syntax. For now, note that the <k - tag
begins an XML comment, which extends to the - -> tag.

Example 1-1. Ant example file (build.xml)

<proj ect nane="Java Cookbook Exanpl es" defaul t="conpile" basedir=".">
<l-- set global properties for this build -->
<property nanme="src" val ue="."/>

<property name="build" val ue="build"/>

<l-- Specify the conpiler to use
Using jikes is supported but requires rt.jar in classpath. -->
<property name="build. conpiler" val ue="nodern"/>

<target name="init">

<l-- Create the tine stanp -->
<t stanp/>
<l-- Create the build directory structure used by conmpile -->
<nkdir dir="${build}"/>
</target>

<l-- specify what to conpile. This builds everything -->
<target nanme="conpile" depends="init">

<l-- Conpile the java code from ${src} into ${build} -->
<javac srcdir="${src}" destdir="${build}"
classpath="../comdarw nsys-util.jar"/>
</target>

</ pr oj ect >

When you run Ant, it produces a reasonable amount of naotification as it goes, similar to make :

$ ant conpile

Bui l dfile: build.xmn

Project base dir set to: /honel/ian/javasrc/starting

Executing Target: init

Executing Target: conpile

Conmpiling 19 source files to /hone/ian/javasrc/starting/build
Perform ng a Modern Conpile

Copying 22 support files to /hone/ian/javasrc/starting/build
Conpl eted in 8 seconds

$

Make Versus Ant

Both make and Ant have advantages and disadvantages, detractors and
advocates. I'll try to stay neutral, though | admit | have been using make
for 15 years longer than I've been using Ant.

make files are shorter. No contest. make has its own language instead of
using XML, so it can be a lot more terse. make runs faster; it's written in
C.

Ant files can do more. The javac task in Ant, for example, automatically
finds all the *.java files in subdirectories. With make, a sub-make is
normally required. And the i ncl ude directive for subdirectories differs
between GNU make and BSD make.

Ant has special knowledge of CLASSPATH, making it easy to set a
CLASSPATH in various ways for compile time. See the CLASSPATH
setting in Example 1-1. You may have to duplicate this in other ways --

35

shell scripts or batch files -- for manually running or testing your
application.

make is simpler to extend, but harder to do so portably. You can write a
one-line make rule for getting a CVS archive from a remote site, but you
may run into incompatibilities between GNU make, BSD make, etc.
There is a built-in Ant task for getting an archive from CVS using Ant; it
was written as a Java source file instead of just a series of command-line
commands.

make has been around much longer. There are millions (literally) more
make files than Ant files. Developers outside of Java have by and large
not heard of Ant; they almost all use make. Most non-Java open source
projects use make.

make is easier to start with. Ant's advantages make more sense on
larger projects. Yet of the two, only make has been used on the really
large projects. Telephone switch source code consists of hundreds of
thousands of source files containing tens or hundreds of millions of lines
of source code. make is used here. The use of Ant is growing steadily,
particularly now that most of the widely used Java IDEs (JBuilder, Visual
Age for Java, NetBeans Forte, and others), have interfaces to Ant. Most
Java open source projects use Ant.

make is included with most Unix and Unix-like systems and shipped with
many Windows IDEs. Ant is not included with any operating systems but
is included with many open source Java packages.

make has remained mostly compatible over its 20-year history. The Ant
developers are planning to break backward compatibility after only a
couple of years (in Version 2.0, due out later in 2001), though there is
another tool, Amber, that will provide compatibility with Ant in addition to
adding new features.

To sum up, make and Ant are both good tools. Use whichever one you
choose in your own projects, but be prepared to use both in code you
receive.

1.8.4 See Also

Make Versus Ant.

1.9 Running Applets

1.9.1 Problem

36

You want to run an applet.

1.9.2 Solution

Write some HTML and point a browser at it.
1.9.3 Discussion

An applet is simply a Java class that extends | ava. appl et . Appl et , and in doing so inherits
the functionality it needs to be viewable inside a web page in a Java-enabled web browser.® All
that's necessary is an HTML page referring to the applet. This HTML page requires a minimum of
three attributes , or modifiers: the applet itself, and the width and height it needs on-screen, in
screen dots or pixels. This is not the place for me to teach you the syntax of HTML -- there is
some of that in Section 17.2 -- but I'll show my HTML applet template file. Many of the IDEs will
write a page like this for you if you use their "build new applet" wizards.

[\ncludes Netscape, MS Explorer, Sun's HotJava demonstration browser, and others.

<HTM_>

<HEAD><TI| TLE>A Denonstrati on</ Tl TLE></ HEAD>

<BODY>

<H1>My TEMPLATE Appl et </ H1>

<APPLET CODE="CCC. cl ass" W DTH="200" HEI GHT="200">
</ APPLET>

</ BODY>

</ HTML>

You can probably intuit from this just about all you need to get started. For a little more detail, see

Section 17.2. Once you've created this file (replacing the CCC with the actual name of your
applet) and placed it in the same directory as the class file, you need only tell the browser to view
the HTML page, and the applet should be included in it.

All right, so the applet appeared and it even almost worked. Make a change to the Java source
and recompile. Click the browser's Reload button. Chances are you're still running the old

version! Browsers aren't very good at debugging applets. You can sometimes get around this by
holding down the Shift key while you click Reload. But to let you be sure, there is a program in the
JDK known as Appl et vi ewer , a kind of mini-browser. You need to give it the HTML file, just like
a regular browser. Sun's AppletViewer (shown in Figure 1-12 under MS-Windows) has an explicit
reload button that actually reloads the applet. And it has other features such as debugging hooks
and other information displays. It also has a View->Tag menu that lets you resize the window until
the applet looks best, and then you can copy and paste the tag -- including the adjusted WIDTH
and HEIGHT tags -- into a longer HTML document.

Figure 1-12. Sun JDK AppletViewer

Aml:l Viewer: Butl.. 9[=]E3

Apglet

Applat started.

The MacOS X runtime includes Apple's own implementation (shown in Figure 1-13), which is
more colorful but slightly less featureful -- I could not find the Reload item in its menu. It does,

37

however, let you load a new HTML file by typing (or browsing), so you can get the same effect as
Reload just by clicking on the Open button again.

Figure 1-13. Apple MacOS X applet launcher

Appiet Launcher

&8 O 6 Appler Viewe. ..

Fan 1
A buttan

Thamks for pusking nry button!

Neither the Sun version nor the Apple version is a full applet runtime; features such as jumping to
a new document do not work. But it is a good tool for debugging applets. Learn to use the
AppletViewer that comes with your JDK or IDE.

1.9.4 See Also

The bad news about applets is that they either can't use features of newer Java versions or they
run into the dreaded browser-incompatibility issue. In Section 23.6, | show using the Java Plug-
in to get around this. In Section 23.12, | talk about Java Web Start, a relatively new technique
for distributing applications over the Web in a way similar to how applets are downloaded.

1.10 Dealing with Deprecation Warnings

1.10.1 Problem

Your code used to compile cleanly, but now gives deprecation warnings.

1.10.2 Solution

You must have blinked :-). Either live with the warnings -- live dangerously -- or revise your code
to eliminate the warnings.

1.10.3 Discussion

Each new release of Java includes a lot of powerful new functionality, but at a price: during the
evolution of this new stuff, Java's maintainers find some old stuff that wasn't done right and
shouldn't be used anymore because they can't really fix it. In building JDK 1.1, for example, they
realized that the j ava. uti | . Dat e class had some serious limitations with regard to
internationalization. Accordingly, many of the Dat e class methods and constructors are marked
"deprecated.” To deprecate something means, according to my Concise Oxford Dictionary of

Current English, to "express wish against or disapproval of." Java's developers are therefore
expressing a wish that you no longer do things the old way. Try compiling this code:

i nport java.util.Date;

38

/** Denonstrate deprecation warning */
public class Deprec {

public static void main(String[] av) {
/'l Create a Date object for May 5, 1986
/1 EXPECT DEPRECATI ON WARNI NG
Date d = new Date(86, 04, 05); /1l NMay 5, 1986
Systemout.printin("Date is " + d);
}

What happened? When | compile it on Java 2, | get this warning:

C.\javasrc>j avac Deprec.java

Not e: Deprec.java uses or overrides a deprecated API. Reconpile with
"-deprecation" for details.
1 war ni ng

C.\javasrc>
So, we follow orders. Recompile with - depr ecat i on for details:

C.\javasrc>javac -deprecation Deprec.java
Deprec.java: 10: warning: constructor Date(int,int,int) in class
java.util.Date has
been deprecated
Date d = new Date(86, 04, 05); /1 May 5, 1986
N

1 war ni ng

C.\javasrc>

The warning is simple: the Dat e constructor that takes three integer arguments has been
deprecated. How do you fix it? The answer is, as in most questions of usage, to refer to the
Javadoc documentation for the class. In Java 2, the introduction to the Dat e page says, in part:

The class Dat e represents a specific instant in time, with millisecond precision.

Prior to JDK 1.1, the class Dat e had two additional functions. It allowed the
interpretation of dates as year, month, day, hour, minute, and second values. It
also allowed the formatting and parsing of date strings. Unfortunately, the API for
these functions was not amenable to internationalization. As of JDK 1.1, the

Cal endar class should be used to convert between dates and time fields and

the Dat eFor nat class should be used to format and parse date strings. The
corresponding methods in Dat e are deprecated.
And more specifically, in the description of the three-integer constructor, it says:

Date(int year, int nonth, int date)

Deprecated. As of JDK version 1.1, replaced by Cal endar . set (year + 1900,
nmont h, date) or G egori anCal endar (year + 1900, nont h, date).

39

As a general rule, when something has been deprecated, you should not use it in any new code
and, when maintaining code, strive to eliminate the deprecation warnings. As we shall see in

Section 2.2, there is already at least one example of a deprecation warning method that has
altogether stopped working.

The main areas of deprecation warnings in the standard APl are Dat e (as mentioned), the JDK
1.0 event handling, and some methods -- a few of them important -- in the Thr ead class.

You can also deprecate your own code. Just put a doc comment with the @lepr ecat ed tag
immediately before the class or method you wish to deprecate. Using doc comments is described
in Section 23.3.

1.11 Conditional Debugging without #ifdef

1.11.1 Problem

You want conditional compilation and Java doesn't seem to provide it.

1.11.2 Solution

Use constants or command-line arguments, depending upon the goal.

1.11.3 Discussion

Some older languages such as C, PL/I, and C++ provide a feature known as conditional
compilation. Conditional compilation means that parts of the program can be included or excluded
at compile time based upon some condition. One thing it's often used for is to include or exclude
debugging print statements. When the program appears to be working, the developer is struck by
a fit of hubris and removes all the error checking :-). A more common rationale is that the
developer wants to make the finished program smaller -- a worthy goal -- or run faster by
removing conditional statements.

Although Java lacks any explicit conditional compilation, there is a kind of conditional compilation
implicit in the language. All Java compilers must do flow analysis to ensure that all paths to a
local variable's usage pass through a statement that assigns it a value first, that all returns from a
function pass out via someplace that provides a return value, and so on. Imagine what the
compiler will do when it finds an | f statement whose value is known to be false at compile time.
Why should it even generate code for the condition? True, you say, but how can the results of an
i f statement be known at compile time? Simple: through f i nal bool ean variables. Further, if
the value of the | f condition is known to be false, then the body of the i f statement should not
be emitted by the compiler either. Presto -- instant conditional compilation!

/'l 1fDef.java
final bool ean DEBUG = fal se;
Systemout.println("Hello, World ");
i f (DEBUG ({
Systemout.printin("Life is a voyage, not a destination");

}

Compilation of this program and examination of the resulting class file reveals that the string
"Hello" does appear, but the conditionally printed epigram does not. The entire pri nt | n has
been omitted from the class file. So Java does have its own conditional compilation mechanism.

40

darian$ jr |fDef

jikes +E IfDef.java

java | f Def

Hel 1 o, World

darian$ strings IfDef.class | grep Life # not found!
darian$ javac |fDef.java # try another conpiler

darian$ strings IfDef.class | grep Life # still not found!
dari an$

What if we want to use debugging code similar to this, but have the condition applied at runtime?
We can use System properties (Section 2.3) to fetch a variable. Section 1.12 uses my

Debug class as example of a class whose entire behavior is controlled this way.

But this is as good a place as any to interject about another feature, inline code generation. The

C world has a language keyword i nl i ne, which is a hint to the compiler that the function
(method) is not needed outside the current source file. Therefore, when the C compiler is
generating machine code, a calltothe _ i nl i ne function can be replaced by the actual

method body, eliminating the overhead of pushing arguments onto a stack, passing control,
retrieving parameters, and returning values. In Java, making a method final enables the compiler
to know that it can be inlined, or emitted in line. This is an optional optimization that the compiler
is not obliged to perform, but may for efficiency.

1.12 Debugging Printouts

1.12.1 Problem

You want to have debugging statements left in your code to be enabled at runtime.

1.12.2 Solution

Use my Debug class.
1.12.3 Discussion

Instead of using the conditional compilation mechanism of Section 1.11, you may want to leave
your debugging statements in the code, but enable them only at runtime, when a problem
surfaces. This is a good technique for all but the most compute-intensive applications because
the overhead of a simple i f statement is not all that great. Let's combine the flexibility of runtime
checking with the simple i f statement to debug a hypothetical f et ch() method (part of
Fetch. j ava):

String name = "poent;
if (System getProperty("debug.fetch") !'= null) {
Systemerr.println("Fetching " + nanme);

}

val ue = fetch(nane),;

Then, we can compile and run this normally and the debugging statement will be omitted. But if
we run it with a - D argument to enable debug. f et ch, the printout will occur:

> java Fetch # See? No out put
> java -Ddebug.fetch Fetch

41

Fet chi ng poem
>

Of course this kind of | f statement is tedious to write in large quantities, so | have encapsulated
it into a Debug class, which is part of my com darwi nsys. ut i | package. Debug. | ava
appears in full at the end of this chapter, in Section 1.19. My Debug class also provides the
string "debug". as part of the Syst em get Property() , so we can simplify the previous

Fet ch example as follows (code in FetchDebug.java):

String name = "poeni, val ue;
Fetch f = new Fetch();

Debug. println("fetch", "Fetching
value = f.fetch(nanme);

+ nane);

Running it behaves identically to the original Fet ch:

> java Fet chDebug # agai n, no out put
> java -Ddebug. fetch Fet chDebug

Fet chi ng poem

>

1.13 Using a Debugger

1.13.1 Problem

That debugging printout code is still not enough.

1.13.2 Solution

Use a debugger.
1.13.3 Discussion

The JDK includes a command-line-based debugger, jdb, and there are any number of IDEs that
include their own debugging tools. If you've focused on one IDE, learn to use the debugger that it
provides. If you're a command-line junkie like me, you may want to learn at least the basic
operations of jdb.

Here is a buggy program. It has intentionally had bugs introduced so that you can see their
effects in a debugger.

/** This program exhibits some bugs, so we can use a debugger */
public class Buggy {
static String nane;

public static void main(String[] args) {
int n = name.length(); /1 bug # 1

System out . println(n);

name += ": The end."; /'l bug #2

Syst em out

}

.println(nane); // #3

Here is a session using jdb to find these bugs:

i an> java Buggy

Exception in thread
Buggy. mai n(Conpi | ed Code)

at
i an> jdb Buggy
Initializing jdb..
0xb2: cl ass(Buggy)
> run
run Buggy
running ...
mai n[1]
Uncaught exception
at

"mai n" java.l ang. Nul | Poi nt er Excepti on

. java.lang. Nul | Poi nt er Excepti on

Buggy. mai n(Buggy.j ava: 6)

at sun.tool s.agent. Mai nThread. runMai n(Nati ve Met hod)
at sun.tool s.agent. Mai nThread. run(Mai nThr ead. j ava: 49)

mai n[1] |i st

2 public class Buggy {

3 static String nane;

4

5 public static void main(String[] args) {
6 => int n = nane.length(); [// bug # 1
7

8 System out. println(n);

9

10 nanme += "; The end."; /'l bug #2
mai n[1] print Buggy. nane

Buggy. name = nul

mai n[1] help

** conmmand |ist **

t hreads [threadgro
thread <thread id>
suspend [thread id

resune [thread id(s)]

where [thread id]
wherei [thread id]
t hr eadgr oups

t hr eadgr oup <nane>

print <id> [id(s)]
dunp <id> [id(s)]

| ocal s
frame

cl asses
nmet hods <cl ass id>

stop in <class id>
a met hod

stop at <class id>

[ist threads

set default thread
suspend threads (default:
resune threads (default:
dunp a thread's stack
dunp a thread's stack, with pc info
list threadgroups

set current threadgroup

up]

(s)] all')

all)
| all
| all

print object or field
print all object information

print all local variables in current stack

list currently known cl asses
list a class's nethods

. <nmet hod>[(argunent _type,...)] -- set a breakpoint in

:<line> -- set a breakpoint at a line

up [n franes] -- nmove up a thread's stack

down [n franes] -- nmove down a thread' s stack

cl ear <class id>. <method>[(argunent_type,...)] -- clear a breakpoint
in a nmethod

clear <class id>: <line> -- clear a breakpoint at a line

step -- execute current line

step up -- execute until the current nethod returns
toits caller

st epi -- execute current instruction

next -- step one line (step OVER calls)

cont -- continue execution from breakpoi nt
catch <cl ass id> -- break for the specified exception
ignore <class id> -- ignore when the specified exception
[ist [line nunber|nmethod] -- print source code

use [source file path] -- display or change the source path
menory -- report nenory usage

gc -- free unused objects

| oad cl assnane -- load Java class to be debugged

run <class> [args] -- start execution of a |oaded Java cl ass
I -- repeat |ast conmand

help (or ?) -- list conmands

exit (or quit) -- exit debugger

mai n[1] exit

i an>

There are many other debuggers available; a look in the current Java magazines will inform you
of them. Many of them will work remotely, since the Java debugging API (that which the
debuggers use) is network-based.

1.14 Unit Testing: Avoid the Need for Debuggers

1.14.1 Problem

You don't want to have to debug your code.

1.14.2 Solution

Use unit testing to validate each class as you develop it.
1.14.3 Discussion

Stopping to use a debugger is time-consuming. Better to test beforehand. The methodology of
unit testing has been around for a long time, but has been overshadowed by newer
methodologies. Unit testing is a tried and true means of getting your code tested in small pieces.
Typically, in an OO language like Java, unit testing is applied to individual classes, in contrast to
"black box" testing where the entire application is tested.

| have long been an advocate of this very basic testing methodology. Indeed, developers of the
software methodology known as Extreme Programming (XP for short; see

http://www.extremeprogramming.org) advocate writing the unit tests before you write the
code, and also advocate running your tests almost every time you compile. This group of
extremists has some very well-known leaders, including Gamma and Beck of Design Patterns
fame. While | am not yet ready to unconditionally endorse all aspects of Extreme Programming, |
certainly go along with their advocacy of unit testing.

Indeed, many of my classes come with a "built-in" unit test. Classes that are not main programs in
their own right often include a mai n method that just tests out the functionality of the class. Here
is an example:

[** A sinple class used to denonstrate unit testing. */
public class Person {

protected String full Naneg;

protected String firstNanme, |astNaneg;

/** Construct a Person using his/her first+l ast nanes. */
public Person(String firstName, String |astNane) {
this.firstName = firstNane;
this.lastNane = | ast Nane;

}

/** Get the person's full name */
public String getFull Name() {
if (full Name !'= null)
return full Nanme;

return firstName + " " + | ast Nane;

}

/[** Sinple test program */
public static void main(String[] argv) {
Person p = new Person("lan", "Darw n");
String f = p.getFull Nanme();
if (!f.equals("lan Darwi n"))
throw new ||| egal St at eExcepti on("Nanme concatenati on
br oken");
Systemout.println("Fullname " + f + " | ooks good");
}

}

What surprised me is that, before encountering XP, | used to think | did this often, but an actual

inspection of two projects indicated that only about a third of my classes had test cases, either
inside or externally. Clearly what is needed is a uniform methodology. That is provided by JUnit.

JUnit is a Java-centric methodology for providing test cases. You can freely download JUnit from
the obvious web site, http://www.junit.org. JUnit is a very simple but useful testing tool. It is
easy to use; you just write a test class that has a series of methods whose names begin with
t est . JUnit uses introspection (see Chapter 25) to find all these methods, and runs them for

you! There are extensions to JUnit for purposes as diverse as load testing and testing Enterprise
JavaBeans (EJB); there are links to these on the JUnit web site.

How do you get started using JUnit? All that's necessary is to write a test. Here | have excerpted
the test from my Per son class and placed it into a class Per sonTest . Note the obvious naming
pattern.

i mport junit.franmework. *;

45

/** A sinple test case for Person */
public class PersonTest extends Test Case {

/** JUnit test classes require this constructor */
public PersonTest(String nane) {
super (nanme) ;

}

public void test NaneConcat() {
Person p = new Person("lan", "Darw n");
String f = p.getFull Nanme();
assert Equal s(f, "lan Darwi n");

}

}

To run it, | need only compile the test and invoke the test harness j uni t:

dar oad. darwi nsys. conf ji kes PersonTest.|ava
dar oad. darwi nsys. cont java junit.textui.TestRunner PersonTest

Time: 0.188
K (1 tests)

dar oad. darwi nsys. cont

The use of a full class name is a bit tedious, so | have a script named jtest that invokes this; | just

say jtest Person and it runs the previous command for me.

#! / bi n/ sh

exec java junit.textui.TestRunner ${1} Test
1.14.4 See Also

If you prefer flashier GUI output, there are several JUnit variants (built using Swing and AWT; see
Chapter 13) that will run the tests with a GUI.

JUnit offers classes for building comprehensive test suites and comes with considerable
documentation of its own; download the program from the web site listed earlier.

Also, for testing graphical components, | have developed a simple component tester; it is
described in Section 12.3.

Remember: Test early, test often!
1.15 Decompiling Java Class Files

1.15.1 Problem

You lost the source code.

46

1.15.2 Solution

If you still have the class files, decompile them.

1.15.3 Discussion

Have you ever looked at a class file by accident? Open it in a text editor, for example, and you
might see this. You've never done this by accident, right? Sure, | believe you . . .

/\H/\@/\C/\@\@\@/\H/\@/\H/\@]/\H/\@/\H/\@/\H/\@/\H/\@/\H/\@/\H/\@/\H/\@//\H/\@//\H
/';:.::@I\H/\@/\H/\@/\H/\@;/\H/\@/\H/\@/\H/\@/\H/\@/\H/\@
’\-G\@AG\@E‘G\@AG\@)AG\@)AG\@IAG\@]AG

"GO . .. A EN T @ENC ¥

~@ V@@

~@\ @@

NCAC

@Y @B

/\@\[/\@:

There's no resemblance to the Java source file that you wrote and spent so long fussing over the
formatting of. What did it get you? Nothing here. The class file is a binary file that can't be
inspected easily. However, it is in a well-documented format, and there's the rub. Once a format
is known, files can be examined. One example of a Java program that examines other Java
programs is javap, which gives you the external view of a class file. I'll show you in Section 25.3
just how this part of javap works and how you can write your own tools that process other Java
classes. Meanwhile, this discussion is about decompilation. Let's suppose you have put some
meat through a meat grinder. It's been converted to zillions of little bits. It might, in fact, look a bit
like the class file seen here. Now suppose that unbeknownst to you, your paycheck fell into the
meat and went through the grinder. Ugh! But the real question is, can you put the paycheck back
together from the little pieces in the output? A related question is whether you can put a Java
source file back together from the little pieces in the class file.

The task seems impossible. The file appears inscrutable. How can it be un-ground? But computer
geeks like to work with files, and restoring structure to them is one part of that. When the
infamous Internet Worm struck in 1988, it was only a matter of hours before security experts had
taken the binary compiled program -- most OSes' equivalent of a class file -- and turned it back
into source code without any tools other than debuggers, dumps, and manuals. So it is possible
to take an object file and turn it back into some kind of source file. Now the ground-up paycheck,
if you find the pieces and tape it back together, will still have bumps (not to mention the smell of
salami or pastrami as appropriate). And a decompiled file will have one major bump: no
comments! All the comments will be gone. But hopefully you can get back something that will
take the place of your lost source file.

The first tool for reverse compilation of Java class files was called Mocha. Written by the late
HanPeter van Vliet of the Netherlands, this tool showed a generation of early Java hackers that it
was possible to decompile Java. Here is Hel | o\\or | d and its decompilation:

/**

* Your basic, mnimal, Hello World type programin Java.
*/

public class Hell oWwrld {
public static void main(String[] argv) {

47

Systemout.println("Hello, World");

}
The result of compiling it and then decompiling it is:

/| * Deconpil ed by Mocha from Hel |l oworl d. cl ass */
/* Originally conpiled fromHell owrld.java */

i nport java.io.PrintStream

public class Hell oWwrld

{
public static void main(String astring[])
{
Systemout.printin("Hello, World");
}
public HelloWorld()
{
}
}

Perhaps not as pretty, and with less of the abbreviation that is common practice in Java. The null

constructor for HelloWorld actually does exist in the compiled class (as you can verify by running
javap on it), so Mocha dutifully generates it.

Well, Mocha is OK, and the price is right -- it's free. However, | did mention that it's no longer
being maintained,; it reportedly has problems with some of the class file constructs generated by
current compilers. The O'Reilly web site for this book includes a link to Mocha.

A newer tool is Jad, written in C++. Jad is free but closed source (available in binary only); see
http://www.qgeocities.com/SiliconValley/Bridge/8617/jad.html. There are also several
commercial decompilers that keep abreast of the latest versions of Java; check one of the Java
resource sites or magazines for the ones that are currently available.

1.16 Preventing Others from Decompiling Your Java Files
1.16.1 Problem

But | don't want people to be able to decompile my Java programs!

1.16.2 Solution

Obfuscate them.

1.16.3 Discussion

It has been said that for any weapon there is a defense, and for any defense there is a weapon. If
the weapon is a decompiler, then the defense is something called an obf uscat or. An

48

obfuscator takes your program and tries to make it obscure, so that decompilation either will not
work or will not be useful.

Because Mr. van Vliet, the late inventor of Mocha, did not release its source code, nobody else
can take it over and maintain it, as we don't have the source. Or do we? Of course! That's it! We'll
just run it through itself. Well, if you can download a copy, you can try it. But what you'll find is
that it doesn't work. The entire program has been obfuscated. Yes, Mr. van Vliet also wrote the

first Java obfuscator, partly in reaction to all the people who flamed him on the Net for releasing
Mocha. Due to his untimely death, his obfuscator is no longer available.

There are, of course, commercial obfuscation programs that will do some degree of obfuscation.
Some of them actually encrypt the file and use a custom class loader to decrypt it at runtime. |
suppose if you wanted to keep people from learning how your program worked, which you well
might for commercial or other reasons, you'd want to use one of these tools. Again, a Java
resource web site or a current Java developer's magazine would be the place to go for the latest
versions.

1.17 Getting Readable Tracebacks
1.17.1 Problem

You're getting an exception stack trace at runtime, but most of the important parts don't have line
numbers.

1.17.2 Solution

Disable JIT and run it again. Or use the current HotSpot runtime.
1.17.3 Discussion

When a Java program throws an exception, the exception propagates up the call stack until there
is a cat ch clause that matches it. If none is found, the Java interpreter program catches it and
prints a stack traceback showing all the method calls that got from the top of the program to the
place where the exception was thrown. You can print this traceback yourself in any catch clause:
the Thr owabl e class has several methods called pri nt St ackTrace().

The Just-In-Time (JIT) translation process consists of having the Java runtime convert part of

your compiled class file into machine language, so that it can run at full execution speed. This is a
necessary step for making Java programs run under interpretation and still be acceptably fast.
However, until recently its one drawback was that it generally lost the line numbers. Hence, when
your program died, you still got a stack traceback but it no longer showed the line numbers where
the error occurred. So we have the tradeoff of making the program run faster, but harder to

debug. The latest versions of Sun's Java runtime include the HotSpot Just-In-Time translator,
which doesn't have this problem.

If you're still using an older (or non-Sun) JIT, there is a way around this. If the program is getting
a stack traceback and you want to make it readable, you need only disable the JIT processing.
How you do this depends upon what release of Java you are using. In the JDK 1.2 (Java 2), you
need only set the environment variable JAVA_COMPILER to the value NONE, using the
appropriate set command.

C.\> set JAVA COWPI LER=NONE # DOS, MS-W ndows

49

set env JAVA COWPI LER NONE # UNI X Csh
export JAVA COWVPI LER=NONE # UNI X Ksh, nodern sh

To make this permanent, you would set it in the appropriate configuration file on your system; on
Windows NT, you could also set this in the System Control Panel. You might well wish to make
this setting the default, since using the JIT does take longer for startup, in return for faster
execution. | ran JabaDex, my personal information manager application (see

http://www.darwinsys.com/jabadex/) six times, thrice with JIT and thrice without; the results

appear in Table 1-1.

Table 1-1. JIT and NOJIT timings

With JIT NOJIT
46 seconds 34 seconds
37 seconds 28 seconds
34 seconds 29 seconds
Average: 39 seconds Average: 30.3 seconds

As you can see, the average startup times are nearly 25% faster without JIT. Note that this
includes reading a 500-line file and scanning it; that part of the code would definitely benefit from
a JIT. Ideally we'd have selective control over JIT.

An easier way to disable JIT temporarily, and one that does not require changing the setting in
your configuration files or Control Panel, is the - D command-line option, which updates the
system properties. Just set| ava. conpi | er to NONE on the command line:

java -Djava. conpil er=NONE myapp

Note that the - D command-line option overrides the setting of the JAVA_COMPILER environment
variable.

On earlier releases, there was a command-line flag - noj i t, but this was discontinued in favor of
the more verbose - D option.

As mentioned, Sun's new HotSpot JIT -- included in many JDK 1.2 and JDK 1.3 releases --
generally provides tracebacks even with JIT mode enabled.

1.18 Finding More Java Source Code

1.18.1 Problem

You want even more Java code examples to look at.

1.18.2 Solution

Use The Source, Luke.

1.18.3 Discussion

50

Java source code is everywhere. As mentioned in the Preface, all the code examples from this
book can be downloaded from the O'Reilly site (http://java.oreilly.com). What | didn't tell you,
but what you might have realized by extension, is that the source examples from all the O'Reilly
Java books are available there too: the Java Examples in a Nutshell book; the Java Swing book;
all of them.

Another valuable resource is the source code for the Java API. You may not have realized it, but
the source code for all the public parts of the Java API are included with each release of the Java
Development Kit. Want to know how | ava. uti| . ArrayLi st actually works? You have the
source code. Got a problem making a JTabl e behave? Sun's JDK includes the source for all the
public classes! Look for a file called src.zip or src.jar ; some versions unzip this and some do not.

If that's not enough, you can get the source for all of the JDK for free over the Internet just by
committing to the Sun Java Community Source License and downloading a large file. This
includes the source for the public and non-public parts of the API, as well as the compiler (written
in Java) and a large body of code written in "native" code (C/C++): the runtime itself and the
interfaces to the native library. For example, | ava. i 0. Reader has a method called read() ,
which reads bytes of data from a file or network connection. This is written in C because it
actually calls the read() system call for Unix, MS-Windows, MacOS, Palm, BeOS, or
whatever. The JDK source kit includes the source of all this stuff.

And ever since the early days of Java, there have been a number of web sites set up to distribute
free-software or open source Java, just as with most other modern "evangelized" languages such
as Perl, Python, Tk/Tcl, and others. (In fact, if you need native code to deal with some oddball
filesystem mechanism in a portable way, beyond the material in Chapter 10 of this book, the
source code for the above-mentioned languages' runtime systems might be a good place to look.)

I'd like to mention several web sites of lasting value:

Gamelan has been around almost forever (in Java time). The URL
http://www.gamelan.com still worked the last | checked, but the site has been
(naturally) commercialized, and is now part of http://www.developer.com.

The Giant Java Tree is more recent, and is limited to code that is covered by the GNU
Public License. There is a great deal of source code stored there, all of which can be
freely downloaded. See http://www.gjt.org.

The CollabNet open source marketplace is not specific to Java, but offers a meeting
place for people who want open source code written and those willing to fund its
development. See http://www.collab.net.

SourceForge, also not specific to Java, offers free public hosting of open-sourced
projects. See http://www.sourceforge.com.

Finally, the author of this book maintains a small Java site at
http://www.darwinsys.com/java/, which may be of value. This is the prime spot to
obtain the JabaDex program, a longer (6,000-line) application that demonstrates some of
the principles and practices discussed in the book. There is also a listing of Java
resources and material related to this book.

As with all free software, please be sure that you understand the ramifications of the various
licensing schemes. Code covered by the GPL, for example, automatically transfers the GPL to
any code that uses even a small part of it. And even once looking at Sun's Java implementation
details (the licensed download mentioned previously) may prevent you from ever working on a
"clean-room" reimplementation of Java, the free-software Kaffe, or any commercial
implementation. Consult a lawyer. Your mileage may vary. Despite these caveats, the source
code is an invaluable resource to the person who wants to learn more Java.

51

1.19 Program: Debug

Most of the chapters of this book will end with a "Program" recipe that illustrates some aspect of
the material covered in the chapter. Example 1-2 is the source code for the Debug utility
mentioned in Section 1.12.

Example 1-2. Debug.java

package com darw nsys. util;

[** Utilities for debuggi ng
*/
public class Debug {

[** Static nethod to see if a given category of debugging is
enabl ed.

* Enabl e by setting e.g., -Ddebug.fileio to debug file I/O
oper ati ons.

* Use |ike this:

* if (Debug.isEnabled("fileio"))

* Systemout.println("Starting to read file " + fileNane);

*/

public static bool ean i sEnabl ed(String category) {

return System getProperty("debug." + category) != null;

}

/** Static method to println a given nessage if the
* given category is enabled for debugging.
*/
public static void println(String category, String nsg) {
i f (isEnabled(category))
System out. println(nsg);
}
/[** Same thing but for non-String objects (think of the other
* formas an optim zation of this).
*/
public static void println(String category, Object stuff) {
println(category, stuff.toString());
}

52

Chapter 2. Interacting with the Environment

2.1 Introduction

2.2 Getting Environment VVariables

2.3 System Properties

2.4 Writing JDK Release-Dependent Code

2.5 Writing Operating System-Dependent Code

2.6 Using CLASSPATH Effectively

2.7 Using Extensions or Other Packaged APIs

2.8 Parsing Command-Line Arguments

2.1 Introduction

This chapter describes how your Java program can deal with its immediate surroundings, what
we call the runtime environment . In one sense, everything you do in a Java program using
almost any Java API involves the environment. Here we focus more narrowly on things that
directly surround your program. Along the way we'll meet the Syst emclass, which knows a lot
about our system.

Two other runtime classes deserve brief mention. The first, | ava. | ang. Runt i ne, lies behind
many of the methods in the Syst emclass. Syst em exi t (), for example, just calls
Runt i me. exi t(). This is technically part of "the environment," but the only time we use it

directly is to run other programs, which is covered in Section 26.2. The | ava. awt . Tool ki t
object is also part of the environment and is discussed in Chapter 12.

2.2 Getting Environment Variables

2.2.1 Problem

You want to get at environment variables from within your Java program.

2.2.2 Solution

Don't.

2.2.3 Discussion

53

The seventh edition of Unix, released in 1979, had an exciting new feature known as environment
variables. Environment variables are in all modern Unix systems and in most later command-line
systems such as the DOS subsystem underlying MS-Windows, but are not in Macintosh
computers, Palm Pilots, SmartCards, or other Java environments. Environment variables are
commonly used for customizing an individual computer user's runtime environment, hence the
name. To take one example that will be familiar to most readers, on Unix or DOS the environment
variable PATH determines where the system will look for executable programs. So of course the
issue comes up: "How do | get at environment variables from my Java program?"

The answer is that you can do this in some versions of Java, but you shouldn't. Java is designed
to be a portable runtime environment. As such, you should not depend on operating system
features that don't exist on every single Java platform. | just mentioned several Java platforms
that don't have environment variables.

Oh, all right, if you insist. There is a st at i ¢ method called getenv() in class

java. |l ang. Syst em. Let's try it out. But remember, you made me do it. First, the code. All we
need is this line in a main program:

Systemout. println("System getenv(\"PATH\") = " +
System get env(" PATH"));

Let's try compiling it:

C.\javasrc>javac CetEnv.java

Note: GetEnv.java uses or overrides a deprecated API. Reconpile with -
deprecation

for details.

That message is seldom welcome news. We'll do as it says:

C.\javasrc>javac -deprecation GetEnv.java
Get Env. java: 9: Note: The method java.lang. String
getenv(java.lang. String) in class

java. |l ang. Syst em has been deprecat ed.
Systemout.println("System getenv(\"PATH\") =" +
System get env(" PATH"));

AN

Not e: Get Env.java uses or overrides a deprecated API. Please consult
t he

docunentation for a better alternative.

1 war ni ng

But it's only a warning, right? What the heck. Let's try running the program!

C:\javasrc>java GetEnv
Exception in thread "main" java.lang.Error: getenv no | onger supported,
use
properties and -D instead: PATH
at java.l ang. System getenv(System j ava: 602)
at Get Env. mai n(Get Env. j ava: 9)

Well, of all the non-backwards-compatible things! It used to work, in JDK 1.1, but it really and truly
doesn't work anymore in Java 2. | guess we'll just have to do what the error message tells us,
which is to learn about "properties and - D instead." In fact, that's our very next recipe.

2.3 System Properties

2.3.1 Problem

You need to get information from the system properties.
2.3.2 Solution

Use System get Property() or System get Properties().

2.3.3 Discussion

What is a property anyway? A property is just a name and value pair stored in a
java.uti!l.Properties object, which we'll discuss more fully in Section 7.8. So if | chose to,
| could store the following properties in a Pr operti es object called | an:

nanme=l an Darw n
favorite_popsicle=cherry
favorite_rock group=Fl eet wod Mac
favorite_programm ng_| anguage=Java
pencil col or=green

The Properti es class has several forms of its retrieval method. You could, for example, say
ian. get Property("pencil col or") and get back the string "green”. You can also provide a
default: say i an. get Property("pencil color", "black"), and if the property has not
been set you would get the default value "black".

For now, we're concerned with the Syst emclass and its role as keeper of the particular

Properti es object that controls and describes the Java runtime. The Syst emclass has a static
Properti es member whose content is the merger of operating system specifics (0s. nane, for
example), system and user tailoring (| ava. cl ass. pat h), and properties defined on the
command line (as we'll see in a moment). Note that the use of periods in these names (like
os.arch,os.versionandjava. cl ass. path,java. | ang. ver si on) makes it look as
though there is a hierarchical relationship similar to that for class names. The Pr operti es class,
however, imposes no such relationships: each key is just a string, and dots are not special.

To retrieve one system-provided property, use Syst em get Property(). If you want them all,
use Syst em get Properties(). Accordingly, if | wanted to find out if the Syst em
Properties had a property named "pencil color”, | could say:

String color = System getProperty("pencil color");

But what will that return? Surely Java isn't clever enough to know about everybody's favorite
pencil color? Right you are! But we can easily tell Java about our pencil color (or anything else we
want to tell it) using the - D argument.

The - D option argument is used to predefine a value in the system properties object. It must have
a name, an equals sign, and a value, which are parsed the same way as in a properties file (see
below). You can have more than one - D definition after your class name on the Java command.
On Unix or MS-Windows command-line mode, use this:

55

java -D"pencil col or=Deep Sea Green" SysPropDeno

Using MRJ or an IDE, put the variable's name and value in the appropriate dialog box when
running the program. The SysPr opDenp program is short; its essence is this one line:

System get Properties().list(Systemout);
When run this way, the program prints around 50 lines, looking something like:

java. library.path=/usr/local/linux-jdkl.2/jrel/lib/i386/...
java.vm speci fication.vendor=Sun M crosystens |nc.

sun. i 0. uni code. encodi ng=Uni codeLittle

pencil col or=Deep Sea G een

file.encodi ng=ANSI _X3. 4-1968

j ava. specification.vendor=Sun M crosystens |nc.

user .| anguage=en

The program also has code to extract just one or a few properties, So you can say:

$ java SysPropDeno os. arch
os.arch = x86

2.3.4 See Also

The Javadoc page for | ava. uti | . Properti es lists the exact rules used in the | oad()
method, as well as other details.

Section 7.8 lists more details on using and naming your own Properti es files.

2.4 Writing JDK Release-Dependent Code

2.4.1 Problem

You need to write code that depends on the JDK release.

2.4.2 Solution

Don't do this.
2.4.3 Discussion

Although Java is meant to be portable, there are some significant variations in Java runtimes.
Sometimes you need to work around a feature that may be missing in older runtimes, but want to
use it if it is