

My stupid release 2002☺
For all the people which doesn’t have money to buy a good book

 2

Book Description

The Java Cookbook is a comprehensive collection of problems, solutions, and practical
examples for anyone programming in Java. Developers will find hundreds of tried-and-
true Java "recipes" covering all of the major APIs as well as some APIs that aren't as well
documented in other Java books.

The Java Cookbook, like the bestselling Perl Cookbook, covers a lot of ground, and
offers Java developers short, focused pieces of code that can be easily incorporated into
other programs. The idea is to focus on things that are useful, tricky, or both. The book
includes code segments covering many specialized APIs--like media and servlets--and
should serve as a great "jumping-off place" for Java developers who want to get started in
areas outside of their specialization.

The book provides quick solutions to particular problems that can be incorporated into
other programs, but that aren't usually programs in and of themselves.

 3

Preface... 11

Who This Book Is For .. 12
What's in This Book? ... 12
Platform Notes .. 14
Other Books .. 15
Conventions Used in This Book... 17
Getting the Source Code... 18
Acknowledgments .. 19

Chapter 1. Getting Started: Compiling, Running, and Debugging 21
1.1 Introduction ... 21
1.2 Compiling and Running Java: JDK ... 22
1.3 Editing and Compili ng with a Color-Highlighting Editor 26
1.4 Compiling, Running, and Testing with an IDE .. 27
1.5 Using Classes from This Book .. 31
1.6 Automating Compilation with jr .. 32
1.7 Automating Compilation with make .. 33
1.8 Automating Compilation with Ant .. 34
1.9 Running Applets... 36
1.10 Dealing with Deprecation Warnings ... 38
1.11 Conditional Debugging without #ifdef... 40
1.12 Debugging Printouts ... 41
1.13 Using a Debugger ... 42
1.14 Unit Testing: Avoid the Need for Debuggers .. 44
1.15 Decompiling Java Class Files ... 46
1.16 Preventing Others from Decompiling Your Java Files............................. 48
1.17 Getting Readable Tracebacks... 49
1.18 Finding More Java Source Code .. 50
1.19 Program: Debug .. 52

Chapter 2. Interacting with the Environment.. 53
2.1 Introduction ... 53
2.2 Getting Environment Variables.. 53
2.3 System Properties ... 55
2.4 Writing JDK Release-Dependent Code ... 56
2.5 Writing Operating System-Dependent Code... 57
2.6 Using CLASSPATH Effectively ... 59
2.7 Using Extensions or Other Packaged APIs ... 61
2.8 Parsing Command-Line Arguments ... 62

Chapter 3. Strings and Things ... 66
3.1 Introduction ... 66
3.2 Taking Strings Apart with Substrings ... 68
3.3 Taking Strings Apart with StringTokenizer .. 69
3.4 Putting Strings Together with + and StringBuffer 72
3.5 Processing a String One Character at a Time .. 73
3.6 Aligning Strings .. 74
3.7 Converting Between Unicode Characters and Strings 76

 4

3.8 Reversing a String by Word or Character.. 78
3.9 Expanding and Compressing Tabs... 79
3.10 Controlling Case .. 82
3.11 Indenting Text Documents ... 83
3.12 Entering Non-Printable Characters... 85
3.13 Trimming Blanks from the End of a String ... 86
3.14 Parsing Comma-Separated Data .. 87
3.15 Program: A Simple Text Formatter ... 91
3.16 Program: Soundex Name Comparisons .. 93

Chapter 4. Pattern Matching with Regular Expressions 96
4.1 Introduction ... 96
4.2 Regular Expression Syntax.. 98
4.3 How REs Work in Practice ... 100
4.4 Using Regular Expressions in Java .. 101
4.5 Testing REs Interactively.. 103
4.6 Finding the Matching Text .. 104
4.7 Replacing the Matching Text ... 105
4.8 Printing All Occurrences of a Pattern... 106
4.9 Printing Lines Containing a Pattern.. 107
4.10 Controlling Case in match() and subst() .. 109
4.11 Precompiling the RE ... 109
4.12 Matching Newlines in Text ... 110
4.13 Program: Data Mining ... 112
4.14 Program: Full Grep.. 114

Chapter 5. Numbers... 118
5.1 Introduction ... 119
5.2 Checking Whether a String Is a Valid Number ... 121
5.3 Storing a Larger Number in a Smaller.. 122
5.4 Taking a Fraction of an Integer Without Using Floating Point 123
5.5 Ensuring the Accuracy of Floating-Point Numbers 124
5.6 Comparing Floating-Point Numbers ... 126
5.7 Rounding Floating-Point Numbers.. 127
5.8 Formatting Numbers ... 128
5.9 Converting Between Binary, Octal, Decimal, and Hexadecimal 130
5.10 Operating on a Series of Integers ... 131
5.11 Working with Roman Numerals ... 132
5.12 Formatting with Correct Plurals ... 136
5.13 Generating Random Numbers .. 137
5.14 Generating Better Random Numbers... 138
5.15 Calculating Trigonometric Functions .. 139
5.16 Taking Logarithms ... 139
5.17 Multiplying Matrixes... 140
5.18 Using Complex Numbers ... 142
5.19 Handling Very Large Numbers .. 144
5.20 Program: TempConverter .. 145
5.21 Program: Number Palindromes... 149

 5

Chapter 6. Dates and Times... 152
6.1 Introduction ... 152
6.2 Finding Today's Date .. 153
6.3 Printing Date/Time in a Specified Format.. 155
6.4 Representing Dates in Other Epochs ... 156
6.5 Converting YMDHMS to a Calendar or Epoch Seconds......................... 157
6.6 Parsing Strings into Dates.. 157
6.7 Converting Epoch Seconds to DMYHMS .. 159
6.8 Adding to or Subtracting from a Date or Calendar................................... 160
6.9 Difference Between Two Dates... 161
6.10 Comparing Dates... 162
6.11 Day of Week/Month/Year or Week Number.. 164
6.12 Calendar Page ... 165
6.13 High-Resolution Timers .. 167
6.15 Program: Reminder Service .. 170

Chapter 7. Structuring Data with Java .. 172
7.1 Introduction ... 172
7.2 Data Structuring Using Arrays ... 173
7.3 Resizing an Array .. 174
7.4 Like an Array, but More Dynamic.. 176
7.5 Data-Independent Access with Iterators .. 177
7.6 Structuring Data in a Linked List ... 178
7.7 Mapping with Hashtable and HashMap ... 181
7.8 Storing Strings in Properties and Preferences.. 182
7.9 Sorting a Collection... 184
7.10 Sorting in Java 1.1 ... 188
7.11 Avoiding the Urge to Sort ... 189
7.12 Sets.. 190
7.13 Finding an Object in a Collection .. 191
7.14 Converting a Collection to an Array.. 193
7.15 Rolling Your Own Iterator ... 194
7.16 Stack.. 195
7.17 Multidimensional Structures... 196
7.18 Finally, Collections .. 198
7.19 Program: Timing Comparisons ... 200

Chapter 8. Object-Oriented Techniques ... 202
8.1 Introduction ... 202
8.2 Printing Objects: Formatting with toString() ... 204
8.3 Overriding the Equals Method ... 205
8.4 Overriding the Hashcode Method ... 207
8.5 The Clone Method ... 209
8.6 The Finalize Method.. 211
8.7 Using Inner Classes .. 212
8.8 Providing Callbacks via Interfaces .. 213
8.9 Polymorphism/Abstract Methods .. 216
8.10 Passing Values .. 217

 6

8.11 Roll Your Own Exceptions ... 220
8.12 Program: Plotter... 220

Chapter 9. Input and Output ... 224
9.1 Introduction ... 225
9.2 Reading Standard Input.. 229
9.3 Writing Standard Output ... 231
9.4 Opening a File by Name ... 232
9.5 Copying a File .. 233
9.6 Reading a File into a String .. 236
9.7 Reassigning the Standard Streams .. 237
9.8 Duplicating a Stream as It Is Written.. 238
9.9 Reading/Writing a Different Character Set .. 240
9.10 Those Pesky End-of-Line Characters .. 241
9.11 Beware Platform-Dependent File Code ... 241
9.12 Reading "Continued" Lines .. 242
9.13 Scanning a File .. 247
9.14 Binary Data ... 250
9.15 Seeking ... 251
9.16 Writing Data Streams from C... 252
9.17 Saving and Restoring Serialized Objects .. 254
9.18 Preventing ClassCastExceptions with SerialVersionUID 255
9.19 Reading and Writing JAR or Zip Archives ... 257
9.20 Reading and Writing Compressed Files .. 260
9.21 Program: Text to PostScript... 261
9.22 Program: TarList (File Converter) ... 264

Chapter 10. Directory and Filesystem Operations .. 276
10.1 Introduction... 276
10.2 Getting File Information .. 276
10.3 Creating a File .. 279
10.4 Renaming a File ... 280
10.5 Deleting a File .. 281
10.6 Creating a Transient File .. 282
10.7 Changing File Attributes ... 284
10.8 Listing a Directory.. 285
10.9 Getting the Directory Roots ... 287
10.10 Making New Directories ... 288
10.11 Program: Find .. 288

Chapter 11. Programming Serial and Parallel Ports... 292
11.1 Introduction... 292
11.2 Choosing a Port ... 294
11.3 Opening a Serial Port ... 297
11.4 Opening a Parallel Port .. 301
11.5 Resolving Port Conflicts ... 304
11.6 Reading and Writing: Lock Step ... 307
11.7 Reading and Writing: Event-Driven .. 309
11.8 Reading and Writing: Threads... 313

 7

11.9 Program: Penman Plotter... 315
Chapter 12. Graphics and Sound .. 320

12.1 Introduction... 320
12.2 Painting with a Graphics Object .. 321
12.3 Testing Graphical Components... 322
12.4 Drawing Text .. 323
12.5 Drawing Centered Text in a Component ... 323
12.6 Drawing a Drop Shadow .. 324
12.7 Drawing an Image ... 327
12.8 Playing a Sound File ... 331
12.9 Displaying a Moving Image with Video .. 332
12.10 Drawing Text with 2D ... 335
12.11 Printing: JDK 1.1 ... 337
12.12 Printing: Java 2 .. 339
12.13 Program: PlotterAWT ... 342
12.14 Program: Grapher ... 344

Chapter 13. Graphical User Interfaces ... 348
13.1 Introduction... 348
13.2 Displaying GUI Components ... 349
13.3 Designing a Window Layout .. 351
13.5 Action Handling: Making Buttons Work ... 354
13.6 Action Handling Using Anonymous Inner Classes................................. 356
13.7 Terminating a Program with "Window Close" ... 357
13.8 Dialogs: When Later Just Won't Do.. 361
13.9 Getting Program Output into a Window... 363
13.10 Choosing a File with JFileChooser ... 366
13.11 Choosing a Color... 369
13.12 Centering a Main Window.. 371
13.13 Changing a Swing Program's Look and Feel 372
13.14 Program: Custom Font Chooser ... 376
13.15 Program: Custom Layout Manager .. 381

Chapter 14. Internationalization and Localization... 387
14.1 Introduction... 387
14.2 Creating a Button with I18N Resources... 388
14.3 Listing Available Locales .. 389
14.4 Creating a Menu with I18N Resources .. 390
14.5 Writing Internationalization Convenience Routines 391
14.6 Creating a Dialog with I18N Resources... 393
14.7 Creating a Resource Bundle ... 394
14.8 JILTing Your Code .. 395
14.9 Using a Particular Locale ... 396
14.10 Setting the Default Locale .. 397
14.11 Formatting Messages ... 398
14.12 Program: MenuIntl... 400
14.13 Program: BusCard .. 402

Chapter 15. Network Clients... 406

 8

15.1 Introduction... 406
15.2 Contacting a Server .. 408
15.3 Finding and Reporting Network Addresses... 409
15.4 Handling Network Errors .. 410
15.5 Reading and Writing Textual Data .. 411
15.6 Reading and Writing Binary Data ... 414
15.7 Reading and Writing Serialized Data ... 416
15.8 UDP Datagrams... 417
15.9 Program: TFTP UDP Client ... 419
15.10 Program: Telnet Client ... 423
15.11 Program: Chat Client .. 425

Chapter 16. Server-Side Java: Sockets ... 431
16.1 Introduction... 431
16.2 Opening a Server for Business ... 431
16.3 Returning a Response (String or Binary) ... 434
16.4 Returning Object Information... 437
16.5 Handling Multiple Clients.. 438
16.6 Network Logging .. 443
16.7 Program: A Java Chat Server ... 446

Chapter 17. Network Clients II: Applets and Web Clients 452
17.1 Introduction... 452
17.2 Embedding Java in a Web Page... 452
17.3 Applet Techniques... 454
17.4 Contacting a Server on the Applet Host .. 456
17.5 Making an Applet Show a Document... 459
17.6 Making an Applet Run a CGI Script ... 460
17.7 Reading the Contents of a URL .. 461
17.8 Extracting HTML from a URL .. 462
17.9 Extracting URLs from a File ... 464
17.10 Converting a Filename to a URL .. 466
17.11 Program: MkIndex... 467
17.12 Program: LinkChecker.. 471

Chapter 18. Web Server Java: Servlets and JSP ... 478
18.1 Introduction... 478
18.2 First Servlet: Generating an HTML Page .. 479
18.3 Servlets: Processing Form Parameters ... 482
18.4 Cookies ... 485
18.5 Session Tracking ... 488
18.6 Generating PDF from a Servlet... 493
18.7 HTML Meets Java: JSP.. 499
18.8 JSP Include/Forward... 503
18.9 JavaServer Pages Using a Servlet... 504
18.10 Simplifying Your JSP with a JavaBean.. 505
18.11 JSP Syntax Summary... 508
18.12 Program: CookieCutter... 509
18.13 Program: JabaDot Web News Portal... 510

 9

Chapter 19. Java and Electronic Mail ... 520
19.1 Introduction... 520
19.2 Sending Email: Browser Version .. 520
19.3 Sending Email: For Real .. 525
19.4 Mail-Enabling a Server Program ... 527
19.5 Sending MIME Mail ... 533
19.6 Providing Mail Settings ... 535
19.7 Sending Mail Without Using JavaMail.. 536
19.8 Reading Email.. 540
19.9 Program: MailReaderBean .. 544
19.10 Program: MailClient .. 548

Chapter 20. Database Access ... 559
20.1 Introduction... 559
20.2 Text-File Databases .. 560
20.3 DBM Databases... 565
20.4 JDBC Setup and Connection... 568
20.5 Connecting to a JDBC Database.. 570
20.6 Sending a JDBC Query and Getting Results .. 573
20.7 Using JDBC Parameterized Statements ... 575
20.8 Using Stored Procedures with JDBC ... 579
20.9 Changing Data Using a ResultSet.. 579
20.10 Changing Data Using SQL .. 580
20.11 Finding JDBC Metadata ... 582
20.12 Program: JDAdmin.. 588

Chapter 21. XML .. 595
21.1 Introduction... 595
21.2 Transforming XML with XSLT ... 597
21.3 Parsing XML with SAX ... 599
21.4 Parsing XML with DOM .. 601
21.5 Verifying Structure with a DTD .. 603
21.6 Generating Your Own XML with DOM ... 604
21.7 Program: xml2mif .. 606

Chapter 22. Distributed Java: RMI .. 609
22.1 Introduction... 609
22.2 Defining the RMI Contract.. 610
22.3 RMI Client ... 612
22.4 RMI Server ... 613
22.5 Deploying RMI Across a Network ... 615
22.6 Program: RMI Callbacks .. 616
22.7 Program: RMIWatch ... 620

Chapter 23. Packages and Packaging ... 626
23.1 Introduction... 626
23.2 Creating a Package... 627
23.3 Documenting Classes with Javadoc... 627
23.4 Archiving with jar ... 631
23.5 Running an Applet from a JAR.. 632

 10

23.6 Running an Applet with a JDK... 632
23.7 Running a Program from a JAR.. 636
23.8 Preparing a Class as a JavaBean .. 636
23.9 Pickling Your Bean into a JAR .. 640
23.10 Packaging a Servlet into a WAR File ... 641
23.11 "Write Once, Install Anywhere" ... 642
23.12 Java Web Start .. 642
23.13 Signing Your JAR File .. 648

Chapter 24. Threaded Java .. 650
24.1 Introduction... 650
24.2 Running Code in a Different Thread... 651
24.3 Displaying a Moving Image with Animation... 654
24.4 Stopping a Thread... 657
24.5 Rendezvous and Timeouts .. 660
24.6 Thread Communication: Synchronized Code ... 661
24.7 Thread Communication: wait() and notifyAll() 666
24.8 Background Saving in an Editor.. 672
24.9 Threaded Network Server .. 673

Chapter 25. Introspection, or "A Class Named Class" 682
25.1 Introduction... 682
25.2 Getting a Class Descriptor ... 683
25.3 Finding and Using Methods and Fields ... 684
25.4 Loading and Instantiating a Class Dynamically...................................... 687
25.5 Constructing a Class from Scratch ... 689
25.6 Performance Timing .. 691
25.7 Printing Class Information.. 693
25.8 Program: CrossRef ... 695
25.9 Program: AppletViewer... 700

Chapter 26. Using Java with Other Languages... 707
26.1 Introduction... 707
26.2 Running a Program ... 707
26.3 Running a Program and Capturing Its Output .. 710
26.4 Mixing Java and Scripts with BSF .. 713
26.5 Blending in Native Code (C/C++) ... 717
26.6 Calling Java from Native Code.. 723
26.7 Program: DBM ... 723

Chapter 27. Afterword ... 727
Colophon ... 728

 11

Preface

If you know a little Java™, great. If you know more Java, even better! This book is ideal for
anyone who knows some Java and wants to learn more.

I started programming in C in 1980 while working at the University of Toronto, and C served me
quite well through the 1980s and into the 1990s. In 1995, as the nascent language Oak was
being renamed Java, I had the good fortune to be told about it by my colleague J. Greg Davidson.
I sent an email to the address Greg provided, and got this mail back:

From scndprsn.Eng.Sun.COM!jag Wed Mar 29 19:43:54 1995
Date: Wed, 29 Mar 1995 16:47:51 +0800
From: jag@scndprsn.Eng.Sun.COM (James Gosling)
To: ian@scooter.Canada.Sun.COM, ian@darwinsys.com
Subject: Re: WebRunner
Cc: goltz@sunne.East.Sun.COM
Content-Length: 361
Status: RO
X-Lines: 9

> Hi. A friend told me about WebRunner(?), your extensible network
> browser. It and Oak(?) its extention language, sounded neat. Can
> you please tell me if it's available for play yet, and/or if any
> papers on it are available for FTP?

Check out http://java.sun.com
(oak got renamed to java and webrunner got renamed to
 hotjava to keep the lawyers happy)

I downloaded HotJava and began to play with it. At first I wasn't sure about this newfangled
language, which looked like a mangled C/C++. I wrote test and demo programs, sticking them a
few at a time into a directory that I called javasrc to keep it separate from my C source (as often
the programs would have the same name). And as I learned more about Java, I began to see its
advantages for many kinds of work, such as the automatic memory reclaim and the elimination of
pointer calculations. The javasrc directory kept growing. I wrote a Java course for Learning Tree,
and the directory kept growing faster, reaching the point where it needed subdirectories. Even
then, it became increasingly difficult to find things, and it soon became evident that some kind of
documentation was needed.

In a sense, this book is the result of a high-speed collision between my javasrc directory and a
documentation framework established for another newcomer language. In O'Reilly's Perl
Cookbook, Tom Christiansen and Nathan Torkington worked out a very successful design,
presenting the material in small, focused articles called "recipes." The original model for such a
book is, of course, the familiar kitchen cookbook. There is a long history of using the term
"cookbook" to refer to an enumeration of how-to recipes relating to computers. On the software
side, Donald Knuth applied the "cookbook" analogy to his book The Art of Computer
Programming (Addison Wesley), first published in 1968. On the hardware side, Don Lancaster
wrote The TTL Cookbook (Sams). (Transistor-transistor logic, or TTL, was the small-scale
building block of electronic circuits at the time.) Tom and Nathan worked out a successful
variation on this, and I recommend their book for anyone who wishes to, as they put it, "learn
more Perl." Indeed, the work you are now reading intends to be a book for the person who wishes
to "learn more Java."

 12

The code in each recipe is intended to be self-contained; feel free to borrow bits and pieces of
any of it for use in your own projects.

Who This Book Is For

I'm going to assume that you know the basics of Java. I won't tell you how to println a string
and a number at the same time, or how to write a class that extends Applet and prints your
name in the window. I'll presume you've taken a Java course or studied an introductory book
such as O'Reilly's Learning Java or Java in a Nutshell. However, Chapter 1 covers some
techniques that you might not know very well and that are necessary to understand some of the
later material. Feel free to skip around! Both the printed version of the book and the (eventual)
electronic copy are heavily cross-referenced.

What's in This Book?

Unlike my Perl colleagues Tom and Nathan, I don't have to spend as much time on the oddities
and idioms of the language; Java is refreshingly free of strange quirks. But that doesn't mean it's
trivial to learn well! If it were, there'd be no need for this book. My main approach, then, is to
concentrate on the Java APIs: I'll teach you by example what the APIs are and what they are
good for.

Like Perl, Java is a language that grows on you and with you. And, I confess, I use Java most of
the time nowadays. Things I'd once done in C are now -- except for device drivers and legacy
systems -- done in Java.

But Java is suited to a different range of tasks than Perl. Perl (and other scripting languages such
as awk and Python) are particularly suited to the "one-liner" utility task. As Tom and Nathan
show, Perl excels at things like printing the 42nd line from a file. While it can certainly do these
things, Java, because it is a compiled, object-oriented language, seems more suited to
"development in the large" or enterprise applications development. Indeed, much of the API
material added in Java 2 was aimed at this type of development. However, I will necessarily
illustrate many techniques with shorter examples and even code fragments. Be assured that
every line of code you see here has been compiled and run.

Many of the longer examples in this book are tools that I originally wrote to automate some
mundane task or another. For example, MkIndex (described in Chapter 1) reads the top-level
directory of the place where I keep all my Java example source code and builds a browser-
friendly index.html file for that directory. For another example, the body of the book itself was
partly composed in XML, a recent simplification that builds upon a decade of experience in SGML
(the parent standard that led to the tag-based syntax of HTML). It is not clear at this point if XML
will primarily be useful as a publishing format or as a data manipulation format, or if its prevalence
will further blur that distinction, though it seems that the blurring of distinctions is more likely.
However, I used XML here to type in and mark up the original text of some of the chapters of this
book. The text was then converted to FrameMaker input by the XmlForm program. This program
also handles -- by use of another program, GetMark -- full and partial code insertions from the
source directory. XmlForm is discussed in Chapter 21.

Let's go over the organization of this book. I start off Chapter 1 by describing some methods of
compiling your program on different platforms, running them in different environments (browser,
command line, windowed desktop), and debugging. Chapter 2 moves from compiling and
running your program to getting it to adapt to the surrounding countryside -- the other programs
that live in your computer.

 13

The next few chapters deal with basic APIs. Chapter 3 concentrates on one of the most basic
but powerful data types in Java, showing you how to assemble, dissect, compare, and rearrange
what you might otherwise think of as ordinary text.

Chapter 4 teaches you how to use the powerful regular expressions technology from Unix in
many string-matching and pattern-matching problem domains. This is the first chapter that covers
a non-standard API -- there is not yet a regular expression API in standard Java -- so I talk about
several regular expression packages.

Chapter 5 deals both with built-in types such as int and double, as well as the corresponding
API classes (Integer, Double, etc.) and the conversion and testing facilities they offer. There is
also brief mention of the "big number" classes. Since Java programmers often need to deal in
dates and times, both locally and internationally, Chapter 6 covers this important topic.

The next two chapters cover data processing. As in most languages, arrays in Java are linear,
indexed collections of similar-kind objects, as discussed in Chapter 7. This chapter goes on to
deal with the many "Collections" classes: powerful ways of storing quantities of objects in the
java.util package. Additional data structuring and programming tips appear in Chapter 8.

The next few chapters deal with aspects of traditional input and output. Chapter 9 details the
rules for reading and writing files. (Don't skip this if you think files are boring, as you'll need some
of this information in later chapters: you'll read and write on serial or parallel ports in Chapter 11
and on a socket-based network connection in Chapter 15!) Chapter 10 shows you everything
else about files -- such as finding their size and last-modified time -- and about reading and
modifying directories, creating temporary files, and renaming files on disk. Chapter 11 shows
how you can use the javax.comm API to read/write on serial and parallel ports without resorting
to coding in C.

Chapter 12 leads us into the GUI development side of things. This chapter is a mix of the lower-
level details, such as drawing graphics and setting fonts and colors, and very high-level activities,
such as controlling a playing video clip or movie. Then, in Chapter 13 I cover the higher-level
aspects of a GUI, such as buttons, labels, menus, and the like -- the GUI's predefined
components. Once you have a GUI (really, before you actually write it), you'll want to read
Chapter 14 so your programs can work as well in Akbar, Afghanistan, Algiers, Amsterdam, or
Angleterre as they do in Alberta or Arkansas or Alabama . . .

Since Java was originally promulgated as "the programming language for the Internet," it's only
fair that we spend some of our time on networking in Java. Chapter 15, covers the basics of
network programming from the client side, focusing on sockets. We'll then move to the server
side in Chapter 16. In Chapter 17, you'll learn more client-side techniques. Some specialized
server-side techniques for the Web are covered in Chapter 18. Finally, programs on the Net
often need to generate electronic mail, so this section ends with Chapter 19.

Chapter 20 covers the Java Database Connectivity package (JDBC), showing how you can
connect to local or remote relational databases, store and retrieve data, and find out information
about query results or about the database.

Another form of storing and exchanging data is XML. Chapter 21 discusses XML's formats and
some operations you can apply using SAX and DOM, two standard Java APIs.

Chapter 22 takes the distributed notion one step further and discusses Remote Methods
Invocation, Java's standard remote procedure call mechanism. RMI lets you build clients, servers,

 14

and even "callback" scenarios, using a standard Java mechanism -- the Interface -- to describe
the contract between client and server.

Chapter 23 shows how to create packages of classes that work together. This chapter also talks
about "deploying" or distributing and installing your software.

Chapter 24 tells you how to write classes that appear to do more than one thing at a time and let
you take advantage of powerful multiprocessor hardware.

Chapter 25 lets you in on such big secrets as how to write API cross reference documents
mechanically and how web browsers are able to load any old applet -- never having seen that
particular class before -- and run it.

Sometimes you already have code written and working in another language that can do part of
your work for you, or you want to use Java as part of a larger package. Chapter 26 shows you
how to run an external program (compiled or script) and also interact directly with "native code" in
C/C++.

There isn't room in an 800-page book for everything I'd like to tell you about Java. The Chapter
27 presents some closing thoughts and a link to my online summary of Java APIs that every Java
developer should know about.

No two programmers or writers will agree on the best order for presenting all the Java topics. To
help you find your way around, there are extensive cross-references, mostly by recipe number.

Platform Notes

In its short history, Java has gone through four major versions. The first official release is known
as Java JDK 1.0, and its last bug-fixed version is 1.0.2. The second major release is Java JDK
1.1, and the latest bug-fixed version is 1.1.9, though it may be up from that by the time you read
this book. The third major release, in December 1998, was to be known as Java JDK 1.2, but the
Sun marketing gremlins abruptly renamed JDK 1.2 at the time of its release to Java 2, and the
implementation is known as Java SDK 1.2. The current version as of this writing is Java 2 SDK
1.3 (JDK 1.3), which was released in 2000. Around the same time, two other packages, one low-
end and one high-end, were announced. At the low end, Java Micro Edition (JME) is designed for
tiny devices, such as Palm computers, telephones, and the like. At the high end, the Java 2
Enterprise Edition (J2EE) extends Java 2 by adding additional features for enterprise or large-
scale distributed commercial applications. One of the key features of the Enterprise Edition is
Enterprise JavaBeans™ (EJB). EJB has little in common with client-side JavaBeans except the
name. Many Java pundits (including myself) believe that EJB will become a significant player in
the development of large commercial applications, perhaps the most significant development of
this era.

As we go to press, Java 2 Version 1.4 is about to appear. It entered beta (which Sun calls "early
access") around the time of the book's completion, so I can only mention it briefly. You should
cast your sights on http://java.sun.com to see what's new in 1.4 and how it affects the
programs in the book.

This book is aimed at the Java 2 platform. By the time of publication, I expect that all Java
implementations will be fairly close to conforming to the Java 2 specification. I have used four
platforms to test this code for portability. The official "reference platform" is Sun's Java 2 Solaris
Reference Implementation, which I used on a Sun SPARCStation running Solaris. To give a
second Unix flavor, I've tested with Kaffe[1] and with Sun's Linux JDK running under the

 15

OpenBSD Unix-like system. For the mass market, I've used Sun's Java 2 Win32 (Windows
95/98/NT) implementation. And, "for the rest of us," I've run some of the programs on Apple's
MacOS Runtime for Java (MRJ) running under MacOS 8 on a Power Macintosh and a few on
MacOS X (which Apple wants you to pronounce "Oh Ess Ten," despite the way they've been
writing it for the last three years). However, since Java is portable, I anticipate that the examples
will work on MacOS X except where extra APIs are required. Not every example has been tested
on every platform, but all have been tested on at least one, and most on more than one.

[1] Kaffe, the Swedish word for coffee, is an open source (GNU Public License) Java implementation that
runs on just about any Unix or Unix-like system, and has been ported to other platforms such as Win32.

The Java API consists of two parts, core APIs and non-core APIs. The core is, by definition,
what's included in the JDK that you download for free from http://java.sun.com. Non-core is
everything else. But even this "core" is far from tiny: it weighs in at around 50 packages and well
over a thousand public classes, each with up to 30 or more public methods. Programs that stick
to this core API are reasonably assured of portability to any Java 2 platform.

The non-core APIs are further divided into standard extensions and non-standard extensions. All
standard extensions have package names beginning with javax.,[2] and reference
implementations are available from Sun. A Java licensee (like, say, Apple or Microsoft) is not
required to implement every standard extension, but if they do, the interface of the standard
extension should be adhered to. This book will call your attention to any code that depends on a
standard extension. There is little code that depends on non-standard extensions other than code
listed in the book itself (the major exception is the Regular Expressions API used in Chapter 4).
My own package, com.darwinsys.util, contains some utility classes used here and there;
you will see an import for this at the top of any file that uses classes from it.

[2] Note that not all packages named javax. are extensions: javax.swing and its sub-packages -- the
Swing GUI packages -- used to be extensions, but are now core.

Other Books

There is a lot of useful information packed into this book. However, due to the breadth of topics, it
is not possible to give book-length treatment to any one topic. Because of this, the book also
contains references to many web sites and other books. This is in keeping with my target
audience: the person who wants to learn more about Java.

O'Reilly & Associates publishes one of the largest -- and, I think, the best -- selection of Java
books on the market. As the API continues to expand, so does the coverage. You can find the
latest versions and ordering information on O'Reilly's Java books in the back pages of this book
or online at http://java.oreilly.com, and you can buy them at most bookstores, both physical
and virtual. You can also read them online through a paid subscription service; see
http://safari.oreilly.com. While many are mentioned at appropriate spots in the book, a few
deserve special mention here.

First and foremost, David Flanagan's Java in a Nutshell offers a brief overview of the language
and API, and a detailed reference to the most essential packages. This is handy to keep beside
your computer.

Learning Java, by Patrick Niemeyer and Joshua Peck, contains a slightly more leisurely
introduction to the language and the APIs.

A definitive (and monumental) description of programming the Swing GUI is Java Swing, by
Robert Eckstein, Marc Loy, and Dave Wood.

 16

Java Servlets, by Jason Hunter, and JavaServer Pages, by Hans Bergsten, are both ideal for the
server-side web developer.

Java Virtual Machine, by Jon Meyer and Troy Downing, will intrigue the person who wants to
know more about what's under the hood.

Java Network Programming and Java I/O, by Elliotte Rusty Harold, and Database Programming
with JDBC and Java, by George Reese, are also useful references.

There are many more; see the O'Reilly web site for an up-to-date list.

Other Java Books

Never consider releasing a GUI application unless you have read Sun's official Java Look and
Feel Design Guidelines (Addison Wesley). This work presents the views of a large group of
human factors and user-interface experts at Sun who have worked with the Swing GUI package
since its inception; they tell you how to make it work well.

Finally, while authors at other publishing houses might be afraid to mention a book that their
publisher might think of as competition to their own, I have found Patrick Chan's Java Developer's
Almanac (Addison Wesley) a useful addition to my library and a natural complement to my book.
While my book features much more detail and discussion than his short "examplets," the main
part of Patrick's book is a large alphabetical (by class, not by package) reference to the core API.
As the core part of his book was produced mechanically using Reflection, the book has a
relatively low cover price. By the way, I show you how to generate books like Patrick's (see
Section 25.8), but he doesn't show you how to write a book like mine.

General Programming Books

Donald E. Knuth's The Art of Computer Programming has been a source of inspiration to
students of computing since its first publication by Addison Wesley in 1968. Volume 1 covers
Fundamental Algorithms, Volume 2 is Seminumerical Algorithms, and Volume 3 is Sorting and
Searching. The remaining four volumes in the projected series were never completed. Although
his examples are far from Java (he invented a hypothetical assembly language for his examples),
many of his discussions of algorithms -- of how computers ought to be used to solve real
problems -- are as relevant today as 30 years ago.[3]

[3] With apologies for algorithm decisions that are less relevant today given the massive changes in
computing power now available.

The Elements of Programming Style, by Kernighan and Plauger, set the style (literally) for a
generation of programmers with examples from various structured programming languages. Brian
Kernighan also wrote (with P. J. Plauger) a pair of books, Software Tools and Software Tools in
Pascal, which demonstrated so much good advice on programming that I used to advise all
programmers to read them. However, these three books are somewhat dated now; many times I
wanted to write a follow-on book in a more modern language, but instead defer to The Practice of
Programming, Brian's follow-on (co-written by Rob Pike) to the Software Tools series. This book
continues the Bell Labs (now part of Lucent) tradition of excellence in software textbooks. I have
even adapted one bit of code from their book, in Section 3.14.

Design Books

 17

Peter Coad's Java Design (PTR-PH/Yourdon Press) discusses the issues of object-oriented
analysis and design specifically for Java. Coad is somewhat critical of Java's implementation of
the observable-observer paradigm and offers his own replacement for it.

One of the most famous books on object-oriented design in recent years is Design Patterns, by
Gamma, Helm, Johnson, and Vlissides (Addison Wesley). These authors are often collectively
called "the gang of four," resulting in their book sometimes being referred to as "the GOF book."
One of my colleagues called it "the best book on object-oriented design ever," and I think he's
probably not far off the mark.

Another group of important books on object-oriented design is the UML series by "the Three
Amigos" (Booch, Jacobson, and Rumbaugh). Their major works are the UML User Guide, UML
Process, and others. A smaller and more approachable book in the same series is Martin
Fowler's UML Distilled.

Conventions Used in This Book

This book uses the following conventions.

Programming Conventions

I use the following terminology in this book. A program means either an applet, a servlet, or an
application. An applet is for use in a browser. A servlet is similar to an applet but for use in a
server. An application is any other type of program. A desktop application (a.k.a. client) interacts
with the user. A server program deals with a client indirectly, usually via a network connection.

The examples shown are in two varieties. Those that begin with zero or more import statements,
a Javadoc comment, and a public class statement are complete examples. Those that begin with
a declaration or executable statement, of course, are excerpts. However, the full versions of
these excerpts have been compiled and run, and the online source includes the full versions.

Recipes are numbered by chapter and number, so, for example, Recipe 7.5 refers to the fifth
recipe in Chapter 7.

Typesetting Conventions

The following typographic conventions are used in this book:

Italic

is used for commands, filenames, and sample URLs. It is also used to define new terms
when they first appear in the text.

Constant width

is used in code examples to show partial or complete Java source code program listings.
It is also used for class names, method names, variable names, and other fragments of
Java code.

Many programs are accompanied by an example showing them in action, run from the command
line. These will usually show a prompt ending in either $ for Unix or > for Microsoft, depending on

 18

which computer I was using that day. Text before this prompt character can be ignored; it will be
a pathname or a hostname, again depending on the system.

As mentioned earlier, I've tested all the code on at least one of the reference platforms, and most
on several. Still, there may be platform dependencies, or even bugs, in my code or in some
important Java implementation. Please report any errors you find, as well as your suggestions for
future editions, by writing to:

O'Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

There is an O'Reilly web site for the book, listing errata, examples, or any additional information.
You can access this page at:

http://www.oreilly.com/catalog/javacook/

I also have a personal web site for the book:

http://javacook.darwinsys.com

Both sites will list errata and plans for future editions. You'll also find the source code for all the
Java code examples to download; please don't waste your time typing them in again! For specific
instructions, see the next section.

Getting the Source Code

From my web site http://javacook.darwinsys.com, just follow the Download link and you will
be presented with three choices:

1. Download the entire source archive as a single large zip file
2. Download individual source files, indexed alphabetically as well as by chapter
3. Download the binary JAR file for the com.darwinsys.util package needed to compile

many of the other programs

Most people will choose either #1 or #2, but anyone who wants to compile my code will need #3.
See Section 1.5 for information on using these files.

Downloading the entire source archive (#1) gives a large zip file that contains all the files from the
book (and more). This archive can be unpacked with jar (see Section 23.4), the free zip
program from Info-ZIP, the commercial WinZip or PKZIP, or any compatible tool. The files are
organized into subdirectories by topic; there is one for strings (Chapter 3), regular expressions
(Chapter 4), numbers (Chapter 5) and so on. The archive also contains the index by name and
index by chapter files from the download site, so you can easily find the files you need.

 19

Downloading individual files is easy too: simply follow the links either by the file/subdirectory
name or by chapter. Once you see the file you want in your browser, use File->Save or the
equivalent, or just copy and paste it from the browser into an editor or IDE.

The files will be updated periodically, so if there are differences between what's printed in the
book and what you get, be glad, for you'll have received the benefit of hindsight.

Acknowledgments

My life has been touched many times by the flow of the fates bringing me into contact with the
right person to show me the right thing at the right time. Steve Munroe, with whom I've long since
lost touch, introduced me to computers -- in particular an IBM 360/30 at the Toronto Board of
Education that was bigger than a living room, had 32 or 64K of memory, and had perhaps the
power of a PC/XT -- in 1970. (Are you out there somewhere, Steve?) Herb Kugel took me under
his wing at the University of Toronto while I was learning about the larger IBM mainframes that
came later. Terry Wood and Dennis Smith at the University of Toronto introduced me to mini- and
micro-computers before there was an IBM PC. On evenings and weekends, the Toronto Business
Club of Toastmasters International (http://www.toastmasters.org) and Al Lambert's Canada
SCUBA School allowed me to develop my public speaking and instructional abilities. Several
people at the University of Toronto, but especially Geoffrey Collyer, taught me the features and
benefits of the Unix operating system at a time when I was ready to learn it.

Greg Davidson of UCSD taught the first Learning Tree course I attended, and welcomed me as a
Learning Tree instructor. Years later, when the Oak language was about to be released on Sun's
web site, Greg encouraged me to write to James Gosling and find out about it. James's reply of
March 29th, 1995, that the lawyers had made them rename the language to Java and that it was
"just now" available for download, is the prized first entry in my saved Java mailbox. Mike Rozek
took me on as a Learning Tree course author for a Unix course and two Java courses. After
Mike's departure from the company, Francesco Zamboni, Julane Marx, and Jennifer Urick in turn
provided product management of these courses. Jennifer also arranged permission for me to
"reuse some code" in this book that had previously been used in my Java course notes. Finally,
thanks to the many Learning Tree instructors and students who showed me ways of improving
my presentations. I still teach for "The Tree" and recommend their courses for the busy developer
who wants to zero in on one topic in detail over four days. Their web site is
http://www.learningtree.com.

Closer to this project, Tim O'Reilly believed in "the little Lint book" when it was just a sample
chapter, enabling my early entry into the circle of O'Reilly authors. Years later, Mike Loukides
encouraged me to keep trying to find a Java book idea that both he and I could work with. And he
stuck by me when I kept falling behind the deadlines. Mike also read the entire manuscript and
made many sensible comments, some of which brought flights of fancy down to earth. Jessamyn
Read turned many faxed and emailed scratchings of dubious legibility into the quality illustrations
you see in this book. And many, many other talented people at O'Reilly & Associates helped put
this book into the form in which you now see it.

I also must thank my reviewers, first and foremost my dear wife Betty Cerar, who may still think
Java is some kind of caffeinated beverage that I drink while programming, but whose passion for
clear expression and correct grammar has benefited much of my writing. Jonathan Knudsen,
Andy Oram, and David Flanagan commented on the outline when it was little more than a list of
chapters and recipes, and yet were able to see the kind of book it could become, and to suggest
ways to make it better. Learning Tree instructor Jim Burgess read most of the book with a very
critical eye on locution, formulation, and code. Bil Lewis and Mike Slinn (mslinn@mslinn.com)
made helpful comments on multiple drafts of the book. Ron Hitchens (ron@ronsoft.com) and
Marc Loy carefully read the entire final draft. Editor Sue Miller helped shepherd the manuscript

 20

through the somewhat energetic final phases of production. Sarah Slocombe read the XML
chapter in its entirety and made many lucid suggestions, though unfortunately time did not permit
me to include all of them. Each of these people made this book better in many ways, particularly
by suggesting additional recipes or revising existing ones. Any faults that remain are surely my
own.

I've used a variety of tools and operating systems in preparing, compiling, and testing the book.
The developers of OpenBSD (http://www.openbsd.org), "the proactively secure Unix-like
system," deserve thanks for making a stable and secure Unix clone that is also closer to
traditional Unix than other freeware systems. I used the vi editor (vi on OpenBSD and vim on MS-
Windows) while inputting the original manuscript in XML, and Adobe FrameMaker to format the
documents. Each of these is an excellent tool in its own way. If you're wondering how I got from
XML to Frame, the answer will be given in Chapter 21.

No book on Java would be complete without a quadrium[4] of thanks to James Gosling for
inventing the first Unix Emacs, the sc spreadsheet, the NeWS window system, and Java. Thanks
also to his employer Sun Microsystems (NASDAQ SUNW) for creating not only the Java
language but an incredible array of Java tools and API libraries freely available over the Internet.

[4] It's a good thing he only invented four major technologies, not five, or I'd have to rephrase that to avoid
infringing on an Intel trademark.

Thanks to Tom and Nathan, for the Perl Cookbook . Without them I might never have come up
with the format for this book.

Willi Powell of Apple Canada provided MacOS X access.

Thanks to the Tim Horton's Donuts in Bolton, Ontario for great coffee and for not enforcing the
20-minute table limit on the weird guy with the computer.

To each and every one of you, my sincere thanks.

 21

Chapter 1. Getting Started: Compiling, Running,
and Debugging

1.1 Introduction

1.2 Compiling and Running Java: JDK

1.3 Editing and Compiling with a Color-Highlighting Editor

1.4 Compiling, Running, and Testing with an IDE

1.5 Using Classes from This Book

1.6 Automating Compilation with jr

1.7 Automating Compilation with make

1.8 Automating Compilation with Ant

1.9 Running Applets

1.10 Dealing with Deprecation Warnings

1.11 Conditional Debugging without #ifdef

1.12 Debugging Printouts

1.13 Using a Debugger

1.14 Unit Testing: Avoid the Need for Debuggers

1.15 Decompiling Java Class Files

1.16 Preventing Others from Decompiling Your Java Files

1.17 Getting Readable Tracebacks

1.18 Finding More Java Source Code

1.19 Program: Debug

1.1 Introduction

 22

This chapter covers some entry-level tasks that you simply need to know how to do before you
can go on -- it is said you must crawl before you can walk, and walk before you can ride a bicycle.
Before you can try out anything else in the book, you need to be able to compile and run your
Java, so I start there, showing several ways: the JDK way, the Mac way, and the Integrated
Development Environment (IDE) way. Then I'll discuss a few details about applets, in case you
are working on them. Deprecation warnings come next, as you're likely to meet them in
maintaining "old" Java code. [1]

[1] There is humor in the phrase "old Java code," which should be apparent when you realize that Java has
been in circulation for under five years at the time of this book's first printing.

If you're already happy with your IDE, you may wish to skip some or all of this material. It's here
to ensure that everybody can compile and debug their programs before we move on.

1.2 Compiling and Running Java: JDK

1.2.1 Problem

You need to compile and run your Java program.

1.2.2 Solution

This is one of the few areas where your computer's operating system impinges into Java's
portability, so let's get it out of the way first.

1.2.2.1 JDK

Using the command-line Java Development Kit (JDK) may be the best way to keep up with the
very latest improvements from Sun/JavaSoft. This is not the fastest compiler available by any
means; the compiler is written in Java and interpreted at compile time, making it a sensible
bootstrapping solution, but not necessarily optimal for speed of development. Nonetheless, using
Sun's JDK (or Java SDK), the commands are javac to compile and java to run your program. For
example:

C:\javasrc>javac HelloWorld.java

C:\javasrc>java HelloWorld
Hello, World

C:\javasrc>

As you can see from the compiler's (lack of) output, this compiler works on the Unix "no news is
good news" philosophy: if a program was able to do what you asked it to, it shouldn't bother
nattering at you to say that it did so. Many people use this compiler or one of its clones. The javac
and java commands are available with the JDK on both Windows and Unix, and under MacOS X
if you have installed the bundled Developer Tools package.

There is an optional setting called CLASSPATH, discussed in Section 2.6, that controls where
Java looks for classes. CLASSPATH, if set, is used by both javac and java. In older versions of
Java you had to set your CLASSPATH to include "." even to run a simple program from the
current directory; this is no longer true on Sun's current Java implementations. It may be true on
some of the clones.

 23

1.2.2.2 Command-line alternatives

Sun's javac compiler is the official reference implementation. But it is itself written in Java, and
hence must be interpreted at runtime. Recognizing the slowness of compilation as a significant
hindrance to developers, Sun's Java folk went back and rewrote the compiler from scratch,
discarding some old baggage and using new language features. This new compiler (still named
javac) was unveiled for early access in May 1999 and released later that year. It is about twice as
fast as the original Java compiler -- a big improvement -- but still slower than some other
compilers. Symantec's Java compiler and Microsoft's J++ (a Java-like language) are written in
C/C++, so they are quite a bit faster than an interpreted Java compiler.

In order to speed up my compilations, I have used Jikes, a freeware compiler written in C++.
Jikes is fast, free, and available both for MS-Windows and for Unix. It's also easy to install. For
MS-Windows (Win32), Linux, and other Unix systems, you can find binaries of the current version
on IBM's Jikes web site. If you are using OpenBSD, NetBSD, or FreeBSD, you should only need
to run:

cd /usr/ports/lang/jikes; sudo make install

or just download the package file and use pkg_add to get it installed. Visit
http://oss.software.ibm.com/developerworks/opensource/jikes/ for Jikes information
and downloads.

A key benefit of Jikes is that it gives much better error messages than the JDK compilers do. It
will alert you to slightly misspelled names, for example. Its messages are often a bit verbose, but
you can use the +E option to make it print them in a shorter format. Jikes has many other
command-line options, many that are the same as the JDK compiler's, but some that go beyond
them. See Jikes's online documentation for details.

An older C++-based Java compiler, Guavac, is not considered finished. Indeed, its author has
stopped maintaining it. Nonetheless, I was able to use Guavac 1.2 to compile many of the
examples in this book (note that the Guavac version number of 1.2 is unrelated to the Sun JDK
version number 1.2). See ftp://sunsite.org.uk/packages/guavac/for information on Guavac.

Another alternative technology is Kaffe, a product that Transvirtual
(http://www.transvirtual.com) licenses but also makes available in open source form under
the standard GNU Public License. Kaffe aims to be a complete JDK replacement, though it has
moved rather slowly past the JDK 1.1 level and is, as of this writing, still not quite a complete
Java 2 clone. Again, on OpenBSD there is a port, and on Linux there are RPMs available. Visit
Transvirtual's web site for the latest information on Kaffe.

One last freeware package is Japhar, a Java runtime clone, available from
http://www.japhar.org.

1.2.2.3 MacOS

The JDK is purely command-line-based. At the other end of the spectrum in terms of keyboard-
versus-visual, we have the Apple Macintosh. Whole books have been written about how great the
Mac is, and I won't step into that debate. I will, however, comment on how lamentable it is that
Apple let its Java implementation lag behind current standards. Users of MacOS 8 and 8.5 have
put up with Java 1.8 for several years. MacOS X (Release 10 of MacOS) is a new technology
base built upon a BSD Unix base. As such, it has a regular command line as well as all the
traditional Mac tools. And it features a full Java 2 implementation, including Swing.

 24

For MacOS 8, if you've followed Apple's directions for installing the MacOS Runtime for Java
(MRJ), you can compile by dragging a file to, or double-clicking on, the "javac" icon (I've made
aliases for this icon and friends on my desktop). Once the dialog shown in Figure 1-1 appears,
you can click on "Do Javac" (or just press Enter on the keyboard), first changing any options if
you want.

Figure 1-1. MacOS 8 Javac window

You will then see the Java console window stating that it ran javac (as shown in Figure 1-2).
This javac is a Mac port of the JDK version, so it also runs on "no news is good news." As this is
a Mac, you'll see the resulting class file appear in your destination folder as soon as it's been
created (which happens only if there are no compilation errors).

Figure 1-2. MacOS 8 compilation completed (MRJ)

 25

You now have a class file, and you want to run it. That's where the JBindery program comes in.
JBindery can do two things: run a Java class file directly or make it into a "clickable" runnable
program. We'll start it by dragging the class file onto the Jbindery icon; the program starts as
shown in Figure 1-3.

Figure 1-3. MacOS 8 JBindery window

As we are running a simple command-line program rather than a windowed application, after we
click on "Run," the JBindery screen is replaced by a Java Console showing the command output,
as in Figure 1-4.

 26

Figure 1-4. MacOS 8 Java Console showing program output

Macintosh users who can run MacOS X have more choice. Since MacOS X is a hybrid of Unix
and MacOS X, they can use the command-line JDK tools directly and then build the application
using the "Build Application" tool. Figure 1-5 shows this running with the Application Look and
Feel Switcher from Section 13.13. This builds a folder or directory containing all the pieces
needed to make a clickable application. Or, they can use a full IDE, as discussed in Section 1.4.

Figure 1-5. MacOS X application builder

1.3 Editing and Compiling with a Color-Highlighting Editor

1.3.1 Problem

You are tired of command-line tools but not ready for an IDE.

1.3.2 Solution

 27

Use a color-highlighting editor.

1.3.3 Discussion

It's less than an IDE (see the next recipe), but more than a command line. What is it? It's an
editor with Java support. Tools such as TextPad (http://www.textpad.com), Visual Slick Edit,
and others are low-cost windowed editors (primarily for MS-Windows) that have some amount of
Java recognition built in, and the ability to compile from within the editor. TextPad has quite a
number of file types that it recognizes, including batch files and shell scripts, C, C++, Java, JSP
(see Section 18.7), JavaScript (a client-side web technology), and many others. For each of
these, it uses color highlighting to show which part of the file being edited comprises keywords,
comments, quoted strings, and so on. This is very useful in spotting when part of your code has
been swallowed up by an unterminated /* comment or a missing quote. While this isn't the same
as the deep understanding of Java that a full IDE might possess, experience has shown that it
definitely aids programmer productivity. TextPad also has a "compile Java" command and a "run
external program" command. Both of these have the advantage of capturing the entire command
output into a window, which may be easier to scroll than a command-line window on some
platforms. On the other hand, you don't see the command results until the program terminates,
which can be most uncomfortable if your GUI application throws an exception before it puts up its
main window. Despite this minor drawback, TextPad is a very useful tool. Other editors that
include color highlighting include vim (an enhanced version of the Unix tool vi, available for MS-
Windows and Unix platforms; see http://www.vim.org), the ever-popular Emacs editor, and
many others.

1.4 Compiling, Running, and Testing with an IDE

1.4.1 Problem

Several tools are too many.

1.4.2 Solution

Use an integrated development environment.

1.4.3 Discussion

Many programmers find that using a handful of separate tools -- a text editor, a compiler, and a
runner program, not to mention a debugger (see Section 1.13) -- is too many. An integrated
development environment (IDE[2]) integrates all of these into a single toolset with a (hopefully
consistent) graphical user interface. There are many IDEs to choose from, ranging from text
editors that allow you to compile and run a Java program, all the way up to fully integrated tools
with their own compilers and virtual machines. Class browsers and other features of IDEs round
out the purported ease-of-use feature-sets of these tools. It has been argued many times whether
an IDE really makes you more productive or if you just have more fun doing the same thing.
However, even the JDK maintainers at Sun admit (perhaps for the benefit of their advertisers)
that an IDE is often more productive, although it hides many implementation details and tends to
generate code that locks you into a particular IDE. Sun's Java Jumpstart CD (part of Developer
Essentials) said, at one time:

[2] It takes too long to say, or type, Integrated Development Environment, so I'l l use the term IDE from here
on. I know you're good at remembering acronyms, especially TLAs.

 28

The JDK software comes with a minimal set of tools. Serious developers are
advised to use a professional Integrated Development Environment with JDK 1.2
software. Click on one of the images below to visit external sites and learn more.

This is followed by some (presumably paid) advertising links to Inprise/Borland JBuilder,
WebGain Visual Cafe, and Sybase PowerJ development suites.

I don't plan to debate the IDE versus the command-line process; I'm just going to show a few
examples of using a couple of the Java-based IDEs. One that runs on both MS-Windows and
Unix platforms is Forte, which is a free download from Sun. Originally created by NetBeans.com,
this IDE was so good that Sun bought the company, and now distributes the IDE for free. Forte is
also open sourced. You can download the compiled version from
http://www.sun.com/forte/ffj/ and the open source version from
http://www.netbeans.org.

Forte comes with a variety of templates. In Figure 1-6, I almost selected the MDI (multiple-
document interface) template, but instead opted for the Swing JFrame template.

Figure 1-6. Forte: "New From Template" dialog

Then in Figure 1-7, Forte lets me specify a class name and package name for the new program
I am building.

Figure 1-7. Forte: name that class

 29

In Figure 1-8, I am building the GUI using Forte's GUI builder. Select a visual component in the
upper right, and click on the form where you want it. While there are several things about Forte
that most people (including myself) find quirky, I do like the fact that it defaults to using a
BorderLayout ; some other IDEs default to using no layout at all, and the resulting GUIs do not
resize gracefully.

Figure 1-8. Forte: GUI building

I also like the way Forte handles GUI action handlers (see Section 13.5). You simply double-
click on the GUI control you want to handle actions for, and Forte creates an action handler for it
and puts you into the editor to type the code for the action handler. In this case I made a
deliberate typing error to show the effects; when I click the Build Project menu item, the offending
line of code is highlighted in bright red, both in the source code and in the error listing from the
compiler (see Figure 1-9).

Figure 1-9. Forte: compilation error highlighted

 30

Some people don't like the user interface of Forte. There are many popular IDEs for Java,
especially on the MS-Windows platform, and almost everybody who uses one has a favorite,
such as Borland JBuilder, WebGain Visual Cafe, or IBM Visual Age for Java. Most of them have a
free version and a Pro version. For up-to-date comparisons, you may want to consult the glossy
magazines, since IDEs are updated relatively often.

On MacOS X, the bundled Developer Tools includes a reasonably good IDE, shown in Figure 1-
10. MetroWerks CodeWarrior and other IDEs are also available for MacOS X.

Figure 1-10. MacOS X Developer Tools IDE: main windows

 31

Figure 1-11 shows the MacOS X bundled IDE running a trivial application built using its default
frame-based template.

Figure 1-11. MacOS X Developer Tools IDE: application built and running

What about the speed of IDEs? One way to categorize an IDE is by whether it was written to be
as portable as Java or to run well on only one platform. Forte, JBuilder, and others are written in
Java and can, in theory, be run on any platform that has Java 2 support. Visual Cafe, IBM Visual
Age for Java, MetroWerks CodeWarrior, and others are built out of existing frameworks and
provided as compiled binaries; these have major components that depend on one or another
platform and cannot be "run anywhere." The native code IDEs tend to be a bit faster, although the
difference is diminishing as Java runtimes get better and as computers get faster. When was the
last time you bought a new computer system with a Pentium 133 processor?

1.5 Using Classes from This Book

1.5.1 Problem

You want to try out my examples and/or use my utility classes.

1.5.2 Solution

Download the latest zip file of the booksource files and unzip it. Install the class JAR file in your
CLASSPATH. Or download just the files you need.

1.5.3 Discussion

You can download the latest version of the source code for all the examples in the book from the
book web site, http://javacook.darwinsys.com. You will get two files. First is the source code,
in a file called javacooksrc.jar, which you should unzip someplace convenient or wherever you
like to keep source code. Second is a file called com-darwinsys-util.jar, which you need to set in
your CLASSPATH (see Section 2.6) or JDKHOME/jre/lib/ext directory. The files are roughly
organized in per-chapter directories, but there is a lot of overlap and cross-referencing. Because
of this, I have prepared a cross-reference file named index-bychapter.html. There is also a
mechanically generated file called index-byname.html, which you can use if you know the name

 32

of the file you want (and remember that Java source files almost always have the same name as
the public class they contain). The canonical index file, index.html, links to both these files.

Once you've set your CLASSPATH, you can compile. In most directories you can simply say
javac *.java or jikes *.java. Of course, not everybody likes typing those commands, so there is a
makefile for the make utility. make is standard on Unix and readily available for MS-Windows
from, for example, the GNUwin32 project (see http://sourceforge.net/projects/gnuwin32/).
There is also a top-level makefile that visits the subdirectories and runs make in each of them.
These makefiles have been tested with gmake (GNU make 3.79.1), BSD make (OpenBSD 2.8),
and they should work with almost any reasonably modern make program or equivalent.

There may also be times when you don't want to download the entire archive -- if you just need a
bit of code in a hurry -- so you can access those index files and the resulting directory, for
"anyplace, anytime access" on the same web site.

1.6 Automating Compilation with jr

1.6.1 Problem

You get tired of typing javac and java commands.

1.6.2 Solution

Use my jr script.

1.6.3 Discussion

Although it may be tedious, there is some logic behind the fact that the compilation command
(javac, jikes , etc.) requires you to include the filename extension, and the running command
(java) requires you to omit the filename extension -- you can't type java HelloWorld.class and
have it run the HelloWorld program from the current directory. The compiler is actually reading
a source file, while the java command is running a class, a class that might be located someplace
in your CLASSPATH (see Section 2.6). It is common for JDK users to use a batch script or
command file to automate this. Mine is called jr, for Java compile and Run. The Unix version is jr,
a shell script:

javac $1.java && java $*

The $* gets expanded to include $1 and any other arguments. The MS-Windows version is jr.bat
:

javac %1.java

if errorlevel 1 goto norun

java %1 %2 %3 %4 %5 %6

:norun

For people using MS-Windows who have no experience using batch files for compilation, fear not.
You could just copy this jr.bat file into the JDKHOME/bin directory. But the problem then is that
when you deinstall that JDK version and install a new one, you'd lose jr. What I usually do on MS-

 33

Windows is this: just create a directory that won't conflict with anything else, such as C:\bin ("bin"
being an old name for binary programs; by tradition all of one's own programs go there). Just add
this to your PATH setting, either in your autoexec.bat file or in your Control Panel settings. Copy
jr.bat into this directory, and you're done! From then on you can just give commands such as jr
HelloWorld. The script will run javac HelloWorld.java for you and, if there are no errors, it will run
java HelloWorld.

Feel free to improve upon this and to call it whatever you like.

1.7 Automating Compilation with make

1.7.1 Problem

You get tired of typing javac and java commands.

1.7.2 Solution

Use the make utility to direct your compilations.

1.7.3 Discussion

The Unix operating system has long had to deal with automating large or repetitive compilations.
The most enduring tool for this purpose is make, invented by Stu Feldman at Bell Laboratories in
the mid-1970s and still widely used. There have been literally dozens of make -like programs over
the years. The X Window System has imake, which is really a front-end to make. Linux and GNU
enthusiasts have gmake, and BSD systems feature BSD make; one or another will be installed
under the name make. The cygwin32 project features its own make, a version of gmake. make
consults a file called Makefile (or makefile) in the current directory to figure out what you want
done and how to do it. A makefile to build one Java program could be as simple as this:

all:
 javac HelloWorld.java

Makefiles can be much more involved. One common feature is to parameterize a makefile so that
if you need to port the code to a new platform or you distribute your source code to others to port,
all the necessary makefile changes are in one place. For example, to use make variables to let
the user compile with either javac or Jikes, and to add a rule to remove the *.class files after a
round of debugging, the makefile might grow somewhat, as shown here. Note that lines beginning
with the pound sign (#) are comments for the reader and are ignored by make :

Makefile for Acme FlutterBox program.
Uncomment one of these compiler definitions:
#JAVAC= javac
JAVAC= jikes +E

compile:
 $(JAVAC) *.java

clean:
 @rm -f *.class

 34

All modern Unix systems and most MS-Windows IDEs ship with some version of make. Java
became popular after the current fragmentation of Unix into multiple systems maintained by
different groups, so many current make programs do not come preconfigured with "convenience"
rules for Java; they all come with rules for C and other older languages. Thus you may want to
provide a "default" rule for compiling from FILE.java into FILE.class. The way you do this will vary
from one version of make to another, so please see your system's documentation. For one such
rule, see the file jmake.rules in the source distribution. For some slightly more involved, but still
relatively simple, examples of using make, consult the files named Makefile in the source
distribution. [3]

[3] The one bit of make syntax that isn't explained is VARIABLE?=VALUE, which sets VARIABLE to VALUE
only if it is not set. This is often used in make to pass a variable down and allow it to have a default value in
the sub-makefile, but be overridden from the "main" makefile.

1.7.4 See Also

The sidebar Make Versus Ant.

Also, you may want to refer to the book Using Make and Imake (O'Reilly).

1.8 Automating Compilation with Ant

1.8.1 Problem

You get tired of typing javac and java commands.

1.8.2 Solution

Use the Ant program to direct your compilations.

1.8.3 Discussion

The intricacies of makefiles and their importabilities have led to the development of a pure-Java
solution for automating the build process. Ant is free software; it is available in source form or
ready-to-run from the Apache Foundation's Jakarta project web site, at
http://jakarta.apache.org/ant/. Like make, Ant uses a file or files -- written in XML -- listing
what to do and, if necessary, how to do it. These rules are intended to be platform-independent,
though you can of course write platform-specific recipes if necessary.

To use Ant you must create a 15-30 line file specifying various options. This file should be called
build.xml; if you call it anything else, you'll have to give a special command-line arguments every
time you run Ant. Example 1-1 shows the build script used to build the files in the starting
directory. See Section 21.1 for discussion of the XML syntax. For now, note that the <!- - tag
begins an XML comment, which extends to the - -> tag.

Example 1-1. Ant example file (build.xml)

<project name="Java Cookbook Examples" default="compile" basedir=".">

 <!-- set global properties for this build -->
 <property name="src" value="."/>
 <property name="build" value="build"/>

 35

 <!-- Specify the compiler to use.
 Using jikes is supported but requires rt.jar in classpath. -->
 <property name="build.compiler" value="modern"/>

 <target name="init">
 <!-- Create the time stamp -->
 <tstamp/>
 <!-- Create the build directory structure used by compile -->
 <mkdir dir="${build}"/>
 </target>

 <!-- specify what to compile. This builds everything -->
 <target name="compile" depends="init">

 <!-- Compile the java code from ${src} into ${build} -->
 <javac srcdir="${src}" destdir="${build}"
 classpath="../com-darwinsys-util.jar"/>
 </target>

</project>

When you run Ant, it produces a reasonable amount of notification as it goes, similar to make :

$ ant compile
Buildfile: build.xml
Project base dir set to: /home/ian/javasrc/starting
Executing Target: init
Executing Target: compile
Compiling 19 source files to /home/ian/javasrc/starting/build
Performing a Modern Compile
Copying 22 support files to /home/ian/javasrc/starting/build
Completed in 8 seconds
$
Make Versus Ant

Both make and Ant have advantages and disadvantages, detractors and
advocates. I'll try to stay neutral, though I admit I have been using make
for 15 years longer than I've been using Ant.

make files are shorter. No contest. make has its own language instead of
using XML, so it can be a lot more terse. make runs faster; it's written in
C.

Ant files can do more. The javac task in Ant, for example, automatically
finds all the *.java files in subdirectories. With make, a sub-make is
normally required. And the include directive for subdirectories differs
between GNU make and BSD make.

Ant has special knowledge of CLASSPATH, making it easy to set a
CLASSPATH in various ways for compile time. See the CLASSPATH
setting in Example 1-1. You may have to duplicate this in other ways --

 36

shell scripts or batch files -- for manually running or testing your
application.

make is simpler to extend, but harder to do so portably. You can write a
one-line make rule for getting a CVS archive from a remote site, but you
may run into incompatibilities between GNU make, BSD make, etc.
There is a built-in Ant task for getting an archive from CVS using Ant; it
was written as a Java source file instead of just a series of command-line
commands.

make has been around much longer. There are millions (literally) more
make files than Ant files. Developers outside of Java have by and large
not heard of Ant; they almost all use make. Most non-Java open source
projects use make.

make is easier to start with. Ant's advantages make more sense on
larger projects. Yet of the two, only make has been used on the really
large projects. Telephone switch source code consists of hundreds of
thousands of source files containing tens or hundreds of millions of lines
of source code. make is used here. The use of Ant is growing steadily,
particularly now that most of the widely used Java IDEs (JBuilder, Visual
Age for Java, NetBeans Forte, and others), have interfaces to Ant. Most
Java open source projects use Ant.

make is included with most Unix and Unix-like systems and shipped with
many Windows IDEs. Ant is not included with any operating systems but
is included with many open source Java packages.

make has remained mostly compatible over its 20-year history. The Ant
developers are planning to break backward compatibility after only a
couple of years (in Version 2.0, due out later in 2001), though there is
another tool, Amber, that will provide compatibility with Ant in addition to
adding new features.

To sum up, make and Ant are both good tools. Use whichever one you
choose in your own projects, but be prepared to use both in code you
receive.

1.8.4 See Also

Make Versus Ant.

1.9 Running Applets

1.9.1 Problem

 37

You want to run an applet.

1.9.2 Solution

Write some HTML and point a browser at it.

1.9.3 Discussion

An applet is simply a Java class that extends java.applet.Applet, and in doing so inherits
the functionality it needs to be viewable inside a web page in a Java-enabled web browser.[4] All
that's necessary is an HTML page referring to the applet. This HTML page requires a minimum of
three attributes , or modifiers: the applet itself, and the width and height it needs on-screen, in
screen dots or pixels. This is not the place for me to teach you the syntax of HTML -- there is
some of that in Section 17.2 -- but I'll show my HTML applet template file. Many of the IDEs will
write a page like this for you if you use their "build new applet" wizards.

[4] Includes Netscape, MS Explorer, Sun's HotJava demonstration browser, and others.

<HTML>
<HEAD><TITLE>A Demonstration</TITLE></HEAD>
<BODY>
<H1>My TEMPLATE Applet</H1>
<APPLET CODE="CCC.class" WIDTH="200" HEIGHT="200">
</APPLET>
</BODY>
</HTML>

You can probably intuit from this just about all you need to get started. For a little more detail, see
Section 17.2. Once you've created this file (replacing the CCC with the actual name of your
applet) and placed it in the same directory as the class file, you need only tell the browser to view
the HTML page, and the applet should be included in it.

All right, so the applet appeared and it even almost worked. Make a change to the Java source
and recompile. Click the browser's Reload button. Chances are you're still running the old
version! Browsers aren't very good at debugging applets. You can sometimes get around this by
holding down the Shift key while you click Reload. But to let you be sure, there is a program in the
JDK known as Appletviewer, a kind of mini-browser. You need to give it the HTML file, just like
a regular browser. Sun's AppletViewer (shown in Figure 1-12 under MS-Windows) has an explicit
reload button that actually reloads the applet. And it has other features such as debugging hooks
and other information displays. It also has a View->Tag menu that lets you resize the window until
the applet looks best, and then you can copy and paste the tag -- including the adjusted WIDTH
and HEIGHT tags -- into a longer HTML document.

Figure 1-12. Sun JDK AppletViewer

The MacOS X runtime includes Apple's own implementation (shown in Figure 1-13), which is
more colorful but slightly less featureful -- I could not find the Reload item in its menu. It does,

 38

however, let you load a new HTML file by typing (or browsing), so you can get the same effect as
Reload just by clicking on the Open button again.

Figure 1-13. Apple MacOS X applet launcher

Neither the Sun version nor the Apple version is a full applet runtime; features such as jumping to
a new document do not work. But it is a good tool for debugging applets. Learn to use the
AppletViewer that comes with your JDK or IDE.

1.9.4 See Also

The bad news about applets is that they either can't use features of newer Java versions or they
run into the dreaded browser-incompatibility issue. In Section 23.6, I show using the Java Plug-
in to get around this. In Section 23.12, I talk about Java Web Start, a relatively new technique
for distributing applications over the Web in a way similar to how applets are downloaded.

1.10 Dealing with Deprecation Warnings

1.10.1 Problem

Your code used to compile cleanly, but now gives deprecation warnings.

1.10.2 Solution

You must have blinked :-). Either live with the warnings -- live dangerously -- or revise your code
to eliminate the warnings.

1.10.3 Discussion

Each new release of Java includes a lot of powerful new functionality, but at a price: during the
evolution of this new stuff, Java's maintainers find some old stuff that wasn't done right and
shouldn't be used anymore because they can't really fix it. In building JDK 1.1, for example, they
realized that the java.util.Date class had some serious limitations with regard to
internationalization. Accordingly, many of the Date class methods and constructors are marked
"deprecated." To deprecate something means, according to my Concise Oxford Dictionary of
Current English, to "express wish against or disapproval of." Java's developers are therefore
expressing a wish that you no longer do things the old way. Try compiling this code:

import java.util.Date;

 39

/** Demonstrate deprecation warning */
public class Deprec {

 public static void main(String[] av) {

 // Create a Date object for May 5, 1986
 // EXPECT DEPRECATION WARNING
 Date d = new Date(86, 04, 05); // May 5, 1986
 System.out.println("Date is " + d);
 }
}

What happened? When I compile it on Java 2, I get this warning:

C:\javasrc>javac Deprec.java
Note: Deprec.java uses or overrides a deprecated API. Recompile with
"-deprecation" for details.
1 warning
C:\javasrc>

So, we follow orders. Recompile with -deprecation for details:

C:\javasrc>javac -deprecation Deprec.java
Deprec.java:10: warning: constructor Date(int,int,int) in class
java.util.Date has
been deprecated
 Date d = new Date(86, 04, 05); // May 5, 1986
 ^
1 warning

C:\javasrc>

The warning is simple: the Date constructor that takes three integer arguments has been
deprecated. How do you fix it? The answer is, as in most questions of usage, to refer to the
Javadoc documentation for the class. In Java 2, the introduction to the Date page says, in part:

The class Date represents a specific instant in time, with millisecond precision.

Prior to JDK 1.1, the class Date had two additional functions. It allowed the
interpretation of dates as year, month, day, hour, minute, and second values. It
also allowed the formatting and parsing of date strings. Unfortunately, the API for
these functions was not amenable to internationalization. As of JDK 1.1, the
Calendar class should be used to convert between dates and time fields and
the DateFormat class should be used to format and parse date strings. The
corresponding methods in Date are deprecated.

And more specifically, in the description of the three-integer constructor, it says:

Date(int year, int month, int date)

Deprecated. As of JDK version 1.1, replaced by Calendar.set(year + 1900,
month, date) or GregorianCalendar(year + 1900, month, date).

 40

As a general rule, when something has been deprecated, you should not use it in any new code
and, when maintaining code, strive to eliminate the deprecation warnings. As we shall see in
Section 2.2, there is already at least one example of a deprecation warning method that has
altogether stopped working.

The main areas of deprecation warnings in the standard API are Date (as mentioned), the JDK
1.0 event handling, and some methods -- a few of them important -- in the Thread class.

You can also deprecate your own code. Just put a doc comment with the @deprecated tag
immediately before the class or method you wish to deprecate. Using doc comments is described
in Section 23.3.

1.11 Conditional Debugging without #ifdef

1.11.1 Problem

You want conditional compilation and Java doesn't seem to provide it.

1.11.2 Solution

Use constants or command-line arguments, depending upon the goal.

1.11.3 Discussion

Some older languages such as C, PL/I, and C++ provide a feature known as conditional
compilation. Conditional compilation means that parts of the program can be included or excluded
at compile time based upon some condition. One thing it's often used for is to include or exclude
debugging print statements. When the program appears to be working, the developer is struck by
a fit of hubris and removes all the error checking :-). A more common rationale is that the
developer wants to make the finished program smaller -- a worthy goal -- or run faster by
removing conditional statements.

Although Java lacks any explicit conditional compilation, there is a kind of conditional compilation
implicit in the language. All Java compilers must do flow analysis to ensure that all paths to a
local variable's usage pass through a statement that assigns it a value first, that all returns from a
function pass out via someplace that provides a return value, and so on. Imagine what the
compiler will do when it finds an if statement whose value is known to be false at compile time.
Why should it even generate code for the condition? True, you say, but how can the results of an
if statement be known at compile time? Simple: through final boolean variables. Further, if
the value of the if condition is known to be false, then the body of the if statement should not
be emitted by the compiler either. Presto -- instant conditional compilation!

// IfDef.java
final boolean DEBUG = false;
System.out.println("Hello, World ");
if (DEBUG) {
 System.out.println("Life is a voyage, not a destination");
}

Compilation of this program and examination of the resulting class file reveals that the string
"Hello" does appear, but the conditionally printed epigram does not. The entire println has
been omitted from the class file. So Java does have its own conditional compilation mechanism.

 41

darian$ jr IfDef
 jikes +E IfDef.java
 java IfDef
Hello, World
darian$ strings IfDef.class | grep Life # not found!
darian$ javac IfDef.java # try another compiler
darian$ strings IfDef.class | grep Life # still not found!
darian$

What if we want to use debugging code similar to this, but have the condition applied at runtime?
We can use System.properties (Section 2.3) to fetch a variable. Section 1.12 uses my
Debug class as example of a class whose entire behavior is controlled this way.

But this is as good a place as any to interject about another feature, inline code generation. The
C world has a language keyword _ _inline, which is a hint to the compiler that the function
(method) is not needed outside the current source file. Therefore, when the C compiler is
generating machine code, a call to the _ _inline function can be replaced by the actual
method body, eliminating the overhead of pushing arguments onto a stack, passing control,
retrieving parameters, and returning values. In Java, making a method final enables the compiler
to know that it can be inlined, or emitted in line. This is an optional optimization that the compiler
is not obliged to perform, but may for efficiency.

1.12 Debugging Printouts

1.12.1 Problem

You want to have debugging statements left in your code to be enabled at runtime.

1.12.2 Solution

Use my Debug class.

1.12.3 Discussion

Instead of using the conditional compilation mechanism of Section 1.11, you may want to leave
your debugging statements in the code, but enable them only at runtime, when a problem
surfaces. This is a good technique for all but the most compute-intensive applications because
the overhead of a simple if statement is not all that great. Let's combine the flexibility of runtime
checking with the simple if statement to debug a hypothetical fetch() method (part of
Fetch.java):

String name = "poem";
if (System.getProperty("debug.fetch") != null) {
 System.err.println("Fetching " + name);
}
value = fetch(name);

Then, we can compile and run this normally and the debugging statement will be omitted. But if
we run it with a -D argument to enable debug.fetch, the printout will occur:

> java Fetch # See? No output
> java -Ddebug.fetch Fetch

 42

Fetching poem
>

Of course this kind of if statement is tedious to write in large quantities, so I have encapsulated
it into a Debug class, which is part of my com.darwinsys.util package. Debug.java
appears in full at the end of this chapter, in Section 1.19. My Debug class also provides the
string "debug". as part of the System.getProperty() , so we can simplify the previous
Fetch example as follows (code in FetchDebug.java):

String name = "poem", value;
Fetch f = new Fetch();
Debug.println("fetch", "Fetching " + name);
value = f.fetch(name);

Running it behaves identically to the original Fetch:

> java FetchDebug # again, no output
> java -Ddebug.fetch FetchDebug
Fetching poem
>

1.13 Using a Debugger

1.13.1 Problem

That debugging printout code is still not enough.

1.13.2 Solution

Use a debugger.

1.13.3 Discussion

The JDK includes a command-line-based debugger, jdb, and there are any number of IDEs that
include their own debugging tools. If you've focused on one IDE, learn to use the debugger that it
provides. If you're a command-line junkie like me, you may want to learn at least the basic
operations of jdb.

Here is a buggy program. It has intentionally had bugs introduced so that you can see their
effects in a debugger.

/** This program exhibits some bugs, so we can use a debugger */
public class Buggy {
 static String name;

 public static void main(String[] args) {
 int n = name.length(); // bug # 1

 System.out.println(n);

 name += "; The end."; // bug #2

 43

 System.out.println(name); // #3
 }
}

Here is a session using jdb to find these bugs:

ian> java Buggy
Exception in thread "main" java.lang.NullPointerException
 at Buggy.main(Compiled Code)
ian> jdb Buggy
Initializing jdb...
0xb2:class(Buggy)
> run
run Buggy
running ...
main[1]
Uncaught exception: java.lang.NullPointerException
 at Buggy.main(Buggy.java:6)
 at sun.tools.agent.MainThread.runMain(Native Method)
 at sun.tools.agent.MainThread.run(MainThread.java:49)

main[1] list
2 public class Buggy {
3 static String name;
4
5 public static void main(String[] args) {
6 => int n = name.length(); // bug # 1
7
8 System.out.println(n);
9
10 name += "; The end."; // bug #2
main[1] print Buggy.name
Buggy.name = null
main[1] help
** command list **
threads [threadgroup] -- list threads
thread <thread id> -- set default thread
suspend [thread id(s)] -- suspend threads (default: all)
resume [thread id(s)] -- resume threads (default: all)
where [thread id] | all -- dump a thread's stack
wherei [thread id] | all -- dump a thread's stack, with pc info
threadgroups -- list threadgroups
threadgroup <name> -- set current threadgroup

print <id> [id(s)] -- print object or field
dump <id> [id(s)] -- print all object information

locals -- print all local variables in current stack
frame

classes -- list currently known classes
methods <class id> -- list a class's methods

stop in <class id>.<method>[(argument_type,...)] -- set a breakpoint in
a method
stop at <class id>:<line> -- set a breakpoint at a line

 44

up [n frames] -- move up a thread's stack
down [n frames] -- move down a thread's stack
clear <class id>.<method>[(argument_type,...)] -- clear a breakpoint
in a method
clear <class id>:<line> -- clear a breakpoint at a line
step -- execute current line
step up -- execute until the current method returns
to its caller
stepi -- execute current instruction
next -- step one line (step OVER calls)
cont -- continue execution from breakpoint

catch <class id> -- break for the specified exception
ignore <class id> -- ignore when the specified exception

list [line number|method] -- print source code
use [source file path] -- display or change the source path

memory -- report memory usage
gc -- free unused objects

load classname -- load Java class to be debugged
run <class> [args] -- start execution of a loaded Java class
!! -- repeat last command
help (or ?) -- list commands
exit (or quit) -- exit debugger
main[1] exit
ian>

There are many other debuggers available; a look in the current Java magazines will inform you
of them. Many of them will work remotely, since the Java debugging API (that which the
debuggers use) is network-based.

1.14 Unit Testing: Avoid the Need for Debuggers

1.14.1 Problem

You don't want to have to debug your code.

1.14.2 Solution

Use unit testing to validate each class as you develop it.

1.14.3 Discussion

Stopping to use a debugger is time-consuming. Better to test beforehand. The methodology of
unit testing has been around for a long time, but has been overshadowed by newer
methodologies. Unit testing is a tried and true means of getting your code tested in small pieces.
Typically, in an OO language like Java, unit testing is applied to individual classes, in contrast to
"black box" testing where the entire application is tested.

I have long been an advocate of this very basic testing methodology. Indeed, developers of the
software methodology known as Extreme Programming (XP for short; see

 45

http://www.extremeprogramming.org) advocate writing the unit tests before you write the
code, and also advocate running your tests almost every time you compile. This group of
extremists has some very well-known leaders, including Gamma and Beck of Design Patterns
fame. While I am not yet ready to unconditionally endorse all aspects of Extreme Programming, I
certainly go along with their advocacy of unit testing.

Indeed, many of my classes come with a "built-in" unit test. Classes that are not main programs in
their own right often include a main method that just tests out the functionality of the class. Here
is an example:

/** A simple class used to demonstrate unit testing. */
public class Person {
 protected String fullName;
 protected String firstName, lastName;

 /** Construct a Person using his/her first+last names. */
 public Person(String firstName, String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 /** Get the person's full name */
 public String getFullName() {
 if (fullName != null)
 return fullName;
 return firstName + " " + lastName;
 }

 /** Simple test program. */
 public static void main(String[] argv) {
 Person p = new Person("Ian", "Darwin");
 String f = p.getFullName();
 if (!f.equals("Ian Darwin"))
 throw new IllegalStateException("Name concatenation
broken");
 System.out.println("Fullname " + f + " looks good");
 }
}

What surprised me is that, before encountering XP, I used to think I did this often, but an actual
inspection of two projects indicated that only about a third of my classes had test cases, either
inside or externally. Clearly what is needed is a uniform methodology. That is provided by JUnit.

JUnit is a Java-centric methodology for providing test cases. You can freely download JUnit from
the obvious web site, http://www.junit.org. JUnit is a very simple but useful testing tool. It is
easy to use; you just write a test class that has a series of methods whose names begin with
test. JUnit uses introspection (see Chapter 25) to find all these methods, and runs them for
you! There are extensions to JUnit for purposes as diverse as load testing and testing Enterprise
JavaBeans (EJB); there are links to these on the JUnit web site.

How do you get started using JUnit? All that's necessary is to write a test. Here I have excerpted
the test from my Person class and placed it into a class PersonTest. Note the obvious naming
pattern.

import junit.framework.*;

 46

/** A simple test case for Person */
public class PersonTest extends TestCase {

 /** JUnit test classes require this constructor */
 public PersonTest(String name) {
 super(name);
 }

 public void testNameConcat() {
 Person p = new Person("Ian", "Darwin");
 String f = p.getFullName();
 assertEquals(f, "Ian Darwin");
 }

}

To run it, I need only compile the test and invoke the test harness junit:

daroad.darwinsys.com$ jikes PersonTest.java
daroad.darwinsys.com$ java junit.textui.TestRunner PersonTest
.
Time: 0.188

OK (1 tests)

daroad.darwinsys.com$

The use of a full class name is a bit tedious, so I have a script named jtest that invokes this; I just
say jtest Person and it runs the previous command for me.

#!/bin/sh

exec java junit.textui.TestRunner ${1}Test

1.14.4 See Also

If you prefer flashier GUI output, there are several JUnit variants (built using Swing and AWT; see
Chapter 13) that will run the tests with a GUI.

JUnit offers classes for building comprehensive test suites and comes with considerable
documentation of its own; download the program from the web site listed earlier.

Also, for testing graphical components, I have developed a simple component tester; it is
described in Section 12.3.

Remember: Test early, test often!

1.15 Decompiling Java Class Files

1.15.1 Problem

You lost the source code.

 47

1.15.2 Solution

If you still have the class files, decompile them.

1.15.3 Discussion

Have you ever looked at a class file by accident? Open it in a text editor, for example, and you
might see this. You've never done this by accident, right? Sure, I believe you . . .

^H^@Z^C^@^@^@P^H^@[^H^@n^H^@o^H^@p^H^@q^H^@r^H^@s^H^@t^H^@v^H^@y^H
^@z^H^@{^H^@}^H^@Ç^H^@ä^H^@à^H^@á^H^@ª^H^@

^G^@ç^G^@Æ^G^@ô^G^@ö^G^@ò^G^@û^G^@ù^G
^@ÿ^G^@...^G^@Ü^G^@¢^G^@£^G^@¥
^@^V^@@
^@^\^@@
^@!^@A
^@^Y^@B
^@^[^@C

There's no resemblance to the Java source file that you wrote and spent so long fussing over the
formatting of. What did it get you? Nothing here. The class file is a binary file that can't be
inspected easily. However, it is in a well-documented format, and there's the rub. Once a format
is known, files can be examined. One example of a Java program that examines other Java
programs is javap, which gives you the external view of a class file. I'll show you in Section 25.3
just how this part of javap works and how you can write your own tools that process other Java
classes. Meanwhile, this discussion is about decompilation. Let's suppose you have put some
meat through a meat grinder. It's been converted to zillions of little bits. It might, in fact, look a bit
like the class file seen here. Now suppose that unbeknownst to you, your paycheck fell into the
meat and went through the grinder. Ugh! But the real question is, can you put the paycheck back
together from the little pieces in the output? A related question is whether you can put a Java
source file back together from the little pieces in the class file.

The task seems impossible. The file appears inscrutable. How can it be un-ground? But computer
geeks like to work with files, and restoring structure to them is one part of that. When the
infamous Internet Worm struck in 1988, it was only a matter of hours before security experts had
taken the binary compiled program -- most OSes' equivalent of a class file -- and turned it back
into source code without any tools other than debuggers, dumps, and manuals. So it is possible
to take an object file and turn it back into some kind of source file. Now the ground-up paycheck,
if you find the pieces and tape it back together, will still have bumps (not to mention the smell of
salami or pastrami as appropriate). And a decompiled file will have one major bump: no
comments! All the comments will be gone. But hopefully you can get back something that will
take the place of your lost source file.

The first tool for reverse compilation of Java class files was called Mocha. Written by the late
HanPeter van Vliet of the Netherlands, this tool showed a generation of early Java hackers that it
was possible to decompile Java. Here is HelloWorld and its decompilation:

/**
 * Your basic, minimal, Hello World type program in Java.
 */

public class HelloWorld {
 public static void main(String[] argv) {

 48

 System.out.println("Hello, World");

 }
}

The result of compiling it and then decompiling it is:

/* Decompiled by Mocha from HelloWorld.class */
/* Originally compiled from HelloWorld.java */

import java.io.PrintStream;

public class HelloWorld
{
 public static void main(String astring[])
 {
 System.out.println("Hello, World");
 }

 public HelloWorld()
 {
 }
}

Perhaps not as pretty, and with less of the abbreviation that is common practice in Java. The null
constructor for HelloWorld actually does exist in the compiled class (as you can verify by running
javap on it), so Mocha dutifully generates it.

Well, Mocha is OK, and the price is right -- it's free. However, I did mention that it's no longer
being maintained; it reportedly has problems with some of the class file constructs generated by
current compilers. The O'Reilly web site for this book includes a link to Mocha.

A newer tool is Jad, written in C++. Jad is free but closed source (available in binary only); see
http://www.geocities.com/SiliconValley/Bridge/8617/jad.html. There are also several
commercial decompilers that keep abreast of the latest versions of Java; check one of the Java
resource sites or magazines for the ones that are currently available.

1.16 Preventing Others from Decompiling Your Java Files

1.16.1 Problem

But I don't want people to be able to decompile my Java programs!

1.16.2 Solution

Obfuscate them.

1.16.3 Discussion

It has been said that for any weapon there is a defense, and for any defense there is a weapon. If
the weapon is a decompiler, then the defense is something called an obfuscator. An

 49

obfuscator takes your program and tries to make it obscure, so that decompilation either will not
work or will not be useful.

Because Mr. van Vliet, the late inventor of Mocha, did not release its source code, nobody else
can take it over and maintain it, as we don't have the source. Or do we? Of course! That's it! We'll
just run it through itself. Well, if you can download a copy, you can try it. But what you'll find is
that it doesn't work. The entire program has been obfuscated. Yes, Mr. van Vliet also wrote the
first Java obfuscator, partly in reaction to all the people who flamed him on the Net for releasing
Mocha. Due to his untimely death, his obfuscator is no longer available.

There are, of course, commercial obfuscation programs that will do some degree of obfuscation.
Some of them actually encrypt the file and use a custom class loader to decrypt it at runtime. I
suppose if you wanted to keep people from learning how your program worked, which you well
might for commercial or other reasons, you'd want to use one of these tools. Again, a Java
resource web site or a current Java developer's magazine would be the place to go for the latest
versions.

1.17 Getting Readable Tracebacks

1.17.1 Problem

You're getting an exception stack trace at runtime, but most of the important parts don't have line
numbers.

1.17.2 Solution

Disable JIT and run it again. Or use the current HotSpot runtime.

1.17.3 Discussion

When a Java program throws an exception, the exception propagates up the call stack until there
is a catch clause that matches it. If none is found, the Java interpreter program catches it and
prints a stack traceback showing all the method calls that got from the top of the program to the
place where the exception was thrown. You can print this traceback yourself in any catch clause:
the Throwable class has several methods called printStackTrace().

The Just-In-Time (JIT) translation process consists of having the Java runtime convert part of
your compiled class file into machine language, so that it can run at full execution speed. This is a
necessary step for making Java programs run under interpretation and still be acceptably fast.
However, until recently its one drawback was that it generally lost the line numbers. Hence, when
your program died, you still got a stack traceback but it no longer showed the line numbers where
the error occurred. So we have the tradeoff of making the program run faster, but harder to
debug. The latest versions of Sun's Java runtime include the HotSpot Just-In-Time translator,
which doesn't have this problem.

If you're still using an older (or non-Sun) JIT, there is a way around this. If the program is getting
a stack traceback and you want to make it readable, you need only disable the JIT processing.
How you do this depends upon what release of Java you are using. In the JDK 1.2 (Java 2), you
need only set the environment variable JAVA_COMPILER to the value NONE, using the
appropriate set command.

C:\> set JAVA_COMPILER=NONE # DOS, MS-Windows

 50

setenv JAVA_COMPILER NONE # UNIX Csh
export JAVA_COMPILER=NONE # UNIX Ksh, modern sh

To make this permanent, you would set it in the appropriate configuration file on your system; on
Windows NT, you could also set this in the System Control Panel. You might well wish to make
this setting the default, since using the JIT does take longer for startup, in return for faster
execution. I ran JabaDex, my personal information manager application (see
http://www.darwinsys.com/jabadex/) six times, thrice with JIT and thrice without; the results
appear in Table 1-1.

Table 1-1. JIT and NOJIT timings

With JIT NOJIT
46 seconds 34 seconds
37 seconds 28 seconds

34 seconds 29 seconds
Average: 39 seconds Average: 30.3 seconds

As you can see, the average startup times are nearly 25% faster without JIT. Note that this
includes reading a 500-line file and scanning it; that part of the code would definitely benefit from
a JIT. Ideally we'd have selective control over JIT.

An easier way to disable JIT temporarily, and one that does not require changing the setting in
your configuration files or Control Panel, is the -D command-line option, which updates the
system properties. Just set java.compiler to NONE on the command line:

java -Djava.compiler=NONE myapp

Note that the -D command-line option overrides the setting of the JAVA_COMPILER environment
variable.

On earlier releases, there was a command-line flag -nojit, but this was discontinued in favor of
the more verbose -D option.

As mentioned, Sun's new HotSpot JIT -- included in many JDK 1.2 and JDK 1.3 releases --
generally provides tracebacks even with JIT mode enabled.

1.18 Finding More Java Source Code

1.18.1 Problem

You want even more Java code examples to look at.

1.18.2 Solution

Use The Source, Luke.

1.18.3 Discussion

 51

Java source code is everywhere. As mentioned in the Preface, all the code examples from this
book can be downloaded from the O'Reilly site (http://java.oreilly.com). What I didn't tell you,
but what you might have realized by extension, is that the source examples from all the O'Reilly
Java books are available there too: the Java Examples in a Nutshell book; the Java Swing book;
all of them.

Another valuable resource is the source code for the Java API. You may not have realized it, but
the source code for all the public parts of the Java API are included with each release of the Java
Development Kit. Want to know how java.util.ArrayList actually works? You have the
source code. Got a problem making a JTable behave? Sun's JDK includes the source for all the
public classes! Look for a file called src.zip or src.jar ; some versions unzip this and some do not.

If that's not enough, you can get the source for all of the JDK for free over the Internet just by
committing to the Sun Java Community Source License and downloading a large file. This
includes the source for the public and non-public parts of the API, as well as the compiler (written
in Java) and a large body of code written in "native" code (C/C++): the runtime itself and the
interfaces to the native library. For example, java.io.Reader has a method called read() ,
which reads bytes of data from a file or network connection. This is written in C because it
actually calls the read() system call for Unix, MS-Windows, MacOS, Palm, BeOS, or
whatever. The JDK source kit includes the source of all this stuff.

And ever since the early days of Java, there have been a number of web sites set up to distribute
free-software or open source Java, just as with most other modern "evangelized" languages such
as Perl, Python, Tk/Tcl, and others. (In fact, if you need native code to deal with some oddball
filesystem mechanism in a portable way, beyond the material in Chapter 10 of this book, the
source code for the above-mentioned languages' runtime systems might be a good place to look.)

I'd like to mention several web sites of lasting value:

• Gamelan has been around almost forever (in Java time). The URL
http://www.gamelan.com still worked the last I checked, but the site has been
(naturally) commercialized, and is now part of http://www.developer.com.

• The Giant Java Tree is more recent, and is limited to code that is covered by the GNU
Public License. There is a great deal of source code stored there, all of which can be
freely downloaded. See http://www.gjt.org.

• The CollabNet open source marketplace is not specific to Java, but offers a meeting
place for people who want open source code written and those willing to fund its
development. See http://www.collab.net.

• SourceForge, also not specific to Java, offers free public hosting of open-sourced
projects. See http://www.sourceforge.com.

• Finally, the author of this book maintains a small Java site at
http://www.darwinsys.com/java/, which may be of value. This is the prime spot to
obtain the JabaDex program, a longer (6,000-line) application that demonstrates some of
the principles and practices discussed in the book. There is also a listing of Java
resources and material related to this book.

As with all free software, please be sure that you understand the ramifications of the various
licensing schemes. Code covered by the GPL, for example, automatically transfers the GPL to
any code that uses even a small part of it. And even once looking at Sun's Java implementation
details (the licensed download mentioned previously) may prevent you from ever working on a
"clean-room" reimplementation of Java, the free-software Kaffe, or any commercial
implementation. Consult a lawyer. Your mileage may vary. Despite these caveats, the source
code is an invaluable resource to the person who wants to learn more Java.

 52

1.19 Program: Debug

Most of the chapters of this book will end with a "Program" recipe that illustrates some aspect of
the material covered in the chapter. Example 1-2 is the source code for the Debug utility
mentioned in Section 1.12.

Example 1-2. Debug.java

package com.darwinsys.util;

/** Utilities for debugging
 */
public class Debug {
 /** Static method to see if a given category of debugging is
enabled.
 * Enable by setting e.g., -Ddebug.fileio to debug file I/O
operations.
 * Use like this:

 * if (Debug.isEnabled("fileio"))

 * System.out.println("Starting to read file " + fileName);
 */
 public static boolean isEnabled(String category) {
 return System.getProperty("debug." + category) != null;
 }

 /** Static method to println a given message if the
 * given category is enabled for debugging.
 */
 public static void println(String category, String msg) {
 if (isEnabled(category))
 System.out.println(msg);
 }
 /** Same thing but for non-String objects (think of the other
 * form as an optimization of this).
 */
 public static void println(String category, Object stuff) {
 println(category, stuff.toString());
 }
}

 53

Chapter 2. Interacting with the Environment

2.1 Introduction

2.2 Getting Environment Variables

2.3 System Properties

2.4 Writing JDK Release-Dependent Code

2.5 Writing Operating System-Dependent Code

2.6 Using CLASSPATH Effectively

2.7 Using Extensions or Other Packaged APIs

2.8 Parsing Command-Line Arguments

2.1 Introduction

This chapter describes how your Java program can deal with its immediate surroundings, what
we call the runtime environment . In one sense, everything you do in a Java program using
almost any Java API involves the environment. Here we focus more narrowly on things that
directly surround your program. Along the way we'll meet the System class, which knows a lot
about our system.

Two other runtime classes deserve brief mention. The first, java.lang.Runtime, lies behind
many of the methods in the System class. System.exit(), for example, just calls
Runtime.exit(). This is technically part of "the environment," but the only time we use it
directly is to run other programs, which is covered in Section 26.2. The java.awt.Toolkit
object is also part of the environment and is discussed in Chapter 12.

2.2 Getting Environment Variables

2.2.1 Problem

You want to get at environment variables from within your Java program.

2.2.2 Solution

Don't.

2.2.3 Discussion

 54

The seventh edition of Unix, released in 1979, had an exciting new feature known as environment
variables. Environment variables are in all modern Unix systems and in most later command-line
systems such as the DOS subsystem underlying MS-Windows, but are not in Macintosh
computers, Palm Pilots, SmartCards, or other Java environments. Environment variables are
commonly used for customizing an individual computer user's runtime environment, hence the
name. To take one example that will be familiar to most readers, on Unix or DOS the environment
variable PATH determines where the system will look for executable programs. So of course the
issue comes up: "How do I get at environment variables from my Java program?"

The answer is that you can do this in some versions of Java, but you shouldn't. Java is designed
to be a portable runtime environment. As such, you should not depend on operating system
features that don't exist on every single Java platform. I just mentioned several Java platforms
that don't have environment variables.

Oh, all right, if you insist. There is a static method called getenv() in class
java.lang.System . Let's try it out. But remember, you made me do it. First, the code. All we
need is this line in a main program:

System.out.println("System.getenv(\"PATH\") = " +
System.getenv("PATH"));

Let's try compiling it:

C:\javasrc>javac GetEnv.java
Note: GetEnv.java uses or overrides a deprecated API. Recompile with -
deprecation
for details.

That message is seldom welcome news. We'll do as it says:

C:\javasrc>javac -deprecation GetEnv.java
GetEnv.java:9: Note: The method java.lang.String
getenv(java.lang.String) in class
 java.lang.System has been deprecated.
System.out.println("System.getenv(\"PATH\") = " +
System.getenv("PATH"));
 ^
Note: GetEnv.java uses or overrides a deprecated API. Please consult
the
documentation for a better alternative.
1 warning

But it's only a warning, right? What the heck. Let's try running the program!

C:\javasrc>java GetEnv
Exception in thread "main" java.lang.Error: getenv no longer supported,
use
properties and -D instead: PATH
 at java.lang.System.getenv(System.java:602)
 at GetEnv.main(GetEnv.java:9)

Well, of all the non-backwards-compatible things! It used to work, in JDK 1.1, but it really and truly
doesn't work anymore in Java 2. I guess we'll just have to do what the error message tells us,
which is to learn about "properties and -D instead." In fact, that's our very next recipe.

 55

2.3 System Properties

2.3.1 Problem

You need to get information from the system properties.

2.3.2 Solution

Use System.getProperty() or System.getProperties().

2.3.3 Discussion

What is a property anyway? A property is just a name and value pair stored in a
java.util.Properties object, which we'll discuss more fully in Section 7.8. So if I chose to,
I could store the following properties in a Properties object called ian:

name=Ian Darwin
favorite_popsicle=cherry
favorite_rock group=Fleetwood Mac
favorite_programming_language=Java
pencil color=green

The Properties class has several forms of its retrieval method. You could, for example, say
ian.getProperty("pencil color") and get back the string "green". You can also provide a
default: say ian.getProperty("pencil color", "black"), and if the property has not
been set you would get the default value "black".

For now, we're concerned with the System class and its role as keeper of the particular
Properties object that controls and describes the Java runtime. The System class has a static
Properties member whose content is the merger of operating system specifics (os.name, for
example), system and user tailoring (java.class.path), and properties defined on the
command line (as we'll see in a moment). Note that the use of periods in these names (like
os.arch, os.version and java.class.path, java.lang.version) makes it look as
though there is a hierarchical relationship similar to that for class names. The Properties class,
however, imposes no such relationships: each key is just a string, and dots are not special.

To retrieve one system-provided property, use System.getProperty(). If you want them all,
use System.getProperties(). Accordingly, if I wanted to find out if the System
Properties had a property named "pencil color", I could say:

String color = System.getProperty("pencil color");

But what will that return? Surely Java isn't clever enough to know about everybody's favorite
pencil color? Right you are! But we can easily tell Java about our pencil color (or anything else we
want to tell it) using the -D argument.

The -D option argument is used to predefine a value in the system properties object. It must have
a name, an equals sign, and a value, which are parsed the same way as in a properties file (see
below). You can have more than one -D definition after your class name on the Java command.
On Unix or MS-Windows command-line mode, use this:

 56

java -D"pencil color=Deep Sea Green" SysPropDemo

Using MRJ or an IDE, put the variable's name and value in the appropriate dialog box when
running the program. The SysPropDemo program is short; its essence is this one line:

System.getProperties().list(System.out);

When run this way, the program prints around 50 lines, looking something like:

java.library.path=/usr/local/linux-jdk1.2/jre/lib/i386/...
java.vm.specification.vendor=Sun Microsystems Inc.
sun.io.unicode.encoding=UnicodeLittle
pencil color=Deep Sea Green
file.encoding=ANSI_X3.4-1968
java.specification.vendor=Sun Microsystems Inc.
user.language=en

The program also has code to extract just one or a few properties, so you can say:

$ java SysPropDemo os.arch
os.arch = x86

2.3.4 See Also

The Javadoc page for java.util.Properties lists the exact rules used in the load()
method, as well as other details.

Section 7.8 lists more details on using and naming your own Properties files.

2.4 Writing JDK Release-Dependent Code

2.4.1 Problem

You need to write code that depends on the JDK release.

2.4.2 Solution

Don't do this.

2.4.3 Discussion

Although Java is meant to be portable, there are some significant variations in Java runtimes.
Sometimes you need to work around a feature that may be missing in older runtimes, but want to
use it if it is present. So one of the first things you want to know is how to find out the JDK release
corresponding to the Java runtime. This is easily obtained with System.getProperty():

System.out.println(System.getProperty("java.specification.version"));

Running this on Java 2 prints "1.2", as in JDK 1.2. Alas, not everyone is completely honest. Kaffe
1.5 certainly has some features of Java 2, but it is not yet a complete implementation of the Java
2 libraries. Yet it happily reports itself as "1.2" also. Caveat hactor!

 57

Accordingly, you may want to test for the presence or absence of particular classes. One way to
do this is with Class.forName("class") , which throws an exception if the class cannot be
loaded -- a good indication that it's not present in the runtime's library. Here is code for this, from
an application wanting to find out whether the JDK 1.1 or later components are available:

/** Test for JDK >= 1.1 */
public class TestJDK11 {
 public static void main(String[] a) {
 // Check for JDK >= 1.1
 try {
 Class.forName("java.lang.reflect.Constructor");
 } catch (ClassNotFoundException e) {
 String failure =
 "Sorry, but this version of MyApp needs \n" +
 "a Java Runtime based on Java JDK 1.1 or later";
 System.err.println(failure);
 throw new IllegalArgumentException(failure);
 }
 System.out.println("Happy to report that this is JDK1.1");
 // rest of program would go here...
 return;
 }
}

To check if the runtime includes the Swing components with their final names,[1] you could use:

[1] Old-timers will remember that on the preliminary Swing releases, the name of this class was
com.sun.java.swing.JButton.

Class.forName("javax.swing.JButton");

It's important to distinguish between testing this at compile time and at runtime. In both cases,
this code must be compiled on a system that includes the classes you are testing for -- JDK 1.1
and Swing, respectively. These tests are only attempts to help the poor backwaters Java runtime
user trying to run your up-to-date application. The goal is to provide this user with a message
more meaningful than the simple "class not found" error that the runtime will give. It's also
important to note that this test becomes unreachable if you write it inside any code that depends
on the code you are testing for. The check for Swing won't ever see the light of day on a JDK 1.1
system if you write it in the constructor of a JPanel subclass (think about it). Put the test early in
the main flow of your application, before any GUI objects are constructed. Otherwise the code will
just sit there wasting space on Java 2 systems and never getting run on Java 1.1 systems.

As for what the class Class actually does, we'll defer that until Chapter 25.

2.5 Writing Operating System-Dependent Code

2.5.1 Problem

You need to write code that depends on the underlying operating system.

2.5.2 Solution

Again, don't do this. Or, if you must, use System.properties.

 58

2.5.3 Discussion

While Java is designed to be portable, there are some things that aren't. These include such
variables as the filename separator. Everybody on Unix knows that the filename separator is a
slash character (/) and that a backwards slash or backslash (\) is an escape character. Back in
the late 1970s, a group at Microsoft was actually working on Unix -- their version was called
Xenix, later taken over by SCO -- and the people working on DOS saw and liked the Unix
filesystem model. MS-DOS 2.0 didn't have directories, it just had "user numbers" like the system
it was a clone of, Digital Research CP/M (itself a clone of various other systems). So the
Microsoft folk set out to clone the Unix filesystem organization. Unfortunately, they had already
committed the slash character for use as an option delimiter, for which Unix had used a dash (-).
And the PATH separator (:) was also used as a "drive letter" delimiter, as in C: or A:. So we now
have commands like this:

System
Directory list

command Meaning Example PATH setting

Unix ls -R /
Recursive listing of /, the top-level
directory

PATH=/bin:/usr/bin

DOS dir/s \
Directory with subdirectories option (i.e.,
recursive) of \, the top-level directory (but
only of the current drive)

PATH=C:\windows;D:\mybins

Where does this get us? If we are going to generate filenames in Java, we need to know whether
to put a / or a \ or some other character; the Mac, for example, uses : between filenames and
directories. Java has two solutions to this. First, when moving between Unix and Microsoft
systems, at least, it is permissive: either / or \ can be used, and the code that deals with the
operating system sorts it out. Second, and more generally, Java makes the platform-specific
information available in a platform-independent way. First, for the file separator (and also the
PATH separator), the java.io.File class (see Chapter 10) makes available some static
variables containing this information. Since the File class is platform-dependent, it makes sense
to anchor this information here. The variables are:

Name Type Meaning

separator
static
String

The system-dependent filename separator character, e.g.,
/ or \

separatorChar
static
char

The system-dependent filename separator character, e.g.,
/ or \

pathSeparator
static
String

The system-dependent path separator character,
represented as a string for convenience

pathSeparatorChar static char The system-dependent path separator character

Both filename and path separators are normally characters, but are also available in String
form for convenience.

A second, more general, mechanism is the system Properties object mentioned in Section 2.3.
You can use this to determine the operating system you are running on. Here is code that simply
lists the system properties; it can be informative to run this on several different implementations:

import java.util.*;
/**

 59

 * Demonstrate System Properties
 */
public class SysPropDemo {
 public static void main(String argv[]) {
 System.out.println("System Properties:");
 Properties p = System.getProperties();
 p.list(System.out);
 }
}

Some OSes, for example, provide a mechanism called "the null device" that can be used to
discard output (typically used for timing purposes). Here is code that asks the system properties
for the "os.name", and uses it to make up a name that can be used for discarding data. If no null
device is known for the given platform, we return the name junk , which means that on such
platforms, we'll occasionally create, well, junk files. I just remove these files when I stumble
across them.

/** Some things that are System dependent.
 * All methods are static, like java.lang.Math.
 */
public class SysDep {
 /** Return the name of the Null device on platforms which support
it,
 * or "jnk" otherwise.
 */
 public static String getDevNull() {
 String sys = System.getProperty("os.name");
 if (sys==null || sys.indexOf("Mac") >= 0)
 return "junk";
 if (sys.startsWith("Windows"))
 return "NUL:";
 return "/dev/null";
 }
}

2.6 Using CLASSPATH Effectively

2.6.1 Problem

You need to keep your class files in a common directory or you're wrestling with CLASSPATH.

2.6.2 Solution

Set CLASSPATH to the list of directories and/or JAR files that contain the classes you want.

2.6.3 Discussion

CLASSPATH is one of the more interesting aspects of using Java. You can store your class files
in any of a number of directories, JAR files, or zip files. Just like the PATH your system uses for
finding programs, the CLASSPATH is used by the Java runtime to find classes. Even when you
type something as simple as java HelloWorld, the Java interpreter looks in each of the places
named in your CLASSPATH until it finds a match. Let's work through an example.

 60

The CLASSPATH can be set as an environment variable on systems that support this (at least
Unix and MS-Windows). You set it in the same syntax as your PATH environment variable. PATH
is a list of directories to look in for programs; CLASSPATH is a list of directories or JAR files to
look in for classes.

Alternatively, you can set your CLASSPATH right on the command line:

java -classpath \c:\ian\classes MyProg

Suppose your CLASSPATH were set to C:\classes;. on MS-Windows, or ~/classes:. on Unix (on
the Mac, you can set the CLASSPATH with JBindery). Suppose you had just compiled a file
named HelloWorld.java into HelloWorld.class, and went to run it. On Unix, if you run one of the
kernel tracing tools (trace, strace, truss, ktrace) you would probably see the Java
program open (or stat, or access) the following files:

• Some file(s) in the JDK directory;
• Then ~/classes/HelloWorld.class, which it probably wouldn't find;
• And ./HelloWorld.class, which it would find, open, and read into memory.

The "some file(s) in the JDK directory" is release-dependent. On JDK 1.2 it can be found in the
system properties:

sun.boot.class.path =
C:\JDK1.2\JRE\lib\rt.jar;C:\JDK1.2\JRE\lib\i18n.jar;C:\
JDK1.2\JRE\classes

The file rt.jar is the RunTime stuff; i18n.jar is the internationalization; and classes is an optional
directory where you can install additional classes.

Suppose you had also installed the JAR file containing the supporting classes for programs from
this book, com-darwinsys-util.jar. You might then set your CLASSPATH to
C:\classes;C:\classes\com-darwinsys-util.jar; on MS-Windows, or ~/classes:~/classes/com-
darwinsys-util.jar:. on Unix. Notice that you do need to list the JAR file explicitly. Unlike a single
class file, placing a JAR file into a directory listed in your CLASSPATH does not suffice to make it
available.

Note that certain specialized programs (such as a web server running servlets; see Chapter 18)
may not use either bootpath or CLASSPATH as shown; they provide their own ClassLoader
(see Section 25.5 for information on class loaders).

Another useful part of the JDK is javap, which by default prints the external face of a class file: its
full name, its public methods and fields, and so on. If you ran a command like javap HelloWorld
under kernel tracing, you would find that it opened, seeked around in, and read from a file
\jdk \lib\tools.jar, and then got around to looking for your HelloWorld class, as previously. Yet
there is no entry for this in your CLASSPATH setting. What's happening here is that the javap
command sets its CLASSPATH internally to include the tools.jar file. If it can do this, why can't
you? You can, but not as easily as you might expect. If you try the obvious first attempt at doing a
setProperty("java.class.path") to itself plus the delimiter plus jdk/lib/tools.jar, you won't
be able to find the JavaP class (sun.tools.java.JavaP); the CLASSPATH is set in the
java.class.path at the beginning of execution, before your program starts. You can try it
manually and see that it works if you set it beforehand:

C:\javasrc>java -classpath /jdk1.2/lib/tools.jar sun.tools.javap.JavaP

 61

Usage: javap <options> <classes>...

If you need to do this in an application, you can either set it in a startup script, as we did here, or
write C code to start Java, which is described in Section 26.6.

How can you easily store class files into a directory in your CLASSPATH? The javac command
has a -d dir option, which specifies where the compiler output should go. For example, using -d
to put the HelloWorld class file into my /classes directory, I just say:

javac -d /classes HelloWorld.java

Then, as long as this directory remains in my CLASSPATH, I can access the class file regardless
of my current directory. That's one of the key benefits of using CLASSPATH.

Managing CLASSPATH can be tricky, particularly when you alternate among several JVMs, as I
do, or if you have multiple directories in which to look for JAR files. You may want to use some
sort of batch file or shell script to control this. Here is part of the script that I use. It was written for
the Korn shell on Unix, but similar scripts could be written in the C shell or as a DOS batch file.

These guys must be present in my classpath...
export CLASSPATH=/home/ian/classes/com-darwinsys-util.jar:

Now a for loop, testing for .jar/.zip or [-d ...]
OPT_JARS="$HOME/classes $HOME/classes/*.jar
 ${JAVAHOME}/jre/lib/ext/*.jar
 /usr/local/antlr-2.6.0"

for thing in $OPT_JARS
do
 if [-f $thing]; then //must be either a file...
 CLASSPATH="$CLASSPATH:$thing"
 else if [-d $thing]; then //or a directory
 CLASSPATH="$CLASSPATH:$thing"
 fi
done
CLASSPATH="$CLASSPATH:."

This builds a minimum CLASSPATH out of com.darwinsys-util.jar, then goes through a list of
other files and directories to check that each is present on this system (I use this script on several
machines on a network), and ends up adding a dot (.) to the end of the CLASSPATH.

2.7 Using Extensions or Other Packaged APIs

2.7.1 Problem

You have a JAR file of classes you want to use.

2.7.2 Solution

On JDK 1.2 or later, simply copy the JAR into JDKHOME/jre/lib/ext/.

2.7.3 Discussion

 62

The Java API has grown by leaps and bounds since its first public release in 1995. It is now
considered sufficiently functional for writing robust applications, but the areas to which it is being
applied continue to grow. There are many specialized APIs that may require more resources than
you have on a given Java platform. Many of the new APIs from Sun are in the form of standard
extensions and have package names beginning in javax. to indicate that. Classes in packages
named java. or javax. are treated as built-in classes by a web browser for purposes of applet
security, for example. Each extension is distributed in the form of a JAR file (see Section 23.4).

If you have Java 1.1 or some clone, you will need to add each such JAR file to your
CLASSPATH, as in Section 2.6.

In Java 2, as you accumulate these and other optional APIs contained in JAR files, you can
simply drop these JAR files into the Java Extensions Mechanism directory, typically something
like \jdk1.2\jre\lib\ext., instead of listing each JAR file in your CLASSPATH variable and watching
CLASSPATH grow and grow and grow. Effective with Java 2, the runtime looks here for any and
all JAR and zip files, so no special action is needed. In fact, unlike many other system changes,
you do not even need to reboot your computer, since this directory is scanned each time the JVM
starts up. You may, however, need to restart a long-running program such as an IDE for it to
notice the change. Try it and see first.

2.8 Parsing Command-Line Arguments

2.8.1 Problem

You need to parse command-line options. Java doesn't provide an API for it.

2.8.2 Solution

Look in the args array passed as an argument to main. Or use my GetOpt class.

2.8.3 Discussion

The Unix folk have had to deal with this longer than anybody, and they came up with a C-library
function called getopt. getopt processes your command-line arguments and looks for single-
character options set off with dashes and optional arguments. For example, the command:

sort -n -o outfile myfile1 yourfile2

runs the standard sort program. The -n tells it that the records are numeric rather than textual,
and the -o outfile tells it to write its output into a file named outfile. The remaining words,
myfile1 and yourfile2, are treated as the input files to be sorted. On a Microsoft-based platform
such as Windows 95, command arguments are set of with slashes (/). We will use the Unix form
-- a dash -- in our API, but feel free to change the code to use slashes.

As in C, the getopt() method is used in a while loop. It returns once for each valid option
found, returning the value of the character that was found or zero when all options (if any) have
been processed.

Here is a program that uses my GetOpt class just to see if there is a -h (for help) argument on
the command line:

 63

import com.darwinsys.util.GetOpt;

/** Trivial demonstration of GetOpt. If -h present, print help.
 */
public class GetOptSimple {
 public static void main(String[] args) {
 GetOpt go = new GetOpt("h");
 char c;
 while ((c = go.getopt(args)) != 0) {
 switch(c) {
 case 'h':
 helpAndExit(0);
 break;
 default:
 System.err.println("Unknown option in " +
 args[go.getOptInd()-1]);
 helpAndExit(1);
 }
 }
 System.out.println();
 }

 /** Stub for providing help on usage
 * You can write a longer help than this, certainly.
 */
 static void helpAndExit(int returnValue) {
 System.err.println("This would tell you how to use this
program");
 System.exit(returnValue);
 }
}

The following longer demo program has several options:

import com.darwinsys.util.GetOpt;

/** Simple demonstration of GetOpt. Accept the '-n' and '-o outfile'
 * options as shown for sort, and also -h for help.
 */
public class GetOptDemo {
 public static void main(String[] args) {
 GetOpt go = new GetOpt("hno:");
 boolean numeric_option = false;
 String outFileName = "(standard output)";
 char c;
 while ((c = go.getopt(args)) != GetOpt.DONE) {
 switch(c) {
 case 'h':
 doHelp(0);
 break;
 case 'n':
 numeric_option = true;
 break;
 case 'o':
 outFileName = go.optarg();
 break;

 64

 default:
 System.err.println("Unknown option character " + c);
 doHelp(1);
 }
 }
 System.out.print("Options: ");
 System.out.print("Numeric: " + numeric_option + ' ');
 System.out.print("Output: " + outFileName + "; ");
 System.out.println("Inputs: ");
 if (go.getOptInd()-1 == args.length) {
 doFile("(standard input)");
 } else for (int i=go.getOptInd()-1; i<args.length; i++)
 doFile(args[i]);
 }

 /** Stub for providing help on usage
 * You can write a longer help than this, certainly.
 */
 static void doHelp(int returnValue) {
 System.err.println("Usage: GetOptDemo [-h][-n][-o outfile] file
...");
 System.exit(returnValue);
 }

 /** Stub to demonstrate processine one file. */
 static void doFile(String fileName) {
 System.out.println(fileName + ' ');
 }
}

If we invoke it several times with different options, here's how it behaves:

C:\javasrc\environ>java GetOptDemo
Options: Numeric: false Output: (standard output) ; Input: (standard
input)

C:\javasrc\environ>java GetOptDemo -h
Usage: GetOptDemo [-h][-n][-o outfile] file ...

C:\javasrc\environ>java GetOptDemo -n a b c
Options: Numeric: true Output: (standard output) ; Input: b c

C:\javasrc\environ>java GetOptDemo -n -o resultfile file1 file2
Options: Numeric: true Output: resultfile ; Input: file2

Here is a longer example using GetOpt:

public class GetOptTest {
 public static void main(String argv[]) {
 String goodArgChars = "o:h", goodArgs[] = {
 "-h", "-o", "outfile", "infile"
 };
 String badArgChars = "f1o", badArgs[] = {
 "-h", "-o", "outfile", "infile"
 };
 process(goodArgChars, goodArgs);

 65

 process(badArgChars, goodArgs);
 process(badArgChars, badArgs);
 }

 /** Private function, for testing. */
 private static void process(String argChars, String[] args) {

 System.out.println("** START ** " + argChars + '(' +
args.length + ')');

 GetOpt go = new GetOpt(argChars);

 char c;
 while ((c = go.getopt(args)) != 0) {
 System.out.print("Found " + c);
 if (go.optarg() != null)
 System.out.print("; Option " + go.optarg());
 System.out.println();
 }
 for (int i=go.optind(); i<args.length; i++)
 System.out.println("Filename-like arg " + args[i]);
 }
}

This program (which I used to test the GetOpt class while I was writing it) demonstrates several
uses of getopt, some successful and some (by design) unsuccessful. It prints the successes
and failures as it goes:

$ java GetOptTest
** START ** o:h(4)
Found h
Found o; Option outfile
** START ** f1o(4)
Bad option
Found o
Filename-like arg infile
At least one user error found
** START ** f1o(4)
Bad option
Found o
Filename-like arg infile
At least one user error found
$

GetOpt is an adequate tool for processing command-line options. You may come up with
something better and contribute it to the Java world; this is left as an exercise for the reader.

 66

Chapter 3. Strings and Things

3.1 Introduction

3.2 Taking Strings Apart with Substrings

3.3 Taking Strings Apart with StringTokenizer

3.4 Putting Strings Together with + and StringBuffer

3.5 Processing a String One Character at a Time

3.6 Aligning Strings

3.7 Converting Between Unicode Characters and Strings

3.8 Reversing a String by Word or Character

3.9 Expanding and Compressing Tabs

3.10 Controlling Case

3.11 Indenting Text Documents

3.12 Entering Non-Printable Characters

3.13 Trimming Blanks from the End of a String

3.14 Parsing Comma-Separated Data

3.15 Program: A Simple Text Formatter

3.16 Program: Soundex Name Comparisons

3.1 Introduction

Character strings are an inevitable part of just about any programming task. We use them for
printing messages to the user, for referring to files on disk or other external media, and for
people's names, addresses, and affiliations. The uses of strings are many, almost without number
(actually, if you need numbers, we'll get to them in Chapter 5).

If you're coming from a programming language like C, you'll need to remember that String is a
defined type (class) in Java. That is, a string is an object, and therefore has methods. It is not an
array of characters and should not be thought of as an array. Operations like
fileName.endsWith(".gif") and extension.equals(".gif") (and the equivalent
".gif".equals(extension)) are commonplace.

 67

Notice that a given String object, once constructed, is immutable. That is, once I have said
String s = "Hello" + yourName; then the particular object that reference variable s refers
to can never be changed. You can assign s to refer to a different string, even one derived from
the original, as in s = s.trim(). And you can retrieve characters from the original string using
charAt(), but it isn't called getCharAt() because there is not, and never will be, a
setCharAt() method. Even methods like toUpperCase() don't change the String; they
return a new String object containing the translated characters. If you need to change
characters within a String, you should instead create a StringBuffer (possibly initialized to
the starting value of the String), manipulate the StringBuffer to your heart's content, and
then convert that to String at the end, using the ubiquitous toString() method.

How can I be so sure they won't add a setCharAt() method in the next release? Because the
immutability of strings is one of the fundamentals of the Java Virtual Machine. Remember that
Java is the one language that takes multiprocessing (threads) seriously. And takes security
seriously. Got that in mind? Good. Now think about applets, which are prevented from accessing
many local resources. Consider the following scenario: Thread A starts up another Thread B.
Thread A creates a string called s containing a filename, saves a reference s2 to it, and passes s
to some method that requires permission. This method will certainly call the Java Virtual
Machine's SecurityManager [1] object, if one is installed (as it certainly will be in an applet
environment). Then, in the nanoseconds between the time the SecurityManager passes its
approval on the named file and the time the I/O system actually gets around to opening the file,
Thread B changes the string referred to by s2, to refer to a system file. Poof! If you could do this,
the entire notion of Java security would be a joke. But of course, they thought of that, so you
can't. While you can, at any time, assign a new String reference to s, this never has any effect
on the string that s used to refer to. Except, of course, if s were the only reference to that
String, it is now eligible for garbage collection -- it may go up the pipe!

[1] SecurityManager is a class that is consulted on whether the current application is allowed to do certain
things, such as open local disk files, open arbitrary network connections, etc. Applets run with a more
restrictive security manager than do normal applications, for example.

Remember also that the String is a very fundamental type in Java. Unlike most of the other
classes in the core API, the behavior of strings is not changeable; the class is marked final so it
cannot be subclassed. So you can't declare your own String subclass. Think if you could -- you
could masquerade as a String, but provide a setCharAt() method! Again, they thought of
that. If you don't believe me, try it out:

/**
 * If this class could be compiled, Java security would be a myth.
 */
public class WolfInStringsClothing extends java.lang.String {
 public void setCharAt(int index, char newChar) {
 // The implementation of this method
 // is left as an exercise for the reader.
 // Hint: compile this code exactly as-is before bothering!
 }
}

Got it? They thought of that!

Of course you do need to be able to modify strings. There are methods that extract part of a
String; these are covered in the first few recipes in this chapter. And there is StringBuffer,
an important class that deals in characters and strings and has many methods for changing the
contents, including, of course, a toString() method. Reformed C programmers should note

 68

that Java strings are not arrays of chars as in C, so you must use methods for such operations as
processing a string one character at a time; see Section 3.5. Figure 3-1 shows an overview of
String, StringBuffer, and C-language strings.

Figure 3-1. String, StringBuffer, and C-language strings

While we haven't discussed the details of the java.io package yet (we will, in Chapter 9), you
need to be able to read text files for some of these programs. Even if you're not familiar with
java.io, you can probably see from the examples that read text files that a BufferedReader
allows you to read "chunks" of data, and that this class has a very convenient readLine()
method.

We won't show you how to sort an array of strings here; the more general notion of sorting a
collection of objects is discussed in Section 7.9.

3.2 Taking Strings Apart with Substrings

3.2.1 Problem

You want to break a string apart into substrings by position.

3.2.2 Solution

Use the String object's substring() method.

3.2.3 Discussion

The substring() method constructs a new String object made up from a run of characters
contained somewhere in the original string, the one whose substring() you called. The name
of this method, substring(), violates the stylistic dictum that words should be capitalized; if
Java were 100.0% consistent, this would be named subString. But it's not; it's substring.
The substring method is overloaded: both forms require a starting index. The one-argument

 69

form returns from startIndex to the end. The two-argument form takes an ending index (not a
length, as in some languages), so that an index can be generated by the String methods
indexOf() or lastIndexOf(). Note that the end index is one beyond the last character!

// File SubStringDemo.java
public static void main(String[] av) {
 String a = "Java is great.";
 System.out.println(a);
 String b = a.substring(5); // b is the String "is great."
 System.out.println(b);
 String c = a.substring(5,7);// c is the String "is"
 System.out.println(c);
 String d = a.substring(5,a.length());// d is "is great."
 System.out.println(d);
}

This prints the following when run:

> java SubStringDemo
Java is great.
is great.
is
is great.
>

3.3 Taking Strings Apart with StringTokenizer

3.3.1 Problem

You need to take a string apart into words or tokens.

3.3.2 Solution

Construct a StringTokenizer around your string and call its methods hasMoreTokens()
and nextToken(). These implement the Iterator design pattern (see Section 7.5). In
addition, StringTokenizer implements the Enumeration interface (also in Section 7.5), but
if you use the methods thereof you will need to cast the results to String:

// StrTokDemo.java
StringTokenizer st = new StringTokenizer("Hello World of Java");

while (st.hasMoreTokens())
 System.out.println("Token: " + st.nextToken());

The StringTokenizer normally breaks the String into tokens at what we would think of as
"word boundaries" in European languages. Sometimes you want to break at some other
character. No problem. When you construct your StringTokenizer, in addition to passing in
the string to be tokenized, pass in a second string that lists the "break characters." For example:

// StrTokDemo2.java

 70

StringTokenizer st = new StringTokenizer("Hello, World|of|Java", ",
|");

while (st.hasMoreElements())
 System.out.println("Token: " + st.nextElement());

But wait, there's more! What if you are reading lines like:

FirstName|Lastname|Company|PhoneNumber

and your dear old Aunt Begonia hasn't been employed for the last 38 years? Her "Company" field
will in all probability be blank.[2] If you look very closely at the previous code example, you'll see
that it has two delimiters together (the comma and the space), but if you run it there are no "extra"
tokens. That is, the StringTokenizer normally discards adjacent consecutive delimiters. For
cases like the phone list, where you need to preserve null fields, there is good news and bad
news. The good news is you can do it; you simply add a second argument of true when
constructing the StringTokenizer, meaning that you wish to see the delimiters as tokens. The
bad news is that you now get to see the delimiters as tokens, so you have to do the arithmetic
yourself. Want to see it? Run this program:

[2] Unless, perhaps, you're as slow at updating personal records as I am.

// StrTokDemo3.java
StringTokenizer st =
 new StringTokenizer("Hello, World|of|Java", ", |", true);

while (st.hasMoreElements())
 System.out.println("Token: " + st.nextElement());

and you get this output:

C:\javasrc>java StrTokDemo3
Token: Hello
Token: ,
Token:
Token: World
Token: |
Token: of
Token: |
Token: Java

This isn't how you'd like StringTokenizer to behave, ideally, but it is serviceable enough most
of the time. Example 3-1 processes and ignores consecutive tokens, returning the results as an
array of strings.

Example 3-1. StrTokDemo4.java (StringTokenizer)

import java.util.*;

/** Show using a StringTokenizer including getting the delimiters back
*/
public class StrTokDemo4 {
 public final static int MAXFIELDS = 5;
 public final static String DELIM = "|";

 71

 /** Processes one String, returns it as an array of fields */
 public static String[] process(String line) {
 String[] results = new String[MAXFIELDS];

 // Unless you ask StringTokenizer to give you the tokens,
 // it silently discards multiple null tokens.
 StringTokenizer st = new StringTokenizer(line, DELIM true);

 int i = 0;
 // stuff each token into the current user
 while (st.hasMoreTokens()) {
 String s = st.nextToken();
 if (s.equals(DELIM)) {
 if (i++>=MAXFIELDS)
 // This is messy: See StrTokDemo4b which uses
 // a Vector to allow any number of fields.
 throw new IllegalArgumentException("Input line " +
 line + " has too many fields");
 continue;
 }
 results[i] = s;
 }
 return results;
 }

 public static void printResults(String input, String[] outputs) {
 System.out.println("Input: " + input);
 for (int i=0; i<outputs.length; i++)
 System.out.println("Output " + i + " was: " + outputs[i]);
 }

 public static void main(String[] a) {
 printResults("A|B|C|D", process("A|B|C|D"));
 printResults("A||C|D", process("A||C|D"));
 printResults("A|||D|E", process("A|||D|E"));
 }
}

When you run this, you will see that A is always in Field 1, B (if present) in Field 2, and so on. In
other words, the null fields are being handled properly.

Input: A|B|C|D
Output 0 was: A
Output 1 was: B
Output 2 was: C
Output 3 was: D
Output 4 was: null
Input: A||C|D
Output 0 was: A
Output 1 was: null
Output 2 was: C
Output 3 was: D
Output 4 was: null
Input: A|||D|E
Output 0 was: A

 72

Output 1 was: null
Output 2 was: null
Output 3 was: D
Output 4 was: E

3.4 Putting Strings Together with + and StringBuffer

3.4.1 Problem

You need to put some String pieces back together.

3.4.2 Solution

Use string concatenation: the + operator. The compiler will construct a StringBuffer for you
and use its append() methods. Or better yet, construct it yourself. Conveniently, the append(
) method returns a reference to the StringBuffer itself, so that statements like the
.append(...).append(...) are fairly common. You might even see this third way in a
toString() method. Example 3-2 shows the three ways of concatenating strings.

Example 3-2. StringBufferDemo.java

/**
 * StringBufferDemo: construct the same String three different ways.
 */
public class StringBufferDemo {
 public static void main(String[] argv) {
 String s1 = "Hello" + ", " + "World";
 System.out.println(s1);

 // Build a StringBuffer, and append some things to it.
 StringBuffer sb2 = new StringBuffer();
 sb2.append("Hello");
 sb2.append(',');
 sb2.append(' ');
 sb2.append("World");

 // Get the StringBuffer's value as a String, and print it.
 String s2 = sb2.toString();
 System.out.println(s2);

 // Now do the above all over again, but in a more
 // concise (and typical "real-world" Java) fashion.

 StringBuffer sb3 = new StringBuffer().append("Hello").
 append(',').append(' ').append("World");
 System.out.println(sb3.toString());

 // Exercise for the reader: do it all again but without
 // creating ANY temporary variables.
 }
}

 73

In fact, all the methods that modify more than one character of a StringBuffer's contents --
(append() , delete(), deleteCharAt(), insert(), replace(), and reverse())
-- return a reference to the StringBuffer to facilitate this style of coding.

3.5 Processing a String One Character at a Time

3.5.1 Problem

You want to process the contents of a string one character at a time.

3.5.2 Solution

Use a for loop and the String's charAt() method.

3.5.3 Discussion

A string's charAt() method retrieves a given character by index number (starting at zero) from
within the String object. To process all the characters in a String, one after another, use a
for loop ranging from zero to String.length()-1. Here we process all the characters in a
String:

// StrCharAt.java
String a = "A quick bronze fox leapt a lazy bovine";
for (int i=0; i < a.length(); i++)
 System.out.println("Char " + i + " is " + a.charAt(i));

A checksum is a numeric quantity representing and confirming the contents of a file. If you
transmit the checksum of a file separately from the contents, a recipient can checksum the file --
assuming the algorithm is known -- and verify that the file was received intact. Example 3-3
shows the simplest possible checksum, computed just by adding the numeric value of each
character together. It should produce the value "1248" if the input is "an apple a day". Note that
on files, it will not include the values of the newline characters; to fix this, retrieve
System.getProperty("line.separator"); and add its character value(s) into the sum at
the end of each line. Or, give up on line mode and read the file a character at a time.

Example 3-3. CheckSum.java

/** CheckSum one file, given an open BufferedReader. */
 public int process(BufferedReader is) {
 int sum = 0;
 try {
 String inputLine;

 while ((inputLine = is.readLine()) != null) {
 int i;
 for (i=0; i<inputLine.length(); i++) {
 sum += inputLine.charAt(i);
 }
 }
 is.close();
 } catch (IOException e) {
 System.out.println("IOException: " + e);

 74

 } finally {
 return sum;
 }
}

3.6 Aligning Strings

3.6.1 Problem

You want to align strings left, right, or centered.

3.6.2 Solution

Do the math yourself, and use substring (Section 3.2) and a StringBuffer (Section 3.4).
Or, just use my StringAlign class, which is based on the java.text.Format class.

3.6.3 Discussion

Centering, or left- or right-aligning text, comes up surprisingly often. Suppose you want to print a
simple report with centered page numbers. There doesn't seem to be anything in the standard
API that will do the job fully for you. But I have written a class called StringAlign that will.
Here's how you might use it:

/* Align a page number on a 70-character line. */
public class StringAlignSimple {

 public static void main(String[] args) {
 // Construct a "formatter" to center strings.
 StringAlign formatter = new StringAlign(70,
StringAlign.JUST_CENTER);
 // Try it out, for page "i"
 System.out.println(formatter.format("- i -"));
 // Try it out, for page 4. Since this formatter is
 // optimized for Strings, not specifically for page numbers,
 // we have to convert the number to a String
 System.out.println(formatter.format(Integer.toString(4)));
 }
}

If we compile and run this class, it prints the two demonstration line numbers centered, as shown:

> jikes +E -d . StringAlignSimple.java
> java StringAlignSimple
 - i -
 4
>

Here is the code for the StringAlign class. Note that this class extends a class called Format.
In the package java.text there is a series of Format classes; they all have at least one
method called format(). It is thus in a family with numerous other formatters such as
DateFormat, NumberFormat, and others that we'll meet in upcoming chapters.

 75

import java.text.*;

/** Bare-minimum String formatter (string aligner). */
public class StringAlign extends Format {
 /* Constant for left justification. */
 public static final int JUST_LEFT = 'l';
 /* Constant for centering. */
 public static final int JUST_CENTRE = 'c';
 /* Centering Constant, for those who spell "centre" the American
way. */
 public static final int JUST_CENTER = JUST_CENTRE;
 /** Constant for right-justified Strings. */
 public static final int JUST_RIGHT = 'r';

 /** Current justification */
 private int just;
 /** Current max length */
 private int maxChars;

 public StringAlign(int maxChars, int just) {
 switch(just) {
 case JUST_LEFT:
 case JUST_CENTRE:
 case JUST_RIGHT:
 this.just = just;
 break;
 default:
 throw new IllegalArgumentException("invalid justification
arg.");
 }
 if (maxChars < 0) {
 throw new IllegalArgumentException("maxChars must be
positive.");
 }
 this.maxChars = maxChars;
 }

 /** Format a String */
 public StringBuffer format(
 Object obj, StringBuffer where, FieldPosition ignore) {

 String s = (String)obj;
 String wanted = s.substring(0, Math.min(s.length(),
maxChars));

 // If no space left for justification, return maxChars' worth
*/
 if (wanted.length() > maxChars) {
 where.append(wanted);
 }
 // Else get the spaces in the right place.
 else switch (just) {
 case JUST_RIGHT:
 pad(where, maxChars - wanted.length());
 where.append(wanted);
 break;
 case JUST_CENTRE:

 76

 int startPos = where.length();
 pad(where, (maxChars - wanted.length())/2);
 where.append(wanted);
 pad(where, (maxChars - wanted.length())/2);
 // Adjust for "rounding error"
 pad(where, maxChars - (where.length() - startPos));
 break;
 case JUST_LEFT:
 where.append(wanted);
 pad(where, maxChars - wanted.length());
 break;
 }
 return where;
 }

 protected final void pad(StringBuffer to, int howMany) {
 for (int i=0; i<howMany; i++)
 to.append(' ');
 }

 /** Convenience Routine */
 String format(String s) {
 return format(s, new StringBuffer(), null).toString();
 }

 /** ParseObject is required, but not useful here. */
 public Object parseObject (String source, ParsePosition pos) {
 return source;
 }

}

3.6.4 See Also

The alignment of numeric columns is considered in Chapter 5.

3.7 Converting Between Unicode Characters and Strings

3.7.1 Problem

You want to convert between Unicode characters and Strings.

3.7.2 Solution

Since both Java chars and Unicode characters are 16 bits in width, a char can hold any
Unicode character. The charAt() method of String returns a Unicode character. The
StringBuffer append() method has a form that accepts a char. Since char is an integer
type, you can even do arithmetic on chars, though this is not necessary as frequently as in, say,
C. Nor is it often recommended, since the Character class provides the methods for which
these operations were normally used in languages such as C. Here is a program that uses
arithmetic on chars to control a loop, and also appends the characters into a StringBuffer
(see Section 3.4):

 77

/**
 * Conversion between Unicode characters and bytes
 */
public class UnicodeChars {
 public static void main(String[] argv) {
 StringBuffer b = new StringBuffer();
 for (char c = 'a'; c<'d'; c++) {
 b.append(c);
 }
 b.append('\u00a5'); // Japanese Yen symbol
 b.append('\u01FC'); // Roman AE with acute accent
 b.append('\u0391'); // GREEK Capital Alpha
 b.append('\u03A9'); // GREEK Capital Omega

 for (int i=0; i<b.length(); i++) {
 System.out.println("Character #" + i + " is " +
b.charAt(i));
 }
 System.out.println("Accumulated characters are " + b);
 }
}

When you run it, the expected results are printed for the ASCII characters. On my Unix system,
the default fonts don't include all the additional characters, so they are either omitted or mapped
to irregular characters. We will see in Section 12.4 how to draw text in other fonts.

C:\javasrc\strings>java UnicodeChars
Character #0 is a
Character #1 is b
Character #2 is c
Character #3 is %
Character #4 is |
Character #5 is
Character #6 is)
Accumulated characters are abc%|)

My Windows system doesn't have most of those characters either, but it at least prints the ones it
knows are lacking as question marks (Windows system fonts are more homogenous than those
of the various Unix systems, so it is easier to know what won't work). On the other hand, it tries to
print the Yen sign as a Spanish capital Enye (N with a ~ over it). Amusingly, if I capture the
console log under MS-Windows into a file and display it under Unix, the Yen symbol now
appears:

Character #0 is a
Character #1 is b
Character #2 is c
Character #3 is ¥
Character #4 is ?
Character #5 is ?
Character #6 is ?
Accumulated characters are abc¥???

3.7.3 See Also

 78

The Unicode program in this book's online source displays any 256-character section of the
Unicode character set. Documentation listing every character in the Unicode character set can be
downloaded along with supporting documentation from the Unicode Consortium at
http://www.unicode.org.

3.8 Reversing a String by Word or Character

3.8.1 Problem

You wish to reverse a string, a character or word at a time.

3.8.2 Solution

You can reverse a string by character easily, using a StringBuffer. There are several ways to
reverse a string a word at a time. One natural way is to use a StringTokenizer and a stack .
Stack is a class (defined in java.util; see Section 7.16) that implements an easy-to-use
last-in, first-out (LIFO) stack of objects.

3.8.3 Discussion

To reverse the characters in a string, use the StringBuffer reverse() method.

// StringRevChar.java
String sh = "FCGDAEB";
System.out.println(sh + " -> " + new StringBuffer(sh).reverse());

The letters in this example list the order of the sharps in the key signatures of Western music; in
reverse, it lists the order of flats. Alternately, of course, you could reverse the characters yourself,
using character-at-a-time mode (see Section 3.5).

A popular mnemonic or memory aid for the order of sharps and flats consists of one word for
each sharp instead of just one letter, so we need to reverse this one word at a time. Example 3-
4 adds each one to a Stack (see Section 7.16), then process the whole lot in LIFO order,
which reverses the order.

Example 3-4. StringReverse.java

String s = "Father Charles Goes Down And Ends Battle";

// Put it in the stack frontwards
Stack myStack = new Stack();
StringTokenizer st = new StringTokenizer(s);
while (st.hasMoreTokens()) myStack.push(st.nextElement());

// Print the stack backwards
System.out.print('"' + s + '"' + " backwards by word is:\n\t\"");
while (!myStack.empty()) {
 System.out.print(myStack.pop());
 System.out.print(' ');
}
System.out.println('"');

 79

3.9 Expanding and Compressing Tabs

3.9.1 Problem

You need to convert space characters to tab characters in a file, or vice versa. You might want to
replace spaces with tabs to save space on disk, or go the other way to deal with a device or
program that can't handle tabs.

3.9.2 Solution

Use my Tabs class or its subclass EnTab.

3.9.3 Discussion

Example 3-5 is a listing of EnTab, complete with a sample main program. The program works a
character at a time; if the character is a space, we see if we can coalesce it with previous spaces
to output a single tab character. This program depends on the Tabs class, which we'll come to
shortly. The Tabs class is used to decide which column positions represent tab stops and which
do not. The code also has several Debug printouts. (Debug was introduced in Section 1.12.)

Example 3-5. Entab.java

import com.darwinsys.util.Debug;
import java.io.*;

/** entab- replace blanks by tabs and blanks.
 * Transmuted from K&R Software Tools book into C.
 * Transmuted again, years later, into Java.
 */
public class EnTab {

 /** Main program: just create an EnTab program, and pass
 * the standard input or the named file(s) through it.
 */
 public static void main(String[] argv) throws IOException {
 EnTab et = new EnTab(8);
 if (argv.length == 0) // do standard input
 et.entab(new BufferedReader(
 new InputStreamReader(System.in)));
 else for (int i=0; i<argv.length; i++) { // do each file
 et.entab(new BufferedReader(new FileReader(argv[i])));
 }
 }

 /** The Tabs (tab logic handler) */
 protected Tabs tabHandler;
 /** A symbolic constant for end-of-file */
 public static int EOF = -1;

 /** Constructor: just save the tab values.
 * @arguments n The number of spaces each tab is to replace.
 */
 public EnTab(int n) {

 80

 tabHandler = new Tabs(n);
 }

 /** putchar - convenience routine for printing one character */
 protected void putchar(int ch) {
 System.out.print((char)ch);
 }

 /** entab: process one entire file, replacing blanks with tabs.
 * @argument is A BufferedReader opened to the file to be read.
 */
 public void entab(BufferedReader is) throws IOException {
 String line;
 int c, col = 0, newcol;

 // main loop: process entire file one char at a time.
 do {
 newcol = col;
 // If we get a space, increment column count; if this
 // takes us to a tab stop, output a tab character.
 while ((c = is.read()) == ' ') {
 Debug.println("space", "Got space at " + col);
 newcol++;
 if (tabHandler.tabpos(newcol)) {
 Debug.println("tab", "Got a Tab Stop " + newcol);
 putchar('\t');
 col = newcol;
 }
 }
 // If we're just past a tab stop, we need to put the
 // "leftover" spaces back out, since we just consumed
 // them in the "while c ... == ' ')" loop above.
 while (col < newcol) {
 Debug.println("pad", "Padding space at " + col);
 putchar(' ');
 col++;
 }
 Debug.println("out", "End of loop, c is " + c);

 // Now either we're at the end of the input file,
 // or we have a plain character to output.
 // If the "plain" char happens to be \r or \n, then
 // output it, but also set col back to 1.
 // This code for \r and \n should satisfy Unix, Mac and MS.
 if (c != EOF) {
 putchar(c);
 col = (c == '\n' || c == '\r' ? 1 : col + 1);
 }
 } while (c != EOF);
 System.out.flush(); // output everything for this file.
 }
}

As the comments state, this code was patterned after a program in Kernighan and Plauger's
classic work Software Tools. While their version was in a language called RatFor (Rational
Fortran), my version has been through several translations since then, though I've tried to

 81

preserve the overall structure. This is not the most "natural" way of writing the code in Java,
which would be the line-at-a-time mode. I've left this C-language relic to provide some hints on
translating a working C program written in this character-at-a-time style into Java. This version
tries to work correctly on Windows, Unix, or the Macintosh, since it resets the column count
whenever it finds either a return (\r) or a newline (\n); see Section 2.5. Java is platform
independent, but it's possible to write platform-dependent code -- I would have done so were it
not for the code that handles both. The code still may not work on some odd platforms that don't
use either of the two line-ending characters.

The Detab program in Example 3-6 doesn't have this problem, as it reads a line at a time.

Example 3-6. Detab.java

public void detab(BufferedReader is) throws IOException {
 String line;
 char c;
 int col;
 while ((line = is.readLine()) != null) {
 col = 0;
 for (int i=0; i<line.length(); i++) {
 // Either ordinary character or tab.
 if ((c=line.charAt(i)) != '\t') {
 System.out.print(c); // Ordinary
 ++col;
 continue;
 }
 do { // Tab, expand it, must put >=1 space
 System.out.print(' ');
 } while (!tabpos(++col));
 }
 System.out.println();
 }
}

The Tabs class provides two methods, settabpos() and istabstop(). Example 3-7 is
the source for the Tabs class.

Example 3-7. Tabs.java

import com.darwinsys.util.Debug;

/** Basic tab-character handling stuff.
 * <p>
 * N.B. Can only handle equally-spaced tab stops as written.
 */
public class Tabs {
 /** tabs every so often */
 public final static int DEFTABSPACE = 8;
 /** the current tab stop setting. */
 protected int tabSpace = DEFTABSPACE;
 /** The longest line that we worry about tabs for. */
 public final static int MAXLINE = 250;
 /** the current tab stops */
 protected boolean[] tabstops;

 82

 /** Construct a Tabs object with a given tab stop settings */
 public Tabs(int n) {
 tabstops = new boolean[MAXLINE];
 tabSpace = n;
 settabs();
 }

 /** Construct a Tabs object with a default tab stop settings */
 public Tabs() {
 tabstops = new boolean[MAXLINE];
 settabs();
 }

 /** settabs - set initial tab stops */
 public void settabs() {
 int i;
 for (i = 0; i < tabstops.length; i++) {
 tabstops[i] = 0 == (i % tabSpace);
 Debug.println("settabs", "Tabs[" + i + "]=" + tabstops[i]);
 }
 }

 /** tabpos - returns true if given column is a tab stop.
 * If current input line is too long, we just put tabs whereever,
 * no exception is thrown.
 * @argument col - the current column number
 */
 boolean tabpos(int col) {
 if (col > tabstops.length-1)
 return true;
 else
 return tabstops[col];
 }
}

3.10 Controlling Case

3.10.1 Problem

You need to convert strings to upper case or lowercase, or to compare strings without regard for
case.

3.10.2 Solution

The String class has a number of methods for dealing with documents in a particular case.
toUpperCase() and toLowerCase() each return a new string that is a copy of the current
string, but converted as the name implies. Each can be called either with no arguments or with a
Locale argument specifying the conversion rules; this is necessary because of
internationalization. Java provides significantly more internationalization and localization features
than ordinary languages, a feature that will be covered in Chapter 14. While the equals()
method tells you if another string is exactly the same, there is also equalsIgnoreCase(),
which tells you if all characters are the same regardless of case. Here, you can't specify an
alternate locale; the system's default locale is used.

 83

// Case.java
String name = "Java Cookbook";
System.out.println("Normal:\t" + name);
System.out.println("Upper:\t" + name.toUpperCase());
System.out.println("Lower:\t" + name.toLowerCase());
String javaName = "java cookBook"; // As if it were Java identifiers :-
)
if (!name.equals(javaName))
 System.err.println("equals() correctly reports false");
else
 System.err.println("equals() incorrectly reports true");
if (name.equalsIgnoreCase(javaName))
 System.err.println("equalsIgnoreCase() correctly reports true");
else
 System.err.println("equalsIgnoreCase() incorrectly reports
false");

If you run this, it prints the first name changed to uppercase and lowercase, then reports that both
methods work as expected.

C:\javasrc\strings>java Case
Normal: Java Cookbook
Upper: JAVA COOKBOOK
Lower: java cookbook
equals() correctly reports false
equalsIgnoreCase() correctly reports true

3.11 Indenting Text Documents

3.11.1 Problem

You need to indent (or "undent" or "dedent") a text document.

3.11.2 Solution

To indent, either generate a fixed-length string and prepend it to each output line, or use a for
loop and print the right number of spaces.

// Indent.java
/** the default number of spaces. */
static int nSpaces = 10;

while ((inputLine = is.readLine()) != null) {
 for (int i=0; i<nSpaces; i++) System.out.print(' ');
 System.out.println(inputLine);
}

A more efficient approach to generating the spaces might be to construct a long string of spaces
and use substring() to get the number of spaces you need.

To undent, use substring to generate a string that does not include the leading spaces. Be
careful of inputs that are shorter than the amount you are removing! By popular demand, I'll give

 84

you this one too. First, though, here's a demonstration of an Undent object created with an
undent value of 5, meaning remove up to five spaces (but don't lose other characters in the first
five positions).

$ java Undent
Hello World
Hello World
 Hello
Hello
 Hello
Hello
 Hello
 Hello

^C
$

I test it by entering the usual test string "Hello World", which prints fine. Then "Hello" with one
space, and the space is deleted. With five spaces, exactly the five spaces go. With six or more
spaces, only five spaces go. And a blank line comes out as a blank line (i.e., without throwing an
Exception or otherwise going berserk). I think it works!

import java.io.*;

/** Undent - remove up to 'n' leading spaces
 */
public class Undent {
 /** the maximum number of spaces to remove. */
 protected int nSpaces;

 Undent(int n) {
 nSpaces = n;
 }

 public static void main(String[] av) {
 Undent c = new Undent(5);
 switch(av.length) {
 case 0: c.process(new BufferedReader(
 new InputStreamReader(System.in))); break;
 default:
 for (int i=0; i<av.length; i++)
 try {
 c.process(new BufferedReader(new FileReader(av[i])));
 } catch (FileNotFoundException e) {
 System.err.println(e);
 }
 }
 }

 /** process one file, given an open BufferedReader */
 public void process(BufferedReader is) {
 try {
 String inputLine;

 while ((inputLine = is.readLine()) != null) {
 int toRemove = 0;

 85

 for (int i=0; i<nSpaces && i < inputLine.length();
i++)
 if (Character.isSpace(inputLine.charAt(i)))
 ++toRemove;
 System.out.println(inputLine.substring(toRemove));
 }
 is.close();
 } catch (IOException e) {
 System.out.println("IOException: " + e);
 }
 }
}

3.12 Entering Non-Printable Characters

3.12.1 Problem

You need to put non-printable characters into strings.

3.12.2 Solution

Use the backslash character and one of the Java string escapes.

3.12.3 Discussion

The Java string escapes are listed in Table 3-1.

Table 3-1. String escapes

To get:
Use
this: Notes

Tab \t
Linefeed (Unix
newline)

\n See System.getProperty("line.separator"), which gives
you the platform's line end.

Carriage return \r
Form feed \f
Backspace \b
Single quote \'
Double quote \"
Unicode
character

\uNNNN
Four hexadecimal digits (no \x as in C/C++). See
http://www.unicode.org for codes.

Octal(!)
character

\NNN Who uses octal (base 8) these days?

Backslash \\

Here is a code example that shows most of these in action:

// StringEscapes.java
System.out.println("Java Strings in action:");

 86

// System.out.println("An alarm or alert: \a"); // not supported
System.out.println("An alarm entered in Octal: \007");
System.out.println("A tab key: \t(what comes after)");
System.out.println("A newline: \n(what comes after)");
System.out.println("A UniCode character: \u0207");
System.out.println("A backslash character: \\");

If you have a lot of non-ASCII characters to enter, you may wish to consider using Java's input
methods, discussed briefly in the JDK online documentation.

3.13 Trimming Blanks from the End of a String

3.13.1 Problem

You need to work on a string without regard for extra leading or trailing spaces a user may have
typed.

3.13.2 Solution

Use the String class trim() method.

3.13.3 Discussion

Example 3-8 uses trim() to strip an arbitrary number of leading spaces and/or tabs from
lines of Java source code in order to look for the characters //+ and //-. These are special (to
me) Java comments I use to mark the parts of the programs in this book that I want to include in
the printed copy.

Example 3-8. GetMark.java (trimming and comparing strings)

/** the default starting mark. */
public final String startMark = "//+";
/** the default ending mark. */
public final String endMark = "//-";
/** True if we are currently inside marks. */
protected boolean printing = false;

 try {
 String inputLine;

 while ((inputLine = is.readLine()) != null) {
 if (inputLine.trim().equals(startMark)) {
 printing = true;
 } else if (inputLine.trim().equals(endMark)) {
 printing = false;
 } else if (printing)
 System.out.println(inputLine);
 }
 is.close();
 } catch (IOException e) {
 // not shown
 }
 }

 87

3.14 Parsing Comma-Separated Data

3.14.1 Problem

You have a string or a file of lines containing comma-separated values (CSV) that you need to
read in. Many MS-Windows-based spreadsheets and some databases use CSV to export data.

3.14.2 Solution

Use my CSV class or a regular expression (see Chapter 4).

3.14.3 Discussion

CSV is deceptive. It looks simple at first glance, but the values may be quoted or unquoted. If
quoted, they may further contain escaped quotes. This far exceeds the capabilities of the
StringTokenizer class (Section 3.3). Either considerable Java coding or the use of regular
expressions is required. I'll show both ways.

First, a Java program. Assume for now that we have a class called CSV that has a no-argument
constructor, and a method called parse() that takes a string representing one line of the input
file. The parse() method returns a list of fields. For flexibility, this list is returned as an
Iterator (see Section 7.5). I simply use the Iterator's hasNext() method to control the
loop, and its next() method to get the next object.

import java.util.*;

/* Simple demo of CSV parser class.
 */
public class CSVSimple {
 public static void main(String[] args) {
 CSV parser = new CSV();
 Iterator it = parser.parse(
 "\"LU\",86.25,\"11/4/1998\",\"2:19PM\",+4.0625");
 while (it.hasNext()) {
 System.out.println(it.next());
 }
 }
}

After the quotes are escaped, the string being parsed is actually the following:

"LU",86.25,"11/4/1998","2:19PM",+4.0625

Running CSVSimple yields the following output:

> java CSVSimple
LU
86.25
11/4/1998
2:19PM
+4.0625
>

 88

But what about the CSV class itself? Oh yes, here it is. This is my translation of a CSV program
written in C++ by Brian W. Kernighan and Rob Pike that appeared in their book The Practice of
Programming. Their version commingled the input processing with the parsing; my CSV class
does only the parsing, since the input could be coming from any of a variety of sources. The main
work is done in parse(), which delegates handling of individual fields to advquoted() in
cases where the field begins with a quote, and otherwise to advplain().

import com.darwinsys.util.*;
import java.util.*;

/** Parse comma-separated values (CSV), a common Windows file format.
 * Sample input: "LU",86.25,"11/4/1998","2:19PM",+4.0625
 * <p>
 * Inner logic adapted from a C++ original that was
 * Copyright (C) 1999 Lucent Technologies
 * Excerpted from 'The Practice of Programming'
 * by Brian W. Kernighan and Rob Pike.
 * <p>
 * Included by permission of the http://tpop.awl.com/ web site,
 * which says:
 * "You may use this code for any purpose, as long as you leave
 * the copyright notice and book citation attached." I have done so.
 * @author Brian W. Kernighan and Rob Pike (C++ original)
 * @author Ian F. Darwin (translation into Java and removal of I/O)
 */
public class CSV {

 public static final String SEP = ",";

 /** Construct a CSV parser, with the default separator (`,'). */
 public CSV() {
 this(SEP);
 }

 /** Construct a CSV parser with a given separator. Must be
 * exactly the string that is the separator, not a list of
 * separator characters!
 */
 public CSV(String sep) {
 fieldsep = sep;
 }

 /** The fields in the current String */
 protected ArrayList list = new ArrayList();

 /** the separator string for this parser */
 protected String fieldsep;

 /** parse: break the input String into fields
 * @return java.util.Iterator containing each field
 * from the original as a String, in order.
 */
 public Iterator parse(String line)
 {
 StringBuffer sb = new StringBuffer();
 list.clear(); // discard previous, if any

 89

 int i = 0;

 if (line.length() == 0) {
 list.add(line);
 return list.iterator();
 }

 do {
 sb.setLength(0);
 if (i < line.length() && line.charAt(i) == '"')
 i = advquoted(line, sb, ++i); // skip quote
 else
 i = advplain(line, sb, i);
 list.add(sb.toString());
 i++;
 } while (i < line.length());

 return list.iterator();
 }

 /** advquoted: quoted field; return index of next separator */
 protected int advquoted(String s, StringBuffer sb, int i)
 {
 int j;

 // Loop through input s, handling escaped quotes
 // and looking for the ending " or , or end of line.

 for (j = i; j < s.length(); j++) {
 // found end of field if find unescaped quote.
 if (s.charAt(j) == '"' && s.charAt(j-1) != '\\') {
 int k = s.indexOf(fieldsep, j);
 Debug.println("csv", "j = " + j + ", k = " + k);
 if (k == -1) { // no separator found after this
field
 k += s.length();
 for (k -= j; k-- > 0;) {
 sb.append(s.charAt(j++));
 }
 } else {
 --k; // omit quote from copy
 for (k -= j; k-- > 0;) {
 sb.append(s.charAt(j++));
 }
 ++j; // skip over quote
 }
 break;
 }
 sb.append(s.charAt(j)); // regular character.
 }
 return j;
 }

 /** advplain: unquoted field; return index of next separator */
 protected int advplain(String s, StringBuffer sb, int i)
 {
 int j;

 90

 j = s.indexOf(fieldsep, i); // look for separator
 Debug.println("csv", "i = " + i + ", j = " + j);
 if (j == -1) { // none found
 sb.append(s.substring(i));
 return s.length();
 } else {
 sb.append(s.substring(i, j));
 return j;
 }
 }
}

In the online source directory you'll find CSVFile.java, which reads a file a line at a time and runs
it through parse(). You'll also find Kernighan and Pike's original C++ program.

We haven't discussed regular expressions yet (we will in Chapter 4). However, many readers
will be familiar with REs in a general way, so the following example will demonstrate the power of
REs as well as provide code for you to reuse. Note that this program replaces all the code in both
CSV.java and CSVFile.java. The key to understanding REs is that a little specification can match
a lot of data.

import com.darwinsys.util.Debug;
import java.io.*;
import org.apache.regexp.*;

/* Simple demo of CSV matching using Regular Expressions.
 * Does NOT use the "CSV" class defined in the Java CookBook.
 * RE Pattern from Chapter 7, Mastering Regular Expressions (p. 205,
first edn.)
 */
public class CSVRE {
 /** The rather involved pattern used to match CSV's consists of
three
 * alternations: the first matches quoted fields, the second
unquoted,
 * the third null fields
 */
 public static final String CSV_PATTERN =
 "\"([^\"\\\\]*(\\\\.[^\"\\\\]*)*)\",?|([^,]+),?|,";

 public static void main(String[] argv) throws IOException,
RESyntaxException
 {
 String line;

 // Construct a new Regular Expression parser.
 Debug.println("regexp", "PATTERN = " + CSV_PATTERN); // debug
 RE csv = new RE(CSV_PATTERN);

 BufferedReader is = new BufferedReader(new
InputStreamReader(System.in));

 // For each line...
 while ((line = is.readLine()) != null) {
 System.out.println("line = `" + line + "'");

 91

 // For each field
 for (int fieldNum = 0, offset = 0; csv.match(line, offset);
 fieldNum++) {

 // Print the field (0=null, 1=quoted, 3=unquoted).
 int n = csv.getParenCount()-1;
 if (n==0) // null field
 System.out.println("field[" + fieldNum + "] = `'");
 else
 System.out.println("field[" + fieldNum + "] = `" +
 csv.getParen(n) + "'");

 // Skip what already matched.
 offset += csv.getParen(0).length();
 }
 }
 }
}

It is sometimes downright scary how much mundane code you can eliminate with a single, well-
formulated regular expression.

3.15 Program: A Simple Text Formatter

This program is a very primitive text formatter, representative of what people used on most
computing platforms before the rise of standalone graphics-based word processors, laser
printers, and, eventually, desktop publishing, word processors, and desktop office suites. It simply
reads words from a file -- previously created with a text editor -- and outputs them until it reaches
the right margin, when it calls println() to append a line ending. For example, here is an
input file:

It's a nice
day, isn't it, Mr. Mxyzzptllxy?
I think we should
go for a walk.

Given the above as its input, the Fmt program will print the lines formatted neatly:

It's a nice day, isn't it, Mr. Mxyzzptllxy? I think we should go for a
walk.

As you can see, it has fitted the text we gave it to the margin and discarded all the line breaks
present in the original. Here's the code:

import java.io.*;
import java.util.*;

/**
 * Fmt - format text (like Berkeley Unix fmt).
 */
public class Fmt {
 /** The maximum column width */
 public static final int COLWIDTH=72;

 92

 /** The file that we read and format */
 BufferedReader in;

 /** If files present, format each, else format the standard input.
*/
 public static void main(String[] av) throws IOException {
 if (av.length == 0)
 new Fmt(System.in).format();
 else for (int i=0; i<av.length; i++)
 new Fmt(av[i]).format();
 }

 /** Construct a Formatter given a filename */
 public Fmt(String fname) throws IOException {
 in = new BufferedReader(new FileReader(fname));
 }

 /** Construct a Formatter given an open Stream */
 public Fmt(InputStream file) throws IOException {
 in = new BufferedReader(new InputStreamReader(file));
 }

 /** Format the File contained in a constructed Fmt object */
 public void format() throws IOException {
 String w, f;
 int col = 0;
 while ((w = in.readLine()) != null) {
 if (w.length() == 0) { // null line
 System.out.print("\n"); // end current line
 if (col>0) {
 System.out.print("\n"); // output blank line
 col = 0;
 }
 continue;
 }

 // otherwise it's text, so format it.
 StringTokenizer st = new StringTokenizer(w);
 while (st.hasMoreTokens()) {
 f = st.nextToken();

 if (col + f.length() > COLWIDTH) {
 System.out.print("\n");
 col = 0;
 }
 System.out.print(f + " ");
 col += f.length() + 1;
 }
 }
 if (col>0) System.out.print("\n");
 in.close();
 }
}

A slightly fancier version of this program, Fmt2, is in the online source for this book. It uses " dot
commands" -- lines beginning with periods -- to give limited control over the formatting. A family

 93

of "dot command" formatters includes Unix's roff, nroff, troff, and groff, which are in the same
family with programs called runoff on Digital Equipment systems. The original for this is J.
Saltzer's runoff, which first appeared on Multics and from there made its way into various OSes.
To save trees, I did not include Fmt2 here; it subclasses Fmt and overrides the format()
method to include additional functionality.

3.16 Program: Soundex Name Comparisons

The difficulties in comparing (American-style) names inspired the development of the Soundex
algorithm, in which each of a given set of consonants maps to a particular number. This was
apparently devised for use by the Census Bureau to map similar-sounding names together on the
grounds that in those days many people were illiterate and could not spell their parents' names
correctly. But it is still useful today: for example, in a company-wide telephone book application.
The names Darwin and Derwin, for example, map to D650, and Darwent maps to D653, which
puts it adjacent to D650. All of these are historical variants of the same name. Suppose we
needed to sort lines containing these names together: if we could output the Soundex numbers at
the front of each line, this would be easy. Here is a simple demonstration of the Soundex class:

/** Simple demonstration of Soundex. */
public class SoundexSimple {

 /** main */
 public static void main(String[] args) {
 String[] names = {
 "Darwin, Ian",
 "Davidson, Greg",
 "Darwent, William",
 "Derwin, Daemon"
 };
 for (int i = 0; i< names.length; i++)
 System.out.println(Soundex.soundex(names[i]) + ' ' +
names[i]);
 }
}

Let's run it:

> jikes +E -d . SoundexSimple.java
> java SoundexSimple | sort
D132 Davidson, Greg
D650 Darwin, Ian
D650 Derwin, Daemon
D653 Darwent, William
>

As you can see, the Darwin-variant names (including Daemon Derwin[3]) all sort together and are
distinct from the Davidson (and Davis, Davies, etc.) names that normally appear between Darwin
and Derwin when using a simple alphabetic sort. The Soundex algorithm has done its work.

[3] In Unix terminology, a daemon is a server. The word has nothing to do with demons, but refers to a
helper or assistant. Derwin Daemon is actually a character in Susannah Coleman's "Source Wars" online
comic strip; see http://darby.daemonnews.org .

 94

Here is the Soundex class itself; it uses Strings and StringBuffers to convert names into
Soundex codes. There is a JUnit test (see Section 1.14) online, SoundexTest.java.

import com.darwinsys.util.Debug;
/**
 * Soundex - the Soundex Algorithm, as described by Knuth
 * <p>
 * This class implements the soundex algorithm as described by Donald
 * Knuth in Volume 3 of <I>The Art of Computer Programming</I>. The
 * algorithm is intended to hash words (in particular surnames) into
 * a small space using a simple model which approximates the sound of
 * the word when spoken by an English speaker. Each word is reduced
 * to a four character string, the first character being an upper case
 * letter and the remaining three being digits. Double letters are
 * collapsed to a single digit.
 *
 * <h2>EXAMPLES</h2>
 * Knuth's examples of various names and the soundex codes they map
 * to are:
 * Euler, Ellery -> E460
 * Gauss, Ghosh -> G200
 * Hilbert, Heilbronn -> H416
 * Knuth, Kant -> K530
 * Lloyd, Ladd -> L300
 * Lukasiewicz, Lissajous -> L222
 *
 * <h2>LIMITATIONS</h2>
 * As the soundex algorithm was originally used a long time ago
 * in the United States of America, it uses only the English alphabet
 * and pronunciation.
 * <p>
 * As it is mapping a large space (arbitrary length strings) onto a
 * small space (single letter plus 3 digits) no inference can be made
 * about the similarity of two strings which end up with the same
 * soundex code. For example, both "Hilbert" and "Heilbronn" end up
 * with a soundex code of "H416".
 * <p>
 * The soundex() method is static, as it maintains no per-instance
 * state; this means you never need to instantiate this class.
 *
 * @author Perl implementation by Mike Stok (<stok@cybercom.net>) from
 * the description given by Knuth. Ian Phillips (<ian@pipex.net>) and
 * Rich Pinder (<rpinder@hsc.usc.edu>) supplied ideas and spotted
 * mistakes.
 */
public class Soundex {

 /* Implements the mapping
 * from: AEHIOUWYBFPVCGJKQSXZDTLMNR
 * to: 00000000111122222222334556
 */
 public static final char[] MAP = {
 //A B D D E F G H I J K L M
 '0','1','2','3','0','1','2','0','0','2','2','4','5',
 //N O P W R S T U V W X Y Z
 '5','0','1','2','6','2','3','0','1','0','2','0','2'

 95

 };

 /** Convert the given String to its Soundex code.
 * @return null If the given string can't be mapped to Soundex.
 */
 public static String soundex(String s) {

 // Algorithm works on uppercase (mainframe era).
 String t = s.toUpperCase();

 StringBuffer res = new StringBuffer();
 char c, prev = '?';

 // Main loop: find up to 4 chars that map.
 for (int i=0; i<t.length() && res.length() < 4 &&
 (c = t.charAt(i)) != ','; i++) {

 // Check to see if the given character is alphabetic.
 // Text is already converted to uppercase. Algorithm
 // only handles ASCII letters, do NOT use
Character.isLetter()!
 // Also, skip double letters.
 if (c>='A' && c<='Z' && c != prev) {
 prev = c;

 // First char is installed unchanged, for sorting.
 if (i==0)
 res.append(c);
 else {
 char m = MAP[c-'A'];
 Debug.println("inner", c + " --> " + m);
 if (m != '0')
 res.append(m);
 }
 }
 }
 if (res.length() == 0)
 return null;
 for (int i=res.length(); i<4; i++)
 res.append('0');
 return res.toString();
 }
}

 96

Chapter 4. Pattern Matching with Regular
Expressions

4.1 Introduction

4.2 Regular Expression Syntax

4.3 How REs Work in Practice

4.4 Using Regular Expressions in Java

4.5 Testing REs Interactively

4.6 Finding the Matching Text

4.7 Replacing the Matching Text

4.8 Printing All Occurrences of a Pattern

4.9 Printing Lines Containing a Pattern

4.10 Controlling Case in match() and subst()

4.11 Precompiling the RE

4.12 Matching Newlines in Text

4.13 Program: Data Mining

4.14 Program: Full Grep

4.1 Introduction

Suppose you have been on the Internet for a few years and have been very faithful about saving
all your correspondence, just in case you (or your lawyers, or the prosecution) need a copy. The
result is that you have a 50-megabyte disk partition dedicated to saved mail. And let's further
suppose that you remember that there is one letter, somewhere in there, from someone named
Angie or Anjie. Or was it Angy? But you don't remember what you called it or where you stored it.
Obviously, you will have to go look for it.

But while some of you go and try to open up all 15,000,000 documents in a word processor, I'll
just find it with one simple command. Any system that provides regular expression support will
allow me to search for the pattern:

An[^ dn]

 97

in all the files. The "A" and the "n" match themselves, in effect finding words that begin with "An",
while the cryptic [^ dn] requires the "An" to be followed by a character other than a space (to
eliminate the very common English word "an" at the start of a sentence) or "d" (to eliminate the
common word "and") or "n" (to eliminate Anne, Announcing, etc.). Has your word processor
gotten past its splash screen yet? Well, it doesn't matter, because I've already found the missing
file. To find the answer, I just typed the command:[1]

[1] Non-Unix fans rejoice, for you can do this on Win32 using a package alternately called CygWin (after
Cygnus Software) or GnuWin32 (http://sources.redhat.com/cygwin/). Or you can use my Grep
program in Section 4.9 if you don't have grep on your system. Incidentally, the name grep comes from an
ancient Unix line editor command g/RE/p, the command to globally find the RE (regular expression) in all
lines in the edit buffer and print the lines that match: just what the grep program does to lines in files.

grep 'An[^ dn]' *

Regular expressions, or REs for short, provide a concise and precise specification of patterns to
be matched in text. Java 2 did not include any facilities for describing regular expressions in text.
This is mildly surprising given how powerful regular expressions are, how ubiquitous they are on
the Unix operating system where Java was first brewed, and how powerful they are in modern
scripting languages like sed, awk, Python, and Perl.

At any rate, there were no RE packages for Java when I first learned the language, and because
of this, I wrote my own RE package. More recently, I had planned to submit a JSR[2] to Sun
Microsystems, proposing to add to Java a regular expressions API similar to the one used in this
chapter. However, the Apache Jakarta Regular Expressions project[3] has achieved sufficient
momentum to become nearly a standard, but without the politics and meetings required of a JSR.
Accordingly, my JSR has not been submitted yet. Conveniently, the Jakarta folk used a similar
syntax to mine, so I was mostly able to migrate to theirs just by changing the imports. However,
the Apache code is vastly more efficient than mine and should be used whenever possible. Mine
was written for pedagogical display, and compiles the RE into an array of SubExpression
objects. The Jakarta package, borrowing a trick from Java,[4] compiles to an array of integer
commands, making it run much faster: around a factor of 3 or 4, even for simple cases like
searching for the string "java" in a few dozen files. There are in fact a half dozen or so regular
expression packages for Java; see Table 4-1.

[2] A JSR is a Java Standards Request, the process by which new standards are submitted by the Java
Community and discussed in public prior to adoption. See Sun's Java Community web site
(http://developer.java.sun.com/developer/community/).

[3] Apache has, in fact, two regular expressions packages. The second, Oro, provides full Perl5-style regular
expressions, AWK-like regular expressions, glob expressions, and utility classes for performing
substitutions, splits, filtering filenames, etc. This library is the successor to the OROMatcher, AwkTools,
PerlTools, and TextTools libraries from ORO, Inc. (http://www.oroinc.com).

[4] Java perhaps got the idea from the UCSD P-system, which used portable bytecodes in the early 1980s
and ran on all the popular microcomputers of the day.

Table 4-1. Java RE packages
Package Notes URL

Richard
Emberson's

Unknown license; not being
maintained.

None; posted to advanced-
java@berkeley.edu

Ian Darwin's RE
Simple, but SLOW.
Incomplete; didactic. http://www.darwinsys.com/java/

Apache Jakarta
RegExp

Apache (BSD-like) license. http://jakarta.apache.org/regexp/

 98

RegExp

(original by
Jonathan Locke)

Apache Jakarta
ORO

Apache license. More
comprehensive? http://jakarta.apache.org/oro/

Daniel Savarese Unknown. http://www.cs.umd.edu/users/dfs/java/

"GNU Java
Regexp" GPL; fairly fast. http://www.gjt.org (Giant Java Tree)

The syntax of REs themselves is discussed in Section 4.2, hints on using them in Section 4.3,
and the syntax of the Java API for using REs in Section 4.4.

4.1.1 See Also

O'Reilly's Mastering Regular Expressions by Jeffrey E. F. Friedl is the definitive guide to all the
details of regular expressions. Most introductory Unix tomes include some discussion of REs;
O'Reilly's UNIX Power Tools devotes a chapter to them.

4.2 Regular Expression Syntax

4.2.1 Problem

You need to learn the syntax of regular expressions.

4.2.2 Solution

Consult Chapter 4 for a list of the regular expression characters that the Apache Regular
Expression API matches.

Table 4-2. Regular expression syntax

Subexpression Will match: Notes
General

a

The letter a (and similarly
for any other Unicode
character not listed in this
table)

^ Start of line/string
$ End of line/string
. Any one character

[...]
"Character class"; any
one character from those
listed

[^...] Any one character not
from those listed

Normal (greedy)
multipliers ("greedy
closures")

 99

{m,n} Multiplier (closure) for
from m to n repetitions

{m,} Multiplier for from m
repetitions on up

{,n} Multiplier for 0 up to n
repetitions

* Multiplier for 0 or more
repetitions

Short for {0,}

+ Multiplier for 1 or more
repetitions

Short for {1,}

? Multiplier for 0 or 1
repetitions

Short for {0,1}

Reluctant (non-
greedy) multipliers
("reluctant
closures")

*? Reluctant multiplier: 0 or
more

+? Reluctant multiplier: 1 or
more

?? Reluctant multiplier: 0 or
1 times

Alternation and
grouping

() Grouping
| Alternation
Escapes and
shorthands

\

Escape character: turns
metacharacters off, and
turns following
alphabetics (t, w, d, and
s) into metacharacters.

\t Tab character
\w Character in a word Use \w+ for a word

\d Numeric digit Use \d+ for a number

\s Whitespace Space, tab, etc., as determined by
java.lang.Character.isWhitespace()

\W, \D, \S Inverse of above (\W is a
non-word character, etc.)

POSIX-style
character classes

[:alnum:] Alphanumeric characters
[:alpha:] Alphabetic characters
[:blank:] Space and tab characters
[:space:] Space characters
[:cntrl:] Control characters
[:digit:] Numeric digit characters

 100

[:graph:] Printable and visible
characters (not spaces)

[:print:] Printable characters
[:punct:] Punctuation characters
[:lower:] Lowercase characters
[:upper:] Uppercase characters

[:xdigit:] Hexadecimal digit
characters

[:javastart:] Start of a Java language
identifier Not in POSIX

[:javapart:] Part of a Java identifier Not in POSIX

These pattern characters can be used in any combination that makes sense. For example, a+
means any number of occurrences of the letter a, from one up to a million or a gazillion. The
pattern Mrs?\. matches Mr. or Mrs.. And, .*means "any character, any number of times," and
is similar in meaning to most command-line interpreters' meaning of *.

It's important to remember that REs will match anyplace possible in the input, and that patterns
ending in a greedy closure will consume as much as possible without compromising any other
subexpressions.

Also, unlike some RE packages, the Apache package was designed to handle Unicode
characters from the beginning. Actually, it came for free, as its basic units are the Java char and
String variable, which are Unicode-based. In fact, the standard Java escape sequence \unnnn is
used to specify a Unicode character in the pattern. And we use methods of java.lang.Character to
determine Unicode character properties, such as whether or not a given character is a space.

4.3 How REs Work in Practice

4.3.1 Problem

You want to know how these metacharacters work in practice.

4.3.2 Solution

Wherein I give a few more examples for the benefit of those who have not been exposed to REs.

In building patterns, you can use any combination of ordinary text and the metacharacters or
special characters in Chapter 4. For example, the two-character RE ^T would match beginning
of line (^) immediately followed by a capital T, i.e., any line beginning with a capital T. It doesn't
matter whether the line begins with Tiny trumpets, or Titanic tubas, or Triumphant trombones, as
long as the capital T is present in the first position.

But here we're not very far ahead. Have we really invested all this effort in RE technology just to
be able to do what we could already do with the java.lang.String method startsWith() ? Hmmm, I
can hear some of you getting a bit restless. Stay in your seats! What if you wanted to match not
only a letter T in the first position, but also a vowel (a, e, i, o, or u) immediately after it, followed by
any number of letters in a word, followed by an exclamation point? Surely you could do this in
Java by checking startsWith("T") and charAt(1) == 'a' || charAt(1) == 'e', and so on? Yes, but by
the time you did that, you'd have written a lot of very highly specialized code that you couldn't use

 101

in any other application. With regular expressions, you can just give the pattern ^T[aeiou]\w*.
That is, ^ and T as before, followed by a character classlisting the vowels, followed by any
number of word characters (\w*), followed by the exclamation point.

"But wait, there's more!" as my late great boss Yuri Rubinsky used to say. What if you want to be
able to change the pattern you're looking for at runtime? Remember all that Java code you just
wrote to match T in column 1 plus a vowel, some word-characters and an exclamation point?
Well, it's time to throw it out. Because this morning we need instead to match Q, followed by a
letter other than u, followed by a number of digits, followed by a period. While some of you start
writing a new function to do that, the rest of us will just saunter over to the RegExp Bar & Grille,
order a ^Q[^u]\d+\. from the bartender, and be on our way.

Huh? Oh, the [^u] means "match any one character that is not the character u." The \d+ means
one or more numeric digits. Remember that + is a multiplier meaning one or more, and \d is any
one numeric digit. (Remember that \n -- which sounds as though it might mean numeric digit --
actually means a newline.) Finally, the \.? Well, . by itself is a metacharacter. Single
metacharacters are switched off by preceding them with an escape character. No, don't hit that
ESC key on your keyboard. The RE "escape" character is a backslash. Preceding a
metacharacter like . with escape turns off its special meaning. Preceding a few selected
alphabetic characters (n, r, t, s, w) with escape turns them into metacharacters. In some other
implementations, escape also precedes (,), <, and > to turn them into metacharacters.

One good way to think of regular expressions is as a "little language" for matching patterns of
characters in text contained in strings. Give yourself extra points if you've already recognized this
as the design pattern known as Interpreter. A regular expression API is an interpreter for
matching regular expressions.

As for how REs work in theory -- the logic behind it and the different types of RE engines -- the
reader is referred to the book Mastering Regular Expressions.

4.4 Using Regular Expressions in Java

4.4.1 Problem

You're ready to utilize regular expression processing to beef up your Java code.

4.4.2 Solution

Use the Apache Jakarta Regular Expressions Package, org.apache.regexp.

4.4.3 Discussion

As mentioned, the Apache project develops and maintains a regular expressions API. To ensure
that you get the latest version, I don't include it in the source archive for this book; you should
download it from http://jakarta.apache.org/regexp/. The good news is that it's actually easy
to use. If all you need is to find out whether a given string matches an RE, just construct the RE
and call its boolean match() method:

RE r = new RE(pattern); // Construct an RE object
boolean found = r.match(input); // Use it to match an input.
if (found) {
 // it matched... do something with it...

 102

}

A complete program constructing an RE and using it to match() is shown here:

import org.apache.regexp.*;

/**
 * Simple example of using RE class.
 */
public class RESimple {
 public static void main(String[] argv) throws RESyntaxException {
 String pattern = "^Q[^u]\\d+\\.";
 String input = "QA777. is the next flight. It is on time.";

 RE r = new RE(pattern); // Construct an RE object

 boolean found = r.match(input); // Use it to match an input.

 System.out.println(pattern +
 (found ? " matches " : " doesn't match ") + input);
 }
}
Remember This!

Remember that because an RE will be compiling strings that are also
compiled by javac, you will probably need two levels of escaping for any
special characters, including backslash, double quotes, and so on. For
example, the RE:

"You said it\."

has to be typed like this to be a Java language String:

"\"You said it\\.\""

The class RE provides the public API shown in Example 4-1. Unix users and Perl regulars may
wish to skip this section, after glancing at the first few examples to see the syntactic details of
how we've adapted regular expressions into the form of a Java API.

Example 4-1. The Java Regular Expression API

/** The main public API of org.apache.regexp.RE.
 * Prepared in machine readable by javap and Ian Darwin.
 */
public class RE extends Object {
 // Constructors
 public RE();
 public RE(String patt) throws RESyntaxException;
 public RE(String patt, int flg) throws RESyntaxException;
 public RE(REProgram patt);
 public RE(REProgram patt, int flg);

 103

 public boolean match(String in);
 public boolean match(String in, int index);
 public boolean match(CharacterIterator where, int index);
 public String[] split(String)[];
 public String[] grep(Object[] in);
 public String subst(String in, String repl);
 public String subst(String in, String repl, int how);

 public String getParen(int level);
 public int getParenCount();
 public final int getParenEnd(int level);
 public final int getParenLength(int level);
 public final int getParenStart(int level);

 public int getMatchFlags();
 public void setMatchFlags(int flg);
 public REProgram getProgram();
 public void setProgram(REProgram prog);
}

This API is large enough to require some explanation. As you can see, there are several forms of
the method called match() that return true or false. The simplest usage is to construct an
RE and call its match() method against an input string, as in Example 4-1. This compiles the
pattern given as the constructor argument into a form that can be compared against the match(
) argument fairly efficiently, then goes through and matches it against the string. The overloaded
form match(String in, int index) is the same, except that it allows you to skip characters
from the beginning. The third form, which takes a CharacterIterator as its argument, will be
covered in Section 4.8.

4.5 Testing REs Interactively

4.5.1 Problem

You want to try out REs interactively before committing them to Java code.

4.5.2 Solution

Use the provided REDemo program.

4.5.3 Discussion

REDemo is a program in the org.apache.regexp package that lets you see the code that a RE
compiles into, and also lets you watch it match interactively. You can change the RE or the string
being matched easily, as it is a GUI application. Just give the command:

> java org.apache.regexp.REDemo

Figure 4-1 shows the program in action.

Figure 4-1. REDemo in action

 104

In the upper-right box you type the RE you want to test, and below that a test string to match it
against. In the lower-left window, you see the compiled expression, and in the lower-right, you
see what matched. $0 is the entire match, and $1 and up are tagged subexpressions that
matched. Experiment to your heart's content. When you have the RE the way you want it, you
can paste it into your Java program. Remember to escape (backslash) any characters that are
treated specially by Java and RE, such as the backslash itself, double quotes, \u, and others.

4.6 Finding the Matching Text

4.6.1 Problem

You need to find the text that matched the RE.

4.6.2 Solution

Sometimes you need to know more than just whether an RE matched an input string. In editors
and many other tools, you will want to know exactly what characters were matched. Remember
that with multipliers such as * , the length of the text that was matched may have no relationship
to the length of the pattern that matched it. Do not underestimate the mighty .*, which will
happily match thousands or millions of characters if allowed to. As you can see from looking at
the API, you can find out whether a given match succeeds just by using match(), as we've
done up to now. But it may be more useful to get a description of what it matched by using one of
the getParen() methods.

The notion of parentheses is central to RE processing. REs may be nested to any level of
complexity. The getParen() methods let you retrieve whatever matched at a given
parenthesis level. If you haven't used any explicit parens, you can just treat whatever matched as
"level zero." For example:

// Part of REmatch.java
String patt = "Q[^u]\\d+\\.";
RE r = new RE(patt);
String line = "Order QT300. Now!";
if (r.match(line)) {
 System.out.println(patt + " matches '" +
 r.getParen(0) +
 "' in '" + line + "'"); Match whence = RE.match(patt, line);
}

When run, this prints:

 105

Q[^u]\d+\. matches "QT300." in "Order QT300. Now!"

It is also possible to get the starting and ending indexes and the length of the text that the pattern
matched (remember that \d+ can match any number of digits in the input). You can use these in
conjunction with the String.substring() methods as follows:

// Part of REsubstr.java -- Prints exactly the same as REmatch.java
 if (r.match(line)) {
 System.out.println(patt + " matches '" +
 line.substring(r.getParenStart(0), r.getParenEnd(0)) +
 ' in '" + line + "'");
}

Suppose you need to extract several items from a string. If the input is:

Smith, John
Adams, John Quincy

and you want to get out:

John Smith
John Quincy Adams

just use:

// from REmatchTwoFields.java
// Construct an RE with parens to "grab" both field1 and field2
RE r = new RE("(.*), (.*)");
if (!r.match(inputLine))
 throw new IllegalArgumentException("Bad input: " + inputLine);
System.out.println(r.getParen(2) + ' ' + r.getParen(1));

4.7 Replacing the Matching Text

As we saw in the previous recipe, regular expression patterns involving multipliers can match a
lot of input characters with a very few metacharacters. We need a way to replace the text that
matched the RE without changing other text before or after it. We could do this manually using
the String method substring(). However, because it's such a common requirement, the
regular expression API provides it for us in methods named subst(). In all these methods, you
pass in the string in which you want the substitution done, as well as the replacement text or
"right-hand side" of the substitution. This term is historical; in a text editor's substitute command,
the left-hand side is the pattern and the right-hand side is the replacement text.

// class SubDemo
// Quick demo of substitution: correct "demon" and other
// spelling variants to the correct, non-satanic "daemon".

// Make an RE pattern to match almost any form (deamon, demon, etc.).
String patt = "d[ae]{1,2}mon";

// A test input.
String input = "Some say Unix hath demons in it!";

 106

// Run it from a RE instance and see that it works
RE r = new RE(patt);
System.out.println(input + " --> " + r.sub(input, "daemon"));

Sure enough, when you run it, it does what it should:

C:\javasrc\RE>java SubDemo
Some say Unix hath demons in it! --> Some say Unix hath deamons in it!

4.8 Printing All Occurrences of a Pattern

4.8.1 Problem

You need to find all the strings that match a given RE in one or more files or other sources.

4.8.2 Solution

This example reads through a file using a ReaderCharacterIterator , one of four
CharacterIterator classes in the Jakarta RegExp package. Whenever a match is found, I
extract it from the CharacterIterator and print it.

The other character iterators are StreamCharacterIterator (as we'll see in Chapter 9,
streams are 8-bit bytes, while readers handle conversion among various representations of
Unicode characters), CharacterArrayIterator, and StringCharacterIterator. All of
these character iterators are interchangeable; apart from the construction process, this program
would work on any of them. Use a StringCharacterIterator, for example, to find all
occurrences of a pattern in the (possibly long) string you get from a JTextArea's getText()
method, described in Chapter 13.

This code takes the getParen() methods from Section 4.6, the substring method from the
CharacterIterator interface, and the match() method from the RE, and simply puts them
all together. I coded it to extract all the "names" from a given file; in running the program through
itself, it prints the words "import", "org", "apache", "regexp", and so on.

> jikes +E -d . ReaderIter.java
> java ReaderIter ReaderIter.java
import
org
apache
regexp
import
java
io
import
com
darwinsys
util
Debug
Demonstrate
the

 107

Character
Iterator
interface
print

I interrupted it here to save paper. The source code for this program is fairly short:

import org.apache.regexp.*;
import java.io.*;
import com.darwinsys.util.Debug;

/** Demonstrate the CharacterIterator interface: print
 * all the strings that match a given pattern from a file.
 */
public class ReaderIter {
 public static void main(String[] args) throws Exception {
 // The RE pattern
 RE patt = new RE("[A-Za-z][a-z]+");
 // A FileReader (see the I/O chapter)
 Reader r = new FileReader(args[0]);
 // The RE package ReaderCharacterIterator, a "front end"
 // around the Reader object.
 CharacterIterator in = new ReaderCharacterIterator(r);
 int end = 0;

 // For each match in the input, extract and print it.
 while (patt.match(in, end)) {
 // Get the starting position of the text
 int start = patt.getParenStart(0);
 // Get ending position; also updates for NEXT match.
 end = patt.getParenEnd(0);
 // Print whatever matched.
 Debug.println("match", "start=" + start + "; end=" + end);
 // Use CharacterIterator.substring(offset, end);
 System.out.println(in.substring(start, end));
 }
 }
}

4.9 Printing Lines Containing a Pattern

4.9.1 Problem

You need to look for lines matching a given RE in one or more files.

4.9.2 Solution

As I've mentioned, once you have an RE package, you can write the grep program. I gave an
example of the Unix grep program earlier. grep is called with some optional arguments, followed
by one required regular expression pattern, followed by an arbitrary number of filenames. It prints
any line that contains the pattern, differing from Section 4.8, which only prints the matching text
itself. For example:

 108

grep "[dD]arwin" *.txt

searches for lines containing either "darwin" or "Darwin" on any line in any file whose name ends
in ".txt".[5] Example 4-1 is the source for the first version of a program to do this, called Grep1. It
doesn't yet take any optional arguments, but it handles the full set of regular expressions that the
RE class implements. We haven't covered the java.io package for input and output yet (see
Chapter 9), but our use of it here is simple enough that you can probably intuit it. Later in this
chapter, Section 4.14 presents a Grep2 program that uses my GetOpt (see Section 2.8) to
parse command-line options.

[5] On Unix, the shell or command-line interpreter expands *.txt to match all the filenames, but the normal
Java interpreter does this for you on systems where the shell isn't energetic or bright enough to do it.

import org.apache.regexp.*;
import java.io.*;

/** A command-line grep-like program. No options, but takes a pattern
 * and an arbitrary list of text files.
 */
public class Grep1 {
 /** The pattern we're looking for */
 protected RE pattern;
 /** The Reader for the current file */
 protected BufferedReader d;

 /** Construct a Grep object for each pattern, and run it
 * on all input files listed in argv.
 */
 public static void main(String[] argv) throws Exception {

 if (argv.length < 1) {
 System.err.println("Usage: Grep pattern [filename]");
 System.exit(1);
 }

 Grep1 pg = new Grep1(argv[0]);

 if (argv.length == 1)
 pg.process(new InputStreamReader(System.in),
 "(standard input", false);
 else
 for (int i=1; i<argv.length; i++) {
 pg.process(new FileReader(argv[i]), argv[i], true);
 }
 }

 public Grep1(String arg) throws RESyntaxException {
 // compile the regular expression
 pattern = new RE(arg);
 }

 /** Do the work of scanning one file
 * @param patt RE Regular Expression object
 * @param ifile Reader Reader object already open
 * @param fileName String Name of the input file
 * @param printFileName Boolean - true to print filename

 109

 * before lines that match.
 */
 public void process(
 Reader ifile, String fileName, boolean printFileName) {

 String line;

 try {
 d = new BufferedReader(ifile);

 while ((line = d.readLine()) != null) {
 if (pattern.match(line)) {
 if (printFileName)
 System.out.print(fileName + ": ");
 System.out.println(line);
 }
 }
 d.close();
 } catch (IOException e) { System.err.println(e); }
 }
}

4.10 Controlling Case in match() and subst()

4.10.1 Problem

You want to find text regardless of case.

4.10.2 Solution

Use the flags static int variable RE.MATCH_CASEINDEPENDENT to indicate that matching
should be case-independent ("fold" or ignore differences in case) or RE_MATCH_NORMAL to
request normal, case-sensitive matching behavior. These flags can either be passed to the RE
constructor method, as in:

// CaseMatch.java
RE r = new RE(pattern, RE.MATCH_CASEINDEPENDENT);
r.match(input); // will match case-insensitively

or passed to the RE's setMatchFlags() method before calling match(), as in:

r.setMatchFlags(RE.MATCH_NORMAL);
r.match(input); // will match case-sensitively
If we print the results of both match operations
+ jikes +E -d . CaseMatch.java
+ java CaseMatch
MATCH_CASEINDEPENDENT match true
MATCH_NORMAL match was false

The full source for this example is online as CaseMatch.java.

4.11 Precompiling the RE

 110

4.11.1 Problem

You need to use the same RE many times over.

4.11.2 Solution

Precompile it using class recompile and include the resulting code fragment into your Java
source code.

4.11.3 Discussion

Some REs never change. Those that don't can be precompiled to speed up your program's
initialization. The class recompile (the only class in this API whose name doesn't fit the Java
capitalization style rules) contains a main program that requires two arguments: a Java identifier
prefix and an RE pattern. When running it, remember that you should quote the RE pattern, as
many of the special characters are the same for the REs as they are for many command-line
interpreters. You run it by giving the java command, the full class name, the identifier prefix, and
the RE pattern as one command line. Once you've seen that the RE is correct, you can run the
command again, redirecting the results into a new Java file. You can then edit this file into a
complete program or copy it into an existing Java file.

> java org.apache.regexp.recompile Name "[A-Z][a-z]+"

 // Pre-compiled regular expression '[A-Z][a-z]+'
 private static char[] NamePatternInstructions =
 {
 0x007c, 0x0000, 0x0019, 0x005b, 0x0001, 0x0005, 0x0041,
 0x005a, 0x005b, 0x0001, 0x0005, 0x0061, 0x007a, 0x007c,
 0x0000, 0x0006, 0x0047, 0x0000, 0xfff8, 0x007c, 0x0000,
 0x0003, 0x004e, 0x0000, 0x0003, 0x0045, 0x0000, 0x0000,
 };

 private static RE NamePattern =
 new RE(new REProgram(NamePatternInstructions));
> java org.apache.regexp.recompile Name "[A-Z][a-z]+" > Name.java
>

The stuff that looks like a dump listing (the numbers with 0x at the front) are not a compiled Java
program, but rather a compiled regular expression. It is there to speed up the runtime execution
of your program.

The file (Name.java in this example) can be edited to start a new Java program or copied into an
existing file. On some platforms, you can bypass that step and simply select the text with the
mouse, copy it, and paste it into an editor or IDE editing window. In either case, the goal is to
avoid manually retyping it; that would be error-prone and downright foolish.

4.12 Matching Newlines in Text

4.12.1 Problem

You need to match newlines in text.

 111

4.12.2 Solution

Use \n or \r.

See also the flags constant RE.MATCH_MULTILINE, which makes newlines match as beginning-
of-line and end-of-line (̂ and $).

4.12.3 Discussion

While line-oriented tools from Unix such as sed and grep match regular expressions one line at a
time, not all tools do. The sam text editor from Bell Laboratories was the first interactive tool I
know of to allow multiline regular expressions; the Perl scripting language followed shortly. In our
API, the newline character by default has no special significance. The BufferedReader method
readLine() normally strips out whichever newline characters it finds. If you read in gobs of
characters using some method other than readLine(), you may have \n in your text string.
Since it's just an ordinary character, you can match it with .* or similar multipliers, and, if you
want to know exactly where it is, \n or \r in the pattern will match it as well. In other words, to
this API, a newline character is just another character with no special significance. You can
recognize a newline either by the metacharacter \n, or you could also refer to it by its numerical
value, \u000a.

import org.apache.regexp.*;

/**
 * Show line ending matching using RE class.
 */
public class NLMatch {
 public static void main(String[] argv) throws RESyntaxException {

 String input = "I dream of engines\nmore engines, all day
long";
 System.out.println("INPUT: " + input);
 System.out.println();

 String[] patt = {
 "engines\nmore engines",
 "engines$"
 };

 for (int i = 0; i < patt.length; i++) {
 System.out.println("PATTERN " + patt[i]);

 boolean found;
 RE r = new RE(patt[i]);

 found = r.match(input);
 System.out.println("DEFAULT match " + found);

 r.setMatchFlags(RE.MATCH_MULTILINE);
 found = r.match(input);
 System.out.println("MATCH_MULTILINE match was " + found);
 System.out.println();
 }
 }

 112

}

If you run this code, the first pattern (with the embedded \n) always matches, while the second
pattern (with $) matches only when MATCH_MULTILINE is set.

> java NLMatch
INPUT: I dream of engines
more engines, all day long

PATTERN engines
more engines
DEFAULT match true
MATCH_MULTILINE match was true

PATTERN engines$
DEFAULT match false
MATCH_MULTILINE match was true

4.13 Program: Data Mining

Suppose that I, as a published author, want to track how my book is selling in comparison to
others. This information can be obtained for free just by clicking on the page for my book on any
of the major bookseller sites, reading the sales rank number off the screen, and typing the
number into a file, but that's tedious. As I somewhat haughtily wrote in the book that this example
looks for, "computers get paid to extract relevant information from files; people should not have to
do such mundane tasks." This program uses the regular expressions API and, in particular,
newline matching to extract a value from an HTML page. It also reads from a URL (discussed
later in Section 17.7.) The pattern to look for is something like this (bear in mind that the HTML
may change at any time, so I want to keep the pattern fairly general):

QuickBookShop.web Sales Rank:
26,252

As the pattern may extend over more than one line, I read the entire web page from the URL into
a single long string using my FileIO.readerAsString() method (see Section 9.6) instead
of the more traditional line-at-a-time paradigm. I then plot a graph using an external program (see
Section 26.2); this could (and should) be changed to use a Java graphics program. The
complete program is shown in Example 4-2.

Example 4-2. BookRank.java

import java.io.*;
import com.darwinsys.util.FileIO;
import java.net.*;
import java.text.*;
import java.util.*;
import org.apache.regexp.*;

/** Graph of a book's sales rank on a given bookshop site.
 */

 113

public class BookRank {
 public final static String ISBN = "0937175307";
 public final static String DATA_FILE = "lint.sales";
 public final static String GRAPH_FILE = "lint.png";
 public final static String TITLE = "Checking C Prog w/ Lint";
 public final static String QUERY = "
 "http://www.quickbookshops.web/cgi-bin/search?isbn=";

 /** Grab the sales rank off the web page and log it. */
 public static void main(String[] args) throws Exception {

 // Looking for something like this in the input:
 // QuickBookShop.web Sales Rank:
 // 26,252
 //

 // From Patrick Killelea <badraig@yahoo.com>: match number with
 // comma included, just print as is. Loses if you fall below
100,000.
 RE r = new RE("\..web Sales Rank: \\s*(\\d*),*(\\d+)\\s");

 // Read the given search URL looking for the rank information.
 // Read as a single long string, so can match multi-line
entries.
 // If found, append to sales data file.
 BufferedReader is = new BufferedReader(new InputStreamReader(
 new URL(QUERY + ISBN).openStream()));
 String input = FileIO.readerToString(is);
 if (r.match(input)) {
 PrintWriter FH = new PrintWriter(
 new FileWriter(DATA_FILE, true));
 String date = // `date +'%m %d %H %M %S %Y'`;
 new SimpleDateFormat("MM dd hh mm ss yyyy ").
 format(new Date());
 FH.println(date + r.getParen(1) + r.getParen(2));
 FH.close();
 }

 // Draw the graph, using gnuplot.

 String gnuplot_cmd =
 "set term png\n" +
 "set output \"" + GRAPH_FILE + "\"\n" +
 "set xdata time\n" +
 "set ylabel \"Amazon sales rank\"\n" +
 "set bmargin 3\n" +
 "set logscale y\n" +
 "set yrange [1:60000] reverse\n" +
 "set timefmt \"%m %d %H %M %S %Y\"\n" +
 "plot \"" + DATA_FILE +
 "\" using 1:7 title \"" + TITLE + "\" with lines\n"
 ;

 Process p = Runtime.getRuntime(
).exec("/usr/local/bin/gnuplot");
 PrintWriter gp = new PrintWriter(p.getOutputStream());
 gp.print(gnuplot_cmd);

 114

 gp.close();
 }
}

4.14 Program: Full Grep

Now that we've seen how the regular expressions package works, it's time to write Grep2, a full-
blown version of the line-matching program with option parsing. Table 4-3 lists some typical
command-line options that a Unix implementation of grep might include.

Table 4-3. Grep command-line options

Option Meaning
-c Count only: don't print lines, just count them
-f pattern Take pattern from file named after -f instead of from command line

-h Suppress printing filename ahead of lines
-i Ignore case
-l List filenames only: don't print lines, just the names they're found in
-n Print line numbers before matching lines
-s Suppress printing certain error messages
-v Invert: print only lines that do NOT match the pattern

We discussed the GetOpt class back in Section 2.8. Here we use it to control the operation of
an application program. As usual, since main() runs in a static context but our application main
line does not, we could wind up passing a lot of information into the constructor. Because we
have so many options, and it would be inconvenient to keep expanding the options list as we add
new functionality to the program, we use a kind of Collection called a BitSet to pass all the
true/false arguments: true to print line numbers, false to print filenames, etc. (Collections are
covered in Chapter 7.) A BitSet is much like a Vector (see Section 7.4) but is specialized to
store only boolean values, and is ideal for handling command-line arguments.

The program basically just reads lines, matches the pattern in them, and if a match is found (or
not found, with -v), prints the line (and optionally some other stuff too). Having said all that, the
code is shown in Example 4-3.

Example 4-3. Grep2.java

import org.apache.regexp.*;
import com.darwinsys.util.*;
import java.io.*;
import java.util.*;

/** A command-line grep-like program. Some options, and takes a pattern
 * and an arbitrary list of text files.
 */
public class Grep2 {
 /** The pattern we're looking for */
 protected RE pattern;
 /** The Reader for the current file */
 protected BufferedReader d;
 /** Are we to only count lines, instead of printing? */

 115

 protected boolean countOnly = false;
 /** Are we to ignore case? */
 protected boolean ignoreCase = false;
 /** Are we to suppress print of filenames? */
 protected boolean dontPrintFileName = false;
 /** Are we to only list names of files that match? */
 protected boolean listOnly = false;
 /** are we to print line numbers? */
 protected boolean numbered = false;
 /** Are we to be silent bout errors? */
 protected boolean silent = false;
 /** are we to print only lines that DONT match? */
 protected boolean inVert = false;

 /** Construct a Grep object for each pattern, and run it
 * on all input files listed in argv.
 */
 public static void main(String[] argv) throws RESyntaxException {

 if (argv.length < 1) {
 System.err.println("Usage: Grep pattern [filename...]");
 System.exit(1);
 }
 String pattern = null;

 GetOpt go = new GetOpt("cf:hilnsv");
 BitSet args = new BitSet();

 char c;
 while ((c = go.getopt(argv)) != 0) {
 switch(c) {
 case 'c':
 args.set('C');
 break;
 case 'f':
 try {
 BufferedReader b = new BufferedReader
 pattern = b.readLine();
 b.close();
 } catch (IOException e) {
 System.err.println("Can't read pattern file " +
 System.exit(1);
 }
 break;
 case 'h':
 args.set('H');
 break;
 case 'i':
 args.set('I');
 break;
 case 'l':
 args.set('L');
 break;
 case 'n':
 args.set('N');
 break;
 case 's':

 116

 args.set('S');
 break;
 case 'v':
 args.set('V');
 break;
 }
 }

 int ix = go.getOptInd();

 if (pattern == null)
 pattern = argv[ix-1];

 Grep2 pg = new Grep2(pattern, args);

 if (argv.length == ix)
 pg.process(new InputStreamReader(System.in), "(standard
input");
 else
 for (int i=ix; i<argv.length; i++) {
 try {
 pg.process(new FileReader(argv[i]), argv[i]);
 } catch(Exception e) {
 System.err.println(e);
 }
 }
 }

 public Grep2(String arg, BitSet args) throws RESyntaxException {
 // compile the regular expression
 if (args.get('C'))
 countOnly = true;
 if (args.get('H'))
 dontPrintFileName = true;
 if (args.get('I'))
 ignoreCase = true;
 if (args.get('L'))
 listOnly = true;
 if (args.get('N'))
 numbered = true;
 if (args.get('S'))
 silent = true;
 if (args.get('V'))
 inVert = true;
 int caseMode =
ignoreCase?RE.MATCH_CASEINDEPENDENT:RE.MATCH_NORMAL;
 pattern = new RE(arg, caseMode);
 }

 /** Do the work of scanning one file
 * @param patt RE Regular Expression object
 * @param ifile Reader Reader object already open
 * @param fileName String Name of the input file
 */
 public void process(Reader ifile, String fileName) {

 String line;

 117

 int matches = 0;

 try {
 d = new BufferedReader(ifile);

 while ((line = d.readLine()) != null) {
 if (pattern.match(line)) {
 if (countOnly)
 matches++;
 else {
 if (!dontPrintFileName)
 System.out.print(fileName + ": ");
 System.out.println(line);
 }
 } else if (inVert) {
 System.out.println(line);
 }
 }
 if (countOnly)
 System.out.println(matches + " matches in " +
fileName);
 d.close();
 } catch (IOException e) { System.err.println(e); }
 }
}

 118

Chapter 5. Numbers

5.1 Introduction

5.2 Checking Whether a String Is a Valid Number

5.3 Storing a Larger Number in a Smaller

5.4 Taking a Fraction of an Integer Without Using Floating
Point

5.5 Ensuring the Accuracy of Floating-Point Numbers

5.6 Comparing Floating-Point Numbers

5.7 Rounding Floating-Point Numbers

5.8 Formatting Numbers

5.9 Converting Between Binary, Octal, Decimal, and
Hexadecimal

5.10 Operating on a Series of Integers

5.11 Working with Roman Numerals

5.12 Formatting with Correct Plurals

5.13 Generating Random Numbers

5.14 Generating Better Random Numbers

5.15 Calculating Trigonometric Functions

5.16 Taking Logarithms

5.17 Multiplying Matrixes

5.18 Using Complex Numbers

5.19 Handling Very Large Numbers

5.20 Program: TempConverter

 119

5.21 Program: Number Palindromes

5.1 Introduction

Numbers are basic to just about any computation. They're used for array indexes, temperatures,
salaries, ratings, and an infinite variety of things. Yet they're not as simple as they seem. With
floating-point numbers, how accurate is accurate? With random numbers, how random is
random? With strings that should contain a number, what actually constitutes a number?

Java has several built-in types that can be used to represent numbers, summarized in Table 5-
1. Note that unlike languages like C or Perl, which don't specify the size or precision of numeric
types, Java -- with its goal of portability -- specifies these exactly, and states that they are the
same on all platforms.

Table 5-1. Numeric types

Built-in type Object wrapper Size (bits) Contents
byte Byte 8 Signed integer
short Short 16 Signed integer
int Integer 32 Signed integer
long Long 64 Signed integer
float Float 32 IEEE-754 floating point
double Double 64 IEEE-754 floating point
char Character 16 Unsigned Unicode character

As you can see, Java provides a numeric type for just about any purpose. There are four sizes of
signed integers for representing various sizes of whole numbers. There are two sizes of floating-
point numbers to approximate real numbers. There is also a type specifically designed to
represent and allow operations on Unicode characters.

When you read a string from user input or a text file, you need to convert it to the appropriate
type. The object wrapper classes in the second column have several functions, but one of the
most important is to provide this basic conversion functionality -- replacing the C programmer's
atoi/atof family of functions and the numeric arguments to scanf.

Going the other way, you can convert any number (indeed, anything at all in Java) to a string just
by using string concatenation. If you want a little bit of control over numeric formatting, Section
5.8 shows you how to use some of the object wrappers' conversion routines. And if you want full
control, it also shows the use of NumberFormat and its related classes to provide full control of
formatting.

As the name object wrapper implies, these classes are also used to "wrap" a number in a Java
object, as many parts of the standard API are defined in terms of objects. Later on, Section 9.17
shows using an Integer object to save an int's value to a file using object serialization, and
retrieving the value later.

But I haven't yet mentioned the issues of floating point. Real numbers, you may recall, are
numbers with a fractional part. There is an infinity of possible real numbers. A floating-point
number -- what a computer uses to approximate a real number -- is not the same as a real
number. There are only a finite number of floating-point numbers: only 2^32 different bit patterns

 120

for floats, and 2^64 for doubles. Thus, most real values only have an approximate
correspondence to floating point. The result of printing the real number 0.3, as in:

// RealValues.java
System.out.println("The real value 0.3 is " + 0.3);

results in this printout:

The real value 0.3 is 0.29999999999999999

Surprised? More surprising is this: you'll get the same output on any conforming Java
implementation. I ran it on machines as disparate as a Pentium with OpenBSD and Kaffe, a
Pentium with Windows 95 and JDK 1.2, and a PowerPC Macintosh with MRJ. Always the same
answer.

One thing to be aware of is that the difference between a real value and its floating-point
approximation can accumulate if the value is used in a computation; this is often called rounding
error. Continuing the previous example, the real 0.3 multiplied by 3 yields:

The real 0.3 times 3 is 0.89999999999999991

And what about random numbers? How random are they? You have probably heard the
expression "pseudo-random numbers." All conventional random number generators, whether
written in Fortran, C, or Java, generate pseudo-random numbers. That is, they're not truly
random! True randomness can only come from specially built hardware: an analog source of
Brownian noise connected to an analog-to-digital converter, for example.[1] This is not your
average PC! However, pseudo-random number generators (PRNG for short) are good enough for
most purposes, so we use them. Java provides one random generator in the base library
java.lang.Math, and several others; we'll examine these in Section 5.13.

[1] For a low-cost source of randomness, check out http://lavarand.sgi.com. These folks use digitized
video of 1970s "lava lamps" to provide "hardware-based" randomness. Fun!

Java comes with a math library class java.lang.Math plus several other areas of
mathematical functionality. The class java.lang.Math contains an entire "math library" in one
class, including trigonometry, conversions of all kinds (including degrees to radians and back),
rounding, truncating, square root, minimum, and maximum. It's all there. Check the Javadoc for
java.lang.Math.

The package java.Math contains support for "big numbers" -- those larger than the normal built-
in long integers, for example. See Section 5.19.

Java works hard to ensure that your programs are reliable. The usual ways you'd notice this are
in the common requirement to catch potential exceptions -- all through the Java API -- and in the
need to "cast" or convert when storing a value that might or might not fit into the variable you're
trying to store it in. I'll show examples of these.

Overall, Java's handling of numeric data fits well with the ideals of portability, reliability, and ease
of programming.

5.1.1 See Also

 121

The Java Language Specification. The Javadoc page for java.lang.Math.

5.2 Checking Whether a String Is a Valid Number

5.2.1 Problem

You need to check if a given string contains a valid number, and if so, convert it to binary
(internal) form.

5.2.2 Solution

Use the appropriate wrapper class's conversion routine and catch the
NumberFormatException. This code converts a string to a double :

// StringToDouble.java
public static void main(String argv[]) {
 String aNumber = argv[0]; // not argv[1]
 double result;
 try {
 result = Double.parseDouble(aNumber);
 } catch(NumberFormatException exc) {
 System.out.println("Invalid number " + aNumber);
 return;
 }
 System.out.println("Number is " + result);
}

5.2.3 Discussion

Of course, that lets you validate only numbers in the format that the designers of the wrapper
classes expected. If you need to accept a different definition of numbers, you could use regular
expressions (see Chapter 4) to make the determination.

There may also be times when you want to tell if a given number is an integer number or a
floating-point number. One way is to check for the characters ., d, or e in the input; if it is
present, convert the number as a double, otherwise, convert it as an int:

// GetNumber.java
System.out.println("Input is " + s);
if (s.indexOf('.') >0 ||
 s.indexOf('d') >0 || s.indexOf('e') >0)
 try {
 dvalue = Double.parseDouble(s);
 System.out.println("It's a double: " + dvalue);
 return;
 } catch (NumberFormatException e) {
 System.out.println("Invalid a double: " + s);
 return;
 }
else // did not contain . or d or e, so try as int.
 try {
 ivalue = Integer.parseInt(s);
 System.out.println("It's an int: " + ivalue);

 122

 return;
 } catch (NumberFormatException e2) {
 System.out.println("Not a number:" + s);
 }
}

A more involved form of parsing is offered by the DecimalFormat class, discussed in Section
5.8.

5.3 Storing a Larger Number in a Smaller

5.3.1 Problem

You have a number of a larger type and you want to store it in a variable of a smaller type.

5.3.2 Solution

Cast the number to the smaller type. (A cast is a type listed in parentheses before a value that
causes the value to be treated as though it were of the listed type.)

For example, to cast a long to an int, you need a cast. To cast a double to a float, you also
need a cast.

5.3.3 Discussion

This causes newcomers some grief, as the default type for a number with a decimal point is
double, not float. So code like:

float f = 3.0;

won't even compile! It's as if you had written:

double tmp = 3.0;
float f = tmp;

You can fix it either by making f be a double, by making the 3.0 be a float, by putting in a
cast, or by assigning an integer value of 3:

double f = 3.0;
float f = 3.0f;
float f = 3f;
float f = (float)3.0;
float f = 3;

The same applies when storing an int into a short, char, or byte:

// CastNeeded.java
public static void main(String argv[]) {
 int i, k;
 double j = 2.75;
 i = j; // EXPECT COMPILE ERROR

 123

 i = (int)j; // with cast; i gets 2
 System.out.println("i =" + i);
 byte b;
 b = i; // EXPECT COMPILE ERROR
 b = (byte)i; // with cast, i gets 2
 System.out.println("b =" + b);
}

The lines marked EXPECT COMPILE ERROR will not compile unless either commented out or
changed to be correct. The lines marked "with cast" show the correct forms.

5.4 Taking a Fraction of an Integer Without Using Floating Point

5.4.1 Problem

You want to multiply an integer by a fraction without converting the fraction to a floating-point
number.

5.4.2 Solution

Multiply the integer by the numerator and divide by the denominator.

This technique should be used only when efficiency is more important than clarity, as it tends to
detract from the readability -- and therefore the maintainability -- of your code.

5.4.3 Discussion

Since integers and floating-point numbers are stored differently, it may sometimes be desirable
and feasible, for efficiency purposes, to multiply an integer by a fractional value without
converting the values to floating point and back, and without requiring a "cast":

/** Compute the value of 2/3 of 5 */
public class FractMult {
 public static void main(String u[]) {

 double d1 = 0.666 * 5; // fast but obscure and inaccurate:
convert
 System.out.println(d1); // 2/3 to 0.666 in programmer's head

 double d2 = 2/3 * 5; // wrong answer - 2/3 == 0, 0*5.0 = 0.0
 System.out.println(d2);

 double d3 = 2d/3d * 5; // "normal"
 System.out.println(d3);

 double d4 = (2*5)/3d; // one step done as integers, almost
same answer
 System.out.println(d4);

 int i5 = 2*5/3; // fast, approximate integer answer
 System.out.println(i5);
 }
}

 124

Running it looks like this:

$ java FractMult
3.33
0.0
3.333333333333333
3.3333333333333335
3
$

5.5 Ensuring the Accuracy of Floating-Point Numbers

5.5.1 Problem

You want to know if a floating-point computation generated a sensible result.

5.5.2 Solution

Compare with the INFINITY constants, and use isNaN() to check for "not a number."

Fixed-point operations that can do things like divide by zero will result in Java notifying you
abruptly by throwing an exception. This is because integer division by zero is considered a logic
error.

Floating-point operations, however, do not throw an exception, because they are defined over an
(almost) infinite range of values. Instead, they signal errors by producing the constant
POSITIVE_INFINITY if you divide a positive floating-point number by zero, the constant
NEGATIVE_INFINITY if you divide a negative floating-point value by zero, and NaN, (Not a
Number) if you otherwise generate an invalid result. Values for these three public constants are
defined in both the Float and the Double wrapper classes. The value NaN has the unusual
property that it is not equal to itself, that is, NaN != NaN. Thus, it would hardly make sense to
compare a (possibly suspect) number against NaN, because the expression:

x == NaN

can therefore never be true. Instead, the methods Float.isNaN(float) and
Double.isNaN(double) must be used:

// InfNan.java
public static void main(String argv[]) {
 double d = 123;
 double e = 0;
 if (d/e == Double.POSITIVE_INFINITY)
 System.out.println("Check for POSITIVE_INFINITY works");
 double s = Math.sqrt(-1);
 if (s == Double.NaN)
 System.out.println("Comparison with NaN incorrectly returns
true");
 if (Double.isNaN(s))
 System.out.println("Double.isNaN() correctly returns true");
}

 125

Note that this, by itself, is not sufficient to ensure that floating-point calculations have been done
with adequate accuracy. For example, the following program demonstrates a contrived
calculation, Heron's formula for the area of a triangle, both in float and in double. The double
values are correct, but the floating-point value comes out as zero due to rounding errors. This is
because, in Java, operations involving only float values are performed as 32-bit calculations.
Related languages such as C automatically promote these to double during the computation,
which can eliminate some loss of accuracy.

/** Compute the area of a triangle using Heron's Formula.
 * Code and values from Prof W. Kahan and Joseph D. Darcy.
 * See http://www.cs.berkeley.edu/~wkahan/JAVAhurt.pdf.
 * Derived from listing in Rick Grehan's Java Pro article (October
1999).
 * Simplified and reformatted by Ian Darwin.
 */
public class Heron {
 public static void main(String[] args) {
 // Sides for triangle in float
 float af, bf, cf;
 float sf, areaf;

 // Ditto in double
 double ad, bd, cd;
 double sd, aread;

 // Area of triangle in float
 af = 12345679.0f;
 bf = 12345678.0f;
 cf = 1.01233995f;

 sf = (af+bf+cf)/2.0f;
 areaf = (float)Math.sqrt(sf * (sf - af) * (sf - bf) * (sf -
cf));
 System.out.println("Single precision: " + areaf);

 // Area of triangle in double
 ad = 12345679.0;
 bd = 12345678.0;
 cd = 1.01233995;

 sd = (ad+bd+cd)/2.0d;
 aread = Math.sqrt(sd * (sd - ad) * (sd - bd) * (sd -
cd));
 System.out.println("Double precision: " + aread);
 }
}

Let's run it. To ensure that the rounding is not an implementation artifact, I'll try it both with Sun's
JDK and with Kaffe:

$ java Heron
Single precision: 0.0
Double precision: 972730.0557076167
$ kaffe Heron
Single precision: 0.0
Double precision: 972730.05570761673

 126

If in doubt, use double !

5.6 Comparing Floating-Point Numbers

5.6.1 Problem

You want to compare two floating-point numbers for equality.

5.6.2 Solution

Based on what we've just discussed, you probably won't just go comparing two floats or doubles
for equality. You might expect the floating-point wrapper classes, Float and Double, to override
the equals() method, and they do. The equals() method returns true if the two values are
the same bit for bit, that is, if and only if the numbers are the same, or are both NaN. It returns
false otherwise, including if the argument passed in is null, or if one object is +0.0 and the other is
-0.0.

If this sounds weird, remember that the complexity comes partly from the nature of doing real
number computations in the less-precise floating-point hardware, and partly from the details of
the IEEE Standard 754, which specifies the floating-point functionality that Java tries to adhere to,
so that underlying floating-point processor hardware can be used even when Java programs are
being interpreted.

To actually compare floating-point numbers for equality, it is generally desirable to compare them
within some tiny range of allowable differences; this range is often regarded as a tolerance or as
epsilon. Example 5-1 shows an equals() method you can use to do this comparison, as well
as comparisons on values of NaN. When run, it prints that the first two numbers are equal within
epsilon.

$ java FloatCmp
True within epsilon 1.0E-7
$

Example 5-1. FloatCmp.java

/**
 * Floating-point comparisons.
 */
public class FloatCmp {
 public static void main(String[] argv) {
 double da = 3 * .3333333333;
 double db = 0.99999992857;

 // Compare two numbers that are expected to be close.
 final double EPSILON = 0.0000001;
 if (da == db) {
 System.out.println("Java considers " + da + "==" + db);
 } else if (equals(da, db, 0.0000001)) {
 System.out.println("True within epsilon " + EPSILON);
 } else {
 System.out.println(da + " != " + db);
 }

 127

 double d1 = Double.NaN;
 double d2 = Double.NaN;
 if (d1 == d2)
 System.err.println("Comparing two NaNs incorrectly returns
true.");
 if (!new Double(d1).equals(new Double(d2)))
 System.err.println("Double(NaN).equal(NaN) incorrectly
returns false.");
 }

 /** Compare two doubles within a given epsilon */
 public static boolean equals(double a, double b, double eps) {
 // If the difference is less than epsilon, treat as equal.
 return Math.abs(a - b) < eps;
 }
}

Note that neither of the System.err messages about "incorrect returns" prints. The point of this
example with NaNs is that you should always make sure values are not NaN before entrusting
them to Double.equals() .

5.7 Rounding Floating-Point Numbers

5.7.1 Problem

You need to round floating-point numbers to integer or to a particular precision.

5.7.2 Solution

If you simply cast a floating value to an integer value, Java will truncate the value. A value like
3.999999 casted to an int or long will give 3, not 4. To round these properly, use
Math.round(). There are two forms; if you give it a double, you get a long result. If you give
it a float, you get an int.

What if you don't like the rounding rules used by round? If you wanted to round numbers greater
than 0.54 instead of the normal 0.5, you could write your own version of round():

// Round.java
/** Round a number up if its fraction exceeds this threshold. */
public static final double THRESHOLD = 0.54;
/* Return the closest long to the argument.
 * ERROR CHECKING OMITTED.
 */
static long round(double d) {
 long di = (long)Math.floor(d); // integral value below (or ==) d
 if ((d - di) > THRESHOLD)
 return di + 1;
 else return di;
}

If you need to display a number with less precision than it normally gets, you will probably want to
use a DecimalFormat object.

 128

5.8 Formatting Numbers

5.8.1 Problem

You need to format numbers.

5.8.2 Solution

Use a NumberFormat subclass.

There are several reasons why Java doesn't provide the traditional printf/scanffunctions from the
C programming language. First, these depend on variable-length argument lists, which makes
strict type checking impossible. Second and more importantly, they mix together formatting and
input/output in a very inflexible way. Programs using printf/scanf can be very hard to
internationalize, for example.

JDK 1.1 introduced a new package, java.text, which is full of formatting routines as general
and flexible as anything you might imagine. As with printf, there is an involved formatting
language, described in the Javadoc page. Consider the presentation of long numbers. In North
America, the number one thousand twenty-four and a quarter is written 1,024.25, in most of
Europe it is 1 024.25, and in some other part of the world it might be written 1.024,25. Not to
mention how currencies and percentages get formatted! Trying to keep track of this yourself
would drive the average small software shop around the bend rather quickly.

Fortunately, the java.text package includes a Locale class, and, furthermore, the Java
runtime automatically sets a default Locale object based on the user's environment; e.g., on the
Macintosh and MS-Windows, the user's preferences; on Unix, the user's environment variables.
(To provide a non-default locale, see Section 14.9.) To provide formatters customized for
numbers, currencies, and percentages, the NumberFormat class has static factory methods that
normally return a DecimalFormat with the correct pattern already instantiated. A
DecimalFormat object appropriate to the user's locale can be obtained from the factory method
NumberFormat.getInstance() and manipulated using set methods. The method
setMinimumIntegerDigits(), a bit surprisingly, turns out to be the easy way to generate a
number format with leading zeros. Here is an example:

import java.text.*;
import java.util.*;

/*
 * Format a number our way and the default way.
 */
public class NumFormat2 {
 /** A number to format */
 public static final double data[] = {
 0, 1, 22d/7, 100.2345678
 };

 /** The main (and only) method in this class. */
 public static void main(String av[]) {
 // Get a format instance
 NumberFormat form = NumberFormat.getInstance();

 // Set it to look like 999.99[99]

 129

 form.setMinimumIntegerDigits(3);
 form.setMinimumFractionDigits(2);
 form.setMaximumFractionDigits(4);

 // Now print using it.
 for (int i=0; i<data.length; i++)
 System.out.println(data[i] + "\tformats as " +
 form.format(data[i]));
 }
}

This prints the contents of the array using the NumberFormat instance form:

$ java NumFormat2
0.0 formats as 000.00
1.0 formats as 001.00
3.142857142857143 formats as 003.1429
100.2345678 formats as 100.2346
$

You can also construct a DecimalFormat with a particular pattern, or change the pattern
dynamically using applyPattern(). The pattern characters are shown in Table 5-2.

Table 5-2. DecimalFormat pattern characters
Character Meaning

Numeric digit (leading zeros suppressed)
0 Numeric digit (leading zeros provided)
. Locale-specific decimal separator (decimal point)
, Locale-specific grouping separator (comma in English)
- Locale-specific negative indicator (minus sign)
% Shows the value as a percentage
; Separates two formats: the first for positive and the second for negative values
' Escapes one of the above characters so it appears
Anything else Appears as itself

The NumFormatTest program uses one DecimalFormat toprint a number with only two
decimal places, and a second to format the number according to the default locale:

// NumFormatTest.java
/** A number to format */
public static final double intlNumber = 1024.25;
/** Another number to format */
public static final double ourNumber = 100.2345678;
NumberFormat defForm = NumberFormat.getInstance();
NumberFormat ourForm = new DecimalFormat("##0.##");
// toPattern() shows the combination of #0., etc
// that this particular local uses to format with
System.out.println("defForm's pattern is " +
 ((DecimalFormat)defForm).toPattern());
System.out.println(intlNumber + " formats as " +
 defForm.format(intlNumber));
System.out.println(ourNumber + " formats as " +

 130

 ourForm.format(ourNumber));
System.out.println(ourNumber + " formats as " +
 defForm.format(ourNumber) + " using the default format");

This program prints the given pattern and then formats the same number using several formats:

$ java NumFormatTest
defForm's pattern is #,##0.###
1024.25 formats as 1,024.25
100.2345678 formats as 100.23
100.2345678 formats as 100.235 using the default format
$

5.8.3 See Also

O'Reilly's Java I/O, Chapter 16 .

5.9 Converting Between Binary, Octal, Decimal, and Hexadecimal

5.9.1 Problem

You want to display an integer as a series of bits, for example when interacting with certain
hardware devices. You want to convert a binary number or a hexadecimal value into an integer.

5.9.2 Solution

The class java.lang.Integer provides the solutions. Use toBinaryString() to convert
an integer to binary. Use valueOf() to convert a binary string to an integer:

// BinaryDigits.java
String bin = "101010";
System.out.println(bin + " as an integer is " + Integer.valueOf(bin,
2));
int i = 42;
System.out.println(i + " as binary digits (bits) is " +
 Integer.toBinaryString(i));

This program prints the binary as an integer, and an integer as binary:

$ java BinaryDigits
101010 as an integer is 42
42 as binary digits (bits) is 101010
$

5.9.3 Discussion

Integer.valueOf() is more general than binary formatting. It will also convert a string
number from any radix to int, just by changing the second argument. Octal is base 8, decimal is
10, hexadecimal 16. Going the other way, the Integer class includes toBinaryString() ,
toOctalString(), and toHexString().

 131

The String class itself includes a series of static methods, valueOf(int),
valueOf(double), and so on, that also provide default formatting. That is, they return the given
numeric value formatted as a string.

5.10 Operating on a Series of Integers

5.10.1 Problem

You need to work on a range of integers.

5.10.2 Solution

For a contiguous set, use a for loop.

5.10.3 Discussion

To process a contiguous set of integers, Java provides a for loop. Loop control for the for loop
is in three parts: initialize, test, and change. If the test part is initially false, the loop will never be
executed, not even once.

For discontinuous ranges of numbers, use a java.util.BitSet .

The following program demonstrates all of these techniques:

import java.util.BitSet;

/** Operations on series of numbers */
public class NumSeries {
 public static void main(String[] args) {

 // When you want an ordinal list of numbers, use a for loop
 // starting at 1.
 for (int i = 1; i <= 12; i++)
 System.out.println("Month # " + i);

 // When you want a set of array indexes, use a for loop
 // starting at 0.
 for (int i = 0; i < 12; i++)
 System.out.println("Month " + months[i]);

 // For a discontiguous set of integers, try a BitSet

 // Create a BitSet and turn on a couple of bits.
 BitSet b = new BitSet();
 b.set(0); // January
 b.set(3); // April

 // Presumably this would be somewhere else in the code.
 for (int i = 0; i<12; i++) {
 if (b.get(i))
 System.out.println("Month " + months[i] + "
requested");
 }

 132

 }
 /** The names of the months. See Dates/Times chapter for a better
way */
 protected static String months[] = {
 "January", "February", "March", "April",
 "May", "June", "July", "August",
 "September", "October", "November", "December"
 };
}

5.11 Working with Roman Numerals

5.11.1 Problem

You need to format numbers as Roman numerals. Perhaps you've just written the next Titanic or
Star Wars episode and you need to get the copyright date correct. Or, on a more mundane level,
you need to format page numbers in the front matter of a book.

5.11.2 Solution

Use my RomanNumberFormat class:

// RomanNumberSimple.java
RomanNumberFormat nf = new RomanNumberFormat();
int year = Calendar.getInstance().get(Calendar.YEAR);
System.out.println(year + " -> " + nf.format(year));

The use of Calendar to get the current year is explained in Section 6.2. Running
RomanNumberSimple looks like this:

+ jikes +E -d . RomanNumberSimple.java
+ java RomanNumberSimple
2000 -> MM

5.11.3 Discussion

There is nothing in the standard API to format Roman numerals. However, the
java.text.Format class is designed to be subclassed for precisely such unanticipated
purposes, so I have done just that and developed a class to format numbers as Roman numerals.
Here is a better and complete example program of using it to format the current year. I can pass a
number of arguments on the command line, including a "-" where I want the year to appear
(note that these arguments are normally not quoted; the "-" must be an argument all by itself,
just to keep the program simple). I use it as follows:

$ java RomanYear Copyright (c) - Ian Darwin
Copyright (c) MMI Ian Darwin
$

The code for the RomanYear program is simple, yet it correctly gets spaces around the
arguments.

 133

import java.util.*;

/** Print the current year in Roman Numerals */
public class RomanYear {

 public static void main(String[] argv) {

 RomanNumberFormat rf = new RomanNumberFormat();
 Calendar cal = Calendar.getInstance();
 int year = cal.get(Calendar.YEAR);

 // If no arguments, just print the year.
 if (argv.length == 0) {
 System.out.println(rf.format(year));
 return;
 }

 // Else a micro-formatter: replace "-" arg with year, else
print.
 for (int i=0; i<argv.length; i++) {
 if (argv[i].equals("-"))
 System.out.print(rf.format(year));
 else
 System.out.print(argv[i]); // e.g., "Copyright"
 System.out.print(' ');
 }
 System.out.println();
 }
}

Now here's the code for the RomanNumberFormat class. I did sneak in one additional class,
java.text.FieldPosition. A FieldPosition simply represents the position of one
numeric field in a string that has been formatted using a variant of NumberFormat.format().
You construct it to represent either the integer part or the fraction part; though of course, Roman
numerals don't have fractional parts. The FieldPosition methods getBeginIndex() and
getEndIndex() indicate where in the resulting string the given field wound up.

Example 5-2 is the class that implements Roman number formatting. As the comments indicate,
the one limitation is that the input number must be less than 4,000.

Example 5-2. RomanNumberFormat.java

import java.text.*;
import java.util.*;

/**
 * Roman Number class. Not localized, since Latin's a Dead Dead
Language
 * and we don't display Roman Numbers differently in different Locales.
 * Filled with quick-n-dirty algorithms.
 */
public class RomanNumberFormat extends Format {

 /** Characters used in "Arabic to Roman", that is, format()
methods. */

 134

 static char A2R[][] = {
 { 0, 'M' },
 { 0, 'C', 'D', 'M' },
 { 0, 'X', 'L', 'C' },
 { 0, 'I', 'V', 'X' },
 };

 /** Format a given double as a Roman Numeral; just truncate to a
 * long, and call format(long).
 */
 public String format(double n) {
 return format((long)n);
 }

 /** Format a given long as a Roman Numeral. Just call the
 * three-argument form.
 */
 public String format(long n) {
 if (n < 0 || n >= 4000)
 throw new IllegalArgumentException(n + " must be >= 0 && <
4000");
 StringBuffer sb = new StringBuffer();
 format(new Integer((int)n), sb, new
FieldPosition(NumberFormat.INTEGER
 return sb.toString();
 }

 /* Format the given Number as a Roman Numeral, returning the
 * Stringbuffer (updated), and updating the FieldPosition.
 * This method is the REAL FORMATTING ENGINE.
 * Method signature is overkill, but required as a subclass of
Format.
 */
 public StringBuffer format(Object on, StringBuffer sb,
FieldPosition fp) {
 if (!(on instanceof Number))
 throw new IllegalArgumentException(on + " must be a Number
object");
 if (fp.getField() != NumberFormat.INTEGER_FIELD)
 throw new IllegalArgumentException(fp +
 int n = ((Number)on).intValue();

 // First, put the digits on a tiny stack. Must be 4 digits.
 for (int i=0; i<4; i++) {
 int d=n%10;
 push(d);
 // System.out.println("Pushed " + d);
 n=n/10;
 }

 // Now pop and convert.
 for (int i=0; i<4; i++) {
 int ch = pop();
 // System.out.println("Popped " + ch);
 if (ch==0)
 continue;
 else if (ch <= 3) {

 135

 for(int k=1; k<=ch; k++)
 sb.append(A2R[i][1]); // I
 }
 else if (ch == 4) {
 sb.append(A2R[i][1]); // I
 sb.append(A2R[i][2]); // V
 }
 else if (ch == 5) {
 sb.append(A2R[i][2]); // V
 }
 else if (ch <= 8) {
 sb.append(A2R[i][2]); // V
 for (int k=6; k<=ch; k++)
 sb.append(A2R[i][1]); // I
 }
 else { // 9
 sb.append(A2R[i][1]);
 sb.append(A2R[i][3]);
 }
 }
 // fp.setBeginIndex(0);
 // fp.setEndIndex(3);
 return sb;
 }

 /** Parse a generic object, returning an Object */
 public Object parseObject(String what, ParsePosition where) {
 throw new IllegalArgumentException("Parsing not implemented");
 // TODO PARSING HERE
 // if (!(what instanceof String)
 // throw new IllegalArgumentException(what + " must be
String");
 // return new Long(0);
 }

 /* Implement a toy stack */
 protected int stack[] = new int[10];
 protected int depth = 0;

 /* Implement a toy stack */
 protected void push(int n) {
 stack[depth++] = n;
 }
 /* Implement a toy stack */
 protected int pop() {
 return stack[--depth];
 }
}

Several of the public methods are required because I wanted it to be a subclass of Format,
which is abstract. This accounts for some of the complexity, like having three different format
methods.

Note that the parseObject() method is also required, but we don't actually implement parsing
in this version. This is left as the usual exercise for the reader.

 136

5.11.4 See Also

The O'Reilly book Java I/O has an entire chapter on NumberFormat, and develops an
ExponentialNumberFormat subclass.

The online source has ScaledNumberFormat, which prints numbers with a maximum of four
digits and a computerish scale factor (B for bytes, K for kilo-, M for mega-, and so on).

5.12 Formatting with Correct Plurals

5.12.1 Problem

You're printing something like "We used" + n + " items", but in English, "We used 1 items" is
ungrammatical. You want "We used 1 item".

5.12.2 Solution

Use a ChoiceFormat or a conditional statement.

Use Java's ternary operator (cond ? trueval : falseval) in a string concatenation. Both zero
and plurals get an "s" appended to the noun in English ("no books, one book, two books"), so we
only need to test for n==1.

// FormatPlurals.java
public static void main(String argv[]) {
 report(0);
 report(1);
 report(2);
}
/** report -- using conditional operator */
public static void report(int n) {
 System.out.println("We used " + n + " item" + (n==1?"":"s"));
}

Does it work?

$ java FormatPlurals
We used 0 items
We used 1 item
We used 2 items
$

The final println statement is short for:

if (n==1)
 System.out.println("We used " + n + " item");
else
 System.out.println("We used " + n + " items");

This is a lot shorter, in fact, so the ternary conditional operator is worth learning.

 137

In JDK 1.1 or later, the ChoiceFormat is ideal for this. It is actually capable of much more, but
here I'll show only this simplest use. I specify the values 0, 1, and 2 (or more), and the string
values to print corresponding to each number. The numbers are then formatted according to the
range they fall into:

import java.text.*;
/**
 * Format a plural correctly, using a ChoiceFormat.
 */
public class FormatPluralsChoice extends FormatPlurals {
 static double[] limits = { 0, 1, 2 };
 static String[] formats = { "items", "item", "items"};
 static ChoiceFormat myFormat = new ChoiceFormat(limits,
formats);

 public static void main(String[] argv) {
 report(0); // inherited method
 report(1);
 report(2);
 }
}

This generates the same output as the basic version.

5.13 Generating Random Numbers

5.13.1 Problem

You need to generate random numbers in a hurry.

5.13.2 Solution

Use java.lang.Math.random() to generate random numbers. There is no claim that the
random values it returns are very good random numbers, however. This code exercises the
random() method:

// Random1.java
// java.lang.Math.random() is static, don't need to construct Math
System.out.println("A random from java.lang.Math is " + Math.random(
));

Note that this method only generates double values. If you need integers, you need to scale and
round:

/** Generate random ints by scaling from Math.random().
 * Prints a series of 100 random integers from 1 to 10, inclusive.
 */
public class RandomInt {
 public static void main(String[] a) {
 for (int i=0; i<100; i++)
 System.out.println(1+(int)(Math.random() * 10));
 }
}

 138

5.13.3 See Also

Section 5.14 is an easier way to get random integers. Also see the Javadoc documentation for
java.lang.Math, and the warning in this chapter's Introduction about pseudo-randomness
versus real randomness.

5.14 Generating Better Random Numbers

5.14.1 Problem

You need to generate better random numbers.

5.14.2 Solution

Construct a java.util.Random object (not just any old random object) and call its next*()
methods. These methods include nextBoolean(), nextBytes() (which fills the given array
of bytes with random values), nextDouble(), nextFloat(), nextInt(), nextLong().
Don't be confused by the capitalization of Float, Double, etc. They return the primitive types
boolean, float, double, etc., not the capitalized wrapper objects. Clear enough? Maybe an
example will help:

// Random2.java
// java.util.Random methods are non-static, do need to construct Math
Random r = new Random();
for (int i=0; i<10; i++)
 System.out.println("A double from java.util.Random is " +
r.nextDouble());
for (int i=0; i<10; i++)
 System.out.println("An integer from java.util.Random is " +
r.nextInt());

You can also use the java.util.Random nextGaussian() method, as shown next. The
nextDouble() methods try to give a "flat" distribution between and 1.0 in which each value
has an equal chance of being selected. A Gaussian or normal distribution is a bell-curve of values
from negative infinity to positive infinity, with the majority of the values around zero (0.0).

// Random3.java
Random r = new Random();
for (int i=0; i<10; i++)
 System.out.println("A gaussian random double is " + r.nextGaussian(
));

To illustrate the different distributions, I generated 10,000 numbers first using nextRandom()
and then using nextGaussian(). The code for this is in Random4.java (not shown here) and
is a combination of the previous programs with code to print the results into files. I then plotted
histograms using the R statistics package (see http://www.r-project.org). The results are
shown in Figure 5-1.

Figure 5-1. Flat (left) and Gaussian (right) distributions

 139

5.14.3 See Also

The Javadoc documentation for java.util.Random , and the warning in the Introduction about
pseudo-randomness versus real randomness.

For cryptographic use, see class java.security.SecureRandom , which provides
cryptographically strong pseudo-random number generators (PRNG).

5.15 Calculating Trigonometric Functions

5.15.1 Problem

You need to compute sine, cosine, and other trigonometric functions.

5.15.2 Solution

Use the trig functions in java.lang.Math . Like java.lang.Math.random(), all the
methods of the Math class are static, so no Math instance is necessary. This makes sense, as
none of these computations maintains any state. Here is a program that computes a few
trigonometric values and displays the values of E and PI that are available in the math library:

// Trig.java
System.out.println("Java's PI is " + Math.PI);
System.out.println("Java's e is " + Math.E);
System.out.println("The cosine of 1.1418 is " + Math.cos(1.1418));

Java 1.3 (Java 2 JDK 1.3) includes a new class, java.lang.StrictMath , which is intended to
perform most of the same operations with greater cross-platform repeatability.

5.16 Taking Logarithms

5.16.1 Problem

You need to take the logarithm of a number.

5.16.2 Solution

For logarithms to base e, use java.lang.Math 's log() function:

 140

// Logarithm.java
double someValue;
// compute someValue...
double log_e = Math.log(someValue);

For logarithms to other bases, use the identity that:

where x is the number whose logarithm you want, n is any desired base, and e is the natural
logarithm base. I have a simple LogBase class containing code that implements this functionality:

// LogBase.java
public static double log_base(double base, double value) {
 return Math.log(value) / Math.log(base);
}

5.16.3 Discussion

My log_base function allows you to compute logs to any positive base. If you have to perform a
lot of logs to the same base, it is more efficient to rewrite the code to cache the log(base) once.
Here is an example of using log_base:

// LogBaseUse.java
public static void main(String argv[]) {
 double d = LogBase.log_base(10, 10000);
 System.out.println("log10(10000) = " + d);
}
log10(10000) = 4.0

5.17 Multiplying Matrixes

5.17.1 Problem

You need to multiply a pair of two-dimensional arrays, as is common in mathematical and
engineering applications.

5.17.2 Solution

Use the following code as a model.

5.17.3 Discussion

It is straightforward to multiply an array of a numeric type. The code in Example 5-3 implements
matrix multiplication.

Example 5-3. Matrix.java

 141

/**
 * Multiply two matrices.
 * Only defined for int: clone the code (or wait for Templates)
 * for long, float, and double.
 */
public class Matrix {

 /* Matrix-multiply two arrays together.
 * The arrays MUST be rectangular.
 * @author Tom Christiansen & Nathan Torkington, Perl Cookbook
version.
 */
 public static int[][] multiply(int[][] m1, int[][] m2) {
 int m1rows = m1.length;
 int m1cols = m1[0].length;
 int m2rows = m2.length;
 int m2cols = m2[0].length;
 if (m1cols != m2rows)
 throw new IllegalArgumentException(
 int[][] result = new int[m1rows][m2cols];

 // multiply
 for (int i=0; i<m1rows; i++)
 for (int j=0; j<m2cols; j++)
 for (int k=0; k<m1cols; k++)
 result[i][j] += m1[i][k] * m2[k][j];

 return result;
 }

 public static void mprint(int[][] a) {
 int rows = a.length;
 int cols = a[0].length;
 System.out.println("array["+rows+"]["+cols+"] = {");
 for (int i=0; i<rows; i++) {
 System.out.print("{");
 for (int j=0; j<cols; j++)
 System.out.print(" " + a[i][j] + ",");
 System.out.println("},");
 }
 System.out.println(":;");
 }
}

Here is a program that uses the Matrix class to multiply two arrays of ints:

// MatrixUse.java
int x[][] = {
 { 3, 2, 3 },
 { 5, 9, 8 },
};
int y[][] = {
 { 4, 7 },
 { 9, 3 },
 { 8, 1 },
};

 142

int z[][] = Matrix.multiply(x, y);
Matrix.mprint(x);
Matrix.mprint(y);
Matrix.mprint(z);

5.17.4 See Also

Consult a book on numerical methods for more things to do with matrixes. There are commercial
libraries that will do this for you, such as the Visual Numerics vni library, which can be
downloaded from http://www.vni.com.

5.18 Using Complex Numbers

5.18.1 Problem

You need to manipulate complex numbers, as is common in mathematical, scientific, or
engineering applications.

5.18.2 Solution

Java does not provide any explicit support for dealing with complex numbers. You could keep
track of the real and imaginary parts and do the computations yourself, but that is not a very well-
structured solution.

A better solution, of course, is to use a class that implements complex numbers. I provide just
such a class. First, an example of using it:

// ComplexDemo.java
Complex c = new Complex(3, 5);
Complex d = new Complex(2, -2);
System.out.println(c + ".getReal() = " + c.getReal());
System.out.println(c + " + " + d + " = " + c.add(d));
System.out.println(c + " + " + d + " = " + Complex.add(c, d));
System.out.println(c + " * " + d + " = " + c.multiply(d));

Example 5-4 is the complete source for the Complex class, and shouldn't require much
explanation. To keep the API general, I provide -- for each of add, subtract, and multiply -- both a
static method that works on two complex objects, and a non-static method that applies the
operation to the given object and one other object.

Example 5-4. Complex.java

/** A class to represent Complex Numbers. A Complex object is
 * immutable once created; the add, subtract and multiply routines
 * return newly-created Complex objects containing the results.
 *
 */
public class Complex {
 /** The real part */
 private double r;
 /** The imaginary part */
 private double i;

 143

 /** Construct a Complex */
 Complex(double rr, double ii) {
 r = rr;
 i = ii;
 }
 /** Display the current Complex as a String, for use in
 * println() and elsewhere.
 */
 public String toString() {
 StringBuffer sb = new StringBuffer().append(r);
 if (i>0)
 sb.append('+'); // else append(i) appends - sign
 return sb.append(i).append('i').toString();
 }
 /** Return just the Real part */
 public double getReal() {
 return r;
 }
 /** Return just the Real part */
 public double getImaginary() {
 return i;
 }
 /** Return the magnitude of a complex number */
 public double magnitude() {
 return Math.sqrt(r*r + i*i);
 }

 /** Add another Complex to this one */
 public Complex add(Complex other) {
 return add(this, other);
 }
 /** Add two Complexes */
 public static Complex add(Complex c1, Complex c2) {
 return new Complex(c1.r+c2.r, c1.i+c2.i);
 }

 /** Subtract another Complex from this one */
 public Complex subtract(Complex other) {
 return subtract(this, other);
 }
 /** Subtract two Complexes */
 public static Complex subtract(Complex c1, Complex c2) {
 return new Complex(c1.r-c2.r, c1.i-c2.i);
 }

 /** Multiply this Complex times another one */
 public Complex multiply(Complex other) {
 return multiply(this, other);
 }
 /** Multiply two Complexes */
 public static Complex multiply(Complex c1, Complex c2) {
 return new Complex(c1.r*c2.r - c1.i*c2.i, c1.r*c2.i +
c1.i*c2.r);
 }
}

 144

5.19 Handling Very Large Numbers

5.19.1 Problem

You need to handle integer numbers larger than Long.MAX_VALUE or floating-point values larger
than Double.MAX_VALUE.

5.19.2 Solution

Use the BigInteger or BigDecimal values in package java.math:

// BigNums.java
System.out.println("Here's Long.MAX_VALUE: " + Long.MAX_VALUE);
BigInteger bInt = new BigInteger("3419229223372036854775807");
System.out.println("Here's a bigger number: " + bInt);
System.out.println("Here it is as a double: " + bInt.doubleValue());

Note that the constructor takes the number as a string. Obviously you couldn't just type the
numeric digits, since by definition these classes are designed to represent numbers larger than
will fit in a Java long.

5.19.3 Discussion

Both BigInteger and BigDecimal objects are immutable; that is, once constructed, they
always represent a given number. That said, there are a number of methods that return new
objects that are mutations of the original, such as negate() , which returns the negative of the
given BigInteger or BigDecimal. There are also methods corresponding to most of the Java
language built-in operators defined on the base types int/long and float/double. The
division method makes you specify the rounding method; consult a book on numerical analysis
for details. Here is a simple stack-based calculator using BigDecimal as its numeric data type:

import java.math.BigDecimal;
import java.util.Stack;

/** A trivial reverse-polish stack-based calculator for big numbers */
public class BigNumCalc {

 /** an array of Objects, simulating user input */
 public static Object[] input = {
 new BigDecimal("3419229223372036854775807.23343"),
 new BigDecimal("2.0"),
 "*",
 "=",
 };

 public static void main(String[] args) {
 Stack s = new Stack();
 for (int i = 0; i < input.length; i++) {
 Object o = input[i];
 if (o instanceof BigDecimal)
 s.push(o);
 else if (o instanceof String) {
 switch (((String)o).charAt(0)) {

 145

 case '+':
 s.push(((BigDecimal)s.pop()).add((BigDecimal)s.pop(
)));
 break;
 case '-':

s.push(((BigDecimal)s.pop()).subtract((BigDecimal)s.pop()));
 break;
 case '*':

s.push(((BigDecimal)s.pop()).multiply((BigDecimal)s.pop()));
 break;
 case '/':

s.push(((BigDecimal)s.pop()).divide((BigDecimal)s.pop(),
 BigDecimal.ROUND_UP));
 break;
 case '=':
 System.out.println(s.pop());
 break;
 default:
 throw new IllegalStateException("Unknown OPERATOR
popped");
 }
 } else {
 throw new IllegalStateException("Syntax error in
input");
 }
 }
 }
}

Running this produces the expected (very large) value:

> jikes +E -d . BigNumCalc.java
> java BigNumCalc
6838458446744073709551614.466860
>

The current version has its inputs hardcoded, but in real life you can use regular expressions to
extract words or operators from an input stream (as in Section 4.8) or use the
StreamTokenizer approach of the simple calculator (Section 9.13). The stack of numbers is
maintained using a java.util.Stack (Section 7.16).

BigInteger is mainly useful in cryptographic and security applications. Its method
isProbablyPrime() can create prime pairs for public key cryptography. BigDecimal might
also be useful in computing the size of the universe.

5.20 Program: TempConverter

The program shown in Example 5-5 prints a table of Fahrenheit temperatures (still used in daily
life weather reporting in the United States) and the corresponding Celsius temperatures (used in
science everywhere, and in daily life in most of the world).

 146

Example 5-5. TempConverter.java

import java.text.*;

/* Print a table of fahrenheit and celsius temperatures
 */
public class TempConverter {

 public static void main(String[] args) {
 TempConverter t = new TempConverter();
 t.start();
 t.data();
 t.end();
 }

 protected void start() {
 }

 protected void data() {
 for (int i=-40; i<=120; i+=10) {
 float c = (i-32)*(5f/9);
 print(i, c);
 }
 }

 protected void print(float f, float c) {
 System.out.println(f + " " + c);
 }

 protected void end() {
 }
}

This works, but these numbers print with about 15 digits of (useless) decimal fractions! The
second version of this program subclasses the first and uses a DecimalFormat to control the
formatting of the converted temperatures (Example 5-6).

Example 5-6. TempConverter2.java

import java.text.*;

/* Print a table of fahrenheit and celsius temperatures, a bit more
neatly.
 */
public class TempConverter2 extends TempConverter {
 protected DecimalFormat df;

 public static void main(String[] args) {
 TempConverter t = new TempConverter2();
 t.start();
 t.data();
 t.end();
 }

 // Constructor
 public TempConverter2() {

 147

 df = new DecimalFormat("##.###");
 }

 protected void print(float f, float c) {
 System.out.println(f + " " + df.format(c));
 }

 protected void start() {
 System.out.println("Fahr Centigrade.");
 }

 protected void end() {
 System.out.println("-------------------");
 }
}

This works, and the results are better than the first version's, but still not right:

C:\javasrc\numbers>java TempConverter2
Fahr Centigrade.
-40.0 -40
-30.0 -34.444
-20.0 -28.889
-10.0 -23.333
0.0 -17.778
10.0 -12.222
20.0 -6.667
30.0 -1.111
40.0 4.444
50.0 10

It would look neater if we lined up the decimal points, but Java has nothing in its standard API for
doing this. This is deliberate! They wanted to utterly break the ties with the ancient IBM 1403 line
printers and similar monospaced devices such as typewriters, "dumb" terminals,[2] and DOS
terminal windows. However, with a bit of simple arithmetic, the FieldPosition from Section
5.11 can be used to figure out how many spaces need to be prepended to line up the columns;
the arithmetic is done in print(), and the spaces are put on in prependSpaces(). The
result is much prettier:

[2] My children are quick to remind me that "dumb" means "incapable of speech." Nobody who has used,
say, a TTY33 or a DecWriter 100 dumb terminal will claim that they are incapable of speech. Intelligible
speech yes, but they certainly did talk at you while they were printing . . .

C:\javasrc\numbers>java TempConverter3
Fahr Centigrade.
 -40 -40
 -30 -34.444
 -20 -28.889
 -10 -23.333
 0 -17.778
 10 -12.222
 20 -6.667
 30 -1.111
 40 4.444
 50 10
 60 15.556

 148

 70 21.111
 80 26.667
 90 32.222
 100 37.778
 110 43.333
 120 48.889

And the code (Example 5-7) is only ten lines longer!

Example 5-7. TempConverter3.java

import java.text.*;

/* Print a table of fahrenheit and celsius temperatures, with decimal
 * points lined up.
 */
public class TempConverter3 extends TempConverter2 {
 protected FieldPosition fp;
 protected DecimalFormat dff;

 public static void main(String[] args) {
 TempConverter t = new TempConverter3();
 t.start();
 t.data();
 t.end();
 }

 // Constructor
 public TempConverter3() {
 super();
 dff = new DecimalFormat("##.#");
 fp = new FieldPosition(NumberFormat.INTEGER_FIELD);
 }

 protected void print(float f, float c) {
 String fs = dff.format(f, new StringBuffer(), fp).toString();
 fs = prependSpaces(4 - fp.getEndIndex(), fs);

 String cs = df.format(c, new StringBuffer(), fp).toString();
 cs = prependSpaces(4 - fp.getEndIndex(), cs);

 System.out.println(fs + " " + cs);
 }

 protected String prependSpaces(int n, String s) {
 String[] res = {
 "", " ", " ", " ", " ", " "
 };
 if (n<res.length)
 return res[n] + s;
 throw new IllegalStateException("Rebuild with bigger \"res\"
array.");
 }
}

 149

Remember, though, that the fields will line up only if you use a fixed-width font, such as Courier
or LucidaSansTypewriter. If you want to line it up in a graphical display, you'll need to use
Java's font capability (see Section 12.6) or use a JTable (see the Javadoc for
javax.swing.JTable or the O'Reilly book Java Swing).

5.21 Program: Number Palindromes

My wife, Betty, recently reminded me of a theorem that I must have studied in high school but
whose name I have long since forgotten: that any positive integer number can be used to
generate a palindrome by adding to it the number comprised of its digits in reverse order.
Palindromes are sequences that read the same in either direction, such as the name "Anna" or
the phrase "Madam, I'm Adam" (being non-strict and ignoring spaces and punctuation). We
normally think of palindromes as composed of text, but the concept can be applied to numbers:
13531 is a palindrome. Start with the number 72, for example, and add to it the number 27. The
results of this addition is 99, which is a (short) palindrome. Starting with 142, add 241, and you
get 383. Some numbers take more than one try to generate a palindrome. 1951 + 1591 yields
3542, which is not palindromic. The second round, however, 3542 + 2453, yields 5995, which is.
The number 17,892, which my son Benjamin picked out of the air, requires 12 rounds to generate
a palindrome, but it does terminate:

C:\javasrc\numbers>java Palindrome 72 142 1951 17892
Trying 72
72->99
Trying 142
142->383
Trying 1951
Trying 3542
1951->5995
Trying 17892
Trying 47763
Trying 84537
Trying 158085
Trying 738936
Trying 1378773
Trying 5157504
Trying 9215019
Trying 18320148
Trying 102422529
Trying 1027646730
Trying 1404113931
17892->2797227972

C:\javasrc\numbers>

If this sounds to you like a natural candidate for recursion, you are correct. Recursion involves
dividing a problem into simple and identical steps, which can be implemented by a function that
calls itself and provides a way of termination. Our basic approach, as shown in method
findPalindrome, is:

long findPalindrome(long num) {
 if (isPalindrome(num))
 return num;
 return findPalindrome(num + reverseNumber(num));
}

 150

That is, if the starting number is already a palindromic number, return it; otherwise, add it to its
reverse, and try again. The version of the code shown here handles simple cases directly (single
digits are always palindromic, for example). We won't think about negative numbers, as these
have a character at the front that loses its meaning if placed at the end, and hence are not strictly
palindromic. Further, there are certain numbers whose palindromic forms are too long to fit in
Java's 64-bit long integer. These will cause underflow, which is trapped and then an error
message like "too big" is reported. Having said all that, Example 5-8 shows the code.

Example 5-8. Palindrome.java

/** Compute the Palindrome of a number by adding the number composed of
 * its digits in reverse order, until a Palindrome occurs.
 * e.g., 42->66 (42+24); 1951->5995 (1951+1591=3542; 3542+2453=5995).
 * <P>TODO: Do we need to handle negative numbers?
 */
public class Palindrome {
 public static void main(String[] argv) {
 for (int i=0; i<argv.length; i++)
 try {
 long l = Long.parseLong(argv[i]);
 if (l < 0) {
 System.err.println(argv[i] + " -> TOO SMALL");
 continue;
 }
 System.out.println(argv[i] + "->" + findPalindrome(l));
 } catch (NumberFormatException e) {
 System.err.println(argv[i] + "-> INVALID");
 } catch (IllegalStateException e) {
 System.err.println(argv[i] + "-> TOO BIG(went
negative)");
 }
 }

 /** find a palindromic number given a starting point, by
 * calling ourself until we get a number that is palindromic.
 */
 static long findPalindrome(long num) {
 if (num < 0)
 throw new IllegalStateException("went negative");
 if (isPalindrome(num))
 return num;
 System.out.println("Trying " + num);
 return findPalindrome(num + reverseNumber(num));
 }

 /** The number of digits in Long.MAX_VALUE */
 protected static final int MAX_DIGITS = 19;

 // digits array is shared by isPalindrome and reverseNumber,
 // which cannot both be running at the same time.

 /* Statically allocated array to avoid new-ing each time. */
 static long[] digits = new long[MAX_DIGITS];

 /** Check if a number is palindromic. */
 static boolean isPalindrome(long num) {

 151

 if (num >= 0 && num <= 9)
 return true;
 int nDigits = 0;
 while (num > 0) {
 digits[nDigits++] = num % 10;
 num /= 10;
 }
 for (int i=0; i<nDigits/2; i++)
 if (digits[i] != digits[nDigits - i - 1])
 return false;
 return true;
 }

 static long reverseNumber(long num) {
 int nDigits = 0;
 while (num > 0) {
 digits[nDigits++] = num % 10;
 num /= 10;
 }
 long ret = 0;
 for (int i=0; i<nDigits; i++) {
 ret *= 10;
 ret += digits[i];
 }
 return ret;
 }
}

5.21.1 See Also

People using Java in scientific or large-scale numeric computing should check out the Java
Grande Forum (http://www.javagrande.org), a discussion group that aims to work with Sun
to ensure Java's usability in these realms.

 152

Chapter 6. Dates and Times

6.1 Introduction

6.2 Finding Today's Date

6.3 Printing Date/Time in a Specified Format

6.4 Representing Dates in Other Epochs

6.5 Converting YMDHMS to a Calendar or Epoch Seconds

6.6 Parsing Strings into Dates

6.7 Converting Epoch Seconds to DMYHMS

6.8 Adding to or Subtracting from a Date or Calendar

6.9 Difference Between Two Dates

6.10 Comparing Dates

6.11 Day of Week/Month/Year or Week Number

6.12 Calendar Page

6.13 High-Resolution Timers

6.14 Sleeping for a While

6.15 Program: Reminder Service

6.1 Introduction

Yes, Java is Y2K safe. That was the first date-related question people asked before 2,000 AD
rolled around, so I'll answer it up front. The difficulties of date handling in Java arise not from Y2K
issues but from Y1970 issues.

When Java was devised in the early 1990s, there was already considerable awareness in the
computing industry of the impending problems with some old code. In fairness to practitioners of
the 1970s and 1980s, I must add that not all of us ignored the Y2K issue. I read a key early
warning sounded around 1974 in Datamation or JACM, and many of my colleagues from that
time forward (myself included) paid close attention to issues of date survivability, as did the
developers of the Java API.

 153

In the earliest releases of Java, there was a class called Date designed for representing and
operating upon dates. Its problems were that it was Anglocentric -- like much of Java 1.0 -- and
that its dates began with the Unix time epoch: January 1, 1970. The year is an integer whose
minimum value 70 is treated as 1970, so 99 is 1999, 100 is 2000, and so on. Consequently, there
is no general Y2K problem with Java. The problem remains that those of us ancient enough to
have been born before that venerable year of 1970 in the history of computing -- the time when
Unix was invented -- found ourselves unable to represent our birth dates, and this made us
grumpy and irritable.

The Anglocentricity and 1970-centricity could have been vanquished with Java 1.1. A new class,
Calendar , was devised, with hooks for representing dates in any date scheme such as the
western (Christian) calendar, the Hebrew calendar, the Islamic calendar, the Chinese calendar,
and even Star Trek Star dates. Unfortunately, there wasn't enough time to implement any of
these. In fact, only the GregorianCalendar class appears in Java 1.1, and Java 2 does little to
solve the problem (though it does fix the Date class to allow it to represent years before 1970.)
You may have to go to other sources to get additional Calendar classes; one source is listed in
Section 6.4.

The Calendar class can represent any date, BC or AD, in the western calendar. A separate
Java int variable, with 32 bits of storage, is allocated for each item such as year, month, day,
and so on. Years are signed, negative numbers meaning before the calendar epoch and positive
numbers after it. The term epoch means the beginning of recorded time. In the western world, our
calendar epoch is the imaginary year 0, representing the putative birth year of Jesus Christ. This
is such an important event that the years before it are called Before Christ or BC, and dates since
then are called . . . well, not After Christ, but the Latin anno domini, meaning "in the year of our
Lord." Because that takes too long to say and write, we use the acronym AD, thus provi ng that
computerists take no blame whatsoever for inventing the use of acronyms. In the modern spirit of
political correctness, these terms have been renamed to BCE (Before Common Era) and CE
(Common Era), but to most westerners born before about 1980 they will always be BC and AD.
The GregorianCalendar class, intended to represent western or Christian dates, also uses BC
and AD.

Where was I? Oh yes, Java. As ints in Java are 32 bits, that allows 2^31, or 2,147,483,648,
years. Let's say roughly two billion years. I, for one, am not going to worry about this new Y2B
menace -- even if I'm still around, I'm sure they'll have gone to a 64-bit integer by then.

Fortunately, in Java 2 (JDK 1.2), the Date class was changed to use long values, and it can now
represent a much wider range of dates. And what about this new DateFormat class? Well, it
does provide a great deal of flexibility in the formatting of dates. Plus, it's bidirectional -- it can
parse dates too. We'll see it in action in Recipes Section 6.3 and Section 6.6.

Note also that some of these classes are in java.text while others are in java.util.
Package java.text contains classes and interfaces for handling text, dates, numbers, and
messages in a manner independent of natural languages, while java.util contains the
collections framework, legacy collection classes, event model, date and time facilities,
internationalization, and miscellaneous utility classes. You'll need to import both packages in
most date-related programs.

6.2 Finding Today's Date

6.2.1 Problem

 154

You want to find today's date.

6.2.2 Solution

Use a Date object's toString() method.

6.2.3 Discussion

The quick and simple way to get today's date and time is to construct a Date object with no
arguments in the constructor call, and call its toString() method:

// Date0.java
System.out.println(new java.util.Date());

However, for reasons just outlined, we want to use a Calendar object. Just use
Calendar.getInstance().getTime(), which returns a Date object (even though the
name makes it seem like it should return a Time value[1]), and print the resulting Date object,
either using its toString() method or a DateFormat object. You might be tempted to
construct a GregorianCalendar object, using the no-argument constructor, but if you do this,
your program will not give the correct answer when non-western locales get Calendar
subclasses of their own (in some future release of Java). The static factory method
Calendar.getInstance() returns a localized Calendar subclass for the locale you are in.
In North America and Europe it will likely return a GregorianCalendar, but in other parts of the
world it might (someday) return a different kind of Calendar.

[1] Just to be clear: Date's getTime() returns the time in seconds, while Calendar's getTime() returns
a Date.

Do not try to use a GregorianCalendar's toString() method; the results are truly
impressive, but not very interesting. Sun's implementation prints all its internal state information;
Kaffe's inherits Object's toString(), which just prints the class name and the hashcode.
Neither is useful for our purposes.

// Date1,.javaj
ava.util.GregorianCalendar[time=932363506950,areFieldsSet=true,areAllFi
eldsSet=true,
lenient=true,zone=java.util.SimpleTimeZone[id=America/Los_Angeles,offse
t=-28800000,
dstSavings=3600000,useDaylight=true,startYear=0,startMode=3,startMonth=
3,startDay=1,
startDayOfWeek=1,startTime=7200000,endMode=2,endMonth=9,endDay=-
1,endDayOfWeek=1,
endTime=7200000],firstDayOfWeek=1,minimalDaysInFirstWeek=1,ERA=1,YEAR=1
999,MONTH=6,
WEEK_OF_YEAR=30,WEEK_OF_MONTH=4,DAY_OF_MONTH=18,DAY_OF_YEAR=199,DAY_OF_
WEEK=1,
DAY_OF_WEEK_IN_MONTH=3,AM_PM=1,HOUR=10,HOUR_OF_DAY=22,MINUTE=51,SECOND=
46,
MILLISECOND=950,ZONE_OFFSET=-28800000,DST_OFFSET=3600000]

Calendar's getTime() returns a Date object, which can be passed to println() to print
today's date (and time) in the traditional (but non-localized) format:

 155

// Date2.java
System.out.println(Calendar.getInstance().getTime());

To print the date in any other format, use a java.text.DateFormat, which you'll meet in
Section 6.3.

6.3 Printing Date/Time in a Specified Format

6.3.1 Problem

You want to print the date and/or time in a specified format.

6.3.2 Solution

Use a java.text.DateFormat.

6.3.3 Discussion

To print the date in the correct format for whatever locale your software lands in, simply use the
default DateFormat formatter, which is obtained by calling DateFormat.getInstance().

Suppose you want the date printed, but instead of the default format "Sun Jul 18 16:14:09 PDT
1999", you want it printed like "Sun 1999.07.18 at 04:14:09 PM PDT". A look at the Javadoc page
for SimpleDateFormat -- the only non-abstract subclass of DateFormat -- reveals that it has a
rich language for specifying date and time formatting. To use a default format, of course, we can
just use the Date object's toString() method, and for a localized default format, we use
DateFormat.getInstance(). But to have full control and get the "Sun 1999.07.18 at
04:14:09 PM PDT", we construct an instance explicitly, like so:

new SimpleDateFormat ("E yyyy.MM.dd 'at' hh:mm:ss a zzz");

E means the day of the week; yyyy, MM, and dd are obviously year, month, and day. The quoted
string 'at' means the string "at". hh:mm:ss is the time; a means A.M. or P.M., and zzz means
the time zone. Some of these are more memorable than others; I find the zzz tends to put me to
sleep. Here's the code:

// DateDemo.java
Date dNow = new Date();

/* Simple, Java 1.0 date printing */
System.out.println("It is now " + dNow.toString());

// Use a SimpleDateFormat to print the date our way.
SimpleDateFormat formatter
 = new SimpleDateFormat ("E yyyy.MM.dd 'at' hh:mm:ss a zzz");
System.out.println("It is " + formatter.format(dNow));

There are many format symbols; a list is shown in Table 6-1.

Table 6-1. Simple DateFormat format codes
Symbol Meaning Presentation Example

 156

G Era designator Text AD
y Year Number 2001
M Month in year Text and Number July or 07
d Day in month Number 10
h Hour in A.M./P.M. (1~12) Number 12
H Hour in day (0~23) Number 0
m Minute in hour Number 30
s Second in minute Number 43
S Millisecond Number 234
E Day in week Text Tuesday
D Day in year Number 360
F Day of week in month Number 2 (second Wed. in July)
w Week in year Number 40
W Week in month Number 1
a A.M./P.M. marker Text PM
k Hour in day (1~24) Number 24
K Hour in A.M./P.M. (0~11) Number 0
z Time zone Text Eastern Standard Time
' Escape for text Delimiter
" Single quote Literal '

You can use as many of the given symbols as needed. Where a format can be used either in text
or numeric context, you can set it to longer form by repetitions of the character. For codes marked
"Text", four or more pattern letters will cause the formatter to use the long form, whereas fewer
will cause it to use the short or abbreviated form if one exists. Thus, E might yield Mon, whereas
EEEE would yield Monday. For those marked "Number", the number of repetitions of the symbol
gives the minimum number of digits. Shorter numbers are zero-padded to the given number of
digits. The year is handled specially: yy yields a two-digit year (98, 88, 00, 01 . . .), whereas
yyyy yields a valid year (2001). For those marked "Text and Number", three or more symbols
causes it to use text, while one or two make it use a number: MM might yield 01, while MMM would
yield January.

6.4 Representing Dates in Other Epochs

6.4.1 Problem

You need to deal with dates in a form other than the Gregorian Calendar used in the western
world.

6.4.2 Solution

Visit the IBM alphaWorks web site.

6.4.3 Discussion

As of Java 2, the only non-abstract Calendar subclass is the GregorianCalendar, as
mentioned previously. However, others do exist. Check out the IBM alphaWorks web site

 157

(http://alphaworks.ibm.com), which has a large collection of freely available Java software
(mostly without source code, alas). Search for "calendar", and you'll find a set of calendars --
Hebrew, Islamic, Buddhist, Japanese, and even an Astronomical Calendar class -- that covers
most of the rest of the world.

These work in a similar fashion to the standard GregorianCalendar class, but have constants
for month names and other information relevant to each particular calendar.

6.5 Converting YMDHMS to a Calendar or Epoch Seconds

6.5.1 Problem

You have year, month, day, hour, minute, and maybe even seconds, and you need to convert it to
a Calendar or a Date.

6.5.2 Solution

Use the Calendar class's set(y,m,d,h,m[,s]) method, which allows you to set the
date/time fields to whatever you wish. Note that when using this form and providing your own
numbers or when constructing either a Date or a GregorianCalendar object, the month value
is zero-based while all the other values are true-origin. Presumably, this is to allow you to print
the month name from an array without having to remember to subtract one, but it is confusing.

// GregCalDemo.java
GregorianCalendar d1 = new GregorianCalendar(1986, 04, 05); // May 5
GregorianCalendar d2 = new GregorianCalendar(); // today
Calendar d3 = Calendar.getInstance(); // today

System.out.println("It was then " + d1.getTime());
System.out.println("It is now " + d2.getTime());
System.out.println("It is now " + d3.getTime());
d3.set(Calendar.YEAR, 1915);
d3.set(Calendar.MONTH, Calendar.APRIL);
d3.set(Calendar.DAY_OF_MONTH, 12);
System.out.println("D3 set to " + d3.getTime());

This prints the dates as shown:

It was then Mon May 05 00:00:00 PDT 1986
It is now Sun Jul 18 22:51:47 PDT 1999
It is now Sun Jul 18 22:51:47 PDT 1999
D3 set to Mon Apr 12 22:51:47 PDT 1915

6.6 Parsing Strings into Dates

6.6.1 Problem

You need to convert user input into Date or Calendar objects.

6.6.2 Solution

 158

Use a DateFormat.

6.6.3 Discussion

The DateFormat class introduced in Section 6.3 has some additional methods, notably
parse() , which tries to parse a string according to the format stored in the given DateFormat
object.

// DateParse1.java
SimpleDateFormat formatter
 = new SimpleDateFormat ("yyyy-MM-dd");
String input = args.length == 0 ? "1818-11-11" : args[0];
System.out.print(input + " parses as ");
Date t;
try {
 t = formatter.parse(input);
 System.out.println(t);
} catch (ParseException e) {
 System.out.println("unparseable using " + formatter);
}

This will parse any date back to Year Zero and well beyond Year 2000.

What if the date is embedded in an input string? You could, of course, use the string's
substring() method to extract it, but there is an easier way. The ParsePosition object
from java.text is designed to represent (and track) the position of an imaginary cursor in a
string. Suppose we have genealogical data with input strings representing the times of a person's
life:

BD: 1913-10-01 Vancouver, B.C.
DD: 1983-06-06 Toronto, ON

This lists one person's birth date (BD) and place, and death date (DD) and place. We can parse
these using String.indexOf(' ') to find the space after the : character, DateFormat
parse() to parse the date, and String.substring() to get the city and other geographic
information. Here's how:

// DateParse2.java
SimpleDateFormat formatter =
 new SimpleDateFormat ("yyyy-MM-dd");
String input[] = {
 "BD: 1913-10-01 Vancouver, B.C.",
 "MD: 1948-03-01 Ottawa, ON",
 "DD: 1983-06-06 Toronto, ON" };
for (int i=0; i<input.length; i++) {
 String aLine = input[i];
 String action;
 switch(aLine.charAt(0)) {
 case 'B': action = "Born"; break;
 case 'M': action = "Married"; break;
 case 'D': action = "Died"; break;
 // others...
 default: System.err.println("Invalid code in " + aLine);
 continue;

 159

 }
 int p = aLine.indexOf(' ');
 ParsePosition pp = new ParsePosition(p);
 Date d = formatter.parse(aLine, pp);
 if (d == null) {
 System.err.println("Invalid date in " + aLine);
 continue;
 }
 String location = aLine.substring(pp.getIndex());
 System.out.println(
 action + " on " + d + " in " + location);
}

This works like I said it would:

Born on Wed Oct 01 00:00:00 PDT 1913 in Vancouver, B.C.
Married on Mon Mar 01 00:00:00 PST 1948 in Ottawa, ON
Died on Mon Jun 06 00:00:00 PDT 1983 in Toronto, ON

Note that the polymorphic form of parse() that takes one argument throws a
ParseException if the input cannot be parsed, while the form that takes a ParsePosition as
its second argument returns null to indicate failure.

6.7 Converting Epoch Seconds to DMYHMS

6.7.1 Problem

You need to convert a number of seconds since 1970 into a Date.

6.7.2 Solution

Just use the Date constructor.

6.7.3 Discussion

"The Epoch" is the time at the beginning of time as far as modern operating systems go. Unix
time, and some versions of MS-Windows time, count off inexorably the seconds since the epoch.
On systems that store this in a 32-bit integer, time is indeed running out. Let's say we wanted to
find out when the Unix operating system, whose 32-bit versions use a 32-bit date, will get into
difficulty. We take a 32-bit integer of all ones, and construct a Date around it. The Date
constructor needs the number of milliseconds since 1970, so we multiply by 1,000:

/** When does the UNIX date get into trouble? */

public class Y2038 {
 public static void main(String[] a) {

 // This should yield 2038AD, the hour of doom for the
 // last remaining 32-bit UNIX systems (there will be
 // millions of 64-bit UNIXes by then).

 long expiry = 0x7FFFFFFFL * 1000;

 160

 System.out.println("32-bit UNIX expires on " +
 Long.toHexString(expiry) + " or " +
 new java.util.Date(expiry));
 // Why doesn't it?

 // Try going from msec of current time into a Date
 long now = System.currentTimeMillis();
 System.out.println(
 "Passing " + Long.toHexString(now) + " --> " +
 new java.util.Date(now));

 }
}

Sure enough, the program reports that 32-bit Unixes will expire in the year 2038 (you might think I
knew that in advance if you were to judge by the name I gave the class; in fact, my web site has
carried the Y2038 warning to Unix users for several years now). At least Unix system managers
have more warning than most of the general public had for the original Y2K problem.

> java Y2038
32-bit UNIX expires on 1f3fffffc18 or Mon Jan 18 22:14:07 EST 2038
Passing e29cfe1432 --> Fri Nov 03 19:08:25 EST 2000
>

At any rate, if you need to convert seconds since 1970 to a date, you know how.

6.8 Adding to or Subtracting from a Date or Calendar

6.8.1 Problem

You need to add or subtract a fixed amount to or from a date.

6.8.2 Solution

As we've seen, Date has a getTime() method that returns the number of seconds since the
epoch as a long. To add or subtract, you just do arithmetic on this value. Here's a code example:

// DateAdd.java
/** Today's date */
Date now = new Date();

long t = now.getTime();

t -= 700*24*60*60*1000;

Date then = new Date(t);

System.out.println("Seven hundred days ago was " + then);

6.8.3 Discussion

A cleaner variant is to use the Calendar's add() method:

 161

import java.text.*;
import java.util.*;

/** DateCalAdd -- compute the difference between two dates.
 */
public class DateCalAdd {
 public static void main(String[] av) {
 /** Today's date */
 Calendar now = Calendar.getInstance();

 /* Do "DateFormat" using "simple" format. */
 SimpleDateFormat formatter
 = new SimpleDateFormat ("E yyyy.MM.dd 'at' hh:mm:ss a
zzz");
 System.out.println("It is now " +
 formatter.format(now.getTime()));

 now.add(Calendar.DAY_OF_YEAR, - (365 * 2));
 System.out.println("Two years ago was " +
 formatter.format(now.getTime()));
 }
}

Running this reports the current date and time, and the date and time two years ago:

> java DateCalAdd
It is now Fri 2000.11.03 at 07:16:26 PM EST
Two years ago was Wed 1998.11.04 at 07:16:26 PM EST

6.9 Difference Between Two Dates

6.9.1 Problem

You need to compute the difference between two dates.

6.9.2 Solution

Convert to Date objects if necessary, call their getTime() methods, and subtract. Format the
result yourself.

6.9.3 Discussion

There is no general mechanism in the API for computing the difference between two dates. This
is surprising, given how often it comes up in some types of commercial data processing.
However, it's fairly simple to implement this yourself:

import java.util.*;

/** DateDiff -- compute the difference between two dates.
 */
public class DateDiff {
 public static void main(String[] av) {

 162

 /** The ending date. This value
 * doubles as a Y2K countdown time.
 */
 Date d1 = new GregorianCalendar(1999,11,31,23,59).getTime();

 /** Today's date */
 Date d2 = new Date();

 // Get msec from each, and subtract.
 long diff = d2.getTime() - d1.getTime();

 System.out.println("Difference between " + d2 + "\n" +
 "\tand Y2K is " +
 (diff / (1000*60*60*24)) +
 " days.");
 }
}

Of course, I'm doing the final editing on this chapter long after the Y2K turnover, so it should print
a positive value, and it does:

> java DateDiff
Difference between Fri Nov 03 19:24:24 EST 2000
 and Y2K is -307 days.
>

You saw Calendar's add() method in Section 6.8, but that only adds to the day, month, or
year (or any other field) in the Calendar object; it does not add two Calendar dates together.

6.10 Comparing Dates

6.10.1 Problem

You need to compare two dates.

6.10.2 Solution

If the dates are in Date objects, compare with equals() and one of before() or after(
). If the dates are in longs , compare with both == and one of < or >.

6.10.3 Discussion

While Date implements equals() like any good class, it also provides before(Date) and
after(Date), which compare one date with another to see which happened first. This can be
used to determine the relationship among any two dates, as in Example 6-1.

Example 6-1. CompareDates.java

import java.util.*;
import java.text.*;

public class CompareDates {

 163

 public static void main(String[] args) throws ParseException {

 DateFormat df = new SimpleDateFormat ("yyyy-MM-dd");

 // Get Date 1
 Date d1 = df.parse(args[0]);

 // Get Date 2
 Date d2 = df.parse(args[1]);

 String relation;
 if (d1.equals(d2))
 relation = "the same date as";
 else if (d1.before(d2))
 relation = "before";
 else
 relation = "after";
 System.out.println(d1 + " is " + relation + ' ' + d2);
 }
}

Running CompareDates with two close-together dates and the same date reveals that it seems
to work:

> java CompareDates 2000-01-01 1999-12-31
Sat Jan 01 00:00:00 EST 2000 is after Fri Dec 31 00:00:00 EST 1999
> java CompareDates 2000-01-01 2000-01-01
Sat Jan 01 00:00:00 EST 2000 is the same date as Sat Jan 01 00:00:00
EST 2000

It would be interesting to see if DateFormat.parse() really does field rolling, as the
documentation says. Apparently so!

> javaCompareDates 2001-02-29 2001-03-01
Thu Mar 01 00:00:00 EST 2001 is the same date as Thu Mar 01 00:00:00
EST 2001
>

Sometimes the API gives you a date as a long. For example, the File class has methods
(detailed in Section 10.2) to give information such as when the last time a file on disk was
modified. Example 6-2 shows a program similar to Example 6-1, but using the long value
returned by the File's lastModified() method.

Example 6-2. CompareFileDates.java

import java.util.*;
import java.io.File;

public class CompareFileDates {
 public static void main(String[] args) {
 // Get the timestamp from file 1
 String f1 = args[0];
 long d1 = new File(f1).lastModified();

 164

 // Get the timestamp from file 2
 String f2 = args[1];
 long d2 = new File(f2).lastModified();

 String relation;
 if (d1 == d2)
 relation = "the same age as";
 else if (d1 < d2)
 relation = "older than";
 else
 relation = "newer than";
 System.out.println(f1 + " is " + relation + ' ' + f2);
 }
}

Running CompareFileDates on its source and class reveals that the class file is newer (that is,
more up to date). Comparing a directory with itself gives the result of "the same age", as you'd
expect:

> java CompareFileDates CompareFileDate.java CompareFileDate.class
CompareFileDate.java is older thanCompareFileDate.class
> java CompareFileDates . .
. is the same age as .

6.11 Day of Week/Month/Year or Week Number

6.11.1 Problem

You have a date and need to find what day of the week, month, or year that date falls on.

6.11.2 Solution

Use the Calendar class's get() method, which has constants for retrieving most such values.

6.11.3 Discussion

The Calendar class can return most of these:

// CalendarDemo.java
Calendar c = Calendar.getInstance(); // today
System.out.println("Year: " + c.get(Calendar.YEAR));
System.out.println("Month: " + c.get(Calendar.MONTH));
System.out.println("Day: " + c.get(Calendar.DAY_OF_MONTH));
System.out.println("Day of week = " + c.get(Calendar.DAY_OF_WEEK));
System.out.println("Day of year = " + c.get(Calendar.DAY_OF_YEAR));
System.out.println("Week in Year: " + c.get(Calendar.WEEK_OF_YEAR));
System.out.println("Week in Month: " + c.get(Calendar.WEEK_OF_MONTH));
System.out.println("Day of Week in Month: " +
 c.get(Calendar.DAY_OF_WEEK_IN_MONTH));
System.out.println("Hour: " + c.get(Calendar.HOUR));
System.out.println("AM or PM: " + c.get(Calendar.AM_PM));
System.out.println("Hour (24-hour clock): " +

 165

 c.get(Calendar.HOUR_OF_DAY));
System.out.println("Minute: " + c.get(Calendar.MINUTE));
System.out.println("Second: " + c.get(Calendar.SECOND));

This chatty program shows most of the fields in the Calendar class:

Year: 1999
Month: 6
Day: 19
Day of week = 2
Day of year = 200
Week in Year: 30
Week in Month: 4
Day of Week in Month: 3
Hour: 3
AM or PM: 1
Hour (24-hour clock): 15
Minute: 18
Second: 42

6.12 Calendar Page

6.12.1 Problem

You want a calendar for a given month of a given year, or of the current month and year.

6.12.2 Solution

Use Calendar.get() to find what day of the week the first of the month falls on, and format
accordingly.

6.12.3 Discussion

Like the output of the Unix cal command, it is often convenient to view a month in compact form.
The basic idea is to find what day of week the first of the month is and print blank columns for the
days of the week before the month begins. Then, print the numbers from 1 to the end of the
month, starting a new column after you get to the last day of each week.

Here's my program, compared to the Unix cal command:

daroad.darwinsys.com$ java CalendarPage 6 2000
June 2000
Su Mo Tu We Th Fr Sa
 1 2 3
 4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30
daroad.darwinsys.com$ cal 6 2000
 June 2000
Su Mo Tu We Th Fr Sa
 1 2 3

 166

 4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30

The source code is simple and straightforward (Example 6-3).

Example 6-3. CalendarPage.java

import java.util.*;
import java.text.*;

/** Print a month page.
 * Only works for the Western calendar.
 */
public class CalendarPage {

 /** The names of the months */
 String[] months = {
 "January", "February", "March", "April",
 "May", "June", "July", "August",
 "September", "October", "November", "December"
 };

 /** The days in each month. */
 public final static int dom[] = {
 31, 28, 31, 30, /* jan feb mar apr */
 31, 30, 31, 31, /* may jun jul aug */
 30, 31, 30, 31 /* sep oct nov dec */
 };

 /** Compute which days to put where, in the Cal panel */
 public void print(int mm, int yy) {
 /** The number of days to leave blank at the start of this
month */
 int leadGap = 0;

 System.out.print(months[mm]); // print month and year
 System.out.print(" ");
 System.out.print(yy);
 System.out.println();

 if (mm < 0 || mm > 11)
 throw new IllegalArgumentException("Month " + mm + " bad,
must be 0-11");
 GregorianCalendar calendar = new GregorianCalendar(yy, mm, 1);

 System.out.println("Su Mo Tu We Th Fr Sa");

 // Compute how much to leave before the first.
 // getDay() returns 0 for Sunday, which is just right.
 leadGap = calendar.get(Calendar.DAY_OF_WEEK)-1;

 int daysInMonth = dom[mm];
 if (calendar.isLeapYear(calendar.get(Calendar.YEAR)) && mm ==
1)

 167

 ++daysInMonth;

 // Blank out the labels before 1st day of month
 for (int i = 0; i < leadGap; i++) {
 System.out.print(" ");
 }

 // Fill in numbers for the day of month.
 for (int i = 1; i <= daysInMonth; i++) {

 // This "if" statement is simpler than fiddling with
NumberFormat
 if (i<=9)
 System.out.print(' ');
 System.out.print(i);

 if ((leadGap + i) % 7 == 0) // wrap if end of line.
 System.out.println();
 else
 System.out.print(' ');
 }
 System.out.println();
 }

 /** For testing, a main program */
 public static void main(String[] av) {
 int month, year;

 CalendarPage cp = new CalendarPage();

 // print the current month.
 if (av.length == 2) {
 cp.print(Integer.parseInt(av[0])-1,
Integer.parseInt(av[1]));
 } else {
 Calendar c = Calendar.getInstance();
 cp.print(c.get(Calendar.MONTH), c.get(Calendar.YEAR));
 }
 }
}

6.13 High-Resolution Timers

6.13.1 Problem

You need to time how long something takes.

6.13.2 Solution

Call System.getTimeMillis() twice, and subtract the first result from the second result.

6.13.3 Discussion

 168

Needing a timer is such a common thing that, instead of making you depend on some external
library, the developers of Java have built it in. The System class contains a static method that
returns the current time (since 1970) in milliseconds. Thus, to time some event, use this:

long start = System.getTimeMillis();
method_to_be_timed();
long end = System.getTimeMillis(); l
ong elapsed = end - start; // time in msec.

Here is a short example to measure how long it takes a user to press return. We divide the time in
milliseconds by a thousand to get seconds, and print it nicely using a NumberFormat:

// Timer0.java
long t0, t1;
System.out.println("Press return when ready");
t0=System.currentTimeMillis();
int b;
do {
 b = System.in.read();
} while (b!='\r' && b != '\n');

t1=System.currentTimeMillis();
double deltaT = t1-t0;
System.out.println("You took " +
 DecimalFormat.getInstance().format(deltaT/1000.) + " seconds.");

This longer example uses the same technique, but computes a large number of square roots and
writes each one to a discard file using the getDevNull() method from Section 2.5:

import java.io.*;
import java.text.*;

/**
 * Timer for processing sqrt and I/O operations.
 */
public class Timer {
 public static void main(String argv[]) {
 try {
 new Timer().run();
 } catch (IOException e) {
 System.err.println(e);
 }
 }
 public void run() throws IOException {

 DataOutputStream n = new DataOutputStream(
 new BufferedOutputStream(new
FileOutputStream(SysDep.getDevNull())));
 long t0, t1;
 System.out.println("Java Starts at " +
(t0=System.currentTimeMillis()));
 double k;
 for (int i=0; i<100000; i++) {
 k = 2.1 * Math.sqrt((double)i);
 n.writeDouble(k);

 169

 }
 System.out.println("Java Ends at " +
(t1=System.currentTimeMillis()));
 double deltaT = t1-t0;
 System.out.println("This run took " +
 DecimalFormat.getInstance().format(deltaT/1000.) + "
seconds.");
 }
}

Finally, this code shows a simpler, but less portable, technique for formatting a "delta t" or time
difference. It works only for the English locale (or any other where the number one-and-a-half is
written "1.5"), but it's simple enough to write the code inline. I show it here as a method for
completeness, and confess to having used it this way on occasion:

/** Convert a long ("time_t") to seconds and thousandths. */
public static String msToSecs(long t) {
 return t/1000 + "." + t%1000;
}

6.14 Sleeping for a While

6.14.1 Problem

You need to sleep for a while.

6.14.2 Solution

Use Thread.sleep().

6.14.3 Discussion

You can sleep for any period of time from one millisecond up to the lifetime of your computer. As I
write this, for example, I have a chicken on the barbecue. My wife has instructed me (I'm as
helpless with anything in the kitchen beyond spaghetti as she is with anything computish made
since the days of MS-DOS Word Perfect) to check it every five minutes. Since I'm busy writing,
time tends to fly. So, I needed a reminder service, and came up with this in a jiffy:

// Reminder.java
while (true) {
 System.out.println(new Date() + "\007");
 Thread.sleep(5*60*1000);
}

The 007 is not a throwback to the Cold War espionage thriller genre, but the ASCII character for a
bell code, or beep. Had I written it as a windowed application using a frame, I could have called
Toolkit.beep() instead, and by toggling the state of setVisible(), a pop-up would
appear every five minutes.

With a bit more work, you could have a series of events, and wait until their due times, making a
sort of mini-scheduler entirely in Java. In fact, we'll do that in Section 6.15.

 170

6.15 Program: Reminder Service

The ReminderService program provides a simple reminder service. The load() method
reads a plain text file containing a list of appointments like the ones shown here, using a
SimpleDateFormat:

1999 07 17 10 30 Get some sleep.
1999 07 18 01 27 Finish this program
1999 07 18 01 29 Document this program

Example 6-4 shows the full program.

Example 6-4. ReminderService.java

import java.io.*;
import java.text.*;
import java.util.*;
import javax.swing.*;

/**
 * Read a file of reminders, sleep until each is due, beep.
 */
public class ReminderService {
 class Item {
 Date due;
 String message;
 Item(Date d, String m) {
 due = d;
 message = m;
 }
 }

 ArrayList l = new ArrayList();

 public static void main(String argv[]) throws IOException {
 ReminderService rs = new ReminderService();
 rs.load();
 rs.run();
 }

 protected void load() throws IOException {

 BufferedReader is = new BufferedReader(
 new FileReader("ReminderService.txt"));
 SimpleDateFormat formatter =
 new SimpleDateFormat ("yyyy MM dd hh mm");
 String aLine;
 while ((aLine = is.readLine()) != null) {
 ParsePosition pp = new ParsePosition(0);
 Date date = formatter.parse(aLine, pp);
 if (date == null) {
 message("Invalid date in " + aLine);
 continue;
 }
 String mesg = aLine.substring(pp.getIndex());

 171

 l.add(new Item(date, mesg));
 }
 }

 public void run() {
 System.out.println("ReminderService: Starting at " + new Date(
));
 while (!l.isEmpty()) {
 Date d = new Date();
 Item i = (Item)l.get(0);
 long interval = i.due.getTime() - d.getTime();
 if (interval > 0) {
 System.out.println("Sleeping until " + i.due);
 try {
 Thread.sleep(interval);
 } catch (InterruptedException e) {
 System.exit(1); // unexpected intr
 }
 message(i.due + ": " + i.message);
 } else
 message("MISSED " + i.message + " at " + i.due);
 l.remove(0);
 }
 System.exit(0);
 }
 void message(String message) {
 System.out.println("007" + message);
 JOptionPane.showMessageDialog(null,
 message,
 "Timer Alert", // titlebar
 JOptionPane.INFORMATION_MESSAGE); // icon
 }
}

I create a nested class Item to store one notification, storing its due date and time and the
message to display when it's due. The load() method reads the file containing the data and
converts it, using the date parsing from Section 6.6. The run() method does the necessary
arithmetic to sleep() for the right length of time to wait until the next reminder is needed. The
reminder is then displayed both on the standard output (for debugging) and in a dialog window
using the Swing JOptionPane (see Section 13.8). The message() method consolidates
both displays, allowing you to add a control to use only standard output or only the dialog.

6.15.1 See Also

In JDK 1.3, the new class java.util.Timer can be used to implement much of the
functionality of this reminder program.

 172

Chapter 7. Structuring Data with Java

7.1 Introduction

7.2 Data Structuring Using Arrays

7.3 Resizing an Array

7.4 Like an Array, but More Dynamic

7.5 Data-Independent Access with Iterators

7.6 Structuring Data in a Linked List

7.7 Mapping with Hashtable and HashMap

7.8 Storing Strings in Properties and Preferences

7.9 Sorting a Collection

7.10 Sorting in Java 1.1

7.11 Avoiding the Urge to Sort

7.12 Sets

7.13 Finding an Object in a Collection

7.14 Converting a Collection to an Array

7.15 Rolling Your Own Iterator

7.16 Stack

7.17 Multidimensional Structures

7.18 Finally, Collections

7.19 Program: Timing Comparisons

7.1 Introduction

Almost every application beyond "Hello World" needs to keep track of a certain amount of data. A
simple numeric problem might work with three or four numbers only, but in most applications
there are groups of similar data items. A GUI-based application may need to keep track of a

 173

number of dialog windows. A personal information manager or PIM needs to keep track of a
number of, well, persons. An operating system (a real one) needs to keep track of who is allowed
to log in, who is currently logged in, and what those users are doing. A library needs to keep track
of who has books checked out and when they're due. A network server may need to keep track of
its active clients. There are several patterns here, and they all revolve around what has
traditionally been called data structuring.

There are data structures in the memory of a running program; there is structure in the data in a
file on disk; and there is structure in the information stored in a database. In this chapter we
concentrate on the first aspect: in-memory data. We'll cover the second aspect in Chapter 9,
and the third in Chapter 20.

If you had to think about in-memory data, you might want to compare it to a collection of index
cards in a filing box, or to a treasure hunt where each clue leads to the next. Or you might think of
it like my desk -- apparently scattered, but actually a very powerful collection filled with
meaningful information. Each of these is a good analogy for a type of data structuring that Java
provides. An array is a fixed-length linear collection of data items, like the card filing box: it can
only hold so much, then it overflows. The treasure hunt is like a data structure called a linked list.
Before Java 2 there was no standard linked list class, but you could (and still can) write your own
"traditional data structure" classes. Finally, the complex collection represents Java's
Collection classes, which are substantially revised and expanded in Java 2. A document
entitled Collections Framework Overview, distributed with the Java Development Kit
documentation (and stored as file /jdk1.x/docs/guide/collections/overview.html), provides a
detailed discussion of the Collections Framework. The framework aspects of Java collectionsare
summarized in Section 7.18.

Beware of some typographic issues. The word Arrays (in constant-width font) is short for the
class java.util.Arrays, but in the normal typeface, the word "arrays" is simply the plural of
"array." (and will be found capitalized at the beginning of a sentence). Also, note that the Java 2
additions HashMap and HashSet follow the rule of having a "mid-capital" at each word boundary,
while the older Hashtable does not (the "t" is not capitalized).

There are several classes in java.util that are not covered in this chapter. All the classes
whose names begin with Abstract are, in fact, abstract, and we discuss their non-abstract
subclasses. BitSet is used less frequently than some of the classes discussed here, and is
simple enough to learn on your own; I have examples of it in Recipes Section 2.8 and Section
5.10. The StringTokenizer class is covered in Section 3.3.

We'll start our discussion of data structuring techniques with one of the oldest structures, the
array. Then we'll go through a variety of fancier structuring techniques using classes from
java.util. At the end, we'll discuss the overall structure of the Collections Framework that is
part of java.util.

7.2 Data Structuring Using Arrays

7.2.1 Problem

You need to keep track of a fixed amount of information and retrieve it (usually) sequentially.

7.2.2 Solution

Use an array.

 174

7.2.3 Discussion

Arrays can be used to hold any linear collection of data. The items in an array must all be of the
same type. You can make an array of any built-in type or any object type. For arrays of built-ins
such as ints, booleans, etc., the data is stored in the array. For arrays of objects, a reference
is stored in the array, so the normal rules of reference variables and casting apply. Note in
particular that if the array is declared as Object[], then object references of any type can be
stored in it without casting, though a valid cast is required to take an Object reference out and
use it as its original type. I'll say a bit more on two-dimensional arrays in Section 7.17;
otherwise, you should treat this as a review example.

import java.util.*;
public class Array1 {
 public static void main(String argv[]) {
 int monthLen1[]; // declare a reference
 monthLen1 = new int[12]; // construct it
 int monthlen2[] = new int[12]; // short form
 // even shorter is this initializer form:
 int monthLen3[] = {
 31, 28, 31, 30,
 31, 30, 31, 31,
 30, 31, 30, 31,
 };

 final int MAX = 10;
 Calendar days[] = new Calendar[MAX];
 for (int i=0; i<MAX; i++) {
 // Note that this actually stores GregorianCalendar
 // etc. instances into a Calendar Array
 days[i] = Calendar.getInstance();
 }

 // Two-Dimensional Arrays
 // Want a 10-by-24 array
 int me[][] = new int[10][];
 for (int i=0; i<10; i++)
 me[i] = new int[24];

 // Remember that an array has a ".length" attribute
 System.out.println(me.length);
 System.out.println(me[0].length);

 }
}

Arrays in Java work nicely. The type checking provides reasonable integrity, and array bounds
are always checked by the runtime system, further contributing to reliability.

The only problem with arrays is: what if the array fills up and you still have data coming in?
Solution in Section 7.3.

7.3 Resizing an Array

7.3.1 Problem

 175

The array filled up, and you got an ArrayIndexOutOfBoundsException.

7.3.2 Solution

Make the array bigger.

7.3.3 Discussion

One approach is to allocate the array at a reasonable size to begin with, but if you find yourself
with more data than will fit, reallocate a new, bigger array and copy the elements into it.[1] Here is
code that does so:

[1] You could copy it yourself using a for loop if you wish, but System.arrayCopy() is likely to be faster
because it's implemented in native code.

import java.util.*;
/** Re-allocate an array, bigger... */
public class Array2 {
 public static void main(String argv[]) {
 int nDates = 0;
 final int MAX = 10;
 Calendar dates[] = new Calendar[MAX];
 Calendar c;
 while ((c=getDate()) != null) {

 // if (nDates >= dates.length) {
 // System.err.println("Too Many Dates! Simplify your
life!!");
 // System.exit(1); // wimp out
 // }

 // better: reallocate, making data structure dynamic
 if (nDates >= dates.length) {
 Calendar tmp[] = new Calendar[dates.length + 10];
 System.arraycopy(dates, 0, tmp, 0, dates.length);
 dates = tmp; // copies the array reference
 // old array will be garbage collected soon...
 }
 dates[nDates++] = c;
 }
 System.out.println("Array size = " + dates.length);
 }

 static int n;
 /* Dummy method to return a sequence of 21 Calendar references,
 * so the array should be sized >= 21.
 */
 public static Calendar getDate() {
 if (n++ > 21)
 return null;
 return Calendar.getInstance();
 }
}

 176

This technique will work reasonably well for simple linear collections of data. For data with a more
variable structure, you will probably want to use a more dynamic approach, as in Section 7.4.

7.4 Like an Array, but More Dynamic

7.4.1 Problem

You don't want to worry about storage reallocation; you want a standard class to handle it for you.

7.4.2 Solution

Use a Vector. Or, in Java 2, an ArrayList.

7.4.3 Discussion

A Vector is just a standard class that encapsulates the functionality of an array but allows it to
expand automatically. You can just keep on adding things to it, and each addition will behave the
same. If you watch really closely you might notice a brief extra pause once in a while when
adding objects, as Vector reallocates and copies. But you don't have to think about it.

However, because Vector is a class and isn't part of the syntax of Java, you can't use Java's
array syntax; you must use methods to access the Vector data. There are methods to add
objects, retrieve objects, find objects, and tell you how big the Vector is and how big it can
become without having to reallocate. Like those of all the collection classes in java.util,
Vector's storing and retrieval methods are defined in terms of java.lang.Object. But since
Object is the ancestor of every defined type, you can store objects of any type in a Vector (or
any collection), and cast it when retrieving it. If you need to store a small number of built-ins (like
int, float, etc.) into a collection containing other data, use the appropriate wrapper class (see
the Introduction to Chapter 5). To store booleans, either use a java.util.BitSet (see the
online documentation) or the Boolean wrapper class.

Table 7-1 shows some of the most important methods of Vector. Equally important, those
listed are also methods of the List interface, which we'll discuss shortly. This means that the
same methods can be used with the newer ArrayList class and several other classes.

Table 7-1. List access methods
Method signature Usage

add(Object o) Add the given element at the end
add(int i, Object o) Insert the given element at the specified position
clear() Remove all element references from the Collection

contains(Object o) True if the Vector contains the given Object
get(int i) Return the object reference at the specified position
indexOf(Object o) Return the index where the given object is found, or -1
remove(Object o)

remove(int i)
Remove an object by reference or by position

toArray() Return an array containing the objects in the Collection

 177

This program, VectorDemo, stores data in a Vector and retrieves it for processing:

Vector v = new Vector();
 StructureDemo source = new StructureDemo(15);

 // Add lots of elements to the Vector...
 v.add(source.getDate());
 v.add(source.getDate());
 v.add(source.getDate());

 // Process the data structure using a for loop.
 System.out.println("Retrieving by index:");
 for (int i = 0; i<v.size(); i++) {
 System.out.println("Element " + i + " = " + v.get(i));
 }

Note that Vector and Hashtable pre-date the Collections framework, so they provide
methods with different names: Vector provides addElement() and elementAt(). In new
code you should generally use the Collections methods add() and get(). The equivalent
program done using an ArrayList (ArrayListDemo.java) looks like this:

ArrayList al = new ArrayList();

 // Create a source of Objects
 StructureDemo source = new StructureDemo(15);

 // Add lots of elements to the ArrayList...
 al.add(source.getDate());
 al.add(source.getDate());
 al.add(source.getDate());

 // First print them out using a for loop.
 System.out.println("Retrieving by index:");
 for (int i = 0; i<al.size(); i++) {
 System.out.println("Element " + i + " = " + al.get(i));
 }

As you can see, the structure is very similar. You might wonder, then, why they added
ArrayList and didn't just keep Vector. One major difference is that the methods of Vector
are synchronized, meaning that they can be accessed from multiple threads (see Section 24.6).
This does mean more overhead, though, so in a single-threaded application it may be faster to
use an ArrayList (see timing results in Section 7.19).

7.5 Data-Independent Access with Iterators

7.5.1 Problem

You want to write your code so that users don't have to know whether you store it in an Array, a
Vector, an ArrayList, or even a doubly linked list of your own choosing.

7.5.2 Solution

Use one of the Iterator interfaces.

 178

7.5.3 Discussion

If you are making collections of data available to other classes, you may not want the other
classes to depend upon how you have stored the data, so that you can revise your class easily at
a later time. Yet you need to publish a method that gives these classes access to your data. It is
for this very purpose that the Enumeration and later the Iterator interfaces were included in
the java.util package. These provide a pair of methods that allow you to iterate, or step
through all the elements of a data structure without knowing or caring how the data is stored. The
newer Iterator interface also allows deletions, though classes that implement the interface are
free either to implement the use of deletions or to throw an
UnsupportedOperationException.

Here is IterDemo, the previous Vector demo rewritten to use an Iterator to access the
elements of the data structure:

Vector v = new Vector();
Enumeration e;
StructureDemo source = new StructureDemo(15);

// Add lots of elements to the Vector...
v.addElement(source.getDate());
v.addElement(source.getDate());
v.addElement(source.getDate());

// Process the data structure using an iterator.
int i = 0;
Iterator it = v.iterator();

// Remaining part of the code does not know or care
// if the data is an an array, a Vector, or whatever.
while (it.hasNext()) {
 Object o = it.next();
 System.out.println("Element " + i++ + " = " + o);
}

To demystify the Iterator and show that it's actually easy to build, we'll create our own
Iterator in Section 7.15.

7.6 Structuring Data in a Linked List

7.6.1 Problem

Your data isn't suitable for use in an array.

7.6.2 Solution

Write your own data structure(s).

7.6.3 Discussion

Anybody who's taken Computer Science 101 (or any computer science course) should be familiar
with the concepts of data structuring, such as linked lists, binary trees, and the like. While this is

 179

not the place to discuss the details of such things, I'll give a brief illustration of one of the more
common ones, the linked list. A linked list is commonly used when you have an unpredictably
large number of data items, wish to allocate just the right amount of storage, and usually want to
access them in the same order that you created them. Figure 7-1 is a diagram showing the
normal arrangement.

Figure 7-1. Linked list structure

Here is code that implements a simple linked list:

/**
 * Linked list class, written out in full using Java.
 */
public class LinkList {
 public static void main(String argv[]) {
 System.out.println("Here is a demo of a Linked List in Java");
 LinkList l = new LinkList();
 l.add(new Object());
 l.add("Hello");
 System.out.println("Here is a list of all the elements");
 l.print();
 if (l.lookup("Hello"))
 System.err.println("Lookup works");
 else
 System.err.println("Lookup does not work");
 }

 /* A TNode stores one node or item in the linked list. */
 class TNode {
 TNode next;
 Object data;
 TNode(Object o) {
 data = o;
 next = null;
 }
 }
 protected TNode root;
 protected TNode last;

 /** Construct a LinkList: initialize the root and last nodes. */
 LinkList() {
 root = new TNode(this);
 last = root;
 }

 /** Add one object to the end of the list. Update the "next"
 * reference in the previous end, to refer to the new node.
 * Update "last" to refer to the new node.
 */

 180

 void add(Object o) {
 last.next = new TNode(o);
 last = last.next;
 }

 public boolean lookup(Object o) {
 for (TNode p=root.next; p != null; p = p.next)
 if (p.data==o || p.data.equals(o))
 return true;
 return false;
 }

 void print() {
 for (TNode p=root.next; p != null; p = p.next)
 System.out.println("TNode" + p + " = " + p.data);
 }
}

This approach works reasonably well. But it turns out that many applications use linked lists. Why
should each programmer have to provide his or her own linked list class, each with a slightly
different set of bugs? You don't have to provide your own square root function or write your own
Remote Method Invocation services. Accordingly, Java 2 does include a LinkedList class;
here is a similar program that uses it:

import java.util.*;

/**
 * Demo 1.2 java.util.LinkedList; same example as my older LinkList
class.
 */
public class LinkedListDemo {
 public static void main(String argv[]) {
 System.out.println("Here is a demo of Java 1.2's LinkedList
class");
 LinkedList l = new LinkedList();
 l.add(new Object());
 l.add("Hello");

 System.out.println("Here is a list of all the elements");
 // ListIterator is discussed shortly.
 ListIterator li = l.listIterator(0);
 while (li.hasNext())
 System.out.println(li.next());

 if (l.indexOf("Hello") < 0)
 System.err.println("Lookup does not work");
 else
 System.err.println("Lookup works");
 }
}

As you can see, it does pretty much the same thing as my LinkList, but uses the existing class
java.util.LinkedList instead of having you roll your own. The ListIterator class used
here is an example of an Iterator, which was discussed in Section 7.5.

 181

7.7 Mapping with Hashtable and HashMap

7.7.1 Problem

You need a one-way mapping from one data item to another.

7.7.2 Solution

Use a HashMap, or the older Hashtable.

7.7.3 Discussion

HashMap (added in Java 2) and Hashtable provide a one-way mapping from one set of object
references to another. They are completely general purpose. I've used them to map AWT push
buttons (see Section 13.5) to the URL to jump to when the button is pushed; to map names to
addresses; and to implement a simple in-memory cache in a web server. You can map from
anything to anything. Here we map from company names to addresses; the addresses here are
String objects, but in real life they'd probably be Address objects.

// HashDemo.java
// Construct and load the HashMap. This simulates loading a database
// or reading from a file, or wherever the data is from.

// The hashtable maps from company name to company address.
// In a real application these would be an Address object.
HashMap h = new HashMap();

h.put("Adobe", "Mountain View, CA");
h.put("IBM", "White Plains, NY");
h.put("Learning Tree", "Los Angeles, CA");
h.put("O'Reilly & Associates", "Sebastopol, CA");
h.put("Netscape", "Mountain View, CA");
h.put("Sun", "Mountain View, CA");

 // Two versions of the "retrieval" phase.
 // Version 1: get one pair's value given its key
 // (presumably the key would really come from user input):
 String queryString = "O'Reilly & Associates";
 System.out.println("You asked about " + queryString + ".");
 String resultString = (String)h.get(queryString);
 System.out.println("They are located in: " + resultString);
 System.out.println();

 // Version 2: get ALL the keys and pairs
 // (maybe to print a report, or to save to disk)
 Iterator it = h.values().iterator();
 while (it.hasNext()) {
 String key = (String) it.next();
 System.out.println("Company " + key + "; " +
 "Address " + h.get(key));
 }
 }
}

 182

7.8 Storing Strings in Properties and Preferences

7.8.1 Problem

You need to store keys and values that are both strings, possibly with persistence across runs of
a program. For example: program customization.

7.8.2 Solution

Use a java.util.Properties object (or a java.util.Prefs.Preferences object in JDK
1.4).

7.8.3 Discussion

The Properties class is similar to a HashMap or Hashtable (it extends the latter), but with
methods defined specifically for string storage and retrieval and for loading/saving. Properties
objects are used throughout Java, for everything from setting the platform font names to
customizing user applications into different Locale settings as part of internationalization and
localization. When stored on disk, a Properties object looks just like a series of name=value
assignments, with optional comments. Comments are added when you hand-edit a Properties
file, ignored when the Properties object reads itself, and lost when you ask the Properties
object to save itself to disk. Here is an example of a Properties file that could be used to
internationalize the menus in a GUI-based program:

Default properties for MenuIntl
program.title=Demonstrate I18N (MenuIntl)
program.message=Welcome to an English-localized Java Program

The File Menu

file.label=File Menu
file.new.label=New File
file.new.key=N
file.open.label=Open...
file.open.key=O
file.save.label=Save
file.save.key=S
file.exit.label=Exit
file.exit.key=Q

Here is another example, showing some personalization properties:

name=Ian Darwin
favorite_popsicle=cherry
favorite_rock group=Fleetwood Mac
favorite_programming_language=Java
pencil color=green

A Properties object can be loaded from a file. The rules are flexible: either =, :, or spaces can
be used after a key name and its values. Spaces after a non-space character are ignored in the
key. Backslash can be used to continue lines or to escape other characters. Comment lines may

 183

begin with either # or !. Thus, a Properties file containing the previous items, if prepared by
hand, could look like this:

Here is a list of properties
! first, my name
name Ian Darwin
favorite_popsicle = cherry
favorite_rock\ group \
 Fleetwood Mac
favorite_programming_language=Java
pencil\ color green

Fortunately, when a Properties object writes itself to a file, it only uses the simple format:

key=value

Here is an example of a program that creates a Properties object adds into it the list of
companies and their addresses from Section 7.7, and then loads additional properties from disk.
To simplify the I/O processing, the program assumes that the Properties file to be loaded is
contained in the standard input, as would be done using a command-line redirection on either
Unix or DOS.

import java.util.*;

public class PropsCompanies {
 public static void main(String argv[]) throws java.io.IOException {
 Properties props = new Properties();

 // Get my data.
 props.setProperty("Adobe", "Mountain View, CA");
 props.setProperty("IBM", "White Plains, NY");
 props.setProperty("Learning Tree", "Los Angeles, CA");
 props.setProperty("O'Reilly & Associates", "Sebastopol, CA");
 props.setProperty("Netscape", "Mountain View, CA");
 props.setProperty("Sun", "Mountain View, CA");

 // Now load additional properties
 props.load(System.in);

 // Now list the merged Properties, using System.out
 props.list(System.out);
 }
}

Note that setProperty() was added in JDK 1.2; prior to that, the put() method of parent
class HashTable was used.

Running it as:

java PropsCompanies < PropsDemo.dat

produces the following output:

-- listing properties --

 184

Sony=Japan
Sun=Mountain View, CA
IBM=White Plains, NY
Netscape=Mountain View, CA
Nippon_Kogaku=Japan
Acorn=United Kingdom
Adobe=Mountain View, CA
Ericsson=Sweden
O'Reilly & Associates=Sebastopol, CA
Learning Tree=Los Angeles, CA

In case you didn't notice in either the HashMap or the Properties examples, the order that the
outputs appear in these examples is neither sorted nor even the same order we put them in. The
hashing classes and the Properties subclass make no claim about the order in which objects
are retrieved. If you need them sorted, see Section 7.9.

As a convenient shortcut, my FileProperties class includes a constructor that takes a
filename, and a no-argument load() method that takes a filename argument, as in:

Properties p = new com.darwinsys.util.FileProperties("PropsDemo.dat");

Note that constructing a FileProperties causes it to be loaded, and therefore the constructor
may throw a checked exception of class IOException.

The Preferences class java.util.Prefs.Preferences (new in Java 2 SDK 1.4) is
intended to provide an easier-to-use mechanism for storing user customizations in a system-
dependent way (which might mean dot files on Unix, a preferences file on the Mac, or the MS-
Windows Registry on Microsoft systems). This new class provides a hierarchical set of nodes
representing a user's preferences. Data is stored in the system-dependent storage format but can
also be exported to or imported from an XML format.

Finally, though it is platform-specific, Cogent Logic produces a JNDI (Java Naming and Directory
Interface) service provider for accessing the MS-Windows registry, which can also be used for
preferences. JNDI is a general naming and directory lookup that, like
javax.preferences.prefs, is better suited than Properties for dealing with hierarchical
data. Cogent Logic's product gives you both local and (subject to security arrangements) remote
access to preferences on an MS-Windows system. See http://cogentlogic.com/jndi/.

7.9 Sorting a Collection

7.9.1 Problem

You put your data into a collection in random order or used a Properties object that doesn't
preserve the order, and now you want it sorted.

7.9.2 Solution

Use the static method Arrays.sort() or Collections.sort(), optionally providing a
Comparator.

7.9.3 Discussion

 185

If your data is in an array, you can sort it using the static sort() method of the Arrays utility
class. If it is in a collection, you can use the static sort() method of the Collections class.
Here is a set of strings being sorted, first in an Array and then in a Vector:

public class SortArray {
 public static void main(String[] unused) {
 String[] strings = {
 "painful",
 "mainly",
 "gaining",
 "raindrops"
 };
 Arrays.sort(strings);
 for (int i=0; i<strings.length; i++)
 System.out.println(strings[i]);
 }
}

public class SortCollection {
 public static void main(String[] unused) {
 Vector v = new Vector();
 v.add("painful");
 v.add("mainly");
 v.add("gaining");
 v.add("raindrops");

 Collections.sort(v);
 for (int i=0; i<v.size(); i++)
 System.out.println(v.elementAt(i));
 }
}

What if the default sort ordering isn't what you want? Well, there is a Comparator interface, and
you can create an object that implements it and pass that as the second argument to sort.
Fortunately, for the most common ordering next to the default, you don't have to; there is a public
constant String.CASE_INSENSITIVE_ORDER that can be passed as this second argument.
The String class defines it as "a Comparator that orders String objects as by
compareToIgnoreCase." But if you need something fancier, you need to write a Comparator.
Suppose that, for some strange reason, you need to sort strings the first character of each. One
way to do this would be to write this Comparator:

public class SubstringComparator implements java.util.Comparator {
 public int compare(Object o1, Object o2) {
 String s1 = o1.toString().substring(1);
 String s2 = o2.toString().substring(1);
 return s1.compareTo(s2);
 // or, more concisely:
 // return o1.substring(1).equals(o2.substring(1));
 }
}

Using it is just a matter of passing it as the Comparator argument to the correct form of sort(
), as shown here:

import java.util.*;

 186

public class SubstrCompDemo {
 public static void main(String[] unused) {
 String[] strings = {
 "painful",
 "mainly",
 "gaining",
 "raindrops"
 };
 Arrays.sort(strings);
 dump(strings, "Using Default Sort");
 Arrays.sort(strings, new SubstringComparator());
 dump(strings, "Using SubstringComparator");

 }
 static void dump(String[] args, String title) {
 System.out.println(title);
 for (int i=0; i<args.length; i++)
 System.out.println(args[i]);
 }
}

Here is the output of running it:

$ java SubstrCompDemo
Using Default Sort
gaining
mainly
painful
raindrops
Using SubstringComparator
raindrops
painful
gaining
mainly

And this is all as it should be.

On the other hand, you may be writing a class and want to build in the comparison functionality,
so that you don't always have to remember to pass the Comparator with it. In this case, you can
directly implement the java.lang.Comparable interface. The String class, the wrapper
classes Byte, Character, Double, Float, Long, Short, and Integer, as well as
BigInteger and BigDecimal from java.math, File from java.io, java.util.Date, and
java.text.CollationKey all implement this interface, so arrays or Collections of these
can be sorted without providing a Comparator. Classes that implement Comparable are said to
have a "natural" ordering. The documentation strongly recommends that a class's natural
ordering be consistent with its equals() method, and it is consistent with equals() if and
only if e1.compareTo((Object)e2)==0 has the same boolean value as
e1.equals((Object)e2) for every instance e1 and e2 of the given class. This means that if
you implement Comparable, you should also implement equals(), and the logic of equals(
) should be consistent with the logic of the compareTo() method. Here, for example, is part of
the appointment class Appt from a hypothetical scheduling program:

public class Appt implements Comparable {

 187

 // much code and variables omitted - see online version

 //---
 // METHODS - COMPARISON
 //---
 /** compareTo method, from Comparable interface.
 * Compare this Appointment against another, for purposes of
sorting.
 * <P>Only date and time participate, not repetition!
 * Consistent with equals().
 * @return -1 if this<a2, +1 if this>a2, else 0.
 */
 public int compareTo(Object o2) {
 Appt a2 = (Appt) o2;
 if (year < a2.year)
 return -1;
 if (year > a2.year)
 return +1;
 if (month < a2.month)
 return -1;
 if (month > a2.month)
 return +1;
 if (day < a2.day)
 return -1;
 if (day > a2.day)
 return +1;
 if (hour < a2.hour)
 return -1;
 if (hour > a2.hour)
 return +1;
 if (minute < a2.minute)
 return -1;
 if (minute > a2.minute)
 return +1;
 return target.compareTo(a2.target);
 }

 /** Compare this appointment against another, for equality.
 * Consistent with compareTo(). For this reason, only
 * date & time participate, not repetition.
 * @returns true if the objects are equal, false if not.
 */
 public boolean equals(Object o2) {
 Appt a2 = (Appt) o2;
 if (year != a2.year ||
 month != a2.month ||
 day != a2.day ||
 hour != a2.hour ||
 minute != a2.minute)
 return false;
 return target.equals(a2.target);
 }

If you're still confused between Comparable and Comparator, you're probably not alone. This
table summarizes the two "comparison" interfaces:

 188

Interface name Description Method(s)

java.lang.Comparable
Provides a natural order to objects. Used
in the class whose objects are being
sorted.

int compareTo(Object
o);
boolean
equals(Object c2)

java.util.Comparator

Provides total control over sorting objects
of another class. Standalone; pass to
sort() method or Collection
constructor.

int compare(Object
o1, Object o2);

7.10 Sorting in Java 1.1

7.10.1 Problem

You need to sort, but you're still running on Java 1.1.

7.10.2 Solution

Provide your own sort routine, or use mine.

7.10.3 Discussion

If you're still running on a Java 1.1 platform, you won't have the Arrays or Collections
classes and therefore must provide your own sorting. There are two ways of proceeding: using
the system sort utility or providing your own sort algorithm. The former -- running the sort program
-- can be accomplished by running an external program, which will be covered in Section 26.2.
The code here re-casts the example from Section 7.9 into using our own Sort. The actual
sorting code is not printed here; it is included in the online source files, since it is just a simple
adaptation of the QuickSort example from the Sorting program in Sun's Java QuickSort Applet
demonstration.

public class StrSort1_1 {
 /** The list of strings to be sorted */
 static public String a[] = {
 "Qwerty",
 "Ian",
 "Java",
 "Gosling",
 "Alpha",
 "Zulu"
 };

 /** Simple main program to test the sorting */
 public static void main(String argv[]) {
 System.out.println("StrSort Demo in Java");
 StringSort s = new StringSort();
 dump(a, "Before");
 s.QuickSort(a, 0, a.length-1);
 dump(a, "After");
 }

 189

 static void dump(String a[], String title) {
 System.out.println("***** " + title + " *****");
 for (int i=0; i<a.length; i++)
 System.out.println("a["+i+"]="+a[i]);
 }

}

7.11 Avoiding the Urge to Sort

7.11.1 Problem

Your data needs to be sorted, but you don't want to stop and sort it periodically.

7.11.2 Solution

Not everything that requires order requires an explicit sort operation. Just keep the data sorted at
all times.

7.11.3 Discussion

You can avoid the overhead and elapsed time of an explicit sorting operation by ensuring that the
data is in the correct order at all times. You can do this manually or, in Java 2, by using a
TreeSet or a TreeMap. First, some code from a call tracking program that I first wrote on JDK
1.0 to keep track of people I had extended contact with. Far less functional than a Rolodex, my
CallTrak program maintained a list of people sorted by last name and first name. For each
person it also had the city, phone number, and email address. Here is a portion of the code that
was the event handler for the New User push button:

/** The list of User objects. */
Vector usrList = new Vector();
/** The scrolling list */
java.awt.List visList = new List();
/** Add one (new) Candidate to the lists */
protected void add(Candidate c) {
 String n = c.lastname;
 int i;
 for (i=0; i<usrList.size(); i++)
 if (n.compareTo(((Candidate)(usrList.elementAt(i))).lastname)
<= 0)
 break;
 visList.add(c.getName(), i);
 usrList.insertElementAt(c, i);
 visList.select(i); // ensure current
 }

This code uses the String class compareTo(String) routine. This has the same name and
signature as the compareTo(Object) in Comparable, but was added to the String class in
JDK 1.1, before the Comparable interface was defined.

 190

If I were writing this code today, on Java 2, I would probably use a TreeSet (which keeps
objects in order) or a TreeMap (which keeps the keys in order, and maps from keys to values;
the keys would be the name and the values would be the Candidate objects). These both insert
the objects into a tree in the correct order, so an Iterator that traverses the tree always returns
the objects in sorted order. In addition, they have methods such as headSet() and headMap(
), which give a new object of the same class containing objects lexically before a given value.
The tailSet() and tailMap() methods return objects greater than a given value, and
subSet() and subMap() return a range. The first() and last() methods retrieve the
obvious components from the collection. The following program uses a TreeSet to sort some
names:

// TreeSetDemo.java
/* A TreeSet keeps objects in sorted order. We use a
 * Comparator published by String for case-insensitive
 * sorting order.
 */
TreeSet tm = new TreeSet(String.CASE_INSENSITIVE_ORDER);
tm.add("Gosling");
tm.add("da Vinci");
tm.add("van Gogh");
tm.add("Java To Go");
tm.add("Vanguard");
tm.add("Darwin");
tm.add("Darwin"); // TreeSet is Set, ignores duplicate. See Section
7.12.

// Since it is sorted we can ask for various subsets
System.out.println("Lowest (alphabetically) is " + tm.first());
// Print how many elements are greater than "k"
System.out.println(tm.tailSet("k").toArray().length +
 " elements higher than \"k\"");

// Print the whole list in sorted order
System.out.println("Sorted list:");
java.util.Iterator t = tm.iterator();
while (t.hasNext())
 System.out.println(t.next());

One last point to note is that if you have a Hashtable or HashMap (and Java 2), you can convert
it to a TreeMap , and therefore get it sorted, just by passing it to the TreeMap constructor:

TreeMap sorted = new TreeMap(unsortedHashMap);

7.12 Sets

7.12.1 Problem

You want to ensure that only one copy of each unique value is stored in a collection.

7.12.2 Solution

 191

Use a Set.

7.12.3 Discussion

The Set interface is a collection that maintains only one instance of each value. If you add into it
an object that is equal (as defined by the equals() method) to another object, only one of the
objects is maintained. By definition, it does not matter to you which of the two objects it keeps --
the one in the collection or the one being added -- since your objects' equals() method
indicated they were both equal.

// SetDemo.java
HashSet h = new HashSet();
h.add("One");
h.add("Two");
h.add("One"); // DUPLICATE
h.add("Three");
Iterator it = h.iterator();
while (it.hasNext()) {
 System.out.println(it.next());
}

Not surprisingly, only the three distinct values are printed.

7.13 Finding an Object in a Collection

7.13.1 Problem

You need to see whether a given collection contains a particular value.

7.13.2 Solution

Ask the collection if it contains an object of the given value.

7.13.3 Discussion

If you have created the contents of a collection, you probably know what is in it and what is not.
But if the collection is prepared by another part of a large application, or even if you've just been
putting objects into it and now need to find out if a given value was found, this recipe's for you.
There is quite a variety of methods, depending on which class of collection you have. The
following methods can be used:

Method Meaning Implementing classes
binarySearch() Fairly fast search Arrays, Collections

contains() Linear search
ArrayList, HashSet,
Hashtable, LinkList,
Properties, Vector

containsKey(),
containsValue()

Checks if the collection
contains the object as a Key or
as a Value

HashMap, Hashtable,
Properties, TreeMap

indexOf() Returns location where object ArrayList, LinkedList, List,

 192

is found Stack, Vector

search() Linear search Stack

This example plays a little game of "find the hidden number" (or "needle in a haystack"); the
numbers to look through are stored in an array. As games go, it's fairly pathetic: the computer
plays against itself, so you probably know who's going to win. I wrote it that way so I would know
that the data array contains valid numbers. The interesting part is not the generation of the
random numbers (discussed in Section 5.13). The array to be used with
Arrays.binarySearch() must be in sorted order, but since we just filled it with random
numbers, it isn't initially sorted. Hence we call Arrays.sort() on the array. Then we are in a
position to call Arrays.binarySearch(), passing in the array and the value to look for. If you
run the program with a number, it runs that many games and reports on how it fared overall. If
you don't bother, it plays only one game.

import java.util.*;

/** Array Hunt "game" (pathetic: computer plays itself).
 */
public class ArrayHunt {
 protected final static int MAX = 4000; // how many random ints
 protected final static int NEEDLE = 1999; // value to look for
 int haystack[];
 Random r;

 public static void main(String argv[]) {
 ArrayHunt h = new ArrayHunt();
 if (argv.length == 0)
 h.play();
 else {
 int won = 0;
 int games = Integer.parseInt(argv[0]);
 for (int i=0; i<games; i++)
 if (h.play())
 ++won;
 System.out.println("Computer won " + won +
 " out of " + games + ".");
 }
 }

 /** Construct the hunting ground */
 public ArrayHunt() {
 haystack = new int[MAX];
 r = new Random();
 }

 /** Play one game. */
 public boolean play() {
 int i;
 // Fill the array with random data (hay?)
 for (i=0; i<MAX; i++) {
 haystack[i] = (int)(r.nextFloat() * MAX);
 }

 // Precondition for binarySearch() is that array be sorted!
 Arrays.sort(haystack);

 193

 // Look for needle in haystack. :-)
 i = Arrays.binarySearch(haystack, NEEDLE);

 if (i >= 0) { // found it - hurray, we win!
 System.out.println("Value " + NEEDLE +
 " occurs at haystack[" + i + "]");
 return true;
 } else { // not found, we lose.
 System.out.println("Value " + NEEDLE +
 " does not occur in haystack; nearest value is " +
 haystack[-(i+2)] + " (found at " + -(i+2) + ")");
 return false;
 }
 }
}

Note that the Collections.binarySearch() works almost exactly the same way, except it
looks in a Collection, which must be sorted (presumably using Collections.sort, as
discussed in Section 7.9).

7.14 Converting a Collection to an Array

7.14.1 Problem

You have a Collection but you need a Java language array.

7.14.2 Solution

Use the Collection method toArray().

7.14.3 Discussion

If you have an ArrayList or other Collection and you need a Java language array, you can
get it just by calling the Collection's toArray() method. With no arguments you get an
array whose type is Object[]. You can optionally provide an array argument, which is used for
two purposes:

1. The type of the array argument determines the type of array returned.
2. If the array is big enough (you can control this with the Collection's size()

method), then this array is filled and returned. If the array is not big enough, a new array
is allocated instead. If you provide an array and there are objects in the Collection
that cannot be casted to this type, then you get an ArrayStoreException.

Example 7-1 shows code for converting an ArrayList to an array of type Object.

Example 7-1. ToArray.java

import java.util.*;

/** ArrayList to array */
public class ToArray {

 194

 public static void main(String[] args) {
 ArrayList al = new ArrayList();
 al.add("Blobbo");
 al.add("Cracked");
 al.add("Dumbo");
 // al.add(new Date()); // Don't mix and match!

 // Convert a collection to Object[], which can store objects
 // of any type.
 Object[] ol = al.toArray();
 System.out.println("Array of Object has length " + ol.length);

 // This would throw an ArrayStoreException if the line
 // "al.add(new Date())" above were uncommented.
 String[] sl = (String[]) al.toArray(new String[0]);
 System.out.println("Array of String has length " + ol.length);
 }
}

7.15 Rolling Your Own Iterator

7.15.1 Problem

You have your own data structure, but you want to publish the data as an Iterator to provide
generic access to it You need to write your own Iterator.

7.15.2 Solution

Just implement (or provide an inner class that implements) the Iterator (or Enumeration)
interface.

7.15.3 Discussion

To make data from one part of your program available in a storage-independent way to other
parts of the code, generate an Iterator. Here is a short program that constructs, upon request,
an Iterator for some data that it is storing, in this case in an array. The Iterator interface
has only three methods: hasNext() , next(), and remove().

import java.util.*;

/** Demonstrate the Iterator interface (new in 1.2).
 */
public class IterDemo implements Iterator {
 protected String[] data = { "one", "two", "three" };

 protected int index = 0;

 /** Returns true if not at the end, i.e., if next() will return
 * an element. Returns false if next() will throw an exception.
 */
 public boolean hasNext() {
 return (index < data.length);

 195

 }

 /** Returns the next element from the data */
 public Object next() {
 if (index >= data.length)
 throw new IndexOutOfBoundsException(
 "only " + data.length + " elements");
 return data[index++];
 }

 /** Remove the object that next() just returned.
 * An Iterator is not required to support this interface,
 * and we certainly don't. :-)
 */
 public void remove() {
 throw new UnsupportedOperationException(
 "This demo does not implement the remove method");
 }

 /** Simple tryout */
 public static void main(String unused[]) {
 IterDemo it = new IterDemo();
 while (it.hasNext())
 System.out.println(it.next());
 }
}

The comments above the remove() method remind me of an interesting point. This interface
introduces something new to Java, the optional method. Since there is no syntax for this and they
didn't want to introduce any new syntax, the developers of the Collections Framework decided on
an implementation using existing syntax. If they are not implemented, the optional methods are
required to throw an UnsupportedOperationException if they ever get called. My remove(
) method does this. Note that UnsupportedOperationException is subclassed from
RunTimeException, so it is not required to be declared or caught.

This code is unrealistic in several ways, but it does show the syntax and how the Iterator
interface works. In real code, the Iterator and the data are usually separate objects (the
Iterator might be an inner class from the data store class). Also, you don't even need to write
this code for an array; you can just construct an ArrayList object, copy the array elements into
it, and ask it to provide the Iterator. However, I believe it's worth showing this simple example
of the internals of an Iterator so you can understand both how it works and how you could
provide one for a more sophisticated data structure, should the need arise.

7.16 Stack

7.16.1 Problem

You need to process data in "last-in, first-out" (LIFO) or "most recently added" order.

7.16.2 Solution

Write your own code for creating a stack; it's easy. Or, use a java.util.Stack.

 196

7.16.3 Discussion

You need to put things into a holding area quickly, and retrieve them in last-in, first-out order. This
is a common data structuring operation and is often used to reverse the order of objects. The
basic operations of any stack are push() (add to stack), pop() (remove from stack), and
peek() (examine top element without removing). A simple stack for stacking only ints is in
class ToyStack:

/** Toy Stack. */
public class ToyStack {

 /** The maximum stack depth */
 protected int MAX_DEPTH = 10;
 /** The current stack depth */
 protected int depth = 0;
 /* The actual stack */
 protected int stack[] = new int[MAX_DEPTH];

 /* Implement a toy stack version of push */
 protected void push(int n) {
 stack[depth++] = n;
 }
 /* Implement a toy stack version of pop */
 protected int pop() {
 return stack[--depth];
 }
 /* Implement a toy stack version of peek */
 protected int peek() {
 return stack[depth];
 }
}

If you are not familiar with the basic idea of a stack, you should work through the code here; if you
are, skip ahead. While looking at it, of course, think about what happens if pop() is called when
push() has never been called, or if push() is called to stack more data than will fit.

The java.util.Stack operation behaves in a similar fashion. However, instead of being built
just for one type of primitive, such as Java int, the methods of java.util.Stack are defined
in terms of java.lang.Object so that any kind of object can be put in and taken out. A cast
will be needed when popping objects, if you wish to call any methods defined in a class below
Object.

For an example of a java.util.Stack in operation, Section 5.19 provides a simple stack-
based numeric calculator.

7.17 Multidimensional Structures

7.17.1 Problem

You need a two-, three-, or more dimensional array or ArrayList.

7.17.2 Solution

 197

No problem. Java supports this.

7.17.3 Discussion

As mentioned back in Section 7.2, Java arrays can hold any reference type. Since an array is a
reference type, it follows that you can have arrays of arrays or, in other terminology,
multidimensional arrays. Further, since each array has its own length attribute, the columns of a
two-dimensional array, for example, do not all have to be the same length (see Figure 7-2).

Figure 7-2. Multidimensional arrays

Here is code to allocate a couple of two-dimensional arrays, one using a loop and the other using
an initializer. Both are selectively printed.

/** Show Two-Dimensional Array of Objects */
public class ArrayTwoDObjects {

 /** Return list of subscript names (unrealistic; just for demo). */
 public static String[][] getArrayInfo() {
 String info[][];
 info = new String[10][10];
 for (int i=0; i < info.length; i++) {
 for (int j = 0; j < info[i].length; j++) {
 info[i][j] = "String[" + i + "," + j + "]";
 }
 }
 return info;
 }

 /** Return list of allowable parameters (Applet method). */
 public static String[][] getParameterInfo() {
 String param_info[][] = {
 {"fontsize", "9-18", "Size of font"},
 {"URL", "-", "Where to download"},
 };
 return param_info;

 198

 }

 /** Run both initialization methods and print part of the results
*/
 public static void main(String[] args) {
 print("from getArrayInfo", getArrayInfo());
 print("from getParameterInfo", getParameterInfo());
 }

 /** Print selected elements from the 2D array */
 public static void print(String tag, String[][] array) {
 System.out.println("Array " + tag + " is " + array.length + " x
" +
 array[0].length);
 System.out.println("Array[0][0] = " + array[0][0]);
 System.out.println("Array[0][1] = " + array[0][1]);
 System.out.println("Array[1][0] = " + array[1][0]);
 System.out.println("Array[0][0] = " + array[0][0]);
 System.out.println("Array[1][1] = " + array[1][1]);
 }
}

Running it produces this output:

> java ArrayTwoDObjects
Array from getArrayInfo is 10 x 10
Array[0][0] = String[0,0]
Array[0][1] = String[0,1]
Array[1][0] = String[1,0]
Array[0][0] = String[0,0]
Array[1][1] = String[1,1]
Array from getParameterInfo is 2 x 3
Array[0][0] = fontsize
Array[0][1] = 9-18
Array[1][0] = URL
Array[0][0] = fontsize
Array[1][1] = -
>

The same kind of logic can be applied to any of the Collections. You could have an
ArrayList of ArrayLists, or a Vector of linked lists, or whatever your little heart desires.

As Figure 7-2 shows, it is not necessary for the array to be "regular." That is, it's possible for
each column of the 2D array to have a different height. That is why in the code example I used
array[0].length for the length of the first column.

7.18 Finally, Collections

7.18.1 Problem

You're having trouble keeping track of all these lists, sets, and iterators.

7.18.2 Solution

 199

There's a pattern to it. See Figure 7-3 and Table 7-2.

7.18.3 Discussion

Figure 7-3, in the fashion of the package-level class diagrams in the Java in a Nutshell books,
shows the collection-based classes from package java.util.

Figure 7-3. The Collections Framework

7.18.4 See Also

The Javadoc documentation on Collections, Arrays, List, Set, and the classes that
implement them provides more details than there's room for here. Table 7-2 may further help
you to absorb the regularity of the Collections Framework.

Table 7-2. Java Collections

Interfaces
Implementations

Resizable array
Hashed table Linked list Balanced tree

 200

Set HashSet TreeSet
List ArrayList, Vector LinkList
Map HashMap, Hashtable TreeMap

7.19 Program: Timing Comparisons

New developers sometimes worry about the overhead of these collections and think they should
use arrays instead of data structures. To investigate, I wrote a program that creates and
accesses 250,000 objects, once through a Java array and again through an ArrayList. This is
a lot more objects than most programs use. First the code for the Array version:

import com.darwinsys.util.MutableInteger;

/** Time a bunch of creates and gets through an Array */
public class Array {
 public static final int MAX = 250000;
 public static void main(String[] args) {
 System.out.println(new Array().run());
 }
 public int run() {
 MutableInteger list[] = new MutableInteger[MAX];
 for (int i=0; i<list.length; i++) {
 list[i] = new MutableInteger(i);
 }
 int sum = 0;
 for (int i=0; i<list.length; i++) {
 sum += list[i].getValue();
 }
 return sum;
 }
}

And the ArrayList version:

import java.util.ArrayList;

import com.darwinsys.util.MutableInteger;

/** Time a bunch of creates and gets through an Array */
public class ArrayLst {
 public static final int MAX = 250000;
 public static void main(String[] args) {
 System.out.println(new ArrayLst().run());
 }
 public int run() {
 ArrayList list = new ArrayList();
 for (int i=0; i<MAX; i++) {
 list.add(new MutableInteger(i));
 }
 int sum = 0;
 for (int i=0; i<MAX; i++) {
 sum += ((MutableInteger)list.get(i)).getValue();
 }

 201

 return sum;
 }
}

The Vector-based version, ArrayVec , is sufficiently similar that I don't feel the need to kill a
tree reprinting its code; it's online.

How can we time this? As covered in Section 25.6, you can either use the operating system's
time command, if available, or just use a bit of Java that times a run of your main program. To be
portable, I chose to use the latter, on an older, slower machine. Its exact speed doesn't matter,
since the important thing is to compare only versions of this program running on the same
machine.

Finally (drum roll, please) the results:

$ java Time Array
Starting class class Array
1185103928
runTime=4.310
$ java Time ArrayLst
Starting class class ArrayLst
1185103928
runTime=5.626
$ java Time ArrayVec
Starting class class ArrayVec
1185103928
runTime=6.699
$

Notice that I have ignored one oft-quoted bit of advice, that of giving a good initial estimate on the
size of the ArrayList. I did time it that way as well; in this example, it made a difference of less
than four percent in the total runtime.

The bottom line is that the efficiency of ArrayList is almost as good (75%) as that of arrays.
The overhead of objects whose methods actually do some computation will almost certainly
outweigh it. Unless you are dealing with millions of objects per minute, you probably don't need to
worry about it. Vector is slightly slower, but still only about two-thirds the speed of the original
array version.

 202

Chapter 8. Object-Oriented Techniques

8.1 Introduction

8.2 Printing Objects: Formatting with toString()

8.3 Overriding the Equals Method

8.4 Overriding the Hashcode Method

8.5 The Clone Method

8.6 The Finalize Method

8.7 Using Inner Classes

8.8 Providing Callbacks via Interfaces

8.9 Polymorphism/Abstract Methods

8.10 Passing Values

8.11 Roll Your Own Exceptions

8.12 Program: Plotter

8.1 Introduction

Java is an object-oriented (OO) language in the tradition of Simula-67, SmallTalk, and C++. It
borrows syntax from the latter and ideas from SmallTalk. The Java API has been designed and
built on the OO model. The Design Patterns (see the book of the same name) such as Factory
and Delegate are used throughout; an understanding of these, though not required, will help you
to better understand the use of the API.

8.1.1 Advice, or Mantras

There are any number of short bits of advice that I could give, and a few recurring themes that
arise when learning the basics of Java, and then learning more Java.

8.1.1.1* Use the API

Can't say this often enough. A lot of the things you need to do have already been done by the
good folks at JavaSoft. Learning the API well is a good grounds for avoiding that deadly
"reinventing the flat tire" syndrome -- coming up with a second-rate equivalent of a first-rate
product that was available to you the whole time. This is, in fact, part of this book's mission -- to
prevent you from reinventing what's already there. One example of this is the Collections API in

 203

java.util, discussed in the previous chapter. It has a high degree of generality and regularity,
so there is usually very little reason to invent your own data structuring code.

8.1.1.2 Generalize

There is a trade-off between generality (and the resulting reusability), which is emphasized here,
and the convenience of application specificity. If you're writing one small part of a very large
application designed according to OO design techniques, you'll have in mind a specific set of use
cases. On the other hand, if you're writing "toolkit-style" code, you should write classes with few
assumptions about how they'll be used. Making code easy to use from a variety of programs is
the route to writing reusable code.

8.1.1.3 Read and write Javadoc

You've no doubt looked at the Java 2 online documentation in a browser, in part because I just
told you to learn the API well. Do you think Sun hired millions of tech writers to produce all that
documentation? No. That documentation exists because the developers of the API took the time
to write Javadoc comments, those funny /** comments you've seen in code. So, one more bit of
advice: use Javadoc. We finally have a good, standard mechanism for API documentation. And
use it as you write the code -- don't think you'll come back and write it in later. That kind of
tomorrow never comes.

See Section 23.3 for details on using Javadoc.

8.1.1.4 Subclass early and often

I can't say this one enough either. Use subclassing. Use subclassing. Use subclassing. It is the
best basis not only for avoiding duplication of code, but for developing software that works. See
any number of good books on the topic of object- oriented design and programming for this. The
topic of Design Patterns has recently evolved as a special case of "doing OO design while
avoiding reinvention," hence a merger of these two bits of advice. That book is a good place to
start.

8.1.1.5 Use design patterns

In Section P.4 of Preface, I listed Design Patterns as one of the Very Important Books on
object-oriented programming, as it provides a powerful catalog of things that programmers often
reinvent. It is as important for giving a standard vocabulary of design as it is for its clear
explanations of how the basic patterns work and how they can be implemented.

Here are some examples from the standard API:

Pattern
name Meaning Examples in Java API

Factory
One class makes up instances for
you, controlled by subclasses

getInstance (in Calendar, Format,
Locale...); socket constructor; RMI
InitialContext

Iterator
Loop over all elements in a
collection, visiting each exactly once

Iterator; older Enumeration

Singleton Only one instance may exist java.awt.Toolkit

Memento
Capture and externalize an object's
state for later reconstruction Object serialization

 204

Command
Encapsulate requests, allowing
queues of requests, undoable
operations, etc.

java.awt.Command

Model-View-
Controller

Model represents data; View is what
the user sees; Controller responds
to user request

Observer/Observable; see also Servlet
Dispatcher (Section 18.9)

8.2 Printing Objects: Formatting with toString()

8.2.1 Problem

You want your objects to have a useful default format.

8.2.2 Solution

Override the toString() method inherited from java.lang.Object.

8.2.3 Discussion

Whenever you pass an object to System.out.println() or any equivalent method, or
involve it in string concatenation, Java will automatically call its toString() method. Java
"knows" that every object has a toString() method, since java.lang.Object has one and
all classes are ultimately subclasses of Object. The default implementation, in
java.lang.Object, is neither pretty nor interesting: it just prints the class name, an @ sign,
and the object's hashCode() value (see Section 8.4). For example, if you run this code:

/* Demonstrate toString() without an override */
public class ToStringWithout {
 int x, y;

 /** Simple constructor */
 public ToStringWithout(int anX, int aY) {
 x = anX; y = aY;
 }

 /** Main just creates and prints an object */
 public static void main(String[] args) {
 System.out.println(new ToStringWithout(42, 86));
 }
}

you might see this uninformative output:

ToStringWithout@990c747b

So, to make it print better, you should provide an implementation of toString() that prints the
class name and some of the important state in all but the most trivial classes. This gives you
formatting control in println(), in debuggers, and anywhere your objects get referred to in a
String context. Here is the previous program done over with a toString() method:

 205

/* Demonstrate toString() with an override */
public class ToStringWith {
 int x, y;

 /** Simple constructor */
 public ToStringWith(int anX, int aY) {
 x = anX; y = aY;
 }

 /** Override toString */
 public String toString() {
 return "ToStringWith[" + x + "," + y + "]";
 }
 /** Main just creates and prints an object */
 public static void main(String[] args) {
 System.out.println(new ToStringWith(42, 86));
 }
}

This version produces the more useful output:

ToStringWith[42,86]

8.3 Overriding the Equals Method

8.3.1 Problem

You want to be able to compare objects of your class.

8.3.2 Solution

Write an equals() method.

8.3.3 Discussion

How do you determine equality? For arithmetic or boolean operators, the answer is simple: you
test with the equals operator (==). For object references, though, Java provides both == and the
equals() method inherited from java.lang.Object. The equals operator can be confusing,
as it simply compares two object references to see if they refer to the same object. This is not
what you want most of the time.

The inherited equals() method is also not as useful as you might imagine. Some people seem
to start their life as Java developers thinking that the default equals() will magically do some
kind of detailed, field-by-field or even binary comparison of objects. But it does not compare
fields! It just does the simplest possible thing: it returns the value of an == comparison on the two
objects involved! So, for anything useful, you will probably have to write an equals method. Note
that both the equals and hashCode methods are used by hashes (Hashtable, HashMap; see
Section 7.7). So if you think somebody using your class might want to create instances and put
them into a hash, or even compare your objects, you owe it to them (and to yourself!) to
implement equals() properly.

 206

Here are the rules for an equals() method:

1. It is reflexive: x.equals(x) must be true.
2. It is symmetric: x.equals(y) must be true if and only if y.equals(x) is also true.
3. It is transitive: if x.equals(y) is true and y.equals(z) is true, then x.equals(z)

must also be true.
4. It is consistent: multiple calls on x.equals(y) return the same value (unless state

values used in the comparison are changed, as by calling a set method).
5. It is cautious: x.equals(null) must return false, rather than accidentally throwing a

NullPointerException .

Here is a class that tries to implement these rules:

public class EqualsDemo {
 int int1;
 SomeClass obj1;

 /** Constructor */
 public EqualsDemo(int i, SomeClass o) {
 int1 = i;
 obj1 = o;
 }

 public EqualsDemo() {
 this(0, new SomeClass());
 }

 /** Typical run-of-the-mill Equals method */
 public boolean equals(Object o) {
 if (o == null) // caution
 return false;
 if (o == this) // optimization
 return true;

 // Castable to this class?
 if (!(o instanceof EqualsDemo))
 return false;

 EqualsDemo other = (EqualsDemo)o; // OK, cast to this class

 // compare field-by-field
 if (int1 != other.int1) // compare primitives
directly
 return false;
 if (!obj1.equals(other.obj1)) // compare objects using their
equals
 return false;
 return true;
 }
}

And here is a junit test file (see Section 1.14) for the EqualsDemo class:

import junit.framework.*;
/** some junit test cases for EqualsDemo

 207

 * writing a full set is left as "an exercise for the reader".
 * Run as: $ java junit.textui.TestRunner EqualsDemoTest
 */
public class EqualsDemoTest extends TestCase {

 /** an object being tested */
 EqualsDemo d1;
 /** another object being tested */
 EqualsDemo d2;

 /** init() method */
 public void setUp() {
 d1 = new EqualsDemo();
 d2 = new EqualsDemo();
 }

 /** constructor plumbing for junit */
 public EqualsDemoTest(String name) {
 super(name);
 }

 public void testSymmetry() {
 assert(d1.equals(d1));
 }

 public void testSymmetric() {
 assert(d1.equals(d2) && d2.equals(d1));
 }

 public void testCaution() {
 assert(!d1.equals(null));
 }
}

With all that testing, what could go wrong? Well, some things still need care. What if the object is
a subclass of EqualsDemo? We cast it and . . . compare only our fields! You probably should test
explicitly with getClass() if subclassing is likely. And subclasses should call super.equals(
) to test all superclass fields.

What else could go wrong? Well, what if either obj1 or other.obj1 is null? You might have just
earned a nice shiny new NullPointerException. So you also need to test for any possible
null values. Good constructors can avoid these, as I've tried to do in EqualsDemo, or else test for
them explicitly.

8.4 Overriding the Hashcode Method

8.4.1 Problem

You want to use your objects in a hash, and you need to write a hashCode().

8.4.2 Discussion

 208

The hashCode() method is supposed to return an int that should uniquely identify different
objects.

A properly written hashCode() method will follow these rules:

1. It is repeatable: hashCode(x) must return the same int when called again unless set
methods have been called.

2. It is symmetric: if x.equals(y), then x.hashCode() must == y.hashCode(), i.e.,
either both return true, or both return false.

3. If !x.equals(y), it is not required that x.hashCode() != y.hashCode(), but
doing so may improve performance of hash tables, i.e., hashes may call hashCode()
before equals().

The default hashCode() on Sun's JDK returns a machine address, which conforms to Rule 1.
Conformance to Rules 2 and 3 depends, in part, upon your equals() method. Here is a
program that prints the hashcodes of a small handful of objects:

/** Display hashCodes from some objects */
public class PrintHashCodes {

 /** Some objects to hashCode() on */
 protected static Object[] data = {
 new PrintHashCodes(),
 new java.awt.Color(0x44, 0x88, 0xcc),
 new SomeClass()
 };

 public static void main(String[] args) {
 System.out.println("About to hashCode " + data.length + "
objects.");
 for (int i=0; i<data.length; i++) {
 System.out.println(data[i].toString() + " --> " +
 data[i].hashCode());
 }
 System.out.println("All done.");
 }
}

What does it print?

> jikes +E -d . PrintHashCodes.java
> java PrintHashCodes
About to hashCode 3 objects.
PrintHashCodes@982741a0 --> -1742257760
java.awt.Color[r=68,g=136,b=204] --> -12285748
SomeClass@860b41ad --> -2046082643
All done.
>

The hashcode value for the Color object is interesting. It is actually computed as something like:

(r<<24 + g<<16 + b<<8 + alpha)

 209

The "high bit" in this word having been set by shifting causes the value to appear negative when
printed as a signed integer. Hashcode values are allowed to be negative.

8.5 The Clone Method

8.5.1 Problem

You want to clone yourself. Or at least your objects.

8.5.2 Solution

Override Object.clone() .

8.5.3 Discussion

To clone something is to make a duplicate of it. The clone() method in Java makes an exact
duplicate of an object. Why do we need cloning? Java's method calling semantics are call-by-
reference, which allows the called method to modify the state of an object that is passed into it.
Cloning the input object before calling the method would pass a copy of the object, keeping your
original safe.

How can you clone? Cloning is not "enabled" by default in classes that you write.

Object o = new Object();
Object o2 = o.clone();

If you try calling clone() without any special preparation, as in this excerpt from Clone0.java,
you will see a message like this (from the Jikes compiler; the javac message may not be as
informative):

Clone0.java:4:29:4:37: Error: Method "java.lang.Object clone();" in
class "java/
lang/Object" has protected or default access. Therefore, it is not
accessible in
class "Clone0" which is in a different package.

You must take two steps to make your class cloneable:

1. Override Object's clone() method.
2. Implement the empty Cloneable interface.

8.5.3.1 Using cloning

The class java.lang.Object declares its clone protected and native . Protected classes can
be called by a subclass or those in the same package (i.e., java.lang), but not by unrelated
classes. That is, you can call Object.clone() -- the native method that does the magic of
duplicating the object -- only from within the object being cloned. Here is a simple example of a
class with a clone method, and a tiny program that uses it:

public class Clone1 implements Cloneable {

 210

 /** Clone this object. Just call super.clone() to do the work */
 public Object clone() throws CloneNotSupportedException {
 return super.clone();
 }

 int x;
 transient int y; // will be cloned, but not serialized

 public static void main(String[] args) {
 Clone1 c = new Clone1();
 c.x = 100;
 c.y = 200;
 try {
 Object d = c.clone();
 System.out.println("c=" + c);
 System.out.println("d=" + d);
 } catch (CloneNotSupportedException ex) {
 System.out.println("Now that's a surprise!!");
 System.out.println(ex);
 }
 }

 /** Display the current object as a string */
 public String toString() {
 return "Clone1[" + x + "," + y + "]";
 }
}

The clone() method in Object throws CloneNotSupportedException. This is to handle
the case of inadvertently calling clone() on a class that isn't supposed to be cloned. Since
most of the time you don't need to do anything with this exception, a clone method can simply
declare this exception in its throws clause, and let the calling code deal with it.

Calling Object's clone() does a stateful, shallow copy down inside the JVM. That is, it
creates a new object, and copies all the fields from the old object into the new. It then returns the
new reference as an Object; you need to cast it to the appropriate object type. So if that's all
there is, why do you even have to write this method? The reason is to give you a chance to do
any preservation of state that is required in cloning your objects. For example, if your class has
any references to other objects (and most real-world classes do), you may well want to clone
them as well! The default clone method simply copies all the object's state, so that you now have
two references to each object. Or you might have to close and reopen files, to avoid having two
threads (see Chapter 24) reading from or writing into the same file. In effect, what you have to
do here depends on what the rest of your class does.

Now suppose that you clone a class containing an array of objects. You now have two references
to objects in the array, but further additions to the array will only be made in one array or the
other. Imagine a Vector, Stack, or other collection class being used in your class, and your
object gets cloned!

The bottom line is that most object references need to be cloned.

Even if you don't need clone(), your subclasses may! If you didn't provide clone() in a class
subclassed from Object, your subclasses will probably get the Object version, which will cause

 211

problems if there are collections or other mutable objects referred to. As a general rule, you
should provide clone() even if only your own subclasses would need it.

8.5.3.2 Difficulty in the standard API

The java.util.Observable class (designed to implement the Model-View-Controller pattern
with AWT or Swing applications) contains a private Vector but no clone method to deep-clone it.
Thus, Observable objects cannot safely be cloned, ever!

8.6 The Finalize Method

8.6.1 Problem

You want to have some action taken when your objects are removed from service.

8.6.2 Solution

Use finalize() but don't trust it; or, write your own end-of-life method.

8.6.3 Discussion

Developers coming from a C++ background tend to form a mental map that has a line of
equivalency drawn from C++ destructors to Java finalizers. In C++, destructors are called
automatically when you delete an object. Java, though, has no such operator as delete; objects
are freed automatically by a part of the Java runtime called the garbage collector, or GC. GC runs
as a background thread in Java processes and looks around every so often to see if there are
any objects that are no longer referred to by any reference variable. When it runs, as it frees
objects, it calls their finalize() methods.

For example, what if you (or some code you called) invoke System.exit() ? In this case the
entire JVM will cease to exists (assuming there isn't an applet-style security manager to deny it
permission to do so) and the finalizer is never run. Similarly, a "memory leak" or mistakenly held
reference to your object will also prevent finalizers from running.

Can't you just ensure that all finalizers get run simply by calling
System.runFinalizersOnExit(true)? Not really! This method is deprecated (see Section
1.10); the documentation notes:

This method is inherently unsafe. It may result in finalizers being called on live
objects while other threads are concurrently manipulating those objects, resulting
in erratic behavior or deadlock.

So what if you need some kind of cleanup? You must take responsibility for defining a method
and invoking it before you let any object of that class go out of reference. You might call such a
method cleanUp().

Java 2 SDK 1.3 introduced the runtime method addShutdownHook() , to which you pass a
non-started Thread subclass object; if the virtual machine has a chance, it runs your shutdown
hook code as part of termination. This will normally work, unless the VM was terminated abruptly
as by a kill signal on Unix or a KillProcess on Win32, or the VM aborts due to detecting internal
corruption of its data structures.

 212

The bottom line? There's no guarantee, but finalizers and shutdown hooks both have pretty good
odds of being run.

8.7 Using Inner Classes

8.7.1 Problem

You need to write a private class, or a class to be used in one other class at the most.

8.7.2 Solution

Use a non-public class or an inner class.

8.7.3 Discussion

A non-public class can be written as part of another class's source file, but is not included inside
that class. An inner class is Java terminology for a class defined inside another class. Inner
classes were first popularized with the advent of JDK 1.1 for use as event handlers for GUI
applications (see Section 13.5), but they have a much wider application.

Inner classes can, in fact, be constructed in several contexts. An inner class defined as a member
of a class can be instantiated anywhere in that class. An inner class defined inside a method can
only be referred to later in the same method. Inner classes can also be named or anonymous. A
named inner class has a full name that is compiler-dependent; the standard JVM uses a name
like MainClass$InnerClass.class for the resulting file. An anonymous inner class, similarly,
has a compiler-dependent name; the JVM uses MainClass$1.class, MainClass$2.class,
and so on.

These classes cannot be instantiated in any other context; any explicit attempt to refer to, say,
OtherMainClass$InnerClass, will be caught at compile time.

import java.awt.event.*;
import javax.swing.*;

public class AllClasses {
 /** Inner class can be used anywhere in this file */
 public class Data {
 int x;
 int y;
 }
 public void getResults() {
 JButton b = new JButton("Press me");
 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 System.out.println("Thanks for pressing me");
 }
 });
 }
}

/** Class contained in same file as AllClasses, but can be used
 * (with a warning) in other contexts.
 */

 213

class AnotherClass {
 // methods and fields here...
}

8.8 Providing Callbacks via Interfaces

8.8.1 Problem

You want to provide callbacks ; that is, have unrelated classes call back into your code.

8.8.2 Solution

One way is to use a Java interface.

8.8.3 Discussion

An interface is a class-like object that can contain only abstract methods and final fields. As we've
seen, interfaces are used a lot in Java! In the standard API, the following are a few of the
commonly used interfaces:

• Runnable, Comparable, and Cloneable (in java.lang)
• List, Set, Map, and Enumeration/Iterator (in the Collections API; see Chapter 7)
• ActionListener, WindowListener, and others (in the AWT GUI; see Section 13.5)
• Driver, Connection, Statement, and ResultSet (in JDBC; see Section 20.4)
• The "remote interface" -- the contact between the client and the server -- is specified as

an Interface (in RMI, CORBA, and EJB)

Subclass, Abstract Class, or Interface?

There is usually more than one way to skin a cat. Some problems can be
solved by subclassing, by use of abstract classes, or by interfaces. The
following general guidelines may help:

• Use an abstract class when you want to provide a template for a
series of subclasses, all of which may inherit some of their
functionality from the parent class but are required to implement
some of it themselves. (Any subclass of a geometric Shapes
class might have to provide a computeArea() method; since
the top-level Shapes class cannot do this, it would be abstract.
This is implemented in Section 8.9.)

• Subclass whenever you want to extend a class and add some
functionality to it, whether the parent class is abstract or not. See
the standard Java APIs and the examples in Recipes Section
1.14, Section 5.11, Section 8.12, Section 9.8, and many

 214

others throughout this book.

• Subclass when you are required to extend a given class. Applets
(see Section 17.3), servlets (Section 18.2), and others use
subclassing to ensure "base" functionality in classes that are
dynamically loaded (see Section 25.4).

• Define an interface when there is no common parent class with
the desired functionality, and when you want only certain
unrelated classes to have that functionality (see the
PowerSwitchable interface in Section 8.8).

• Use interfaces as "markers" to indicate something about a class.
The standard API uses Cloneable (Section 8.5) and
Serializable (Section 9.17) as markers.

Suppose we are generating a futuristic building management system. To be energy-efficient, we
want to be able to remotely turn off (at night and on weekends) such things as room lights and
computer monitors, which use a lot of energy. Assume we have some kind of "remote control"
technology: it could be a commercial version of BSR's house-light control technology "X10"; it
could be BlueTooth or 802.11; it doesn't matter. What matters is that we have to be very careful
what we turn off. It would cause great ire if we turned off computer processors automatically --
people often leave things running overnight. It would be a matter of public safety if we ever turned
off the building emergency lighting.[1] So we've come up with the design shown in Figure 8-1.

[1] Of course these lights wouldn't have remote power-off. But the computers might, for maintenance
purposes.

Figure 8-1. Classes for a building management system

 215

The code for these classes is not shown (it's pretty trivial) but it's in the online source. The top-
level classes -- those with names ending in Asset, and BuildingLight -- are abstract classes.
You can't instantiate them, as they don't have any specific functionality. To ensure -- both at
compile time and at runtime -- that we can never switch off the emergency lighting, we need only
ensure that the class representing it, EmergencyLight, does not implement the
PowerSwitchable interface.

Note that we can't very well use direct inheritance here. There is no common ancestor class that
includes both ComputerMonitor and RoomLights that doesn't also include ComputerCPU and
EmergencyLight. Use interfaces to define functionality in unrelated classes.

How we use these is demonstrated by the BuildingManagement class; this class is not part of
the hierarchy shown in Figure 8-1, but instead uses a collection (actually an array, to make the
code simpler for illustrative purposes) of Asset objects from that hierarchy.

Items that can't be switched must nonetheless be in the database, for various purposes (auditing,
insurance, and so on). In the method that turns things off, the code is careful to check whether
each object in the database is an instance of the PowerSwitchable interface. If so, the object is
casted to PowerSwitchable so that its powerDown() method can be called. If not, the object
is skipped, thus preventing any possibility of turning out the emergency lights or shutting off a
machine that is busy running Seti@Home or a big Napster download. Or system backups.

/**
 * BuildingManagement - control an energy-saving building.
 * This class shows how we might control the objects in an office
 * that can safely be powered off at nighttime to save energy - lots of
 * it, when applied to a large office!
 */
public class BuildingManagement {

 Asset things[] = new Asset[24];
 int numItems = 0;

 /** goodNight is called from a timer Thread at 2200, or when we
 * get the "shutdown" command from the security guard.
 */
 public void goodNight() {
 for (int i=0; i<things.length; i++)
 if (things[i] instanceof PowerSwitchable)
 ((PowerSwitchable)things[i]).powerDown();
 }

 // goodMorning() would be the same, but call each one's powerUp(
).

 /** Add a Asset to this building */
 public void add(Asset thing) {
 System.out.println("Adding " + thing);
 things[numItems++] = thing;
 }

 /** The main program */
 public static void main(String[] av) {
 BuildingManagement b1 = new BuildingManagement();
 b1.add(new RoomLights(101)); // control lights in room 101

 216

 b1.add(new EmergencyLight(101)); // and emerg. lights.
 // add the computer on desk#4 in room 101
 b1.add(new ComputerCPU(10104));
 // and its monitor
 b1.add(new ComputerMonitor(10104));

 // time passes, and the sun sets...
 b1.goodNight();
 }
}

When you run this program, it shows all the items being added, but only the PowerSwitchable
ones being switched off:

> java BuildingManagement
Adding RoomLights@2dc77f32
Adding EmergencyLight@2e3b7f32
Adding ComputerCPU@2e637f32
Adding ComputerMonitor@2f1f7f32
Dousing lights in room 101
Dousing monitor at desk 10104
>

8.9 Polymorphism/Abstract Methods

8.9.1 Problem

You want each of a number of methods in subclasses to provide its own version of a method.

8.9.2 Solution

Make the method abstract in the parent class; this makes the compiler ensure that each subclass
implements it.

8.9.3 Discussion

A hypothetical drawing program uses a Shape subclass for anything that is drawn. Shape has an
abstract method computeArea(), which computes the exact area of the given shape:

public abstract class Shape {
 protected int x, y;
 public abstract double computeArea();
}

A Rectangle subclass, for example, has a computeArea() that multiplies width times height
and returns the result:

public class Rectangle extends Shape {
 double width, height;
 public double computeArea() {
 return width * height;

 217

 }
}

A Circle subclass returns x r

:public class Circle extends Shape {
 double radius;
 public double computeArea() {
 return Math.PI * radius * radius;
 }
}

This system has a very high degree of generality. In the main program we can pass over a
collection of Shape objects and -- here's the real beauty -- call computeArea() on any Shape
subclass object without having to worry about what kind of Shape it is. Java's polymorphic
methods automatically call the correct computeArea() method in the class of which the object
was originally constructed:

/** Part of a main program using Shape objects */
public class Main {

 Collection allShapes; // created in a Constructor, not shown

 /** Iterate over all the Shapes, getting their areas */
 public double totalAreas() {
 Iterator it = allShapes.iterator();
 double total = 0.0;
 while (it.hasNext()) {
 Shape s = (Shape)it.next();
 total += s.computeArea();
 }
 return total;
 }
}

This is a great boon for software maintenance: if a new subclass is added, the code in the main
program does not change. Further, all the code that is specific to, say, polygon handling, is all in
one place: in the source file for the Polygon class. This is a big improvement over older
languages, where type fields in a structure or record were used with case or switch statements
scattered all across the software. Java makes software more reliable and maintainable with the
use of polymorphism.

8.10 Passing Values

8.10.1 Problem

You need to pass a number like an int into a routine, and get back the routine's updated version
of that value in addition to the routine's return value.

This often comes up in working through strings; the routine may need to return a boolean, say,
or the number of characters transferred, but also needs to increment an integer array or string
index in the calling class.

 218

It is also useful in constructors, which can't return a value but may need to indicate that they have
"consumed" or processed a certain number of characters from within a string, such as when the
string will be further processed in a subsequent call.

8.10.2 Solution

Use a specialized class such as the one presented here.

8.10.3 Discussion

The Integer class is one of Java's predefined Number subclasses, mentioned in the
Introduction to Chapter 5. It serves as a wrapper for an int value, and also has static
methods for parsing and formatting integers.

It's fine as it is, but you may want something simpler.

Here is a class I wrote, called MutableInteger, that is like an Integer but specialized by
omitting the overhead of Number and providing only the set, get, and incr operations, the
latter overloaded to provide a no-argument version that performs the increment (++) operator on
its value, and also a one-integer version that adds that increment into the value (analogous to the
+= operator). Since Java doesn't support operator overloading, the calling class has to call these
methods instead of invoking the operations syntactically, as you would on an int. For
applications that need this functionality, the advantages outweigh this minor syntactic restriction.
First let's look at an example of how it might be used. Assume you need to call a scanner function
called, say, parse(), and get back both a boolean (indicating whether or not a value was
found) and an integer value indicating where it was found:

import com.darwinsys.util.*;

/** Show use of MutableInteger to "pass back" a value in addition
 * to a function's return value.
 */
public class StringParse {
 /** This is the function that has a return value of true but
 * also "passes back" the offset into the String where a
 * value was found. Contrived example!
 */
 public static boolean parse(String in,
 char lookFor, MutableInteger whereFound) {
 int i = in.indexOf(lookFor);
 if (i == -1)
 return false; // not found
 whereFound.setValue(i); // say where found
 return true; // say that it was found
 }

 public static void main(String[] args) {
 MutableInteger mi = new MutableInteger();
 String text = "Hello, World";
 char c = 'W';
 if (parse(text, c, mi)) {
 System.out.println("Character " + c + " found at offset "
 + mi + " in " + text);
 } else {

 219

 System.out.println("Not found");
 }
 }
}

Now many OO purists will argue -- convincingly -- that you shouldn't do this. That you can always
rewrite it so there is only one return value. Either return and have the caller interpret a single
value (in this case, return the offset in the return statement, and let the user know that -1
indicates not found), or define a trivial wrapper class containing both the integer and the boolean.
However, there is precedent in the standard API: this code is remarkably similar to how the
ParsePosition class (see Section 6.6) is used. Anyway, this functionality is requested often
enough that I feel justified in showing how to do it, accompanied by this disclaimer: try to avoid
doing it this way in new code!

Having said all that, here is the MutableInteger class:

package com.darwinsys.util;

/** A MutableInteger is like an Integer but mutable, to avoid the
 * excess object creation involved in
 * c = new Integer(c.getInt()+1)
 * which can get expensive if done a lot.
 * Not subclassed from Integer, since Integer is final (for performance
:-))
 */
public class MutableInteger {
 private int value = 0;

 public MutableInteger() {
 }

 public MutableInteger(int i) {
 value = i;
 }

 public void incr() {
 value++;
 }

 public void decr() {
 value--;
 }

 public void setValue(int i) {
 value = i;
 }

 public int getValue() {
 return value;
 }

 public String toString() {
 return Integer.toString(value);
 }

 public static String toString(int val) {

 220

 return Integer.toString(val);
 }

 public static int parseInt(String str) {
 return Integer.parseInt(str);
 }
}

8.10.4 See Also

As mentioned, this use of MutableInteger could be replaced with ParsePosition. However,
MutableInteger has other uses; it makes a fine in-memory counter in a servlet (see Section
18.1).

8.11 Roll Your Own Exceptions

8.11.1 Problem

You'd like to use an application-specific exception class or two.

8.11.2 Solution

Go ahead and subclass Exception or RuntimeException.

8.11.3 Discussion

In theory you could subclass Throwable directly, but that's considered rude. You normally
subclass Exception (if you want a checked exception) or RuntimeException (if you want an
unchecked exception). Checked exceptions are those that an application developer is required to
catch, or "throw away" by listing them in the throws clause of the invoking method.

When subclassing either of these, it is customary to provide at least a no-argument and a one-
string argument constructor:

/** A ChessMoveException is thrown when the user makes an illegal
move. */
public class ChessMoveException extends RuntimeException {
 public ChessMoveException () {
 super();
 }
 public ChessMoveException (String msg) {
 super(msg);
 }
}

8.11.4 See Also

The Javadoc documentation for Exception lists a very large number of subclasses; you might
look there first to see if there is one you can use.

8.12 Program: Plotter

 221

Not because it is very sophisticated, but because it is simple, this program will serve as an
example of some of the things we've covered in this chapter, and will also, in its subclasses,
provide springboards for other discussions. This class describes a series of old-fashioned (i.e.,
common in the 1970s and 1980s) pen plotters. A pen plotter, in case you've never seen one, is a
device that moves a pen around a piece of paper and draws things. It can lift the pen off the
paper or lower it, and it can draw lines, letters, and so on. Before the rise of laser printers and ink-
jet printers, pen plotters were the dominant means of preparing charts of all sorts, as well as
presentation slides (this was, ah, well before the rise of programs like Harvard Presents and
Microsoft PowerPoint). Today few companies still manufacture pen plotters, but I use them here
because they are simple enough to be well understood from this brief description.

I'll present a high-level class that abstracts the key characteristics of a series of such plotters
made by different vendors. It would be used, for example, in an analytical or data-exploration
program to draw colorful charts showing the relationships found in data. But I don't want my main
program to worry about the gory details of any particular brand of plotter, so I'll abstract into a
Plotter class, whose source is as follows:

/**
 * Plotter abstract class. Must be subclassed
 * for X, DOS, Penman, HP plotter, etc.
 *
 * Coordinate space: X = 0 at left, increases to right.
 * Y = 0 at top, increases downward (same as AWT).
 */
public abstract class Plotter {
 public final int MAXX = 800;
 public final int MAXY = 600;
 /** Current X co-ordinate (same reference frame as AWT!) */
 protected int curx;
 /** Current Y co-ordinate (same reference frame as AWT!) */
 protected int cury;
 /** The current state: up or down */
 protected boolean penIsUp;
 /** The current color */
 protected int penColor;

 Plotter() {
 penIsUp = true;
 curx = 0; cury = 0;
 }
 abstract void rmoveTo(int incrx, int incry);
 abstract void moveTo(int absx, int absy);
 abstract void penUp();
 abstract void penDown();
 abstract void penColor(int c);

 abstract void setFont(String fName, int fSize);
 abstract void drawString(String s);

 /* Concrete classes */

 /** Draw a box of width w and height h */
 public void drawBox(int w, int h) {
 penDown();
 rmoveTo(w, 0);
 rmoveTo(0, h);

 222

 rmoveTo(-w, 0);
 rmoveTo(0, -h);
 penUp();
 }

 /** Draw a box given an AWT Dimension for its size */
 public void drawBox(java.awt.Dimension d) {
 drawBox(d.width, d.height);
 }

 /** Draw a box given an AWT Rectangle for its location and size */
 public void drawBox(java.awt.Rectangle r) {
 moveTo(r.x, r.y);
 drawBox(r.width, r.height);
 }
}

Note the wide variety of abstract methods. Those related to motion, pen control, or drawing are
left out, due to the number of different methods for dealing with them. However, the method for
drawing a rectangle (drawBox) has a default implementation, which simply puts the currently
selected pen onto the paper at the last-moved-to location, draws the four sides, and raises the
pen. Subclasses for "smarter" plotters will likely override this method, but subclasses for less-
evolved plotters will probably use the default version. There are also two overloaded convenience
versions of this method, for the case where the client has an AWT Dimension for the size, or an
AWT Rectangle for the location and size.

To demonstrate one of the subclasses of this program, consider the following simple "driver"
program. The Class.forName() near the beginning of main will be discussed in Section
25.4; for now you can take my word that it simply creates an instance of the given subclass,
which we store in a Plotter reference named "r" and use to draw the plot:

,/** Main program, driver for Plotter class.
 * This is to simulate a larger graphics application such as GnuPlot.
 */
public class PlotDriver {

 /** Construct a Plotter driver, and try it out. */
 public static void main(String[] argv)
 {
 Plotter r ;
 if (argv.length != 1) {
 System.err.println("Usage: PlotDriver driverclass");
 return;
 }
 try {
 Class c = Class.forName(argv[0]);
 Object o = c.newInstance();
 if (!(o instanceof Plotter))
 throw new ClassNotFoundException("Not instanceof
Plotter");
 r = (Plotter)o;
 } catch (ClassNotFoundException e) {
 System.err.println("Sorry, "+argv[0]+" not a plotter
class");
 return;

 223

 } catch (Exception e) {
 e.printStackTrace();
 return;
 }
 r.penDown();
 r.penColor(1);
 r.moveTo(200, 200);
 r.penColor(2);
 r.drawBox(123, 200);
 r.rmoveTo(10, 20);
 r.penColor(3);
 r.drawBox(123, 200);
 r.penUp();
 r.moveTo(300, 100);
 r.penDown();
 r.setFont("Helvetica", 14);
 r.drawString("Hello World");
 r.penColor(4);
 r.drawBox(10, 10);
 }
}

We'll see further examples of this Plotter class and its relatives in several upcoming chapters.

 224

Chapter 9. Input and Output

9.1 Introduction

9.2 Reading Standard Input

9.3 Writing Standard Output

9.4 Opening a File by Name

9.5 Copying a File

9.6 Reading a File into a String

9.7 Reassigning the Standard Streams

9.8 Duplicating a Stream as It Is Written

9.9 Reading/Writing a Different Character Set

9.10 Those Pesky End-of-Line Characters

9.11 Beware Platform-Dependent File Code

9.12 Reading "Continued" Lines

9.13 Scanning a File

9.14 Binary Data

9.15 Seeking

9.16 Writing Data Streams from C

9.17 Saving and Restoring Serialized Objects

9.18 Preventing ClassCastExceptions with SerialVersionUID

9.19 Reading and Writing JAR or Zip Archives

9.20 Reading and Writing Compressed Files

 225

9.21 Program: Text to PostScript

9.22 Program: TarList (File Converter)

9.1 Introduction

Most programs need to interact with the outside world, and one common way of doing so is by
reading and writing files. Files are normally on some persistent medium such as a disk drive, and,
for the most part, we shall happily ignore the differences between a hard disk (and all the
operating system-dependent filesystem types), a floppy or zip drive, a CD-ROM, and others. For
now, they're just files.

9.1.1 Correcting Misconceptions

Java's approach to input/output is sufficiently different from that of older languages (C, Fortran,
Pascal) that people coming from those languages are often critical of Java's I/O model. I can offer
no better defense than that provided in the preface to Elliotte Rusty Harold's book Java I/O :

Java is the first programming language with a modern, object-oriented approach
to input and output. Java's I/O model is more powerful and more suited to real-
world tasks than any other major language used today. Surprisingly, however,
I/O in Java has a bad reputation. It is widely believed (falsely) that Java I/O can't
handle basic tasks that are easily accomplished in other languages like C, C++,
and Pascal. In particular, it is commonly said that:

-- I/O is too complicated for introductory students; or, more specifically, there's no
good way to read a number from the console.

-- Java can't handle basic formatting tasks like printing PI with three decimal
digits of precision.

[Rusty's book shows] that not only can Java handle these two tasks with relative
ease and grace; it can do anything C and C++ can do, and a whole lot more.
Java's I/O capabilities not only match those of classic languages like C and
Pascal, they vastly surpass them.

The most common complaint about Java I/O among students, teachers, authors
of textbooks, and posters to comp.lang.java is that there's no simple way to
read a number from the console (System.in). Many otherwise excellent
introductory Java books repeat this canard. Some textbooks go to great lengths
to reproduce the behavior they're accustomed to from C or Pascal, apparently so
teachers don't have to significantly rewrite the tired Pascal exercises they've
been using for the last 20 years. However, new books that aren't committed to
the old ways of doing things generally use command-line interfaces for basic
exercises, then rapidly introduce the graphical user interfaces any real [desktop]
program is going to use anyway. Apple wisely abandoned the command-line
interface back in 1984, and the rest of the world is slowly catching up. Although
System.in and System.out are certainly convenient for teaching and
debugging, in 1999 no completed, cross-platform program should even assume
the existence of a console for either input or output.

 226

The second common complaint about Java I/O is that it can't handle formatted
output; that is, that there's no equivalent of printf() in Java. In a very narrow
sense, this is true, because Java does not support the variable length arguments
lists a function like printf() requires. Nonetheless, a number of misguided
souls (your author not least among them) [has] at one time or another embarked
on futile efforts to reproduce printf() in Java. This may have been necessary
in Java 1.0, but as of Java 1.1, it's no longer needed. The java.text package,
described in Chapter 16 [of Rusty's book, and in Chapter 5 of the present work],
provides complete support for formatting numbers. Furthermore, the java.text
package goes way beyond the limited capabilities of printf(). It supports not
only different precisions and widths, but also internationalization, currency
formats, grouping symbols, and a lot more. It can easily be extended to handle
Roman numerals, scientific or exponential notation, or any other number format
you may require.

The underlying flaw in most people's analysis of Java I/O is that they've confused
input and output with the formatting and interpreting of data. Java is the first
major language to cleanly separate the classes that read and write bytes
(primarily, various kinds of input streams and output streams) from the classes
that interpret this data. You often need to format strings without necessarily
writing them on the console. You may also need to write large chunks of data
without worrying about what they represent. Traditional languages that connect
formatting and interpretation of I/O and hard-wire a few specific formats are
extremely difficult to extend to other formats. In essence, you have to give up and
start from scratch every time you want to process a new format.

Furthermore, C's printf(), fprintf(), and sprintf() family only really
works well on Unix (where, not coincidentally, C was invented). On other
platforms the underlying assumption that every target may be treated as a file
fails, and these standard library functions must be replaced by other functions
from the host API.

Java's clean separation between formatting and I/O allows you to create new
formatting classes without throwing away the I/O classes, and to write new I/O
classes while still using the old formatting classes. Formatting and interpreting
strings are fundamentally different operations from moving bytes from one device
to another. Java is the first major language to recognize and take advantage of
this.

To which I can only add, "Well said, Rusty." What Rusty doesn't mention is an obvious corollary
of this flexibility: it can often take a bit more coding to do some of the command-line, standard-
in/standard-out operations. You'll see most of these in this chapter, and you'll see throughout the
book how flexible Java I/O really is.

This chapter covers all the normal input/output operations such as opening/closing and
reading/writing files. Files are assumed to reside on some kind of file store or permanent storage.
I don't discuss how such a filesystem or disk I/O system works -- consult a book on operating
system design for the general details, or a platform-specific book on system internals or
filesystem design for such details. Network filesystems such as Sun's Network File System (NFS,
common on Unix and available for Windows though products such as Hummingbird NFS),
Macintosh Appletalk File System (available for Unix via NetATalk), and SMB (MS-Windows
network filesystem, available for Unix with the freeware Samba program) are assumed to work
"just like" disk filesystems, except where noted. And while you could even provide your own

 227

network filesystem layer using the material covered in Chapter 16, it is exceedingly difficult to
design your own network virtual filesystem, and probably better to use one of the existing ones.

9.1.2 Streams and Readers/Writers

Java provides two sets of classes for reading and writing. The Stream section of package
java.io (see Figure 9-1) is for reading or writing bytes of data. Older languages tended to
assume that a byte (which is a machine-specific collection of bits, usually eight bits on modern
computers) is exactly the same thing as a "character" -- a letter, digit, or other linguistic element.
However, Java is designed to be used interanationally, and eight bits is simply not enough to
handle the many different character sets used around the world. Script-based languages like
Arabic and Indian languages, and pictographic languages like Chinese, Japanese, and Korean
each have many more than 256 characters, the maximum that can be represented in an eight-bit
byte. The unification of these many character code sets is called, not surprisingly, Unicode.
Actually, it's not the first such unification, but it's the most widely used standard at this time. Both
Java and XML use Unicode as their character sets, allowing you to read and write text in any of
these human languages. But you have to use Readers and Writers, not Streams, for textual
data.

Figure 9-1. java.io classes

 228

You see, Unicode itself doesn't solve the entire problem. Many of these human languages were
used on computers long before Unicode was invented, and they didn't all pick the same
representation as Unicode. And they all have zillions of files encoded in a particular
representation that isn't Unicode. So conversion routines are needed when reading and writing to
convert between Unicode String objects used inside the Java machine and the particular
external representation that a user's files are written in. These converters are packaged inside a
powerful set of classes called Readers and Writers. Readers/Writers are always used

 229

instead of InputStreams/OutputStreams when you want to deal with characters instead of
bytes. We'll see more on this conversion, and how to specify which conversion, a little later in this
chapter.

9.1.3 See Also

One topic not addressed here is the issue of hardcopy printing. Java includes two similar
schemes for printing onto paper, both using the same graphics model as is used in AWT, the
basic Window System package. For this reason, I defer discussion of printing to Chapter 12.

Another topic not covered here is that of having the read or write occur concurrently with other
program activity. This requires the use of threads, or multiple flows of control within a single
program. Threaded I/O is a necessity in many programs: those reading from slow devices such
as tape drives, those reading from or writing to network connections, and those with a GUI. For
this reason the topic is given considerable attention, in the context of multi-threaded applications,
in Chapter 24.

9.2 Reading Standard Input

9.2.1 Problem

Despite Rusty's comments, you really do need to read from the standard input, or console. One
reason is that simple test programs are often console-driven. Another is that some programs
naturally require a lot of interaction with the user and you want something faster than a GUI
(consider an interactive mathematics or statistical exploration program).

9.2.2 Solution

To read bytes, wrap a BufferedInputStream() around System.in. For the more common
case of reading text, use an InputStreamReader and a BufferedReader .

9.2.3 Discussion

On most non-Macintosh desktop platforms, there is a notion of standard input -- a keyboard, a
file, or the output from another program -- and standard output -- a terminal window, a printer, a
file on disk, or the input to yet another program. Most such systems also support a standard error
output, so that error messages can be seen by the user even if the standard output is being
redirected. When programs on these platforms start up, the three streams are preassigned to
particular platform-dependent handles, or file descriptors. The net result is that ordinary programs
on these operating systems can read the standard input or write to the standard output or
standard error stream without having to open any files or make any other special arrangements.

Java continues this tradition, and enshrines it in the Java Standard Edition's System class. The
static variables System.in, System.out, and System.err are connected to the three
operating system streams before your program begins execution (an application is free to
reassign these; see Section 9.7). So to read the standard input, you need only refer to the
variable System.in and call its methods. For example, to read one byte from the standard input,
you call the read method of System.in, which returns the byte in an int variable:

int b = System.in.read();

 230

But is that enough? No, because the read() method can throw an IOException. So you
must either declare that your program throws an IOException, as in:

public static void main(String ap[]) throws IOException {

Or, you can put a try/catch block around the read method:

int b = 0;
try {
 b = System.in.read();
} catch (Exception e) {
 System.out.println("Caught " + e);
}
System.out.println("Read this data: " + (char)b);

Note that I cavalierly convert the byte to a char for printing, assuming that you've typed a valid
character in the terminal window.

Well, that certainly works, and gives you the ability to read a byte at a time from the standard
input. But most applications are designed in terms of larger units, such as a line of text. For
reading characters of text, using an input character converter so that your program will work with
multiple input encodings around the world, you'll want to use a Reader class. The particular
subclass that allows you to read lines of characters is a BufferedReader . But there's a hitch.
Remember that I said there are two categories of input classes, Streams and Readers? But I
also said that System.in is a Stream, and you want a Reader. How to get from a Stream to a
Reader? There is a "crossover" class called an InputStream reader that is tailor-made for this
purpose. Just pass your Stream (like System.in) to the InputStreamReader constructor,
and you get back a Reader, which you in turn pass to the BufferedReader constructor. The
usual idiom for writing this in Java is to nest the constructor calls:

BufferedReader is = new BufferedReader(new
InputStreamReader(System.in);

Then you can read lines of text from the standard input using the readLine() method. This
method takes no argument, and returns a String that is made up for you by readLine()
containing the characters (converted to Unicode) from the next line of text in the file. If there are
no more lines of text, then the constant null is returned.

import java.io.*;

/**
 * Read and print, using BufferedReader from System.in, onto System.out
 */
public class CatStdin {

 public static void main(String av[]) {
 try {
 BufferedReader is = new BufferedReader(
 new InputStreamReader(System.in));
 String inputLine;

 while ((inputLine = is.readLine()) != null) {
 System.out.println(inputLine);

 231

 }
 is.close();
 } catch (IOException e) {
 System.out.println("IOException: " + e);
 }
 }
}

And because it's something that people ask me over and over, I'll show how to read an Integer
from the standard input:

import java.io.*;
/**
 * Read an int from Standard Input
 */
public class ReadStdinInt {
 public static void main(String[] ap) {
 String line = null;
 int val = 0;
 try {
 BufferedReader is = new BufferedReader(
 new InputStreamReader(System.in));
 line = is.readLine();
 val = Integer.parseInt(line);
 } catch (NumberFormatException ex) {
 System.err.println("Not a valid number: " + line);
 } catch (IOException e) {
 System.err.println("Unexpected IO ERROR: " + e);
 }
 System.out.println("I read this number: " + val);
 }
}

There are many other things you might want to do with lines of text read from a Reader. In the
demo program shown in this recipe, I just printed them. In the demo program in Section 9.4, I
convert them to integer values using Integer.parseInt() (also see Section 5.2) or using a
DecimalFormat (Section 5.8). You can interpret them as dates (Section 6.6), or break them
into words with a StringTokenizer (Section 3.3). You can also process the lines as you read
them; several methods for doing so are listed in Section 9.13.

9.3 Writing Standard Output

9.3.1 Problem

You want your program to write to the standard output.

9.3.2 Solution

Use System.out.

9.3.3 Discussion

 232

Again despite Rusty's quote, there are circumstances (such as a server program with no
connection back to the user's terminal) in which System.out can become a very important
debugging tool (assuming that you can find out what file the server program has redirected
standard output into; see Section 9.7).

System.out is a PrintStream, so in every introductory text you see a program containing this
line, or one like it:[1]

[1] All the examples in this recipe are found in one file, PrintStandardOutput.java.

System.out.println("Hello World of Java");

The println method is polymorphic; there are forms of it for Object (which obviously calls the
given object's toString() method), for String, and for each of the base types (int, float,
boolean, etc.). Each takes only one argument, so it is common to use string concatenation:

System.out.println("The answer is " + myAnswer + " at this time.");

Remember that string concatenation is also polymorphic: you can "add" anything at all to a string,
and the result is a string.

Up to here I have been using a Stream, System.out. What if you want to use a Writer? The
PrintWriter class has all the same methods as PrintStream and a constructor that takes a
Stream, so you can just say:

PrintWriter pw = new PrintWriter(System.out);
pw.println("The answer is " + myAnswer + " at this time.");

One caveat with this string concatenation is that if you are appending a bunch of things, and a
number and a character come togetherat the front, they are added before concatenation due to
the precedence rules. So don't do this:

System.out.println(i + '=' + " the answer.");

Assuming that i is an integer, then i + '=' (i added to the equals sign) is a valid numeric
expression, which will result in a single value of type int. If the variable i has the value 42, and
the character = in a Unicode (or ASCII) code chart has the value 61, then this will print:

103 the answer.

that is, the wrong value, and no equals sign. Safer methods include using parentheses, using
double quotes around the equals sign, and using a StringBuffer (see Section 3.4) or a
MessageFormat (see Section 14.11).

9.4 Opening a File by Name

9.4.1 Problem

The Java documentation doesn't have methods for opening files. How do I connect a filename on
disk with a Reader, Writer, or Stream?

 233

9.4.2 Solution

Construct a FileReader , a FileWriter, a FileInputStream, or a FileOutputStream.

9.4.3 Discussion

The action of constructing a FileReader, FileWriter, FileInputStream, or
FileOutputStream corresponds to the "open" operation in most I/O packages. There is no
explicit open operation, perhaps as a kind of rhetorical flourish of the Java API's object-oriented
design. So to read a text file, you'd create, in order, a FileReader and a BufferedReader. To
write a file a byte at a time, you'd create a FileOutputStream, and probably a
BufferedOutputStream for efficiency:

// OpenFileByName.java
BufferedReader is = new BufferedReader(new FileReader("myFile.txt"));
BufferedOutputStream bytesOut = new BufferedOutputStream(
 new FileOutputStream("bytes.dat"));
...
bytesOut.close();

Remember that you will need to handle IOException around these calls.

9.5 Copying a File

9.5.1 Problem

You need to copy a file in its entirety.

9.5.2 Solution

Use a pair of Streams for binary data, or a Reader and a Writer for text, and a while loop to
copy until end of file is reached on the input.

9.5.3 Discussion

This is a fairly common operation, so I've packaged it as a set of methods in a class I've called
FileIO in my utilities package com.darwinsys.util. Here's a simple test program that uses it
to copy a source file to a backup file:

import com.darwinsys.util.FileIO;

import java.io.*;

public class FileIOTest {
 public static void main(String[] av) {
 try {
 FileIO.copyFile("FileIO.java", "FileIO.bak");
 FileIO.copyFile("FileIO.class", "FileIO-class.bak");
 } catch (FileNotFoundException e) {
 System.err.println(e);
 } catch (IOException e) {

 234

 System.err.println(e);
 }
 }
}

How does FileIO work? There are several forms of the copyFile method, depending on
whether you have two filenames, a filename and a PrintWriter, and so on. See Example 9-
1.

Example 9-1. FileIO.java

package com.darwinsys.util;

import java.io.*;

/**
 * Some simple file I-O primitives reimplemented in Java.
 * All methods are static, since there is no state.
 */
public class FileIO {

 /** Copy a file from one filename to another */
 public static void copyFile(String inName, String outName)
 throws FileNotFoundException, IOException {
 BufferedInputStream is =
 new BufferedInputStream(new FileInputStream(inName));
 BufferedOutputStream os =
 new BufferedOutputStream(new FileOutputStream(outName));
 copyFile(is, os, true);
 }

 /** Copy a file from an opened InputStream to opened OutputStream
*/
 public static void copyFile(InputStream is, OutputStream os,
boolean close)
 throws IOException {
 int b; // the byte read from the file
 while ((b = is.read()) != -1) {
 os.write(b);
 }
 is.close();
 if (close)
 os.close();
 }

 /** Copy a file from an opened Reader to opened Writer */
 public static void copyFile(Reader is, Writer os, boolean close)
 throws IOException {
 int b; // the byte read from the file
 while ((b = is.read()) != -1) {
 os.write(b);
 }
 is.close();
 if (close)
 os.close();
 }

 235

 /** Copy a file from a filename to a PrintWriter. */
 public static void copyFile(String inName, PrintWriter pw, boolean
close)
 throws FileNotFoundException, IOException {
 BufferedReader is = new BufferedReader(new FileReader(inName));
 copyFile(is, pw, close);
 }

 /** Open a file and read the first line from it. */
 public static String readLine(String inName)
 throws FileNotFoundException, IOException {
 BufferedReader is = new BufferedReader(new FileReader(inName));
 String line = null;
 line = is.readLine();
 is.close();
 return line;
 }

 /** The size of blocking to use */
 protected static final int BLKSIZ = 8192;

 /** Copy a data file from one filename to another, alternate
method.
 * As the name suggests, use my own buffer instead of letting
 * the BufferedReader allocate and use the buffer.
 */
 public void copyFileBuffered(String inName, String outName) throws
 FileNotFoundException, IOException {
 InputStream is = new FileInputStream(inName);
 OutputStream os = new FileOutputStream(outName);
 int count = 0; // the byte count
 byte b[] = new byte[BLKSIZ]; // the bytes read from the file
 while ((count = is.read(b)) != -1) {
 os.write(b, 0, count);
 }
 is.close();
 os.close();
 }

 /** Read the entire content of an Reader into a String */
 public static String readerToString(Reader is) throws IOException {
 StringBuffer sb = new StringBuffer();
 char[] b = new char[BLKSIZ];
 int n;

 // Read a block. If it gets any chars, append them.
 while ((n = is.read(b)) > 0) {
 sb.append(b, 0, n);
 }

 // Only construct the String object once, here.
 return sb.toString();
 }

 /** Read the content of a Stream into a String */
 public static String inputStreamToString(InputStream is)

 236

 throws IOException {
 return readerToString(new InputStreamReader(is));
 }
}

There is a test main program included in the online source, which copies the source and class
files of this program. When I ran it for testing, I followed up by using diff (a text file compare
program) on the text file and its backup, and cmp (a binary compare program) on the class files.
Both of these programs operate on the Unix "no news is good news" principle: if they say nothing,
it is because they found nothing of significance to report, i.e., no differences.

C:\javasrc\io>java IOUtil
C:\javasrc\io>diff IOUtil.java IOUtil-java.bak
C:\javasrc\io>cmp IOUtil.class IOUtil-class.bak
C:\javasrc\io>

But wait! Did you look closely at the body of copyTextFile()? If you didn't, do it now. You'll
notice that I cheated, and just reused copyDataFile(). Well, if I'm copying a file from one
place on disk to another, why go through the overhead of converting it from external form to
Unicode and back? Normally you won't have to. But if you have something like a network
filesystem mounted from Windows to Unix or vice versa, better to do it a line at a time.

9.6 Reading a File into a String

9.6.1 Problem

You need to read the entire contents of a file into a string.

9.6.2 Solution

Use my FileIO.readerToString() method.

9.6.3 Discussion

This is not a common activity in Java, but there will be times when you really want to do it. For
example, you might want to load a file into a "text area" in a GUI. Or process an entire file looking
for multiline regular expressions (as in Section 4.13). Even though there's nothing in the
standard API to do this, it's still easy to accomplish with the readerToString() method in
com.darwinsys.util.FileIO. You just say something like the following:

Reader is = new FileReader(theFileName);
String input = FileIO.readerToString(is);

The readerToString() method is fairly simple, based on what you've already seen:

// Part of com.darwinsys.util/FileIO.java

/** Read the entire content of an Reader into a String */
public static String readerToString(Reader is) throws IOException {
 StringBuffer sb = new StringBuffer();
 char[] b = new char[BLKSIZ];
 int n;

 237

 // Read a block. If it gets any chars, append them.
 while ((n = is.read(b)) > 0) {
 sb.append(b, 0, n);
 }

 // Only construct the String object once, here.
 return sb.toString();
}

/** Read the content of a Stream into a String */
public static String inputStreamToString(InputStream is)
throws IOException {
 return readerToString(new InputStreamReader(is));
}

9.7 Reassigning the Standard Streams

9.7.1 Problem

You need to reassign one or more of the standard streams System.in, System.out, or
System.err.

9.7.2 Solution

Construct an InputStream or PrintStream as appropriate, and pass it to the appropriate
setmethod in the System class.

9.7.3 Discussion

The ability to reassign these streams corresponds to what Unix (or DOS command line) users
think of as redirection, or piping. This mechanism is commonly used to make a program read
from or write to a file without having to explicitly open it and go through every line of code
changing the read, write, print, etc., calls to refer to a different stream object. The open operation
is performed by the command-line interpreter in Unix or DOS, or by the calling class in Java.

While you could just assign a new PrintStream to the variable System.out, you'd be
considered antisocial, since there is a defined method to replace it carefully:

// Redirect.java
String LOGFILENAME = "error.log";
System.setErr(new PrintStream(new FileOutputStream(LOGFILENAME)));
System.out.println("Please look for errors in " + LOGFILENAME);
// Now to see somebody else's code writing to stderr...
int a[] = new int[5];
a[10] = 0; // here comes an ArrayIndexOutOfBoundsException

The stream you use can be one that you've opened, as here, or one you inherited:

System.setErr(System.out); // merge stderr and stdout to same output
file.

 238

It could also be a stream connected to or from another Process you've started (see Section
26.2), a network socket, or URL. Anything that can give you a stream can be used.

9.7.4 See Also

See Section 13.9, which shows how to reassign a file so that it gets "written" to a text window in
a GUI application.

9.8 Duplicating a Stream as It Is Written

9.8.1 Problem

You want anything written to a stream, such as the standard output System.out or the standard
error System.err, to appear there but also be logged into a file.

9.8.2 Solution

Subclass PrintStream and have its write() methods write to two streams. Then use
system.setErr() or setOut() as in Section 9.7 to replace the existing standard stream
with this "tee" PrintStream subclass.

9.8.3 Discussion

Classes are meant to be subclassed. Here we're just subclassing PrintStream and adding a bit
of functionality: a second PrintStream! I wrote a class called TeePrintStream, named after
the ancient Unix command tee. That command allowed you to duplicate, or "tee off," a copy of the
data being written on a "pipeline" between two programs.

The original Unix tee command is used like this: the | character creates a pipeline in which the
standard output of one program becomes the standard input to the next. This often-used example
of pipes shows how many users are logged into a Unix server:

who | wc -l

This runs the who program (which lists who is logged into the system, one name per line along
with the terminal port and login time) with its output, instead of going to the terminal, going into
the standard input of the word count (wc) program. Here wc is being asked to count lines, not
words; hence the -l option. To tee a copy of the intermediate data into a file, you might say:

who | tee wholist | wc -l

which creates a file wholist containing the data. For the curious, the file wholist might look
something like this:

ian ttyC0 Mar 14 09:59
ben ttyC3 Mar 14 10:23
ian ttyp4 Mar 14 13:46 (daroad.darwinsys.com)

So the previous commands would both print 3 as their output.

 239

TeePrintStream is an attempt to capture the spirit of the tee command. It can be used like this:

System.setErr(new TeePrintStream(System.err, "err.log"));
// ...lots of code that occasionally writes to System.err... Or might.

System.setErr() is a means of specifying the destination of text printed to System.err
(there are also System.setOut() and System.setIn()). This code results in any
messages that printed to System.err to print both to wherever System.err was previously
directed (normally the terminal, but possibly a text window in an IDE) and into the file err.log.

This technique is not limited to the three standard streams. A TeePrintStream can be passed
to any method that wants a PrintStream. Or, for that matter, an OutputStream. And you can
adapt the technique for BufferedInputStreams, PrintWriters, BufferedReaders, and
so on.

Since TeePrintStream is fairly simple, I'll list the main parts of it here (see the online source for
the complete version):

import java.io.*;

public class TeePrintStream extends PrintStream {
 protected PrintStream parent;
 protected String fileName;

 /* Construct a TeePrintStream given an existing Stream and a
filename.
 */
 public TeePrintStream(PrintStream os, String fn) throws IOException
{
 this(os, fn, false);
 }
 /* Construct a TeePrintStream given an existing Stream, a filename,
 * and a boolean to control the flush operation.
 */
 public TeePrintStream(PrintStream orig, String fn,
 boolean flush) throws IOException {
 super(new FileOutputStream(fn), flush);
 fileName = fn;
 parent = orig;
 }

 /** Return true if either stream has an error. */
 public boolean checkError() {
 return parent.checkError() || super.checkError();
 }

 /** override write(). This is the actual "tee" operation! */
 public void write(int x) {
 parent.write(x); // "write once; super.write(x); //
write
somewhere else"
 }
 /** override write() */
 public void write(byte[] x, int o, int l) {
 parent.write(x, o, l);

 240

 super.write(x, o, l);
 }

 /** Close both streams. */
 public void close() {
 parent.close();
 super.close();
 }
}

It's worth mentioning that I do not need to override all the polymorphic forms of print() and
println(). Since these all ultimately use one of the forms of write(), if you override the
print/println methods to do the tee-ing as well, you can get several additional copies of the
data written out.

9.9 Reading/Writing a Different Character Set

9.9.1 Problem

You need to read or write a text file using a particular encoding.

9.9.2 Solution

Convert the text to or from internal Unicode by specifying a converter when you construct an
InputStreamReader or PrintWriter.

9.9.3 Discussion

Classes InputStreamReader and OutputStreamWriter are the bridge from byte-oriented
Streams to character-based Readers. These classes read or write bytes and translate them to
or from characters according to a specified character encoding. The Unicode character set used
inside Java (char and String types) is a 16-bit character set. But most character sets, such as
ASCII, Swedish, Spanish, Greek, Turkish, and many others, use only a small subset of that. In
fact, many European language character sets fit nicely into 8-bit characters. Even the larger
character sets (script-based and pictographic languages) don't all use the same bit values for
each particular character. The encoding, then, is a mapping between Unicode characters and a
particular external storage format for characters drawn from a particular national or linguistic
character set.

To simplify matters, the InputStreamReader and OutputStreamWriter constructors are the
only places where you can specify the name of an encoding to be used in this translation. If you
do not, the platform's (or user's) default encoding will be used. PrintWriters,
BufferedReaders, and the like all use whatever encoding the InputStreamReader or
OutputStreamWriter class uses. Since these bridge classes only accept Stream arguments
in their constructors, the implication is that if you want to specify a non-default converter to
read/write a file on disk, you must start by constructing not a FileReader/FileWriter, but a
FileInputStream/FileOutputStream!

// UseConverters.java
BufferedReader fromKanji = new BufferedReader(
 new InputStreamReader(new FileInputStream("kanji.txt"), "EUC_JP"));
PrintWriter toSwedish = new PrinterWriter(

 241

 new OutputStreamWriter(new FileOutputStream("sverige.txt"),
"Cp278"));

Not that it would necessarily make sense to read a single file from Kanji and output it in a
Swedish encoding; for one thing, most fonts would not have all the characters of both character
sets, and at any rate, the Swedish encoding certainly has far fewer characters in it than the Kanji
encoding. Besides, if that were all you wanted, you could use a JDK tool with the ill-fitting name
native2ascii (see its documentation for details). A list of the supported encodings is also in the
JDK documentation, in the file docs/guide/internat/encoding.doc.html. A more detailed description
is found in Appendix B of Java I/O.

9.10 Those Pesky End-of-Line Characters

9.10.1 Problem

You really want to know about end-of-line characters.

9.10.2 Solution

Use \r and \n in whatever combination makes sense.

9.10.3 Discussion

If you are reading text (or bytes containing ASCII characters) in line mode using the readLine(
) method, you'll never see the end-of-line characters, and so won't be cursed with having to
figure out whether \n, \r, or \r\n appears at the end of each line. If you want that level of detail,
you have to read the characters or bytes one at a time, using the readline methods. The only time
I've found this necessary is in networking code, where some of the line-mode protocols assume
that the line ending is \r\n. Even here, though, you can still work in line mode. When writing,
send a \r\n. When reading, use readLine() and you won't have to deal with the characters.

outputSocket.print("HELO " + myName + "\r\n");
String response = inputSocket.readLine();

9.11 Beware Platform-Dependent File Code

9.11.1 Problem

Chastened by the previous recipe, you now wish to write only platform-independent code.

9.11.2 Solution

Use readLine() and println(). Never use \n by itself; use File.separator if you
must.

9.11.3 Discussion

As mentioned in Section 9.10, if you just use readLine() and println(), you won't have
to think about the line endings. But a particular problem, especially for recycled C programmers
and their relatives, is using the \n character in text strings to mean a newline. What is particularly

 242

distressing about this code is that it will work -- sometimes -- usually on the developer's own
platform. But it will surely someday fail, on some other system.

// BadNewline.java
String myName;
public static void main(String argv[]) {
 BadNewline jack = new BadNewline("Jack Adolphus Schmidt, III");
 System.out.println(jack);
}
/**
 * DON'T DO THIS. THIS IS BAD CODE.
 */
public String toString() {
 return "BadNewlineDemo@" + hashCode() + "\n" + myName;
}

// The obvious Constructor is not shown for brevity; it's in the code

The real problem is not that it will fail on some platforms, though. What's really wrong is that it
mixes formatting and input/output, or tries to. Don't mix line-based display with toString():
avoid "multiline strings" output from toString() or any other string-returning method. If you
need to write multiple strings, then say what you mean:

// GoodNewline.java
String myName;
public static void main(String argv[]) {
 GoodNewline jack = new GoodNewline("Jack Adolphus Schmidt, III");
 jack.print(System.out);
}

protected void print(PrintStream out) {
 out.println(toString()); // classname and hashcode
 out.println(myName); // print name on next line
}

9.12 Reading "Continued" Lines

9.12.1 Problem

You need to read lines that are continued with backslashes (\) or that are continued with leading
spaces (such as email or news headers).

9.12.2 Solution

Use my IndentContLineReader or EscContLineReader classes.

9.12.3 Discussion

This functionality is likely to be reused, so it should be encapsulated in general-purpose classes. I
offer the IndentContLineReader and EscContLineReader classes. EscContLineReader
reads lines normally, but if a line ends with the escape character (by default, the backslash), then

 243

the escape character is deleted and the following line is joined to the preceding line. So if you
have lines like this in the input:

Here is something I wanted to say:\
Try and Buy in every way.
Go Team!

and you read them using an EscContLineReader's readLine() method, then you will get
the following lines:

Here is something I wanted to say: Try and Buy in every way.
Go Team!

Note in particular that my reader does provide a space character between the abutted parts of the
continued line. An IOException will be thrown if a file ends with the escape character.

IndentContLineReader reads lines, but if a line begins with a space or tab, that line is joined
to the preceding line. This is designed for reading email or Usenet news ("message") header
lines. Here is an example input file:

From: ian Tuesday, January 1, 2000 8:45 AM EST
To: Book-reviewers List
Received: by darwinsys.com (OpenBSD 2.6)
 from localhost
 at Tuesday, January 1, 2000 8:45 AM EST
Subject: Hey, it's 2000 and MY computer is still up

When read using an IndentContLineReader, this text will come out with the continued lines
joined together into longer single lines:

From: ian Tuesday, January 1, 2000 8:45 AM EST
To: Book-reviewers List
Received: by darwinsys.com (OpenBSD 2.6) from localhost at Tuesday,
January 1,
2000 8:45 AM EST
Subject: Hey, it's 2000 and MY computer is still up

This class has a setContinueMode(boolean) method, which lets you turn continuation mode
off. This would normally be used to process the body of a message. Since the header and the
body are separated by a null line in the text representation of messages, we can process the
entire message correctly as follows:

IndentContLineReader is = new IndentContLineReader(
 new StringReader(sampleTxt));
 String aLine;
 // Print Mail/News Header
 System.out.println("----- Message Header -----");
 while ((aLine = is.readLine()) != null && aLine.length() > 0) {
 System.out.println(is.getLineNumber() + ": " + aLine);
 }
 // Make "is" behave like normal BufferedReader
 is.setContinuationMode(false);
 System.out.println();
 // Print Message Body

 244

 System.out.println("----- Message Body -----");
 while ((aLine = is.readLine()) != null) {
 System.out.println(is.getLineNumber() + ": " + aLine);

Each of the three Reader classes is subclassed from LineNumberReader so that you can use
getLineNumber(). This is a very useful feature when reporting errors back to the user who
prepared an input file; it can save them considerable hunting around in the file if you tell them the
line number on which the error occurred. The Reader classes are actually subclassed from an
abstract ContLineReader subclass, which I'll present first (Example 9-2). This class
encapsulates the basic functionality for keeping track of lines that need to be joined together, and
for enabling/disabling the continuation processing.

Example 9-2. ContLineReader.java

import java.io.*;

/** Subclass of LineNumberReader to allow reading of continued lines
 * using the readLine() method. The other Reader methods (readInt())
etc.)
 * must not be used. Must subclass to provide the actual
implementation
 * of readLine().
 */
public abstract class ContLineReader extends LineNumberReader {
 /** Line number of first line in current (possibly continued) line
*/
 protected int firstLineNumber = 0;
 /** True if handling continuations, false if not; false == "PRE"
mode */
 protected boolean doContinue = true;

 /** Set the continuation mode */
 public void setContinuationMode(boolean b) {
 doContinue = b;
 }

 /** Get the continuation mode */
 public boolean isContinuation() {
 return doContinue;
 }

 /** Read one (possibly continued) line, stripping out the \ that
 * marks the end of each line but the last in a sequence.
 */
 public abstract String readLine() throws IOException;

 /** Read one real line. Provided as a convenience for the
 * subclasses, so they don't embarass themselves trying to
 * call "super.readLine()" which isn't very practical...
 */
 public String readPhysicalLine() throws IOException {
 return super.readLine();
 }

 // Can NOT override getLineNumber in this class to return the #
 // of the beginning of the continued line, since the subclasses

 245

 // all call super.getLineNumber...

 /** Construct a ContLineReader with the default input-buffer size.
*/
 public ContLineReader(Reader in) {
 super(in);
 }

 /** Construct a ContLineReader using the given input-buffer size.
*/
 public ContLineReader(Reader in, int sz) {
 super(in, sz);
 }

 // Methods that do NOT work - redirect straight to parent

 /** Read a single character, returned as an int. */
 public int read() throws IOException {
 return super.read();
 }

 /** Read characters into a portion of an array. */
 public int read(char[] cbuf, int off, int len) throws IOException {
 return super.read(cbuf, off, len);
 }

 public boolean markSupported() {
 return false;
 }
}

The ContLineReader class ends with code for handling the read() calls so that the class will
work correctly. The IndentContLineReader class extends this to allow merging of lines based
on indentation. Example 9-3 shows the code for the IndentContLineReader class.

Example 9-3. IndentContLineReader.java

import java.io.*;

/** Subclass of ContLineReader for lines continued by indentation of
 * following line (like RFC822 mail, Usenet News, etc.).
 */
public class IndentContLineReader extends ContLineReader {
 /** Line number of first line in current (possibly continued) line
*/
 public int getLineNumber() {
 return firstLineNumber;
 }

 protected String prevLine;

 /** Read one (possibly continued) line, stripping out the '\'s that
 * mark the end of all but the last.
 */
 public String readLine() throws IOException {
 String s;

 246

 // If we saved a previous line, start with it. Else,
 // read the first line of possible continuation.
 // If non-null, put it into the StringBuffer and its line
 // number in firstLineNumber.
 if (prevLine != null) {
 s = prevLine;
 prevLine = null;
 }
 else {
 s = readPhysicalLine();
 }

 // save the line number of the first line.
 firstLineNumber = super.getLineNumber();

 // Now we have one line. If we are not in continuation
 // mode, or if a previous readPhysicalLine() returned null,
 // we are finished, so return it.
 if (!doContinue || s == null)
 return s;

 // Otherwise, start building a stringbuffer
 StringBuffer sb = new StringBuffer(s);

 // Read as many continued lines as there are, if any.
 while (true) {
 String nextPart = readPhysicalLine();
 if (nextPart == null) {
 // Egad! EOF within continued line.
 // Return what we have so far.
 return sb.toString();
 }
 // If the next line begins with space, it's continuation
 if (nextPart.length() > 0 &&
 Character.isWhitespace(nextPart.charAt(0))) {
 sb.append(nextPart); // and add line.
 } else {
 // else we just read too far, so put in "pushback"
holder
 prevLine = nextPart;
 break;
 }
 }

 return sb.toString(); // return what's left
 }

 /* Constructors not shown */

 // Built-in test case
 protected static String sampleTxt =
 "From: ian today now\n" +
 "Received: by foo.bar.com\n" +
 " at 12:34:56 January 1, 2000\n" +
 "X-Silly-Headers: Too Many\n" +
 "This line should be line 5.\n" +

 247

 "Test more indented line continues from line 6:\n" +
 " space indented.\n" +
 " tab indented;\n" +
 "\n" +
 "This is line 10\n" +
 "the start of a hypothetical mail/news message, \n" +
 "that is, it follows a null line.\n" +
 " Let us see how it fares if indented.\n" +
 " also space-indented.\n" +
 "\n" +
 "How about text ending without a newline?";

 // A simple main program for testing the class.
 public static void main(String argv[]) throws IOException {
 IndentContLineReader is = new IndentContLineReader(
 new StringReader(sampleTxt));
 String aLine;
 // Print Mail/News Header
 System.out.println("----- Message Header -----");
 while ((aLine = is.readLine()) != null && aLine.length() > 0)
{
 System.out.println(is.getLineNumber() + ": " + aLine);
 }
 // Make "is" behave like normal BufferedReader
 is.setContinuationMode(false);
 System.out.println();
 // Print Message Body
 System.out.println("----- Message Body -----");
 while ((aLine = is.readLine()) != null) {
 System.out.println(is.getLineNumber() + ": " + aLine);
 }
 is.close();
 }
}

9.13 Scanning a File

9.13.1 Problem

You need to scan a file with more fine-grained resolution than the readLine() method of the
BufferedReader class and its subclasses (discussed in Section 9.12).

9.13.2 Solution

Use a StreamTokenizer, readline() and a StringTokenizer, regular expressions
(Chapter 4), or one of several scanning tools such as JavaCC.

9.13.3 Discussion

While you could, in theory, read the file a character at a time and analyze each character, that is
a pretty low-level approach. The read() method in the Reader class is defined to return int,

 248

so that it can use the time-honored value -1 (defined as EOF in Unix <stdio.h> for years) to
indicate that you have read to the end of the file.

void doFile(Reader is) {
 int c;
 while ((c=is.read()) != -1) {
 System.out.print((char)c);
 }
}

The cast to char is interesting. The program will compile fine without it, but may not print
correctly (depending on the contents of the file).

We discussed the StringTokenizer class extensively in Section 3.3. The combination of
readLine() and StringTokenizer provides a simple means of scanning a file. Suppose
you need to read a file in which each line consists of a name like "user@host.domain", and you
want to split the lines into the user part and the host address part. You could use this:

// ScanStringTok.java
protected void process(LineNumberReader is) {
 String s = null;
 try {
 while ((s = is.readLine()) != null) {
 StringTokenizer st = new StringTokenizer(s, "@", true);
 String user = (String)st.nextElement();
 st.nextElement();
 String host = (String)st.nextElement();
 System.out.println("User name: " + user +
 "; host part: " + host);

 // Presumably you would now do something
 // with the user and host parts...

 }

 } catch (NoSuchElementException ix) {
 System.err.println("Line " + is.getLineNumber() +
 ": Invalid input " + s);
 } catch (IOException e) {
 System.err.println(e);
 }
}

The StreamTokenizer class in package java.util provides slightly more capabilities for
scanning a file. It will read characters and assemble them into words, or tokens . It will return
these tokens to you along with a "type code" describing the kind of token it found. This will either
be one of four predefined types (StringTokenizer.TT_WORD, TT_NUMBER, TT_WORD, or
TT_EOL for the end of line), or the ASCII value of an ordinary character (such as 40 for the space
character). Methods such as ordinaryCharacter() allow you to specify how to categorize
characters, while others such as slashSlashComment() allow you to enable or disable
features.

The example shows a StreamTokenizer used to implement a simple immediate-mode stack-
based calculator:

 249

2 2 + =
4
22 7 / =
3.141592857

I read tokens as they arrive from the StreamTokenizer. Numbers get put on the stack. The four
operators (+, -, *, and /) are immediately performed on the two elements at the top of the stack,
and the result is put back on the top of the stack. The = operator causes the top element to be
printed, but is left on the stack so that you can say:

4 5 * = 2 / =
20.0
10.0

Here is the relevant code from SimpleCalc:

public class SimpleCalc {
 /** The StreamTokenizer */
 protected StreamTokenizer tf;

 /** The variable name (not used in this version) */
 protected String variable;
 /** The operand stack */
 protected Stack s;

 /** Construct a SimpleCalc from an existing Reader */
 public SimpleCalc(Reader rdr) throws IOException {
 tf = new StreamTokenizer(rdr);
 // Control the input character set:
 tf.slashSlashComments(true); // treat "//" as comments
 tf.ordinaryChar('-'); // used for subtraction
 tf.ordinaryChar('/'); // used for division

 s = new Stack();
 }

 protected void doCalc() throws IOException {
 int iType;
 double tmp;

 while ((iType = tf.nextToken()) != tf.TT_EOF) {
 switch(iType) {
 case StringTokenizer.TT_NUMBER:
 // Found a number, push value to stack
 push(tf.nval);
 break;
 case StringTokenizer.TT_WORD:
 // Found a variable, save its name. Not used here. */
 variable = tf.sval;
 break;
 case '+':
 // Found + operator, perform it immediately.
 push(pop() + pop());
 break;
 case '-':

 250

 // Found + operator, perform it (order matters).
 tmp = pop();
 push(pop() - tmp);
 break;
 case '*':
 // Multiply works OK
 push(pop() * pop());
 break;
 case '/':
 // Handle division carefully: order matters!
 tmp = pop();
 push(pop() / tmp);
 break;
 case '=':
 System.out.println(peek());
 break;
 default:
 System.out.println("What's this? iType = " + iType);
 }
 }
 }
}

While StreamTokenizer is useful, it is limited in the number of different tokens that it knows
and has no way of specifying that the tokens must appear in a particular order. To do more
advanced scanning, you need to use some special-purpose scanning tools. Such tools have been
known and used for a long time in the Unix realm. The best-known examples are yacc and lex,
(discussed in the O'Reilly text lex & yacc). These tools let you specify the lexical structure of your
input using regular expressions (see Chapter 4). For example, you might say that an email
address consists of a series of alphanumerics, followed by an at sign (@), followed by a series of
alphanumerics with periods embedded, as:

name: [A-Za-z0-9]+@[A-Za-z0-0.]

The tool will then write code that recognizes the characters you have described. There is also the
grammatical specification, which says, for example, that the keyword ADDRESS must appear,
followed by a colon, followed by a "name" token as previously defined.

One widely used scanning tool is JavaCC. Though still owned by Sun, it is being distributed and
supported by WebGain (http://www.webgain.com/products/metamata/java_doc.html).
JavaCC can be used to write grammars for a wide variety of programs, from simple calculators
such as the one earlier in this recipe, through HTML and CORBA/IDL, up to full Java and C/C++
compilers. Examples of these are included with the JavaCC distribution. Unfortunately, the
learning curve for parsers in general precludes providing a simple and comprehensive example
here. Please refer to the documentation and the numerous examples provided with the JavaCC
distribution.

That's all I have to say on scanning: simple line-at-a-time scanners using StringTokenizer,
fancier token-based scanners using StreamTokenizer, and grammar-based scanners based
on JavaCC and similar tools. Scan well and prosper!

9.14 Binary Data

9.14.1 Problem

 251

You need to read or write binary data, as opposed to text.

9.14.2 Solution

Use a DataInputStream or DataOutputStream.

9.14.3 Discussion

The Stream classes have been in Java since the JDK 1.0 release and are optimal for
reading/writing bytes, rather than characters. The "data" layer over them, comprising
DataInputStream and DataOutputStream, are configured for reading and writing binary
values, including all of Java's built-in types. Suppose that you want to write a binary integer plus a
binary floating-point value into a file and read it back later. This code shows the writing part:

import java.io.*;
/** Write some data in binary. */
public class WriteBinary {
 public static void main(String argv[]) throws IOException {
 int i = 42;
 double d = Math.PI;
 String FILENAME = "binary.dat";
 DataOutputStream os = new DataOutputStream(
 new FileOutputStream(FILENAME));
 os.writeInt(i);
 os.writeDouble(d);
 os.close();
 System.out.println("Wrote " + i + ", " + d + " to file " +
FILENAME);
 }
}

The reading part is left as an exercise for the reader. Should you need to write all the fields from
an object, you should probably use an ObjectDataStream; see Section 9.17.

9.15 Seeking

9.15.1 Problem

You need to read from or write to a particular location in a file, such as an indexed file.

9.15.2 Solution

Use a RandomAccessFile.

9.15.3 Discussion

The class java.io.RandomAccessFile allows you to move the read/write position to any
location within a file, or past the end when writing. This allows you to create or access "files with
holes" on some platforms and lets you read/write indexed or other database-like files in Java. The
primary methods of interest are void(long where), which moves the position for the next

 252

read/write to where; int skipBytes(int howmany), which moves the position forward by
howmany bytes; and long getFilePointer(), which returns the position.

RandomAccessFile class also implements the DataInput and DataOutput interfaces, so
everything I said about DataStreams in Section 9.14 also applies here. This example reads a
binary integer from the beginning of the file, treats that as the position to read from, finds that
position, and reads a string from that location within the file.

import java.io.*;

/**
 * Read a file containing an offset, and a String at that offset.
 */
public class ReadRandom {
 final static String FILENAME = "random.dat";
 protected String fileName;
 protected RandomAccessFile seeker;

 public static void main(String argv[]) throws IOException {
 ReadRandom r = new ReadRandom(FILENAME);

 System.out.println("Offset is " + r.readOffset());
 System.out.println("Message is \"" + r.readMessage() +
"\".");
 }

 /** Constructor: save filename, construct RandomAccessFile */
 public ReadRandom(String fname) throws IOException {
 fileName = fname;
 seeker = new RandomAccessFile(fname, "r");
 }

 /** Read the Offset field, defined to be at location 0 in the file.
*/
 public int readOffset() throws IOException {
 seeker.seek(0);
 return seeker.readInt();
 }

 /** read the message at the given offset */
 public String readMessage() throws IOException {
 seeker.seek(readOffset()); // move to where
 return seeker.readLine(); // and read the String
 }
}

9.16 Writing Data Streams from C

9.16.1 Problem

You need to exchange binary data between C and Java.

9.16.2 Solution

 253

Use the network byte-ordering macros.

9.16.3 Discussion

The program that created the file random.dat read by the program in the previous recipe was not
written in Java, but in C. Since the earliest days of the TCP/IP protocol in the 1980s, and
particularly on the 4.2 BSD version of Unix, there was an awareness that not all brands of
computers store the bytes within a word in the same order, and there was a means for dealing
with it. For this early heterogeneous network to function at all, it was necessary that a 32-bit word
be interpreted correctly as a computer's network address, regardless of whether it originated on a
PDP-11, a VAX, a Sun workstation, or any other kind of machine then prevalent (there were no
"IBM PC" machines powerful enough to run TCP/IP at that time). So network byte order was
established, a standard for which bytes go in which order on the network. And the network byte
order macros were written: ntohl for network-to-host order for a long (32 bits), htons for host-
to-network order for a short (16 bits), and so on. In most Unix implementations, these C macros
live in one of the Internet header files, although in some newer systems they have been
segregated out into a file like <machine/endian.h>, as on our OpenBSD system.

The designers of Java, working at Sun, were well aware of these issues, and chose to use
network byte order in the Java Virtual Machine. Thus a Java program can read an IP address
from a socket using a DataInputStream, or write an integer to disk that will be read from C
using read() and the network byte order macros.

This C program writes the file random.dat read in Section 9.15. It uses the network byte order
macros to make sure that the long integer (32 bits on most C compilers on the IBM PC) is in the
correct order to be read as an int in Java.

/* Create the random-access file for the RandomAccessFile example
 */

#include <stdio.h>
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <machine/endian.h>

const off_t OFFSET = 1234;
const char* FILENAME = "random.dat";
const int MODE = 0644;
const char* MESSAGE = "Ye have sought, and ye have found!\r\n";

int
main(int argc, char **argv) {
 int fd;
 int java_offset;

 if ((fd = creat(FILENAME, MODE)) < 0) {
 perror(FILENAME);
 return 1;
 }

 /* Java's DataStreams etc. are defined to be in network byte order,
 * so convert OFFSET to network byte order.
 */

 254

 java_offset = htonl(OFFSET);

 if (write(fd, &java_offset, sizeof java_offset) < 0) {
 perror("write");
 return 1;
 }

 if (lseek(fd, OFFSET, SEEK_SET) < 0) {
 perror("seek");
 return 1;
 }

 if (write(fd, MESSAGE, strlen(MESSAGE)) != strlen(MESSAGE)) {
 perror("write2");
 return 1;
 }

 if (close(fd) < 0) {
 perror("close!?");
 return 1;
 }

 return 0;
}

The same technique can be used in the other direction, of course, and when exchanging data
over a network socket, and anyplace else you need to exchange binary data between Java and
C.

9.17 Saving and Restoring Serialized Objects

9.17.1 Problem

You need to write and (later) read objects.

9.17.2 Solution

Use the object stream classes, ObjectInputStream and ObjectOutputStream.

9.17.3 Discussion

Object serialization is the ability to convert in-memory objects to an external form that can be sent
serially (a byte at a time) and back again. The "and back again" may happen at a later time, or in
another JVM on another computer (even one that has a different byte order); Java handles
differences between machines. ObjectInputStream and ObjectOutputStream are
specialized stream classes designed to read and write objects. They can be used to save objects
to disk, as I'll show here, and are also useful in passing objects across a network connection, as
I'll show in Section 15.7. This fact was not lost on the designers of the remote methods
invocation, or RMI (see Chapter 22), which uses them for transporting the data involved in
remote method calls.

As you might imagine, if we pass an object such as MyData to the writeObject method, and
writeObject notices that one of the fields is itself an object such as a String, that data will

 255

get serialized properly. In other words, writeObject works recursively. So, we will give it an
ArrayList of data objects. The first is a java.util.Date, for versioning purposes. All
remaining objects are of type MyData.

To be serializable, the data must implement the empty Serializable interface. Also, the
keyword transient can be used for any data that should not be serialized. You might need to
do this for security, or to prevent attempts to serialize a reference to an object from a non-
serializable class. Here we use it to prevent the unencrypted passwords from being saved where
they might be readable:

import java.io.*;
import java.util.*;

class MyData implements Serializable {
 String userName;
 String passwordCypher;
 transient String passwordClear;
 public MyData(String name, String clear) {
 userName = name;
 // Save the clear text p/w in the object, it won't get
serialized
 passwordClear = clear;
 // So we must save the encryption! Encryption not shown here.
 passwordCypher = DES.encrypt(passwordClear);
 }
}

public class Serialize {
 protected static final String FILENAME = "serial.dat";

 public static void main(String s[]) throws IOException {
 ArrayList v = new ArrayList();
 // Gather the data
 MyData u1 = new MyData("Ian Darwin", "secret_java_cook");
 v.add(new Date());
 v.add(u1);
 v.add(new MyData("Abby Brant", "dujordian"));
 // Save the data to disk.
 ObjectOutputStream os = new ObjectOutputStream(
 new FileOutputStream(FILENAME));
 os.writeObject(v);
 os.close();
 }
}

9.17.4 See Also

There are many other ways to serialize objects, depending upon your interchange goals. One
way would be to write the individual data members into an XML file (see Chapter 21).

9.18 Preventing ClassCastExceptions with SerialVersionUID

9.18.1 Problem

 256

Your class got recompiled, and you're getting ClassCastException s that you shouldn't.

9.18.2 Solution

Run serialver and paste its output into your classes before you start.

9.18.3 Discussion

When a class is undergoing a period of evolution, particularly a class being used in a networking
context such as RMI or servlets, it may be useful to provide a serialVersionUID value in this
class. This is a long integer that is basically a hash of the methods and fields in the class. Both
the object serialization API (see Section 9.17) and the JVM, when asked to cast one object to
another (common when using collections, as in Chapter 7), either look up or, if not found,
compute this value. If the value on the source and destination do not match, a
ClassCastException is thrown. Most of the time, this is the correct thing for Java to do.

However, there may be times when you want to allow a class to evolve in a compatible way, but
you can't immediately replace all instances in circulation. You must be willing to write code to
account for the additional fields being discarded if restoring from the longer format to the shorter,
and having the default value (null for objects, for numbers and false for boolean) if restoring from
the shorter format to the longer. If you are only adding fields and methods in a reasonably
compatible way, you can control the compatibility by providing a long int named
serialVersionUID. The initial value should be obtained from a JDK tool called serialver, which
takes just the class name. Consider a simple class called SerializableUser:

/** Demo of a data class that will be used as a JavaBean or as a data
 * class in a Servlet container; making it Serializable allows
 * it to be saved ("serialized") to disk or over a network connection.
 */
public class SerializableUser implements java.io.Serializable {
 public String name;
 public String address;
 public String country;

 // other fields, and methods, here...
}

I first compiled it with two different compilers to ensure that the value is a product of the class
structure, not of some minor differences in class file format that different compilers might emit:

$ jikes +E SerializableUser..java
$ serialver SerializableUser
SerializableUser: static final long serialVersionUID = -
7978489268769667877L;
$ javac SerializableUser.java
$ serialver SerializableUser
SerializableUser: static final long serialVersionUID = -
7978489268769667877L;

Sure enough, the class file from both compilers has the same hash. Now let's change the file. I go
in with a line editor and add a new field phoneNum right after country:

$ ed SerializableUser.java

 257

383
8
 public String country;
a
 public String phoneNum;
.
w
408
q
ian:145$ jikes +E SerializableUser.java
ian:146$ serialver SerializableUser
SerializableUser: static final long serialVersionUID = -
8339341455288589756L;

Notice how the addition of the field changed the serialVersionUID ! Now, if I had wanted this
class to evolve in a compatible fashion, here's what I should have done before I started
expanding it. I copy and paste the original serialver output into the source file (again using a line
editor to insert a line before the last line):

$ ed SerializableUser.java
408
$i
 static final long serialVersionUID = -7978489268769667877L;
.
w
472
q
$ jikes +E SerializableUser.java
$ serialver SerializableUser
SerializableUser: static final long serialVersionUID = -
7978489268769667877L;
$

Now all is well: I can interchange serialized versions of this file.

Note that serialver is part of the "object serialization" mechanism, and therefore only works on
classes that implement the Serializable interface described in Section 9.17.

9.19 Reading and Writing JAR or Zip Archives

9.19.1 Problem

You need to create and/or extract from a JAR archive or a file in the PkZip or WinZip format.

9.19.2 Solution

You could use the jar program in the Java Development Kit, since its file format is identical with
the zip format with the addition of the META-INF directory to contain additional structural
information. But since this is a book about programming, you are probably more interested in the
ZipFile and ZipEntry classes and the stream classes that they provide access to.

9.19.3 Discussion

 258

The class java.util.zip.ZipFile is not an I/O class per se, but a utility class that allows
you to read or write the contents of a JAR or zip-format file.[2] When constructed, it creates a
series of ZipEntry objects, one to represent each entry in the archive. In other words, the
ZipFile represents the entire archive, and the ZipEntry represents one entry, or one file that
has been stored (and compressed) in the archive. The ZipEntry has methods like getName(
), which returns the name that the file had before it was put into the archive, and
getInputStream(), which gives you an InputStream that will transparently uncompress the
archive entry by filtering it as you read it. To create a ZipFile object, you need either the name
of the archive file or a File object representing it:

[2] There is no support for adding files to an existing archive, so make sure you put all the files in at once, or
be prepared to re -create the file from scratch.

ZipFile zippy = new ZipFile(fileName);

If you want to see whether a given file is present in the archive, you can call the getEntry()
method with a filename. More commonly, you'll want to process all the entries; for this, use the
ZipFile object to get a list of the entries in the archive, in the form of an Enumeration (see
Section 7.5):

Enumeration all = zippy.entries();
while (all.hasMoreElements()) {
 ZipEntry entry = (ZipEntry)all.nextElement();

We can then process each entry as we wish. A simple listing program could be:

if (entry.isDirectory())
 println("Directory: " + e.getName());
else
 println("File: " + e.getName());

A fancier version would extract the files. The program in Example 9-4 does both: it lists by
default, but with the -x (extract) switch, it actually extracts the files from the archive.

Example 9-4. UnZip.java

import java.io.*;
import java.util.*;
import java.util.zip.*;

/**
 * UnZip -- print or unzip a JAR or PKZIP file using JDK1.1
java.util.zip.
 * Final command-line version: extracts files.
 */
public class UnZip {
 /** Constants for mode listing or mode extracting. */
 public static final int LIST = 0, EXTRACT = 1;
 /** Whether we are extracting or just printing TOC */
 protected int mode = LIST;

 /** The ZipFile that is used to read an archive */
 protected ZipFile zippy;

 259

 /** The buffer for reading/writing the ZipFile data */
 protected byte[] b;

 /** Simple main program, construct an UnZipper, process each
 * .ZIP file from argv[] through that object.
 */
 public static void main(String[] argv) {
 UnZip u = new UnZip();

 for (int i=0; i<argv.length; i++) {
 if ("-x".equals(argv[i])) {
 u.setMode(EXTRACT);
 continue;
 }
 String candidate = argv[i];
 // System.err.println("Trying path " + candidate);
 if (candidate.endsWith(".zip") ||
 candidate.endsWith(".jar"))
 u.unZip(candidate);
 else System.err.println("Not a zip file? " + candidate);
 }
 System.err.println("All done!");
 }

 /** Construct an UnZip object. Just allocate the buffer */
 UnZip() {
 b = new byte[8092];
 }

 /** Set the Mode (list, extract). */
 protected void setMode(int m) {
 if (m == LIST ||
 m == EXTRACT)
 mode = m;
 }

 /** For a given Zip file, process each entry. */
 public void unZip(String fileName) {
 try {
 zippy = new ZipFile(fileName);
 Enumeration all = zippy.entries();
 while (all.hasMoreElements()) {
 getFile(((ZipEntry)(all.nextElement())));
 }
 } catch (IOException err) {
 System.err.println("IO Error: " + err);
 return;
 }
 }

 /** Process one file from the zip, given its name.
 * Either print the name, or create the file on disk.
 */
 protected void getFile(ZipEntry e) throws IOException {
 String zipName = e.getName();
 if (mode == EXTRACT) {
 // double-check that the file is in the zip

 260

 // if a directory, mkdir it (remember to
 // create intervening subdirectories if needed!)
 if (zipName.endsWith("/")) {
 new File(zipName).mkdirs();
 return;
 }
 // Else must be a file; open the file for output
 System.err.println("Creating " + zipName);
 FileOutputStream os = new FileOutputStream(zipName);
 InputStream is = zippy.getInputStream(e);
 int n = 0;
 while ((n = is.read(b)) >0)
 os.write(b, 0, n);
 is.close();
 os.close();
 } else
 // Not extracting, just list
 if (e.isDirectory()) {
 System.out.println("Directory " + zipName);
 } else {
 System.out.println("File " + zipName);
 }
 }
}

9.20 Reading and Writing Compressed Files

9.20.1 Problem

You need to read or write files that have been compressed using GNU zip, or gzip. These files
are usually saved with the extension .gz.

9.20.2 Solution

Use a GZipInputStream or GZipOutputStream as appropriate.

9.20.3 Discussion

The GNU gzip/gunzip utilities originated on Unix and are commonly used to compress files.
Unlike the PkZip format discussed in Section 9.19, these programs do not combine the
functionality of archiving and compressing, and are therefore easier to work with. However,
because they are not archives, people often use them in conjunction with an archiver. On Unix,
tar and cpio are common, with tar and gzip being the de facto standard combination. Many web
sites and FTP sites make files available with the extension .tar.gz; such files originally had to be
first decompressed with gunzip and then extracted with tar. As this became a common operation,
modern versions of tar have been extended to support a -z option, which means to gunzip
before extracting, or to gzip before writing, as appropriate.

You may find archived files in gzip format on any platform. If you do, they're quite easy to read,
again using classes from the java.util.zip package. This program assumes that the gzipped
file originally contained text (Unicode characters). If not, you would treat it as a stream of bytes,
that is, use a BufferedInputStream instead of a BufferedReader.

 261

import java.io.*;
import java.util.zip.*;

public class ReadGZIP {
 public static void main(String argv[]) throws IOException {
 String FILENAME = "file.txt.gz";

 // Since there are 4 constructors here, I wrote them all out in
full.
 // In real life you would probably nest these constructor
calls.
 FileInputStream fin = new FileInputStream(FILENAME);
 GZIPInputStream gzis = new GZIPInputStream(fin);
 InputStreamReader xover = new InputStreamReader(gzis);
 BufferedReader is = new BufferedReader(xover);

 String line;
 // Now read lines of text: the BufferedReader puts them in
lines,
 // the InputStreamReader does Unicode conversion, and the
 // GZipInputStream "gunzip"s the data from the FileInputStream.
 while ((line = is.readLine()) != null)
 System.out.println("Read: " + line);
 }
}

If you need to write files in this format, everything works as you'd expect: you create a
GZipOutputStream and write on it, usually using it through a DataOutputStream or
BufferedReader.

9.20.4 See Also

The Inflater/Deflater classes provide access to general-purpose compression and
decompression. The InflaterStream /DeflaterStream stream classes provide an I/O-
based implementation of Inflater/Deflater.

9.21 Program: Text to PostScript

There are several approaches to printing in Java. In a GUI application, or if you want to use the
graphical facilities that Java offers (fonts, colors, drawing primitives, and the like), you should
refer to Recipes Section 12.11 and Section 12.12. However, sometimes you simply want to
convert text into a form that will display nicely on a printer that isn't capable of handling raw text
on its own (such as most of the many PostScript devices on the market). The program in
Example 9-5 shows code for reading one or more text files, and outputting each of them in a
plain font with PostScript around it. Because of the nature of PostScript, certain characters must
be "escaped"; this is handled in toPsString(), which in turn is called from doLine(). There
is also code for keeping track of the current position on the page. The output of this program can
be sent directly to a PostScript printer.

Example 9-5. PSFormatter.java

import java.io.*;

/** Text to PS */

 262

public class PSFormatter {
 /** The current input source */
 protected BufferedReader br;
 /** The current page number */
 protected int pageNum;
 /** The current X and Y on the page */
 protected int curX, curY;
 /** The current line number on page */
 protected int lineNum;
 /** The current tab setting */
 protected int tabPos = 0;
 public static final int INCH = 72; // PS constant: 72 pts/inch

 // Page parameters
 /** The left margin indent */
 protected int leftMargin = 50;
 /** The top of page indent */
 protected int topMargin = 750;
 /** The bottom of page indent */
 protected int botMargin = 50;

 // FORMATTING PARAMETERS
 protected int points = 12;
 protected int leading = 14;

 public static void main(String[] av) throws IOException {
 if (av.length == 0)
 new PSFormatter(
 new InputStreamReader(System.in)).process();
 else for (int i = 0; i < av.length; i++) {
 new PSFormatter(av[i]).process();
 }
 }

 public PSFormatter(String fileName) throws IOException {
 br = new BufferedReader(new FileReader(fileName));
 }

 public PSFormatter(Reader in) throws IOException {
 if (in instanceof BufferedReader)
 br = (BufferedReader)in;
 else
 br = new BufferedReader(in);
 }

 /** Main processing of the current input source. */
 protected void process() throws IOException {

 String line;

 prologue(); // emit PostScript prologue, once.

 startPage(); // emit top-of-page (ending previous)

 while ((line = br.readLine()) != null) {
 if (line.startsWith("\f") || line.trim().equals(".bp")) {
 startPage();

 263

 continue;
 }
 doLine(line);
 }

 // finish last page, if not already done.
 if (lineNum != 0)
 println("showpage");
 }

 /** Handle start of page details. */
 protected void startPage() {
 if (pageNum++ > 0)
 println("showpage");
 lineNum = 0;
 moveTo(leftMargin, topMargin);
 }

 /** Process one line from the current input */
 protected void doLine(String line) {
 tabPos = 0;
 // count leading (not imbedded) tabs.
 for (int i=0; i<line.length(); i++) {
 if (line.charAt(i)=='\t')
 tabPos++;
 else
 break;
 }
 String l = line.trim(); // removes spaces AND tabs
 if (l.length() == 0) {
 ++lineNum;
 return;
 }
 moveTo(leftMargin + (tabPos * INCH),
 topMargin-(lineNum++ * leading));
 println('(' + toPSString(l)+ ") show");

 // If we just hit the bottom, start a new page
 if (curY <= botMargin)
 startPage();
 }

 protected String toPSString(String o) {
 StringBuffer sb = new StringBuffer();
 for (int i=0; i<o.length(); i++) {
 char c = o.charAt(i);
 switch(c) {
 case '(': sb.append("\\("); break;
 case ')': sb.append("\\)"); break;
 default: sb.append(c); break;
 }
 }
 return sb.toString();
 }

 protected void println(String s) {
 System.out.println(s);

 264

 }

 protected void moveTo(int x, int y) {
 curX = x;
 curY = y;
 println(x + " " + y + " " + "moveto");
 }

 void prologue() {
 println("%!PS-Adobe");
 println("/Courier findfont " + points + " scalefont setfont ");
 }
}

The program could certainly be generalized more, and certain features (such as wrapping long
lines) could be handled. I could also wade into the debate among PostScript experts as to how
much of the formatting should be done on the main computer and how much should be done by
the PostScript program interpreter running in the printer. But perhaps I won't get into that
discussion. At least, not today.

9.21.1 See Also

As mentioned, Recipes Section 12.11 and Section 12.12 contain "better" recipes for printing
under Java.

9.22 Program: TarList (File Converter)

This program provides easy access to tar -format files using an interface similar to that used for
zip archives in Section 9.19. Unix users will be familiar with the tar program, an archiver first
written back in the mid-1970s. And JDK users might find the tar program syntax somewhat
familiar, as it was the basis for the command-line Java Archiver (jar) program in the JDK, written
20 years later. If you're not a Unix user, don't dismay: just think of this as an example of a whole
category of programs, those that need to repetitively read and write files in a special-purpose,
predefined format. MS-Windows is full of special-purpose file formats, as are many other
operating systems. Unlike jar, tar is just an archiver, not a combined archiver and compressor, so
its format is somewhat simpler. In this section we'll develop a program that reads a tar archive
and lists the contents. The TarList program combines several reading methods with several
formatting methods. So the commands:

tar -xvf demo.tar
java TarList demo.tar

should produce the same output. And indeed they do, at least for some files and some versions
of tar, when run on a small tar archive:

$ java TarList demo.tar
-rwxr-xr-x ian/wheel 734 1999-10-05 19:10 TarDemo.class
-rwxr-xr-x ian/wheel 431 1999-10-05 19:10 TarList.java
-rw-r--r-- ian/wheel 0 1999-10-05 19:10 a
-rw-r--r-- ian/wheel 0 1999-10-05 19:10 b link to a
lrwxr-xr-x ian/wheel 0 1999-10-05 19:10 c -> a
$ tar -tvf demo.tar
-rwxr-xr-x ian/wheel 734 1999-10-05 19:10 TarDemo.class
-rwxr-xr-x ian/wheel 431 1999-10-05 19:10 TarList.java

 265

-rw-r--r-- ian/wheel 0 1999-10-05 19:10 a
-rw-r--r-- ian/wheel 0 1999-10-05 19:10 b link to a
lrwxr-xr-x ian/wheel 0 1999-10-05 19:10 c -> a
$

This example archive contains five files. The last two items, b and c, represent two kinds of links,
regular and symbolic. Aregular link is simply an additional name for a filesystem entry. In Win-32
terms, a symbolic link closely approximates a LNK file, except it is maintained by the operating
system kernel instead of by a user-level programming library.

First let's look at the main program class, TarList (Example 9-6), which is fairly simple. Its
main method simply looks for a filename in the command-line arguments, passes it to the
TarList constructor, and calls the list() method. The list() method delegates the
presentation formatting to a method called toListFormat(), which demonstrates several
techniques. The Unix permissions, which consist of three octal digits (user, group, and other)
representing three permissions (read, write, and execute) is formatted using a simple for loop
and an array of strings (see Section 7.2). A DecimalFormat (see Section 5.8) is used to
format the "size" column to a fixed width. But since DecimalFormat apparently lacks the
capability to do fixed-width numeric fields with leading spaces instead of leading zeros, we
convert the leading zeros to spaces. A DateFormat (see Section 6.3) is used to format the
date-and-time field. All of this formatting is done into a StringBuffer (see Section 3.4), which at
the very end is converted into a String and returned as the value of the toListFormat()
method.

Example 9-6. TarList.java

import java.io.*;
import java.text.*; // only for formatting
import java.util.*;

/**
 * Demonstrate the Tar archive lister.
 */
public class TarList {
 public static void main(String[] argv) throws IOException,
TarException {
 if (argv.length == 0) {
 System.err.println("Usage: TarList archive");
 System.exit(1);
 }
 new TarList(argv[0]).list();
 }
 /** The TarFile we are reading */
 TarFile tf;

 /** Constructor */
 public TarList(String fileName) {
 tf = new TarFile(fileName);
 }

 /** Generate and print the listing */
 public void list() throws IOException, TarException {
 Enumeration list = tf.entries();
 while (list.hasMoreElements()) {

 266

 TarEntry e = (TarEntry)list.nextElement();
 System.out.println(toListFormat(e));
 }
 }

 protected StringBuffer sb;
 /** Shift used in formatting permissions */
 protected static int shft[] = { 6, 3, 0 };
 /** Format strings used in permissions */
 protected static String rwx[] = {
 "---", "--x", "-w-", "-wx",
 "r--", "r-x", "rw-", "rwx"
 };
 /** NumberFormat used in formatting List form string */
 NumberFormat sizeForm = new DecimalFormat("00000000");
 /** Date used in printing mtime */
 Date date = new Date();
 SimpleDateFormat dateForm =
 new SimpleDateFormat ("yyyy-MM-dd HH:mm");

 /** Format a TarEntry the same way that UNIX tar does */
 public String toListFormat(TarEntry e) {
 sb = new StringBuffer();
 switch(e.type) {
 case TarEntry.LF_OLDNORMAL:
 case TarEntry.LF_NORMAL:
 case TarEntry.LF_CONTIG:
 case TarEntry.LF_LINK: // hard link: same as file
 sb.append('-'); // 'f' would be sensible
 break;
 case TarEntry.LF_DIR:
 sb.append('d');
 break;
 case TarEntry.LF_SYMLINK:
 sb.append('l');
 break;
 case TarEntry.LF_CHR: // UNIX device file
 sb.append('c');
 break;
 case TarEntry.LF_BLK: // UNIX device file
 sb.append('b');
 break;
 case TarEntry.LF_FIFO: // UNIX named pipe
 sb.append('p');
 break;
 default: // Can't happen?
 sb.append('?');
 break;
 }

 // Convert e.g., 754 to rwxrw-r--
 int mode = e.getMode();
 for (int i=0; i<3; i++) {
 sb.append(rwx[mode >> shft[i] & 007]);
 }
 sb.append(' ');

 267

 // owner and group
 sb.append(e.getUname()).append('/').append(e.getGname(
)).append(' ');

 // size
 // DecimalFormat can't do "%-9d", so we do part of it ourselves
 sb.append(' ');
 String t = sizeForm.format(e.getSize());
 boolean digit = false;
 char c;
 for (int i=0; i<8; i++) {
 c = t.charAt(i);
 if (!digit && i<(8-1) && c == '0')
 sb.append(' '); // leading space
 else {
 digit = true;
 sb.append(c);
 }
 }
 sb.append(' ');

 // mtime
 // copy file's mtime into Data object (after scaling
 // from "sec since 1970" to "msec since 1970"), and format it.
 date.setTime(1000*e.getTime());
 sb.append(dateForm.format(date)).append(' ');

 sb.append(e.getName());
 if (e.isLink())
 sb.append(" link to ").append(e.getLinkName());
 if (e.isSymLink())
 sb.append(" -> ").append(e.getLinkName());

 return sb.toString();
 }
}

"But wait," you may be saying. "There's no I/O here!" Well, patient reader, your waiting is
rewarded. For here is class TarFile (Example 9-7). As its opening comment remarks, tar files,
unlike zip files, have no central directory, so you have to read the entire archive file to be sure of
having a particular file's entry, or to know how many entries there are in the archive. I centralize
this in a method called readFile(), but for efficiency I don't call this method until I need to;
this technique is known as lazy evaluation (there are comments in the ToDo file on how to make it
even lazier, at the cost of one more boolean variable). In this method I construct a
RandomAccessFile (see Section 9.15) to read the data. Since I need to read the file
sequentially but then may need to seek back to a particular location, I use a file that can be
accessed randomly as well as sequentially. Most of the rest of the code has to do with keeping
track of the files stored within the archive.

Example 9-7. TarFile.java

import java.io.*;
import java.util.*;

/**

 268

 * Tape Archive Lister, patterned loosely after java.util.ZipFile.
 * Since, unlike Zip files, there is no central directory, you have to
 * read the entire file either to be sure of having a particular file's
 * entry, or to know how many entries there are in the archive.
 */

public class TarFile {
 /** True after we've done the expensive read. */
 protected boolean read = false;
 /** The list of entries found in the archive */
 protected Vector list;

 /** Size of header block on tape. */
 public static final int RECORDSIZE = 512;

 /* Size of each block, in records */
 protected int blocking;
 /* Size of each block, in bytes */
 protected int blocksize;

 /** File containing archive */
 protected String fileName;

 /** Construct (open) a Tar file by name */
 public TarFile(String name) {
 fileName = name;
 list = new Vector();
 read = false;
 }

 /** Construct (open) a Tar file by File */
 public TarFile(java.io.File name) throws IOException {
 this(name.getCanonicalPath());
 }

 /** The main datastream. */
 protected RandomAccessFile is;

 /** Read the Tar archive in its entirety.
 * This is semi-lazy evaluation, in that we don't read the file
 * until we need to.
 * A future revision may use even lazier evaluation: in getEntry,
 * scan the list and, if not found, continue reading!
 * For now, just read the whole file.
 */
 protected void readFile() throws IOException, TarException {
 is = new RandomAccessFile(fileName, "r");
 TarEntry hdr;
 try {
 do {
 hdr = new TarEntry(is);
 if (hdr.getSize() < 0) {
 System.out.println("Size < 0");
 break;
 }
 // System.out.println(hdr.toString());
 list.addElement(hdr);

 269

 // Get the size of the entry
 int nbytes = hdr.getSize(), diff;
 // Round it up to blocksize.
 if ((diff = (nbytes % RECORDSIZE)) != 0) {
 nbytes -= diff; nbytes += RECORDSIZE;
 }
 // And skip over the data portion.
 // System.out.println("Skipping " + nbytes + " bytes");
 is.skipBytes(nbytes);
 } while (true);
 } catch (EOFException e) {
 // OK, just stop reading.
 }
 // All done, say we've read the contents.
 read = true;
 }

 /* Close the Tar file. */
 public void close() {
 try {
 is.close();
 } catch (IOException e) {
 // nothing to do
 }
 }

 /* Returns an enumeration of the Tar file entries. */
 public Enumeration entries() throws IOException, TarException {
 if (!read) {
 readFile();
 }
 return list.elements();
 }

 /** Returns the Tar entry for the specified name, or null if not
found. */
 public TarEntry getEntry(String name) {
 for (int i=0; i<list.size(); i++) {
 TarEntry e = (TarEntry)list.elementAt(i);
 if (name.equals(e.getName()))
 return e;
 }
 return null;
 }

 /** Returns an InputStream for reading the contents of the
 * specified entry from the archive.
 * May cause the entire file to be read.
 */
 public InputStream getInputStream(TarEntry entry) {
 return null;
 }

 /** Returns the path name of the Tar file. */
 public String getName() {
 return null;
 }

 270

 /** Returns the number of entries in the Tar archive.
 * May cause the entire file to be read.
 */
 public int size() {
 return 0;
 }
}

"But my patience is nearly at an end! Where's the actual reading?" Indeed, you may well ask. But
it's not there. The actual reading code is further delegated to TarEntry's constructor, which we'll
see in a minute. Since TarFile is patterned after ZipFile (see Section 9.19), it doesn't
extend any of the I/O classes. Like ZipFile, a TarFile is an object that lets you get at the
individual elements within a tar-format archive, each represented by a TarEntry object. If you
want to find whether a particular file exists in the archive, you can call the TarFile's getEntry(
) method. Or you can ask for all the entries, as we did previously in TarList. Having obtained
one entry, you can ask for all the information about it, again as we did in TarList. Or you could
ask for an InputStream, as we did for zip files. However, that part of the TarEntry class has
been left as an exercise for the reader. Here, at last, is TarEntry (Example 9-8), whose
constructor reads the archive header and stores the file's beginning location for you, for when you
get around to writing the getInputStream method.

As mentioned, I use lazy evaluation, simply reading the bytes into some byte arrays, and don't
convert them to strings or numbers until asked to. Notice also that the filenames and user/group
names are treated as byte strings and converted as ASCII characters when needed as Strings.
This makes sense, because the tar file format only uses ASCII characters at present. Some Unix
implementations of tar explicitly look for null characters to end some of these strings; this will
need work from the Unix standards people.

Example 9-8. TarEntry.java

import java.io.*;

/** One entry in an archive file.
 * @note
 * Tar format info taken from John Gilmore's public domain tar program,
 * @(#)tar.h 1.21 87/05/01 Public Domain, which said:
 * "Created 25 August 1985 by John Gilmore, ihnp4!hoptoad!gnu."
 * John is now gnu@toad.com, and by another path tar.h is GPL'd in GNU
Tar.
 */
public class TarEntry {
 /** Where in the tar archive this entry's HEADER is found. */
 public long fileOffset = 0;

 /** The maximum size of a name */
 public static final int NAMSIZ = 100;
 public static final int TUNMLEN = 32;
 public static final int TGNMLEN = 32;

 // Next fourteen fields constitute one physical record.
 // Padded to TarFile.RECORDSIZE bytes on tape/disk.
 // Lazy Evaluation: just read fields in raw form, only format when
asked.

 271

 /** File name */
 byte[] name = new byte[NAMSIZ];
 /** permissions, e.g., rwxr-xr-x? */
 byte[] mode = new byte[8];
 /* user */
 byte[] uid = new byte[8];
 /* group */
 byte[] gid = new byte[8];
 /* size */
 byte[] size = new byte[12];
 /* UNIX modification time */
 byte[] mtime = new byte[12];
 /* checksum field */
 byte[] chksum = new byte[8];
 byte type;
 byte[] linkName = new byte[NAMSIZ];
 byte[] magic = new byte[8];
 byte[] uname = new byte[TUNMLEN];
 byte[] gname = new byte[TGNMLEN];
 byte[] devmajor = new byte[8];
 byte[] devminor = new byte[8];

 // End of the physical data fields.

 /* The magic field is filled with this if uname and gname are
valid. */
 public static final byte TMAGIC[] = {
 // 'u', 's', 't', 'a', 'r', ' ', ' ', '\0'
 0, 0, 0, 0, 0, 0, 0x20, 0x20, 0
 }; /* 7 chars and a null */

 /* Type value for Normal file, Unix compatibility */
 public static final int LF_OLDNORMAL ='\0';
 /* Type value for Normal file */
 public static final int LF_NORMAL = '0';
 /* Type value for Link to previously dumped file */
 public static final int LF_LINK = '1';
 /* Type value for Symbolic link */
 public static final int LF_SYMLINK = '2';
 /* Type value for Character special file */
 public static final int LF_CHR = '3';
 /* Type value for Block special file */
 public static final int LF_BLK = '4';
 /* Type value for Directory */
 public static final int LF_DIR = '5';
 /* Type value for FIFO special file */
 public static final int LF_FIFO = '6';
 /* Type value for Contiguous file */
 public static final int LF_CONTIG = '7';

 /* Constructor that reads the entry's header. */
 public TarEntry(RandomAccessFile is) throws IOException,
TarException {

 fileOffset = is.getFilePointer();

 272

 // read() returns -1 at EOF
 if (is.read(name) < 0)
 throw new EOFException();
 // Tar pads to block boundary with nulls.
 if (name[0] == '\0')
 throw new EOFException();
 // OK, read remaining fields.
 is.read(mode);
 is.read(uid);
 is.read(gid);
 is.read(size);
 is.read(mtime);
 is.read(chksum);
 type = is.readByte();
 is.read(linkName);
 is.read(magic);
 is.read(uname);
 is.read(gname);
 is.read(devmajor);
 is.read(devminor);

 // Since the tar header is < 512, we need to skip it.
 is.skipBytes((int)(TarFile.RECORDSIZE -
 (is.getFilePointer() % TarFile.RECORDSIZE)));

 // TODO if checksum() fails,
 // throw new TarException("Failed to find next header");

 }

 /** Returns the name of the file this entry represents. */
 public String getName() {
 return new String(name).trim();
 }

 public String getTypeName() {
 switch(type) {
 case LF_OLDNORMAL:
 case LF_NORMAL:
 return "file";
 case LF_LINK:
 return "link w/in archive";
 case LF_SYMLINK:
 return "symlink";
 case LF_CHR:
 case LF_BLK:
 case LF_FIFO:
 return "special file";
 case LF_DIR:
 return "directory";
 case LF_CONTIG:
 return "contig";
 default:
 throw new IllegalStateException("TarEntry.getTypeName: type
"
 + type + " invalid");
 }

 273

 }

 /** Returns the UNIX-specific "mode" (type+permissions) of the
entry */
 public int getMode() {
 try {
 return Integer.parseInt(new String(mode).trim(), 8) &
0777;
 } catch (IllegalArgumentException e) {
 return 0;
 }
 }

 /** Returns the size of the entry */
 public int getSize() {
 try {
 return Integer.parseInt(new String(size).trim(), 8);
 } catch (IllegalArgumentException e) {
 return 0;
 }
 }

 /** Returns the name of the file this entry is a link to,
 * or null if this entry is not a link.
 */
 public String getLinkName() {
 // if (isLink())
 // return null;
 return new String(linkName).trim();
 }

 /** Returns the modification time of the entry */
 public long getTime() {
 try {
 return Long.parseLong(new String(mtime).trim(),8);
 } catch (IllegalArgumentException e) {
 return 0;
 }
 }

 /** Returns the string name of the userid */
 public String getUname() {
 return new String(uname).trim();
 }

 /** Returns the string name of the group id */
 public String getGname() {
 return new String(gname).trim();
 }

 /** Returns the numeric userid of the entry */
 public int getuid() {
 try {
 return Integer.parseInt(new String(uid).trim());
 } catch (IllegalArgumentException e) {
 return -1;
 }

 274

 }
 /** Returns the numeric gid of the entry */
 public int getgid() {
 try {
 return Integer.parseInt(new String(gid).trim());
 } catch (IllegalArgumentException e) {
 return -1;
 }
 }

 /** Returns true if this entry represents a file */
 boolean isFile() {
 return type == LF_NORMAL || type == LF_OLDNORMAL;
 }

 /** Returns true if this entry represents a directory */
 boolean isDirectory() {
 return type == LF_DIR;
 }

 /** Returns true if this a hard link (to a file in the archive) */
 boolean isLink() {
 return type == LF_LINK;
 }

 /** Returns true if this a symbolic link */
 boolean isSymLink() {
 return type == LF_SYMLINK;
 }

 /** Returns true if this entry represents some type of UNIX special
file */
 boolean isSpecial() {
 return type == LF_CHR || type == LF_BLK || type == LF_FIFO;
 }

 public String toString() {
 return "TarEntry[" + getName() + ']';
 }
}

9.22.1 See Also

The TarFile example is one of the longest in the book. One could equally well use filter
subclassing to provide encryption. One could even, in theory, write a Java interface to an
encrypted filesystem layer, such as CFS (see ftp://research.att.com/dist/mab/cfs.ps) or to a
version-archiving system such as CVS (the Concurrent Versions System; see
http://www.cvs.org). CVS is a good tool for maintaining source code; most large open source
projects now use it (see http://www.openbsd.org/why-cvs.html). In fact, there is already a
Java-based implementation of CVS (see http://www.jcvs.org/). Either of these would be
substantially more clever than my little tarry friend, but, I suspect, contain rather more code.

For all topics in this chapter, Rusty's book Java I/O should be considered the antepenultimate
documentation. The penultimate reference is the Javadoc documentation, while the ultimate

 275

reference is, if you really need it, the source code for the Java API, to which I have not needed to
make a single reference in writing this chapter.

 276

Chapter 10. Directory and Filesystem Operations

10.1 Introduction

10.2 Getting File Information

10.3 Creating a File

10.4 Renaming a File

10.5 Deleting a File

10.6 Creating a Transient File

10.7 Changing File Attributes

10.8 Listing a Directory

10.9 Getting the Directory Roots

10.10 Making New Directories

10.11 Program: Find

10.1 Introduction

This chapter is largely devoted to one class: java.io.File. The File class gives you the
ability to list directories, obtain file status, rename and delete files on disk, create directories, and
perform other filesystem operations. Many of these would be considered "system programming"
functions on some operating systems. Java makes them all as portable as possible.

Note that many of the methods of this class attempt to modify the permanent file store, or disk
filesystem, of the computer you run them on. Naturally, you might not have permission to change
certain files in certain ways. This can be detected by the Java Virtual Machine's (or the browser's,
in an applet) SecurityManager, which will throw an instance of the unchecked exception
SecurityException. But failure can also be detected by the underlying operating system: if
the security manager approves it but the user running your program lacks permissions on the
directory, for example, then you will either get back an indication (such as false), or an instance of
the checked exception IOException. This must be caught (or declared in the throws clause) in
any code that calls any method that tries to change the filesystem.

10.2 Getting File Information

10.2.1 Problem

You need to know all you can about a given file on disk.

 277

10.2.2 Solution

Use a java.io.File object.

10.2.3 Discussion

The File class has a number of "informational" methods. To use any of these, you must
construct a File object containing the name of the file it is to operate upon. It should be noted up
front that creating aFileobject has no effect on the permanent filesystem; it is only an object in
Java's memory. You must call methods on the File object in order to change the filesystem; as
we'll see, there are numerous "change" methods, such as one for creating a new (but empty) file,
one for renaming a file, etc., as well as many informational methods. Table 10-1 lists some of
the informational methods.

Table 10-1. java.io.File methods
Return type Method name Meaning
boolean exists() True if something of that name exists
String getCanonicalPath() Full name
String getName() Relative filename
String getParent() Parent directory
boolean canRead() True if file is readable
boolean canWrite() True if file is writable
long lastModified() File modification time
long length() File size
boolean isFile() True if it's a file

boolean isDirectory() True if it's a directory (Note: it might be neither)

You can't change the name stored in a File object; you simply create a new File object each
time you need to refer to a different file.

import java.io.*;
import java.util.*;

/**
 * Report on a file's status in Java
 */
public class FileStatus {
 public static void main(String[] argv) throws IOException {

 // Ensure that a filename (or something) was given in argv[0]
 if (argv.length == 0) {
 System.err.println("Usage: Status filename");
 System.exit(1);
 }
 for (int i = 0; i< argv.length; i++) {
 status(argv[i]);
 }
 }

 public static void status(String fileName) throws IOException {
 System.out.println("---" + fileName + "---");

 278

 // Construct a File object for the given file.
 File f = new File(fileName);

 // See if it actually exists
 if (!f.exists()) {
 System.out.println("file not found");
 System.out.println(); // Blank line
 return;
 }
 // Print full name
 System.out.println("Canonical name " + f.getCanonicalPath());
 // Print parent directory if possible
 String p = f.getParent();
 if (p != null) {
 System.out.println("Parent directory: " + p);
 }
 // Check if the file is readable
 if (f.canRead()) {
 System.out.println("File is readable.");
 }
 // Check if the file is writable
 if (f.canWrite()) {
 System.out.println("File is writable.");
 }
 // Report on the modification time.
 Date d = new Date();
 d.setTime(f.lastModified());
 System.out.println("Last modified " + d);

 // See if file, directory, or other. If file, print size.
 if (f.isFile()) {
 // Report on the file's size
 System.out.println("File size is " + f.length() + "
bytes.");
 } else if (f.isDirectory()) {
 System.out.println("It's a directory");
 } else {
 System.out.println("I dunno! Neither a file nor a
directory!");
 }

 System.out.println(); // blank line between entries
 }
}

When run with the three arguments shown, it produces this output:

C:\javasrc\dir_file>java FileStatus / /tmp/id /autoexec.bat
---/---
Canonical name C:\
File is readable.
File is writable.
Last modified Thu Jan 01 00:00:00 GMT 1970
It's a directory

 279

---/tmp/id---
file not found

---/autoexec.bat---
Canonical name C:\AUTOEXEC.BAT
Parent directory: \
File is readable.
File is writable.
Last modified Fri Sep 10 15:40:32 GMT 1999
File size is 308 bytes.

As you can see, the so-called " canonical name" not only includes a leading directory root of C:\ ,
but also has had the name converted to uppercase. You can tell I ran that on MS-Windows. On
Unix, it behaves differently:

$ java FileStatus / /tmp/id /autoexec.bat
---/---
Canonical name /
File is readable.
Last modified October 4, 1999 6:29:14 AM PDT
It's a directory

---/tmp/id---
Canonical name /tmp/id
Parent directory: /tmp
File is readable.
File is writable.
Last modified October 8, 1999 1:01:54 PM PDT
File size is 0 bytes.

---/autoexec.bat---
file not found

$

On a typical Unix system there is no autoexec.bat file. And Unix filenames (like those on a Mac)
can consists of upper- and lowercase characters: what you type is what you get.

10.3 Creating a File

10.3.1 Problem

You need to create a new file on disk, but you don't want to write into it.

10.3.2 Solution

Use a java.io.Fileobject's createNewFile() method.

10.3.3 Discussion

You could easily create a new file by constructing a FileOutputStream or FileWriter (see
Section 9.4). But then you'd have to remember to close it as well. Sometimes you want a file to
exist, but you don't want to bother putting anything into it. This might be used, for example, as a

 280

simple form of interprogram communication: one program could test for the presence of a file,
and interpret that to mean that the other program has reached a certain state. Here is code that
simply creates an empty file for each name you give:

import java.io.*;

/**
 * Create one or more files by name.
 * The final "e" is omitted in homage to the underlying UNIX system
call.
 */
public class Creat {
 public static void main(String[] argv) throws IOException {

 // Ensure that a filename (or something) was given in argv[0]
 if (argv.length == 0) {
 System.err.println("Usage: Creat filename");
 System.exit(1);
 }

 for (int i = 0; i< argv.length; i++) {
 // Constructing a File object doesn't affect the disk, but
 // the createNewFile() method does.
 new File(argv[i]).createNewFile();
 }
 }
}

10.4 Renaming a File

10.4.1 Problem

You need to change a file's name on disk.

10.4.2 Solution

Use a java.io.File object's renameTo() method.

10.4.3 Discussion

For reasons best left to the gods of Java, the renameTo() method requires not the name you
want the file renamed to, but another File object referring to the new name. So to rename a file
you must create two File objects, one for the existing name and another for the new name.
Then call the renameTo method of the existing-name's File object, passing in the second File
object. This is easier to see than to explain, so here goes:

import java.io.*;

/**
 * Rename a file in Java
 */
public class Rename {

 281

 public static void main(String[] argv) throws IOException {

 // Construct the file object. Does NOT create a file on disk!
 File f = new File("Rename.java~"); // backup of this source
file.

 // Rename the backup file to "junk.dat"
 // Renaming requires a File object for the target.
 f.renameTo(new File("junk.dat"));
 }
}

10.5 Deleting a File

10.5.1 Problem

You need to delete one or more files from disk.

10.5.2 Solution

Use a java.io.File object's delete() method; it will delete files (subject to permissions)
and directories (subject to permissions and to the directory being empty).

10.5.3 Discussion

This is not very complicated. Simply construct a File object for the file you wish to delete, and
call its delete() method:

import java.io.*;

/**
 * Delete a file from within Java
 */
public class Delete {
 public static void main(String[] argv) throws IOException {

 // Construct a File object for the backup created by editing
 // this source file. The file probably already exists.
 // My editor creates backups by putting ~ at the end of the
name.
 File bkup = new File("Delete.java~");
 // Quick, now, delete it immediately:
 bkup.delete();
 }
}

Just recall the caveat about permissions in the Introduction to this chapter: if you don't have
permission, you can get a return value of false or, possibly, a SecurityException. Note also
that there are some differences between platforms. Windows 95 allows Java to remove a file that
has the read-only bit, but Unix does not allow you to remove a file that you don't have permission
on or to remove a directory that isn't empty. Here is a version of Delete with error checking (and
reporting of success, too):

 282

import java.io.*;

/**
 * Delete a file from within Java, with error handling.
 */
public class Delete2 {

 public static void main(String argv[]) {
 for (int i=0; i<argv.length; i++)
 delete(argv[i]);
 }

 public static void delete(String fileName) {
 try {
 // Construct a File object for the file to be deleted.
 File bkup = new File(fileName);
 // Quick, now, delete it immediately:
 if (!bkup.delete())
 System.out.println("** Deleted " + fileName);
 else
 System.err.println("Failed to delete " + fileName);
 } catch (SecurityException e) {
 System.err.println("Unable to delete " + fileName +
 "(" + e.getMessage() + ")");
 }
 }
}

Running it we get this:

$ ls -ld ?
-rw-r--r-- 1 ian ian 0 Oct 8 16:50 a
drwxr-xr-x 2 ian ian 512 Oct 8 16:50 b
drwxr-xr-x 3 ian ian 512 Oct 8 16:50 c
$ java Delete2 ?
Deleted a
Deleted b
Failed to delete c
$ ls -l c
total 2
drwxr-xr-x 2 ian ian 512 Oct 8 16:50 d
$ java Delete2 c/d c
Deleted c/d
Deleted c
$

10.6 Creating a Transient File

10.6.1 Problem

You need to create a file with a unique temporary filename or arrange for a file to be deleted
when your program is finished.

 283

10.6.2 Solution

Use a java.io.File object's createTempFile() or deleteOnExit() method.

10.6.3 Discussion

The File object has a createTempFile method and a deleteOnExit method. The former
creates a file with a unique name -- in case several users run the same program at the same time
on a server -- and the latter arranges for any file (no matter how it was created) to be deleted
when the program exits. Here we arrange for a backup copy of a program to be deleted on exit,
and we also create a temporary file and arrange for it to be removed on exit. Sure enough, both
files are gone after the program runs.

import java.io.*;

/**
 * Work with temporary files in Java.
 */
public class TempFiles {
 public static void main(String[] argv) throws IOException {

 // 1. Make an existing file temporary

 // Construct a File object for the backup created by editing
 // this source file. The file probably already exists.
 // My editor creates backups by putting ~ at the end of the
name.
 File bkup = new File("Rename.java~");
 // Arrange to have it deleted when the program ends.
 bkup.deleteOnExit();

 // 2. Create a new temporary file.

 // Make a file object for foo.tmp, in the default temp
directory
 File tmp = File.createTempFile("foo", "tmp");
 // Report on the filename that it made up for us.
 System.out.println("Your temp file is " + tmp.getCanonicalPath(
));
 // Arrange for it to be deleted at exit.
 tmp.deleteOnExit();
 // Now do something with the temporary file, without having to
 // worry about deleting it later.
 writeDataInTemp(tmp.getCanonicalPath());
 }

 public static void writeDataInTemp(String tempnam) {
 // This version is dummy. Use your imagination.
 }
}

Notice that the createTempFile method is like createNewFile (see Section 10.3) in that it
does create the file. Also be aware that, should the Java Virtual Machine terminate abnormally,
the deletion will probably not occur. Finally, there is no way to undo the setting of

 284

deleteOnExit() short of something drastic like powering off the computer before the program
exits.

10.7 Changing File Attributes

10.7.1 Problem

You want to change attributes of a file other than its name.

10.7.2 Solution

Use setReadOnly() or setLastModified().

10.7.3 Discussion

As we saw in Section 10.2, there are many methods that report on a file. By contrast, there are
only a few that change the file.

setReadOnly() turns on read-only for a given file or directory. It returns true if it succeeds,
otherwise false. There is no setReadWrite() (at least as of JDK 1.3; I don't know why this
method was overlooked). Since you can't undo a setReadOnly(), use this method with care!

setLastModified() allows you to play games with the modification time of a file. This is
normally not a good game to play, but is useful in some types of backup/restore programs. This
method takes an argument that is the number of milliseconds (not seconds) since the beginning
of time (January 1, 1970). You can get the original value for the file by calling
getLastModified() (see Section 10.2) or you can get the value for a given date by calling
the Date class's getTime() method (see Section 6.2). setLastModified() returns true
if it succeeded, and false otherwise.

The interesting thing is that the documentation claims that "File objects are immutable," meaning
that their state doesn't change. But does calling setReadOnly() affect the return value of
canRead()? Let's find out:

import java.io.*;

public class ReadOnly {
 public static void main(String[] a) throws IOException {

 File f = new File("f");

 if (!f.createNewFile()) {
 System.out.println("Can't create new file.");
 return;
 }

 if (!f.canWrite()) {
 System.out.println("Can't write new file!");
 return;
 }

 if (!f.setReadOnly()) {

 285

 System.out.println("Grrr! Can't set file read-only.");
 return;
 }

 if (f.canWrite()) {
 System.out.println("Most immutable, captain!");
 System.out.println("But it still says canWrite() after
setReadOnly");
 return;
 } else {
 System.out.println("Logical, captain!");
 System.out.println
 ("canWrite() correctly returns false after
setReadOnly");
 }
 }
}

When I run it, this program reports what I (and I hope you) would expect:

$ jr ReadOnly
+ jikes +E -d . ReadOnly.java
+ java ReadOnly
Logical, captain!
canWrite() correctly returns false after setReadOnly
$

So, the immutability of a File object refers only to the pathname it contains, not to its read-only-
ness.

10.8 Listing a Directory

10.8.1 Problem

You need to list the filesystem entries named in a directory.

10.8.2 Solution

Use a java.io.File object's list() method.

10.8.3 Discussion

The java.io.File class contains several methods for working with directories. For example, to
list the filesystem entities named in the current directory, just write:

String names = new File(".").list()

This can become a complete program with as little as the following:

/** Simple directory lister.
 */
public class Ls {

 286

 public static void main(String argh_my_aching_fingers[]) {
 String[] dir = new java.io.File(".").list(); // Get list of
names
 java.util.Arrays.sort(dir); // Sort it (Data Structuring
chapter))
 for (int i=0; i<dir.length; i++)
 System.out.println(dir[i]); // Print the list
 }
}

Of course, there's lots of room for elaboration. You could print the names in multiple columns
across the page. Or even down the page, since you know the number of items in the list before
you print. You could omit filenames with leading periods, as does the Unix ls program. Or print
the directory names first; I once used a directory lister called lc that did this, and I found it quite
useful. By constructing a new File object for each name, you could print the size of each, as per
the DOS dir command or the Unix ls -l command (see Section 10.2). Or you could figure out
whether each is a file, a directory, or neither. Having done that, you could pass each directory to
your top-level function, and you'd have directory recursion (the Unix find command, or ls -R, or
the DOS DIR/S command).

A more flexible way to list filesystem entries is with list(FilenameFilter ff).
FilenameFilter is a tiny little interface, with only one method: boolean accept(File
inDir, String fileName). Suppose you want a listing of only Java-related files (*.java,
*.class, *.jar, etc.). Just write the accept() method so that it returns true for these files and
false for any others. Here is the Ls class warmed over to use a FilenameFilter instance (my
OnlyJava class implements this interface) to restrict the listing:

import java.io.*;

/**
 * FNFilter - Ls directory lister modified to use FilenameFilter
 */
public class FNFilter {
 public static void main(String argh_my_aching_fingers[]) {
 // Generate the selective list, with a one-use File object.
 String[] dir = new java.io.File(".").list(new OnlyJava());
 java.util.Arrays.sort(dir); // Sort it (Data Structuring
chapter))
 for (int i=0; i<dir.length; i++)
 System.out.println(dir[i]); // Print the list
 }
}

/** This class implements the FilenameFilter interface.
 * The Accept method only returns true for .java and .class files.
 */
class OnlyJava implements FilenameFilter {
 public boolean accept(File dir, String s) {
 if (s.endsWith(".java") || s.endsWith(".class") ||
s.endsWith(".jar"))
 return true;
 // others: projects, ... ?
 return false;
 }
}

 287

The FilenameFilter need not be a separate class; the online code example FNFilter2
implements the interface directly in the main class, resulting in a slightly shorter file. In a full-scale
application, the list of files returned by the FilenameFilter would be chosen dynamically,
possibly automatically based on what you were working on. As we'll see in Section 13.10, the
file chooser dialogs implement a superset of this functionality, allowing the user to select
interactively from one of several sets of files to be listed. This is a great convenience in finding
files, just as it is here in reducing the number of files that must be examined.

10.9 Getting the Directory Roots

10.9.1 Problem

You want to know about all the top-level directories, such as C:\ and D:\ on MS-Windows.

10.9.2 Solution

Use the static method File.listRoots().

10.9.3 Discussion

Speaking of directory listings, you surely know that all modern desktop computing systems
arrange files into hierarchies of directories. But you might not know that on Unix all filenames are
somehow "under" the single root directory named /, while on Microsoft platforms there is a root
directory named \ in each disk drive (A:\ for the first floppy, C:\ for the first hard drive, and other
letters for CD-ROM and network drivers). If you need to know about all the files on all the disks,
then, you should find out what "directory root" names exist on the particular platform. The static
method listRoots() returns (in an array of File objects) the available filesystem roots on
whatever platform you are running on. Here is a short program to list these, along with its output:

C:> type DirRoots.java
import java.io.*;

public class DirRoots {
 public static void main(String argh_my_aching_fingers[]) {
 File[] drives = File.listRoots(); // Get list of names
 for (int i=0; i<drives.length; i++)
 System.out.println(drives[i]); // Print the list
 }
}
C:> java DirRoots
A:\
C:\
D:\
C:>

As you can see, the program listed my floppy drive (even though the floppy drive was not only
empty, but left at home while I wrote this recipe on my notebook computer in a parking lot), the
hard disk drive, and the CD-ROM drive.

On Unix there is only one:

$ java DirRoots

 288

/
$

One thing that is "left out" of the list of roots is the so-called UNC filename. UNC filenames are
used on Microsoft platforms to refer to a network-available resource that hasn't been mounted
locally on a particular drive letter. For example, my server (running Unix with the Samba SMB
fileserver software) is named darian (made from my surname and first name), and my home
directory on that machine is exported or shared with the name ian, so I could refer to a directory
named book in my home directory under the UNC name \\darian\ian\book . Such a filename would
be valid in any Java filename context (assuming you're running on MS-Windows), but you would
not learn about it from the File.listRoots() method.

10.10 Making New Directories

10.10.1 Problem

You need to create a directory.

10.10.2 Solution

Use java.io.File's mkdir() or mkdirs() method.

10.10.3 Discussion

Of the two methods used for creating directories, mkdir() creates just one directory while
mkdirs() creates any parent directories that are needed. For example, if /home/ian exists and
is a directory, then the calls:

new File("/home/ian/bin").mkdir();
new File("/home/ian/src").mkdir();

will succeed, whereas:

new File("/home/ian/once/twice/again").mkdir();

will fail, assuming that the directory once does not exist. If you wish to create a whole path of
directories, you would tell File to make all the directories at once by using mkdirs():

new File("/home/ian/once/twice/again").mkdirs();

Both variants of this command return true if they succeed and false if they fail. Notice that it is
possible (but not likely) for mkdirs() to create some of the directories and then fail; in this
case, the newly created directories will be left in the filesystem.

Notice the spelling: mkdir() is all lowercase. While this might be said to violate the normal
Java naming conventions (which would suggest mkDir() as the name), it is the name of the
underlying operating system call and command on both Unix and DOS (though DOS allows md
as an alias at the command-line level).

10.11 Program: Find

 289

This program implements a small subset of the MS-Windows Find Filesdialog or the Unix find
command. However, it has much of the structure needed to build a more complete version of
either of these. It uses a custom filename filter controlled by the -n command-line option, which is
parsed using my GetOpt (see Section 2.8).

import com.darwinsys.util.*;
import java.io.*;
import java.io.*;

/**
 * Find - find files by name, size, or other criteria. Non-GUI version.
 */
public class Find {
 /** Main program */
 public static void main(String[] args) {
 Find finder = new Find();
 GetOpt argHandler = new GetOpt("n:s:");
 int c;
 while ((c = argHandler.getopt(args)) != GetOpt.DONE) {
 switch(c) {
 case 'n': finder.filter.setNameFilter(argHandler.optarg(
)); break;
 case 's': finder.filter.setSizeFilter(argHandler.optarg(
)); break;
 default:
 System.out.println("Got: " + c);
 usage();
 }
 }
 if (args.length == 0 || argHandler.getOptInd()-1 ==
args.length) {
 finder.doName(".");
 } else {
 for (int i = argHandler.getOptInd()-1; i<args.length;
i++)
 finder.doName(args[i]);
 }
 }

 protected FindFilter filter = new FindFilter();

 public static void usage() {
 System.err.println(
 "Usage: Find [-n namefilter][-s sizefilter][dir...]");
 System.exit(1);
 }

 /** doName - handle one filesystem object by name */
 private void doName(String s) {
 Debug.println("flow", "doName(" + s + ")");
 File f = new File(s);
 if (!f.exists()) {
 System.out.println(s + " does not exist");
 return;
 }
 if (f.isFile())

 290

 doFile(f);
 else if (f.isDirectory()) {
 // System.out.println("d " + f.getPath());
 String objects[] = f.list(filter);

 for (int i=0; i<objects.length; i++)
 doName(s + f.separator + objects[i]);
 } else
 System.err.println("Unknown type: " + s);
 }

 /** doFile - process one regular file. */
 private static void doFile(File f) {
 System.out.println("f " + f.getPath());
 }
}

The program uses a class called FindFilter to implement matching:

import java.io.*;
import org.apache.regexp.*;
import com.darwinsys.util.Debug;

/** Class to encapsulate the filtration for Find.
 * For now just setTTTFilter() methods. Really needs to be a real
 * data structure to allow complex things like
 * -n "*.html" -a \(-size < 0 -o mtime < 5 \).
 */
public class FindFilter implements FilenameFilter {
 boolean sizeSet;
 int size;
 String name;
 RE nameRE;

 public FindFilter() {
 }

 void setSizeFilter(String sizeFilter) {
 size = Integer.parseInt(sizeFilter);
 sizeSet = true;
 }

 /** Convert the given shell wildcard pattern into internal form (an
RE) */
 void setNameFilter(String nameFilter) {
 name = nameFilter;
 StringBuffer sb = new StringBuffer('^');
 for (int i = 0; i < nameFilter.length(); i++) {
 char c = nameFilter.charAt(i);
 switch(c) {
 case '.': sb.append("\\."); break;
 case '*': sb.append(".*"); break;
 case '?': sb.append('.'); break;
 default: sb.append(c); break;
 }
 }

 291

 sb.append('$');
 Debug.println("name", "RE=\"" + sb + "\".");
 try {
 nameRE = new RE(sb.toString());
 } catch (RESyntaxException ex) {
 System.err.println("For shame! " + ex);
 }
 }

 /** Do the filtering. For now, only filter on name */
 public boolean accept(File dir, String fileName) {
 File f = new File(dir, fileName);
 if (f.isDirectory()) {
 return true; // allow recursion
 }

 if (name != null) {
 return nameRE.match(fileName);
 }

 // TODO size handling.

 // Catchall
 return false;
 }
}

Exercise for the reader: in the source directory, you'll find a class called FindNumFilter, which
is meant to (someday) allow relational comparison of sizes, modification times, and the like, as
most find services already offer. Make this work from the command line, and write a GUI front-
end to this program.

 292

Chapter 11. Programming Serial and Parallel Ports

11.1 Introduction

11.2 Choosing a Port

11.3 Opening a Serial Port

11.4 Opening a Parallel Port

11.5 Resolving Port Conflicts

11.6 Reading and Writing: Lock Step

11.7 Reading and Writing: Event-Driven

11.8 Reading and Writing: Threads

11.9 Program: Penman Plotter

11.1 Introduction

Peripheral devices are usually external to the computer. [1] Printers, mice, video cameras,
scanners, data/fax modems, plotters, robots, telephones, light switches, weather gauges, Palm
Computing Platform devices, and many others exist "out there," beyond the confines of your
desktop or server machine. We need a way to reach out to them.

[1] Conveniently ignoring things like "internal modem cards" on desktop machines!

The Java Communications API not only gives us that, but cleverly unifies the programming model
for dealing with a range of external devices. It supports both serial (RS232/434, COM, or tty) and
parallel (printer, LPT) ports. We'll cover this in more detail later, but briefly, serial ports are used
for modems and occasionally printers, and parallel ports are used for printers and sometimes (in
the PC world) for Zip drives and other peripherals. Before USB (Universal Serial Bus) came
along, it seemed that parallel ports would dominate for such peripherals, as manufacturers were
starting to make video cameras, scanners, and the like. Now, however, USB has become the
main attachment mode for such devices. One can imagine that future releases of Java
Communications might expand the structure to include USB support (Sun has admitted that this
is a possibility) and maybe other bus-like devices.

This chapter[2] aims to teach you the principles of controlling these many kinds of devices in a
machine-independent way using the Java Communications API, which is in package
javax.comm.

[2] This chapter was originally going to be a book. Ironic, since my first book for O'Reilly was originally going
to be a chapter. So it goes.

I'll start this chapter by showing you how to get a list of available ports and how to control simple
serial devices like modems. Such details as baud rate, parity, and word size are attended to

 293

before we can write commands to the modem, read the results, and establish communications.
We'll move on to parallel (printer) ports, and then look at how to transfer data synchronously
(using read/write calls directly) and asynchronously (using Java listeners). Then we build a simple
phone dialer that can call a friend's voice phone for you -- a simple phone controller, if you will.
The discussion ends with a serial-port printer/plotter driver.

11.1.1 The Communications API

The Communications API is centered around the abstract class CommPort and its two
subclasses, SerialPort and ParallelPort, which describe the two main types of ports found
on desktop computers. CommPort represents a general model of communications, and has
general methods like getInputStream() and getOutputStream() that allow you to use
the information from Chapter 9 to communicate with the device on that port.

However, the constructors for these classes are intentionally non-public. Rather than constructing
them, you instead use the static factory method
CommPortIdentifier.getPortIdentifiers() to get a list of ports, let the user choose a
port from this list, and call this CommPortIdentifier's open() method to receive a
CommPort object. You cast the CommPort object to a non-abstract subclass representing a
particular communications device. At present, the subclass must be either SerialPort or
ParallelPort.

Each of these subclasses has some methods that apply only to that type. For example, the
SerialPort class has a method to set baud rate, parity, and the like, while the ParallelPort
class has methods for setting the "port mode" to original PC mode, bidirectional mode, etc.

Both subclasses also have methods that allow you to use the standard Java event model to
receive notification of events such as data available for reading, output buffer empty, and type-
specific events such as ring indicator for a serial port and out-of-paper for a parallel port -- as we'll
see, the parallel ports were originally for printers, and still use their terminology in a few places.

11.1.2 About the Code Examples in This Chapter

Java Communication is a standard extension. This means that it is not a required part of the Java
API, which in turn means that your vendor probably didn't ship it. You may need to download the
Java Communications API from Sun's Java web site, http://java.sun.com, or from your system
vendor's web site, and install it. If your platform or vendor doesn't ship it, you may need to find,
modify, compile, and install some C code. Try my personal web site, too. And, naturally enough,
to run some of the examples you will need additional peripheral devices beyond those normally
provided with a desktop computer. Batteries -- and peripheral devices -- are not included in the
purchase of this book.

11.1.3 See Also

Elliotte Rusty Harold's book Java I/O contains a chapter that discusses the Communications API
in considerable detail, as well as some background issues such as baud rate that we take for
granted here. Rusty also discusses some details that I have glossed over, such as the ability to
set receive timeouts and buffer sizes.

This book is about portable Java. If you want the gory low-level details of setting device registers
on a 16451 UART on an ISA or PCI PC, you'll have to look elsewhere; there are several books on
these topics. If you really need the hardware details for I/O ports on other platforms such as Sun

 294

Workstations and Palm Computing Platform, consult either the vendor's documentation and/or
the available open source operating systems that run on that platform.

11.2 Choosing a Port

11.2.1 Problem

You need to know what ports are available on a given computer.

11.2.2 Solution

Use CommPortIdentifier.getPortIdentifiers() to return the list of ports.

11.2.3 Discussion

There are many kinds of computers out there. It's unlikely that you'd find yourself running on a
desktop computer with no serial ports, but you might find that there is only one and it's already in
use by another program. Or you might want a parallel port and find that the computer has only
serial ports. This program shows you how to use the static CommPortIdentifier method
getPortIdentifiers(). This gives you an Enumeration (Section 7.5) of the serial and
parallel ports available on your system. My routine populate() processes this list and loads it
into a pair of JComboBoxes (graphical choosers; see Section 13.2), one for serial ports and
one for parallel (there is also a third, unknown, to cover future expansion of the API). The routine
makeGUI creates the JComboBoxes and arranges to notify us when the user picks one from
either of the lists. The name of the selected port is displayed at the bottom of the window. So that
you won't have to know much about it to use it, there are public methods getSelectedName(),
which returns the name of the last port chosen by either JComboBox and
getSelectedIdentifier(), which returns an object called a CommPortIdentifier
corresponding to the selected port name. Figure 11-1 shows the port chooser in action.

Figure 11-1. The Communications Port Chooser in action

Example 11-1 shows the code.

Example 11-1. PortChooser.java

import java.io.*;
import javax.comm.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

 295

import java.util.*;

/**
 * Choose a port, any port!
 *
 * Java Communications is a "standard extension" and must be downloaded
 * and installed separately from the JDK before you can even compile
this
 * program.
 *
 */
public class PortChooser extends JDialog implements ItemListener {
 /** A mapping from names to CommPortIdentifiers. */
 protected HashMap map = new HashMap();
 /** The name of the choice the user made. */
 protected String selectedPortName;
 /** The CommPortIdentifier the user chose. */
 protected CommPortIdentifier selectedPortIdentifier;
 /** The JComboBox for serial ports */
 protected JComboBox serialPortsChoice;
 /** The JComboBox for parallel ports */
 protected JComboBox parallelPortsChoice;
 /** The JComboBox for anything else */
 protected JComboBox other;
 /** The SerialPort object */
 protected SerialPort ttya;
 /** To display the chosen */
 protected JLabel choice;
 /** Padding in the GUI */
 protected final int PAD = 5;

 /** This will be called from either of the JComboBoxes when the
 * user selects any given item.
 */
 public void itemStateChanged(ItemEvent e) {
 // Get the name
 selectedPortName =
(String)((JComboBox)e.getSource()).getSelectedItem();
 // Get the given CommPortIdentifier
 selectedPortIdentifier =
(CommPortIdentifier)map.get(selectedPortName);
 // Display the name.
 choice.setText(selectedPortName);
 }

 /* The public "getter" to retrieve the chosen port by name. */
 public String getSelectedName() {
 return selectedPortName;
 }

 /* The public "getter" to retrieve the selection by
CommPortIdentifier. */
 public CommPortIdentifier getSelectedIdentifier() {
 return selectedPortIdentifier;
 }

 /** A test program to show up this chooser. */

 296

 public static void main(String[] ap) {
 PortChooser c = new PortChooser(null);
 c.setVisible(true); // blocking wait
 System.out.println("You chose " + c.getSelectedName() +
 " (known by " + c.getSelectedIdentifier() + ").");
 System.exit(0);
 }

 /** Construct a PortChooser --make the GUI and populate the
ComboBoxes.
 */
 public PortChooser(JFrame parent) {
 super(parent, "Port Chooser", true);

 makeGUI();
 populate();
 finishGUI();
 }

 /** Build the GUI. You can ignore this for now if you have not
 * yet worked through the GUI chapter. Your mileage may vary.
 */
 protected void makeGUI() {
 Container cp = getContentPane();

 JPanel centerPanel = new JPanel();
 cp.add(BorderLayout.CENTER, centerPanel);

 centerPanel.setLayout(new GridLayout(0,2, PAD, PAD));

 centerPanel.add(new JLabel("Serial Ports", JLabel.RIGHT));
 serialPortsChoice = new JComboBox();
 centerPanel.add(serialPortsChoice);
 serialPortsChoice.setEnabled(false);

 centerPanel.add(new JLabel("Parallel Ports", JLabel.RIGHT));
 parallelPortsChoice = new JComboBox();
 centerPanel.add(parallelPortsChoice);
 parallelPortsChoice.setEnabled(false);

 centerPanel.add(new JLabel("Unknown Ports", JLabel.RIGHT));
 other = new JComboBox();
 centerPanel.add(other);
 other.setEnabled(false);

 centerPanel.add(new JLabel("Your choice:", JLabel.RIGHT));
 centerPanel.add(choice = new JLabel());

 JButton okButton;
 cp.add(BorderLayout.SOUTH, okButton = new JButton("OK"));
 okButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 PortChooser.this.dispose();
 }
 });

 }

 297

 /** Populate the ComboBoxes by asking the Java Communications API
 * what ports it has. Since the initial information comes from
 * a Properties file, it may not exactly reflect your hardware.
 */
 protected void populate() {
 // get list of ports available on this particular computer,
 // by calling static method in CommPortIdentifier.
 Enumeration pList = CommPortIdentifier.getPortIdentifiers();

 // Process the list, putting serial and parallel into
ComboBoxes
 while (pList.hasMoreElements()) {
 CommPortIdentifier cpi =
(CommPortIdentifier)pList.nextElement();
 // System.out.println("Port " + cpi.getName());
 map.put(cpi.getName(), cpi);
 if (cpi.getPortType() == CommPortIdentifier.PORT_SERIAL)
{
 serialPortsChoice.setEnabled(true);
 serialPortsChoice.addItem(cpi.getName());
 } else if (cpi.getPortType() ==
CommPortIdentifier.PORT_PARALLEL) {
 parallelPortsChoice.setEnabled(true);
 parallelPortsChoice.addItem(cpi.getName());
 } else {
 other.setEnabled(true);
 other.addItem(cpi.getName());
 }
 }
 serialPortsChoice.setSelectedIndex(-1);
 parallelPortsChoice.setSelectedIndex(-1);
 }

 protected void finishGUI() {
 serialPortsChoice.addItemListener(this);
 parallelPortsChoice.addItemListener(this);
 other.addItemListener(this);
 pack();
 addWindowListener(new WindowCloser(this, true));
 }
}

11.3 Opening a Serial Port

11.3.1 Problem

You want to set up a serial port and open it for input/output.

11.3.2 Solution

Use a CommPortIdentifier 's open() method to get a SerialPort object.

 298

11.3.3 Discussion

Now you've picked your serial port, but it's not ready to go yet. Baud rate. Parity. Stop bits. These
things have been the bane of many a programmer's life. Having needed to work out the details of
setting them on many platforms over the years, including CP/M systems, IBM PCs, and IBM
System/370 mainframes, I can report that it's no fun. Finally, Java has provided a portable
interface for setting all these parameters.

The steps in setting up and opening a serial port are as follows:

1. Get the name and CommPortIdentifier (which you can do using my PortChooser
class).

2. Call the CommPortIdentifier's open() method; cast the resulting CommPort object
to a SerialPort object (this cast will fail if the user chose a parallel port!).

3. Set the serial communications parameters, such as baud rate, parity, stop bits, and the
like, either individually or all at once using the convenience routing
setSerialPortParams().

4. Call the getInputStream and getOutputStream methods of the SerialPort
object, and construct any additional Stream or Writer objects (see Chapter 9).

You are then ready to read and write on the serial port. Example 11-2 is code that implements
all these steps for a serial port. Some of this code is for parallel ports, which we'll discuss in
Section 11.4.

Example 11-2. CommPortOpen.java

import java.awt.*;
import java.io.*;
import javax.comm.*;
import java.util.*;

/**
 * Open a serial port using Java Communications.
 *
 */
public class CommPortOpen {
 /** How long to wait for the open to finish up. */
 public static final int TIMEOUTSECONDS = 30;
 /** The baud rate to use. */
 public static final int BAUD = 9600;
 /** The parent Frame, for the chooser. */
 protected Frame parent;
 /** The input stream */
 protected DataInputStream is;
 /** The output stream */
 protected PrintStream os;
 /** The last line read from the serial port. */
 protected String response;
 /** A flag to control debugging output. */
 protected boolean debug = true;
 /** The chosen Port Identifier */
 CommPortIdentifier thePortID;
 /** The chosen Port itself */
 CommPort thePort;

 299

 public static void main(String[] argv)
 throws IOException, NoSuchPortException, PortInUseException,
 UnsupportedCommOperationException {

 new CommPortOpen(null).converse();

 System.exit(0);
 }

 /* Constructor */
 public CommPortOpen(Frame f)
 throws IOException, NoSuchPortException, PortInUseException,
 UnsupportedCommOperationException {

 // Use the PortChooser from before. Pop up the JDialog.
 PortChooser chooser = new PortChooser(null);

 String portName = null;
 do {
 chooser.setVisible(true);

 // Dialog done. Get the port name.
 portName = chooser.getSelectedName();

 if (portName == null)
 System.out.println("No port selected. Try again.\n");
 } while (portName == null);

 // Get the CommPortIdentifier.
 thePortID = chooser.getSelectedIdentifier();

 // Now actually open the port.
 // This form of openPort takes an Application Name and a
timeout.
 //
 System.out.println("Trying to open " + thePortID.getName() +
"...");

 switch (thePortID.getPortType()) {
 case CommPortIdentifier.PORT_SERIAL:
 thePort = thePortID.open("DarwinSys DataComm",
 TIMEOUTSECONDS * 1000);
 SerialPort myPort = (SerialPort) thePort;

 // set up the serial port
 myPort.setSerialPortParams(BAUD, SerialPort.DATABITS_8,
 SerialPort.STOPBITS_1, SerialPort.PARITY_NONE);
 break;

 case CommPortIdentifier.PORT_PARALLEL:
 thePort = thePortID.open("DarwinSys Printing",
 TIMEOUTSECONDS * 1000);
 ParallelPort pPort = (ParallelPort)thePort;

 // Tell API to pick "best available mode" - can fail!
 // myPort.setMode(ParallelPort.LPT_MODE_ANY);

 300

 // Print what the mode is
 int mode = pPort.getMode();
 switch (mode) {
 case ParallelPort.LPT_MODE_ECP:
 System.out.println("Mode is: ECP");
 break;
 case ParallelPort.LPT_MODE_EPP:
 System.out.println("Mode is: EPP");
 break;
 case ParallelPort.LPT_MODE_NIBBLE:
 System.out.println("Mode is: Nibble Mode.");
 break;
 case ParallelPort.LPT_MODE_PS2:
 System.out.println("Mode is: Byte mode.");
 break;
 case ParallelPort.LPT_MODE_SPP:
 System.out.println("Mode is: Compatibility mode.");
 break;
 // ParallelPort.LPT_MODE_ANY is a "set only" mode;
 // tells the API to pick "best mode"; will report the
 // actual mode it selected.
 default:
 throw new IllegalStateException
 ("Parallel mode " + mode + " invalid.");
 }
 break;
 default: // Neither parallel nor serial??
 throw new IllegalStateException("Unknown port type " +
thePortID);
 }

 // Get the input and output streams
 // Printers can be write-only
 try {
 is = new DataInputStream(thePort.getInputStream());
 } catch (IOException e) {
 System.err.println("Can't open input stream: write-only");
 is = null;
 }
 os = new PrintStream(thePort.getOutputStream(), true);
 }

 /** This method will be overridden by non-trivial subclasses
 * to hold a conversation.
 */
 protected void converse() throws IOException {

 System.out.println("Ready to read and write port.");

 // Input/Output code not written -- must subclass.

 // Finally, clean up.
 if (is != null)
 is.close();
 os.close();
 }

 301

}

As noted in the comments, this class contains a dummy version of the converse method. In
following sections we'll expand on the input/output processing by subclassing and overriding this
method.

11.4 Opening a Parallel Port

11.4.1 Problem

You want to open a parallel port.

11.4.2 Solution

Use a CommPortIdentifier 's open() method to get a ParallelPort object.

11.4.3 Discussion

Enough of serial ports! Parallel ports as we know 'em are an outgrowth of the "dot matrix" printer
industry. Before the IBM PC, Tandy and other "pre-PC" PC makers needed a way to hook
printers to their computers. Centronics, a company that made a variety of dot matrix printers, had
a standard connector mechanism that caught on, changing only when IBM got into the act. Along
the way, PC makers found they needed more speed, so they built faster printer ports. And
peripheral makers took advantage of this by using the faster (and by now bidirectional) printer
ports to hook up all manner of weird devices like scanners, SCSI and Ethernet controllers, and
others via parallel ports. You can, in theory, open any of these devices and control them; the logic
of controlling such devices is left as an exercise for the reader. For now we'll just open a parallel
port.

Just as the SerialPortOpen program set the port's parameters, the ParallelPortOpen
program sets the parallel port access type or "mode." Like baud rate and parity, this requires
some knowledge of the particular desktop computer's hardware. There are several common
modes, or types of printer interface and interaction. The oldest is "simple parallel port," which the
API calls MODE_SPP. This is an output-only parallel port. Other common modes include EPP
(extended parallel port, MODE_ECP) and ECP (extended communciation port, MODE_ECP).
The API defines a few rare ones, as well as MODE_ANY, the default, and allows the API to pick
the best mode. In my experience, the API doesn't always do a very good job of picking, either
with MODE_ANY or with explicit settings. And indeed, there may be interactions with the BIOS (at
least on a PC) and on device drivers (MS-Windows, Unix). What follows is a simple example that
opens a parallel port (though it works on a serial port also), opens a file, and sends it; in other
words, a very trivial printer driver. Now this is obviously not the way to drive printers. Most
operating systems provide support for various types of printers (the MacOS and MS-Windows
both do, at least; Unix tends to assume a PostScript or HP printer). This example, just to make
life simple by allowing us to work with ASCII files, copies a short file of PostScript. The intent of
the PostScript job is just to print the little logo in Figure 11-2.

Figure 11-2. PostScript printer output

 302

The PostScript code used in this particular example is fairly short:

%!PS-Adobe

% Draw a circle of "Java Cookbook"
% simplified from Chapter 9 of the Adobe Systems "Blue Book",
% PostScript Language Tutorial and Cookbook

% center the origin
250 350 translate

/Helvetica-BoldOblique findfont
 30 scalefont
 setfont

% print circle of Java
0.4 setlinewidth % make outlines not too heavy
20 20 340 {
 gsave
 rotate 0 0 moveto
 (Java) true charpath stroke
 grestore
} for

% print "Java Cookbook" in darker outline
% fill w/ light gray to contrast w/ spiral
1.5 setlinewidth
0 0 moveto
(Java Cookbook) true charpath
gsave 1 setgray fill grestore
stroke

% now send it all to the printed page
showpage

It doesn't matter if you know PostScript; it's just the printer control language that some printers
accept. What matters to us is that we can open the parallel port, and, if an appropriate printer is
connected (I used an HP6MP, which supports PostScript), the logo will print, appearing near the
middle of the page. Example 11-3 is a short program that again subclasses CommPortOpen,
opens a file that is named on the command line, and copies it to the given port. Using it looks like
this:

C:\javasrc\io\javacomm>java ParallelPrint javacook.ps
Mode is: Compatibility mode.
Can't open input stream: write-only

C:\javasrc\io\javacomm>

 303

The message "Can't open input stream" appears because my notebook's printer port is
(according to the Java Comm API) unable to do bidirectional I/O. This is in fact incorrect, as I
have used various printer-port devices that require bidirectional I/O, such as the Logitech
(formerly Connectix) QuickCam, on this same hardware platform (but under Unix and MS-
Windows, not using Java). This message is just a warning; the program works correctly despite it.

Example 11-3. ParallePrint.com

import java.awt.*;
import java.io.*;
import javax.comm.*;

/**
 * Print to a serial port using Java Communications.
 *
 */
public class ParallelPrint extends CommPortOpen {

 protected static String inputFileName;

 public static void main(String[] argv)
 throws IOException, NoSuchPortException, PortInUseException,
 UnsupportedCommOperationException {

 if (argv.length != 1) {
 System.err.println("Usage: ParallelPrint filename");
 System.exit(1);
 }
 inputFileName = argv[0];

 new ParallelPrint(null).converse();

 System.exit(0);
 }

 /* Constructor */
 public ParallelPrint(Frame f)
 throws IOException, NoSuchPortException, PortInUseException,
 UnsupportedCommOperationException {

 super(f);
 }

 /**
 * Hold the (one-way) conversation.
 */
 protected void converse() throws IOException {

 // Make a reader for the input file.
 BufferedReader file = new BufferedReader(
 new FileReader(inputFileName));

 String line;
 while ((line = file.readLine()) != null)
 os.println(line);

 304

 // Finally, clean up.
 file.close();
 os.close();
 }
}

11.5 Resolving Port Conflicts

11.5.1 Problem

Somebody else is using the port you want, and they won't let go!

11.5.2 Solution

Use a PortOwnershipListener.

11.5.3 Discussion

If you run the CommPortOpen program and select a port that is opened by a native program such
as HyperTerminal on MS-Windows, you will get a PortInUseException after the timeout
period is up:

C:\javasrc\commport>java CommPortOpen
Exception in thread "main" javax.comm.PortInUseException: Port
currently owned
by Unknown Windows Application
 at
javax.comm.CommPortIdentifier.open(CommPortIdentifier.java:337)
 at CommPortOpen.main(CommPortOpen.java:41)

If, on the other hand, you run two copies of CommPortOpen at the same time for the same port,
you will see something like the following:

C:\javasrc\commport>java CommPortOpen
Exception in thread "main" javax.comm.PortInUseException: Port
currently owned
by DarwinSys DataComm
 at
javax.comm.CommPortIdentifier.open(CommPortIdentifier.java:337)
 at CommPortOpen.main(CommPortOpen.java:41)

C:\javasrc\commport>

To resolve conflicts over port ownership, you can register a PortOwnershipListener so that
you will be told if another application wants to use the port. Then you can either close the port
and the other application will get it, or ignore the request and the other program will get a
PortInUseException, as we did here.

What is this "listener"? The Event Listener model is used in many places in Java. It may be best
known for its uses in GUIs (see Section 13.5). The basic form is that you have to register an
object as a listener with an event source. The event source will then call a well-known method to

 305

notify you that a particular event has occurred. In the GUI, for example, an event occurs when the
user presses a button with the mouse; if you wish to monitor these events, you need to call the
button object's addActionListener() method, passing an instance of the ActionListener
interface (which can be your main class, an inner class, or some other class).

How does a listener work in practice? To simplify matters, we've again subclassed from our
command-line program CommPortOpen to pop up a dialog if one copy of the program tries to
open a port that another copy already has open. If you run two copies of the new program
PortOwner at the same time, and select the same port in each, you'll see the dialog shown in
Figure 11-3.

Figure 11-3. Port conflict resolution

The trick to make this happen is simply to add a CommPortOwnershipListener to the
CommPortIdentifier object. You will then be called when any program gets ownership, gives
up ownership, or if there is a conflict. Example 11-4 shows the program with this addition.

Example 11-4. PortOwner.java

import javax.comm.*;
import java.io.*;
import javax.swing.*;

/** Demonstrate the port conflict resolution mechanism.
 * Run two copies of this program and choose the same port in each.
 */
public class PortOwner extends CommPortOpen {
 /** A name for showing which of several instances of this program
*/
 String myName;

 public PortOwner(String name)
 throws IOException, NoSuchPortException, PortInUseException,
 UnsupportedCommOperationException {

 306

 super(null);
 myName = name;
 thePortID.addPortOwnershipListener(new MyResolver());
 }

 public void converse() {
 // lah de dah...
 // To simulate a long conversation on the port...

 try {
 Thread.sleep(1000 * 1000);
 } catch (InterruptedException cantHappen) {
 //
 }
 }

 /** An inner class that handles the ports conflict resolution. */
 class MyResolver implements CommPortOwnershipListener {
 protected boolean owned = false;
 public void ownershipChange(int whaHoppen) {
 switch (whaHoppen) {
 case PORT_OWNED:
 System.out.println("An open succeeded.");
 owned = true;
 break;
 case PORT_UNOWNED:
 System.out.println("A close succeeded.");
 owned = false;
 break;
 case PORT_OWNERSHIP_REQUESTED:
 if (owned) {
 if (JOptionPane.showConfirmDialog(null,
 "I've been asked to give up the port, should
I?",
 "Port Conflict (" + myName + ")",
 JOptionPane.OK_CANCEL_OPTION) == 0)
 thePort.close();
 } else {
 System.out.println("Somebody else has the port");
 }
 }
 }
 }

 public static void main(String[] argv)
 throws IOException, NoSuchPortException, PortInUseException,
 UnsupportedCommOperationException {

 if (argv.length != 1) {
 System.err.println("Usage: PortOwner aname");
 System.exit(1);
 }

 new PortOwner(argv[0]).converse();

 System.exit(0);

 307

 }
}

Note the single argument to ownershipChange(). Do not assume that only your listener will
be told when an event occurs; it will be called whether you are the affected program or simply a
bystander. To see if you are the program being requested to give up ownership, you have to
check to see if you already have the port that is being requested (for example, by opening it
successfully!).

11.6 Reading and Writing: Lock Step

11.6.1 Problem

You want to read and write on a port, and your communications needs are simple.

11.6.2 Solution

Just use read and write calls.

11.6.3 Discussion

Suppose you need to send a command to a device and get a response back, and then send
another, and get another. This has been called a "lock-step" protocol, since both ends of the
communication are locked into step with one another, like soldiers on parade. There is no
requirement that both ends be able to write at the same time (see Recipes 10.7 and 10.8 for this),
since you know what the response to your command should be and don't proceed until you have
received that response. A well-known example is using a standard Hayes-command-set modem
to just dial a phone number. In its simplest form, you send the command string ATZ and expect
the response OK, then send ATD with the number, and expect CONNECT. To implement this, we
first subclass from CommPortOpen to add two functions, send and expect, which perform
reasonably obvious functions for dealing with such devices. See Example 11-5.

Example 11-5. CommPortModem.java

import java.awt.*;
import java.io.*;
import javax.comm.*;
import java.util.*;

/**
 * Subclasses CommPortOpen and adds send/expect handling for dealing
 * with Hayes-type modems.
 *
 */
public class CommPortModem extends CommPortOpen {
 /** The last line read from the serial port. */
 protected String response;
 /** A flag to control debugging output. */
 protected boolean debug = true;

 public CommPortModem(Frame f)
 throws IOException, NoSuchPortException,PortInUseException,
 UnsupportedCommOperationException {

 308

 super(f);
 }

 /** Send a line to a PC-style modem. Send \r\n, regardless of
 * what platform we're on, instead of using println().
 */
 protected void send(String s) throws IOException {
 if (debug) {
 System.out.print(">>> ");
 System.out.print(s);
 System.out.println();
 }
 os.print(s);
 os.print("\r\n");

 // Expect the modem to echo the command.
 if (!expect(s)) {
 System.err.println("WARNING: Modem did not echo command.");
 }

 // The modem sends an extra blank line by way of a prompt.
 // Here we read and discard it.
 String junk = os.readLine();
 if (junk.length() != 0) {
 System.err.print("Warning unexpected response: ");
 System.err.println(junk);
 }
 }

 /** Read a line, saving it in "response".
 * @return true if the expected String is contained in the
response, false if not.
 */
 protected boolean expect(String exp) throws IOException {
 response = is.readLine();
 if (debug) {
 System.out.print("<<< ");
 System.out.print(response);
 System.out.println();
 }
 return response.indexOf(exp) >= 0;
 }
}

Finally, Example 11-6 extends our CommPortModem program to initialize the modem and dial a
telephone number.

Example 11-6. CommPortDial.java

import java.io.*;
import javax.comm.*;
import java.util.*;

/**
 * Dial a phone using the Java Communications Package.
 *

 309

 */
public class CommPortDial extends CommPortModem {

 protected static String number = "000-0000";

 public static void main(String[] ap)
 throws IOException, NoSuchPortException,PortInUseException,
 UnsupportedCommOperationException {
 if (ap.length == 1)
 number = ap[0];
 new CommPortDial().converse();
 System.exit(0);
 }

 public CommPortDial()
 throws IOException, NoSuchPortException, PortInUseException,
 UnsupportedCommOperationException {
 super(null);
 }

 protected void converse() throws IOException {

 String resp; // the modem response.

 // Send the reset command
 send("ATZ");

 expect("OK");

 send("ATDT" + number);

 expect("OK");

 try {
 Thread.sleep(5000);
 } catch (InterruptedException e) {
 // nothing to do
 }
 is.close();
 os.close();
 }
}

11.7 Reading and Writing: Event-Driven

11.7.1 Problem

After the connection is made, you don't know what order to read or write in.

11.7.2 Solution

Use Java Communication Events to notify you when data becomes available.

 310

11.7.3 Discussion

While lock-step mode is acceptable for dialing a modem, it breaks down when you have two
independent agents communicating over a port. Either end may be a person, as in a remote login
session, or a program, either a server or a client program. A client program, in turn, may be
driven by a person (as is a web browser) or may be self-driven (such as an FTP client transferring
many files at one request). You cannot predict, then, who will need to read and who will need to
write. Consider the simplest case: the programs at both end try to read at the same time! Using
the lock-step model, each end will wait forever for the other end to write something. This error
condition is known as a deadlock, since both ends are locked up, dead, until a person intervenes,
or the communication line drops, or the world ends, or the universe ends, or somebody making
tea blows a fuse and causes one of the machines to halt.

There are two general approaches to this problem: event-driven activity, wherein the
Communications API notifies you when the port is ready to be read or written, and threads-based
activity, wherein each "direction" (from the user to the remote, and from the remote to the user)
has its own little flow of control, causing only the reads in that direction to wait. We'll discuss each
of these.

First, Example 11-7 reads from a serial port using the event-driven approach.

Example 11-7. SerialReadByEvents.java

import java.awt.*;
import java.io.*;
import javax.comm.*;
import java.util.*;

/**
 * Read from a Serial port, notifying when data arrives.
 * Simulation of part of an event-logging service.
 */
public class SerialReadByEvents extends CommPortOpen
 implements SerialPortEventListener {

 public static void main(String[] argv)
 throws IOException, NoSuchPortException, PortInUseException,
 UnsupportedCommOperationException {

 new SerialReadByEvents(null).converse();
 }

 /* Constructor */
 public SerialReadByEvents(Frame f)
 throws IOException, NoSuchPortException, PortInUseException,
 UnsupportedCommOperationException {

 super(f);
 }

 protected BufferedReader ifile;

 /**
 * Hold the conversation.
 */

 311

 protected void converse() throws IOException {

 if (!(thePort instanceof SerialPort)) {
 System.err.println("But I wanted a SERIAL port!");
 System.exit(1);
 }
 // Tell the Comm API that we want serial events.
 ((SerialPort)thePort).notifyOnDataAvailable(true);
 try {
 ((SerialPort)thePort).addEventListener(this);
 } catch (TooManyListenersException ev) {
 // "CantHappen" error
 System.err.println("Too many listeners(!) " + ev);
 System.exit(0);
 }

 // Make a reader for the input file.
 ifile = new BufferedReader(new InputStreamReader(is));

 //
 }
 public void serialEvent(SerialPortEvent ev) {
 String line;
 try {
 line = ifile.readLine();
 if (line == null) {
 System.out.println("EOF on serial port.");
 System.exit(0);
 }
 os.println(line);
 } catch (IOException ex) {
 System.err.println("IO Error " + ex);
 }
 }
}

As you can see, the serialEvent() method does the readLine() calls. "But wait!" I hear
you say. "This program is not a very meaningful example. It could just as easily be implemented
using the lock-step method of Section 11.6. True enough, gentle reader. Have patience with
your humble and obedient servant. Here is a program that will read from each and any of the
serial ports, whenever data arrives. The program is representative of a class of programs called "
data loggers," which receive data from a number (possibly a large number) of remote locations,
and log them centrally. One example is a burglar alarm monitoring station, which needs to log
activities such as the alarm being turned off at the close of the day, entry by the cleaners later,
what time they left, and so on. And then, of course, it needs to notify the operator of the
monitoring station when an unexpected event occurs. This last step is left as an exercise for the
reader.

Example 11-8 makes use of the EventListener model and uses a unique instance of the
inner class Logger for each serial port it's able to open.

Example 11-8. SerialLogger.java

import java.io.*;
import javax.comm.*;

 312

import java.util.*;

/**
 * Read from multiple Serial ports, notifying when data arrives on any.
 */
public class SerialLogger {

 public static void main(String[] argv)
 throws IOException, NoSuchPortException, PortInUseException,
 UnsupportedCommOperationException {

 new SerialLogger();
 }

 /* Constructor */
 public SerialLogger()
 throws IOException, NoSuchPortException, PortInUseException,
 UnsupportedCommOperationException {

 // get list of ports available on this particular computer,
 // by calling static method in CommPortIdentifier.
 Enumeration pList = CommPortIdentifier.getPortIdentifiers();

 // Process the list, putting serial and parallel into
ComboBoxes
 while (pList.hasMoreElements()) {
 CommPortIdentifier cpi =
(CommPortIdentifier)pList.nextElement();
 String name = cpi.getName();
 System.out.print("Port " + name + " ");
 if (cpi.getPortType() == CommPortIdentifier.PORT_SERIAL)
{
 System.out.println("is a Serial Port: " + cpi);

 SerialPort thePort;
 try {
 thePort = (SerialPort)cpi.open("Logger", 1000);
 } catch (PortInUseException ev) {
 System.err.println("Port in use: " + name);
 continue;
 }

 // Tell the Comm API that we want serial events.
 thePort.notifyOnDataAvailable(true);
 try {
 thePort.addEventListener(new Logger(cpi.getName(
), thePort));
 } catch (TooManyListenersException ev) {
 // "CantHappen" error
 System.err.println("Too many listeners(!) " + ev);
 System.exit(0);
 }
 }
 }
 }

 /** Handle one port. */

 313

 public class Logger implements SerialPortEventListener {
 String portName;
 SerialPort thePort;
 BufferedReader ifile;
 public Logger(String name, SerialPort port) throws IOException
{
 portName = name;
 thePort = port;
 // Make a reader for the input file.
 ifile = new BufferedReader(
 new InputStreamReader(thePort.getInputStream()));
 }
 public void serialEvent(SerialPortEvent ev) {
 String line;
 try {
 line = ifile.readLine();
 if (line == null) {
 System.out.println("EOF on serial port.");
 System.exit(0);
 }
 System.out.println(portName + ": " + line);
 } catch (IOException ex) {
 System.err.println("IO Error " + ex);
 }
 }
 }
}

11.8 Reading and Writing: Threads

11.8.1 Problem

After the connection is made, you don't know what order to read or write in.

11.8.2 Solution

Use a thread to handle each direction.

11.8.3 Discussion

When you have two things that must happen at the same time or unpredictably, the normal Java
paradigm is to use a thread for each. We will discuss threads in detail in Chapter 24, but for
now, just think of a thread as a small, semi-independent flow of control within a program, just as a
program is a small, self-contained flow of control within an operating system. The Thread API
requires you to construct a method whose signature is public void run() to do the body of
work for the thread, and call the start() method of the thread to "ignite" it and start it running
independently. This example creates a Thread subclass called DataThread, which reads from
one file and writes to another. DataThread works a byte at a time so that it will work correctly
with interactive prompts, which don't end at a line ending. My now-familiar converse() method
creates two of these DataThreads, one to handle data "traffic" from the keyboard to the remote,
and one to handle bytes arriving from the remote and copy them to the standard output. For each
of these the start() method is called. Example 11-9 shows the entire program.

 314

Example 11-9. CommPortThreaded.java

import java.io.*;
import javax.comm.*;
import java.util.*;

/**
 * This program tries to do I/O in each direction using a separate
Thread.
 */
public class CommPortThreaded extends CommPortOpen {

 public static void main(String[] ap)
 throws IOException, NoSuchPortException,PortInUseException,
 UnsupportedCommOperationException {
 CommPortThreaded cp;
 try {
 cp = new CommPortThreaded();
 cp.converse();
 } catch(Exception e) {
 System.err.println("You lose!");
 System.err.println(e);
 }
 }

 public CommPortThreaded()
 throws IOException, NoSuchPortException, PortInUseException,
 UnsupportedCommOperationException {
 super(null);
 }

 /** This version of converse() just starts a Thread in each
direction.
 */
 protected void converse() throws IOException {

 String resp; // the modem response.

 new DataThread(is, System.out).start();
 new DataThread(new DataInputStream(System.in), os).start();

 }

 /** This inner class handles one side of a conversation. */
 class DataThread extends Thread {
 DataInputStream inStream;
 PrintStream pStream;

 /** Construct this object */
 DataThread(DataInputStream is, PrintStream os) {
 inStream = is;
 pStream = os;
 }

 /** A Thread's run method does the work. */
 public void run() {

 315

 byte ch = 0;
 try {
 while ((ch = (byte)inStream.read()) != -1)
 pStream.print((char)ch);
 } catch (IOException e) {
 System.err.println("Input or output error: " + e);
 return;
 }
 }
 }
}

11.9 Program: Penman Plotter

This program in Example 11-10 is an outgrowth of the Plotter class from Section 8.12. It
connects to a Penman plotter. These serial-port plotters were made in the United Kingdom in the
1980s, so it is unlikely that you will meet one. However, there are several companies that still
make pen plotters. See Figure 11-4 for a photograph of the plotter in action.

Figure 11-4. Penman plotter in action

Example 11-10. Penman.java

import java.io.*;
import javax.comm.*;
import java.util.*;

/**
 * A Plotter subclass for drawing on a Penman plotter.
 * These were made in the UK and sold into North American markets.
 * It is a little "turtle" style robot plotter that communicates
 * over a serial port. For this, we use the "Java Communications" API.

 316

 * Java Communications is a "standard extension" and must be downloaded
 * and installed separately from the JDK before you can even compile
this
 * program.
 *
 */
public class Penman extends Plotter {
 private final String OK_PROMPT = "\r\n!";
 private final int MAX_REPLY_BYTES = 50; // paranoid upper bound
 private byte b, reply[] = new byte[22];
 private SerialPort tty;
 private DataInputStream is;
 private DataOutputStream os;

 /** Construct a Penman plotter object */
 public Penman() throws NoSuchPortException,PortInUseException,
 IOException,UnsupportedCommOperationException {
 super();
 init_comm("COM2"); // setup serial commx
 init_plotter(); // set plotter to good state
 }

 private void init_plotter() {
 send("I"); expect('!'); // eat VERSION etc., up to !
 send("I"); expect('!'); // wait for it!
 send("H"); // find home position
 expect('!'); // wait for it!
 send("A"); // Set to use absolute coordinates
 expect('!');
 curx = cury = 0;
 penUp();
 }

 //
 // PUBLIC DRAWING ROUTINES
 //

 public void setFont(String fName, int fSize) {
 // Font name is ignored for now...

 // Penman's size is in mm, fsize in points (inch/72).
 int size = (int)(fSize*25.4f/72);
 send("S"+size + ","); expect(OK_PROMPT);
 System.err.println("Font set request: " + fName + "/" + fSize);
 }

 public void drawString(String mesg) {
 send("L" + mesg + "\r"); expect(OK_PROMPT);
 }

 /** Move to a relative location */
 public void rmoveTo(int incrx, int incry){
 moveTo(curx + incrx, cury + incry);
 }

 /** move to absolute location */
 public void moveTo(int absx, int absy) {

 317

 System.err.println("moveTo ["+absx+","+absy+"]");
 curx = absx;
 cury = absy;
 send("M" + curx + "," + cury + ","); expect(OK_PROMPT);
 }

 private void setPenState(boolean up) {
 penIsUp = up;
 System.err.println("Pen Up is ["+penIsUp+"]");
 }

 public void penUp() {
 setPenState(true);
 send("U"); expect(OK_PROMPT);
 }
 public void penDown() {
 setPenState(false);
 send("D"); expect(OK_PROMPT);
 }
 public void penColor(int c) {
 penColor = (c%3)+1; // only has 3 pens, 4->1
 System.err.println("PenColor is ["+penColor+"]");
 send("P" + c + ","); expect(OK_PROMPT);
 }

 //
 // PRIVATE COMMUNICATION ROUTINES
 //

 private void init_comm(String portName) throws
 IOException, UnsupportedCommOperationException {

 // get list of ports available on this particular computer.
 // Enumeration pList = CommPortIdentifier.getPortIdentifiers(
);

 // Print the list. A GUI program would put these in a chooser!
 // while (pList.hasMoreElements()) {
 // CommPortIdentifier cpi =
(CommPortIdentifier)pList.nextElement();
 // System.err.println("Port " + cpi.getName());
 // }

 // Open a port.
 CommPortIdentifier port =
 CommPortIdentifier.getPortIdentifier(portName);

 // This form of openPort takes an Application Name and a
timeout.
 tty = (SerialPort) port.openPort("Penman Driver", 1000);

 // set up the serial port
 tty.setSerialPortParams(9600, SerialPort.DATABITS_8,
 SerialPort.STOPBITS_1, SerialPort.PARITY_NONE);
 tty.setFlowcontrolMode(SerialPort.FLOWCTRL_RTSCTS_OUT|
 SerialPort.FLOWCTRL_RTSCTS_OUT);

 318

 // Get the input and output streams
 is = new DataInputStream(tty.getInputStream());
 os = new DataOutputStream(tty.getOutputStream());
 }

 /** Send a command to the plotter. Although the argument is a
String,
 * we send each char as a *byte*, so avoid 16-bit characters!
 * Not that it matters: the Penman only knows about 8-bit chars.
 */
 private void send(String s) {
 System.err.println("sending " + s + "...");
 try {
 for (int i=0; i<s.length(); i++)
 os.writeByte(s.charAt(i));
 } catch(IOException e) {
 e.printStackTrace();
 }
 }

 /** Expect a given CHAR for a result */
 private void expect(char s) {
 byte b;
 try {
 for (int i=0; i<MAX_REPLY_BYTES; i++){
 if ((b = is.readByte()) == s) {
 return;
 }
 System.err.print((char)b);
 }
 } catch (IOException e) {
 System.err.println("Penman:expect(char "+s+"): Read
failed");
 System.exit(1);
 }
 System.err.println("ARGHH!");
 }

 /** Expect a given String for a result */
 private void expect(String s) {
 byte ans[] = new byte[s.length()];

 System.err.println("expect " + s + " ...");
 try {
 is.read(ans);
 } catch (IOException e) {
 System.err.println("Penman:expect(String "+s+"): Read
failed");
 System.exit(1);
 };
 for (int i=0; i<s.length() && i<ans.length; i++)
 if (ans[i] != s.charAt(i)) {
 System.err.println("MISMATCH");
 break;
 }
 System.err.println("GOT: " + new String(ans));

 319

 }
}

11.9.1 See Also

In the online source there is a program called JModem, which implements remote connections
(like tip or cu on Unix, or HyperTerminal on MS-Windows). It is usable, but too long to include in
this book.

There are other specialized APIs for dealing with particular devices. For communicating with
Palm Computing Platform devices, you can either use the Palm SDK for Java from Palm
Computing, or the third-party API jSyncManager by Brad Barclay, which can be obtained from
http://web.idirect.com/~warp/.

 320

Chapter 12. Graphics and Sound

12.1 Introduction

12.2 Painting with a Graphics Object

12.3 Testing Graphical Components

12.4 Drawing Text

12.5 Drawing Centered Text in a Component

12.6 Drawing a Drop Shadow

12.7 Drawing an Image

12.8 Playing a Sound File

12.9 Displaying a Moving Image with Video

12.10 Drawing Text with 2D

12.11 Printing: JDK 1.1

12.12 Printing: Java 2

12.13 Program: PlotterAWT

12.14 Program: Grapher

12.1 Introduction

The Graphics class and the Component method paint() have survived virtually unchanged
since the early days of Java. Together they provide a basic but quite functional graphics
capability. The first printing API was put forward in 1.1, and it was promptly replaced in Java 2
(things change quickly in the online world). Both printing APIs, fortunately, are based on use of
Graphics objects, so your drawing code does not have to change: only the details of getting the
right kind of Graphics object change in moving from 1.1 to Java 2. The 2D (two-dimensional
graphics) package is also based on Graphics: Graphics2D is a subclass of Graphics. To put
the 2D graphics in perspective, think about the tremendous boost that the Adobe PostScript
language gave to desktop publishing and printing. PostScript is both a scripting language and a
marking engine : it has the ability to make a terrific variety of marks on paper. Since Java is
already a comprehensive programming language, the 2D API needed only to add the marking
engine. This it did very well, using several ideas imported from PostScript via Adobe's
participation in the early design.

 321

Also present from the beginning was the AudioClip class, which represents a playable sound
file. In Java 2 this was extended to support additional formats (including MIDI) and to be usable
from within an application as well. Meanwhile, the Java Media Framework -- standard extension
javax.media -- provides for playing (and eventually recording) of audio, video, and possibly
other media with much greater control over the presentation. You'll see examples in this chapter.

But first let's look at the Graphics class. Many of the code examples in this chapter can be used
either in applications (which we'll see in Section 12.3) or in applets (discussed more in Chapter
17).

12.2 Painting with a Graphics Object

12.2.1 Problem

You want to draw something on the screen.

12.2.2 Solution

In your paint() method, use the provided Graphics object's drawing methods:

// graphics/PaintDemo.java
import java.awt.*;

public class PaintDemo extends Component {
 int rectX = 20, rectY = 30;
 int rectWidth = 50, rectHeight = 50;

 public void paint(Graphics g) {
 g.setColor(Color.red);
 g.fillRect(rectX, rectY, rectWidth, rectHeight);
 }
 public Dimension getPreferredSize() {
 return new Dimension(100, 100);
 }
}

12.2.3 Discussion

The Graphics class has a large set of drawing primitives. For each of Rect(angle), Arc, Ellipse,
and Polygon, there is a draw method (draws just the outline) and a fill method (fills inside the
outline). You don't need both, unless you want the outline and the interior (fill) of a shape to be
different colors. The method drawString() and related methods let you print text on the
screen (see Section 12.4). There are also drawLine() , which draws straight line segments,
setColor /getColor, setFont/getFont, and many other methods. Too many to list here, in
fact; see Sun's online documentation for java.awt.Graphics.

12.2.3.1 When to draw?

A common beginner's mistake used to be to call getGraphics() and call the Graphics
object's drawing methods from within a main program or the constructor of a Component
subclass. Fortunately we now have any number of books to tell us that the correct way to draw
anything is with your component's paint method. Why? Because you can't draw in a window until

 322

it's actually been created and (on most window systems) mapped to the screen, and that takes
much more time than your main program or constructor has. The drawing code needs to wait
patiently until the window system notifies the Java runtime that it's time to paint the window.

Where do you put your drawing code? This is one situation where you need to think about AWT
versus Swing. AWT, the basic windowing system (and the only one in JDK 1.1) uses a method
called paint() . This method is still available in Swing, but due to interaction with borders and
the like, it is recommended that you override paintComponent() instead. Both are called with
a single argument of type Graphics. Your paintComponent() should start by calling
super.paintComponent() with the same argument to ensure that components are painted
in proper back-to-front order, while paint() should not call its parent. Some examples in this
chapter use paint() and others use paintComponent(); the latter also usually extend
JPanel. This allows better interaction with Swing, and also allows you to place these as the main
component in a JFrame by calling setContentPane() , which eliminates an extra layer of
container. (JFrame's ContentPane is discussed in Section 13.2.)

12.3 Testing Graphical Components

12.3.1 Problem

You don't want to have to write a little main program with a frame each time you write a subclass
of Component.

12.3.2 Solution

Use my CompTest class, which has a main method that builds a frame and installs your
component into it.

12.3.3 Discussion

CompTest is a small main program that takes a class name from the command line, instantiates
it (see Section 25.4), and puts it in a JFrame, alone with an Exit button and its action handler. It
also worries a bit over making sure the window comes out the right size. Many of these issues
relate to the GUI rather than graphics, and are deferred to Chapter 13.

The class to be tested must be a subclass of Component, or an error message will be printed.
This is very convenient for running small component classes, and I show a lot of these in this
chapter and the next. Using it is simplicity itself; for example, to instantiate the
DrawStringDemo2 class from Section 12.4, you just say:

java CompTest DrawStringDemo2

This is shown on the left side of Figure 12-1. It's interesting to try running it on some of the
predefined classes. A JTree (Java's tree view widget, used in Section 19.10) no-argument
constructor creates a JTree that comes up with a demonstration set of data, as in Figure 12-1,
right.

Figure 12-1. CompTest showing DrawStringDemo2 (left) and javax.swing.JTree (right)

 323

Since little of this relates to the material in this chapter, I don't show the source for CompTest;
however, it's included in the online code examples for the book.

12.4 Drawing Text

12.4.1 Problem

You need to draw text in a component.

12.4.2 Solution

Simply call the drawString () method in the Graphics class:

// graphics/DrawStringDemo.java
import java.awt.*;

public class DrawStringDemo extends Component {
 int textX = 10, textY = 20;
 public void paint(Graphics g) {
 g.drawString("Hello Java", textX, textY);
 }
 public Dimension getPreferredSize() {
 return new Dimension(100, 100);
 }
}

12.5 Drawing Centered Text in a Component

12.5.1 Problem

You want to draw text neatly centered in a component.

12.5.2 Solution

Measure the width and height of the string in the given font, and subtract it from the width and
height of the component. Divide by two, and use this as your drawing location.

12.5.3 Discussion

 324

The program DrawStringDemo2 measures the width and height of a string (see Figure 12-2
for some attributes of the text). The program then subtracts the size of the text from the size of
the component, divides this by two, and thereby centers the text in the given component.

Figure 12-2. Font metrics

// file graphics/DrawStringDemo2.java
import java.awt.*;

public class DrawStringDemo2 extends Component {
 String message = "Hello Java";

 /** Paint is called (by AWT) when it's time to draw the text. */
 public void paint(Graphics g) {
 // Get the current Font, and ask it for its FontMetrics.
 FontMetrics fm = getFontMetrics(getFont());

 // Use the FontMetrics to get the width of the String.
 // Subtract this from width, divide by 2, that's our starting
point.
 int textX = (getSize().width - fm.stringWidth(message))/2;
 if (textX<0) // If string too long, start at 0
 textX = 0;

 // Same as above but for the height
 int textY = (getSize().height - fm.getLeading())/2;
 if (textY<0)
 textY = 0;

 // Now draw the text at the computed spot.
 g.drawString(message, textX, textY);
 }

 public Dimension getPreferredSize() {
 return new Dimension(100, 100);
 }
}

This is so common that you'd expect Java to have encapsulated the whole thing as a service, and
in fact, Java does do this. What we have here is what most GUI component architectures call a
label. As we'll see in Chapter 13, Java provides a Label component that allows for centered (or
left- or right-aligned) text and supports the setting of fonts and colors; and JLabel, which
provides image icons in addition to or instead of text.

12.6 Drawing a Drop Shadow

 325

12.6.1 Problem

You want to draw text or graphical objects with a "drop shadow" effect, as in Figure 12-3.

Figure 12-3. Drop shadow text

12.6.2 Solution

Draw the component twice, with the darker shadow behind and the "real" color, slightly offset, in
front.

12.6.3 Discussion

Program DropShadow does just this. It also uses a Font object from java.awt to exercise
some control over the typeface.

The program in Example 12-1 is unabashedly an Applet; to run it, you should invoke it as
appletviewer DropShadow.htm[1] (the details of such HTML files are in Section 17.2).

[1] In all my applet examples I use a filename ending in htm instead of the more traditional html, because the
Javadoc program (see Section 23.3) will overwrite the html file without notice. AppletViewer doesn't
care either way.

Example 12-1. DropShadow.java

import java.applet.*;
import java.awt.*;

/**
 * DropShadow -- show overlapped painting.
 */
public class DropShadow extends Applet {
 /** The label that is to appear in the window */
 protected String theLabel = null;
 /** The width and height */
 protected int width, height;
 /** The name of the font */
 protected String fontName;
 /** The font */
 protected Font theFont;
 /** The size of the font */
 protected int fontSize = 18;
 /** The offset for the drop shadow */
 protected int theOffset = 3;
 /** True if we got all required parameters */
 protected boolean inittedOK = false;

 326

 /** Called from the browser to set up. We want to throw various
 * kinds of exceptions but the API predefines that we don't, so we
 * limit ourselves to the ubiquitous IllegalArgumentException.
 */
 public void init() {
 // System.out.println("In DropShadow init()");

 theLabel = getParameter("label");
 if (theLabel == null)
 throw new IllegalArgumentException("LABEL is
REQUIRED");
 // Now handle font stuff.
 fontName = getParameter("fontname");
 if (fontName == null)
 throw new IllegalArgumentException("FONTNAME is
REQUIRED");
 String s;
 if ((s = getParameter("fontsize")) != null)
 fontSize = Integer.parseInt(s);
 if (fontName != null || fontSize != 0) {
 theFont = new Font(fontName, Font.BOLD + Font.ITALIC,
fontSize);
 System.out.println("Name " + fontName + ", font " +
theFont);
 }
 if ((s = getParameter("offset")) != null)
 theOffset = Integer.parseInt(s);
 setBackground(Color.green);
 inittedOK = true;
 }

 /** Paint method showing drop shadow effect */
 public void paint(Graphics g) {
 if (!inittedOK)
 return;
 g.setFont(theFont);
 g.setColor(Color.black);
 g.drawString(theLabel, theOffset+30, theOffset+50);
 g.setColor(Color.white);
 g.drawString(theLabel, 30, 50);
 }

 /** Give Parameter info to the AppletViewer, just for those
 * writing HTML without hardcopy documentation :-)
 */
 public String[][] getParameterInfo() {
 String info[][] = {
 { "label", "string", "Text to display" },
 { "fontname", "name", "Font to display it in" },
 { "fontsize", "10-30?", "Size to display it at" },
 };
 return info;
 }
}

 327

Standard AWT uses a very simple paint model for drawing. I guess that's why the method you
have to write is called paint(). Let's go back to the paper age for a moment. If you paint
something on a piece of paper and then paint over it with a different color, what happens? If
you're old enough to remember paper, you'll know that the second color covers up the first color.
Well, AWT works in pretty much the same way. No fair asking about water-based paints that run
together; Java's painting is more like fast-drying oil paints. The fact that AWT retains all the bits
(pixels, or picture elements) that you don't draw, plus the fact that methods like drawString()
have extremely good aim, make it very easy to create a drop shadow and to combine graphics
drawings in interesting ways.

Remember to draw from the back to the front, though. To see why, try interchanging the two calls
to drawString() in the previous code.

A word of warning: don't mix drawing with added GUI components (see Chapter 13). For
example, say you had a paint method in an applet or other container and had add()ed a button
to it. This works on some implementations of Java, but not on others: only the painting or the
button will appear, not both. It's not portable, so don't do it -- you've been warned! Instead, you
should probably use multiple components; see the JFrame's getContentPane() and
getGlassPane(), discussed in Chapter 8 of Java Swing, for details.

An alternative method of obtaining a drop shadow effect is covered Section 12.10.

12.7 Drawing an Image

12.7.1 Problem

You want to display an image, a preformatted bitmap, or raster file.

12.7.2 Solution

Use the Graphics drawImage() method in your paint routine. Image objects represent
bitmaps. They are normally loaded from a file via getImage(), but can also be synthesized
using createImage(). You can't construct them yourself, however: the Image class is
abstract. Once you have an image, displaying it is trivial:

// File graphics/DrawImageDemo.java
public void paint(Graphics g) {
 g.drawImage(0, 0, myImage, this);
}

12.7.3 Discussion

You can get an image by using a routine named, naturally, getImage(). If your code will be
used only in an applet, you can use the Applet method getImage(), but if you want it to run
in an application as well, you need to use the Toolkit version. This form takes either a filename or
a URL. The filename, of course, when it turns up in an applet, will fail with a security exception
unless the user installs a policy file. Program GetImage shows the code for doing this both ways:

/*
 * For Applet, invoke as:
<APPLET CODE="GetImage" WIDTH="100" HEIGHT="100">

 328

</APPLET>
 * For Application, just run it (has own main).
 */

import java.awt.*;
import java.net.*; // for URL class

/** This program, which can be an Applet or an Application,
 * shows a form of Toolkit.getImage() which works the same
 * in either Applet or Application!
 */
public class GetImage extends java.applet.Applet {

 Image image;

 public void init() {
 loadImage();
 }

 public void loadImage() {
 // Applet-only version:
 // Image = getImage(getCodeBase(), "Duke.gif");

 // Portable version: getClass().getResource() works in either
 // applet or application, 1.1 or 1.3, returns URL for file
name.
 URL url = getClass().getResource("Duke.gif");
 image = getToolkit().getImage(url);
 // Shorter portable version: same but avoids temporary
variables
 // image = getToolkit().getImage(getClass(
).getResource("Duke.gif"));
 }

 public void paint(Graphics g) {
 g.drawImage(image, 20, 20, this);
 }

 public static void main(String args[]) {
 Frame f = new Frame("GetImage");
 f.addWindowListener(new WindowCloser(f, true));
 GetImage myApplet = new GetImage();
 f.add(myApplet);
 myApplet.init();
 f.setSize(100, 100);
 f.setVisible(true);
 myApplet.start();
 }
}

You may sometimes want to display an image more than once in the same panel. Example 12-
2 is a program that paints its background with the same image over and over. We use the
image's getWidth() and getHeight() methods to find the image's size, and the more
regular getSize() method on the component itself. As usual, we don't hardcode the window
size in the paint() method, since the user has the option of resizing with the mouse.

 329

Example 12-2. TiledImageComponent.java

import com.darwinsys.util.WindowCloser;

import java.awt.*;
import java.awt.event.*;
import java.net.*;

/**
 * Demo of Tiled Image
 */
public class TiledImageComponent extends Container {
 TextField nameTF, passTF, domainTF;
 Image im;
 String IMAGE_NAME = "background.gif";

 /** Set things up nicely. */
 public TiledImageComponent() {
 Label l;

 setLayout(new FlowLayout());
 add(l = new Label("Name:", Label.CENTER));
 add(nameTF=new TextField(10));

 add(l = new Label("Password:", Label.CENTER));
 add(passTF=new TextField(10));
 passTF.setEchoChar('*');

 add(l = new Label("Domain:", Label.CENTER));
 add(domainTF=new TextField(10));

 im = getToolkit().getImage(IMAGE_NAME);
 }

 /** paint() - just tile the background. */
 public void paint(Graphics g) {
 // System.out.println("In paint()");
 if (im == null)
 return;
 int iw = im.getWidth(this), ih=im.getHeight(this);
 if (iw < 0 || ih < 0) // image not ready
 return; // live to try again later.
 int w = getSize().width, h = getSize().height;
 // System.out.println(iw + "," + ih + "; " + w + ", " + h);
 for (int i = 0; i<w+iw; i+=iw) {
 for (int j = 0; j<h+ih; j+=ih) {
 // System.out.println("drawImage(im,"+i+","+j+")");
 g.drawImage(im, i, j, this);
 }
 }
 }

 public static void main(String[] av) {
 Frame f = new Frame("TiledImageComponent Demo");
 f.add(new TiledImageComponent());

 330

 f.setSize(200, 200);
 f.setVisible(true);
 f.addWindowListener(new WindowCloser(f, true));
 }
}

In the paint() method, we must check that the image not only is not null, but has a non-
negative width and height -- we are more careful than we were in the previous, somewhat
cavalier example. The image will be null only if something went very wrong in the constructor, but
it can have a negative size. How? In certain creation myths, time ran backward before the
beginning of time; therefore, before an image is fully created, its size is backwards, that is, it has
a width and height of -1. The getImage() method doesn't actually get the image, you see. It
creates the Image object, true, but it doesn't necessarily load all the bits: it starts a background
thread to do the reading, and returns. This dates from the days when the Web was slower and
took a long time to fully load an image. In particular, there might be some image file formats
(some kinds of TIFF files, perhaps) where you don't know the actual image size until you've read
the entire file. Thus, when getImage() returns, the Image object is created, but its size is set
to -1, -1. Since there are now two threads running (see Chapter 24), there are two possible
outcomes. Either the image-reading thread reads enough to know the width and height before
you need them, or you need them before the thread reads enough to know them. The curious-
looking code in paint() is defensive about this. You should be too.

But what if you really need the size of the image, for example to lay out a larger panel? If you
read a bit of the Image documentation, you might think you can use the prepareImage()
method to ensure that the object has been loaded. Unfortunately, this method can get you stuck
in a loop if the image file is missing, because prepareImage will never return true! If you need
to be sure, you must construct a MediaTracker object to ensure that the image has been
loaded successfully. That looks something like this:

/**
 * This CODE FRAGMENT shows using a MediaTracker to ensure
 * that an Image has been loaded successfully, then obtaining
 * its Width and Height. The MediaTracker can track an arbitrary
 * number of Images; the "0" is an arbitrary number used to track
 * this particular image.
 */
Image im;
int imWidth, imHeight;
public void setImage(Image i) {
 im = i;
 MediaTracker mt = new MediaTracker(this);
 // use of "this" assumes we're in a Component subclass.
 mt.addImage(im, 0);
 try {
 mt.waitForID(0);
 } catch(InterruptedException e) {
 throw new IllegalArgumentException(
 "InterruptedException while loading Image");
 }
 if (mt.isErrorID(0)) {
 throw new IllegalArgumentException(
 "Couldn't load image");
 }
 imWidth = im.getWidth(this);
 imHeight = im.getHeight(this);

 331

}

You can ask the MediaTracker for its status at any time using the method status(int ID,
boolean load), which returns an integer made by or-ing together the values shown in Table
12-1. The boolean load flag, if true, tells the MediaTracker to start loading any images that
haven't yet been started. A related method, statusAll(), returns the inclusive or of any flags
applying to images that have started loading.

Table 12-1. MediaTracker status values
Flag Meaning

ABORTED Downloading of at least one item was aborted.

COMPLETE Downloading of all items completed without error.
ERRORED Something went wrong while downloading at least one item.
LOADING Downloading is ongoing.

You can shorten the previous code by using the Swing ImageIcon class, which includes this
functionality. The ImageIcon class has several constructor forms, one of which takes just a
filename argument. ImageIcon uses a MediaTracker internally; you can ask for its status
using the ImageIcon's getImageLoadStatus() method, which returns the same values as
MediaTracker 's statusAll()/statusID().

12.8 Playing a Sound File

12.8.1 Problem

You want a quick and easy way to "make noise" or play an existing sound file.

12.8.2 Solution

Get an AudioClip object and use its play() method.

12.8.3 Discussion

This might seem out of place in the midst of all this Graphics code, but there's a pattern. We're
moving from the simpler graphical forms to more dynamic multimedia. You can play a sound file
using an AudioClip to represent it. Back in the days of 1.0 and 1.1, you could do this only in an
applet (or using unsupported sun.java classes). But with Java 2, this capability was extended
to applications. Here is a program that plays either two demonstration files from a precompiled
list, or the list of files you give. Due to the applet legacy, each file must be given as a URL.

import java.applet.*;
import java.net.*;

/** Simple program to try out the "new Sound" stuff in JDK1.2 --
 * allows Applications, not just Applets, to play Sound.
 */
public class SoundPlay {
 static String defSounds[] = {
 "file:///javasrc/graphics/test.wav",
 "file:///music/midi/Beet5th.mid",

 332

 };
 public static void main(String[] av) {
 if (av.length == 0)
 main(defSounds);
 else for (int i=0;i<av.length; i++) {
 System.out.println("Starting " + av[i]);
 try {
 URL snd = new URL(av[i]);
 // open to see if works or throws exception, close to
free fd's
 // snd.openConnection().getInputStream().close();
 Applet.newAudioClip(snd).play();
 } catch (Exception e) {
 System.err.println(e);
 }
 }
 // With this call, program exits before/during play.
 // Without it, on some versions, program hangs forever after
play.
 // System.exit(0);
 }
}

As the code comment reports, you can open the URL to see if it succeeds; if this throws an
IOException, there is not much point in trying the newAudioClip() call, and catching it this
way might allow you to print a better error message.

12.8.4 See Also

There are several limitations on the applet sound API. The JMFPlayer interface discussed in
Section 12.9 plays sound files with a volume control panel.

12.9 Displaying a Moving Image with Video

12.9.1 Problem

You want to display a video file within a Java program.

12.9.2 Solution

Use the Java Media Framework (JMF), a standard extension.

12.9.3 Discussion

Example 12-3 shows a program that displays a movie or other media file named on the
command line. JMF is very flexible; this program will display (that is, play) an audio file with a
volume control if the media object that you name contains a sound clip instead of a movie.
Figure 12-4 shows JMFPlayer displaying a sound file and a movie.

Figure 12-4. JMFPlayer in action: audio (left), video (right)

 333

Example 12-3. JMFPlayer.java

import com.darwinsys.util.WindowCloser;

import java.applet.*;
import java.awt.*;
import javax.swing.*;
import java.net.*;
import java.io.*;
import java.util.*;
import javax.media.*;

/**
 * Demonstrate simple code to play a movie with Java Media Framework.
 */
public class JMFPlayer extends JPanel implements ControllerListener {

 /** The player object */
 Player thePlayer = null;
 /** The parent Frame we are in. */
 JFrame parentFrame = null;
 /** Our contentpane */
 Container cp;
 /** The visual component (if any) */
 Component visualComponent = null;
 /** The default control component (if any) */
 Component controlComponent = null;
 /** The name of this instance's media file. */
 String mediaName;
 /** The URL representing this media file. */
 URL theURL;

 /** Construct the player object and the GUI. */
 public JMFPlayer(JFrame pf, String media) {
 parentFrame = pf;
 mediaName = media;
 // cp = getContentPane();
 cp = this;
 cp.setLayout(new BorderLayout());
 try {
 theURL = new URL(getClass().getResource("."), mediaName);
 thePlayer = Manager.createPlayer(theURL);
 thePlayer.addControllerListener(this);
 } catch (MalformedURLException e) {
 System.err.println("JMF URL creation error: " + e);

 334

 } catch (Exception e) {
 System.err.println("JMF Player creation error: " + e);
 return;
 }
 System.out.println("theURL = " + theURL);

 // Start the player: this will notify our ControllerListener.
 thePlayer.start(); // start playing
 }

 /** Called to stop the audio, as from a Stop button or menuitem */
 public void stop() {
 if (thePlayer == null)
 return;
 thePlayer.stop(); // stop playing!
 thePlayer.deallocate(); // free system resources
 }

 /** Called when we are really finished (as from an Exit button). */
 public void destroy() {
 if (thePlayer == null)
 return;
 thePlayer.close();
 }

 /** Called by JMF when the Player has something to tell us about.
*/
 public synchronized void controllerUpdate(ControllerEvent event) {
 // System.out.println("controllerUpdate(" + event + ")");
 if (event instanceof RealizeCompleteEvent) {
 if ((visualComponent = thePlayer.getVisualComponent()) !=
null)
 cp.add(BorderLayout.CENTER, visualComponent);
 if ((controlComponent =
 thePlayer.getControlPanelComponent()) != null)
 cp.add(BorderLayout.SOUTH, controlComponent);
 // re-size the main window
 if (parentFrame != null) {
 parentFrame.pack();
 parentFrame.setTitle(mediaName);
 }
 }
 }

 public static void main(String[] argv) {
 JFrame f = new JFrame("JMF Player Demo");
 Container frameCP = f.getContentPane();
 JMFPlayer p = new JMFPlayer(f, argv.length == 0 ?
 "file:///C:/music/midi/beet5th.mid" : argv[0]);
 frameCP.add(BorderLayout.CENTER, p);
 f.setSize(200, 200);
 f.setVisible(true);
 f.addWindowListener(new WindowCloser(f, true));
 }
}

 335

The optional Java Media Framework includes much more functionality than this example shows.
However, the ability to display a QuickTime or MPEG movie with only a few lines of code is one
of JMF's most endearing young charms. We load the media file from a URL and create a Player
object to manage it. If it makes sense for the given player to have a controller, it will have one,
and we add it to the bottom of the applet. Controllers may include volume controls,
forward/backward buttons, position sliders, etc. However, we don't have to care: we get a
component that contains all the appropriate controls for the kind of media clip we've created the
player for. If the given player represents a medium with a visual component (like a movie or a
bitmap image), we add this to the center of the applet.

12.9.4 See Also

Of course, there is much more to the JMF API than this. You can, for example, coordinate playing
of audio and video with each other or with other events.

12.10 Drawing Text with 2D

12.10.1 Problem

You want fancier drawing abilities.

12.10.2 Solution

Use a Graphics2D object.

12.10.3 Discussion

The subject of the 2D graphics added in Java 2 could be the subject of an entire book, and in
fact, it is. Java 2D Graphics by Jonathan Knudsen (O'Reilly) covers every imaginable aspect of
this comprehensive new graphics package. Here I'll just show one example, that of drawing text
with a textured background.

The Graphics2D class is a direct subclass of the original Java Graphics object. In fact, in Java
2, your paint() method is always called with an instance of Graphics2D. So, it suffices to
begin your paint method by casting appropriately:

public void paint(Graphics g) {
 Graphics2D g2 = (Graphics2D) g;

You can then use any Graphics2D methods or any regular Graphics methods, getting to them
with the object reference g2. One of the additional methods in Graphics2D is setPaint(),
which can take the place of setColor() to draw with a solid color. However, it can also be
called with several other types, and in this case we pass in an object called a TexturePaint,
which refers to a pattern. Our pattern is a simple set of diagonal lines, but any pattern or even a
bitmap from a file (see Section 12.7) can be used. Figure 12-5 shows the resulting screen (it
looks even better in color).

Figure 12-5. TexturedText: a tiny sample of the 2D API

 336

The program that produced this is shown in Example 12-4.

Example 12-4. TexturedText.java

import java.awt.*;
import java.awt.event.*;
import java.awt.image.*;

/** Text with a Texture
 */
public class TexturedText extends Component {
 /** The image we draw in the texture */
 protected BufferedImage bim;
 /** The texture for painting. */
 TexturePaint tp;
 /** The string to draw. */
 String mesg = "Stripey";
 /** The font */
 Font myFont = new Font("Lucida Regular", Font.BOLD, 72);

 /** "main program" method - construct and show */
 public static void main(String av[]) {
 // create a TexturedText object, tell it to show up
 final Frame f = new Frame("TexturedText");
 TexturedText comp = new TexturedText();
 f.add(comp);
 f.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 f.setVisible(false);
 f.dispose();
 System.exit(0);
 }
 });
 f.pack();
 f.setLocation(200, 200);
 f.setVisible(true);
 }

 protected static Color[] colors = {
 Color.green, Color.red, Color.blue, Color.yellow,
 };

 /** Construct the object */
 public TexturedText() {
 super();
 setBackground(Color.white);

 337

 int width = 8, height = 8;
 bim = new BufferedImage(width, height,
BufferedImage.TYPE_INT_ARGB);
 Graphics2D g2 = bim.createGraphics();
 for (int i=0; i<width; i++) {
 g2.setPaint(colors[(i/2)%colors.length]);
 g2.drawLine(0, i, i, 0);
 g2.drawLine(width-i, height, width, height-i);
 }
 Rectangle r = new Rectangle(0, 0, bim.getWidth(),
bim.getHeight());
 tp = new TexturePaint(bim, r);
 }

 public void paint(Graphics g) {
 Graphics2D g2 = (Graphics2D)g;
 g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);
 g2.setPaint(tp);
 g2.setFont(myFont);
 g2.drawString(mesg, 20, 100);
 }

 public Dimension getMinimumSize() {
 return new Dimension(250, 100);
 }

 public Dimension getPreferredSize() {
 return new Dimension(320, 150);
 }
}

12.10.4 See Also

I have not discussed how to scale, rotate, or otherwise transmogrify an image using the
AffineTransform class in Java 2D graphics, as this is beyond the scope of this book. Consult
the previously mentioned Java 2D Graphics.

12.11 Printing: JDK 1.1

12.11.1 Problem

You need to generate hardcopy, and you're using JDK 1.1.

12.11.2 Solution

Use java.awt.PrintJob. Or, upgrade to JDK 1.2.

12.11.3 Discussion

The JDK 1.1 API puts your program in the driver's seat: you decide what to print and when to
print it. But first, you have to let the user pick a printer, which you can do by calling the Toolkit
method getPrinterJob(). This pops up a platform-specific print chooser dialog, and if the

 338

user picks a printer, you get back a PrintJob object (otherwise you get back null). Your
program is in charge of pagination (breaking the data into pages) and drawing each page onto a
print buffer. How? For each page you want to print, call the PrintJob's getGraphics()
method to retrieve a Graphics object. Use it as you will; any of its draw or fill methods will draw,
not to the screen, but onto paper. Your best bet is to pass it to your paint() method, if you
have one. This is one of the few places where you do call paint() directly. When the page is
done, call the Graphics object's dispose() method. When the whole print job is done, call
the PrintJob's end() method, and you're finished -- the data is on its way to the printer.

Here's a little program that displays a simple graphical component called a DemoGFXCanvas.
When you click the Print button at the bottom, the program prints the contents of the
DemoGFXCanvas (this is shown graphically in Figure 12-6). When you click on the Print button
in the main window, the printer dialog shown at the bottom of the figure appears. Example 12-5
is the code that makes it all happen. (The push button and the addActionListener code will
be explained in Chapter 13; suffice it to say that this causes an action to be performed when the
button is pressed.)

Example 12-5. PrintDemoGfx (JDK 1.1 version)

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/** PrintDemoGfx -- Construct and print a GfxDemoCanvas. JDK1.1
VERSION. */
public class PrintDemoGfx1_1 {

 /** Simple demo main program. */
 public static void main(String[] av) {
 final JFrame f = new JFrame("Printing Test Dummy Frame");

 // Construct the object we want to print. Contrived:
 // this object would already exist in a real program.
 final GfxDemoCanvas thing = new GfxDemoCanvas(500, 300);

 f.getContentPane().add(thing, BorderLayout.CENTER);

 JButton printButton = new JButton("Print");
 f.getContentPane().add(printButton, BorderLayout.SOUTH);

 printButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {

 PrintJob pjob = Toolkit.getDefaultToolkit(
).getPrintJob(f,
 "Printing Test", null);

 if (pjob == null)
 return; // user cancelled

 // Fetch the Print Graphics object
 Graphics pg = pjob.getGraphics();

 // Now (drum roll please), ask "thing" to paint itself
 // on the printer, by calling its paint() method with

 339

 // a Printjob Graphics instead of a Window Graphics.
 thing.paint(pg);
 pg.dispose(); // end of this page
 pjob.end(); // end of print job.
 }
 });

 f.pack();
 f.setVisible(true);
 }
}

One limitation of the 1.1 API is that it offers no way to print without a screen connection for the
GUI-based printer dialog, so you can't use the 1.1 API in a background job or cron job on Unix, or
in a service on other platforms. For that, use the Java 2 API.

Figure 12-6. PrintDemoGfx program in action (main screen and MS-Windows print dialog)

12.12 Printing: Java 2

 340

12.12.1 Problem

You need to generate hardcopy, and you're using Java 2.

12.12.2 Solution

Use java.awt.print.PrinterJob.

12.12.3 Discussion

Like its predecessor, the Java 2 printing API makes you divide the data into pages. Again, you
start by getting a PrinterJob object to control your printing. You'll usually want to let the user
pick a printer, which you do by calling the PrinterJob's method printerDialog(). This
pops up a platform-specific print chooser dialog, and if the user picks a printer, you get back a
PrinterJob object (otherwise, again, you get back null). If you don't call printerDialog()
and there is a default printer, your job will be sent to that printer (if there isn't a default printer, I
don't know what happens). Unlike the 1.1 API, however, Java is in charge of what to print and in
what order, though your program is still responsible for pagination and drawing each page onto a
print buffer. You need to provide an object that implements the Printable interface (see
Section 8.8). In this example, we pass an anonymous inner class (see Section 8.7); this is not
required but as usual makes the code more succinct by eliminating having to write another class
in another file and by keeping the action and the result together. Java calls this object's print(
) method once for each page the user has requested. This is more efficient than the 1.1 method,
since if the user wants to print only page 57, you only get called once to print that page (in 1.1,
you'd have to generate the intervening 56 pages and have the print system discard them). Note
that the official documentation calls the third argument a pageIndex, but it's really a page
number. Trust me. Presumably it's called a pageIndex to remind you that in some printing jobs
(such as this book), there are unnumbered pages and pages with those funny little roman
numerals at the front (see Section 5.11).

The screen shots in Figure 12-6 apply equally to this version of the program. And the source
code is similar; see Example 12-6.

Example 12-6. PrintDemoGfx (Java 2 version)

import java.awt.*;
import java.awt.event.*;
import java.awt.print.*;
import javax.swing.*;

/** PrintDemoGfx -- Construct and print a GfxDemoCanvas. Java 2
VERSION. */
public class PrintDemoGfx {

 /** Simple demo main program. */
 public static void main(String[] av) throws PrinterException {
 final JFrame f = new JFrame("Printing Test Dummy Frame");

 // Construct the object we want to print. Contrived:
 // this object would already exist in a real program.
 final GfxDemoCanvas thing = new GfxDemoCanvas(400, 300);

 f.getContentPane().add(thing, BorderLayout.CENTER);

 341

 JButton printButton = new JButton("Print");
 f.getContentPane().add(printButton, BorderLayout.SOUTH);

 printButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 try {
 PrinterJob pjob = PrinterJob.getPrinterJob();
 pjob.setJobName("DemoGfx - Graphics Demo
Printout");
 pjob.setCopies(1);
 // Tell the print system how to print our pages.
 pjob.setPrintable(new Printable() {
 /** called from the printer system to print
each page */
 public int print(Graphics pg, PageFormat pf,
int pageNum) {
 if (pageNum>0) // we only print one
page
 return Printable.NO_SUCH_PAGE; //
ie., end of job

 // Now (drum roll please), ask "thing" to
paint itself
 // on the printer, by calling its paint()
method with
 // a Printjob Graphics instead of a Window
Graphics.
 thing.paint(pg);

 // Tell print system that the page is ready
to print
 return Printable.PAGE_EXISTS;
 }
 });

 if (pjob.printDialog() == false) // choose
printer
 return; // user cancelled

 pjob.print(); // Finally, do the
printing.
 } catch (PrinterException pe) {
 JOptionPane.showMessageDialog(f,
 "Printer error" + pe, "Printing error",
 JOptionPane.ERROR_MESSAGE);
 }
 }
 });

 f.pack();
 f.setVisible(true);
 }
}

12.12.4 See Also

 342

The Java 2 API has other useful methods in the PrinterJob class; see the documentation.
There are also Paper , PageFormat, and Book classes that describe a physical page, a page
by size and orientation, and a collection of pages, respectively.

Both Java printing APIs require you to think in "page mode." That is, you must know where the
page breaks are and request the start of each new page. This is optimal for graphically oriented
programs, and less optimal for "report writing" applications; handling pagination for yourself can
become quite a tedium. See the HardCopyWriter class in O'Reilly's Java Examples in a
Nutshell for code that neatly paginates and prints plain text.

Another means of printing is to directly generate PostScript files or Acrobat PDF files. See
Recipes Section 9.21 and Section 18.6 for these alternate paths to printing.

12.13 Program: PlotterAWT

In Section 8.12, we discussed a series of Plotter classes. The PlotterAWT class shown in
Example 12-7 extends that to provide a "plot preview" service: before being plotted on a
(probably slow) plotter, the plot is displayed in an AWT window using the Graphics drawing
primitives.

Example 12-7. PlotterAWT.java

import java.awt.*;
import java.awt.event.*;

/**
 * A Plotter subclass for drawing into an AWT Window. Reflecting back
 * to AWT gives us a "known working" plotter to test on.
 * You can also steal this as a basis for your own plotter driver!
 */
public class PlotterAWT extends Plotter {
 Frame f;
 Image os;
 PCanvas p;
 Graphics g;
 Font font;
 FontMetrics fontMetrics;
 PlotterAWT() {
 super();
 f = new Frame("Plotter");
 p = new PCanvas(os, MAXX, MAXY);
 f.add(p);
 f.pack();
 f.setVisible(true);
 f.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 // If we do setVisible and dispose, then the Close
completes
 PlotterAWT.this.f.setVisible(false);
 PlotterAWT.this.f.dispose();
 System.exit(0);
 }
 });
 g = p.getOsGraphics();

 343

 }
 public void drawBox(int w, int h) {
 g.drawRect(curx, cury, w, h);
 p.repaint();
 }
 public void rmoveTo(int incrx, int incry){
 moveTo(curx += incrx, cury += incry);
 }
 public void moveTo(int absx, int absy){
 if (!penIsUp)
 g.drawLine(curx, cury, absx, absy);
 curx = absx;
 cury = absy;
 }
 public void setdir(float deg){}
 void penUp(){ penIsUp = true; }
 void penDown(){ penIsUp = false; }
 void penColor(int c){
 switch(c) {
 case 0: g.setColor(Color.white); break;
 case 1: g.setColor(Color.black); break;
 case 2: g.setColor(Color.red); break;
 case 3: g.setColor(Color.green); break;
 case 4: g.setColor(Color.blue); break;
 default: g.setColor(new Color(c)); break;
 }
 }
 void setFont(String fName, int fSize) {
 font = new Font(fName, Font.BOLD, fSize);
 fontMetrics = p.getFontMetrics(font);
 }
 void drawString(String s) {
 g.drawString(s, curx, cury);
 curx += fontMetrics.stringWidth(s);
 }

 /** A Member Class that contains an off-screen Image that is
 * drawn into; this component's paint() copies from there to
 * the screen. This avoids having to keep a list of all the
 * things that have been drawn.
 */
 class PCanvas extends Canvas {
 int width;
 int height;

 PCanvas(Image im, int x, int y) {
 width = x;
 height = y;
 setBackground(Color.white);
 setForeground(Color.red);
 }

 public Graphics getOsGraphics() {
 checkOS();
 return g;
 }
 private void checkOS() {

 344

 // This createImage fails mysteriously if done in a
constructor!
 os = createImage(width, height);
 // System.out.println("PCanvas.checkOS(): image= " + os);
 if (os == null)
 throw new IllegalArgumentException("createImage
failed");
 g = os.getGraphics();
 }

 public void paint(Graphics pg) {
 pg.drawImage(os, 0, 0, null);
 }
 public Dimension getPreferredSize() {
 return new Dimension(width, height);
 }
 }
}

12.14 Program: Grapher

Grapher is a simple program to read a table of numbers and graph them. The input format is two
or more lines that each contain an X and a Y value. The output is an on-screen display that can
also be printed. Figure 12-7 shows the results of running it with the following simple data; the
first column is the X coordinate and the second is the Y coordinate of each point. The program
scales the data to fit the window.

1.5 5
1.7 6
1.8 8
2.2 7

Figure 12-7. Grapher in action

Example 12-8 shows the code.

Example 12-8. Grapher.java

import com.darwinsys.util.Debug;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

 345

import java.io.*;
import java.util.*;

/** Simple Graphing program.
 */
public class Grapher extends JPanel {
 /** Multiplier for range to allow room for a border */
 public final static float BORDERFACTOR = 1.1f;

 /* Small inner class to hold x, y. Called Apoint to differentiate
 * from java.awt.Point.
 */
 class Apoint {
 float x;
 float y;
 public String toString() {
 return "Apoint("+x+","+y+")";
 }
 }

 /** The list of Apoint points. */
 protected Vector data;

 /** The minimum and maximum X values */
 protected float minx = Integer.MAX_VALUE, maxx = Integer.MIN_VALUE;
 /** The minimum and maximum Y values */
 protected float miny = Integer.MAX_VALUE, maxy = Integer.MIN_VALUE;
 /** The number of data points */
 protected int n;
 /** The range of X and Y values */
 protected float xrange, yrange;

 public Grapher() {
 data = new Vector();
 }

 /** Read the data file named. Each line has an x and a y
coordinate. */
 public void read(String fname) {
 LineNumberReader is = null;
 try {
 is = new LineNumberReader(new FileReader(fname));

 String txt;
 // Read the file a line at a time, parse it, save the data.
 while ((txt = is.readLine()) != null) {
 StringTokenizer st = new StringTokenizer(txt);
 try {
 Apoint d = new Apoint();
 d.x = Float.parseFloat(st.nextToken());
 d.y = Float.parseFloat(st.nextToken());
 data.add(d);
 } catch(NumberFormatException nfe) {
 System.err.println("Invalid number on line " +
 is.getLineNumber());
 } // XXX catch out of range exception
 }

 346

 } catch (FileNotFoundException e) {
 System.err.println("File " + fname + " unreadable: " + e);
 } catch (IOException e) {
 System.err.println("I/O error on line " + is.getLineNumber(
));
 }
 n = data.size();
 if (n < 2) {
 System.err.println("Not enough data points!");
 return;
 }

 // find min & max
 for (int i=0 ; i < n; i++) {
 Apoint d = (Apoint)data.elementAt(i);
 if (d.x < minx) minx = d.x;
 if (d.x > maxx) maxx = d.x;
 if (d.y < miny) miny = d.y;
 if (d.y > maxy) maxy = d.y;
 }

 // Compute ranges
 xrange = (maxx - minx) * BORDERFACTOR;
 yrange = (maxy - miny) * BORDERFACTOR;
 Debug.println("range", "minx,x,r = " + minx +' '+ maxx +' '+
xrange);
 Debug.println("range", "miny,y,r = " + miny +' '+ maxy +' '+
yrange);
 }

 /** Called when the window needs painting.
 * Computes X and Y range, scales.
 */
 public void paintComponent(Graphics g) {
 super.paintComponent(g);
 Dimension s = getSize();
 if (n < 2) {
 g.drawString("Insufficient data", 10, 40);
 return;
 }

 // Compute scale factors
 float xfact = s.width / xrange;
 float yfact = s.height / yrange;

 // Scale and plot the data
 for (int i=0 ; i < n; i++) {
 Apoint d = (Apoint)data.elementAt(i);
 float x = (d.x-minx) * xfact;
 float y = (d.y-miny) * yfact;
 Debug.println("point", "AT " + i + " " + d + "; " +
 "x = " + x + "; y = " + y);
 // Draw a 5-pixel rectangle centered, so -2 both x and y.
 // AWT numbers Y from 0 down, so invert:
 g.drawRect(((int)x)-2, s.height-2-(int)y, 5, 5);
 }
 }

 347

 public Dimension getPreferredSize() {
 return new Dimension(150, 150);
 }

 public static void main(String[] rgs) {
 final JFrame f = new JFrame("Grapher");
 f.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 f.setVisible(false);
 f.dispose();
 System.exit(0);
 }
 });
 Grapher g = new Grapher();
 f.setContentPane(g);
 f.setLocation(100, 100);
 f.pack();
 if (rgs.length == 0)
 g.read("Grapher.dat");
 else
 g.read(rgs[0]);
 f.setVisible(true);
 }
}

Most of the complexity of Grapher lies in determining the range and scaling. You could obviously
extend this to draw fancier drawings such as bar charts and the like. If pie charts interest you, see
ChartBean in the online source.

 348

Chapter 13. Graphical User Interfaces

13.1 Introduction

13.2 Displaying GUI Components

13.3 Designing a Window Layout

13.4 A Tabbed View of Life

13.5 Action Handling: Making Buttons Work

13.6 Action Handling Using Anonymous Inner Classes

13.7 Terminating a Program with "Window Close"

13.8 Dialogs: When Later Just Won't Do

13.9 Getting Program Output into a Window

13.10 Choosing a File with JFileChooser

13.11 Choosing a Color

13.12 Centering a Main Window

13.13 Changing a Swing Program's Look and Feel

13.14 Program: Custom Font Chooser

13.15 Program: Custom Layout Manager

13.1 Introduction

Java has had windowing capabilities since its earliest days. The first version made public was the
Abstract Windowing Toolkit, or AWT. AWT used the native toolkit components, so it was relatively
small and simple. AWT suffered somewhat from being a "least common denominator"; a feature
could not be added unless it could be implemented on all major platforms that Java supported.
The second major implementation was the Swing classes, released in 1998 as part of the Java
Foundation Classes. Swing is a full-function, professional-quality GUI toolkit designed to enable
almost any kind of client-side GUI-based interaction. AWT lives on inside, or rather underneath,
Swing, and for this reason many programs begin by importing both java.awt and
javax.swing.

This chapter presents a few elements of Java windowing for the developer whose main exposure
to Java has been on the server side. The examples are shown using Swing, rather than the
obsolescent AWT components. For a slightly more detailed presentation, the reader is referred to

 349

Learning Java. For a very thorough presentation on all aspects of Swing, I recommend the
O'Reilly book Java Swing, by Robert Eckstein, Marc Loy, and Dave Wood. At 1252 pages it's not
an overnight read. But it is comprehensive.

Java's event model has evolved over time, too. In JDK 1.0, the writer of a windowed application
had to write a single large event-handling method to deal with button presses from all the GUI
controls in the window. This was simple for small programs, but did not scale well. My JabaDex
application had one large event handler method that tried to figure out which of 50 or 60 GUI
controls had caused an event, which was tedious and error prone. In JDK 1.1, the new delegation
event model was introduced. In this model, events are given only to classes that request them,
which is done by registering a listener. This is discussed in Section 13.5 and shown in Section
13.5. At the same time, the language was extended ever so slightly to include the notion of inner
classes . An inner class is simply a class whose definition is contained inside the body of another
class. We use examples of two types of inner classes here; for details on the half-dozen different
categories of inner classes, the reader is referred to Java in a Nutshell.

For this chapter, I make the assumption that you have at least a basic understanding of what GUI
components are, which ones should be used where, and so on. I will refer to JButton, JList,
and JFrame, to name a few, without saying much more about their basics or functionality. If this
stuff is mysterious to you, consult a good book on GUI design, such as the Java Look and Feel
Design Guidelines.

Most of the GUI construction techniques in this chapter can be done for you, in some cases more
quickly, by an integrated development environment (IDE). I have always believed, however, that
understanding what goes on inside the code should be a prerequisite for being allowed to use an
IDE. Those who disagree may be inclined to skip this chapter, go press a few buttons, and have
the computer do the work for them. But you should at least skim this chapter to see what's going
on, so you'll know where to look when you need it later.

13.2 Displaying GUI Components

13.2.1 Problem

You want to create some GUI components and have them appear in a window.

13.2.2 Solution

Create a JFrame and add the components to its ContentPane.

13.2.3 Discussion

The older Abstract Windowing Toolkit (AWT) had a simple frame component that allowed you to
add components directly to it. "Good" programs always created a panel to fit inside the frame,
and populated that. But some less-educated heathens often added components directly to the
frame. The Swing JFrame is more complex; it comes with not one but two containers already
constructed inside it. The ContentPane is the main container; you should normally use it as your
JFrame's main container. The GlassPane has a clear background and sits over the top of the
ContentPane; its primary use is in temporarily painting something over top of the main
ContentPane. Because of this, you need to use the JFrame's getContentPane() method:

import java.awt.*;
import javax.swing.*;

 350

public class ContentPane extends JFrame {
 public ContentPane() {
 Container cp = getContentPane();
 // now add Components to "cp"...
 }
}

Then you can add any number of components (including containers) into this existing container,
using the Container's add() method:

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/** Just a Frame
 */
public class JFrameDemo extends JFrame {
 boolean unsavedChanges = false;
 JButton quitButton;

 /** Construct the object including its GUI */
 public JFrameDemo() {
 super("JFrameDemo");
 getContentPane().add(quitButton = new JButton("Exit"));

 // These "action handlers" will be explained later in the
chapter.
 quitButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 setVisible(false);
 dispose();
 System.exit(0);
 }
 });
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 setVisible(false);
 dispose();
 System.exit(0);
 }
 });

 pack();
 }
}

This code compiles fine. But when we try to run it, of course, there is no main method. We need
to create one:

public class JFrameDemoMain {
 // We need a main program to instantiate and show.
 public static void main(String[] args) {
 new JFrameDemo().setVisible(true);
 }
}

 351

Now we can run it and have it display. But there are two problems: it starts off tiny (on MS-
Windows) or huge (on X Windows). And, when we do resize it, only the buttons show, and it
always takes up the full size of the window. To solve these problems, we need to discuss layout
management, a topic to which we now turn our attention.

13.3 Designing a Window Layout

13.3.1 Problem

The default layout isn't good enough.

13.3.2 Solution

Learn to deal with a layout manager.

13.3.3 Discussion

The container classes such as Panel have the ability to contain a series of components. But
there are many ways of arranging the components within a window. Rather than clutter up each
container with a variety of different layout computations, the designers of the Java API used a
sensible design pattern to divide the labor. A layout manager is an object that performs the layout
computations for a container.[1] There are five common layout manager classes in the AWT
package (see Table 13-1), plus a few more specialized ones in javax.swing. Plus, as we'll
see in Section 13.15, it's not that big a deal to write your own!

[1] The LayoutManager specification is actually a Java interface, ra ther than a class, for historical reasons.
In fact, it's two interfaces: quoting the code, interface LayoutManager2 extends LayoutManager. The
extra features of the second interface don't concern us here; we want to concentrate on using the layout
managers.

Table 13-1. Layout managers
Name Notes Default on

FlowLayout Flows across the container
(J)Panel,
(J)Applet

BorderLayout Five "geographic" regions
(J)Frame,
(J)Window

GridLayout Regular grid (all items same size) None

CardLayout Display one of many components at a time; useful for
wizard-style layouts None

GridBagLayout Very flexible but maximally complex None

Since we've broached the subject of layout management, I should mention that each component
has a method called getPreferredSize() , which the layout managers use in deciding how
and where to place components. A well-behaved component overrides this method to return
something meaningful. A button or label, for example, will indicate that it wishes to be large
enough to contain its text and/or icon plus a bit of space for padding. And, if your JFrame is full of
well-behaved components, you can set its size to be "just the size of all included components,
plus a bit for padding," just by calling the pack() method, which takes no arguments. The
pack() method goes around and asks each embedded component for its preferred size (and
any nested container's getPreferredSize() will ask each of its components, and so on).
The JFrame is then set to the best size to give the components their preferred sizes as much as

 352

is possible. If not using pack(), you need to call the setSize() method, which requires
either a width and a height, or a Dimension object containing this information.

A FlowLayout is the default in JPanel and Applet/JApplet. It simply lays the components
out along the "normal" axis (left to right in European and English-speaking locales, right to left in
Hebrew or Arabic locales, and so on, as set by the user's Locale settings). The overall collection
of them is centered within the window.

The default for JFrame and JWindow is BorderLayout. This explains the problem of the single
button appearing in the JFrameDemo class at the end of the previous recipe. BorderLayout
divides the screen into the five areas shown in Figure 13-1. If you don't specify where to place a
component, it goes into the Center. And if you place multiple components in the same region
(perhaps by adding several components without specifying where to place them!), only the last
one appears.

Figure 13-1. BorderLayout's five regions

So we can fix the previous version of the JFrameDemo in one of two ways. Either we can use a
FlowLayout, or specify BorderLayout regions for the label and the button. The former being
simpler, we'll try it out:

import java.awt.*;
import javax.swing.*;

public class JFrameFlowLayout extends JFrame {
 public JFrameFlowLayout() {
 Container cp = getContentPane();

 // Make sure it has a FlowLayout layoutmanager.
 cp.setLayout(new FlowLayout());

 // now add Components to "cp"...
 cp.add(new JLabel("Wonderful?"));
 cp.add(new JButton("Yes!"));
 pack();
 }

 // We need a main program to instantiate and show.
 public static void main(String[] args) {
 new JFrameFlowLayout().setVisible(true);
 }
}

13.3.4 See Also

 353

I have not discussed the details of the advanced layouts. For an example of a dialog layout using
nested panels, see the font chooser in Section 13.14. For an example of a GridBagLayout,
see the GUI network client in Section 17.4. For more details, see the AWT and Swing books.

13.4.1 Problem

These layouts don't include a tab layout, and you need one.

13.4.2 Solution

Use a JTabbedPane.

13.4.3 Discussion

The JTabbedPane class acts as a combined container and layout manager. It implements a
conventional tab layout, which looks like Figure 13-2.

Figure 13-2. JTabbedPane: two views in Java Look and one in MS-Windows Look

To add a tab to the layout, you do not use setLayout(). You simply create the JTabbedPane
and call its addTab() method, passing in a String and a Component. Example 13-1 is the
code for our simple program.

Example 13-1. TabPaneDemo.java

import javax.swing.*;

public class TabPaneDemo {
 protected JTabbedPane tabPane;
 public TabPaneDemo() {
 tabPane = new JTabbedPane();
 tabPane.add(new JLabel("One", JLabel.CENTER), "First");
 tabPane.add(new JLabel("Two", JLabel.CENTER), "Second");
 }

 public static void main(String[] a) {
 JFrame f = new JFrame("Tab Demo");
 f.getContentPane().add(new TabPaneDemo().tabPane);
 f.setSize(120, 100);
 f.setVisible(true);
 }
}

13.4.4 See Also

 354

The third screen shot in Figure 13-2 shows the program with a MS-Windows look and feel,
instead of the default Java look and feel. See Section 13.13 for how to change the look and feel
of a Swing-based GUI application.

13.5 Action Handling: Making Buttons Work

13.5.1 Problem

Your button doesn't do anything when the user presses it.

13.5.2 Solution

Add an ActionListener to do the work.

13.5.3 Discussion

There are about half-dozen different types of event listeners. The most common is the
ActionListener, used by push buttons, text fields, and certain other components to indicate
that the user has performed a high-level action such as activating a push button or pressing
Return in a text field. The paradigm (shown in Figure 13-3) is that you create a Listener
object, register it with the event source (such as the push button) and wait. Later, when and if the
user pushes the button, the button will call your Listener.

Figure 13-3. AWT listener relationships

Here's some simple code in which pushing a button causes the program to print a friendly
message. This program is an applet (see Section 17.3), so it can use the showStatus()
method to print its text:

import java.applet.*;
import java.awt.*;
import java.awt.event.*;

/** Demonstrate use of Button */
public class ButtonDemo extends Applet implements ActionListener {
 Button b1;

 public ButtonDemo() {
 add(b1 = new Button("A button"));
 b1.addActionListener(this);
 }

 public void actionPerformed(ActionEvent event) {
 showStatus("Thanks for pushing my button!");
 }
}

 355

This version does not use an inner class to handle the events, but does so itself by directly
implementing the ActionListener interface. This works for small programs, but as an
application grows, quickly becomes unserviceable; how do you sort out which button was
pressed? To solve this problem, we normally use an inner class as the action handler, and have a
different class for each button. First, let's write the previous code with two buttons, so you'll see
what I mean:

import java.applet.*;
import java.awt.*;
import java.awt.event.*;

/** Demonstrate use of two buttons, using a single ActionListener,
 * being the class itself.
 */
public class ButtonDemo2a extends Applet implements ActionListener {
 Button b1, b2;

 public void init() {
 add(b1 = new Button("A button"));
 b1.addActionListener(this);

 add(b2 = new Button("Another button"));
 b2.addActionListener(this);
 }

 public void actionPerformed(ActionEvent e) {
 if (e.getSource() == b1)
 showStatus("Thanks for pushing my first button!");
 else
 showStatus("Thanks for pushing my second button!");
 }
}

Now here it is using a member inner class, that is, a class that is a named part of another class:

import java.applet.*;
import java.awt.*;
import java.awt.event.*;

/** Demonstrate use of two buttons, using a single ActionListener
 * made of a named inner class
 */
public class ButtonDemo2b extends Applet {
 Button b1, b2;
 ActionListener handler = new ButtonHandler();

 public void init() {
 add(b1 = new Button("A button"));
 b1.addActionListener(handler);

 add(b2 = new Button("Another button"));
 b2.addActionListener(handler);
 }

 class ButtonHandler implements ActionListener {
 public void actionPerformed(ActionEvent e) {

 356

 if (e.getSource() == b1)
 showStatus("Thanks for pushing my first button!");
 else
 showStatus("Thanks for pushing my second button!");
 }
 }
}

Note that merely breaking the action handling code into its own class doesn't really contribute
much to readability. But there is a way to use inner classes that does promote readability and
maintainability. We create an inner class (see Section 8.7) for each event source: each button,
each menu item, and so on. Sounds like a lot of work. And it would be, if you used the previous
method. But there is a shorter way, using anonymous inner classes, described next.

13.6 Action Handling Using Anonymous Inner Classes

13.6.1 Problem

You want action handling with less creation of special classes.

13.6.2 Solution

Use anonymous inner classes.

13.6.3 Discussion

Anonymous inner classes are declared and instantiated at the same time, using the new operator
with the name of an existing class or interface. If you name a class, it will be subclassed; if you
name an interface, the anonymous class will extend java.lang.Object and implement the
named interface. The paradigm is:

b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 showStatus("Thanks for pushing my second button!");
 }
});

Did you notice the }); by itself on the last line? Good, because it's important. The } terminates
the definition of the inner class, while the) ends the argument list to the addActionListener
method; the single argument inside the brackets is an argument of type ActionListener that
refers to the one and only instance created of your anonymous class. Example 13-2 contains a
complete example.

Example 13-2. ButtonDemo2c.java

import java.applet.*;
import java.awt.*;
import java.awt.event.*;

/** Demonstrate use of Button */
public class ButtonDemo2c extends Applet {
 Button b;

 357

 public void init() {
 add(b = new Button("A button"));
 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 showStatus("Thanks for pushing my first button!");
 }
 });
 add(b = new Button("Another button"));
 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 showStatus("Thanks for pushing my second button!");
 }
 });
 }
}

The real benefit of these anonymous inner classes, by the way, is that they keep the action
handling code in the same place that the GUI control is being instantiated. This saves a lot of
looking back and forth to see what a GUI control really does.

Those ActionListener objects have no instance name and appear to have no class name: is
that possible? The former yes, but not the latter. In fact, class names are assigned to anonymous
inner classes by the compiler. After compiling and testing ButtonDemo2c with JDK 1.2, I list the
directory in which I ran the program:

C:\javasrc\gui>ls -1 ButtonDemo2c*
ButtonDemo2c$1.class
ButtonDemo2c$2.class
ButtonDemo2c.class
ButtonDemo2c.htm
ButtonDemo2c.java
C:\javasrc\gui>

Those first two are the anonymous inner classes. Note that a different compiler might assign
different names to them; it doesn't matter to us. A word for the wise: don't depend on those
names!

13.6.4 See Also

Most IDEs (see Section 1.2) have drag-and-drop GUI builder tools that will make this task
easier, at least for simpler projects.

13.7 Terminating a Program with "Window Close"

13.7.1 Problem

Nothing happens when you click on the close button on the title bar of an AWT Frame. When you
do this on a Swing JFrame, the window disappears but the application does not exit.

13.7.2 Solution

 358

Add a WindowListener ; have it exit the application.

13.7.3 Discussion

Main windows -- subclasses of java.awt.Window, such as (J)Frames and (J)Dialogs --
are treated specially. Unlike all other Component subclasses, Window and its subclasses are not
initially visible. This is sensible, as they have to be packed or resized, and you don't want the user
to watch the components getting rearranged. Once you call a Window's setVisible(true)
method, all components inside it become visible. And you can listen for WindowEvents on a
Window.

The WindowListener interface contains a plenitude of methods to notify a listener when
anything happens to the window. You can be told when the window is activated (gets keyboard
and mouse events) or deactivated. Or you can find out when the window is iconified or de-
iconified: these are good times to suspend and resume processing, respectively. You can be
notified the first time the window is opened. And, most importantly for us, you can be notified
when the user requests that the window be closed. (Some sample close buttons are show in
Figure 13-4.) The windowClosing method of your WindowListener is called when the user
clicks on the close button (this depends on the window system and, on X Windows, on the
window manager) or sends the close message from the keyboard (normally Alt-F4).

Figure 13-4. Some close buttons

The method signature is:

public void windowClosing(WindowEvent);

But this method comes from the interface WindowListener, which has half a dozen other
methods. If you define a WindowListener and implement only this one method, the compiler
will declare your class abstract and refuse to instantiate it. You might start by writing stub or
dummy versions (methods whose body is just the two characters {}), but you'd then be doing
more work than necessary, since there's already an "adapter" class that does this for all methods
in the Listener interface. So you really need only to subclass from WindowAdapter, and
override the one method, windowClosing, that you care about. Figure 13-5 shows this model.

Figure 13-5. WindowListener, WindowAdapter, and my WindowCloser

 359

Let's put this all together in some code examples. Class WindowDemo puts up a frame and, when
you ask it to close, it does so. The online source includes class WindowDemo2, which is the
same, but implemented as a Swing JFrame.

import java.awt.*;
import java.awt.event.*;

/* Show an example of closing a Window.
 */
public class WindowDemo extends Frame {

 public static void main(String[] argv) {
 Frame f = new WindowDemo();
 f.setVisible(true);
 }
 public WindowDemo() {
 setSize(200, 100);
 addWindowListener(new WindowDemoAdapter());
 }

 /** Named Inner class that closes a Window. */

 360

 class WindowDemoAdapter extends WindowAdapter {
 public void windowClosing(WindowEvent e) {
 System.out.println("Goodbye!");
 WindowDemo.this.setVisible(false); // window will
close
 WindowDemo.this.dispose(); // and be freed up.
 System.exit(0);
 }
 }
}

Since making a Window close -- and optionally exit the program -- is a common operation, I've
encapsulated this into a small class called WindowCloser , which I've put into my public
package com.darwinsys.util. Most AWT and Swing books have similar classes. Example
13-3 contains my WindowCloser class.

Example 13-3. WindowCloser.java

package com.darwinsys.util;

import java.awt.Window;
import java.awt.event.*;

/** A WindowCloser - watch for Window Closing events, and
 * follow them up with setVisible(false) and dispose().
 */
public class WindowCloser extends WindowAdapter {
 /** The window we close */
 Window win;
 /** True if we are to exit as well. */
 boolean doExit = false;

 public WindowCloser(Window w) {
 this(w, false);
 }
 public WindowCloser(Window w, boolean exit) {
 win = w;
 doExit = exit;
 }
 public void windowClosing(WindowEvent e) {
 win.setVisible(false);
 win.dispose();
 if (doExit)
 System.exit(0);
 }
}

Using it is straightforward:

import java.awt.*;
import java.awt.event.*;

/* Show an example of closing a Window.
 */
public class WindowCloserDemo {

 361

 /* Main method */
 public static void main(String[] argv) {
 Frame f = new Frame("Close Me");
 f.add(new Label("Try Titlebar Close", Label.CENTER));
 f.setSize(100, 100);
 f.setVisible(true);
 f.addWindowListener(new WindowCloser(f, true));
 }
}

13.7.4 See Also

I've mentioned dispose() several times without saying much about it. The dispose()
method (inherited from Window) causes the underlying (operating system-specific) window
system resources to be released without totally destroying the Window. If you later call pack()
or setVisible(true) on the Window, the native resources will be re-created. It's a good idea
to dispose() a window if you won't be using it for a while, but not if there's a good chance
you'll need it again soon.

There may be cases in which you don't even need a window closer. The Swing JFrame has a
setDefaultCloseOperation() method, which controls the default behavior. You can pass it
one of the values defined in the WindowConstants class:

WindowConstants.DO_NOTHING_ON_CLOSE

Ignore the request.

WindowConstants.HIDE_ON_CLOSE

Hide the window (default).

WindowConstants.DISPOSE_ON_CLOSE

Hide and dispose the window.

WindowConstants.EXIT_ON_CLOSE

JDK 1.3 (and later!). Exit the application on close, obviating the need for a
WindowListener!

The action set by setDefaultCloseOperation() will be performed after your
actionPerformed() method (the last, if more than one) returns.

There are several other multi-method interfaces, including MouseListener and
ComponentListener, and an Adapter class for each of these.

13.8 Dialogs: When Later Just Won't Do

13.8.1 Problem

 362

You need a bit of feedback from the user right now.

13.8.2 Solution

Use a JOptionPane method to show a prebuilt dialog.

13.8.3 Discussion

It's fairly common to want to confirm an action with the user or to bring some problem to their
attention right away, rather than waiting for them to read a logfile that they might or might not get
around to. These pop-up windows are called Dialogs. The JOptionPane class has a number of
show...Dialog() methods that let you display most prebuilt dialogs, including those shown in
Figure 13-6.

Figure 13-6. JOptionPane in action

The simplest form is showMessageDialog(), and its first argument is the owning Frame or
JFrame. If you don't know it, pass null, but Java doesn't guarantee to give input focus back to
your main window when the dialog is dismissed. The second argument is the message text, and
the third is the title bar title. Last but not least is code telling which of several prebuilt bitmaps
should be displayed. This program produces the "Coded Message" dialog in the figure:

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/**
 * Demonstrate JOptionPane
 */
public class JOptionDemo extends JFrame {

 // Constructor
 JOptionDemo(String s) {
 super(s);

 Container cp = getContentPane();
 cp.setLayout(new FlowLayout());

 JButton b = new JButton("Give me a message");
 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 JOptionPane.showMessageDialog(
 JOptionDemo.this,
 "This is your message: etaoin shrdlu", "Coded
Message",
 JOptionPane.INFORMATION_MESSAGE);

 363

 }
 });
 cp.add(b);

 b = new JButton("Goodbye!");
 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 System.exit(0);
 }
 });
 cp.add(b);

 // the main window
 setSize(200, 150);
 pack();
 }

 public static void main(String[] arg) {
 JOptionDemo x = new JOptionDemo("Testing 1 2 3...");
 x.setVisible(true);
 }
}

There are several other ways of using the JOptionPane class. For example, you can call its
showDialog() method with a list of strings; each will be displayed on a push button in the
dialog. This method blocks until the user selects one of the buttons; the return value of the
method is an int telling which button the user clicked on (it returns the array index of the string
whose button was pressed). There is also showInputDialog(), which lets you prompt the
user for a data value. Very, very convenient!

13.8.4 See Also

JDialog lets you write arbitrary complicated dialogs. You subclass them in a manner similar to
JFrame, specifying whether you want an application-modal or nonmodal dialog (a modal dialog
locks out the rest of the application, which is less convenient for the user but much easier for the
programmer). See the Java Swing book for information on JDialog.

13.9 Getting Program Output into a Window

13.9.1 Problem

You want to capture an input/output stream and display it in a text field.

13.9.2 Solution

Use an interconnected pair of piped streams and a Thread to read from the input half, and write
it to the text area. You may also want to redirect System.out and System.err to the stream;
see Section 9.7.

13.9.3 Discussion

 364

The PipedInputStream and PipedOutputStream provide two streams (see Chapter 9) that
are connected together by a buffer and are designed to provide communication between multiple
threads (see Section 24.1).

As you'll see in Chapter 19, I am fairly aggressive in the pursuit of SPAM perpetrators. I have a
program called TestOpenMailRelay , derived from the mail sender in Section 19.3, that I use
to test whether remote servers are willing to accept mail from unknown third parties and forward it
as their own. This gives these bastard messages a parent, just as many birds will glibly nest on a
cuckoo's egg that has been snuck into their nest. This is the GUI for that program; both this and
the main program are online in the email directory.

In the constructor, I arrange for the main class to write to the PipedOutputStream; the call to
TestOpenMailRelay.process() passing the ps argument arranges this. That method will
write its own output to the stream in addition to assigning standard output and standard error, so
we should see anything it tries to print. To avoid long (possibly infinitely long!) delays, I start an
additional thread to read from the pipe buffer. Figure 13-7 shows three windows: the program
output window (the goal of this whole exercise), a terminal window from which I copied the IP
address (some parts of the text in this window have been deliberately obfuscated), and another
command window in which I started the GUI program running.

Figure 13-7. TestOpenMailRelayGUI in action

The code is shown in Example 13-4. Note that there's a problem that causes an IOException
at the end of the first file; hopefully this will be corrected by the time you download the source
code.

Example 13-4. TestOpenMailRelayGUI.java

import java.awt.*;

 365

import java.awt.event.*;
import javax.swing.*;
import java.io.*;

/** GUI for TestOpenMailRelay, lets you run it multiple times in one
JVM
 * to avoid startup delay.
 *
 * Starts each in its own Thread for faster return to ready state.
 *
 * Uses PipedI/OStreams to capture system.out/err into a window.
 */
public class TestOpenMailRelayGUI extends JFrame {

 /** The one-line textfield for the user to type Host name/IP */
 JTextField hostTextField;
 /** Multi-line text area for results. */
 JTextArea results;
 /** The piped stream for the main class to write into "results" */
 PrintStream ps;
 /** The piped stream to read from "ps" into "results" */
 DataInputStream iis;

 /** This inner class is the action handler both for pressing
 * the "Try" button and also for pressing <ENTER> in the text
 * field. It gets the IP name/address from the text field
 * and passes it to process() in the main class.
 */
 ActionListener runner = new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 new Thread(new Runnable() {
 public void run() {
 String host = hostTextField.getText().trim();
 ps.println("Trying " + host);
 TestOpenMailRelay.process(host, ps);
 }
 }).start();
 }
 };

 /** Construct a GUI and some I/O plumbing to get the output
 * of "TestOpenMailRelay" into the "results" textfield.
 */
 public TestOpenMailRelayGUI() throws IOException {
 super("Tests for Open Mail Relays");
 PipedInputStream is;
 PipedOutputStream os;
 JPanel p;
 Container cp = getContentPane();
 cp.add(BorderLayout.NORTH, p = new JPanel());

 // The entry label and text field.
 p.add(new JLabel("Host:"));
 p.add(hostTextField = new JTextField(10));
 hostTextField.addActionListener(runner);

 JButton b;

 366

 p.add(b = new JButton("Try"));
 b.addActionListener(runner);

 results = new JTextArea(20, 60);
 // Add the text area to the main part of the window (CENTER).
 // Wrap it in a JScrollPane to make it scroll automatically.
 cp.add(BorderLayout.CENTER, new JScrollPane(results));

 pack(); // end of GUI portion

 // Create a pair of Piped Streams.
 is = new PipedInputStream();
 os = new PipedOutputStream(is);

 iis = new DataInputStream(is);
 ps = new PrintStream(os);

 // Construct and start a Thread to copy data from "is" to "os".
 new Thread() {
 public void run() {
 try {
 String line;
 while ((line = iis.readLine()) != null) {
 results.append(line);
 results.append("\n");
 }
 } catch(IOException ex) {
 results.append("\n");
 results.append("*** Input or Output error
***\n");
 results.append(ex.toString());
 return;
 }
 }
 }.start();
 }
}

13.10 Choosing a File with JFileChooser

13.10.1 Problem

You want to allow the user to select a file by name using a traditional windowed file dialog.

13.10.2 Solution

Use a JFileChooser .

13.10.3 Discussion

The JFileChooser dialog provides a fairly standard file chooser. It has elements of both an MS-
Windows chooser and a Mac chooser, with more resemblance to the former than the latter. If you

 367

want to have control over what files appear, you need to provide one or more FileFilter
subclasses. Each FileFilter subclass instance passed into the JFileChooser 's
addChoosableFileFilter() method becomes a selection in the chooser's "Files of Type:"
choice. The default is "All Files (*.*)". Figure 13-8 shows my demo program in action.

Figure 13-8. JFileChooserDemo in action

Let's look at the code for using the JFileChooser:

import com.darwinsys.util.*;

import javax.swing.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;

/** A simple demo of a JFileChooser in action. */
public class JFileChooserDemo extends JPanel {

 /** Constructor */
 public JFileChooserDemo(JFrame f) {
 final JFrame frame = f;
 final JFileChooser chooser = new JFileChooser();
 JFileFilter filter = new JFileFilter();
 filter.addType("java");
 filter.addType("class");
 filter.addType("jar");
 filter.setDescription("Java-related files");
 chooser.addChoosableFileFilter(filter);
 JButton b = new JButton("Choose file...");
 add(b);
 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 int returnVal = chooser.showOpenDialog(frame);

 368

 if (returnVal == JFileChooser.APPROVE_OPTION) {
 System.out.println("You chose a file named: " +
 chooser.getSelectedFile().getPath());
 } else {
 System.out.println("You did not choose a file.");
 }
 }
 });
 }

 public static void main(String[] args) {
 JFrame f = new JFrame("JFileChooser Demo");
 f.getContentPane().add(new JFileChooserDemo(f));
 f.pack();
 f.setVisible(true);
 f.addWindowListener(new WindowCloser(f, true));
 }
}

In this example, I set up a FileFilter for Java files. Note that FileFilter exists both in
javax.swing.filechooser and java.io (an older version, not for use here; see Section
10.8). The javax.swing.filechooser.FileFilter interface has only two methods:
boolean accept(File) and String getDescription(). This is enough for a totally
fixed-function file filter: you could hardcode the list of extensions that should be accepted, for
example. The following class is similar in spirit to the ExtensionFileFilter included in the
JDK demo directory; Sun claims that its version will be moved into
javax.swing.filechooser in a subsequent release of Swing.

import java.io.File;
import java.util.*;

/** A simple FileFilter class that works by filename extension,
 * like the one in the JDK demo called ExtentionFilter, which
 * has been announced to be supported in a future Swing release.
 */
class JFileFilter extends javax.swing.filechooser.FileFilter {
 protected String description;
 protected ArrayList exts = new ArrayList();

 public void addType(String s) {
 exts.add(s);
 }

 /** Return true if the given file is accepted by this filter. */
 public boolean accept(File f) {
 // Little trick: if you don't do this, only directory names
 // ending in one of the extensions appear in the window.
 if (f.isDirectory()) {
 return true;

 } else if (f.isFile()) {
 Iterator it = exts.iterator();
 while (it.hasNext()) {
 if (f.getName().endsWith((String)it.next()))
 return true;

 369

 }
 }

 // A file that didn't match, or a weirdo (e.g. UNIX device
file?).
 return false;
 }

 /** Set the printable description of this filter. */
 public void setDescription(String s) {
 description = s;
 }
 /** Return the printable description of this filter. */
 public String getDescription() {
 return description;
 }
}

13.11 Choosing a Color

13.11.1 Problem

You want to allow the user to select a color from all the colors available on your computer.

13.11.2 Solution

Use Swing's JColorChooser.

13.11.3 Discussion

OK, so it may be just glitz or a passing fad, but with today's displays, the 13 original AWT colors
are too limiting. Swing's JColorChooser lets you choose from zillions of colors. From a
program's view, it can be used in three ways:

• Construct it and place it in a panel
• Call its ConstructDialog() and get a JDialog back
• Call its showDialog() and get back the chosen color

We'll use the last method, since it's the simplest and the most likely to be used in a real
application. The user has several methods of operating the chooser, too:

Swatches mode

The user can pick from one of a few hundred color variants.

HSB mode

This one's my favorite. The user picks one of Hue, Saturation, or Brightness to be nailed
down; by adjusting another by slider, there is a huge range of different pixel values to
choose from, by clicking (or, more fun, dragging) in the central area. See Figure 13-9.

 370

RGB mode

The user picks Red, Green, and Blue components by sliders.

Figure 13-9. JColorChooser: HSB view in action

Example 13-5 contains a short program that makes it happen.

Example 13-5. JColorDemo.java

import com.darwinsys.util.*;

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

/*
 * Colors - demo of Swing JColorChooser.
 * Swing's JColorChooser can be used in three ways:
 * Construct it and place it in a panel;
 * Call its ConstructDialog() and get a JDialog back
 * Call its showDialog() and get back the chosen color
 *
 * <P>We use the last method, as it's the simplest, and is how
 * you'd most likely use it in a real application.
 *
 * Originally appeared in the Linux Journal, 1999.
 */
public class JColorDemo extends JFrame
{
 /** A canvas to display the color in. */
 JLabel demo;

 371

 /** The latest chosen Color */
 Color lastChosen;

 /** Constructor - set up the entire GUI for this program */
 public JColorDemo() {
 super("Swing Color Demo");
 Container cp = getContentPane();
 JButton jButton;
 cp.add(BorderLayout.NORTH, jButton = new JButton("Change
Color..."));
 jButton.setToolTipText("Click here to see the Color Chooser");
 jButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent actionEvent)
 {
 Color ch = JColorChooser.showDialog(
 JColorDemo.this, // parent
 "Swing Demo Color Popup", // title
 getBackground()); // default
 if (ch != null)
 demo.setBackground(ch);
 }
 });
 cp.add(BorderLayout.CENTER, demo =
 new MyLabel("Your One True Color", 200, 100));
 demo.setToolTipText("This is the last color you chose");
 pack();
 addWindowListener(new WindowCloser(this, true));
 }

 /** good old main */
 public static void main(String[] argv)
 {
 new JColorDemo().setVisible(true);
 }
}

13.11.4 See Also

This program introduces setToolTipText(), a method to set the text for pop-up "tooltips"
that appear when you position the mouse pointer over a component and don't do anything for a
given time (initially half a second). Tooltips originated with Macintosh Balloon Help, and were
refined into ToolTips under Microsoft Windows.[2] Tooltips are easy to use; the simplest form is
shown here. For more documentation, see Chapter 3 of the Java Swing book.

[2] See? I even said something nice about Microsoft. I do believe in credit where credit's due.

13.12 Centering a Main Window

13.12.1 Problem

You want your main window to be centered on the screen.

13.12.2 Solution

 372

First, be aware that some users on some platforms would rather that you didn't do this, as they
have existing "placement" schemes. However, at least on MS-Windows, this technique is useful.

Subtract the width and height of the window from the width and height of the screen, divide by
two, and go there.

13.12.3 Discussion

The code for this is pretty simple. The part that might take a while to figure out is the Dimension
of the screen. There is a method getScreenSize() in the Toolkit class, and a static method
getDefaultToolkit(). (The Toolkit class relates to the underlying windowing toolkit; there
are several subclasses of it, one for X Windows on Unix, another for Macintosh, etc.) Put these
together and you have the Dimension you need.

Centering a Window is such a common need that I have packaged it in its own little class
UtilGUI , just as I did for the WindowCloser class in Recipe 13.6. Here is the complete source
for UtilGUI, which I'll use without comment from now on:

package com.darwinsys.util;

import java.awt.*;

/** Utilities for GUI work.
 */
public class UtilGUI {
 /** Centre a Window, Frame, JFrame, Dialog, etc. */
 public static void centre(Window w) {
 // After packing a Frame or Dialog, centre it on the screen.
 Dimension us = w.getSize(),
 them = Toolkit.getDefaultToolkit().getScreenSize();
 int newX = (them.width - us.width) / 2;
 int newY = (them.height- us.height)/ 2;
 w.setLocation(newX, newY);
 }
 /** Center a Window, Frame, JFrame, Dialog, etc.,
 * but do it the American Spelling Way :-)
 */
 public static void center(Window w) {
 UtilGUI.centre(w);
 }
}

To use it after the relevant import, you can simply say, for example:

myFrame.pack();
UtilGUI.centre(myFrame);
myFrame.setVisible(true);

13.13 Changing a Swing Program's Look and Feel

13.13.1 Problem

 373

You want to change the look and feel of an application.

13.13.2 Solution

Use the static UIManager.setLookAndFeel() method. Maybe.

13.13.3 Discussion

If you wish to specify the entire look and feel for a program, set it with the static
UIManager.setLookAndFeel() method; the name you pass in must be the full name (as a
string) of a class that implements a Java look and feel. The details of writing a look and feel class
are beyond this book; refer to the book Java Swing or the Sun documentation. But using these
classes is easy. For example:

UIManager.setLookAndFeel("javax.swing.plaf.metal.MetalLookAndFeel");

This must appear before you create the GUI of the program, and can throw an exception if the
class name is invalid.

People sometimes like to show off the fact that you can change the look and feel on the fly. You
call setLookAndFeel() as previously, and then call the static
SwingUtilities.updateComponentTree() for your JFrame and all detached trees, such
as dialog classes. But before you rush out to do it, please be advised that the official Sun position
is that you shouldn't! The official Java Look and Feel Design Guideline book says, on page 23
(first edition):

Because there is far more to the design of an application than the look and feel of
components, it is unwise to give end users the ability to swap look and feel while
[running] your application. Switching look and feel designs in this way only swaps
the look and feel designs from one platform to another. The layout and
vocabulary used are platform-specific and do not change. For instance, swapping
look and feel designs does not change the titles of the menus.

The book does recommend that you let users specify an alternate look and feel, presumably in
your properties file, at program startup time. Even so, the capability to switch while an application
is running is too tempting to ignore; even Sun's own Swing Demonstration (included with the Java
SDK) offers a menu item to change its look and feel. Figure 13-10 is my nice little program in
the Java style; see Example 13-6 for the source code.

Figure 13-10. Java, MS-Windows, and Motif look and feel under MS-Windows

 374

Figure 13-11 shows what happens when you request a look and feel that is unavailable on the
current platform.

Figure 13-11. Look and feel request refused on MS-Windows

There's a bit of a cheat here: I had to resize it to get the disabled OPEN LOOK radio button to
appear, due to what I think is a bug in JDK 1.2. If I try the MacOS look and feel under MS-
Windows, I get the error dialog shown in Figure 13-11.

The OPEN LOOK design alluded to in the code is, well, not written yet. Vaporware. That's why it's
grayed out.

Under MacOS X, the default look and feel is, of course, the MacOS X look and feel. You can also
select the Java or Motif look, but not the MS-Windows look. See Figure 13-12.

Figure 13-12. Look and feel switcher under MacOS X

Example 13-6 shows the code that implements the look and feel switcher. It's pretty
straightforward based on what we've seen already. The only neat trick is that I've set the selected
button back to what it was if the look and feel that the user selected is not available.

Example 13-6. LNFSwitcher.java

import com.darwinsys.util.*;

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import javax.swing.*;
import javax.swing.plaf.*;
import javax.swing.plaf.metal.*;

/**
 * A Look-and-feel switcher.
 */

 375

public class LNFSwitcher {
 /** The frame. */
 protected JFrame theFrame;
 /** Its content pane */
 protected Container cp;

 /** Start with the Java look-and-feel, if possible */
 final static String PREFERREDLOOKANDFEELNAME =
 "javax.swing.plaf.metal.MetalLookAndFeel";
 protected String curLF = PREFERREDLOOKANDFEELNAME;
 protected JRadioButton previousButton;

 /** Construct a program... */
 public LNFSwitcher() {
 super();
 theFrame = new JFrame("LNF Switcher");
 theFrame.addWindowListener(new WindowCloser(theFrame, true));
 cp = theFrame.getContentPane();
 cp.setLayout(new FlowLayout());

 ButtonGroup bg = new ButtonGroup();

 JRadioButton bJava = new JRadioButton("Java");
 bJava.addActionListener(new LNFSetter(
 "javax.swing.plaf.metal.MetalLookAndFeel", bJava));
 bg.add(bJava);
 cp.add(bJava);

 JRadioButton bMSW = new JRadioButton("MS-Windows");
 bMSW.addActionListener(new LNFSetter(
 "com.sun.java.swing.plaf.windows.WindowsLookAndFeel",
bMSW));
 bg.add(bMSW);
 cp.add(bMSW);

 JRadioButton bMotif = new JRadioButton("Motif");
 bMotif.addActionListener(new LNFSetter(
 "com.sun.java.swing.plaf.motif.MotifLookAndFeel", bMotif));
 bg.add(bMotif);
 cp.add(bMotif);

 JRadioButton bMac = new JRadioButton("MacOS");
 bMac.addActionListener(new LNFSetter(
 "com.sun.java.swing.plaf.mac.MacLookAndFeel", bMac));
 bg.add(bMac);
 cp.add(bMac);

 // Following is a **hypothetical** addition!
 JRadioButton bOL = new JRadioButton("OPEN LOOK");
 bOL.addActionListener(new LNFSetter(
 "com.darwinsys.openlook.OpenLookAndFeel", bOL));
 bOL.setEnabled(false); // since it IS hypothetical
 bg.add(bOL);
 cp.add(bOL);

 // We "know" that the Java Look-and-feel is the default.
 previousButton = bJava;

 376

 bJava.setSelected(true);

 theFrame.pack();
 theFrame.setVisible(true);
 }

 /* Class to set the Look and Feel on a frame */
 class LNFSetter implements ActionListener {
 String theLNFName;
 JRadioButton thisButton;

 /** Called to setup for button handling */
 LNFSetter(String lnfName, JRadioButton me) {
 theLNFName = lnfName;
 thisButton = me;
 }

 /** Called when the button actually gets pressed. */
 public void actionPerformed(ActionEvent e) {
 try {
 UIManager.setLookAndFeel(theLNFName);
 SwingUtilities.updateComponentTreeUI(theFrame);
 } catch (Exception evt) {
 JOptionPane.showMessageDialog(null,
 "setLookAndFeel didn't work: " + evt,
 "UI Failure", JOptionPane.INFORMATION_MESSAGE);
 previousButton.setSelected(true); // reset the
GUI to agree
 }
 previousButton = thisButton;
 }
 }

 public static void main(String[] argv) {
 new LNFSwitcher();
 }
}

13.14 Program: Custom Font Chooser

13.14.1 Problem

You want to allow the user to select a font, but standard Java doesn't yet include a Font Chooser
dialog.

13.14.2 Solution

Use my FontChooser dialog class.

13.14.3 Discussion

 377

As we saw in Section 12.4, you can manually select a font by calling the java.awt.Font
class constructor, passing in the name of the font, the type you want (plain, bold, italic, or
bold+italic), and the point size:

Font f = new Font("Helvetica", Font.BOLD, 14);
setfont(f);

But this is not very flexible for interactive applications. You normally want the user to be able to
choose fonts with the same ease as using a File Chooser dialog. Until the Java API catches up
with this, you are more than welcome to use the Font Chooser that I wrote when faced with a
similar need.

The source code is shown in Example 13-7; it ends, as many of my classes do, with a short
main method that is both a test case and an example of using the class in action. The display is
shown in Figure 13-13.

Example 13-7. FontChooser.java

import com.darwinsys.util.*;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/** A font selection dialog. AWT version.
 * <p>Note: can take a LONG time to start up on systems
 * with (literally) hundreds of fonts.
 */
public class FontChooser extends Dialog {
 /** The font the user has chosen */
 protected Font resultFont;
 /** The resulting font name */
 protected String resultName;
 /** The resulting font size */
 protected int resultSize;
 /** The resulting boldness */
 protected boolean isBold;
 /** The resulting italicness */
 protected boolean isItalic;

 /** The list of Fonts */
 protected String fontList[];
 /** The file name chooser */
 protected List fNameChoice;
 /** The file size chooser */
 protected List fSizeChoice;
 /** The bold and italic choosers */
 Checkbox bold, italic;
 /** The list of font sizes */
 protected String fontSizes[] = {
 "8", "10", "11", "12", "14", "16", "18", "20", "24",
 "30", "36", "40", "48", "60", "72"
 };
 /** The display area. Use a JLabel as the AWT label doesn't always
 * honor setFont() in a timely fashion :-)

 378

 */
 protected JLabel previewArea;

 /** Construct a FontChooser -- Sets title and gets
 * array of fonts on the system. Builds a GUI to let
 * the user choose one font at one size.
 */
 public FontChooser(Frame f) {
 super(f, "Font Chooser", true);

 Container cp = this; // or getContentPane() in Swing

 Panel top = new Panel();
 top.setLayout(new FlowLayout());

 fNameChoice = new List(8);
 top.add(fNameChoice);

 Toolkit toolkit = Toolkit.getDefaultToolkit();
 // For JDK 1.1: returns about 10 names (Serif, SansSerif, etc.)
 // fontList = toolkit.getFontList();
 // For JDK 1.2: a much longer list; most of the names that come
 // with your OS (e.g., Arial), plus the Sun/Java ones (Lucida,
 // Lucida Bright, Lucida Sans...)
 fontList = GraphicsEnvironment.getLocalGraphicsEnvironment().
 getAvailableFontFamilyNames();

 for (int i=0; i<fontList.length; i++)
 fNameChoice.add(fontList[i]);
 fNameChoice.select(0);

 fSizeChoice = new List(8);
 top.add(fSizeChoice);

 for (int i=0; i<fontSizes.length; i++)
 fSizeChoice.add(fontSizes[i]);
 fSizeChoice.select(5);

 cp.add(BorderLayout.NORTH, top);

 Panel attrs = new Panel();
 top.add(attrs);
 attrs.setLayout(new GridLayout(0,1));
 attrs.add(bold =new Checkbox("Bold", false));
 attrs.add(italic=new Checkbox("Italic", false));

 previewArea = new JLabel("Qwerty Yuiop", JLabel.CENTER);
 previewArea.setSize(200, 50);
 cp.add(BorderLayout.CENTER, previewArea);

 Panel bot = new Panel();

 Button okButton = new Button("Apply");
 bot.add(okButton);
 okButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 previewFont();

 379

 dispose();
 setVisible(false);
 }
 });

 Button pvButton = new Button("Preview");
 bot.add(pvButton);
 pvButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 previewFont();
 }
 });

 Button canButton = new Button("Cancel");
 bot.add(canButton);
 canButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 // Set all values to null. Better: restore previous.
 resultFont = null;
 resultName = null;
 resultSize = 0;
 isBold = false;
 isItalic = false;

 dispose();
 setVisible(false);
 }
 });

 cp.add(BorderLayout.SOUTH, bot);

 previewFont(); // ensure view is up to date!

 pack();
 setLocation(100, 100);
 }

 /** Called from the action handlers to get the font info,
 * build a font, and set it.
 */
 protected void previewFont() {
 resultName = fNameChoice.getSelectedItem();
 String resultSizeName = fSizeChoice.getSelectedItem();
 int resultSize = Integer.parseInt(resultSizeName);
 isBold = bold.getState();
 isItalic = italic.getState();
 int attrs = Font.PLAIN;
 if (isBold) attrs = Font.BOLD;
 if (isItalic) attrs |= Font.ITALIC;
 resultFont = new Font(resultName, attrs, resultSize);
 // System.out.println("resultName = " + resultName + "; " +
 // "resultFont = " + resultFont);
 previewArea.setFont(resultFont);
 pack(); // ensure Dialog is big enough.
 }

 /** Retrieve the selected font name. */

 380

 public String getSelectedName() {
 return resultName;
 }
 /** Retrieve the selected size */
 public int getSelectedSize() {
 return resultSize;
 }

 /** Retrieve the selected font, or null */
 public Font getSelectedFont() {
 return resultFont;
 }

 /** Simple main program to start it running */
 public static void main(String[] args) {
 final JFrame f = new JFrame("Dummy");
 final FontChooser fc = new FontChooser(f);
 final Container cp = f.getContentPane();
 cp.setLayout(new GridLayout(0, 1)); // one vertical column

 JButton theButton = new JButton("Change font");
 cp.add(theButton);

 final JLabel theLabel = new JLabel("Java is great!");
 cp.add(theLabel);

 // Now that theButton and theLabel are ready, make the action
listener
 theButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 fc.setVisible(true);
 Font myNewFont = fc.getSelectedFont();
 System.out.println("You chose " + myNewFont);
 theLabel.setFont(myNewFont);
 f.pack(); // again
 fc.dispose();
 }
 });

 f.pack();
 f.setVisible(true);
 f.addWindowListener(new WindowCloser(f, true));
 }
}

Figure 13-13. Font Chooser in action

 381

13.15 Program: Custom Layout Manager

13.15.1 Problem

None of the standard layout managers does quite what you need.

13.15.2 Solution

Roll your own. All you need to do is implement the methods of the java.awt.LayoutManager
interface.

13.15.3 Discussion

While many people are intimidated by the thought of writing their own layout manager, it beats the
alternative of using only "the big five" layouts (BorderLayout, CondLayout, FlowLayout,
GridBagLayout, and GridLayout). BorderLayout isn't quite flexible enough, and
GridBaglayout is too complex for many applications. Suppose, for instance, that you wanted to
lay out an arbitrary number of components in a circle. In a typical X Windows or MS-Windows
application, you would write the geometry calculations within the code for creating the
components to be drawn. This would work, but the code for the geometry calculations would be
unavailable to anybody who needed it later. The LayoutManager interface is another great
example of how the Java API's design promotes code reuse: if you write the geometry
calculations as a layout manager, then anybody needing this type of layout could simply
instantiate your CircleLayout class to get circular layouts.

As another example, consider the layout shown in Figure 13-14, where the labels column and
the textfield column have different widths. Using the big five layouts, there's no good way to get
this and still ensure that the columns line up and that you have control over the relative widths.
Suppose you wanted the label field to take up 40% of the panel and the entry field to take up
60%. I'll implement a simple layout manager here, both to show you how easy it is and to give
you a useful class for making panels like the one shown.

Figure 13-14. EntryLayout in action

 382

Here are the methods for the LayoutManager interface:

Method name Description

preferredLayoutSize() Like getPreferredSize() for a component: the "best" size
for the container

minimumLayoutSize() Same, but for the minimum workable size

layoutContainer() Perform the layout calculations, and resize and reposition all the
components at the current size of the container

addLayoutComponent() Associate a constraint with a given component (you normally
store these mappings in a java.util.HashMap())

removeLayoutComponent(
)

Remove a component from the HashMap

If you don't need Constraint objects (like BorderLayout.NORTH or a GridBagConstraint
object), you can ignore the last two methods. Well, you can't ignore them completely. Since this is
an interface, you must implement them. But they can be as simple as {}, that is, a null-bodied
method.

That leaves only three serious methods. The first, preferredLayoutSize(), will normally
loop through all the components -- either in the HashMap if using constraints, or in array returned
by the container's getComponents() method -- asking each for its preferred size and adding
them up, while partly doing the layout calculations. And minimumLayoutSize() is the same,
for the smallest possible layout that will work. It may be possible for these methods to delegate
either to a common submethod or to invoke layoutContainer(), depending upon how the
given layout policy works.

Finally, the most important method is layoutContainer(). This method needs to examine all
the components and decide where to put them and how big to make each one. Having made the
decision, it can use setBounds() to set each one's position and size.

Other than a bit of error checking, that's all that's involved. Here's an example, EntryLayout,
that implements the multi-column layout shown in Figure 13-14. Quoting its Javadoc
documentation:

A simple layout manager, for Entry areas like:

Login: _______________

Password: _______________

Basically two (or more) columns of different, but constant, widths.

Construct instances by passing an array of the column width percentages (as
doubles, fractions from 0.1 to 0.9, so 40%, 60% would be {0.4, 0.6}). The length

 383

of this array uniquely determines the number of columns. Columns are forced to
be the relevant widths. As with GridLayout, the number of items added must be
an even multiple of the number of columns. If not, exceptions may be thrown!

First, let's look at the program that uses this layout to produce Figure 13-14. This program
simply creates a JFrame, gets the contentPane container, and sets its layout to an instance of
EntryLayout, passing an array of two doubles representing the relative widths (decimal
fractions, not percentages) into the EntryLayout constructor. Then we add an even number of
components, and call pack() -- which will in turn call our preferredLayoutSize() -- and
setVisible(true).

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/** Testbed for EntryLayout layout manager.
 */
public class EntryLayoutTest {

 /** "main program" method - construct and show */
 public static void main(String[] av) {
 final JFrame f = new JFrame("EntryLayout Demonstration");
 Container cp = f.getContentPane();
 double widths[] = { .33, .66 };
 cp.setLayout(new EntryLayout(widths));
 cp.add(new JLabel("Login:", SwingConstants.RIGHT));
 cp.add(new JTextField(10));
 cp.add(new JLabel("Password:", SwingConstants.RIGHT));
 cp.add(new JPasswordField(20));
 cp.add(new JLabel("Security Domain:", SwingConstants.RIGHT));
 cp.add(new JTextField(20));
 // cp.add(new JLabel("Monkey wrench in works"));
 f.pack();
 f.addWindowListener(new WindowCloser(f, true));
 f.setLocation(200, 200);
 f.setVisible(true);
 }
}

Nothing complicated about it. The last JLabel ("Monkey wrench in works") is commented out
since, as noted, the LayoutManager throws an exception if the number of components is not
evenly divisible by the number of columns. It was put in during testing and then commented out,
but was left in place for further consideration.

Finally, let's look at the code for the layout manager itself, shown in Example 13-8. After some
constants and fields and two constructors, the methods are listed in about the same order as the
discussion earlier in this recipe; the dummy add/remove component methods, then the
preferredSize() and minimumLayoutSize() methods (which delegate to
computeLayoutSize), and, finally, layoutContainer, which does the actual laying out of the
components within the container. As you can see, the entire EntryLayout layout manager class
is only about 140 lines, including a lot of comments.

Example 13-8. EntryLayout.java

 384

// package com.darwinsys.entrylayout;

import java.awt.*;
import java.util.*;

/** A simple layout manager, for Entry areas like:
 * <PRE>
 * Login: ______________ _
 * Password: ______________ _
 * </PRE>
 * ...
 */
public class EntryLayout implements LayoutManager {
 /** The array of widths, as decimal fractions (0.4 == 40%, etc.).
*/
 protected final double[] widthPercentages;

 /** The number of columns. */
 protected final int COLUMNS;

 /** The default padding */
 protected final static int HPAD = 5, VPAD = 5;
 /** The actual padding */
 protected final int hpad, vpad;

 /** True if the list of widths was valid. */
 protected boolean validWidths = false;

 /** Construct an EntryLayout with widths and padding specified.
 * @param widths Array of doubles specifying column widths.
 * @param h Horizontal padding between items
 * @param v Vertical padding between items
 */
 public EntryLayout(double[] widths, int h, int v) {
 COLUMNS = widths.length;
 widthPercentages = new double[COLUMNS];
 for (int i=0; i<widths.length; i++) {
 if (widths[i] >= 1.0)
 throw new IllegalArgumentException(
 "EntryLayout: widths must be fractions < 1");
 widthPercentages[i] = widths[i];
 }
 validWidths = true;
 hpad = h;
 vpad = v;
 }
 /** Construct an EntryLayout with widths and with default padding
amounts.
 * @param widths Array of doubles specifying column widths.
 */
 public EntryLayout(double[] widths) {
 this(widths, HPAD, VPAD);
 }

 /** Adds the specified component with the specified constraint
 * to the layout; required by LayoutManager but not used.
 */

 385

 public void addLayoutComponent(String name, Component comp) {
 // nothing to do
 }

 /** Removes the specified component from the layout;
 * required by LayoutManager, but does nothing.
 */
 public void removeLayoutComponent(Component comp) {
 // nothing to do
 }

 /** Calculates the preferred size dimensions for the specified
panel
 * given the components in the specified parent container. */
 public Dimension preferredLayoutSize(Container parent) {
 // System.out.println("preferredLayoutSize");
 return computelayoutSize(parent, hpad, vpad);
 }

 /** Find the minimum Dimension for the
 * specified container given the components therein.
 */
 public Dimension minimumLayoutSize(Container parent) {
 // System.out.println("minimumLayoutSize");
 return computelayoutSize(parent, 0, 0);
 }

 /** The width of each column, as found by computLayoutSize(). */
 int[] widths;
 /** The height of each row, as found by computLayoutSize(). */
 int[] heights;

 /** Compute the size of the whole mess. Serves as the guts of
 * preferredLayoutSize() and minimumLayoutSize().
 */
 protected Dimension computelayoutSize(Container parent, int hpad,
int vpad) {
 if (!validWidths)
 return null;
 Component[] components = parent.getComponents();
 Dimension contSize = parent.getSize();
 int preferredWidth = 0, preferredHeight = 0;
 widths = new int[COLUMNS];
 heights = new int[components.length / COLUMNS];
 // System.out.println("Grid: " + widths.length + ", " +
heights.length);

 int i;
 // Pass One: Compute largest widths and heights.
 for (i=0; i<components.length; i++) {
 int row = i / widthPercentages.length;
 int col = i % widthPercentages.length;
 Component c = components[i];
 Dimension d = c.getPreferredSize();
 widths[col] = Math.max(widths[col], d.width);
 heights[row] = Math.max(heights[row], d.height);
 }

 386

 // Pass two: aggregate them.
 for (i=0; i<widths.length; i++)
 preferredWidth += widths[i] + hpad;
 for (i=0; i<heights.length; i++)
 preferredHeight += heights[i] + vpad;

 // Finally, pass the sums back as the actual size.
 return new Dimension(preferredWidth, preferredHeight);
 }

 /** Lays out the container in the specified panel. */
 public void layoutContainer(Container parent) {
 // System.out.println("layoutContainer:");
 if (!validWidths)
 return;
 Component[] components = parent.getComponents();
 Dimension contSize = parent.getSize();
 for (int i=0; i<components.length; i++) {
 int row = i / COLUMNS;
 int col = i % COLUMNS;
 Component c = components[i];
 Dimension d = c.getPreferredSize();
 int colWidth = (int)(contSize.width *
widthPercentages[col]);
 Rectangle r = new Rectangle(
 col == 0 ? 0 :
 hpad * (col-1) + (int)(contSize.width *
widthPercentages[col-1]),
 vpad * (row) + (row * heights[row]) + (heights[row]-
d.height),
 colWidth, d.height);
 // System.out.println(c.getClass() + "-->" + r);
 c.setBounds(r);
 }
 }

}

13.15.4 See Also

As mentioned in the Introduction, there are a number of good books on window programming with
Java. These discuss the many Swing components not covered here, such as JTable,
JScrollPane, JList, and JTree, and many more. My JabaDex application contains examples
of many of these, and some are used in later recipes in this book; for example, JTree is
discussed in Section 19.10.

 387

Chapter 14. Internationalization and Localization

14.1 Introduction

14.2 Creating a Button with I18N Resources

14.3 Listing Available Locales

14.4 Creating a Menu with I18N Resources

14.5 Writing Internationalization Convenience Routines

14.6 Creating a Dialog with I18N Resources

14.7 Creating a Resource Bundle

14.8 JILTing Your Code

14.9 Using a Particular Locale

14.10 Setting the Default Locale

14.11 Formatting Messages

14.12 Program: MenuIntl

14.13 Program: BusCard

14.1 Introduction

"All the world's a stage," wrote William Shakespeare. But not all the players upon it speak the
great Bard's native tongue. To be usable on a global scale, your software needs to communicate
in many different languages. The menu labels, button strings, dialog messages, title bar titles,
and even command-line error messages must be settable to the user's choice of language. This
is the topic of internationalization and localization. Because these words take a long time to say
and write, they are often abbreviated by their first and last letters and the count of omitted letters,
that is, I18N and L10N.[1]

[1] Sometimes written L9N by those who can't count, or who think that L10N that looks too much like "lion."

Java provides a Locale class to discover/control the internationalization settings. A default
Locale is inherited from operating system runtime settings when Java starts up, and can be
used most of the time!

 388

Ian's Basic Steps: Internationalization

Internationalization and localization consist of:

• Sensitivity training (Internationalization or I18N): making your
software sensitive to these issues

• Language lessons (Localization or L10N): writing configuration
files for each language

• Culture lessons (optional): customizing the presentation of
numbers, fractions, dates, and message-formatting

See also the relatively new book Java Internationalization, by Andy Deitsch and David Czarnecki
(O'Reilly).

14.2 Creating a Button with I18N Resources

14.2.1 Problem

You want your program to take "sensitivity lessons" so it can communicate well internationally.

14.2.2 Solution

Your program must obtain all control and message strings via the internationalization software.
Here's how:

1. Get a ResourceBundle.

ResourceBundle b = ResourceBundle.getBundle("Menus");

I'll talk about ResourceBundle in Section 14.7, but briefly, a ResourceBundle
represents a collection of name-value pairs (resources). The names are names you
assign to each GUI control or other user interface text, and the values are the text to
assign to each control in a given language.

2. Use this ResourceBundle to fetch the localized version of each control name.

Old way:

somePanel.add(new JButton("Exit"));

New way:

rb = ResourceBundle.getBundle("Widgets");
try { label = rb.getString("exit.label"); }
catch (MissingResourceException e) { label="Exit"; } // fallback
somePanel.add(new JButton(label));

 389

This is quite a bit of code for one button, but distributed over all the widgets (buttons,
menus, etc.) in a program, it can be as little as one line with the use of convenience
routines, which I'll show in Section 14.4.

14.2.2.1 What happens at runtime?

The default locale is used, since we didn't specify one. The default locale is platform-dependent:

• Unix/POSIX: LANG environment variable (per user)
• Windows 95: Start->Control Panel->Regional Settings
• Others: see platform documentation

ResourceBundle.getBundle() locates a file with the named resource bundle name (Menus
in the previous example), plus an underscore and the locale name (if any locale is set), plus
another underscore and the locale variation (if any variation is set), plus the extension .properties.
If a variation is set but the file can't be found, it falls back to just the country code. If that can't be
found, it falls back to the original default. Table 14-1 shows some examples for various locales.

Table 14-1. Property filenames for different locales

Locale Filename
Default locale Menus.Properties

Swedish Menus_sv.properties

Spanish Menus_es.properties

French Menus_fr.properties

French-Canadian Menus_fr_CA.properties

Locale names are two-letter ISO language codes (lowercase); locale variations are two-letter ISO
country codes (uppercase)

14.2.2.2 Setting the locale

On Windows, go into the Control Panel. Changing this setting entails a reboot, so exit any editor
windows.

On Unix, set your LANG environment variable. For example, a Korn shell user in Mexico might
have this line in his or her .profile :

export LANG=es_MX

On either system, for testing a different locale, you need only define the locale in the System
Properties at runtime using the command-line option -D, as in:

java -Duser.language=es Browser

to run the program named Browser in the Spanish locale.

14.3 Listing Available Locales

14.3.1 Problem

 390

You want to see what locales are available.

14.3.2 Solution

Call Locale.getAvailableLocales().

14.3.3 Discussion

A typical runtime may have dozens of locales available. The program ListLocales uses the
method getAvailableLocales() and prints the list:

// File ListLocales.java
Locale[] list = Locale.getAvailableLocales();
 for (int i=0; i<list.length; i++)
 System.out.println(list[i]);
 }
}

The list is far too long to show here, as you can judge by the first few entries:

> java ListLocales
en
en_US
ar
ar_AE
ar_BH
ar_DZ
ar_EG
ar_IQ
ar_JO
ar_KW
ar_LB
ar_LY
ar_MA
ar_OM
ar_QA
ar_SA
ar_SD
ar_SY
ar_TN
ar_YE
be
be_BY

On my system the complete list has an even dozen dozen (144) locales, as listed by the
command java ListLocales | wc -l.

14.4 Creating a Menu with I18N Resources

14.4.1 Problem

You want to internationalize an entire Menu.

 391

14.4.2 Solution

Get the Menu's label, and each MenuItem's label, from a ResourceBundle.

14.4.3 Discussion

Fetching a single menu item is the same as fetching a button:

rb = getResourceBundle("Widgets");
try { label = rb.getString("exitMenu.label"); }
catch (MissingResourceException e) { label="Exit"; } // fallback
someMenu.add(new JMenuItem(label));

This is a lot of code, so we typically consolidate it in convenience routines (see Section 14.5).
Here is sample code, using our convenience routines:

JMenu fm = mkMenu(rb, "file");
fm.add(mkMenuItem(rb, "file", "open"));
fm.add(mkMenuItem(rb, "file", "new"));
fm.add(mkMenuItem(rb, "file", "save"));
fm.add(mkMenuItem(rb, "file", "exit"));
mb.add(fm);
Menu um = mkMenu(rb, "edit");
um.add(mkMenuItem(rb, "edit", "copy"));
um.add(mkMenuItem(rb, "edit", "paste"));
mb.add(um);

14.5 Writing Internationalization Convenience Routines

14.5.1 Problem

You want convenience.

14.5.2 Solution

I've got it.

14.5.3 Discussion

Convenience routines are mini-implementations that can be more convenient and effective than
the general-purpose routines. Here I present the convenience routines to create buttons, menus,
etc. First, a simple one, mkMenu():

/** Convenience routine to make up a Menu with its name L10N'd */
Menu mkMenu(ResourceBundle b, String menuName) {
 String label;
 try { label = b.getString(menuName+".label"); }
 catch (MissingResourceException e) { label=menuName; }
 return new Menu(label);
}

 392

There are many such routines that you might need; I have consolidated several of them into my
class I18N.java , which is part of the com.darwinsys.util package. All methods are static,
and can be used without having to instantiate an I18N object because they do not maintain any
state across calls. The method mkButton() creates and returns a localized Button, and so
on. The method mkDialog is slightly misnamed, since the JOptionPane method
showMessageDialog() doesn't create and return a Dialog object, but it seemed more
consistent to write it as shown here:

package com.darwinsys.util;

import java.util.*;
import javax.swing.*;

/** Set of convenience routines for internationalized code.
 * All convenience methods are static, for ease of use.
 */
public class I18N {

 /** Convenience routine to make a JButton */
 public static JButton mkButton(ResourceBundle b, String name) {
 String label;
 try { label = b.getString(name+".label"); }
 catch (MissingResourceException e) { label=name; }
 return new JButton(label);
 }

 /** Convenience routine to make a JMenu */
 public static JMenu mkMenu(ResourceBundle b, String name) {
 String menuLabel;
 try { menuLabel = b.getString(name+".label"); }
 catch (MissingResourceException e) { menuLabel=name; }
 return new JMenu(menuLabel);
 }

 /** Convenience routine to make a JMenuItem */
 public static JMenuItem mkMenuItem(ResourceBundle b,
 String menu, String name) {

 String miLabel;
 try { miLabel = b.getString(menu + "." + name + ".label"); }
 catch (MissingResourceException e) { miLabel=name; }
 String key = null;
 try { key = b.getString(menu + "." + name + ".key"); }
 catch (MissingResourceException e) { key=null; }

 if (key == null)
 return new JMenuItem(miLabel);
 else
 return new JMenuItem(miLabel, key.charAt(0));
 }

 /** Show a JOptionPane message dialog */
 public static void mkDialog(ResourceBundle b,JFrame parent,
 String dialogTag, String titleTag, int messageType) {
 JOptionPane.showMessageDialog(
 parent,

 393

 getString(b, dialogTag, "DIALOG TEXT MISSING " +
dialogTag),
 getString(b, titleTag, "DIALOG TITLE MISSING" +
titleTag),
 messageType);
 }

 /** Just get a String (for dialogs, labels, etc.) */
 public static String getString(ResourceBundle b, String name,
String dflt) {
 String result;
 try {
 result = b.getString(name);
 } catch (MissingResourceException e) {
 result = dflt;
 }
 return result;
 }
}

14.6 Creating a Dialog with I18N Resources

14.6.1 Problem

You want to internationalize a dialog.

14.6.2 Solution

Use a ResourceBundle.

14.6.3 Discussion

This is similar to the use of ResourceBundle in the previous recipes, and shows the code for an
internationalized version of the JOptionDemo program from Section 13.8.

package com.darwinsys.util;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.util.*;

/**
 * I18N'd JOptionPane
 */
public class JOptionDemo extends JFrame {

 ResourceBundle rb;

 // Constructor
 JOptionDemo(String s) {
 super(s);

 394

 Container cp = getContentPane();
 cp.setLayout(new FlowLayout());

 rb = ResourceBundle.getBundle("Widgets");

 JButton b = I18N.mkButton(rb, "getButton");
 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 JOptionPane.showMessageDialog(
 JOptionDemo.this,
 rb.getString("dialog1.text"),
 rb.getString("dialog1.title"),
 JOptionPane.INFORMATION_MESSAGE);
 }
 });
 cp.add(b);

 b = I18N.mkButton(rb, "goodbye");
 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 System.exit(0);
 }
 });
 cp.add(b);

 // the main window
 setSize(200, 150);
 pack();
 }

 public static void main(String[] arg) {
 JOptionDemo x = new JOptionDemo("Testing 1 2 3...");
 x.setVisible(true);
 }
}

14.7 Creating a Resource Bundle

14.7.1 Problem

You need to create a resource bundle for use by I18N.

14.7.2 Solution

A resource bundle is just a collection of names and values. You can write a
java.util.ResourceBundle subclass, but it is easier to create them as textual Properties
files (see Section 7.8), which you then load with ResourceBundle.getBundle(). The files
can be created using any text editor. Leaving it in a text file format also allows user customization;
a user whose language is not provided for, or who wishes to change the wording somewhat due
to local variations in dialect, will have no trouble editing the file.

 395

Note that the resource bundle text file should not have the same name as any of your Java
classes. The reason is that the ResourceBundle constructs a class dynamically, with the same
name as the resource files. You can confirm this by running java -verbose on any of the programs
that use the I18N class from this chapter.

14.7.3 Discussion

Here is a sample for a simple browser (see the MenuIntl program in Section 14.12):

Default Menu properties
The File Menu
file.label=File Menu
file.new.label=New File
file.new.key=N

Creating the default properties file will usually not be a problem, but creating properties files for
other languages might. Unless you are a large multinational corporation, you will probably not
have the resources (pardon the pun) to create resource files in-house. If you are shipping
commercial software, you need to identify your target markets and understand which of these are
most sensitive to wanting menus and the like in their own languages. Then, hire a professional
translation service that has expertise in the required languages to prepare the files. Test them
well before you ship, as you would any other part of your software.

If you need special characters, multiline text, or other complex entry, remember that a
ResourceBundle is also a Properties file.

As an alternate approach, the next recipe describes a program that automates some of the work
of isolating strings, creating resource files, and translating them to other languages.

14.8 JILTing Your Code

Nothing to do with jilting your lover, JILT is Sun's Java Internationalization and Localization
Toolkit, Version 2.0. JILTing your code means processing it with JILT, which facilitates I18N and
L10N'ing the Java classes. JILT has four GUI-based tools, which can be used independently,
started from a GUI front-end called JILKIT. Figure 14-1 shows JILT in action.

Figure 14-1. JILT in action

The tools are listed in Table 14-2.

Table 14-2. JILT programs
Tool Function

 396

I18N Verifier Tests program for international use and suggests improvements.
Message
Tool

Finds and allows you to edit hardcoded or inconsistent messages.

Translator Translates messages in a resource bundle file into a given locale/language.
Resource
Tool

Merges multiple resource files into a new resource bundle. Can also find
differences between resource files.

It's worth noting that the time to learn these tools may overshadow their benefits on small
projects, but on large projects will likely prove worthwhile.

Version 2 of the Translator ships with a Chinese dictionary, but you can provide your own
dictionaries as well.

The Java Internationalization and Localization Toolkit can be downloaded for free from Sun's
Java page, http://java.sun.com/products/.

14.9 Using a Particular Locale

14.9.1 Problem

You want to use a locale other than the default in a particular operation.

14.9.2 Solution

Use Locale.getInstance(Locale).

14.9.3 Discussion

Classes that provide formatting services, such as DateFormat and NumberFormat, provide an
overloaded getInstance() method that can be called either with no arguments or with a
Locale argument.

To use these, you can use one of the predefined locale variables provided by the Locale class,
or you can construct your own Locale object giving a language code and a country code:

Locale locale1 = Locale.FRANCE; // predefined
Locale locale2 = new Locale("en", "UK"); // English, UK version

Either of these can be used to format a date or a number, as shown in class UseLocales :

import java.text.*;
import java.util.*;

/** Use some locales
 * choices or -Duser.lang= or -Duser.region=.
 */
public class UseLocales {
 public static void main(String[] args) {

 Locale frLocale = Locale.FRANCE; // predefined

 397

 Locale ukLocale = new Locale("en", "UK"); // English, UK
version

 DateFormat defaultDateFormatter = DateFormat.getDateInstance(
 DateFormat.MEDIUM);
 DateFormat frDateFormatter = DateFormat.getDateInstance(
 DateFormat.MEDIUM, frLocale);
 DateFormat ukDateFormatter = DateFormat.getDateInstance(
 DateFormat.MEDIUM, ukLocale);

 Date now = new Date();
 System.out.println("Default: " + ' ' +
 defaultDateFormatter.format(now));
 System.out.println(frLocale.getDisplayName() + ' ' +
 frDateFormatter.format(now));
 System.out.println(ukLocale.getDisplayName() + ' ' +
 ukDateFormatter.format(now));
 }
}

The program prints the locale name and formats the date in each of the locales:

$ java UseLocales
Default: Nov 30, 2000
French (France) 30 nov. 00
English (UK) Nov 30, 2000
$

14.10 Setting the Default Locale

14.10.1 Problem

You want to change the default Locale for all operations within a given Java runtime.

14.10.2 Solution

Set the system property user.language, or call Locale.setDefault().

14.10.3 Discussion

Here is a program called SetLocale, which takes the language and country codes from the
command line, constructs a Locale object, and passes it to Locale.setDefault(). When
run with different arguments, it prints the date and a number in the appropriate locale:

C:\javasrc\i18n>java SetLocale en US
6/30/00 1:45 AM
123.457

C:\javasrc\i18n>java SetLocale fr FR
30/06/00 01:45
123,457

 398

The code is similar to the previous recipe in how it constructs the locale.

import java.text.*;
import java.util.*;

/** Change the default locale */
public class SetLocale {
 public static void main(String[] args) {

 switch (args.length) {
 case 0:
 Locale.setDefault(Locale.FRANCE);
 break;
 case 1:
 throw new IllegalArgumentException();
 case 2:
 Locale.setDefault(new Locale(args[0], args[1]));
 break;
 default:
 System.out.println("Usage: SetLocale [language
[country]]");
 // FALLTHROUGH
 }

 DateFormat df = DateFormat.getInstance();
 NumberFormat nf = NumberFormat.getInstance();

 System.out.println(df.format(new Date()));
 System.out.println(nf.format(123.4567));
 }
}

14.11 Formatting Messages

14.11.1 Problem

Messages may need to be formatted differently in different languages.

14.11.2 Solution

Use a MessageFormat object.

14.11.3 Discussion

In English, for example, we say "file not found." But in other languages the word order is different:
the word for "not found" might need to precede the word for "file." Java provides for this using the
MessageFormat class. Suppose we want to format a message as follows:

$ java MessageFormatDemoIntl
At 3:33:02 PM on 01-Jul-00, myfile.txt could not be opened.
$ java -Duser.language=es MessageFormatDemoIntl
A 3:34:49 PM sobre 01-Jul-00, no se puede abrir la fila myfile.txt.

 399

$

The MessageFormat in its simplest form takes a format string with a series of numeric indexes,
and an array of objects to be formatted. The objects are inserted into the resulting string, where
the given array index appears. Here is a simple example of a MessageFormat in action:

import java.text.*;

public class MessageFormatDemo {

 static Object[] data = {
 new java.util.Date(),
 "myfile.txt",
 "could not be opened"
 };

 public static void main(String[] args) {
 String result = MessageFormat.format(
 "At {0,time} on {0,date}, {1} {2}.", data);
 System.out.println(result);
 }
}

But we still need to internationalize this, so we'll add some lines to our widget's properties files. In
the default (English) version:

These are for MessageFormatDemo

filedialogs.cantopen.string=could not be opened
filedialogs.cantopen.format=At {0,time} on {0,date}, {1} {2}.

In the Spanish version, we'll add these lines:

These are for MessageFormatDemo

filedialogs.cantopen.string=no se puede abrir la fila
filedialogs.cantopen.format=A {0,time} sobre {0,date}, {2} {1}.

Then MessageFormatDemo needs to have a ResourceBundle, and get both the format string
and the message from the bundle. Here is MessageFormatDemoIntl :

import java.text.*;
import java.util.*;

public class MessageFormatDemoIntl {

 static Object[] data = {
 new Date(),
 "myfile.txt",
 null
 };

 public static void main(String[] args) {
 ResourceBundle rb = ResourceBundle.getBundle("Widgets");

 400

 data[2] = rb.getString("filedialogs.cantopen.string");
 String result = MessageFormat.format(
 rb.getString("filedialogs.cantopen.format"), data);
 System.out.println(result);
 }
}

There is more to the MessageFormat than this; see the Javadoc page for more details and
examples.

14.12 Program: MenuIntl

MenuIntl (shown in Example 14-1) is a complete version of the menu code presented in
Section 14.4.

Example 14-1. MenuIntl.java

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.util.*;

/** This is a partly-internationalized version of MenuDemo.
 * To try it out, use
 * java MenuIntl
 * java -Duser.language=es MenuIntl
 */
public class MenuIntl extends JFrame {

 /** "main program" method - construct and show */
 public static void main(String[] av) {
 // create an MenuIntl object, tell it to show up
 new MenuIntl().setVisible(true);
 }

 /** Construct the object including its GUI */
 public MenuIntl() {
 super("MenuIntlTest");
 JMenuItem mi; // used in various spots

 Container cp = getContentPane();
 cp.setLayout(new FlowLayout());
 JLabel lab;
 cp.add(lab = new JLabel());

 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 setVisible(false);
 dispose();
 System.exit(0);
 }
 });
 JMenuBar mb = new JMenuBar();
 setJMenuBar(mb);

 401

 ResourceBundle b = ResourceBundle.getBundle("Menus");

 String titlebar;
 try { titlebar = b.getString("program"+".title"); }
 catch (MissingResourceException e) { titlebar="MenuIntl Demo";
}
 setTitle(titlebar);

 String message;
 try { message = b.getString("program"+".message"); }
 catch (MissingResourceException e) {
 message="Welcome to the world of Java";
 }
 lab.setText(message);

 JMenu fm = mkMenu(b, "file");
 fm.add(mi = mkMenuItem(b, "file", "open"));
 // In finished code there would be a call to
 // mi.addActionListener(...) after *each* of
 // these mkMenuItem calls!
 fm.add(mi = mkMenuItem(b, "file", "new"));
 fm.add(mi = mkMenuItem(b, "file", "save"));
 fm.add(mi = mkMenuItem(b, "file", "exit"));
 mi.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 MenuIntl.this.setVisible(false);
 MenuIntl.this.dispose();
 System.exit(0);
 }
 });
 mb.add(fm);

 JMenu vm = mkMenu(b, "view");
 vm.add(mi = mkMenuItem(b, "view", "tree"));
 vm.add(mi = mkMenuItem(b, "view", "list"));
 vm.add(mi = mkMenuItem(b, "view", "longlist"));
 mb.add(vm);

 JMenu hm = mkMenu(b, "help");
 hm.add(mi = mkMenuItem(b, "help", "about"));
 // mb.setHelpMenu(hm); // needed for portability (Motif,
etc.).

 // the main window
 JLabel jl = new JLabel("Menu Demo Window");
 jl.setSize(200, 150);
 cp.add(jl);
 pack();
 }

 /** Convenience routine to make a JMenu */
 public JMenu mkMenu(ResourceBundle b, String name) {
 String menuLabel;
 try { menuLabel = b.getString(name+".label"); }
 catch (MissingResourceException e) { menuLabel=name; }
 return new JMenu(menuLabel);
 }

 402

 /** Convenience routine to make a JMenuItem */
 public JMenuItem mkMenuItem(ResourceBundle b, String menu, String
name) {
 String miLabel;
 try { miLabel = b.getString(menu + "." + name + ".label"); }
 catch (MissingResourceException e) { miLabel=name; }
 String key = null;
 try { key = b.getString(menu + "." + name + ".key"); }
 catch (MissingResourceException e) { key=null; }

 if (key == null)
 return new JMenuItem(miLabel);
 else
 return new JMenuItem(miLabel, key.charAt(0));
 }
}

14.13 Program: BusCard

This program may seem a bit silly, but it's a good example of configuring a variety of user
interface controls from a resource bundle. The BusCard program allows you to create a digital
business card ("interactive business card") on-screen (see Figure 14-2). The labels for all the
GUI controls, event the pull-down menu, are loaded from a ResourceBundle.

Figure 14-2. BusCard program in action

Example 14-2 shows the code for the BusCard program.

Example 14-2. BusCard.java

import java.awt.*;
import java.awt.event.*;
import java.util.*;
import javax.swing.*;

/** Display your business-card information in a Java window.
 *

 403

 * This is a first attempt. The next version should use a
GridBagLayout.
 */
public class BusCard extends JFrame {

 JLabel nameTF;
 JComboBox jobChoice;
 JButton B1, B2, B3, B4;

 /** "main program" method - construct and show */
 public static void main(String[] av) {

 // create a BusCard object, tell it to show up
 new BusCard().setVisible(true);
 }

 /** Construct the object including its GUI */
 public BusCard() {
 super();

 Container cp = getContentPane();

 cp.setLayout(new GridLayout(0, 1));

 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 setVisible(false);
 dispose();
 System.exit(0);
 }
 });

 JMenuBar mb = new JMenuBar();
 setJMenuBar(mb);

 ResourceBundle b = ResourceBundle.getBundle("BusCard");

 JMenu aMenu;
 aMenu = I18N.mkMenu(b, "filemenu");
 mb.add(aMenu);
 JMenuItem mi = I18N.mkMenuItem(b, "filemenu", "exit");
 aMenu.add(mi);
 mi.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 System.exit(0);
 }
 });
 aMenu = I18N.mkMenu(b, "editmenu");
 mb.add(aMenu);
 aMenu = I18N.mkMenu(b, "viewmenu");
 mb.add(aMenu);
 aMenu = I18N.mkMenu(b, "optionsmenu");
 mb.add(aMenu);
 aMenu = I18N.mkMenu(b, "helpmenu");
 mb.add(aMenu);
 //mb.setHelpMenu(aMenu); // needed for portability
(Motif, etc.).

 404

 setTitle(I18N.getString(b, "card"+".company", "TITLE"));

 JPanel p1 = new JPanel();
 p1.setLayout(new GridLayout(0, 1, 50, 10));

 nameTF = new JLabel("My Name", JLabel.CENTER);
 nameTF.setFont(new Font("helvetica", Font.BOLD, 18));
 nameTF.setText(I18N.getString(b, "card"+".myname", "MYNAME"));
 p1.add(nameTF);

 jobChoice = new JComboBox();
 jobChoice.setFont(new Font("helvetica", Font.BOLD, 14));

 // Get Job Titles ofrom the Properties file loaded into "b"!
 String next;
 int i=1;
 do {
 next = I18N.getString(b, "job_title" + i++, null);
 if (next != null)
 jobChoice.addItem(next);
 } while (next != null);
 p1.add(jobChoice);

 cp.add(p1);

 JPanel p2 = new JPanel();
 p2.setLayout(new GridLayout(2, 2, 10, 10));

 B1 = new JButton();
 B1.setLabel(I18N.getString(b, "button1.label", "BUTTON
LABEL"));
 p2.add(B1);

 B2 = new JButton();
 B2.setLabel(I18N.getString(b, "button2.label", "BUTTON
LABEL"));
 p2.add(B2);

 B3 = new JButton();
 B3.setLabel(I18N.getString(b, "button3.label", "BUTTON
LABEL"));
 p2.add(B3);

 B4 = new JButton();
 B4.setLabel(I18N.getString(b, "button4.label", "BUTTON
LABEL"));
 p2.add(B4);
 cp.add(p2);

 pack();
 }
}

14.13.1 See Also

 405

Other things may need to be internationalized as well:

Character comparisons

These are set separately on Unix/POSIX; on other operating systems, they depend on
the default Locale.

Date and Time Formats

See GregorianCalendar and DateFormat in Recipe 6.0.

Number Formats

See java.util.NumberFormat in Recipe 5.7.

Message insertions

These appear in different orders in different languages (something the C-language
printf() could never handle). See java.util.MessageFormat in Recipe 14.10.

14.13.2 Internationalization Caveats

Internationalizing your menus and push buttons is only one step. You also need to
internationalize message text in dialogs as well as help files (see the JavaHelp API at
http://java.sun.com/products/javahelp/).

Some items such as AWT FileDialog use native components; their appearance depends on
the native operating system (your application can change its own default locale, but not the
system's; therefore, if your customer has a differently internationalized copy of the same OS, the
file dialogs will appear differently).

14.13.3 Documentation

A short, readable, non-Java-specific introduction to the overall topic of internationalization is The
Guide to Translation and Localization, written by the staff of Lingo Systems and published by the
IEEE Computer Society. For more on Java I18N, see the online documentation that ships with the
JDK; start at jdk1.x/docs/guide/intl/index.html. See also the O'Reilly book Java
Internationalization.

14.13.4 The Last Word

Good luck. Bonne chance. Buena suerte . . .

 406

Chapter 15. Network Clients

15.1 Introduction

15.2 Contacting a Server

15.3 Finding and Reporting Network Addresses

15.4 Handling Network Errors

15.5 Reading and Writing Textual Data

15.6 Reading and Writing Binary Data

15.7 Reading and Writing Serialized Data

15.8 UDP Datagrams

15.9 Program: TFTP UDP Client

15.10 Program: Telnet Client

15.11 Program: Chat Client

15.1 Introduction

Java can be used to write several types of networked programs. In traditional socket-based code,
the programmer is responsible for the entire interaction between the client and server. In higher-
level types, such as RMI, CORBA, and EJB, the software takes over increasing degrees of
control. Sockets are often used for connecting to "legacy" servers; if you were writing a new
application from scratch, you'd be better off using a higher-level service.

It may be helpful to compare sockets with the telephone system. Telephones were originally used
for analog voice traffic, which is pretty unstructured. Then it began to be used for some "layered"
applications; the first widely popular one was facsimile transmission, or FAX. Where would FAX
be without the widespread availability of voice telephony? The second wildly popular layered
application is dialup TCP/IP. This coexisted with the World Wide Web to become popular as a
mass-market service. Where would dialup IP be without widely deployed voice lines? And where
would the Internet be without dialup IP?

Sockets are like that too. The Web, RMI, JDBC, CORBA, and EJB are all layered on top of
sockets.

Ever since the alpha release of Java (originally as a sideline to the HotJava browser) in May of
1995, Java has been popular as a programming language for building network applications. It's
easy to see why, particularly if you've ever built a networked application in C. First, C

 407

programmers have to worry about the platform they are on. Unix uses synchronous sockets,
which work rather like normal disk files vis-a-vis reading and writing, while Microsoft OSes use
asynchronous sockets, which use callbacks to notify when a read or write has completed. Java
glosses over this distinction for you. Further, the amount of code needed to set up a socket in C is
intimidating. Just for fun, Example 15-1 shows the "typical" C code for setting up a client socket.
And remember, this is only the Unix part. And only the part that makes the connection. To be
portable to MS-Windows, there would need to be additional conditional code (using C's #ifdef
mechanism). And C's #include mechanism requires that exactly the right files be included and
in exactly the right order; Java's import mechanism lets you use * to import a whole section of
the API, and the imports can be listed in any order you like.

Example 15-1. C client setup

/*
 * Simple demonstration of code to setup a client connection in C.
 */

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>
#include <string.h>
#include <fcntl.h>

int
main(int argc, char *argv[])
{
 char* server_name = "localhost";
 struct hostent *host_info;
 int sock;
 struct sockaddr_in server;

 /* Look up the remote host's IP address */
 host_info = gethostbyname(server_name);
 if (host_info == NULL) {
 fprintf(stderr, "%s: unknown host: %s\n", argv[0],
server_name);
 exit(1);
 }

 /* Create the socket */
 if ((sock = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
 perror("creating client socket");
 exit(2);
 }

 /* Set up the server's socket address */
 server.sin_family = AF_INET;
 memcpy((char *)&server.sin_addr, host_info->h_addr,
 host_info->h_length);
 server.sin_port = htons(80);

 /* Connect to the server */
 if (connect(sock,(struct sockaddr *)&server,sizeof server) < 0) {
 perror("connecting to server");

 408

 exit(4);
 }

 /* Finally, we can read and write on the socket. */
 /* ... */

 (void) close(sock);
}

In the first recipe, we'll see how to do the connect in essentially one line of Java (plus a bit of
error handling). Then we'll cover error handling and transferring data over a socket. Next, we'll
take a quick look at a datagram or UDP client that implements most of the TFTP (trivial file
transfer protocol) that has been used for two decades to boot diskless workstations. We'll end
with a program that connects interactively to a text-based server such as Telnet or email.

A common theme through most of these client examples is to use existing servers, so we don't
have to generate both the client and the server at the same time. With one exception, all of these
are services that exist on any standard Unix platform. If you can't find a Unix server near you to
try them on, let me suggest that you take an old PC, maybe one that's underpowered for running
the latest Microsoft software, and put up a free, open source Unix system on it. My personal
favorite is OpenBSD, and the market's overall favorite is Linux. Both are readily available on CD-
ROM, can be installed for free over the Internet, and offer all the standard services used in the
client examples, including the time servers and TFTP. Both have free Java implementations
available.

15.2 Contacting a Server

15.2.1 Problem

You need to contact a server using TCP/IP.

15.2.2 Solution

Just create a Socket, passing the hostname and port number into the constructor.

15.2.3 Discussion

There isn't much to this in Java, in fact. When creating a socket, you pass in the hostname and
the port number. The java.net.Socket constructor does the gethostbyname() and the
socket() system call, sets up the server's sockaddr_in structure, and executes the
connect() call. All you have to do is catch the errors, which are subclassed from the familiar
IOException . Example 15.2 sets up a Java network client, using IOException to catch
errors.

Example 15-2. Connect.java (simple client connection)

import java.net.*;

/*
 * A simple demonstration of setting up a Java network client.
 */
public class Connect {

 409

 public static void main(String[] argv) {
 String server_name = "localhost";

 try {
 Socket sock = new Socket(server_name, 80);

 /* Finally, we can read and write on the socket. */
 System.out.println(" *** Connected to " + server_name + "
***");

 /* . do the I/O here .. */

 sock.close();

 } catch (java.io.IOException e) {
 System.err.println("error connecting to " +
 server_name + ": " + e);
 return;
 }

 }
}

15.2.4 See Also

Java supports other ways of using network applications. You can also open a URL and read from
it (see Section 17.7). You can write code so that it will run from a URL, when opened in a web
browser, or from an application (see Recipe 17.9).

15.3 Finding and Reporting Network Addresses

15.3.1 Problem

You want to look up a host's address name or number, or get the address at the other end of a
network connection.

15.3.2 Solution

Get an InetAddress object.

15.3.3 Discussion

The InetAddress object represents the Internet address of a given computer or host. There are
no public constructors; you obtain an InetAddress by calling the static byName() method,
passing in either a hostname like www.darwinsys.com or a network address as a string, like
"1.23.45.67". All the "lookup" methods in this class can throw the checked exception
UnknownHostException, which must be caught or declared on the calling method's header.
None of these methods actually contacts the remote host, so they do not throw the other
exceptions related to network connections.

 410

The method getHostAddress() gives you the numeric IP address (as a string) corresponding
to the InetAddress. The inverse is getHostName() , which reports the name of the
InetAddress. This can be used to print the address of a host given its name, or vice versa:

// From InetAddrDemo.java
String ipNumber = "123.45.67.89";
String hostName = "www.darwinsys.com";
System.out.println(hostName + "'s address is " +
 InetAddress.byName(hostName).getHostAddress());
 System.out.println(ipNumber + "'s name is " +
 InetAddress.byName(ipNumber).getHostName());

You can also get an InetAddress from a Socket by calling its getInetAddress() method.
You can construct a Socket using an InetAddress instead of a hostname string. So, to
connect to port number "myPortNumber" on the same host as an existing socket, you'd use:

InetAddress remote = theSocket.getInetAddress();
Socket anotherSocket = new Socket(remote, myPortNumber);

Finally, to look up all the addresses associated with a host -- a server may be on more than one
network -- use the static method getAllByName(host), which returns an array of
InetAddress objects, one for each IP address associated with the given name.

There is a static method getLocalHost() , which returns an InetAddress equivalent to
"localhost" or 127.0.0.1. This can be used to connect to a server on the same machine as the
client.

15.3.4 See Also

There is not yet a way to look up services, i.e., to find out that the HTTP service is on port 80. Full
implementations of TCP/IP have always included an additional set of resolvers; in C, the call
getservbyname("http", "tcp"); would look up the given service[1] and return a servent
(service entry) structure whose s_port member would contain the value 80. The numbers of
established services do not change, but when services are new or installed in non-routine ways, it
is convenient to be able to change the service number for all programs on a machine or network
(regardless of programming language) just by changing the services definitions. Java should
provide this capability in a future release.

[1] The location where it is looked up varies. It might be in a file named/etc/services on Unix, or the services
file under \windows or \winnt under MS-Windows; in a centralized registry such as Sun's Network
Information Services (NIS, formerly YP); or in some other platform- or network-dependent location.

15.4 Handling Network Errors

15.4.1 Problem

You want more detailed reporting than just IOException if something goes wrong.

15.4.2 Solution

Catch a greater variety of exception classes. There are several subclasses of
SocketException; the most notable of these are ConnectException and

 411

NoRouteToHostException. The names are self-explanatory: the first means that the
connection was refused by the machine at the other end (the server machine), and the second
completely explains the failure. Example 15-3 is an excerpt from the Connect program,
enhanced to handle these conditions.

Example 15-3. ConnectFriendly.java

/* Client with error handling */
public class ConnectFriendly {
 public static void main(String[] argv) {
 String server_name = argv.length == 1 ? argv[0] : "localhost";
 int tcp_port = 80;
 try {
 Socket sock = new Socket(server_name, tcp_port);

 /* Finally, we can read and write on the socket. */
 System.out.println(" *** Connected to " + server_name + "
***");
 /* ... */

 sock.close();

 } catch (UnknownHostException e) {
 System.err.println(server_name + " Unknown host");
 return;
 } catch (NoRouteToHostException e) {
 System.err.println(server_name + " Unreachable");
 return;
 } catch (ConnectException e) {
 System.err.println(server_name + " connect refused");
 return;
 } catch (java.io.IOException e) {
 System.err.println(server_name + ' ' + e.getMessage());
 return;
 }
 }
}

15.5 Reading and Writing Textual Data

15.5.1 Problem

Having connected, you wish to transfer textual data.

15.5.2 Solution

Construct a BufferedReader or PrintWriter from the socket's getInputStream() or
getOutputStream().

15.5.3 Discussion

 412

The Socket class has methods that allow you to get an InputStream or OutputStream to
read from or write to the socket. There is no method to fetch a Reader or Writer, partly
because some network services are limited to ASCII, but mainly because the Socket class was
decided on before there were Reader and Writer classes. You can always create a Reader
from an InputStream or a Writer from an OutputStream using the conversion classes. The
paradigm for the two most common forms is:

BufferedReader is = new BufferedReader(
 new InputStreamReader(sock.getInputStream()));
PrintWriter os = new PrintWriter(sock.getOutputStream(), true);

Here is code that reads a line of text from the "daytime" service, a service offered by full-fledged
TCP/IP suites (such as those included with most Unixes). You don't have to send anything to the
Daytime server; you simply connect and read one line. The server writes one line containing the
date and time, and then closes the connection.

Running it looks like this. I started by getting the current date and time on the local host, then ran
the DaytimeText program to see the date and time on the server (machine "darian" is my local
server):

C:\javasrc\network>date
Current date is Sun 01-23-2000
Enter new date (mm-dd-yy):
C:\javasrc\network>time
Current time is 1:13:18.70p
Enter new time:
C:\javasrc\network>java DaytimeText darian
Time on darian is Sun Jan 23 13:14:34 2000

The code is in class DaytimeText, shown in Example 15-4.

Example 15-4. DaytimeText.java

/**
 * DaytimeText - connect to the Daytime (ascii) service.
 */
public class DaytimeText {
 public static final short TIME_PORT = 13;

 public static void main(String[] argv) {
 String hostName;
 if (argv.length == 0)
 hostName = "localhost";
 else
 hostName = argv[0];

 try {
 Socket sock = new Socket(hostName, TIME_PORT);
 BufferedReader is = new BufferedReader(new
 InputStreamReader(sock.getInputStream()));
 String remoteTime = is.readLine();
 System.out.println("Time on " + hostName + " is " +
remoteTime);
 } catch (IOException e) {

 413

 System.err.println(e);
 }
 }
}

The second example, shown in Example 15-5, shows both reading and writing on the same
socket. The Echo server simply echoes back whatever lines of text you send it. It's not a very
clever server, but it is a useful one: it helps in network testing, and also in testing clients of this
type!

The converse() method holds a short conversation with the Echo server on the named host;
if no host is named, it tries to contact localhost, a universal alias[2] for "the machine the
program is running on."

[2] It used to be universal, when most networked systems were administered by fulltime systems people who
had been trained or served an apprenticeship. Today there are so many machines on the Internet that don't
have localhost configured properly that there is a web site, http://localhost.com, which tells you about
this problem if you type "localhost" into a web browser on a misconfigured machine.

Example 15-5. EchoClientOneLine.java

/**
 * EchoClientOneLine - create client socket, send one line,
 * read it back. See also EchoClient.java, slightly fancier.
 */
public class EchoClientOneLine {
 /** What we send across the net */
 String mesg = "Hello across the net";

 public static void main(String[] argv) {
 if (argv.length == 0)
 new EchoClientOneLine().converse("localhost");
 else
 new EchoClientOneLine().converse(argv[0]);
 }

 /** Hold one conversation across the net */
 protected void converse(String hostName) {
 try {
 Socket sock = new Socket(hostName, 7); // echo server.
 BufferedReader is = new BufferedReader(new
 InputStreamReader(sock.getInputStream()));
 PrintWriter os = new PrintWriter(sock.getOutputStream(),
true);
 // Do the CRLF ourself since println appends only a \r on
 // platforms where that is the native line ending.
 os.print(mesg + "\r\n"); os.flush();
 String reply = is.readLine();
 System.out.println("Sent \"" + mesg + "\"");
 System.out.println("Got \"" + reply + "\"");
 } catch (IOException e) {
 System.err.println(e);
 }
 }
}

 414

It might be a good exercise to isolate the reading and writing code from this method into a
NetWriter class, possibly subclassing PrintWriter and adding the \r\n and the flushing.

15.6 Reading and Writing Binary Data

15.6.1 Problem

Having connected, you wish to transfer binary data.

15.6.2 Solution

Construct a DataInputStream or DataOutputStream from the socket's getInputStream(
) or getOutputStream().

15.6.3 Discussion

The simplest paradigm is:

DataInputStream is = new DataInputStream(sock.getInputStream());
DataOutputStream is = new DataOutputStream(sock.getOutputStream());

If the volume of data might be large, insert a buffered stream for efficiency. The paradigm is:

DataInputStream is = new DataInputStream(
 new BufferedInputStream(sock.getInputStream()));
DataOutputStream is = new DataOutputStream(
 new BufferedOutputStream(sock.getOutputStream()));

This program uses another standard service that gives out the time, this time as a binary integer
representing the number of seconds since 1900. Since the Java Date class base is 1970, we
convert the time base by subtracting the difference between 1970 and 1900. When I used this
exercise in a course, most of the students wanted to add this time difference, reasoning that 1970
is later. But if you think clearly, you'll see that there are fewer seconds between 1999 and 1970
than there are between 1999 and 1900, so subtraction gives the correct number of seconds. And
since the Date constructor needs milliseconds, we multiply the number of seconds by 1,000.

The time base difference is the number of years multiplied by 365.25, multiplied by the number of
seconds in a day. The earth's mean orbital period is approximately 365.23 days, but when you
factor in the leap years correctly, you can use exactly 365 1/4 days per year in such calculations.

The integer that we read from the server is a C-language unsigned int. But Java doesn't
provide an unsigned integer type; normally when you need an unsigned number, you use the
next-larger integer type, which would be long. But Java 2 also doesn't give us a method to read
an unsigned integer from a data stream. The DataInputStream method readInt() reads
Java-style signed integers. There are readUnsignedByte() methods and
readUnsignedShort() methods, but no readUnsignedInt() method. Accordingly, we
synthesize the ability to read an unsigned int (which must be stored in a long, or else you'd
lose the signed bit and be back where you started from) by reading unsigned bytes and
reassembling them using Java's bit-shifting operators.

$ date

 415

Fri Mar 30 10:02:28 EST 2001
$ java DaytimeBinary darian
Remote time is 3194953367
BASE_DIFF is 2208988800
Time diff == 985964567
Time on darian is Fri Mar 30 10:02:47 EST 2001
$

Looking at the output, you can see that the server agrees within a few seconds. So the date
calculation code in Example 15-6 is probably correct.

Example 15-6. DaytimeBinary.java

/**
 * DaytimeBinary - connect to the Daytime (ascii) service.
 */
public class DaytimeBinary {
 /** The TCP port for the binary time service. */
 public static final short TIME_PORT = 37;
 /** Seconds between 1970, the time base for Date(long) and Time.
 * Factors in leap years (up to 2100), hours, minutes, and seconds.
 * Subtract 1 day for 1900, add in 1/2 day for 1969/1970.
 */
 protected static final long BASE_DAYS =
 (long)(((1970 - 1900) * 365.25) - 1 + .5);
 /* Seconds since 1970 */
 public static final long BASE_DIFF = (BASE_DAYS * 24 * 60 * 60);
 /** Convert from seconds to milliseconds */
 public static final int MSEC = 1000;

 public static void main(String[] argv) {
 String hostName;
 if (argv.length == 0)
 hostName = "localhost";
 else
 hostName = argv[0];

 try {
 Socket sock = new Socket(hostName, TIME_PORT);
 DataInputStream is = new DataInputStream(new
 BufferedInputStream(sock.getInputStream()));
 // Need to read 4 bytes from the network, unsigned.
 // Do it yourself; there is no readUnsignedInt().
 // Long is 8 bytes on Java, but we are using the
 // existing daytime protocol, which uses 4-byte ints.
 long remoteTime = (
 ((long)(is.readUnsignedByte() & 0xff) << 24) |
 ((long)(is.readUnsignedByte() & 0xff) << 16) |
 ((long)(is.readUnsignedByte() & 0xff) << 8) |
 ((long)(is.readUnsignedByte() & 0xff) << 0));
 System.out.println("Remote time is " + remoteTime);
 System.out.println("BASE_DIFF is " + BASE_DIFF);
 System.out.println("Time diff == " + (remoteTime -
BASE_DIFF));
 Date d = new Date((remoteTime - BASE_DIFF) * MSEC);

 416

 System.out.println("Time on " + hostName + " is " +
d.toString());
 } catch (IOException e) {
 System.err.println(e);
 }
 }
}

15.7 Reading and Writing Serialized Data

15.7.1 Problem

Having connected, you wish to transfer serialized object data.

15.7.2 Solution

Construct an ObjectInputStream or ObjectOutputStream from the socket's
getInputStream() or getOutputStream().

15.7.3 Discussion

Object serialization is the ability to convert in-memory objects to an external form that can be sent
serially (a byte at a time). This is discussed in Section 9.17.

This program (and its server) operate one service that isn't normally provided by TCP/IP, as it is
Java-specific. It looks rather like the DaytimeBinary program in the previous recipe, but the
server sends us a Date object already constructed. You can find the server for this program in
Section 16.4; Example 15-7 shows the client code.

Example 15-7. DaytimeObject.java

/**
 * DaytimeObject - connect to the Daytime (ascii) service.
 */
public class DaytimeObject {
 /** The TCP port for the object time service. */
 public static final short TIME_PORT = 1951;

 public static void main(String[] argv) {
 String hostName;
 if (argv.length == 0)
 hostName = "localhost";
 else
 hostName = argv[0];

 try {
 Socket sock = new Socket(hostName, TIME_PORT);
 ObjectInputStream is = new ObjectInputStream(new
 BufferedInputStream(sock.getInputStream()));

 // Read and validate the Object
 Object o = is.readObject();

 417

 if (!(o instanceof Date))
 throw new IllegalArgumentException("Wanted Date, got "
+ o);

 // Valid, so cast to Date, and print
 Date d = (Date) o;
 System.out.println("Time on " + hostName + " is " +
d.toString());
 } catch (ClassNotFoundException e) {
 System.err.println("Wanted date, got INVALID CLASS (" + e +
")");
 } catch (IOException e) {
 System.err.println(e);
 }
 }
}

I ask the operating system for the date and time, and then run the program, which prints the date
and time. The server and my desktop are within about ten seconds of agreement:

C:\javasrc\network>date
Current date is Sun 01-23-2000
Enter new date (mm-dd-yy):
C:\javasrc\network>time
Current time is 2:52:35.43p
Enter new time:
C:\javasrc\network>java DaytimeObject
Time on localhost is Sun Jan 23 14:52:25 GMT 2000
C:\javasrc\network>

15.8 UDP Datagrams

15.8.1 Problem

You need to use a datagram connection (UDP) instead of a stream connection (TCP).

15.8.2 Solution

Use DatagramSocket and DatagramPacket.

15.8.3 Discussion

Datagram network traffic is a kindred spirit to the underlying packet-based Ethernet and IP
(Internet protocol) layers. Unlike a stream-based connection such as TCP, datagram transports
such as UDP transmit each "packet" or chunk of data as a single entity with no necessary relation
to any other. A common analogy is that TCP is like talking on the telephone, while UDP is like
sending postcards, or maybe FAX messages.

The differences show up most in error handling. Packets can, like postcards, go astray. When
was the last time the postman rang your bell to tell you that the post office had lost one of several
postcards it was supposed to deliver to you? It doesn't happen, right? Because they don't keep
track of them. On the other hand, when you're talking on the phone and there's a noise burst --

 418

like somebody yelling in the room, or even a bad connection -- you can ask the person at the
other end to repeat what they just said.

With a stream-based connection like a TCP socket, the network transport layer handles errors for
you: it asks the other end to retransmit. With a datagram transport such as UDP, you have to
handle retransmission yourself. Kind of like numbering the postcards you send, so that you can
go back and resend any that don't arrive -- a good excuse to return to your vacation spot,
perhaps.

Ian's Basic Steps: UDP Client

UDP is a bit more involved, so I'll list the basic steps for generating a
UDP client:

1. Create a DatagramSocket with no arguments (the form that
takes two arguments is used on the server).

2. Optionally connect() the socket to an InetAddress (see
Section 15.3) and port number.

3. Create one or more DatagramPacket objects; these are
wrappers around a byte array that contains data you want to send
and is filled in with data you receive.

4. If you did not connect() the socket, provide the InetAddress
and port when constructing the DatagramPacket.

5. Set the packet's length, and use sock.send(packet) to send
data to the server.

6. Use sock.receive() to retrieve data.

Another difference is that datagram transmission preserves message boundaries. That is, if you
write 20 bytes and then write 10 bytes when using TCP, the program reading from the other end
will not know if you wrote one chunk of 30 bytes, two chunks of 15, or even 30 individual
characters. With a DatagramSocket, you construct a DatagramPacket object for each buffer,
and its contents are sent as a single entity over the network; its contents will not be mixed
together with the contents of any other buffer. The DatagramPacket object has methods like
getLength(), setPort(), and so on.

Example 15-8 is a short program that connects via UDP to the Daytime date and time server
used in Section 15.5. Since there is no real notion of "connection" with UDP, even services that
only send you data must be contacted by sending an empty packet, which the UDP server uses
to return its response.

Example 15-8. DaytimeUDP.java

public class DaytimeUDP {
 /** The UDP port number */
 public final static int DAYTIME_PORT = 13;

 /** A buffer plenty big enough for the date string */
 protected final static int PACKET_SIZE = 100;

 419

 // main program
 public static void main(String[] argv) throws IOException {
 if (argv.length < 1) {
 System.err.println("usage: java DayTime host");
 System.exit(1);
 }
 String host = argv[0];
 InetAddress servAddr = InetAddress.getByName(host);
 DatagramSocket sock = new DatagramSocket();

 // Allocate the data buffer
 byte[] buffer = new byte[PACKET_SIZE];

 // The udp packet we will send and receive
 DatagramPacket packet = new DatagramPacket(
 buffer, PACKET_SIZE, servAddr, DAYTIME_PORT);

 /* Send empty max-length (-1 for null byte) packet to server */
 packet.setLength(PACKET_SIZE-1);
 sock.send(packet);
 Debug.println("net", "Sent request");

 // Receive a packet and print it.
 sock.receive(packet);
 Debug.println("net", "Got packet of size " + packet.getLength(
));
 System.out.print("Date on " + host + " is " +
 new String(buffer, 0, packet.getLength()));
 }
}

I'll run it to my server just to be sure that it works:

$ jikes +E -d . DaytimeUDP.java
$ java DaytimeUDP darian
Date on darian is Sat Jan 27 12:42:41 2001
$

15.9 Program: TFTP UDP Client

This program implements the client half of the TFTP application protocol, a well-known service
that has been used in the Unix world for network booting of workstations since before Windows
3.1. I chose this protocol because it's widely implemented on the server side, so it's easy to find a
test server for it.

The TFTP protocol is a bit odd. The client contacts the server on the well-known UDP port
number 69, from a generated port number,[3] and the server responds to the client from a
generated port number. Further communication is on the two generated port numbers.

[3] When the application doesn't care, these are usually made up by the operating system. For example,
when you call a company from a pay phone or cell phone, the company doesn't usually care what number
you are calling from, and if it does, there are ways to find out. Genera ted port numbers generally range from
1024 (the first non-privileged port; see Chapter 16) to 65535 (the largest value that can be held in a 16-bit
port number).

 420

Getting into more detail, as shown in Figure 15-1, the client initially sends a read request with
the filename, and reads the first chunk of data. The read request consists of two bytes (a short)
with the read request code (short integer with a value of 1, defined as OP_RRQ), two bytes for
the sequence number, then the ASCII filename, null terminated, and the string octet, also null
terminated. The server verifies that it can open the file and, if so, sends the first data packet
(OP_DATA), and then reads again. This read-acknowledge cycle is repeated until all the data is
read. Note that each packet is 516 bytes (512 bytes of data, plus 2 bytes for the packet type and
2 more for the packet number) except the last, which can be any length from 4 (zero bytes of
data) to 515 (511 bytes of data). If there is a network I/O error, the packet is re-sent. If a given
packet goes astray, both client and server are supposed to perform a timeout cycle. This client
does not, but the server does. You could add timeouts using a thread; see Section 24.5. The
client code is shown in Example 15-9.

Figure 15-1. The TFTP protocol packet formats

Example 15-9. RemCat.java

import java.io.*;
import java.net.*;

/**
 * RemCat - remotely cat (DOS type) a file, using the TFTP protocol.
 * Inspired by the "rcat" exercise in Learning Tree Course 363,
 * <I>UNIX Network Programming</I>, by Dr. Chris Brown.
 *
 * Note that the TFTP server is NOT "internationalized"; the name and
 * mode in the protocol are defined in terms of ASCII, not UniCode.
 */
public class RemCat {
 /** The UDP port number */
 public final static int TFTP_PORT = 69;
 /** The mode we will use - octet for everything. */
 protected final String MODE = "octet";

 421

 /** The offset for the code/response as a byte */
 protected final int OFFSET_REQUEST = 1;
 /** The offset for the packet number as a byte */
 protected final int OFFSET_PACKETNUM = 3;

 /** Debugging flag */
 protected static boolean debug = false;

 /** TFTP op-code for a read request */
 public final int OP_RRQ = 1,
 /** TFTP op-code for a read request */
 OP_WRQ = 2,
 /** TFTP op-code for a read request */
 OP_DATA = 3,
 /** TFTP op-code for a read request */
 OP_ACK = 4,
 /** TFTP op-code for a read request */
 OP_ERROR = 5;
 protected final static int PACKET = 516; // == 2 + 2 + 512
 protected String host;
 protected InetAddress servAddr;
 protected DatagramSocket sock;
 protected byte buffer[];
 protected DatagramPacket inp, outp;

 /** The main program that drives this network client.
 * @param argv[0] hostname, running TFTP server
 * @param argv[1..n] filename(s), must be at least one
 */
 public static void main(String[] argv) throws IOException {
 if (argv.length < 2) {
 System.err.println("usage: java RemCat host
filename[...]");
 System.exit(1);
 }
 if (debug)
 System.err.println("Java RemCat starting");
 RemCat rc = new RemCat(argv[0]);
 for (int i = 1; i<argv.length; i++) {
 if (debug)
 System.err.println("-- Starting file " +
 argv[0] + ":" + argv[i] + "---");
 rc.readFile(argv[i]);
 }
 }

 RemCat(String host) throws IOException {
 super();
 this.host = host;
 servAddr = InetAddress.getByName(host);
 sock = new DatagramSocket();
 buffer = new byte[PACKET];
 inp = new DatagramPacket(buffer, PACKET);
 outp = new DatagramPacket(buffer, PACKET, servAddr, TFTP_PORT);
 }

 422

 void readFile(String path) throws IOException {
 /* Build a tftp Read Request packet. This is messy because the
 * fields have variable length. Numbers must be in
 * network order, too; fortunately Java just seems
 * naturally smart enough :-) to use network byte order.
 */
 buffer[0] = 0;
 buffer[OFFSET_REQUEST] = OP_RRQ; // read request
 int p = 2; // number of chars into buffer

 // Convert filename String to bytes in buffer , using "p" as an
 // offset indicator to get all the bits of this request
 // in exactly the right spot.
 path.getBytes(0, path.length(), buffer, p); // file name
 p += path.length();
 buffer[p++] = 0; // null byte terminates string

 // Similarly, convert MODE ("octet") to bytes in buffer
 MODE.getBytes(0, MODE.length(), buffer, p);
 p += MODE.length();
 buffer[p++] = 0; // null terminate

 /* Send Read Request to tftp server */
 outp.setLength(p);
 sock.send(outp);

 /* Loop reading data packets from the server until a short
 * packet arrives; this indicates the end of the file.
 */
 int len = 0;
 do {
 sock.receive(inp);
 if (debug)
 System.err.println(
 "Packet # " +
Byte.toString(buffer[OFFSET_PACKETNUM])+
 "RESPONSE CODE " +
Byte.toString(buffer[OFFSET_REQUEST]));
 if (buffer[OFFSET_REQUEST] == OP_ERROR) {
 System.err.println("remcat ERROR: " +
 new String(buffer, 4, inp.getLength()-4));
 return;
 }
 if (debug)
 System.err.println("Got packet of size " +
 inp.getLength());

 /* Print the data from the packet */
 System.out.write(buffer, 4, inp.getLength()-4);

 /* Ack the packet. The block number we
 * want to ack is already in buffer so
 * we just change the opcode. The ACK is
 * sent to the port number which the server
 * just sent the data from, NOT to port
 * TFTP_PORT.
 */

 423

 buffer[OFFSET_REQUEST] = OP_ACK;
 outp.setLength(4);
 outp.setPort(inp.getPort());
 sock.send(outp);
 } while (inp.getLength() == PACKET);

 if (debug)
 System.err.println("** ALL DONE** Leaving loop, last size "
+
 inp.getLength());
 }
}

To test this client, you would need a TFTP server. If you are on a Unix system that you
administer, you can enable the TFTP server to test this client just by editing the file /etc/inetd.conf
and restarting (or just reloading, with kill -HUP) the inetd server. inetd is a program that listens for
a wide range of connections and starts the servers only when a connection from a client comes
along (a kind of lazy evaluation). Beware of security holes; don't turn a TFTP server loose on the
Internet without first reading a good security book, such as O'Reilly's Building Internet Firewalls. I
set up the traditional /tftpboot directory, put this line in my inetd.conf, and reloaded inetd:

tftp dgram udp wait root /usr/libexec/tftpd tftpd -s /tftpboot

(On MS Windows/NT, you could probably enable this from the Services Control Panel.) Then I
put a few test files, one of them named foo, into the /tftpboot directory. Running:

$ java RemCat localhost foo

produced what looked like the file. But just to be safe, I tested the output of RemCat against the
original file, using the Unix diff comparison program. No news is good news:

$ java RemCat localhost foo | diff - /tftpboot/foo

So far so good. Let's not slip this program on an unsuspecting network without exercising the
error handling at least briefly:

$ java RemCat localhost nosuchfile
remcat ERROR: File not found
$

15.10 Program: Telnet Client

This program is a simple Telnet client. Telnet, as you probably know, is the oldest surviving
remote login program in use on the Internet. It began on the original ARPAnet and was later
translated for the Internet. A Unix command-line client lives on, and there are several windowed
clients in circulation. For security reasons, the use of Telnet as a means of logging in remotely
over the Internet has largely been superseded by SSH (see http://www.openssh.com).
However, a Telnet client remains a necessity for such purposes as connecting locally, as well as
debugging textual socket servers and understanding their protocols. For example, it is common to
connect from a Telnet client to an SMTP (email) server; you can often intuit quite a bit about the
SMTP server even if you wouldn't normally type an entire mail session interactively.

 424

When you need to have data copied in both directions at more or less the same time -- from the
keyboard to the remote program, and from the remote program to the screen -- there are two
approaches. Some I/O libraries in C have a function called poll() or select() that allows
you examine a number of files to see which ones are ready for reading or writing. Java does not
support this model. The other model, which works on most platforms and is the norm in Java, is
to use two threads,[4] one to handle the data transfer in each direction. That is our plan here; the
class Pipe encapsulates one thread and the code for copying data in one direction; two
instances are used, one to drive each direction of transfer independently of the other.

[4] A thread is one of (possibly) many separate flows of control within a single process; see Section 24.2.

This program allows you to connect to any text-based network service. For example, you can talk
to your system's SMTP (simple mail transport protocol) server, or the Daytime server (port 13)
used in several earlier recipes in this chapter.

$ java Telnet darian 13
Host darian; port 13
Connected OK
Sat Apr 28 14:07:41 2001
^C
$

The source code is shown in Example 15-10.

Example 15-10. Telnet.java

import java.net.*;
import java.io.*;

/**
 * Telnet - very minimal (no options); connect to given host and
service
 */
public class Telnet {
 String host;
 int portNum;
 public static void main(String[] argv) {
 new Telnet().talkTo(argv);
 }
 private void talkTo(String av[]) {
 if (av.length >= 1)
 host = av[0];
 else
 host = "localhost";
 if (av.length >= 2)
 portNum = Integer.parseInt(av[1]);
 else portNum = 23;
 System.out.println("Host " + host + "; port " + portNum);
 try {
 Socket s = new Socket(host, portNum);

 // Connect the remote to our stdout
 new Pipe(s.getInputStream(), System.out).start();

 // Connect our stdin to the remote

 425

 new Pipe(System.in, s.getOutputStream()).start();

 } catch(IOException e) {
 System.out.println(e);
 return;
 }
 System.out.println("Connected OK");
 }
}

/** This class handles one side of the connection. */
/* This class handles one half of a full-duplex connection.
 * Line-at-a-time mode. Streams, not writers, are used.
 */
class Pipe extends Thread {
 DataInputStream is;
 PrintStream os;

 // Constructor
 Pipe(InputStream is, OutputStream os) {
 this.is = new DataInputStream(is);
 this.os = new PrintStream(os);
 }

 // Do something method
 public void run() {
 String line;
 try {
 while ((line = is.readLine()) != null) {
 os.print(line);
 os.print("\r\n");
 os.flush();
 }
 } catch(IOException e) {
 throw new RuntimeException(e.getMessage());
 }
 }
}

15.11 Program: Chat Client

This program is a simple Chat program. You can't break in on ICQ or AIM with it, because they
each use their own protocol;[5] this one simply writes to and reads from a server, locating the
server with the applet method getCodeBase(). The server for this will be presented in
Chapter 16. How does it look when you run it? Figure 15-2 shows me chatting all by myself
one day.

[5] For an open source program that "AIMs" to let you talk to both from the same program, check out Jabber,
at http://www.jabber.org .

Figure 15-2. Chat client in action

 426

The code is reasonably self-explanatory. We read from the remote server in a thread to make the
input and the output run without blocking each other; this is discussed in Chapter 24. The
reading and writing are discussed in this chapter. The program is an applet (see Section 17.3)
and is shown in Example 15-11.

Example 15-11. ChatClient.java

import java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.net.*;

/** Simple Chat Room Applet.
 * Writing a Chat Room seems to be one of many obligatory rites (or
wrongs)
 * of passage for Java experts these days.
 * <P>
 * This one is a toy because it doesn't implement much of a command
protocol, which
 * means we can't query the server as to * who's logged in,
 * or anything fancy like that. However, it works OK for small groups.
 * <P>
 * Uses client socket w/ two Threads (main and one constructed),
 * one for reading and one for writing.
 * <P>
 * Server multiplexes messages back to all clients.
 * <P>
 * TODO in V2: use Java's MultiCastSocket, if it works OK on '95.
 */
public class ChatRoom extends Applet {
 /** The state */
 protected boolean loggedIn;
 /* The Frame, for a pop-up, durable Chat Room. */
 protected Frame cp;
 /** The default port number */
 protected static int PORTNUM = 7777;
 /** The actual port number */
 protected int port;
 /** The network socket */
 protected Socket sock;
 /** BufferedReader for reading from socket */
 protected BufferedReader is;
 /** PrintWriter for sending lines on socket */

 427

 protected PrintWriter pw;
 /** TextField for input */
 protected TextField tf;
 /** TextArea to display conversations */
 protected TextArea ta;
 /** The Login button */
 protected Button lib;
 /** The LogOUT button */
 protected Button lob;
 /** The TitleBar title */
 final static String TITLE = "Chat: Ian Darwin's Toy Chat Room
Applet";
 /** The message that we paint */
 protected String paintMessage;

 /** Init, inherited from Applet */
 public void init() {
 paintMessage = "Creating Window for Chat";
 repaint();
 cp = new Frame(TITLE);
 cp.setLayout(new BorderLayout());
 String portNum = getParameter("port");
 port = PORTNUM;
 if (portNum == null)
 port = Integer.parseInt(portNum);

 // The GUI
 ta = new TextArea(14, 80);
 ta.setEditable(false); // readonly
 ta.setFont(new Font("Monospaced", Font.PLAIN, 11));
 cp.add(BorderLayout.NORTH, ta);

 Panel p = new Panel();
 Button b;

 // The login button
 p.add(lib = new Button("Login"));
 lib.setEnabled(true);
 lib.requestFocus();
 lib.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 login();
 lib.setEnabled(false);
 lob.setEnabled(true);
 tf.requestFocus(); // set keyboard focus in right
place!
 }
 });

 // The logout button
 p.add(lob = new Button("Logout"));
 lob.setEnabled(false);
 lob.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 logout();
 lib.setEnabled(true);
 lob.setEnabled(false);

 428

 lib.requestFocus();
 }
 });

 p.add(new Label("Message here:"));
 tf = new TextField(40);
 tf.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 if (loggedIn) {
 pw.println(Chat.CMD_BCAST+tf.getText());
 tf.setText("");
 }
 }
 });
 p.add(tf);

 cp.add(BorderLayout.SOUTH, p);

 cp.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 // If we do setVisible and dispose, then the Close
completes
 ChatRoom.this.cp.setVisible(false);
 ChatRoom.this.cp.dispose();
 logout();
 }
 });
 cp.pack();
 // After packing the Frame, centre it on the screen.
 Dimension us = cp.getSize(),
 them = Toolkit.getDefaultToolkit().getScreenSize();
 int newX = (them.width - us.width) / 2;
 int newY = (them.height- us.height)/ 2;
 cp.setLocation(newX, newY);
 cp.setVisible(true);
 paintMessage = "Window should now be visible";
 repaint();
 }

 /** LOG ME IN TO THE CHAT */
 public void login() {
 if (loggedIn)
 return;
 try {
 sock = new Socket(getCodeBase().getHost(), port);
 is = new BufferedReader(new
InputStreamReader(sock.getInputStream()));
 pw = new PrintWriter(sock.getOutputStream(), true);
 } catch(IOException e) {
 showStatus("Can't get socket: " + e);
 cp.add(new Label("Can't get socket: " + e));
 return;
 }

 // construct and start the reader: from server to textarea
 // make a Thread to avoid lockups.
 new Thread(new Runnable() {

 429

 public void run() {
 String line;
 try {
 while (loggedIn && ((line = is.readLine()) !=
null))
 ta.append(line + "\n");
 } catch(IOException e) {
 showStatus("GAA! LOST THE LINK!!");
 return;
 }
 }
 }).start();

 // FAKE LOGIN FOR NOW
 pw.println(Chat.CMD_LOGIN + "AppletUser");
 loggedIn = true;
 }

 /** Log me out, Scotty, there's no intelligent life here! */
 public void logout() {
 if (!loggedIn)
 return;
 loggedIn = false;
 try {
 if (sock != null)
 sock.close();
 } catch (IOException ign) {
 // so what?
 }
 }

 // It is deliberate that there is no STOP method - we want to keep
 // going even if the user moves the browser to another page.
 // Anti-social? Maybe, but you can use the CLOSE button to kill
 // the Frame, or you can exit the Browser.

 /** Paint paints the small window that appears in the HTML,
 * telling the user to look elsewhere!
 */
 public void paint(Graphics g) {
 Dimension d = getSize();
 int h = d.height;
 int w = d.width;
 g.fillRect(0, 0, w, 0);
 g.setColor(Color.black);
 g.drawString(paintMessage, 10, (h/2)-5);
 }
}

15.11.1 See Also

This chat applet might not work on all browser flavors; you might need the Java Plug-in. See
Section 23.6.

 430

There are many better-structured ways to write a chat client, including RMI, Java's Remote
Methods Interface (see Section 22.1) and the Java Messaging Services, part of the Java 2
Enterprise Edition.

If you need to encrypt your socket connection, check out Sun's JSSE (Java Secure Socket
Extension).

For a good overview of network programming from the C programmer's point of view, see the
book Unix Network Programming by the late W. Richard Stevens. Despite the book's name, it's
really about socket and TCP/IP/UDP programming, and covers all parts of the (Unix version)
networking API and protocols such as TFTP in amazing detail.

 431

Chapter 16. Server-Side Java: Sockets

16.1 Introduction

16.2 Opening a Server for Business

16.3 Returning a Response (String or Binary)

16.4 Returning Object Information

16.5 Handling Multiple Clients

16.6 Network Logging

16.7 Program: A Java Chat Server

16.1 Introduction

Sockets form the underpinnings of all networking protocols. JDBC, RMI, CORBA, EJB, and the
non-Java RPC (Remote Procedure Call), the foundation of the Network File System, or NFS: all
of these are implemented by connecting various types of sockets together. Socket connections
can be implemented in many languages, not just Java: C, C++, Perl, and Python are also
popular, and many others are possible. A client or server written in any one of these languages
can communicate with its opposite written in any of the other languages. Therefore, it's worth
taking a quick look at how the ServerSocket behaves, even if you wind up utilizing the higher-
level services such as RMI, JDBC, CORBA, or EJB.

The discussion looks first at the ServerSocket itself, then at writing data over a socket in
various ways. Finally, there is a complete implementation of a usable network server written in
Java: the chat server from the client in the previous chapter.

16.2 Opening a Server for Business

16.2.1 Problem

You need to write a socket-based server.

16.2.2 Solution

Create a ServerSocket for the given port number.

16.2.3 Discussion

The ServerSocket represents the "other end" of a connection, the server that waits patiently for
clients to come along and connect to it. You construct a ServerSocket with just the port
number;[1] since it doesn't need to connect to another host, it doesn't need a particular host's
address as the client socket constructor does.

 432

[1] You can't just pick any port number for your own service, of course. There are certain well-known ports
listed in your services fi le, such as 22 for Secure Shell, 25 for SMTP, and hundreds more. Also, on server-
based operating systems, ports below 1024 are considered "privileged" ports, and require root or
administrator privilege to create. This was an early form of security mechanism; today, with zillions of single-
user desktops connected to the Internet, it provides little, but the restriction remains.

Assuming the ServerSocket constructor doesn't throw an exception, you're in business. Your
next step is to await client activity, which you do by calling accept(). This call blocks until a
client connects to your server; at that point, the accept() returns to you a Socket object (not
a ServerSocket) that is connected in both directions to the Socket object on the client (or its
equivalent, if written in another language). Example 16-1 shows the code for a socket-based
server.

Example 16-1. Listen.java

/**
 * Listen -- make a ServerSocket and wait for connections.
 */
public class Listen {
 /** The TCP port for the service. */
 public static final short PORT = 9999;

 public static void main(String[] argv) throws IOException {
 ServerSocket sock;
 Socket clientSock;
 try {
 sock = new ServerSocket(PORT);
 while ((clientSock = sock.accept()) != null) {

 // Process it.
 process(clientSock);
 }

 } catch (IOException e) {
 System.err.println(e);
 }
 }

 /** This would do something with one client. */
 static void process(Socket s) throws IOException {
 System.out.println("Accept from client " + s.getInetAddress(
));
 // The conversation would be here.
 s.close();
 }
}

You would normally use the socket for reading and writing, as shown in the next few recipes.

You may want to listen only on a particular network interface . While we tend to think of network
addresses as computer addresses, the two are not the same. A network address is actually the
address of a particular network card, or network interface connection, on a given computing
device. A desktop computer, laptop, Palm handheld, or cellular phone might have only a single
interface, hence a single network address. But a large server machine might have two or more
interfaces, usually when it is connected to several networks. A network router is a box (either
special-purpose, e.g., Cisco, or general-purpose, e.g., a Unix host) that has interfaces on multiple

 433

networks and has both the capability and the administrative permission to forward packets from
one network to another. A program running on such a server machine might want to provide
services only to its inside network or its outside network. One way to accomplish this is by
specifying the network interface to be listened on. Suppose you wanted to provide a different view
of web pages for your intranet than you provided to outside customers. For security reasons, you
probably wouldn't run both these services on the same machine. But if you wanted to, you could
do this by providing the network interface addresses as arguments to the ServerSocket
constructor.

However, to use this form of the constructor, you don't have the option of using a string for the
network address's name, as you did with the client socket; you must convert it to an
InetAddress object. You also have to provide a backlog argument, which is the number of
connections that can queue up to be accepted before clients are told that your server is too busy.
The complete setup is shown in Example 16-2.

Example 16-2. ListenInside.java

/**
 * ListenInside -- make a server socket that listens only on
 * a particular interface, in this case, one called "inside".
 */
public class ListenInside {
 /** The TCP port for the service. */
 public static final short PORT = 9999;
 /** The name of the network interface. */
 public static final String INSIDE_HOST = "acmewidgets-inside";
 /** The number of clients allowed to queue */
 public static final int BACKLOG = 10;

 public static void main(String[] argv) throws IOException {
 ServerSocket sock;
 Socket clientSock;
 try {
 sock = new ServerSocket(PORT, BACKLOG,
 InetAddress.getByName(INSIDE_HOST));
 while ((clientSock = sock.accept()) != null) {

 // Process it.
 process(clientSock);
 }

 } catch (IOException e) {
 System.err.println(e);
 }
 }

 /** This would do something with one client. */
 static void process(Socket s) throws IOException {
 System.out.println("Accept from inside " + s.getInetAddress(
));
 // The conversation would be here.
 s.close();
 }
}

 434

The InetAddress.getByName() looks up the given hostname in a system-dependent way,
referring to a configuration file in the /etc or \windows directory, or to some kind of resolver such
as the Domain Name Service. Consult a good book on networking and system administration if
you need to modify this data.

16.3 Returning a Response (String or Binary)

16.3.1 Problem

You need to write a string or binary data to the client.

16.3.2 Solution

The socket gives you an InputStream and an OutputStream. Use them.

16.3.3 Discussion

The client socket examples in the previous chapter called the getInputStream() and
getOutputStream() methods. These examples do the same. The main difference is that they
get the socket from a ServerSocket's accept() method, and that normally the server
creates or modifies the data and writes it to the client. Example 16-3 is a simple Echo server,
which the Echo client of Section 15.5 can connect to. This server handles one complete
connection with a client, then goes back and does the accept() to wait for the next client.

Example 16-3. EchoServer.java

/**
 * EchoServer - create server socket, do I-O on it.
 */
public class EchoServer {
 /** Our server-side rendezvous socket */
 protected ServerSocket sock;
 /** The port number to use by default */
 public final static int ECHOPORT = 7;
 /** Flag to control debugging */
 protected boolean debug = true;

 /** main: construct and run */
 public static void main(String[] argv) {
 new EchoServer(ECHOPORT).handle();
 }

 /** Construct an EchoServer on the given port number */
 public EchoServer(int port) {
 try {
 sock = new ServerSocket(port);
 } catch (IOException e) {
 System.err.println("I/O error in setup");
 System.err.println(e);
 System.exit(1);
 }
 }

 435

 /** This handles the connections */
 protected void handle() {
 Socket ios = null;
 BufferedReader is = null;
 PrintWriter os = null;
 while (true) {
 try {
 ios = sock.accept();
 System.err.println("Accepted from " +
 ios.getInetAddress().getHostName());
 is = new BufferedReader(
 new InputStreamReader(ios.getInputStream(),
"8859_1"));
 os = new PrintWriter(
 new OutputStreamWriter(
 ios.getOutputStream(), "8859_1"), true);
 String echoLine;
 while ((echoLine = is.readLine()) != null) {
 System.err.println("Read " + echoLine);
 os.print(echoLine + "\r\n");
 System.err.println("Wrote " + echoLine);
 }
 System.err.println("All done!");
 } catch (IOException e) {
 System.err.println(e);
 } finally {
 try {
 if (is != null)
 is.close();
 if (os != null)
 os.close();
 if (ios != null)
 ios.close();
 } catch (IOException e) {
 // These are unlikely, but might indicate that
 // the other end shut down early, a disk filled up
 // but wasn't detected until close, etc.
 System.err.println("IO Error in close");
 }
 }
 }
 /*NOTREACHED*/
 }
}

To send a string across an arbitrary network connection, some authorities recommend sending
both the carriage return and the newline character. This explains the \r\n in the code. The
reason is that if the other end is a DOS program or a Telnet-like program, it may be expecting
both characters. On the other hand, if you are writing both ends, you can simply use println(
), followed always by an explicit flush() before you read, to prevent the deadlock of having
both ends trying to read with one end's data still in the PrintWriter's buffer!

If you need to process binary data, use the data streams from java.io instead of the
readers/writers. I need a server for the DaytimeBinary program of Section 15.6. In operation,
it should look like the following.

 436

C:\javasrc\network>java DaytimeBinary
Reme time is 3161316799
BASE_DIFF is 2209032000
Time diff == 952284799
Time on localhost is Sun Mar 05 19:33:19 GMT 2000

C:\javasrc\network>time
Current time is 7:33:23.84p
Enter new time:

C:\javasrc\network>date
Current date is Sun 03-05-2000
Enter new date (mm-dd-yy):

C:\javasrc\network>

Well, it happens that I have such a program in my arsenal, so I present it in Example 16-4. Note
that it directly uses certain public constants defined in the client class. Normally these are defined
in the server class and used by the client, but I wanted to present the client code first.

Example 16-4. DaytimeServer.java (binary server protocol)

/**
 * DaytimeServer - send the binary time.
 */
public class DaytimeServer {
 /** Our server-side rendezvous socket */
 ServerSocket sock;
 /** The port number to use by default */
 public final static int PORT = 37;

 /** main: construct and run */
 public static void main(String[] argv) {
 new DaytimeServer(PORT).runService();
 }

 /** Construct an EchoServer on the given port number */
 public DaytimeServer(int port) {
 try {
 sock = new ServerSocket(port);
 } catch (IOException e) {
 System.err.println("I/O error in setup\n" + e);
 System.exit(1);
 }
 }

 /** This handles the connections */
 protected void runService() {
 Socket ios = null;
 DataOutputStream os = null;
 while (true) {
 try {
 System.out.println("Waiting for connection on port " +
PORT);
 ios = sock.accept();
 System.err.println("Accepted from " +

 437

 ios.getInetAddress().getHostName());
 os = new DataOutputStream(ios.getOutputStream());
 long time = System.currentTimeMillis();

 time /= DaytimeBinary.MSEC; // Daytime Protocol is
in seconds

 // Convert to Java time base.
 time += DaytimeBinary.BASE_DIFF;

 // Write it, truncating cast to int since it is using
 // the Internet Daytime protocol which uses 4 bytes.
 // This will fail in the year 2038, along with all
 // 32-bit timekeeping systems based from 1970.
 // Remember, you read about the Y2038 crisis here
first!
 os.writeInt((int)time);
 os.close();
 } catch (IOException e) {
 System.err.println(e);
 }
 }
 }
}

16.4 Returning Object Information

16.4.1 Problem

You need to return an object.

16.4.2 Solution

Create the object you need, and write it using an ObjectOutputStream created on top of the
socket's output stream.

16.4.3 Discussion

In the previous chapter, you saw a program that read a Date object over an
ObjectInputStream. This code is the other end of that process, the DaytimeObjectServer.
Example 16-5 is a server that constructs a Date object each time it's connected to, and returns
it.

Example 16-5. DaytimeObjectServer.java

/*
 */
public class DaytimeObjectServer {
 /** The TCP port for the object time service. */
 public static final short TIME_PORT = 1951;

 public static void main(String[] argv) {

 438

 ServerSocket sock;
 Socket clientSock;
 try {
 sock = new ServerSocket(TIME_PORT);
 while ((clientSock = sock.accept()) != null) {
 System.out.println("Accept from " +
 clientSock.getInetAddress());
 ObjectOutputStream os = new ObjectOutputStream(
 clientSock.getOutputStream());

 // Construct and write the Object
 os.writeObject(new Date());

 os.close();
 }

 } catch (IOException e) {
 System.err.println(e);
 }
 }
}

16.5 Handling Multiple Clients

16.5.1 Problem

Your server needs to handle multiple clients.

16.5.2 Solution

Use a thread for each.

16.5.3 Discussion

In the C world, there are several mechanisms that allow a server to handle multiple clients. One is
to use a special system call select() or poll(), which notifies the server when any of a set
of file/socket descriptors is ready to read, ready to write, or has an error. By including its
rendezvous socket (equivalent to our ServerSocket) in this list, the C-based server can read
from any of a number of clients in any order. Java does not provide this call, as it is not readily
implementable on some Java platforms. Instead, Java uses the general-purpose Thread
mechanism, as described in Section 24.9. Threads are, in fact, one of the other mechanisms
available to the C programmer on most platforms. Each time the code accepts a new connection
from the ServerSocket, it immediately constructs and starts a new thread object to process that
client.[2]

[2] There are some limits to how many threads you can have, which affect only very large, enterprise-scale
servers. You can't expect to have thousands of threads running in the standard Java runtime. For large,
high-performance servers, you may wish to resort to native code (see Section 26.5) using select() or
poll().

The code to implement accepting on a socket is pretty simple, apart from having to catch
IOExceptions:

 439

/** Run the main loop of the Server. */
void runServer() {
 while (true) {
 try {
 Socket clntSock = sock.accept();
 new Handler(clntSock).start();
 } catch(IOException e) {
 System.err.println(e);
 }
 }
}

To use a thread, you must either subclass Thread or implement Runnable. The Handler class
must be a subclass of Thread for this code to work as written; if Handler instead implemented
the Runnable interface, the code would pass an instance of the Runnable into the constructor
for Thread, as in:

Thread t = new Thread(new Handler(clntSock));
t.start();

But as written, Handler is constructed using the normal socket returned by the accept() call,
and normally calls the socket's getInputStream() and getOutputStream() methods and
holds its conversation in the usual way. I'll present a full implementation, a threaded echo client.
First, a session showing it in use:

$ java EchoServerThreaded
EchoServerThreaded ready for connections.
Socket starting: Socket[addr=localhost/127.0.0.1,port=2117,localport=7]
Socket starting:
Socket[addr=darian/192.168.1.50,port=13386,localport=7]
Socket starting:
Socket[addr=darian/192.168.1.50,port=22162,localport=7]
Socket ENDED: Socket[addr=darian/192.168.1.50,port=22162,localport=7]
Socket ENDED: Socket[addr=darian/192.168.1.50,port=13386,localport=7]
Socket ENDED: Socket[addr=localhost/127.0.0.1,port=2117,localport=7]

Here, I connected to the server once with my EchoClient program and, while still connected,
called it up again (and again) with an operating system-provided Telnet client. The server
communicated with all the clients concurrently, sending the answers from the first client back to
the first client, and the data from the second client back to the second client. In short, it works. I
ended the sessions with the end-of-file character in the program, and used the normal disconnect
mechanism from the Telnet client. Example 16-6 is the code for the server.

Example 16-6. EchoServerThreaded.java

/**
 * Threaded Echo Server, sequential allocation scheme.
 */
public class EchoServerThreaded {

 public static final int ECHOPORT = 7;

 public static void main(String[] av)
 {

 440

 new EchoServerThreaded().runServer();
 }

 public void runServer()
 {
 ServerSocket sock;
 Socket clientSocket;

 try {
 sock = new ServerSocket(ECHOPORT);

 System.out.println("EchoServerThreaded ready for
connections.");

 /* Wait for a connection */
 while(true){
 clientSocket = sock.accept();
 /* Create a thread to do the communication, and start
it */
 new Handler(clientSocket).start();
 }
 } catch(IOException e) {
 /* Crash the server if IO fails. Something bad has happened
*/
 System.err.println("Could not accept " + e);
 System.exit(1);
 }
 }

 /** A Thread subclass to handle one client conversation. */
 class Handler extends Thread {
 Socket sock;

 Handler(Socket s) {
 sock = s;
 }

 public void run()
 {
 System.out.println("Socket starting: " + sock);
 try {
 DataInputStream is = new DataInputStream(
 sock.getInputStream());
 PrintStream os = new PrintStream(
 sock.getOutputStream(), true);
 String line;
 while ((line = is.readLine()) != null) {
 os.print(line + "\r\n");
 os.flush();
 }
 sock.close();
 } catch (IOException e) {
 System.out.println("IO Error on socket " + e);
 return;
 }
 System.out.println("Socket ENDED: " + sock);
 }

 441

 }
}

There can be a performance issue if there are a lot of short transactions, since each client causes
the creation of a new threaded object. If you know or can reliably predict the degree of
concurrency that will be needed, an alternative paradigm involves the pre-creation of a fixed
number of threads. But then how do you control their access to the ServerSocket? A look at
the ServerSocket class documentation reveals that the accept() method is not
synchronized, meaning that any number of threads can call the method concurrently. This could
cause bad things to happen. So I use the synchronized keyword around this call to ensure that
only one client runs in it at a time, because it updates global data. When there are no clients
connected, you will have one (randomly selected) thread running in the ServerSocket object's
accept() method, waiting for a connection, plus n-1 threads waiting for the first thread to
return from the method. As soon as the first thread manages to accept a connection, it goes off
and holds its conversation, releasing its lock in the process so that another randomly chosen
thread is allowed into the accept() method. Each thread's run() method has an indefinite
loop beginning with an accept() and then holding the conversation. The result is that client
connections can get started more quickly, at a cost of slightly greater server startup time. Doing it
this way also avoids the overhead of constructing a new Handler or Thread object each time a
request comes along. This general approach is similar to what the popular Apache web server
does, though it normally creates a number of identical processes (instead of threads) to handle
client connections. Accordingly, I have modified the EchoServerThreaded class shown in
Example 16-7 to work this way.

Example 16-7. EchoServerThreaded2.java

/**
 * Threaded Echo Server, pre-allocation scheme.
 */
public class EchoServerThreaded2 {

 public static final int ECHOPORT = 7;

 public static final int NUM_THREADS = 4;

 /** Main method, to start the servers. */
 public static void main(String[] av)
 {
 new EchoServerThreaded2(ECHOPORT, NUM_THREADS);
 }

 /** Constructor */
 public EchoServerThreaded2(int port, int numThreads)
 {
 ServerSocket servSock;
 Socket clientSocket;

 try {
 servSock = new ServerSocket(ECHOPORT);

 } catch(IOException e) {
 /* Crash the server if IO fails. Something bad has happened
*/
 System.err.println("Could not create ServerSocket " + e);
 System.exit(1);

 442

 return; /*NOTREACHED*/
 }

 // Create a series of threads and start them.
 for (int i=0; i<numThreads; i++) {
 new Thread(new Handler(servSock, i)).start();
 }
 }

 /** A Thread subclass to handle one client conversation. */
 class Handler extends Thread {
 ServerSocket servSock;
 int threadNumber;

 /** Construct a Handler. */
 Handler(ServerSocket s, int i) {
 super();
 servSock = s;
 threadNumber = i;
 setName("Thread " + threadNumber);
 }

 public void run()
 {
 /* Wait for a connection */
 while (true){
 try {
 System.out.println(getName() + " waiting");

 // Wait here for the next connection.
 synchronized(servSock) {
 Socket clientSocket = servSock.accept();
 }
 System.out.println(getName() + " starting, IP=" +
 clientSocket.getInetAddress());
 DataInputStream is = new DataInputStream(
 clientSocket.getInputStream());
 PrintStream os = new PrintStream(
 clientSocket.getOutputStream(), true);
 String line;
 while ((line = is.readLine()) != null) {
 os.print(line + "\r\n");
 os.flush();
 }
 System.out.println(getName() + " ENDED ");
 clientSocket.close();
 } catch (IOException ex) {
 System.out.println(getName() + ": IO Error on
socket " + ex);
 return;
 }
 }
 }
 }
}

 443

16.6 Network Logging

16.6.1 Problem

Your class is running inside a server container, and its debugging output is hard to obtain.

16.6.2 Solution

Use a network-based logger like the one shown here.

16.6.3 Discussion

Getting the debug output from a desktop client is fairly easy on most operating systems. But if the
program you want to debug is running in a "container" like a servlet engine or EJB server, it can
be difficult to obtain debugging output, particularly if the container is running on a remote
computer. It would be convenient if you could have your program send messages back to a
program on your desktop machine for immediate display. Needless to say, it's not that hard to do
this with Java's socket mechanism. I have written a small, simple API to handle this type of
logging function. The program being debugged is the "client" from a socket point of view -- even
though it may be running in a server-side container such as a web server or application server --
since the "network client" is the program that initiates the connection. The program that runs on
your desktop machine is the "server" program for sockets, since it waits for a connection to come
along.

Example 16-8 is a simple client program called NetLogSimple.

Example 16-8. NetLogSimple.java

/* A simple example of using the NetLog program.
 * Unrealistic in that it's standalone; this API is
 * intended for use inside another program, possibly
 * a servlet or EJB.
 */
public class NetLogSimple {

 public static void main(String[] args) throws java.io.IOException {

 System.out.println("NetLogSimple: Starting...");

 // Get the connection to the NetLog
 NetLog nl = new NetLog();

 // Show sending a String
 nl.log("Hello Java");

 // Show sending Objects
 nl.log(new java.util.Date());
 nl.log(nl);

 // Show sending null and "" (normally an accident...)
 nl.log(null);
 nl.log("");

 444

 // All done, close the log
 nl.close();

 System.out.println("NetLogSimple: Done...");
 }
}

In Figure 16-1, I show both the server and client running side by side.

Figure 16-1. NetLog server and client

The client-side API and the server code are both online. Example 16-9 shows the code for the
key parts of the server.

Example 16-9. NetLogServer.java

public class NetLogServer {

 public static final int PORT = 65432;

 public static final int NUM_THREADS = 8;

 JFrame theFrame;
 JTextArea theTextArea;

 /** Main method, to start the servers. */
 public static void main(String[] av)
 {
 new NetLogServer(PORT, NUM_THREADS);
 }

 /** Constructor */
 public NetLogServer(int port, int numThreads)
 {
 ServerSocket servSock;
 Socket clientSocket;

 try {
 servSock = new ServerSocket(PORT);

 } catch(IOException e) {

 445

 /* Crash the server if IO fails. Something bad has happened
*/
 System.err.println("Could not create ServerSocket " + e);
 System.exit(1);
 return; /*NOTREACHED*/
 }

 // Build the GUI - must be before Handler constructors!
 theFrame = new JFrame("NetLog Server");
 theTextArea = new JTextArea(24, 80);
 theFrame.getContentPane().add(new JScrollPane(theTextArea));

 // Now start the Threads
 for (int i=0; i<numThreads; i++) {
 new Thread(new Handler(servSock, i)).start();
 }

 theFrame.pack();
 theFrame.setVisible(true);
 theFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent we) {
 System.exit(0);
 }
 });

 }

 public synchronized void log(int tid, String s) {
 StringBuffer sb = new StringBuffer();
 sb.append(tid);
 sb.append(": ");

 if (s == null) {
 sb.append("(null)");
 }
 else if (s.length() == 0) {
 sb.append("(null string)");
 }
 else
 sb.append(s);

 sb.append('\n');
 theTextArea.append(sb.toString());
 theTextArea.setCaretPosition(theTextArea.getText().length());
 theFrame.toFront();
 }

 /** A Thread subclass to handle one client conversation. */
 class Handler extends Thread {
 ServerSocket servSock;
 int tid;

 /** Construct a Handler. */
 Handler(ServerSocket s, int i) {
 super();
 servSock = s;
 tid = i;

 446

 setName("Thread " + tid);
 }

 public void run()
 {
 /* Wait for a connection */
 while (true){
 try {
 // log(tid, getName() + " waiting");
 Socket clientSocket = servSock.accept();
 log(tid,getName() + " START, IP=" +
 clientSocket.getInetAddress());
 BufferedReader is = new BufferedReader(
 new
InputStreamReader(clientSocket.getInputStream()));
 String line;
 while ((line = is.readLine()) != null) {
 // System.out.println(">> " + line);
 log(tid,line);
 }
 log(tid,getName() + " ENDED ");
 clientSocket.close();
 } catch (IOException ex) {
 log(tid, getName() + ": IO Error on socket " +
ex);
 return;
 }
 }
 }
 }
}

16.6.4 See Also

If you want to run this on a network, you need to be very aware of security issues. One very
common form of attack is a simple denial-of-service, during which the attacker makes a lot of
connections to your server in order to slow it down. If you had extended this program by writing
the log to disk, the attacker could fill up your disk by sending lots of garbage. However, because
this example displays the log on the screen, you would see this happening. Don't leave the server
running while you're not around to watch it!

The Apache Foundation Jakarta Project (http://jakarta.apache.org) offers log4j, which
provides a similar service but is more fully fleshed out; it can write to a file, an OutputStream or
Writer, or a remote log4j, Unix Syslog or NT Event Logger server. Java 2 SDK (JDK 1.4)
includes a new Event Logger mechanism.

16.7 Program: A Java Chat Server

This program implements a simple chat server (Example 16-10) that works with the chat applet
from Section 15.11. It accepts connections from an arbitrary number of clients; any message
sent from one client is broadcast to all clients. In addition to ServerSockets, it demonstrates
the use of threads (see Chapter 24). And since there are interactions among clients, this server
needs to keep track of all the clients it has at any one time. I use an ArrayList (see Section
7.4) to serve as an expandable list, and am careful to use the synchronized keyword around

 447

all accesses to this list to prevent one thread from accessing it while another is modifying it (this is
discussed in Chapter 24).

Example 16-10. ChatServer.java

/** Simple Chat Server to go with our Trivial Chat Client.
 *
 * Does not implement any form of "anonymous nicknames" - probably
 * a good thing, given how a few people have abused anonymous
 * chat rooms in the past.
 */
public class ChatServer {
 /** What I call myself in system messages */
 protected final static String CHATMASTER_ID = "ChatMaster";
 /** What goes between any handle and the message */
 protected final static String SEP = ": ";
 /** The Server Socket */
 protected ServerSocket servSock;
 /** The list of my current clients */
 protected ArrayList clients;
 /** Debugging state */
 private boolean DEBUG = false;

 /** Main just constructs a ChatServer, which should never return */
 public static void main(String[] argv) {
 System.out.println("DarwinSys Chat Server 0.1 starting...");
 ChatServer w = new ChatServer();
 w.runServer(); // should never return.
 System.out.println("**ERROR* Chat Server 0.1 quitting");
 }

 /** Construct (and run!) a Chat Service */
 ChatServer() {
 clients = new ArrayList();
 try {
 servSock = new ServerSocket(Chat.PORTNUM);
 System.out.println("DarwinSys Chat Server Listening on port
" +
 Chat.PORTNUM);
 } catch(IOException e) {
 log("IO Exception in ChatServer.<init>");
 System.exit(0);
 }
 }

 public void runServer() {
 try {
 while (true) {
 Socket us = servSock.accept();
 String hostName = us.getInetAddress().getHostName();
 System.out.println("Accepted from " + hostName);
 ChatHandler cl = new ChatHandler(us, hostName);
 synchronized (clients) {
 clients.add(cl);
 cl.start();
 if (clients.size() == 1)

 448

 cl.send(CHATMASTER_ID,
 else {
 cl.send(CHATMASTER_ID, "Welcome! you're the
latest of " +
 clients.size() + " users.");
 }
 }
 }
 } catch(IOException e) {
 log("IO Exception in runServer: " + e);
 System.exit(0);
 }
 }

 protected void log(String s) {
 System.out.println(s);
 }

 /** Inner class to handle one conversation */
 protected class ChatHandler extends Thread {
 /** The client socket */
 protected Socket clientSock;
 /** BufferedReader for reading from socket */
 protected BufferedReader is;
 /** PrintWriter for sending lines on socket */
 protected PrintWriter pw;
 /** The client's host */
 protected String clientIP;
 /** String handle */
 protected String login;

 /* Construct a Chat Handler */
 public ChatHandler(Socket sock, String clnt) throws IOException
{
 clientSock = sock;
 clientIP = clnt;
 is = new BufferedReader(
 new InputStreamReader(sock.getInputStream()));
 pw = new PrintWriter(sock.getOutputStream(), true);
 }

 /** Each ChatHandler is a Thread, so here's the run() method,
 * which handles this conversation.
 */
 public void run() {
 String line;
 try {
 while ((line = is.readLine()) != null) {
 char c = line.charAt(0);
 line = line.substring(1);
 switch (c) {
 case Chat.CMD_LOGIN:
 if (!Chat.isValidLoginName(line)) {
 send(CHATMASTER_ID, "LOGIN " + line + "
invalid");
 log("LOGIN INVALID from " + clientIP);
 continue;

 449

 }
 login = line;
 broadcast(CHATMASTER_ID, login +
 " joins us, for a total of " +
 clients.size() + " users");
 break;
 case Chat.CMD_MESG:
 if (login == null) {
 send(CHATMASTER_ID, "please login first");
 continue;
 }
 int where = line.indexOf(Chat.SEPARATOR);
 String recip = line.substring(0, where);
 String mesg = line.substring(where+1);
 log("MESG: " + login + "-->" + recip + ": "+
mesg);
 ChatHandler cl = lookup(recip);
 if (cl == null)
 psend(CHATMASTER_ID, recip + " not logged
in.");
 else
 cl.psend(login, mesg);
 break;
 case Chat.CMD_QUIT:
 broadcast(CHATMASTER_ID, "Goodbye to "
 close();
 return; // END OF THIS CHATHANDLER

 case Chat.CMD_BCAST:
 if (login != null)
 broadcast(login, line);
 else
 log("B<L FROM " + clientIP);
 break;
 default:
 log("Unknown cmd " + c + " from " + login + "@"
+ clientIP);
 }
 }
 } catch (IOException e) {
 log("IO Exception: " + e);
 } finally {
 // the sock ended, so we're done, bye now
 // Can NOT send a good-bye message, until we have
 // a simple command-based protocol in place.
 System.out.println(login + SEP + "All Done");
 synchronized(clients) {
 clients.remove(this);
 if (clients.size() == 0) {
 System.out.println(CHATMASTER_ID + SEP +
 "Im so lonely I could cry...");
 } else if (clients.size() == 1) {
 ChatHandler last = (ChatHandler)clients.get(0);
 last.send(CHATMASTER_ID,
 "Hey, you're talking to yourself again");
 } else {
 broadcast(CHATMASTER_ID,

 450

 "There are now " + clients.size() + "
users");
 }
 }
 }
 }

 protected void close() {
 if (clientSock == null) {
 log("close when not open");
 return;
 }
 try {
 clientSock.close();
 clientSock = null;
 } catch (IOException e) {
 log("Failure during close to " + clientIP);
 }
 }

 /** Send one message to this user */
 public void send(String sender, String mesg) {
 pw.println(sender + SEP + mesg);
 }

 /** Send a private message */
 protected void psend(String sender, String msg) {
 send("<*" + sender + "*>", msg);
 }

 /** Send one message to all users */
 public void broadcast(String sender, String mesg) {
 System.out.println("Broadcasting " + sender + SEP + mesg);
 for (int i=0; i<clients.size(); i++) {
 ChatHandler sib = (ChatHandler)clients.get(i);
 if (DEBUG)
 System.out.println("Sending to " + sib);
 sib.send(sender, mesg);
 }
 if (DEBUG) System.out.println("Done broadcast");
 }

 protected ChatHandler lookup(String nick) {
 synchronized(clients) {
 for (int i=0; i<clients.size(); i++) {
 ChatHandler cl = (ChatHandler)clients.get(i);
 if (cl.login.equals(nick))
 return cl;
 }
 }
 return null;
 }

 /** Present this ChatHandler as a String */
 public String toString() {
 return "ChatHandler[" + login + "]";
 }

 451

 }
}

I've used this code with a number of clients connected concurrently, and no difficulties were
found.

16.7.1 See Also

The server side of any network mechanism is extremely sensitive to security issues. It is easy for
one misconfigured or poorly written server program to compromise the security of an entire
network! There are many books on network security, but two books stand out as worthy of
mention: Cheswick and Bellovin's Firewalls and Internet Security and the more recent Hacking
Exposed, by McCLure et al.

This completes my discussion of server-side Java using sockets. I'll next return to the client side
to discuss applets and some useful client-side recipes. Later, in Chapter 22, I show an alternate
technology that can be used to implement both sides of the chat program in a more object-
oriented manner. Finally, a chat server could also be implemented using JMS (Java Message
Service), a newer API that handles store-and-forward message processing. This is beyond the
scope of this book, but there's an example of such a chat server in O'Reilly's book Java Message
Service.

 452

Chapter 17. Network Clients II: Applets and Web
Clients

17.1 Introduction

17.2 Embedding Java in a Web Page

17.3 Applet Techniques

17.4 Contacting a Server on the Applet Host

17.5 Making an Applet Show a Document

17.6 Making an Applet Run a CGI Script

17.7 Reading the Contents of a URL

17.8 Extracting HTML from a URL

17.9 Extracting URLs from a File

17.10 Converting a Filename to a URL

17.11 Program: MkIndex

17.12 Program: LinkChecker

17.1 Introduction

In Chapter 15, I discussed straightforward client applications that communicate over a socket.
Now we'll turn our attention to a variety of other client topics. First let's look at Java-based web
applet client programs. Applets are, as you probably know, small programs that run inside and
under the control of a web browser. There's a discussion of Applet versus JApplet and the
Applet methods. Deploying an applet is no different from deploying a web page -- you simply
copy it into the web server directory -- but you need an HTML page to invoke it (discussed in
Section 17.2). We'll then discuss some additional client-side topics, such as loading a URL, that
apply both to applets and to applications. In Chapter 18, we'll talk about servlets, which are
similar to applets but run inside the process of a web server. There are some issues on the applet
deployment side; see Section 23.6 for a means of ensuring that a user's browser has a Java
runtime compatible with your applet. Section 23.12 contains information on Java Web Start,
which combines applet-like downloading with full application capabilities.

17.2 Embedding Java in a Web Page

17.2.1 Problem

 453

You need to deploy a Java applet.

17.2.2 Solution

Use an APPLET tag in an HTML page.

17.2.3 Discussion

While this is not the place for a dissertation on the details of HTML, you should at least know that
HTML is a tag-based textual language for writing web pages. The tags (officially called elements)
have short names, such as P for paragraph and A for anchor (hyperlink). Tag names can be
written in uppercase (as I do in this book) or lowercase, but be consistent. Tags are surrounded
by angle brackets, < and >. Modifiers, called attributes, go between the tag name and the close
angle brackets. For example, the body of a web page might be introduced by <BODY
BGCOLOR=WHITE>, which gives that page the specified background color. Most tags, including
BODY and P, have a corresponding end tag, consisting of a forward slash character (/) and the
name of the tag. A paragraph, for example, should begin with <P> and end with </P>. In days of
yore, it was common to simply use <P> between paragraphs, but this mistake stems from not
understanding the nature of HTML tags as containers. You still see old pages done this way and,
occasionally, very old books or web pages recommending this.

The most common method of embedding a Java applet is to use an APPLET tag. Other tags
include OBJECT and EMBED, which I'll discuss briefly in Section 23.6. The APPLET tag has
three required parameters (CODE/OBJECT, WIDTH, and HEIGHT) and several optional ones.
Table 17-1 lists these parameters.

Table 17-1. Applet parameters
Parameter Description

CODE Name of applet class to run

OBJECT Name of serialized applet to run
WIDTH Width in pixels for applet display
HEIGHT Height in pixels for applet display

CODEBASE Directory (URL) from which to load class file
ARCHIVE List of JAR archives in which to hunt for applet and resources
ALT Alternate text to display if applet can't be loaded

NAME Name of this applet instance
ALIGN Horizontal alignment
VSPACE Vertical space around applet, in pixels

HSPACE Horizontal space around applet, in pixels

You may also wish to pass some parameters in to the applet. Since an applet has no main
method, there is no command-line communication with the applet. Hence, the applet parameters
are included in the HTML page: the PARAM tags go between the <APPLET> and </APPLET>
tags. The following applet, for example, is an HTML file that demonstrates many of these
parameters.

<APPLET>
 CODE="DemoApplet.class" WIDTH=400 HEIGHT=75
 CODEBASE="http://www.darwinsys.com/applets/"
 >

 454

 <PARAM NAME="text" VALUE="Java is fun!">
 <HR>
 If you were using a Java-enabled browser,
 you would see the graphical results instead of this paragraph.
 <HR>
</APPLET>

17.3 Applet Techniques

17.3.1 Problem

You need to write an applet.

17.3.2 Solution

Write a class that extends java.applet.Applet or javax.swing.JApplet, and use some
or all of the applet methods. Start with Applet if you want to use plain AWT and be portable to
all browsers; use JApplet if you want Swing capabilities in your applet (but see the note at the
end of this recipe under Section 17.3.4).

17.3.3 Discussion

The four Applet "life cycle" methods that an applet writer can implement are init() , start(
), stop(), and destroy() (see Table 17-2). The applet's life cycle is more complex than
that of a regular application, since the user can make the browser move to a new page, return to
a previous page, reload the current page, etc. What's a poor applet to do?

Table 17-2. Applet methods
Method name Function

init() Initialize the applet (takes the place of a constructor).
start() The page is loaded, and we're ready to display.
stop() The user is leaving this page.
destroy() The applet is being unloaded.

Applets normally use their init() method to initialize their state, the same functionality as a
constructor in a non-applet class. This may seem a bit odd for those used to constructors in an
OO language. However, it is mandatory for any methods that will call applet-specific methods,
such as the all-important getParameter(). Why? In brief, because the browser will first
construct the applet -- always with the no-argument constructor form, which is much easier for the
browser (see Section 25.4) -- and then call its setStub() method.[1] The AppletStub is an
object provided by the browser, which provides a method getAppletContext(), which of
course returns an AppletContext object. These are both delegates (in the design patterns
sense). The AppletStub object contains the actual implementation of getParameter() ,
getCodeBase(), and getDocumentBase(). The AppletContext object contains the real
implementations of most other applet-specific routines, including showStatus() , getImage(
), and showDocument().

 455

[1] It didn't have to be this way. At the beginning of Java-browserdom, they could have said, "Let's just pass
in the applet stub as an argument when constructing the applet." But they didn't, "and now it's too late," as
Dr. Seuss once said.

So, an applet constructor can't call getParameter(), getImage(), or showStatus()
because the AppletStub isn't set until the applet's constructor returns. About the most a
constructor can do is add GUI elements. Therefore, it is generally preferable to do all the applet's
initialization in one place, so it might as well be the init() method, which a sane browser will
call only once for each applet instance. This is why, in practice, most applets don't have any
constructors: the default (no-argument) constructor is the only one ever called.

The start() method is called when the browser has fully loaded the applet and it's ready to
go. This is the normal time for your applet to start threads (Chapter 24), audio or video (see
Chapter 12), or anything else that takes time. The stop() method is called when the user
gets bored and leaves the page.

The least commonly used applet method is destroy(); it is called when the browser removes
your applet instance from memory and allows you to close files, network connections, etc. After
that, it's all over.

All four methods are public, all return void, and all take no arguments. They are shown
together in Example 17-1.

Example 17-1. AppletMethods.java

import java.applet.*;
import java.awt.*;
import java.net.*;

/** AppletMethods -- show stop/start and AudioClip methods */

public class AppletMethods extends Applet {
 /** AudioClip object, used to load and play a sound file. */
 AudioClip snd = null;

 /** Yes, applets can have constructors! */
 public AppletMethods() {
 System.out.println("In Appletmethods::<init> No Arg form");
 }

 /** Initialize the sound file object and the GUI. */
 public void init() {
 System.out.println("In AppletMethods.init()");
 try {
 snd = getAudioClip(new URL(getCodeBase(), "laugh.au"));
 } catch (MalformedURLException e) {
 showStatus(e.toString());
 }
 setSize(200,100); // take the place of a GUI
 }

 /** Called from the Browser when the page is ready to go. */
 public void start() {
 System.out.println("In AppletMethods.start()");
 if (snd != null)

 456

 snd.play(); // loop() to be obnoxious...
 }

 /** Called from the Browser when the page is being vacated. */
 public void stop() {
 System.out.println("In AppletMethods.stop()");
 if (snd != null)
 snd.stop(); // stop play() or loop()
 }

 /** Called from the Browser (when the applet is being un-cached?).
 * Not actually used here, but the println will show when it's
called.
 */
 public void destroy() {
 System.out.println("In AppletMethods.destroy()");
 }

 public void paint(Graphics g) {
 g.drawString("Welcome to Java", 50, 50);
 }

 /** An alternate form of getParameter that lets
 * you provide a default value, since this is so common.
 */
 public String getParameter(String p, String def) {
 return getParameter(p)==null?def:getParameter(p);
 }
}

17.3.4 See Also

Applets based on Applet and using AWT will work on most browsers. Applets based on
JApplet and/or using Swing components will need the Java Plug-in (see Section 23.6) to
ensure that a compatible runtime is available.

17.4 Contacting a Server on the Applet Host

17.4.1 Problem

You want an applet to contact a socket-based server on the host from which it was loaded.

17.4.2 Solution

Use the method getCodeBase() to retrieve a URL for the applet host, and call the URL's
getHost(). Use this to construct a client socket.

17.4.3 Discussion

For very good security reasons, applets are not permitted network access to servers on hosts
other than the one from which the applet was loaded.

 457

To reach a server on the download host, call the applet method getCodeBase(), which yields
a URL for the applet host. Call this URL's getHost() method to get the hostname. Finally, use
the hostname to open a client socket (see Section 15.2). For example:

URL u = getCodeBase();
String host = u.getHost();
Socket s = new Socket(host , MY_SERVER_PORT);

Of course, in real code you wouldn't create all those temporary variables:

Socket s = new Socket(getCodeBase().getHost(), MY_SERVER_PORT);

And, of course, you will need error handling. Example 17-2 shows an applet that constructs a
sort of login dialog and passes the results to a socket-based server on the applet host, using
exactly this technique. Figure 17-1 shows the screen display.

Example 17-2. SocketApplet.java

/** Initialize the GUI nicely. */
public void init() {
 Label aLabel;

 setLayout(new GridBagLayout());
 int LOGO_COL = 1;
 int LABEL_COL = 2;
 int TEXT_COL = 3;
 int BUTTON_COL = 1;
 GridBagConstraints gbc = new GridBagConstraints();
 gbc.weightx = 100.0; gbc.weighty = 100.0;

 gbc.gridx = LABEL_COL; gbc.gridy = 0;
 gbc.anchor = GridBagConstraints.EAST;
 add(aLabel = new Label("Name:", Label.CENTER), gbc);
 gbc.anchor = GridBagConstraints.CENTER;
 gbc.gridx = TEXT_COL; gbc.gridy = 0;
 add(nameTF=new TextField(10), gbc);

 gbc.gridx = LABEL_COL; gbc.gridy = 1;
 gbc.anchor = GridBagConstraints.EAST;
 add(aLabel = new Label("Password:", Label.CENTER), gbc);
 gbc.anchor = GridBagConstraints.CENTER;
 gbc.gridx = TEXT_COL; gbc.gridy = 1;
 add(passTF=new TextField(10), gbc);
 passTF.setEchoChar(*);

 gbc.gridx = LABEL_COL; gbc.gridy = 2;
 gbc.anchor = GridBagConstraints.EAST;
 add(aLabel = new Label("Domain:", Label.CENTER), gbc);
 gbc.anchor = GridBagConstraints.CENTER;
 gbc.gridx = TEXT_COL; gbc.gridy = 2;
 add(domainTF=new TextField(10), gbc);
 sendButton = new Button("Send data");
 gbc.gridx = BUTTON_COL; gbc.gridy = 3;
 gbc.gridwidth = 3;
 add(sendButton, gbc);

 458

 whence = getCodeBase();

 // Now the action begins...
 sendButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 String name = nameTF.getText();
 if (name.length() == 0) {
 showStatus("Name required");
 return;
 }
 String domain = domainTF.getText();
 if (domain.length() == 0) {
 showStatus("Domain required");
 return;
 }
 showStatus("Connecting to host " + whence.getHost() +
 " as " + nameTF.getText());

 try {
 Socket s = new Socket(getCodeBase().getHost(),
 SocketServer.PORT);
 PrintWriter pf = new PrintWriter(s.getOutputStream(),
true);
 // send login name
 pf.println(nameTF.getText());
 // passwd
 pf.println(passTF.getText());
 // and domain
 pf.println(domainTF.getText());

 BufferedReader is = new BufferedReader(
 new InputStreamReader(s.getInputStream()));
 String response = is.readLine();
 showStatus(response);
 } catch (IOException e) {
 showStatus("ERROR: " + e.getMessage());
 }
 }
 });
}

Figure 17-1. SocketApplet in action

 459

17.5 Making an Applet Show a Document

17.5.1 Problem

You want an applet to transfer control to another web page.

17.5.2 Solution

Use the AppletContext method showDocument().

17.5.3 Discussion

Any applet can request the browser that contains it to show a new web page by passing the new
URL into the showDocument() method. Usually, the browser replaces the current page with
the target page. This, of course, triggers a call to the applet's stop() method.

Note that the applet shown in Example 17-3 only works correctly in a full browser; the
AppletViewer does not display HTML pages, so it ignores this method!

Example 17-3. ShowDocApplet.java

/** ShowDocApplet: Demonstrate showDocument().
 */
public class ShowDocApplet extends Applet {
 // String targetString =
"http://www.darwinsys.com/javacook/secret.html";
 String targetString =
"file:///c:/javasrc/network/ShowDocApplet.java";
 /** The URL to go to */
 URL targetURL;

 /** Initialize the Applet */
 public void init() {
 setBackground(Color.gray);
 try {
 targetURL = new URL(targetString);
 } catch (MalformedURLException mfu) {
 throw new IllegalArgumentException(
 "ShowDocApplet got bad URL " + targetString);
 }
 Button b = new Button("View Secret");
 add(b);
 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 getAppletContext().showDocument(targetURL);
 }
 });
 }

 public void stop() {
 System.out.println("Ack! Its been fun being an Applet.
Goodbye!");
 }

 460

}

Figure 17-2 shows the program in operation.

Figure 17-2. ShowDocApplet program

If the URL is unreachable, the browser will notify the user with a dialog, and the current page
(including the applet) will be left in view.

17.6 Making an Applet Run a CGI Script

17.6.1 Problem

You want an applet to run a CGI script.

17.6.2 Solution

Just use showDocument() with the correct URL.

17.6.3 Discussion

It doesn't matter what type of target your URL refers to. It can be an HTML page, a plain text file,
a compressed tar file to be downloaded, a CGI script, servlet, or JavaServer Page (Chapter 18).
In all cases, you simply provide the URL. The Java applet for this appears in Example 17-4.

Example 17-4. TryCGI.java

/**

 461

 * Try running a CGI-BIN script from within Java.
 */
public class TryCGI extends Applet implements ActionListener {
 protected Button goButton;

 public void init() {
 add(goButton = new Button("Go for it!"));
 goButton.addActionListener(this);
 }

 public void actionPerformed(ActionEvent evt) {
 try {
 URL myNewURL = new URL("http://server/cgi-bin/credit");

 // debug...
 System.out.println("URL = " + myNewURL);

 // "And then a miracle occurs..."
 getAppletContext().showDocument(myNewURL);

 } catch (Exception err) {
 System.err.println("Error!
 showStatus("Error, look in Java Console for details!");
 }
 }
}

Since this is an applet, it requires an HTML page to invoke it. I used the HTML shown here:

<HTML><HEAD>
<TITLE>Java Applets Can Run CGI's (at least on Netscape
Navigator)</TITLE>
<BODY BGCOLOR="White">
<H1>Java Applets Can run CGI's (at least on Netscape Navigator)</H1>
<P>Click on the button on this little Applet for p(r)oof!
<APPLET CODE="TryCGI" WIDTH=100 HEIGHT=30>
<P>If you can see this, you need to get a Java-powered(tm) Web Browser
before you can watch for real.
</APPLET>
<HR>
<P>Use The Source, Luke.

17.7 Reading the Contents of a URL

17.7.1 Problem

You want to read the contents of a URL (which can include a CGI, servlet, etc.).

17.7.2 Solution

Use the URL's openConnection() or getContent() method. This is not dependent upon
being in an applet.

 462

17.7.3 Discussion

The URL class has several methods that allow you to read. The first and simplest, openStream(
), returns an InputStream that can read the contents directly. The simple TextBrowser
program shown here calls openStream() and uses this to construct a BufferedReader to
read text lines from what is presumed to be a web server. I also demonstrate it reading a local file
to show that almost any valid URL can be used:

$ java TextBrowser http://localhost/
*** Loading http://localhost/... ***
<HTML>
<HEAD>
 <TITLE>Ian Darwin's Webserver On The Road</TITLE>
 <LINK REL="stylesheet" TYPE="text/css" HREF="/stylesheet.css"
TITLE="Style"> </HEAD>
<BODY BGCOLOR="#c0d0e0">
<H1>Ian Darwin's Webserver On The Road</H1>
... (rest of body omitted) ...

$ java TextBrowser file:///etc/group
*** Loading file:///etc/group... ***
wheel:*:0:root
daemon:*:1:daemon

The next method, openConnection(), returns a URLConnection object. This allows you
more flexibility, providing methods such as getHeaderField(), getLastModified(), and
other detailed methods. The third URL method, getContent(), is more general. It returns an
object that might be an InputStream, or an object containing the data. Use instanceof to
determine which of several types was returned.

17.7.4 See Also

O'Reilly's Java Network Programming discusses this topic in considerable detail.

17.8 Extracting HTML from a URL

17.8.1 Problem

You need to extract all the HTML tags from a URL.

17.8.2 Solution

Use this simple HTML tag extractor.

17.8.3 Discussion

A simple HTML extractor can be made by reading a character at a time and looking for < and >
tags. This is reasonably efficient if a BufferedReader is used.

 463

The ReadTag program shown in Example 17-5 implements this; given a URL, it opens the file
(similar to TextBrowser in Section 17.7) and extracts the HTML tags. Each tag is printed to
the standard output.

Example 17-5. ReadTag.java

/** A simple but reusable HTML tag extractor.
 */
public class ReadTag {
 /** The URL that this ReadTag object is reading */
 protected URL myURL = null;
 /** The Reader for this object */
 protected BufferedReader inrdr = null;

 /* Simple main showing one way of using the ReadTag class. */
 public static void main(String[] args) throws
MalformedURLException, IOException {
 if (args.length == 0) {
 System.err.println("Usage: ReadTag URL [...]");
 return;
 }

 for (int i=0; i<args.length; i++) {
 ReadTag rt = new ReadTag(args[0]);
 String tag;
 while ((tag = rt.nextTag()) != null) {
 System.out.println(tag);
 }
 rt.close();
 }
 }

 /** Construct a ReadTag given a URL String */
 public ReadTag(String theURLString) throws
 IOException, MalformedURLException {

 this(new URL(theURLString));
 }

 /** Construct a ReadTag given a URL */
 public ReadTag(URL theURL) throws IOException {
 myURL = theURL;
 // Open the URL for reading
 inrdr = new BufferedReader(new
InputStreamReader(myURL.openStream()));
 }

 /** Read the next tag. */
 public String nextTag() throws IOException {
 int i;
 while ((i = inrdr.read()) != -1) {
 char thisChar = (char)i;
 if (thisChar == '<') {
 String tag = readTag();
 return tag;
 }

 464

 }
 return null;
 }

 public void close() throws IOException {
 inrdr.close();
 }

 /** Read one tag. Adapted from code by Elliotte Rusty Harold */
 protected String readTag() throws IOException {
 StringBuffer theTag = new StringBuffer("<");
 int i = '<';

 while (i != '>' && (i = inrdr.read()) != -1) {
 theTag.append((char)i);
 }
 return theTag.toString();
 }

 /* Return a String representation of this object */
 public String toString() {
 return "ReadTag[" + myURL.toString() + "]";
 }
}

When I ran it on one system, I got the following output:

darian$ java ReadTag http://localhost/
<HTML>
<HEAD>
<TITLE>
</TITLE>
</HEAD>
<FRAMESET BORDER="0" ROWS="110, *" FRAMESPACING="0">
<FRAME NAME="header" SRC="header.html" SCROLLING="NO" MARGINHEIGHT="0"
FRAMEBORDER="0">
<FRAMESET COLS="130, *" FRAMESPACING="0">
<FRAME NAME="menu" SRC="menu.html" SCROLLING="NO" MARGINHEIGHT="0"
FRAMEBORDER="0">
<FRAME NAME="main" SRC="main.html" MARGINHEIGHT="15" MARGINWIDTH="15"
FRAMEBORDER="0">
</FRAMESET>
</FRAMESET>
</HTML>
darian$

17.9 Extracting URLs from a File

17.9.1 Problem

You need to extract just the URLs from a file.

17.9.2 Solution

 465

Use ReadTag from Section 17.8, and just look for tags that might contain URLs.

17.9.3 Discussion

The program in Example 17-6 uses ReadTag from the previous recipe and checks each tag to
see if it is a "wanted tag" defined in the array wantedTags. These include A (anchor), IMG
(image), and APPLET tags. If it is determined to be a wanted tag, the URL is extracted from the
tag and printed.

Example 17-6. GetURLs.java

public class GetURLs {
 /** The tag reader */
 ReadTag reader;

 public GetURLs(URL theURL) throws IOException {
 reader = new ReadTag(theURL);
 }

 public GetURLs(String theURL) throws MalformedURLException,
IOException {
 reader = new ReadTag(theURL);
 }

 /* The tags we want to look at */
 public final static String[] wantTags = {
 "<a ", "<A ",
 "<applet ", "<APPLET ",
 "<img ", "<IMG ",
 "<frame ", "<FRAME ",
 };

 public ArrayList getURLs() throws IOException {
 ArrayList al = new ArrayList();
 String tag;
 while ((tag = reader.nextTag()) != null) {
 for (int i=0; i<wantTags.length; i++) {
 if (tag.startsWith(wantTags[i])) {
 al.add(tag);
 continue; // optimization
 }
 }
 }
 return al;
 }

 public void close() throws IOException {
 if (reader != null)
 reader.close();
 }
 public static void main(String[] argv) throws
 MalformedURLException, IOException {
 String theURL = argv.length == 0 ?
 "http://localhost/" : argv[0];
 GetURLs gu = new GetURLs(theURL);

 466

 ArrayList urls = gu.getURLs();
 Iterator urlIterator = urls.iterator();
 while (urlIterator.hasNext()) {
 System.out.println(urlIterator.next());
 }
 }
}

The GetURLs program prints the URLs contained in a given web page:

darian$ java GetURLs http://daroad

darian$

The LinkChecker program in Section 17.12 will extract the HREF or SRC attributes, and
validate them.

17.10 Converting a Filename to a URL

17.10.1 Problem

You require a URL, but you have a local file.

17.10.2 Solution

Use getResource() or File.toURL().

17.10.3 Discussion

There are many operations that require a URL, but for which it would be convenient to refer to a
file on the local filesystem or disk. For these, the convenience method getResource() in the
class java.lang.Class can be used. This takes a filename and returns a URL for it:

public class GetResource {
 public static void main(String[] argv) {
 Class c = GetResource.class;
 java.net.URL u = c.getResource("GetResource.java");
 System.out.println(u);

 467

 }
}

When I ran this code on Java 2 on my MS-Windows system, it printed:

file:/C:/javasrc/netweb/GetResource.java

Java 2 also introduced a toURL() method into the File class (Section 10.2). Unlike
getResource(), this method can throw a MalformedURLException. This makes sense,
since a File class can be constructed with arbitrary nonsense in the filename. So the previous
code can be rewritten as:

public class FileToURL
{
 public static void main(String[] argv) throws MalformedURLException
{
 java.net.URL u = new File("GetResource.java").toURL();
 System.out.println(u);
 }
}

Both programs print the same result:

> java FileToURL
file:/usr/home/ian/javasrc/netweb/GetResource.java
> java GetResource
file:/usr/home/ian/javasrc/netweb/GetResource.java

17.11 Program: MkIndex

This little program has saved me a great deal of time over the years. It reads a directory
containing a large number of files, harking back from a time when I kept all my demonstration
Java programs in a fairly flat directory structure. MkIndex, shown in Example 17-7, produces a
better-formatted listing than the default directory that web servers generate. For one thing, it
includes an alphabet navigator, which lets you jump directly to the section of files whose names
begin with a certain letter, saving a lot of scrolling time or iterations with the browser's find menu.
This program uses a File object (see Section 10.2) to list the files, and another to decide
which are files and which are directories. It also uses Collections.sort (see Section 7.9) to
sort the names alphabetically before generating the output. It writes its output to the file
index.html in the current directory, even if an alternate directory argument is given. This is the
default filename for most standard web servers; if your web server uses something different, of
course, you can rename the file.

Example 17-7. MkIndex.java

/** MkIndex -- make a static index.html for a Java Source directory
 */
public class MkIndex {
 /** The output file that we create */
 public static final String OUTPUTFILE = "index-byname.html";
 /** The string for TITLE and H1 */
 public static final String TITLE =

 468

 "Ian Darwin's Java Cookbook: Source Code: By Name";
 /** The main output stream */
 PrintWriter out;
 /** The background color for the page */
 public static final String BGCOLOR="#33ee33";
 /** The File object, for directory listing. */
 File dirFile;

 /** Make an index */
 public static void main(String[] args) throws IOException {
 MkIndex mi = new MkIndex();
 String inDir = args.length > 0 ? args[0] : ".";
 mi.open(inDir, OUTPUTFILE); // open files
 mi.BEGIN(); // print HTML header
 mi.process(); // do bulk of work
 mi.END(); // print trailer.
 mi.close(); // close files
 }

 void open(String dir, String outFile) {
 dirFile = new File(dir);
 try {
 out = new PrintWriter(new FileWriter(outFile));
 } catch (IOException e) {
 System.err.println(e);
 }
 }

 /** Write the HTML headers */
 void BEGIN() throws IOException {
 println("<HTML>");
 println("<HEAD>");
 println(" <META HTTP-EQUIV=\"Content-Type\"
 CONTENT=\"text/html; charset=iso-8859-1\">");
 println(" <META NAME=\"GENERATOR\" CONTENT=\"Java
MkIndex\">");
 println(" <title>" + TITLE + "</title>");
 println("</HEAD>");
 println("<body bgcolor=\"" + BGCOLOR + "\">");
 println("<h1>" + TITLE + "</h1>");
 if (new File("about.html").exists()) {
 FileIO.copyFile("about.html", out, false);
 } else {
 println("<P>The following files are online.");
 println("Some of these files are still experimental!</P>");
 println("<P>Most of these files are Java source code.");
 println("If you load an HTML file from here, the applets
will not run!");
 println("HTML files must be saved to disk and the applets
compiled,");
 println("before you can run them!");
 }
 println("<P>All files are Copyright ©: All rights
reserved.");
 println("See the accompanying <A HREF=\"legal-notice.txt\
 ">Legal Notice for conditions of use.");

 469

 println("May be used by readers of my Java Cookbook for
educational
 purposes,");
 println("and for commercial use if certain conditions are
met.");
 println("</P>");
 println("<HR>");
 }

 /** Array of letters that exist. Should
 * fold case here so don't get f and F as distinct entries!
 * This only works for ASCII characters (8-bit chars).
 */
 boolean[] exists = new boolean[255];

 /** Vector for temporary storage, and sorting */
 ArrayList vec = new ArrayList();

 /** Do the bulk of the work */
 void process() throws IOException {

 System.out.println("Start PASS ONE -- from directory to
Vector...");
 String[] fl = dirFile.list();
 for (int i=0; i<fl.length; i++) {
 String fn = fl[i];
 if (fn.startsWith("index")) { // we'll have no self-
reference here!
 System.err.println("Ignoring " + fn);
 continue;
 } else if (fn.endsWith(".bak")) { // delete .bak
files
 System.err.println("DELETING " + fn);
 new File(fn).delete();
 continue;
 } else if (fn.equals("CVS")) { // Ignore CVS
subdirectories
 continue; // don't mention it
 } else if (fn.charAt(0) == '.') { // UNIX dot-file
 continue;
 } else if (fn.endsWith(".class")) { // nag about .class
files
 System.err.println("Ignoring " + fn);
 continue;
 } else if (new File(fn).isDirectory()) {
 vec.add(fn + "/");
 } else
 vec.add(fn);
 exists[fn.charAt(0)] = true; // only after chances to
continue
 }

 System.out.println("Writing the Alphabet Navigator...");
 for (char c = 'A'; c<='Z'; c++)
 if (exists[c])
 print("" + c + " ");

 470

 // ... (and the beginning of the HTML Unordered List...)
 println("");

 System.out.println("Sorting the Vector...");
 Collections.sort(vec, String.CASE_INSENSITIVE_ORDER);

 System.out.println("Start PASS TWO -- from Vector to " +
 OUTPUTFILE + "...");
 String fn;
 Iterator it = vec.iterator();
 while (it.hasNext()) {
 fn = (String)it.next();
 // Need to make a link into this directory.
 // IF there is a descr.txt file, use it for the text
 // of the link, otherwise, use the directory name.
 // But, if there is an index.html or index.html file,
 // make the link to that file, else to the directory
itself.
 if (fn.endsWith("/")) { // directory
 String descr = null;
 if (new File(fn + "descr.txt").exists()) {
 descr = com.darwinsys.util.FileIO.readLine(fn +
 "descr.txt");
 };
 if (new File(fn + "index.html").exists())
 mkDirLink(fn+"index.html", descr!=null?descr:fn);
 else if (new File(fn + "index.htm").exists())
 mkDirLink(fn+"index.htm",
descr!=null?descr:fn);
 else
 mkLink(fn, descr!=null?descr:fn + " -- Directory");
 } else // file
 mkLink(fn, fn);
 }
 System.out.println("*** process - ALL DONE***");
 }

 /** Keep track of each letter for #links */
 boolean done[] = new boolean[255];

 void mkLink(String href, String descrip) {
 print("");
 char c = href.charAt(0);
 if (!done[c]) {
 print("");
 done[c] = true;
 }
 println("" + descrip + "");
 }

 void mkDirLink(String index, String dir) {
 // XXX Open the index and look for TITLE lines!
 mkLink(index, dir + " -- Directory");
 }

 /** Write the trailers and a signature */
 void END() {

 471

 System.out.println("Finishing the HTML");
 println("");
 flush();
 println("<P>This file generated by ");
 print("MkIndex, a Java program, at
");
 println(new Date().toString());
 println("</P>");
 println("</BODY>");
 println("</HTML>");
 }

 /** Close open files */
 void close() {
 System.out.println("Closing output files...");
 if (out != null)
 out.close();
 }

 /** Convenience routine for out.print */
 void print(String s) {
 out.print(s);
 }

 /** Convenience routine for out.println */
 void println(String s) {
 out.println(s);
 }

 /** Convenience for out.flush(); */
 void flush() {
 out.flush();
 }
}

17.12 Program: LinkChecker

One of the hard parts of maintaining a large web site is ensuring that all the hypertext links,
images, applets, and so forth remain valid as the site grows and changes. It's easy to make a
change somewhere that breaks a link somewhere else, exposing your users to those "Doh!"-
producing 404 errors. What's needed is a program to automate checking the links. This turns out
to be surprisingly complex due to the variety of link types. But we can certainly make a start.

Since we already created a program that reads a web page and extracts the URL-containing tags
(Section 17.9), we can use that here. The basic approach of our new LinkChecker program is
this: given a starting URL, create a GetURLs object for it. If that succeeds, read the list of URLs
and go from there. This program has the additional functionality of displaying the structure of the
site using simple indentation in a graphical window, as shown in Figure 17-3.

Figure 17-3. LinkChecker in action

 472

So using the GetURLS class from Section 17.9, the rest is largely a matter of elaboration. A lot
of this code has to do with the GUI (see Chapter 13). The code uses recursion: the routine
checkOut() calls itself each time a new page or directory is started.

Example 17-8 shows the code for the LinkChecker program.

Example 17-8. LinkChecker.java

/** A simple HTML Link Checker.
 * Need a Properties file to set depth, URLs to check. etc.
 * Responses not adequate; need to check at least for 404-type errors!
 * When all that is (said and) done, display in a Tree instead of a
TextArea.
 * Then use Color coding to indicate errors.
 */
public class LinkChecker extends Frame implements Runnable {
 protected Thread t = null;
 /** The "global" activation flag: set false to halt. */
 boolean done = false;
 protected Panel p;
 /** The textfield for the starting URL.
 * Should have a Properties file and a JComboBox instead.
 */
 protected TextField textFldURL;
 protected Button checkButton;
 protected Button killButton;
 protected TextArea textWindow;
 protected int indent = 0;

 public static void main(String[] args) {
 LinkChecker lc = new LinkChecker();
 lc.setSize(500, 400);
 lc.setLocation(150, 150);
 lc.setVisible(true);
 if (args.length == 0)
 return;
 lc.textFldURL.setText(args[0]);
 }

 public void startChecking() {
 done = false;
 checkButton.setEnabled(false);

 473

 killButton.setEnabled(true);
 textWindow.setText("");
 doCheck();
 }

 public void stopChecking() {
 done = true;
 checkButton.setEnabled(true);
 killButton.setEnabled(false);
 }

 /** Construct a LinkChecker */
 public LinkChecker() {
 super("LinkChecker");
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 setVisible(false);
 dispose();
 System.exit(0);
 }
 });
 setLayout(new BorderLayout());
 p = new Panel();
 p.setLayout(new FlowLayout());
 p.add(new Label("URL"));
 p.add(textFldURL = new TextField(40));
 p.add(checkButton = new Button("Check URL"));
 // Make a single action listener for both the text field (when
 // you hit return) and the explicit "Check URL" button.
 ActionListener starter = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 startChecking();
 }
 };
 textFldURL.addActionListener(starter);
 checkButton.addActionListener(starter);
 p.add(killButton = new Button("Stop"));
 killButton.setEnabled(false); // until startChecking is
called.
 killButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 if (t == null || !t.isAlive())
 return;
 stopChecking();
 }
 });
 // Now lay out the main GUI - URL & buttons on top, text larger
 add("North", p);
 textWindow = new TextArea(80, 40);
 add("Center", textWindow);
 }

 public void doCheck() {
 if (t!=null && t.isAlive())
 return;
 t = new Thread(this);
 t.start();

 474

 }

 public synchronized void run() {
 textWindow.setText("");
 checkOut(textFldURL.getText());
 textWindow.append("-- All done --");
 }

 /** Start checking, given a URL by name.
 * Calls checkLink to check each link.
 */
 public void checkOut(String rootURLString) {
 URL rootURL = null;
 GetURLs urlGetter = null;

 if (done)
 return;
 if (rootURLString == null) {
 textWindow.append("checkOut(null) isn't very useful");
 return;
 }

 // Open the root URL for reading
 try {
 rootURL = new URL(rootURLString);
 urlGetter = new GetURLs(rootURL);
 } catch (MalformedURLException e) {
 textWindow.append("Can't parse " + rootURLString + "\n");
 return;
 } catch (FileNotFoundException e) {
 textWindow.append("Can't open file " + rootURLString +
"\n");
 return;
 } catch (IOException e) {
 textWindow.append("openStream " + rootURLString + " " + e +
"\n");
 return;
 }

 // If we're still here, the root URL given is OK.
 // Next we make up a "directory" URL from it.
 String rootURLdirString;
 if (rootURLString.endsWith("/") ||
 rootURLString.endsWith("\\"))
 rootURLdirString = rootURLString;
 else {
 rootURLdirString = rootURLString.substring(0,
 rootURLString.lastIndexOf('/')); // XXX or \
 }

 try {
 ArrayList urlTags = urlGetter.getURLs();
 Iterator urlIterator = urlTags.iterator();
 while (urlIterator.hasNext()) {
 if (done)
 return;
 String tag = (String)urlIterator.next();

 475

 System.out.println(tag);

 String href = extractHREF(tag);

 for (int j=0; j<indent; j++)
 textWindow.append("\t");
 textWindow.append(href + " -- ");

 // Can't really validate these!
 if (href.startsWith("mailto:")) {
 textWindow.append(href + " -- not checking");
 continue;
 }

 if (href.startsWith("..") || href.startsWith("#")) {
 textWindow.append(href + " -- not checking");
 // nothing doing!
 continue;
 }

 URL hrefURL = new URL(rootURL, href);

 // TRY THE URL.
 // (don't combine previous textWindow.append with this
one,
 // since this one can throw an exception)
 textWindow.append(checkLink(hrefURL));

 // There should be an option to control whether to
 // "try the url" first and then see if off-site, or
 // vice versa, for the case when checking a site you're
 // working on on your notebook on a train in the
Rockies
 // with no web access available.

 // Now see if the URL is off-site.
 if (!hrefURL.getHost().equals(rootURL.getHost())) {
 textWindow.append("-- OFFSITE -- not following");
 textWindow.append("\n");
 continue;
 }
 textWindow.append("\n");

 // If HTML, check it recursively. No point checking
 // PHP, CGI, JSP, etc., since these usually need forms
input.
 // If a directory, assume HTML or something under it
will work.
 if (href.endsWith(".htm") ||
 href.endsWith(".html") ||
 href.endsWith("/")) {
 ++indent;
 if (href.indexOf(':') != -1)
 checkOut(href); // RECURSE
 else {
 String newRef =
 rootURLdirString + '/' + href;

 476

 checkOut(newRef); // RECURSE
 }
 --indent;
 }
 }
 urlGetter.close();
 } catch (IOException e) {
 System.err.println("Error " + ":(" + e +")");
 }
 }

 /** Check one link, given its DocumentBase and the tag */
 public String checkLink(URL linkURL) {

 try {
 // Open it; if the open fails we'll likely throw an
exception
 URLConnection luf = linkURL.openConnection();
 if (linkURL.getProtocol().equals("http")) {
 HttpURLConnection huf = (HttpURLConnection)luf;
 String s = huf.getResponseCode() + " " +
huf.getResponseMessage();
 if (huf.getResponseCode() == -1)
 return "Server error: bad HTTP response";
 return s;
 } else if (linkURL.getProtocol().equals("file")) {
 InputStream is = luf.getInputStream();
 is.close();
 // If that didn't throw an exception, the file is
probably OK
 return "(File)";
 } else
 return "(non-HTTP)";
 }
 catch (SocketException e) {
 return "DEAD: " + e.toString();
 }
 catch (IOException e) {
 return "DEAD";
 }
 }

 /** Read one tag. Adapted from code by Elliotte Rusty Harold */
 public String readTag(BufferedReader is) {
 StringBuffer theTag = new StringBuffer("<");
 int i = '<';

 try {
 while (i != '>' && (i = is.read()) != -1)
 theTag.append((char)i);
 }
 catch (IOException e) {
 System.err.println("IO Error: " + e);
 }
 catch (Exception e) {
 System.err.println(e);
 }

 477

 return theTag.toString();
 }

 /** Extract the URL from <sometag attrs HREF="http://foo/bar" attrs
...>
 * We presume that the HREF is correctly quoted!!!!!
 * TODO: Handle Applets.
 */
 public String extractHREF(String tag) throws MalformedURLException
{
 String caseTag = tag.toLowerCase(), attrib;
 int p1, p2, p3, p4;

 if (caseTag.startsWith("<a "))
 attrib = "href"; // A
 else
 attrib = "src"; // image, frame
 p1 = caseTag.indexOf(attrib);
 if (p1 < 0) {
 throw new MalformedURLException("Can't find " + attrib + "
in " + tag);
 }
 p2 = tag.indexOf ("=", p1);
 p3 = tag.indexOf("\"", p2);
 p4 = tag.indexOf("\"", p3+1);
 if (p3 < 0 || p4 < 0) {
 throw new MalformedURLException("Invalid " + attrib + " in
" + tag);
 }
 String href = tag.substring(p3+1, p4);
 return href;
 }
}

17.12.1 Downloading an Entire Web Site

It would also be useful to have a program that reads the entire contents of a web site and saves it
on your local hard disk. Sounds wasteful, but disk space is quite inexpensive nowadays, and this
would allow you to peruse a web site when not connected to the Internet. Of course you couldn't
run most of the CGI scripts that you downloaded, but at least you could navigate around the text
and view the images. The LinkChecker program contains all the seeds of such a program: you
need only to download the contents of each non-dynamic URL (see the test for HTML and
directories near the end of routine checkOut() and the code in Section 17.7), create the
requisite directories (Section 10.10), and create and write to a file on disk (see Chapter 9).
This final step is left as an exercise for the reader.

 478

Chapter 18. Web Server Java: Servlets and JSP

18.1 Introduction

18.2 First Servlet: Generating an HTML Page

18.3 Servlets: Processing Form Parameters

18.4 Cookies

18.5 Session Tracking

18.6 Generating PDF from a Servlet

18.7 HTML Meets Java: JSP

18.8 JSP Include/Forward

18.9 JavaServer Pages Using a Servlet

18.10 Simplifying Your JSP with a JavaBean

18.11 JSP Syntax Summary

18.12 Program: CookieCutter

18.13 Program: JabaDot Web News Portal

18.1 Introduction

This chapter covers Web Server Java, but you won't find anything about writing CGI programs in
Java here. Although it would be entirely possible to do so, it would not be efficient. The whole
notion of CGI programs is pretty much passe. Every time a CGI program is invoked, the web
server has to create a new heavyweight process in which to run it; this is inefficient. If it's
interpreted in Java, the program has to be translated into machine code each time; this is even
more inefficient.

Today's trend is toward building functionality into the web server: Microsoft ASP, PHP3, Java
servlets, and JavaServer Pages™ (JSP[1]) are examples of this. None of these normally requires
a separate process to be created for each request; the Java-based solutions run in a thread (see
Chapter 24) inside the web server, and the Java bytecode need only be translated into machine
code once in a long while, assuming a just-in-time (JIT) runtime system. Naturally, this book
concentrates on the Java solutions.

 479

[1] It has been said of Sun that when they copy something, they both improve upon it and give credit where
credit's due in the name. Consider Microsoft ODBC and Java JDBC; Microsoft ASP and Java JSP. The
same cannot be said of most large companies.

We'll use two examples in this chapter. Consider the task of displaying a web page with five
randomly chosen integer numbers (lottery players love this sort of thing). The Java code you
need is simple:

// Part of file netweb/servlets_jsp/FiveInts.java
Random r = new Random();
for (int i=0; i<5; i++)
 System.out.println(r.nextInt());

But of course you can't just run that and save its output into an HTML file because you want each
person seeing the page to get a different set of numbers. If you wanted to mix that into a web
page, you'd have to write code to println() a bit of HTML. This would be a Java servlet.

The servlet code could get messy, however, since you'd have to escape double quotes inside
strings. Worse, if the webmaster wanted to change the HTML, he'd have to approach the
programmer's sanctified source code and plead to have it changed. Imagine if you could give the
webmaster a page containing a bit of HTML and the Java code you need, and have it magically
compiled into Java whenever the HTML was changed. Imagine no longer, says the marketer, for
that capability is here now, with JavaServer Pages.

The second example is a dictionary (list of terms); I'll present this both as a servlet and as a JSP.

I won't talk about how you get your servlet engine installed, nor exactly how you install your
servlet. If you don't already have a servlet engine, though, I'd recommend downloading Tomcat
from http://jakarta.apache.org. Tomcat is the official reference implementation -- so
designated by Sun -- for the servlet and JSP standard. It is also (as you can infer from the URL)
the official servlet engine for the ever-popular Apache web server.

18.2 First Servlet: Generating an HTML Page

18.2.1 Problem

You want a servlet to present some information to the user.

18.2.2 Solution

Override the HttpServlet method service(), or doGet()/doPost().

18.2.3 Discussion

The abstract class javax.servlet.Servlet is designed for those who wish to structure an
entire web server around the servlet notion. For example, in Sun's Java Web Server, there is a
servlet subclass for handling plain HTML pages, another for processing CGI programs, and so
on. Unless you are writing your own web server, you will probably not extend from this class, but
rather its subclass HttpServlet , in the package javax.servlet.http. This class has a
method:

public void service(HttpServletRequest req, HttpServletResponse resp)

 480

throws ServletException, IOException;

The service method is passed two arguments, request and response. The request contains all
the information about the request from the browser, including its input stream should you need to
read data. The response argument contains information to get the response back to the browser,
including the output stream to write your response back to the user.

But the web has several HTTP methods for passing data into a web page. Unimportant for plain
HTML pages, this distinction becomes of interest when processing forms, i.e., web pages with fill-
in-the-blank or choice items. Briefly, the GET method of HTTP is used to pass all the form data
appended to the URL. GET URLs look like this, for example:

http://www.acmewidgets.com/cgi-bin/ordercgi?productId=123456

They have the advantage that the user can bookmark them, avoiding having to fill in the form
multiple times. But there is a limit of about 1KB on the overall length of the URL. Since this must
be a single string, there is an encoding that allows spaces, tabs, colons, and other characters to
be presented as two hexadecimal digits: %20 is the character hexadecimal 20, or the ASCII
space character. The POST method, by contrast, passes any parameters as input on the socket
connection, after the HTTP headers.

The default implementation of the service() method in the HttpServlet class figures out
which method was used to invoke the servlet. It dispatches to the correct method: doGet() if a
GET request, doPost() if a POST request, etc., passing along the request and response
arguments. So while you can, in theory, override the service() method, it's more common
(and officially recommended) to override either doGet(), doPost(), or both.

The simplest HttpServlet is something like Example 18-1.

Example 18-1. HelloServlet.java

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Simple Hello World Servlet
 */
public class HelloServlet extends HttpServlet{
 public void doGet(HttpServletRequest request, HttpServletResponse
response) throws
IOException {
 PrintWriter out = response.getWriter();
 response.setContentType("text/html");
 out.println("<H1>Hello from a Servlet</H1>");
 out.println("<P>This servlet ran at ");
 out.println(new Date().toString());
 out.println("<P>Courtesy of HelloServlet.java 1.2 ");
 }
}

The program will give output resembling Figure 18-1.

 481

Figure 18-1. Hello from a servlet

You can do much more with servlets. Suppose you wanted to print a dictionary -- a list of terms
and their meanings -- from within a servlet. The code would be pretty much as it was in Figure
18-1, except that you'd need a doGet() method instead of a doPost() method. Example
18-2 is the code for TermsServlet .

Example 18-2. TermsServlet.java

/** A Servlet to list the dictionary terms.
 */
public class TermsServlet extends HttpServlet {
 public void doGet(HttpServletRequest req, HttpServletResponse resp)
throws IOException {
 PrintWriter out = resp.getWriter();
 out.println("<HTML>");
 out.println("<TITLE>Ian Darwin's Computer Terms and
Acronyms</TITLE>");
 out.println("<BODY>");
 out.println("<H1>Ian Darwin's Computer Terms and
Acronyms</H1>");
 out.println("<TABLE BORDER=2>");
 out.println("<TR><TH>Term<TH>Meaning</TR>");

 // This part of the Servlet generates a list of lines like
 // <TR> <TD>JSP <TD>Java Server Pages, a neat tool for ...
 TermsAccessor tax = new TermsAccessor("terms.txt");
 Iterator e = tax.iterator();
 while (e.hasNext()) {
 Term t = (Term)e.next();
 out.print("<TR><TD>");
 out.print(t.term);
 out.print("<TD>");
 out.print(t.definition);
 out.println("</TR>");
 }
 out.println("</TABLE>");
 out.println("<HR></HR>");

 482

 out.println("<A HREF="servlet/TermsServletPDF
 ">Printer-friendly (Acrobat PDF) version");
 out.println("<HR></HR>");
 out.println("<A
HREF="mailto:compquest@darwinsys.com/subject=Question
 ">Ask about another term");
 out.println("<HR></HR>");
 out.println("Back to HS <A HREF="../
 ">Back to DarwinSys");
 out.println("<HR></HR>");
 out.println("<H6>Produced by $Id: TermsServlet.java,v 1.1
2000/04/06
 ian Exp $");
 out.print(" using ");
 out.print(tax.ident);
 out.println("</H6>");
 }
}
Debugging Tip for Servlets

Several servlet engines (e.g., Allaire JRun) generate a lot of very small
log files spread over many different directories. It is worth investing the
time to learn where your particular servlet engine records stack traces,
standard error and output, and other messages.

See also Section 16.6, which shows how a servlet or other server
component can communicate with a network-based logging tool.

18.3 Servlets: Processing Form Parameters

18.3.1 Problem

You want to process the data from an HTML form in a servl et.

18.3.2 Solution

Use the request object's getParameter() method.

18.3.3 Discussion

Each uniquely named INPUT element in the FORM on the HTML page makes an entry in the
request object's list of parameters. These can be obtained as an enumeration, but more
commonly you request just one. Figure 18-2 shows a simple form that asks you how many
random numbers you want generated, and makes up that many for you.

Figure 18-2. Random numbers HTML page

 483

When I type the number 8 into the field and press the "Get Yours" button, I see the screen shot in
Figure 18-3.

Figure 18-3. Random numbers servlet output

How does it work? The program obviously consists of both an HTML page and a Java servlet.
The HTML page appears in Example 18-3; notice the FORM entry and the INPUT field.

Example 18-3. IntsServlet.htm

<HTML>
<HEAD><TITLE>Random Numbers Page</TITLE></HEAD>
<BODY BGCOLOR="white">
<H1>Random Numbers Page</H1>
<P>This site will let you pick some random numbers for Lottery, lucky
number

 484

or other purposes, all electronically.</P>
<FORM METHOD=POST ACTION="/servlets/IntsServlet">
<H4>How Many Numbers Do You Want Today?</H4>
<INPUT NAME=howmany SIZE=2> (default is 5)

<INPUT TYPE="SUBMIT" VALUE="Get YOURS!">
</FORM>
</BODY></HTML>

Example 18-4 shows the Java for the servlet. Watch for the use of getParameter().

Example 18-4. IntsServlet.java

import java.io.*;
import java.util.Random;
import javax.servlet.*;
import javax.servlet.http.*;

public class IntsServlet extends HttpServlet {
 protected final int DEFAULT_NUMBER = 5;

 /** Called when the form is filled in by the user. */
 public void doPost(HttpServletRequest req, HttpServletResponse
resp)
 throws IOException {
 resp.setContentType("text/html");
 PrintWriter out = resp.getWriter();

 // The usual HTML setup stuff.
 out.println("<HTML>");
 out.println("<HEAD>");
 out.println("<BODY BGCOLOR=\"white\">");

 // HTML for this page
 out.println("<TITLE>Your Personal Random Numbers</TITLE>");
 out.println("<H1>Your Personal Random Numbers</H1>");
 out.println("<P>Here are your personal random numbers,");
 out.println("carefully selected by a");
 out.println("Java
program.");
 out.println("");

 // Figure out how many numbers to print.
 int n = DEFAULT_NUMBER;
 String num=req.getParameter("howmany");
 if (num != null && num.length() != 0) {
 try {
 n = Integer.parseInt(num);
 } catch (NumberFormatException e) {
 out.println("<P>I didn't think much of ");
 out.println(num);
 out.println(" as a number.</P>");
 }
 }

 // Now actually generate some random numbers.

 485

 Random r = new Random();
 for (int i=0; i<n; i++) {
 out.print("");
 out.println(r.nextInt(49)); // for Lotto 6/49
 }
 out.println("");

 // Print a break and a back link.
 out.println("<HR></HR>");
 out.println("Back to main Page");
 out.println("</HTML>");
 }
}

18.3.4 See Also

The online source includes OrderServlet, a slightly longer example.

18.4 Cookies

18.4.1 Problem

You want the client (the browser) to remember some bit of information for you.

18.4.2 Solution

Bake a cookie, and serve it to the client along with your response.

18.4.3 Discussion

Cookies were invented by Netscape as a debugging technique, but have since become
ubiquitous: all modern browsers, including MSIE, and text browsers such as Lynx accept and
store them. A cookie is, at heart, a small piece of text -- a name and value pair -- that the server
side generates and sends to the client. The browser remembers them (nontransient cookies are
stored to your hard disk; Netscape creates a file called cookies or cookies.txt , for example). The
browser then sends them back to the server on any subsequent visit to a page from the same
site. The Cookie class is part of the javax.servlet.http package, so any servlet
implementation will include it. The constructor is passed a name and value, but there are other
parameters you can set. Most important is the expiry time, which is in seconds from the time you
first send it. The default is -1; if the value is negative, the cookie is not saved to disk; it becomes a
"transient cookie" that exists only until the browser exits and is then forgotten. For cookies that
are stored to disk, the expiry time is converted to a base of January 1, 1970, the beginning of
Unix time and of the modern computing era.

When the browser visits a site that has sent it a cookie or cookies, it returns all of them as part of
the HTTP headers. You retrieve them all (as an array) using the getCookies() method, and
iterate through them looking for the one you want.

for (int i=0; i<mySiteCookies.length; i++) {
 Cookie c = mySiteCookies[i];
 if (c.getName().equals(name-you're-looking-for)) {
 someString = c.getValue();

 486

 break;
 }
}

Suppose you want the user to pick a favorite color for the servlet to use as the background color
for pages from that point on. Let's use a name of prefs.bgcolor for the color-coding cookie.
The main servlet is CookieServlet, which checks for the cookie. If it was not set previously, it
jumps off to an HTML page, which will eventually return here via another servlet. On the other
hand, if the color cookie was previously set, CookieServlet (shown in Example 18-5)
displays the welcome page with the user's color set.

Example 18-5. CookieServlet.java

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Simple Cookie-based Page Color Display servlet demo.
 */
public class CookieServlet extends HttpServlet {
 /** The preferences cookie name */
 protected final static String PREFS_BGCOLOR = "prefs.bgcolor";
 /** Where to go if we have not yet been customized. */
 protected final static String CUSTOMIZER = "/ColorCustomize.html";
 /** The user's chosen color, if any */
 protected String faveColor = null;

 public void doGet(HttpServletRequest request, HttpServletResponse
response)
 throws ServletException, IOException {

 // Go through all the cookies we have, looking for a faveColor.
 Cookie[] mySiteCookies = request.getCookies();
 for (int i=0; i<mySiteCookies.length; i++) {
 Cookie c = mySiteCookies[i];
 if (c.getName().equals(PREFS_BGCOLOR)) {
 faveColor = c.getValue();
 break;
 }
 }

 // if we did not find a faveColor in a cookie,
 // punt to customization servlet to bake one up for us.
 if (faveColor == null) {
 ServletContext sc = getServletContext();

 // Requires Servlet API 2.1 or later!
 // RequestDispatcher rd =
 // sc.getRequestDispatcher(CUSTOMIZER");
 //rd.forward(request, response);

 // Do it the old way
 response.sendRedirect(CUSTOMIZER);
 }

 487

 // OK, we have a color, so we can do the page.
 PrintWriter out = response.getWriter();
 response.setContentType("text/html");

 out.println("<html><title>A Custom-Colored Page</title>");
 out.print("<body bgcolor=\"");
 out.print(faveColor);
 out.println("\">");
 out.println("<P>Welcome! We hope you like your colored
page!</P>");
 out.println("</body></html>");
 out.flush();
 }
}

If the user has not yet set a color customization cookie, the CookieServlet passes control (by
sending an HTTP redirect in the old API, or by use of a ServletDispatcher under the Servlet
API 1.2 or later) to this HTML page.

<BODY BGCOLOR="pink">
<H1>Please choose a color</H1>
<FORM ACTION="/servlet/ColorCustServlet" METHOD=GET>
<SELECT NAME="color_name">
 <OPTION VALUE="green">Green</>
 <OPTION VALUE="white" SELECTED>White</>
 <OPTION VALUE="gray">Grey</>
</SELECT>
<INPUT TYPE="submit" VALUE="OK">
</FORM>

Finally, the HTML page will jump to the customization servlet (Example 18-6), which contains
the code shown here to save the user's preference as a cookie, and then return to the
CookieServlet by sending an HTTP "redirect," causing the browser to load the specified
replacement page.

Example 18-6. ColorCustServlet.java

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Color customization servlet */
public class ColorCustServlet extends HttpServlet {

 protected final static String DEFAULT_COLOR = "white";
 protected String faveColor = DEFAULT_COLOR;

 public void doGet(HttpServletRequest request, HttpServletResponse
response)
 throws IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 String cand=request.getParameter("color_name");
 if (cand != null) {

 488

 faveColor = cand;
 Cookie c = new Cookie(CookieServlet.PREFS_BGCOLOR,
faveColor);
 c.setMaxAge(60*60*24*365);
 response.addCookie(c);
 }
 response.sendRedirect("/servlet/CookieServlet");
 }
}

Of course, there are issues to consider when using cookies. Some users disable cookies out of
justifiable fear that web sites will use them for gathering more information than a person might
want to have known. In this case, our servlet would keep coming back to the customization page.
It should probably have a warning to the effect that "cookies must be enabled to view this site." Or
you could use other techniques, such as session tracking (see Section 18.5).

And realistically, you probably want to keep more than one preference item for a user. If you let
them set the screen background, you also need to set the text color, for example. It's probably
better to keep the preferences in a database on the server side, and just set a token that
identifies the user (possibly the database primary key). Even then, remember that cookies can be
altered! See Section 18.12 for a program to allow modification of the cookies stored on your
hard drive.

18.5 Session Tracking

18.5.1 Problem

You want to keep track of one user across several servlet invocations within the same browser
session.

18.5.2 Solution

Use an HttpSession object.

18.5.3 Discussion

HTTP was designed to be a stateless protocol: you would connect to a server, download a
laboratory report, and that would be the end of it. Then people started getting clever, and began
using it for interactive applications. For such purposes as a shopping cart in an online mall, and
tracking answers during an online quiz or moves in an online game, the notion of an HTTP
session has evolved to keep track of a particular browser. Sessions can be identified either by
use of a cookie (see Section 18.4) or by a Session Identifier that is added to the URL. In either
case the session ends when the user's browser program exits, but will otherwise stick around for
a long time (there is probably a major denial-of-service attack hidden in here, so beware).

Using a session is fairly simple within the Servlet API. You request the HttpSession object from
the HttpRequest that is passed into your service() or doGet()/doPost() method.
The session object behaves rather like a Hashtable (see Section 7.7) except that the method
names are putValue() and getValue(). This allows you to store an arbitrary number of
objects in the session and retrieve them later.

 489

This program uses an HttpSession to keep track of a user's responses during a quiz about
Java. There are some 20 categories; once you pick a category, you can answer all the multiple-
choice questions in that topic. The first question looks like Figure 18-4.

Figure 18-4. Quiz servlet starting

After you've answered a few questions, it may look like Figure 18-5.

Figure 18-5. Quiz servlet several questions later

At the end of the quiz, you'll see the total number of questions that you answered correctly.

 490

The Exam object (an object containing all the questions and answers, along with the number of
correct answers) is loaded using an XamDataAccessor (the code for these two classes is not
shown) and stored in a Progress object. Progress, an inner class inside the servlet, is a tiny
data structure used to monitor your progress through one quiz. When you change topics, the
Progress object is discarded and a new one created. The bulk of the code in Example 18-7 is
taken up in checking and tracking your answers and in generating the HTML to show the results
of your previous question (if any), as well as the question and possible answers for the current
question.

Example 18-7. DoTestServlet.java

/** A Java Servlet to administer the tests over the Web.
 * Saves exam and status session object to avoid having to reload
it,
 * but also to keep the exam constant during a session!
 */
public class DoTestServlet extends HttpServlet {

 /** Where to find the exams du jour */
 protected final static String DIRECTORY =
 "/home/ian/webs/daroadweb/quizzes-";
 /** The body color */
 protected final static String BGCOLOR = "white";

 /** An Inner Class to track the student's progress */
 class Progress {
 Exam exam; // exam being taken
 boolean done; // exam is finished.
 String category; // name of exam, in effect
 int curQuest; // Question number working on, 0-origin
 int correct; // number gotten right on first try
 }

 /** Service is used to service each request. */
 public void service(HttpServletRequest request,
 HttpServletResponse response) throws IOException,
ServletException {

 PrintWriter out = response.getWriter();
 HttpSession session;
 Progress progress;
 String reqCategory;

 // Set response type to HTML. Print the HTML header.
 response.setContentType("text/html");
 out.println("<HTML>");

 // Find the requested category
 reqCategory = request.getParameter("category");
 reqSubject = request.getParameter("subject"); // unix or
java

 // Request the user's session, creating it if new.
 session = request.getSession(true);
 if (session.isNew()) {
 // out.println("NEW SESSION");

 491

 progress = new Progress();
 progress.category = reqCategory;
 session.putValue("progress", progress);
 } else {
 progress = (Progress) session.getValue("progress");
 }

 if (reqCategory != null && progress.category != null &&
 !reqCategory.equals(progress.category)) {

 // CHANGE OF CATEGORIES
 // out.println("NEW PROGRESS CUZ " +
 // reqCategory + " != " +progress.category + "");
 progress = new Progress();
 progress.category = reqCategory;
 session.putValue("progress", progress);
 }
 if (progress.exam == null) {
 XamDataAccessor ls = new XamDataAccessor();
 try {
 progress.exam = ls.load(DIRECTORY + subject + "/" +
 progress.category + ".xam");
 } catch (IOException ex) {
 eHandler(out, ex, "We had some problems loading that
exam!");
 } catch (NullPointerException ex) {
 eHandler(out, ex, "Hmmm, that exam file seems to be
corrupt!");
 }
 }

 // Now that we have "exam", use it to get Title.
 out.print("<TITLE>Questions on ");
 out.print(progress.exam.getCourseTitle());
out.println("</TITLE>");
 out.print("<BODY BGCOLOR=\""); out.print(BGCOLOR);
out.println("\">");
 out.print("<H1>");
 out.print(progress.exam.getCourseTitle());
 out.println("</H1>");

 // Guard against reloading last page
 if (progress.done) {
 out.println("<HR>Another Quiz?");
 out.flush();
 return;
 }

 // Are we asking a question, or marking it?
 out.println("<P>");
 String answer =request.getParameter("answer");
 int theirAnswer = -1;
 if (answer != null) {
 // MARK IT.
 Q q = progress.exam.getQuestion(progress.curQuest);
 theirAnswer = Integer.parseInt(answer);
 if (theirAnswer == q.getAns()) {

 492

 // WE HAVE A RIGHT ANSWER -- HURRAH!
 if (!q.tried) {
 out.println("<P>Right first try!");
 progress.correct++;
 } else
 out.println("<P>Right. Knew you'd get it.");
 q.tried = true; // "Tried and true..."

 if (++progress.curQuest >=
progress.exam.getNumQuestions()) {
 out.print("<P>END OF EXAM.");
 if (progress.correct == progress.curQuest) {
 out.println("<P>Awesome! You got 100%
right.");
 } else {
 out.print("You got ");
 out.print(progress.correct);
 out.print(" correct out of ");
 out.print(progress.curQuest);
 out.println(".");
 }
 out.println("<HR>Another
Quiz?");

 // todo invalidate "progress" in case user retries
 progress.done = true;

 // Return, so we don't try to print the next
question!
 return;

 } else {
 out.print("Going on to next question");
 theirAnswer = -1;
 }
 } else {
 out.print("Wrong answer. Please try again.");
 q.tried = true;
 }
 }

 // Progress?
 out.print("<P>Question ");
 out.print(progress.curQuest+1);
 out.print(" of ");
 out.print(progress.exam.getNumQuestions());
 out.print(". ");
 if (progress.curQuest >= 2) {
 out.print(progress.correct);
 out.print(" correct out of ");
 out.print(progress.curQuest);
 out.print(" tried so far (");
 double pct = 100.0 * progress.correct / progress.curQuest;
 out.print((int) pct);
 out.println("%).");
 }

 493

 // Now generate a form for the next (or same) question
 out.print("<FORM ACTION=/servlet/DoTestServlet METHOD=POST>");
 out.print("<INPUT TYPE=hidden NAME=category VALUE=");
 out.print(progress.category); out.println(">");
 out.println("<HR>");

 Q q = progress.exam.getQuestion(progress.curQuest);
 out.println(q.getQText());

 for (int j=0; j<q.getNumAnswers(); j++) {
 out.print("
<INPUT TYPE=radio NAME=answer
VALUE=\"");
 out.print(j);
 out.print("\"");
 if (j==theirAnswer)
 out.print(" CHECKED");
 out.print(">");
 out.print(q.getAnsText(j));
 out.println("</INPUT>");
 }
 out.println("<HR>");

 out.println("<INPUT TYPE=SUBMIT VALUE=\"Mark it!\"");
 out.println("</FORM>");
 out.println("</HTML>");
 out.close();
 }

 void eHandler(PrintWriter out, Exception ex, String msg) {
 out.println("<H1>Error!</H1>");
 out.print("");
 out.print(msg);
 out.println("");
 out.println("<pre>");
 ex.printStackTrace(out);
 out.flush();
 out.close();
 }
}
Debugging Tip for Servlets Using an HttpSession

Objects (such as Exam and Progress in the last example) are stored in
the server for as long as your session lasts. If you change any such class
so as to make it incompatible with the previous version, you will get
mysterious "class cast errors" with the name of the class you changed. In
these cases, you can simply close the browser (use File->Exit if using
Netscape), and a new session object will be created. See also Chapter
9 for another way to avoid these ClassCastException errors.

18.6 Generating PDF from a Servlet

 494

18.6.1 Problem

You want to make a printer-friendly document using a format like Adobe PDF.

18.6.2 Solution

Use response.setContentType("application/pdf") and a third-party Java API that can
generate PDF.

18.6.3 Discussion

Portable Document Format (PDF) is a file format created by Adobe Systems Inc. PDF gives you
full control over how your document looks, much more so than HTML, XML, or even Java's
printing routines (see Chapter 12). Adobe Acrobat is a set of programs for reading and writing
PDF. Adobe itself does not publish a Java API for generating PDF from scratch, but it does
publish the file format specification (Adobe Portable File Format Specification) and explicitly gives
everyone permission to write software to generate and/or process PDF files. PDF is a good fit for
processing by an object-oriented language like Java, as it's an object-based text format. As a
result, there are several PDF APIs available for Java, both free and commercial:

• Sitraka/KL Group (http://www.klg.com) has a PDF API as well as charting and other
widgets, and JProbe, a leading tuning tool.

• StyleWriterEE (see http://www.InetSoftCorp.com).
• PDFLib GmbH (http://www.pdflib.com/pdflib/) produces PDFLib. PDFLib is mostly

in C, with a Java wrapper; it also has bindings for several other popular languages.The
source code is distributed, making it very cross-platform. It's free for noncommercial use;
for commercial use, a small licensing fee is required.

• ReportLab (http://www.reportlab.com) is not for Java yet; it's entirely written in
Python. You could probably use it within JPython (see Section 26.4). Watch for the
possibility of future versions, though.

• Finally, since I couldn't decide which of these alternatives to use, I just went ahead and
wrote my own, SPDF.

Go to http://www.pdfzone.com and look in the Toolbox section for others.

Like Perl, SPDF has several names. Perl on a good day is the Practical Extraction and Report
Language, but on a bad day it's the Purely Eclectic Rubbish Lister. A true geek has to admire that
kind of whimsy. SPDF can be the Simple PDF API, but it can also be the Stupid PDF API. Mostly
the latter, I fear. Example 18-8 is a simple servlet that takes the user's name from the HTML
form in Figure 18-6 and generates a custom-made shopping coupon with the customer's info
imprinted into it, and a unique serial number (for which a Date object provides a cheap stand-in
here) to prevent multiple uses of the coupon. I suspect there is a real window of opportunity for
such coupons in conjunction with online web sites and large discount retail stores. Unfortunately,
I'm too busy writing this book to exploit this marvelous opportunity, so I'll just release the source
code to SPDF. If you get rich from it, send me some of the money, OK?

Figure 18-6. PDF coupon servlet

 495

I'm not showing the source code for SPDF in this book, as the present version is pretty crude. No
font support. No graphics. Single-page documents. It may be released, however; check out
http://www.darwinsys.com/freeware/spdf.html if you're interested. Think of SPDF as the
Standby PDF API, which you can use while you decide which of the other PDF APIs you really
want to use.

When you click on the "Get Yours" button, the servlet is run, generating a PDF file and sending it
back to the browser. My Unix version of Netscape tries to save it to disk since I don't have
Acrobat loaded; the filename MyCoupon.pdf is provided by the Content-disposition header
that I added to the response object. See Figure 18-7.

Figure 18-7. PDF coupon servlet save dialog

My test MS-Windows system's copy of Netscape has Acrobat installed, and will run Acrobat as a
Netscape Plug-in to display it; see Figure 18-8.

 496

Figure 18-8. PDF coupon in Acrobat Reader

The basic SPDF API uses a PDF object to represent one PDF file. The PDF object has methods
to set various things, to add pages to the object (and Page has methods to add text strings,
moveTo operations, and others), and finally to write the file. Example 18-8 is the servlet that
responds to the coupon request shown in Figure 18-6.

Example 18-8. PDFCouponServlet.java

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;
import com.darwinsys.spdf.*;

/** Simple PDF-based Coupon Printer Servlet
 */
public class PDFCouponServlet extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws IOException {

 PrintWriter out = response.getWriter();
 response.setContentType("application/pdf");

 // Tell browser to try to display inline, but if not,
 // to save under the given filename.
 response.setHeader("Content-disposition",
 "inline; filename=\"MyCoupon.pdf\"");

 PDF p = new PDF(out);
 Page p1 = new Page(p);
 p1.add(new MoveTo(p, 100, 600));
 p1.add(new Text(p,
 "This coupon good for one free coffee in the student
lounge."));
 String name = request.getParameter("name");
 if (name == null)
 name = "unknown user";
 p1.add(new Text(p,
 "Printed for the exclusive use of " + name));
 p1.add(new Text(p,
 "by Ian Darwin's PDFCoupon Servlet and DarwinSys SPDF
software"));

 497

 p1.add(new Text(p, "at " + new Date().toString()));
 p.add(p1);
 p.setAuthor("Ian F. Darwin");

 // Write the PDF file page
 p.writePDF();
 }
}

Most of the Java PDF APIs are roughly similar. Example 18-9 is the Terms servlet rewritten
using PDFLib to generate a fancier PDF document with the same information as the HTML
version.

Example 18-9. TermsServletPDF.java

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.*;
import com.pdflib.*;

/** Output the dictionary in fancy(?) PDF.
 * This version uses "PDFlib", from PDFLib.GmbH (www.pdflib.com).
 */
public class TermsServletPDF extends HttpServlet {
 /** A printwriter for getting the response. */
 PrintWriter out;

 /** Handle the get request. */
 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException {

 try {

 out = new PrintWriter(response.getOutputStream());

 int font;
 pdflib p = new pdflib();

 if (p.open_file("") == -1) {
 warning(response, "Couldn't create in-memory PDF file",
null);
 return;
 }

 p.set_info("Title", "Dictionary Project");
 p.set_info("Author", "Ian F. Darwin, ian@darwinsys.com");
 p.set_info("Creator", "www.darwinsys.com/dictionary");

 p.begin_page(595, 842);

 font = p.findfont("Helvetica", "host", 0);

 p.setfont(font, 14);

 // for now just use one term from the Iterator

 498

 Iterator e = new TermsAccessor("terms.txt").iterator();
 Term t = (Term)e.next();
 p.set_text_pos(50, 700);
 p.show("Term: ");
 p.continueText(t.term);
 p.set_text_pos(70, 666);
 p.show("Definition: ");
 p.continueText(t.definition);
 p.end_page();

 p.close();

 byte[] data = p.get_buffer();

 response.setContentType("application/pdf");
 response.getOutputStream().write(data);
 } catch (IOException e) {
 warning(response, "pdflib IO error:", e);
 return;
 } catch (Exception e) {
 warning(response, "pdflib error:", e);
 return;
 }
 }

The end of the servlet in Example 18-10 demonstrates a way to provide a user-friendly wrapper
around the occasional exception traceback. Method warning() can also be used to print a
generic error message without a traceback by passing null as the exception argument.

Example 18-10. TermsServletPDF error handling

/** Generic error handler. Must call before any use of "out" */
 protected void warning(HttpServletResponse response,
 String error, Exception e) {
 response.setContentType("text/html");
 try {
 PrintWriter out = response.getWriter();
 } catch (IOException exc) {
 // egad - we can't tell the user a thing!
 System.err.println("EGAD! IO error " + exc +
 return;
 }
 out.println("<H1>Error</H1>");
 out.print("<P>Oh dear. You seem to have run across an error in
");
 out.print("our dictionary formatter. We apologize for the
inconvenience");
 out.print("<P>Error message is ");
 out.println(error);

 if (e != null) {
 out.print("<P>Exception is: ");
 out.println(e.toString());
 out.print("Traceback is: ");
 out.print("<PRE>");
 e.printStackTrace(out);

 499

 out.print("</PRE>");
 }
 System.out.print("DictionaryServletPDF: ");
 System.out.println(error);
 if (e != null) {
 System.out.println(e.toString());
 }
 }
}

18.7 HTML Meets Java: JSP

18.7.1 Problem

You have a web page that could use a jolt of Java.

18.7.2 Solution

Use the JavaServer Pages method of mixing HTML and Java.

18.7.3 Discussion

JavaServer Pages (JSP) shares some general syntax with Microsoft's ASP (Application Server
Pages) and the free-software PHP (Programmable Hypertext Processor). They allow a mix of
HTML and code; the code is executed on the server side, and the HTML plus the code results are
printed as HTML. Because of Java's portability and JSP's full access to the entire Java API, JSP
may be the most exciting web technology to come along since the online pizza demonstration.
Example 18-11, for example, is the "five integers" code as a JSP.

Example 18-11. fiveints.jsp

<HTML>
<HEAD>
<TITLE>Your Personal Random Numbers</TITLE>
<H1>Your Personal Random Numbers</H1>
<P>Here are your personal random numbers,
carefully selected by a
Java program.

 <%
 java.util.Random r = new java.util.Random();
 for (int i=0; i<5; i++) {
 out.print("");
 out.println(r.nextInt());
 }
 %>

<HR></HR>
Back to main Page

Notice how much more compact this is than the servlet version in Section 18.2. It should not
surprise you to learn that JSPs are actually compiled into servlets, so most of what you know

 500

about servlets also applies to JSP. Let's look at another example that generates an HTML form
and calls itself back when you activate the form, and also contains an HTML table to display the
current month. Figure 18-9 and Example 18-12 show a JSP version of the CalendarPage
program from Section 6.12.

Figure 18-9. CalendarPage.jsp in action

Example 18-12. CalendarPage.jsp

<%@page import="java.util.*,java.text.*" %>

<head>
 <title>Print a month page.</title>
 <meta name="version"
</head>
<body bgcolor="white">
<h1>Print a month page, for the Western calendar.</h1>
<P>Author Ian F. Darwin, ian@darwinsys.com

<% // First get the month and year from the form.
 boolean yyok = false; // -1 is a valid year, use boolean
 int yy = 0, mm = 0;
 String yyString = request.getParameter("year");
 if (yyString != null && yyString.length() > 0) {
 try {
 yy = Integer.parseInt(yyString);
 yyok = true;
 } catch (NumberFormatException e) {
 out.println("Year " + yyString + " invalid");
 }
 }
 Calendar c = Calendar.getInstance();
 if (!yyok)

 501

 yy = c.get(Calendar.YEAR);

 String mmString = request.getParameter("month");
 if (mmString == null) {
 mm = c.get(Calendar.MONTH);
 } else {
 for (int i=0; i<months.length; i++)
 if (months[i].equals(mmString)) {
 mm = i;
 break;
 }
 }
 %>

<form method=post action="CalendarPage.jsp">
 Month: <select name=month>
 <% for (int i=0; i<months.length; i++) {
 if (i==mm)
 out.print("<option selected>");
 else
 out.print("<option>");
 out.print(months[i]);
 out.println("</option>");
 }
 %>
 </select>
 Year (4-digit):
 <input type="text" size="5" name="year"
 value="<%= yy %>"></input>
 <input type=submit value="Display">
</form>
<%!
 /** The names of the months */
 String[] months = {
 "January", "February", "March", "April",
 "May", "June", "July", "August",
 "September", "October", "November", "December"
 };

 /** The days in each month. */
 int dom[] = {
 31, 28, 31, 30, /* jan feb mar apr */
 31, 30, 31, 31, /* may jun jul aug */
 30, 31, 30, 31 /* sep oct nov dec */
 };
%>

<%
 /** The number of days to leave blank at the start of this month */
 int leadGap = 0;
%>
<table border=1>
<tr><th colspan=7><%= months[mm] %> <%= yy %></tr>

<% GregorianCalendar calendar = new GregorianCalendar(yy, mm,
1); %>

 502

<tr><td>Su<td>Mo<td>Tu<td>We<td>Th<td>Fr<td>Sa</tr>

<%
 // Compute how much to leave before the first.
 // getDay() returns 0 for Sunday, which is just right.
 leadGap = calendar.get(Calendar.DAY_OF_WEEK)-1;

 int daysInMonth = dom[mm];
 if (calendar.isLeapYear(calendar.get(Calendar.YEAR)) && mm ==
1)
 ++daysInMonth;

 out.print("<tr>");

 // Blank out the labels before 1st day of month
 for (int i = 0; i < leadGap; i++) {
 out.print("<td> ");
 }

 // Fill in numbers for the day of month.
 for (int i = 1; i <= daysInMonth; i++) {

 out.print("<td>");
 out.print(i);
 out.print("</td>");

 if ((leadGap + i) % 7 == 0) { // wrap if end of
line.
 out.println("</tr>");
 out.print("<tr>");
 }
 }
%>
</tr>
</table>

For another example, Example 18-13 shows the list of terms and definitions from Section
18.2 done as a JSP.

Example 18-13. terms.jsp

<HTML>
<HEAD>
 <TITLE>Ian Darwin's Computer Terms and Acronyms</TITLE>
 <%@ page import="java.io.*" %>
</HEAD>
<BODY BGCOLOR=white>
<H1>Ian Darwin's Computer Terms and Acronyms</H1>
<TABLE BORDER=2>
<TR><TH>Term<TH>Meaning</TR>
 <%
 // This part of the Servlet generates a list of lines like
 // <TR> <TD>JSP <TD>Java Server Pages, a neat tool for ...

 // Filenames like this must NOT be read as parameters, since that
 // would allow any script kiddie to read any file on your system!!

 503

 // In production code they would be read from a Properties file.
 String TERMSFILE = "/var/www/htdocs/hs/terms.txt";

 TermsAccessor tax = new TermsAccessor(TERMSFILE);
 Iterator it = tax.iterator();
 while (it.hasNext()) {
 Term t = it.next();
 out.print("<TR><TD>");
 out.print(t.term);
 out.print("</TD><TD>");
 out.print(t.definition);
 out.println("</TD></TR>");
 }
 %>
</TABLE>
<HR></HR>
Printer-friendly (Acrobat PDF)
version
<HR></HR>
Ask about
another term
<HR></HR>
Back to HS Back to DarwinSys
<HR></HR>

18.8 JSP Include/Forward

18.8.1 Problem

You want to write a "page-composite" JSP that includes other pages or passes control to another
page.

18.8.2 Solution

Use <jsp:include> or <jsp:forward>.

18.8.3 Discussion

Suppose you have some common HTML code that you want to appear on every page, such as a
navigator or header. You could copy it into each HTML and JSP file, but if it changed, you'd have
to find all the files that used it and update each of them. It would be much easier to have one
copy and include it everywhere you need it. Most webs servers feature such a mechanism
already (e.g., server-side includes). However, using JSP's mechanism has some advantages,
such as the ability to attach objects to a request, a topic I'll explore in Section 18.9.

The basic mechanism is simply to have <jsp:include> with a PAGE attribute naming the page
to be included, and end with </jsp:include>. For convenience, you can put the / at the end of
the opening tag and omit the closing tag. Much of this syntax is taken from XML namespaces
(see Chapter 21). The FLUSH attribute is also required, and it must have the value TRUE; this
is to remind you that, once you do an include, the contents of the output are actually written.
Therefore, you can no longer do anything that involves sending HTTP headers, such as changing

 504

content type or transferring control using an HTTP redirect request. So a full JSP include might
look like this:

<H2>News of the day</H2>
<jsp:include page="./news.jsp" flush="true" />

The jsp:forwar d request is similar to a jsp:include, but you don't get control back
afterwards. The attribute flush="true" is required on some JSP engines (including the release
of Tomcat at the time this book went to press) to remind you that once you do this include, you
have committed your output (prior to the include, the output might be all in a buffer). Therefore, as
I just stated, you can no longer do anything that might generate headers, including
setContentType(), sendRedirect(), and so on.

An alternate include mechanism is <%@include file="filename"%>. This mechanism is a bit
more efficient (the inclusion is done at the time the JSP is being compiled), but is limited to
including text files (the file is read, rather than being processed as an HTTP URL; so if you
include, say, a CGI script, the contents of your CGI script are revealed in the JSP output: not
useful!). The <jsp:include> can include a URL of any type (HTML, servlet, JSP, CGI, even
PHP or ASP).

18.9 JavaServer Pages Using a Servlet

18.9.1 Problem

It may seem that servlets and JSPs are mutually exclusive, but in fact they work well together.
You can reduce the amount of Java coding in your JSP by passing control from a servlet to a
JSP.

18.9.2 Solution

Use the Model-View-Controller paradigm, and implement it using
ServletDispatcher().forward().

18.9.3 Discussion

Model-View-Controller is a paradigm for building programs that interact well with the user. The
Model is an object or collection that represents your data; the View is what the user sees; and the
Controller responds to user request. Think of a slide-show (presentation) program: you probably
have a text view, a slide view, and a sorter view. Yet when you change the data in any view, all
the other views are updated immediately. This is because MVC allows a single model to have
multiple views attached to it. MVC provides the basis for most well-designed GUI applications.

Using the Model-View-Controller paradigm, a servlet can be the controller and the JSP can be the
view. A servlet, for example, could receive the initial request from the form, interrogate a
database based upon the query, construct a collection of objects matching the user's query, and
forward it to a JSP to be displayed (the servlet can attach data it found to the request). A good
example of this is a search page, which might have only a few (or even one) form parameters, so
using a JSP with a bean to receive the results would be overkill. A better design is to have a
servlet retrieve the form parameter and contact the search API or database. From there, it would
retrieve a list of pages matching the query. It could package these into a Vector or ArrayList,
attach this to the request, and forward it to a JSP for formatting.

 505

The basic syntax of this is:

ArrayList searchResultsList = // get from the query
RequestDispatcher disp;
disp = getServletContext().getRequestDispatcher("searchresults.jsp");
request.setAttribute("my.search.results", searchResultsList);
disp.forward(request, response);

This causes the servlet to pass the search results to the JSP. The JSP can retrieve the result set
using this code:

ArrayList myList = (ArrayList)
request.getAttribute("my.search.results");

You can then use a for loop to print the contents of the search request. Note that the URL in the
getRequestDispatcher() call must be a call to the same web server, not to a server on a
different port or machine.

18.10 Simplifying Your JSP with a JavaBean

18.10.1 Problem

You want to reduce the amount of Java coding in your JSP using a JavaBean component.

18.10.2 Solution

Use <jsp:useBean> with the name of your bean.

18.10.3 Discussion

JavaBeans is Java's component technology, analogous to COM components on MS-Windows.
Recipes Section 23.8 and Section 23.9 contain a formula for packaging certain Java classes
as JavaBeans. While JavaBeans were originally introduced as client-side, GUI-builder-friendly
components, there is nothing in the JavaBeans specification that limits their use to the client-side
or GUI. In fact, it's fairly common to use JavaBean components with a JSP. It's also easy and
useful, so let's see how to do it.

At the bare minimum, a JavaBean is an object that has a public no-argument constructor and
follows the set/get paradigm. This means that there is regularity in the get and set methods.
Consider a class, each instance of which represents one user account on a login-based web site.
For the name, for example, the methods:

public void setName(String name);
public String getName();

allow other classes full control over the "name" field in the class but with some degree of
encapsulation; that is, the program doesn't have to know the actual name of the field (which might
be name, or myName, or anything else suitable). Other programs can even get a list of your
get/set methods using introspection (see Section 25.3). Example 18-14 is the full class file; as
you can see, it is mostly concerned with these set and get methods.

 506

Example 18-14. User.java, a class usable as a bean

/** Represents one logged in user
 */
public class User {

 protected String name;
 protected String passwd;
 protected String fullName;
 protected String email;
 protected String city;
 protected String prov;
 protected String country;

 protected boolean editPrivs = false;
 protected boolean adminPrivs = false;

 /** Construct a user with no data -- must be a no-argument
 * constructor for use in jsp:useBean.
 */
 public User() {
 }

 /** Construct a user with just the name */
 public User(String n) {
 name = n;
 }

 /** Return the nickname. */
 public String getName() {
 return name;
 }

 public void setName(String nick) {
 name = nick;
 }

 // The password is not public - no getPassword.

 /** Validate a given password against the user's. */
 public boolean checkPassword(String userInput) {
 return passwd.equals(userInput);
 }

 /** Set password */
 public void setPassword(String passwd) {
 this.passwd = passwd;
 }

 /** Get email */
 public String getEmail() {
 return email;
 }

 /** Set email */
 public void setEmail(String email) {

 507

 this.email = email;
 }

 // MANY SIMILAR STRING-BASED SET/GET METHODS OMITTED

 /** Get adminPrivs */
 public boolean isAdminPrivileged() {
 return adminPrivs;
 }

 /** Set adminPrivs */
 public void setAdminPrivileged(boolean adminPrivs) {
 this.adminPrivs = adminPrivs;
 }

 /** Return a String representation. */
 public String toString() {
 return new StringBuffer("User[").append(name)
 .append(',').append(fullName).append(']').toString();
 }

 /** Check if all required fields have been set */
 public boolean isComplete() {
 if (name == null || name.length()==0 ||
 email == null || email.length()==0 ||
 fullName == null || fullName.length()==0)
 return false;
 return true;
 }
}

The only methods that do anything other than set/get are the normal toString() and
isComplete() (the latter returns true if all required fields have been set in the bean). If you
guessed that this has something to do with validating required fields in an HTML form, give
yourself a gold star.

We can use this bean in a JSP-based web page just by saying:

<jsp:useBean id="myUserBean" scope="request" class="User">

This creates an instance of the class called myUserBean. However, at present it is blank; no
fields have been set. To fill in the fields, we can either refer to the bean directly within scriptlets,
or, more conveniently, we can use <jsp:setProperty> to pass a value from the HTML form
directly into the bean! This can save us a great deal of coding.

Further, if all the names match up, such as an HTML parameter "name" in the form and a
setName(String) method in the bean, the entire contents of the HTML form can be passed
into a bean using property="*"!

<jsp:setProperty name="myUserBean" property="*"/>
</jsp:useBean>

 508

Now that the bean has been populated, we can check that it is complete by calling its
isComplete() method. If it's complete, we print a response, but if not, we direct the user to go
back and fill out all the required fields:

<% // Now see if they already filled in the form or not...
 if (!myUserBean.isComplete()) {
 %>
 <TITLE>Welcome New User - Please fill in this form.</TITLE>
 <BODY BGCOLOR=White>
 <H1>Welcome New User - Please fill in this form.</H1>
 <FORM ACTION="name_of_this_page.jsp" METHOD=post>
 // Here we would output the form again, for them to try
again.
 </FORM>
 <%
 } else {
 String nick = newUserBean.getName();
 String fullname = newUserBean.getFullName();
// etc...
 // Give the user a welcome
 out.println("Welcome " + fullname);

You'll see the full version of this JSP in Section 18.13.

18.10.4 See Also

You can extract even more Java out of the JSP, making it look almost like pure HTML, by using
Java custom tags. Custom tags (also called custom actions) are a new mechanism for reducing
the amount of Java code that must be maintained in a JSP. They have the further advantage of
looking syntactically just like elements brought in from an XML namespace (see Section 21.1),
making them more palatable both to HTML editor software and to HTML editor personware. Their
disadvantage is that to write them requires a greater investment of time than, say, servlets or
JSP. However, you don't have to write them to use them; there are several good libraries of
custom tags available, one from Tomcat (http://jakarta.apache.org) and another from JRun
(http://www.allaire.com/products/jrun/index.cfm). Sun is also working on a standard for a
generic tag library. JSP tags are compiled classes, like applets or servlets, so any tag library from
any vendor can be used with any conforming JSP engine. There are a couple of JSP custom tags
in the source directory for the JabaDot program in Section 18.13.

18.11 JSP Syntax Summary

18.11.1 Problem

You can't remember all this post-HTML syntax.

18.11.2 Solution

Use the Table.

18.11.3 Discussion

 509

Table 18-1 summarizes the syntax of JavaServer Pages. As the title implies, it contains only the
basics; a more complete syntax can be downloaded from http://java.sun.com/products/jsp/.

Table 18-1. Basic JSP Syntax
Item Syntax Example

Scriptlet <% code;%> <% mountain.setHeight(1000); %>
Expression
(to print)

<%= expr %> <%= mountain.getHeight() %>

Declaration <%! decls; %> <%! int height = 0; %>

Include
<jsp:include
page="URL" flush=true
/>

<jsp:include page="./mountain-
list.html" flush=true />

Forward
<jsp:forward
page="url"/>

<jsp:forward page="./last-
resort.html"/>

Use bean <jsp:useBean .../> <jsp:useBean class="x.ClimbBean"
id="myClimbBean" scope="page"/>

Set property
<jsp:setProperty ...
/>

<jsp:setProperty name="myClimbBean"
property="*" />

Page
directive

<%@ page ... %> <%@ page import="java.io.*"
errorPage="catcher.jsp" %>

Comment <!-- comment --> <%!-- This comment appears in HTML --
>

Hidden
comment

<%-- comment --%> <%-- This comment is local to JSP --
%>

18.12 Program: CookieCutter

CookieCutter is a little program I wrote that allows you to display, modify, and even delete
cookies. Since the banner-ad-tracking firm DoubleClick probably keeps a lot of information on
your browsing habits, you want to befuddle them. After all, they are using a tiny bit of storage on
your hard disk to rack up per-click profits, giving you nothing in return (directly, at least; obviously,
ad sponsorship keeps some web sites on the air). In Figure 18-10, I am editing the cookie to,
umm, "update" the personal identity cookie to an invalid number (a lot of 9's, and too many
digits). A few lines above that, you can see the prefs.bgcolor cookie that I set to "green."

Figure 18-10. The CookieCutter display

 510

I won't show the CookieCutter source code here as it doesn't really relate to web techniques
(it's a client-side application), but it's included in the source archive for the book. CookieCutter
also assumes your cookies are stored in the Netscape format; for the Microsoft Explorer format,
you'll have to change the file-reading and file-writing code.

18.13 Program: JabaDot Web News Portal

Here is perhaps the most ambitious program developed in this book. It's the beginnings of a
complete "news portal" web site, similar to http://www.slashdot.org,
http://www.deadly.org, or http://daily.daemonnews.org. However (and as you should
expect!), the entire site is written in Java. Or perhaps should I say "written in or by Java," since
the JSP mechanism -- which is written entirely in Java -- turns the JSP pages into Java servlets
that get run on this site. The web site is shown in Figure 18-11.

Figure 18-11. JabaDot welcome page

 511

Like most portal sites, JabaDot allows some services (such as the current news items and of
course the ubiquitous banner ads) without logging in, but requires a login for others. In this figure
I am logged in as myself, so I have a list of all available services. The page that supports this
view is index.jsp (Example 18-15), which contains a hodgepodge of HTML and Java code.

Example 18-15. index.jsp

<%@page errorPage="oops.jsp"%>
<HTML>
<TITLE>JabaDot - Java News For Ever(yone)</TITLE>
<P ALIGN=CENTER><jsp:include page="/servlet/AdRotator"
flush="true"/></P>
<BODY BGCOLOR="#f0f0f0">
<% HttpSession sess = request.getSession(true);
 User user = (User)sess.getValue("jabadot.login");
 %>
<TABLE>
<TD WIDTH=75% ALIGN="TOP">
 <!-- Most of page, at left -->

 <BR CLEAR="ALL">
 <jsp:include page="./news.jsp" flush="true"/>
</TD>
<TD WIDTH=25% BGCOLOR="#00cc00" ALIGN="TOP">
 <!-- Rest of page, at right -->

 <% if (user == null) { %>
 <FORM ACTION=login.jsp METHOD=POST>
 Name: <INPUT TYPE=TEXT SIZE=8 NAME=nick>

 Password: <INPUT TYPE=PASSWORD SIZE=8 NAME=pass>

 <INPUT TYPE=SUBMIT VALUE="Login" ALIGN=CENTER>
 </FORM>

 512

 <jsp:include page="public_services.html" flush="true"/>
 <% } else { %>
 Logged in as <%= user.getName() %>
 <jsp:include page="./logged_in_services.html" flush="true"/>
 Log out
 <% } %>

</TD>
</TABLE>
</BODY>
</HTML>

As you can see, this code actually starts with a "page" tag (%@page) to specify an error handling
page (the error page just prints the stack trace neatly, along with an apology). Then the output of
the AdRotator servlet is included; the program just randomly selects a banner advertisement
and outputs it as an HTML anchor around an IMG tag. Then I get the HttpSession object and,
from that, the current User object, which is null if there is not a currently logged-in user. The
User class was discussed when we talked about JavaBeans in JSPs (see Section 18.10); it's
used as an ordinary object in most of these JSPs, but as a bean in the newuser.jsp page, when
the user has entered all the fields on the "Create an Account" page.

Then there's an HTML table, which basically divides the rest of the page into two large columns.
The left side of the page is fairly wide and contains the news stories, their headlines, the
submitter's name, the time, optionally a URL, and the text of the news article. A future version will
allow the user to send comments on the stories; as Slashdot has demonstrated, this is an
important part of "community building," part of the art of keeping people coming back to your web
site so you can show them more banner ads. :-)

The navigator part is displayed differently depending on whether you are logged in or not. If
you're not, it begins with a login form, then lists the few services that are publicly available as
HTML anchors, with the unavailable services in italic text. If you are logged in, there is a full list of
links and a logout page at the end.

Before you log in, you must create an account. The trick here is that we require the user to give a
valid email address, which we'll use for various authentication purposes and, just possibly, to
send them a monthly newsletter by email. To ensure that the user gives a valid email address, we
email to them the URL from which they must download the password. Figure 18-12 shows the
entry page for this. This form is processed by newuser.jsp.

Figure 18-12. newuser.jsp in action

 513

Example 18-16 is the source for newuser.jsp. As mentioned previously, this gets a User object
as a JavaBean (see Section 18.10).

Example 18-16. newuse r.jsp

<%@page errorPage="oops.jsp" import="jabadot.*, java.io.*" %>
<%! java.util.Random r = new java.util.Random(); %>
<jsp:useBean id="newUserBean" scope="request" class="jabadot.User">
 <jsp:setProperty name="newUserBean" property="*"/>
</jsp:useBean>
<jsp:useBean id="mailBean" scope="request" class="jabadot.Mailer"/>
<html>
<%@include file="header.html" %>
<%
 User user = (User)session.getAttribute("jabadot.login");
 if (user != null) {
 %>
<TITLE>You're already logged on!</TITLE>
<H1>You are logged on!</H1>
<P>Please log out before
trying to create a new account. Thank you!
<% return;
 }
 %>
<% // Now see if they already filled in the form or not...
 if (!newUserBean.isComplete()) {
 // out.println("<!-- in new -->");
 %>
 <TITLE>Welcome New User - Please fill in this form.</TITLE>
 <BODY BGCOLOR=White>
 <H1>Welcome New User - Please fill in this form.</H1>

 514

 <TABLE>
 <TD>
 <FORM ACTION="newuser.jsp" METHOD=post>
 <table><!-- inner table so fields line up -->
 <tr><td>Nickname:</td>
 <td><INPUT TYPE=TEXT SIZE=10 NAME="name">
(required)</td></tr>
 <tr><td>Full name:</td>
 <td><INPUT TYPE=TEXT SIZE=10 NAME="fullName">
(required)</td></tr>
 <tr><td>E-mail:</td>
 <td><INPUT TYPE=TEXT SIZE=10 NAME="email">
(required)</td></tr>
 <tr><td>City:</td>
 <td><INPUT TYPE=TEXT SIZE=10 NAME="city"></td></tr>
 <tr><td>Province/State:</td>
 <td><INPUT TYPE=TEXT SIZE=10 NAME="prov"></td></tr>
 <tr><td>Country</td>
 <td><select name="location">
 <jsp:include page="country_select.html" flush="true"/>
 </select>
 </td></tr>
 <tr><td colspan=2 align="center">
 <INPUT TYPE=SUBMIT VALUE="Create My JabaDot!"></tr>
 </table>
 </FORM>
 <TD>
 <P>If you've done one of these before, you may be wondering
where
 the "Password" field is. It's not there. Believing somewhat in
 security, we'll make up a fairly good password for you.
 We won't email it to you, but will email to you the location
 from which you can learn it, so watch your email closely
 after you complete the form. Thank you!
 </TABLE>
<% return;
 }

 // out.println("<!-- in get -->");
 String nick = newUserBean.getName();
 if (UserDB.getInstance().getUser(nick) != null) {
 %>
 <P>It seems that that user name is already in use!
 Please go back and pick another name.
 <% return;
 } %>
<%
 String fullname = newUserBean.getFullName();
 String email = newUserBean.getEmail();
 %>
 <!-- Give the user a welcome -->
 Welcome <%= fullname %>.
 We will mail you (at <%= email %>) with a URL
 from which you can download your initial password.

 <jsp:setProperty name="newUserBean"
 property="editPrivileged" value="false"/>

 515

 <jsp:setProperty name="newUserBean"
 property="adminPrivileged" value="false"/>
<%
 // Generate initial random password and store it in the User
 String newPass = Password.getNext().toString();
 newUserBean.setPassword(newPass);

 // NOW add the user to the persistent database.
 UserDB.getInstance().addUser(newUserBean);

 // Create a temporary HTML file containing the full name
 // and the new password, and mail the URL for it to the user.
 // This will confirm that the user gave us a working email.
 // NEVER show the nickname and the password together!
 String tempDir =
JDConstants.getProperty("jabadot.tmp_links_dir");
 File tempLink = File.createTempFile(
 r.nextInt()+"$PW", ".html", new File(tempDir));
 PrintWriter pw = new PrintWriter(new FileWriter(tempLink));
 pw.print("<HTML><BODY>");
 pw.print("Greetings ");
 pw.print(newUserBean.getFullName());
 pw.print(". Your new password for accessing JabaDot is ");
 pw.print(newPass);
 pw.print(". Please remember this, or better yet, ");
 pw.print("");
 pw.print("login now!");
 pw.print("You may want to visit \"My Jabadot\"");
 pw.print("and change this password after you log in.");
 pw.println("</HTML>");
 pw.close();

 // Now we have to mail the URL to the user.
 mailBean.setFrom(JDConstants.getProperty("jabadot.mail_from"));
 mailBean.setSubject("Welcome to JabaDot!");
 mailBean.addTo(email);

mailBean.setServer(JDConstants.getProperty("jabadot.mail.server.smtp"))
;

 // Get our URL, strip off "newuser.jsp", append "/tmp/"+tmpname
 StringBuffer getPW_URL = HttpUtils.getRequestURL(request);
 int end = getPW_URL.length();
 int start = end - "newuser.jsp".length();

getPW_URL.delete(start,end).append("tmp/").append(tempLink.getName(
));
 mailBean.setBody("To receive your JabaDot password,\n" +
 "please visit the URL " + getPW_URL);

 // Now send the mail.
 mailBean.doSend();

 // AVOID the temptation to sess.setAttribute() here, since
 // the user has not yet verified their password!
 %>

 516

Once you create an account and read the email containing the link for the password, you can
return to the site and log in normally. The login form is handled by login.jsp, shown in Example
18-17.

Example 18-17. login.jsp

<%@page errorPage="oops.jsp" import="jabadot.*" %>
<HTML>
<%
 User user = (User)session.getAttribute("jabadot.login");
 if (user != null) {
 session.setAttribute("jabadot.message",
 "<H1>You're already logged on!</H1>"+
 "(as user " + user.getName() + "). Please" +
 "" +
 "logout if you wish to log in as a different user.");
 response.sendRedirect("/jabadot/");
 }
 String nick = request.getParameter("nick");
 String pass = request.getParameter("pass");
 if (nick == null || nick.length() == 0 ||
 pass == null || pass.length() == 0) {
 %>
 <!-- Must use jsp include not @ include here since
 ** tomcat complains if it sees the @ include twice.
 ** Can't just include it once at beginning, since we
 ** do a redirect at the end of this jsp if successful.
 -->
 <jsp:include page="./header.html" flush="true" />
 <TITLE>Missing name/password!</TITLE>
 <BODY BGCOLOR=WHITE>
 <H1>Missing name/password!</H1>
 <P>Please enter both a name and a password in the form.
<% return;
 }

 User u = UserDB.getInstance().getUser(nick);
 if (u == null || !u.checkPassword(pass)) {
%>
 <jsp:include page="./header.html" flush="true" />
 <TITLE>Invalid name/password</TITLE>
 <BODY BGCOLOR=WHITE>
 <H1>Invalid name/password</H1>
 <P>We could not find that name and password combination.
 Please try again if you have an account, else go create one.
<% return;
 }

 // Hallelujeah! WE FINALLY GOT THIS ONE LOGGED IN.

 session.setAttribute("jabadot.login", u); // login flag
 //session.setAttribute("jabadot.ads", new AdServlet());
 session.setAttribute("jabadot.message",
 "<H1>Welcome back, " + u.getFullName() + "</H1>");

 // For non-admin logins, provide a 3-hour timeout

 517

 if (!u.isAdminPrivileged()) {
 session.setMaxInactiveInterval(3600*3);
 }

 // Send Redirect back to top, so user sees just this in URL
textfield.
 response.sendRedirect("/jabadot/");
%>

After ensuring that you're not already logged in, this page gets the username and password from
the HTML form, checks that both are present, looks up the name in the password database and,
if found, validates the password. If either the name or the password is wrong, I report a generic
error (this is deliberate security policy to avoid giving malicious users any more information than
they already have[2]). If you log in, I put the User object representing you into the HttpSession,
set a little greeting, and pass control to the main page via a redirect.

[2] This ancient advice comes from the early days of Unix; you'd be surprised how many sites still don't get it.

Whether logged in or not, you can send a general comment to the system's administrators via the
submit.jsp page. This simply generates the HTML form shown in Figure 18-13.

Figure 18-13. Input form for comments.jsp

This form is processed by comments.jsp, shown in Example 18-18, when you press the
"Submit Article" button.

Example 18-18. comments.jsp

<%@page errorPage="oops.jsp" %>
<%@page import="jabadot.*, javax.mail.*" %>
<jsp:useBean id="mailBean" scope="request" class="jabadot.Mailer">
 <jsp:setProperty name="mailBean" property="*"/>
</jsp:useBean>
<%
 User user = (User)session.getAttribute("jabadot.login");

 518

 mailBean.setFrom(JDConstants.getProperty("jabadot.mail_from"));
 mailBean.setSubject("Comment from jabadot site");

mailBean.addTo(JDConstants.getProperty("jabadot.mail_comments_to"));

mailBean.setServer(JDConstants.getProperty("jabadot.mail.server.smtp"))
;

 String message = request.getParameter("message");
 if (message != null)
 mailBean.setBody(message);

 // See if they already filled in the form or not...
 if (mailBean.isComplete()) {
 try {
 mailBean.doSend();

 // Now attach a thank you note and send them to the index
page
 session.setAttribute("jabadot.message",
 "<H1>Mail sent</H1><p>Your commentary has been sent to
our chief" +
 " pickle.Thank you.</p>");
 response.sendRedirect("/jabadot/");
 // No return from sendRedirect
 } catch (MessagingException ex) {
 throw new IllegalArgumentException(ex.toString());
 }
 }
 // ELSE - mailbean is NOT complete, put up form.
 %>
 <%@include file="header.html" %>
 <P ALIGN=CENTER><jsp:include page="/servlet/AdServlet"
flush="true"/></P>
 <TITLE>Send Comments</TITLE>
 <BODY BGCOLOR="white">

 <DIV ALIGN="CENTER">
 <BLOCKQUOTE>

 <FORM METHOD="POST" ACTION="comments.jsp">

 <P>Please send us your feedback on this site.
<% if (user != null) { %>
 <P>Since you are logged in, you can use
 <A href="mailto:<%=JDConstants.getProperty(
 // This subject= without quotes WORKS but doesn't feel good
:-)
 "jabadot.mail_comments_to")%>?subject=Comments about
JabaDot">
 this <I>mailto</I> link.</P>
<% } %>
 <P>Name: <INPUT TYPE="TEXT" NAME="name" SIZE="15"
 VALUE="<%= user==null?"":user.getFullName()%>">
 Email:<INPUT TYPE="TEXT" NAME="from" SIZE="15"
 VALUE="<%= user==null?"":user.getEmail()%>"></P>

 519

 <P>City: <INPUT TYPE="TEXT" NAME="City"
SIZE="15"
 VALUE="<%= user==null?"":user.getCity() %>">
 State: <INPUT TYPE="text" NAME="State" SIZE="15"
 VALUE="<%= user==null?"":user.getProv() %>"></P>
 <P>Country: <INPUT TYPE="text" NAME="country" size="15"
 VALUE="<%= user==null?"": user.getCountry() %>"></P>
 <TEXTAREA NAME="message" ROWS="8" COLS="50" WRAP="physical">
<%= message %>
 </TEXTAREA>
 <P><INPUT TYPE="submit" VALUE="Send Comments"></P>
 </FORM>

 </BLOCKQUOTE>
 </DIV>
 </BODY>

This page starts off like the first one. I particularly like the code that displays a mailto: URL only if
the user is logged in. SPAM perpetrators (see Chapter 19) are notorious for automatically
loading entire web sites just to look for mailto: URLs. This is a good way to fence these rodents
out, since they normally won't go to the trouble of signing up for a service and providing a real
(working) email address just to get one mailto: URL from your site. There are easier ways to find
mailto:'s on other sites; hopefully the SPAM perps will go there. For extra fun, make up a unique
email address for each user to send mail to, so if you do get spammed, you have an idea who
might have done it.

18.13.1 See Also

There is more to servlets and JSPs than I've got room to tell you about. These technologies offer
an interesting partitioning of code and functionality. The JSP can be concerned primarily with
getting the input and displaying the results. A JSP can forward to a servlet, or can include or jump
to any other local web resource, like an audio file. Servlets and JSP are primary parts of the Java
Enterprise Edition, and are becoming very important web server technologies.

For an opposing view (that JSPs are the wrong solution to the wrong problem), surf on over to
http://www.servlets.com. For more information on servlets and JSPs, refer to the O'Reilly
books Java Servlet Programming and JavaServer Pages.

 520

Chapter 19. Java and Electronic Mail

19.1 Introduction

19.2 Sending Email: Browser Version

19.3 Sending Email: For Real

19.4 Mail-Enabling a Server Program

19.5 Sending MIME Mail

19.6 Providing Mail Settings

19.7 Sending Mail Without Using JavaMail

19.8 Reading Email

19.9 Program: MailReaderBean

19.10 Program: MailClient

19.1 Introduction

Sending and receiving email from a program is easy with Java. If you are writing an applet, you
can simply trick the browser into composing and sending it for you. Otherwise, you can use the
JavaMail Extension (package javax.mail) to both send and read mail. JavaMail provides three
general categories of classes, known as Messages , Transports, and Stores. A Message, of
course, represents one email message. A Transport is a way of sending a Message from your
application into the network or Internet. A Store represents stored email messages, and can be
used to retrieve them as Message objects. That is, a Store is the inverse of a Transport, or,
looked at another way, a Transport is for sending email and a Store is for reading it. One
other class, Session, is used to obtain references to the appropriate Store and/or Transport
objects that you need to use.

Being an extension, the JavaMail package must be downloaded separately from Sun's web site
and is not part of the core API. It's worth it, though. For the cost of a few minutes' downloading
time, you get the ability to send and receive electronic mail over a variety of network protocols.
JavaMail is also included in the Java 2 Enterprise Edition (J2EE), so if you have J2EE you do not
need to download JavaMail.

Finally, as you might have guessed from Chapter 15, it's not that big a stretch to write code that
contacts an SMTP server yourself and pretends to be a mail program. Hey, why pretend? You
really have a mail program at that point!

19.2 Sending Email: Browser Version

 521

19.2.1 Problem

You want an applet to permit the user to compose and send email.

19.2.2 Solution

Use a mailto: URL, but hide it in some Java code.

19.2.3 Discussion

Since most web browsers are now configured with either built-in or linked-in email clients, you
can use the mailto: URL as a poor-person's email composer to have users contact you. Many
people prefer this to a fill-in-the-blank "mail" form connected to a CGI script or servlet (see
Chapter 18), since they can use a specialized tool and save their own copy of the mail either in
their log file or by CC'ing their own account. While you could use a mailto: URL directly in HTML,
experience suggests that a species of parasite called a SPAM perpetrator will attach itself
permanently to your mailbox if you do. Permanently, but not symbiotically, since this alleged life-
form offers nothing in return to its host.

<H1>Test</H1> <P>Here is how to <A HREF="mailto:spam
-magnet@darwinsys.com?subject=Testing Mailto
URL&cc=dilbert@office.comics">contact
us

My approach is to hide the mailto: URL inside a Java applet, where SPAM perps are less likely to
notice it. The applet uses showDocument() to activate the mailto: URL.

String theURL = "mailto:" + username;
URL targetURL = new URL(theURL);
getAppletContext.showDocument(targetURL);

Further, I break the email address into two parts and provide the @ directly, so it won't be seen
even if the SPAM-spider is clever enough to look into the PARAM parts of the APPLET tag. Since
I know you won't actually deploy this code without changing TARGET1 and TARGET2 -- the
PARAM tags for the mail receiver's email name and host domain -- you're fairly safe from SPAM
with this. Example 19-1 is the Java applet class.

Example 19-1. MailtoButton.java

import java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.net.*;
import java.util.*;

/**
 * MailtoButton -- look like a mailto, but not visible to spiders.
 */
public class MailtoButton extends Applet {
 /** The label that is to appear in the button */
 protected String label = null;
 /** The width and height */
 protected int width, height;

 522

 /** The string form of the URL to jump to */
 protected String targetName, targetHost;
 /** The URL to jump to when the button is pushed. */
 protected URL targetURL;
 /** The name of the font */
 protected String fontName;
 protected String DEFAULTFONTNAME = "helvetica";
 /** The font */
 protected Font theFont;
 /** The size of the font */
 protected int fontSize = 18;
 /** The HTML PARAM for the user account -- keep it short */
 private String TARGET1 = "U"; // for User
 /** The HTML PARAM for the hostname -- keep it short */
 private String TARGET2 = "H"; // for Host
 // Dummy
 private String BOGON1 = "username"; // happy strings-ing, SPAM
perps
 private String BOGON2 = "hostname"; // ditto.
 /** The string for the Subject line, if any */
 private String subject;

 /** Called from the browser to set up. We want to throw various
 * kinds of exceptions but the API predefines that we don't, so we
 * limit ourselves to the ubiquitous IllegalArgumentException.
 */
 public void init() {
 // System.out.println("In LinkButton::init");
 try {
 if ((targetName = getParameter(TARGET1)) == null)
 throw new IllegalArgumentException(
 "TARGET parameter REQUIRED");
 if ((targetHost = getParameter(TARGET2)) == null)
 throw new IllegalArgumentException(
 "TARGET parameter REQUIRED");

 String theURL = "mailto:" + targetName + "@" + targetHost;

 subject = getParameter("subject");
 if (subject != null)
 theURL += "?subject=" + subject;

 targetURL = new URL(theURL);

 } catch (MalformedURLException rsi) {
 throw new IllegalArgumentException("MalformedURLException "
+
 rsi.getMessage());
 }

 label = getParameter("label"); // i.e., "Send feedback"
 if (label == null)
 throw new IllegalArgumentException("LABEL is
REQUIRED");

 // Now handle font stuff.

 523

 fontName = getParameter("font");
 if (fontName == null)
 fontName = DEFAULTFONTNAME;
 String s;
 if ((s = getParameter("fontsize")) != null)
 fontSize = Integer.parseInt(s);
 if (fontName != null || fontSize != 0) {
 System.out.println("Name " + fontName + ", size " +
fontSize);
 theFont = new Font(fontName, Font.BOLD, fontSize);
 }

 Button b = new Button(label);
 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 if (targetURL != null) {
 // showStatus("Going to " + target);
 getAppletContext().showDocument(targetURL);
 }
 }
 });
 if (theFont != null)
 b.setFont(theFont);
 add(b);
 }

 /** Give Parameter info to the AppletViewer, just for those
 * writing HTML without hardcopy documentation :-)
 */
 public String[][] getParameterInfo() {
 String info[][] = {
 { "label", "string", "Text to display" },
 { "fontname", "name", "Font to display it in" },
 { "fontsize", "10-30?", "Size to display it at" },

 // WARNING - these intentionally lie, to mislead spammers
who
 // are incautious enough to download and run (or strings)
the
 // .class file for this Applet.

 { "username", "email-account",
 "Where do you want your mail to go today? Part 1" },
 { "hostname", "host.domain",
 "Where do you want your mail to go today? Part 2" },
 { "subject", "subject line",
 "What your Subject: field will be." },
 };
 return info;
 }
}

Example 19-2 shows the program in a simple HTML page, to show you the syntax of using it.

Example 19-2. MailtoButton.htm

 524

<HTML><HEAD>
<TITLE>Darwin Open Systems: Feedback Page</TITLE></HEAD>
<BODY BGCOLOR="White">
<H1>Darwin Open Systems: Feedback Page</H1>
<P>So, please, send us your feedback!</P>
<APPLET CODE=MailtoButton WIDTH=200 HEIGHT=40>
 <PARAM NAME="H" VALUE="www.darwinsys.com">
 <PARAM NAME="U" VALUE="wile_e_coyote">
 <PARAM NAME="subject" VALUE="Acme Widgets Feedback">
 <PARAM NAME="label" VALUE="Send Feedback by Mail">
 <PARAM NAME="font" VALUE="Helvetica">
 <PARAM NAME="fontsize" VALUE="16">
 <P>Your browser doesn't recognize Java Applets.
 Please use the non-Java CGI-based feedback form.</P>
</APPLET>
<P>You should get an acknowledgement by email shortly. Thank you
for your comments!</P>
<HR>
<P>Here is a traditional "CGI"-style form to let you to send feedback
if you aren't running Java or if your browser doesn't support
email composition.</P>
<FORM METHOD=POST ACTION="http://www.darwinsys.com/bin/feedback.cgi">
 <TEXTAREA NAME=message ROWS=5 COLS=60></TEXTAREA>

 <INPUT TYPE=SUBMIT VALUE="Send Feedback"></INPUT>
</FORM>
<P>Thank you for your comments.</P>

Of course, not everybody uses a full-featured browser, and the light version doesn't include the
email composer. The page therefore features a traditional CGI-based form for the benefit of those
poor souls in need of a Java-based browser. Figure 19-1 is a screenshot in Netscape 4,
showing the Compose window resulting from pressing the Feedback button.

Figure 19-1. MailToButton

 525

The CGI form is a workaround, though. Better yet is to provide a full-blown mail composer.

19.3 Sending Email: For Real

19.3.1 Problem

You need to send email, and the browser trick in Section 19.2 won't cut it.

19.3.2 Solution

Provide a real email client.

19.3.3 Discussion

A real email client allows the user considerably more control. Of course, it also requires more
work. In this recipe I'll build a simple version of a mail sender, relying upon the JavaMail standard
extension in package javax.mail and javax.mail.internet (the latter contains classes
that are specific to Internet email protocols). This first example shows the steps of sending mail
over SMTP, the standard Internet mail protocol. The steps are listed in the sidebar.

Ian's Basic Steps: Sending Email over SMTP

1. Create a java.util.Properties (see Section 7.4) to pass
information about the mail server, as the JavaMail API allows
room for many settings.

2. Load the Properties with at least the hostname of the SMTP

 526

mail server.
3. Create a Session object.
4. Create a Message from the Session object.
5. Set the From, To, CC addresses, and Subject in the Message.
6. Set the message text into the message body.
7. Finally, use the static method Transport.send() to send the

message!

As is usual in Java, you must catch certain exceptions. This API requires that you catch the
MessagingException, which indicates some failure of the transmission. Class Sender is
shown in Example 19-3.

Example 19-3. Sender.java

import java.io.*;
import java.util.*;
import javax.mail.*;
import javax.mail.internet.*;

/** sender -- send an email message.
 */
public class Sender {

 /** The message recipient. */
 protected String message_recip = "spam-magnet@darwinsys.com";
 /* What's it all about, Alfie? */
 protected String message_subject = "Re: your mail";
 /** The message CC recipient. */
 protected String message_cc = "nobody@erewhon.com";
 /** The message body */
 protected String message_body =
 "I am unable to attend to your message, as I am busy sunning "
+
 "myself on the beach in Maui, where it is warm and peaceful. "
+
 "Perhaps when I return I'll get around to reading your mail. "
+
 "Or perhaps not.";

 /** The JavaMail session object */
 protected Session session;
 /** The JavaMail message object */
 protected Message mesg;

 /** Do the work: send the mail to the SMTP server. */
 public void doSend() {

 // We need to pass info to the mail server as a Properties,
since
 // JavaMail (wisely) allows room for LOTS of properties...
 Properties props = new Properties();

 527

 // Your LAN must define the local SMTP server as "mailhost"
 // for this simple-minded version to be able to send mail...
 props.put("mail.smtp.host", "mailhost");

 // Create the Session object
 session = Session.getDefaultInstance(props, null);
 session.setDebug(true); // Verbose!

 try {
 // create a message
 mesg = new MimeMessage(session);

 // From Address - this should come from a Properties...
 mesg.setFrom(new InternetAddress("nobody@host.domain"));

 // TO Address
 InternetAddress toAddress = new
InternetAddress(message_recip);
 mesg.addRecipient(Message.RecipientType.TO, toAddress);

 // CC Address
 InternetAddress ccAddress = new
InternetAddress(message_cc);
 mesg.addRecipient(Message.RecipientType.CC, ccAddress);

 // The Subject
 mesg.setSubject(message_subject);

 // Now the message body.
 mesg.setText(message_body);
 // XXX I18N: use setText(msgText.getText(), charset)

 // Finally, send the message!
 Transport.send(mesg);

 } catch (MessagingException ex) {
 while ((ex = (MessagingException)ex.getNextException())
!= null) {
 ex.printStackTrace();
 }
 }
 }

 /** Simple test case driver */
 public static void main(String[] av) {
 Sender sm = new Sender();
 sm.doSend();
 }
}

Of course, a program that can only send one message to one address is not useful in the long
run. The second version (not shown here, but in the source tree accompanying this book) allows
the To, From, Mailhost, and Subject to come from the command line, and reads the mail text
either from a file or from the standard input.

19.4 Mail-Enabling a Server Program

 528

19.4.1 Problem

You want to send mail notification from within a program.

19.4.2 Solution

Use the javax.mail API directly, or this Mailer wrapper.

19.4.3 Discussion

It is not uncommon to want to send email from deep within a non-GUI program such as a server.
Here, I package all the standard code into a class called Mailer, which has a series of "set"
methods to set the sender, recipient, mail server, etc. You simply call the Mailer method
doSend() after setting the recipient, sender, subject, and the message text, and Mailer does
the rest. Very convenient! So convenient, in fact, that Mailer is part of the
com.darwinsys.util package.

For extra generality, the lists of To, CC, and BCC recipients can be set in one of three ways:

• By passing a string containing one or more recipients, such as "ian, robin"
• By passing an ArrayList containing all the recipients as strings
• By adding each recipient as a string

A "full" version will allow the user to type the recipients, the subject, the text, and so on into a
GUI, and have some control over the header fields. The MailComposeBean (which we'll meet in
Section 19.10) does all of these, using a Swing-based GUI. MailComposeBean uses this
Mailer class to interface with the JavaMail API. Example 19-4 contains the code for the Mailer
class.

Example 19-4. Mailer.java

package com.darwinsys.util;

import java.io.*;
import java.util.*;
import javax.mail.*;
import javax.mail.internet.*;

/** Mailer. No relation to Norman. Sends an email message.
 */
public class Mailer {
 /** The javamail session object. */
 protected Session session;
 /** The sender's email address */
 protected String from;
 /** The subject of the message. */
 protected String subject;
 /** The recipient ("To:"), as Strings. */
 protected ArrayList toList = new ArrayList();
 /** The CC list, as Strings. */
 protected ArrayList ccList = new ArrayList();
 /** The BCC list, as Strings. */

 529

 protected ArrayList bccList = new ArrayList();
 /** The text of the message. */
 protected String body;
 /** The SMTP relay host */
 protected String mailHost;
 /** The verbosity setting */
 protected boolean verbose;

 /** Get from */
 public String getFrom() {
 return from;
 }

 /** Set from */
 public void setFrom(String fm) {
 from = fm;
 }

 /** Get subject */
 public String getSubject() {
 return subject;
 }

 /** Set subject */
 public void setSubject(String subj) {
 subject = subj;
 }

 // SETTERS/GETTERS FOR TO: LIST

 /** Get tolist, as an array of Strings */
 public ArrayList getToList() {
 return toList;
 }

 /** Set to list to an ArrayList of Strings */
 public void setToList(ArrayList to) {
 toList = to;
 }

 /** Set to as a string like "tom, mary, robin@host". Loses any
 * previously-set values. */
 public void setToList(String s) {
 toList = tokenize(s);
 }

 /** Add one "to" recipient */
 public void addTo(String to) {
 toList.add(to);
 }

 // SETTERS/GETTERS FOR CC: LIST

 /** Get cclist, as an array of Strings */
 public ArrayList getCcList() {
 return ccList;
 }

 530

 /** Set cc list to an ArrayList of Strings */
 public void setCcList(ArrayList cc) {
 ccList = cc;
 }

 /** Set cc as a string like "tom, mary, robin@host". Loses any
 * previously-set values. */
 public void setCcList(String s) {
 ccList = tokenize(s);
 }

 /** Add one "cc" recipient */
 public void addCc(String cc) {
 ccList.add(cc);
 }

 // SETTERS/GETTERS FOR BCC: LIST

 /** Get bcclist, as an array of Strings */
 public ArrayList getBccList() {
 return bccList;
 }

 /** Set bcc list to an ArrayList of Strings */
 public void setBccList(ArrayList bcc) {
 bccList = bcc;
 }

 /** Set bcc as a string like "tom, mary, robin@host". Loses any
 * previously-set values. */
 public void setBccList(String s) {
 bccList = tokenize(s);
 }

 /** Add one "bcc" recipient */
 public void addBcc(String bcc) {
 bccList.add(bcc);
 }

 // SETTER/GETTER FOR MESSAGE BODY

 /** Get message */
 public String getBody() {
 return body;
 }

 /** Set message */
 public void setBody(String text) {
 body = text;
 }

 // SETTER/GETTER FOR VERBOSITY

 /** Get verbose */
 public boolean isVerbose() {
 return verbose;

 531

 }

 /** Set verbose */
 public void setVerbose(boolean v) {
 verbose = v;
 }

 /** Check if all required fields have been set before sending.
 * Normally called e.g., by a JSP before calling doSend.
 * Is also called by doSend for verification.
 */
 public boolean isComplete() {
 if (from == null || from.length()==0) {
 System.err.println("doSend: no FROM");
 return false;
 }
 if (subject == null || subject.length()==0) {
 System.err.println("doSend: no SUBJECT");
 return false;
 }
 if (toList.size()==0) {
 System.err.println("doSend: no recipients");
 return false;
 }
 if (body == null || body.length()==0) {
 System.err.println("doSend: no body");
 return false;
 }
 if (mailHost == null || mailHost.length()==0) {
 System.err.println("doSend: no server host");
 return false;
 }
 return true;
 }

 public void setServer(String s) {
 mailHost = s;
 }

 /** Send the message.
 */
 public synchronized void doSend() throws MessagingException {

 if (!isComplete())
 throw new IllegalArgumentException(
 "doSend called before message was complete");

 /** Properties object used to pass props into the MAIL API */
 Properties props = new Properties();
 props.put("mail.smtp.host", mailHost);

 // Create the Session object
 if (session == null) {
 session = Session.getDefaultInstance(props, null);
 if (verbose)
 session.setDebug(true); // Verbose!
 }

 532

 // create a message
 final Message mesg = new MimeMessage(session);

 InternetAddress[] addresses;

 // TO Address list
 addresses = new InternetAddress[toList.size()];
 for (int i=0; i<addresses.length; i++)
 addresses[i] = new InternetAddress((String)toList.get(i));
 mesg.setRecipients(Message.RecipientType.TO, addresses);

 // From Address
 mesg.setFrom(new InternetAddress(from));

 // CC Address list
 addresses = new InternetAddress[ccList.size()];
 for (int i=0; i<addresses.length; i++)
 addresses[i] = new InternetAddress((String)ccList.get(i));
 mesg.setRecipients(Message.RecipientType.CC, addresses);

 // BCC Address list
 addresses = new InternetAddress[bccList.size()];
 for (int i=0; i<addresses.length; i++)
 addresses[i] = new InternetAddress((String)bccList.get(i));
 mesg.setRecipients(Message.RecipientType.BCC, addresses);

 // The Subject
 mesg.setSubject(subject);

 // Now the message body.
 mesg.setText(body);

 // Finally, send the message! (use static Transport method)
 // Do this in a Thread as it sometimes is too slow for JServ
 new Thread() {
 public void run() {
 try {
 Transport.send(mesg);
 } catch (MessagingException e) {
 throw new IllegalArgumentException(
 "Transport.send() threw: " + e.toString());
 }
 }
 }.start();
 }

 /** Convenience method that does it all with one call. */
 public static void send(String mailhost,
 String recipient, String sender, String subject, String
message)
 throws MessagingException {
 Mailer m = new Mailer();
 m.setServer(mailhost);
 m.addTo(recipient);
 m.setFrom(sender);
 m.setSubject(subject);

 533

 m.setBody(message);
 m.doSend();
 }

 /** Convert a list of addresses to an ArrayList. This will work
 * for simple names like "tom, mary@foo.com, 123.45@c$.com"
 * but will fail on certain complex (but RFC-valid) names like
 * "(Darwin, Ian) <ian@darwinsys.com>".
 * Or even "Ian Darwin <ian@darwinsys.com>".
 */
 protected ArrayList tokenize(String s) {
 ArrayList al = new ArrayList();
 StringTokenizer tf = new StringTokenizer(s, ",");
 // For each word found in the line
 while (tf.hasMoreTokens()) {
 // trim blanks, and add to list.
 al.add(tf.nextToken().trim());
 }
 return al;
 }
}

19.5 Sending MIME Mail

19.5.1 Problem

You need to send a multipart, MIME-encoded message.

19.5.2 Solution

Use the Part, man.

19.5.3 Discussion

Way back in the old days when the Internet was being invented, most email was composed using
the seven-bit ASCII character set. You couldn't send messages containing characters from
international character sets. Then some enterprising soul got the idea to convert non-ASCII files
into ASCII using a form of encoding known as UUENCODE (the UU is a reference to UUCP, one
of the main transport protocols used for email and file transfer at a time when Internet access was
prohibitively expensive for the masses). But this was pretty cumbersome, so eventually the
Multimedia Internet Mail Exchange format, or MIME, was born. MIME has grown over the years to
support, as its name implies, a variety of multimedia types in addition to supporting odd
characters. MIME typing has become very pervasive due to its use on the Web. As you probably
know, every file that your web browser downloads -- and a typical web page may contain from 1
to 20, 40, or more files depending on how hog-wild the graphics are -- is classified by the web
server; this "MIME type" tells the browser how to display the contents of the file. Normal HTML
pages are given a type of text/html. Plain text is, as you might guess, text/plain. Images
have types such as image/gif, image/jpeg, image/png, and so on. Other types include
application/ms-word, application/pdf, audio/au, etc.

Mail attachments are files attached to a mail message. MIME is used to classify attachments, so
they can be deciphered by a mail reader the same way that a browser decodes files it downloads.

 534

Plain text and HTML text are the two most popular, but something called Visual Basic Script, or
VBS, was popularized (along with major weaknesses in the design of a certain desktop operating
system) by several famous viruses including the so-called "love bug" virus.

The point of all this? The JavaMail extension is designed to make it easy for you to send and
receive all normal types of mail, including mail containing MIME-typed data. For example, if you
wish to encode a stream containing audio data, you can do so. And, as importantly for Java, if
you wish to encode a Reader containing characters in an 8- or 16-bit character encoding, you
can do that too.

The API makes you specify each separate MIME-encoded portion of your message as a Part . A
Part represents a chunk of data that may need special handling by MIME encoders when being
sent, and MIME decoders (in your email client) when being read. Example 19-5 is an example
of sending a text/html attachment along with plain text.

Example 19-5. SendMime.java (partial listing)

/** The text/plain message body */
protected String message_body =
 "I am unable to attend to your message, as I am busy sunning " +
 "myself on the beach in Maui, where it is warm and peaceful. " +
 "Perhaps when I return I'll get around to reading your mail. " +
 "Or perhaps not.";
/* The text/html data. */
protected String html_data =
 "<HTML><HEAD><TITLE>My Goodness</TITLE></HEAD>" +
 "<BODY><P>You do look a little " +
 "GREEN " +
 "around the edges..." +
 "</BODY></HTML>";

/** Do the work: send the mail to the SMTP server. */
public void doSend() throws IOException, MessagingException {

 // create a session and message as before

 // Addresses, Subject set as before

 // Now the message body.
 Multipart mp = new MimeMultipart();

 BodyPart textPart = new MimeBodyPart();
 textPart.setText(message_body); // sets type to "text/plain"

 BodyPart pixPart = new MimeBodyPart();
 pixPart.setContent(html_data, "text/html");

 // Collect the Parts into the MultiPart
 mp.addBodyPart(textPart);
 mp.addBodyPart(pixPart);

 // Put the MultiPart into the Message
 mesg.setContent(mp);

 // Finally, send the message as before

 535

 Transport.send(mesg);

N.B. This example requires JavaMail API Version 1.2 or later, due to a bug/limitation in earlier
versions.

19.6 Providing Mail Settings

19.6.1 Problem

You want a way to automatically provide server host, protocol, user, and password.

19.6.2 Solution

Use a Properties object.

19.6.3 Discussion

You may remember from Section 7.8 that java.util.Properties is a list of name/value
pairs, and that my FileProperties extends Properties to provide loading and saving. In
several places in this chapter, I use a FileProperties object to preload a large variety of
settings, instead of hardcoding them or having to type them all on the command line. When
dealing with JavaMail, you must specify the mail hostname, username and password, protocol to
use (IMAP, POP, or mailbox for reading), and so on. I store this information in a properties file,
and most of the programs in this chapter will use it. Here is my default file, MailClient.properties :

This file contains my default Mail properties.

Values for sending
Mail.address=ian@darwinsys.com
Mail.send.proto=smtp
Mail.send.host=localhost
Mail.send.debug=true

Values for receiving
Mail.receive.host=localhost
Mail.receive.protocol=mbox
Mail.receive.user=*
Mail.receive.pass=*
Mail.receive.root=/var/mail/ian

The last two, pass and root, can have certain predefined values. Since nobody concerned with
security would store unencrypted passwords in a file on disk, I allow you to set pass=ASK (in
uppercase), which causes some of my programs to prompt for a password. The JavaMail API
allows use of root=INBOX to mean the default storage location for your mail.

The keys in this list of properties intentionally begin with a capital letter, since the property names
used by the JavaMail API begin with a lowercase letter. The names are rather long, so they, too,
are coded. But it would be circular to encode them in a Properties object; instead, they are
embedded in a Java interface called MailConstants, shown in Example 19-6.

Example 19-6. MailConstants.java

 536

/** Simply a list of names for the Mail System to use.
 * If you "implement" this interface, you don't have to prefix
 * all the names with MailProps in your code.
 */
public interface MailConstants {
 public static final String PROPS_FILE_NAME =
"MailClient.properties";

 public static final String SEND_PROTO = "Mail.send.protocol";
 public static final String SEND_USER = "Mail.send.user";
 public static final String SEND_PASS = "Mail.send.password";
 public static final String SEND_ROOT = "Mail.send.root";
 public static final String SEND_HOST = "Mail.send.host";
 public static final String SEND_DEBUG = "Mail.send.debug";

 public static final String RECV_PROTO = "Mail.receive.protocol";
 public static final String RECV_PORT = "Mail.receive.port";
 public static final String RECV_USER = "Mail.receive.user";
 public static final String RECV_PASS = "Mail.receive.password";
 public static final String RECV_ROOT = "Mail.receive.root";
 public static final String RECV_HOST = "Mail.receive.host";
 public static final String RECV_DEBUG = "Mail.receive.debug";
}

The fields in this interface can be referred to by their full names, e.g.,
MailConstants.RECV_PROTO. However, that is almost as much typing as the original long
string (Mail.receive.protocol).[1] As a shortcut, programs that use more than a few of the
fields will claim to implement the interface, and then can refer to the fields as part of their class,
e.g., RECV_PROTO. This is a bit of a trick on the compiler: the interface has no methods so
anybody can implement it, but in so doing "inherit" all the fields (remember that fields in an
interface can only be final, not non-final).

[1] A bit like typing BorderLayout.NORTH instead of just "North".

19.7 Sending Mail Without Using JavaMail

19.7.1 Problem

You want to send mail, but don't want to require javax.mail.

19.7.2 Solution

This is a Really Bad Idea. You can implement the SMTP protocol yourself, but you shouldn't.

19.7.3 Discussion

Implementing an Internet protocol from the ground up is not for the faint of heart. To get it right,
you need to read and study the requisite Internet RFC[2] pseudo-standards. I make no pretense
that this mail sender fully conforms to the relevant RFCs; in fact, it almost certainly does not. The
toy implementation here uses a simpler send-expect sequencing to keep in sync with the SMTP
server at the other end. Indeed, this program has little to recommend it for serious use; I can only
say that I had it around, and it's a good illustration of how simple a mail sender can be. Reading it

 537

may help you to appreciate the JavaMail API, which handles not just SMTP but also POP, IMAP,
and many other protocols. Do not use this code in production; use the JavaMail API instead!

[2] RFC stands for "Request For Comments," a reflection on the community-based standards process that
was the norm when the Internet was young.

The basic idea of SMTP is that you send requests like MAIL, FROM, RCPT, and DATA in ASCII
over an Internet socket (see Section 15.2). Even if your mail contains 8- or 16-bit characters,
the control information must contain only "pure ASCII" characters. This suggests either using the
byte-based stream classes from java.io (see Section 9.2) or using Readers/Writers with
ASCII encoding. Further, if the data contains 8- or 16-bit characters, it should be encoded using
MIME (see Section 19.5). This trivial example uses only the ASCII character set to send a plain
text message.

When I run this program, it traces the SMTP transaction in the same way sendmail does with the
-v option under Unix (this resemblance is intentional). The <<< and >>> are not part of the
protocol; they are printed by the program to show the direction of communication (>>> means
outgoing, from client to server, and <<< means the opposite). Lines starting with these symbols
are the actual lines that an SMTP client and server exchange. You may notice that the server
sends lines with both a three-digit numeric code and a text message, while the client sends four-
letter words, commands like HELO and MAIL to tell the server what do to. The data sent in
response to the line beginning with code 354 (the actual mail message) is not shown.

daroad.darwinsys.com$ jr SmtpTalk localhost ian
+ jikes +E SmtpTalk.java
+ java SmtpTalk localhost ian
SMTP Talker ready
<<< 220 darwinsys.com ESMTP Sendmail 8.9.3/8.9.3; Thu, 23 Dec 1999
16:02:00
>>> HELO darwinsys.com
<<< 250 darwinsys.com Hello ian@localhost [127.0.0.1], pleased to meet
you
>>> MAIL From:<MAILER-DAEMON@daroad.darwinsys.com>
<<< 250 <MAILER-DAEMON@daroad.darwinsys.com>... Sender ok
>>> RCPT To:<ian>
<<< 250 <ian>... Recipient ok
>>> DATA
<<< 354 Enter mail, end with "." on a line by itself
>>> .
<<< 250 QAA00250 Message accepted for delivery
>>> QUIT
<<< 221 darwinsys.com closing connection daroad.darwinsys.com$

The program, shown in Example 19-7, is straightforward, if not very elegant.

Example 19-7. SmtpTalk.java

import java.io.*;
import java.net.*;
import java.util.*;

/**
 * SMTP talker class, usable standalone (as a SendMail(8) backend)
 * or inside applications such as JabaDex that need to send mail..
 *

 538

 * OBSOLETE!! Use javax.mail instead, now that it's available!
 *
 */
public class SmtpTalk implements SysExits {
 // SysExits is a simple interface that just defines the
 // System.exit() codes to make this compatible with Sendmail.

 BufferedReader is;
 PrintStream os;
 private boolean debug = true;
 private String host;

 /** A simple main program showing the class in action.
 *
 * TODO generalize to accept From arg, read msg on stdin
 */
 public static void main(String[] argv) {
 if (argv.length != 2) {
 System.err.println("Usage: java SmtpTalk host user");
 System.exit(EX_USAGE);
 }

 try {
 SmtpTalk st = new SmtpTalk(argv[0]);

 System.out.println("SMTP Talker ready");

 st.converse("MAILER-DAEMON@daroad.darwinsys.com",
 argv[1], "Test message", "Hello there");
 } catch (SMTPException ig) {
 System.err.println(ig.getMessage());
 System.exit(ig.getCode());
 }
 }

 /** Constructor taking a server hostname as argument.
 */
 SmtpTalk(String server) throws SMTPException {
 host = server;
 try {
 Socket s = new Socket(host, 25);
 is = new BufferedReader(
 new InputStreamReader(s.getInputStream()));
 os = new PrintStream(s.getOutputStream());
 } catch (NoRouteToHostException e) {
 die(EX_TEMPFAIL, "No route to host " + host);
 } catch (ConnectException e) {
 die(EX_TEMPFAIL, "Connection Refused by " + host);
 } catch (UnknownHostException e) {
 die(EX_NOHOST, "Unknown host " + host);
 } catch (IOException e) {
 die(EX_IOERR, "I/O error setting up socket streams\n" + e);
 }
 }

 /** Send a command with an operand */
 protected void send_cmd(String cmd, String oprnd) {

 539

 send_cmd(cmd + " " + oprnd);
 }

 /* Send a command with no operand */
 protected void send_cmd(String cmd) {
 if (debug)
 System.out.println(">>> " + cmd);
 os.print(cmd + "\r\n");
 }

 /** Send_text sends the body of the message. */
 public void send_text(String text) {
 os.print(text + "\r\n");
 }

 /** Expect (read and check for) a given reply */
 protected boolean expect_reply(String rspNum) throws SMTPException
{
 String s = null;
 try {
 s = is.readLine();
 } catch(IOException e) {
 die(EX_IOERR,"I/O error reading from host " + host + " " +
e);
 }
 if (debug) System.out.println("<<< " + s);
 return s.startsWith(rspNum + " ");
 }

 /** Convenience routine to print message & exit, like
 * K&P error(), perl die(1,), ...
 * @param ret Numeric value to pass back
 * @param msg Error message to be printed on stdout.
 */
 protected void die(int ret, String msg) throws SMTPException {
 throw new SMTPException(ret, msg);
 }

 /** send one Mail message to one or more recipients via smtp
 * to server "host".
 */
 public void converse(String sender, String recipients,
 String subject, String body) throws SMTPException {

 if (!expect_reply("220")) die(EX_PROTOCOL,
 "did not get SMTP greeting");

 send_cmd("HELO", "darwinsys.com");
 if (!expect_reply("250")) die(EX_PROTOCOL,
 "did not ack our HELO");

 send_cmd("MAIL", "From:<"+sender+">"); // no spaces!
 if (!expect_reply("250")) die(EX_PROTOCOL,
 "did not ack our MAIL command");

 StringTokenizer st = new StringTokenizer(recipients);
 while (st.hasMoreTokens()) {

 540

 String r = st.nextToken();
 send_cmd("RCPT", "To:<" + r + ">");
 if (!expect_reply("250")) die(EX_PROTOCOL,
 "didn't ack RCPT " + r);
 }
 send_cmd("DATA");
 if (!expect_reply("354")) die(EX_PROTOCOL,"did not want our
DATA!");

 send_text("From: " + sender);
 send_text("To: " + recipients);
 send_text("Subject: " + subject);
 send_text("");
 send_text(body + "\r");

 send_cmd(".");
 if (!expect_reply("250")) die(EX_PROTOCOL,"Mail not accepted");

 send_cmd("QUIT");
 if (!expect_reply("221")) die(EX_PROTOCOL,"Other end not
closing down");
 }
}

19.8 Reading Email

19.8.1 Problem

You need to read mail.

19.8.2 Solution

Use a JavaMail Store.

19.8.3 Discussion

The JavaMail API is designed to be easy to use. Store encapsulates the information and access
methods for a particular type of mail storage; the steps for using it are listed in the sidebar.

Ian's Basic Steps: Reading Email Using Store

1. Get a Session object using Session.getDefaultInstance(
). You can pass System.getProperties() as the
Properties argument.

2. Get a Store from the Session object.
3. Get the root Folder.
4. If the root Folder can contain subfolders, list them.
5. For each Folder that can contain messages, call

getMessages(), which returns an array of Message objects.

 541

6. Do what you will with the messages (usually, display the headers
and let the user select which message to view).

Sun provides a Store class for the IMAP transport mechanism, and optionally for POP3.[3] In
these examples I use the Unix mbox protocol[4] (when I started with Unix there was no POP3
protocol; it was traditional to access your mail spool file directly on a server). However, you could
use all these programs with the POP or IMAP stores just by passing the appropriate protocol
name where "mbox" appears in the following examples. I've tested several of the programs using
Sun's POP store and several POP servers (CUCIpop and PMDF).

[3] The POP3 Store classes must be downloaded and manually installed from
http://java.sun.com/products/javamail/.

[4] This is free (GPL) software, which can be downloaded from the Giant Java Tree, http://www.gjt.org.

I delete most of the email I get on one of my systems, so there were only two messages to be
read when I ran my first "mailbox lister" program:

daroad.darwinsys.com$ java MailLister mbox localhost - - /var/mail/ian
Getting folder /var/mail/ian.
Name: ian(/var/mail/ian)
No New Messages
irate_client@nosuchd Contract in Hawaii
mailer-daemon@kingcr Returned mail: Data format error
daroad.darwinsys.com$

The main program shown in Example 19-8 takes all five arguments from its command line.

Example 19-8. MailLister.java

import com.darwinsys.util.*;
import java.util.Properties;
import javax.mail.*;
import javax.mail.internet.*;

/**
* List all available folders.
*/
public class MailLister {
 static StringFormat fromFmt =
 new StringFormat(20, StringFormat.JUST_LEFT);
 static StringFormat subjFmt =
 new StringFormat(40, StringFormat.JUST_LEFT);

 public static void main(String[] argv) throws Exception {
 String fileName = MailConstants.PROPS_FILE_NAME;
 String protocol = null;
 String host = null;
 String user = null;
 String password = null;
 String root = null;

 // If argc == 1, assume it's a Properties file.

 542

 if (argv.length == 1) {
 fileName = argv[0];
 FileProperties fp = new FileProperties(fileName);
 fp.load();
 protocol = fp.getProperty(MailConstants.RECV_PROTO);
 host = fp.getProperty(MailConstants.RECV_HOST);
 user = fp.getProperty(MailConstants.RECV_USER);
 password = fp.getProperty(MailConstants.RECV_PASS);
 root = fp.getProperty(MailConstants.RECV_ROOT);
 }
 // If not, assume listing all args in long form.
 else if (argv.length == 5) {
 protocol = argv[0];
 host = argv[1];
 user = argv[2];
 password = argv[3];
 root = argv[4];
 }
 // Otherwise give up.
 else {
 System.err.println(
 "Usage: MailLister protocol host user pw root");
 System.exit(0);
 }

 boolean recursive = false;

 // Start with a Session object, as usual
 Session session = Session.getDefaultInstance(
 System.getProperties(), null);
 session.setDebug(false);

 // Get a Store object for the given protocol
 Store store = session.getStore(protocol);
 store.connect(host, user, password);

 // Get Folder object for root, and list it
 // If root name = "", getDefaultFolder(), else
getFolder(root)
 Folder rf;
 if (root.length() != 0) {
 System.out.println("Getting folder " + root + ".");
 rf = store.getFolder(root);
 } else {
 System.out.println("Getting default folder.");
 rf = store.getDefaultFolder();
 }
 rf.open(Folder.READ_WRITE);

 if (rf.getType() == Folder.HOLDS_FOLDERS) {
 Folder[] f = rf.list();
 for (int i = 0; i < f.length; i++)
 listFolder(f[i], "", recursive);
 } else
 listFolder(rf, "", false);
 }

 543

 static void listFolder(Folder folder, String tab, boolean recurse)
 throws Exception {
 folder.open(Folder.READ_WRITE);
 System.out.println(tab + "Name: " + folder.getName() + '(' +
 folder.getFullName() + ')');
 if (!folder.isSubscribed())
 System.out.println(tab + "Not Subscribed");
 if ((folder.getType() & Folder.HOLDS_MESSAGES) != 0) {
 if (folder.hasNewMessages())
 System.out.println(tab + "Has New Messages");
 else
 System.out.println(tab + "No New Messages");
 Message[] msgs = folder.getMessages();
 for (int i=0; i<msgs.length; i++) {
 Message m = msgs[i];
 Address from = m.getFrom()[0];
 String fromAddress;
 if (from instanceof InternetAddress)
 fromAddress = ((InternetAddress)from).getAddress(
);
 else
 fromAddress = from.toString();
 StringBuffer sb = new StringBuffer();
 fromFmt.format(fromAddress, sb, null);
 sb. append(" ");
 subjFmt.format(m.getSubject(), sb, null);
 System.out.println(sb.toString());
 }
 }
 if ((folder.getType() & Folder.HOLDS_FOLDERS) != 0) {
 System.out.println(tab + "Is Directory");
 if (recurse) {
 Folder[] f = folder.list();
 for (int i=0; i < f.length; i++)
 listFolder(f[i], tab + "", recurse);
 }
 }
 }
}

This program has the core of a full mail reader but doesn't actually fetch the articles. To display a
message, you have to get it (by number) from the folder, then call methods like getSubject() ,
getFrom(), and others. The listFolder() method does this to obtain identifying
information on each message, and formats them using the StringFormat class from Section
3.6.

If we add a GUI and a bit of code to get all the relevant header fields, we can have a working mail
reader. We'll show the messages in a tree view, since some protocols let you have more than
one folder containing messages. For this we'll use a JTree widget, the Swing GUI component for
displaying text or icons in a tree-like view. The objects stored in a JTree must be Node objects,
but we also want them to be Folders and Messages. I handled this by subclassing
DefaultMutableNode and adding a field for the folder or message, though you could also
subclass Folder and implement the Node interface. Arguably, the way I did it is less "pure OO,"
but also less work. Example 19-9 is my MessageNode; FolderNode is similar, but simpler in
that its toString() only calls the Folder's getName() method.

 544

Example 19-9. MessageNode.java

import javax.mail.*;
import javax.mail.internet.*;
import javax.swing.tree.*;

/** A Mutable Tree Node that is also a Message. */
public class MessageNode extends DefaultMutableTreeNode {
 Message m;

 StringFormat fromFmt = new StringFormat(20,
StringFormat.JUST_LEFT);
 StringFormat subjFmt = new StringFormat(30,
StringFormat.JUST_LEFT);

 MessageNode(Message m) {
 this.m = m;
 }

 public String toString() {
 try {
 Address from = m.getFrom()[0];

 String fromAddress;
 if (from instanceof InternetAddress)
 fromAddress = ((InternetAddress)from).getAddress();
 else
 fromAddress = from.toString();

 StringBuffer sb = new StringBuffer();
 fromFmt.format(fromAddress, sb, null);
 sb. append(" ");
 subjFmt.format(m.getSubject(), sb, null);
 return sb.toString();
 } catch (Exception e) {
 return e.toString();
 }
 }
}

These are all put together into a mail reader in Section 19.9.

19.9 Program: MailReaderBean

Example 19-10 shows the complete MailReaderBean program. As the name implies, it can
be used as a bean in larger programs, but also has a main method for standalone use. Clicking
on a message displays it in the message view part of the window; this is handled by the
TreeSelectionListener called tsl.

Example 19-10. MailReaderBean.java

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

 545

import javax.swing.tree.*;
import javax.swing.event.*;
import javax.mail.*;
import javax.mail.internet.*;

/**
 * Display a mailbox or mailboxes.
 * This is the generic version in javasrc/email, split off from
 * JabaDex because of the latter's domain-specific "implements module"
stuff.

 */
public class MailReaderBean extends JSplitPane {

 private JTextArea bodyText;

 /* Construct a mail reader bean with all defaults.
 */
 public MailReaderBean() throws Exception {
 this("smtp", "mailhost", "user", "nopasswd", "/");
 }

 /* Construct a mail reader bean with all values. */
 public MailReaderBean(
 String protocol,
 String host,
 String user,
 String password,
 String rootName)
 throws Exception {

 super(VERTICAL_SPLIT);

 boolean recursive = false;

 // Start with a Mail Session object
 Session session = Session.getDefaultInstance(
 System.getProperties(), null);
 session.setDebug(false);

 // Get a Store object for the given protocol
 Store store = session.getStore(protocol);
 store.connect(host, user, password);

 // Get Folder object for root, and list it
 // If root name = "", getDefaultFolder(), else
getFolder(root)
 FolderNode top;
 if (rootName.length() != 0) {
 // System.out.println("Getting folder " + rootName + ".");
 top = new FolderNode(store.getFolder(rootName));
 } else {
 // System.out.println("Getting default folder.");
 top = new FolderNode(store.getDefaultFolder());
 }
 if (top == null || !top.f.exists()) {
 System.out.println("Invalid folder " + rootName);

 546

 return;
 }

 if (top.f.getType() == Folder.HOLDS_FOLDERS) {
 Folder[] f = top.f.list();
 for (int i = 0; i < f.length; i++)
 listFolder(top, new FolderNode(f[i]), recursive);
 } else
 listFolder(top, top, false);

 // Now that (all) the foldernodes and treenodes are in,
 // construct a JTree object from the top of the list down,
 // make the JTree scrollable (put in JScrollPane),
 // and add it as the MailComposeBean's Northern child.
 JTree tree = new JTree(top);
 JScrollPane treeScroller = new JScrollPane(tree);
 treeScroller.setBackground(tree.getBackground());
 this.setTopComponent(treeScroller);

 // The Southern (Bottom) child is a textarea to display the
msg.
 bodyText = new JTextArea(15, 80);
 this.setBottomComponent(new JScrollPane(bodyText));

 // Add a notification listener for the tree; this will
 // display the clicked-upon message
 TreeSelectionListener tsl = new TreeSelectionListener() {
 public void valueChanged(TreeSelectionEvent evt) {
 Object[] po = evt.getPath().getPath(); // yes,
repeat it.
 Object o = po[po.length - 1]; // last node in path
 if (o instanceof FolderNode) {
 // System.out.println("Select folder " +
o.toString());
 return;
 }
 if (o instanceof MessageNode) {
 bodyText.setText("");
 try {
 Message m = ((MessageNode)o).m;

 bodyText.append("To: ");
 Object[] tos = m.getAllRecipients();
 for (int i=0; i<tos.length; i++) {
 bodyText.append(tos[i].toString());
 bodyText.append(" ");
 }
 bodyText.append("\n");

 bodyText.append("Subject: " + m.getSubject()
+ "\n");
 bodyText.append("From: ");
 Object[] froms = m.getFrom();
 for (int i=0; i<froms.length; i++) {
 bodyText.append(froms[i].toString());
 bodyText.append(" ");
 }

 547

 bodyText.append("\n");

 bodyText.append("Date: " + m.getSentDate() +
"\n");
 bodyText.append("\n");

 bodyText.append(m.getContent().toString());

 // Start reading at top of message(!)
 bodyText.setCaretPosition(0);
 } catch (Exception e) {
 bodyText.append(e.toString());
 }
 } else
 System.err.println("UNEXPECTED SELECTION: " +
o.getClass());
 }
 };
 tree.addTreeSelectionListener(tsl);
 }

 static void listFolder(FolderNode top, FolderNode folder, boolean
recurse)
 throws Exception {
 // System.out.println(folder.f.getName() +
folder.f.getFullName());
 if ((folder.f.getType() & Folder.HOLDS_MESSAGES) != 0) {
 Message[] msgs = folder.f.getMessages();
 for (int i=0; i<msgs.length; i++) {
 MessageNode m = new MessageNode(msgs[i]);
 Address from = m.m.getFrom()[0];
 String fromAddress;
 if (from instanceof InternetAddress)
 fromAddress = ((InternetAddress)from).getAddress(
);
 else
 fromAddress = from.toString();
 top.add(new MessageNode(msgs[i]));
 }
 }
 if ((folder.f.getType() & Folder.HOLDS_FOLDERS) != 0) {
 if (recurse) {
 Folder[] f = folder.f.list();
 for (int i=0; i < f.length; i++)
 listFolder(new FolderNode(f[i]), top, recurse);
 }
 }
 }

 /* Test unit - main program */
 public static void main(String[] args) throws Exception {
 final JFrame jf = new JFrame("MailReaderBean");
 String mbox = "/var/mail/ian";
 if (args.length > 0)
 mbox = args[0];
 MailReaderBean mb = new MailReaderBean("mbox", "localhost",
 "", "", mbox);

 548

 jf.getContentPane().add(mb);
 jf.setSize(640,480);
 jf.setVisible(true);
 jf.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 jf.setVisible(false);
 jf.dispose();
 System.exit(0);
 }
 });
 }
}

It's a minimal, but working, mail reader. I'll merge it with a mail sender in Section 19.10 to make
a complete mail client program.

19.10 Program: MailClient

This program is a simplistic GUI-based mail client. It uses the Swing GUI components (see
Chapter 13) along with JavaMail. The program loads a Properties file (see Section 7.8) to
decide what mail server to use for outgoing mail (see Section 19.3), as well as the name of a
mail server for incoming mail and a Store class (see this chapter's Introduction and Section
19.6). The main class, MailClient, is simply a JComponent with a JTabbedPane to let you
switch between reading mail and sending mail.

When first started, the program behaves as a mail reader, as shown in Figure 19-2.

Figure 19-2. Mail Client in reading mode

You can click on the Sending tab to make it show the Mail Compose window, shown in Figure
19-3. I am typing a message to an ISP about some SPAM I received.

Figure 19-3. Mail Client in compose mode

 549

The code is pretty simple; it uses the MailReaderBean presented earlier and a similar
MailComposeBean for sending mail. Example 19-11 is the main program.

Example 19-11. MailClient.java

import com.darwinsys.util.FileProperties;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.io.*;
import java.util.*;

/** Standalone MailClient GUI application.
 */
public class MailClient extends JComponent implements MailConstants {
 /** The quit button */
 JButton quitButton;
 /** The read mode */
 MailReaderBean mrb;
 /** The send mode */
 MailComposeFrame mcb;

 /** Construct the MailClient JComponent a default Properties
filename */
 public MailClient() throws Exception {
 this(PROPS_FILE_NAME);
 }

 /** Construct the MailClient JComponent with no Properties filename
*/
 public MailClient(String propsFileName) throws Exception {
 super();

 550

 // Get the Properties for the mail reader and sender.
 // Save them in System.properties so other code can find them.
 FileProperties mailProps = new FileProperties(propsFileName);
 mailProps.load();

 // Gather some key values
 String proto = mailProps.getProperty(RECV_PROTO);
 String user = mailProps.getProperty(RECV_USER);
 String pass = mailProps.getProperty(RECV_PASS);
 String host = mailProps.getProperty(RECV_HOST);

 if (proto==null)
 throw new IllegalArgumentException(RECV_PROTO + "==null");

 // Protocols other than "mbox" need a password.
 if (!proto.equals("mbox") && (pass == null ||
pass.equals("ASK"))) {
 String np;
 do {
 // VERY INSECURE -- should use JDialog +
JPasswordField!
 np = JOptionPane.showInputDialog(null,
 "Please enter password for " + proto + " user " +
 user + " on " + host + "\n" +
 "(warning: password WILL echo)",
 "Password request", JOptionPane.QUESTION_MESSAGE);
 } while (np == null || (np != null && np.length() == 0));
 mailProps.setProperty(RECV_PASS, np);
 }

 // Dump them all into System.properties so other code can find.
 System.getProperties().putAll(mailProps);

 // Construct the GUI
 // System.out.println("Constructing GUI");
 setLayout(new BorderLayout());
 JTabbedPane tbp = new JTabbedPane();
 add(BorderLayout.CENTER, tbp);
 tbp.addTab("Reading", mrb = new MailReaderBean());
 tbp.addTab("Sending", mcb = new MailComposeFrame());
 add(BorderLayout.SOUTH, quitButton = new JButton("Exit"));
 // System.out.println("Leaving Constructor");
 }

 /** "main program" method - run the program */
 public static void main(String[] av) throws Exception {

 final JFrame f = new JFrame("MailClient");

 // Start by checking that the javax.mail package is installed!
 try {
 Class.forName("javax.mail.Session");
 } catch (ClassNotFoundException cnfe) {
 JOptionPane.showMessageDialog(f,
 "Sorry, the javax.mail package was not found\n(" + cnfe
+ ")",
 "Error", JOptionPane.ERROR_MESSAGE);

 551

 return;
 }

 // create a MailClient object
 MailClient comp;
 if (av.length == 0)
 comp = new MailClient();
 else
 comp = new MailClient(av[0]);
 f.getContentPane().add(comp);

 // Set up action handling for GUI
 comp.quitButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 f.setVisible(false);
 f.dispose();
 System.exit(0);
 }
 });
 f.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 f.setVisible(false);
 f.dispose();
 System.exit(0);
 }
 });

 // Set bounds. Best at 800,600, but works at 640x480
 // f.setLocation(140, 80);
 // f.setSize (500,400);
 f.pack();

 f.setVisible(true);
 }
}

The MailReaderBean used in the Reading tab is exactly the same as the one shown in Section
19.8.

The MailComposeBean used for the Sending tab is a GUI component for composing a mail
message. It uses the Mailer class from Section 19.3 to do the actual sending. Example 19-
12 shows the MailComposeBean program.

Example 19-12. MailComposeBean.java

import com.darwinsys.util.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.util.*;
import java.io.*;
import javax.activation.*;
import javax.mail.*;
import javax.mail.internet.*;

 552

/** MailComposeBean - Mail gather and send Component Bean.
 *
 * Can be used as a Visible bean or as a Non-Visible bean.
 * If setVisible(true), puts up a mail compose window with a Send
button.
 * If user clicks on it, tries to send the mail to a Mail Server
 * for delivery on the Internet.
 *
 * If not visible, use addXXX(), setXXX(), and doSend() methods.
 *
 */
public class MailComposeBean extends JPanel {

 /** The parent frame to be hidden/disposed; may be JFrame,
JInternalFrame
 * or JPanel, as necessary */
 private Container parent;

 private JButton sendButton, cancelButton;
 private JTextArea msgText; // The message!

 // The To, Subject, and CC lines are treated a bit specially,
 // any user-defined headers are just put in the tfs array.
 private JTextField tfs[], toTF, ccTF, subjectTF;
 // tfsMax MUST == how many are current, for focus handling to work
 private int tfsMax = 3;
 private final int TO = 0, SUBJ = 1, CC = 2, BCC = 3, MAXTF = 8;

 /** The JavaMail session object */
 private Session session = null;
 /** The JavaMail message object */
 private Message mesg = null;

 private int mywidth;
 private int myheight;

 /** Construct a MailComposeBean with no default recipient */
 MailComposeBean(Container parent, String title, int height, int
width) {
 this(parent, title, null, height, width);
 }

 /** Construct a MailComposeBean with no arguments (needed for
Beans) */
 MailComposeBean() {
 this(null, "Compose", null, 300, 200);
 }

 /** Constructor for MailComposeBean object.
 *
 * @param parent Container parent. If JFrame or JInternalFrame,
 * will setvisible(false) and dispose() when
 * message has been sent. Not done if "null" or JPanel.
 * @param title Title to display in the titlebar
 * @param recipient Email address of recipient
 * @param height Height of mail compose window
 * @param width Width of mail compose window

 553

 */
 MailComposeBean(Container parent, String title, String recipient,
 int width, int height) {
 super();

 this.parent = parent;

 mywidth = width;
 myheight = height;

 // THE GUI
 Container cp = this;
 cp.setLayout(new BorderLayout());

 // Top is a JPanel for name, address, etc.
 // Centre is the TextArea.
 // Bottom is a panel with Send and Cancel buttons.
 JPanel tp = new JPanel();
 tp.setLayout(new GridLayout(3,2));
 cp.add(BorderLayout.NORTH, tp);

 tfs = new JTextField[MAXTF];

 tp.add(new JLabel("To: ", JLabel.RIGHT));
 tp.add(tfs[TO] = toTF = new JTextField(35));
 if (recipient != null)
 toTF.setText(recipient);
 toTF.requestFocus();

 tp.add(new JLabel("Subject: ", JLabel.RIGHT));
 tp.add(tfs[SUBJ] = subjectTF = new JTextField(35));
 subjectTF.requestFocus();

 tp.add(new JLabel("Cc: ", JLabel.RIGHT));
 tp.add(tfs[CC] = ccTF = new JTextField(35));

 // Centre is the TextArea
 cp.add(BorderLayout.CENTER, msgText = new JTextArea(70, 10));
 msgText.setBorder(BorderFactory.createTitledBorder("Message
Text"));

 // Bottom is the apply/cancel button
 JPanel bp = new JPanel();
 bp.setLayout(new FlowLayout());
 bp.add(sendButton = new JButton("Send"));
 sendButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 try {
 doSend();
 } catch(Exception err) {
 System.err.println("Error: " + err);
 JOptionPane.showMessageDialog(null,
 "Sending error:\n" + err.toString(),
 "Send failed", JOptionPane.ERROR_MESSAGE);
 }
 }

 554

 });
 bp.add(cancelButton = new JButton("Cancel"));
 cancelButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 maybeKillParent();
 }
 });
 cp.add(BorderLayout.SOUTH, bp);
 }

 public Dimension getPreferredSize() {
 return new Dimension(mywidth, myheight);
 }
 public Dimension getMinimumSize() {
 return getPreferredSize();
 }

 /** Do the work: send the mail to the SMTP server.
 *
 * ASSERT: must have set at least one recipient.
 */
 public void doSend() {

 try {
 Mailer m = new Mailer();

 FileProperties props =
 new FileProperties(MailConstants.PROPS_FILE_NAME);
 String serverHost =
props.getProperty(MailConstants.SEND_HOST);
 if (serverHost == null) {
 JOptionPane.showMessageDialog(parent,
 "\"" + MailConstants.SEND_HOST +
 "\" must be set in properties"
 "No server!",
 JOptionPane.ERROR_MESSAGE);
 return;
 }
 m.setServer(serverHost);

 String tmp = props.getProperty(MailConstants.SEND_DEBUG);
 m.setVerbose(tmp != null && tmp.equals("true"));

 String myAddress = props.getProperty("Mail.address");
 if (myAddress == null) {
 JOptionPane.showMessageDialog(parent,
 "\"Mail.address\" must be set in properties",
 "No From: address!",
 JOptionPane.ERROR_MESSAGE);
 return;
 }
 m.setFrom(myAddress);

 m.setToList(toTF.getText());
 m.setCcList(ccTF.getText());
 // m.setBccList(bccTF.getText());

 555

 if (subjectTF.getText().length() != 0) {
 m.setSubject(subjectTF.getText());
 }

 // Now copy the text from the Compose TextArea.
 m.setBody(msgText.getText());
 // XXX I18N: use setBody(msgText.getText(), charset)

 // Finally, send the sucker!
 m.doSend();

 // Now hide the main window
 maybeKillParent();

 } catch (MessagingException me) {
 me.printStackTrace();
 while ((me = (MessagingException)me.getNextException())
!= null) {
 me.printStackTrace();
 }
 JOptionPane.showMessageDialog(null,
 "Mail Sending Error:\n" + me.toString(),
 "Error", JOptionPane.ERROR_MESSAGE);
 } catch (Exception e) {
 JOptionPane.showMessageDialog(null,
 "Mail Sending Error:\n" + e.toString(),
 "Error", JOptionPane.ERROR_MESSAGE);
 }
 }

 private void maybeKillParent() {
 if (parent == null)
 return;
 if (parent instanceof Frame) {
 ((Frame)parent).setVisible(true);
 ((Frame)parent).dispose();
 }
 if (parent instanceof JInternalFrame) {
 ((JInternalFrame)parent).setVisible(true);
 ((JInternalFrame)parent).dispose();
 }
 }

 /** Simple test case driver */
 public static void main(String[] av) {
 final JFrame jf = new JFrame("DarwinSys Compose Mail Tester");
 System.getProperties().setProperty("Mail.server",
"mailhost");
 System.getProperties().setProperty("Mail.address",
"nobody@home");
 MailComposeBean sm =
 new MailComposeBean(jf,
 "Test Mailer", "spam-magnet@darwinsys.com", 500, 400);
 sm.setSize(500, 400);
 jf.getContentPane().add(sm);
 jf.setLocation(100, 100);

 556

 jf.setVisible(true);
 jf.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 jf.setVisible(false);
 jf.dispose();
 System.exit(0);
 }
 });
 jf.pack();
 }
}

Further, the MailComposeBean program is a JavaBean, so it can be used in GUI builders and
even have its fields set within a JSP (see Section 18.9). It has a main method, which allows it
to be used standalone (primarily for testing).

To let you compose one or more email messages concurrently, messages being composed are
placed in a JDesktopPane, Java's implementation of Multiple-Document Interface (MDI).
Example 19-13 shows how to construct a multi-window email implementation. Each
MailComposeBean must be wrapped in a JInternalFrame, which is what you need to place
components in the JDesktopPane. This wrapping is handled inside MailReaderFrame, one
instance of which is created in the MailClient constructor. The MailReaderFrame method
newSend() creates an instance of MailComposeBean and shows it in the JDesktopFrame,
returning a reference to the MailComposeBean so that the caller can use methods such as
addRecipient() and send(). It also creates a Compose button and places it below the
desktop pane, so you can create a new composition window by clicking the button.

Example 19-13. MailComposeFrame.java

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/** A frame for (possibly) multiple MailComposeBean windows.
 */
public class MailComposeFrame extends JPanel {
 JDesktopPane dtPane;
 JButton newButton;
 protected int nx, ny;

 /** To be useful here, a MailComposeBean has to be inside
 * its own little JInternalFrame.
 */
 public MailComposeBean newSend() {

 // Make the JInternalFrame wrapper
 JInternalFrame jf = new JInternalFrame();

 // Bake the actual Bean
 MailComposeBean newBean =
 new MailComposeBean(this, "Compose", 400, 250);

 // Arrange them on the diagonal.
 jf.setLocation(nx+=10, ny+=10);

 557

 // Make the new Bean be the contents of the JInternalFrame
 jf.setContentPane(newBean);
 jf.pack();
 jf.toFront();

 // Add the JInternalFrame to the JDesktopPane
 dtPane.add(jf);
 return newBean;
 }

 /* Construct a MailComposeFrame, with a Compose button. */
 public MailComposeFrame() {

 setLayout(new BorderLayout());

 dtPane = new JDesktopPane();
 add(dtPane, BorderLayout.CENTER);

 newButton = new JButton("Compose");
 newButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 newSend();
 }
 });
 add(newButton, BorderLayout.SOUTH);
 }
}

The file TODO.txt in the email source directory lists a number of improvements that would have to
be added to the MailClient program to make it functional enough for daily use (delete and
reply functionality, menus, templates, aliases, and much more). But it is a start, and provides a
structure to build on.

19.10.1 See Also

Sun maintains a mailing list specifically for the JavaMail API. Read about the javamail-
interest list near the bottom of the main API page, at
http://java.sun.com/products/javamail/. This is also a good place to find other provider
classes; Sun has a POP3 provider, and there is a list of third-party products. You can also
download the complete source code for the JavaMail API from Sun's community source project;
there is a link to this on the main API page.

There are now several books that discuss Internet mail. David Wood's Programming Internet
Email (O'Reilly) discusses all aspects of Internet email, with an emphasis on Perl but with a
chapter and examples on JavaMail. Similarly, Kevin Johnson's Internet Email Protocols: A
Developer's Guide (Addison-Wesley) covers the protocols and has appendixes on various
programming languages, including Java. The Programmer's Guide to Internet Mail: Smtp, Pop,
Imap, and Ldap, by John Rhoton (Digital Press) and Essential E-Mail Standards: RFCs and
Protocols Made Practical by Pete Loshin (John Wiley) cover the protocols without much detail on
Java implementation. Internet E-Mail: Protocols, Standards, and Implementation by Lawrence E.
Hughes (Artech House Telecommunications) covers a great deal of general material, but
emphasizes Microsoft technologies and doesn't say much about JavaMail. Finally, the books
Stopping Spam: Stamping Out Unwanted Email and News Postings by Alan Schwartz and
Simson Garfinkel (O'Reilly) and Removing the Spam: Email Processing and Filtering (Addison-

 558

Wesley) by Geoff Mulligan aren't about JavaMail, but discuss what is now perhaps the biggest
problem facing Internet mail users.

 559

Chapter 20. Database Access

20.1 Introduction

20.2 Text-File Databases

20.3 DBM Databases

20.4 JDBC Setup and Connection

20.5 Connecting to a JDBC Database

20.6 Sending a JDBC Query and Getting Results

20.7 Using JDBC Parameterized Statements

20.8 Using Stored Procedures with JDBC

20.9 Changing Data Using a ResultSet

20.10 Changing Data Using SQL

20.11 Finding JDBC Metadata

20.12 Program: JDAdmin

20.1 Introduction

Java can be used to access many kinds of databases. A database can be something as simple
as a text file or a fast key/value pairing on disk (DBM format), as sophisticated as a relational
database management system (DBMS), or as exotic as an object database.

Regardless of how your data is actually stored, in a reasonable application you'll want to write a
class called an accessor to mediate between the database and the rest of the application. For
example, if you are using JDBC, the answers to your query will come back packaged in an object
called a ResultSet, but it would not make sense to structure the rest of your application around
the ResultSet because it's JDBC-specific. In a Personal Information Manager application, for
example, the primary classes might be Person, Address, and Meeting. You would probably
write a PersonAccessor class to request the names and addresses from the database
(probably using JDBC), and generate Person and Address objects from them. The
DataAccessor objects would also take updates from the main program and store them into the
database.[1]

[1] If this reminds you of Enterprise4 JavaBeans, you're right. If you're familiar with EJB, you can think of
simple entity beans as a specialized kind of data accessor.

Java DataBase Connectivity (JDBC) consists of classes in package java.sql and some JDBC
Level 2 extensions in package javax.sql. (SQL is the Standard Query Language, used by

 560

relational database software to provide a standard command language for creating, modifying,
updating, and querying relational databases.)

Why was JDBC invented? Java is highly portable, but many databases previously lacked a
portable interface and were tied to one particular language or platform. JDBC is designed to fill
that gap.

JDBC is patterned very loosely on Microsoft's Open DataBase Connectivity (ODBC). Sun's Java
group borrowed several general ideas from Microsoft, who in turn borrowed some of it from prior
art in relational databases. While ODBC is C- and pointer-based (void * at that), JDBC is based
on Java and is therefore portable, as well as being network-aware and having better type
checking.

JDBC comes in two parts: the portable JDBC API provided with Java, and the database-specific
driver usually provided by the DBMS vendor or a third party. These drivers have to conform to a
particular interface (called Driver, unsurprisingly) and map from the generic calls into something
the existing database code can understand.

JDBC deals with relational databases only. No flat files (although several drivers have been
written that map from flat files to the JDBC API) and no DBM files (though you could write a driver
that used one DBM file for each table in a database). Through this clever division of labor, JDBC
can provide access to any relational database, be it local or remote (remote databases are
accessed using client sockets, as discussed in Chapter 15). In addition to the drivers from
database vendors, there is also a JDBC-ODBC bridge in the standard JDK and JRE; this allows
you to use JDBC with an existing MS-Windows database. Its performance is weaker because it
adds an extra layer, but it does work.

One fairly common form of database that I do not cover is the so-called Xbase format, which is a
series of commercial databases (dBase, FoxBase, etc.) common in the MS-DOS and MS-
Windows world. If you wanted to decode such a database in Java, you'd probably start with the
Xbase file format, documented at http://www.e-bachmann.dk/docs/xbase.htm. Alternately,
you might find a useful driver in the Microsoft ODBC-32 software, and use the JDBC-to-ODBC
bridge to convert your data to a newer format such as a relational database.

This chapter is an overview of several database techniques, emphasizing JDBC, so that you
know what this technology looks and feels like.

20.2 Text-File Databases

20.2.1 Problem

You wish to treat a text file as a database.

20.2.2 Solution

Write an Accessor class that returns objects of the correct type.

20.2.3 Discussion

On the JabaDot web site (see Section 18.13) there is a list of users. Each user has a login
name, full name, password, email address, privilege level, and so forth, and is represented by a
User object. These are stored in the User database.

 561

There are several versions of this database, so I have an abstract class to represent all the user
data accessors, called UserDB . One of its main functions is to read the database; this can be
done in the constructor or in the getUsers() method.

Of course, for efficiency, we want to do this reading only once, even though we may have many
users visiting the site. So the design pattern (see the Introduction to Chapter 8) known as
singleton (ensure one single instance exists) is used; anybody wanting a UserDB object does not
construct one (the constructor is private), but must call getInstance(). Unsurprisingly,
getInstance() returns the same value to anyone who calls it. The only implication of this is
that some of the methods must be synchronized (see Chapter 24) to prevent complications
when more than one user accesses the (single) UserDB object concurrently.

The code in Example 20-1 uses a class called JDConstants (JabaDot constants), which is a
wrapper around a Properties object (see Section 7.4) to get values such as the location of
the database.

Example 20-1. UserDB.java

package jabadot;

import java.io.*;
import java.util.*;
import java.sql.SQLException; // Only used by JDBC version
import java.lang.reflect.*; // For loading our subclass class.

/** A base for several "database" accessors for User objects.
 * We use a Singleton access method for efficiency and to enforce
 * single access on the database, which means we can keep an in-memory
 * copy (in an ArrayList) perfectly in synch with the database.
 *
 * We provide field numbers, which are 1-based (for SQL), not 0 as per
Java.
 */
public abstract class UserDB {

 public static final int NAME = 1;
 public static final int PASSWORD = 2;
 public static final int FULLNAME = 3;
 public static final int EMAIL = 4;
 public static final int CITY = 5;
 public static final int PROVINCE = 6;
 public static final int COUNTRY = 7;
 public static final int PRIVS = 8;

 protected ArrayList users;

 protected static UserDB singleton;

 /** Static code block to intialize the Singleton. */
 static {
 String dbClass = null;
 try {
 dbClass = JDConstants.getProperty("jabadot.userdb.class");
 singleton = (UserDB)Class.forName(dbClass).newInstance();
 } catch (ClassNotFoundException ex) {

 562

 System.err.println("Unable to instantiate UserDB singleton
" +
 dbClass + " (" + ex.toString() + ")");
 throw new IllegalArgumentException(ex.toString());
 } catch (Exception ex) {
 System.err.println(
 "Unexpected exception: Unable to initialize UserDB
singleton");
 ex.printStackTrace(System.err);
 throw new IllegalArgumentException(ex.toString());
 }
 }

 /** In some subclasses the constructor will probably load the
database,
 * while in others it may defer this until getUserList().
 */
 protected UserDB() throws IOException, SQLException {
 users = new ArrayList();
 }

 /** "factory" method to get an instance, which will always be
 * the Singleton.
 */
 public static UserDB getInstance() {
 if (singleton == null)
 throw new IllegalStateException("UserDB initialization
failed");
 return singleton;
 }

 /** Get the list of users. */
 public ArrayList getUserList() {
 return users;
 }

 /** Get the User object for a given nickname */
 public User getUser(String nick) {
 Iterator it = users.iterator();
 while (it.hasNext()) {
 User u = (User)it.next();
 if (u.getName().equals(nick))
 return u;
 }
 return null;
 }

 public synchronized void addUser(User nu) throws IOException,
SQLException {
 // Add it to the in-memory list
 users.add(nu);

 // Add it to the on-disk version
 // N.B. - must be done in subclass.
 }

 public abstract void setPassword(String nick, String newPass)

 563

 throws SQLException;

 public abstract void deleteUser(String nick)
 throws SQLException;
}

In the initial design, this information was stored in a text file. The UserDB class reads this text file
and returns a collection of User objects, one per user. There are also various "get" methods,
such as the one that finds a user by login name. The basic approach is to open a
BufferedReader (see Chapter 9), read each line, and (for non-blank, non-comment lines)
construct a StringTokenizer (see Section 3.3) to retrieve all the fields. If the line is well-
formed (has all its fields), construct a User object and add it to the collection.

The file format is simple; one user per line:

#name:passwd:fullname:email:City:Prov:Country:privs
admin:secret1:JabaDot Administrator:ian@darwinsys.com:Toronto:ON:CA:A
ian:secret2:Ian Darwin:ian@darwinsys.com:Toronto:ON:Canada:E

So the UserDBText class is a UserDB implementation that reads this file and creates a User
object for each non-comment line in the file. Example 20-2 shows how it works.

Example 20-2. UserDBText.java

package jabadot;

import java.io.*;
import java.util.*;
import java.sql.SQLException;

/** A trivial "database" for User objects, stored in a flat file.
 * <P>
 * Since this is expected to be used heavily, and to avoid the overhead
 * of re-reading the file, the "Singleton" Design Pattern is used
 * to ensure that there is only ever one instance of this class.
 */
public class UserDBText extends UserDB {
 protected final static String DEF_NAME =
 "/home/ian/src/jabadot/userdb.txt";

 protected String fileName;

 protected UserDBText() throws IOException,SQLException {
 this(DEF_NAME);
 }

 /** Constructor */
 protected UserDBText(String fn) throws IOException,SQLException {
 super();
 fileName = fn;
 BufferedReader is = new BufferedReader(new FileReader(fn));
 String line;
 while ((line = is.readLine()) != null) {
 //name:password:fullname:City:Prov:Country:privs

 564

 if (line.startsWith("#")) { // comment
 continue;
 }

 StringTokenizer st =
 new StringTokenizer(line, ":");
 String nick = st.nextToken();
 String pass = st.nextToken();
 String full = st.nextToken();
 String email = st.nextToken();
 String city = st.nextToken();
 String prov = st.nextToken();
 String ctry = st.nextToken();
 User u = new User(nick, pass, full, email,
 city, prov, ctry);
 String privs = st.nextToken();
 if (privs.indexOf("A") != -1) {
 u.setAdminPrivileged(true);
 }
 users.add(u);
 }
 }

 protected PrintWriter pw;

 public synchronized void addUser(User nu) throws
IOException,SQLException {
 // Add it to the in-memory list
 super.addUser(nu);

 // Add it to the on-disk version
 if (pw == null) {
 pw = new PrintWriter(new FileWriter(fileName, true));
 }
 pw.println(toDB(nu));
 // toDB returns: name:password:fullname:City:Prov:Country:privs
 pw.flush();
 }

 protected String toDB(User u) {
 // #name:password:fullName:email:City:Prov:Country:privs
 char privs = '-';
 if (adminPrivs)
 privs = 'A';
 else if (editPrivs)
 privs = 'E';

 return new StringBuffer()
 .append(u.name).append(':')
 .append(u.password).append(':')
 .append(u.fullName).append(':')
 .append(u.email).append(':')
 .append(u.city).append(':')
 .append(u.prov).append(':')
 .append(u.country).append(':')
 .append(u.privs)

 565

 .toString();
 }
}

This version does not have any "set" methods, which would be needed to allow a user to change
his/her password, for example. Those will come later.

20.2.4 See Also

If your text-format data file is in a format similar to the one used here, you may be able to
massage it into a form where the SimpleText driver (see online source contrib/JDBCDriver-
Moss) can be used to access the data using JDBC (see Section 20.4).

20.3 DBM Databases

20.3.1 Problem

You need to access a DBM file.

20.3.2 Solution

Use my code, or SleepyCat's code, to interface DBM from Java.

20.3.3 Discussion

Unix systems are commonly supplied with some form of DBM or DB [2] data file, often called a
database. These are not relational databases, but are key/value pairs, rather like a
java.util.Hashtable that is automatically persisted to disk whenever you called its put()
method. This format is also used on MS-Windows by a few programs; for example, the Win32
version of Netscape keeps its history in a history.db or netscape.hst file, which is in this format.
Not convinced?

[2] DBM is the original format; DB is a newer, more general format. DBM is actually now a front-end to DB,
but because it's a bit simpler, I've used it for this example. GDBM is the FSF's implementation.

daroad.darwinsys.com$ pwd
/c/program files/netscape/users/ian
daroad.darwinsys.com$ file *.hst
netscape.hst: Berkeley DB Hash file (Version 2, Little Endian, Bucket
Size 4096,
Bucket Shift 12, Directory Size 256, Segment Size 256, Segment Shift 8,
Overflow
Point 8, Last Freed 36, Max Bucket 184, High Mask 0xff, Low Mask 0x7f,
Fill Factor
54, Number of Keys 733)
daroad.darwinsys.com$

The Unix file command[3] decodes file types; it's what Unix people rely on instead of (or in
addition to) filename extensions.

[3] The version of file(1)in Linux and BSD systems was originally written by your humble scribe.

 566

So the DBM format is a nice, general mapping from keys to values. But how can we use it in
Java? There is no publicly defined mapping for Java, so I wrote my own. It uses a fair bit of native
code, that is, C code called from Java that in turn calls the DBM library. I'll discuss native code in
Section 26.5. For now it suffices to know that we can initialize a DBM file by calling the relevant
constructor, passing the name of our DB file. We can iterate over all the key/value pairs by calling
firstkey() once and then nextkey() repeatedly until it returns null. Both byte arrays and
objects can be stored and retrieved; it is up to the programmer to know which is which (hint: use
one or the other within a given DBM file). Objects are serialized using normal Java object
serialization (see Section 9.17). Here is the API for the DBM class:

public DBM(String fileName) throws IOException;
public Object nextkey(Object) throws IOException;
public byte[] nextkey(byte[]) throws IOException;
public Object firstkeyObject() throws IOException;
public byte[] firstkey() throws IOException;
public void store(Object,Object) throws IOException;
public void store(byte[],byte[]) throws IOException;
public Object fetch(Object) throws IOException;
public byte[] fetch(byte[]) throws IOException;
public void close();

A simple program to print out the sites we have visited as listed in our Netscape history is shown
in Example 20-3.

Example 20-3. ReadHistNS.java

import java.io.IOException;

/** Demonstration of reading the MS-Windows Netscape History
 * under UNIX using DBM.java.
 */
public class ReadHistNS {
 public static void main(String[] unused) throws IOException {
 DBM d = new DBM("netscape.hst");
 byte[] ba;
 for (ba = d.firstkey(); ba != null; ba = d.nextkey(ba)) {
 System.out.println("Key=\"" + new String(ba) + '"');
 byte[] val = d.fetch(ba);
 for (int i=0; i<16&&i<val.length; i++) {
 System.out.print((short)val[i]);
 System.out.print(' ');
 }
 }
 }
}

The DBM format is an emulation of an older format, built on top of the DB library. Because of this,
the filename must end in .pag, so I copied the history file to the name shown in the DBM
constructor call.

A longer program, which includes both storing and retrieving in a DBM file, is the DBM version of
the UserDB class, UserDBDBM . This is shown in Example 20-4.

Example 20-4. UserDBDBM.java

 567

package jabadot;

import java.io.*;
import java.util.*;
import java.sql.SQLException;

/** A trivial "database" for User objects, stored in a flat file.
 * <P>
 * Since this is expected to be used heavily, and to avoid the overhead
 * of re-reading the file, the "Singleton" Design Pattern is used
 * to ensure that there is only ever one instance of this class.
 */
public class UserDBDBM extends UserDB {
 protected final static String DEF_NAME =
 "/home/ian/src/jabadot/userdb"; // It appends .pag

 protected DBM db;

 /** Default Constructor */
 protected UserDBDBM() throws IOException,SQLException {
 this(DEF_NAME);
 }

 /** Constructor */
 protected UserDBDBM(String fn) throws IOException,SQLException {
 super();

 db = new DBM(fn);
 String k;
 Object o;

 // Iterate through contents of DBM, adding into list.
 for (o=db.firstkeyObject(); o!=null; o=db.nextkey(o)) {
 // firstkey/nextkey give Key as Object, cast to String.
 k = (String)o;
 o = db.fetch(k); // Get corresponding Value (a User)
 users.add((User)o); // Add to list.
 }
 }

 /** Add one user to the list, both in-memory and on disk. */
 public synchronized void addUser(User nu) throws IOException,
SQLException {
 // Add it to the in-memory list
 super.addUser(nu);

 // Add it to the on-disk version: store in DB with
 // key = nickname, value = object.
 db.store(nu.getName(), nu);
 }
}

20.3.4 See Also

 568

SleepyCat software (http://www.sleepycat.com) provides an improved version of Berkeley
DBM and includes a Java driver for it. The Free Software Foundation provides GDBM, another
DBM-like mechanism.

20.4 JDBC Setup and Connection

20.4.1 Problem

You want to access a database via JDBC.

20.4.2 Solution

Use Class.forName() and DriverManager.getConnection().

20.4.3 Discussion

While DB and friends have their place, most of the modern database action is on relational
databases, and accordingly Java Database action is on JDBC. So the bulk of this chapter is
devoted to JDBC.

This is not the place for a tutorial on relational databases. I'll assume that you know a little bit
about the Structured Query Language (SQL), the universal language used to control relational
databases. SQL has queries like "SELECT * from userdb", which means to select all columns
(the *) from all rows (entries) in a database table named userdb (all rows are selected because
there is no "where" clause on the SELECT statement). SQL also has updates like INSERT,
DELETE, CREATE, and DROP. If you need more information on SQL or relational databases,
there are many good books that will introduce you to the topic in more detail.

JDBC has two Levels, JDBC 1 and JDBC 2. Level 1 is included in all JDBC implementation and
drivers; Level 2 is optional, and requires a Level 2 driver. This chapter concentrates on common
features, primarily Level 1.

Ian's Basic Steps: Using a JDBC Query

1. Load the appropriate Driver class, which has the side effect of
registering with the DriverManager.

2. Get a Connection object, using
DriverManager.getConnection():

Connection con = DriverManager.getConnection
(dbURL, name, pass);

3. Get a Statement object, using the Connection object's
createStatement():

Statement stmt = con.createStatement();

4. Get a ResultSet object, using the Statement object's

 569

executeQuery():

ResultSet rs = stmt.executeQuery("select * from
MyTable");

5. Iterate over the ResultSet:
6. while (rs.next()) {

 int x = rs.getInt("CustNO");

7. Close the ResultSet.
8. Close the Statement.
9. Close the Connection.

The first step in using JDBC 1 is to load your database's driver. This is performed using some
Java JVM magic. The class java.lang.Class has a method called forName() that takes a
string containing the full Java name for a class and loads the class, returning a Class object
describing it. This is typically used in introspection (see Chapter 25), but can be used anytime to
ensure that a class has been correctly configured into your CLASSPATH. This is the use that
we'll see here. And, in fact, part of the challenge of installing JDBC drivers is ensuring that they
are in your CLASSPATH, both at compile time and at deployment time. But wait, there's more! In
addition to checking your CLASSPATH, this method also registers the driver with another class
called the DriverManager. How does it work? Each valid JDBC driver has a bit of method-like
code called a static initializer . This is used whenever the class is loaded -- just what the doctor
ordered! So the static block registers the class with the DriverManager when you call
Class.forName() on the driver class.

For the curious, the static code block in a Driver called BarFileDriver looks something like
this:

/** Static code block, to initialize with the DriverManager. */
static {
 try {
 DriverManager.registerDriver(new BarFileDriver());
 } catch (SQLException e) {
 DriverManager.println("Can't load driver" +
 "darwinsys.sql.BarFileDriver");
 }
}

Example 20-5 shows a bit of code that tries to load two drivers. The first is the JDBC-to-ODBC
bridge described in the Introduction. The second is one of the commercial drivers from Oracle.

Example 20-5. LoadDriver.java

import java.awt.*;
import java.sql.*;

/** Load some drivers. */
public class LoadDriver {

 570

 public static void main(String[] av) {
 try {

 // Try to load the jdbc-odbc bridge driver
 // Should be present on Sun JDK implementations.
 Class c = Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 System.out.println("Loaded " + c);

 // Try to load an Oracle driver.
 Class d = Class.forName("oracle.jdbc.driver.OracleDriver");
 System.out.println("Loaded " + d);
 } catch (ClassNotFoundException ex) {
 System.err.println(ex);
 }
 }
}

As expected, the first load succeeds and the second fails, since I don't have Oracle installed on
my notebook:

daroad.darwinsys.com$ java LoadDriver
Loaded class sun.jdbc.odbc.JdbcOdbcDriver
java.lang.ClassNotFoundException: oracle/jdbc/driver/OracleDriver
daroad.darwinsys.com$

It is also possible to preregister a driver using the -D option to load it into the System Properties;
in this case, you can skip the Class.forName() step:

java -Djdbc.drivers=com.acmewidgets.AcmeDriver:foo.bar.OhMyDriver
MyClass

Once you have registered the driver, you are ready to connect to the database.

20.5 Connecting to a JDBC Database

20.5.1 Problem

You need to connect to the database.

20.5.2 Solution

Use DriverManager.getConnection().

20.5.3 Discussion

The static method DriverManager.getConnection() lets you connect to the database
using a URL-like syntax for the database name (for example,
jdbc:dbmsnetproto://server:4567/mydatabase) and a login name and password. The "dbURL" that
you give must begin with jdbc:. The rest of it can be in whatever form the driver vendor's
documentation requires, and is checked by the driver. The DriverManager asks each driver
you have loaded (if you've loaded one) to see if it can handle a URL of the form you provided.

 571

The first one that responds in the affirmative gets to handle the connection, and its connect()
method is called for you (by DriverManager.getConnection()).

There are four types of drivers defined by Sun (not in the JDBC specification, but in their less
formal documentation); these are shown in Table 20-1.

Table 20-1. JDBC driver types
Type Name Notes

1 JDBC-ODBC Bridge Provides JDBC API access.
2 Java and Native Driver Java code calls Native DB driver.
3 Java and Middleware Java contacts middleware server.

4 Pure Java Java contacts (possibly remote) DB directly.

Table 20-2 shows some interesting drivers. I'll use the ODBC bridge driver and IDB in examples
for this chapter. Some drivers work only locally (like the JDBC-ODBC bridge), while others work
across a network. For details on different types of drivers, please refer to the books listed at the
end of this chapter. Most of these drivers are commercial products. Instant Database is a clever
freeware product (from http://www.enhydra.org); the driver and the entire database
management system reside inside the same Java Virtual Machine as the client (the database is
stored on disk like any other, of course). This eliminates the interprocess communication
overhead of some databases. However, you can't have multiple JVM processes updating the
same database at the same time.

Table 20-2. Some JDBC drivers
Driver class Start of dbURL Database

sun.jdbc.odbc.JdbcOdbcDriver jdbc:odbc: Bridge to Microsoft ODBC
(included with JDK)

jdbc.idbDriver jdbc:idb: Instant Database
oracle.jdbc.Driver.OracleDriver jdbc:oracle:thin:@server:port#:dbname Oracle

postgresql.Driver jdbc:postgres://host/database
PostGreSQL (freeware
database; see
http://www.postgresql.org

org.gjt.mm.mysql.Driver jdbc:mysql://host/database MySql (freeware database;
see http://www.mysql.org

Example 20-6 is a sample application that connects to a database. Note that we now have to
catch the checked exception SQLException, as we're using the JDBC API. (The
Class.forName() method is in java.lang, and so is part of the standard Java API, not part
of JDBC.)

Example 20-6. Connect.java

import java.awt.*;
import java.sql.*;

/** Load a driver and connect to a database.
 */
public class Connect {

 public static void main(String[] av) {

 572

 String dbURL = "jdbc:odbc:Companies";
 try {
 // Load the jdbc-odbc bridge driver
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 // Enable logging
 DriverManager.setLogStream(System.err);

 System.out.println("Getting Connection");
 Connection conn =
 DriverManager.getConnection(dbURL, "ian", ""); //
user, passwd

 // If a SQLWarning object is available, print its
 // warning(s). There may be multiple warnings chained.

 SQLWarning warn = conn.getWarnings();
 while (warn != null) {
 System.out.println("SQLState: " + warn.getSQLState(
));
 System.out.println("Message: " + warn.getMessage());
 System.out.println("Vendor: " + warn.getErrorCode(
));
 System.out.println("");
 warn = warn.getNextWarning();
 }

 // Process the connection here...

 conn.close(); // All done with that DB connection

 } catch (ClassNotFoundException e) {
 System.out.println("Can't load driver " + e);
 } catch (SQLException e) {
 System.out.println("Database access failed " + e);
 }
 }
}

I've enabled two verbosity options in this example. The use of
DriverManager.setLogStream() causes any logging to be done to the standard error, and
the Connection object's getWarnings() prints any additional warnings that come up.

When I run it on a system that doesn't have ODBC installed, I get the following outputs. They are
all from the setLogStream() except for the last one, which is a fatal error:

Getting Connection
JDBC to ODBC Bridge: Checking security
*Driver.connect (jdbc:odbc:Companies)
JDBC to ODBC Bridge: Checking security
JDBC to ODBC Bridge 1.2001
Current Date/Time: Fri Jun 16 16:18:45 GMT-5:00 2000
Loading JdbcOdbc library
Unable to load JdbcOdbc library
Unable to load JdbcOdbc library
Unable to allocate environment

 573

Database access failed java.sql.SQLException: driver not found:
jdbc:odbc:Companies

On a system with JDBC installed, the connection goes further and verifies that the named
database exists and can be opened.

20.6 Sending a JDBC Query and Getting Results

20.6.1 Problem

You're getting tired of all this setup and want to see results.

20.6.2 Solution

Get a Statement and use it to execute a query. You'll get a set of results, a ResultSet object.

20.6.3 Discussion

The Connection object can generate various kinds of statements; the simplest is a Statement
created by createStatement() and used to send your SQL query as an arbitrary string:

Statement stmt = conn.createStatement();
stmt.executeUpdate("select * from myTable");

The result of the query is returned as a ResultSet object. The ResultSet works like an
iterator in that it lets you access all the rows of the result that match the query. This process is
shown in Figure 20-1.

Figure 20-1. ResultSet illustrated

Typically, you use it like this:

while (rs.next()) {
 int i = rs.getInt(1); // or getInt("UserID");

As the comment suggests, you can retrieve elements from the ResultSet either by their column
index (which starts at one, unlike most Java things, which typically start at zero) or column name.
In JDBC 1, you must retrieve the values in increasing order by the order of the SELECT (or by

 574

their column order in the database if the query is SELECT *). In JDBC 2, you can retrieve them in
any order (and in fact, many JDBC 1 drivers don't enforce the retrieving of values in certain
orders). If you want to learn the column names (a sort of introspection), you can use a
ResultSet's getResultSetMetaData() method, described in Section 20.11. There are
many types of data in SQL, and there are methods to get them from a ResultSet; the common
ones are shown in Table 20-3.

Table 20-3. Data type mappings between SQL and JDBC
JDBC method SQL type Java type

getBit() BIT boolean

getByte() TINYINT byte
getShort() SMALLINT short
getInt() INTEGER int

getLong() BIGINT long
getReal() REAL float
getDouble() DOUBLE double

getString() CHAR String
getString() VARCHAR String
getString() LONGVARCHAR String

getDate() DATE java.sql.Date
getTimeStamp() TIME java.sql.Date
getObject() BLOB Object

Assuming that we have a relational database containing the User data, we can retrieve it as
demonstrated in Example 20-7. This program retrieves any or all entries that have a username
of ian and prints the ResultSets in a loop. It prints lines like:

User ian is named Ian Darwin

The source code is shown in Example 20-7.

Example 20-7. UserQuery.java

import jabadot.*;

import java.sql.*;
import java.io.*;
import java.util.*;

/** Look up one use from the relational database using JDBC.
 */
public class UserQuery {

 public static void main(String[] fn)
 throws ClassNotFoundException, SQLException, IOException {

 // Load the database driver

Class.forName(JDConstants.getProperty("jabadot.userdb.driver"));

 575

 System.out.println("Getting Connection");
 Connection conn = DriverManager.getConnection(
 JDConstants.getProperty("jabadot.dburl"));

 Statement stmt = conn.createStatement();

 ResultSet rs = stmt.executeQuery(
 "SELECT * from userdb where name='ian'");

 // Now retrieve (all) the rows that matched the query
 while (rs.next()) {

 // Field 1 is login name
 String name = rs.getString(1);

 // Password is field 2 - do not display.

 // Column 3 is fullname
 String fullName = rs.getString(3);

 System.out.println("User " + name + " is named " +
fullName);
 }

 rs.close(); // All done with that resultset
 stmt.close(); // All done with that statement
 conn.close(); // All done with that DB connection
 System.exit(0); // All done with this program.
 }
}

Note that a ResultSet is tied to its Connection object; if the Connection is closed, the
ResultSet becomes invalid. You should either extract the data from the ResultSet before
closing it, or cache it in a CachingRowSet, an experimental RowSet subclass currently available
from Sun's Java web site (RowSet is a JDBC 2 subclass of ResultSet).

20.7 Using JDBC Parameterized Statements

20.7.1 Problem

You want to save the overhead of parsing, compiling, and otherwise setting up a statement that
will be called multiple times.

20.7.2 Solution

Use a PreparedStatement.

20.7.3 Discussion

An SQL query consists of textual characters. The database must first parse a query and then
compile it into something that can be run in the database. This can add up to a lot of overhead if
you are sending a lot of queries. In some types of applications, you'll use a number of queries
that are the same syntactically but have different values:

 576

select * from payroll where personnelNo = 12345;
select * from payroll where personnelNo = 23740;
select * from payroll where personnelNo = 97120;

In this case, the statement only needs to be parsed and compiled once. But if you keep making
up select statements and sending them, the database will mindlessly keep parsing and compiling
them. Better to use a prepared statement in which the variable part is replaced by a special
marker (a question mark in JDBC). Then the statement need only be parsed (or organized,
optimized, compiled, or whatever) once.

PreparedStatement ps = conn.prepareStatement(
 "select * from payroll where personnelNo = ?;")

Before you can use this prepared statement, you must fill in the blanks with the appropriate set
methods. These take a parameter number (starting at one, not zero like most things in Java) and
the value to be plugged in. Then use executeQuery() with no arguments, since the query is
already stored in the statement:

ps.setInt(1, 12345);
rs = ps.executeQuery();

If there is more than one parameter, you address them by number; for example, if there were a
second parameter of type double, its value would be set by:

ps.setDouble(2, 12345);

Example 20-8 is the JDBC version of the User accessor, UserDBJDBC. It uses prepared
statements for inserting new users, changing passwords, and setting the last login date.

Example 20-8. UserDBJDBC.java

package jabadot;

import java.sql.*;
import java.io.*;
import java.util.*;

/** A UserDB using JDBC and a relational DBMS.
 * We use the inherited getUser ("Find the User object for a given
nickname")
 * since we keep everything in memory in this version.
 */
public class UserDBJDBC extends UserDB {

 protected final static String DB_URL =
 JDConstants.getProperty("jabadot.userdb.url");
 protected PreparedStatement setPasswordStatement;
 protected PreparedStatement addUserStmt;
 protected PreparedStatement setLastLoginStmt;
 protected PreparedStatement deleteUserStmt;

 /** Default constructor */
 protected UserDBJDBC()
 throws ClassNotFoundException, SQLException, IOException {

 577

 this(DB_URL);
 }

 /** Constructor */
 public UserDBJDBC(String fn)
 throws ClassNotFoundException, SQLException, IOException {
 super();

 // Load the database driver
 Class.forName("jdbc.idbDriver");

 Connection conn = DriverManager.getConnection(fn,
 "www", ""); // user, password

 Statement stmt = conn.createStatement();

 ResultSet rs = stmt.executeQuery("select * from userdb");

 while (rs.next()) {
 //name:password:fullname:City:Prov:Country:privs

 // Get the fields from the query.
 String nick = rs.getString(1);
 String pass = rs.getString(2);
 String full = rs.getString(3);
 String email = rs.getString(4);
 String city = rs.getString(5);
 String prov = rs.getString(6);
 String ctry = rs.getString(7);
 int iprivs = rs.getInt(8);

 // Construct a user object from the fields
 User u = new User(nick, pass, full, email,
 city, prov, ctry, iprivs);

 // Add it to the in-memory copy.
 users.add(u);
 }
 stmt.close();
 rs.close(); // All done with that resultset

 // Set up the PreparedStatements now so we don't have to
 // re-create them each time needed.
 addUserStmt = conn.prepareStatement(
 "insert into userdb values (?,?,?,?,?,?,?,?)");
 setPasswordStatement = conn.prepareStatement(
 "update userdb SET password = ? where name = ?");
 setLastLoginStmt = conn.prepareStatement(
 "update userdb SET lastLogin = ? where name = ?");
 deleteUserStmt = conn.prepareStatement(
 "delete from userdb where name = ?");
 }

 /** Add one user to the list, both in-memory and on disk. */
 public synchronized void addUser(User nu)
 throws IOException, SQLException {
 // Add it to the in-memory list

 578

 super.addUser(nu);

 // Copy fields from user to DB
 addUserStmt.setString(1, nu.name);
 addUserStmt.setString(2, nu.password);
 addUserStmt.setString(3, nu.fullName);
 addUserStmt.setString(4, nu.email);
 addUserStmt.setString(5, nu.city);
 addUserStmt.setString(6, nu.prov);
 addUserStmt.setString(7, nu.country);
 addUserStmt.setInt (8, nu.getPrivs());

 // Store in persistent DB
 addUserStmt.executeUpdate();
 }

 public void deleteUser(String nick) throws SQLException {
 // Find the user object
 User u = getUser(nick);
 if (u == null) {
 throw new SQLException("User " + nick + " not in in-memory
DB");
 }
 deleteUserStmt.setString(1, nick);
 int n = deleteUserStmt.executeUpdate();
 if (n != 1) { // not just one row??
 /*CANTHAPPEN */
 throw new SQLException("ERROR: deleted " + n + " rows!!");
 }

 // IFF we deleted it from the DB, also remove from the in-
memory list
 users.remove(u);
 }

 public synchronized void setPassword(String nick, String newPass)
 throws SQLException {

 // Find the user object
 User u = getUser(nick);

 // Change it in DB first; if this fails, the info in
 // the in-memory copy won't be changed either.
 setPasswordStatement.setString(1, newPass);
 setPasswordStatement.setString(2, nick);
 setPasswordStatement.executeUpdate();

 // Change it in-memory
 u.setPassword(newPass);
 }

 /** Update the Last Login Date field. */
 public synchronized void setLoginDate(String nick, java.util.Date
date)
 throws SQLException {

 // Find the user object

 579

 User u = getUser(nick);

 // Change it in DB first; if this fails, the date in
 // the in-memory copy won't be changed either.
 // Have to convert from java.util.Date to java.sql.Date here.
 // Would be more efficient to use java.sql.Date everywhere.
 setLastLoginStmt.setDate(1, new java.sql.Date(date.getTime(
)));
 setLastLoginStmt.setString(2, nick);
 setLastLoginStmt.executeUpdate();

 // Change it in-memory
 u.setLastLoginDate(date);
 }
}

Another example of prepared statements is given in Section 20.9.

20.8 Using Stored Procedures with JDBC

20.8.1 Problem

You want to use a procedure stored in the database (a stored procedure).

20.8.2 Solution

Use a CallableStatement.

20.8.3 Discussion

A stored procedure is a series of SQL statements[4] stored as part of the database for use by any
SQL user or programmer, including JDBC developers. Stored procedures are used for the same
reasons as prepared statements: efficiency and convenience. Typically, the database
administrator (DBA) at a large database shop will set up stored procedures and tell you what they
are called, what parameters they require, and what they return. Putting the stored procedure itself
into the database is totally database-dependent and not discussed here.

[4] And possibly some database-dependent utility statements.

Suppose that I wish to see a list of user accounts that had not been used for a certain length of
time. Instead of coding this logic into a JDBC program, I might define it using database-specific
statements to write and store a procedure in the database, and then use the following code.
Centralizing this logic in the database has some advantages for maintenance and also, in most
databases, for speed.

CallableStatment cs = conn.prepareCall("{ call ListDefunctUsers }");
ResultSet rs = cs.executeQuery();

I then process the ResultSet in the normal way.

20.9 Changing Data Using a ResultSet

 580

20.9.1 Problem

You want to change the data using a ResultSet.

20.9.2 Solution

If you have JDBC 2 and a conforming driver, you can request an updatable ResultSet when
you create the statement object. Then, when you're on the row you want to change, use the
update() methods, and end with updateRow().

20.9.3 Discussion

You need to create the statement with the attribute ResultSet.CONCUR_UPDATABLE as shown
in Example 20-9. Do an SQL SELECT with this statement. When you are on the row (there is
only one row that matches this particular query because it is selecting on the primary key), use
the appropriate update method for the type of data in the column you want to change, passing in
the column name or number and the new value. You can change more than one column in the
current row this way. When you're done, call updateRow() on the ResultSet. Assuming that
you didn't change the autocommit state, the data will be committed to the database.

Example 20-9. ResultSetUpdate.java (partial listing)

try {
 con = DriverManager.getConnection(url, user, pass);
 stmt = con.createStatement(
 ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE);
 rs = stmt.executeQuery("SELECT * FROM Users where nick=\"ian\"");

 // Get the resultset ready, update the passwd field, commit
 rs.first();
 rs.updateString("password", "unguessable");
 rs.updateRow();

 rs.close();
 stmt.close();
 con.close();
} catch(SQLException ex) {
 System.err.println("SQLException: " + ex.getMessage());
}

20.10 Changing Data Using SQL

20.10.1 Problem

You wish to insert or update data, create a new table, delete a table, or otherwise change the
database.

20.10.2 Solution

Instead of executeQuery(), use executeUpdate() and SQL commands to make the
change.

 581

20.10.3 Discussion

The executeUpdate() method is used when you want to make a change to the database, as
opposed to getting a list of rows with a query. You can implement either data changes like
insert or update, data structure changes like create table, or almost anything that you can
do by sending SQL directly to the database through its own update command interface or GUI.

The program listed in Example 20-10 converts the User database from the text file format of
Section 20.2 into a relational database. Note that I destroy the table before creating it, just in
case there was an older version in place. If there was not, executeUpdate() simply indicates
this in its return code; it doesn't throw an exception. Then the program creates the table and its
index. Finally, it goes into a loop reading the lines from the text file; for each, a prepared
statement is used to insert the user's information into the database.

Example 20-10. TextToJDBC.java

package jabadot;

import java.sql.*;
import java.io.*;
import java.util.*;

/** Convert the database from text form to JDBC form.
 */
public class TextToJDBC {

 protected final static String TEXT_NAME = "userdb.txt";
 protected final static String DB_URL = "jdbc:idb:userdb.prp";

 public static void main(String[] fn)
 throws ClassNotFoundException, SQLException, IOException {

 BufferedReader is = new BufferedReader(new
FileReader(TEXT_NAME));

 // Load the database driver
 Class.forName("jdbc.idbDriver");

 System.out.println("Getting Connection");
 Connection conn = DriverManager.getConnection(
 DB_URL, "ian", ""); // user, password

 System.out.println("Creating Statement");
 Statement stmt = conn.createStatement();

 System.out.println("Creating table and index");
 stmt.executeUpdate("DROP TABLE userdb");
 stmt.executeUpdate("CREATE TABLE userdb (\n" +
 "name char(12) PRIMARY KEY,\n" +
 "password char(20),\n" +
 "fullName char(30),\n" +
 "email char(60),\n" +
 "city char(20),\n" +
 "prov char(20),\n" +
 "country char(20),\n" +

 582

 "privs int\n" +
 ")");
 stmt.executeUpdate("CREATE INDEX nickIndex ON userdb (name)");
 stmt.close();

 // put the data in the table
 PreparedStatement ps = conn.prepareStatement(
 "INSERT INTO userdb VALUES (?,?,?,?,?,?,?,?)");

 String line;
 while ((line = is.readLine()) != null) {
 //name:password:fullname:City:Prov:Country:privs

 if (line.startsWith("#")) { // comment
 continue;
 }

 StringTokenizer st =
 new StringTokenizer(line, ":");
 String nick = st.nextToken();
 String pass = st.nextToken();
 String full = st.nextToken();
 String email = st.nextToken();
 String city = st.nextToken();
 String prov = st.nextToken();
 String ctry = st.nextToken();
 // User u = new User(nick, pass, full, email,
 // city, prov, ctry);
 String privs = st.nextToken();
 int iprivs = 0;
 if (privs.indexOf("A") != -1) {
 iprivs |= User.P_ADMIN;
 }
 if (privs.indexOf("E") != -1) {
 iprivs |= User.P_EDIT;
 }
 ps.setString(1, nick);
 ps.setString(2, pass);
 ps.setString(3, full);
 ps.setString(4, email);
 ps.setString(5, city);
 ps.setString(6, prov);
 ps.setString(7, ctry);
 ps.setInt(8, iprivs);
 ps.executeUpdate();
 }
 ps.close(); // All done with that statement
 conn.close(); // All done with that DB connection
 return; // All done with this program.
 }
}

Once the program has run, the database is populated and ready for use by the UserDBJDBC
data accessor shown in Section 20.6.

20.11 Finding JDBC Metadata

 583

20.11.1 Problem

You want to learn about a database or table.

20.11.2 Solution

Read the documentation provided by your vendor or database administrator. Or ask the software
for a MetaData object.

20.11.3 Discussion

There are two classes of metadata (data about data) that you can ask for: DatabaseMetaData
and ResultSetMetaData. Each of these has methods that let you interrogate particular
aspects. The former class is obtained from a get method in a Connection object; the latter from
a get method in the given ResultSet. First, let's look at RawSQLServlet, a "generic query"
formatter. The user enters a query (which must begin with SELECT) into an HTML form, and a
servlet (see Section 18.2) passes the query on to a database using JDBC. The response is
interrogated and formatted into a neat little HTML table, using the column names from the
ResultSetMetaData as the headings for the HTML table. Figure 20-2 shows the form for
inputting the query and the resulting response from the servlet. The code for the
RawSQLServlet class is in Example 20-11. The nice part about this program is that it
responds to whatever columns are in the ResultSet, which need not be in the same order as
they are in the database. Consider the two queries:

select name, address from userdb
select address, name from userdb

Any code that depends upon knowing the order in the database would look very strange indeed if
the user query requested fields in a different order than they were stored in the database.

Figure 20-2. RawSQLServlet in action

 584

Example 20-11. RawSQLServlet.java

import com.darwinsys.util.FileProperties;

import javax.servlet.*;
import javax.servlet.http.*;
import java.sql.*;
import java.io.*;
import java.util.*;

/** Process a raw SQL query; use ResultSetMetaData to format it.
 */
public class RawSQLServlet extends HttpServlet {
 public final static String PROPS_FILE = "JDBCMeta.properties";

 /** The name of the JDBC Driver */
 protected String DRIVER;

 /** The DB connection object */
 protected Connection conn;

 /** The JDBC statement object */
 protected Statement stmt;

 585

 /** Initialize the servlet. */
 public void init() throws ServletException {
 try {
 // Get a Properties to load from
 FileProperties fp = new FileProperties(PROPS_FILE);

 // Load the database driver
 DRIVER = fp.getProperty("driver");
 Class.forName(DRIVER);

 // Get the connection
 log(getClass() + ": Getting Connection");
 Connection conn = DriverManager.getConnection (
 fp.getProperty("dburl"),
 fp.getProperty("user"),
 fp.getProperty("password"));

 log(getClass() + ": Creating Statement");
 stmt = conn.createStatement();
 } catch (IOException ex) {
 log(getClass() + ": init: could not load props file " +
PROPS_FILE);
 } catch (ClassNotFoundException ex) {
 log(getClass() + ": init: Could not load SQL driver " +
DRIVER);
 } catch (SQLException ex) {
 log(getClass() + ": init: SQL Error: " + ex);
 }
 }

 /** Do the SQL query */
 public void doPost(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
IOException {

 String query = request.getParameter("sql");

 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 if (query == null) {
 out.println("Error: malformed query, contact
administrator");
 return;
 }

 // NB MUST also check for admin privs before proceding!
 if (!query.toLowerCase().startsWith("select")) {
 throw new SecurityException("You can only select data");
 }

 try { // SQL
 out.println("
Your query: " + query + "");
 ResultSet rs = stmt.executeQuery(query);

 586

 out.println("
Your response:");

 ResultSetMetaData md = rs.getMetaData();
 int count = md.getColumnCount();
 out.println("<table border=1>");
 out.print("<tr>");
 for (int i=1; i<=count; i++) {
 out.print("<th>");
 out.print(md.getColumnName(i));
 }
 out.println("</tr>");
 while (rs.next()) {
 out.print("<tr>");
 for (int i=1; i<=count; i++) {
 out.print("<td>");
 out.print(rs.getString(i));
 }
 out.println("</tr>");
 }
 out.println("</table>");
 // rs.close();
 } catch (SQLException ex) {
 out.print("" + getClass() + ": SQL Error:\n" +
ex);
 out.print("<pre>");
 ex.printStackTrace(out);
 out.print("</pre>");
 }
 }

 public void destroy() {
 try {
 conn.close(); // All done with that DB connection
 } catch (SQLException ex) {
 log(getClass() + ": destroy: " + ex);
 }
 }
}

The servlet as shown is not thread safe (see Section 24.6) because you can't really assume
that the Connection object is thread safe. However, this servlet is used only by the
administrator. A servlet connecting to a database should probably save only the driver class
name and URL in its init() method, and get the Connection in its service()/doGet(
)/doPost() method. However, this will likely be very slow. One solution is to use a connection
pool: you preallocate a certain number of Connection objects, hand them out on demand, and
the servlet returns its connection to the pool when done. Writing a simple connection pool is easy,
but writing a connection pool reliable enough to be used in production is very hard. For this
reason, JDBC 2 introduced the notion of having the driver provide connection pooling. However,
this is an optional feature -- check your driver's documentation. Also, Enterprise JavaBeans (EJB)
running in an application server usually provide connection pooling; if the servlet engine runs in
the same process, this can be a very efficient solution.

20.11.3.1 Database metadata

 587

The second example (see Example 20-12) uses a DatabaseMetaData to print out the name
and version number of the database product and its default transaction isolation (basically, the
extent to which users of a database can interfere with each other; see any good book on
databases for information on transactions and why it's often really important to know your
database's default transaction isolation).

Example 20-12. JDBCMeta.java

import com.darwinsys.util.FileProperties;

import java.awt.*;
import java.sql.*;

/** A database MetaData query
 */
public class JDBCMeta {

 public static void main(String[] av) {
 int i;
 try {
 FileProperties fp = new
FileProperties("JDBCMeta.properties");

 // Load the driver
 Class.forName(fp.getProperty("driver"));

 // Get the connection
 Connection conn = DriverManager.getConnection (
 fp.getProperty("dburl"),
 fp.getProperty("user"),
 fp.getProperty("password"));

 // Get a Database MetaData as a way of interrogating
 // the names of the tables in this database.
 DatabaseMetaData meta = conn.getMetaData();

 System.out.println("We are using " +
meta.getDatabaseProductName());
 System.out.println("Version is " +
meta.getDatabaseProductVersion());

 int txisolation = meta.getDefaultTransactionIsolation();
 System.out.println("Database default transaction isolation
is " +
 txisolation + " (" +
 transactionIsolationToString(txisolation) + ").");

 conn.close();

 System.out.println("All done!");

 } catch (java.io.IOException e) {
 System.out.println("Can't load PROPERTIES " + e);
 } catch (ClassNotFoundException e) {
 System.out.println("Can't load driver " + e);
 } catch (SQLException ex) {

 588

 System.out.println("Database access failed:");
 System.out.println(ex);
 }
 }

 /** Convert a TransactionIsolation int (defined in
java.sql.Connection)
 * to the corresponding printable string.
 */
 public static String transactionIsolationToString(int txisolation)
{
 switch(txisolation) {
 case Connection.TRANSACTION_NONE:
 // transactions not supported.
 return "TRANSACTION_NONE";
 case Connection.TRANSACTION_READ_UNCOMMITTED:
 // All three phenomena can occur
 return "TRANSACTION_NONE";
 case Connection.TRANSACTION_READ_COMMITTED:
 // Dirty reads are prevented; non-repeatable reads and
 // phantom reads can occur.
 return "TRANSACTION_READ_COMMITTED";
 case Connection.TRANSACTION_REPEATABLE_READ:
 // Dirty reads and non-repeatable reads are prevented;
 // phantom reads can occur.
 return "TRANSACTION_REPEATABLE_READ";
 case Connection.TRANSACTION_SERIALIZABLE:
 // All three phenomena prvented; slowest!
 return "TRANSACTION_SERIALIZABLE";
 default:
 throw new IllegalArgumentException(
 txisolation + " not a valid TX_ISOLATION");
 }
 }
}

When you run it, in addition to some debugging information, you'll see something like this. The
details, of course, depend on your database:

> java JDBCMeta
Enhydra InstantDB - Version 3.13
The Initial Developer of the Original Code is Lutris Technologies Inc.
Portions created by Lutris are Copyright (C) 1997-2000 Lutris
Technologies, Inc.All Rights Reserved.
We are using InstantDB
Version is Version 3.13
Database default transaction isolation is 0 (TRANSACTION_NONE).
All done!
>

20.12 Program: JDAdmin

The JDAdmin program lets a privileged user view and administer the user database for the
JabaDot web site shown in Section 18.13. It doesn't use the accessors that we so carefully built
up in this chapter, as it needs to be able to make any change at all to the database, including

 589

recovering from corrupted data introduced by potential bugs in future versions of the accessor.
Instead, it makes extensive use of the PreparedStatement class (see Section 20.7).

The user interface (shown in Figure 20-3) is a simple JTable controlled by the MyTableModel
class defined at the end of the source. This controls the display of the fields and allows and
handles the editing of the password field.

Figure 20-3. JDAdmin user interface

The Schema class used here simply defines public constants for the fields within the database.
These field numbers begin at one; I subtract one from the field number when I need Java-origin
numbers.

Example 20-13 shows the first working version of the program. It allows you to reset the
password of a forgetful user and to delete a defunct account. One plausible extension is to add a
text field and a button to allow you to execute an arbitrary SQL statement, as in Section 20.11.

Example 20-13. JDAdmin.java

package jabadot;

import java.util.*;
import java.sql.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.table.*;

/** A User Database Administrator program
 * This does NOT use the UserDB interface as it needs
 * to be able to do ANYTHING to the database,
 * to go beyond, and to repair any errors introduced
 * by bugs in the UserDB code and/or queries. :-)
 *
 * If using InstantDB, therefore, you MUST NOT RUN THIS PROGRAM
 * while users have access to the system, or the database will
 * get worse instead of better!
 */
public class JDAdmin extends JFrame {

 /** the list of users */
 protected ArrayList userList = new ArrayList();
 /** The database connection */
 protected Connection conn;
 /** A Statement for listing users */

 590

 protected PreparedStatement listUsersStatement;
 /** A Statement for deleting users */
 protected PreparedStatement deleteUserStatement;
 /** A Statement for resetting passwords for forgetful users */
 protected PreparedStatement setPasswordStatement;

 /** The main table */
 protected JTable theTable;

 /** Main program -- driver */
 public static void main(String av[]) throws Exception {
 JDAdmin aFrame = new JDAdmin();
 aFrame.populate();
 // aFrame.pack();
 aFrame.setSize(600,450);
 aFrame.setVisible(true);
 }

 /** Constructor */
 public JDAdmin() throws SQLException {
 super("JabaDotAdmin");

 // INIT THE DB
 // Do this before the GUI, since JDBC does more-delayed
 // type checking than Swing...

 String dbDriver =
JDConstants.getProperty("jabadot.userdb.driver");
 try {
 Class.forName(dbDriver);
 } catch (ClassNotFoundException ex) {
 JOptionPane.showMessageDialog(this,
 "JDBC Driver Failure:\n" + ex, "Error",
 JOptionPane.ERROR_MESSAGE);
 }
 conn = DriverManager.getConnection(
 JDConstants.getProperty("jabadot.userdb.url"));
 listUsersStatement = conn.prepareStatement("select * from
userdb");
 deleteUserStatement =
 conn.prepareStatement("delete from userdb where name = ?");
 setPasswordStatement = conn.prepareStatement(
 "update userdb SET password = ? where name = ?");

 // INIT THE GUI
 Container cp = getContentPane();
 cp.setLayout(new BorderLayout());
 cp.add(new JScrollPane(theTable = new JTable(new MyTableModel(
))),
 BorderLayout.CENTER);
 JPanel bp = new JPanel();
 JButton x;
 bp.add(x = new JButton("Delete"));
 x.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ex) {
 int r = theTable.getSelectedRow();
 if (r == -1) {

 591

 JOptionPane.showMessageDialog(JDAdmin.this,
 "Please select a user to delete", "Error",
 JOptionPane.ERROR_MESSAGE);
 return;
 }
 int i = JOptionPane.showConfirmDialog(JDAdmin.this,
 "Really delete user?", "Confirm",
 JOptionPane.YES_NO_OPTION);
 switch(i) {
 case 0:
 try {
 delete(r);
 } catch (SQLException e) {

JOptionPane.showMessageDialog(JDAdmin.this,
 "SQL Error:\n" + e, "Error",
 JOptionPane.ERROR_MESSAGE);
 }
 break;
 case 1:
 // nothing to do.
 break;
 default:
 System.err.println("showConfirm: unex ret "
+ i);
 }
 }
 });
 bp.add(x = new JButton("List"));
 x.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ex) {
 try {
 populate();
 } catch (SQLException e) {
 JOptionPane.showMessageDialog(JDAdmin.this,
 "SQL Error:\n" + e, "Error",
 JOptionPane.ERROR_MESSAGE);
 }
 }
 });
 bp.add(x = new JButton("Exit"));
 x.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ex) {
 System.exit(0);
 }
 });

 cp.add(bp, BorderLayout.SOUTH);

 }

 /** Get the current list of users from the database
 * into the ArrayList, so the display will be up-to-date
 * after any major change.
 */
 public void populate() throws SQLException {
 ResultSet rs = listUsersStatement.executeQuery();

 592

 userList.clear();
 while (rs.next()) {
 String nick = rs.getString(1);
 // System.out.println("Adding " + nick);
 User u = new User(nick, rs.getString(UserDB.PASSWORD),
 rs.getString(UserDB.FULLNAME),
 rs.getString(UserDB.EMAIL),
 rs.getString(UserDB.CITY),
 rs.getString(UserDB.PROVINCE),
 rs.getString(UserDB.COUNTRY),
 rs.getInt(UserDB.PRIVS));
 userList.add(u);
 }
 rs.close();
 theTable.repaint();
 }

 /** Delete the given user, by row number
 * (row number in the display == index into the ArrayList).
 * Use a JDBC PreparedStatement; if it succeeds, then also
 * remove the user object from the ArrayList.
 */
 public void delete(int x) throws SQLException {
 User u = (User)userList.get(x);
 String nick = u.getName();
 deleteUserStatement.setString(1, nick);
 int n;
 switch (n = deleteUserStatement.executeUpdate()) {
 case 0:
 // no match!
 JOptionPane.showMessageDialog(this,
 "No match for user " + nick, "Error",
 JOptionPane.ERROR_MESSAGE);
 break;
 case 1:
 // OK
 JOptionPane.showMessageDialog(this,
 "User " + nick + " deleted.", "Done",
 JOptionPane.INFORMATION_MESSAGE);
 userList.remove(x);
 break;
 default:
 // Ulp! Deleted too many! -- n
 JOptionPane.showMessageDialog(this,
 "Oops, we deleted " + n + " users!!", "Error",
 JOptionPane.ERROR_MESSAGE);
 }
 theTable.repaint();
 }

 // class extends TableModel...
 class MyTableModel extends AbstractTableModel {

 /** Returns the number of items in the list. */
 public int getRowCount() {
 return userList.size();
 }

 593

 /** Return the width of the table */
 public int getColumnCount() {
 return 8;
 }

 /** Get the name of a given column */
 public String getColumnName(int i) {
 switch(i) {
 case UserDB.NAME-1: return "Nickname";
 case UserDB.PASSWORD-1: return "Password";
 case UserDB.FULLNAME-1: return "Full Name";
 case UserDB.EMAIL-1: return "Email";
 case UserDB.CITY-1: return "City";
 case UserDB.PROVINCE-1: return "Province";
 case UserDB.COUNTRY-1: return "Country";
 case UserDB.PRIVS-1: return "Privs";
 default: return "??";
 }
 }

 /** Returns a data value for the cell at columnIndex and
rowIndex.
 * MUST BE IN SAME ORDER as setValueAt();
 */
 public Object getValueAt(int row, int col) {
 User u = (User) userList.get(row);
 switch (col) {
 case UserDB.NAME-1: return u.getName();
 case UserDB.PASSWORD-1: return u.getPassword();
 case UserDB.FULLNAME-1: return u.getFullName();
 case UserDB.EMAIL-1: return u.getEmail();
 case UserDB.CITY-1: return u.getCity();
 case UserDB.PROVINCE-1: return u.getProv();
 case UserDB.COUNTRY-1: return u.getCountry();
 case UserDB.PRIVS-1: return new Integer(u.getPrivs());
 default: return null;
 }
 }

 /** Set a value in a cell. MUSE BE IN SAME ORDER AS getValueAt.
*/
 public void setValueAt(Object val, int row, int col) {
 User u = (User) userList.get(row);
 switch (col) {
 // DB Schemas start at one, Java columns at zero.
 case UserDB.PASSWORD-1:
 String newPass = (String)val; // Get new value
 try {
 setPasswordStatement.setString(1, newPass);
// ready,
 setPasswordStatement.setString(2, u.getName());
// steady,
 setPasswordStatement.executeUpdate(); //
and update!
 } catch (SQLException ex) {
 JOptionPane.showMessageDialog(null,

 594

 "SQL Error:\n" + ex.toString(), "SQL Error",
 JOptionPane.ERROR_MESSAGE);
 break;
 }
 u.setPassword(newPass); // bypassed if DB update
failed
 break;

 // Only password cells are editable.
 default:
 JOptionPane.showMessageDialog(null,
 "setValueAt" + val.getClass() + "," + val, "Logic
error",
 JOptionPane.ERROR_MESSAGE);
 break;
 }
 }

 /** Only password cells are editable. */
 public boolean isCellEditable(int rowIndex, int columnIndex) {
 return columnIndex == UserDB.PASSWORD-1;
 }
 }
}

This version is a standalone Java application. Given that we have an administrator level of
privilege in the database, it might make sense to reimplement this as a web application under the
administration functions. But then again, keeping it as a standalone application ensures that it will
be run only on the server (my database does not listen for or accept network connections, folks,
so don't bother trying).

20.12.1 See Also

The file jdk1.x/docs/guide/jdbc/getstart/introTOC.doc.html is provided with the JDK and gives
some guidance on JDBC. JDBC is given extensive coverage in O'Reilly's Database Programming
with JDBC and Java, and Addison Wesley's JDBC Database Access from Java: A Tutorial and
Annotated Reference is also recommended. For general information on databases, you might
want to consult Joe Celko's Data and Databases (Morgan Kaufman) or any of many other good
general books.

 595

Chapter 21. XML

21.1 Introduction

21.2 Transforming XML with XSLT

21.3 Parsing XML with SAX

21.4 Parsing XML with DOM

21.5 Verifying Structure with a DTD

21.6 Generating Your Own XML with DOM

21.7 Program: xml2mif

21.1 Introduction

The Extensible Markup Language, or XML, is a portable, human-readable format for exchanging
text or data between programs. XML derives from its parent standard SGML, as does the HTML
language used on web pages worldwide. XML, then, is HTML's younger but more capable sibling.
And since most developers know at least a bit of HTML, parts of this discussion will be couched
in terms of comparisons with HTML. XML's lesser-known grandparent is IBM's GML (General
Markup Language), and one of its cousins is Adobe FrameMaker's Maker Interchange Format
(MIF). Example 21-1 depicts the family tree.

Figure 21-1. XML's ancestry

One way of thinking about XML is that it's HTML cleaned up, consolidated, and with the ability to
define your own tags. It's HTML with tags that can and should identify the informational content
as opposed to the formatting. Another way of perceiving XML is as a general interchange format
for such things as business-to-business communications over the Internet, or as a human-
editable[1] description of things as diverse as word-processing files and Java documents. XML is
all these things, depending on where you're coming from as a developer and where you want to
go today -- and tomorrow.

[1] Although you can edit XML using vi , Emacs, notepad, or simpletext, it is considered preferable to use an
XML-aware editor. XML's structure is more complex, and parsing programs far less tolerant of picayune
error, than was ever the case in the HTML world. XML files are kept as plain text for debugging purposes,

 596

for ease of transmission across wildly incompatible operating systems, and (as a last resort) for manual
editing to repair software disasters.

Because of the wide acceptance of XML, it is used as the basis for many other formats, including
the Open Office (http://www.openoffice.org) save file format, the SVG graphics file format,
and many more.

From SGML, both HTML and XML inherit the syntax of using angle brackets (< and >) around
tags, each pair of which delimits one part of an XML document, called an element . An element
may contain content (like a <P> tag in HTML) or may not (like an <HR> in HTML). While HTML
documents can begin with either an <HTML> tag or a <DOCTYPE...> tag (or, informally, with
neither), an XML file must always begin with an XML prolog, which is at least the following:

<?xml version="1.0"?>

The question mark is a special character used to identify the XML prolog (it's syntactically similar
to the % used in ASP and JSP).

HTML has a number of elements that accept attributes, such as:

<BODY BGCOLOR=white> ... </body>

XML attribute values (such as the 1.0 for the version in the prolog, or the white in BGCOLOR)
must be quoted. In other words, quoting is optional in HTML, but required in XML.

Another difference between HTML and XML is that XML is case-sensitive, so that BODY, Body,
and body represent three different element names. The BODY example shown here, while
allowed in HTML, would draw complaint from any XML parser. And speaking of XML parsing,
there's a great variety of XML parsers available. A parser is simply a program or class that reads
an XML file, looks at it at least syntactically, and lets you access some or all of the elements.
Most of these parsers conform to the Java bindings for one of the two well-known XML APIs, SAX
and DOM. SAX, the Simple API for XML, reads the file and calls your code when it encounters
certain events, such as start-of-element, end-of-element, start-of-document, and the like. DOM,
the Document Object Model, reads the file and constructs an in-memory tree or graph
corresponding to the elements and their attributes and contents in the file. This tree can be
traversed, searched, modified (even constructed from scratch, using DOM), or written to a file.

An alternative API called JDOM has also been released into the open source field. JDOM, by
Brett McLaughlin and Jason Hunter, has the advantage of being aimed primarily at Java (DOM
itself is designed to work with many different programming languages). JDOM is available at
http://www.jdom.org, and has been accepted as a JSR (Java Standards Request) for the Sun
Community Standards Process.

But how does the parser know if an XML file contains the correct elements? Well, the simpler,
"non-validating" parsers don't; they simply check that the XML is syntactically correct, or well-
formed. Validating parsers check that the XML file conforms to a given Document Type Definition
(DTD) or an XML Schema. DTDs are inherited from SGML; their syntax is discussed in Section
21.5. Schemas are newer than DTDs and, while more complex, provide such object-based
features as inheritance. DTDs are written in a special meta-language derived from SGML, while
XML Schemas are written in "pure" XML.

In addition to parsing XML, you can use an XML processor to transform it into some other format,
such as HTML. This is a natural for use in a servlet (see Chapter 18): if a given web browser
client can support XML, just write the data as-is, but if not, transform the data into HTML. There

 597

are two transformation languages, XML-T and XML-FO, which we'll look at first; for more complex
operations on XML, there are two parsing APIs that we'll cover later.

If you need to control how an XML document is displayed, you can use XSL-FO (Extensible Style
Language: Formatted Objects). XSL-FO is an extended version of the HTML stylesheet concept
that allows you to specify formatting for particular elements. However, the XSL-FO standard isn't
complete yet. And XML-FO can be complex; you are basically specifying a batch formatting
language to describe how your textual data is formatted for the printed page. A comprehensive
reference implementation is FOP, which produces Acrobat PDF output and is available from
http://xml.apache.org.

21.2 Transforming XML with XSLT

21.2.1 Problem

You need to make significant changes to the output format.

21.2.2 Solution

Use XSLT; it is fairly easy to use and does not require writing much Java.

21.2.3 Discussion

XSLT, or Extensible Style Language for Transformations, allows you a great deal of control over
the output format. It can be used to change an XML file from one DTD into another, as might be
needed in a business-to-business (B2B) application where information is passed from one
industry-standard DTD to a site that uses another. It can also be used to render XML into another
format such as HTML. Think of XSLT as a scripting language for transforming XML.

You need a set of classes called an XSLT processor . One freely available XSLT processor is the
Apache project's Xalan (formerly available from Lotus/IBM as the Lotus XSL processor). To use
this, you create an XSL processor by calling the factory method getProcessor(), then call its
parse method passing in two XSLTInputSources (one for the XML document and one for the
XSL stylesheet) and one XSLTResultTarget for the output file.

Assume you have a file of people's names, addresses, and so on, stored in an XML document
such as the file people.xml, shown in Example 21-1.

Example 21-1. people.xml

<?xml version="1.0"?>
<people>
<person>
 <name>Ian Darwin</name>
 <email>ian@darwinsys.com</email>
 <country>Canada</country>
</person>
<person>
 <name>Another Darwin</name>
 <email type="intranet">ad</email>
 <country>Canada</country>
</person>

 598

</people>

You can transform the people.xml file into HTML by using the following command:

$ java XSLTransform people.xml people.xsl people.html

Figure 21-2 shows the resulting HTML file opened in a browser.

Figure 21-2. XML to HTML final result

Let's look at the file people.xsl (shown in Example 21-2). Since an XSL file is an XML file, it
must be well-formed according to the syntax of XML. As you can see, it contains some XML
elements but is mostly (well-formed) HTML.

Example 21-2. people.xsl

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">
<xsl:template match="/">

<html>
<head><title>Our People</title></head>
<body>

 <table border="1">
 <tr>
 <th>Name</th>
 <th>EMail</th>
 </tr>

 <xsl:for-each select="people/person">
 <tr>
 <td><xsl:value-of select="name"/></td>
 <td><xsl:value-of select="email"/></td>
 </tr>
 </xsl:for-each>

 </table>

</body></html>
</xsl:template>

 599

</xsl:stylesheet>

The program XSLTransform appears in Example 21-3.

Example 21-3. XSLTransform.java

import org.apache.xalan.xslt.*;
import java.net.*;
import java.io.*;

/**
 * Demonstrate transforming a file using XSLT.
 */
public class XSLTransform {

 public static void main(String[] args) {

 try {
 // Require three input args
 if (args.length != 3) {
 System.out.println("Usage: java XSLTransform "
 + "<input XML file> <input XSL file> <output
file>");
 System.exit(1);
 }

 XSLTProcessor myProcessor =
XSLTProcessorFactory.getProcessor();
 XSLTInputSource xmlSource = new XSLTInputSource(args[0]);
 XSLTInputSource xslStylesheet = new
XSLTInputSource(args[1]);
 XSLTResultTarget xmlOutput = new XSLTResultTarget(args[2]);
 myProcessor.process(xmlSource, xslStylesheet, xmlOutput);
 }
 catch (org.xml.sax.SAXException exc) {
 System.err.println("Found invalid XML during processing:");
 exc.printStackTrace();
 }
 }
}

21.2.4 See Also

A new development in progress is the use of translets. Sun is developing a program that will read
a stylesheet and generate a Translet class, which is a compiled Java program that transforms
XML according to the stylesheet. This will eliminate the overhead of reading the stylesheet each
time a document is translated. See http://www.sun.com/xml/developers/xsltc/.

21.3 Parsing XML with SAX

21.3.1 Problem

You want to make one quick pass over an XML file, extracting certain tags or other information as
you go.

 600

21.3.2 Solution

Simply use SAX to create a document handler and pass it to the SAX parser.

21.3.3 Discussion

The XML DocumentHandler interface specifies a number of "callbacks" that your code must
provide. In one sense this is similar to the Listener interfaces in AWT and Swing, as covered
briefly in Section 13.5. The most commonly used methods are startElement() ,
endElement(), and text(). The first two, obviously, are called at the start and end of an
element, and text() is called when there is character data. The characters are stored in a
large array, and you are passed the base of the array and the offset and length of the characters
that make up your text. Conveniently, there is a string constructor that takes exactly these
arguments. Hmmm, I wonder if they thought of that . . .

To demonstrate this, I wrote a simple program using SAX to extract names and email addresses
from an XML file. The program itself is reasonably simple, and is shown in Example 21-4.

Example 21-4. SaxLister.java

import java.io.*;
import org.xml.sax.*;
import org.xml.sax.helpers.*;
import org.apache.xerces.parsers.SAXParser;

/** Simple lister - extract name and email tags from a user file.
 * Updated for SAX 2.0
 */
public class SaxLister {

 class PeopleHandler extends DefaultHandler {

 boolean name = false;
 boolean mail = false;

 public void startElement(String nsURI, String strippedName,
 String tagName, Attributes attributes)
 throws SAXException {
 if (tagName.equalsIgnoreCase("name"))
 name = true;
 if (tagName.equalsIgnoreCase("email"))
 mail = true;
 }

 public void characters(char[] ch, int start, int length) {
 if (name) {
 System.out.println("Name: " + new String(ch, start,
length));
 name = false;
 } else if (mail) {
 System.out.println("Email: " + new String(ch, start,
length));
 mail = false;
 }

 601

 }
 }

 public void list() throws Exception {
 XMLReader parser = XMLReaderFactory.createXMLReader(
 "org.apache.xerces.parsers.SAXParser"); // should load
properties
 parser.setContentHandler(new PeopleHandler());
 parser.parse("people.xml");
 }

 public static void main(String[] args) throws Exception {
 new SaxLister().list();
 }
}

When run, it prints the listing:

$ java SaxLister users.xml
Name: Ian Darwin
Email: ian@darwinsys.com
$

One problem with SAX is that it is, well, simple, and therefore doesn't scale well, as you can see
by thinking about this program. Imagine trying to handle 12 different tags and doing something
different with each one. For more involved analysis of an XML file, the Document Object Model
(DOM) may be better suited. (On the other hand, DOM requires keeping the entire tree in
memory, so there are some scalability issues with extremely large XML documents.) And with
SAX, you can't really "navigate" a document, since you have only a stream of events, not a real
structure. For that, you want DOM or JDOM.

21.4 Parsing XML with DOM

21.4.1 Problem

You want to examine an XML file in detail.

21.4.2 Solution

Use DOM to parse the document, and process the resulting in-memory tree.

21.4.3 Discussion

The Document Object Model (DOM) is a tree-structured representation of the information in an
XML document. It consists of several interfaces, the most important of which is the node. All are
in the package org.w3c.dom, reflecting the influence of the World Wide Web Consortium
(http://www.w3.org) in creating and promulgating the DOM. The DOM interfaces are shown in
Table 21-1.

Table 21-1. DOM interfaces
Interface Function

Document Top-level representation of an XML document

 602

Node Representation of any node in the XML tree
Element An XML element

Text A textual string

You don't have to implement these interfaces; the parser generates them. When you get to
creating or modifying XML documents in Section 21.6, then you can create nodes. But even
then there are implementing classes. Parsing an XML document with DOM is syntactically similar
to processing a file with XSL, that is, you get a reference to a parser and call its methods with
objects representing the input files. The difference is that the parser returns an XML DOM, a tree
of objects in memory. Example 21-5 is code that simply parses an XML document.

Example 21-5. XParse.java

import java.io.*;
import org.w3c.dom.*;
import com.sun.xml.tree.*;
import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;

/** Parse an XML file using DOM.
 */
public class XParse {

 /** Convert the file */
 public static void parse(String fileName) {
 try {
 System.err.println("Parsing " + fileName + "...");

 // Make the document a URL so relative DTD works.
 String uri = "file:" + new File(fileName).getAbsolutePath(
);

 XmlDocument doc = XmlDocument.createXmlDocument(uri);
 System.out.println("Parsed OK");

 } catch (SAXParseException ex) {
 System.err.println("+================================+");
 System.err.println("| *Parse Error* |");
 System.err.println("+================================+");
 System.err.println("+ Line " + ex.getLineNumber ()
 + ", uri " + ex.getSystemId ());
 System.err.println(ex.getClass());
 System.err.println(ex.getMessage());
 System.err.println("+================================+");
 } catch(SAXException ex) {
 System.err.println("+================================+");
 System.err.println("| *SAX XML Error* |");
 System.err.println("+================================+");
 System.err.println(ex.toString());
 } catch (IOException ex) {
 System.err.println("+================================+");
 System.err.println("| *Input/Output Error* |");
 System.err.println("+================================+");
 System.err.println(ex.toString());
 }

 603

 }

 public static void main(String[] av) {
 if (av.length == 0) {
 System.err.println("Usage: XParse file");
 return;
 }
 for (int i=0; i<av.length; i++) {
 parse(av[i]);
 }
 }
}

You then traverse the document. You can use the defined TreeWalker interface, or you can just
use the algorithm shown in Example 21-6.

Example 21-6. XTW.java (partial listing)

/* Process all the nodes, recursively. */
protected void doRecursive(Node p) {
 if (p == null) {
 return;
 }
 NodeList nodes = p.getChildNodes();
 int numElem = nodes.getLength();
 Debug.println("xml-tree", "Element has " + numElem + " children");
 for (int i=0; i<numElem; i++) {
 Node n = nodes.item(i);
 if (n == null) {
 continue;
 }

 doNode(n);

 }
}

A full code example using this approach is given in Section 21.7.

21.5 Verifying Structure with a DTD

21.5.1 Problem

Up to now, I have simply provided XML and asserted that it is valid. Now you want to verify the
structure using a Document Type Definition (DTD).

21.5.2 Solution

Write the DTD and refer to it in one or more XML documents.

21.5.3 Discussion

 604

This is not the place for a full dissertation on creating a Document Type Definition. Briefly, a DTD
consists of a header and a list of the elements and any attributes. The DTD is written in a special
language that allows you to specify the elements and attributes. Example 21-7 is people.dtd, a
DTD for the people.xml file used earlier in this chapter.

Example 21-7. people.dtd

<!ELEMENT people (person)*>
<!ELEMENT person (name, email, country)>

<!ELEMENT name (#PCDATA)>
<!ATTLIST email type CDATA #IMPLIED>
<!ELEMENT email (#PCDATA)>
<!ELEMENT country (#PCDATA)>

To verify that a file conforms to a DTD, you do two things:

1. Refer to the DTD from within the XML file, as is sometimes seen in HTML documents.
The <!DOCTYPE> line should follow the <?xml> line but precede any actual data.

2. <?xml version="1.0"?>
3. <!DOCTYPE people SYSTEM "people.dtd">
4.
5. <people>
6. <person>
7. <name>Ian Darwin</name>
8. <email>ian@darwinsys.com</email>
9. <country>Canada</country>

</person>

10. Pass true as a second argument to the createXMLDocument() method; true
means "enforce document validity."

XmlDocument doc = XmlDocument.createXmlDocument(uri);

Now any elements found in the document that are not valid according to the DTD will result in an
exception being thrown.

21.6 Generating Your Own XML with DOM

21.6.1 Problem

You want to generate your own XML files or modify existing documents.

21.6.2 Solution

Use DOM or JDOM; parse or create the document, and call its write method.

21.6.3 Discussion

Sun's XmlDocument class has a write() method that can be called with either an
OutputStream or a Writer. To use it, create an XML document object using the
XmlDocument constructor. Create nodes, and append them into the tree. Then call the

 605

document's write() method. For example, suppose you want to generate a poem in XML.
Running the program and letting the XML appear on the standard output might look something
like this:

$ jikes +E -d . DocWrite.java
$ java DocWrite
<?xml version="1.0" encoding="UTF-8"?>

<Poem>
 <Stanza>
 <Line>Once, upon a midnight dreary</Line>
 <Line>While I pondered, weak and weary</Line>
 </Stanza>
</Poem>
$

The code for this is fairly short; see Example 21-8.

Example 21-8. DocWrite.java

import java.io.*;
import org.w3c.dom.*;
import com.sun.xml.tree.*;

/** Make up and write an XML document
 */
public class DocWrite {

 public static void main(String[] av) throws IOException {
 DocWrite dw = new DocWrite();
 XmlDocument doc = dw.makeDoc();
 doc.write(System.out);
 }

 /** Generate the XML document */
 protected XmlDocument makeDoc() {
 try {
 XmlDocument doc = new XmlDocument();

 Node root = doc.createElement("Poem");
 doc.appendChild(root);

 Node stanza = doc.createElement("Stanza");
 root.appendChild(stanza);

 Node line = doc.createElement("Line");
 stanza.appendChild(line);
 line.appendChild(doc.createTextNode("Once, upon a midnight
dreary"));
 line = doc.createElement("Line");
 stanza.appendChild(line);
 line.appendChild(doc.createTextNode("While I pondered, weak
and weary"));

 return doc;

 606

 } catch (Exception ex) {
 System.err.println("+============================+");
 System.err.println("| XML Error |");
 System.err.println("+============================+");
 System.err.println(ex.getClass());
 System.err.println(ex.getMessage());
 System.err.println("+============================+");
 return null;
 }
 }
}

A more complete program, of course, would create an output file and have better error reporting.
It would also have more lines of the poem than I can remember.

Sun's XmlDocument class is not a committed part of the standard, which is why the code imports
com.sun.xml.tree.*. However, other vendors' APIs will likely have similar functionality. In
Version 2 of the XML DOM API, you can use the new
XMLReaderFactory.createXMLReader() , which takes the name of the parser as a string
argument, which can in turn be loaded from a properties file (see Section 7.8). This avoids
having the parser class name compiled into your application.

21.7 Program: xml2mif

Adobe FrameMaker[2] uses an interchange language called MIF (Maker Interchange Format),
which is vaguely related to XML but is not well-formed. Let's look at a program that uses DOM to
read an entire document and generate code in MIF for each node. This program was used to
create some earlier chapters of the book you are now reading.

[2] Previously from Frame Technologies, a company that Adobe ingested.

The main program, shown in Example 21-9, is called XmlForm ; it parses the XML and calls
one of several output generator classes. This could be used as a basis for generating other
formats.

Example 21-9. XmlForm.java

import java.io.*;
import org.w3c.dom.*;
import com.sun.xml.tree.*;

/** Convert a simple XML file to text.
 */
public class XmlForm {
 protected Reader is;
 protected String fileName;

 protected static PrintStream msg = System.out;

 /** Construct a converter given an input filename */
 public XmlForm(String fn) {
 fileName = fn;
 }

 607

 /** Convert the file */
 public void convert(boolean verbose) {
 try {
 if (verbose)
 System.err.println(">>>Parsing " + fileName + "...");
 // Make the document a URL so relative DTD works.
 String uri = "file:" + new File(fileName).getAbsolutePath(
);
 XmlDocument doc = XmlDocument.createXmlDocument(uri);
 if (verbose)
 System.err.println(">>>Walking " + fileName + "...");
 XmlFormWalker c = new GenMIF(doc, msg);
 c.convertAll();

 } catch (Exception ex) {
 System.err.println("+================================+");
 System.err.println("| *Parse Error* |");
 System.err.println("+================================+");
 System.err.println(ex.getClass());
 System.err.println(ex.getMessage());
 System.err.println("+================================+");
 }
 if (verbose)
 System.err.println(">>>Done " + fileName + "...");
 }

 public static void main(String[] av) {
 if (av.length == 0) {
 System.err.println("Usage: XmlForm file");
 return;
 }
 for (int i=0; i<av.length; i++) {
 String name = av[i];
 new XmlForm(name).convert(true);
 }
 msg.close();
 }
}

The actual MIF generator is not shown here -- it's not really XML-related -- but is included in the
online source code for the book.

21.7.1 See Also

XML is an area of rapid change. Schemas are becoming "real." New APIs (and acronyms!)
continue to appear. XML-RPC and SOAP let you build distributed applications using XML and
HTTP as the program interchange. The W3C has many new XML standards coming out. Several
web sites track the changing XML landscape, including the official W3C site
(http://www.w3.org/xml/) and O'Reilly's XML site (http://www.xml.com).

Sun's Java API for XML Parsing (JAXP), included with the Java 2 SDK 1.4 and later, provides
convenience routines for accessing a variety of different parsers. This also includes SAX, DOM,
and XSLT in the standard set of Java APIs for the first time.

 608

And many books compete to cover XML. These range from the simple XML: A Primer by Simon
St. Laurent to the comprehensive XML Bible by the prolific Elliotte Rusty Harold. In between is
Learning XML by Erik T. Ray (O'Reilly). O'Reilly's Java and XML by Brett McLaughlin covers
these topics in more detail, and also covers XML publishing frameworks such as Apache's
Cocoon and XML information channels using RSS.

 609

Chapter 22. Distributed Java: RMI

22.1 Introduction

22.2 Defining the RMI Contract

22.3 RMI Client

22.4 RMI Server

22.5 Deploying RMI Across a Network

22.6 Program: RMI Callbacks

22.7 Program: RMIWatch

22.1 Introduction

A distributed system is a program or set of programs that runs using more than one computing
resource. Distributed computing covers a wide spectrum, from intra-process distributed
applications (which Java calls threaded applications, discussed in Chapter 24), through intra-
system applications (such as a network client and server on the same machine), to applications
where a client program and a server program run on machines far apart (such as a web
application).

Distributed computing was around for a long time before Java. Some traditional distributed
mechanisms include RPC (remote procedure call) and CORBA. Java adds RMI (Remote Method
Invocation), its own CORBA support, and EJB (Enterprise JavaBeans) to the mix. This chapter
covers only RMI in detail, but these other technologies are discussed briefly.

At its simplest level, remote procedure call is the ability to run code on another machine and have
it behave as much as possible like a local method call. Most versions of Unix use remote
procedure calls extensively: Sun's NFS, YP/NIS, and NIS+ are all built on top of Sun's RPC.
Windows NT implements large parts of the Unix DCE Remote Procedure Call and can
interoperate with it. Each of these defines its own slightly ad hoc method of specifying the
interface to the remote call. Sun's RPC uses a program called rpcgen, which reads a protocol
specification and writes both the client and server network code. These are both Unix-specific;
they have their place, but aren't as portable as Java.

Java Remote Methods Invocation (RMI) is a type of remote procedure call[1] that is network-
independent, lightweight, and totally portable, as it's written in pure Java. I discuss RMI in this
chapter in enough detail to get you started.

[1] Both RMI and CORBA should really be called "remote method calls," as they both emphasize remote
objects.

CORBA is the Object Management Group's (OMG) Common Object Request Broker
Architecture, a sort of remote procedure call for programs written in C, C++, Java, Ada, Smalltalk,
and others to call methods in objects written in any of those languages. It provides a transport
service called the Internet Inter-Orb Protocol (IIOP) that allows object implementations from

 610

different vendors to interoperate. There is now a version of RMI over IIOP, making it possible to
claim that RMI is CORBA-compliant.

Enterprise JavaBeans (EJB) is a distributed object mechanism used primarily for building
reusable distributed objects that provide both business logic and database storage. There are
several types of EJBs, including session beans, which do something (a shopping cart bean is a
good example) and entity beans, which represent something (usually the things stored in a
database; in our shopping cart example, the entity beans would be the objects available for
purchase).

CORBA and EJB are of interest primarily to enterprise developers; they are covered briefly in
O'Reilly's Java Enterprise in a Nutshell. A more detailed presentation will have to wait until
O'Reilly decides to develop an Enterprise Java Cookbook . You can read about EJB in the
O'Reilly book Enterprise JavaBeans.

Ian's Basic Steps: RMI

1. Define (or locate) the remote interface in agreement with the
server.

2. Write your server.
3. Run rmic (Java RMI stub compiler) to generate the network glue.
4. Write the client.
5. Ensure that the RMI registry is running.
6. Start the server.
7. Run one or more clients.

22.2 Defining the RMI Contract

22.2.1 Problem

You want to define the communications exchange between client and server.

22.2.2 Solution

Define a Java interface.

22.2.3 Discussion

RMI procedures are defined using an existing Java mechanism: interfaces. An interface is similar
to an abstract class, but a class can implement more than one interface. RMI remote interfaces
must be subclassed from java.rmi.Remote,[2] and both the client and server must be in the
same Java package. All parameters and return values must be either primitives (int, double,
etc.), or implement Serializable (as do most of the standard types like String). Or, as we'll
see in Section 22.6, they can also be Remote.

[2] You might not have known that interfaces can extendother interfaces, just as classes extend classes. It's
worth knowing this, however. Indeed, there are a few examples of this in the standard API:
LayoutManager2 extends LayoutManager, and both are interfaces.

 611

Figure 22-1 shows the relationships between the important classes involved in an RMI
implementation. The developer need only write the interface and two classes, the client
application and the server object implementation. The RMI stub or proxy and the RMI skeleton or
adapter are generated for you by the rmic program (see Section 22.4), while the RMI Registry
and other RMI classes at the bottom of the figure are provided as part of RMI itself.

Example 22-1 is a simple RemoteDate getter interface, which lets us find out the date and time
on a remote machine.

Example 22-1. RemoteDate.java

package darwinsys.distdate;

import java.rmi.*;
import java.util.Date;

/** A statement of what the client & server must agree upon. */
public interface RemoteDate extends java.rmi.Remote {

 /** The method used to get the current date on the remote */
 public Date getRemoteDate() throws java.rmi.RemoteException;

 /** The name used in the RMI registry service. */
 public final static String LOOKUPNAME = "RemoteDate";
}

Figure 22-1. RMI overview

It's necessary for this file to list all the methods that will be callable from the server by the client.
The lookup name is an arbitrary name that is registered by the server and looked up by the client
to establish communications between the two processes. While most authors just hardcode this
string in both programs, I find this error-prone, so I usually include the lookup name in the
interface.

 612

"So interfaces can contain variables?" you say. No variables indeed, but interfaces may contain
non-variable (final) fields, as here. Putting the lookup name here ensures that both server and
client really agree, and that is what this interface is all about, after all. I've seen other developers
waste a considerable amount of time tracking down spelling mistakes in the lookup names of
various remote services, so I prefer doing it this way.

22.3 RMI Client

22.3.1 Problem

You want to write a client to use an RMI service.

22.3.2 Solution

Locate the object and call its methods.

22.3.3 Discussion

Assume for now that the server object is running remotely. To locate it, you use
Naming.lookup() , passing in the lookup name. This gives you a reference to a proxy object ,
an object that, like the real server object, implements the remote interface but runs in the same
Java Virtual Machine as your client application. Here we see the beauty of interfaces: the proxy
object implements the interface, so your code can use it just as it would use a local object
providing the given service. And the remote object also implements the interface, so the proxy
object's remote counterpart can use it exactly as the proxy is used. Example 22-2 shows the
client for the RemoteDate service.

Example 22-2. DateClient.java

package darwinsys.distdate;

import java.rmi.*;
import java.util.*;

/* A very simple client for the RemoteDate service. */
public class DateClient {

 /** The local proxy for the service. */
 protected static RemoteDate netConn = null;

 public static void main(String[] args) {
 try {
 netConn = (RemoteDate)Naming.lookup(RemoteDate.LOOKUPNAME);
 Date today = netConn.getRemoteDate();
 System.out.println(today.toString()); // XX use a
DateFormat...
 } catch (Exception e) {
 System.err.println("RemoteDate exception: " + e.getMessage(
));
 e.printStackTrace();
 }
 }
}

 613

Also in the online source/RMI directory are DateApplet.htm and DateApplet.java, which together
provide an example of using the server. In DateApplet, the connection is set up in the applet's
init() method. The actual RMI call is done at the start of paint(), so it is updated any time
the screen is painted.

22.4 RMI Server

22.4.1 Problem

The client looks good on paper, but will be lonely without a server to talk to.

22.4.2 Solution

You need to write two parts for the server, an implementation class and a main method. These
can be in the same class or separated for clarity.

22.4.3 Discussion

The server-side code has to do a bit more work; see the sidebar.

Ian's Basic Steps: RMI Server

1. Define (or locate) the remote interface in agreement with the
client.

2. Specify the remote interface being implemented.
3. Define the constructor for the remote object.
4. Provide implementations for the methods that can be invoked

remotely.
5. Create and install a security manager.
6. Create one or more instances of a remote object.
7. Register at least one of the remote objects with the RMI remote

object registry.

This implementation divides the server into the traditional two parts, a main program and an
implementation class. It is just as feasible to combine these in a single class. The main program
shown in Example 22-3 simply constructs an instance of the implementation and registers it
with the lookup service.

Example 22-3. DateServer.java

package darwinsys.distdate;

import java.rmi.*;

public class DateServer {
 public static void main(String[] args) {

 // You may want a SecurityManager for downloading of classes:

 614

 // System.setSecurityManager(new RMISecurityManager());

 try {
 // Create an instance of the server object
 RemoteDateImpl im = new RemoteDateImpl();

 System.out.println("DateServer starting...");
 // Locate it in the RMI registry.
 Naming.rebind(RemoteDate.LOOKUPNAME, im);

 System.out.println("DateServer ready.");
 } catch (Exception e) {
 System.err.println(e);
 System.exit(1);
 }
 }
}

The Naming.bind() method creates an association between the lookup name and the
instance of the server object. This method will fail if the server already has an instance of the
given name, requiring you to call rebind() to overwrite it. But since that's exactly where you'll
find yourself if the server crashes (or you kill it while debugging) and you restart it, many people
just use rebind() all the time.

The implementation class must implement the given remote interface. See Example 22-4.

Example 22-4. RemoteDateImpl.java

package darwinsys.distdate;

import java.rmi.*;
import java.rmi.server.*;
import java.util.*;

public class RemoteDateImpl extends UnicastRemoteObject implements
RemoteDate
{
 /** Construct the object that implements the remote server.
 * Called from main, after it has the SecurityManager in place.
 */
 public RemoteDateImpl() throws RemoteException {
 super(); // sets up networking
 }

 /** The remote method that "does all the work". This won't get
 * called until the client starts up.
 */
 public Date getRemoteDate() throws RemoteException {
 return new Date();
 }
}

22.4.3.1 Using the server

 615

Once you've compiled the implementation class, you can run rmic (RMI compiler) to build some
glue files and install them in the client's CLASSPATH:

$ jikes -d . RemoteDateImpl.java
$ ls darwinsys/distdate
DateApplet$1.class DateClient.class RemoteDate.class
DateApplet.class DateServer.class
RemoteDateImpl.class
$ rmic -d . darwinsys.distdate.RemoteDateImpl
$ ls darwinsys/distdate
DateApplet$1.class DateServer.class
RemoteDateImpl_Skel.class
DateApplet.class RemoteDate.class
RemoteDateImpl_Stub.class
DateClient.class RemoteDateImpl.class
$

You must also ensure that TCP/IP networking is running, and then start the RMI registry program.
If you're doing this by hand, just type the command rmiregistry in a separate window, or start or
background it on systems that support this.

22.4.4 See Also

See the documentation in jdk1.x/docs/guide/rmi/getstart.doc.html.

22.5 Deploying RMI Across a Network

22.5.1 Problem

As shown so far, the server and the client must be on the same machine -- some distributed
system!

22.5.2 Solution

Get the RMI registry to dish out the client stubs on demand.

22.5.3 Discussion

RMI does not provide true location transparency, which means that you must at some point know
the network name of the machine the server is running on. The server machine must be running
the RMI registry program as well, though there's no need for the RMI registry to be running on the
client side.

Now the RMI registry needs to send the client stubs to the client. The best way to do this is to
provide an HTTP URL and ensure that the stub files can be loaded from your web server. This
can be done by passing the HTTP URL into the RMI server's startup by defining it in the system
properties:

java -Djava.rmi.server.codebase=http://serverhost/stubsdir/ ServerMain

 616

In this example, serverhostis the TCP/IP network name of the host where the RMI server and
registry are running, and stubsdir is some directory relative to the web server from which the
stub files can be downloaded.

Be careful to start the RMI registry in its own directory, away from where you are storing (or
building!) the RMI stubs. If RMI can find the stubs in its own CLASSPATH, it will assume they are
universally available and won't download them!

The only other thing to do is to change the client's view of the RMI lookup name to something like
rmi://serverhost/foo_bar_name. And for security reasons, the installation of the RMI Security
Manager, which was optional before, is now a requirement.

22.6 Program: RMI Callbacks

One major benefit of RMI is that almost any kind of object can be passed as a parameter or
return value of a remote method. The recipient of the object will not know ahead of time the class
of the actual object it will receive. If the object is of a class that implements Remote
(java.rmi.Remote), then in fact the returned object will be a proxy object that implements at
least the declared interface. If the object is not remote, it must be serializable, and then a copy of
it will be transmitted across the Net. The prime example of this is a String. It makes no sense to
write an RMI proxy object for String. Why? Remember from Chapter 3 that String objects
are immutable! Once you have a String, you can copy it locally but never change it. So
Strings, like most other core classes, can be copied across the RMI connection just as easily
as they are copied locally. But Remote objects will cause an RMI proxy to be delivered. So what
is stopping the caller from passing an RMI object that is also itself a proxy? Nothing at all, and
this is the basis of the powerful RMI callback mechanism.

An RMI callback occurs when the client of one service passes an object that is the proxy for
another service. The recipient can then call methods in the object it received, and be calling back
(hence the name) to where it came from. Think about a stock ticker service. You write a server
that runs on your desktop and notifies you when your stock moves up or down. This server is also
a remote object. You then pass this server object to the stock ticker service, which remembers it
and calls its methods when the stock price changes. See Figure 22-2 for the big picture.

Figure 22-2. RMI callback service

The code for the callback service comes in several parts. Because there are two servers, there
are also two interfaces. The first is the interface for the TickerServer service. There is only
one method, connect(), which takes one argument, a Client:

 617

package com.darwinsys.callback;

import com.darwinsys.client.*;

import java.rmi.*;

public interface TickerServer extends java.rmi.Remote {
 public static final String LOOKUP_NAME = "Ticker Service";
 public void connect(Client d) throws java.rmi.RemoteException;
}

Client is the interface that displays a stock price change message on your desktop. It also has
only one method, alert(), which takes a String argument:

package com.darwinsys.client;

import java.rmi.*;

/** Client -- the interface for the client callback */
public interface Client extends Remote {
 public void alert(String mesg) throws RemoteException;
}

Now that you've seen both interfaces, let's look at the TickerServer implementation (Example
22-5). Its constructor starts a background thread to "track" stock prices; in fact, this
implementation just calls a random number generator. A real implementation might use a third
RMI service to track actual stock data. The connect() method is trivial; it just adds the given
client (which is really an RMI proxy for the client server running on your desktop). The run method
runs forever; and on each iteration, after sleeping for a while, it picks a random stock movement
and reports it to any and all clients that are registered. If there's an error on a given client, the
client is removed from the list.

Example 22-5. TickerServerImpl.java

package com.darwinsys.callback;

import com.darwinsys.client.*;

import java.rmi.*;
import java.rmi.server.*;
import java.util.*;

/** This is the main class of the server */
public class TickerServerImpl
 extends UnicastRemoteObject
 implements TickerServer, Runnable
{
 ArrayList list = new ArrayList();

 /** Construct the object that implements the remote server.
 * Called from main, after it has the SecurityManager in place.
 */
 public TickerServerImpl() throws RemoteException {
 super(); // sets up networking
 }

 618

 /** Start background thread to track stocks :-) and alert users. */
 public void start() {
 new Thread(this).start();
 }

 /** The remote method that "does all the work". This won't get
 * called until the client starts up.
 */
 public void connect(Client da) throws RemoteException {
 System.out.println("Adding client " + da);
 list.add(da);
 }

 boolean done = false;
 Random rand = new Random();

 public void run() {
 while (!done) {
 try {
 Thread.sleep(10 * 1000);
 System.out.println("Tick");
 } catch (InterruptedException unexpected) {
 System.out.println("WAHHH!");
 done = true;
 }
 Iterator it = list.iterator();
 while (it.hasNext()){
 String mesg = ("Your stock price went " +
 (rand.nextFloat() > 0.5 ? "up" : "down") + "!");
 // Send the alert to the given user.
 // If this fails, remove them from the list
 try {
 ((Client)it.next()).alert(mesg);
 } catch (RemoteException re) {
 System.out.println(
 "Exception alerting client, removing it.");
 System.out.println(re);
 it.remove();
 }
 }
 }
 }
}

As written, this code is not thread safe; things might go bad if one client connects while we are
running through the list of clients. I'll show how to fix this in Section 24.6.

This program's "server main" is trivial, so I don't include it here; it just creates an instance of the
class we just saw, and registers it. More interesting is the client application shown in Example
22-6, which is both the RMI client to the connect() method and the RMI server to the
alert() method in the server in Example 22-5.

Example 22-6. Callback ClientProgram.java

 619

package com.darwinsys.client;

import com.darwinsys.callback.*;

import java.io.*;
import java.rmi.*;
import java.rmi.server.*;

/** This class tries to be all things to all people:
 * - main program for client to run.
 * - "server" program for remote to use Client of
 */
public class ClientProgram extends UnicastRemoteObject implements
Client
{
 protected final static String host = "localhost";

 /** No-argument constructor required as we are a Remote Object */
 public ClientProgram() throws RemoteException {
 }

 /** This is the main program, just to get things started. */
 public static void main(String[] argv) throws IOException,
NotBoundException {
 new ClientProgram().do_the_work();
 }

 /** This is the server program part */
 private void do_the_work() throws IOException, NotBoundException
{

 System.out.println("Client starting");

 // First, register us with the RMI registry
 // Naming.rebind("Client", this);

 // Now, find the server, and register with it
 System.out.println("Finding server");
 TickerServer server =
 (TickerServer)Naming.lookup("rmi://" + host + "/" +
 TickerServer.LOOKUP_NAME);

 // This should cause the server to call us back.
 System.out.println("Connecting to server");
 server.connect(this);

 System.out.println("Client program ready.");
 }

 /** This is the client callback */
 public void alert(String message) throws RemoteException {
 System.out.println(message);
 }
}

 620

In this version, the client server alert() method simply prints the message in its console
window. A more realistic version would receive an object containing the stock symbol, a
timestamp, and the current price and relative price change; it could then consult a GUI control to
decide whether the given price movement is considered noticeable, and pop up a JOptionPane
(see Section 13.8) if so.

22.7 Program: RMIWatch

Here's a program I put together while teaching Java courses for Learning Tree
(http://www.learningtree.com). In one exercise, each student starts the RMI registry on his
or her machine and uses Naming.rebind() (as in Section 22.4) to register with it. Some
students come up with interesting variations on the theme of registering. So this program contacts
the RMI registry on each of a batch of machines, and shows the instructor graphically which
machines have RMI running and what is registered. A red flag shows machines that don't even
have the registry program running: a black flag shows machines that are dead to the (networked)
world.

This program also uses many ideas from elsewhere in the book. A Swing GUI (Chapter 13) is
used. The layout is a GridLayout (discussed briefly in Section 13.3). A default list of machines
to watch is loaded from a Properties object. (Section 7.8). For each host, an RMIPanel is
constructed. This class is both a JComponent (Section 13.2) and a thread (Section 24.1). As
a JComponent, it can be run in a panel, and as a thread, it can run independently and then sleep
for 30 seconds (by default; settable in the properties file) so it isn't continually hammering away at
the RMI registry on all the machines (the network traffic could be awesome). This program
combines all these elements, and comes out looking like the display in Figure 22-3 (alas, we
don't have color pages in this book).

Figure 22-3. NetWatch watching the class

Example 22-7 is the main class, NetWatch, which creates the JFrame and all the RMIPanels
and puts them together.

Example 22-7. NetWatch.java

public class NetWatch {
 public static void main(String[] argv) {

 Properties p = null;

 NetFrame f = new NetFrame("Network Watcher", p);

 621

 try {
 FileInputStream is = new
FileInputStream("NetWatch.properties");
 p = new Properties();
 p.load(is);
 is.close();
 } catch (IOException e) {
 JOptionPane.showMessageDialog(f,
 e.toString(), "Properties error",
 JOptionPane.ERROR_MESSAGE);
 }

 // NOW CONSTRUCT PANELS, ONE FOR EACH HOST.

 // If arguments, use them as hostnames.
 if (argv.length!=0) {
 for (int i=0; i<argv.length; i++) {
 f.addHost(argv[i], p);
 }
 // No arguments. Can we use properties?
 } else if (p != null && p.size() > 0) {
 String net = p.getProperty("netwatch.net");
 int start =
Integer.parseInt(p.getProperty("netwatch.start"));
 int end = Integer.parseInt(p.getProperty("netwatch.end"));
 for (int i=start; i<=end; i++) {
 f.addHost(net + "." + i, p);
 }
 for (int i=0; ; i++) {
 String nextHost = p.getProperty("nethost" + i);
 if (nextHost == null)
 break;
 f.addHost(nextHost, p);
 }
 }
 // None of the above. Fall back to localhost
 else {
 f.addHost("localhost", p);
 }

 // All done. Pack the Frame and show it.
 f.pack();
 // UtilGUI.centre(f);
 f.setVisible(true);
 f.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 System.exit(0);
 }
 });
 }
}

The per-machine class, RMIPanel (shown in Example 22-8), is both a JComponent and a
Runnable (for use with a thread). This class is instantiated once for each machine being
monitored. Its run method loops, getting the list of registered objects from the given machine's
RMI registry, and checks the contents to see if the expected string is present, setting the state to

 622

one of several integer values defined in the parent class NetPanel (EMPTY, DUBIOUS, FINE,
etc.) based on what it finds. This state value is used to decide what color to paint this particular
RMIPanel in the setState() method of the parent class NetPanel, which we have no
reason to override.

Example 22-8. RMIPanel.java

/** Displays one machine's status, for RMI.
 */
public class RMIPanel extends NetPanel implements Runnable {

 public RMIPanel(String host, Properties p) {
 super(host, p);
 }

 /** Keep the screen updated forever, unless stop()ped. */
 public void run() {
 String thePort = props.getProperty("rmiwatch.port", "");
 String theURL = "rmi://" + hostName + ":" + thePort;
 while (!done) {
 try {
 String[] names = Naming.list(theURL);
 ta.setText("");
 for (int i=0; i<names.length; i++) {
 ta.append(i + ": " + names[i] + "\n");
 }
 // If we didn't get an exception, host is up.
 String expect = props.getProperty("rmiwatch.expect");
 String fullText = ta.getText();
 if (fullText.length() == 0) {
 ta.setText("(nothing registered!)");
 setState(EMPTY);
 } else if (expect != null &&
fullText.indexOf(expect)==-1) {
 setState(DUBIOUS);
 } else setState(FINE);
 } catch (java.rmi.ConnectIOException e) {
 setState(DOWN);
 ta.setText("Net error: " + e.detail.getClass());
 } catch (java.rmi.ConnectException e) {
 setState(NOREG);
 ta.setText("RMI error: " + e.getClass().getName() +
"\n" +
 " " + e.detail.getClass());
 // System.err.println(hostName + ":" + e);
 } catch (RemoteException e) {
 setState(NOREG);
 ta.setText("RMI error: " + e.getClass().getName() +
"\n" +
 " " + e.detail.getClass());
 } catch (MalformedURLException e) {
 setState(DOWN);
 ta.setText("Invalid host: " + e.toString());
 } finally {
 // sleep() in "finally" so common "down" states don't
bypass.

 623

 // Randomize time so we don't make net load bursty.
 try {
 Thread.sleep((int)(sleepTime * MSEC * 2 *
Math.random()));
 } catch (InterruptedException e) {
 /*CANTHAPPEN*/
 }
 }
 }
 }
}

The last part is NetPanel, shown in Example 22-9. Notice the state variable definitions, and
the setState() method that calls setBackground() to set the correct color given the state.

Example 22-9. NetPanel.java

/** Displays one machine's status.
 * Part of the NetWatch program: watch the network
 * on a bunch of machines (i.e., in a classroom or lab).
 * <P>Each non-abstract subclass just needs to implement run(),
 * which must, in a while (!done) loop:
 * Try to contact the host
 * call setState(); (argument below)
 * call ta.setText();
 * Thread.sleep(sleepTime * MSEC);
 *
 */
public abstract class NetPanel extends JPanel implements Runnable {
 /** The name of this host */
 protected String hostName;
 /** The text area to display a list of stuff */
 protected JTextArea ta;
 /** Properties, passed in to constructor */
 protected Properties props;
 /** Default sleep time, in seconds. */
 protected static int DEFAULT_SLEEP = 30;
 /** Sleep time, in seconds. */
 protected int sleepTime = DEFAULT_SLEEP;
 /** Conversion */
 protected int MSEC = 1000;
 /** The constant-width font, shared by all instances. */
 protected static Font cwFont;
 /** The states */
 /** The state for: has "expect"ed name registered. */
 protected final static int FINE = 1;
 /** The state for: does not have expected name registered. */
 protected final static int DUBIOUS = 2;
 /** The state for: Server has nothing registered. */
 protected final static int EMPTY = 3;
 /** The state for: host is up but not running RMI */
 protected final static int NOREG = 4;
 /** The state for: host unreachable, not responding, ECONN, etc. */
 protected final static int DOWN = 5;
 /** The color for when a machine is FINE */
 protected static final Color COLOR_FINE = Color.green;

 624

 /** The color for when a machine is DUBIOUS */
 protected static final Color COLOR_DUBIOUS = Color.yellow;
 /** The color for when a machine is EMPTY */
 protected static final Color COLOR_EMPTY = Color.white;
 /** The color for when a machine has NOREG */
 protected static final Color COLOR_NOREG = Color.red;
 /** The color for when a machine is NOREG */
 protected static final Color COLOR_DOWN = Color.black;

 /** State of the monitored host's RMI registry, up or down.
 * Initially set 0, which isn't one of the named states, to
 * force the background color to be set on the first transition.
 */
 protected int state = 0;

 public NetPanel(String host, Properties p) {
 hostName = host;
 props = p;
 String s = props.getProperty("rmiwatch.sleep");
 if (s != null)
 sleepTime = Integer.parseInt(s);
 // System.out.println("Sleep time now " + sleepTime);

 // Maybe get font name and size from props?
 if (cwFont == null)
 cwFont = new Font("lucidasansTypewriter", Font.PLAIN, 10);

 // Gooey gooey stuff.
 ta = new JTextArea(2, 26);
 ta.setEditable(false);
 ta.setFont(cwFont);
 add(BorderLayout.CENTER, ta);
 setBorder(BorderFactory.createTitledBorder(hostName));

 // Sparks. Ignition!
 new Thread(this).start();
 }

 boolean done = false;
 /** Stop this Thread */
 public void stop() {
 done = true;
 }

 /** True if the given host is believed to be up. */
 protected int getState() {
 return state;
 }

 /** Record the new state of the current machine.
 * If this machine has changed state, set its color
 * @param newState - one of the five valid states in the
introduction.
 */
 protected void setState(int newState) {
 if (state /*already*/ == newState)
 return; // nothing to do.

 625

 switch(newState) {
 case FINE: // Server has "expect"ed name registered.
 ta.setBackground(COLOR_FINE);
 ta.setForeground(Color.black);
 break;
 case DUBIOUS: // Server does not have expected name
registered.
 ta.setBackground(COLOR_DUBIOUS);
 ta.setForeground(Color.black);
 break;
 case EMPTY: // Server has nothing registered.
 ta.setBackground(COLOR_EMPTY);
 ta.setForeground(Color.black);
 break;
 case NOREG: // host is up but not running RMI
 ta.setBackground(COLOR_NOREG);
 ta.setForeground(Color.white);
 break;
 case DOWN: // host unreachable, not responding,
ECONN, etc.
 ta.setBackground(COLOR_DOWN);
 ta.setForeground(Color.white);
 break;
 default:
 throw new IllegalStateException("setState("+state+")
invalid");
 }
 state = newState;
 }
}

22.7.1 See Also

The term distributed computing covers a lot of terrain. Here I've shown only the basics of RMI.
For more on RMI, see the O'Reilly book Java Distributed Computing by Jim Farley. Jim's book
also offers some information on CORBA. It's now possible to use RMI to access CORBA objects,
or vice versa, using a new (late 2000) mechanism called RMI-IIOP. See
http://java.sun.com/products/rmi-iiop/.

The newest and potentially most important distributed mechanism for large-scale computing
projects is Enterprise JavaBeans, part of the Java 2 Enterprise Edition (J2EE). See the O'Reilly
book Enterprise JavaBeans, by Richard Monson-Haefel.

You can also think of servlets and JSP as a kind of distributed computing, used primarily as the
gateway into these other distributed object mechanisms. See Chapter 18 for details.

 626

Chapter 23. Packages and Packaging

23.1 Introduction

23.2 Creating a Package

23.3 Documenting Classes with Javadoc

23.4 Archiving with jar

23.5 Running an Applet from a JAR

23.6 Running an Applet with a JDK

23.7 Running a Program from a JAR

23.8 Preparing a Class as a JavaBean

23.9 Pickling Your Bean into a JAR

23.10 Packaging a Servlet into a WAR File

23.11 "Write Once, Install Anywhere"

23.12 Java Web Start

23.13 Signing Your JAR File

23.1 Introduction

One of the better aspects of the Java language is that it has defined a very clear packaging
mechanism for categorizing and managing the external API. Contrast this with a language like C,
where external symbols may be found in the C library itself or in any of dozens of other libraries,
with no clearly defined naming conventions.[1] APIs consist of one or more packages; packages
consist of classes; classes consist of methods and fields. Anybody can create a package, with
one important restriction: you or I cannot create a package whose name begins with the four
letters java. Packages named java. or javax. are reserved for use by Sun Microsystems'
Java developers. When Java was new, there were about a dozen packages in a structure that is
very much still with us; some of these are shown in Table 23-1.

[1] This is not strictly true. On Unix, at least, there is a distinction between normal include files and those in
the sys subdirectory, and many structures have names beginning with one or two letters and an underscore,
like pw_name, pw_passwd, pw_home, and so on in the password structure. But this is nowhere near as
consistent as Java's java.* naming conventions.

Table 23-1. Java packages basic structure
Name Function

 627

java.applet Applets for browser use
java.awt Graphical User Interface
java.lang Intrinsic classes (strings, etc.)
java.net Networking (sockets)
java.io Reading and writing
java.util Utilities (collections, date)

Many packages have since been added, but the initial structure has stood the test of time fairly
well. In this chapter I show you how to create and document your own packages, and then
discuss a number of issues related to deploying your package in various ways on various
platforms.

23.2 Creating a Package

23.2.1 Problem

You want to create your own package.

23.2.2 Solution

Put a package statement at the front of each file, and recompile with -d.

23.2.3 Discussion

The package statement must be the very first non-comment statement in your Java source file,
preceding even import statements, and must give the full name of the package. Package names
are expected to start with your domain name backward: for example, my Internet domain is
darwinsys.com, so most of my packages begin with com.darwinsys and a project name. The
utility classes used in this book are in the package com.darwinsys.util, and each source file
begins with:

package com.darwinsys.util;

Once you have package statements in place, be aware that the Java runtime and even the
compiler will expect the class files to be found in their rightful place, that is, in the subdirectory
corresponding to the full name somewhere in your CLASSPATH settings. For example, the class
file for com.darwinsys.util.FileIO must not be in the file FileIO.class in my class path, but
must be in com/darwinsys/util/FileIO.class relative to one of the directories or archives in my
CLASSPATH. Accordingly, it is customary to use the -d command-line argument when
compiling. This argument must be followed by a directory name (often . is used to signify the
current directory), to specify where to build the directory tree. For example, I often say:

javac -d . *.java

which creates the path (e.g., com/darwinsys/util/) relative to the current directory, and puts the
class files into that subdirectory. This makes life easy for subsequent compilations, and also for
creating archives, which I will do in Section 23.4.

23.3 Documenting Classes with Javadoc

 628

23.3.1 Problem

You have heard about this thing called " code reuse," and would like to promote it by allowing
other developers to use your classes.

23.3.2 Solution

Use Javadoc.

23.3.3 Discussion

Javadoc is one of the great inventions of the early Java years. Like so many good things, it was
not wholly invented by the Java folk; earlier projects such as Knuth's Literate Programming had
combined source code and documentation in a single source file. But the Java folk did a good job
on it and came along at the right time. Javadoc is to Java classes what manpages are to Unix or
Windows Help is to MS-Windows applications: it is a standard format that everybody expects to
find and knows how to use. Learn it. Use it. Write it. Live long and prosper (well, perhaps not). But
all that HTML documentation that you refer to when writing Java code, the complete reference for
the JDK -- did you think they hired dozens of tech writers to produce it? Nay, that's not the Java
way. Java's developers wrote the documentation comments as they went along, and when the
release was made, they ran Javadoc on all the zillions of public classes, and generated the
documentation bundle at the same time as the JDK. You can, should, and really must do the
same when you are preparing classes for other developers to use.

All you have to do to use Javadoc is to put special " doc comments" into your Java source files.
These begin with a slash and two stars (/**), and must appear immediately before the definition
of the class, method, or field that they document. Doc comments placed elsewhere are ignored.

There is a series of keywords, prefixed by the at sign (@), that can appear inside doc comments
in certain contexts. These are listed in Table 23-2.

Table 23-2. Javadoc keywords

Keyword Use
@author Author name(s)
@version Version identifier
@parameter Argument name and meaning (methods only)
@since JDK version in which introduced (primarily for Sun use)
@return Return value
@throws Exception class and conditions under which thrown
@deprecated Causes deprecation warning
@see Cross-reference

Example 23-1 is a somewhat contrived example that shows almost every usage of a javadoc
keyword. The output of running this through Javadoc is shown in a browser in Figure 23-1.

Example 23-1. JavadocDemo.java

import java.applet.*;
import java.awt.*;
import java.awt.event.*;

 629

/**
 * JavadocDemo - a simple applet to show JavaDoc comments.
 * <P>Note: this is just a commented version of HelloApplet.
 * @see java.applet.Applet
 * @see javax.swing.JApplet
 */
public class JavadocDemo extends Applet {

 /** init() is an Applet method called by the browser to
initialize.
 * Init normally sets up the GUI, and this version is no exception.
 * @return None.
 */
 public void init() {
 // We create and add a pushbutton here,
 // but it doesn't do anything yet.
 Button b;
 b = new Button("Hello");
 add(b); // connect Button into Applet
 }

 /** paint() is an AWT Component method, called when the
 * component needs to be painted. This one just draws colored
 * boxes in the Applet's window.
 *
 * @param g A java.awt.Graphics that we use for all our
 * drawing methods.
 */
 public void paint(Graphics g) {
 int w = getSize().width, h=getSize().height;
 g.setColor(Color.yellow);
 g.fillRect(0, 0, w/2, h);
 g.setColor(Color.green);
 g.fillRect(w/2, 0, w, h);
 g.setColor(Color.black);
 g.drawString("Welcome to Java", 50, 50);
 }

 /** Show makes a component visible; this method became deprecated
 * in the Great Renaming of JDK1.1.
 * @since 1.0
 * @deprecated Use setvisible(true) instead.
 */
 public void show() {
 setVisible(true);
 }

 /** An Applet must have a public no-argument constructor.
 * @throws java.lang.IllegalArgumentException on Sundays.
 */
 public JavadocDemo() {
 if (new java.util.Date().getDay() == 0) {
 throw new IllegalArgumentException("Never On A Sunday");
 }
 }
}

 630

The Javadoc tool works fine for one class, but really comes into its own when dealing with a
package or collection of packages. It generates thoroughly inter-linked and cross-linked
documentation, just like that which accompanies the standard JDK. There are several command-
line options; I normally use -author and -version to get it to include these items, and often -link to
tell it where to find the standard JDK to link to. Run javadoc -help for a complete list of options.
Figure 23-1 shows one view of the documentation that the previous class generates when run
as:

Figure 23-1. Javadoc in action

$ javadoc -author -version JavadocDemo.java

Be aware that one of the (many) generated files will have the same name as the class, with the
extension .html. If you write an applet and a sample HTML file to invoke it, the .html file will be
silently overwritten with the Javadoc output. For this reason, I recommend using a different
filename or the filename extension .htm for the HTML page that invokes the applet. Alternately,
use the -d directory option to tell it where to put the generated files if you don't want them in the
same directory.

23.3.4 See Also

The output that Javadoc generates is fine for most purposes. It is possible to write your own
Doclet class to make the Javadoc program into a class documentation verifier, a Java-to-MIF or
Java-to-RTF documentation generator, or whatever you like. Those are actual examples; see the
Javadoc tools documentation that comes with the JDK for documents and examples, or go to
http://java.sun.com/j2se/javadoc/. A tool for testing Java files to ensure that they have
adequate Javadoc comments can be downloaded from http://www.znerd.demon.nl/doclint/.
This tool is a Javadoc Doclet!

Javadoc is for programmers using your classes; for a GUI application, users will probably
appreciate standard online help. This is the role of the Java Help API, which is not covered in this

 631

book but is fully explained in the O'Reilly book Creating Effective JavaHelp, which every GUI
application developer should read.

23.4 Archiving with jar

23.4.1 Problem

You want to create a Java archive (JAR) file.

23.4.2 Solution

Use jar.

23.4.3 Discussion

The jar archiver is Java's standard tool for building archives. Archives serve the same purpose as
the program libraries that some other programming languages use. Java normally loads its
standard classes from archives, a fact you can verify by running a simple Hello World program
with the -verbose option:

java -verbose HelloWorld

To create an archive is a simple process. The jar tool takes several command-line arguments: the
most common are c for create, t for table of contents, and x for extract. The archive name is
specified with -f and a filename. The options are followed by the files and directories to be
archived. For example:

jar cvf /tmp/MyClasses.jar .

The dot at the end is important; it means "the current directory." This command creates an
archive of all files in the current directory and its subdirectories into the file /tmp/MyClasses.jar.

Some applications of JAR files require an extra file in the JAR called a manifest. This file lists the
contents of the JAR and their attributes. The attributes are in the form name: value, as used in
email headers, properties files (see Section 7.8), and elsewhere. Some attributes are required
by the application, while others are optional. For example, Section 23.7 discusses running a
main program directly from a JAR; this requires a Main-Program header. You can even invent
your own headers, such as:

MySillyAttribute: true
MySillynessLevel: high (5'11")

You store this in a file called, say, manifest.stub , and pass it to jar with the -m switch. jar includes
your attributes in the manifest file it creates:

jar -cv -m manifest.stub -f /tmp/com.darwinsys.util.jar .

The jar program and related tools add additional information to the manifest, including a listing of
all the other files included in the archive.

 632

23.5 Running an Applet from a JAR

23.5.1 Problem

You want to optimize downloading time for an applet by putting all the class files into one JAR file.

23.5.2 Solution

jar the applet and supporting files. Deploy the JAR file in place of the class file on the web server.
Use <APPLET CODE="MyClass" ARCHIVE="MyAppletJar.jar" ...>.

23.5.3 Discussion

Once you've deployed the JAR file on the web server in place of the class file, you only need to
refer to it in the APPLET tag in the HTML. The syntax for doing this is to use an ARCHIVE="name
of jar file" attribute on the APPLET tag.

23.5.4 See Also

You can also store other resources such as GIF images for use by the applet. You then need to
use getResource() instead of trying to open the file directly; see Step 5 in Section 23.12.

23.6 Running an Applet with a JDK

23.6.1 Problem

You want to use an applet on an intranet or the Internet, but it needs a modern JDK to run.

23.6.2 Solution

Use the Java Plug-in.

23.6.3 Discussion

Sun's Java Plug-in allows your applet to run with a modern JDK even if the user has an ancient
browser (Netscape 2, 3, or 4), or an anti-standard-Java browser (Microsoft Explorer might come
to mind). For Netscape, the plug-in runs as a Netscape Plug-in. For Microsoft, the plugin runs as
an ActiveX control. The Java Plug-in was previously a separate download, but is included in the
Java Runtime Environment (JRE) in all modern JDK versions.

The HTML code needed to make a single applet runnable in either of those two modes rather
boggles the mind. However, there is a convenient tool (which Sun provides for free) that converts
a plain applet tag into a hairy mess of HTML that is "bilingual": both of the major browsers will
interpret it correctly and do the right thing. Note that since browser plug-ins are platform-
dependent, the Plug-in is platform-dependent. Sun provides versions for Solaris and MS-
Windows; other vendors provide it ported to various platforms. Learn more at Java's Plug-in
page, http://java.sun.com/products/plugin/.

 633

To try it out, I started with a simple JApplet subclass, the HelloApplet program from Section
25.9. Since this is a JApplet, it requires Swing support, which is not available in older Netscape
versions or newer MSIE versions. Here are some screenshots, and the "before and after"
versions of a simple HTML page with an applet tag run through the converter. Example 23-2
shows a simple applet HTML page.

Example 23-2. HelloApplet.html

<html>
<title>Hello Applet</title>
<body bgcolor="white">
<h1>Hello Applet</h1>
<hr>
<applet code=HelloApplet width=300 height=200>
 <param name="buttonlabel" value="Toggle Drawing">
</applet>
<hr>
</html>

When I run this under Netscape, it dies because Netscape 4 doesn't fully support Swing. So I
need to convert it to use the Java Plugin. Editing the HTML by hand is possible (there is a spec
on the Java web site, http://java.sun.com), but messy. I decide to use the HTMLConverter
instead. It pops up a simple dialog window (shown at the top of Figure 23-2), in which I browse
to the directory containing the HTML page. Note that the program will convert all the HTML files in
a directory, so approach with caution if you have a lot of files.

When I click on the Convert button, it chugs for a while, and then pops up the window shown at
the bottom of Figure 23-2 to show what it did.

Figure 23-2. HTML converter

 634

By the time the HTMLConverter is finished with it, the once-simple HTML file is simple no more.
See Example 23-3 for the finished version.

Example 23-3. HTML converter output

<html>
<title>Hello Applet</title>
<body bgcolor="white">
<h1>Hello Applet</h1>
<hr>
<!--"CONVERTED_APPLET"-->
<!-- CONVERTER VERSION 1.3 -->
<OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
WIDTH = 300 HEIGHT = 200
codebase="http://java.sun.com/products/plugin/1.3/jinstall-
13-win32.cab#Version=1,3,0,0">
<PARAM NAME = CODE VALUE = HelloApplet >

<PARAM NAME="type" VALUE="application/x-java-applet;version=1.3">
<PARAM NAME="scriptable" VALUE="false">
<PARAM NAME = "buttonlabel" VALUE ="Toggle Drawing">
<COMMENT>

 635

<EMBED type="application/x-java-applet;version=1.3" CODE = HelloApplet
WIDTH = 300
HEIGHT = 200 buttonlabel = "Toggle Drawing" scriptable=false
pluginspage="http://
java.sun.com/products/plugin/1.3/plugin-
install.html"><NOEMBED></COMMENT>

</NOEMBED></EMBED>
</OBJECT>

<!--
<APPLET CODE = HelloApplet WIDTH = 300 HEIGHT = 200>
<PARAM NAME = "buttonlabel" VALUE ="Toggle Drawing">

</APPLET>
-->
<!--"END_CONVERTED_APPLET"-->

<hr>
</html>

Sun's documentation makes the amusing claim that "this may look complicated, but it's not
really." Your mileage may vary; mine did. The key point is that, since I used the default template,
it built a version of the file that can be used with either MSIE (the OBJECT version) or Netscape
(the EMBED version); both are cleverly interwoven to appear as ignorable comments to the other.
Figure 23-3 shows this page running under Netscape, and Figure 23-4 shows it under MSIE.

Figure 23-3. Applet working in Netscape using Java Plug-in

Figure 23-4. Applet working in Microsoft Internet Explorer using Java Plug-in

 636

23.7 Running a Program from a JAR

23.7.1 Problem

You want to distribute a single large file containing all the classes of your application, and run the
main program from within the JAR.

23.7.2 Solution

Create a JAR file with a Main-Class: line in the manifest; run the program with the java -jar
option.

23.7.3 Discussion

The java command has a -jar option that tells it to run the main program found within a JAR file.
In this case, it will also find classes it needs to load from within the same JAR file. How does it
know which class to run? You must tell it. Create a one-line entry like this:

Main-class: HelloWorld

in a file called, say, manifest.stub , and assuming that you want to run the program HelloWorld.
Then give the following commands:

C:> jikes HelloWorld.java
C:> jar cvmf manifest.stub hello.jar HelloWorld.class
C:> java -jar hello.jar
Hello, World of Java
C:>

You can now copy the JAR file anywhere and run it the same way. You do not need to add it to
your CLASSPATH or list the name of the main class.

23.8 Preparing a Class as a JavaBean

 637

23.8.1 Problem

You have a class that you would like to install as a JavaBean.

23.8.2 Solution

Make sure the class meets the JavaBeans requirements; create a JAR file containing the class, a
manifest, and any ancillary entries.

23.8.3 Discussion

There are three kinds of Java components that are called JavaBeans:

• Visual components for use in GUI builders, as discussed in this chapter.
• Components that are used in JavaServer Pages (JSP). Examples of these are given in

Chapter 18.
• Enterprise JavaBeans (EJB) has features for building enterprise-scale applications.

Creating and using EJB is more involved than regular JavaBeans and would take us very
far afield, so EJB is not covered in this book. When you need to learn about EJB
functionality, turn to the O'Reilly book Enterprise JavaBeans.

What all three kinds of beans have in common are certain naming paradigms. All public
properties should be accessible by get/set accessory methods. For a given property Prop of type
Type, the following two methods should exist (note the capitalization):

public Type getProp();
public void setProp(Type)

For example, the various AWT and Swing components that have textual labels all have the
following pair of methods:

public String getText();
public void setText(String newText);

You should use this set/get design pattern (set/get methods) for methods that control a bean.
Indeed, this is useful even in non-bean classes for regularity. The "bean containers" -- the Bean
Builders, the JSP mechanism, and the EJB mechanism -- all use Java introspection (see
Chapter 25) to find the set/get method pairs, and some use these to construct properties editors
for your bean. Bean-aware IDEs, for example, provide editors for all standard types (colors, fonts,
labels, etc.). You can supplement this with a BeanInfo class to provide or override information.

The bare minimum a class requires to be usable as a JavaBean in a GUI Builder is the following:

• The class must implement java.io.Serializable.
• The class must have a no-argument constructor.
• The class should use the set/get paradigm.
• The class file should be packaged into a JAR file with the jar archiver program (see

Section 23.9).

Here is a sample bean that may be a useful addition to your Java GUI toolbox, the LabelText
widget. It combines a label and a one-line text field into a single unit, making it easier to compose

 638

GUI applications. There is a test program in the source directory that sets up three LabelText
widgets, and is shown in Figure 23-5.

Figure 23-5. LabelText bean

The code for LabelText is shown in Example 23-4. Notice that it is serializable and uses the
set/get paradigm for most of its public methods. Most of the public set/get methods simply
delegate to the corresponding methods in the label or the text field. There isn't really a lot to this
bean, but it's a good example of aggregation, as well as being a good example of a bean.

Example 23-4. LabelText.java

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/** A label and text combination, inspired by
 * the LabelText control in Guy Eddon's ActiveX Components book
 * (2nd Edition, p. 203). But done more, simply.
 *
 */
public class LabelText extends JPanel implements java.io.Serializable {
 /** The label component */
 protected JLabel theLabel;
 /** The label component */
 protected JTextField theTextField;

 /** Construct the object with no initial values.
 * To be usable as a JavaBean there MUST be a no-argument
constructor.
 */
 public LabelText() {
 this("(LabelText)", 12);
 }

 /** Construct the object with the label and a default textfield
size */
 public LabelText(String label) {
 this(label, 12);
 }

 /** Construct the object with given label and textfield size */
 public LabelText(String label, int numChars) {
 super();
 setLayout(new BoxLayout(this, BoxLayout.X_AXIS));
 theLabel = new JLabel(label);
 add(theLabel);
 theTextField = new JTextField(numChars);
 add(theTextField);
 }

 639

 /** Get the label's horizontal alignment */
 public int getLabelAlignment() {
 return theLabel.getHorizontalAlignment();
 }

 /** Set the label's horizontal alignment */
 public void setLabelAlignment(int align) {
 switch (align) {
 case JLabel.LEFT:
 case JLabel.CENTER:
 case JLabel.RIGHT:
 theLabel.setHorizontalAlignment(align);
 break;
 default:
 throw new IllegalArgumentException(
 "setLabelAlignment argument must be one of JLabel
aligners");
 }
 }

 /** Get the text displayed in the text field */
 public String getText() {
 return theTextField.getText();
 }

 /** Set the text displayed in the text field */
 public void setText(String text) {
 theTextField.setText(text);
 }

 /** Get the text displayed in the label */
 public String getLabel() {
 return theLabel.getText();
 }

 /** Set the text displayed in the label */
 public void setLabel(String text) {
 theLabel.setText(text);
 }

 /** Set the font used in both subcomponents. */
 public void setFont(Font f) {
 theLabel.setFont(f);
 theTextField.setFont(f);
 }

 /** Adds the ActionListener to receive action events from the
textfield */
 public void addActionListener(ActionListener l) {
 theTextField.addActionListener(l);
 }

 /** Remove an ActionListener from the textfield. */
 public void removeActionListener(ActionListener l) {
 theTextField.removeActionListener(l);
 }

 640

}

Once it's compiled, it's ready to be pickled into a JAR. JavaBeans people really talk like that!

23.9 Pickling Your Bean into a JAR

23.9.1 Problem

You need to package your bean for deployment.

23.9.2 Solution

"Pickle your bean into a JAR," that is, create a JAR archive containing it and a manifest file.

23.9.3 Discussion

In addition to the compiled file, you need a manifest prototype, which needs only the following
entries:

Name: LabelText.class
Java-Bean: true

If these lines are stored in a file called LabelText.stub, we can prepare the whole mess for use as
a bean by running the jar command (see Section 23.4):

jar cvfm labeltext.jar LabelText.stub LabelText.class

Now we're ready to install labeltext.jar as a JavaBean. However, the curious may wish to
examine the JAR file in detail. The x option to jar asks it to extract files:

$ jar xvf *.jar
 0 Sat Nov 18 20:03:40 EST 2000 META-INF/
 106 Sat Nov 18 20:03:42 EST 2000 META-INF/MANIFEST.MF
 1829 Wed Jan 17 20:03:30 EST 2001 LabelText.class

The MANIFEST.MF file is based upon the manifest file (LabelText.stub); let's examine it:

$ more META-INF/MANIFEST.MF
Manifest-Version: 1.0
Name: LabelText.class
Java-Bean: true
Created-By: 1.2 (Sun Microsystems Inc.)

Not much exciting has happened besides the addition of a few lines. But the class is now ready
for use as a JavaBean. For a GUI builder, either copy it into the beans directory or use the bean
installation wizard as appropriate.

23.9.4 See Also

 641

There are many good books available on JavaBeans technology. O'Reilly's entry is Developing
JavaBeans, by Robert Englander. You can also find information on JavaBeans at Sun's web site,
http://java.sun.com/products/javabeans/.

23.10 Packaging a Servlet into a WAR File

23.10.1 Problem

You have a servlet and other web resources, and want to package them into a single file for
deploying to the server.

23.10.2 Solution

Use jar to make a web archive (WAR) file.

23.10.3 Discussion

Servlets are server-side components for use in web servers, and are discussed in Chapter 18.
They can be packaged for easy installation into a web server. A web application in the Servlet
API specification is a collection of HTML and/or JSP pages, servlets, and other resources. A
typical directory structure might include the following:

index.html, foo.jsp

Web pages

WEB-INF

Server directory

WEB-INF/web.xml

Descriptor

WEB-INF/classes

Directory for servlets and any classes used by them or by JSP

WEB-INF/lib

Directory for any JAR files of classes needed by classes in the WEB-INF/classes
directory

Once you have prepared the files in this way, you just package them up with jar :

jar cvf MyWebApp.war .

You then deploy the resulting WAR file into your web server. For details on this, consult the web
server documentation.

 642

23.11 "Write Once, Install Anywhere"

23.11.1 Problem

You want your application program to be installable by users who have not yet earned a Ph.D. in
software installation, and on a variety of platforms.

23.11.2 Solution

Use an installer.

23.11.3 Discussion

The process of installing software is non-trivial. Unix command-line geeks will be quite happy to
extract a gzipped tar file and set their PATH manually; but if you want your software to be used by
the larger masses, you need something simpler. As in, point and click. There are several tools
that try to automate this process. The better ones will create startup icons on MacOS, MS-
Windows, and even some of the UNIX desktops (CDE, KDE, GNOME).

I've had good results with ZeroG Software's commercial InstallAnywhere. It ensures that there is
a JVM installed and has both web-based and application installation modes: that is, you can
install the application from a web page or you can run the installer explicitly. See
http://www.zerog.com.

Sitraka (formerly KL Group) DeployDirector is a newer entry that promises to automate
deployment of client-side applications on hundreds or thousands of desktops. It works with Java
Web Start (see Section 23.12). I haven't tried it. See http://www.sitraka.com/deploy/.

InstallShield has long been the leader in the MS-Windows installation world, but they have had
more competition in the Java world. They can be reached at http://www.installshield.com.

Section 23.12 discusses Java Web Start, Sun's new web-based application installer.

23.12 Java Web Start

23.12.1 Problem

You have an application (not an applet) and need to distribute it electronically.

23.12.2 Solution

Sun's Java Web Start combines browser-based ease of use with applet-like " sandbox" security
(which can be overridden on a per-application basis) and "instant update" downloading, but also
lets you run a full-blown application on the user's desktop.

23.12.3 Discussion

Java Web Start (JWS[2]) is a new technology for providing application downloads over the Web.
It is distinct from applets (see Chapter 17), which require special methods and run in a browser
framework. JWS lets you run ordinary GUI-based applications. It is aimed at people who want the

 643

convenience of browser access combined with full application capabilities. The user experience is
as follows. You see a link to an application you'd like to launch. If you've previously installed JWS
(explained toward the end of this recipe), you can just click on its Launch link and be running the
application in minutes. Figure 23-6 shows the startup screen that appears after clicking a
Launch link for my JabaDex application.

[2] JWS used to stand for Java Web Server, which was discontinued, so the acronym has been recycled.
Things recycle quickly on the Web.

Figure 23-6. Starting JabaDex as a JWS application

After the application is downloaded successfully, it will start running. This is shown in slightly
compressed form in Figure 23-7.

Figure 23-7. JabaDex up and running

 644

Figure 23-8. JWS application control screen

For your convenience, JWS caches the JAR files and other pieces needed to run the application.
You can later restart the application (even when not connected to the Web) using the JWS
application launcher. In Figure 23-8 I have JabaDex in my JWS launcher. JWS also allows you
to create desktop shortcuts and start menu entries on systems that support these.

The basic steps in setting up your application for JWS are shown in the following sidebar.

Ian's Basic Steps: Java Web Start

1. Package your application in one or more JAR files.

 645

2. Optionally, provide icons to represent your application in JWS
format.

3. Describe your application in a JNLP (Java Net Launch Protocol)
description file.

4. If necessary, set your web server's MIME types list to return JNLP
files as type application/x-java-jnlp-file.

5. If necessary, modify your application to use ClassLoader's
getResource() method, instead of opening files.

6. If necessary, sign the application's JAR files.
7. Make links to your application's JNLP file, and a download link for

JWS itself.
8. Enjoy using your application locally with easy web downloading!

Let's go over these instructions in detail. The first step is to package your application in one or
more JAR files. The jar program was described earlier in this chapter. The main JAR file should
include the application classes and any resources such as properties files, images, and the like.

You should also include on the web site any JAR files containing extra APIs, such as JavaMail,
com.darwinsys.util, or any other APIs. You can even include native code files, but these are
platform-dependent.

Optionally, you can provide icons to represent your application in JWS format. The application
icons should be in GIF or JPEG and should be 64 x 64 bits.

The next step is to describe your application in a JNLP (Java Net Launch Protocol) description
file. The JNLP file is an XML file. The official specification is at
http://java.sun.com/products/javawebstart/download-spec.html and a less formal
description is in the Developer's Guide at the web site
http://java.sun.com/products/javawebstart/docs/developersguide.html. The file I used
for enabling JabaDex to run with JWS is a subset of the allowable XML elements, but should be
moderately self-explanatory. See Example 23-5.

Example 23-5. JabaDex.jnlp

<?xml version="1.0" encoding="utf-8"?>
<!-- JNLP File for JabaDex Application -->
<jnlp spec="1.0+"
 codebase="http://www.darwinsys.com/"
 href="/jabadex/">
 <information>
 <title>JabaDex Personal Information Manager Application</title>
 <vendor>Darwin Open Systems</vendor>
 <homepage href="/"/>
 <description>JabaDex Personal Information Manager
Application</description>
 <description kind="short">A simple personal information
manager.</description>
 <icon href="images/jabadex.jpg"/>
 <offline-allowed/>
 </information>

 646

 <security>
 <all-permissions/>
 </security>
 <resources>
 <j2se version="1.3"/>
 <j2se version="1.2"/>
 <jar href="jabadex.jar"/>
 <jar href="com-darwinsys-util.jar"/>
 </resources>
 <application-desc main-class="JDMain"/>
 </jnlp>

If necessary, set your web server's MIME types list to return JNLP files as of type
application/x-java-jnlp-file. How you do this depends entirely on what web server you
are running; it should be just a matter of adding an entry for the filename extension .jnlp to map to
this type.

Also if necessary, modify your application to get its ClassLoader and use one of its
getResource() methods, instead of opening files. Any images or other resources that you
need should be opened this way. For example, to explicitly load a properties file, you could use
getClassLoader() and getResource(), as shown in Example 23-6.

Example 23-6. GetResourceDemo (partial listing)

// Find the ClassLoader that loaded us.
// Regard it as the One True Classloader for this app.
ClassLoader loader = this.getClass().getClassLoader();

// Use the loader's getResource() method to open the file.
InputStream is = loader.getResourceAsStream("widgets.properties");
if (is == null) {
 System.err.println("Can't load properties file");
 return;
}

// Create a Properties object
Properties p = new Properties();

// Load the properties file into the Properties object
try {
 p.load(is);
} catch (IOException ex) {
 System.err.println("Load failed: " + ex);
 return;
}

Notice that getResource() returns a java.net.URL object here, while
getResourceAsStream() returns an InputStream.

If you want the application to have "non-sandbox" (i.e., full application) permissions, you must
sign the application's JAR files. The procedure to sign a JAR file digitally is described in Section
23.13. If you request full permissions and don't sign all your application JAR files, the sad note
shown in Figure 23-9 will display.

 647

Figure 23-9. Unsigned application failure

If you self-sign (i.e., use a test certificate), the user will see a warning dialog like the one in
Figure 23-10.

Figure 23-10. Unverifiable certificate warning

Finally, make links to your application's JNLP file in the web page, and optionally a download link
for JWS itself. JWS is a compiled program that must be loaded before the user can download any
JWS-enabled applications; it runs as a "helper application" for the browsers. As such, there is a
binary program that you can download from the JWS home page. In theory, you could write your
own implementation of this helper from the JNLP Specification, if you needed to.

Actually, if the user has JWS installed, you don't need the download link; if they don't, the Launch
link will not function correctly. The Developer's Guide shows how you can use client-side HTML
scripting (JavaScript or VBScript) to make only one of these links appear. The Launch link must
refer to the JNLP file:

If you have JWS installed, you can lauchh
JabaDex<
If not, you should
read about Java Web Start.

 648

You should now be ready to use your application in a downloadable fashion!

23.12.4 See Also

The JWS home page at http://java.sun.com/products/javawebstart/.

23.13 Signing Your JAR File

23.13.1 Problem

You want to digitally sign your JAR file.

23.13.2 Solution

Get or forge a digital certificate, and use the jarsigner program.

23.13.3 Discussion

A JAR file can be digitally signed to verify the identity of its creator. This is very similar to digital
signing of web sites: consumers are trained not to enter sensitive information such as credit card
numbers into a web form unless the "padlock" icon shows that it is digitally signed. Signing JAR
files uses the security API in the core Java 2 platform. You can sign JAR files for use with Java
applets (see Chapter 17) or JWS (Section 23.12). In either case, the jarsigner tool is used.
This program is part of the Java 2 standard edition.

You can purchase a certificate from one of the commercial signing agencies when you are ready
to go live. Meanwhile, for testing, you can " self-sign" a certificate. Here are the steps needed to
sign a JAR file with a test certificate:

1. Create a new key in a new "keystore" as follows:

keytool -genkey -keystore myKeystore -alias myself

The alias "myself" is arbitrary; its intent is to remind you that it is a self-signed key so you
don't put it into production by accident.

2. The program will prompt you in the terminal window for information about the new key. It
will ask for a password for protecting the keystore. Then it will ask for your name,
department, organization, city, state, country, and so on. This information will go into the
new keystore file on disk.

3. Create a self-signed test certificate:

keytool -selfcert -alias myself -keystore myKeystore

You will have to give the keystore password, and then keytool will generate the
certificate.

4. You may want to verify that the steps up to here worked correctly. You can list the
contents of the keystore:

keytool -list -keystore myKeystore

 649

The output should look something like the following:

Keystore type: jks
Keystore provider: SUN
Your keystore contains 1 entry:

myself, Mon Dec 18 11:05:27 EST 2000, keyEntry,
Certificate fingerprint (MD5):
56:9E:31:81:42:07:BF:FF:42:01:CB:42:51:42:96:B6

5. You can now sign the JAR file with your test certificate:

jarsigner -keystore myKeystore test.jar myself

The jarsigner tool will update the META-INF directory of your JAR file to contain certificate
information and digital signatures for each entry in the archive. This can take a while, depending
on the speed of your CPU, the number of entries in the archive, and so on. The end result is a
signed JAR file that will be acceptable to applet-enabled browsers, Java Web Start, and any other
mechanisms that require a signed JAR file.

23.13.4 See Also

For more information on signing and permissions, see the O'Reilly book Java Security. For more
information on the other JDK tools mentioned here, see the documentation that accompanies the
release of the JDK you are using.

 650

Chapter 24. Threaded Java

24.1 Introduction

24.2 Running Code in a Different Thread

24.3 Displaying a Moving Image with Animation

24.4 Stopping a Thread

24.5 Rendezvous and Timeouts

24.6 Thread Communication: Synchronized Code

24.7 Thread Communication: wait() and notifyAll()

24.8 Background Saving in an Editor

24.9 Threaded Network Server

24.1 Introduction

We live in a world of multiple activities. A person may be talking on the phone while doodling or
reading a memo. A FAX machine may scan one FAX while receiving another and printing a third.
We expect the GUI programs we use to be able to respond to a menu while updating the screen.
But ordinary computer programs can do only one thing at a time. The conventional computer
programming model -- that of writing one statement after another, punctuated by repetitive loops
and binary decision-making -- is sequential at heart.

Sequential processing is straightforward, but not as efficient as it could be. To enhance
performance, Java offers threading, the capability to handle multiple flows of control within a
single application or process. Java provides thread support and, in fact, requires threads: the
Java runtime itself is inherently multithreaded. For example, Windows system action handling and
Java's garbage collection -- that miracle that lets us avoid having to free everything we allocate,
as we must do when working in languages at or below C level -- run in separate threads.

While most modern operating systems -- POSIX P1003, Sun Solaris, the Distributed Computing
Environment (OSF/DCE) for Unix, Windows NT/95, and MacOS -- provide threads, Java is the
first mainstream programming language to have intrinsic support for threaded operations built
right into the language. The semantics of java.lang.Object, of which all objects are
instances, includes the notion of " monitor locking" of objects, and some methods (notify,
notifyall, wait) that are only meaningful in the context of a multithreaded application. Java
also has language keywords such as synchronized to control the behavior of threaded
applications.

So what, precisely, do we mean by threaded Java? Threads can be defined in several ways, but
the easiest to understand is this: threads are multiple flows of control within a single program or
process. Just as multitasking allows a single operating system to give the appearance of running
more than one program at the same time on a single-processor computer, so multithreading can

 651

allow a single program or process to give the appearance of working on more than one thing at
the same time. With multithreading, applications can handle more than one activity at the same
time, leading to more interactive graphics and more responsive GUI applications (the program
can draw in a window while responding to a menu, with both activities occurring more or less
independently), more reliable network servers (if one client does something wrong, the server
continues communicating with the others), and so on.

Note that I did not say "multiprocessing" in the previous paragraph. The term multi-tasking is
sometimes erroneously called multiprocessing, but that term in fact refers to the less-common
case of two or more CPUs running under a single operating system. Actually, multiprocessing is
nothing new: IBM mainframes did it in the 1970s, Sun SPARCstations did it in the late 1980s, and
Intel PCs did it in the 1990s. True multiprocessing[1] allows you to have more than one process
running concurrently on more than one CPU. Java's support for threading will support
multiprocessing under certain circumstances, if the operating system and the JVM support it as
well. Consult your system documentation for details.

[1] By which I mean SMP, symmetric multiprocessing , in which either the operating system or the
application programs can be run on any of the available CPUs. At some point, the OS may be running on
three of the four processors on a given system, while at some later time all four processors may be running
user processes. On systems such as Solaris 2.x, it is even possible for one (threaded) process to be running
on several CPUs concurrently. The implications for server responsiveness are exciting, and this is part of
Sun's commercial success in the Internet server marketplace.

24.2 Running Code in a Different Thread

24.2.1 Problem

You need to write a threaded application.

24.2.2 Solution

Write code that implements Runnable; instantiate and start it.

24.2.3 Discussion

There are two ways to implement threading, and both require you to implement the Runnable
interface. Runnable has only one method, whose signature is:

public void run();

You must provide an implementation of the run() method. When this method returns, the thread
is used up and can never be restarted or reused. Note that there is nothing special in the
compiled class file about this method; it's an ordinary method and you could call it yourself. But
then what? There wouldn't be the special magic that launches it as an independent flow of
control, so it wouldn't run concurrently with your main program or flow of control. For this, you
need to invoke the magic of thread creation.

One way to do this is simply to subclass from java.lang.Thread (which also implements this
interface; you do not need to declare redundantly that you implement it). This approach is shown
in Example 24-1. Class ThreadsDemo simply prints a series of Xs and Ys; the order in which
they appear is indeterminate, since there is nothing in either Java or the program to determine the
order of things.

 652

Example 24-1. ThreadsDemo1.java

/**
 * Threaded demo application, as a Threads subclass.
 */
public class ThreadsDemo1 extends Thread {
 String mesg;
 int count;

 /** Run does the work: print a message, "count" number of times */
 public void run() {
 while (count-- > 0) {
 println(mesg);
 try {
 Thread.sleep(100); // 100 msec
 } catch (InterruptedException e) {
 return;
 }
 }
 println(mesg + " all done.");
 }

 void println(String s) {
 System.out.println(s);
 }

 /**
 * Construct a ThreadsDemo1 object.
 * @param String m Message to display
 * @param int n How many times to display it
 */
 public ThreadsDemo1(String m, int n) {
 count = n;
 mesg = m;
 setName(m + " runner Thread");
 }

 /**
 * Main program, test driver for ThreadsDemo1 class.
 */
 public static void main(String[] argv) {
 // could say: new ThreadsDemo1("Hello from X", 10).run();
 // could say: new ThreadsDemo1("Hello from Y", 15).run();
 // But then it wouldn't be multi-threaded!
 new ThreadsDemo1("Hello from X", 10).start();
 new ThreadsDemo1("Hello from Y", 15).start();
 }
}

What if you can't subclass Thread because you're already subclassing another class, such as
JApplet? There are two other ways to do it: have a class implement the Runnable interface, or
use an inner class to provide the Runnable implementation. Example 24-2 is code that
implements Runnable.

Example 24-2. ThreadsDemo2.java

 653

public class ThreadsDemo2 implements Runnable {
 String mesg;
 Thread t;
 int count;

 /**
 * Construct a ThreadDemo object
 *
 * @param String m Message to display
 * @param int n How many times to display it
 */
 public ThreadsDemo2(String m, int n) {
 count = n;
 mesg = m;
 t = new Thread(this);
 t.setName(m + " printer thread");
 }

The run method itself does not change, so I've omitted it from this listing. To complete the
discussion, Example 24-3 is a version of this class that uses an inner class to provide the run
method.

Example 24-3. ThreadsDemo3.java

public class ThreadsDemo3 {
 String mesg;
 Thread t;
 int count;

 /**
 * Main program, test driver for ThreadsDemo3 class.
 */
 public static void main(String argv[]) {
 new ThreadsDemo3("Hello from X", 10);
 new ThreadsDemo3("Hello from Y", 15);
 }

 /**
 * Construct a ThreadDemo object
 *
 * @param String m Message to display
 * @param int n How many times to display it
 */
 public ThreadsDemo3(String m, int n) {
 count = n;
 mesg = m;
 t = new Thread(new Runnable() {
 public void run() {
 while (count-- > 0) {
 System.out.println(mesg);
 try {
 Thread.sleep(100); // 100 msec
 } catch (InterruptedException e) {
 return;
 }
 }

 654

 System.out.println(mesg + " thread all done.");
 }
 });
 t.start();
 }

Here, the run method is part of the anonymous inner class declared in the statement beginning t
= new Thread(...). This runs with no interaction with other classes, so it's a good use of an
inner class.

To summarize, there are three ways of having a Runnable:

• Extend Thread as ThreadsDemo1 did. This works best for standalone applications that
don't need to extend another class.

• Implement the Runnable interface. This works for applets that extend JApplet and
cannot extend Thread, due to single inheritance.

• Construct a Thread passing an inner class that is a Runnable. This is best for tiny run
methods with little outside interaction.

24.2.3.1 Thread life cycle methods

There are other methods that I should mention briefly, starting with the Thread constructors:
Thread(), Thread("Thread Name"), Thread(Runnable), etc. The no-argument and
name-argument constructors are used only when subclassing. But what's in a name? Well, by
default, a thread's name is composed of the class name and a number such as a sequence
number or the object's hashcode; on JDK 1.3 it uses sequence numbers, such as Thread-0,
Thread-1, and so on. These are not very interesting when you need to look at them in a
debugger, so assigning names like "Clock Ticker Thread" or "Background Save Thread" will
make your life easier when (not if) you wind up having to debug your threaded application.
Because of this, there are also getName()/setName(String) methods, which return or
change the thread's name, respectively.

We've seen already that the start() method begins the process of assigning CPU time to a
thread, resulting in its run() method being called. The corresponding stop() method is
deprecated; see Section 24.4, where I also discuss interrupt(), which interrupts whatever
the thread is doing. The method boolean isAlive() returns true if the thread has neither
finished nor been terminated by a call to its stop() method. Also deprecated are
suspend()/resume() , which pause and continue a thread; they are prone to corruption and
deadlocking, so they should not be used. If you've created multiple threads, you can join() a
thread to wait for it to finish; see Section 24.5.

The methods int getPriority()/void setPriority(int) show and set the priority of a
thread; higher-priority threads get first chance at the CPU. Finally, wait()/notify(
)/notifyAll() allow you to implement classical semaphore handling, for such paradigms as
producer/consumer relationships. There are a few other methods: see the Javadoc page for the
Thread class.

24.3 Displaying a Moving Image with Animation

24.3.1 Problem

 655

You need to update a graphical display while other parts of the program are running.

24.3.2 Solution

Use a background thread to drive the animation.

24.3.3 Discussion

One common use of threads is an animator, a class that displays a moving image. This program,
Animator, does just that. To simplify, it uses a small drawn rectangle instead of a graphical
image (see Section 12.7). This version is an applet, so we see it here in the AppletViewer
(Figure 24-1).

Figure 24-1. Animator

Chapter 24 is the code for the Animator program.

Example 24-4. Animator.java (applet)

// graphics/Sprite.java
import java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;

/** A Sprite is one Image that moves around the screen on its own */
class Sprite extends Component implements Runnable {
 protected static int spriteNumber = 0;
 protected Thread t;
 protected int x, y;
 protected Bounce parent;
 protected Image img;
 protected boolean done = false;

 /** Construct a Sprite with a Bounce parent: construct
 * and start a Thread to drive this Sprite.
 */
 Sprite(Bounce parent, Image img) {

 656

 super();
 this.parent = parent;
 this.img = img;
 setSize(img.getWidth(this), img.getHeight(this));
 t = new Thread(this);
 t.setName("Sprite #" + ++spriteNumber);
 t.start();
 }

 /** Stop this Sprite's thread. */
 void stop() {
 System.out.println("Stopping " + t.getName());
 done = true;
 }

 /**
 * Run one Sprite around the screen.
 * This version is very stupid, and just moves them around
 * at some 45-degree angle.
 */
 public void run() {
 int width = parent.getSize().width;
 int height = parent.getSize().height;
 // Random location
 x = (int)(Math.random() * width);
 y = (int)(Math.random() * height);
 // Flip coin for x & y directions
 int xincr = Math.random()>0.5?1:-1;
 int yincr = Math.random()>0.5?1:-1;
 while (!done) {
 width = parent.getSize().width;
 height = parent.getSize().height;
 if ((x+=xincr) >= width)
 x=0;
 if ((y+=yincr) >= height)
 y=0;
 if (x<0)
 x = width;
 if (y<0)
 y = height;
 // System.out.println("Move " + t.getName() + " from " +
 // getLocation() + " to " + x + "," + y);
 setLocation(x, y);
 repaint();
 try {
 Thread.sleep(250);
 } catch (InterruptedException e) {
 return;
 }
 }
 }

 /** paint -- just draw our image at its current location */
 public void paint(Graphics g) {
 g.drawImage(img, 0, 0, this);
 }
}

 657

// graphics/Bounce.java
/** This is the main class; create and start Sprites. */
public class Bounce extends Applet implements ActionListener {
 Panel p;
 Image img;
 Vector v;

 public void init() {
 Button b = new Button("Start");
 b.addActionListener(this);
 setLayout(new BorderLayout());
 add("North", b);
 add("Center", p = new Panel());
 p.setLayout(null);
 String imgName = getParameter("imagefile");
 if (imgName == null) imgName = "duke.gif";
 img = getImage(getCodeBase(), imgName);
 MediaTracker mt = new MediaTracker(this);
 mt.addImage(img, 0);
 try {
 mt.waitForID(0);
 } catch(InterruptedException e) {
 throw new IllegalArgumentException(
 "InterruptedException while loading image " + imgName);
 }
 if (mt.isErrorID(0)) {
 throw new IllegalArgumentException(
 "Couldn't load image " + imgName);
 }
 v = new Vector();
 }

 public void actionPerformed(ActionEvent e) {
 System.out.println("Creat-ing another one!");
 Sprite s = new Sprite(this, img);
 p.add(s);
 v.addElement(s);
 }

 public void stop() {
 for (int i=0; i<v.size(); i++) {
 ((Sprite)(v.get(i))).stop();
 }
 v.clear();
 }
}

24.4 Stopping a Thread

24.4.1 Problem

You need to stop a thread.

 658

24.4.2 Solution

Don't use the Thread.stop() method; instead, use a boolean tested at the top of the main
loop in the run() method.

24.4.3 Discussion

While you can use the thread's stop() method, Sun recommends against it. That's because
the method is so drastic that it can never be made to behave reliably in a program with multiple
active threads. That is why, when you try to use it, the compiler will generate deprecation
warnings. The recommended method is to use a boolean variable in the main loop of the run(
) method. The program in Example 24-5 prints a message endlessly until its shutDown()
method is called; it then sets the controlling variable done to false, which terminates the loop.
This causes the run() method to return, ending the thread. The ThreadStoppers program in
the source directory for this chapter has a main program that instantiates and starts this class,
and then calls the shutDown() method.

Example 24-5. StopBoolean.java

public class StopBoolean extends Thread {
 protected boolean done = false;
 public void run() {
 while (!done) {
 System.out.println("StopBoolean running");
 try {
 sleep(720);
 } catch (InterruptedException ex) {
 // nothing to do
 }
 }
 System.out.println("StopBoolean finished.");
 }
 public void shutDown() {
 done = true;
 }
}

Running it looks like this:

StopBoolean running
StopBoolean running
StopBoolean running
StopBoolean running
StopBoolean running
StopBoolean running
StopBoolean running
StopBoolean finished.

But what if your thread is blocked reading from a network connection? You then cannot check a
boolean, as the thread that is reading is asleep. This is what the stop method was designed for,
but as we've seen, it is now deprecated. Instead, you can simply close the socket. The program
shown in Example 24-6 intentionally deadlocks itself by reading from a socket that you are

 659

supposed to write to, simply to demonstrate that closing the socket does in fact terminate the
loop.

Example 24-6. StopClose.java

import java.io.*;
import java.net.*;

public class StopClose extends Thread {
 protected Socket io;

 public void run() {
 try {
 io = new Socket("localhost", 80); // HTTP
 BufferedReader is = new BufferedReader(
 new InputStreamReader(io.getInputStream()));
 System.out.println("StopClose reading");

 // The following line will deadlock (intentionally), since
HTTP
 // enjoins the client to send a request (like "GET /
HTTP/1.0")
 // and a null line, before reading the response.

 String line = is.readLine(); // DEADLOCK

 // Should only get out of the readLine if an interrupt
 // is thrown, as a result of closing the socket.

 // So we shouldn't get here, ever:
 System.out.println("StopClose FINISHED!?");
 } catch (IOException ex) {
 System.err.println("StopClose terminating: " + ex);
 }
 }

 public void shutDown() throws IOException {
 if (io != null) {
 // This is supposed to interrupt the waiting read.
 io.close();
 }
 }
}

When run, it prints a message that the close is happening:

StopClose reading
StopClose terminating: java.net.SocketException: Resource temporarily
unavailable:
Resource temporarily unavailable

"But wait," you say. "What if I want to break the wait, but not really terminate the socket?" A good
question, indeed, and there is no perfect answer. You can, however, interrupt the thread that is
reading; the read will be interrupted by a java.io.InterruptedIOException , and you can
retry the read. The file Intr.java in this chapter's source code shows this.

 660

24.5 Rendezvous and Timeouts

24.5.1 Problem

You need to know whether something finished, or whether it finished in a certain length of time.

24.5.2 Solution

Start that "something" in its own thread and call its join() method with or without a timeout
value.

24.5.3 Discussion

The join() method of the target thread is used to suspend the current thread until the target
thread is finished (returns from its run method). This method is overloaded; a version with no
arguments will wait forever for the thread to terminate, while a version with arguments will wait up
to the specified time. For a simple example, I'll create (and start!) a simple thread that just reads
from the console terminal, and the main thread will simply wait for it. When I run the program, it
looks like this:

darwinsys.com$ java Join
Starting
Joining
Reading
hello from standard input # waits indefinitely for me to type this line
Thread Finished.
Main Finished.
darwinsys.com$

Example 24-7 is the code for the join() demo.

Example 24-7. Join.java

public class Join {
 public static void main(String[] args) {
 Thread t = new Thread() {
 public void run() {
 System.out.println("Reading");
 try {
 System.in.read();
 } catch (java.io.IOException ex) {
 System.err.println(ex);
 }
 System.out.println("Thread Finished.");
 }
 };
 System.out.println("Starting");
 t.start();
 System.out.println("Joining");
 try {
 t.join();
 } catch (InterruptedException ex) {
 // should not happen:

 661

 System.out.println("Who dares interrupt my sleep?");
 }
 System.out.println("Main Finished.");
 }
}

As you can see, it uses an inner class Runnable (see Section 24.2) in Thread t to be
runnable.

24.6 Thread Communication: Synchronized Code

24.6.1 Problem

You need to protect certain data from access by multiple threads.

24.6.2 Solution

Use the synchronized keyword on the method or code you wish to protect.

24.6.3 Discussion

I discussed the synchronized keyword briefly in Section 16.5. This keyword specifies that
only one thread at a time is allowed to run the given code. You can synchronize methods or
smaller blocks of code. It is easier and safer to synchronize entire methods, but this can be more
costly in terms of blocking threads that could run. Simply add the synchronized keyword on the
method. For example, many of the methods of Vector (see Section 7.4) are synchronized.[2]
This ensures that the vector does not become corrupted or give incorrect results when two
threads update or retrieve from it at the same time.

[2] The corresponding methods of ArrayList are not synchronized; this makes nonthreaded use of an
ArrayList about 20 to 30 percent faster (see Recipe 7.17).

Bear in mind that threads can be interrupted at almost any time and control given to another
thread. Consider the case of two threads appending to a data structure at the same time. Let's
suppose we have the same methods as Vector, but we're operating on a simple array. The
add() method simply uses the current number of objects as an array index, then increments it:

1 public void add(Object obj) {
2 data[max] = obj;
3 max = max + 1;
4 }

Threads A and B both wish to call this method. Now suppose that Thread A gets interrupted after
line 2 but before line 3, and then Thread B gets to run. Thread B does line 2, overwriting the
contents of data[max]; we've now lost all reference to the object that Thread A passed in!
Thread B then increments max in line 3, and returns. Later, Thread A gets to run again; it
resumes at line 3 and increments max past the last valid object. So not only have we lost an
object, but we have an un-initialized reference in the array. This state of affairs is shown in
Figure 24-2.

Figure 24-2. Add method in operation: normal and failed updates

 662

Now you might think, "No problem, I'll just combine lines 2 and 3":

data[max++] = obj;

As the talk show host sometimes says, "Bzzzzt! Thanks for playing!" This change makes the code
a bit shorter, but has absolutely no effect on reliability. Interrupts don't happen conveniently on
Java statement boundaries; they can happen between any of the many JVM machine instructions
that correspond to your program. The code can still be interrupted after the store and before the
increment. The only good solution is to use Java synchronization.

Making the method synchronized means that any invocations of it will wait if one thread has
already started running the method:

public synchronized void add(Object obj) {
 ...
}

Anytime you wish to synchronize some code, but not an entire method, use the synchronized
keyword on an un-named code block within a method, as in:

synchronized (someObject) {
 // this code will execute in one thread at a time
}

The choice of object is up to you. Sometimes it makes sense to synchronize on the object
containing the code, as in Example 24-8. For synchronizing access to an ArrayList , it would
make sense to use the ArrayList instance, as in:

synchronized(myArrayList) {
 if (myArrayList.indexof(someObject) != -1) {
 // do something with it.
 }
 // else create an object and add it... }

Example 24-8 is a servlet (see Section 18.2) that I wrote for use in the classroom, following a
suggestion from Scott Weingust (scottw@sysoft.ca). It lets you play a quiz show game of the
style where the host asks a question and the first person to press their buzzer (buzz in) gets to try
to answer the question correctly. To ensure against having two people buzz in simultaneously,

 663

the code uses a synchronized block around the code that updates the boolean buzzed variable.
And for reliability, any code that accesses this boolean is also synchronized.

Example 24-8. BuzzInServlet.java

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

/** A quiz-show "buzzer" servlet: the first respondent wins the chance
 * to answer the skill-testing question. Correct operation depends on
 * running in a Servlet container that CORRECTLY implements the Servlet
 * spec, that is, a SINGLE INSTANCE of this servlet class exists, and
it
 * is run in a thread pool. This class does not implement
"SingleThreadModel"
 * so a correct Servlet implementation will use a single instance.
 * <p>
 * If you needed to work differently, you could synchronize on an
object
 * stored in the Servlet Application Context, at a slight increased
cost
 * in terms of system overhead.
 */
public class BuzzInServlet extends HttpServlet {

 /** This controls the access */
 protected static boolean buzzed = false;
 /** who got the buzz? */
 protected static String winner;

 /** doGet is called from the contestants web page.
 * Uses a synchronized code block to ensure that
 * only one contestant can change the state of "buzzed".
 */
 public void doGet(HttpServletRequest request, HttpServletResponse
response)
 throws ServletException, IOException
 {
 boolean igotit = false;

 // Do the synchronized stuff first, and all in one place.
 synchronized(this) {
 if (!buzzed) {
 igotit = buzzed = true;
 winner = request.getRemoteHost() + '/' +
request.getRemoteAddr();
 }
 }

 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 out.println("<html><head><title>Thanks for
playing</title></head>");
 out.println("<body bgcolor=\"white\">");

 664

 if (igotit) {
 out.println("YOU GOT IT");
 getServletContext().log("BuzzInServlet: WINNER " +
 request.getRemoteUser());
 // TODO - output HTML to play a sound file :-)
 } else {
 out.println("Thanks for playing, " +
request.getRemoteAddr());
 out.println(", but " + winner + " buzzed in first");
 }
 out.println("</body></html>");
 }

 /** The Post method is used from an Administrator page (which
should
 * only be installed in the instructor/host's localweb directory).
 * Post is used for administrative functions:
 * 1) to display the winner;
 * 2) to reset the buzzer for the next question.
 * <p>
 * In real life the password would come from a Servlet Parameter
 * or a configuration file, instead of being hardcoded in an "if".
 */
 public void doPost(HttpServletRequest request, HttpServletResponse
response)
 throws ServletException, IOException
 {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 if (request.getParameter("password").equals("syzzy")) {
 out.println("<html><head><title>Welcome back,
host</title><head>");
 out.println("<body bgcolor=\"white\">");
 String command = request.getParameter("command");
 if (command.equals("reset")) {
 // Synchronize what you need, no more, no less.
 synchronized(this) {
 buzzed = false;
 winner = null;
 }
 out.println("RESET");
 } else if (command.equals("show")) {
 synchronized(this) {
 out.println("Winner is: " + winner);
 }
 }
 else {
 out.println("<html><head><title>ERROR</title><head>");
 out.println("<body bgcolor=\"white\">");
 out.println("ERROR: Command " + command + " invalid.");
 }
 } else {
 out.println("<html><head><title>Nice try, but...
</title><head>");
 out.println("<body bgcolor=\"white\">");

 665

 out.println(
 "Your paltry attempts to breach security are
rebuffed!");
 }
 out.println("</body></html>");
 }
}

There are two HTML pages that lead to the servlet. The contestant's page simply has a large link
(). Anchor links generate an HTML GET, so the servlet
engine calls doGet().

<html><head><title>Buzz In!</title></head>
<body>
<h1>Buzz In!</h1>
<p>

Press here to buzz in!

The HTML is pretty plain, but it does the job. Figure 24-3 shows the look and feel.

Figure 24-3. BuzzInServlet in action

The game show host has access to an HTML form with a POST method, which calls the
doPost() method. This displays the winner to the game show host, and also resets the
"buzzer" for the next question. A password is provided; it's hardcoded here, but in reality the

 666

password would come from a properties file (Section 7.8) or a servlet initialization parameter
(see the Java Servlet Programming book).

<html><head><title>Reset Buzzer</title></head>
<body>
<h1>Display Winner</h1>
<p>
The winner is:
<form method="post" action="servlet/BuzzInServlet">
 <input type="hidden" name="command" value="show">
 <input type="hidden" name="password" value="syzzy">
 <input type="submit" name="Show" value="Show">
</form>
<h1>Reset Buzzer</h1>
<p>
Remember to RESET before you ask the contestants each question!
<form method="post" action="servlet/BuzzInServlet">
 <input type="hidden" name="command" value="reset">
 <input type="hidden" name="password" value="syzzy">
 <input type="submit" name="Reset" value="RESET!">
</form>

The game show host functionality is shown in Figure 24-4.

Figure 24-4. BuzzInServlet game show host function

For a more complete game, of course, the servlet would keep a Stack (Section 7.16) of people
in the order they buzzed in, in case the first person doesn't answer the question correctly. Access
to this would have to be synchronized too, of course.

24.7 Thread Communication: wait() and notifyAll()

24.7.1 Problem

 667

The synchronized keyword lets you lock out multiple threads, but doesn't give you much
communication between them.

24.7.2 Solution

Use wait() and notifyAll(). Very carefully.

24.7.3 Discussion

Three methods appear in java.lang.Object that allow you to use any object as a
synchronization target: wait(), notify(), and notifyAll().

wait()

Causes the current thread to block in the given object until awakened by a notify() or
notifyAll().

notify()

Causes a randomly selected thread waiting on this object to be awakened. It must then
try to regain the monitor lock. If the "wrong" thread is awakened, your program can
deadlock.

notifyAll()

Causes all threads waiting on the object to be awakened; each will then try to regain the
monitor lock. Hopefully one will succeed.

The mechanism is a bit odd: there is no way to awaken only the thread that owns the lock.
However, that's how it works, and it's the reason almost all programs use notifyAll()
instead of notify(). Also note that both wait() and the notification methods can be used
only if you are already synchronized on the object; that is, you must be in a synchronized method
within, or a code block synchronized on, the object that you wish your current thread to wait()
or notify() upon.

For a simple introduction to wait() and notify(), I'll use a simple Producer-Consumer
model. This pattern can be used to simulate a variety of real-world situations in which one object
is creating or allocating objects (producing them), usually with a random delay, while another is
grabbing the objects and doing something with them (consuming them). A single-threaded
Producer-Consumer model is shown in Example 24-9. As you can see, there are no threads
created, so the entire program -- the read() in main as well as produce() and consume(
) -- runs in the same thread. You control the production and consumption by entering a line
consisting of letters. Each p causes one unit to be produced, while each c causes one unit to be
consumed. So if I run it and type pcpcpcpc, the program will alternate between producing and
consuming. If I type pppccc, the program will produce three units and then consume them. See
Example 24-9.

Example 24-9. ProdCons1.java

public class ProdCons1 {

 668

 /** Throughout the code, this is the object we synchronize on so
this
 protected LinkedList list = new LinkedList();

 protected void produce() {
 int len = 0;
 synchronized(list) {
 Object justProduced = new Object();
 list.addFirst(justProduced);
 len = list.size();
 list.notifyAll();
 }
 System.out.println("List size now " + len);
 }

 protected void consume() {
 Object obj = null;
 int len = 0;
 synchronized(list) {
 while (list.size() == 0) {
 try {
 list.wait();
 } catch (InterruptedException ex) {
 return;
 }
 }
 obj = list.removeLast();
 len = list.size();
 }
 System.out.println("Consuming object " + obj);
 System.out.println("List size now " + len);
 }

 public static void main(String[] args) throws IOException {
 ProdCons1 pc = new ProdCons1();
 int i;
 while ((i = System.in.read()) != -1) {
 char ch = (char)i;
 switch(ch) {
 case 'p': pc.produce(); break;
 case 'c': pc.consume(); break;
 }
 }
 }
}

The part that may seem strange is using list instead of the main class as the synchronization
target. Each object has its own wait queue, so it does matter which object you use. In theory, any
object can be used as long as your synchronized target and the object in which you run
wait() and notify() are one and the same object. Of course, it is good to refer to the object
that you are protecting from concurrent updates, so I used list here.

Hopefully, you're now wondering what this has to do with thread synchronization. There is only
one thread, but the program seems to work:

> jikes +E -d . ProdCons1.java

 669

> java ProdCons1
pppccc
List size now 1
List size now 2
List size now 3
Consuming object java.lang.Object@d9e6a356
List size now 2
Consuming object java.lang.Object@d9bea356
List size now 1
Consuming object java.lang.Object@d882a356
List size now 0

But this program is not quite right. If I enter even one more c's than p's, think about what
happens. The consume() method does a wait(), but it is no longer possible for the read(
) to proceed. The program, we say, is deadlocked: it is waiting on something that can never
happen. Fortunately, this simple case is detected by the Java runtime:

ppccc
List size now 1
List size now 2
Consuming object java.lang.Object@18faf0
List size now 1
Consuming object java.lang.Object@15bc20
List size now 0
Dumping live threads:
'gc' tid 0x1a0010, status SUSPENDED flags DONTSTOP
 blocked@0x19c510 (0x1a0010->|)
'finaliser' tid 0x1ab010, status SUSPENDED flags DONTSTOP
 blocked@0x10e480 (0x1ab010->|)
'main' tid 0xe4050, status SUSPENDED flags NOSTACKALLOC
 blocked@0x13ba20 (0xe4050->|)
Deadlock: all threads blocked on internal events
Abort (core dumped)

Indeed, the read() is never executed, because there's no way for produce() to get called
and so the notify() can't happen. To fix this, I want to run the producer and the consumer in
separate threads. There are several ways to accomplish this. I'll just make consume() and
produce() into inner classes Consume and Produce that extend Thread, and their run()
method will do the work of the previous methods. In the process, I'll replace the code that reads
from the console with code that causes both threads to loop for a certain number of seconds, and
change it to be a bit more of a simulation of a distributed Producer-Consumer mechanism. The
result of all this is the second version, ProdCons2, shown in Example 24-10.

Example 24-10. ProdCons2.java

import java.util.*;
import java.io.*;

public class ProdCons2 {

 /** Throughout the code, this is the object we synchronize on so
this
 * is also the object we wait() and notifyAll() on.
 */
 protected LinkedList list = new LinkedList();

 670

 protected int MAX = 10;
 protected boolean done = false; // Also protected by lock on list.

 /** Inner class representing the Producer side */
 class Producer extends Thread {

 public void run() {
 while (true) {
 Object justProduced = getRequestFromNetwork();
 // Get request from the network - outside the synch
section.
 // We're simulating this actually reading from a
client, and it
 // might have to wait for hours if the client is having
coffee.
 synchronized(list) {
 while (list.size() == MAX) // queue "full"
 try {
 System.out.println("Producer WAITING");
 list.wait(); // Limit the size
 } catch (InterruptedException ex) {
 System.out.println("Producer INTERRUPTED");
 }
 list.addFirst(justProduced);
 if (done)
 break;
 list.notifyAll(); // must own the lock
 System.out.println("Produced 1; List size now " +
list.size());
 // yield();
 }
 }
 }

 Object getRequestFromNetwork() { // Simulation of reading
from client
 // try {
 // Thread.sleep(10); // simulate time passing during
read
 // } catch (InterruptedException ex) {
 // System.out.println("Producer Read INTERRUPTED");
 // }
 return(new Object());
 }
 }

 /** Inner class representing the Consumer side */
 class Consumer extends Thread {
 public void run() {
 while (true) {
 Object obj = null;
 int len = 0;
 synchronized(list) {
 while (list.size() == 0) {
 try {
 System.out.println("CONSUMER WAITING");
 list.wait(); // must own the lock

 671

 } catch (InterruptedException ex) {
 System.out.println("CONSUMER INTERRUPTED");
 }
 }
 if (done)
 break;
 obj = list.removeLast();
 list.notifyAll();
 len = list.size();
 System.out.println("List size now " + len);
 }
 process(obj); // Outside synch section (could take
time)
 //yield();
 }
 }

 void process(Object obj) {
 // Thread.sleep(xxx) // Simulate time passing
 System.out.println("Consuming object " + obj);
 }
 }

 ProdCons2(int nP, int nC) {
 for (int i=0; i<nP; i++)
 new Producer().start();
 for (int i=0; i<nC; i++)
 new Consumer().start();
 }

 public static void main(String[] args)
 throws IOException, InterruptedException {

 // Start producers and consumers
 int numProducers = 2;
 int numConsumers = 2;
 ProdCons2 pc = new ProdCons2(numProducers, numConsumers);

 // Let it run for, say, 30 seconds
 Thread.sleep(30*1000);

 // End of simulation - shut down gracefully
 synchronized(pc.list) {
 pc.done = true;
 pc.list.notifyAll(); // Wake up any waiters!
 }
 }
}

I'm happy to report that all is well with this. It will happily run for long periods of time, neither
crashing nor deadlocking. After running for some time, I captured this tiny bit of the log:

Produced 1; List size now 118
Consuming object java.lang.Object@2119d0
List size now 117
Consuming object java.lang.Object@2119e0

 672

List size now 116

By varying the number of producers and consumers started in the constructor method, you can
observe different queue sizes that all seem to work correctly.

24.8 Background Saving in an Editor

24.8.1 Problem

You need to save the user's work periodically in an interactive program.

24.8.2 Solution

Use a background thread.

24.8.3 Discussion

This code fragment creates a new thread to handle background saves, as in most word
processors:

public class AutoSave extends Thread {
 FileSaver model;

 public AutoSave(FileSaver m) {
 super("AutoSave Thread");
 // setDaemon(true); // so we don't keep the main app
alive
 model = m;
 }

 public void run() {
 while (true) { // entire run method runs forever.
 try {
 sleep(300*1000);
 } catch (InterruptedException e) {
 // do nothing with it
 }
 if (model.wantAutoSave() && model.hasUnsavedChanges())
 model.saveFile(null);
 }
 }

As you can see in the run() method, this code sleeps for five minutes (300 seconds), then
checks if it should do anything. If the user has turned autosave off or hasn't made any changes
since the last save, there is nothing to do. Otherwise, we call the saveFile() method in the
main program, which saves the data to the current file. Better would be to save it to a recovery file
of some name, as the better word processors do.

What's not shown is that now the saveFile() method must be synchronized, and what's
more, whatever method shuts down the main program must also be synchronized on the same
object. It's easy to see why if you think about how the save method would work if the user clicked
on the Save button at the same time that the autosave method called it, or if the user clicked on

 673

Exit while the file save method had just opened the file for writing. The "save to recovery file"
strategy gets around some of this, but it still needs a great deal of care.

24.9 Threaded Network Server

24.9.1 Problem

You want a network server to be multithreaded.

24.9.2 Solution

Either create a thread when you accept a connection, or pre-create a pool of threads and have
each wait on the accept() call.

24.9.3 Discussion

Networking (see Chapter 15 through Chapter 17) and threads are two very powerful APIs that
are a standard part of the Java platform. Used alone, each can increase the reach of your Java
programming skills. A common paradigm is a threaded network server, which can either
preallocate a certain number of threads, or can start a new thread each time a client connects.
The big advantage is that each thread can block on read, without causing other client threads to
delay.

One example of a threaded socket server was discussed in Section 16.5; another is shown
here. It seems to be some kind of rite (or wrong) of passage for Java folk to write a web server
entirely in Java. This one is fairly small and simple; if you want a full-bodied flavor, check out the
Apache Foundation's Apache (written in C) and Tomcat (pure Java) servers, or the World Wide
Web Consortium's jigsaw server. The main program of mine constructs one instance of class
Httpd. This creates a socket and waits for incoming clients in the accept() method. Each
time there is a return from accept(), we have another client, so we create a new thread to
process that client. This happens in the main() and runserver() methods, which are near
the beginning of Example 24-11.

Example 24-11. Httpd.java

/**
 * A very very simple Web server.
 *
 * NO SECURITY. ALMOST NO CONFIGURATION. NO CGI. NO SERVLETS.
 *
 * This version is threaded. I/O is done in Handler.
 */
public class Httpd {
 /** The default port number */
 public static final int HTTP = 80;
 /** The server socket used to connect from clients */
 protected ServerSocket sock;
 /** A Properties, for loading configuration info */
 protected Properties wsp;
 /** A Properties, for loading mime types into */
 protected Properties mimeTypes;
 /** The root directory */

 674

 protected String rootDir;

 public static void main(String argv[]) {
 System.out.println("DarwinSys JavaWeb Server 0.1 starting...");
 Httpd w = new Httpd();
 if (argv.length == 2 && argv[0].equals("-p")) {
 w.startServer(Integer.parseInt(argv[1]));
 } else {
 w.startServer(HTTP);
 }

 w.runServer();
 // NOTREACHED
 }

 /** Run the main loop of the Server. Each time a client connects,
 * the ServerSocket accept() returns a new Socket for I/O, and
 * we pass that to the Handler constructor, which creates a Thread,
 * which we start.
 */
 void runServer() {
 while (true) {
 try {
 Socket clntSock = sock.accept();
 new Handler(this, clntSock).start();
 } catch(IOException e) {
 System.err.println(e);
 }
 }
 }

 /** Construct a server object for a given port number */
 Httpd() {
 super();
 // A ResourceBundle can't load from the same basename as your
class,
 // but a simple Properties can.
 wsp=loadProps("httpd.properties");
 rootDir = wsp.getProperty("rootDir", ".");
 mimeTypes = loadProps(wsp.getProperty("mimeProperties",
"mime.properties"));
 }

 public void startServer(int portNum) {
 String portNumString = null;
 if (portNum == HTTP) {
 portNumString = wsp.getProperty("portNum");
 if (portNumString != null) {
 portNum = Integer.parseInt(portNumString);
 }
 }
 try {
 sock = new ServerSocket(portNum);
 } catch(NumberFormatException e) {
 System.err.println("Httpd: \"" + portNumString +
 "\" not a valid number, unable to start server");
 System.exit(1);

 675

 } catch(IOException e) {
 System.err.println("Network error " + e);
 System.err.println("Unable to start server");
 System.exit(1);
 }
 }

 /** Load the Properties. */
 protected Properties loadProps(String fname) {
 Properties sp = new Properties();

 try {
 // Create input file to load from.
 FileInputStream ifile = new FileInputStream(fname);

 sp.load(ifile);
 } catch (FileNotFoundException notFound) {
 System.err.println(notFound);
 System.exit(1);
 } catch (IOException badLoad) {
 System.err.println(badLoad);
 System.exit(1);
 }
 return sp;
 }

}

The Handler class -- shown in its current form in Example 24-12 -- is the part that knows the
HTTP protocol, or at least a small subset of it. You may notice near the middle that it parses the
incoming HTTP headers into a Hashmap, but does nothing with them. Here is a log of one
connection:

Connection accepted from localhost/127.0.0.1
Request: Command GET, file /, version HTTP/1.0
hdr(Connection,Keep-Alive)
hdr(User-Agent,Mozilla/4.6 [en] (X11; U; OpenBSD 2.8 i386; Nav))
hdr(Pragma,no-cache)
hdr(Host,127.0.0.1)
hdr(Accept,image/gif, image/jpeg, image/pjpeg, image/png, */*)
hdr(Accept-Encoding,gzip)
hdr(Accept-Language,en)
hdr(Accept-Charset,iso-8859-1,*,utf-8)
Loading file //index.html
END OF REQUEST

At this stage of evolution, the server is getting ready to create an HttpServletRequest object
(described in Section 18.2's discussion of servlets), but it is not sufficiently evolved to do so.
This file is a snapshot of work in progress. More interesting is the Hashtable used as a cache;
once a file has been read from disk, the program will not reread it, to save disk I/O overhead. This
means you have to restart the server if you change files; comparing the timestamps (see Section
10.2) and reloading files if they have changed is left as an exercise for the reader.

Example 24-12. Handler.java

 676

import java.io.*;
import java.net.*;
import java.text.*;
import java.util.*;

/** Called from Httpd to handle one connection.
 * We are created with just a Socket, and read the
 * HTTP request, extract a name, read it (saving it
 * in Hashtable h for next time), and write it back.
 */
public class Handler extends Thread {
 /** The Socket that we read from and write to. */
 Socket clntSock;
 /** inputStream, from Viewer */
 BufferedReader is;
 /** outputStream, to Viewer */
 PrintStream os;
 /** Main program */
 Httpd parent;
 /** The default filename in a directory. */
 final static String DEF_NAME = "/index.html";

 /** The Hashtable used to cache all URLs we've read.
 * Static, shared by all instances of Handler (one per request).
 */
 static Hashtable h = new Hashtable();

 /** Construct a Handler */
 Handler(Httpd prnt, Socket sock) {
 super("client thread");
 parent = prnt;
 clntSock = sock;
 // First time, put in null handler.
 if (h.size() == 0) {
 h.put("", "<HTML><BODY>Unknown server error");
 }
 }

 protected static final int RQ_INVALID = 0, RQ_GET = 1, RQ_HEAD = 2,
 RQ_POST = 3;

 public void run() {
 String request; // what Viewer sends us.
 int methodType = RQ_INVALID;
 try {
 System.out.println("Connection accepted from " +
 clntSock.getInetAddress());
 is = new BufferedReader(new InputStreamReader(
 clntSock.getInputStream()));
 // Must do before any chance of errorResponse being called!
 os = new PrintStream(clntSock.getOutputStream());

 request = is.readLine();
 if (request == null || request.length() == 0) {
 // No point nattering: the sock died, nobody will hear
 // us if we scream into cyberspace... Could log it
though.

 677

 return;
 }

 // Use a StringTokenizer to break the request into its
three parts:
 // HTTP method, resource name, and HTTP version
 StringTokenizer st = new StringTokenizer(request);
 if (st.countTokens() != 3) {
 errorResponse(444, "Unparseable input " + request);
 return;
 }
 String rqCode = st.nextToken();
 String rqName = st.nextToken();
 String rqHttpVer = st.nextToken();
 System.out.println("Request: Command " + rqCode +
 ", file " + rqName + ", version " + rqHttpVer);

 // Read headers, up to the null line before the body,
 // so the body can be read directly if it's a POST.
 HashMap map = new HashMap();
 String hdrLine;
 while ((hdrLine = is.readLine()) != null &&
 hdrLine.length() != 0) {
 int ix;
 if ((ix=hdrLine.indexOf(':')) != -1) {
 String hdrName = hdrLine.substring(0, ix);
 String hdrValue = hdrLine.substring(ix+1).trim(
);

System.out.println("hdr("+hdrName+","+hdrValue+")");
 map.put(hdrName, hdrValue);
 } else {
 System.err.println("INVALID HEADER: " +
hdrLine);
 }
 }

 // check that rqCode is either GET or HEAD or ...
 if ("get".equalsIgnoreCase(rqCode))
 methodType = RQ_GET;
 else if ("head".equalsIgnoreCase(rqCode))
 methodType = RQ_HEAD;
 else if ("post".equalsIgnoreCase(rqCode))
 methodType = RQ_POST;
 else {
 errorResponse(400, "invalid method: " + rqCode);
 return;
 }

 // A bit of paranoia may be a good thing...
 if (rqName.indexOf("..") != -1) {
 errorResponse(404, "can't seem to find: " + rqName);
 return;
 }

 // Someday: new MyRequest(clntSock, rqName, methodType);

 678

 // new MyResponse(clntSock, os);

 // if (isServlet(rqName)) [
 // doServlet(rqName, methodType, map);
 // else
 doFile(rqName, methodType == RQ_HEAD, os /*, map */);
 os.flush();
 clntSock.close();
 } catch (IOException e) {
 System.out.println("IOException " + e);
 }
 System.out.println("END OF REQUEST");
 }

 /** Processes one file request */
 void doFile(String rqName, boolean headerOnly, PrintStream os)
 throws IOException {
 File f;
 byte[] content = null;
 Object o = h.get(rqName);
 if (o != null && o instanceof byte[]) {
 content = (byte[])o;
 System.out.println("Using cached file " + rqName);
 sendFile(rqName, headerOnly, content, os);
 } else if ((f = new File(parent.rootDir + rqName)).isDirectory(
)) {
 // Directory with index.html? Process it.
 File index = new File(f, DEF_NAME);
 if (index.isFile()) {
 doFile(rqName + DEF_NAME, index, headerOnly, os);
 return;
 }
 else {
 // Directory? Do not cache; always make up dir list.
 System.out.println("DIRECTORY FOUND");
 doDirList(rqName, f, headerOnly, os);
 sendEnd();
 }
 } else if (f.canRead()) {
 // REGULAR FILE
 doFile(rqName, f, headerOnly, os);
 }
 else {
 errorResponse(404, "File not found");
 }
 }

 void doDirList(String rqName, File dir, boolean justAHead,
PrintStream os) {
 os.println("HTTP/1.0 200 directory found");
 os.println("Content-type: text/html");
 os.println("Date: " + new Date().toString());
 os.println("");
 if (justAHead)
 return;
 os.println("<HTML>");

 679

 os.println("<TITLE>Contents of directory " + rqName +
"</TITLE>");
 os.println("<H1>Contents of directory " + rqName + "</H1>");
 String fl[] = dir.list();
 Arrays.sort(fl);
 for (int i=0; i<fl.length; i++)
 os.println("
" +
 "<IMG ALIGN=absbottom BORDER=0 SRC=\"internal-gopher-
unknown\">" +
 ' ' + fl[i] + "");
 }

 /** Send one file, given a File object. */
 void doFile(String rqName, File f, boolean headerOnly, PrintStream
os)
 throws IOException {
 System.out.println("Loading file " + rqName);
 InputStream in = new FileInputStream(f);
 byte c_content[] = new byte[(int)f.length()];
 // Single large read, should be fast.
 int n = in.read(c_content);
 h.put(rqName, c_content);
 sendFile(rqName, headerOnly, c_content, os);
 in.close();
 }

 /** Send one file, given the filename and contents.
 * boolean justHead - if true, send heading and return.
 */
 void sendFile(String fname, boolean justHead,
 byte[] content, PrintStream os) throws IOException {
 os.println("HTTP/1.0 200 Here's your file");
 os.println("Content-type: " + guessMime(fname));
 os.println("Content-length: " + content.length);
 os.println("");
 if (justHead)
 return;
 os.write(content);
 }

 /** The type for unguessable files */
 final static String UNKNOWN = "unknown/unknown";
 String guessMime(String fn) {
 String lcname = fn.toLowerCase();
 int extenStartsAt = lcname.lastIndexOf('.');
 if (extenStartsAt<0) {
 if (fn.equalsIgnoreCase("makefile"))
 return "text/plain";
 return UNKNOWN;
 }
 String exten = lcname.substring(extenStartsAt);
 String guess = parent.mimeTypes.getProperty(exten, UNKNOWN);

 // System.out.println("guessMime: input " + fn +
 // ", extention " + exten + ", result " + guess);

 return guess;

 680

 }

 /** Sends an error response, by number, hopefully localized. */
 protected void errorResponse(int errNum, String errMsg) {

 // Check for localized messages
 ResourceBundle messages = ResourceBundle.getBundle("errors");

 String response;
 try { response = messages.getString(Integer.toString(errNum));
}
 catch (MissingResourceException e) { response=errMsg; }

 // Generate and send the response
 os.println("HTTP/1.0 " + errNum + " " + response);
 os.println("Content-type: text/html");
 os.println("");
 os.println("<HTML>");
 os.println("<HEAD><TITLE>Error " + errNum + "--" + response +
 "</TITLE></HEAD>");
 os.println("<H1>" + errNum + " " + response + "</H1>");
 sendEnd();
 }

 /** Send the tail end of any page we make up. */
 protected void sendEnd() {
 os.println("<HR>");
 os.println("<ADDRESS>Java Web Server,");
 String myAddr = "http://www.darwinsys.com/freeware/";
 os.println("" +
 myAddr + "");
 os.println("</ADDRESS>");
 os.println("</HTML>");
 os.println("");
 }
}

From a performance point of view, it may be better to pre-create a pool of threads and cause
each one to run the handler when a connection comes along. This is how servlet engines drive
ordinary servlets to high levels of performance; it avoids the overhead of creating a Thread
object for each request.

This may never replace the Apache web server, but there it is: small, simple, and threaded.

24.9.4 See Also

There are several issues I have not discussed. Scheduling of threads is not necessarily
preemptive; it may be cooperative. This means that, on some platforms, the threads mechanism
does not interrupt the running thread periodically to give other threads a "fair" chance to get CPU
time. Therefore, in order to be portable to all Java platforms, your code must use yield() or
wait() periodically (or some other method that causes the thread to be suspended, such as
reading or writing). I also didn't get into priorities. The priority model is more limited than some
other thread models, such as POSIX threads.

 681

All in all, it's important to understand that threaded classes require careful design. For this
reason, you should refer to a good book on threaded Java before unleashing anything threaded
upon the world. Recommendations include Concurrent Programming in Java by Doug Lea
(Addison Wesley), Multithreaded Programming with Java Technology by Lewis et al (Prentice
Hall), and Java Threads by Scott Oaks and Henry Wong (O'Reilly).

 682

Chapter 25. Introspection, or "A Class Named
Class"

25.1 Introduction

25.2 Getting a Class Descriptor

25.3 Finding and Using Methods and Fields

25.4 Loading and Instantiating a Class Dynamically

25.5 Constructing a Class from Scratch

25.6 Performance Timing

25.7 Printing Class Information

25.8 Program: CrossRef

25.9 Program: AppletViewer

25.1 Introduction

The class java.lang.Class and the reflection package java.lang.reflect provide a
number of mechanisms for gathering information from the Java Virtual Machine. Known
collectively as introspection or reflection, these facilities allow you to load classes on the fly, to
find methods and fields in classes, to generate listings of them, and to invoke methods on
dynamically loaded classes. There is even a mechanism to let you construct a class from scratch
(well, actually, from an array of bytes) while your program is running. This is about as close as
Java lets you get to the magic, secret internals of the Java machine.

The JVM Interpreter is a large program, normally written in C and/or C++, that implements the
Java Virtual Machine abstraction. You can get the source for Sun's and other JVMs via the
Internet, and could study the JVM for months. Here we concentrate on just a few aspects, and
only from the point of view of a programmer using the JVM's facilities, not how it works internally;
that is an implementation detail that varies from one vendor's JVM to another.

I'll start with loading an existing class dynamically, move on to listing the fields and methods of a
class and invoking methods, and end by creating a class on the fly using a ClassLoader. One
of the more interesting aspects of Java, and one that accounts for both its flexibility (applets,
servlets) and part of its perceived speed problem, is the notion of dynamic loading. For example,
even the simplest "Hello Java" program has to load the class file for your Hello class, the class
file for its parent (usually java.lang.Object), the class for PrintStream (since you used
System.out), the class for PrintStream's parent, and so on. To see this in action, try
something like this:

 683

java -verbose HelloJava | more

To take another example, a browser can download an applet's bytecode file over the Internet and
run it on your desktop. How does it load the class file into the running JVM? We discuss this little
bit of Java magic in Section 25.4. The chapter ends with replacement versions of the JDK tools
javap and AppletViewer -- the latter doing what a browser does, loading applets at runtime -- and
a cross-reference tool that you can use to become a famous Java author by publishing your very
own reference to the complete Java API.

25.2 Getting a Class Descriptor

25.2.1 Problem

You want to get a Class object from a class name or instance.

25.2.2 Solution

If the class name is known at compile time, you can get the class instance using the compiler
keyword .class , which works on any object. However, the Object class does not have class
as a field, so this strikes some observers as a bit of a hack. Nonetheless, it works. Use it.

Otherwise, if you have an object (an instance of a class), you can call the java.lang.Object
method getClass(), which returns the Class object for the object's class (now that was a
mouthful!):

import java.util.*;
/**
 * Show the Class keyword and getClass() method in action.
 */
public class ClassKeyword {
 public static void main(String[] argv) {
 System.out.println("Trying the ClassName.class keyword:");
 System.out.println("Object class: " + Object.class);
 System.out.println("String class: " + String.class);
 System.out.println("Calendar class: " + Calendar.class);
 System.out.println("Current class: " + ClassKeyword.class);
 System.out.println();

 System.out.println("Trying the instance.getClass() method:");
 System.out.println("Robin the Fearless".getClass());
 System.out.println(Calendar.getInstance().getClass());
 }
}

When we run it, we see:

C:\javasrc\reflect>java ClassKeyword
Trying the ClassName.class keyword:
Object class: class java.lang.Object
String class: class java.lang.String
Calendar class: class java.util.Calendar
Current class: class ClassKeyword
Trying the instance.getClass() method:

 684

class java.lang.String
class java.util.GregorianCalendar
C:\javasrc\reflect>

Nothing fancy, but as you can see, you can get the Class object for any class known at compile
time, whether part of a package or not.

25.3 Finding and Using Methods and Fields

25.3.1 Problem

You need more to find arbitrary method or field names in arbitrary classes.

25.3.2 Solution

Use the reflection package java.lang.reflect.

25.3.3 Discussion

If you just wanted to find fields and methods in one particular class, you wouldn't need this; you
could simply create an instance of the class using new and refer to its fields and methods directly.
This allows you to find methods and fields in any class, even classes that have not yet been
written! Given a class object created as in Section 25.2, you can obtain a list of constructors, a
list of methods, or a list of fields. The method getMethods() lists the methods available for a
given class as an array of Method objects. Since constructor methods are treated specially by
Java, there is also a getConstructors() method, which returns an array of Constructor
objects. Even though "class" is in the package java.lang, the Constructor, Method, and
Field objects it returns are in java.lang.reflect, so you need an import of this package.
The ListMethods class (Example 25-1) shows how to do this.

Example 25-1. ListMethods.java

import java.lang.reflect.*;

/**
 * List the Constructors and methods
 */
public class ListMethods {
 public static void main(String[] argv) throws
ClassNotFoundException {
 if (argv.length == 0) {
 System.err.println("Usage: ListMethods className");
 return;
 }
 Class c = Class.forName(argv[0]);
 Constructor[] cons = c.getConstructors();
 printList("Constructors", cons);
 Method[] meths = c.getMethods();
 printList("Methods", meths);
 }
 static void printList(String s, Object[] o) {
 System.out.println("*** " + s + " ***");

 685

 for (int i=0; i<o.length; i++)
 System.out.println(o[i].toString());
 }
}

For example, you could run Example 25-1 on a class like java.lang.String and get a fairly
lengthy list of methods; I'll only show part of the output so you can see what it looks like:

> java ListMethods java.lang.String
*** Constructors ***
public java.lang.String()
public java.lang.String(java.lang.String)
public java.lang.String(java.lang.StringBuffer)
public java.lang.String(byte[])
// and many more...
*** Methods ***
public static java.lang.String java.lang.String.copyValueOf(char[])
public static java.lang.String
java.lang.String.copyValueOf(char[],int,int)
public static java.lang.String java.lang.String.valueOf(char)
// and more valueOf() forms...
public boolean java.lang.String.equals(java.lang.Object)
public final native java.lang.Class java.lang.Object.getClass()
// and more java.lang.Object methods...
public char java.lang.String.charAt(int)
public int java.lang.String.compareTo(java.lang.Object)
public int java.lang.String.compareTo(java.lang.String)

You can see that this could be extended (almost literally) to write a BeanMethods class that
would list only the set/get methods defined in a JavaBean (see Section 23.8).

Alternately, you can find a particular method and invoke it, or find a particular field and refer to its
value. Let's start by finding a given field, since that's the easiest. Example 25-2 is code that,
given an Object and the name of a field, finds the field (gets a Field object), then retrieves and
prints the value of that Field as an int.

Example 25-2. FindField.java

import java.lang.reflect.*;
import java.util.*;

/** This class shows using Reflection to get a field from another
class. */
public class FindField {

 public static void main(String[] unused)
 throws NoSuchFieldException, IllegalAccessException {

 // Create instance of FindField
 FindField gf = new FindField();

 // Create instance of target class (YearHolder defined below).
 Object o = new YearHolder();

 // Use gf to extract a field from o.

 686

 System.out.println("The value of 'currentYear' is: " +
 gf.intFieldValue(o, "currentYear"));
 }

 int intFieldValue(Object o, String name)
 throws NoSuchFieldException, IllegalAccessException {
 Class c = o.getClass();
 Field fld = c.getField(name);
 int value = fld.getInt(o);
 return value;
 }
}

/** This is just a class that we want to get a field from */
class YearHolder {
 /** Just a field that is used to show getting a field's value. */
 public int currentYear = Calendar.getInstance(
).get(Calendar.YEAR);
}

What if we need to find a method? The simplest way is to use the methods getMethod() and
invoke() to do the deed. But this is not altogether trivial. Suppose that somebody gives us a
reference to an object. We don't know its class, but have been told that it should have this
method:

public void work(String s) { }

We wish to invoke work(). To find the method, we must make an array of Class objects, one
per item in the calling list. So in this case, we make an array containing only a reference to the
class object for String. Since we know the name of the class at compile time, we'll use the
shorter invocation String.class instead of Class.forName(). This, plus the name of the
method as a string, gets us entry into the getMethod() method of the Class object. If this
succeeds, we have a Method object. But guess what? In order to invoke the method, we have to
construct yet another array, this time an array of Object references, actually containing the data
to be passed to the invocation. We also, of course, need an instance of the class in whose
context the method is to be run. For this demonstration class, we need to pass only a single
string, as our array consists only of the string. Example 25-3 is the code that finds the method
and invokes it.

Example 25-3. GetMethod.java

import java.lang.reflect.*;

/** This class is just here to give us something to work on,
 * with a println() call that will prove we got here. */
class X {
 public void work(String s) {
 System.out.println("Working on \"" + s + "\"");
 }
}

/**
 * Get a given method, and invoke it.
 */
public class GetMethod {

 687

 public static void main(String[] argv) {
 try {
 Class clX = X.class; // or Class.forName("X");
 // To find a method we need the array of matching Class
types.
 Class[] argTypes = {
 String.class
 };

 // Now find a Method object for the given method.
 Method worker = clX.getMethod("work", argTypes);

 // To INVOKE the method, we need its actual arguments, as
an array.
 Object[] theData = {
 "Chocolate Chips"
 };

 // The obvious last step: invoke the method.
 worker.invoke(new X(), theData);
 } catch (Exception e) {
 System.err.println("Invoke() failed: " + e);
 }
 }
}

Not tiny, but still not bad. In most programming languages, you couldn't do that in the 40 lines it
took us here.

A word of caution: when the arguments to a method are of a primitive type such as int, you do
not pass Integer.class into getMethod(). Instead, you must use the class object
representing the primitive type int. The easiest way to find this class is in the Integer class, as
a public constant named TYPE, so you'd pass Integer.TYPE. The same is true for all the
primitive types; for each, the corresponding wrapper class has the primitive class referred to as
TYPE .

25.4 Loading and Instantiating a Class Dynamically

25.4.1 Problem

You want to load classes dynamically, just like browsers load your applets and web servers load
your servlets.

25.4.2 Solution

Use java.lang.class.forName("ClassName"); and the class's newInstance()
method.

25.4.3 Discussion

Suppose you are using Java as an extension language in a larger application and want customer
developers to be able to write Java classes that can run in the context of your application. You

 688

would probably want to define a small set of methods that these extension programs would have,
and that you could call for such purposes as initialization, operation, and termination. The best
way to do this is, of course, to publish a given possibly abstract class that provides those
methods, and get the developers to subclass from it. Sound familiar? It should. This is just how
web browsers such as Netscape allow the deployment of applets.

We'll leave the thornier issues of security and of loading a class file over a network socket for
now, and assume that the user can install the classes into the application directory or into a
directory that appears in CLASSPATH at the time the program is run. First, let's define our class.
We'll call it Cooklet (see Example 25-4), to avoid infringing on the overused word applet. And
we'll initially take the easiest path from ingredients to cookies before we complicate it.

Example 25-4. Cooklet.java

/** A simple class, just to provide the list of methods that
 * users need to provide to be usable in our application.
 * Note that the class is abstract so you must subclass it,
 * but the methods are non-abstract so you don't have to provide
 * dummy versions if you don't need a particular functionality.
 */
public abstract class Cooklet {

 /** The initialization method. The Cookie application will
 * call you here (AFTER calling your no-argument constructor)
 * to allow you to initialize your code
 */
 public void initialize() {
 }

 /** The work method. The cookie application will call you
 * here when it is time for you to start cooking.
 */
 public void work() {
 }

 /** The termination method. The cookie application will call you
 * here when it is time for you to stop cooking and shut down
 * in an orderly fashion.
 */
 public void terminate() {
 }
}

Now, since we'll be baking, err, making this available to other people, we'll probably want to cook
up a demonstration version available too; see Example 25-5.

Example 25-5. DemoCooklet.java

public class DemoCooklet extends Cooklet {
 public void work() {
 System.out.println("I am busy baking cookies.");
 }
 public void terminate() {
 System.out.println("I am shutting down my ovens now.");
 }

 689

}

But how does our application use it? Once we have the name of the user's class, we need to
create a Class object for that class. This can be done easily using the static method
Class.forName(). Then we can create an instance of it using the Class object's
newInstance() method; this will call the class's no-argument constructor. Then we simply
cast the newly constructed object to our Cooklet class, and we can call its methods! It actually
takes longer to describe this code than to look at the code, so let's do that now; see Example
25-6.

Example 25-6. Cookies.java

/**
 * This is the part of the Cookies application that loads
 * the user-defined subclass.
 */
public class Cookies {
 public static void main(String[] argv) {
 System.out.println("Cookies Application Version 0.0");
 Cooklet cooklet = null;
 String cookletClassName = argv[0];
 try {
 Class cookletClass = Class.forName(cookletClassName);
 Object cookletObject = cookletClass.newInstance();
 cooklet = (Cooklet)cookletObject;
 } catch (Exception e) {
 System.err.println("Error " + cookletClassName + e);
 }
 cooklet.initialize();
 cooklet.work();
 cooklet.terminate();
 }
}

And if we run it?

$ javac Cookies DemoCooklet
Cookies Application Version 0.0
I am busy baking cookies.
I am shutting down my ovens now.
$

Of course, this version has rather limited error handling. But you already know how to fix that.
Your ClassLoader can also place classes into a package by constructing a Package object;
you should do this if loading any reasonable-sized set of application classes.

25.5 Constructing a Class from Scratch

25.5.1 Problem

You need to load a class and run its methods.

25.5.2 Solution

 690

Write and use your own ClassLoader.

25.5.3 Discussion

A ClassLoader , of course, is a program that loads classes. There is one class loader built into
the Java Virtual Machine, but your application can create additional ones as needed. Learning to
write and run a working class loader and use it to load a class and run its methods is a nontrivial
exercise. In fact, you rarely need to write a class loader, but knowing how is helpful in
understanding how the JVM finds classes, creates objects, and calls methods.

ClassLoader itself is abstract; you must subclass it to provide a loadClass() method that
loads classes as you wish. It can load the bytes from a network connection, a local disk, RAM, a
serial port, or anywhere else. Or you can construct the class file in memory yourself if you have
access to a compiler.

You must call this class loader's loadClass() method for any classes you wish to load from it.
Note that it will be called to load all classes required for classes you load (parent classes that
aren't already loaded, for example). However, the JVM will still load classes that you instantiate
with the new operator "normally" via CLASSPATH.

To write a class loader, you need to subclass ClassLoader and implement at least
findClass() and loadClass(). The loadClass() method needs to get the class file
into a byte array (typically by reading it), convert the array into a Class object, and return the
result.

What? That sounds a bit like "And Then a Miracle Occurs . . . " And it is. The miracle of class
creation, however, happens down inside the JVM, where you don't have access to it. Instead,
your ClassLoader has to call the final defineClass() method in your superclass (which
is java.lang.ClassLoader). This is illustrated in Figure 25-1, where a stream of bytes
containing a hypothetical Chicken class is converted into a ready-to-run Chicken class in the
JVM by calling the defineClass() method.

Figure 25-1. ClassLoader in action

25.5.3.1 What next?

 691

To use your ClassLoader subclass, you need to instantiate it and call its loadClass()
method with the name of the class you want to load. This gives you a Class object for the named
class; the Class object in turn lets you construct instances, find and call methods, etc. Refer
back to Section 25.3.

25.6 Performance Timing

25.6.1 Problem

You need to know how long a Java program takes to run.

25.6.2 Solution

Call System.currentTimeMillis() before and after invoking the target class dynamically.

25.6.3 Discussion

The simplest technique is to save the JVM's accumulated time before and after dynamically
loading a main program, and calculating the difference between those times. Code to do just this
is presented in Example 25-7; for now, just remember that we have a way of timing a given
Java class.

One way of measuring the efficiency of a particular operation is to run it many times in isolation.
The overall time the program takes to run thus approximates the total time of many invocations of
the same operation. Gross numbers like this can be compared if you want to know which of two
ways of doing something is more efficient. Consider the case of string concatenation versus
println(). The code:

println("Time is " + n.toString() + " seconds");

creates a StringBuffer, appends the string "Time is ", the value of n as a string, and "
seconds", and finally converts the finished StringBuffer to a String and passes that to
println(). Suppose you have a program that does a lot of this, such as a Java servlet (see
Chapter 18) that creates a lot of HTML this way, and you expect (or at least hope) that your web
site will be sufficiently busy that doing this efficiently will make a difference. There are two ways of
thinking about this:

• Theory A: This string concatenation is inefficient.
• Theory B: String concatenation doesn't matter; println() is inefficient too.

A proponent of Theory A might answer that since println() just puts stuff into a buffer, it
really doesn't matter, and that the string concatenation is the expensive part.

How to decide between Theory A and Theory B? Assume you are willing to write a simple test
program that tests both theories. One way of proceeding might be to disassemble the resulting
bytecodes and count the CPU cycles each uses. This is an interesting theoretical exercise, and a
good subject for a computer science dissertation. But we need the results quickly, so we will just
write a simple program both ways and time it. StringPrintA is the timing program for Theory
A:

public class StringPrintA {

 692

 public static void main(String[] argv) {
 Object o = "Hello World";
 for (int i=0; i<100000; i++) {
 System.out.println("<p>" + o.toString() + "</p>");
 }
 }
}

StringPrintAA is the same, but explicitly uses a StringBuffer for the string concatenation.
StringPrintB is the tester for Theory B:

public class StringPrintB {
 public static void main(String[] argv) {
 Object o = "Hello World";
 for (int i=0; i<100000; i++) {
 System.out.print("<p>");
 System.out.print(o.toString());
 System.out.print("</p>");
 System.out.println();
 }
 }
}

25.6.3.1 Timing results

I ran StringPrintA, StringPrintAA, and StringPrintB twice each on a single 400 MHz
Intel Celeron. Here are the results:

StringPrintA 17.23, 17.20 seconds

StringPrintAA 17.23, 17.23 seconds
StringPrintB 27.59, 27.60 seconds

Moral: Don't guess. If it matters, time it.

Another moral: Multiple calls to System.out.print() cost more than the same number of
calls to a StringBuffer's append() method, by a factor of 1.5 (or 150%). Theory B wins; the
extra println calls appear to save a string concatenation, but make the program take
substantially longer.

A shell script to run these timing tests appears in file stringprinttimer.sh in the online source.

25.6.3.2 Timing program

It's pretty easy to build a simplified time command in Java, given that you have
System.currentTimeMillis() to start with. Call Time.java, shown in Example 25-7,
before and after running a program, and you'll know how long it took. But remember that
System.currentTimeMillis() returns clock time, not necessarily CPU time. So you must
run it on a machine that isn't running a lot of background processes. And note also that I use
dynamic loading (see Section 25.4) to let you put the Java class name on the command line.

Example 25-7. Time.java

 693

import com.darwinsys.util.QuickTimeFormat;
import java.lang.reflect.*;

/**
 * Time the main method of another class, for performance tuning.
 */
public class Time {
 public static void main(String[] argv) throws Exception {
 // Instantiate target class, from argv[0]
 Class c = Class.forName(argv[0]);

 // Find its static main method (use our own argv as the
signature).
 Class[] classes = { argv.getClass() };
 Method main = c.getMethod("main", classes);

 // Make new argv array, dropping class name from front.
 String nargv[] = new String[argv.length - 1];
 System.arraycopy(argv, 1, nargv, 0, nargv.length);

 Object[] nargs = { nargv };

 System.err.println("Starting class " + c);

 // About to start timing run. Important to not do anything
 // (even a println) that would be attributed to the program
 // being timed, from here until we've gotten ending time.

 // Get current (i.e., starting) time
 long t0 = System.currentTimeMillis();

 // Run the main program
 main.invoke(null, nargs);

 // Get ending time, and compute usage
 long t1 = System.currentTimeMillis();

 long runTime = t1 - t0;

 System.err.println(
 "runTime=" + QuickTimeFormat.msToSecs(runTime));
 }
}

Of course, you can't directly compare the results from the operating system time command with
results from running this program. There is a rather large, but fairly constant, initialization
overhead -- the JVM startup and the initialization of Object and System.out, for example --
that is included in the former and excluded from the latter. One could even argue that my Time
program is more accurate, as it excludes this constant overhead. But as noted, it must be run on
a single-user, non-server machine to give repeatable results. And no fair running an editor in
another window while waiting for your timed program to complete!

25.7 Printing Class Information

25.7.1 Problem

 694

You want to print all the information about a class, similar to the way javap does.

25.7.2 Solution

Get a Class object, call its getFields() and getMethods(), and print the results.

25.7.3 Discussion

The JDK includes a program called javap, the Java Printer. Sun's JDK version normally prints the
outline of a class file -- a list of its methods and fields -- but can also print out the Java bytecodes
or machine instructions. The Kaffe package did not include a version of javap, so I wrote one and
contributed it (see Example 25-8). The Kaffe folk have expanded it somewhat, but it still works
basically the same. My version doesn't print the bytecodes; it behaves rather like Sun's behaves
when you don't give theirs any command-line options.

The getFields() and getMethods() methods return array of Field and Method
respectively; these are both in package java.lang.reflect. I use a Modifiers object to get
details on the permissions and storage attributes of the fields and methods. In many
implementations you can bypass this, and simply call toString() in each Field and Method
object. Doing it this way gives me a bit more control over the formatting.

Example 25-8. MyJavaP.java

import java.io.*;
import java.util.*;
import java.lang.reflect.*;

/**
 * JavaP prints structural information about classes.
 * For each class, all public fields and methods are listed.
 * "Reflectance" is used to look up the information.
 */
public class MyJavaP {

 /** A "Modifier" object, to decode modifiers of fields/methods */
 Modifier m = new Modifier();

 /** Simple main program, construct self, process each class name
 * found in argv.
 */
 public static void main(String[] argv) {
 MyJavaP pp = new MyJavaP();

 if (argv.length == 0) {
 System.err.println("Usage: javap className [...]");
 System.exit(1);
 } else for (int i=0; i<argv.length; i++)
 pp.doClass(argv[i]);
 }

 /** Format the fields and methods of one class, given its name.
 */
 protected void doClass(String className) {

 695

 try {
 Class c = Class.forName(className);
 System.out.println(m.toString(c.getModifiers()) + ' ' + c
+ " {");
 int i, mods;
 Field fields[] = c.getFields();
 for (i = 0; i < fields.length; i++) {
 if (!m.isPrivate(fields[i].getModifiers())
 && !m.isProtected(fields[i].getModifiers()))
 System.out.println("\t" + fields[i]);
 }

 Method methods[] = c.getMethods();
 for (i = 0; i < methods.length; i++) {
 if (!m.isPrivate(methods[i].getModifiers())
 && !m.isProtected(methods[i].getModifiers()))
 System.out.println("\t" + methods[i]);
 }
 } catch (ClassNotFoundException e) {
 System.err.println("Error: Class " +
 className + " not found!");
 } catch (Exception e) {
 System.err.println(e);
 } finally {
 System.out.println("}");
 }
 }
}

25.8 Program: CrossRef

We've all seen those books that consist entirely of listings of the Java API for version thus-and-
such of the JDK. I don't suppose you thought the authors of these works sat down and typed the
entire contents from scratch. As a programmer, you would have realized, I hope, that there must
be a way to obtain that information from Java. But you might not have realized how easy it is! If
you've read this chapter faithfully, you now know that there is one true way: make the computer
do the walking. Example 25-9 is a program that puts most of the techniques together. This
version generates a cross-reference listing, but by overriding the last few methods you could
easily convert it to print the information in any format you like, including an API Reference book.
You'd need to deal with the details of this or that publishing software -- FrameMaker, troff, TEX,
or whatever -- but that's the easy part.

This program makes fuller use of the reflection API than did JavaP in Section 25.7. It also uses
the java.util.zip classes (see Section 9.19) to crack the JAR archive containing the class
files of the API. Each class file found in the archive is loaded and listed; the listing part is similar
to JavaP.

Example 25-9. CrossRef.java

import java.io.*;
import java.util.*;
import java.util.zip.*;
import java.lang.reflect.*;

 696

/**
 * CrossRef prints a cross-reference about all classes named in argv.
 * For each class, all public fields and methods are listed.
 * "Reflectance" is used to look up the information.
 *
 * It is expected that the output will be post-processed e.g.,
 * with sort and awk/perl. Try:
 java CrossRef |
 uniq | # squeeze out polymorphic forms early
 sort | awk '$2=="method" { ... }' > crossref-methods.txt
 * The part in "{ ... }" is left as an exercise for the reader. :-(
 *
 */
public class CrossRef {
 /** Counter of fields/methods printed. */
 protected static int n = 0;

 /** A "Modifier" object, to decode modifiers of fields/methods */
 protected Modifier m = new Modifier();

 /** True if we are doing classpath, so only do java. and javax. */
 protected static boolean doingStandardClasses = true;

 /** Simple main program, construct self, process each .ZIP file
 * found in CLASSPATH or in argv.
 */
 public static void main(String[] argv) {
 CrossRef xref = new CrossRef();

 xref.doArgs(argv);
 }

 protected void doArgs(String[] argv) {

 if (argv.length == 0) {
 // No arguments, look in CLASSPATH
 String s = System.getProperties(
).getProperty("java.class.path");
 // break apart with path sep.
 String pathSep = System.getProperties().
 getProperty("path.separator");
 StringTokenizer st = new StringTokenizer(s, pathSep);
 // Process each classpath
 while (st.hasMoreTokens()) {
 String cand = st.nextToken();
 System.err.println("Trying path " + cand);
 if (cand.endsWith(".zip") || cand.endsWith(".jar"))
 processOneZip(cand);
 }
 } else {
 // We have arguments, process them as zip files
 doingStandardClasses = false;
 for (int i=0; i<argv.length; i++)
 processOneZip(argv[i]);
 }

 697

 System.err.println("All done! Found " + n + " entries.");
 System.exit(0);
 }

 /** For each Zip file, for each entry, xref it */
 public void processOneZip(String classes) {
 ArrayList entries = new ArrayList();

 try {
 ZipFile zippy =
 new ZipFile(new File(classes));
 Enumeration all = zippy.entries();
 // For each entry, get its name and put it into
"entries"
 while (all.hasMoreElements()) {

entries.add(((ZipEntry)(all.nextElement())).getName());
 }
 } catch (IOException err) {
 System.err.println("IO Error: " + err);
 return;
 }

 // Sort the entries (by class name)
 Collections.sort(entries);

 // Process the entries
 for (int i=0; i< entries.size(); i++) {
 doClass((String)entries.get(i));
 }
 }

 /** Format the fields and methods of one class, given its name.
 */
 protected void doClass(String zipName) {
 if (System.getProperties().getProperty("debug.names") !=
null)
 System.out.println("doClass(" + zipName + ");");

 // Ignore package/directory, other odd-ball stuff.
 if (zipName.endsWith("/")) {
 System.err.println("Starting directory " + zipName);
 return;
 }
 // Ignore META-INF stuff
 if (zipName.startsWith("META-INF/")) {
 return;
 }
 // Ignore images, HTML, whatever else we find.
 if (!zipName.endsWith(".class")) {
 System.err.println("Ignoring " + zipName);
 return;
 }
 // If doing CLASSPATH, Ignore com.sun.* which are "internal
API".
 if (doingStandardClasses && zipName.startsWith("com.sun")){
 return;

 698

 }

 // Convert the zip file entry name, like
 // java/lang/Math.class
 // to a class name like
 // java.lang.Math
 String className = zipName.replace('/', '.').
 substring(0, zipName.length() - 6); // 6 for ".class"
 if (System.getProperties().getProperty("debug.names") !=
null)
 System.err.println("ZipName " + zipName +
 "; className " + className);
 try {
 Class c = Class.forName(className);
 printClass(c);
 } catch (ClassNotFoundException e) {
 System.err.println("Error: Class " +
 className + " not found!");
 } catch (Exception e) {
 System.err.println(e);
 }
 // System.err.println("in gc...");
 System.gc();
 // System.err.println("done gc");
 }

 /**
 * Print the fields and methods of one class.
 */
 protected void printClass(Class c) {
 int i, mods;
 startClass(c);
 try {
 Object[] fields = c.getFields();
 Arrays.sort(fields);
 for (i = 0; i < fields.length; i++) {
 Field field = (Field)fields[i];
 if (!m.isPrivate(field.getModifiers())
 && !m.isProtected(field.getModifiers()))
 putField(field, c);
 else System.err.println("private field ignored: " +
field);
 }

 Method methods[] = c.getDeclaredMethods();
 // Arrays.sort(methods);
 for (i = 0; i < methods.length; i++) {
 if (!m.isPrivate(methods[i].getModifiers())
 && !m.isProtected(methods[i].getModifiers()))
 putMethod(methods[i], c);
 else System.err.println("pvt: " + methods[i]);
 }
 } catch (Exception e) {
 System.err.println(e);
 }
 endClass();
 }

 699

 /** put a Field's information to the standard output.
 * Marked protected so you can override it (hint, hint).
 */
 protected void putField(Field fld, Class c) {
 println(fld.getName() + " field " + c.getName() + " ");
 ++n;
 }
 /** put a Method's information to the standard output.
 * Marked protected so you can override it (hint, hint).
 */
 protected void putMethod(Method method, Class c) {
 String methName = method.getName();
 println(methName + " method " + c.getName() + " ");
 ++n;
 }
 /** Print the start of a class. Unused in this version,
 * designed to be overridden */
 protected void startClass(Class c) {
 }

 /** Print the end of a class. Unused in this version,
 * designed to be overridden */
 protected void endClass() {
 }

 /** Convenience routine, short for System.out.println */
 protected final void println(String s) {
 System.out.println(s);
 }
}

You probably noticed the methods startClass() and endClass(), which are null. These
are placeholders designed to make it easy for subclassing when you need to write something at
the start and end of each class. One example might be a fancy text formatting application in
which you need to output a bold header at the beginning of each class. Another would be XML
(see Chapter 21), where you'd want to write a tag like <class> at the front of each class, and
</class> at the end. Example 25-10 is, in fact, a working XML-specific subclass that
generates (limited) XML for each field and method.

Example 25-10. CrossRefXML.java

import java.io.*;
import java.lang.reflect.*;

/** This class subclasses CrossRef to output the information in XML.
 */
public class CrossRefXML extends CrossRef {

 public static void main(String[] argv) {
 CrossRef xref = new CrossRefXML();
 xref.doArgs(argv);
 }

 /** Print the start of a class.
 */

 700

 protected void startClass(Class c) {
 println("<class><classname>" + c.getName() + "</classname>");
 }

 protected void putField(Field fld, Class c) {
 println("<field>" + fld + "</field>");
 ++n;
 }

 /** put a Method's information to the standard output.
 * Marked protected so you can override it (hint, hint).
 */
 protected void putMethod(Method method, Class c) {
 println("<method>" + method + "</method>");
 ++n;
 }

 /** Print the end of a class.
 */
 protected void endClass() {
 println("</class>");
 }
}

By the way, if you publish a book using either of these and get rich, "Remember, remember me!"

25.9 Program: AppletViewer

Another JDK tool that can be replicated is the AppletViewer. This uses the reflection package to
load a class that is subclassed from Applet, instantiate an instance of it, and add() this to a
frame at a given size. This is a good example of reflection in action: you can use these
techniques to dynamically load any subclass of a given class. Suppose we have a simple applet
like the HelloApplet in Example 25-11.

Example 25-11. HelloApplet.java

import java.applet.*;
import java.awt.*;
import javax.swing.*;
import java.awt.event.*;

/**
 * HelloApplet is a simple applet that toggles a message
 * when you click on a Draw button.
 */
public class HelloApplet extends JApplet {

 /** The flag which controls drawing the message. */
 protected boolean requested;

 /** init() is an Applet method called by the browser to
initialize */
 public void init() {
 JButton b;
 requested = false;

 701

 Container cp = (Container)getContentPane();
 cp.setLayout(new FlowLayout());
 cp.add(b = new JButton("Draw/Don't Draw"));
 b.addActionListener(new ActionListener() {
 /* Button - toggle the state of the "requested" flag, to
draw or
 * not to draw.
 */
 public void actionPerformed(ActionEvent e) {
 String arg = e.getActionCommand();
 // Invert the state of the draw request.
 requested = !requested;
 do_the_work();
 }
 });
 }

 /** paint() is an AWT Component method, called when the
 * component needs to be painted.
 */
 public void do_the_work() {
 /* If the Draw button is selected, draw something */
 if (requested) {
 showStatus("Welcome to Java!");
 } else {
 showStatus(""); // retract welcome? :-)
 }
 }
}

If we run it in my AppletViewer,[1] it shows up as a window with just the Draw button showing; if
you press the button an odd number of times, the screen shows the welcome label (Figure 25-
2).

[1] My AppletViewer doesn't parse the HTML as the real one does, so you invoke it with just the name of the
Applet subclass on its command line. The size is therefore hardcoded, at least until somebody gets around
to writing code to extract the CLASS, WIDTH, and HEIGHT attributes from the APPLET tag in the HTML
page like the real McCoy does.

Figure 25-2. My AppletViewer showing simple applet

Example 25-12 is the code for the main part of the AppletViewer, which creates a JFrame, and
then loads the Applet class dynamically and adds it to the JFrame.

Example 25-12. AppletViewer.java main program

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

 702

import java.applet.*;
import java.lang.reflect.*;
import java.net.*;
import java.util.*;

/*
 * AppletViewer - a simple Applet Viewer program.
 */
public class AppletViewer {
 /** The main Frame of this program */
 JFrame f;
 /** The AppletAdapter (gives AppletStub, AppletContext, showStatus)
*/
 static AppletAdapter aa = null;
 /** The name of the Applet subclass */
 String appName = null;
 /** The Class for the actual applet type */
 Class ac = null;
 /** The Applet instance we are running, or null. Can not be a
JApplet
 * until all the entire world is converted to JApplet. */
 Applet ai = null;
 /** The width of the Applet */
 final int WIDTH = 250;
 /** The height of the Applet */
 final int HEIGHT = 200;

 /** Main is where it all starts.
 * Construct the GUI. Load the Applet. Start it running.
 */
 public static void main(String[] av) {
 new AppletViewer(av.length==0?"HelloApplet":av[0]);
 }

 /** Construct the GUI for an Applet Viewer */
 AppletViewer(String appName) {
 super();

 this.appName = appName;

 f = new JFrame("AppletViewer");
 f.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 f.setVisible(false);
 f.dispose();
 System.exit(0);
 }
 });
 Container cp = f.getContentPane();
 cp.setLayout(new BorderLayout());

 // Instantiate the AppletAdapter which gives us
 // AppletStub and AppletContext.
 if (aa == null)
 aa = new AppletAdapter();

 // The AppletAdapter also gives us showStatus.

 703

 // Therefore, must add() it very early on, since the Applet's
 // Constructor or its init() may use showStatus()
 cp.add(BorderLayout.SOUTH, aa);

 showStatus("Loading Applet " + appName);

 loadApplet(appName , WIDTH, HEIGHT); // sets ac and ai
 if (ai == null)
 return;

 // Now right away, tell the Applet how to find showStatus et
al.
 ai.setStub(aa);

 // Connect the Applet to the Frame.
 cp.add(BorderLayout.CENTER, ai);

 Dimension d = ai.getSize();
 d.height += aa.getSize().height;
 f.setSize(d);
 f.setVisible(true); // make the Frame and all in it
appear

 showStatus("Applet " + appName + " loaded");

 // Here we pretend to be a browser!
 ai.init();
 ai.start();
 }

 /*
 * Load the Applet into memory. Should do caching.
 */
 void loadApplet(String appletName, int w, int h) {
 // appletName = ... extract from the HTML CODE= somehow ...;
 // width = ditto
 // height = ditto
 try {
 // get a Class object for the Applet subclass
 ac = Class.forName(appletName);
 // Construct an instance (as if using no-argument
constructor)
 ai = (Applet) ac.newInstance();
 } catch(ClassNotFoundException e) {
 showStatus("Applet subclass " + appletName + " did not
load");
 return;
 } catch (Exception e){
 showStatus("Applet " + appletName + " did not
instantiate");
 return;
 }
 ai.setSize(w, h);
 }

 public void showStatus(String s) {
 aa.getAppletContext().showStatus(s);

 704

 }
}

For Applet methods to work, two additional classes must be defined: AppletStub and
AppletContext. The AppletStub is the tie-in between the applet and the browser, and the
AppletContext is a set of methods used by the applet. Although in a real browser they are
probably implemented separately, I have combined them into one class (see Example 25-13).
Note that the scope of applets that will work without throwing exceptions is rather limited, since so
many of the methods here are at present dummied out. This AppletViewer is not a full
replacement for Sun's AppletViewer; it has only been tested with a basic Hello World applet, and
is simply provided as a starting point for those who want to fill in the gaps and make a full-blown
applet viewer program.

Example 25-13. AppletAdapter.java, partial AppletStub and AppletContext

import java.awt.*;
import java.awt.event.*;
import java.applet.*;
import java.net.*;
import java.util.*;

/*
 * AppletAdaptor: partial implementation of AppletStub and
AppletContext.
 *
 * This code is far from finished, as you will see.
 *
 */
public class AppletAdapter extends Panel implements AppletStub,
AppletContext {
 /** The status window at the bottom */
 Label status = null;

 /** Construct the GUI for an Applet Status window */
 AppletAdapter() {
 super();

 // Must do this very early on, since the Applet's
 // Constructor or its init() may use showStatus()
 add(status = new Label());

 // Give "status" the full width
 status.setSize(getSize().width, status.getSize().height);

 showStatus("AppletAdapter constructed"); // now it can be
said
 }

 /****************** AppletStub ***********************/
 /** Called when the applet wants to be resized. */
 public void appletResize(int w, int h) {
 // applet.setSize(w, h);
 }

 /** Gets a reference to the applet's context. */
 public AppletContext getAppletContext() {

 705

 return this;
 }

 /** Gets the base URL. */
 public URL getCodeBase() {
 return getClass().getResource(".");
 }

 /** Gets the document URL. */
 public URL getDocumentBase() {
 return getClass().getResource(".");
 }

 /** Returns the value of the named parameter in the HTML tag. */
 public String getParameter(String name) {
 String value = null;
 return value;
 }
 /** Determines if the applet is active. */
 public boolean isActive() {
 return true;
 }

 /************************ AppletContext ************************/

 /** Finds and returns the applet with the given name. */
 public Applet getApplet(String an) {
 return null;
 }

 /** Finds all the applets in the document */
 public Enumeration getApplets() {
 class AppletLister implements Enumeration {
 public boolean hasMoreElements() {
 return false;
 }
 public Object nextElement() {
 return null;
 }
 }
 return new AppletLister();
 }

 /** Create an audio clip for the given URL of a .au file */
 public AudioClip getAudioClip(URL u) {
 return null;
 }

 /** Look up and create an Image object that can be paint()ed */
 public Image getImage(URL u) {
 return null;
 }

 /** Request to overlay the current page with a new one - ignored */
 public void showDocument(URL u) {
 }

 706

 /** as above but with a Frame target */
 public void showDocument(URL u, String frame) {
 }

 /** Called by the Applet to display a message in the bottom line */
 public void showStatus(String msg) {
 if (msg == null)
 msg = "";
 status.setText(msg);
 }
}

It is left as an exercise for the reader to implement getImage() and other methods in terms of
other recipes used in this book.

25.9.1 See Also

We have not investigated all the ins and outs of reflection or the ClassLoader mechanism, but I
hope I've given you a basic idea of how it works.

Perhaps the most important omissions are SecurityManager and ProtectionDomain. Only
one SecurityManager can be installed in a given instance of JVM (e.g., to prevent a malicious
applet from providing its own!). A browser, for example, provides a SecurityManager that is far
more restrictive than the standard one. Writing such a SecurityManager is left as an exercise
for the reader, but an important exercise for anyone planning to load classes over the Internet!
(For more information about security managers and the Java Security APIs, see O'Reilly's Java
Security, by Scott Oaks.) A ProtectionDomain can be provided with a ClassLoader to
specify all the permissions needed for the class to run.

I've also left unexplored some other topics in the JVM; see the O'Reilly books The Java Virtual
Machine and The Java Language, or Sun's JVM Specification document
(http://java.sun.com/docs/books/vmspec/) for a lifetime of reading enjoyment and
edification!

The Byte Code Engineering Library (BCEL) is a third-party toolkit for building and manipulating
class files. BCEL was written by Markus Dahm and is available for free from
http://bcel.sourceforge.net . Source code is included.

 707

Chapter 26. Using Java with Other Languages

26.1 Introduction

26.2 Running a Program

26.3 Running a Program and Capturing Its Output

26.4 Mixing Java and Scripts with BSF

26.5 Blending in Native Code (C/C++)

26.6 Calling Java from Native Code

26.7 Program: DBM

26.1 Introduction

Java has several methods of running programs written in other languages. You can invoke a
compiled program or executable script using Runtime.exec() , as I'll describe in Section
26.2. Or you can drop down to C level with Java's "native code" mechanism, and call compiled
functions written in C/C++. From there, you can call to functions written in just about any
language. Not to mention that you can contact programs written in any language over a socket
(see Chapter 15), with HTTP services (see Chapter 17), or with Java clients in RMI or CORBA
clients in a variety of languages (see Chapter 22).

There is an element of system dependency here, of course. You can only run MS-Windows
applications under MS-Windows, and Unix applications under Unix. So some of the recipes in this
chapter aren't portable, though in a few cases I try to make them at least run on MS-Windows or
Unix.

26.2 Running a Program

26.2.1 Problem

You want to run a program.

26.2.2 Solution

Use one of the exec() methods in the java.lang.Runtime class.

26.2.3 Discussion

The exec() method in the Runtime class lets you run an external program. The command line
you give will be broken into strings by a simple StringTokenizer (Section 3.3) and passed
on to the operating system's "execute a program" system call. As a simple example, here is a
simple program that uses exec() to run kwrite, a windowed text editor program.[1] On MS-

 708

Windows, you'd have to change the name to notepad or wordpad, possibly including the full
pathname, e.g., c:\\WINDOWS\\NOTEPAD.EXE (double backslashes because the backslash is
special in Java strings).

[1] kwrite is Unix-specific; it's a part of the K Desktop Environment (KDE). See http://www.kde.org .

// file ExecDemoSimple.java
public class ExecDemoSimple {
 public static void main(String av[]) throws java.io.IOException {

 // Run the "notepad" program or a similar editor
 Process p = Runtime.getRuntime().exec("kwrite");

 }
}

When you compile and run it, the appropriate editor window appears:

$ jr ExecDemoSimple
+ jikes +E -d . ExecDemoSimple.java
+ java ExecDemoSimple # causes a KWrite window to appear.
$

Example 26-1 runs the MS-Windows or Unix version of Netscape, assuming Netscape was
installed in the default directory. It passes as an argument the name of a help file, offering a kind
of primitive "help" mechanism, as displayed in Figure 26-1.

Example 26-1. ExecDemoNS.java

import com.darwinsys.util.*;

import java.awt.event.*;
import javax.swing.*;

import java.io.*;
import java.net.*;
import java.awt.*;

/**
 * ExecDemoNS shows how to execute a 32-bit Windows program from within
Java.
 */
public class ExecDemoNS extends JFrame {
 /** The name of the help file. */
 protected final static String HELPFILE = "./help/index.html";

 /** The path to the Netscape binary */
 protected static String netscape;

 /** A process object tracks one external running process */
 Process p;

 /** main - instantiate and run */
 public static void main(String av[]) throws Exception {
 new ExecDemoNS().setVisible(true);

 709

 }

 /** Constructor - set up strings and things. */
 public ExecDemoNS() {
 super("ExecDemo: Netscape");
 String osname = System.getProperty("os.name");
 if (osname == null)
 throw new IllegalArgumentException("no os.name");
 netscape = // Windows or Unix only for now, sorry Mac fans
 (osname.toLowerCase().indexOf("windows")!=-1) ?
 "c:/program
files/netscape/communicator/program/netscape.exe" :
 "/usr/local/netscape/netscape";

 Container cp = getContentPane();
 cp.setLayout(new FlowLayout());
 JButton b;
 cp.add(b=new JButton("Exec"));
 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 doHelp();
 }
 });
 cp.add(b=new JButton("Wait"));
 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 doWait();
 }
 });
 cp.add(b=new JButton("Exit"));
 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 System.exit(0);
 }
 });
 pack();
 }

 /** Start the help, in its own Thread. */
 public void doHelp() {

 new Thread() {
 public void run() {

 try {
 // Get the URL for the Help File
 URL helpURL = this.getClass().getClassLoader().
 getResource(HELPFILE);

 // Start Netscape from the Java Application. A Java
 // Applet would not be allowed to, nor need to :-)

 p = Runtime.getRuntime().exec(netscape + " " +
helpURL);

 Debug.println("trace", "In main after exec");

 710

 } catch (Exception ex) {
 JOptionPane.showMessageDialog(ExecDemoNS.this,
 "Error" + ex, "Error",
 JOptionPane.ERROR_MESSAGE);
 }
 }
 }.start();

 }

 public void doWait() {
 try {
 p.waitFor(); // wait for process to complete
 Debug.println("trace", "Process is done");
 } catch (Exception ex) {
 JOptionPane.showMessageDialog(this,
 "Error" + ex, "Error",
 JOptionPane.ERROR_MESSAGE);
 }
 }

}

Figure 26-1. ExecDemoNS in action

26.3 Running a Program and Capturing Its Output

26.3.1 Problem

You want to run a program but also capture its output.

26.3.2 Solution

 711

Use the Process object's getInputStream(); read and copy the contents to System.out
or wherever you want them.

26.3.3 Discussion

A program's standard and error output does not automatically appear anywhere. Arguably, there
should be an automatic way to make this happen. But for now, you need to add a few lines of
code to grab the program's output and print it:

// part of ExecDemoLs.java
p = Runtime.getRuntime().exec(PROGRAM);

// getInputStream gives an Input stream connected to
// the process p's standard output (and vice versa). We use
// that to construct a BufferedReader so we can readLine() it.
BufferedReader is =
 new BufferedReader(new InputStreamReader(p.getInputStream()));

while ((line = is.readLine()) != null)
 System.out.println(line);

This is such a common occurrence that I've packaged it up into a class called ExecAndPrint,
part of my package com.darwinsys.util . ExecAndPrint has several overloaded forms of
its run() method (see the documentation for details), but they all take at least a command, and
optionally an output file to which the command's output is written. Example 26-2 shows the
code for some of these methods.

Example 26-2. ExecAndPrint.java (partial listing)

/** Need a Runtime object for any of these methods */
protected static Runtime r = Runtime.getRuntime();

/** Run the command given as a String, printing its output to
System.out */
public static int run(String cmd) throws IOException {
 return run(cmd, new OutputStreamWriter(System.out));
}

/** Run the command given as a String, print its output to "out" */
public static int run(String cmd, Writer out) throws IOException {

 String line;

 Process p = r.exec(cmd);

 FileIO.copyFile(new InputStreamReader(p.getInputStream()), out,
true);
 try {
 p.waitFor(); // wait for process to complete
 } catch (InterruptedException e) {
 return -1;
 }
 return p.exitValue();
}

 712

As a simple example of using exec() directly along with ExecAndPrint, I'll create three
temporary files, list them (directory listing), and then delete them. When I run the
ExecDemoFiles program, it lists the three files it has created:

-rw------- 1 ian wheel 0 Jan 29 14:29 file1
-rw------- 1 ian wheel 0 Jan 29 14:29 file2
-rw------- 1 ian wheel 0 Jan 29 14:29 file3

Its source code is in Example 26-3.

Example 26-3. ExecDemoFiles.java

// Get and save the Runtime object.
Runtime rt = Runtime.getRuntime();

// Create three temporary files
rt.exec("mktemp file1");
rt.exec("mktemp file2");
rt.exec("mktemp file3");

// Run the "ls" (directory lister) program
// with its output printed back to us.
String[] args = { "ls", "-l", "file1", "file2", "file3" };
ExecAndPrint.run(args);

rt.exec("rm file1 file2 file3");

A process isn't necessarily destroyed when the Java program that created it exits or bombs out.
Simple text-based programs will be, but window-based programs like kwrite, Netscape, or even a
Java-based JFrame application will not. For example, our ExecDemoNS program started
Netscape, and when the Exit button is pressed, ExecDemoNS exits but Netscape stays running.
What if you want to be sure a process has completed? The Process object has a waitFor()
method that lets you do so, and an exitValue() that tells you the "return code" from the
process. Finally, should you wish to forcibly terminate the other process, you can do so with the
Process object's destroy() method, which takes no argument and returns no value.
Example 26-4 is ExecDemoWait , a program that runs whatever program you name on the
command line (along with arguments), captures the program's standard output, and waits for the
program to terminate.

Example 26-4. ExecDemoWait.java

// A Runtime object has methods for dealing with the OS
Runtime r = Runtime.getRuntime();
Process p; // Process tracks one external native process
BufferedReader is; // reader for output of process
String line;

// Our argv[0] contains the program to run; remaining elements
// of argv contain args for the target program. This is just
// what is needed for the String[] form of exec.
p = r.exec(argv);

System.out.println("In Main after exec");

 713

// getInputStream gives an Input stream connected to
// the process p's standard output. Just use it to make
// a BufferedReader to readLine() what the program writes out.
is = new BufferedReader(new InputStreamReader(p.getInputStream()));

while ((line = is.readLine()) != null)
 System.out.println(line);

System.out.println("In Main after EOF");
try {
 p.waitFor(); // wait for process to complete
} catch (InterruptedException e) {
 return;
}
System.err.println("Process done, exit status was " + p.exitValue());
return;

26.3.4 See Also

You wouldn't normally use any form of exec() to run one Java program from another in this
way; instead, you'd probably create it as a thread within the same process, as this is generally
quite a bit faster (the Java interpreter is already up and running, so why wait for another copy of it
to start up?). See Chapter 24.

There isn't anything special to say about running Perl scripts, per se. However, two free packages
-- perljvm and PerlCaffeine -- allow you to compile Perl source into Java bytecode. This code can
then be interpreted at full speed by any JVM interpreter or Java runtime. If you are a Perl user,
you can probably find these modules on CPAN, the Comprehensive Perl Archive Network.

26.4 Mixing Java and Scripts with BSF

26.4.1 Problem

You want to interface Java components to an existing scripting language.

26.4.2 Solution

Use the Bean Scripting Framework (BSF).

26.4.3 Discussion

Many scripting languages are used in the computing field today: VB, Perl, Python, JavaScript,
Tcl/TK, REXX, and others. A project that originated at IBM, the Bean Scripting Framework (BSF)
aims to provide a way to allow all of them to interoperate with Java.

The BSF consists of a management API, an engine API for driving different scripting languages,
and a series of plug-ins for different scripting languages. The management API lets you either
evaluate an expression in the given scripting language, such as "2+2" (which is so simple as to
be valid in most supported languages), or run a script stored in a script file. In this example I'll use
JPython, a pure-Java (certified) implementation of the scripting language Python (see
http://www.python.org or the O'Reilly book Learning Python).

 714

While it is convenient (and efficient) to run JPython in the same JVM as the calling program, this
is not by any means a requirement; for example, it is possible to use BSF with scripting
languages written in some native language. BSF and the scripting plug-in are responsible for
dealing with whatever "plumbing" -- external connections or processes -- this requires. In fact,
BSF currently supports the languages listed in Table 26-1.

Table 26-1. Languages supported by BSF

Language Description
JPython Java implementation of Python
Jacl Java implementation/interface for Tcl

Bean Markup Language (BML) Related language, from IBM
LotusXSL XML stylesheets (see Section 21.2)
NetRexx REXX variant
Netscape Rhino JavaScript implementation

Pnuts Scripting language for accessing Java APIs
Microsoft Active Scripting Format (MASF) Microsoft analog of BSF

BSF could also support MacOS Apple Scripting or almost any other language, though I don't
know of an implementation at present.

Example 26-5 uses JPython to evaluate and print the value of 22/7, a crude approximation of
Math.PI, using the management API's eval() function.

Example 26-5. BSFSample.java

import com.ibm.cs.util.*;
import com.ibm.bsf.*;
import java.io.*;

/** Sample of using Bean Scripting Framework with JPython */
public class BSFSample {
 public static void main(String[] args) {
 BSFManager manager = new BSFManager();

 // register scripting language
 String[] fntypes = { ".py" };
 manager.registerScriptingEngine("jpython",
 "com.ibm.bsf.engines.jpython.JPythonEngine", fntypes);

 try {
 BSFEngine jpythonengine =
manager.loadScriptingEngine("jpython");

 // try an expression
 Object r = manager.eval("jpython", "testString", 0, 0,
"22.0/7");
 System.out.println("Result type is " +
r.getClass().getName());
 System.out.println("Result value is " + r);
 } catch (Exception ex) {
 System.err.println(ex.toString());
 }

 715

 System.out.println("Scripting demo done.");
 return;
 }
}

This program prints the following output:

$ java BSFSample
'import exceptions' failed; using string-based exceptions
Result type is org.python.core.PyFloat
Result value is 3.142857142857143
Scripting demo done.
$

The exceptions failure is probably due to my having installed JPython in a non-standard location
and not setting the environment variable(s) needed to find it. Further, the first time you run it,
JPython spits out a bunch of nattering about your CLASSPATH, one line for each JAR file that it
finds. These can be a bit surprising when they pop up from a script, but JPython doesn't seem to
know or care whether it's being run interactively or dynamically.

packageManager: processing new jar, "/usr/local/java/swingall.jar"

The following longer example uses the LabelText bean from Section 23.8 and a push button
to run a Python script that collects the text from the LabelText instance and displays it on the
standard output. Here is the little script, buttonhandler.py:

print "Hello";
print bean.getText();

When I ran this, I typed the famous words that Alexander Graham Bell apparently sent to his
assistant Watson, and had the Java program send them to the Python script.

Sure enough, when I clicked on the button, I got this on the standard output (as shown in Figure
26-2):

Script output: -->
Hello
Mr. Watson, come here
<-- End of Script output.

Figure 26-2. BSFSample in action

Nothing you couldn't do in Java, of course, but in this example the LabelText bean is registered
with the BSF as a bean, and the JButton's action handler runs a script that gets that text and
displays it. Example 26-6 shows the source code for the script-using program.

Example 26-6. BSFAction.java

 716

import com.ibm.cs.util.*;
import com.ibm.bsf.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;

/** Longer sample of using Bean Scripting Framework with JPython */
public class BSFAction {
 protected String FILENAME = "buttonhandler.py";
 protected BSFManager manager;
 protected BSFEngine jpythonengine;
 protected String language;
 protected String script;

 public static void main(String[] args) {
 new BSFAction();
 }

 BSFAction() {

 // Construct the Bean instance
 LabelText bean = new LabelText("Message to Python script");

 try {
 manager = new BSFManager();

 // register scripting language
 String[] fntypes = { ".py" };
 manager.registerScriptingEngine("jpython",
 "com.ibm.bsf.engines.jpython.JPythonEngine", fntypes);
 jpythonengine = manager.loadScriptingEngine("jpython");

 // Tell BSF about the bean.
 manager.declareBean("bean", bean, LabelText.class);

 // Read the script file into BSF
 language = manager.getLangFromFilename(FILENAME);
 script = IOUtils.getStringFromReader(
 new FileReader(FILENAME));

 } catch (Exception ex) {
 System.err.println(ex.toString());
 System.exit(0);
 }

 System.out.println("Scripting setup done, building GUI.");

 final JFrame jf = new JFrame(getClass().getName());

 Container cp = jf.getContentPane();
 cp.setLayout(new FlowLayout());

 cp.add(bean); // add the LabelText

 JButton b = new JButton("Click me!");
 cp.add(b); // and the button under it.

 717

 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 try {

 // When the button is pressed, run the script.
 System.out.println("Script output: -->");
 manager.exec(language, FILENAME, 0, 0, script);
 System.out.println("<-- End of Script output.");
 } catch (BSFException bse) {
 JOptionPane.showMessageDialog(jf,
 "ERROR: " + bse, "Script Error",
 JOptionPane.ERROR_MESSAGE);
 }
 }
 });

 // A Quit button at the bottom
 JButton qb = new JButton("Quit");
 cp.add(qb);
 qb.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 System.exit(0);
 }
 });

 // Routine JFrame setup
 jf.pack();
 jf.setVisible(true);
 }
}

26.4.4 See Also

Information on the Bean Scripting Framework is currently located on IBM's alphaWorks web site,
under http://oss.software.ibm.com/developerworks/projects/bsf/.

JPython has been taken under a new umbrella and renamed Jython; see
http://www.jython.org.

There are many other projects that aim to blend Java with other languages. As a single example,
check out the OmegaHat project's interface at http://www.omegahat.org/RSJava/. R, itself a
clone of S (http://cm.bell-labs.com/cm/ms/departments/sia/S/) is the statistical package
used to produce the charts back in Figure 5-1. This interface lets you use Java inside R or S,
and also to call R or S from Java code.

26.5 Blending in Native Code (C/C++)

26.5.1 Problem

You wish to call native C/C++ functions from Java, either for efficiency or to access hardware- or
system-specific features.

26.5.2 Solution

 718

Use JNI, the Java Native Interface.

26.5.3 Discussion

Java lets you load native or compiled code into your Java program. Why would you want to do
such a thing? One reason might be to access OS-dependent functionality. Another is speed:
native code will likely run faster than Java, at least at present. Like everything else in Java, this
mechanism is subject to security restrictions; for example, applets are not allowed to access
native code.

The native code language bindings are defined for code that has been written in the C or C++
language. If you need to access a language other than C/C++, write a bit of C/C++ and have it
pass control to other functions or applications, using any mechanism defined by your operating
system.

Due to such system-dependent features as the interpretation of header files and the allocation of
the processor's general-purpose registers, your native code may need to be compiled by the
same C compiler used to compile the Java runtime for your platform. For example, on Solaris you
can use SunPro C, or maybe gcc. On Win32 platforms, use Microsoft Visual C++ Version 4.x or
higher (32 bit). For other platforms, see your Java vendor's documentation.

Also note that the details in this section are for Java 1.1's Java Native Interface (JNI) that differs
in some details from 1.0 and from Microsoft's native interface.

The steps to call native code are summarized in the following sidebar and detailed below.

Ian's Basic Steps: Java Calling Native Code

1. Write Java code that calls a native method.
2. Compile this Java code.
3. Create an .h file using javah.
4. Write a C function that does the work.
5. Compile the C code into a loadable object.
6. Try it!

The first step is to write Java code that calls a native method. To do this, use the keyword
native to indicate that the method is native, and provide a static code block that loads your
native method using System.loadLibrary(). (The dynamically loadable module is created
in Step 5.) Static blocks are executed when the class containing them is loaded; loading the
native code here ensures it is in memory when needed!

Object variables that your native code may modify should carry the volatile modifier. The file
HelloWorld.java , shown in Example 26-7, is a good starting point.

Example 26-7. HelloWorld.java

/**
 * A trivial class to show Java Native Interface 1.1 usage from Java.
 */
public class HelloWorld {

 719

 int myNumber = 42; // used to show argument passing

 // declare native class
 public native void displayHelloWorld();

 // Application main, call its display method
 public static void main(String[] args) {
 System.out.println("HelloWorld starting; args.length="+
 args.length+"...");
 for (int i=0; i<args.length; i++)
 System.out.println("args["+i+"]="+args[i]);
 HelloWorld hw = new HelloWorld();
 hw.displayHelloWorld(); // call the native function
 System.out.println("Back in Java, \"myNumber\" now " +
hw.myNumber);
 }

 // Static code blocks are executed once, when class file is loaded
 static {
 System.load("libhello.so");
 }
}

The second step is simple; just use javac HelloWorld as you normally would. You probably won't
get any compilation errors on a simple program like this; if you do, correct them and try the
compilation again.

Next, you need to create an .h file. Use javah to produce files:

javah -jni HelloWorld // produces HelloWorld.h

The -jni is required; without it, you get incompatible 1.0 output.

The .h file produced is a "glue" file, not really meant for human consumption and particularly not
for editing. But by inspecting the resulting .h file, you'll see that the C method's name is
composed of the name Java, the package name (if any), the class name, and the method name:

void Java_HelloWorld_displayHelloWorld(JNIEnv *env, jobject this);

Then, create a C function that does the work. You must use the same function signature as is
used in the .h file:

void Java_HelloWorld_displayHelloWorld(JNIEnv *env, jobject this) {

This function can do whatever it wishes. Note that it is passed two arguments: a JVM
environment, and a handle for the this object. Table 26-2 shows the correspondence between
Java types and the C types (JNI types) used in the C code.

Table 26-2. Java and JNI types
Java type JNI Java array type JNI

byte jbyte byte[] jbyteArray
short jshort short[] jshortArray

 720

int jint int[] jintArray
long jlong long[] jlongArray
float jfloat float[] jfloatArray
double jdouble double[] jdoubleArray
char jchar char[] jcharArray
boolean jboolean boolean[] jbooleanArray
void jvoid
Object jobject Object[] jobjectArray
Class jclass
String jstring
array jarray
Throwable jthrowable

Example 26-8 is a complete C native implementation. Passed an object of type HelloWorld, it
increments the integer myNumber contained in the object.

Example 26-8. HelloWorld.c

#include <jni.h>
#include "HelloWorld.h"
#include <stdio.h>

/*
 * This is the 1.1 implentation of displayHelloWorld.
 */
void Java_HelloWorld_displayHelloWorld(JNIEnv *env, jobject this)
{
 jfieldID fldid;
 jint n, nn;

 (void)printf("Hello from a Native Method\n");

 if (this == NULL) {
 fprintf(stderr, "Input pointer is null!\n");
 return;
 }
 if ((fldid = (*env)->GetFieldID(env,
 (*env)->GetObjectClass(env, this), "myNumber", "I")) == NULL) {
 fprintf(stderr, "GetFieldID failed");
 return;
 }

 n = (*env)->GetIntField(env, this, fldid); /* retrieve myNumber
*/
 printf("\"myNumber\" value is %d\n", n);

 (*env)->SetIntField(env, this, fldid, ++n); /* increment it! */
 nn = (*env)->GetIntField(env, this, fldid);

 printf("\"myNumber\" value now %d\n", nn); /* make sure */
 return;
}

 721

Finally, you compile the C code into a loadable object. Naturally, the details depend on platform,
compiler, etc. For example, on Windows 95:

> set JAVAHOME=C:\java # or wherever
> set INCLUDE=%JAVAHOME%\include;%INCLUDE%
> set LIB=%JAVAHOME%\lib;%LIB%
> cl HelloWorld.c -Fehello.dll -MD -LD javai.lib

And on Unix:

$ export JAVAHOME=/local/java # or wherever
$ cc -I$JAVAHOME/include -I$JAVAHOME/include/solaris \
-G HelloWorld.c -o libhello.so

Example 26-9 is a makefile for Unix.

Example 26-9. Unix makefile

Makefile for the 1.1 Java Native Methods examples for
Learning Tree International Course 471/478.
Has been tested on Solaris both with "gcc" and with SunSoft "cc".
On other platforms it will certainly need some tweaking; please
let me know how much! :-)

Configuration Section

CSRCS = HelloWorld.c
JAVAHOME = /local/jdk1.1.2
INCLUDES = -I$(JAVAHOME)/include -I$(JAVAHOME)/include/solaris
LIBDIR = $(JAVAHOME)/lib/sparc/green_threads
CLASSPATH = $(JAVAHOME)/lib/classes.zip:.

all: testhello testjavafromc

This part of the Makefile is for C called from Java, in HelloWorld
testhello: hello.all
 @echo
 @echo "Here we test the Java code \"HelloWorld\" that calls C
code."
 @echo
 LD_LIBRARY_PATH=`pwd`:. java HelloWorld

hello.all: HelloWorld.class libhello.so

HelloWorld.class: HelloWorld.java
 javac HelloWorld.java

HelloWorld.h: HelloWorld.class
 javah -jni HelloWorld

HelloWorld.o:: HelloWorld.h

libhello.so: $(CSRCS) HelloWorld.h
 $(CC) $(INCLUDES) -G $(CSRCS) -o libhello.so

 722

This part of the Makefile is for Java called from C, in javafromc
testjavafromc: javafromc.all hello.all
 @echo
 @echo "Now we test HelloWorld using javafromc instead of java"
 @echo
 LD_LIBRARY_PATH="$(LIBDIR):." CLASSPATH="$(CLASSPATH)" ./javafromc
HelloWorld
 @echo
 @echo "That was, in case you didn't notice, C->Java->C. And,"
 @echo "incidentally, a replacement for JDK program \"java\"
itself!"
 @echo

javafromc.all: javafromc

javafromc: javafromc.o
 $(CC) -L$(LIBDIR) javafromc.o -ljava -o $@

javafromc.o: javafromc.c
 $(CC) -c $(INCLUDES) javafromc.c

clean:
 rm -f core *.class *.o *.so HelloWorld.h
clobber: clean
 rm -f javafromc

And you're done! Just run the Java interpreter on the class file containing the main program.
Assuming that you've set whatever system-dependent settings are necessary (possibly including
both CLASSPATH and LD_LIBRARY_PATH or its equivalent), the program should run as follows:

C> java HelloWorld
Hello from a Native Method // from C
"myNumber" value is 42 // from C
"myNumber" value now 43 // from C
Value of myNumber now 43 // from Java

Congratulations! You've called a native method. However, you've given up portability; the Java
class file now requires you to build a loadable object for each operating system and hardware
platform. Multiply {MS-Windows 95/98, MS-Windows CE, Me, and NT, MacOS, Sun Solaris,
HP/UX, Linux, OpenBSD, NetBSD, FreeBSD} times {Intel, SPARC, PowerPC, HP-PA, Sun3} and
you begin to see the portability issues. Your native code can be used in server code and desktop
applications, but is normally not permitted in web browsers.

Beware that problems with your native code can and will crash the runtime process right out from
underneath the Java Virtual Machine. The JVM can do nothing to protect itself from poorly written
C/C++ code. Memory must be managed by the programmer; there is no automatic garbage
collection of memory obtained by the system runtime allocator. You're dealing directly with the
operating system and sometimes even the hardware, so, "Be careful. Be very careful."

26.5.4 See Also

If you need more information on Java Native Methods, you might be interested in the
comprehensive treatment found in Essential JNI: Java Native Interface by Rob Gordon (Prentice
Hall).

 723

26.6 Calling Java from Native Code

26.6.1 Problem

You need to go the other way, calling Java from C/C++ code.

26.6.2 Solution

Use JNI again.

26.6.3 Discussion

In 1.1, JNI provides an interface for calling Java from C, with calls to:

1. Create a JVM
2. Load a class
3. Find and call a method from that class (i.e., main)

This lets you add Java to legacy code. That can be useful for a variety of purposes, but entails
treating Java code as an extension language (just define or find an interface like Applet or
Servlet, and let your customers subclass from it).

This is not discussed in detail here, but there's a full code example in the code archive in
directory src/native1.1.

26.7 Program: DBM

This program lets you use the original Unix DBM (database access method) routines from Java.
DBM is actually emulated using the newer Berkeley Database (DB) routines, but the DBM
interface is more traditional, and simpler. DBM was used in Section 20.3 to provide a name-to-
login database, which is similar to how many modern Unixes actually store name and password
information. That recipe also showed how to use it to display your Netscape history, even under
MS-Windows.

I'll now show the Java version of the DBM library, DBM.java (see Example 26-10).

Example 26-10. DBM.java

import java.io.*;

/** This class provides a dbm-compatible interface to the Unix-style
 * database access methods described in dbm(3) (which is on some Unixes
 * a front-end to db(3).
 * <P>Each unique record in the database is a unique key/value pair,
 * similar to a java.util.Hashtable but stored on persistent medium,
not
 * kept in memory. Dbm was originally optimized for Unix for fast
 * access to individual key/value pairs.
 */
public class DBM {
 /** Since you can only have one DBM database in use at a time due

 724

 * to implementation restrictions, we enforce this rule with a
 * class-wide boolean.
 */
 protected static boolean inuse = false;

 /** Save the filename for messages, etc. */
 protected String fileName;

 /** Construct a DBM given its filename */
 public DBM(String file) {
 synchronized(this) {
 if (inuse)
 throw new IllegalArgumentException(
 "Only one DBM object at a time per Java Machine");
 inuse = true;
 }
 fileName = file;
 int retCode = dbminit(fileName);
 if (retCode < 0)
 throw new IllegalArgumentException(
 "dbminit failed, code = " + retCode);
 }

 // Static code blocks are executed once, when class file is loaded.
 // This is here to ensure that the shared library gets loaded.
 static {
 System.loadLibrary("jdbm");
 }

 protected ByteArrayOutputStream bo;

 /** serialize an Object to byte array. */
 protected byte[] toByteArray(Object o) throws IOException {
 if (bo == null)
 bo = new ByteArrayOutputStream(1024);
 bo.reset();
 ObjectOutputStream os = new ObjectOutputStream(bo);
 os.writeObject(o);
 os.close();
 return bo.toByteArray();
 }

 /** un-serialize an Object from a byte array. */
 protected Object toObject(byte[] b) throws IOException {
 Object o;

 ByteArrayInputStream bi = new ByteArrayInputStream(b);
 ObjectInputStream os = new ObjectInputStream(bi);
 try {
 o = os.readObject();
 } catch (ClassNotFoundException ex) {
 // Convert ClassNotFoundException to I/O error
 throw new IOException(ex.getMessage());
 }
 os.close();
 return o;
 }

 725

 protected native int dbminit(String file);

 protected native int dbmclose();

 /** Public wrapper for close method. */
 public void close() {
 this.dbmclose();
 inuse = false;
 }

 protected void checkInUse() {
 if (!inuse)
 throw new IllegalStateException("Method called when DBM not
open");
 }

 protected native byte[] dbmfetch(byte[] key);

 /** Fetch using byte arrays */
 public byte[] fetch(byte[] key) throws IOException {
 checkInUse();
 return dbmfetch(key);
 }

 /** Fetch using Objects */
 public Object fetch(Object key) throws IOException {
 checkInUse();
 byte[] datum = dbmfetch(toByteArray(key));
 return toObject(datum);
 }

 protected native int dbmstore(byte[] key, byte[] content);

 /** Store using byte arrays */
 public void store(byte[] key, byte[] value) throws IOException {
 checkInUse();
 dbmstore(key, value);
 }

 /** Store using Objects */
 public void store(Object key, Object value) throws IOException {
 checkInUse();
 dbmstore(toByteArray(key), toByteArray(value));
 }

 protected native int delete(Object key);

 public native byte[] firstkey() throws IOException;

 public Object firstkeyObject() throws IOException {
 return toObject(firstkey());
 }

 public native byte[] nextkey(byte[] key) throws IOException;

 public Object nextkey(Object key) throws IOException {

 726

 byte[] ba = nextkey(toByteArray(key));
 if (ba == null)
 return null;
 return toObject(ba);
 }

 public String toString() {
 return "DBM@" + hashCode() + "[" + fileName + "]";
 }
}

Notice how the methods toByteArray() and toObject(), the inverses of each other,
convert between an object and an array of bytes using ByteArrayStreams. These provide the
functionality of reading from or writing to a buffer that is in memory, instead of the usual buffer
that has been read from or written to a disk file or socket.

26.7.1 See Also

A more complete and widely used implementation of DBM for Java is available from SleepyCat
Software, the heirs-apparent to the Berkeley DBM software. Their SleepyCat DBM can be
downloaded for free, in source form, under the Berkeley (University of California at Berkeley)
software license. Check out http://www.sleepycat.com.

 727

Chapter 27. Afterword

Writing this book has been a humbling experience. It has taken far longer than I had predicted, or
than I would like to admit. And, of course, it's not finished yet. Despite my best efforts and those
of the technical reviewers, editors, and many other talented folks, a book this size is bound to
contain errors, omissions, and passages that are less clear than they might be. Please, let us
know by email if you happen across any of these things. There will be subsequent editions that
incorporate changes sent in by readers just like you!

It has been said that you don't really know something until you've taught it. I have found this true
of lecturing, and find it equally true of writing.

I tell my students that when Java was very young, it was possible for one person to study hard
and know almost everything about Java. When Java 1.1 came out, this was no longer true. With
Java 2, anybody who tells you they "know all about Java" should cause your "bogozity" detector
to go off at full volume. And the amount you need to know keeps growing. How can you keep up?
Java books? Java magazines? Java courses? Conferences? There is no single answer; all of
these are useful to some people. Sun's Java software division has several programs that you
should be aware of:

• JavaOne, their annual conference (http://java.sun.com/javaone/)

• The Java Developer Connection, a free web-based service for getting the latest APIs,
news, and views (http://developer.java.sun.com)

• The Java Community Process
(http://java.sun.com/aboutJava/communityprocess/), the home of open Java
standardization and enhancement

• Java Developer Essentials, a fee-based CD-ROM subscription to all the Java APIS, tools,
and other material (http://www.sun.com/developers/tools/)

As you know, the Java API is divided into packages. A package is normally considered "core" if
its package name begins with java, and an optional extension if its package name begins with
javax. But there is already one exception to this rule: javax.swing.* which is core.

I maintain a comprehensive listing of the major Java APIs produced and promulgated by the Java
division of Sun Microsystems on my web site, at http://www.darwinsys.com/java/java-
api.html.

As you can see, there is no end of Java APIs to learn about. And there are still more books to be
written . . . and read.

 728

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical topics,
breathing personality and life into potentially dry subjects.

The animal on the cover of Java Cookbook is a domestic chicken. Domestic chickens (Gallus
gallus) are descended from the wild red jungle fowl of India. Domesticated over 8,000 years ago
in the area that is now Vietnam and Thailand, chickens are raised for meat and eggs, and the
males for sport as well (though cockfighting is currently against the law in many places).

With their big, heavy bodies and small wings, these birds are well suited to living on the ground,
and they can fly at most only short distances. Their four-toed feet are designed for scratching in
the dirt, where they find the elements of their usual diet: worms, bugs, seeds, and various plant
matter.

A male chicken is called a rooster or cock, and a female is known as a hen. The incubation period
for a chicken egg is about three weeks; newly hatched chickens are precocial, meaning they have
downy feathers and can walk around on their own right after emerging from the egg. They're also
not dependent on their mothers for food; not only can they procure their own, but they also can
live for up to a week post-hatch on egg yolk that remains in their abdomen after birth.

The topic of chickens comes up frequently in ancient writings. Chinese documents date their
introduction to China to 1400 B.C., Babylonian carvings mention them in 600 B.C., and
Aristophanes wrote about them in 400 B.C. The rooster has long symbolized courage: the
Romans thought chickens were sacred to Mars, god of war, and the first French Republic chose
the rooster as its emblem.

Emily Quill was the production editor and copyeditor for Java Cookbook . Claire Cloutier, Colleen
Gorman, and Jane Ellin conducted quality control reviews, and Edith Shapiro, Sada Preisch, Lucy
Muellner, Linley Dolby, and Matt Hutchinson provided production assistance. Ellen Troutman-
Zaig wrote the index.

Hanna Dyer designed the cover of this book, based on a series design by Edie Freedman. The
cover image is a 19th-century engraving from the Dover Pictoral Archive. Emma Colby produced
the cover layout with Quark™XPress 4.1 using Adobe's ITC Garamond font.

Melanie Wang and David Futato designed the interior layout, based on a series design by Nancy
Priest. Mike Sierra implemented the design in FrameMaker 5.5.6. The heading font is Bitstream
Bodoni, the text font is ITC New Baskerville, and the code font is Constant Willison. The
illustrations that appear in the book were produced by Robert Romano and Jessamyn Read using
Macromedia FreeHand 9 and Adobe Photoshop 6. This colophon was written by Leanne
Soylemez.

