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With Java RMI, you'll learn tips and tricks for making your RMI code
excel. This book provides strategies for working with serialization,

RELLY P threading, the RMI registry, sockets and socket factories, activation,
dynamic class downloading, HTTP tunneling, distributed garbage
Copyright collection, JNDI, and CORBA. In short, a treasure trove of valuable
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Preface

This book is intended for Java developers who want to build distributed applications. By a

distributed application, | mean a set of programs running in different processes (and quite

possibly on different machines) which form, from the point of view of the end user, a single
application.™ The latest version of the Java platform, Java 2 (and the associated standard
extension libraries), includes extensive support for building distributed applications.

1 1n this book, program will always refer to Java code executing inside a single Java virtual machine (JVM).
Application, on the other hand, refers to one or more programs executing inside one or more JVMs that, to
the end user, appear to be a single program.



In this book, | will focus on Java's Remote Method Invocation (RMI) framework. RMI is a robust
and effective way to build distributed applications in which all the participating programs are
written in Java. Because the designers of RMI assumed that all the participating programs would
be written in Java, RMI is a surprisingly simple and easy framework to use. Not only is RMI useful
for building distributed applications, it is an ideal environment for Java programmers learning how
to build a distributed application.

| don't assume you know anything about distributed programs or computer networking. We'll start
from the ground up and cover all the concepts, classes, and ideas underlying RMI. | will also
cover some of the more advanced aspects of Java programming; it would be irresponsible to
write a book on RMI without devoting some space to topics such as sockets and threading.

In order to get the most out of this book, you will need a certain amount of experience with the
Java programming language. You should be comfortable programming in Java; you should have
a system with which you can experiment with the code examples (like many things, distributed
programming is best learned by doing); you should be fairly comfortable with the basics of the
JDK 1.1 event model (in particular, many of the code examples are action listeners that have
been added to a button); and you should be willing to make mistakes along the way.

About This Book

This book covers an enormous amount of ground, starting with streams and sockets and working
its way through the basics of building scalable client-server architectures using RMI.

While the order of chapters is a reasonable one, and one that has served me well in introducing
RMI to my students at U.C. Berkeley Extension, it is nonetheless the case that skipping around
can sometimes be beneficial. For example, Chapter 10, which discusses object serialization,
really relies only on streams (from Chapter 1) and can profitably be read immediately after
Chapter 4 (where the first RMI application is introduced).

The book is divided into three sections. Part | starts with an introduction to some of the essential
background material for RMI. After presenting the basics of Java's stream and socket libraries,
we build a simple socket-based distributed application and then rebuild this application using
RMI. At this point, we've actually covered most of the basics of building a simple RMI application.

The rest of Part | (Chapters Chapter 5 through Chapter 9) presents a fairly detailed analysis of
how introducing a network changes the various aspects of application design. These chapters
culminate in a set of principles for partitioning an application into clients and servers and for
designing client-server interaction. Additionally, they introduce an example from banking which is
referred to repeatedly in the remainder of the book. After finishing the first section, you will be
able to design and build simple RMI applications that, while not particularly scalable or robust,
can be used in a variety of situations.

Part 11 builds on the first by drilling down on the underlying technologies and discussing the
implementation decisions that must be made in order to build scalable and secure distributed
applications. That is, the first section focuses on the design issues associated with the client-
server boundary, and the second section discusses how to make the server scale. As such, this
section is less about RMI, or the network interface, and more about how to use the underlying
Java technologies (e.g., how to use threads). These chapters can be tough sledding—this is the
technical heart of the book.

Part 111 consists of a set of independent chapters discussing various advanced features of RMI.
The distinction between the second and third sections is that everything covered in the second

section is essential material for building a sophisticated RMI application (and hence should be at
least partially understood by any programmer involved in the design or implementation of an RMI



application). The topics covered in Part 111 are useful and important for many applications but
are not essential knowledge.

What follows is a more detailed description of each chapter in this book.

Part |

Chapter 1

Streams are a fairly simple data structure; they are best thought of as linear sequences of
bytes. They are commonly used to send information to devices (such as a hard drive) or
over a network. This chapter is a background chapter that covers Java's support for
streams. It is hot RMI-specific at all.

Chapter 2

Sockets are a fairly common abstraction for establishing and maintaining a network
connection between two programs. Socket libraries exist in most programming languages
and across most operating systems. This chapter is a background chapter which covers
Java's socket classes. It is not RMI-specific at all.

Chapter 3

This chapter is an exercise in applying the contents of the first two chapters. It uses
sockets (and streams) to build a distributed application. Consequently, many of the
fundamental concepts and problems of distributed programming are introduced. Because
this chapter relies only on the contents of the first two chapters, these concepts and
problems are stated with minimal terminology.

Chapter 4

This chapter contains a translation of the socket-based printer server into an RMI
application. Consequently, it introduces the basic features of RMI and discusses the
necessary steps when building a simple RMI application. This is the first chapter in the
book that actually uses RMI.

Chapter 5

The bank example is one of the oldest and hoariest examples in client-server computing.
Along with the printer example, it serves as a running example throughout the book.

Chapter 6

The first step in designing and building a typical distributed application is figuring out what
the servers are. That is, finding which functionality is in the servers, and deciding how to
partition this functionality across servers. This chapter contains a series of guidelines and
guestions that will help you make these decisions.

Chapter 7

Once you've partitioned an application, by placing some functionality in various servers
and some functionality in a client, you then need to specify how these components will
talk to each other. In other words, you need to design a set of interfaces. This chapter
contains a series of guidelines and questions that will help you design and evaluate the
interfaces on your servers.

Chapter 8
After the heady abstractions and difficult concepts of the previous two chapters, this
chapter is a welcome dive into concrete programming tasks. In it, we give the first (of
many!) implementations of the bank example, reinforcing the lessons of Chapter 4 and
discussing some of the basic implementation decisions that need to be made on the
server side.

Chapter 9



The final chapter in the first section rounds out the implementation of the bank example.
In it, we build a simple client application and the launch code (the code that starts the
servers running and makes sure the clients can connect to the servers).

Part 11

Chapter 10

Serialization is the algorithm that RMI uses to encode information sent over the wire. It's
easy to use serialization, but using it efficiently and effectively takes a little more work.
This chapter explains the serialization mechanism in gory detail.

Chapter 11

This is the first of two chapters about threading. It covers the basics of threading: what
threads are and how to perform basic thread operations in Java. As such, it is not RMI-
specific at all.

Chapter 12

In this chapter, we take the terminology and operations from Chapter 11 and apply them
to the banking example. We do this by discussing a set of guidelines for making
applications multithreaded and then apply each guideline to the banking example. After
this, we'll discuss pools, which are a common idiom for reusing scarce resources.

Chapter 13

This chapter covers the tenets of testing a distributed application. While these tenets are
applied to the example applications from this book, they are not inherently RMI-specific.
This chapter is simply about ensuring a reasonable level of performance in a distributed
application.

Chapter 14

The RMI registry is a simple naming service that ships with the JDK. This chapter
explores the RMI registry in detail and uses the discussion as a springboard to a more
general discussion of how to use a naming service.

Chapter 15

This chapter builds on the previous chapter and offers a general discussion of haming
services. At the heart of the chapter is an implementation of a much more scalable,
flexible, and federated naming service. The implementation of this new naming service is
combined with discussions of general naming-service principles and also serves as
another example of how to write code with multiple threads in mind. This chapter is by far
the most difficult in the book and can safely be skipped on a first reading.

Chapter 16

There's an awful lot of code that handles the interactions between the client and the
server. There doesn't seem to be a generally approved name for this code, but | call it the
"RMI Runtime." The RMI Runtime handles the details of maintaining connections and
implements distributed garbage collection. In this chapter, we'll discuss the RMI Runtime
and conclude with an examination of many of the basic system parameters that can be
used to configure the RMI Runtime.

Chapter 17

The final chapter in Part |11 deals with a common design pattern called "The Factory
Pattern" (or, more typically, "Factories"). After discussing this pattern, we'll dive into the
Activation Framework. The Activation Framework greatly simplifies the implementation of
The Factory Pattern in RMI.

Part 111



Chapter 18

RMI is a framework for distributing the objects in an application. It relies, quite heavily, on
the socket classes discussed in Chapter 2. However, precisely which type of socket
used by an RMI application is configurable. This chapter covers how to switch socket
types in an RMI application.

Chapter 19

Dynamic class loading allows you to automatically update an application by downloading
.class files as they are needed. It's one of the most innovative features in RMI and a
frequent source of confusion.

Chapter 20

One of the biggest changes in Java 2 was the addition of a full-fledged (and rather
baroque) set of security classes and APls. Security policies are a generalization of the
applet "sandbox" and provide a way to grant pieces of code permission to perform certain
operations (such as writing to a file).

Chapter 21

Up until this chapter, all the complexity has been on the server side of the application.
There's a good reason for this—the complexity on the client side often involves the
details of Swing programming and not RMI. But sometimes, you need to build a more
sophisticated client. This chapter discusses when it is appropriate to do so, and covers
the basic implementation strategies.

Chapter 22

Firewalls are a reality in today's corporate environment. And sometimes, you have to
tunnel through them. This chapter, which is the most "cookbooky" chapter in the book,
tells you how to do so.

Chapter 23

This chapter concerns interoperability with CORBA. CORBA is another framework for
building distributed applications; it is very similar to RMI but has two major differences: it
is not Java-specific, and the CORBA specification is controlled by an independent
standards group (not by Sun Microsystems, Inc.). These two facts make CORBA very
popular. After briefly discussing CORBA, this chapter covers RMI/IIOP, which is a way to
build RMI applications that "speak CORBA."

About the Example Code

This book comes with a lot of example code. The examples were written in Java 2, using JDK1.3.
While the fundamentals of RMI have not changed drastically from earlier versions of Java, there
have been some changes. As a result, you will probably experience some problems if you try and
use the example code with earlier versions of Java (e.g., JDK1.1.%).

In addition, you should be aware that the name RMI is often used to refer to two different things. It
refers to a set of interfaces and APlIs that define a framework for distributed programming. But it
also refers to the implementation of those interfaces and APIs written by Javasoft and bundled as
part of the JDK. The intended meaning is usually clear from the context. But you should be aware
that there are other implementations of the RMI interfaces (most notably from BEA/Weblogic),
and that some of the more advanced examples in this book may not work with implementations
other than Javasoft's.

Please don't use the code examples in this book in production applications. The code provided is
example code; it is intended to communicate concepts and explain ideas. In particular, the
example code is not particularly robust code. Exceptions are often caught silently and f i nal | vy



clauses are rare. Including industrial strength example code would have made the book much
longer and the examples more difficult to understand.

Conventions Used in This Book

Italic is used for:
Pathnames, filenames, directories, and program names
New terms where they are defined
Internet addresses, such as domain names and URLs

Const ant W dt h is used for:

Anything that appears literally in a Java program, including keywords, datatypes,
constants, method names, variables, classnames, and interface names

Command lines and options that should be typed verbatim on the screen
All JSP and Java code listings
HTML documents, tags, and attributes

Constant Wdth Italic isused for:

General placeholders that indicate that an item should be replaced by some actual value
in your own program

Constant wi dt h bol d is used for:

Text that is typed in code examples by the user

o

This icon designates a note, which is an important aside to
« 4. the nearby text.

- This icon designates a warning relating to the nearby text.

Coding Conventions

For the most part, the examples are written in a fairly generic coding style. | follow standard Java
conventions with respect to capitalization. Instance variables are preceded by an underscore (),
while locally scoped variables simply begin with a lowercase letter.

Variable and method names are longer, and more descriptive, than is customary.’2 References to
methods within the body of a paragraph almost always omit arguments—instead of
readFrontt rean( | nput St ream | nput St rean) , we usually write r eadFr onSt rean( ) .

[21 we will occasionally discuss automatically generated code such as that produced by the RMI compiler.
This code is harder to read and often contains variables with names like
$par am Docunent Descri ption_1.

Occasionally, an ellipsis will show up in the source code listings. Lines such as:

catch (PrinterException printerException){



simply indicate that some uninteresting or irrelevant code has been omitted from the listings in the
book.

The class definitions all belong to subpackages of com or a. r m book. Each chapter of this book
has its own package—the examples for Chapter 1 are contained in subpackages of

com ora. rm book. chapt er 1; the examples for Chapter 2 are contained in subpackages of
com ora. rm book. chapt er 2, and so on. | have tried to make the code for each chapter
complete in and of itself. That is, the code for Chapter 4 does not reference the code for
Chapter 3. This makes it a little easier to browse the source code and to try out the individual
projects. But, as a result of this, there is a large amount of duplication in the example code (many
of the classes appear in more than one chapter).

| have also avoided the use of anonymous or local inner classes (while useful, they tend to make
code more difficult to read). In short, if you can easily read, and understand, the following snippet:

private void buildGJ ( ) {
JPanel mai nPanel = new JPanel (new BorderLayout( ));
_messageBox = new JText Area( );
mai nPanel . add( new JScr ol | Pane( _nessageBox),
Bor der Layout . CENTER) ;
createButtons( );
}

you should have no problem following along with the example code for this book.
Applications

The source code for this book is organized as a set of example applications. In order to make it
easier to browse the code base, I've tried to follow a consistent naming convention for classes
that contain a nai n( ) method. If a class Foo contains a nai n( ) method, then there will be a
companion class FooFr ane in the same package as Foo. Thus, for example, the Vi ewfi | e
application from Chapter 1 has a companion class Vi ewri | eFr ane. In fact, Vi ewfi | e
consists entirely of the following code:

package com ora.rm book. sectionl. chapterl,

public class Viewrile {
public static void nain(String[] argunents) {
(new Vi ewFi | eFrame()).show( );
}

}

Having top-level GUI classes end in Fr ane makes it a little easier to browse the code in an IDE.
For example, Figure P-1 shows a screenshot of JBuilder 3.0, displaying the source files related
to Chapter 2.

Figure P-1. Screenshot of JBuilder 3.0
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Compiling and Building

The example code in the book compiles and runs on a wide variety of systems. However, while
the code is generic, the batch files for the example applications are not. Instead of attempting to
create generic scripts, | opted for very simple and easily edited batch files located in chapter-
specific directories. Here, for example, is the NamingService.batbatch file from Chapter 15:

start java -cp d:\classes-D ava. security. policy=c:\java. policy
com or a. r m book.
chapt er 15. basi capps. Nam ngSer vi ce.

This makes a number of assumptions, all of which are typical to the batch files included with the
example code (and all of which may change depending on how your system is configured):

start is used as a system command to launch a background process. This works on
Windows NT and Windows 2000. Other operating systems launch background processes
in different ways.

The d:\classes directory exists and contains the .class files.

There is a valid security policy named | avapol i cy located in the c:\ directory.

In addition, the source code often assumes the c:\temp directory exists when writing temporary
files.

Downloading the Source Examples

The source files for the examples in this book can be downloaded from the O'Reilly web site at:

http://www.oreilly.com/catalog/javarmi

For Further Information

Where appropriate, I've included references to other books. For the most part, these references
are to advanced books that cover a specific area in much greater detail than is appropriate for
this book. For example, in Chapter 12 I've listed a few of my favorite references on concurrent
programming.

There is also a lot of RMI information available on the Internet. Three of the best generalpurpose
RMI resources are:



Javasoft's RMI home page

This is the place to obtain the most recent information about RMI. It also contains links to
other pages containing RMI information from Javasoft. The URL is
http://java.sun.com/products/jdk/rmi/.

The RMI trail from the Java Tutorial

The Java Tutorial is a very good way to get your feet wet on almost any Java topic. The
RMI sections are based at
http://java.sun.com/docs/books/tutorial/rmi/index.html.

The RMI Users mailing list

The RMI users mailing list is a small mailing list hosted by Javasoft. All levels, from
beginner to advanced, are discussed here, and many of the world's best RMI
programmers will contribute to the discussion if you ask an interesting enough question.
The archives of the mailing list are stored at
http://archives.java.sun.com/archives/rmi-users.html.

How to Contact Us

We have tested and verified the information in this book to the best of our ability, but you may find
that features have changed (or even that we have made mistakes!). Please let us know about any
errors you find, as well as your suggestions for future editions, by writing to:

O'Reilly and Associates, Inc.

1005 Gravenstein Highway North
Sebastopol, CA 95472

(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international or local)
(707) 829-1014 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/javarmi

To ask technical questions or comment on the book, send email to:

bookqguestions@oreilly.com

For more information about our books, conferences, software, Resource Centers, and the
O'Reilly Network,, see our web site at:

http://www.oreilly.com/
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Part I: Designing and Building: The Basics of RMI
Applications

Chapter 1. Streams

This chapter discusses Java's stream classes, which are defined in the | ava. i 0. * package.
While streams are not really part of RMI, a working knowledge of the stream classes is an
important part of an RMI programmer's skillset. In particular, this chapter provides essential
background information for understanding two related areas: sockets and object serialization.

1.1 The Core Classes

A stream is an ordered sequence of bytes. However, it's helpful to also think of a stream as a
data structure that allows client code to either store or retrieve information. Storage and retrieval
are done sequentially—typically, you write data to a stream one byte at a time or read information
from the stream one byte at a time. However, in most stream classes, you cannot "go back"—
once you've read a piece of data, you must move on. Likewise, once you've written a piece of
data, it's written.

You may think that a stream sounds like an impoverished data structure. Certainly, for most
programming tasks, a HashiVap or an ArrayLi st storing objects is preferable to a read-once
sequence of bytes. However, streams have one nice feature: they are a simple and correct model
for almost any external device connected to a computer. Why correct? Well, when you think
about it, the code-level mechanics of writing data to a printer are not all that different from
sending data over a modem; the information is sent sequentially, and, once it's sent, it can not be
retrieved or "un-sent."! Hence, streams are an abstraction that allow client code to access an
external resource without worrying too much about the specific resource.

[ print orders can be cancelled by sending another message: a cancellation message. But the original
message was still sent.

Using the streams library is a two-step process. First, device-specific code that creates the
stream objects is executed,; this is often called "opening" the stream. Then, information is either
read from or written to the stream. This second step is device-independent; it relies only on the
stream interfaces. Let's start by looking at the stream classes offered with Java: | nput St r eam
and Cut put St ream

1.1.1 InputStream

I nput St r eamis an abstract class that represents a data source. Once opened, it provides
information to the client that created it. The | nput St r eamclass consists of the following
methods:

public int available( ) throws | CException
public void close( ) throws | OException
public void mark(int nunmber O Bytes) throws | OException
public bool ean nmarkSupported( ) throws | OException
public abstract int read( ) throws | OException
public int read(byte[] buffer) throws | CException
public int read(byte[] buffer, int startingO fset, int nunmber O Bytes)
t hr ows
| OException



public void reset( ) throws | OException
public long skip(long nunber O Bytes) throws | CException

These methods serve three different roles: reading data, stream navigation, and resource
management.

1.1.1.1 Reading data

The most important methods are those that actually retrieve data from the stream. | nput St r eam
defines three basic methods for reading data:

public int read( ) throws | OException
public int read(byte[] buffer) throws | CException
public int read(byte[] buffer, int startingOfset, int nunber O Bytes)
t hr ows
| OException

The first of these methods, r ead( ), simply returns the next available byte in the stream. This
byte is returned as an integer in order to allow the | nput St r eamto return nondata values. For
example, read( ) returns -1 if there is no data available, and no more data will be available to
this stream. This can happen, for example, if you reach the end of a file. On the other hand, if
there is currently no data, but some may become available in the future, ther ead( ) method
blocks. Your code then waits until a byte becomes available before continuing.

o

A piece of code is said to block if it must wait for a resource to
“ 4 finish its job. For example, using the r ead( ) method to

retrieve data from a file can force the method to halt
execution until the target hard drive becomes available.
Blocking can sometimes lead to undesirable results. If your
code is waiting for a byte that will never come, the program
has effectively crashed.

The other two methods for retrieving data are more advanced versions of r ead( ), added to the
I nput St r eamclass for efficiency. For example, consider what would happen if you created a
tight loop to fetch 65,000 bytes one at a time from an external device. This would be
extraordinarily inefficient. If you know you'll be fetching large amounts of data, it's better to make
a single request:

byte buffer = new byte[1000];
read(buffer);

Theread(byte[] buffer) method is a request to read enough bytes to fill the buffer (in this
case, buf f er. | engt h number of bytes). The integer return value is the number of bytes that
were actually read, or -1 if no bytes were read.

Finally, read(byte[] buffer, int startingOfset, int number OfBytes) isa
request to read the exact nunber O Byt es from the stream and place them in the buffer starting
at position st ar t i ngOf f set . For example:

read(buffer, 2, 7);

This is a request to read 7 bytes and place them in the locations buf f er [ 2] , buf fer [ 3], and
so on up to buf f er [ 8] . Like the previous r ead( ), this method returns an integer indicating
the amount of bytes that it was able to read, or -1 if no bytes were read at all.

1.1.1.2 Stream navigation



Stream navigation methods are methods that enable you to move around in the stream without
necessarily reading in data. There are five stream navigation methods:

public int available( ) throws | CException

public long skip(long nunber O Bytes) throws | CException
public void mark(int nunmber OfBytes) throws | OException
public bool ean nmarkSupported( ) throws | OException
public void reset( ) throws | OException

aval | abl e( ) is used to discover how many bytes are guaranteed to be immediately available.
To avoid blocking, you can call avai | abl e( ) before eachread( ), as inthe following code
fragment:

while (streamavailable( ) >0)) {
processNext Byte(streamread( ));
}

=

—a— There are two caveats when using avai | abl e( ) in this
way. First, you should make sure that the stream from which
you are reading actually implements avai | abl e( ) ina
meaningful way. For example, the default implementation,
defined in | nput St r eam simply returns 0. This behavior,
while technically correct, is really misleading. (The preceding
code fragment will not work if the stream always returns 0.)
The second caveat is that you should make sure to use
buffering. See Section 1.3 later in this chapter for more
details on how to buffer streams.

The ski p( ) method simply moves you forward nunber Of Byt es in the stream. For many
streams, skipping is equivalent to reading in the data and then discarding it.

—e— In fact, most implementations of ski p( ) do exactly that:
repeatedly read and discard the data. Hence, if

nunmber O Byt es worth of data aren't available yet, these
implementations of ski p( ) will block.

Many input streams are unidirectional: they only allow you to move forward. Input streams that
support repeated access to their data do so by implementing marking. The intuition behind
marking is that code that reads data from the stream can mark a point to which it might want to
return later. Input streams that support marking return t r ue when mar kSupport ed( ) is called.
You can use the mar k() method to mark the current location in the stream. The method's sole
parameter, nunber Of Byt es, is used for expiration—the stream will retire the mark if the reader
reads more than nunber Of Byt es past it. Callingr eset () returns the stream to the point
where the mark was made.

| nput St r eammethods support only a single mark.

«* 4. Consequently, only one pointin an | nput St r eamcan be
~ _marked at anv niven time




marked at any given time.

1.1.1.3 Resource management

Because streams are often associated with external devices such as files or network connections,
using a stream often requires the operating system to allocate resources beyond memory. For
example, most operating systems limit the number of files or network connections that a program
can have open at the same time. The resource management methods of the | nput St r eamclass
involve communication with native code to manage operating system-level resources.

The only resource management method defined for | nput St r eamis ¢l ose( ). When you're
done with a stream, you should always explicitly call c| ose( ). This will free the associated
system resources (e.g., the associated file descriptor for files).

At first glance, this seems a little strange. After all, one of the big advantages of Java is that it has
garbage collection built into the language specification. Why not just have the object free the
operating-system resources when the object is garbage collected?

The reason is that garbage collection is unreliable. The Java language specification does not
explicitly guarantee that an object that is no longer referenced will be garbage collected (or even
that the garbage collector will ever run). In practice, you can safely assume that, if your program
runs short on memory, some objects will be garbage collected, and some memory will be
reclaimed. But this assumption isn't enough for effective management of scarce operating-system
resources such as file descriptors. In particular, there are three main problems:

You have no control over how much time will elapse between when an object is eligible to
be garbage collected and when it is actually garbage collected.

You have very little control over which objects get garbage collected.’#

[21 you can use SoftReference (defined in j ava. | ang. r ef ) to get a minimal level of control over
the order in which objects are garbage collected.

There isn't necessarily a relationship between the number of file handles still available
and the amount of memory available. You may run out of file handles long before you run
out of memory. In which case, the garbage collector may never become active.

Put succinctly, the garbage collector is an unreliable way to manage anything other than memory
allocation. Whenever your program is using scarce operating-system resources, you should
explicitly release them. This is especially true for streams; a program should always close
streams when it's finished using them.

1.1.2 IOException

All of the methods defined for | nput St r eamcan throw an | OExcepti on. | OExceptionisa
checked exception. This means that stream manipulation code always occurs inside a
t rylcat ch block, as in the following code fragment:

try{
while( -1 !'= (nextByte = bufferedStreamread( ))) {

char next Char = (char) nextByte;

}
}
catch (I Cexception e) {



}

The idea behind | OExcept i on is this: streams are mostly used to exchanging data with devices
that are outside the JVM. If something goes wrong with the device, the device needs a universal
way to indicate an error to the client code.

Consider, for example, a printer that refuses to print a document because it is out of paper. The
printer needs to signal an exception, and the exception should be relayed to the user; the
program making the print request has no way of refilling the paper tray without human
intervention. Moreover, this exception should be relayed to the user immediately.

Most stream exceptions are similar to this example. That is, they often require some sort of user
action (or at least user notification), and are often best handled immediately. Therefore, the
designers of the streams library decided to make | OExcept i on a checked exception, thereby
forcing programs to explicitly handle the possibility of failure.

1§

Some foreshadowing: RMI follows a similar design

% 4. philosophy. Remote methods must be declared to throw

%" Renot eExcept i on (and client code must catch

Renot eExcept i on). Renot eExcept i on means "something
has gone wrong, somewhere outside the JVM."

L™

1.1.3 OutputStream

Qut put St r eamis an abstract class that represents a data sink. Once it is created, client code
can write information to it. Cut put St r eamconsists of the following methods:

public void close( ) throws | OException
public void flush( ) throws | OException
public void wite(byte[] buffer) throws | CException
public void wite(byte[] buffer, int startingOfset, int nunmberCf Bytes)
t hr ows
| OException
public void wite(int value) throws | OException

The CQut put St r eamclass is a little simpler than | nput St r eant it doesn't support navigation.
After all, you probably don't want to go back and write information a second time. Qut put St r eam
methods serve two purposes: writing data and resource management.

1.1.3.1 Writing data

CQut put St r eamdefines three basic methods for writing data:

public void wite(byte[] buffer) throws | OException
public void wite(byte[] buffer, int startingOfset, int nunmber O Bytes)
t hr ows
| OException
public void wite(int value) throws | OException

These methods are analogous to the r ead( ) methods defined for | nput St r eam Just as there
was one basic method for reading a single byte of data, there is one basic method, wri t e(i nt
val ue) , for writing a single byte of data. The argument to thiswri t e( ) method should be an
integer between 0 and 255. If not, it is reduced to module 256 before being written.

Just as there were two array-based variants of r ead( ), there are two methods for writing arrays
of bytes.write(byte[] buffer) causes all the bytes in the array to be written out to the



stream.write(byte[] buffer, int startingOfset, int nunberO Bytes) causes
nunber O Byt es bytes to be written, starting with the value atbuf fer[starti ngOi fset].

oo

‘ The fact that the argument to the basic wri t e( ) method is
w 4. an integer is somewhat peculiar. Recall that r ead( )

returned an integer, rather than a byte, in order to allow
instances of | nput St r eamto signal exceptional conditions.
wr i te( ) takes an integer, rather than a byte, so that the
read and write method declarations are parallel. In other
words, if you've read a value in from a stream, and it's not -1,
you should be able to write it out to another stream without
casting it.

1.1.3.2 Resource management

Qut put St r eamdefines two resource management methods:

public void close( )
public void flush( )

cl ose( ) serves exactly the same role for Cut put St r eamas it did for | nput St r eam—itshould
be called when the client code is done using the stream and wishes to free up all the associated
operating-system resources.

The f I ush( ) method is necessary because output streams frequently use a buffer to store
data that is being written. This is especially true when data is being written to either a file or a
socket. Passing data to the operating system a single byte at a time can be expensive. A much
more practical strategy is to buffer the data at the JVM level and occasionally call f | ush( ) to
send the data en masse.

1.2 Viewing a File

To make this discussion more concrete, we will now discuss a simple application that allows the
user to display the contents of a file in a JText Ar ea. The application is called Vi ewri | e and is
shown in Example 1-1. Note that the application's nai n( ) method is defined in the

com ora. rm book. chapter1. Vi enwri | e class.”®! The resulting screenshot is shown in Figure
1-1.

B! This example uses classes from the Java Swing libraries. If you would like more information on Swing,
see Java Swing (O'Reilly) or Java Foundation Classes in a Nutshell (O'Reilly).

Figure 1-1. The ViewFile application
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Example 1-1. ViewFile.java

public class Viewfil eFrane extends ExitingFrame{
/1 lots of code to set up the user interface.
/1 The View button's action listener is an inner cl ass

private void copyStreaniToVi ewi ngAr ea( | nput Stream
filelnputStream
t hrows | OException {
Buf f er edl nput St r eam buf f eredStream = new
Buf f eredl nput St rean(fil el nput Strean;
i nt next Byt e;
_fileView ngArea. set Text ("");
StringBuffer |ocal Buffer = new StringBuffer( );
while( -1 !'= (nextByte = bufferedStreamread( )))
char next Char = (char) nextByte;
| ocal Buf f er. append( next Char);

}
_fileView ngArea. append(l ocal Buffer.toString( ));

}

private class Viewril eAction extends AbstractAction {
public ViewrileAction( ) {
put Val ue( Acti on. NAME, "View');

put Val ue( Acti on. SHORT _DESCRI PTIQN, "View file

contents in main text area.");

}

public void actionPerforned(Acti onEvent event) {
FilelnputStreamfil el nput Stream =

_fileTextField.getFilelnputStrean( );
if (null==filelnputStream {

_fileView ngArea.setText("lnvalid file

name") ;

}

el se {
try {

copySt reamioVi ewi ngArea(fil el nput Strean);
filelnputStreamclose( );
}



catch (java.io.l OExcepti on i oExcepti on)

{

Error occured while reading file");

}
}

_fileView ngArea.setText("\n

}

The important part of the code is the View button's action listener and the

copyStreamlfoVi ewi ngArea( ) method. copySt reamloVi ewi ngArea( ) takes an
instance of | nput St r eamand copies the contents of the stream to the central JText Ar ea.
What happens when a user clicks on the View button? Assuming all goes well, and that no
exceptions are thrown, the following three lines of code from the buttons's action listener are
executed:

FilelnputStreamfilelnputStream= _fileTextField.getFilelnputStrean( );
copySt reanmioVi ewi ngArea(fil el nputStrean);
filelnputStreamclose( );

The first line is a call to the get Fi | el nput St rean( ) methodon fileTextFi el d. Thatis,
the program reads the name of the file from a text field and tries to open a Fi | el nput St r eam
Fi | el nput St reamis defined in the | ava. | o* package. It is a subclass of | nput St r eamused
to read the contents of a file.

Once this stream is opened, copy St reamioVi ewi ngArea( ) is called. copy St r eant
ToVi ewi ngArea( ) takes the input stream, wraps it in a buffer, and then reads it one byte at a
time. There are two things to note here:

We explicitly check that next Byt e is not equal to -1 (e.g., that we're not at the end of the
file). If we don't do this, the loop will never terminate, and we will we will continue to
append (char) -1 tothe end of our text until the program crashes or throws an
exception.

We use Buf f er edl nput St r eaminstead of using Fi | el nput St r eamdirectly.
Internally, a Buf f er edl nput St r eammaintains a buffer so it can read and store many
values at one time. Maintaining this buffer allows instances of Buf f er ed-I nput St r eam
to optimize expensive read operations. In particular, rather than reading each byte
individually, buf f er edSt r eamconverts individual calls to its r ead( ) method into a
single callto Fi | el nput St reamisread(byte[] buffer) method. Note that buffering
also provides another benefit. Buf f er edl nput St r eamsupports stream navigation
through the use of marking.

A
Of course, the operating system is probably already buffering
o a. file reads and writes. But, as we noted above, even the act of

passing data to the operating system (which uses native
methods) is expensive and ought to be buffered.

1.3 Layering Streams

The use of Buf f er edl nput St r eamillustrates a central idea in the design of the streams library:
streams can be wrapped in other streams to provide incremental functionality. That is, there are
really two types of streams:

Primitive streams



These are the streams that have native methods and talk to external devices. All they do
is transmit data exactly as it is presented. Fi | el nput St reamand Fi | e-Cuput St ream
are examples of primitive streams.

Intermediate streams

These streams are not direct representatives of a device. Instead, they function as a
wrapper around an already existing stream, which we will call the underlying stream. The
underlying stream is usually passed as an argument to the intermediate stream's
constructor. The intermediate stream has logic initsread( ) orwite( ) methods
that either buffers the data or transforms it before forwarding it to the underlying stream.
Intermediate streams are also responsible for propagating f | ush( ) andcl ose( )
calls to the underlying stream. Buf f er ed| nput St r eamand Buf f er edQut put St r eam
are examples of intermediate streams.

Streams, Reusability, and Testing

I nput St reamand Out put St r eamare abstract classes.

Fi l el nput St reamand Fi | e-Cut put St r eamare concrete
subclasses. One of the issues that provokes endless discussions in
software design circles centers around method signatures. For example,
consider the following four method signatures:

par seQbj ectsFronFil e(String fil enane)

par seQbj ectsFronFile(File file)

par sebj ect sFronFi | e(Fil el nput Stream fil el nput Streamn)
par seoj ect sFrontt rean( | nput St ream i nput St r ean)

The first three signatures are better documentation; they tell the person
reading the code that the data is coming from a file. And, because
they're strongly typed, they can make more assumptions about the
incoming data (for example, Fi | el nput St reanls ski p() method
doesn't block for extended periods of time, and is thus a fairly safe
method to call).

On the other hand, many people prefer the fourth signature because it
embodies fewer assumptions, and is thus easier to reuse. For example,
when you discover that you need to parse a different type of stream, you
don't need to touch the parsing code.

Usually, however, the discussions overlook another benefit of the fourth
signature: it is much easier to test. This is because of memory-based
stream classes such as: Byt eArrayl nput St r eam You can easily
write a simple test for the fourth method as follows:

publ i c bool ean testParsing( ) {
String testString = "A string whose parse
results are easily checked for"
+ "correctness.”
Byt eArrayl nput Stream t est Stream = new
Byt eArrayl nput Strean{test String
getBytes( ));




par seQbj ect sFrontStrean(test Stream ;
/| code that checks the results of parsing

}

Small-scale tests, like the previous code, are often called unit tests.
Writing unit tests and running them regularly leads to a number of
benefits. Among the most important are:

They're excellent documentation for what a method is supposed to
do.

They enable you to change the implementation of a method with
confidence—if you make a mistake while doing so and change the
method's functionality in an important way, the unit tests will catch
it.

To learn more about unit testing and frameworks for adding unit testing
to your code, see Extreme Programming Explained: Embrace Change by
Kent Beck (Addison Wesley).

e close( ) andflush( ) propagate to sockets as well. That
is, if you close a stream that is associated with a socket, you
will close the socket. This behavior, while logical and
consistent, can come as a surprise.

1.3.1 Compressing a File

To further illustrate the idea of layering, | will demonstrate the use of GZ| POut put St r eam,
defined in the package | ava. ut i | . zi p, with the Conpr essFi | e application. This application is

shown in Example 1-2.

Conpr essFi | e is an application that lets the user choose a file and then makes a compressed
copy of it. The application works by layering three output streams together. Specifically, it opens
an instance of Fi | eCut put St r eam which it then uses as an argument to the constructor of a
Buf f er edQut put St r eam which in turn is used as an argument to GZI PQut put St r eanls
constructor. All data is then written using GZI PCut put St r eam Again, the mai n( ) method for
this application is defined in the com or a. r m book. chapt er 1. ConpressFi | e class.

The important part of the source code is the copy( ) method, which copies an | nput St r eamto
an Qut put St ream and Act i onlLi st ener, which is added to the Compress button. A
screenshot of the application is shown in Figure 1-2.

Figure 1-2. The CompresskFile application



=] M= E |
 Fite to Compress

Rt e b

|| - Soloc

Example 1-2. CompresskFile.java

private int copy(lnputStream source, QutputStream destination) throws
| OException {
i nt next Byt e;
i nt nunber O Byt esCopi ed = 0O;
while(-1!= (nextByte = source.read( ))) {
destination.wite(nextByte);
nunber O Byt esCopi ed++;
}
destination.flush( );
return number Of Byt esCopi ed;

}

private class ConpressFil eActi on extends AbstractAction {
/1 setup code onmitted

public void actionPerfornmed(Acti onEvent event) {
I nput St ream source =
_startingFil eTextField.getFilelnputStrean( );
Qut put St ream desti nation =
_destinationFileTextField.getFileCQutputStrean( );
if ((null!=source) && (null!=destination)) {

try {
Buf f er edl nput St r eam buf f eredSource = new

Buf f er edl nput St r eam( sour ce) ;
Buf f er edQut put St r eam buf f er edDest i nati on
= new
Buf f er edQut put St rean{ desti nation);
&ZI PQut put St ream zi ppedDestinati on = new
&I PQut put St rean( buf f er edDest i nati on);
copy(buf f eredSour ce, zippedDestination);
buf f eredSour ce. cl ose( );
zi ppedDestination.close( );

catch (1 OException e){}

1.3.1.1 How this works

When the user clicks on the Compress button, two input streams and three output streams are
created. The input streams are similar to those used in the Vi ewfi | e application—they allow us
to use buffering as we read in the file. The output streams, however, are new. First, we create an



instance of Fi | eCut put St r eam We then wrap an instance of Buf f er edQut put St r eam
around the instance of Fi | eCut put St r eam And finally, we wrap GZI PCut put St r eamaround
Buf f er edCut put St r eam To see what this accomplishes, consider what happens when we
start feeding data to GZI PCut put St r eam(the outermost Cut put St r eam).

1. wite(nextByte) isrepeatedly called on zi ppedDesti nati on.

2. zippedDestinati on does notimmediately forward the data to buf f er ed-
Dest i nati on. Instead, it compresses the data and sends the compressed version of
the data to buf f eredDest i nati onusingw ite(int value).

3. bufferedDestinati on does notimmediately forward the data it received to
destinati on. Instead, it puts the data in a buffer and waits until it gets a large amount
of data before calling destination'swite(byte[] buffer) method.

Eventually, when all the data has been read in, zi ppedDesti nati on'scl ose( ) method is
called. This flushes buf f er edDest i nat i on, which flushes dest i nat i on, causing all the data
to be written out to the physical file. After that, zi ppedDest i nat i on is closed, which causes
buf f eredDest i nati on to be closed, which then causes dest i nat i on to be closed, thus
freeing up scarce system resources.

1.3.2 Some Useful Intermediate Streams

| will close our discussion of streams by briefly mentioning a few of the most useful intermediate
streams in the Javasoft libraries. In addition to buffering and compressing, the two most
commonly used intermediate stream types are Dat al nput St r ean/Dat aCut put St r eamand
hj ect | nput St rean/Chj ect Qut put St ream We will discuss Chj ect | nput St r eamand
Ohj ect Qut put St r eamextensively in Chapter 10.

Compressing Streams

Def | at er Qut put St r eamis an abstract class intended to be the
superclass of all output streams that compress data.

&Z1 PCQut put St r eamis the default compression class that is supplied
with the JDK. Similarly, Def | at er | nput St r eamis an abstract class
which is intended to be the superclass of all input streams that read in
and decompress data. Again, GZI Pl nput St r eamis the default
decompression class that is supplied with the JDK.

By and large, you can treat these streams like any other type of stream.
There is one exception, however. Def | at er Qut put St r eamhas a
nonintuitive implementation of f | ush( ). In most stream classes,
flush( ) takes all locally buffered data and commits it either to a
device or to an underlying stream. Once f | ush( ) is called, you are
guaranteed that all data has been processed as much as possible.

This is not the case with Def | at er Qut put St r eam
Def | ater Qut put St reams 1 ush( ) method simply calls flush() on
the underlying stream. Here's the actual code:

public void flush( ) throws | OException {




out.flush( );

}

This means that any data that is locally buffered is not flushed. Thus, for
example, if the string "Roy Rogers" compresses to 51 bits of data, the
most information that could have been sent to the underlying stream is
48 bits (6 bytes). Hence, calling f | ush( ) does not commit all the
information; there are at least three uncommitted bits left after f | ush( )
returns.

To deal with this problem, Def | at er Qut put St r eamdefines a new
method called i ni sh( ), which commits all information to the
underlying stream, but also introduces a slight inefficiency into the
compression process.

Dat al nput St r eamand Dat aCut put St r eamdon't actually transform data that is given to them
in the form of bytes. However, Dat al nput St r eamimplements the Dat al nput interface, and
Dat aCut put St r eamimplements the Dat aCut put interface. This allows other datatypes to be
read from, and written to, streams. For example, Dat aCut put definesthe wr it eFl oat (f| oat
val ue) method, which can be used to write an IEEE 754 floating-point value out to a stream.
This method takes the floating point argument, converts it to a sequence of four bytes, and then
writes the bytes to the underlying stream.

If Dat aCut put St r eamis used to convert data for storage into an underlying stream, the data
should always be read in with a Dat al nput St r eamobject. This brings up an important principle:
intermediate input and output streams which transform data must be used in pairs. That is, if you
zip, you must unzip. If you encrypt, you must decrypt. And, if you use Dat aCuput St r eam you
must use Dat al nput St r eam

We've only covered the basics of using streams. That's all we
“¥ 4. need in order to understand RMI. To find out more about
“*  streams, and how to use them, either play around with the
JDK—always the recommended approach—or see Java I/O

by Elliotte Rusty Harold (O'Reilly).
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1.4 Readers and Writers

The last topics | will touch on in this chapter are the Reader and Wi t er abstract classes.
Readers and writers are like input streams and output streams. The primary difference lies in the
fundamental datatype that is read or written; streams are byte-oriented, whereas readers and
writers use characters and strings.

The reason for this is internationalization. Readers and writers were designed to allow programs
to use a localized character set and still have a stream-like model for communicating with
external devices. As you might expect, the method definitions are quite similar to those for

| nput St reamand Cut put St r eam Here are the basic methods defined in Reader :

public void close( )

public void mark(int readAheadLi mt)
publ i c bool ean markSupported( )
public int read( )



public int read(char[] cbuf)

public int read(char[] cbuf, int off, int |en)
public bool ean ready( )

public void reset( )

public |l ong skip(long n)

These are analogous to the r ead( ) methods defined for | nput St r eam For example, read()
still returns an integer. The difference is that, instead of data values being in the range of 0-255
(i.e., single bytes), the return value is in the range of 0-65535 (appropriate for characters, which
are 2 bytes wide). However, a return value of -1 is still used to signal that there is no more data.

The only other major change is that | nput St r eanls avai | abl e( ) method has been replaced
with a boolean method, r eady( ), which returns t r ue if the next callto r ead( ) doesn't block.
Calling ready( ) on aclass that extends Reader is analogous to checking (avai | able( ) >
0) on | nput St ream

There aren't nearly so many subclasses of Reader or Wi t er as there are types of streams.
Instead, readers and writers can be used as a layer on top of streams—most readers have a
constructor that takes an | nput St r eamas an argument, and most writers have a constructor
that takes an Qut put St r eamas an argument. Thus, in order to use both localization and
compression when writing to a file, open the file and implement compression by layering streams,
and then wrap your final stream in a writer to add localization support, as in the following snippet
of code:

Fi | eQut put Stream destinati on = new Fi |l eQut put Strean(fil eNane);
Buf f er edQut put St r eam buf f er edDesti nati on = new

Buf f er edQut put St ream( desti nati on);

&ZI PQut put St ream zi ppedDestinati on = new

&I PQut put St rean( buf f eredDesti nati on);

Qut put StreanmWiter destinationWiter = new

Qut put StreamWiter(zi ppedDesti nation);

1.4.1 Revisiting the ViewFile Application

There is one very common Reader /W i t er pair: Buf f er edReader and Buf feredWiter.
Unlike the stream buffering classes, which don't add any new functionality, Buf f er edReader
and Buf f eredW i t er add additional methods for handling strings. In particular,

Buf f er edReader addsthe readlLi ne( ) method (which reads a line of text), and

Buf feredW it er addsthe newLi ne( ) method, which appends a line separator to the output.

These classes are very handy when reading or writing complex data. For example, a newline
character is often a useful way to signal "end of current record.” To illustrate their use, here is the
action listener from ViewFileFrame, rewritten to use Buf f er edReader :

private class Viewril eAction extends AbstractAction {
public void actionPerfornmed(Acti onEvent event) {

Fi | eReader fileReader = fileTextField. getFileReader(
)

if (null==fileReader) {
_fileViewi ngArea.setText("Invalid file nane");
}

el se {
try {
copyReader ToVi ewi ngArea(fil eReader);
fil eReader.close( );

}

catch (java.io. | OException ioException) {



_fileView ngArea.setText("\n Error
occured while reading file");
}
}
}

private void copyReader ToVi ewi ngAr ea( Reader reader) throws
| CException {
Buf f er edReader bufferedReader = new
Buf f er edReader (r eader) ;
String nextLine;
_fileView ngArea.set Text("");
while( null !'= (nextLine = bufferedReader.readLine( )))

_fileView ngArea. append(nextLine + "\n");

}
Chapter 2. Sockets

In this chapter, we review Java's socket classes. Sockets are an abstraction that allow two
programs, usually on different machines, to communicate by sending data through streams.
Strictly speaking, the socket classes (which are defined in the | ava. net package) are not part of
RMI. However, RMI uses Java's socket classes to handle communication between distinct
processes. Thus, a basic knowledge of how sockets work is fundamental to understanding RMI.
This chapter's coverage, though far from complete, constitutes the core of what an RMI
programmer needs to know.

2.1 Internet Definitions

The Internet is built out of computers that are connected by wires.[*! Each wire serves as a way to
exchange information between the two computers it connects. Information is transferred in small,
discrete chunks of data called datagrams.

(11 0r, in the case of wireless networks, things that behave like wires.

Each datagram has a header and a data area. The header describes the datagram: where the
datagram originated, what machines have handled the datagram, the type and length of the data
being sent, and the intended destination of the the datagram. The data area consists of the actual
information that is being sent. In almost all networking protocols, the data area is of limited size.
For example, the Internet Protocol (frequently referred to as IP) restricts datagrams to 64 KB.

The Internet Protocol is also an example of what is frequently called a connectionless protocol—
each datagram is sent independently, and there is no guarantee that any of the datagrams will
actually make it to their destination. In addition, the sender is not notified if a datagram does not
make it to the destination. Different datagrams sent to the same destination machine may arrive
out of order and may actually travel along different paths to the destination machine.

Connectionless protocols have some very nice features. Conceptually, they're a lot like the postal
service. You submit an envelope into the system, couriers move it around, and, if all goes well, it
eventually arrives at the destination. However, there are some problems. First, you have no

control over which couriers handle the envelope. In addition, the arrival time of the envelope isn't



particularly well-specified. This lack of control over arrival times means that connectionless
protocols, though fast and very scalable, aren't particularly well suited for distributed applications.

Distributed applications often require three features that are not provided by a connectionless
protocol: programs that send data require confirmation that information has arrived; programs that
receive data require the ability to validate (and request retransmission) of a datagram; and finally,
programs that receive data require the communication mechanism to preserve the order in which
information is sent.

To see why, consider what happens if you were to send a document to a printer using IP. The
document is probably bigger than 64 KB, so it's going to be broken down into multiple datagrams
before being sent to the printer. After the printer receives the datagrams, it has to reconstruct the
document. To do this, the printer has to know the order in which the datagrams were sent, that it
received all the datagrams that were sent, and that line noise didn't corrupt the data along the
way.

Just because distributed applications "often require” these
w 4. additional features doesn't mean that connectionless

" protocols aren't useful. In fact, many applications can be built
using connectionless protocols. For example, a live audio
feed is very different from printing in that, if the datagrams
arrive jumbled, there's really no repair strategy (it's a live
feed). In such cases, or in cases when information is
constantly being updated anyway (for example, a stock
ticker), the superior speed and scalability of a connectionless
protocol is hard to beat.

To help out, we use the Transmission Control Protocol (TCP). TCP is a communications layer,
defined on top of IP, which provides reliable communication. That is, TCP/IP ensures that all data
that is sent also arrives, and in the correct order. In effect, it simulates a direct connection
between the two machines. The underlying conceptual model is a direct conversation, rather than
a courier service. When two people are engaged in a face-to-face conversation, information that
is sent is received, and received in the correct sequence.

TCP works by extending IP in three ways:

TCP adds extra header information to IP datagrams. This information allows recipients to
tell the order in which datagrams were sent and do some fairly robust error-checking on
the data.

TCP extends IP by providing a way to acknowledge datagram receipt. That is, when data
is received, it must be acknowledged. Otherwise, the sender must resend it. This also
provides a way for recipients to tell senders that the data was received incorrectly.

TCP defines buffering strategies. The computer receiving data over the network often has
a fixed amount of space (its buffer) to hold data. If the sender sends information too
quickly, the recipient may not be able to correctly handle all the information—there might
not be enough room in its buffer. The solution to this problem is simple: when using TCP,
the sender must wait until the recipient tells the sender how much buffer space is
available. Once it does, the sender may transmit only enough information to fill the buffer.
It then must wait for the recipient to indicate that more buffer room is available.



TCP/IP networking is almost always implemented as part of the operating system. Programming
languages use libraries to access the operating system's TCP/IP functionality; they do not
implement it themselves.

2.2 Sockets

Sockets are an abstraction for network connections that first appeared on Unix systems in the
mid-1970s. In the intervening 25 years, the socket interface has become a cornerstone of
distributed programming. Java supports sockets with the classes and interfaces defined in the
j ava. net package.

Specifically, | ava. net contains two classes that are the core Java classes used when reliable
communication between two different processes is necessary: Socket and Ser ver Socket .
They have the following roles:

Socket

Enables a single connection between two known, established processes. In order to
exchange information, both programs must have created instances of Socket .

ServerSocket

Manages initial connections between a client and a server. That is, when a client
connects to a server using an instance of Socket , it first communicates with

Server Socket . Server Socket immediately creates a delegate (ordinary) socket and
assigns this new socket to the client. This process, by which a socket-to-socket
connection is established, is often called handshaking.=

[21 More precisely, handshaking refers to any negotiation that helps to establish some sort of
protocol or connection. Socket-based communication is simply one example of a system with a
handshaking phase.

Another way to think of this: sockets are analogous to phone lines; ServerSockets are analogous
to operators who manually create connections between two phones.

2.2.1 Creating a Socket

In order to create a socket connection to a remote process, you must know two pieces of
information: the address of the remote machine and the port the socket uses.

Addresses are absolute—they specify a single computer somewhere on your network or the
Internet—and can be specified in many ways. Two of the most common are:
A human-readable name
For example, www.oreilly.com is an address.
A 32-bit number

This number is usually written as four distinct 8-bit numbers, separated by three dots. For
example, 204.148.40.9 is the IP address of a computer somewhere on the Internet.

Ports, on the other hand, are relative addresses. A port is an integer that specifies a particular
socket, once a machine is known. The operating system uses ports to route incoming information
to the correct application or process.

The basic procedure for a Java client program using a socket involves three steps:

1. Create the socket. To do this, you need to know the address and port associated with a
server.



2. Get the associated input and output streams from the socket. A socket has two
associated streams: an | nput St r eam which is used for receiving information, and an
Qut put St r eam which is used to send information.

3. Close the socket when you're done with it. Just as we closed streams, we need to close
sockets. In fact, closing a stream associated with a socket will automatically close the
socket as well.

This last step may not seem crucial for a client application; while a socket does use a port (a
scarce operating-system resource), a typical client machine usually has plenty of spare ports.
However, while a socket connection is open between a client and a server, the server is also
allocating resources. It's always a good idea to let the server know when you're done so it can
free up resources as soon as possible.

2.2.1.1 A simple client application

The steps we've just seen are illustrated in the V\ebBr owser application, as shown in Example
2-1. \\ebBr owser is an application that attempts to fetch the main web page from a designated
machine. V\ebBr owser 's nai n( ) method is defined in the

com or a. r m book. chapt er 2. WebBr owser class.

Example 2-1. The WebBrowser application

public class WebBrowser Frane extends ExitingFranme {
/1 :
private voi d askForPage(Socket webServer) throws | OException {
Buf feredWiter request;
request = new BufferedWiter(new
Qut put StreamNiter (webServer.
getQut put Strean( )));
request. wite("CGET / HTTP/ 1.0\ n\n");
request.flush( );

}

private void recei vePage(Socket webServer) throws | OException {
Buf f er edReader webPage=nul | ;
webPage = new BufferedReader ( new
I nput St r eanReader (webServer. getlnputStream )));
String nextLine;
while (null!=(nextLi nezwebPage.readLine( ))) {
_di spl ayArea. append(nextLine + "\n"); /
inefficient string handling
}
webPage. cl ose( );
return;

/

’

}

private class FetchURL extends AbstractAction {
public FetchURL( ) {
put Val ue( Acti on. NAME, "Fetch");
put Val ue( Acti on. SHORT_DESCRI PTI ON, "Retrieve the
i ndicated URL");

}

public void actionPerfornmed(ActionEvent e) {
String url = _url.getText( );
Socket webServer;



try {
webServer = new Socket (url, 80);

catch (Exception invalidURL) {
_displayArea.setText("URL " + url + " is
not valid.");
return;

try {
askFor Page(webSer ver) ;

recei vePage(webServer);
webServer.close( );

}
catch (I Oexcepti on whoReal | yCares) {
_di spl ayArea. append("\n Error in talking
to the web server.");

}
}

Visually, \ebBr owser is quite simple; it displays a JText Area, a JText Fi el d, and a

JBut t on. The user enters an address in the text field and clicks on the button. The application
then attempts to connect to port 80=! of the specified machine and retrieve the default web page.
A screen shot of the application before the button is pressed is shown in Figure 2-1.

31 port 80 is an example of a well-known port. It is usually reserved for web servers (and most web sites use
it).

Figure 2-1. The WebBrowser application before fetching a web page
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The WebBrowser application is implemented as a single subclass of JFr ane. The socket-related
code is contained in the Fetch button's Act i onLi st ener and in the two private methods
askForPage( ) andrecei vePage( ). If all goes well, and no exceptions are thrown, the
following code is executed when the button is clicked:

String url = _url.getText( );

Socket webServer = new Socket (url, 80);
askFor Page(webServer) ;

recei vePage(webServer) ;



That is, the program assumes that the text field contains a valid address of a computer on which
a web server runs. The program also assumes that the web server is listening for connections on
port 80. Using this information, the program opens a socket to the web server, asks for a page,
and receives a response. After displaying the response, the program closes the socket and waits
for more input.

o
b

Where did the number 80 come from? Recall that in order to
<. Create a socket connection, you need to have a machine

" address and a port. This leads to a boot-strapping problem—
in order to establish a socket connection to a server, you
need the precise address. But you really want to avoid
hardwiring server locations into a client application. One
solution is to require the server machine to be specified at
run-time and use a well-known port. There are a variety of
common services that vend themselves on well-known ports.
Web servers usually use port 80; SMTP (the Internet malil
protocol) uses port 25; the RMI registry, which we will discuss
later, uses port 1099. Another solution, which RMI uses, is to
have clients "ask" a dedicated server which machine and port
they can use to communicate with a particular server. This
dedicated server is often known as a haming service.

=
f
I

The code for asking and receiving pages is straightforward as well. In order to make a request,
the following code is executed:

private voi d askFor Page( Socket webServer) throws | OException {
Buf feredWiter request;
request = new BufferedWiter(new
Qut put StreanmWiter (webServer.getQutputStream( )));
request. wite("GET / HITTP/ 1.0\ n\n");
request.flush( );

}

This acquires the socket's associated Out put St r eam wraps a formatting object (an instance of
Buf f eredW i t er) around it, and sends a request. Similarly, r ecei vePage( ) gets the
associated | nput St r eam and reads data from it:

private void recei vePage( Socket webServer) throws | OException {

Buf f er edReader webPage=nul | ;

webPage = new Buf f er edReader ( new
| nput St r eanReader (webServer. getlnputStream )));

String nextLine;

whil e (null!=(nextLi ne=webPage.readLine( ))) {

_di spl ayArea. append(nextLine + "\n"); // inefficient

string handling

}

return;

}
2.2.2 Protocols and Metadata

It's worth describing the steps the \WebBr owser application takes in order to retrieve a page:

1. It connects to the server. In order to do this, it must know the location of the server.



2. It sends a request. In order to do this, both the client and the server must have a shared
understanding of what the connection can be used for, and what constitutes a valid
request.

3. ltreceives a response. In order for this to be meaningful (e.g., if the client is doing
something other than simply displaying the response), the client and server must again
have some sort of shared understanding about what the valid range of responses is.

The last two steps involve an application-level protocol and application-level metadata.
2.2.2.1 Protocols

A protocol is simply a shared understanding of what the next step in communicating should be. If
two programs are part of a distributed application, and one program tries to send data to the other
program, the second program should be expecting the data (or at least be aware that data may
be sent). And, more importantly, the data should be in a format that the second program
understands. Similarly, if the second program sends back a response, the first program should be
able to receive the response and interpret it correctly.

HTTP is a simple protocol. The client sends a request as a formatted stream of ASCII text
containing one of the eight possible HTTP messages.! The server receives the request and
returns a response, also as a formatted stream of ASCII text. Both the request and the response
are formatted according to an Internet standard.’!

1 One of CONNECT, DELETE, PUT, GET, HEAD, OPTIONS, POST, or TRACE.

51 Internet RFC 822. Available from www.ietf.org.

HTTP is an example of a stateless protocol. After the response is received, the communication
between the client and the server is over—the server is not required to maintain any client-
specific state, and any future communication between the two should not rely on prior HTTP
requests or responses. Stateless protocols are like IP datagrams—they are easy to design, easy
to implement in a robust way, and very scalable. On the other hand, they often require more
bandwidth than other protocols because every request and every response must be complete in
and of itself.

2.2.2.2 Metadata

An interesting thing happens when you click on the Fetch button: you get back a lot more than the
web page that would be visible in a web browser such as Netscape Navigator or Internet
Explorer. Figure 2-2 shows screenshot of the user interface after the button is clicked.

Figure 2-2. The WebBrowser application after fetching a web page
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This is the response associated to the main O'Reilly web page. Notice that it starts with a great
deal of text that isn't normally displayed in a web browser. Before the page contents, or the
formatting information for the page contents are sent, the web server first tells the client about the
information it is sending. In this case, the server first informs the client that the response is being
sent using the HTTP 1.0 protocol, that the client requested succeeded without any problems (this
is what "200 OK" means), that the page being sent hasn't changed in a few hours, and that the
page is composed of HTML text. This type of information, which consists entirely of a description
of the rest of the response, is usually called metadata.

o

We've already encountered the metadata/data distinction
“ 4. Dbefore in our discussion of datagrams. Each datagram
(18N

contains a header (the metadata) and data (the data). One of
the things that TCP added to IP was extra metadata to
headers that allowed datagram recipients to correctly
reassemble the data in several datagrams into one coherent
unit.

Metadata is ubiquitous in distributed applications. Servers and clients have independent
lifecycles, both as applications and as codebases. Enabling robust communication between a
client and a server means that you can't simply send a message. You have to say what type of
message you're sending, what it is composed of, what version of the protocol and specifications
are being used to format the message, and so on.

We'll do this manually in the next chapter, when we build a socket application. RMI, on the other
hand, automatically generates descriptions of Java classes. These descriptions, stored in
static | ongsnamedseri al Versi onU D (one integer for each class), will be more fully

discussed in Chapter 10.

2.3 ServerSockets

So far, we've focused on how to write a client program using sockets. Our example code
assumed that a server application was already running, and the server was accepting
connections on a well-known port. The next logical step in our discussion of sockets is to write an
application that will accept connections. Fortunately, this isn't much more complicated than
creating a client application. The steps are:



1. Create an instance of Ser ver Socket . As part of doing so, you will supply a port on
which Ser ver Socket listens for connections.

2. Callthe accept ( ) method of Ser ver Socket .Once you do this, the server program
simply waits for client connections.

2.3.1 The accept() method

The key to using Ser ver Socket isthe accept ( ) method. It has the following signature:
public Socket accept( ) throws | CException

There are two important facts to note about accept (). The firstis thataccept ( ) isa
blocking method. If a client never attempts to connect to the server, the server will sit and wait
inside the accept () method. This means that the code that follows the call to the accept ( )
method will never execute.

The second important fact is that accept () creates and returns an instance of Socket . The
socket that accept () returns is created inside the body of the accept () method for a single
client; it encapsulates a connection between the client and the server.

Therefore, any server written in Java executes the following sequence of steps:

1. The server is initialized. Eventually, an instance of Ser ver Socket is created and
accept () is called.

2. Once the server code calls accept (), Server Socket blocks, waiting for a client to
attempt to connect.

3. When a client does connect, Ser ver Socket immediately creates a new instance of
Socket , which will be used to communicate with the client. Remember that an instance
of Socket thatis returned from accept () encapsulates a connection to a single
client.! Ser ver Socket then returns the new Socket to the code that originally called
accept ().

[81 setting up this socket involves some communication with the client; this communication (which
is completely hidden inside the socket libraries) is again called handshaking.

2.3.2 A Simple Web Server

To illustrate how to use Ser ver Socket , we'll write a simple web server. It's not a very
impressive web server; it doesn't scale very well, it doesn't support secure sockets, and it always
sends back the same page. On the other hand, the fact that it works at all and can be written in
so few lines of code is a testament to the power of sockets. The nai n( ) method for our web
server is contained in the com or a. r m book. chapt er 2. \ebSer ver class.

The heart of our web serveristhe st art Li st eni ng( ) method:

public void startListening( ) {
Server Socket server Socket ;

try {
server Socket = new Server Socket (80);

catch (I Oexception e) {return;}
whil e(true) {

try {
Socket client = serverSocket.accept( ); // wait

her e



processC i ent Request (client);

/1 bad design--should handl e requests in separate
t hr eads

/1 and i mredi ately resune |listening for
connecti ons

client.close( );

}
catch (1 Oexception e){}

}

This application works exactly as described in the preceding comments: an instance of
Server Socket is created, and then accept () is called. When clients connect, the call to
accept () returns an instance of Socket , which is used to communicate with the client.

The code that communicates with the client does so by using the socket's input and output
streams. It reads the request from the socket's input stream and displays the request in a
JText Ar ea. The code that reads the request explicitly assumes that the client is following the
HTTP protocol and sending a valid HTTP request..2

7Y Among other things, the r eadRequest () method assumes that the presence of a blank line signals
the end of the request.

After the request is read, a "Hello World" page is sent back to the client:

private void processC ient Request (Socket client) throws | CException {
_di spl ayArea. append("Cient connected fromport " +
client.getPort() + " on machine + client.getlnetAddress( )

+\n");
_di spl ayAr ea. append(" Request is: \n");
readRequest (client);
sendResponse(client);

}

private void readRequest (Socket client) throws | OException {
Buf f er edReader request=null;
request = new Buf f er edReader (new
| nput St reanReader (client.getlnputStrean( )));
String nextLine;
while (null!=(nextLine=request.readLine( ))) {
/1l ldeally, we'd |ook at what the client said.
/1 But this is a very sinple web server.
if (nextLine.equals("")) {

br eak;
}
el se {
_di spl ayArea. append("\t" + nextLine + "\n");
}
}
_displayArea.append("------------“"-"-“-““--““-------- -
\n");
return,
}

private voi d sendResponse(Socket client) throws | CException {
Buf feredWiter response;
response = new BufferedWiter(new

Qutput StreanmWiter(client.getQutputStream( )));



response. wite(_nmai nPage);
response. flush( );

}

Figure 2-3 is a screenshot of our web server in action, handling a request made using Netscape
Navigator 6.

Figure 2-3. The WebServer application
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Note the use of metadata here. When a web browser asks a web server for a page, it sends
information in addition to what page it wants—a description of how the page should be sent and
what the page should contain. In the previous example, the web browser stated what protocol is
being used (HTTP 1.0), what type of web browser it is (Netscape 6), what sort of response is
desired (indicated by the two "Accept” lines), and the site that referred to the page being
requested (i.e., if you clicked on a link to request the page, the page you were on is passed to the
web server as well).

2.4 Customizing Socket Behavior

In addition to the basic methods for creating connections and sending data, the Socket class
defines a number of methods that enable you to set some fairly standard socket parameters.
Setting these standard socket parameters won't change how the rest your code interacts with the
socket. However, it will change the socket's network behavior. The methods, paired along get (
)Iset () lines, are:

publ i c bool ean get KeepAlive( )
public void set KeepAlive(bool ean on)

public int getReceiveBufferSize( )

public void setRecei veBufferSize(int size)
public int getSendBufferSize( )

public void set SendBufferSize(int size)

public int getSoLinger( )

public void set SoLi nger (bool ean on, int |inger)
public int getSoTi neout( )

public void set SoTi neout (i nt timeout)

publ i c bool ean get TcpNoDel ay( )

public void set TcpNoDel ay(bool ean on)

In the rest of this section, we discuss these parameters in more detail:

public boolean getKeepAlive()
public void setKeepAlive(boolean on)



One problem with distributed applications is that if no data arrives over a long period of
time, you need to wonder why. On one hand, it could be that the other program just
hasn't had any information to send recently. On the other hand, the other program could
have crashed. TCP handles this problem by allowing you to send an "Are you still alive?"
message every so often to quiet connections. The way to do this is to call

set KeepAl i ve( ) with avalue of t r ue. Note that you don't need to worry about one
side of the connection dying when you use RMI. The distributed garbage collector and
the leasing mechanism (which we'll discuss in Chapter 16) handle this problem
automatically.

public int getReceiveBufferSize( )

public void setReceiveBufferSize(int size)
public int getSendBufferSize()

public void setSendBufferSize(int size)

The set Recei veBuf ferSi ze( ) and set SendBufferSi ze( ) methods attempt to
set the size of the buffers used by the underlying protocol. They're not guaranteed to
work; instead they are officially documented as methods that give "hints" to the operating
system. However, the operating system is free to ignore these hints if it wants to.

The basic trade-off is this: assuming the TcpNoDel ay property is setto f al se, then
using larger buffers mean larger chunks of data are sent. This results in a more efficient
use of network bandwidth, as fewer headers get sent and fewer headers have to be
parsed along the way. On the other hand, using larger buffers often means that there is a
longer wait before data is sent, which may cause overall application performance to lag.

public int getSoLinger()
public void setSoLinger(boolean on, int linger)

set SoLinger ( ) and get SoLi nger ( ) refer to how long the system will try to send
information after a socket has been closed. Recall that under TCP/IP's buffering stategy,
information is often held at the sender's side of the wire until the recipient is ready to
handle it. Suppose that an application opened a socket, wrote some data to the socket,
and immediately closed the socket. By default, the cl ose( ) method will return
immediately, and the operating system will still attempt to send the data on its own. If the
set SoLi nger () method is passed in a boolean of f al se, it will continue to behave
this way.

If the method is passed in a boolean of t r ue, the cl ose( ) method of the socket will
block the specifed number of seconds (an integer), waiting for the operating system to
transmit the data. If the time expires, the method returns, and the operating system does
not transmit the data. The maximum linger time is 65,535 seconds, even though you can
pass in a much larger integer; a value of -1 means the operating system will keep trying
forever. The platform default is generally the best option.

public int getSoTimeout( )
public void setSoTimeout(int timeout)

When you try to read data from a socket's input stream, the read methods all block while
they wait for data. The timeout simply states how long they should wait before throwing
an exception. A value of 0 means the socket will wait forever; this is the default behavior.

public boolean getTcpNoDelay( )
public void setTcpNoDelay(boolean on)

Recall that one of the things TCP adds to IP is buffer management. The program that
receives data has a fixed-length buffer in which to receive information and must tell the
sender when buffer space becomes available. If buffer space becomes available at a
very slow rate (e.g., if data is being removed from the buffer very slowly), then it's
possible that the recipient will send messages such as, "Send me three more bytes of



data. I've got the buffer space for it now." This behavior, which results in a horrible waste
of bandwidth, is called the silly-window problem.

TCP usually avoids the silly window problem by grouping information before sending it.
That is, rather than sending small amounts of information repeatedly, TCP usually waits
until a large amount of information is available and sends it together. The

set TCPNoDel ay( ) method enables you to turn this behavior off. An argument of t r ue
will force the sockets layer to send information as soon as it becomes available.

2.5 Special-Purpose Sockets

Socket and Ser ver Socket are object-oriented wrappers that encapsulate the TCP/IP
communication protocol. They are designed to simply pass data along the wire, without
transforming the data or changing it in any way. This can be either an advantage or a drawback,
depending on the particular application.

Because data is simply passed along the network, the default implementation of Socket is fast
and efficient. Moreover, sockets are easy to use and highly compatible with existing applications.
For example, consider the \\ebBr owser application discussed earlier in the chapter. We wrote a
Java program that accepted connections from an already existing application (in our case,
Netscape Navigator) that was written in C++.

There are, however, two important potential downsides to simply passing along the data:
The data isn't very secure.
Communications may use excessive bandwidth.

Security is an issue because many applications run over large-scale networks, such as the
Internet. If data is not encrypted before being sent, it can easily be intercepted by third parties
who are not supposed to have access to the information.

Bandwidth is also an issue because data being sent is often highly redundant. Consider, for
example, a typical web page. My web browser has 145 HTML files stored in its cache. The
Conpr essFi | e application from Chapter 1, on average, compresses these files to less than
half their original size. If HMTL pages are compressed before being sent, they can be sent much
faster.

Of course, HTML is a notoriously verbose data format, and
w 4. this measurement is therefore somewnhat tainted. But, even

" s0, it's fairly impressive. Simply using compression can cut
bandwidth costs in half, even though it adds additional
processing time on both the client and server. Moreover,
many data formats are as verbose as HTML. Two examples
are XML-based communication and protocols such as RMI's
JRMP, which rely on object serialization (we'll discuss
serialization in detail in Chapter 10).

2.5.1 Direct Stream Manipulation

As with most problems, security and bandwidth issues have a simple, and almost correct,
solution. Namely:



If your application doesn't have security or bandwidth issues, or must use
ordinary sockets to connect with pre-existing code, use ordinary sockets.
Otherwise, use ordinary sockets, but layer additional streams to encrypt or
compress the data.

This solution is nice for a number of reasons. First and foremost, it's a straightforward use of the
Java streams library that does exactly what the streams library was intended to do. Consider the
following code from the Conpr essFi | e application:

Qut put St ream destination =
_destinationFileTextField.getFileQutputStrean( );
Buf f er edQut put St r eam buf f eredDesti nati on = new

Buf f er edQut put St rean{ desti nati on);

&ZI PQut put St ream zi ppedDestinati on = new

&ZI PQut put St rean( buf f eredDesti nation);

Rewriting the first line yields the exact code needed to implement compression over a socket:

Qut put Stream destination = _socket.getQutputStrean( );
Buf f er edQut put St r eam buf f eredDest i nati on = new

Buf f er edQut put St r eam( desti nati on);

&I PQut put St ream zi ppedDesti nati on = new

&I PQut put St rean( buf f er edDest i nati on);

2.5.2 Subclassing Socket Is a Better Solution

There is, however, a related solution that has identical performance characteristics and yields
much more reliable code: create a subclass of Socket that implements the layering internally
and returns the specialized stream.

This is a better approach for three reasons:

It lowers the chances of socket incompatibilities. Consider the previous example—any
part of the application that opens a socket must also implement the correct stream
layering. If an application opens sockets in multiple locations in the code, there's a good
chance that it will be done differently in different places (e.g., during an update a
developer will forget to update one of the places in the code where a socket is opened).’®!
This is especially true if the application has a long lifecycle.

[81 This is a particular instance of a more general principle known as Once and Only Once.
Namely: if information is written down two ways, one of the versions will soon be out of date. See
http://www.c2.com/cgi/wiki?OnceAndOnlyOnce for a detailed discussion of this idea.

This sort of error is particularly bad because it isn't caught by the compiler. Instead,
incorrectly encoded data will be sent over the wire, and the recipient will either then throw
an exception (the good case) or perform computations with incorrect data (the bad case).

It isolates code that is likely to change. If most of the application simply creates instances
of a subclass of Socket or, better yet, calls a method named something like

get Socket () on a factory object, and uses only the basic methods defined in Socket ,
then the application can quickly and easily be modified to use a different subclass of
Socket . This not only allows an application to seamlessly add things such as an
encryption layer, but it can be very useful when trying to debug or monitor a distributed
application (see the Loggi ngSocket class from the sample code provided with this
book as an example of this).

Custom sockets can be used with RMI. RMI is an object-oriented layer for distributed
programming, built on top of the sockets library. Though it doesn't give application
programmers direct access to the socket input and output streams, it does allow



programmers to specify what type of sockets to use when making a connection between
a client and a server (via the RM Cl i ent Socket Fact ory and
RM Server Socket Fact ory interfaces; see Chapter 18 for more details).

2.5.3 A Special-Purpose Socket

Creating custom socket classes is only little bit more complicated than you might expect from the
previous discussion. Example 2-2 shows the complete implementation of
Conpressi ngSocket , a socket that uses the compressing streams to save bandwidth:

Example 2-2. CompressingSocket.java

public class Conpressi ngSocket extends Socket {
private | nputStream _conpressingl nput Stream
private Qutput Stream _conpressi ngQut put Stream

public ConpressingSocket( ) throws | OException {
}

public Conpressi ngSocket (String host, int port) throws
| OException {

}

public I nputStreamgetlnputStream( ) throws | OException {
i f (null==_conpressinglnputStream {
I nput St ream ori gi nal | nput St ream =
super. getlnput Stream );
_conpr essi ngl nput Stream = new
Conpr essi ngl nput Strean{ori gi nal | nput Strean);

super (host, port);

return _conpressingl nput St ream

}

public CQutputStream getQutputStream( ) throws | OException{
i f (null==_conpressingQutput Strean) ({
Qut put St ream ori gi nal Qut put St ream =
super. get Qut put Strean( );
_conpr essi ngQut put Stream= new
Conpr essi ngQut put Stream(ori gi nal Qut put Strean);

}
return _conpressi ngQut put Stream

}
public synchronized void close( ) throws | OException {
i f(null!= conpressingQut putStream {
_conpressi ngQut put Stream flush( );
_conpressi ngQut put Stream cl ose( );
i f(null!= conpressinglnputStream {
_conpressi ngl nput Stream cl ose( );
}
}



All that we did to write Conpr essi ngSocket was move the stream's customization code inside
the Socket class definition. Note that in order to do this, however, we also had to override the
cl ose( ) method to close the special-purpose stream we created. There's one other subtlety
here: we didn't use GZI Pl nput St r eamand GZI PQut put St r eamdirectly. Instead, we defined
custom stream classes that wrapped around GZ| Pl nput St r eamand GZI PQut put St ream
Here is our implementation of Conpr essi ngQut put St r eant

public class Conpressi ngQut put Stream ext ends Qut put Stream {
private QutputStream _actual Qut put Stream
private &I PQut put Stream _del egat e;

publ i c Conpressi ngQut put St r ean( Qut put St r eam act ual Qut put St r eam
_actual Qut put St ream = act ual Qut put St ream
public void wite(int arg) throws | OException {
if (null==_del egate) {

_del egate = new
&I PQut put St rean( _act ual Qut put Strean);

}
_delegate.write(arg);
return;
}
public void close( ) throws | OException {
if (null!=_delegate) {
_del egate.close( );
}
el se {
_actual Qutput Stream cl ose( );
}
}
public void flush( ) throws | OException {
if (null!=_delegate) {
_delegate.finish( );
}
}

}

We needed to use this extra layer of indirection because of the way that GZI PCut put St r eam
handles f | ush( ). Recall that subclasses of Def | at er Qut put St r eamdon't actually commit
all data to the underlying stream when f | ush( ) is called. This means we're faced with the
following problems:

Because we're subclassing Socket , clients will call get | nput St rean( ) and
get Qut put Stream( ).

When they're done sending data, clients will call f | ush( ) to make sure all the data has
been sent.

Some of the data won't be sent when the client calls f | ush( ).
To handle these problems, we implement f | ush( ) soitcallsfini sh( ).Remember, though,

that clients and servers must use the same type of socket (if the client compresses, the server
must uncompress). In practice, this simply means that we also need to create a subclass of



Server Socket and override the accept () method to return a Conpr essi ngSocket .
Example 2-3 shows the complete code for Conpr essi ngSer ver Socket .

Example 2-3. CompressingServerSocket.java

public class ConpressingServer Socket extends Server Socket {
publ i c Conpressi ngServer Socket (i nt port) throws | CException {
super(port); }

public Socket accept( ) throws | OException {
Socket returnVal ue = new Conpressi ngSocket( );
i mpl Accept (returnVal ue);
return returnVal ue;

}

This works by creating an instance of Conpr essi ngSocket and passing it as an argument to

i mpl Accept () .1 npl Accept () is a protected method that actually listens for connections
and blocks. When a connection is made, i npl Accept () configures the Conpr essi ngSocket
it has been passed and then returns.

Logging and Tracing

Frequently, the portions of code that perform data translation are also the
ideal points to insert logging, tracing, and debugging code. For example,
inthe com ora. rm book. chapter 2. socket s package, there are
three classes that together illustrate the general idea:

Loggi ngl nput St r eam Loggi ngQut put St r eam and Recor der .
Loggi ngl nput St reamand Loggi ngQut put St r eamdon't perform
any data manipulation at all, but they do have a reference to an instance
of Recor der . And they tell the recorder whenever data flows through
them, as in the following code snippet from Loggi ngl nput St r eam

public int read(byte[] b) throws | OException {
I nt nunber O Byt es = super.read(b);
_recorder.increnment Count er (nunber & Byt es) ;
return nunber O Byt es;

}

While this implementation is very primitive (the recorder is told the
number of bytes received, but does not, for example, know where they
came from), the idea is clear. Subclassing Socket , and using the
custom subclass in your application, can provide a powerful hook for
analyzing network performance.

2.5.4 Factories
Recall that from the list of three reasons to subclass Socket , we said:

It isolates code that is likely to change. If most of the application simply creates
instances of a subclass of Socket or, better yet, calls a method named
something like get Socket () on a factory object, and uses only the basic



methods defined in Socket , then the application can quickly and easily be
modified to use a different subclass of Socket .

The idea behind a factory is simple: a factory is an object that knows how to build instances of
some other class or interface. That is, it is a generalization of the traditional way of creating an
instance of some class. At the risk of belaboring the point, calling a constructor can be broken
down into three steps:

1. Find the class object. The class object is referred to by name (the programmer knows the
class explicitly).

2. Call the constructor. Again, the programmer has explicit knowledge. Usually this step,
and the prior one, are simply a line of the form Cl assnane. constructor( ).

3. Use the returned object. The returned object is an instance of the named class.
Factories generalize each of these steps:

1. Find the factory. In a single process, this is usually done by having the programmer know
the factory classname and having the factory be a singleton instance.

2. Call the creation method. The programmer has explicit knowledge of what methods are
available.

3. Use the returned object. The returned object is an instance of some class that has the
right type (e.g., implements the interface the factory is defined to return).

We'll revisit the idea of factories several times over the course of this book. Using factories is one
of the most important idioms in designing and building scalable distributed systems. For now, it
suffices to note that each of these changes adds important flexibility to a program.

2.5.5 Socket Factories

Factories are often used when there is an identifiable part of a program, easily encapsulated in
one (or a few) objects, which is likely to change repeatedly over time and which may require
special expertise to implement. Replacing sockets is a perfect example of this; instead of calling
the constructor on a specific type of socket, code that needs to use a socket can get one by
calling a factory.

This allows the sockets in an application to be changed by simply changing the code in one
place—the factory—rather than changing the calls to the constructor everywhere in the program.

Because this is such a common usage, Javasoft, as part of the Java Secure Sockets Extension
(JSSE), defined the | avax. net package, includes two abstract classes: Socket Fact ory and
Server Socket Fact or y. Here are the method definitions for Socket Fact or y:

public abstract java.net. Socket createSocket(java. net.|netAddress host,
int port)
public abstract java.net. Socket createSocket(java.net.|netAddress
address, int port,

java. net. | net Address client Address, int clientPort)
public abstract java.net. Socket createSocket(java.lang.String host, int
port)
public abstract java.net. Socket createSocket(java.lang.String host, int
port,

java. net. | net Address clientHost, int clientPort)
public static SocketFactory getDefault( )



With the exception of get Def aul t (), these look exactly like constructors for a subclass of
Socket.get Defaul t () is ahook for a singleton—the idea is that code can get the system's
default Socket Fact ory (which is set as part of an application's initialization phase) and then
create a Socket using it, without ever knowing the classnames of either the default

Socket Fact ory or the particular subclass of Socket it returns. The resulting code, which looks
a lot like the following, is truly generic and rarely needs to be rewritten:

Socket Factory socket Factory = Socket Factory.getDefault( );

/'l gets default factory

/'l connects to server

Socket connectionToServer = socket Factory. creat eSocket (host Machi ne,
port Nunber) ;

Of course, anyone who writes a custom socket needs to do a little more work and implement the
factories. In particular, a vendor shipping a special-purpose socket should actually ship at least
four classes: a subclass of Socket , a subclass of Ser ver Socket , a subclass of

Socket Fact ory, and a subclass of Ser ver Socket Fact ory.

&

The | ava. rm . server package defines a similar, though
simpler, pair of interfaces: RVl Cl | ent Socket Fact ory and
RM Ser ver Socket Fact or . These enable you to customize
the sockets used by the RMI framework (ordinary sockets are
used by default). We will discuss these further inChapter 18.
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2.5.6 Security

Compressing data, while possibly improving performance, does not make an application more
secure. And code that allows you to monitor network use is only tangentially related to security.
You could, for example, notice that an awful lot of data is being requested by an application
running on an unauthorized site.

There's a good reason for this: there are subclasses of Socket that you can use to provide more
secure communications. But, without a fair amount of training and knowledge of security, you
shouldn't even think about writing one yourself—security is hard, and it's much too easy to make
a mistake. What's worse, mistakes are hard to detect until someone has taken advantage of
them. This is not to say that you shouldn't use custom sockets to implement security. It's just that
you should use one of the standard and thoroughly tested solutions, rather than trying to
implement your own.

Whenever information is transferred from one person (or application) to another, there are three
potential security risks that arise:

Data confidentiality

This issue arises because the transfer medium may be insecure. For example, if you're
using the Internet to send information, you can't possibly guarantee the security of all the
computers and cables the information passes through en route. While the information is
being transferred, it might also be received and read by an unintended third party. The
usual solution for this problem is to encrypt the information so that only authorized
recipients can read it.

Data integrity

This issue also arises because the transfer medium may be insecure. Basically, this
means that the information may be altered en route. The usual solution for this problem is
to attach a secure checksum to the information being transferred. The recipient can



compute the checksum of the received information and compare it to the attached
checksum. This is commonly referred to as a digital signature.

Authorization and validation

Being able to securely send information to a third party isn't particularly helpful if we have
no way of validating who the third party is. Authorization and validation refers to the
process by which participants in an exchange have their identities verified. The usual
solution for this is to rely on a third party that validates both participants. This third party
can be either an internal application, such as a Kerberous ticket server, or a commercial
entity that validates entities, such as Verisign.

There are many different ways to authenticate a participant in
an exchange. And you can often tighten up security via some
form of partial authentication even if it's hard to establish the
exact identity of a participant. For example, the RMI registry
restricts certain operations based on IP addresses; the
software that attempts to perform the operation must be
running on the same machine as the registry. This is a very
simple, and easily implemented, scheme. But, if the local
machine is reasonably secure, then it is a fairly effective form
of authentication.
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Your goal as an application developer is to think about and add in the appropriate type of security
to your program. Note that | say appropriate; not all users need to be authenticated, and not all
data needs to be encrypted.

As a practical matter, the first step in building a secure system is realizing the attempt is futile.
That is, there is no such thing as a perfectly secure system. Instead, your goal in implementing a
security infrastructure should be practical security. A good working definition of this concept is
provided by Bruce Schneier's Applied Cryptography, 2nd Edition (John Wiley & Sons):

Different algorithms offer different degrees of security; it depends on how hard
they are to break. If the cost required to break an algorithm is greater than the
value of the encrypted data, then you're probably safe. If the time required to
break an algorithm is longer than the time the encrypted data must remain
secret, then you're probably safe. If the amount of data encrypted with a single
key is less than the amount of data necessary to break the algorithm, then you're
probably safe.

2.6 Using SSL

The Secure Sockets Layer (SSL) is a standard protocol for both authenticating users and
encrypting data that is then sent over ordinary sockets. That is, implementations of SSL are
conceptually similar to Conpr essi ngSocket —they take data and transform it before sending it
over the wire. The only difference is that Conpr essi ngSocket compresses, while SSL sockets
first authenticate (at the beginning of a session) and then encrypt.

SSL has three helpful features:

It's a publicly defined protocol. SSL was first defined and implemented by Netscape. But
the specification is publicly available™ and has been subject to intense public scrutiny.

1 For example, from http://home.netscape.com/eng/ss|3/.




It's commonly used. Almost every language that can use sockets has at least one SSL
library package already implemented for it. And it is easy to define a secure version of a
protocol by simply specifying that the secure version is a layer on top of SSL instead of
simply being defined over cleartext sockets. This, for example, is the way HTTPS (the
secure version of HTTP) is defined. Thus, in almost any situation where sockets can be
used, SSL can be used with minimal extra programmer overhead and very few code
changes.*®

[201 There will, of course, be computational overhead. After all, encrypting and decrypting data
takes time.

It's good enough. While not absolutely secure, SSL meets the criteria for practical
security in a wide variety of situations.

SSL has been around, in one form or another, since 1995.

w 4. Currently, there are three versions in active use: SSL2, SSL3,
" and Transport Layer Security (TLS). SSL2 is the oldest
version of the spec and is very widely used. SSL3 is newer,
and TLS is a successor to SSL3 (the main change from SSL3
is that the Internet Engineering Task Force has taken over
stewardship of the standard). Neither SSL3 nor TLS seems to
be widely adopted at this point.

2.6.1 The SSL Handshake

SSL is defined and implemented as a communication protocol layered on top of an ordinary
socket connection. That is, in order to establish an SSL connection, a socket connection is first
established. This socket connection is used by the client and server to negotiate a way to
exchange information securely. After this negotiation process, often called the SSL handshake,
the socket is used to transmit the encrypted information.

The SSL handshake is necessary for two main reasons. The first is that the SSL specification is
still evolving. It's not enough for the participants to use SSL; the client and server must agree on
a version of SSL to use. The second reason is that SSL supports a variety of encryption
algorithms (commonly referred to as ciphersuites). Once a version of SSL is agreed upon, the
ciphersuite and the values of the keys used for encryption still need to be arranged.

Ciphersuites

JSSE 1.02, which can be downloaded for free from Javasoft, contains
implementations of 15 distinct ciphersuites:

SSL_DH_anon_WITH_DES_CBC_SHA
SSL_DH_anon_WITH_3DES_EDE_CBC_SHA
SSL_DHE_DSS_WITH_DES_CBC_SHA
SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA
SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA
SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA
SSL_RSA_WITH_RC4_128_MD5
SSL_RSA_WITH_RC4_128_SHA
SSL_RSA_WITH_DES_CBC_SHA
SSL_RSA_WITH_3DES_EDE_CBC_SHA
SSL_DH_anon_WITH_RC4_128 _MD5




SSL_RSA_EXPORT_WITH_RC4_40_MD5
SSL_RSA_WITH_NULL_MD5
SSL_RSA_WITH_NULL_SHA
SSL_DH_anon_EXPORT_WITH_RC4_40_MD5

Explaining exactly what these names imply is well beyond the scope of
this book. But there are two important points to note:

Five of the ciphersuites are anonymous (i.e., they contain the
string "anon" in their name). Anonymous cipher suites don't
require client or server authentication.

A wide variety of different strength encryption algorithms are
supported. Generally speaking, algorithms based on DES (i.e.,
containing the string DES) or those exportable from the United
States (i.e., containing the word "EXPORT") are weaker and
computationally much less expensive. Thus, the reference
implementations run the gamut from fairly weak
(SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA) to
impressively secure (SSL_RSA WITH_RC4 128 MD5).

The SSL handshake proceeds in four basic stages:

1. The client says hello. The first thing that happens is the client sends a message to the
server that contains information about the client. In particular, this message contains
information about which versions of SSL the client supports, which ciphersuites the client
supports, and which compression algorithms the client supports.

2. The server says hello back to the client. The server responds to the client by sending a
message that tells the client which ciphersuite and compression algorithms will be used
for the encrypted communication. The server is free to choose any cryptographic
algorithm that the client and server both support; in practice, the server usually chooses
the strongest cryptographic algorithm supported by both the client and server.

3. The participants are authenticated. Ciphersuites can be anonymous or involve
authenticating the participants. If the chosen ciphersuite involves authentication, it
happens at this point.

4. Ciphersuite details are negotiated. In particular, the client and server exchange keys that
will be used to encrypt further data exchanges.

2.6.2 Using SSL with JSSE

As part of JSSE, Javasoft ships an implementation of SSL. More precisely, JSSE contains the
j avax. net . ssl| package, which contains two socket factories:
SSLSocketFactory
This implements the Socket Fact or y interface.
SSLServerSocketFactory

This implements the Ser ver Socket Fact or y interface.

Obtaining and Using JSSE




If you want to use JSSE with either JDK1.2 or JDK1.3, you will need to
download it from Javasoft. JSSE is available for download from
http://java.sun.com/products/jsse/. You can obtain a set of jar files

(currently j cert . jar,|net.|ar and| sse. | ar) and some additional
documentation from there.

JSSE will also be included in JDK1.4 by default.

In order to use JSSE, you must make the JSSE jar files available to the
JVM. The best way to do this is to include them as standard extensions
by placing them in your extensions directory (the extensions directory is
a subdirectory of the | i b directory which is installed with the JVM. On
the author's machine, the extensions directory is located at
c:\jdk1.3\jre\lib\ext).

Alternatively, you can include the JSSE files on your classpath.

Using a nonauthenticating SSL socket then involves four code-level steps:

1.

Providers must be registered with the Securi ty classinthe | ava. securi ty package.
Providers implement ciphersuites, which then become available to the SSL factories. This
must be done on both the client and server sides.

Create and configure a server socket. As part of doing so, you select from the available
ciphersuites and set authentication levels.

Create and configure a client socket. As part of doing so, you select from the available
ciphersuites and set authentication levels.

Attempt to send data. When you first attempt to send data, in either direction, the SSL
handshake occurs. There's an important detail here: because the handshake is delayed
as long as possible, you get to create the sockets on either side, and call methods on
them to define ciphersuites, before the SSL handshake occurs.

i
Using authenticating sockets involves more work. In order to
“ 4. authenticate a participant, a trusted third party has to vouch

for the participant. That is, you need to install SSL Certificates
obtained from a Certificate authority. While this involves extra
work, the basics of using an SSL socket remain the same.
For this reason, in this book, our examples use
nonauthenticating (but encrypting) SSL sockets.

We will now examine each of these steps in more detail.

2.6.2.1 Registering providers

Security in Java 2 is managed by the | ava. secur it y package. In particular, | ava. security
contains two important class definitions: Secur ity and Provi der . Here's what the Javadoc has
to say about each:

Security:



This class centralizes all security properties and common security methods. One
of its primary uses is to manage providers.

Provider:

This class represents a "provider” for the Java Security API, where a provider
implements some or all parts of Java Security, including:

Algorithms (such as DSA, RSA, MD5 or SHA-1).

Key generation, conversion, and management facilities (such as for algorithm-specific
keys).

Each provider has a name and a version number and is configured in each
runtime in which it is installed.

That is, Securi ty is basically a set of static methods, such as addPr ovi der (), which allow
Java code to easily access various cryptographic algorithms, each of which is encapsulated
within an instance of Pr ovi der . Given these classes, the way the SSL factories work is simple:
they coordinate the SSL handshake and use the ciphersuites that have been installed with
Security.

Therefore, in order to use SSL, you must install at least one instance of Pr ovi der . Fortunately,
JSSE comes with a subclass of Provi der,com sun. net.ssl.internal.SSLProvider,
which implements a wide selection of cryptographic algorithms. The following code installs the
provider by creating an instance of com sun. net . ssl . i nternal . SSLProvi der and calling
j ava. security. Security'saddProvi der( ) method. It then lists the supported
ciphersuites.

java. security. Security.addPr ovi der ( new
com sun. net.ssl.internal.ssl.Provider( ));

SSLServer Socket Fact ory socket Factory = (SSLServer Socket Fact ory)
SSLServer Socket Factory. getDefault (  );

String[] suites = socketFactory. get SupportedC pherSuites( );

System out. println("Supported cipher suites:");
for (int counter = 0; counter < suites.length; counter ++) {

Systemout.println("\t" + suites[counter]);
}

= The Javasoft implementation of SSL is what Sun
Microsystems, Inc. calls a "reference implementation.” That
is, the Javasoft implementation of SSL is intended to define
correct behavior for the interfaces and classes associated
with SSL implementations, and is explicitly not intend ed for
production use. In particular, the implementations of
cryptographic algorithms are rather slow. In a production
environment, you'd probably want to purchase faster
providers.

2.6.2.2 Configuring SSLServerSocket

Once you've installed a provider on the server side, the next step is to create and configure an
instance of SSLSer ver Socket . In addition to being a subclass of Ser ver Socket ,
SSLSer ver Socket defines the following nine methods:



public String[] getSupportedC pherSuites( )

public String[] getEnabl edC pherSuites( )

public void set Enabl edC pherSuites(String[] suites)
public void set Enabl eSessi onCreati on(bool ean fl ag)
public bool ean get Enabl eSessi onCreation( )

public void set NeedC i ent Aut h( bool ean fl ag)

publ i c bool ean get NeedC i ent Auth( )

public void setUseC i ent Mode(bool ean fl ag)

publ i c bool ean getUseC i ent Mode( )

While the precise details of these methods are beyond the scope of this book, there are three that
are particularly useful:

setEnabledCipherSuites()

This method allows you to choose which ciphersuites the instance of SSL.Ser ver Socket
will support.

setEnableSessionCreation( )

The enabl eSessi onCr eat i on property defaults to t r ue. If
enabl eSessionCreationissettofal se, new sessions (e.g., new SSL connections)
cannot be created.

setNeedClientAuth()

Using this method with an argument of f al se explicitly disables client authentication,
even for cryptographic algorithms that usually require client authentication.

To create and configure an instance of SSLSer ver Socket , you first obtain an instance of
SSLServer Socket Fact or y. Next, create an instance of SSLSer ver Socket , and then call the
appropriate methods. The following code creates an instance of SSLSer ver Socket , which uses
a single, anonymous ciphersuite:

public static String ANON Cl PHER = "SSL_DH anon W TH RC4 128 MD5";
public static String[] ClPHERS = { ANON Cl PHER};
publ i c SSLServer Socket createServer Socket (int port) {
try {
java. security. Security.addProvider(new
com sun. net.ssl.internal.ssl.
Provider( ));
SSLSer ver Socket Fact ory socket Factory =
( SSLSer ver Socket Fact ory)
SSLServer Socket Factory. getDefault( );
SSLServer Socket returnVal ue = (SSLServer Socket)
socket Factory.
creat eServer Socket (port);
ret urnVal ue. set Enabl edCi pher Sui t es( Cl PHERS) ;
ret urnVal ue. set Enabl eSessi onCreation(true);
return returnVal ue;

After this code executes, the instance of SSLSer ver Socket returned by cr eat eServer ( ) is
ready to be used just like any other instance of Ser ver Socket . That is, the accept () method
can be called, and when an instance of SSLSocket successfully completes the SSL handshake

with it, accept () will return an instance of SSLSocket , which can be used for secure two-way
communication.

2.6.2.3 Configuring SSLSocket



Once you've installed a provider on the client side, the next step is to create and configure an
instance of SSLSocket . This process is analogous to how an instance of SSLSer ver Socket is
created on the server side. In particular, the following code gets the default SSL.Socket Fact ory
and proceeds to create an instance of SSLSocket :

public static String ANON Cl PHER = "SSL DH anon W TH RC4 128 MD5";
public static String[] ClPHERS = { ANON Cl PHER} ;
public Socket createSocket(String host, int port) {
try {
java. security. Security. addProvider(new
com sun. net.ssl.internal.ssl.
Provider( ));
SSLSocket Fact ory socket Factory = (SSLSocket Fact ory)
SSLSocket Factory.
getDefault( );
SSLSocket returnValue = (SSLSocket)
socket Factory. creat eSocket (host, port);
ret urnVal ue. set Enabl edCi pher Sui t es( Cl PHERS) ;
return returnVal ue;

}
2.6.2.4 Sending data

It's important to note that at this point, we've created and configured two sockets: an

SSLSer ver Socket on the server side and an ordinary SSL.Socket on the client side. There has
not, however, been any communication between them. The SSL handshake has not yet occurred,
and no information, of any type, has been sent over the wire. This is because we need time, once
we've created the sockets, to configure them.

The SSL handshake occurs the first time we attempt to send or receive data on the client side.
That is, the first time code such as the following is executed, the SSL sockets will attempt to
complete a handshake:

I nput Stream i nput Stream = ssl socket. getlnputStrean( );
i nput Streamread( );

2.6.3 Revisiting Our Web Browser

With the discussion of SSL under our belt, we can almost reimplement our web server as a
secure web server. In our original web server, we created an instance of Ser ver Socket inthe
startListening( ) method:

public void startListening( ) {
Server Socket server Socket ;

try {
}

server Socket = new Server Socket (80);

}
We can replace this with the following code:

public void startListening( ) {
Server Socket server Socket ;

try {
}

server Socket = get SSLServer Socket (443);



}

private static String ANON ClPHER 1 =
"SSL_DH anon_W TH DES CBC SHA";

private static String ANON_ClI PHER 2 =
"SSL_DH anon_ W TH 3DES EDE CBC SHA';

private static String ANON Cl PHER 3 =
"SSL_DH anon_EXPORT_W TH_DES40_CBC _SHA";

private static String ANON Cl PHER 4 =
"SSL_DH anon WTH RC4 128 NMD5";

private static String ANON Cl PHER 5 =
"SSL_DH anon_EXPORT_W TH_RC4_40_NMD5";

private static String[] ClIPHERS = { ANON _Cl PHER 1, ANON ClI PHER 2,
ANON_CI PHER 3,

ANON _CI PHER 4, ANON Cl PHER 5};
static {
java. security. Security.addProvider(new
com sun. net.ssl.internal.ssl.
Provider( ));
}

private Server Socket get SSLServer Socket (int port) throws
| CException {
SSLServer Socket Fact ory socket Factory =
( SSLSer ver Socket Fact ory)
SSLServer Socket Factory. getDefault( );
SSLServer Socket returnVal ue = (SSLServer Socket)
socket Factory.
creat eServer Socket (port);
ret urnVal ue. set Enabl edC pher Sui t es( Cl PHERS) ;
returnVal ue. set Needd i ent Aut h(f al se) ;
returnVal ue. set Enabl eSessi onCreati on(true);
return returnVal ue;

}

This code creates an instance of SSL.Ser ver Socket that will work with five different anonymous
ciphersuites and listen on port 443, which is the default port for ht t ps: // requests. And this
almost works. Sadly, if you attempt to connect to a running instance of SSL\\&bSer ver using
Netscape Navigator 4.6, you'll get the error dialog shown in Figure 2-4.

Figure 2-4. SSL error dialog for Netscape Navigator 4.6

Metzzape and thiz server cannol communicate secunaly
because they have na comman enciyphion algoethm(z).
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Actually, this is pretty impressive; a legacy application written in C and released in 1998
communicated with our SSL server, engaged in an SSL handshake, and realized that there was
no way to establish a common ciphersuite (web browsers require servers to authenticate
themselves). This cross-language compatibility is one of the strongest reasons to adopt SSL as
an encryption and authentication layer.

Chapter 3. A Socket-Based Printer Server



In the previous two chapters, we covered the basics of using streams and sockets. In this
chapter, we'll use what we have learned to build a simple server application. Along the way, we'll
confront many of the problems that distributed applications face. And our solutions will help to
introduce and explain most of the basic RMI infrastructure.

3.1 A Network-Based Printer

The application we're going to build is a very simple one; it takes a local printer and makes it
available over the network via a socket-based API. Our intended architecture looks like the
diagram shown in Figure 3-1.

Figure 3-1. A network printer using a socket-based API
Server

Printer

This figure illustrates three main components:
The client application

This is a program running on a separate machine somewhere on the network. There is
nothing special about the machine this program runs on (in fact, many different machines
can run this program). It is responsible for presenting a user interface to the user, getting
print requests, and sending those requests to the server application. The client
application is written entirely in Java and is therefore easy to install on any machine with
a JVM.

The server application

This is a program that resides on a single, designated machine on the network. The
machine it runs on is connected locally to a printer. The server application's roles are to
receive print requests over the network from the client program, perform whatever
intermediate tasks are necessary, and then forward the request to the printer.

The printer

In this example, we're assuming that the printer exists and is activated, and that the code
for interfacing a Java program to a local printer has been written. Printer manufacturers
are fairly good at providing printer drivers. However, if we implement this part of the
application, it could require the use of the Java Native Interface to communicate
advanced commands to a printer driver written in C or C++. One consequence of this is
that the server application may not entirely be a Java program and, therefore, installing
the server might involve significant modifications to the underlying operating system !

1 For example, installing a printer driver on Windows NT might involve upgrading a system DLL.

Figure 3-1 is a very vague diagram. It's more of a

“ A requirements diagram than an architectural diagram for a
networked application. In particular, it doesn't actually say
anything about the class structure of our program. We'll
redraw it later, filling in many more details. Drawing diagrams
like this one can be very useful, however, as a means of
understanding just what it is that we need to build.




3.2 The Basic Objects

It's often useful to start the process of designing a distributed application by pretending it is a
single-machine application. Doing this allows architects to focus on finding the domain objects
first.”2 Once the domain objects have been discovered, and their roles have been defined, the
distributed infrastructure can be built around them.

[21 "pomain objects” is a very loose and nebulous term. Roughly speaking, domain objects are classes that
represent end-user ideas and abstractions. For example, a class named Account Ent ry is probably a
domain object, whereas a class named Net wor kF|l owCont r ol Buf f er probably isn't.

In this case, we'll start with a very simple interface for our abstract notion of Pri nt er :

public interface Printer extends PrinterConstants {

public bool ean printerAvailable( );

publ i c bool ean print Docunent ( Docunent Descri ption docunent)
t hr ows

}

Our goal is to take a concrete implementation of the Pr i nt er interface™ and make it available
over the network.

Print er Excepti on;

Bl we won't actually connect to a printer. While it's a fun weekend project to wrap an existing printer driver
(such as the limited one presented in the j ava. awt . pri nt package), doing so is beyond the scope of this
book. Instead, we'll just use a very simple implementation called Nul | Printer.

This definition of Pri nt er relies on two additional classes: Docunent Descri pti on and
Print er Excepti on. These are both fairly simple classes, designed more to encapsulate
related pieces of information than to implement complex behavior. The definition of
Docunent Descri pt i on begins with five state variables that encapsulate the print request:

public class Docunent Description {
public static final int FAST_PRI NTI NG = O;
public static final int H GH QUALI TY_PRI NTI NG = 1;

public static final int POSTSCRI PT = O;
public static final int PDF = 1;

private Datal nput Stream _act ual Docunent ;
private int _docunent Type;

private bool ean _print TwoSi ded;
private int _printQuality;

private int _|ength;

The only interesting aspect of this is the decision to use St r eamto represent the actual
document, rather than storing just a filename. Doing this makes the implementation of the printer
server much simpler for two reasons:

There is no guarantee that the machine the server is running on has access to the same
files as the machine running the client program.

If we just use the filename, and the file is edited before the actual printout occurs, we
won't accurately reflect the user's request.

a
Using streams in the interface also makes it possible for us to
" 5 . - - .
« 4. print things other than files. For example, we can print the

contents of a JText Ar ea by calling get Text () on the




JText Ar ea, wrapping the resulting instance of St ri ng ina
StringBufferlnputStream and passing that to the
printer.

Print er Excepti on is a similar class. It's a custom exception that holds two pieces of
information: how many pages were actually printed and a description of what went wrong with the
printer:

public class PrinterException extends Exception {
private int _nunber Of PagesPri nt ed;
private String _humanReadabl eErrorDescri ption;

}
3.3 The Protocol

Now that the basic objects are in place, we have a better idea of what will happen inside our
application: the client will send a Docunent Descri pti on to the server, and the server will
respond to whether the print request succeeded. In the event that it didn't, the server will send a
Printer Excepti on to the client containing more information.

In order to make this concrete, we need to address two fundamental issues. The first involves
how the client will find the server. The client somehow needs to know the machine address and
port number of the server process. The traditional way of solving this problem is to define it either
as constants in a class or via a well-known text file accessible by both the client and the server.
For this implementation, we'll use the former and define some constants in an abstract class:

public abstract class NetworkBaseC ass {
public static final String DEFAULT _SERVER NAME = "l ocal host";
public static final int DEFAULT_SERVER PORT = 2100;
public static final int DEFAULT _SERVER BACKLOG = 10;

As long as this class is available to both the client and the server, we've solved the location
problem.

The next issue is to define and implement an application protocol. In other words, we must
address the question of how the client and server communicate once they have connected. In our
case, the information flow follows these two steps:

1. The client sends an instance of Docunent Descri pti on to the server.

2. The server sends back a response indicating whether the document was successfully
printed.

After the client receives the server's response, the connection is closed, and there is no shared
state between the client and the server. This means that these two steps completely define our
protocol.

o &
The process in which a client takes a request, including
ok 4. arguments and data, and puts it into a format suitable for

sending over a socket connection is often referred to as

marchallinn tha raniiact (enmatimac tha rliant ie caid tn ha




the request or data. In older references, marshalling is
sometimes referred to as pickling, and demarshalling is then
called unpickling. No one really seems to know why (or why
the names changed).

3.3.1 Encapsulation and Sending Objects

The first step in solving this problem is figuring out how to send our objects,
Docunent Descri ption and Print er Excepti on, over the wire. There are two basic design
options for doing this:

The internal approach

In this approach, the objects know how to push their state into, and read their state out of,
a stream. That is, if you want to send an instance of Docunent Descri pti on over a
stream, call a method named something similartowr i t eToSt rean( ), and the
instance writes itself out.

The external approach

In this approach, there is a third, external object that knows about both the object you
want to send over the socket and the stream classes. This third object knows how to
encode the object and put the relevant information into the stream.

These approaches both have their good points. With the internal approach, data can be totally
encapsulated within an object and still have the knowledge to send itself over the wire. Letting the
object do the encoding and decoding makes the internal approach a more object-oriented way of
doing things. In addition, the internal approach simplifies maintenance; colocating the marshalling
code with the object to be marshalled makes it easier to keep the two synchronized or to tell
when they're out of synchronization (someone who's changing the object can easily change the
marshalling code at the same time).

On the other hand, the external approach allows you to have more than one marshalling routine
for a given object and to gracefully choose which protocol to use based on circumstances. The
external approach also allows you to put all the marshalling code in one place, which makes the
actual protocol easier to understand and improve upon.

Note that the difference between these two approaches is not so much the code that's written—in
either approach you still need to marshall the object—but where the marshalling code is placed
within the application. In our case, we've chosen to use the internal approach.

3.3.1.1 DocumentDescription
Example 3-1 shows the source for Docunent Descri pt i on, including the marshalling code.

Example 3-1. DocumentDescription.java

public class Docunent Description {
public static final int FAST_PRI NTING = O;
public static final int H GH QUALI TY_ PRI NTING = 1;

public static final int POSTSCRI PT = O;
public static final int PDF = 1;

private Datal nput Stream _act ual Docunent ;
private int _docunent Type;
private bool ean _print TwoSi ded;



private int _printQuality;
private int _|ength;

publ i c Docunent Descri pti on(Il nput Stream source) throws
| OException {

}

publ i c Docunent Descri ption(Ilnput Stream act ual Docurment, int
docunent Type, bool ean
print TwoSi ded, int printQuality) throws | OException {
_docunent Type = docunent Type;
_printTwoSi ded = print TwoSi ded;
_printQuality = printQuality;
Buf f er edl nput St r eam buffer = new
Buf f er edl nput St r ean( act ual Docunent) ;
Dat al nput St ream dat al nput St ream = new
Dat al nput St rean( buf fer);
Byt eArrayQut put St ream t enpor aryBuf fer = new
Byt eArrayQut put Strean( );
_length = copy(dat al nput Stream new
Dat aCut put St r ean(t enpor aryBuffer));
_actual Docunent = new Dat al nput St r ean{ new
Byt eArrayl nput St rean{t enpor ar yBuf f er
toByteArray( )));
}

publ i c Docunent Descri ption(Ilnput Stream act ual Docunent, int
docunent Type, bool ean
print TwoSi ded,
int printQuality, int Iength) {
_actual Docunent = new Dat al nput St rean{ act ual Docunent ) ;
_docunent Type = docunent Type;
_printTwoSi ded = print TwoSi ded;
_printQuality = printQuality;
_length = length;

r eadFr onftst r ean{ sour ce) ;

}

public int getLength( ) {
return _|ength;
}

public int getDocunent Type( ) {
return _docunent Type;
}

public bool ean isPrintTwoSided( ) {
return _printTwoSi ded;
}

public int getPrintQuality( ) {
return _printQuality;
}

public void witeToStrean(Qutput Stream out put Strean) throws
| OException {



Buf f er edQut put Stream buffer = new
Buf f er edQut put St r ean{ out put St ream) ;
Dat aQut put St r eam dat aCut put St r eam = new
Dat aCut put St r ean( buf fer);
wri t eMet adat aToSt r ean( dat aCQut put Strean) ;
copy(_actual Docunent, dataQutputStream _|ength);

}

public void readFronttrean(| nput Stream i nput Stream throws
| OException {
Buf f er edl nput St ream buffer = new
Buf f er edl nput St r ean( i nput St ream ;
Dat al nput St ream dat al nput St ream = new
Dat al nput St rean( buf fer);
r eadMet adat aFr ont r ean{( dat al nput St r eam) ;
Byt eArrayQut put St ream t enpor aryBuf fer = new
Byt eArrayQut put Strean( );
copy(dat al nput St ream new
Dat aQut put St rean(tenporaryBuffer), _length);
_act ual Docunent = new Dat al nput St rean{ new
Byt eArrayl nput Strean{t enpor ar yBuf f er
toByteArray( )));
}

private void witeMetadataToSt rean( Dat aCut put Stream
dat aQut put Stream) throws
| OException {
dat aQut put Stream wri t el nt (_docunent Type) ;
dat aQut put Stream wr i t eBool ean( _pri nt TwoSi ded) ;
dataQutput Streamwitelnt(_printQuality);
dat aQut put Stream witel nt (_I ength);

}

private void readMet adat aFr ontSt r eam( Dat al nput Stream
dat al nput Stream) throws
| OException {
_docunent Type = datalnputStreamreadint( );
_printTwoSi ded = dat al nput Stream readBool ean( );
_printQuality = datalnputStreamreadint( );
_length = datalnputStreamreadlnt( );

}

private void copy(lnputStream source, QutputStream destination,
int length) throws
| OException {

int counter;

i nt next Byt e;

for (counter = 0; counter <length; counter++) {
next Byte = source.read( );
destination.wite(nextByte);

}

destination.flush( );

}

private int copy(lnputStream source, CQutputStream destination)
t hrows | OException {
i nt nextByte;



i nt nunber O Byt esCopi ed = 0;
while(-1!'= (nextByte = source.read( ))) {
destination.wite(nextByte);
nunber O Byt esCopi ed++;

}

destination.flush( );
return nunber Of Byt esCopi ed;

}

The careful eye will note that metadata has once again crept into the picture. Namely, when
Docunent Description'switeToStrean( ) method is called, five pieces of information are
sent:

The document type

Whether the print request is for a two-sided printout
What quality printing is desired

The length of the document

The actual document

Sending the document's length along with the document is redundant. After all, if you have a copy
of the document, you can compute the length of the document. However, sending the length
helps out in demarshalling. For instance, the demarshalling code in the r eadFr ontst rean( )
method assumes that the stream contains:

1. Aninteger
2. Aboolean
3. Aninteger
4. Aninteger
5. A number of bytes totaling the third integer.

Put succinctlly, the demarshalling code relies on the metadata to help it know when it should stop
reading from the stream.

Of course, the overwhelming lesson of actually implementing
“ 4. (or even just reading) marshalling code is that it is boilerplate
“*  code. Once you have sockets and streams, marshalling is a

snap.

Printer Excepti on isimplemented in much the same way as Docunent Descri pti on.

Spooling

Note that the client program here uses an extravagant amount of
memory. In order to compute the length of the document, we make an in-
memorv copv of the entire document before we send it throuah the




socket. If the document is 38 MB (rather typical for a Powerpoint
presentation these days), we make a 38 MB buffer and create an in-
memory copy of the entire file there.

A much better way to do this is to send the document in smaller pieces,
each of which is preceded by an integer indicating the length of the
following piece. That is, instead of sending the length of the document
followed by the document, we can send the length of the first chunk
followed by the first chunk, then the length of the second chunk followed
by the second chunk. Conceptually, this is a lot like breaking the
document into a linked list of "content nodes."

For example, suppose the document is 18,012 bytes, and we decide to
send 1000-byte pieces. The information sent to the stream might be:

1000, followed by the first set of a thousand bytes
1000, followed by the second set of a thousand bytes

1000, followed by the eighteenth set of a thousand bytes
12, followed by the last twelve bytes

Doing things this way uses slightly more bandwidth, but it also allows us
to send arbitrarily large documents without exhausting the memory
available on the client machine. This works because at any given time,
we need to have only a small percentage of the file in memory.

The downside to doing things this way is that we might run into an
unexpected disk failure in the middle of our print request. The current
implementation reads the entire file and then sends the request. The
spooling implementation interweaves these two tasks. If the file suddenly
becomes unavailable (for example, if the file server gets rebooted), our
application is going to have a problem.

In practice, this means our printing protocol needs to be a little bit more
complicated. After each chunk of content, we need to also include a
status code:

1000, followed by the first set of thousand bytes, followed by STATUS OKAY
1000, followed by the second set of thousand bytes, followed by STATUS OKAY

1000, followed by the eighteenth set of a thousand bytes, followed by
STATUS OKAY
12, followed by the last twelve bytes, followed by STATUS DONE

3.3.2 Network-Aware Wrapper Objects

Implementing the rest of our protocol requires a pair of objects to manage the communication,
one on the client side and one on the server side. The client-side object is responsible for
initiating the communication and sending an instance of Docunent Descri pti on to the server.
The server-side object listens for client connections, receives instances of

Docunent Descri pti on once the client has connected, and sends responses to the client.



Both of these objects inherit from a convenience class named Net wor kBaseCl ass, which
defines a few constants and has convenience methods for closing sockets and streams:
public abstract class NetworkBaseC ass ({

public static final String DEFAULT _SERVER NAME = "l ocal host";

public static final int DEFAULT _SERVER PORT = 2100;

public static final int DEFAULT SERVER BACKLOG = 10;

public void cl oseSocket (Socket socket) ({
if (null!=socket) {

try {
socket.close( );

catch (1 Oexception exception){ }

}

public void closeStrean(|nput Stream stream {
/1 omtted (simlar to close socket)
}

public void cl oseStrean(CQut put Stream strean) {
/1 omtted (simlar to close socket)
}

}
3.3.2.1 ClientNetworkWrapper

Cl i ent Net wor KW apper is the client side object which encapsulates the protocol. The core of
this encapsulation is the sendDocunent ToPri nter () method:

private String _serverMachi ne;
private int _serverPort;

/1 alnost all the set-up and initialization of object code onitted....

public void sendDocunent ToPri nt er (Docunent Descri ption
docunent Descri ption) throws
Connecti onException, PrinterException {
Socket connection = null;

try {
connection = new Socket (_serverMachi ne, _serverPort);

docunent Descri ption.witeToStrean{connection. get Qut put Strean(

));
readSt at usFr onSocket (connecti on);
}
catch (I Oexception e) {
e.printStackTrace( );
t hrow new Connecti onException( );
}
finally {
cl oseSocket (connecti on);
}
}

private void readStat usFronSocket (Socket connection) throws
Printer Excepti on,



| OException {
I nput St ream i nput Stream = connection. getlnput Strean( );
Dat al nput St r eam dat al nput St r ean= new

Dat al nput St rean{i nput Strean);

Buf f er edReader reader = new BufferedReader ( new

I nput St r eanReader (i nput Strean)) ;

bool ean response = datal nput Stream r eadBool ean( );
if (response) {
return;
}

t hrow new PrinterException(inputStrean);

The points to note about this method are:

It is a straightforward procedural wrapper around the protocol; a connection is made, an
instance of Docunent Descri pti on is sent, a return value is read from the socket's
input stream, and a Pr i nt er Except i on may be thrown based on the return value.
Once you've defined the protocol, writing Cl i ent Net wor k\W apper is straightforward.

Once again, the information that has already been read is used to help interpret the
remainder of the stream. Since the communication is entirely via a stream of bytes, the
server can't simply throw an exception and expect it to be propagated to the client
application (you can't throw an exception through a socket connection). But the server
can send a boolean that the client interprets as a signal that there is more information
available. The client knows that if there is more information sent, it is a marshalled
instance of Pri nt er Except i on and behaves accordingly.

A
We're cheating a bit on exceptions. In particular, what if there
ok 4. Wwere more than one type of exception that could be thrown?

Instead of just passing a boolean back from the server, we'd
need to pass more metadata. For example, we could pass
back a boolean indicating that an exception has been thrown,
followed by a string containing the name of the exception
class, followed by the actual instance data. The client would
receive the boolean and create an instance of the class by
getting the class object with C! ass. f or Nane( ) and then
using the reflection API to find the appropriate constructor.

3.3.2.2 ServerNetworkWrapper

We need to implement a companion object on the server side. This class, Ser ver -

Net wor kW apper , has to listen for connections using an instance of Ser ver Socket and then
implement the mirror image of the client-side protocol. In other words, when the client side is
sending information, the server should be listening. And when the client side is listening, the

server should be sending.

The details of managing the connection are contained in the accept () method:

public void accept( ) {
while (true) {
Socket clientSocket = null;

try {



client Socket = _server Socket.accept( );//
bl ocki ng cal |
processPrint Request (cl i ent Socket) ;
}
catch (1 Cexception e) {e.printStackTrace( );}
cl oseSocket (cl i ent Socket) ;

}

The protocol itself is implemented in the pr ocessPri nt Request () method. As on the client
side, this method is a straightforward implementation of the protocol—it reads an instance of
Docunent Descri pt i on from the stream, tries to print the document, and encodes the printer's
response:

private void processPrint Request (Socket clientSocket) {
| nput St ream cl i ent Request St ream
Qut put St ream cl i ent ResponseSt ream
Dat aQut put St r eam dat aCut put St r eam
Docunent Descri pti on docunent ToPrint;
try {
client Request Stream = cl i ent Socket. getlnputStream );
client ResponseStream = cl i ent Socket. get Qut put Strean( );
dat aCut put St ream = new
Dat aQut put St rean( cl i ent ResponseStrean);
docunent ToPrint = new
Docunent Descri ption(client Request Strean;
}
catch (I Oexception e) {
e.printStackTrace( );
return;
}
try {

try {
_printer. printDocunent (docunent ToPrint);

dat aCut put St ream wri t eBool ean(true);

catch (PrinterException printerError) {
dat aQut put St ream wr i t eBool ean(f al se);
printerError.witeToStrean(dataCutput Strean;

}

catch (I Cexception ee) {ee.printStackTrace( );}

}
3.4 The Application Itself

Once we've written the data objects and the objects that encapsulate the network protocol, writing
the rest of the application is easy. The server doesn't even need a user interface; it consists of
the mai n( ) function, which instantiates a printer, creates an instance of

Server Net wor KW apper , and then calls accept () on the instance of

Ser ver Net wor kW apper :

public static void main(String args[]) {



try {
File logfile = new File("C \\temp\\serverLogfil e");

CQut put St r eam out put Stream = new
Fi | eQut put Strean(l ogfile);
Printer printer = new Null Printer(outputStream;
Ser ver Net wor KW apper server Net wor kW apper = new
Ser ver Net wor kW apper (printer);
server Net wor KW apper. accept( );

}
catch (Exception e) {

e.printStackTrace( );
}

}
3.4.1 Writing the Client

Apart from the user interface, the client application is equally straightforward. Our user interface is
shown in Figure 3-2.

Figure 3-2. The user interface for the printer client

= = E3 |
COVINMTIPrafilesiAdministratonDeskioplbluestane. pdf

Choose File ' Print File |

The Choose File button uses a JFi | eChooser to let the user select a file (whose name is
displayed in the text area). All the network communication is done using Act i onLi st ener,
which has been added to the Print File button. And all Act i onLi st ener does is instantiate
C i ent Net wor kW apper and call sendDocunentt oPrinter( ):

private class PrintFile inplenents ActionListener {
public void actionPerforned(ActionEvent event) {
try {

Cl i ent Net wor KW apper cl i ent Net wor kW apper = new
Cl i ent Net wor KW apper( );

Fi | el nput Stream docunent = new
Fi | el nput Streanm( _fil eChooser

get Sel ectedFile( ));

cl i ent Net wor kW apper . sendDocunent ToPri nt er (docunent) ;

}

catch (Exception exception) {
_messageBox. set Text ("Exception attenpting to
print " +

(_fileChooser.get Sel ectedFile()).getAbsolutePath( ) +
"\n\t Error was: " + exception.toString(

));



}
3.4.2 Redrawing the Architecture Diagram

We are now in a position to redraw our earlier architecture diagram, including more details about
the application structure. The resulting diagram is shown in Figure 3-3.

Figure 3-3. The revised network printer architecture

Interface

Actual Printer

&

In Figure 3-3, we've shown the instances of

Cl i ent Net wor KW apper, Ser ver Net wor KW apper, and
the implementation of the Pri nt er interface. These are all
architectural objects. Architectural objects are long-lived
objects that are usually created when the application is
launched. In addition, they are usually unique, and most of
the application thinks of them as part of the computing
environment. When drawing a simple diagram of a networked
application, it is often convenient to omit the data objects
entirely, and simply sketch the key architectural objects.

g

3.5 Evolving the Application

At this point, we're done with the first version of the application. We've successfully used sockets
to implement the networking portion of a simple, distributed printing application. But the words
"first version" are very important. There's a long list of features we haven't implemented—some
because we were lazy, others because they probably wouldn't be requested in the first version of
an application. For example:

Users will want more than one printer to be available.

Users will want to have a print queue. Important documents should be moved to the top
of a print queue; less urgent jobs should wait until the printer isn't busy.

If we're going to have a print queue, it would be nice to be able to explicitly access the
gueue, both to see the entire queue, and to make queries about our job. It should also be
possible to cancel a print request that is in the queue but hasn't already been sent to the
printer.

As we scale to more users, application responsiveness will become important. This is
especially true on a LAN, as it is almost certainly faster to send a document than it is to



print it. Hence, we should decouple printing a document from receiving it over the wire. In
particular, the current implementation of Ser ver Net wor kW apper 's accept ()
method, shown here, will force the client applications to wait until an existing print job is
finished before they can send a document:

public void accept( ) {
while (true) {
Socket clientSocket = null;
try {
client Socket = serverSocket.accept( ); 11
bl ocki ng cal |
processPrint Request (client Socket);

}
}

Managers will want to track resource consumption. This will involve logging print requests
and, quite possibly, building a set of queries that can be run against the printer's log.

None of these features are particularly hard to implement.“! Consider, for example, the first item
in the list: Users will want more than one printer to be available. Implementing this requires two

things:

[l They do, however, involve understanding and correctly using threads. It's not particularly difficult code,
but threading bugs can be subtle. Chapter 3 and Chapter 12 contain more information on threads.

A way for the client application to find out which printers are available and present a
choice to the user.

A way for the client application to tell the server how to route the document to a particular
printer.

This leads, almost immediately, to the beginnings of an object-oriented decomposition. Namely,
there are two different types of servers, a dispatcher and a printer:

The dispatcher knows which printers are available and which are currently busy. Clients
ask it questions before submitting print requests. There is only one dispatcher (at least, at
first).

The printer is an object that encapsulates the information about a specific printer.
Namely, it accepts requests, handles queries about a specific print job, and manages the
print queue. There can be many different instances of this type of server.

And when the client application sends a request to the server application, it needs to send the
following information:

The server it is talking to

Whether to the dispatcher or to a printer. If to a printer, which printer?

The method it is calling

Unlike our implementation, which did only one thing, each of these server objects is
capable of performing multiple tasks. Therefore, the client must specify which task it
wants the server to perform.

The arguments for the method

Most methods require arguments. For example, canceling a print job requires telling the
printer which print job is being cancelled.



3.5.1 What These Changes Entail

What we're seeing is a fundamental fact of life in distributed applications. As a socket-based
distributed application grows more complex, the socket-level protocol it uses tends to evolve into
something that looks more like the method-dispatch mechanism of an object-oriented
programming language.

Moreover, as the application evolves, a significant percentage of the additional code deals with
protocol changes: marshalling and demarshalling objects, specifying additional methods that can
be invoked, and so on. This additional code has three bad properties: there's a lot of it, it's tedious
to write, and it needs to be maintained.

Versioning issues can also arise. It can be inconvenient to reinstall the client application
everywhere whenever a new feature is added. But since new features translate almost directly
into protocol changes, this means that a robust application has to account for the possibility that
the client and server were compiled at different times, from different versions of the code base
and, therefore, use different protocols. This is usually handled by sending additional metadata
specifying the protocol version along with every request.

Chapter 4. The Same Server, Written Using RMI

In this chapter, we continue our discussion by reimplementing the printer server using RMI as a
distribution mechanism instead of sockets. As part of doing so, | will introduce the core
infrastructure of RMI in a familiar setting. In fact, the application itself will look remarkably similar
to the socket-based version. By the end of this chapter, you will have received a glimpse at how
an RMI application is structured and the basic sequence of steps required to build one.

4.1 The Basic Structure of RMI

In the previous chapter, we covered the basics of implementing a socket-based distributed
application. In doing so, we reinforced the lessons of the previous two chapters on streams and
sockets. In addition, we discovered that the code necessary for writing a socket-based distributed
application falls into five basic categories:

Code that actually does something useful. This code is commonly referred to as business
logic.™ An example is an implementation of the Pr i nt er interface.

[ "Bysiness logic™ is actually a generic term that refers to the code that justifies the application's
existence (e.g., the code that actually implements the desired functionality).

User interface code for the client application.

Code that deals with marshalling and demarshalling of data and the mechanics of
invoking a method in another process. This is tedious code, but it is straightforward to
write and is usually a significant percentage of the application.

Code that launches and configures the application. We used a number of hard-wired
constants (in Net wor kBaseCl ass) to enable the client to initially connect with the
server. And we wrote two nai n( ) methods—one to launch the client and one to launch
the server.

Code whose sole purpose is to make a distributed application more robust and scalable.
This usually involves one or more of the following: client-side caching (so the server does
less work); increasing the number of available servers in a way that's as transparent as

possible to the client; using haming services and load balancing; making it possible for a



server to handle multiple requests simultaneously (threading); or automatically starting
and shutting down servers, which allows the server lifecycle to conserve resources.

In any distributed application, programmers need to write the first and second types of code; if
they did not need to write the business logic, the application wouldn't be necessary. Similarly, the
user interface, which enables users to access the business logic, heeds to be written for any
application. And the fifth type, code that enables the application to scale, can be the most difficult
and application-specific code to write.

The third and fourth types of code, however, are different. Most of this code can be automatically
generated without much programmer thought or effort.”2 It may seem difficult to write marshalling
code if you've never done so before. However, by the second time, it's easy. By the third time,
most programmers are flat-out bored by the task.

[21 As a corollary, it ought to be generated automatically. Code that bores the programmer is code that is
likely to contain errors.

We will see in this chapter that RMI either already contains—or will automatically generate—most
of the code in the third and fourth categories. Indeed, this alone is a compelling reason to use
RMI =

31 Or a similar object-distribution framework such as CORBA.

4.1.1 Methods Across the Wire

Though convenient, automatically generating marshalling and demarshalling code is mostly a
side effect produced in the service of a much more important goal. In a nutshell:

RMI is designed to make communication between two Java programs, running in
separate JVMs, as much like making a method call inside a single process as
possible.

This is an ambitious goal. How does RMI achieve it?

Recall that in order to communicate with the printer server, we wrote an object,
Cl i ent Net wor kW apper , which did three things:

It opened a socket.
It told an instance of Docunent Descri pti on to write itself to the stream.
It read and interpreted information from the input stream associated with the socket.

In addition, we wrote a companion object, Ser ver Net wor kW apper , which played an
analogous role on the server side.

RMI relies on two similar types of objects that are automatically generated by the RMI Compiler
from an implementation of the server: stubs and skeletons. A stub is a client-side object that
represents a single server object inside the client's JVM. It implements the same methods as the
server object, maintains a socket connection to the server object's JVM automatically and is
responsible for marshalling and demarshalling data on the client side. A skeleton is a server-side
object responsible for maintaining network connections and marshalling and demarshalling data
on the server side.

The word stub is actually used to mean two different things.
I Y Depending on context, it might refer to a stub class that is
~_automaticallv aenerated from a server class obiect.




automatically generated from a server class object.
Alternatively, it might refer to an instance of a particular stub
class (that is, to a reference to a specific instance of the
server class). Because stubs have such a well-defined role in
a distributed architecture, the meaning is usually clear from
context. Similarly, skeleton can either refer to the skeleton
class or to an instance of the skeleton class.

The basic procedure a client uses to communicate with a server is as follows:

1. The client obtains an instance of the stub class. The stub class is automatically
pregenerated from the target server class and implements all the methods that the server
class implements.

2. The client calls a method on the stub. The method call is actually the same method call
the client would make on the server object if both objects resided in the same JVM.

3. Internally, the stub either creates a socket connection to the skeleton on the server or
reuses a pre-existing connection. It marshalls all the information associated to the
method call, including the name of the method and the arguments, and sends this
information over the socket connection to the skeleton.

4. The skeleton demarshalls the data and makes the method call on the actual server
object. It gets a return value back from the actual server object, marshalls the return
value, and sends it over the wire to the stub.

5. The stub demarshalls the return value and returns it to the client code.

Stubs and skeletons are shown in Figure 4-1.

Figure 4-1. A basic RMI call with a stub and skeleton

Server
Client
Invokes method that
sarvef implements
-
A
\
RS TN M N Demarshalls data and
Network: imiokes method on server
Siwh Sheleton

Iarshalls invocation and

servl s data over 1o the

skeleton
If this approach seems familiar, it's because the stub and the skeleton are really automatically
generated, object-oriented versions of the objects we created for our socket-based printer server.

rmic: The RMI Compiler

Stubs and skeletons are generated from server class files by a
command-line application called r i c. This application ships with Sun's




version of the Java Development Kit (JDK). The simplest invocation of
r m ¢ uses the following format:

rmc [full class name including packages]
For example:
rmc comora.rmbook. chapter4.printers.Null Printer

Assuming the class is on your classpath, this will generate two additional
class files in the same directory as the original class file. The names of
the generated classes will be the original class name, appended with

~ Skel and St ub. Thus, our example will generate the following two
classes:

com ora. rm book. chapter4. Nul | Pri nter_Skel
com ora. rm book. chapter4. Nul | Printer_Stub

The most commonly used flag with r m ¢ is - keep, it automatically
generates the Java source code used for the stub and skeleton classes,
which we'll see later.

Let's take a close look at this. Here is part of the stub generated for our Nul | Pri nt er class:

public final class NullPrinter_Stub extends java.rm .server. RenoteStub
i mpl enent s
com ora.rmbook.chapter4..Printer, java.rm.Renpte {

/'l nmethods fromrenote interfaces

/1l inplenmentation of printDocunent(Docunent Descri pti on)
publ i ¢ bool ean
print Docunent (com or a. r mi book. chapt er 4. Docunent Descri pti on $param
Docunent Descri ption_1) throws
om or a. rm book. chapt er4. Pri nt er Excepti on,
java.rm . Renot eException {

try {

java.rm .server.RenoteCall call =
ref.newCal | ((java.rm.server.
Renot eCbj ect) this, operations, 0, interfaceHash);
try |
java.io. Obj ect Qut put out =
call.getQutput Strean( );

out.writeQject($param Docunent Description_1);
}
catch (java.io.|Cexception e) {
t hrow new
java.rm . Marshal Exception("error marshalling
argunents", e);

ref.invoke(call);
bool ean $result;
try {
"java.io.Objectlnput in =
call.getlnputStream );



result = in.readBool ean( );
}
catch (java.io. | Oexception e) {
t hr ow new
java. rm . Unmar shal Exception("error unmarshalling
return”, e);

}

finally {
ref.done(call);

}

return $result;

While this may seem a bit more complex than the code we wrote for the socket-based printer
server (and the fact that we're showing only part of the code indicates that stubs are actually quite
a bit more complicated than the Cl | ent Net wor kW apper class might have led us to expect),
the fact remains: the stub implements the Pri nt er interface, and the implementation of each
method in the Pri nt er interface simply pushes data onto a stream, and then reads data from a
stream.

Strictly speaking, skeletons aren't really necessary. They can
iy . be replaced by a more generic framework that uses Java's
(17T

reflection API to invoke methods on the server side. We'll
cover this in more detail in Chapter 8. In this book, however,
our code uses skeletons.

4.1.2 Passing by Value Versus Passing by Reference

In the first section of this chapter, we stated that RMI automatically generates most of the
marshalling and demarshalling code required to build a distributed application. It's easy to see
how RMI could automatically do this for primitive argument types. After all, ani nt is simply four
consecutive bytes. Automatically marshalling and demarshalling objects, on the other hand, is a
more difficult task. And, in order to do so correctly, RMI requires us to distinguish between two
main types of objects: those that implement the Renot e marker interface and those that
implement the Ser i al i zabl e marker interface.

o

A marker interface doesn't define any methods; it simply
iy .. provides information (available by reflection) about other
(17T

code. In this case, RMI checks to see whether a given object
implements either Renot e or Seri al | zabl e and behaves
differently in either case.

Remote objects are servers. That is, they have a fixed location and run in a specific JVM on a
particular computer somewhere in the network; they are the objects that receive remote method
invocations. In RMI, remote objects are passed by reference. That way, if two instances of some
remote object type exist, they are logically distinct. For example, in the current application, each
Print er is a remote object, and any two instances of Pri nt er are not equal.

Serializable objects, on the other hand, are objects whose location is not important to their notion
of identity. That is, while they do have a location, the location is not particularly relevant to their
state. Instead, serializable objects encapsulate data and are mobile—they can be passed from
one JVM to another. Hence, serializable objects are very much like the primitive datatypes, such
asfl oat andi nt, which are also always passed by value.



Serialization

Serialization is a general purpose mechanism for taking an object and
encoding it as a stream of bytes. The underlying design rationale is fairly
simple.

The Java Language Specification defines encodings for primitive types
such as integer or float. If an object's instance variables are all primitive
types, then by adopting a few conventions (such as, "The first thing
encoded will be the a string containing the name of the class"), we can
automatically define a way to encode an object. We call such objects
easily serialized objects. If an object's instance variables point to either
primitive types or to easily serialized objects, then it is easy to see how to
automatically generate an encoding for this object as well. The general
idea is this: if a class definition has references only to primitive types or
to classes that are themselves serializable, then the class is, itself,
serializable. We call such classes obviously serializable.

If a class isn't obviously serializable, and it needs to be passed by value
anyway, then the programmer needs to write code that defines how to
serialize the class. For example, if the generic framework can't figure out
how to marshall and demarshall the object, the programmer needs to
provide code that does so.

And that's all that serialization is: a flexible implementation of the code
that "automatically encodes" serializable objects so they can be passed
by value over the wire. I'll cover the exact details of the serialization
algorithm (and their consequences for the design of an RMI application)
in much greater detail in Chapter 10.For now, three simple rules will
suffice:

Classes that are intended to be serialized must declare that they
implement the Ser i al | zabl e marker interface. This declaration
can either be direct or inherited (e.g., our implementation of
PrinterExceptionimplements Seri al | zabl e because
Except i on is defined to implement Ser i al | zabl ).

Any nonserializable superclass of a serializable class must have a
zero-argument constructor. They can have other constructors, but
the zero-argument constructor is the one that the serialization
mechanism will use if it creates a copy of the object.

Any class that is declared to be serialized must either be
obviously serializable or must contain code that allows the
serialization mechanism to proceed anyway. The most common
way of accomplishing this second task is to declare some
variables to be transient and then implement a pair of private




methods, readObj ect () andwr it eCoj ect ( ), which the
serialization mechanism will call instead of using the automatic
encoding for the object.

Note that if an argument is a remote object (e.g., a server), the skeleton doesn't send a serialized
copy of the server. Instead, it creates a stub that serves as a reference to that object and sends a
serialized copy of the stub over the wire. What about arguments that are neither serializable nor
remote? Well, if it's a primitive datatype, it is passed by value as well. But if it's an object and is
neither serializable nor remote, an exception is thrown.

4.2 The Architecture Diagram Revisited

While the printer application is simple enough so that the RMI-based application is similar to the
socket-based application, RMI does add one more conceptual wrinkle. Recall that in the socket-
based version, we used a set of constants to help the client find the server:

public abstract class NetworkBaseC ass {
public static final String DEFAULT _SERVER NAME = "l ocal host";
public static final int DEFAULT_SERVER PORT = 2100;
public static final int DEFAULT _SERVER BACKLOG = 10;

That's a bad design strategy. If the server is moved to another computer, or if you want to use the
same client to talk to multiple servers, you need to deploy a new version of the client application.

A much better strategy is to have a centralized naming service. A naming service is an
application that runs on a central server and functions like a phone book. In order for a client to
connect to a server, it must do two things:

1. It must connect to the naming service and find out where the server is running.
2. It must then connect to the server.

At first glance, a naming service appears to suffer from the same design flaw as
Net wor kBaseCl ass. Instead of hardwiring the location of the server into our client code, we're
hardwiring the location of the naming service. There are, however, a number of differences that
combine to make this a more palatable solution. Among the most significant are:

Naming services are fairly simple applications that place limited demands on a computer.
This means that the server running a naming service doesn't need to be upgraded often.

Naming services are stable applications with simple APIs. They are not updated or
revised often.

The application may actually have several servers. Rather than hardwiring all their
locations into the client application, we need only one predetermined location.

The first two are especially important. Some common reasons for moving a server application to
a new machine include scaling the application or providing for changes in application
functionality. In the case of a naming service, however, the hardware will likely be sufficient to
handle the load for quite a long period of time. Moreover, because the naming service is a simple
and well-understood application that rarely changes, chances are that the implementation is a
reliable piece of code. In other words, a computer running a naming service can often be set up
and left alone.



In RMI, the default naming service that ships with Sun Microsystem's version of the JDK is called
the RMI registry.! Messages are sent to the registry via static methods that are defined in the
j ava. rm . Nam ng class. Including the RMI registry in our printer application architecture leads

to the diagram in Figure 4-2.
1 More often referred to as simply "the registry."

Figure 4-2. Adding an RMI registry to the architecture diagram
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While we've introduced only one new server into our application, we've added two new types of
messages to those that are flowing across the network:

The registry must be told about the printer server.

This must happen before any other types of messages can be sent. Note that the printer server is
a remote object, so what really gets passed to the registry is a stub (recall that stubs are
serializable and can therefore be passed by value). This stub knows on which computer the
printer server runs, and on which port the skeleton receives messages. Thus, the stub can relay
method calls to the printer server's skeleton.

The client must communicate with the registry to find out how to connect with the printer server.

The client must do this before the client can actually request that a document be printed. As a
result of this, the client will obtain a copy of the stub that the server originally sent to the registry.

And, of course:
The client must send print requests to the printer server.

All of the communication in the socket-based version of the printer server is of this type.

In order to provide distributed garbage collection, RMI also
oy . sends other types of messages dealing with renewing leases.
[N

We will cover these messages (which are sent automatically
and don't require any work by application developers) in

Chapter 16.

A Note on Application Topology

As we mentioned earlier. the RMI reaistrv is the namina service that




comes with RMI. It's a small application with a minimal interface and
some very curious restrictions. Among the most severe of those
restrictions is this: launch code (the code that binds servers into the
registry) has to be running on the same computer as the RMI registry.

This restriction was implemented for security reasons. If there are no
restrictions on what can be bound into the registry, then it becomes very
easy for malicious code to subvert a registry. For example, a malicious
application could use this weakness to replace the real servers with
counterfeit ones. However, this causes fairly significant difficulties—
getting servers bound into the registry becomes somewhat convoluted.

In most cases, we'll want to replace the registry with a more flexible
naming service (we'll talk about this in much greater detail in Chapter
14 and Chapter 15). Until we do so, however, I'll present these
examples with little thought to these restrictions.

4.3 Implementing the Basic Objects

Now let's start implementing the RMI-based printer server. As in the socket-based version, we
have three basic objects: the Pri nt er interface, the Docunent Descri pt i on object, and the
Print er Excepti on object. Conceptually, these objects are the same as their counterparts in
Chapter 3. However, as might be expected, using RMI will force us to change a few details.

4.3.1 The Printer Interface

There are two basic changes to the Pri nt er interface: it now extends the Renot e interface, and
every method is defined to throw Renot eExcept i on, a subclass of Except i on defined in the
package | ava. r m . This class is shown in Example 4-1.

Example 4-1. Printer.java

public interface Printer extends PrinterConstants, Renote {
public bool ean printerAvailable( ) throws RenoteException;
publ i c bool ean print Docunent (Docunent Descri ption docunent)
t hrows Renpt eExcepti on,
Print er Excepti on;
}

That Pri nt er extends Renot e shouldn't be a surprise—the whole point of the application is to
turn a local printer into a server that can receive calls from clients' applications running on other
computers.

The other change involves adding Renot eExcept | on to each method signature.

Renot eExcept i on is an exception thrown by RMI to signal that something unforeseen has
happened at the network level. That is, it's a way for the RMI infrastructure to tell a client
application that "something went wrong in the RMI infrastructure.” For example, if the server
crashes while handling a client's request, RMI will automatically throw a Renot eExcept i on on
the client side.

Adding Renpt eExcept i on to every method has one important consequence. Recall thatr ni ¢
is used to automatically generate a stub class for each implementation of Pr i nt er . This stub
implements the Pri nt er interface and, therefore, every method implemented by the stub is



declared to throw Renpt eExcept i on. However, because Renot eExcept i on is a checked
exception, any client-side code trying to invoke a method on the server must do so inside a
t ry/cat ch block and explicitly catch Renot eExcept i on.

Making Renot eExcept i on a checked exception is one of the most controversial design
decisions in the entire RMI framework. On one hand, it forces programmers writing client-side
code to think about how to gracefully handle network failures. On the other hand, it is often the
case that the catch block for a Renot eExcept i on doesn't do anything interesting. Moroever,
forcing programmers to catch Renot eExcept i on in their client code merely winds up making
the code much harder to read and understand.

A
‘ Notice that the pri nt Docunent () method is still defined
« 4. as throwing Print er Excepti on. If the implementation of

Printer throws a PrinterExcepti on, the RMI skeleton
will automatically marshall the Pri nt er Except i on object
and send it across the wire to the stub. The stub will
demarshall the instance of Pri nt er Except i on and throw it
again. At this point, the exception will be caught by the

cat ch( ) block. What's happening here is simple: since
RMI, via the stub and skeleton, controls the communication
between the client and server, it can also automatically
propagate exceptions across the network and rethrow them
on the client side. Contrast this to the socket-based version,
where Pri nt er returned a status argument that the client
was free to ignore.

4.3.2 Implementing a Printer

In order to implement a printer, we need to do two things: write and compile the actual server
code and generate the stub and skeleton using r mi ¢. The code for Nul | Pri nt er itself is almost
identical to the code used in the socket-based version. The only difference is that the

Nul | Printer class extends | ava.rm .server. Uni cast Renot eCbj ect ., as shown in

Example 4-2.

Example 4-2. NullPrinter.java

public class NullPrinter extends UnicastRenoteCObject inplenents Printer

{
private PrintWiter _|og;
public NullPrinter(CQutputStream!|og) hrows RenoteException {
_log = new PrintWiter(log);
}

Uni cast Renpt ehj ect is a convenient base class for RMI servers. It handles most of the tasks
associated with creating a server. For example, the constructors of Uni cast Renot eOhj ect
cause a server socket to be created automatically and start listening for client method

invocations. Restating this slightly: when we instantiate Nul | Pri nt er , it immediately starts
listening on a port for client requests. The RMI infrastucture handles all the details of opening a
socket and listening for client requests.



After compiling the server, we need to generate stubs and skeletons. The stubs and skeleton
classes are in the same package as the server class (in this case,
com ora. rm book. chapter4. printers).Inthis case, we simply use:

rmc -keep -d d:\classes comora.rm book.chapter4.printers.NullPrinter
4.3.2.1 Examining the skeleton

Just as we briefly examined the generated stub, it's also worth looking for a moment at the
skeleton that's generated. The generated skeleton has one major method, named di spat ch(

) .di spatch( ) isthe method that actually forwards requests to the server. Here's a snippet of
code from the di spat ch( ) method of our skeleton:

public void dispatch(java.rm .Renote obj, java.rm.server. RenoteCall
call,
int opnum |ong hash) throws java.lang. Exception {
/1 validation and error-checking code omtted
com ora. rmbook.chapter4.printers.Null Printer server =
(com ora. rm book. chapter4.printers. Null Printer) obj;
switch (opnunm) {
case 0: // printDocunment (Docunment Description) {
com or a. rm book. chapt er 4. Docunent Descri pti on
$par am Docunent Descri ption_1;
try {
java.io.bjectlnput in =
cal |l .getlnputStream );
$par am Docunent Description_1 =

(com ora. rm book. chapt er 4. Docunment Descri ption)
in.readCject( );
}

catch (java.io. | OException e) {
t hrow new j ava. rm . Unmar shal Except i on(
“error unmarshalling
argunents", e);

catch (java.l ang. C assNot FoundException e) {
t hrow new j ava. rm . Unmar shal Except i on(
“error unmarshalling
argunents", e);
}
finally {
call.rel easel nput Stream );

bool ean $result =
server. print Docunent ( $par am Docunent Descri ption_1);
try {
java.io. Obj ect Qut put out =
call.getResultStrean(true);

}

catch (java.io. | Oexception e) {
t hrow new j ava.rm . Mar shal Excepti on(
“error marshalling

out.witeBool ean($result);

return", e);

br eak;



}

Let's look at the arguments of this method first. The method takes an instance of Renot e, a
Renot eCal | ,anint,and al ong. These arguments have the following meanings:

The instance of Renot e is actually an instance of Nul | Pri nt er.

Renot eCal | is an object that encapsulates a socket connection. The instance of
Renot eCal | being passed is a connection to a particular client.

The integer is mapped to a particular method on the server. That is, whenr ni ¢ compiles
the stub and the skeleton, it numbers all the methods. Afterwards, instead of passing the
method name, it passes the associated integer. This saves bandwidth and also makes
the skeleton more efficient by allowing it to perform method dispatch based on integer
comparisons, rather than using string comparisons.

The | ong is an integrity check. Each method defined in Nul | Pri nt er has a unique
| ong associated with it. This | ong is a hash of the method name and all the arguments.
Sending this hash, along with the method number, helps to prevent versioning problems.

So what does this method do? It essentially contains marshalling and demarshalling code, similar
to the code written by hand for the socket-based version of the printer server.

4.3.3 The Data Objects

We still have two further objects to implement: Docunent Descri pti on and

PrinterException. Let's start with Pri nt er Excepti on. Example 4-3 shows the source
code for Pri nt er Excepti on.

Example 4-3. PrinterException.java

public class PrinterException extends Exception {

private int _nunber Of PagesPri nt ed;
private String _hunmanReadabl eErrorDescri ption;

public PrinterException( ) {
/1l zero arg constructor needed for serialization
}

public PrinterException(int numberOf PagesPrinted, String
humanReadabl eErr or Descri ption) {
_nunber O PagesPrinted = nunber O PagesPri nt ed;
_humanReadabl eError Descri ption =

humanReadabl eEr r or Descri pti on;

}

public int getNunberOf PagesPrinted( ) {
return _nunber Of PagesPri nt ed;

public String get HumanReadabl eErrorDescription( ) {
return _hunmanReadabl eError Descri ption;



}

This is exactly what a generic exception™ should be; it has enough state for the catch block to
print out or display a meaningful error message. You can easily imagine a client popping up a
dialog box to tell the user what went wrong, as in the following code snippet:

51 This is a generic exception because it covers a wid e range of devices. Since it's impossible to define all
the different types of exceptions a printer can generate (and create subclasses of Printer Excepti on for
each one), we simply rely on the user to interpret the exception. j ava. sql . SOLExcept i on follows a
similar design strategy.
catch (PrinterException printerException) {
String errorMessage = "Print failed after
get Nunber Of PagesPrinted( ) + " pages.";
JOpt i onPane. showessageDi al og( Si npl ed i ent Frane. this,
error Message,
"Error in printing” , JOptionPane.| NFORVATI ON_MESSACE) ;
_messageBox. set Text ("Exception attenpting to print " +
(_fil eChooser
get Sel ectedFile( )).getAbsolutePath( ) + "\n\t Error was: " +
print er Excepti on get HunanReadabl eErr or Description( ));

+ printerException

}

Even more impressively, Pri nt er Except i on has no "extra" networking code. For example, it
does not contain any code that either reads or writes from a stream. This is possible because
RMI automatically uses serialization to send objects over the wire.

4.3.3.1 DocumentDescription

The other object we pass by value is an instance of Docunent Descri pti on. However, we have
a problem here: Docunent Descri pt i on stores the document as an instance of | nput St r eam
and | nput St r eamdoesn'timplement the Ser i al | zabl e interface. This means that the generic
serialization mechanism won't work with Docunent Descri pt i on. We're going to have to write
custom marshalling and demarshalling code ourselves. The code is shown in Example 4-4.

Example 4-4. DocumentDescription.java

public class Docunent Description inplenents Serializable,
PrinterConstants {
private transient |nputStream _actual Docunent;
private int _|ength;
private int _docunent Type;
private bool ean _print TwoSi ded,;
private int _printQuality;

publ i ¢ Docunent Description( ) {
/'l zero arg constructor needed for serialization

}

private void witeQbject(java.io.ObjectQutputStreamout) throws
| CException {
out.defaultWiteQbject( );
copy(_actual Docunent, out);

}

private void readCbject(java.io.ObjectlnputStreamin) throws
| CExcepti on,
Cl assNot FoundException {
i n.def aul t ReadObj ect( );



Byt eArrayQut put St ream t enporaryBuffer = new
Byt eArrayQut put Strean( );
copy(in, tenporaryBuffer, _length);
_actual Docunent = new Dat al nput St r ean{ new
Byt eArrayl nput St rean{t enpor ar yBuf f er
toByteArray( )));
}

We start by declaring act ual Docunent tobetransi ent.transi ent isa Java keyword that
tells the serialization mechanism not to serialize the variable's value out. We then implement
wri teChj ect( ), which does two things:

Calls out . defaul t WiteOhj ect( ).Thisinvokes the generic serialization
mechanism (which is the default) to write out all nontransient objects. That is, when

out . defaul tWiteObject( ) iscalled, everything but actual Docunent has been
encoded in the stream.

Copies act ual Docunent to the stream, exactly as we did for the socket-based version
of the program.

Similarly, inreadChj ect (), we first call def aul t ReadObj ect (), which retrieves all the
nontransient values, including | engt h, from the stream. We then read act ual Docunent
from the stream.

o

‘ Why doesn't | nput St r eamimplement the Seri al | zabl e
« 4. interface? The answer is that | nput St r eamis an abstract

base class whose concrete subclasses often have machine -
specific state. For example, Fi | e-l nput St r eamexplicitly
refers to a file on a hard drive and probably has a file
descriptor as part of its state. Making objects such as

Fi | el nput St r eamserializable makes very little sense,
since you can't guarantee that either the file or the file
descriptor will be available (or meaningful) when the
information is deserialized. Similarly, classes such as Fr ane
or Thr ead, which encapsulate operating-system resources,
are not serializable.

4.4 The Rest of the Server

To finish building our server, we need to write launch code. Launch code is code that is
application-specific, but not business-domain specific, and handles the details of registering a
server with a naming service such as the RMI registry. In our case, this boils down to two pieces
of code: a Java program that runs Pri nt er Ser ver and a batch file that starts the RMI registry

and then runs our program. The former is shown in Example 4-5.

Example 4-5. SimpleServer.java

public class SinpleServer inplenments NetworkConstants {
public static void main(String args[]) {
try {
File logfile = new
File("C\\tenp\\serverLogfile");



CQut put St ream out put Stream = new
Fi | eQut put Stream(l ogfile);

Printer printer = new Null Printer(outputStream;
Nani ng. r ebi nd( DEFAULT_PRI NTER_NAME, printer);

}

catch (Exception e) {
e.printStackTrace( );

}

}

This creates an instance of Nul | Pri nt er and then binds it into the registry under the name
DEFAULT PRI NTER NAME. The only surprising detail is this: if everything is successful, our
program will exit mai n( ) . Don't worry; this is normal. The fact that the RMI registry has a
reference (e.g., a stub) for the server keeps the application alive even though we've exited. I'll
explain why, and how this works, in Chapter 16.

[
g

Note that we used r ebi nd( ) instead of bi nd( ) inour
launch code. The reason is that bi nd( ) fails if the name
we're binding the server to is already in use. r ebi nd( ), on
the other hand, is guaranteed to succeed. If another serveris
bound into the registry using the name we want to use, that
server will be unbound from the name. In reality, bi nd( ) is
rarely used in launch code, but is often used in code that
attempts to repair or update a registry.

The format of names that are bound into the registry is fairly simple: they follow the pattern //host-
name:port-number/human-readable-name. host-name and port-number are used to find the
registry.

The Format of Names in the RMI Registry

Servers are bound into the registry using a string. In this case,
DEFAULT_PRINTER is simply "default printer.” More generally, names
are formatted according to the following pattern:

/ I host - nane: port - nunber/ human- r eadabl e- nane

Of these three pieces of information, host-name and port-number
describe the registry while human-readable-name is server-specific. That
is, host-name and port-number are used to find a running instance of the
RMI registry (which should be listening on port-number of host-name).
human-readable-name, on the other hand, is the name used internally,
by the registry, to identify the server being registered.




Both host-name and port-number have default values. host-name
defaults to "localhost” and port-number defaults to 1099. Thus, the
following are all equivalent names:

/ /1 ocal host: 1099/ default printer
/ /1 ocal host/default printer

: 1099/ default printer

default printer

The batch file, rmiprinterserver.bat, consists of the following two commands:

start rmregistry
start java comora.rm book. chapter4.rm printer.applications.SinpleServer

start is a Windows command that executes the rest of the line in a separate process. Itis
equivalent to putting an ampersand (&) after a command in a Unix shell. Thus, invoking
rmiprinterserver.bat from the DOS shell launches the RMI registry in another process, launches
Si npl eSer ver in a third process, and then returns to the command prompt to wait for further
instructions.

4.5 The Client Application

Once the changes to the data objects have been made and the skeletons and stubs have been
generated from the server, the networking part of the client application is a remarkably
straightforward piece of code. Recall that our client application had the GUI shown in Figure 4-3.

Figure 4-3. Printer/client application GUI

Choose File Prirt File

The only part of this that's changed is the Act i onLi st ener attached to the Print File button.
And it's much simpler:

private class PrintFile inplenments ActionListener {
public void actionPerforned(ActionEvent event) {
try {
Fi | el nput St ream docunent Stream = new
Fil el nput Strean(_fil eChooser
get Sel ectedFile( ));
Docunent Descri pti on documnent Descri ption = new
Docunent Descri pti on(docunent Stream ;

/*
New net wor k code foll ows
*/
Printer printer = (Printer)
Nam ng. | cokup( DEFAULT PRI NTER_NAME) ;
printer. printDocunent (docunent Descri ption);



}

catch (PrinterException printerException){

}

All this does is use a predetermined name, which must be the same name as the server used to
bind, to locate an object inside the RMI registry. It then casts the object to the correct type (the
RMI registry interface, like many Java interfaces, returns instances of Cbj ect ) and invokes the
print Docunent () method on the server. And that's it! We've finished reimplementing the
socket-based printer server as an RMI application.

L

In this code example, as in many of the examples in this
book, the client and server must be located on the same
machine. This is because the call to Nam ng. | ookup( )
simply used DEFAULT PRI NTER NANE (with no hostname or
port number specified). By changing the arguments used in
the call to Nami ng. | ookup( ), you can turn the example
into a truly distributed application.
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4.6 Summary

In this chapter, we've gone over the basics of developing an RMI application in a cookbook-style
way, in order to get acquainted with the basic structure and components of an RMI application.
Consequently, we glossed over many of the details. However, the key points to remember are:

Simple RMI applications are, in fact, not much more complicated than single-process
applications.

RMI includes reasonable default solutions for the common problems in building
distributed applications (serialization handles marshalling and demarshalling, the registry
helps clients find servers, and so on).

Even when problems arise (e.g., Docunent Descri pt i on), the code is remarkably
similar to, and simpler than, the analogous socket code.

The conceptual cost to using RMI isn't all that high. In most cases, using RMI amounts to
adding an extra layer of indirection to your code.

The application evolution problems mentioned in Chapter 3 aren't nearly so forbidding
when using RMI. The default mechanisms, and the automatically generated stubs and
skeletons, handle many application evolution problems nicely.

Chapter 5. Introducing the Bank Example

Now that we've seen two versions of the same application, one written using sockets and one
written using RMI, it's time to take a step back and look at the whole process of designing a
distributed application. In order to do this, this chapter and the following five chapters all
concentrate on a single shared example: a distributed banking system. In this chapter, we'll get
things underway by talking about the system requirements of a distributed banking system,
sketching a rough architecture for the application and discussing the problems that arise in



networked applications. By the end of this chapter, you'll have a better idea of the design
decisions and choices that must be made to build a distributed system, as well as how to begin.

5.1 The Bank Example

When traveling, take advantage of more than 13,000 Bank of America ATMs
coast to coast. We're in 30 states and the District of Columbia. As a Bank of
America Check Card or ATM cardholder, there's no ATM fee when you use an
ATM displaying a Bank of America sign...

—Bank of America Advertisement

A simple banking application implementing an automatic teller machine is, in many ways, the
ideal first application for someone learning to design and build distributed programs. Why? The
most obvious benefit is that the application is easy to understand; most readers of this book know
exactly what an ATM is supposed to do. Moreover, there isn't a great deal of "business logic"
involved, and the business logic that does exist is straightforward. Finally, there's very little GUI
interface code to deal with. This means that most of our discussion deals with the distributed
parts of the application, rather than the details of exactly how to process a transaction or which
buttons need to be disabled when.

Another important fact is that a banking application is inherently a distributed application with a
centralized server (or cluster of servers). In other words, it adheres to a traditional model of a
client-server application, in which the two roles are strongly differentiated:

Server

The server is centralized on a small set of carefully maintained machines that few people
can access. It is long-running and has important data, which it is responsible for
maintaining over the course of the application's lifetime. All the business logic runs inside
the server.

Client

The client is a relatively short-lived program. Any persistent state the client stores, other
than user-interface configuration information, should be stored in the server. The client's
role in the application is to provide the user with a way to interact with the server. The
client application makes very few demands on the client machine and can be run on a
wide range of computers.

Moreover, a banking application involves two very important aspects of distributed programming:
security and scalability. Security involves two different things: authenticating users (such as when
an ATM user enters his or her PIN) and guarding sensitive data. When information is sent across
a computer network, there is the possibility of a third party eavesdropping to discover sensitive
information. This is especially true over the Internet and is an important reason for the
widespread adoption of encryption standards such as the Secure Sockets Layer (SSL).

Scalability allows the server to handle many clients at the same time. The bank application has a
centralized server that not only stores the bank account information in a very small number of
places, but is responsible for authenticating clients. This means that all 13,000 of the Bank of
America ATMs mentioned at the beginning of this section are probably being served by a very
small number of machines, which have to handle a lot of simultaneous clients.

Other Types of Distributed Applications

For the most part, we will focus on the bank example (and occasionally
revisit the remote printer server) in this book. Havina a small set of




examples that we'll repeatedly discuss from various points of view helps
to keep the discussion more concrete. And, as | mentioned, the banking
example allows us to talk about both scalability and security.

There are many examples of distributed applications that don't require
much in the way of security or scalability. For example, consider the
typical internet "chat room" application. It consists of a distributed
whiteboard, which contains the transcript of an ongoing conversation
among several people.

Most of the people are deliberately anonymous; they choose a "handle"
and participate without the server authenticating them or having any
long-term persistent state. Moreover, chat rooms don't need to scale
because conversations don't scale well—it's almost impossible to have a
conversation among 100 people. And, while chat rooms usually have a
server on which the clients log, there is no reason to have just one server

or a small nexus of coordinated servers.

The bank example, on the other hand, is conceptually simple but also
involves scalability and security issues. Consequently, it's a more useful
example than a chat application.

5.2 Sketching a Rough Architecture

The first thing to do when building a distributed application is sketch a rough architecture. The key
words here are sketch and rough. We're talking about a preliminary design at the level of the
architectural diagrams used in the previous chapters. And even though doing this can be difficult,
there are several facts that help you out:

There are really only four or five different distributed application architectures. Most
distributed applications look fairly similar to each other.

You're using Java and RMI. This narrows down some design choices for you and helps
you make design decisions.

You don't actually have to get it right. Rough architectures are not cast in stone; they help
you focus and narrow the rest of the design, turning vast and open-ended questions into
things that are easier to think about. In particular, they let you place pieces of functionality
at various points on the network, and help you design the remote interfaces. This
effectively turns the task of designing a distributed application into the task of designing
single-process components.

5.2.1 Five Steps to a Sketch

Once you've sketched a rough architecture a few times, the process becomes ingrained.
However, the following sequence of steps can be helpful the first few times:

1.

Figure out what you're going to build. This might sound obvious, but it's important. You
need some set of requirements for the application, not just what it does for any given
single user, but also information about how many users it supports, how many users it
needs to support concurrently, and requires what sort of networking environment. Most of
the time, this information will be imprecise. That's perfectly fine. Estimates are fine; flying
blind is dangerous.



2. Find a basic use case that will motivate the rough architecture. This amounts to
narrowing down the information in step 1. A set of requirements usually lists all the things
that the application must do. Your task in this step is to imagine a typical user and figure
out what she does with the application—a use case. This approach helps prioritize the
requirements and provides an incremental path for design and development. Your goal
will be to design an application that supports the basic use case and adapt that
application to support other use cases and requirements.

3. Figure out what you can safely ignore for now. A typical rough sketch ignores scalability
and security. Both of these are important, and both have the potential to be enormous
headaches, but both are also issues that can usually be dealt with later in the
development process. At the start, it's usually safe to assume that there are only a few
clients and that they operate inside a trusted environment.

4. Figure out what design decisions are imposed on the application by the deployment
environment. Distributed applications are rarely off-the-shelf, shrinkwrapped applications
purchased as a commodity item; they're designed for a specific environment. As such,
there's little point in designing them without taking the client's environment into account.
There are usually four main issues involved: using a pre-existing persistent store (e.g., a
relational database), interoperating with a legacy application or applications, network
speed, and security.

5. Narrow down the servers to a few canonical choices. Once you've gone through steps 1
through 4 and isolated the basic use case, you'll notice that you're already talking in
terms of specific servers. This step involves taking those servers and thinking about what
their exact role in the system is.

And that's it. If you follow these five steps, you'll be able to produce a rough sketch of the
architecture. To help make this concrete, the next section will do this for the bank example.

5.3 The Basic Use Case

We've already discussed the bank example a little bit and understand what it is that the
application is supposed to do (step 1). The next step is to create a basic use case. In subsequent
sections, we will assume that the following sequence of actions is typical for an ATM user:

1. The user walks up to the ATM and inserts an identification card.
2. The user enters a password.

3. If the password is correct, the user is given permission to perform transactions. This
permission lasts until the identitication card is removed.

4. The user is given a menu of choices. The typical choices are: display an account
balance, withdraw money, or deposit money. That is, the first menu consists of a generic
list of actions that are valid with any account.

5. After choosing an action, the user is given a list of valid accounts from which to choose
(e.g., "Checking" or "Savings"). The user chooses an account and then the transaction
proceeds.

6. After performing between one and five transactions, the user leaves, taking his or her
identitification card.

5.4 Additional Design Decisions



The third and fourth steps in sketching out an architecture involve figuring out which design
decisions can be safely postponed and which restrictions the deployment environment will place
upon our application. Since this is an RMI book, however, we'll make the following assumption:

There will be a server, or servers, written in Java and registered with a naming
service. The client, also written in Java, will connect to the naming service,
retrieve a stub for the server, and use the stub to communicate with the server.

5.4.1 Design Postponements

As mentioned previously, we will postpone consideration of two key issues: security and
scalability.

5.4.1.1 Security

Writing a security layer is difficult for two reasons. The first is that doing so often requires a good
understanding of some rather complicated mathematics. The second is that it's pretty hard to test.
Consider, for example, the functionality involved in depositing money to a bank account. It's easy
to imagine a sequence of automated tests that will give you confidence that the code is correct.
It's much harder to imagine a series of tests that will ensure that no one can intercept and decode
privileged information or that the passwords used for authentication are secure. For these
reasons, most applications that need security wind up using a thoroughly tested library or
package that provides it.

For the bank example, we need to do two things: authenticate the user via password mechanism
(i.e., make sure the user has the authority to perform operations on a given account) and
guarantee that the information sent between the client and the server is secure from
eavesdropping. Since this second task is easily accomplished via SSL—and doesn't impact our
design at all—postponing security issues amounts to assuming that the user authentication task
is easily solved and doesn't significantly impact the rest of the design.

RMI allows you, via the definition custom socket factories, to
w 4. Use any type of socket as the basic network communication

“* layer. By default, RMI uses the socket classes found in the

| ava. net package. The relationship between SSL and RMI
is discussed in Chapter 18.

5.4.1.2 Scalability

Our basic use case implies two very nice properties of our application. The first is that there isn't
a great deal of state associated with a client. The second is that there isn't a lot of interaction
between distinct clients.

The first property implies that state management is fairly simple. When a client executes the basic
use case, the server needs to authenticate the client and get the client's bank account data from
a persistent storage mechanism. It's plausible for us to assume that authentication is a once-per-
client-session cost, and that the associated bank account information is not a large amount of
information nor hard to retrieve from the server.
The second property amounts to the following two assumptions:

Two clients don't usually access the same bank account at the same time.

Requests that one client makes (e.g., a deposit or withdrawal) won't affect other clients.



Note the presence of the word "usually"—we will, in later

« 4. Chapters, insert safeguards to guarantee data integrity in the
case that multiple clients attempt to access the same account
at the same time. Those safeguards won't affect our
scalability assumptions, however.
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We can restate these assumptions in a more general form:
Two clients don't usually access the same changeable information at the same time.

The changeable information is relatively isolated. Changes one client makes rarely affect
other clients and do so in a known way.

These generalized assumptions, and the assumption that the state associated to a client is small,
imply that once the single-client application is written, it will be fairly easy to make the application
scale. Hence, we can safely postpone worrying about scalability until we understand the single-
client scenario. This is because of the following three implications:

The changeable information, which is small and well-defined, can be cached in server
memory.

Processing can be isolated. Therefore, you can use multiple servers on multiple
machines without worrying about server communication.

Because clients rarely access the same information simultaneously, caching the
changeable information is still a valid strategy even with multiple servers.

These generalized assumptions hold for a surprisingly large number of applications (the what-I-
put-in-my-shopping-cart-doesn't-affect-your-shopping-cart-at-all principle). And often, the key to
making an application scale is figuring out how the generalized assumptions fail and limiting the
resulting problems. For example, both of the generalized assumptions fail in a scheduling
application. That is:

People trying to schedule meetings often access the same information simultaneously,
such as the schedules of other people and the list of available rooms and locations.

A scheduling decision made by one user can definitely affect the other users.

The trick is to realize that you still have some sort of isolation going on. There are actually two
types of isolation in the scheduling scenario: the people who need to be at a meeting and the
geographic location of the meeting. If | need to meet with Bob and Sandy in Colorado, and you
need to meet with Alex and Pat in Oregon, then our requests are completely independent, and
that fact should be reflected in the code.

A little confused? It's okay. Read this section again later. The
w 4. key thing to remember is that if you can isolate the clients

* from each other, or control how the clients affect each other,
then the application can be made to scale without too many
problems.

5.4.2 Implications of the Environment



In a banking environment, one further design decision has already been made. Most banking
applications, and indeed most applications that have a real need for reliable, long-term,
centralized storage of information, use some sort of database to store and retrieve data.

Thus, we will also assume that our server (or servers) will rely on some sort of third-party
persistence mechanism to provide long-term storage and retrieval of information. We won't need
to implement this functionality, or make any decisions about how it is implemented. Our sole
responsibility will be to build a communications layer between our application and the already
existing database.

5.5 A Distributed Architecturefor the Bank Example

The assumptions we just made are very plausible and apply to a wide variety of situations. But
when we combine these assumptions with what we learned from the printer example, we have
enough information to sketch out our architecture.

Even without having more information about the bank's computing environment and systems, and
without having much of a requirements document beyond our single use case, we can still get a
good feel for the architecture of our banking application. A simple architectural diagram might
look something like what's shown in Figure 5-1.

Figure 5-1. Simple architecture diagram for the bank example
Server
Client Server
Server

Registry

Here, each component's task is described:
Client

Responsible for managing interaction with a user, usually via a GUI. It obtains a stub to a
server from the registry and then invokes methods on the server.

Stub (not pictured)
Implicitly, and without client knowledge, handles details of SSL connection.
Registry

Maintains a mapping of human-readable names to server stubs and responds to queries
by returning serialized copies of stubs.

Skeleton and launch code (also not pictured)
We'll discuss these in detail later.
Servers



Handle what is usually called "business logic." That is, they respond to client requests,
manipulate data, and occasionally store that data out to a database. In particular, servers
respond to requests from a client and make requests of the database.

Database system

Responsible for long-term persistence and integrity of important data. This already exists;
our main task with respect to it will be figuring out how to manage the communication
between our servers and it.

Given this, the main architectural questions that need to be resolved are: how many servers are
there and what are they? There are two obvious choices: a single instance of Bank or many
instances of Account .

In the first case, there is a single server whose interface contains methods such as the following:

publ i c Money get Bal ance( Account account) throws RenoteException;
public void nakeDeposit (Account account, Money anount) throws
Renot eExcepti on,

Negat i veAnount Excepti on;
public void makeWt hdrawal (Account account, Money anount) throws
Renot eExcepti on,

Overdraft Exception, NegativeAmount Excepti on;

Note that each method is passed an account description parameter (presumably, though not
necessarily, as a value object). This immediately suggests the second alternative: make each
account a separate server. The corresponding methods look similar; they simply have one fewer
argument:

public Money getBal ance( ) throws RenoteException;

public void nakeDeposit( Mney anount) throws RenoteException,
Negat i veAnount Excepti on;

public void nmakeWt hdrawal ( Money anount) throws RenoteException,
Overdraft Excepti on, NegativeAnmount Excepti on;

In this scenario, there are many instances of a class that implements Account . These instances,
however, are not running in distinct JVMs. Instead, many small server objects are all residing
inside a few JVMs. Hence, they are implicitly either sharing, or contending, for resources.

In later chapters, | refer to these two options as the bank option and the accounts option,
respectively.

5.6 Problems That Arise in Distributed Applications

Now that we've got a preliminary description of how the application will be structured, a question
arises: what is the role of the network in all of this?Or stated more precisely, this important
guestion is:

What problems does making the application distributed cause?

The answer is that there are two main new problems associated to building a distributed
application: the possibility of partial failures and the latency of the network. Let's look at both in
more detail.

5.6.1 Partial Failures

A partial failure occurs when one of the programs becomes inaccessible to the other programs
that are running. This can happen because the program has crashed or because the network is
experiencing problems. In either case, the possibility of partial failure can cause problems for the
application designer.



Consider, for example, our typical use case. Step 5 stated:

After choosing an action, the user is given a list of valid accounts from which to
choose (e.g., "Checking" or "Savings"). The user chooses an account and then
the transaction proceeds.

This translates, in the account option, into:

The client program gets a stub for the appropriate account object from a server
somewhere. It then proceeds to make method calls on the account server until
the transaction is completed.

And the stub, as with RMI applications, plays a role very similar to that of an object reference.
That is, it exposes methods that the client application calls.

And this is where partial failure is particularly insidious and unexpected. Suppose the server
crashes, or becomes otherwise unavailable, in the middle of a transaction. How does an
application gracefully recover? The client application cannot know what the server did before
becoming inaccessible, and the server (when it becomes accessible again) doesn't know if it
received all the messages that the client sent.

In a single-process program, the analogous scenario is this:

An object gets a reference to another object and calls a method on it. But, even
though the reference is valid, the object referred to isn't there, and an exception
is thrown.

This is a very strange thing. It can happen in languages such as C++, where programmers are
explicitly responsible for memory management. But this should never happen in a garbage-
collected language.

— | said this should never happen. In point of fact, you can run
into situations where you have a reference to an object that
doesn't exist because of the way threads are defined in the
Java Language Specification. We'll discuss this in more detail

in Chapter 11.

5.6.2 Network Latency

The other major problem | mentioned is network latency. Put succinctly, invoking a method or
transferring data over a network is slow. People designing distributed systems usually estimate
that the overhead of a distributed method call on a fast local area network is on the order of a few
milliseconds. However, on a congested LAN, or when calls have to go across the Internet,
method calls can be much slower. And if data needs to be sent or returned, the remote call takes
even longer.

Remote method calls have two main effects: sending data over the wire slows an application
down and doing so slows down other distributed applications due to increased network
congestion.

This last point is very important. Designers of distributed
R Y applications can't assume that their program is the only one
on the network. During peak business hours, lots of data will




be flowing across the network. This means that 1) there is
less bandwidth available to any given application, and 2)
using lots of bandwidth impacts the performance of all the
distributed programs on the network, not just the one using
lots of bandwidth.

To demonstrate this, try the following experiment:
1. Clear your web browser's cache and go to a static web site with a lot of images.
2. Click your browser's Reload button.

The difference in speed between the first and second viewings of the web page is mostly due to
the difference between having the images cached on your local hard drive versus downloading
them across the network. (You still may have to download the text in the page. But most of the
images should be cached by your web browser.) In other words, the difference is mostly due to
network latency.

Clearly, if communicating between two programs across a network is expensive, then a well-
designed application needs to somehow account for this, minimizing the number of calls made
across the network, the amount of data sent across the network, and the time the user has to wait
because of network latency.

Minimizing the number of calls, the amount of data sent, and the time the user must wait because
of network latency are actually three different, and sometimes conflicting, goals. For example,
using compression may reduce the amount of data sent over the network but may result in the
user waiting longer (because of the time it takes to uncompress the data).

Chapter 6. Deciding on the Remote Server

In Chapter 5, we briefly discussed the architecture of the bank example. In addition, we
discussed the fundamental problems that arise when building distributed applications. In this
chapter, | build on that discussion by introducing a set of basic evaluation criteria that will help
you refine designs and choose between various design options.

6.1 A Little Bit of Bias

Good code invariably has small methods and small objects...no one thing | do to
systems provides as much help as breaking it into more pieces

—Kent Beck, Smalltalk Best Practice Patterns

The experienced distributed systems programmer will notice a certain bias in this chapter™!
towards what | call small-scale, semi-independent servers. The "small-scale" part of this is easy
to explain. By and large, | build servers with very limited functionality (as little as is reasonable,
given the restrictions imposed by the fact that we're building a distributed system). Then, | tend to
give them large interfaces, exposing the same functionality in multiple ways.

10 be honest, the bias permeates the rest of the book, too. If | didn't have opinions, | wouldn't be an
author.

As far as | know, there's no knockdown argument in favor of this style of designing and building
programs. Many programmers who have built object-oriented systems tend to agree with Kent
Beck.2 In my experience, his quote almost holds for distributed systems as well—building small
servers leads to flexible designs that evolve gracefully over time. However, there is a slight



difference, due to network latency, for distributed systems. In a single-process system, it costs
almost nothing to make five method calls to an object. If you need to get five related pieces of
information, it's perfectly fine to make five method calls (in fact, it's better for code simplicity and
maintenance not to have redundant methods). In distributed systems, you need to consider how
often those five method calls are made and the impact of network latency on application
performance. We'll return to this discussion in Chapter 7 when we talk about interface design.

[2) And his implied style of programming.

"Semi-independent" is a harder idea to explain. The point is this: if your distributed design
requires several instances of a specific server class running in parallel, the instances should be
able to run on separate machines (or at least in separate JVMs) without significantly impacting
performance. In other words, these instances should be able to run independently. If instances of
a server class need to frequently communicate with each other or share state in some significant
way, then they're not really separate objects, and the design might be flawed.

Of course, complete independence is very hard to achieve. For one thing, if the servers all use
the same database server, there will always be the possibility that they could interfere with each
other. That's why it's called semi-independent.

6.2 Important Questions WhenThinking About Servers

In Chapter 5, we introduced two major problems that arise in the design of distributed
applications: network latency and the possibility of partial failure. Clearly, when designing a server
(or choosing between design alternatives), you should take these problems into account. In
particular, your goal should be to minimize the impact of network latency and to avoid the
problems caused by partial failures.

The problem is translating the desire to avoid these problems into specific design criteria. What
follows is a list of questions you should ask yourself when making design decisions or evaluating
designs. This list isn't intended to be complete; as you get more experienced at designing
distributed systems, you will undoubtedly come up with more questions, and your own ways of
thinking about these problems. It is, however, a good start.

Client-Side Caching

There is an ugly truth lurking in the attempts to minimize problems
caused by either network latency or the possibility of partial failures.
Often, the attempt to mitigate these problems will cause other, equally
vexing, problems to arise. Consider, for example, the problem of network
latency. One solution to this problem is to implement a client-side cache.

The idea is simple: in a data-intensive application (say, for example, an
application that allows users to view information from a database), the
client should fetch only a given piece of data once. Though this seems
reasonable, there are two substantial problems with it: indexing the
client-side cache and maintaining the client-side cache.

Let's talk about indexing the client-side cache. This becomes a problem
because identical queries are rarely issued to a server. If the client
makes the same method call with the same arguments to the same
server, it can simply use the cache and avoid all of the overhead
associated with callina the server. But a more sophisticated use of the




cache, such as realizing that the answers to a particular database query
are a subset of the ones from a previous query, involves replicating
some amount of server functionality on the client side. This can be
difficult to do.

The second problem is maintaining the cache. Over the course of a client
session, two things can happen. The first is that the cache can grow to
be excessively large, which forces the client to develop a strategy for
discarding cached information, and the second is that the cached
information can become invalid.

To solve this second problem, the client usually adopts one of three
solutions. It automatically expires information after a certain time period
(which also helps keep the cache small), it occasionally asks the server
whether information in the cache is still valid, or it relies on the server to
let it know when the data becomes invalid via an event model. These last
two alternatives require substantial programmer effort and may actually
result in the program's performance suffering.

The end result? If a client-side cache is implemented, it's usually
implemented as a data structure indexed by exact arguments, uses a
fixed length FIFO queue to limit cache size, and automatically expires
information that gets too old. In fact, this is what a web browser does,
although it also validates its cache. In other words, before displaying a
cached web page, a web browser asks the web server if the page has
been changed since it was last retrieved.

You'd like to think that the extra control and knowledge you have when
building a customized application would lead to a better solution than the
one used by a generic client such as a web browser. Sadly, this often
isn't the case.

Each of these questions has an associated discussion, followed by a subsection entitled,

"Applying this to Bank versus Accounts." The goal is to take what is, admittedly, a rather abstract
list of questions and make them more concrete. We do this for each one by exploring whether we

should pursue the Bank option or the Account option in implementing the bank example.

Unfortunately, the discussion is somewhat inconclusive. As is often the case, there really isn't a
decisive reason for choosing one over the other. Put succinctly, neither Bank nor Account is

“correct," although one is more useful than the other.

In order to simplify the discussion, we will assume that each
4. server is individually entered in the registry. That is, that the
“ client finds the server (either Bank or an instance of
Account ) by first making a lookup call to the RMI registry.

o

o
e
[

6.2.1 Does Each Instance of the Server Requirea Shared/Scarce Resource?

Suppose you find yourself designing a system that requires many instances of a particular type of
server. For example, in our current dilemma, there can be literally millions of Account servers



located inside a much smaller number of JVMs. One sure tip-off that the design has gone bad is
the realization that there's a scarce resource to which all your servers require exclusive access.

Sometimes this is obvious. For example, consider our printer server. It makes little or no sense to
create multiple printer servers connected to the same printer—it's not even clear what a second
printer server would do! Other times, this is more subtle and requires a fair amount of thought.

6.2.1.1 Memory, in general, is not an issue here

As long as the instances of servers can comfortably reside within a single JVM, memory is not an
issue. The amount of memory required by a server can be divided into two pieces: client-specific
state and general-purpose state. For example, in an e-business application, the client's current
order is clearly client-specific; the general catalog of items available for sale is general-purpose.

Generally speaking, the amount of memory required by a set of servers is a constant (the
general-purpose state) plus an amount proportional to the number of currently active clients.
However, the latter value is often proportional to the number of currently open socket
connections. This is one example of why memory is not going to be the bottleneck. You'll swamp
other scarce resources long before memory becomes a problem that can't be solved by popping
more memory modules in the machine.

This might seem false in the case of our accounts. If there are
w 4. 25 million accounts, then the amount of memory required for

~ 25 million server objects would seem to be substantial,
independent of the number of clients currently connected.
The factory pattern, which we discuss in Chapter 17, is
designed to explicitly handle this problem.

6.2.1.2 Sockets in RMI aren't a limitation either

It used to be that socket allocation was a major resource limitation. This was caused by the
combination of two factors:

Processes on most major operating systems were only allowed to have a limited humber
of sockets open.B! In fact, the actual limit is usually the number of file descriptors a
process can have open; file descriptors are used for both files and sockets.

31 The limit is built into the operating system and is usually less than or equal to 1024.
Each server required an instance of Ser ver Socket to listen for connections.

The combination of these two factors is deadly. It means that a very small number of servers can
be running inside a single process. And since launching a process in Java requires launching a
JVM, which consumes a significant amount of memory and operating-system resources, this can
quickly become a major issue.

RMI“! solves this problem by reusing sockets. In other words, if a client JVM sets up a socket
connection to a server JVM, then the connection is actually kept alive for a short period of time by
the RMI infrastructure. If, after the client request has been handled, a second request is made
from the same client JVM, that request will reuse the same socket connection. This means that
the number of socket connections required by an RMI server is approximately: 1 + number of
simultaneous requests.

[ That is, the Sun Microsystems, Inc. implementation of RMI. Socket sharing isn't actually required by the
RMI specification.
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—— temporary open, unused socket connections that correspond
to completed requests. In practice, this can be significant. If
you find that unused sockets are being retained for long
periods of time and constitute a significant resource limitation,
then you can either set parameter values to configure how
long the RMI runtime keeps unused sockets open (we'll
discuss this, and other settings, in Chapter 16) or use a
custom socket factory to achieve a similar effect (we'll discuss
custom socket factories in Chapter 18).

Note that this number is entirely dependent on the number of clients and how busy they are. It
does not depend at all on the number of servers.

Socket reuse is actually a fairly significant benefit to using RMI. It's not all that hard to implement,
but doing it right requires a fair amount of code and some forethought.

The RMI Runtime

Now that we've discussed sockets, it's time to admit that our architectural
diagrams are hiding a bit of the complexity of RMI. Neither stubs nor
skeletons use sockets directly.

Instead, stubs use an object called a Renot eRef , which handles the
actual details of communicating with a remote process. This extra layer
of indirection allows the RMI infrastructure to manage network
communications and conserve scarce resources. From the networking
point of view, it makes both socket sharing and distributed garbage
collection possible. It also enables RMI to effectively share a thread pool
across multiple servers. We'll explore this much more fully in Part 11.
The networking details are covered in Chapter 16, and thread pools are
discussed in Chapter 11 and Chapter 12.

We'll ignore the RMI runtime for the rest of this chapter and for the rest of
Part 1. However, it's not a bad idea to keep the fact that sockets are
shared in the back of your mind. It's also good to remember that when
we draw a stub and a skeleton in a picture, we really mean something
like that shown in Figure 6-1.

Figure 6-1. Stubs and skeletons interact with the RMI runtime and not directly with the
network
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6.2.1.3 An example of aresource limitation

Suppose you're in a situation where you want to log information about requests that are made.
For example, you might want to use a log file for one or more of the following activities:

Debugging servers during initial deployment and testing

Recording information about actual server failures in long-standing systems
Providing detailed data for analyzing network traffic patterns

Providing tracking information in case a transaction is later disputed
Providing a local persistent store to help servers recover from crashes

The first two of these are important but don't really concern us. But the last three can be quite
important and useful.™ If you have a large number of server objects residing inside a single JVM,
and each of them wants to use a log file, you can wind up running out of file descriptors very
quickly.te

51 Indeed, a quick search on the Internet reveals the existence of at least 12 companies selling products
that analyze web-server logs to help web-site owners spot traffic patterns and fix problems.

[81 Another example of this would be a mail server which stores each person's mail in a separate file and has
multiple servers which implement the MVai | box interface.

6.2.1.4 Moving things to a singleton resource object handles this problem

Of course, now that we've discussed log files in detail, you've probably guessed what the real
issue is. It's not the log aspect, it's the file aspect that causes problems. If each of the servers, for
example, needed to open different files based on client requests, then changing our design to use
a single server wouldn't help us. We would still need to open all those files, and that would still
use up our file descriptors.

The real issue is that we could have gotten away with a single log file, but instead we used many
log files. Hence, there is a solution to this problem: if we need to log client requests, and we want
to have several small-scale, semi-independent servers in the same JVM, then we can do one of
two things.

First, each server can attempt to open a single, shared log file when it needs to record
information. If the attempt fails, it will wait and then try again. Having a single log file solves the
resource issue—we no longer use a plethora of file descriptors for what is a secondary piece of



functionality. However, having each account open and close the same file is incredibly inefficient.
The same file winds up getting opened and closed repeatedly.

==~ Moreover, since accounts can now block each other (i.e.,
T . .

when one has the file open, the others have to wait), we run

headlong into threading and timing issues. We'll deal with

threading in Chapter 11 and Chapter 12.

Instead of having each server open and close the same file, it makes more sense to implement a
singleton object, a logger, residing in the JVM. Rather than attempting to open the file directly, the
servers simply call methods on the logger, which handles the details of the filesystem interaction,
as shown in Figure 6-2.

Figure 6-2. A singleton logger can often minimize consumption of scarce resources
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The heuristic that comes from this discussion is that if our design starts relying too heavily on
shared resources, then we're implicitly creating dependencies and resource contention among
our servers. This means we should encapsulate those resources inside code that manages
access to them.

"Shared singleton resource" is a design pattern that applies in
w¥ 4. Many cases. The most common case is database connection
" pools. Recall that database connection objects are incredibly
expensive to create. You can usually have only a small
number of them; otherwise, you'll run out of database cursors.
To solve this problem, most programmers create a
connection pool: a set of database connection objects that
are repeatedly used. A server grabs a connection from the
pool, uses it, and then returns it to the pool so other servers
can use it.

6.2.1.5 Applying this to Bank versus Accounts

Let's start by making some assumptions. It's quite possible that logging will be required for the
account objects. It's also very likely that our persistent store, almost certainly a relational
database, has a table that records transactions with some degree of detail. For example, the
database stores the type of transaction (at the very least, whether it's a deposit or a withdrawal),
the amount of the transaction, and the time of the transaction. If we're lucky, the database might
also store the balance of the account before and after the transaction.



However, the database probably already has a fixed schema, which we're not allowed to alter.
Yet, as our bank moves into the age of the Internet, we could easily want to record more
information. For example, we may want to record more detailed information about where from,
exactly, the request came. Was this a withdrawal of extra cash from a supermarket cashier? Was
a casino involved? Was some other bank's ATM involved? Was the transaction generated by an
Internet-based service that provides automatic bill paying by mimicing an ATM? And so on.

Because our primary information is stored in a shared resource (the original database) for both
the Bank and Account s options, and because to access this information we need to store it in a
second database,™ the answer to this question doesn't favor either the Bank option or the
Account option.

1 1n order to make ad-hoc queries across accounts.

Advantage: neither

6.2.2 How Well Does the Given Server Replicate/Scaleto Multiple Machines?

This is only important if you anticipate the application scaling to handle demands beyond the
capacity of a single JVM on a single machine. For example, it seems unlikely that our printer
server will ever really need this sort of scalability.

In order to answer this question, consider the following scenario: a single JVM, containing all our
servers, is created. Clients find the servers using the registry and proceed to make calls on them.
However, this system doesn't scale very well, and users are upset by how badly the system
performs. Then, an order comes down from on high: two JVM's, each containing "half" of the
server, should be created. In addition, a new third server, which knows how to redirect clients to a
"correct server," should be built. Clients will make a simple query to the third server to find out
which server should handle their requests, and then conduct all their business with the
designated server.

In other words, we will distribute the processing and then implement a simple form of load
balancing. This new architecture looks something like Figure 6-3.

Figure 6-3. Load-balancing architecture
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Now the question becomes: how hard is it to implement this scenario? If we need to, can we
easily migrate from the single JVM scenario to the multiple JVM scenario?

6.2.2.1 Applying this to Bank versus Accounts



Accounts easily scale to multiple machines. Since they register as small-grained servers in the
naming service, they are location-independent. That is, in order to distribute the servers on two
machines, they are simply launched in separate JVMs and registered from there. Consider the
following code, which launches a set of Account servers given names and balances:

public static void main(String[] args) {
Col | ecti on naneBal ancePai rs = get NaneBal ancePai r s(args);
Iterator i = naneBal ancePairs.iterator( );
whil e(i.hasNext( )) {
NaneBal ancePai r next NaneBal ancePair = (NameBal ancePair)

i.next( );
| aunchSer ver ( next NaneBal ancePai r) ;
}
}
private static void | aunchServer (NaneBal ancePai r serverDescription) {
try {

Account | nmpl 2 newAccount = new
Account _I npl 2(serverDescri ption. bal ance);

Renot eSt ub stub =
Uni cast Renpt ehj ect . export Cbj ect (newAccount) ;

Nani ng. rebi nd(serverDescri ption. nane, stub);

Systemout. println("Account " + serverDescription.nane +
" successfully

| aunched. ") ;
}

cat ch(Exception e){}
}

This can easily be run on more than one machine, launching different sets of accounts. All that is
required is that the function get NaneBal ancePai rs( ) return different accounts when the
code is run on different machines. When the client asks the naming service for Account , it
automatically gets a stub for the correct server regardless of on which computer the server runs.

Bank, on the other hand, doesn't easily spread to multiple machines. After all, the whole idea
behind Bank is that all the accounts can be manipulated using a single server. We run into
problems when two clients, communicating with two different Bank servers, try to manipulate the
same account information. That is, suppose each client calls:

public void makeWt hdrawal (Account account, Money anount) throws
Renot eExcepti on,
Overdraft Exception, NegativeAnmount Excepti on;

In addition, suppose that each of these calls attempt to withdraw all the money in the account. If
both clients are calling the same instance of Bank, we can easily imagine that the code is clever
enough to spot the problem.®! However, if the clients are talking to two instances of Bank,
running as separate servers on distinct computers, the only way to spot the problem is to have
the servers communicate with each other.

[81 Exactly how to write this sort of code will be covered in Chapter 11 and Chapter 12.

One solution to this problem is to use the persistent store as a shared resource. That is, before
attempting to make a deposit or a withdrawal, Bank can always check to see whether the
operation is possible. But this solution can be difficult to implement and makes the interaction with
the database more complex. What's more, all this really does is take messages that should be
sent directly from one Bank to another and route them through a third-party server. This may
cause performance problems.



An alternative solution, which might seem rather clever, is to register the Banks with the naming
service. However, instead of registering them under Bank names, register them under the names
of the accounts. That is, each instance of Bank would be registered many times, once for each
account it supports. Clients would look up an account and be directed to an instance of Bank. By
partitioning the accounts ("Bank 1 handles those accounts, Bank 2 handles these accounts..."),
we avoid the problem when two servers manipulate the same account information.

This solution still requires some changes in the implementation of Bank. The problem, however,
is that if we don't change the implementation of Bank, then once a client has a reference to Bank,
it can call any method on any account. This explicitly breaks the partitioning we've set up. More
importantly, it violates the single most important rule of client-server programming: servers should
never trust clients to "do the right thing," especially when sensitive data is involved.

This is worth repeating: servers should never trust clients to
w 4. do the right thing, especially when sensitive data is involved.

“* Why? Clients tend to get rewritten more often than servers.
Hence, their code evolves more rapidly and is tested less
thoroughly. Since one client-side error can result in a
corrupted server, it's just good sense for the server to validate
all incoming data. Paranoia is not just the best policy, it's the
only reasonable policy.

[91 Not to mention the possibility of malicious clients...

Of course, once we've added the additional layer of code to make sure that clients are invoke
only transactions on permissible accounts, we no longer deal with our original implementation of
Bank anymore. We've created an intermediate abstraction and transformed Banks into

Br anches.

Advantage: Accounts (slightly)

6.2.3 Can a Single Server Handle a Typical Client Interaction?

Suppose the system architecture has many servers, each of which implements a specific piece of
functionality (in the current case, each Account server implements services for a specific
account). Then we need to wonder about three things:

How many of the servers does the client need to know about during the course of a
typical conceptual operation?

How many of the servers does the client need to know about during the course of a
typical user's work session?

How many of the servers does a client need to know about at any given time?

These are all slightly different questions. The first one is the most important, because it touches
on both network latency and the problem of partial failure. The second and the third are mostly
about avoiding problems due to partial failures. We'll discuss the first question in detail and omit
the second and third questions. While you need to think about these questions, the associated
analysis is similar to that required for the first question.

6.2.3.1 How many of the servers does the client need to know about during the courseof a
typical conceptual operation?



Suppose that the client, in order to do what the user thinks of as a single task, must send
messages to three distinct servers. That is, suppose we have the following client-side sequence:

1. The client sends a message to the first server and gets a response.
2. The client sends a message to the second server and gets a response.
3. The client sends a message to the third server and gets a response.

This is often a bad design decision. Servers are usually closer and more reliably connected to
each other than to the client. That is, the typical distributed architecture really looks something

like Figure 6-4.

Figure 6-4. Typical distributed architecture with servers linked together via a fast LAN
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However, consider the alternative architecture shown in Figure 6-5.

Figure 6-5. Adding a client proxy

Server1
Server 2

Server 3

Note the addition of the client proxy. The role of the client proxy is to implement the single
conceptual operation on behalf of the client. That is, we've split the client into two pieces: the
actual client that the user interacts with and the client proxy that runs inside the high-speed LAN
near the server.i*

[101 Also note that we haven't changed the implementation of any of our servers. We've simply added a layer
of indirection to our method invocations.

In this architecture, the sequence of operations is:

1. The client sends a message to the client proxy.



2. The client proxy sends a message to the first server and gets a response.

3. The client proxy sends a message to the second server and gets a response.
4. The client proxy sends a message to the third server and gets a response.

5. The client proxy returns the appropriate response back to the client.

The net effect? We've traded three calls across an unknown, potentially slow, and unreliable
network for one call across the unknown network and three calls across a well-known LAN.

Depending on the client's location, the second architecture
« 4. May not be faster or more reliable. Suppose, for example, the
client was actually on the same high-speed LAN as the
proxies. In that case, adding the client proxy adds another
point of failure, without any corresponding benefit.

= iy

This trade is a good trade to make for three reasons. The first is that it minimizes the impact of
the client's location on application performance. If calls across the WAN are slow or unreliable, 21
then the second architecture will perform better—it will be faster and there will be a smaller
chance of partial failure during steps 2 through 4. And, even if the client is on the LAN, we've still
reduced the variance in application response time.

[111 Rest assured, if the application is at all useful, at some point there will be clients on a slow and
unreliable WAN connecting to the application.

The second reason to make this trade is that it is now possible to devote resources to making
sure that network connections between the client proxy and the three main servers are working.
At the very least, the client proxy can monitor them and alert IT when they fail. Since all these
connections occur on a local and maintained network, this means that we can build a more
reliable application.

The last reason is that when failures occur, we can log them. That is, the client proxy is the
natural place to store records of server failures. Otherwise, the client on the WAN becomes
responsible for notifying another server when a failure occurs.

This sort of reasoning is also important when you're actually
w* 4. designing the server interfaces. Just as you don't want the

" client to send messages to multiple servers as part of a single
conceptual operation, you also don't want the client to send
multiple messages to the same server as part of a single
conceptual operation.

6.2.3.2 Applying this to Bank versus Accounts

Whether a single instance of Bank or Account can handle a typical client interaction depends on
our use case. There are two potential sources of difficulty:

Clients accessing multiple accounts serially. That is, they first access one account. After
they're done with that account, they access a second account, and so on.

Clients performing more complex financial operations. For example, a client transfers
money from her savings account to her checking account.



The first of these isn't an issue. Because RMI shares sockets, the cost in terms of establishing
socket connections to the server is identical in either case. And since clients are accessing only
one account at a time, the overall cost is similar. The second, however, is a much more
significant issue. Here's what | typically do at an ATM:

1. lgive it my ATM card and enter my PIN.
2. | check the balance on my checking account.
3. | withdraw money from my checking account.

4. While the ATM is processing my request, it shows me an advertisement for a home
mortgage.

5. | get the money.

6. |log off, getting a printed receipt.[*2

[121 Note the resemblance to our typical use case.

If my interaction is typical, then a single instance of Account or Bank can easily handle a typical
customer interaction. However, suppose | was a more demanding customer. For example, | might
check my savings account balance at the same time and then decide to transfer money from my
savings account to my checking account. That is, suppose we had to support operations that
crossed account boundaries. We can easily imagine adding the following method to our
implementation of Bank:

transf er Money(Account source, Account destination, Mney anmount)

This means that transferring money is accomplished by single remote call to a single server. If we
add the stipulation that all of a client's accounts are in a single instance of Br anch, we also
handle the cases when Bank is split apart into multiple Br anches. And, since a single server is
handling all the communication to the database, this operation can be handled in a single
database transaction.

rf'!-_ - - - - -
Why is using a single database transaction important?
“ 4. Databases provide all-or-none semantics for sequences of
[N

related operations, grouped as a transaction. The key point is
that you don't want the deposit to succeed if the withdrawal
fails (or vice-versa). The bank can just use a single database
connection to manage this.

Account s, on the other hand, don't work so well in this case. They are inherently too fine-grained
to support transferring money cleanly. Even if we add the following method to our Account s:

transf er Money(Account destination, Money anmount)
it's hard to see how to support this functionality cleanly—two instances of our Account server will
have to participate in a single database transaction.

In general, if the clients will frequently perform operations that require more than one participating
account, Bank will be a much simpler and more robust piece of code.

Advantage: Bank (slight to significant, depending on use cases)

6.2.4 How Easy Is It to Make a Server Handle Multiple Simultaneous
Clients?



We really have no way of answering this right now; handling multiple clients requires some
knowledge of threading, which we will cover in Chapter 11 and Chapter 12. There are two
general rules of thumb, though:

The smaller and simpler a server is, the easier it is to make it safely handle multiple
clients. In particular, if a server is likely to handle requests from a single client or about a
single resource, then it is easier to make it handle multiple clients at one time.

If you notice that your problem is getting really difficult, or that the solution is inefficient,
then you've chosen the wrong design.

6.2.4.1 Applying this to Bank versus Accounts

The account option wins easily here.
6.2.5 How Easy Is It to Tell Whether the Code Is Correct?

The general heuristic is this: the smaller the server, the easier it is to tell whether it is correct. And
the easier it is to thoroughly test its functionality.

One complicating factor is the possibility that more than one server may be involved in handling a
client request. If the choice is between three small servers interacting with each other to handle a
request or one large and more complex server that doesn't need to interact with any other
servers, this question may be harder to answer.

6.2.5.1 Applying this to Bank versus Accounts

Assuming that a single server can adequately support the typical client, there's no argument here.
Account s are simpler. The interface is simpler, the code is easier to write, and there are fewer
lines of code.

In fact, when you look at either Account or Bank, the striking
WA thing is just how much behavior is delegated to other
* (presumably bullet-proof) components. Connection
management is delegated to the RMI Runtime, and most data
persistence and integrity issues are handled by a database
server.

Advantage: Accounts (tentative)

6.2.6 How Fatal Is a Server Failure?

There are two types of failures relevant to this question: failures associated with an individual
server and failures associated with an entire JVM. For example:

The server has a Nul | Poi nt er Except i on. That might take the server out of service,
but probably won't hurt the rest of the system.

The JVM runs out of memory. All servers in the JVM are effectively dead.



Given this, there are two distinct questions that need to be considered. The first is: how many
clients does a particular failure affect? And the second is: how hard is it to recover from a failure?

o
.

One rule of thumb: when thinking about how fatal a server
«. failure might be, simply ask yourself, "How much client-

" specific state does the server have and from how many
clients?"

=

6.2.6.1 Applying this to Bank versus Accounts

At the level of "single server failed," if an instance of Account fails, one particular bank account
is inaccessible and the data associated with it may be corrupted, which could cause problems in
recovery. However, the recovery process is three straightforward steps: check the data, relaunch
the server, and use r ebi nd( ) to reclaim the name in the registry.

If an instance of Bank, or even of Br anch, fails, a much larger amount of data could be
corrupted. In addition, when an instance of Bank fails, everyone is affected (i.e., all the clients are
hit, not just one or two). It's hard to imagine Account failing; it's a fairly simple object. Failures
are more likely to be of an entire JVM or an entire machine, rather than of a single instance of
Account .

Advantage: Accounts

6.2.7 How Easy Is It to Gracefully Extend the Software and Add New
Functionality?

There are two basic facts of life that must be accounted for:
Requirements are constantly changing.

If your application is to be successful, it will need to evolve. This is especially true immediately
after the first version is deployed—users will use the application and immediately spot all of the
things they should have mentioned (but didn't think of) during requirements analysis.

Smaller servers are easier to modify and extend.

Simple objects are much easier to modify or replace. This is especially true when the distributed
architecture involves a layer of indirection. This is the case, for example, when a factory is used.
We'll discuss factories in Chapter 17.

6.2.7.1 Applying this to Bank versus Accounts
In this case, because they're both simple servers, it's pretty much a wash.

Advantage: neither

6.3 Should We Implement Bank or Account?

As is often the case, either will work. The actual code used to implement the server is similar in
either case. And, ultimately, the decision is often simply a matter of taste. In this case, we'll go
with many small servers and many instances of Account . This will give us many small
advantages and buy us one big headache: the problems associated with resource allocation.
We'll deal with these problems in the next chapter and again in Chapter 17. But for now, it's
Account .



Chapter 7. Designing the Remote Interface

In the previous chapter, we discussed the architecture of the bank example in detail and
concluded that implementing many small Account servers seems like a good design decision. In
this chapter, we'll tackle the design of Account 's remote interface. As part of this, we will also
discuss the issues involved in building data objects, objects designed to be passed by value over
the wire. By the end of this chapter, you will have a list of basic design criteria that will help you
design your own remote interfaces.

7.1 Important Questions When Designing Remote Interfaces

Every program has (at least) two purposes: the one for which it was written, and
another for which it wasn't.

—Alan Perlis

Now that we've decided to have many little Account servers, the next step is to design the
Account server interface. Just as the choice of server architectures was substantially influenced
by the problems that arise in the design of distributed applications, the design of the server
interface is also affected by both network latency and the possibility of partial failure.

But interfaces also need to be designed with the application's (or at least the server's) lifecycle in
mind. As the quote at the beginning of this section suggests, the simple truth is that nobody ever
really knows how an application, or even a server, will be used once it is deployed. Over time,
how an application is used and what functionality it needs to support will change. A needlessly
brittle interface, one that embodies too many assumptions about the exact use of the application,
will make it harder to evolve the codebase.

As in the previous chapter, I've attempted to capture a series of design points in the form of
guestions. Again, the list isn't intended to be complete; as you get more experienced at designing
distributed systems, you will come up with more questions and your own ways of thinking about
these problems.

Unlike the decision between various server architectures, we have only one candidate interface
here. Hence, we will take a slightly different approach by starting with a potential interface and
then discuss it in light of the design questions.

Here's the interface we'll implement:

public interface Account extends Renote {
public Money getBal ance( ) throws RenoteException;
public void nmakeDeposit(Mney ampunt) throws RenoteException,
Negat i veAnount Excepti on;
public void nmakeWt hdrawal (Money anount) throws RenoteException,
Overdraft Exception, NegativeAnount Excepti on;

—e— Remember that every method in a remote interface (e.g., an
interface that extends Renot e and is intended to be used as
the public interface to a server) must be declared as throwing
Renot eExcept i on.

The following questions ought to be asked about any proposed remote interface.

7.1.1 Should We Pass Method Objects?



A method object contains at least part of the information about which operation is performed by
the server. For example, you could imagine that, instead of the nekeDeposit () and
makeW t hdrawal () methods, we used a single post Transacti on( ) method. The
Account interface may then look like the following, in which Tr ansact i on is an abstract class
that implements the Ser i al i zabl e interface and has at least two concrete subclasses,
Deposit and Wt hdr awal :

public interface Account extends Renote {
public Money getBal ance( ) throws RenoteException;
public void postTransaction(Transaction transaction) throws
Renot eExcepti on,
Transact i onException, ;
}

We'll call the former style of interface method-oriented and this style of interface passing a
method object.

Interfaces that involve passing a method object tend to be very stable; the method signatures
don't change, but the class hierarchy for arguments becomes more elaborate. For example,
implementing a way to transfer money between accounts involves creating a new subclass of
Transact i on. If we use dynamic class loading (which we'll talk about in Chapter 19), we can
then add new features and functionality to our server without ever having to shut it down.

= Of course, in real life you would never load code from a client
without thoroughly thinking through the security implications.
Without a well-thought-out security policy, this approach can
be summarized as, "Allow the client to load a virus into the
mission-critical part of the application.” We'll cover security
more thoroughly in Chapter 20. For the moment, however,
we will bypass this consideration.

Method-oriented interfaces, on the other hand, tend to evolve over time; new functionality is
directly reflected in new methods. Consider, for example, our earlier example of transferring
money between accounts. In a method-oriented interface, this involves adding a new method to
the interface:

public void transfer MoneyTo(Account destinati onAccount, Mney anount)
t hr ows
Renot eExcepti on, OverdraftException, NegativeAnount Exception;

This style of interface design has three main advantages. The first is that the compiler can catch
many more errors. Using many methods and making the signatures of each method as restrictive
as possible prevents coding errors. The second is that the code is easier to read. The difference
between:

account 1. transfer MoneyTo(account 2, anount)
and:

Transf er Money transferMney = new TransferMney(account2, anount);
account 1. post Transacti on(transfer Money) ;

might not seem all that significant. But the first one is slightly more readable, and slight
improvements in code readability have an enormous cumulative impact. The final reason is that
new methods allow us to introduce new, focused exception types, enabling the server to throw
more meaningful exceptions. In addition, it easily enables client-side developers to know which
validation steps they can perform before sending a request to the server.



Given the advantages that method-oriented interfaces have, the best time to use method objects
in an interface definition is when the interface must be absolutely stable. This usually happens
when the server itself is providing a generic and reusable service, or when the application design
involves polymorphic layers implementing the same interface.

A Generic and Reusable Service

We've already run across one example of a generic and reusable
service: the RMI registry. The RMI registry provides a generic lookup
service that can be used by almost every RMI program. As such, the
interface must be both generic (i.e., it cannot reflect any application -
specific functionality) and unchanging (changing the registry interface
would affect far too many programs). This leads to interface methods
such as the static methods in | ava. r m . Nani ng—a server then
implements methods such as:

public static Renote | ookup(String nanme) throws
Not BoundExcepti on,
Mal f or medURLExcepti on, Renot eException

which are easily reused in many applications. The price is that client
code, which receives instances of Renot e, must immediately cast the
return value before it can do anything. Client applications almost always
use | ookup, as in the following line of code:

Factory factory =
(Fact ory) Nam ng. | ookup( ACCOUNT_FACTCORY_NAME) ;

This lack of strong typing skills can lead to runtime errors if programmers
are not careful.

Another example of a generic and reusable service is a channel-based
event server.r As with a naming service, the idea is to take a design
pattern that many distributed applications use, and build a reusable and
generic piece of infrastructure that supports it well. There are four main
types of objects involved:

Events

These are instances of the Event class; Event is an abstract
class that implements Ser i al | zabl e and which has four fields
that identify an event and provide basic time-stamp information.
Developers create subclasses of Event in order to define
application-specific events.

Event sources
This is a server that creates instances of Event and sends them
to the Event Channel. There are no interfaces associated with

event sources (since, from the point of view of the event system,
these never receive any method calls).

The Event Channel




This is the main server. The Event Channel receives instances of
Event from event sources and forwards them to any clients that
may have subscribed. As such, it implements the Event Channel
interface. Because all the events flow through it, this must be a
highly scalable and robust piece of code with fairly complex
features such as logging, event prioritization, and the ability to
store events in the case of network or client failure.

Event clients

These are passive recipients in the event infrastructure. They are
RMI servers that implement the Event Li st ener interface so the
Event Channel can send them events. They never reply to the
Event Channel.

This event service is loosely based on a simplified version of the CORBA
model. You can build arbitrarily complex event services. But most of the
time these interfaces, and the implied functionality, are more than
sufficient.

[ This event service is loosely based on a simplified version of the CORBA model. You can build arbitrarily
complex event services. But most of the time these inte rfaces, and the implied functionality, are more than
sufficient.

7.1.1.1 Applying this to the Account interface

Since the main reason to use method objects doesn't apply, we've relied instead on the following
rule of thumb:

If it isn't an object on the client side, it shouldn't be an object in the interface.

What this means is simple: our envisioned client is a simple, ATM-style application. It displays a
form as shown in Figure 7-1, gets information from the user, and sends it over the wire to the
server.

Figure 7-1. A simple GUI for the banking application
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A client this simple doesn't need a Tr ansact i on object. But if it has one, it does something like
the following:

1. Displays the form to get data from the user
2. Uses the entered data to build a Tr ansact i on object
3. Sendsthe Transact i on object to the server

4. Immediately clears the reference to the Tr ansact i on object



In cases like this, putting the arguments inside method objects is often pointless. It makes the
client a little more complicated, uses a little more bandwidth due to the overhead of sending the
nmet hod object, and makes the interface harder to debug.

7.1.2 Should We Pass Objects as Argumentsor Use Primitive Values?

A similar but less abstract question is this: to what extent should arguments to remote methods
be bundled together in objects? For example, in our interface, we have:

public void nmakeDeposit(Mney anmpunt) throws RenoteException,
Negat i veAnount Excepti on;

In order to use this, we need to take the floating point number that the textfield contains and turn
it into a Mbney object before sending it over the wire.

The reason to pass primitive arguments is simple: bandwidth. Objects are bigger than primitive
values and more expensive to send.’2! Sending objects instead of primitive values can increase
the bandwidth by an enormous percentage. As an example, consider a generic Money class. We
don't need to provide an entire definition of the class to illustrate our point. For now, it suffices to
know that Money is basically a wrapper class that contains a single integer.

[21 Opjects are also more expensive to marshall and demarshall. But that's not usually a significant issue.

Now let's show some serialization statistics generated using instances of two classes:

Nai veMoney and Snar t Mbney. Nai veMboney is a straightforward implementation of the

I nt eger W apper class. Smar t Money is an implementation designed to be more efficient with
serialization. The differences in output between the two are shown in Table 7-1.

Table 7-1. NaiveMoney and SmartMoney serialization

Action Amount of bytes generated
Serializing first instance of Nai veNbney 235
Serializing subsequent instances of Nai velbney 40 (per instance)
Serializing first instance of Srar t Money 162
Serializing subsequent instances of Sirar t Money 15 (per instance)

Note that, in either case, using objects to encapsulate data is expensive—an integer in only four
bytes long. Even when we use Sirar t Money, we send 11 "extra" bytes. You can see that, in a
high-volume application, inefficiencies due to serialization have the potential to be a significant
difference.

A Generic and Reusable Service Il

In terms of code, Event is simply a wrapper around four fields:

public abstract class Event inplenents Serializable {
public int uniquelD
public String nane;
public Date occurredOn;
publ i c Date expirationDate;




}

And Event Li st ener is a very simple interface as well:

public interface EventLi stener extends Renote {
public void renoteEvent Cccured( Event event)
t hrows Renot eExcepti on;

}

But Event Channel is more complex—it needs to manage the
registration of Event Li st ener s, which may care about only specific
types of events. It must allow events to be broadcast at different priorities
and export some type of management API:

public interface Event Channel extends Renote {
public static final int MAX PRIORITY = 100;
public static final int LEAST PRIORITY = O;

public void addLi stener (EventLi stener |istener)
t hrows Renot eExcepti on;

public void renoveli st ener (Event Li st ener
listener) throws RenoteException

public void
addLi st ener For Event Type( Event Li st ener event Li st ener,
Cl ass Event Type) throws RenoteExcepti on;
public void
renoveli st ener For Event Type( Event Li st ener
event Li st ener,
Cl ass Event Type) throws RenoteExcepti on;

public void

setDefaul t PriorityFor Event Type(Cl ass Event Type,
int defaultPriority) throws

Renot eExcepti on;

public void announceEvent (Event event, int
priority) throws

Renot eExcepti on;

publ i c void announceEvent (Event event) throws

Renot eExcepti on;

publ i c void enabl eLoggi ng(bool ean | ogEvents)
t hrows Renot eExcepti on;
public void automatical | yExpi reEvent s(bool ean
checkExpi rati onsBef or eSendi ng) throws
Renot eExcepti on;

public void stopAcceptingEvents( ) throws
Renot eExcepti on;




public void resuneAccepti ngeEvents( ) throws
Renot eExcept i on;

public void clearEvent Queue( ) throws
Renot eExcepti on;

public void stopBroadcasti ngEvents( ) throws
Renot eExcept i on;

public void resunmeBroadcasti ngEvents( ) throws
Renot eExcept i on;

}

On the other hand, turning a set of primitive arguments into a set of objects and passing the
objects over the wire can make revising code much simpler. If we need to add another property to
an object, only the code that actually uses that new property needs to change. That is:

The entire code base should be recompiled and tested.
The only code that needs to change is the code affected by the new feature.

This avoids a fair amount of drudge work, speeds up development, and avoids several of the
errors that occur simply because programmers are easily bored. Our previous rule of thumb was:

If it isn't an object on the client side, it shouldn't be an object in the interface.
This should be modified to:

If it isn't an object on the client side, it shouldn't be an object in the interface
unless the object is a natural collection of a set of related values that is likely to
change in the future.

o

Another closely related, and much wittier, heuristic is
iy . attributed to Alan Perlis: if you have a procedure with 10
(17T

parameters, you probably missed some. The practical
meaning of this is that if you have a remote call with a large
number of arguments, you should group the arguments into
objects. In practice, a remote call with more than four
arguments deserves to be thought out more.

7.1.2.1 Applying this to the Account interface

It's not clear if Mbney should be an object on the client side. On the one hand, there is a single
textfield for inputting the amount of the transaction, and it is clear that we shouldn't pass a
floating-point number for precision. (It's a bad idea to introduce unnecessary floating-point error
into a financial application.) On the other hand, what the client winds up doing is parsing the
textfield, creating an integer cents value, and then creating an instance of Money to pass over the
wire.

The deciding factor is the "unless" we added to the rule of thumb. Using a Money object allows us
to eventually deal with different types of money. Our current implementation implicitly assumes
that the return value is in United States currency.”! It's much more reasonable to allow a whole
variety of Money classes, which explicitly state their currency type, rather than assume that the
value is a single integer.



B3I More precisely, it assumes that the currency is in terms of dollars and cents. We could be implementing a
Canadian, or even an Australian, bank.

7.1.3 Should We Receive Objects as Return Valuesor Receive Primitive
Values?

The previous question addressed packaging data to send to the server. This question concerns
sending a return value to the client. In addition to the reasons for passing objects as arguments,
there is one compelling reason to always return objects: you only get to return one thing.

This is actually a very important distinction. Passing two arguments is often cheaper in terms of
bandwidth than passing one combined argument.i! Returning two distinct values is incredibly
expensive; the client has to make a second call to retrieve the second return value, which means
that the rule of thumb for return values is:

[l Because when you create the class that contains the two arguments, you are creating an extra piece of
information that will be sent over the wire.

You only get to return one thing, so make it an object. Doing so makes it much
easier to add additional information later on and greatly simplifies maintaining
and enhancing your application.

This is especially applicable when there is a candidate return class already defined in your
system—for example, if the type of one of the arguments would make a reasonable return value.
It's usually a sign of good design when the client and the server are both passing around the
same types of objects. (On that note, if you find yourself using the same abstractions in many
places, then you're either very lazy or you've found a good set of abstractions for the problem at
hand.)

The major exceptions to this rule of thumb are boolean-valued success flags. Suppose you need
only a return value indicating whether an operation succeeded. For example, you could imagine a
method such as:

publ i c bool ean perfornmOperation( )

Sometimes this is a reasonable thing to do; sometimes all the client wants to know is whether an
operation succeeded. But before defining a method that returns a boolean-valued success flag,
there are two things to consider:

Is there an expected return value? Or does it almost always return t r ue? If so, you
should consider using a voi d signature and throwing an exception to indicate failure.
The combination of a voi d signature and an exception leads to much more readable
code because it effectively documents the intent and expected behavior of the method
and allows client code to be structured much more clearly.

If the return value isn't what you expected, do you want to get an explanation from the
server? It's really quite rare for a client application to care whether an operation failed or
succeeded and not care why an operation failed. Perhaps the client application wants to
report the problem. This also argues for an object return value or an exception in the
case of failure. However, since the exception class can have extra attributes, it's easy to
return the reason for the failure as part of the exception.

7.1.3.1 Applying this to the Account interface

get Bal ance( ) returns an object, which is an instance of Money. This decision was made
especially easy by the fact that we already had a Money class floating around. For
makeDeposit( ) and nekeW t hdrawal (), we went with voi d return values and exceptions
that tell the client more about the failure on the server side.



7.1.4 Do Individual Method Calls Waste Bandwidth?

There are two different problems that usually arise here. The first comes about because
serialization creates deep copies. Deep copies are complete and recursive copies of objects. For
example, if object A contains a reference to object B, then a deep copy of A contains a reference
to a deep copy of B instead of a reference to B.

To see why deep copies can cause problems, suppose that one of the arguments being passed
is an instance that contained a reference to another instance. Serialization makes a copy of the
first instance. And, as part of the process, the serialization mechanism makes a copy of the
second instance as well. All of the data associated with both instances is sent over the wire, and
two instances are created on the receiving side. Of course, two instances aren't usually a
problem. The problem arises when there is a complex and tangled web of several interrelated
objects. If one is sent over the wire, the serialization mechanism may send all of them over the
wire, as illustrated in Figure 7-2.

Figure 7-2. Serialization makes deep copies

The runtime object graph: IF yina send ene of these Serilaization will make copies of
a complex weh of objects with many objects to a remate server them all
refierences fram each

This problem, however, isn't really about the interface. It's about how to properly take advantage
of the serialization mechanism. We'll discuss this in more detail inChapter 10.

The second bandwidth-related problem that can arise results from method calls that return
multiple values. For example, we could imagine a Mor t gageSal esHel per server with an
interface that contains methods such as:

public interface MrtgageSal esHel per extends Renote {
public ArrayLi st getAll AccountsWthBal anceOver ( Money anount)
t hr ows
Renot eExcepti on;
I

}

This is a fairly typical remote method—it asks for all of the accounts with a certain minimum
balance. But there is no upper bound on the number of accounts that can be returned. If 50,000
accounts have a balance greater than anount , 50,000 accounts will be returned. Methods that
can return an arbitrarily large number of distinct return values (all of which are equally valid), are
usually bad design for a number of reasons:

They degrade perceived client performance.

The user clicks a button and waits. The server gets all the answers, packages them up, and
sends the result to the client. If there are a lot of return values, not only will the server have to
serialize more objects, the client will have to deserialize many more objects before it can display
any information to the user.

They increase performance variance.



The previous reason holds even if we assume the network is infinitely fast (since the client still
has to demarshall the return value). This reason is more about the effect of the network—
returning a large amount of data in a single network operation makes application performance
vulnerable to network congestion. If the network is slow, and a large amount of data is being sent,
then application performance will suffer.

They involve a large, all-at-once network hit.

The first two reasons are from the point of view of a single application. This takes the larger
picture into account. An application that decides to fling enormous amounts of data around in
large chunks is being a bad network citizen. Moreover, in the brave new world of the Internet,
many applications are being hosted at third-party locations, called hosting facilities. Hosting
facilities generally charge based on bandwidth consumed, both overall bandwidth and burst rates.

They involve a larger single-client commitment on the part of the server.

Generally speaking, clients should avoid requests that are atomic (e.g., single-method calls) and
that either lock a large amount of information (e.g., prevent the server from performing other tasks
involving data) or require the server to provide significant processing power. Serializing a large
data set locks the data set and involves significant processing overhead.

They penalize client mistakes.

What if the query was badly formulated? If a query involves a large number of return values, we'd
much rather present partial results to the user as soon as possible and give them a chance to
realize that the query was badly formulated. For example, suppose the user inputs $100 instead
of $1,000 to get Al | Account sW t hBal anceOver () . Using iterators makes it much easier to
incorporate this sort of functionality into the client.

The solution to these problems is to use an iterator, which returns data in chunks. That is, use a
pair of interfaces such as the following:

public interface Sal esHel per extends Renpte {

public Accountlterator getAl |l Account sWt hBal anceOver (Money
anount) throws

Renot eExcepti on;

public interface Accountlterator extends Renote {

public int getNunberOf Remai ni ngAccounts( ) throws
Renot eExcepti on;

public AccountLi st getNext(int nunmber ToFetch) throws
Renot eExcepti on;

}

This way, the client program can make a request, and then fetch the results as needed.

Another reason for preferring iterators, which we'll discuss in
o 4. Chapter 21,is the idea of background downloading. Briefly,

you download the first segment of the return values, and then,
while the user is looking at those, download the rest using the
iterator in much the same way that an email client downloads
the rest of your email while you read the first message.

7.1.4.1 Applying this to the Account interface

Our return types are Vbney, voi d, and voi d. We're probably doing fine at this point.



7.1.5 Is Each Conceptual Operation a Single Method Call?

Writing a distributed application in this model proceeds in three phases. The first
phase is to write the application without worrying where the objects are located
and how their communication is implemented. The developer will simply strive for
the natural and correct interface between objects.

—Waldo et al.

One of the biggest issues involved in building a distributed object-oriented program is that there is
a certain amount of tension between the "object-oriented" part and the "distributed” part. To
understand this, let's consider our distributed printer again.

The second release of our printer application will almost certainly need some status and
maintenance functionality. That is, users will want to ask the printer about its state and possibly
alter the queue (either to remove print requests or move a high-priority print request up in the
gueue). An object-oriented interface for this might be:

public interface Printer extends Renote {

public int getNunber O Sheet sl nPaper Feeder( ) throws
Renot eExcepti on;

public int getTonerLevel ( ) throws RenbteException;

public int getEstinmatedNunber O M nutesUntil Paper RunsQut( )
t hr ows

Renot eExcepti on;

public int getNumberOf Jobsl nQueue( ) throws RenoteException;

public int getNunberOf PagesLeft|nCurrentJob( ) throws
Renot eExcepti on;

public int getNunber Of PagesFor Job(int jobNunmber) throws
Renot eExcepti on;

I
}

There are three things to note here:

Many of these methods are frequently used as part of a higher-level attempt to determine
printer status, such as displaying it in a monitoring application or printer-status web page.

If the printer was in the same process space as the object calling these methods, this
method decomposition is close to correct.™! Inside a single process, calling each method
when necessary is fairly cheap. And the benefits of object-oriented design (the
information about printer state can be obtained from the printer by querying the printer)
are clear.

51 Long years of painful experience have taught the author never to claim a design is correct. But
"close to correct” is usually a defensible claim.

This is an awful interface for a distributed printer.

Indeed, the third point follows directly from the first. Distributed method calls are expensive and
very slow compared to standard method calls. If we know in advance that a client will often make
the same sequence of method calls to get information about the printer's status, we should
design a new object that contains the return value of all the methods and then add a special

get St atus( ) method to the Pri nt er interface:

public class PrinterStatus extends Serializable {
public int nunnmber O Sheet | nPaper Feeder ;
public int tonerlLevel;
public int estimtedNunber O M nut esUnti | Paper RunsQut ;



Il
oo |
public interface Printer extends Renote{
public PrinterStatus getStatus( ) throws RenpteException
/11

}

This new interface lets us make a single call to the printer server and get all the status information
in one object. From a performance point of view, any interface change that reduces the number of
distributed method invocations by a linear factor’® is a great idea. Note also that we're now
returning an object instead of integers. Changing the interface in this way means that our earlier
design heuristic, return objects rather than primitive values, is also satisfied.

[81 For example, we're not getting rid of 3 method invocations we're reducing them by a factor of 4.

On the other hand, the idea of having a separate status object clearly violates information
encapsulation. Which is to say, it violates the single most important precept of object-oriented
design. Compounding the offense is that the status object is purely data—it has no associated
behavior and, in fact, looks suspiciously like a struct from the C programming language.

Some system architects may consider this a bad thing. Pay them no heed. It is reasonable, and
even a good idea, to first design server interfaces as if they were same-process objects. But
performance considerations demand that you then add a set of methods that group together
frequently performed sequences of commands.

7.1.5.1 Iterators, again

One final point needs to be made. You might have noticed that the use of iterators violates this
rule. With iterators, we make a remote call, get a reference to an iterator, and then need to make
a second remote call to the iterator before we actually get any return values. The solution is to
wrap the return value from the first remote call in a data object that also contains the first set of
return values. Returning to the bank example, this would look like:

public interface Sal esHel per extends Renote {
public Account Set get Al | Account sWt hBal anceOver (Money anount)
t hr ows
Renot eExcepti on;

public class AccountSet inplenments Serializable {
public ArrayList firstSet O Accounts;
public Accountlterator theRestO TheAccounts

public interface Accountlterator extends Renote {

public int getNunberOf Remai ni ngAccounts( ) throws
Renot eExcepti on;

public ArrayLi st getNext(int nunmberToFetch( ) throws
Renot eExcepti on;

}

Doing things this way seems a bit complicated. But it does something quite nice—it lets us define
a threshold value for when an Account | t er at or is necessary. For example, we might set the
threshold to 50 accounts. Here's what then happens when we call

get Al | Account sWt hBal anceOver( ):

If there are 50 or fewer Account s to return, we return an Account Set with the answers
and t heRest Of TheAccount s setto nul | .



If there are more than 50 Account s to return, we return the first 50 as part of an
Account Set , along with a reference to an iterator from which the rest can be obtained.

This is a nice compromise. This interface is a little more complicated than the previous versions.
However, it lets us handle small numbers of return values gracefully, and simultaneously allows
us to handle large numbers of return values.

7.1.5.2 Applying this to the Account interface

In our basic use case, each conceptual operation is accounted for by a single method call. If it
turns out that customers really want to transfer money, then this design point argues that we will
needtoadd atransferMney( ) method, rather than implement the transfer on the client side
by having it perform a mekeW t hdr awal () followed by a makeDeposit( ).

7.1.6 Does the Interface Expose the Right Amount of Metadata?

The methods in a server's interface can be broken into two distinct categories:
The functional methods

These are called when the server is supposed to do something. That is, they expose the
server's inherent functionality.

The descriptive methods
These are called when the client wants more information about the server. That is, they
describe the server, rather than request an operation.

The sort of information returned by descriptive methods, information that describes a server, is
often called the server's metadata. Exposing a server's metadata via descriptive methods is often
useful for the following purposes:

Validation

The client has a stub to a server. But before requesting an operation, the client needs to
make sure that the server can handle the operation.

Choosing between different servers

There are many servers implementing the same interface, and the client needs to make a
choice between them.

To understand these uses, let's consider our printer server again. We could add the following
metadata to our printer server:2

[ And, just to drive the point home, imagine adding this to the socket -based version of the printer server.
Ouch.

Types and sizes of paper the printer can use
Whether the printer can handle foils

Whether the printer can print in color

How many pages per minute the printer prints
The printer's location

The current queue information and printer status

Types of files supported by the printer



None of this information actually exposes any printer functionality; it simply exposes the printer's
capabilities. But we can imagine it making the application much friendlier to the end user. For
example:

Validation

The client application knows about the document to be printed, and it knows about the
user's default printer. It checks to see whether the user's default printer can handle the
document. If validation fails, the printer client finds all the printers on the local network
and figures out which ones are capable of printing the document.

Choosing between different servers

Since validation failed, the user looks at the list of potential printers and uses secondary
characteristics such as printer location, printer speed, and the current state of printer
gueues in order to decide where to send the document.

7.1.6.1 Applying this to the Account interface
There is metadata associated to each account. Information such as the following is metadata:
The account's owner
The account number
The type of account
However, this metadata is also already handled in our design. We're planning on registering
individual accounts in a naming service. That is, in order to actually get a reference to a server,

the client must already know the server's metadata. Because of this, we don't need to expose any
metadata in the Account interface.

7.1.7 Have We Identified a Reasonable Set of Distributed Exceptions?

Earlier, | talked about why you should think about returning objects, rather than primitive values.

The same reasoning applies to exceptions. You want to return, in a single object, all the

information the client needs in order to proceed with error handling. For example, suppose the

user tries to withdraw money. There are at least five different types of errors that can occur:
The registry doesn't know about the account the client is trying to access.

The registry returns a stub, but the account server has crashed.

The account server tries to access the database but cannot (and so refuses to permit the
withdrawal).

The user has tried to withdraw more money than she has in the account.
The user has tried to withdraw a negative amount of money.

The first of these doesn't need a distributed exception—the call to Nam ng. | ookup( ) will
simply return nul | ; the error handling is entirely on the client side.

The second involves a transmission failure; the client tried to invoke a remote method, but RMI
was unable to communicate with the server. This results in the stub throwing a
Renot eExcept i on.



The third isn't a Renot eExcept i on at all—the remote method call worked perfectly, but the
database was inaccessible. This should result in a message to the user, suggesting that she try
again later. Alternatively, the client could intercept this message and automatically try again.

The last two cases are both cases of "bad data." But they are nonetheless very different. In the
first case, the user submitted a request that could conceivably have been valid. For example, the
user tried to withdraw $280 when she only had $75 in her account. There is simply no way for the
client application to know that this is an invalid request without sending a message to the server.
Throwing an instance of Over dr af t Except i on seems like a perfectly reasonable way to tell
the client what went wrong.

The fifth case, on the other hand, might seem a bit contrived. After all, the client application
should have been able to detect that the user was attempting to withdraw a negative amount of
money without even talking to the server. And, therefore, the request to the server should never
even have been sent.

The key word here in both of the previous sentences is should. The simple fact is that client
programs, especially ones that are undergoing revision as part of the application lifecycle,
sometimes inadvertently omit data validation steps that they should have performed. Your goal in
building a server is to prevent a minor coding error on the client side from cascading into a major
data corruption problem on the server side. The following two rules of thumb will help you do so:

Always explicitly validate data on the server side to make sure a badly written (or hostile)
client application doesn't corrupt important information.

Any time you validate data on the server side, you should make the validation step a
checked exception.’ This helps the programmers writing the clients know what sorts of
validation are necessary and gives them a good idea of the types of validation they
should perform on the client side.

[81 A checked exception is an exception that must be caught.

Of course, in addition, the client should validate information whenever possible. Consider the
following two situations:

The user types a negative amount into a textfield and clicks on Deposit. The client
application calls the server, the server throws an exception, and the client displays an
error dialog to the user. Total elapsed time: 11 seconds.

The user types a negative amount into a textfield and clicks on Deposit. The client
attempts to validate the data and immediately displays an error dialog. Total elapsed
time: 0.2 seconds.

These two applications are functionally equivalent. But the first one relies on the server to do
things that ought to be done by the client. As a result, it can feel slow and unresponsive.

In general, how much validation should be done by the client is an open question. But there are
certain minimal standards. For example, if it is possible for the client application to tell that a piece
of data is wrong without using any other information, then the client application ought to do so.
Simple client-side checks such as, "Is the value a positive number?" can noticeably improve an
application's responsiveness.

7.1.7.1 Applying this to the Account interface

Given that the arguments will be instances of Mbney, what could possibly go wrong? There are
two main cases:



The user tries to withdraw more money than she has in the account.
A negative amount of money is either deposited or withdrawn.

We've handled both of these cases explicitly. The first leads to an Over dr af t Excepti on, and
the second causes a Negat | veAnmount Except i on.

Since exceptions are simply subclasses of Except i on, they can have extra instance variables.
Usually, this additional state is just used to give a complete description of the failure. But, in the
case of Overdraft Excepti on, we also use it to say whether the withdrawal succeeded:

public class OverdraftException extends Exception

{

publ i c bool ean _wi t hdrawal Succeeded;
public OverdraftException(boolean w thdrawal Succeeded)

{
_wi t hdrawal Succeeded = wi t hdr awal Succeeded;
}
publ i c bool ean di dWt hdrawal Succeed( )
{
return _w thdrawal Succeeded,;
}

There are two slightly more marginal cases we didn't handle:
No instance of money is passed in (a nul | argument is passed to the server).

An instance of money worth precisely 0 dollars and 0 cents is either deposited or
withdrawn.

Whether these really merit their own exception types is a matter of ongoing debate in the
programming community. In general, there comes a point at which programmers say that the
benefits from the extra precision and information provided by lots of exception types is
outweighed by the sheer annoyance of trying to read an interface in which each method can
throw four or five different exceptions.

My opinion is that these really do merit their own exception types.® In fact, the best course of
action is probably to use five exceptions. The four we've explicitly outlined, as well as an abstract
superclass of all of them called BadNbneyAr gunent Except i on, which has a descriptive string
associated with it.

%1 The decision not to include lots of different exception types in the book's example code is mainly
motivated by pedagogical considerations—it prompts this discussion and also includes an example of an
exception that contains a success flag. Plus, of course, too many exceptions does make example code
harder to read.

The interface should then be defined using all the exceptions, with as much precision as is
reasonable. The server should throw the most precise exception it can and log the requests and
exceptions in an error file. Clients, on the other hand, will probably just catch

BadMoneyAr gunment Except i on; most clients don't really use the finer-grained distinctions that
the server makes.

This compromise preserves most of the benefits of the fine-grained exception hierarchy and

allows room for clients to change and take advantage of the extra information the server provides
without forcing them to catch four unrelated exceptions.

7.2 Building the Data Objects



The classic slogan-level definition of an object is usually written in the form of an equation:
Object = Data + Behavior

A data object is an object in which the behavior is de-emphasized, and the object's identity isn't
important. Two distinct data objects are equal if the data they encapsulate is equal. They're used
to group related pieces of information together in order to pass them over the wire more easily
and in a more comprehensible form.

7.2.1 Data Objects Don't Usually Have Functional Methods

Data objects don't usually have many functional methods (descriptive methods are fine; they're
how you get the data after all). Every functional method on a data object, every behavior you add,
introduces dependencies between the client code and the server code. Suppose, for example,
the server needs a new behavior on the data object. Then you need to do one of two things:

Use two different versions of the data object. That is, use the new one in the server and
the old one in the client. Be careful with serialization and make sure that the two different
versions of the data object have compatible serializations.

Recompile, retest, and redeploy the client application when you change the data object.

In practice, you wind up doing the first. Redeployment is a lot of work, and old versions of client
applications tend to persist in strange places anyway.! But a careful look at the first option
reveals something interesting: the data is versioning independently of the behavior. If you're
explicitly managing data independently of behavior, there are two distinct objects involved.

[191 The author still has a copy of Netscape Navigator 2 (Gold).

For this reason, most complex distributed applications tend to have a translation layer. That is,
they get data objects off the wire and then translate the data objects into other types of objects,
which are more useful in the current application. While this level of indirection can seem
excessive when you're first building an application, it turns out to be incredibly convenient as
soon as the clients and servers start having distinct lifecycles.

The general principle is:

In a distributed system, you want the things that involve the network to be as
stable as possible. Interfaces shouldn't change quickly and should add only new
methods. Data objects shouldn't change at all.

7.2.2 Interfaces Give You the Data Objects

The end result of designing the server interfaces is that we also know what the data objects are.
That is, while we don't yet know the internal structure of the data objects, we do know their
names and the roles they play within the application.

Most of the time, the interface design process also makes it pretty easy to guess what the fields
should be, and therefore, which methods the data objects need to support. Here, for example, is
the complete implementation of Money:

package com ora.rm book. chapter7.val ueobj ects;
i mport java.io.*;

public class Mney extends Val ueGbject {
private int _cents;

public Money(lnteger cents) {
this(cents.intValue( );



}

public Money(int cents) {
super(dollars + " dollars " + cents + " cents.");
_cents = cents;

public int getCents( ) {
return _cents;
}

public void add(Money ot herMoney) {
_cents += ot herMney. getCents( );
}

public void subtract(Mney ot her Money) {
_cents -= otherMney.getCents( );
}

publ i c bool ean greater Than(Money ot her Money) {
if (_cents > otherMney.getCents( )) {
return true;
}

return false;
publ i c bool ean equal s(Obj ect object) {

i f(object instanceof Money) {
return (_cents == otherMney.getCents( ));

}
return fal se;
}
}
) . . . .
Even though we think we're dealing with United States
pky 4. currency, we're using only cents, rather than storing both

dollars and cents. This is an old trick from financial
applications—it makes the object simpler to write without
losing any information.

7.3 Accounting for Partial Failure

| said earlier that data objects are objects in which the behavior isn't quite so important. There is
one very important exception to this: a data object must implementequal s( ) and hashCode(
), and these methods must be implemented based on the underlying values of the object's data.
The default methods, inherited from j ava. | ang. Cbj ect are based on the location of the
instances in memory.

In the case of Money, equal s( ) is implemented directly, and hashcode( ) is inherited from
Val uej ect :

public abstract class Val ueCbject inplenents Serializable {
private String _stringifiedRepresentation;
private bool ean _al readyHashed;
private int _hashCode;



public ValueObject (String stringifiedRepresentation) {
_stringifiedRepresentation = stringifiedRepresentation;
_al readyHashed = fal se;

}

public String toString( ) {
return _stringifiedRepresentation;

}
public int hashCode( ) {
if (false == _alreadyHashed) {
_hashCode = _stringifiedRepresentation. hashCode(
)
_al readyHashed = true;
}
return _hashCode;
}
}
- . . . .
‘ Unlike equal s( ), with which you simply need to compare
« 4. data fields, implementing hashCode( ) can be difficult—you

have to come up with a good hashing algorithm for your
objects. The way Val ueObj ect does this is a fairly common
trick—you generate a unique string for the values of your
object and then use St ri ng's hashing algorithm. It's not
foolproof, and it can be expensive if you don't cache the
hashcode, but it's simple and works fairly well.

To see why it's so important to correctly implement equal s( ) and hashCode( ), consider the
following sequence of events:

1. Sue tries to withdraw money from her account.

2. The client application sends the request to the server, which then starts to process the
request.

3. While the server is processing the request, Larry the rodent bites through the network
cable.

4. After a while, the client application times out.
5. Later, when the network comes back up, Sue tries to withdraw money again.

What happens? Well, the message arrived at the server, and the account was debited. However,
Sue never got confirmation, nor did she get her money from the ATM. And later on, she
resubmitted the "same" request.

We need a way for our banking application to gracefully handle this problem. One possibility is
this: the client application, when it realizes that the network is back up, calls a method to cancel
the previous transaction. But there's a problem—the server cannot simply trust the client and
reverse the transaction (i.e., deposit the money) because of the following scenario:

1. Sue tries to withdraw money from her account.



2. The client application sends the request to the server.

3. Before the request gets to the server, Larry the rodent bites through the server power
cord, thus shutting down the server.

4. After a while, the client application times out.
5. Later, when the network comes back up, Sue tries to withdraw money again.

The client application has no way of differentiating between these two scenarios—all it knows is
that, after it sent the request, the server became unreachable.

But from the server's point of view, these are very different scenarios. In the first case, Sue's
account has to be credited. In the second case, the server should not credit Sue's account. This
means that, when the server receives a request from a client (for a transaction to be cancelled),
the server must double check to make sure the transaction actually occurred.

Thus, it is very important for data objects to correctly implement equal s( ) and hashCode( ).
A given server may store objects in a container that relies on equal s( ) to test for membership
(for example, an Ar r ayLi st ). Or it may use a container such as HashMap, which relies on
hashCode( ).

Another aspect of this is that the server should also check incoming requests to make sure the
same request hasn't been issued twice. Because of this, it's fairly common to explicitly use an
identity field inside a data object. For example, two print requests may have identical data fields
simply because the user wanted to print two copies of a document before a big meeting. It would
be really annoying if the printer arbitrarily rejected such requests. So, Docunent Descri pti on
can be modified to add ar equest i denti ty field, which contains a unique integer. This is
extra information that has nothing to do with the actual printing functionality but lets the printer
server tell whether it is receiving the same request, or a new request that just happens to result in
the same document being printed again.

Chapter 8. Implementing the Bank Server

In the previous chapter, we discussed the interfaces and data objects for the bank example. In
this chapter, we'll continue with the development cycle by building the servers and discussing the
various design options that are available. This chapter is much shorter than the previous two
because most of the intellectual heavyweight lifting has already been done. Nonetheless, by the
end of this chapter, we will have fully implemented the servers for the bank example.

8.1 The Structure of a Server

The server objects you write in RMI are just the tip of the iceberg. When you add the
automatically generated code and the pre-existing libraries and runtime, every RMI server has the
layered structure at runtime shown in Figure 8-1.

Figure 8-1. Runtime structure for RMI servers
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These components have the following roles:
Actual sockets



These are just instances of Socket and Ser ver Socket , exactly as discussed in

Chapter 1. The number of sockets is explicitly controlled by the RMI runtime and is
usually proportional to the number of RMI clients connected to a JVM.

RMI runtime

This listens and receives any data coming in over the socket. Because it knows the wire
protocol that RMI uses, the RMI runtime can take the data that comes in from the socket
and break it apart into distinct method calls (encapsulated as instances of

java.rm .server.RenoteCal | ). It looks at each of these distinct method calls and
forwards them to the appropriate skeleton's di spat ch( ) method. There is only one
RMI runtime per JVM.

Skeletons

The skeleton is a piece of automatically generated code responsible for implementing

di spat ch( ). As part of the implementation of di spat ch( ), the skeleton
demarshalls the invocation arguments and performs validation checks related to class
versions. It then calls the correct method on the server object. There is a single skeleton
per server instance.

Using different skeletons for different classes is not, strictly
N speaking, necessary. We'll talk about why you want to get rid
of them, and how to do so, later in this chapter.

Application-specific server objects

This is the code that you write. It implements the remote interface for the server and
usually has no other behavior. There are as many instances of these as are required by
the application.

Note that the first three layers can all throw instances of Renot eExcept i on. Generally
speaking, this means that something went wrong in the RMI infrastructure shown earlier. So your
server code should never throw a Renpt eExcept | on.

8.2 Implementing the Server

We need to make one RMI-related decision when building our server. We have to decide whether
to implement our server objects by subclassing Uni cast Renot eChj ect .

Uni cast Renpt e(hj ect is a class defined inthe | ava. rm . server package and is intended
to be the generic superclass for RMI servers. Simply subclassing Uni cast Renot eObj ect and
implementing the appropriate remote interfaces is the simplest and most convenient way of
building an RMI server.

8.2.1 A Server That Extends UnicastRemoteObject

Example 8-1 shows an implementation of Account that subclasses Uni cast Renot eChj ect .
One patrticularly important point is that none of the code, with the possible exception of the class
declaration, has anything to do with the network. To an astonishing extent, this is ordinary Java
code.

&
It is traditional in client-server circles to give interfaces
w 4. descriptive names and then tack on an | npl for the
[N . . .
implementation. Thus, we have an interface called Account




and an implementation called Account | npl . Thisisn'ta
particularly pleasant naming convention, but it is traditional.

Example 8-1. Account_Impl.java
public class Account | npl extends Unicast RenoteChj ect inplements Account

{
private Money _bal ance;
public Account | npl (Money startingBal ance) throws
Renot eExcepti on {
_bal ance = startingBal ance;
}

public Money getBalance( ) throws RenoteException {
return _bal ance;
}

public void nakeDeposit(Mney anount) throws RenpteException,
Negat i veAnount Exception {
checkFor Negat i veAnount (anmount) ;
_bal ance. add(anount) ;
return;

}

public void makeWt hdrawal (Money anount) throws RenoteException,
Overdraft Excepti on,
Negat i veAnount Excepti on {
checkFor Negat i veAnount (anmount) ;
checkFor Overdraft (anount);
_bal ance. subt ract (anmount) ;
return;

}

private void checkFor Negati veAnount (Money anount) throws
Negat i veAnount Exception {
int cents = anmount.getCents( );
if (0 > cents) {
t hrow new Negati veAnount Exception( );
}

}
private void checkForOverdraft(Mney anount) throws
Overdraft Exception {

i f (anount. greater Than(_bal ance)) {
throw new OverdraftException(fal se);
}

return;

8.2.2 A Server That Does Not Extend UnicastRemoteObject

The alternative implementation of Account , which doesn't extend Uni cast -Renot eChj ect , is
substantially the same code. In fact, the code shown in Example 8-2 has only two differences:



Account | npl 2 doesn't declare that it extends Uni cast Renot eoj ect .
Account | nmpl 2 implements equal s( ) and hashCode( ) directly.

These are important points. However you choose to implement your server, whether you choose
to extend Uni cast Renot eObj ect or not, the code for the methods defined in the Account
interface is almost identical. The difference is in the code that ties your server to the RMI runtime,
not in the code that implements your business logic. In other words, the decision to extend

Uni cast Renot eCbj ect has no impact on that code.

Example 8-2. java

public class Account _Inpl2 inplenents Account ({
private Mney _bal ance;

public Account | npl2(Mney startingBal ance) throws
Renot eException {

_bal ance = startingBal ance;
}

public Money getBal ance( ) throws RenoteException {
return _bal ance;
}

public void makeDeposit (Mney anpunt) throws RenoteException,
Negat i veAmount Excepti on {

checkFor Negat i veAnmount (anount) ;
_bal ance. add(anount) ;
return;

}

public void nmakeW t hdrawal (Money anmpunt) throws RenbteExcepti on,
Overdraft Excepti on,

Negat i veAnount Excepti on {
checkFor Negat i veAnmount (anount) ;
checkFor Overdraft (anmount);
_bal ance. subt ract (anount) ;
return;

}

private void checkForNegati veAnount ( Money anount) throws
Negat i veAnount Excepti on {

int cents = anpunt.getCents( );
if (0 > cents) {

t hrow new Negati veAnount Exception( );
}
}

private void checkForOverdraft(Mney anmount) throws
Overdraft Exception {

i f (anount. greaterThan(_bal ance)) {
t hrow new Overdraft Exception(false);
}

return;

}

public bool ean equal s(Obj ect object) {



/[l Three cases. Either it's us, or it's our stub, or it's not
equal .

/1 "our stub" can arise, for exanple, if one of our nethods
took an instance of

/1 Account.

/1 A client could then pass in, as an argument, our stub.

if (object instanceof Account Inpl2) {
return (object == this);

if (object instanceof RenoteStub) {

try {
Renot eSt ub our Stub =

( Renot eSt ub) Renpt eChj ect . t oSt ub(t hi s);
return our Stub. equal s(obj ect);
}

cat ch( NoSuchCbj ect Excepti on e){
/1 we're not listening on a port, therefore it's
not our
/'l stub
}
}
return false;

}

public int hashCode( ) {

try {
Renot e our Stub = RenoteCbj ect.toStub(this);

return our Stub. hashCode( );

}
cat ch(NoSuchCbj ect Exception e){}
return super. hashCode( );

}
8.2.3 Extending UnicastRemoteObject

We now have two candidate server objects that are almost identical. The only difference is that
Account | npl extends Uni cast Renot eObj ect , and Account | npl 2 doesn't. In order to
choose between these options, we need to examine exactly what extending

Uni cast Renot eCbj ect does.

There are two main benefits to Uni cast Renpt eChj ect : it automatically connects to the RMI
runtime and it knows how to check for equality with other remote objects. However, extending
Uni cast Renot eChj ect can sometimes cause minor problems for two reasons: it prevents
server classes from subclassing other classes (because Java is a single inheritance language),
and it can sometimes prematurely expose an object to remote method calls.

8.2.3.1 The benefits of UnicastRemoteObject

Uni cast Renot eChj ect has three constructors. They are:

prot ect ed Uni cast RenoteCbj ect( )

prot ect ed Uni cast Renpot eCbj ect (i nt port)

prot ect ed Uni cast RenoteCbj ect (int port, RM CientSocket Factory csf,
RM Ser ver Socket Factory ssf)



RMI is built as a layer on top of sockets. By default, RMI uses
«* 4. the standard sockets defined in the | ava. net package. But
you can choose to use different types of sockets by creating a
socket factory. We'll talk about socket factories in more detail
in Chapter 18. For now, the third constructor can be ignored.

= [y
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The first method is documented as, "Create and export a new Uni cast Renot eChj ect object
using an anonymous port." This means that the RMI runtime will choose which port to use. In the
latter two constructors, you must specify a port. In either case, the port is the port number on
which a Ser ver Socket associated with the server listens.

If you specify a port, you're ensuring that the server will listen for connections on that specific
port. This is because the constructor for Uni cast Renot eObj ect automatically hooks the
instance of Uni cast Renot eOhj ect into the RMI runtime—as soon as the constructor for
Uni cast Renot eChj ect returns, the object is actually listening for remote method calls.

If you don't specify a port, then RMI can reuse the same
L . , . .
« 4. server socket for multiple servers. We'll discuss the ins and

outs of socket reuse more thoroughly in Chapter 16. For
now, it's enough to know that, unless you need to specify the
port, letting RMI do so can help conserve system resources.

While nothing in the code for Account | npl actually did anything related to RMI, the implicit call
to Uni cast Renpt eOhj ect 's constructor did. This means that the launch code associated with
the bank example needs to do only two things: create the servers, and register them with the
naming service. The launch code for Account | npl is, essentially, a loop around the following
two lines of code:

Account _I npl newAccount = new Account _| npl (serverDescri ption. bal ance);
Nam ng. rebi nd(serverDescri ption. nane, newAccount);

If, on the other hand, we don't subclass Uni cast Renot eObj ect , we'll need to explicitly register
our listeners with the RMI runtime as well as with the naming services. The launch code for
Account | npl 2 is, essentially, a loop around the following three lines of code:

Account | npl 2 newAccount = new Account | npl 2(serverDescri ption. bal ance) ;
Renot eSt ub stub = Uni cast Renpt ehj ect . export Cbj ect (newAccount) ;
Nam ng. r ebi nd(server Descri pti on. nane, stub);

export Coj ect () is a static method defined on Uni cast Renpt eChj ect that starts the RMI
runtime listening for messages to an instance of a server class. There are actually three such
methods, which are parallel to Uni cast Renont eObj ect 's constructors:

static RenoteStub export hject (Renote obj)

static Renote exportObject(Renote obj, int port)
static Renote exportoject(Renpte obj, int port, RMCientSocketFactory
csf,

RM Ser ver Socket Factory ssf)

In spite of the declared return types of the two final methods, these methods all return instances
of Renot eSt ub.



The other benefit of extending Uni cast Renpt eObj ect is that Uni cast Renot e(oj ect
implements equal s( ) correctly. If you look at the documentation for Uni cast Renot eChj ect
it contains the following, rather cryptic, assertion:

Objects that require remote behavior should extend Renot ehj ect , typically via
Uni cast Renot ehj ect . If Uni cast Renot eChj ect is not extended, the
implementation class must then assume the responsibility for the correct
semantics of the hashCode, equal s, and t oSt r i ng methods inherited from the
hj ect class, so that they behave appropriately for remote objects.

This comment is mostly a reference to the problems associated with passing around stubs for
remote servers. What happens when you need to tell whether a stub is equal to a server? For
example, in Chapter 7 we speculated about the possible need forat r ansf er Money( )
method call with the following signature:

public void transferMney(Account destinationAccount, Mney anpunt)
t hr ows
Renot eExcepti on, Overdraft Exception, NegativeAmount Excepti on;

It's quite conceivable that problems will arise if dest i nat i onAccount is the server that
receives the t r ansf er Money( ) call. This means we should do two things:

Create a new exception type, Dupl i cat eAccount Excepti on, and declare the method
as throwing it as well:

public void transferMoney(Account destinati onAccount, Mney anount)
t hr ows
Renot eExcepti on, OverdraftException, NegativeAnount Exception,
Dupl i cat eAccount Excepti on

Add checking code to our implementation of t r ansf er Money( ) along the lines of, "If
the destination account is the same as the source account, throw a
Dupl i cat eAccount Excepti on."

This second step should be simple and should boil down to the following code:

if (equal s(destinationAccount)) {
/'l throw exception

}

If our implementation of Account extends Uni cast Renot eObj ect , this will work because

Uni cast Renot eChj ect 's equal s( ) method handles stubs correctly. If our implementation of
Account does not extend Uni cast Renot eObj ect , then we'll need to override equal s( ) to
handle the case of stubs ourselves. Uni cast Renpt eChj ect handles hashCode( ) ina similar
manner: the hash of a server is equal to the hash of its stub.

Overriding equal s( ) and hashCode( ) doesn't require a lot of code, but it is rather tricky.
You need to worry about three distinct things: the computer on which the server runs, the identity
of the JVM in which the server runs,*! and the identity of the server object inside the JVM. The
best course of action is to rely on stubs to get it right. That's why in the Account | npl 2 code,
the implementations of equal s( ) and hashCode( ) worked by obtaining a stub and relied on
the fact that the people at Sun Microsystems, Inc., who implemented RMI, know how to find out
these three pieces of information.

[ since more than one JVM can be running on a single computer, you need to worry about which JVM
contains a specific object.
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e SiNCe the RMI runtime maintains hashtables of servers and
stubs, you actually do need to override equal s( ) and
hashCode( ) if there is a chance that a server could be
compared to a stub.

i

(

8.2.3.2 The costs of UnicastRemoteObject

There are really only three situations when you wouldn't extend Uni cast Renot eChj ect . The
first is, obviously, if you need your server to subclass another object. Java is a single-inheritance
language for implementations. If you want a server class to inherit from a particular class, then
your server class cannot also inherit from Uni cast Renot eChj ect .

One solution in such cases is to use what the CORBA specifications call "ties." A tie is a class
that implements a remote interface but delegates all the behavior to the "real server." That is, the
server you implement actually consists of two objects:

The tie server

This extends Uni cast Renot eChj ect and implements the remote interface. The
implementation, however, simply forwards all method calls to the real server.

The real server

This is a subclass of another class. However, it also implements the remote interface and
receives method calls from the tie server.

If the remote interface is large, however, this can be rather cumbersome.

The second problem is that subclasses of Uni cast Renot eCbj ect immediately begin listening

for remote method invocations. Suppose the subclass constructor is particularly time-consuming,
as in the following code snippet:

public class PrinterManager | npl extends Uni cast Renpt eCbject inplenents
Pri nt er Manager {
public PrinterManager_Inmpl ( ) {
super (5150);// The wel | -known port of the printer
manager :-)

/'l go out to the registry and find all the printers.
/'l establish links to each of them and get information on their
gqueues so that
/'l users can sinply query us to find out about all the printers
}
}

As part of Uni cast Renot eCbj ect 's constructor, the printer manager will immediately be
available to remote method invocations. That is, it will listen for remote method invocations even
before Pri nt er Manager | npl 's constructor has finished.

Usually, this is not a problem. In fact, most of the time, servers can't be found by clients until the
server is registered with a naming service. Recall that our launch code for Account | npl , which
is fairly typical launch code, did this only after the constructor finished:

Account _I npl newAccount = new Account _| npl (serverDescri ption. bal ance);
Nam ng. rebi nd(serverDescri pti on. nane, newAccount);

However, if you're not using a naming service and providing another way for clients to connect
with the server, you may need to be careful when extending Uni cast Renot eObj ect .



Practically speaking, the only time you need to worry about
W this is if you use a "well-known port" to connect to a server.
That is, instead of using Uni cast Renot eChj ect 's zero-
argument constructor, you pass in a port number. This can be
convenient because it enables a client to bypass a naming
service. On the other hand, you need to be careful because
the client could attempt to connect after the server has been
vended (e.g., after Uni cast Renot eCb] ect 's constructor
returns), but before the constructor has completed.
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The third reason for not extending Uni cast Renot eObj ect is that you might want to extend
either Act i vat abl e or Port abl eRenpt eCbj ect . Act i vat abl e and Por t abl eRenot e-

Ohj ect are classes provided by Javasoft that play a role similar to the one played by

Uni cast Renot eChj ect . Thatis, Uni cast Renot eCoj ect provides the standard mechanisms
for exporting an ordinary server. Act | vat abl e provides the standard mechanisms for exporting
servers that take advantage of the activation framework, and Por t abl eRenot eChj ect provides
the standard mechanisms for exporting servers that use RMI/IIOP. We'll cover the Activation
Framework in Chapter 17 and RMI/IIOP in Chapter 23.

8.3 Generating Stubs and Skeletons

Now that we've written and compiled the servers, we need to generate stubs and skeletons. This
is easy; we simply need to invoke the RMI compiler, r ni c. Here, for example, is the invocation of
rm c we use to generate stubs and skeletons for the bank server:

rmc -keep -d d:\classes com ora.rm book. chapter8. Account _I npl
com ora. rm book
chapt er 8. Account | npl 2

o

‘ r m ¢ works by generating Java source code for the stubs
« 4. and skeletons and then compiling those Java files. The -

keep flag simply tells r m c to save the source code to .java
files.

rm c takes a .class file and creates a pair of companion files, a stub and a skeleton, in the same
package as the .class file. Thus, the above invocation of r ni ¢ actually generates four Java class
files:

com.ora.rmibook.chapter8.Account_Impl_Skel
com.ora.rmibook.chapter8.Account_Impl_Stub
com.ora.rmibook.chapter8.Account_Impl2_Skel
com.ora.rmibook.chapter8.Account_Impl2_Stub

There's an interesting subtlety here. r mi ¢ requires the actual implementation's class files. It
seems, at first glance, that the compiled interface files might suffice. However, the designers of
RMI decided that the stubs and skeletons should satisfy the following two requirements:

1. There should be a unique stub/skeleton pair per server, so we can do things such as
register the server in the naming service.

2. The stubs and skeletons should implement all the remote interfaces that the server does,
so that casting when you retrieve objects from the naming service is a local operation.



Because servers can implement more than one remote interface, these two requirements force
rm c to work from the implementation files instead of the interfaces.

8.3.1 Getting Rid of the Skeletons
Earlier in this chapter, | noted that:

Using different skeletons for different classes is not, strictly speaking, necessary.
We'll talk about why you want to get rid of them, and how to do so, later in this
chapter.

The reason many different types of skeletons aren't necessary is plain: as part of a method call,
RMI must already send over enough information to describe the method that needs to be called
and the server object on which it should be called. A well-written generic dispatch method could
then take this information and use Java's Reflection API to call the method directly without the
intervention of a skeleton class.

Early versions of RMI required skeletons. In Java 2, the skeletons were made optional. In order to
build a system that doesn't use skeletons, you simply need to tell r ni ¢ that you are using the
"1.2" protocol, as in the following example:

rmc -keep -v1.2 -d d:\classes com ora.rm book. chapter8. Account _I npl
com or a. rm book.
chapt er 8. Account _I mpl 2

This will generate stub classes for Account | npl and Account | npl 2. However, it will not
generate skeletons.

The major reason for getting rid of skeletons is that doing so can simplify deploying and updating
an application. The major reason to keep skeletons is that class-specific skeletons are slightly
faster than generic ones, which must use the reflection API. In practice, there's not much
difference either way, and | prefer to use skeletons simply because as a programmer who cut his
teeth on CORBA, | feel that a distributed program without skeletons isn't quite proper.

Chapter 9. The Rest of the Application

In previous chapters, we discussed how to design and build servers. In this chapter, we'll finish
the application off by building the launch code and assembling a simple client. In addition, we'll
motivate much of the second section of this book by talking about the server lifecycle. By the end
of this chapter, you will have seen all the steps involved in designing and building a distributed
application using RMI and will be ready to start thinking about how to make your application
scale.

There is an apparent paradox here. The server code, while difficult to think through and frequently
tricky to implement, is often less than half of the total application. The client code, which | relegate
to Section 9.4, is a large and complex part of the application.

There are two reasons for this apparently confusing situation. The first is that we have, to some
extent, already discussed client-side issues when we discussed how to choose servers and
design interfaces. A large percentage of that discussion was motivated by client-side concerns:
what people will do with the application and how to design servers that support the intended uses.

The second reason is quite simply that most of the client code doesn't involve the distributed
parts of the application. While getting an instance of JTabl e to refresh properly is a difficult task,
and people who write a good user interface are more than worthy of respect, this book is long
enough without adding a guide to writing a client-server GUI.



9.1 The Need for Launch Code

One feature of our discussion of distributed applications is that we have explicitly separated the
code that launches the servers from the code that actually is the server. In other words, a server
right now consists of two logically distinct pieces:

The code that executes client commands

The code that starts the servers running in the first place (i.e., the code that launches the
code that executes the client commands)

I've been referring to the second type of code as launch code. This might seem a little confusing.
The two tasks are logically distinct—at least when the distinction is phrased as in the preceding
points. But it may seem as if we're being overly precise; it's not obvious that launch code needs to
be broken into separate classes.

Moreover, as we saw in Chapter 8, when discussing whether to extend Uni cast -

Renot eObj ect , there's a blurry line here. Deciding to extend Uni cast Renot eObj ect involves
making the server immediately available for remote messages. This appears, at first glance, to be
an aspect of launching the server rather than being part of "executing the client commands."

But the distinction between server code and launch code is an important one that will only grow in
importance over the course of this book. The first aspect of separating out the launch code is
simply that it makes it easier to postpone and revisit deployment decisions. Recall, for example,
the discussion in Chapter 6 that centered around the question, "How well does the given server
replicate/scale to multiple machines?" We had the following hypothetical scenario:

A single JVM, containing all our servers, is created. Clients find the servers using
the registry and proceed to make calls on them. However, this system doesn't
scale very well, and users are upset by how badly the system performs. Then, an
order comes down from on high: two JVM's, each containing "half" of the server,
should be created. In addition, a new third server, which knows how to redirect
clients to a "correct server" should be built. Clients will make a simple query to
the third server to find out which server should handle their requests, and then
conduct all their business with the designated server.

What is happening here is that, as the application evolves, the launch code is rewritten
independently of the server code. Moreover, the rate of revision and the reasons for revising the
launch code are entirely different from the rate of revision and the reasons for revising the server
code.

9.1.1 The Idea of a Server Lifecycle

Launch code is just the tip of the iceberg. Launching a server is very important. There are also
other equally important and related tasks that aren't handled by either of our two previous points.
For example, we have completely ignored the question of how to manage scarce resources. If
many servers co-exist in the same JVM, then there is always a possibility they will compete for
scarce resources.

A related problem is persistence. Servers have state. Since servers crash, this state needs to be
stored using a persistent storage mechanism, which is usually based on a file system. But if all
the servers are constantly accessing the persistent storage mechanism, usually a relational
database, they will compete with each other and swamp the persistence mechanism.



All of this helps to motivate the idea that the next level of thinking about your distributed
application should center on managing the server lifecycle. That is, the next level of distributed
application design centers on the following three questions:

When should servers be launched?
When should servers be shut down?
When should servers save their state to a persistent store?

These are especially pertinent questions in the bank example. We potentially have millions of
server objects, but only a small percentage of the accounts are active at any given time. And,
once an account has been active, it is unlikely to be active again for quite some time. After all,
very few people directly access their bank account more than once per day.

With this discussion behind us, it should be clear that launch code (which is the first step towards
managing the server lifecycle) does not belong inside the server objects.

9.2 Our Actual Launch Code

Launch code typically consists of two things: a set of batch filest! that are run from a command
line and start one or more Java applications running, and Java code. In our case, these are very
simple. There are two batch files: one to launch the servers and one to run the client application.
The server batch file consists of the following code:

1 1n Unix terminology, shell scripts.

[21 This is a windows-specific batch file. Depending on which platform you actually use, the batch file may

look different.
start rmiregistry
start java com ora.rm book. chapter9. applications. | nplLauncher Bob 100 0
Alex 12 23

That is, it starts the RMI registry running and then runs a piece of Java code that launches the
server objects. The | npl Launcher application, shown in Example 9-1, is only slightly more
complicated.

Example 9-1. ImplLauncher.java
package com ora.rm book. chapter9. applications;

i mport com ora.rm book. chapter9.*;

i mport com ora. rmn book. chapter9. val ueobj ects. *;
i mport java.util.*;

i mport java.rm.*;

public class InplLauncher {
public static void main(String[] args) {
Col | ecti on naneBal ancePairs = get NaneBal ancePai rs(args);
Iterator i = nanmeBal ancePairs.iterator( );
whil e(i.hasNext( )) {
NaneBal ancePai r next NaneBal ancePair =
(NanmeBal ancePair) i.next( );
| aunchSer ver ( next NaneBal ancePai r) ;
}



private static void | aunchServer ( NaneBal ancePai r
serverDescription) ({

try {
Account | npl newAccount = new

Account _I mpl (serverDescri ption. bal ance) ;
Nam ng. r ebi nd(serverDescri pti on. nane,

newAccount) ;
System out. println("Account " +

serverDescription.nane + " successfully
| aunched. ") ;

cat ch(Exception e){}
}

private static Collection getNaneBal ancePairs(String[] args) {
int i;
ArraylLi st returnvValue = new ArrayList( );
for (i=0; i< args.length; i+=3) {
NanmeBal ancePai r next NaneBal ancePair = new
NaneBal ancePair( );
next NaneBal ancePai r. nane = args[i];
I nteger cents = new Integer(args[i+1]);
next NaneBal ancePai r. bal ance = new Money(cents);
ret ur nVal ue. add( next NaneBal ancePai r) ;

}

return returnVal ue;

}

private static class NaneBal ancePair {
String nane;
Money bal ance;

}

All this does is parse the command-line arguments, create instances of Account | npl
corresponding to them, and then register those instances with the RMI registry. So, after running
our batch file, we have two instances of Account registered with the registry. One corresponds
to Bob, who has exactly $100 in his account, and one corresponds to Alex, who has $12.23 in her

account.

Of course, this is an unrealistic piece of launch code. In a real bank, the customer account
information wouldn't be stored as command-line arguments to a batch file. But, as a pedagogical

device, it's pretty nifty.

9.3 Build Test Applications

We all know that code needs to be tested. Thoroughly. So the following sad story shouldn't be
necessary. But I'm going to tell it anyway.

Once upon a time, | worked for a consulting company, building a distributed application for a
client. The application was written in Objective-C=! for computers running the NeXTSTEP™
operating system. And it utilized NeXT's Portable Distributed Objects (PDO) framework.

31 Never heard of it? Think "Smalltalk with a C syntax.”

1 An obscure Unix variant.



We wrote the application. Each object worked correctly. The networking worked fine. And we
even tested the application with all 10 developers running it at once. The server worked
beautifully, the application ran quickly, and everything was wonderful.

The customer was skeptical. So the application was rolled out to a limited number of users for
testing. Everything worked fine, and the customer was enthused. We delivered an application that
worked well, and we actually came in ahead of schedule. We were beaming with pride as they
rolled out the application to the entire organization.

At which point, of course, the application no longer worked. It turned out that the server wasn't
quite as robust as we'd thought. It couldn't handle large numbers of simultaneous clients. And our
testing, which was actually quite thorough, failed to uncover this fact.

Let's examine why. We tested:
The underlying server logic that handled each client request
The connection logic (so clients could find the servers easily)
The ability of the application to handle a dozen or so users

But we assumed that this would be sufficent ("If it can do this stuff, it's working fine"). This was a
very bad mistake. Simulate the client's environment as much as you can. If you're planning to
deploy 500 clients, you need to actually test with 500 clients. Actually, test with more clients than
you plan to have. Successful applications frequently see heavier use than expected.

Testing our banking application isn't really very feasible right now. For one thing, stress testing is
usually done with applications that simulate dozens of clients simultaneously. For another, our
implementation of Account | npl won't actually work correctly if more than one client connects
with it simultaneously (it isn't threadsafe). But testing is an important part of the development
process, and thus deserves to be mentioned in our overall sketch of the RMI development cycle.

9.4 Build the Client Application

The client application is normally built simultaneously with the server application. Once the server
interfaces are defined, server-side development can proceed in isolation. Client developers
usually use "fake servers," which implement the remote interface in trivial ways and run in the
client process when developing the client application. This allows server developers a little more
freedom to design and develop their part of the application; it avoids forcing them to commit to a
total architecture early in the development cycle.

Another reason why clients and servers are often built

w 4. Simultaneously is that the skills required to build them are

" fairly distinct. Developers building the client application have
to know how to build a good user interface (e.g., have
mastered a substantial portion of the Swing toolkit) and don't
really need to read anything in this book past this chapter.
People building servers can make do with far less knowledge
of the user interface components, but should definitely read
the entire book.

In order for this to work, however, client-side developers must take care to heed one simple rule
of thumb:



Consume as few server resources as possible, for as short a time as is
reasonable.

This rule of thumb has two main consequences: don't hold connections to a server you're not
using, and validate arguments on the client-side whenever reasonable.

9.4.1 Don't Hold Connections to a Server You're Not Using

The client has to connect to the server. Recall that, in a typical application, this is done in two
steps:

1. The client connects to the naming service.
2. The client gets a connection to the server it wants by making a call to the naming service.
When using the RMI registry, this is often accomplished in a single line of code. For example, our

bank client connects to a particular account in the following line of code:
_account = (Account) Nam ng. | ookup(_account NaneFi el d. get Text( ));

The essence of this rule of thumb is this: as soon as is reasonable, set the stub variable to nul | .
In the account client, we actually have a pair of methods for handling our connections. One
establishes the connection and one releases it.

private void getAccount( ) {

try {
_account =
(Account) Nam ng. | ookup(_account NaneFi el d. get Text( ));
}

catch (Exception e) {
Systemout.println("Couldn't find account. Error was \n
+ e);
e.printStackTrace( );
}

return;

}

private void rel easeAccount( ) {
_account = null;
}

Next, whenever we need to make a method call, we call both of these. For example, here is the
code that gets the account balance (all of our operations are implemented as subclasses of
Acti onLi st ener):

private class GetBal anceAction inplenents ActionListener {
public void acti onPerfornmed(Acti onEvent event) {

try {
get Account ( );
reset Bal anceField( );
rel easeAccount( );

}

catch (Exception exception) {
Systemout.println("Couldn't talk to account.
Error was \n " +
exception);

exception.printStackTrace( );



This establishes a connection, makes the query, and then releases the connection. Doing this
enables the RMI runtime to perform distributed garbage collection and thus allows the server to
perform cleanup actions (e.g., releasing resources, persisting state) at fairly appropriate times.
However, in order for this to work, clients have to be good distributed citizens and relinquish their
connections when they are done.

o
.

It's possible to take this too far. If the client is going to make
«. more method calls on the same server in a short period of

" time, it's perfectly reasonable to keep a reference to the stub.
If the client doesn't keep a reference to the active stub, the
client will just have to contact the naming service again, and
re-establish the same connection to the server.
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9.4.2 Validate Arguments on the Client Side Whenever Reasonable

When we discussed how to design a remote interface in Chapter 7, one of the key questions
was, "Have we identified a reasonable set of distributed exceptions?" There were two reasons for
this. One was so that the client could behave correctly when the server experienced a failure. And
the second was so that the client could validate method arguments as much as possible.

It makes little sense for the client to invoke a remote method when it knows beforehand that such
an invocation is already invalid. In our example, one major exception that the server could throw
is Negat | veAr gunent Except i on. However, the client is just as capable of checking this on its
own without invoking a remote method. For example, when the client calls:

public void nmakeWt hdrawal (Money anount) throws RenoteException,
Overdraft Excepti on,
Negat i veAnount Excepti on;

on an instance of Account | npl , the client has no way of knowing whether the amount
requested is an overdraft. However, it can certainly check to make sure the amount being
withdrawn isn't a negative amount of money. In our implementation, we've defined a new
subclass of Mbney, Posi ti veMbney, to handle this issue.

Posi ti1 veMoney 's constructor validates the cents values to make sure they are positive. And,
since Posi ti velMoney extends Money, Posi ti veNVboney will be a perfectly acceptable
argument to the methods in our Account interface. Here is the constructor for Posi t i veNVbney:

public PositiveMoney(int cents) throws Exception {
super(cents,);
if ((_cents < 0)) {
t hrow new Exception("Bad Val ue for Mney");
}

return;
}

This isn't a very impressive code change, and it might seem like I'm belaboring an obvious point.
But the difference between the following two scenarios is enormous:

The user accidentally enters $-120.00 as her withdrawal amount. She presses a button,
waits 15 seconds and is told, "You can't withdraw a negative amount."”

The user accidentally enters $-120.00 as her withdrawal amount. As soon as she presses
a button, she is told, "You can't withdraw a negative amount."



The first application is perceived as slow and, consequently, not well designed; the second one is
much faster. You can greatly improve perceived application performance by defining a rich set of
exceptions and checking as many of them as possible on the client side.

Do ATMs Really Do This?

The example of checking to see whether a withdrawal amount is
negative probably seems a little contrived. But look at your ATM machine
the next time you make a withdrawal. There isn't even a minus key there.
You are physically prevented from entering an incorrect amount.

Moreover, if your bank is anything like mine, it has rules governing the
amount you can withdraw. My bank has the following two rules:

The amount of money being withdrawn must be a multiple of $20.
No more than $300 can be withdrawn in any given day.

These are enforced by two local checks and then three checks at the
server. The local checks are:

The amount of money being withdrawn must be a multiple of $20.
The amount being withdrawn cannot be more than $300.

The checks at the server are:
The amount of money being withdrawn must be a multiple of $20.
The amount being withdrawn cannot be more than $300.
The total withdrawn for the day cannot be more than $300.

The first two checks are performed on the client side, for the reasons
we've been discussing in the this chapter. They're also repeated on the
server side, to prevent a badly written (or malicious) client from causing
data integrity problems.

9.4.3 The Actual Client Application

The actual client application is a very simple GUI shown in Figure 9-1. The implementation of
this application consists of two objects. The first is simply a wrapper class that implements nmai n(

), shown in Example 9-2.
Figure 9-1. The banking application GUI
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AccouniMame: | 0200000 | Get Balan.. |
Wity anes Do it
Deposi Do it
Current Balance:

Example 9-2. BankClient.java



package com ora.rm book. chapter9. applicati ons;

i mport java.rm.*;
i mport java.rm.server.*;

public class BankC ient
{
public static void main(String[] args) {
(new Bankd i ent Frame()).show );
}

}

Most of the client application is in a second object that creates the user interface and has a set of
Act i onLi st ener s attached to buttons. This object is shown in Example 9-3.

Example 9-3. BankClientFrame.java

public class BankC ientFrane {
private JTextField _account NanmeFi el d;
private JTextField _bal anceTextFi el d;
private JTextField _w thdrawal Text Fi el d;
private JTextField _depositTextField;
private Account _account;

protected void buildGJ ( ) {
JPanel contentPane = new JPanel (new BorderLayout( ));
cont ent Pane. add( bui | dActi onPanel (),
Bor der Layout . CENTER) ;
cont ent Pane. add( bui | dBal ancePanel (),
Bor der Layout . SOUTH) ;
set Cont ent Pane( cont ent Pane) ;
set Si ze( 250, 100);

}
private void resetBal anceField( ) {
try {
Money bal ance = _account. get Bal ance( );
_bal anceText Fi el d. set Text (" Bal ance: " +

bal ance.toString( ));

cat ch(Exception e) {
Systemout.println("Error occurred while getting
account bal ance\n" + e);

}
}
private JPanel buil dActionPanel () {
JPanel actionPanel = new JPanel (new GridLayout(3,3));

act i onPanel . add(new JLabel (" Account Nane:"));

_account NaneFi el d = new JTextField( );

act i onPanel . add(_account NaneFi el d) ;

JButton getBal anceButton = new JButton("Get Bal ance");

get Bal anceBut t on. addAct i onLi st ener (new Get Bal anceAct i on(
));

act i onPanel . add( get Bal anceBut t on);

acti onPanel . add(new JLabel ("Wt hdraw'));

_withdrawal Text Field = new JTextField( );

actionPanel . add(_wi t hdrawal Text Fi el d) ;



JButton withdrawal Button = new JButton("Do it");

wi t hdr awal But t on. addAct i onLi st ener (new W t hdr awAct i on(
));

act i onPanel . add(w t hdr awal But t on);

acti onPanel . add(new JLabel (" Deposit"));

_depositTextField = new JTextField( );

act i onPanel . add( _deposi t Text Fi el d);

JButton depositButton = new JButton("Do it");

deposi t Butt on. addAct i onLi st ener (new DepositAction( ));

acti onPanel . add(deposi t Button);

return acti onPanel

}
private JPanel buil dBal ancePanel ( ) {
JPanel bal ancePanel = new JPanel (new GridLayout(1,2));
bal ancePanel . add(new JLabel ("Current Bal ance:"));
_bal anceTextField = new JTextField( );
_bal anceText Fi el d. set Enabl ed(f al se);
bal ancePanel . add( _bal anceText Fi el d) ;
return bal ancePanel
}
private void getAccount( ) {

try {
_account =

(Account) Nam ng. | ookup(_account NaneFi el d. get Text( ));

catch (Exception e) {
Systemout.println("Couldn't find account. Error
was \n " + e);
e.printStackTrace( );
}

return;

}

private void rel easeAccount {
_account = null

}
private Mney readTextFi el d(JTextFi el d noneyFi el d) {
try {
Fl oat fl oatVal ue = new Fl oat (nmoneyFi el d. get Text (
));
float actual Value = fl oatVal ue. floatValue( );
int cents = (int) (actual Value * 100);
return new PositiveMney(cents);
}
catch (Exception e) {
Systemout.println("Field doesn't contain a valid
val ue");
}
return null;
}

private class GetBal anceAction inplenents ActionlListener {
public void actionPerforned(Acti onEvent event) {

try {



get Account ( );
reset Bal anceField( );
rel easeAccount ( );

catch (Exception exception){
Systemout.printin("Couldn't talk to
account. Error was \n " +
exception. printStackTrace( );

}

private class WthdrawAction inplenments ActionListener {
public void actionPerforned(Acti onEvent event) ({
try{
get Account ( );
Money wi t hdr awal Anount =
readText Fi el d(_wi t hdr awal Text Fi el d);

_account . nakeW t hdr awal (wi t hdr awal Ammount ) ;

_wi t hdrawal Text Fi el d. set Text ("");
reset Bal anceField( );
rel easeAccount ( );

}

catch (Exception exception){
Systemout.println("Couldn't talk to

account. Error was \n " +

exception);
exception. printStackTrace( );

}

}

private class DepositAction inplenents ActionListener {
public void actionPerforned(Acti onEvent event) {
try {
get Account ( );
Money deposit Anobunt =
readText Fi el d(_deposit Text Fi el d);

_account . makeDeposi t (deposi t Anmount ) ;
_deposit Text Fiel d. set Text("");
reset Bal anceField( );
rel easeAccount ( );

catch (Exception exception) {
Systemout.printin("Couldn't talk to
account. Error was \n " +
exception. printStackTrace( );

}
9.5 Deploying the Application



The final step in implementing a distributed application is deployment. Deploying an application
can be a difficult and tedious task. RMI applications are no different than ordinary applications in
this regard. They do, however, add one new wrinkle: you need to deploy stubs along with your
client.

Recall that when you finish writing the code, you need to generate stubs and skeletons. The
stubs, even though they're generated from the server classes, are part of the client application.
This can become an issue because, if you modify the server, you may need to redistribute the
stubs. Even though "the client code" hasn't changed, if either the server classes (Account | npl
in the current case) or the data objects have changed, RMI will throw an exception if you use an
older version of the stub classes in the client application.

You also need to make sure that the naming service has the stubs on its classpath. This usually
catches first-time users of RMI by surprise, but it's necessary because the registry has a stub for
every server that gets registered. The registry doesn't simply hold on to the serialized bytes; it
actually instantiates the stub and stores the stub in a hashtable. In order to do this, the registry
needs to have access to the stub classes.

] We'll discuss why the registry does this in Chapter 14. For
« 4. now, just remember: the stubs need to be deployed with the
“* client application and with the registry.

Part Il: Drilling Down: Scalability
Chapter 10. Serialization

Serialization is the process of converting a set of object instances that contain references to each
other into a linear stream of bytes, which can then be sent through a socket, stored to a file, or
simply manipulated as a stream of data. Serialization is the mechanism used by RMI to pass
objects between JVMs, either as arguments in a method invocation from a client to a server or as
return values from a method invocation. In the first section of this book, | referred to this process
several times but delayed a detailed discussion until now. In this chapter, we drill down on the
serialization mechanism; by the end of it, you will understand exactly how serialization works and
how to use it efficiently within your applications.

10.1 The Need for Serialization

Envision the banking application while a client is executing a withdrawal. The part of the
application we're looking at has the runtime structure shown in Figure 10-1.

Figure 10-1. Runtime structure when making a withdrawal

Client Account Server
Stub minkeWithdrave (instance of Maney] Skeleton
RMI Runtime [ Network e RMI Runtime

What does it mean for the client to pass an instance of Money to the server? At a minimum, it
means that the server is able to call public methods on the instance of Money. One way to do this



would be to implicitly make Money into a server as well.™X! For example, imagine that the client
sends the following two pieces of information whenever it passes an instance as an argument:

[ just to be clear: doing things this way would be a bad idea (and this is not the way RMI passes instances
over the wire).

The type of the instance; in this case, Money.

A unique identifier for the object (i.e., a logical reference). For example, the address of
the instance in memory.

The RMI runtime layer in the server can use this information to construct a stub for the instance of
Mboney, so that whenever the Account server calls a method on what it thinks of as the instance

of Money, the method call is relayed over the wire, as shown in Figure 10-2.

Figure 10-2. Relaying a Money method call from the server

Client Account Server
Stub qerCens(} Skeleton
BMI Runtime  |=rroerremrnsrsnnee: Network r=-reermereassesa RMI Runtime

Attempting to do things this way has three significant drawbacks:
You can't access fields on the objects that have been passed as arguments.

Stubs work by implementing an interface. They implement the methods in the interface by simply
relaying the method invocation across the network. That is, the stub methods take all their
arguments and simply marshall them for transport across the wire. Accessing a public field is
really just dereferencing a pointer—there is no method invocation and hence, there isn't a method
call to forward over the wire.

It can result in unacceptable performance due to network latency.

Even in our simple case, the instance of Account is going to need to call get Cent s( ) onthe
instance of Money. This means that a simple call to nekeDeposi t () really involves at least
two distinct networked method calls: nakeDeposi t () from the client and get Cent s( ) from
the server.

It makes the application much more vulnerable to partial failure.

Let's say that the server is busy and doesn't get around to handling the request for 30 seconds. If
the client crashes in the interim, or if the network goes down, the server cannot process the
request at all. Until all data has been requested and sent, the application is particularly vulnerable
to partial failures.

This last point is an interesting one. Any time you have an application that requires a long-lasting
and durable connection between client and server, you build in a point of failure. The longer the
connection needs to last, or the higher the communication bandwidth the connection requires, the
more likely the application is to occasionally break down.



The original design of the Web, with its stateless connections,
w 4. Servesasa good example of a distributed application that can
tolerate almost any transient network failure.

These three reasons imply that what is really needed is a way to copy objects and send them
over the wire. That is, instead of turning arguments into implicit servers, arguments need to be
completely copied so that no further network calls are needed to complete the remote method
invocation. Put another way, we want the result of rakeW t hdr awal () to involve creating a
copy of the instance of Mbney on the server side. The runtime structure should resemble Figure
10-3.

Figure 10-3. Making a remote method call can create deep copies of the arguments and
return values
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Original Copy of
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The desire to avoid unnecessary network dependencies has two significant consequences:
Once an object is duplicated, the two objects are completely independent of each other.

Any attempt to keep the copy and the original in sync would involve propagating changes over
the network, entirely defeating the reason for making the copy in the first place.

The copying mechanism must create deep copies.

If the instance of Money references another instance, then copies must be made of both
instances. Otherwise, when a method is called on the second object, the call must be relayed
across the wire. Moreover, all the copies must be made immediately—we can't wait until the
second object is accessed to make the copy because the original might change in the meantime.

These two consequences have a very important third consequence:
If an object is sent twice, in separate method calls, two copies of the object will be created.

In addition to arguments to method calls, this holds for objects that are referenced by the
arguments. If you pass object A, which has a reference to object C, and in another call you pass
object B, which also has a reference to C, you will end up with two distinct copies of C on the
receiving side.

10.1.1 Drilling Down on Object Creation
To see why this last point holds, consider a client that executes a withdrawal and then tries to

cancel the transaction by making a deposit for the same amount of money. That is, the following
lines of code are executed:

server. makeW t hdrawal (anount) ;

server. nakeDeposi t (anmount) ;



The client has no way of knowing whether the server still has a copy of anount . After all, the
server may have used it and then thrown the copy away once it was done. This means that the
client has to marshall anount and send it over the wire to the server.

The RMI runtime can demarshall anount , which is the instance of Mbney the client sent.
However, even if it has the previous object, it has no way (unless equal s( ) has been
overridden) to tell whether the instance it just demarshalled is equal to the previous object.

More generally, if the object being copied isn't immutable, then the server might change it. In this
case, even if the two objects are currently equal, the RMI runtime has no way to tell if the two
copies will always be equal and can potentially be replaced by a single copy. To see why,
consider our Pri nt er example again. At the end of Chapter 3, we considered a list of possible
feature requests that could be made. One of them was the following:

Managers will want to track resource consumption. This will involve logging print
requests and, quite possibly, building a set of queries that can be run against the
printer's log.

This can be implemented by adding a few more fields to Docunent Descri pt i on and having
the server store an indexed log of all the Docunent Descri pti on objects it has received. For
example, we may add the following fields to Docunent Descri pti on:

public Time whenPrinted;
publ i c Person sender;
publ i c bool ean print Succeeded;

Now consider what happens when the user actually wants to print two copies of the same
document. The client application could call:

server. print Docunent (docunent) ;

twice with the "same" instance of Docunent Descri pti on. And it would be an error for the RMI
runtime to create only one instance of Docunent Descri pti on on the server side. Even though
the "same" object is passed into the server twice, it is passed as parts of distinct requests and
therefore as different objects.

This is true even if the runtime can tell that the two instances
o 4. of Docunment Description are equal when it finishes

demarshalling. An implementation of a printer may well have
a notion of a job queue that holds instances of

Document Descri pti on. So our client makes the first call,
and the copy of docunent is placed in the queue (say, at
number 5), but not edited because the document hasn't been
printed yet. Then our client makes the second call. At this
point, the two copies of docunent are equal. However, we
don't want to place the same object in the printer queue twice.
We want to place distinct copies in the printer queue.

Thus, we come to the following conclusion: network latency, and the desire to avoid vulnerability
to partial failures, force us to have a deep copy mechanism for most arguments to a remote
method invocation. This copying mechanism has to make deep copies, and it cannot perform any
validation to eliminate "extra" copies across methods.



While this discussion provides examples of implementation
W decisions that force two copies to occur, it's important to note
that, even without such examples, clients should be written as
if the servers make independent copies. That is, clients are
written to use interfaces. They should not, and cannot, make
assumptions about server-side implementations of the
interfaces.
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10.2 Using Serialization

Serialization is a mechanism built into the core Java libraries for writing a graph of objects into a
stream of data. This stream of data can then be programmatically manipulated, and a deep copy
of the objects can be made by reversing the process. This reversal is often called deserialization.

In particular, there are three main uses of serialization:
As a persistence mechanism

If the stream being used is Fi | eCut put St r eam then the data will automatically be
written to a file.

As a copy mechanism

If the stream being used is Byt eAr r ay Qut put St r eam, then the data will be written to a
byte array in memory. This byte array can then be used to create duplicates of the
original objects.

As a communication mechanism

If the stream being used comes from a socket, then the data will automatically be sent
over the wire to the receiving socket, at which point another program will decide what to
do.

The important thing to note is that the use of serialization is independent of the serialization
algorithm itself. If we have a serializable class, we can save it to a file or make a copy of it simply
by changing the way we use the output of the serialization mechanism.

As you might expect, serialization is implemented using a pair of streams. Even though the code
that underlies serialization is quite complex, the way you invoke it is designed to make
serialization as transparent as possible to Java developers. To serialize an object, create an
instance of Cbj ect Cut put St reamand call the wri t eCbj ect () method; to read in a
serialized object, create an instance of Cbj ect | nput St r eamand call the r eadChj ect ()
object.

10.2.1 ObjectOutputStream

(hj ect Qut put St r eam, defined in the | ava. i o package, is a stream that implements the
"writing-out” part of the serialization algorithm.2 The methods implemented by

Ohj ect Qut put St r eamcan be grouped into three categories: methods that write information to
the stream, methods used to control the stream's behavior, and methods used to customize the
serialization algorithm.

I rmi actually uses a subclass of Cbj ect Qut put St r eamto customize its behavior.
10.2.1.1 The "write" methods

The first, and most intuitive, category consists of the "write" methods:



public void wite(byte[] b);

public void wite(byte[] b, int off, int |len);
public void wite(int data);

public void witeBool ean(bool ean data);
public void witeByte(int data);

public void witeBytes(String data);
public void witeChar(int data);

public void witeChars(String data);
public void witeDoubl e(doubl e data);
public void witeFields( );

public void witeFl oat(float data);
public void witelnt(int data);

public void witeLong(long data);
public void witeCbject(Object obj);
public void witeShort(int data);
public void witeUTF(String s);

public void defaultWiteGbject( );

For the most part, these methods should seem familiar. wr i t eFl oat (), for example, works
exactly as you would expect after reading Chapter 1—it takes a floating-point number and
encodes the number as four bytes. There are, however, two new methods here: wr i t eOhj ect (
) anddefaul t WiteCbject( ).

writeChbject( ) serializes an object. In fact, w i t eCbj ect ( ) is often the instrument of the
serialization mechanism itself. In the simplest and most common case, serializing an object
involves doing two things: creating an Chj ect Cupt ut St r eamand callingw i t eChj ect ()
with a single "top-level" instance. The following code snippet shows the entire process, storing an
object—and all the objects to which it refers—into a file:

Fi | eQut put Stream under| yi ngStream = new
FileQutputStream("C. \\tenmp\\test");

Obj ect Qut put Stream seri alizer = new

bj ect Qut put St rean(under | yi ngStrean ;
serializer.witeQbject(serializableject);

Of course, this works seamlessly with the other methods for writing data. That is, if you wanted to
write two floats, a String, and an object to a file, you could do so with the following code snippet:

Fi | eQut put St ream under | yi ngStream = new

Fil eQutputStream("C. \\tenmp\\test");

Obj ect Qut put Stream serializer = new

Obj ect Qut put St rean{under| yi ngStream ;
serializer.witeFloat(firstFloat);
serializer.witeFl oat(secongFl oat);
serializer.witeUTF(aString);
serializer.witeQbject(serializableOject);



L

(hj ect Qut put St r eamnds constructor takes an

Qut put St r eamas an argument. This is analagous to many
of the streams we looked at in Chapter 1.

Obj ect Qut put St reamand Qbj ect | nput St r eamare
simply encoding and transformation layers. This enables RMI
to send objects over the wire by opening a socket connection,
associating the Cut put St r eamwith the socket connection,
creating an Chj ect Qut put St r eamon top of the socket's
Qut put St ream and then calling wri t eCoj ect ().
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The other new "write" method is def aul t WiteObj ect().defaul tWiteCbject( ) makes
it much easier to customize how instances of a single class are serialized. However,

defaul t WiteChject( ) hassome strange restrictions placed on when it can be called.
Here's what the documentation says about def aul t WiteChj ect( ):

Write the nonstatic and nontransient fields of the current class to this stream.
This may only be called from the wr i t eCbj ect method of the class being
serialized. It will throw the Not Act | veExcept i on if itis called otherwise.

Thatis, def aul t Wi teCbj ect( ) isamethod that works only when it is called from another
specific method at a particular time. Since def aul t Wit eObj ect () is useful only when you
are customizing the information stored for a particular class, this turns out to be a reasonable
restriction. We'll talk more about def aul t Wi teChj ect ( ) later in the chapter, when we
discuss how to make a class serializable.

10.2.1.2 The stream manipulation methods

Ohj ect Qut put St r eamalso implements four methods that deal with the basic mechanics of
manipulating the stream:

public void reset( );
public void close( );
public void flush( );
public void useProtocol Version(int version);

With the exception of usePr ot ocol Versi on( ), these methods should be familiar. In fact,
reset( ),close( ),andflush( ) arestandard stream methods. usePr ot ocol Ver si on(
), on the other hand, changes the version of the serialization mechanism that is used. This is
necessary because the serialization format and algorithm may need to change in a way that's not
backwards-compatible. If another application needs to read in your serialized data, and the
applications will be versioning independently (or running in different versions of the JVM), you
may want to standardize on a protocol version.

There are two versions of the serialization protocol currently
" 4. defined: PROTOCOL_VERSION_1 and
PROTOCOL_VERSION_2. If you send serialized data to a
1.1 (or earlier) JVM, you should probably use
PROTOCOL_VERSION 1. The most common case of this
involves applets. Most applets run in browsers over which the
developer has no control. This means, in particular, that the
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JVM running the applet could be anything, from Java 1.0.2
through the latest JVM. Most servers, on the other hand, are
written using JDK1.2.2 or later.2 If you pass serialized objects
between an applet and a server, you should specify the
serialization protocol.

B! The main exception is EJB containers that require earlier versions of Java.
At this writing, for example, Oracle 8i's EJB container uses JDK 1.1.6.

10.2.1.3 Methods that customize the serialization mechanism

The last group of methods consists mostly of protected methods that provide hooks that allow the
serialization mechanism itself, rather than the data associated to a particular class, to be
customized. These methods are:

public ObjectCQutputStream PutField putFields( );

protected void annotateCd ass(C ass cl);

protected voi d annot at eProxyC ass(C ass cl);

prot ect ed bool ean enabl eRepl ace(hj ect (bool ean enabl e);

protected Object replaceCbject(Object obj);

protected void drain( );

protected void witeObjectOverride(Cbject obj);

protected void witeC assDescri ptor(ObjectStreanCl ass cl assdesc);
protected void witeStreanHeader( );

These methods are more important to people who tailor the serialization algorithm to a particular
use or develop their own implementation of serialization. As such, they require a deeper
understanding of the serialization algorithm. We'll discuss these methods in more detail later,
after we've gone over the actual algorithm used by the serialization mechanism.

10.2.2 ObjectinputStream

hj ect | nput St ream, defined in the | ava. | o package, implements the "reading-in" part of the
serialization algorithm. It is the companion to Chj ect Cut put St r eam—objects serialized using
Ohj ect Qut put St r eamcan be deserialized using Obj ect | nput St r eam Like

Ohj ect Qut put St r eam the methods implemented by Obj ect | nput St r eamcan be grouped
into three categories: methods that read information from the stream, methods that are used to
control the stream's behavior, and methods that are used to customize the serialization algorithm.

10.2.2.1 The "read" methods

The first, and most intuitive, category consists of the "read" methods:
public int read( );

public int read(byte[] b, int off, int len);
publ i c bool ean readBool ean( );
public byte readByte( );

public char readChar( );

publ i ¢ doubl e readDouble( );
public float readFloat( );

public intreadlint( );

public long readLong( );

public Cbject readOoject( );
public short readShort( );

public byte readUnsi gnedByte( );
public short readUnsi gnedShort( );
public String readUTF( );



voi d defaul t ReadObject( );

Just as with Obj ect Qut put Streamlswri t e( ) methods, these methods should be familiar.
readFl oat (), for example, works exactly as you would expect after reading Chapter 1: it
reads four bytes from the stream and converts them into a single floating-point number, which is
returned by the method call. And, again as with Obj ect Cut put St r eam, there are two new
methods here: readChj ect () and def aul t ReadChj ect () .

JustaswriteOhj ect( ) serializes an object, r eadChj ect () deserializes it. Deserializing an
object involves doing two things: creating an Obj ect | nput St r eamand then calling

readChj ect () . The following code snippet shows the entire process, creating a copy of an
object (and all the objects to which it refers) from a file:

Fi | el nput Stream under | yi ngStream = new
FilelnputStream("C: \\tenp\\test");

Obj ect | nput Stream deseri alizer = new

Obj ect I nput St reanm(under | yi ngSt rean) ;

bj ect deserializedObject = deserializer.readObject( );

This code is exactly inverse to the code we used for serializing the object in the first place. If we
wanted to make a deep copy of a serializable object, we could first serialize the object and then
deserialize it, as in the following code example:

Byt eArrayQut put St r eam nenor yQut put St ream = new Byt eArrayCQut put St rean(
);

Obj ect Qut put Stream seri alizer = new

Obj ect Qut put St r ean{ nenor yQut put St rean ;
serializer.witebject(serializableObject);

serializer.flush( );

Byt eArrayl nput St ream nenoryl nput Stream = new
Byt eArrayl nput St r eam menor yQut put St r eam
toByteArray( ));
bj ect I nput Stream deseri alizer = new
Obj ect | nput St rean( menor yl nput St ream ;
bj ect deepCopyOr Ori gi nal Obj ect = deserializer.readObject( );

This code simply places an output stream into memory, serializes the object to the memory
stream, creates an input stream based on the same piece of memory, and runs the deserializer
on the input stream. The end result is a deep copy of the object with which we started.

10.2.2.2 The stream manipulation methods

There are five basic stream manipulation methods defined for Obj ect | nput St r eant

publ i c bool ean available( );

public void close( );

public void readFul |l y(byte[] data);

public void readFully(byte[] data, int offset, int size);
public int skipBytes(int |en);

Of these, avai | abl e( ) and ski p( ) are methods first defined on | nput St r eam
aval | abl e( ) returns a boolean flag indicating whether data is immediately available, and
cl ose( ) closes the stream.

The three new methods are also straightforward. ski pByt es( ) skips the indicated number of
bytes in the stream, blocking until all the information has been read. And the two r eadFul | y( )
methods perform a batch read into a byte array, also blocking until all the data has been read in.

10.2.2.3 Methods that customize the serialization mechanism



The last group of methods consists mostly of protected methods that provide hooks, which allow
the serialization mechanism itself, rather than the data associated to a particular class, to be
customized. These methods are:

prot ect ed bool ean enabl eResol ve(bj ect (bool ean enabl e) ;

protected Cl ass resol veC ass(Obj ect StreanCl ass v);

protected Object resol veObject(Cbhject obj);

protected class resol veProxyC ass(String[] interfaces);

protected Object StreanCl ass readC assDescriptor( );

protected Object readCbjectOverride( );

protected void readStreanHeader( );

public void registerValidation(CbjectlnputValidation obj, int priority);
public CGetFields readFields( );

These methods are more important to people who tailor the serialization algorithm to a particular
use or develop their own implementation of serialization. Like before, they also require a deeper
understanding of the serialization algorithm, so I'll hold off on discussing them right now.

10.3 How to Make a Class Serializable

So far, we've focused on the mechanics of serializing an object. We've assumed we have a
serializable object and discussed, from the point of view of client code, how to serialize it. The
next step is discussing how to make a class serializable.

There are four basic things you must do when you are making a class serializable. They are:
1. Implementthe Seri al i zabl e interface.
2. Make sure that instance-level, locally defined state is serialized properly.
3. Make sure that superclass state is serialized properly.
4. Override equal s( ) and hashCode( ).
Let's look at each of these steps in more detail.
10.3.1 Implement the Serializable Interface

This is by far the easiest of the steps. The Seri al | zabl e interface is an empty interface; it
declares no methods at all. So implementing it amounts to adding "implements Serializable" to
your class declaration.

Reasonable people may wonder about the utility of an empty interface. Rather than define an
empty interface, and require class definitions to implement it, why not just simply make every
object serializable? The main reason not to do this is that there are some classes that don't have
an obvious serialization. Consider, for example, an instance of Fi | e. An instance of Fi | e
represents a file. Suppose, for example, it was created using the following line of code:

File file = new File("c:\\temp\\foo");

It's not at all clear what should be written out when this is serialized. The problem is that the file
itself has a different lifecyle than the serialized data. The file might be edited, or deleted entirely,
while the serialized information remains unchanged. Or the serialized information might be used
to restart the application on another machine, where " C: \ \ t enp\ \ f 00" is the name of an
entirely different file.

Another example is provided by the Thr ead™ class. A thread represents a flow of execution
within a particular JVM. You would not only have to store the stack, and all the local variables, but



also all the related locks and threads, and restart all the threads properly when the instance is
deserialized.

41 1f you don't know much about threads, just wait a few chapters and then revisit this example. It will make
more sense then.

Things get worse when you consider platform dependencies.
.. Ingeneral, any class that involves native code is not really a
good candidate for serialization.

10.3.2 Make Sure That Instance-Level, Locally Defined Statels Serialized
Properly

Class definitions contain variable declarations. The instance-level, locally defined variables (e.g.,
the nonstatic variables) are the ones that contain the state of a particular instance. For example,
in our Money class, we declared one such field:

public class Mney extends Val ueGbject {
private int _cents;

}

The serialization mechanism has a nice default behavior—if all the instance-level, locally defined
variables have values that are either serializable objects or primitive datatypes, then the
serialization mechanism will work without any further effort on our part. For example, our
implementations of Account , such as Account | npl , would present no problems for the
default serialization mechanism:

public class Account | npl extends Unicast RenoteChj ect inplements Account

{

private Money _bal ance;

}

While bal ance doesn't have a primitive type, it does refer to an instance of Money, which is a
serializable class.

If, however, some of the fields don't have primitive types, and don't refer to serializable classes,
more work may be necessary. Consider, for example, the implementation of ArrayLi st from the
j ava. uti| package. An ArraylLi st really has only two pieces of state:

public class ArrayLi st extends AbstractList inplements List, C oneable,
java.io.
Serializable {
private Object elenmentDatal];
private int size;

But hidden in here is a huge problem: Arr ayLi st is a generic container class whose state is
stored as an array of objects. While arrays are first-class objects in Java, they aren't serializable
objects. This means that ArrayLi st can't justimplement the Ser i al i zabl e interface. It has to
provide extra information to help the serialization mechanism handle its nonserializable fields.
There are three basic solutions to this problem:

Fields can be declared to be transient.

Thewr i t eCbj ect ( ) /readCbj ect ( ) methods can be implemented.



seri al Persi stent Fi el dscan be declared.
10.3.2.1 Declaring transient fields

The first, and easiest, thing you can do is simply mark some fields using the t r ansi ent
keyword. In ArrayLi st , for example, el enent Dat a is really declared to be a transient field:

public class ArrayLi st extends AbstractList inplenments List, C oneable,
java.io.
Serializable {
private transient Object elenentDatal];
private int size;

This tells the default serialization mechanism to ignore the variable. In other words, the
serialization mechanism simply skips over the transient variables. In the case of Arr ayLi st , the
default serialization mechanism would attempt to write outsi ze, but ignore el enent Dat a
entirely.

This can be useful in two, usually distinct, situations:
The variable isn't serializable

If the variable isn't serializable, then the serialization mechanism will throw an exception
when it tries to serialize the variable. To avoid this, you can declare the variable to be
transient.

The variable is redundant

Suppose that the instance caches the result of a computation. Locally, we might want to
store the result of the computation, in order to save some processor time. But when we
send the object over the wire, we might worry more about consuming bandwidth and thus
discard the cached computation since we can always regenerate it later on.

10.3.2.2 Implementing writeObject() and readObject()

Suppose that the first case applies. A field takes values that aren't serializable. If the field is still
an important part of the state of our instance, such as el enent Dat a in the case of an

ArraylLi st , simply declaring the variable to be t r ansi ent isn't good enough. We need to save
and restore the state stored in the variable. This is done by implementing a pair of methods with
the following signatures:

private void witeCbject(java.io.ObjectQutputStream out) throws
| CException
private void readCbject(java.io. ObjectlnputStreamin) throws
| CExcepti on,
Cl assNot FoundExcept i on;

When the serialization mechanism starts to write out an object, it will check to see whether the
class implements wr i t eChj ect () . If so, the serialization mechanism will not use the default
mechanism and will not write out any of the instance variables. Instead, it will call

wri teChj ect( ) and depend on the method to store out all the important state. Here is
ArrayLi st'simplementation of wri t eCbj ect () :

private synchroni zed void witeCbject(java.io.ObjectQutputStream strean)
throws java.
i 0.1 Oexception {
stream defaul tWiteQoject( );
streamwitelnt(el ementData.length);
for (int i=0; i<size; i++)



streamwiteCbject(elenmentDatali]);

}

The first thing this does is call def aul t Wit eObj ect ( ).defaul t WiteObject( ) invokes
the default serialization mechanism, which serializes all the nontransient, nonstatic instance
variables. Next, the method writes out el enent Dat a. | engt h and then calls the stream's
writeOoject( ) foreach elementof el enent Dat a.

There's an important point here that is sometimes missed: r eadChj ect () andw it eOoj ect (
) are a pair of methods that need to be implemented together. If you do any customization of
serialization inside one of these methods, you need to implement the other method. If you dont,
the serialization algorithm will fail.

Unit Tests and Serialization

Unit tests are used to test a specific piece of functionality in a class. They
are explicitly not end-to-end or application-level tests. It's often a good
idea to adopt a unit-testing harness such as JUni t when developing an
application. JUni t gives you an automated way to run unit tests on
individual classes and is available from http://www.junit.org.

If you adopt a unit-testing methodology, then any serializable class
should pass the following three tests:

If it implements r eadCbj ect (), it should implement
wr i teObj ect( ), and vice-versa.

It is equal (using the equal s( ) method) to a serialized copy of
itself.

It has the same hashcode as a serialized copy of itself.

Similar constraints hold for classes that implement the
Ext ernal i zabl e interface.

10.3.2.3 Declaring serialPersistentFields

The final option that can be used is to explicitly declare which fields should be stored by the
serialization mechanism. This is done using a special static final variable called
seri al Persi stent Fi el ds, as shown in the following code snippet:

private static final ObjectStreanfField[] serial PersistentFields = { new
hj ect Streanti el d("si ze", Integer.TYPE), .... };

This line of code declares that the field named si ze, which is of type i nt , is a serial persistent
field and will be written to the output stream by the serialization mechanism. Declaring

seri al Persi stent Fi el ds is almost the opposite of declaring some fields t r ansi ent . The
meaning of transient is, "This field shouldn't be stored by serialization," and the meaning of
serial Persi stent Fi el ds is, "These fields should be stored by serialization."

But there is one important difference between declaring some variables to be t r ansi ent and
othersto be seri al Persi st ent Fi el ds. In order to declare variables to be transient, they
must be locally declared. In other words, you must have access to the code that declares the



variable. There is no such requirement for ser i al Per si st ent Fi el ds. You simply provide the
name of the field and the type.

What if you try to do both? That is, suppose you declare
some variables to be t r ansi ent , and then also provide a
definition for ser i al Per si st ent Fi el ds? The answer is
that the t r ansi ent keyword is ignored; the definition of
seri al Persi stent Fi el ds is definitive.
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So far, we've talked only about instance-level state. What about class-level state? Suppose you
have important information stored in a static variable? Static variables won't get saved by
serialization unless you add special code to do so. In our context, (shipping objects over the wire
between clients and servers), statics are usually a bad idea anyway.

10.3.3 Make Sure That Superclass State Is Handled Correctly

After you've handled the locally declared state, you may still need to worry about variables
declared in a superclass. If the superclass implements the Ser i al | zabl e interface, then you
don't need to do anything. The serialization mechanism will handle everything for you, either by
using default serialization or by invokingwr i t eObj ect () /[readObj ect () if they are
declared in the superclass.

If the superclass doesn't implement Ser i al i zabl e, you will need to store its state. There are
two different ways to approach this. You can use ser i al Per si st ent Fi el ds to tell the
serialization mechanism about some of the superclass instance variables, or you can use
writeChject( )/readOhject( ) tohandle the superclass state explicitly. Both of these,
unfortunately, require you to know a fair amount about the superclass. If you're getting the .class
files from another source, you should be aware that versioning issues can cause some really
nasty problems. If you subclass a class, and that class's internal representation of instance-level
state changes, you may not be able to load in your serialized data. While you can sometimes
work around this by using a sufficiently convoluted r eadChj ect () method, this may not be a
solvable problem. We'll return to this later. However, be aware that the ultimate solution may be
to just implement the Ext er nal i zabl e interface instead, which we'll talk about later.

Another aspect of handling the state of a nonserializable superclass is that nonserializable
superclasses must have a zero-argument constructor. This isn't important for serializing out an
object, but it's incredibly important when deserializing an object. Deserialization works by creating
an instance of a class and filling out its fields correctly. During this process, the deserialization
algorithm doesn't actually call any of the serialized class's constructors, but does call the zero-
argument constructor of the first nonserializable superclass. If there isn't a zero-argument
constructor, then the deserialization algorithm can't create instances of the class, and the whole
process fails.

—e— If you can't create a zero-argument constructor in the first
nonserializable superclass, you'll have to implement the
Ext ernal i zabl e interface instead.

Simply adding a zero-argument constructor might seem a little problematic. Suppose the object
already has several constructors, all of which take arguments. If you simply add a zero-argument
constructor, then the serialization mechanism might leave the object in a half-initialized, and
therefore unusable, state.



However, since serialization will supply the instance variables with correct values from an active
instance immediately after instantiating the object, the only way this problem could arise is if the
constructors actually do something with their arguments—besides setting variable values.

If all the constructors take arguments and actually execute initialization code as part of the
constructor, then you may need to refactor a bit. The usual solution is to move the local
initialization code into a new method (usually named something likei ni ti al i ze( )), whichis
then called from the original constructor:

public MQObject(arglist) {

/'l set local variables fromarglist

/'l performlocal initialization

}

to something that looks like:

private MyObject( ) {
/'l zero argunent constructor, invoked by serialization and never by

any ot her

/'l piece of code.

/1l note that it doesn't call initialize( )
}

public void M/Qoject(arglist) {

/'l set local variables fromarglist
initialize( );

}

private void initialize( ) {
/'l performlocal initialization

}

After this is done, wr i t eChj ect () /readOhj ect () should be implemented, and
readoj ect ( ) shouldendwithacalltoi nitialize( ).Sometimes this will resultin code
that simply invokes the default serialization mechanism, as in the following snippet:

private void witeQObject(java.io.ojectCutputStreamstrean) throws
java.io.| Oexception {
stream defaul tWiteGoject( );

}

private void readQbject(java.io.ObjectlnputStreamstrean) throws
java.io.| Oexception {
stream def aul t ReadObj ect ()
intialize( );

}
1] . . g
If creating a zero-argument constructor is difficult (for
oy s example, you don't have the source code for the superclass),

your class will need to implement the Ext er nal | zabl e
interface instead of Seri al i zabl e.

10.3.4 Override equals() and hashCode() if Necessary

The default implementations of equal s( ) and hashCode( ), which are inherited from
java. | ang. Obj ect , simply use an instance's location in memory. This can be problematic.
Consider our previous deep copy code example:



Byt eArrayCQut put St r eam nenor yQut put St ream = new Byt eArrayQut put St rean(
)

Obj ect Qut put Stream seri alizer = new

Obj ect Qut put St rean( nenor yQut put Strean ;
serializer.witeQoject(serializablelject);

serializer.flush( );

Byt eArrayl nput St r eam nmenor yl nput St ream = new
Byt eArrayl nput St r eam menor yQut put St r eam
toByteArray( ));
Obj ect I nput Stream deseri alizer = new
Obj ect | nput St ream( menor yl nput St rean ;
bj ect deepCopyr Ori gi nal Cbj ect = deserializer.readOject( );

The potential problem here involves the following boolean test:
seri al i zabl e(bj ect . equal s(deepCopyf Ori gi nal Ohj ect)

Sometimes, as in the case of Mbney and Docunent Descri pti on, the answer should be t r ue.
If two instances of Money have the same values for _cent s, then they are equal. However, the
implementation of equal s( ) inherited from Cbj ect will return f al se.

The same problem occurs with hashCode( ). Note that Obj ect implements hashCode( ) by
returning the memory address of the instance. Hence, no two instances ever have the same
hashCode( ) using Obj ect 's implementation. If two objects are equal, however, then they
should have the same hashcode. So if you need to override equal s( ), you probably need to
override hashCode( ) as well.

) . . . . .
With the exception of declaring variables to be transient, all

“ 4. our changes involve adding functionality. Making a class

*> serializable rarely involves significant changes to its
functionality and shouldn't result in any changes to method
implementations. This means that it's fairly easy to retrofit
serialization onto an existing object hierarchy. The hardest
part is usually implementing equal s( ) and hashCode( ).
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10.3.5 Making DocumentDescription Serializable

To make this more concrete, we now turn to the Docunent Descri pt i on class from the RMI
version of our printer server, which we implemented in Chapter 4. The code for the first
nonserializable version of Docunent Descri pti on was the following:

public class Docunent Description inplenents PrinterConstants {
private |nputStream _actual Docunent;
private int _|ength;
private int _docunent Type;
private bool ean _print TwoSi ded;
private int _printQuality;

publ i ¢ Docunent Descri ption(l nput Stream actual Docunent) throws
| CException {
t hi s(act ual Docunent, DEFAULT_ DOCUMENT_ TYPE,
DEFAULT_PRI NT_TWO _SI DED,
DEFAULT_PRI NT_QUALI TY) ;
}



publ i ¢ Docunent Descri pti on(Il nput Stream act ual Docurment, int
docunent Type, bool ean
print TwoSi ded, int printQuality)
throws | OException {
_docunent Type = docunent Type;
_printTwoSi ded = print TwoSi ded;
_printQuality = printQuality;
Buf f er edl nput St r eam buf fer = new
Buf f er edl nput St r ean( act ual Docunent) ;
Dat al nput Stream dat al nput Stream = new
Dat al nput St rean( buf fer);
Byt eArrayQut put Stream t enpor aryBuf fer = new
Byt eArrayQut put Strean( );
_length = copy(dat al nput Stream new
Dat aCut put St rean(t enporaryBuffer));
_act ual Docunent = new Dat al nput St r ean{ new
Byt eArrayl nput Strean(tenporaryBuffer.toByteArray( )));
}

public int getDocunentType( ) {
return _docunent Type;
}

public bool ean isPrintTwoSided( ) {
return _printTwoSi ded;
}

public int getPrintQuality( ) {
return printQuality;
}

private int copy(lnputStream source, Qutput Stream destination)
t hr ows
| OException {

i nt next Byt e;

i nt number O Byt esCopi ed = 0;

while(-1!= (nextByte = source.read( ))) {
destination.wite(nextByte);
nunber O Byt esCopi ed++;

}

destination.flush( );
return nunber O Byt esCopi ed;

}
We will make this into a serializable class by following the steps outlined in the previous section.

10.3.5.1 Implement the Serializable interface

This is easy. All we need to do is change the class declaration:

public class Docunent Description inplenents Serialiazble,
Pri nt er Const ants

10.3.5.2 Make sure that instance-level, locally defined state is serialized properly

We have five fields to take care of:



private | nput Stream _actual Docunent;
private int _length;

private int _docunent Type;

private bool ean _printTwoSi ded,;
private int _printQuality;

Of these, four are primitive types that serialization can handle without any problem. However,
_actual Docunent is a problem. | nput St r eamis not a serializable class. And the contents of
_actual Docunment are very important; act ual Docunent contains the document we want to
print. There is no point in serializing an instance of Docunent Descri pti on unless we somehow
serialize act ual Docunent as well.

If we have fields that serialization cannot handle, and they must be serialized, then our only
option is to implement r eadCOhj ect () andw i teChj ect( ).ForDocunent-Description,
we declare act ual Docunent to be transient and then implement r eadObj ect () and
writeChject( ) asfollows:

private transient |nputStream _actual Docurent;

private void witeQbject(java.io.ObjectQutputStreamout) throws
| CException {
out.defaul tWiteCbject( );
copy(_act ual Docunent, out);

}

private void readCbject(java.io.ObjectlnputStreamin) throws
| CExcepti on,
Cl assNot FoundException {
i n.def aul t ReadOoj ect( );
Byt eArrayQut put St ream t enporaryBuffer = new
Byt eArrayQut put Strean( );
copy(in, tenmporaryBuffer, _Iength);
_act ual Docunent = new Dat al nput St r ean{ new
Byt eArrayl nput Strean{tenporaryBuffer.toByteArray( )));
}
private void copy(lnput Stream source, QutputStream destination,
int |ength)
throws | OException {
int counter;
i nt next Byt e;
for (counter = 0; counter <length; counter++) {
next Byte = source.read( );
destination.wite(nextByte);

}

destination.flush( );

}

Note that we declare act ual Docunent to be transient and call def aul t WiteObj ect( ) in
the first line of our wr i t eChj ect () method. Doing these two things allows the standard
serialization mechanism to serialize the other four instance variables without any extra effort on
our part. We then simply copy act ual Docunent to the stream.

Our implementation of r eadChj ect () simply calls def aul t ReadCbj ect () and then reads
_actual Docunent from the stream. In order to read act ual Docunent from the stream, we
used the length of the document, which had previously been written to the stream. In essence, we
needed to encode some metadata into the stream, in order to correctly pull our data out of the
stream.



This code is a little ugly. We're using serialization, but we're still forced to think about how to
encode some of our state when we're sending it out of the stream. In fact, the code for
writeChject( ) andreadCbject( ) isremarkably similar to the marshalling code we
implemented directly for the socket-based version of the printer server. This is, unfortunately,
often the case. Serialization's default implementation handles simple objects very well. But, every
now and then, you will want to send a nonserializable object over the wire, or improve the
serialization algorithm for efficiency. Doing so amounts to writing the same code you write if you
implement all the socket handling yourself, as in our socket-based version of the printer server.

There is also an order dependency here. The first value

< 4. Wwritten must be the first value read. Since we start writing by
o calling def aul t Wi teOb] ect ( ), we have to start reading

by calling def aul t -ReadCoj ect () . On the bright side, this

means we'll have an accurate value for | engt h before we

trytoread actual Docunment from the stream.
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10.3.5.3 Make sure that superclass state is handled correctly

This isn't a problem. The superclass, | ava. | ang. Obj ect , doesn't actually have any important
state that we need to worry about. Since it also already has a zero-argument constructor, we
don't need to do anything.

10.3.5.4 Override equals() and hashCode( ) if necessary

In our current implementation of the printer server, we don't need to do this. The server never
checks for equality between instances of Docunent Descr i pti on. Nor does it store them in a
container object that relies on their hashcodes.

Did We Cheat When Implementing
Serializable for DocumentDescription?

It may seem like we cheated a bit in implementing

Document Descri pti on. Three of the five steps in making a class
serializable didn't actually result in changes to the code. Indeed, the only
work we really did was implementing r eadCbj ect () and

wr i teCoj ect (). Butit's not really cheating. Serialization is just
designed to be easy to use. It has a good set of defaults, and, at least in
the case of value objects intended to be passed over the wire, the default
behavior is often good enough.

10.4 The Serialization Algorithm

By now, you should have a pretty good feel for how the serialization mechanism works for
individual classes. The next step in explaining serialization is to discuss the actual serialization
algorithm in a little more detail. This discussion won't handle all the details of serialization !
Instead, the idea is to cover the algorithm and protocol, so you can understand how the various
hooks for customizing serialization work and how they fit into the context of an RMI application.

51 Though we'll come close.



10.4.1 The Data Format

The first step is to discuss what gets written to the stream when an instance is serialized. Be
warned: it's a lot more information than you might guess from the previous discussion.

An important part of serialization involves writing out class-related metadata associated with an
instance. Most instances are more than one class. For example, an instance of St ri ng is also
an instance of Obj ect . Any given instance, however, is an instance of only a few classes. These
classes can be written as a sequence: C1, C2...CN, in which C1 is a superclass of C2, C2 is a
superclass of C3, and so on. This is actually a linear sequence because Java is a single
inheritance language for classes. We call C1 the least superclass and CN the most-derived class.

See Figure 10-4.

Figure 10-4. Inheritance diagram
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After writing out the associated class information, the serialization mechanism stores out the
following information for each instance:

A description of the most-derived class.
Data associated with the instance, interpreted as an instance of the least superclass.

Data associated with the instance, interpreted as an instance of the second least
superclass.

And so on until:

Data associated with the instance, interpreted as an instance of the most-derived class.
So what really happens is that the type of the instance is stored out, and then all the serializable
state is stored in discrete chunks that correspond to the class structure. But there's a question still
remaining: what do we mean by "a description of the most-derived class?" This is either a
reference to a class description that has already been recorded (e.g., an earlier location in the
stream) or the following information:

The version ID of the class, which is an integer used to validate the .class files

A boolean stating whether wr i t eCbj ect () /readChj ect () are implemented

The number of serializable fields

A description of each field (its name and type)

Extra data produced by Cbj ect Cut put St r eands annot at eCl ass( ) method



A description of its superclass if the superclass is serializable

This should, of course, immediately seem familiar. The class descriptions consist entirely of
metadata that allows the instance to be read back in. In fact, this is one of the most beautiful
aspects of serialization; the serialization mechanism automatically, at runtime, converts class
objects into metadata so instances can be serialized with the least amount of programmer work.

10.4.2 A Simplified Version of the Serialization Algorithm

In this section, | describe a slightly simplified version of the serialization algorithm. | then proceed
to a more complete description of the serialization process in the next section.

10.4.2.1 Writing

Because the class descriptions actually contain the metadata, the basic idea behind the
serialization algorithm is pretty easy to describe. The only tricky part is handling circular
references.

The problem is this: suppose instance A refers to instance B. And instance B refers back to
instance A. Completely writing out A requires you to write out B. But writing out B requires you to
write out A. Because you don't want to get into an infinite loop, or even write out an instance or a
class description more than once,’ you need to keep track of what's already been written to the
stream.

[61 serialization is a slow process that uses the reflection API quite heavily in addition to the bandwidth.

Ohj ect Cut put St r eamdoes this by maintaining a mapping from instances and classes to
handles. When wr i t eCbj ect () is called with an argument that has already been written to the
stream, the handle is written to the stream, and no further operations are necessary.

If, however, wr i t eObj ect () is passed an instance that has not yet been written to the stream,
two things happen. First, the instance is assigned a reference handle, and the mapping from
instance to reference handle is stored by Chj ect Cut put St r eam The handle that is assigned is
the next integer in a sequence.

A
‘ Remember the r eset () method on
w 4. Obj ect Qut put Strean® It clears the mapping and resets

the handle counter to 0x7E0000 .RMI also automatically
resets its serialization mechanism after every remote method
call.

Second, the instance data is written out as per the data format described earlier. This can involve
some complications if the instance has a field whose value is also a serializable instance. In this
case, the serialization of the first instance is suspended, and the second instance is serialized in
its place (or, if the second instance has already been serialized, the reference handle for the
second instance is written out). After the second instance is fully serialized, serialization of the
first instance resumes. The contents of the stream look a little bit like Figure 10-5.

Figure 10-5. Contents of Serialization's data stream



Class description for first instance

Field narme of first field in first instance

Value of first field in first instance
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10.4.2.2 Reading

From the description of writing, it's pretty easy to guess most of what happens when
readChj ect () is called. Unfortunately, because of versioning issues, the implementation of
readChj ect () is actually a little bit more complex than you might guess.

When it reads in an instance description, Cbj ect | nput St r eamgets the following information:
Descriptions of all the classes involved
The serialization data from the instance

The problem is that the class descriptions that the instance of Obj ect | nput St r eamreads from
the stream may not be equivalent to the class descriptions of the same classes in the local JVM.
For example, if an instance is serialized to a file and then read back in three years later, there's a
pretty good chance that the class definitions used to serialize the instance have changed.

This means that Obj ect | nput St r eamuses the class descriptions in two ways:

It uses them to actually pull data from the stream, since the class descriptions completely
describe the contents of the stream.

It compares the class descriptions to the classes it has locally and tries to determine if the
classes have changed, in which case it throws an exception. If the class descriptions
match the local classes, it creates the instance and sets the instance's state
appropriately.

10.4.3 RMI Customizes the Serialization Algorithm

RMI doesn't actually use Chj ect Qut put St reamand Obj ect | nput St r eam Instead, it uses
custom subclasses so it can modify the serialization process by overriding some protected
methods. In this section, we'll discuss the most important modifications that RMI makes when
serializing instances. RMI makes similar changes when deserializing instances, but they follow
from, and can easily be deduced from, the description of the serialization changes.

Recall that Obj ect Qut put St r eamcontained the following protected methods:

protected void annotateC ass(C ass cl)
protected void annot at eProxyC ass(Cl ass cl)



prot ect ed bool ean enabl eRepl ace(bj ect (bool ean enabl e)

protected Object replaceObject(hject obj)

protected void drain( )

protected void witeObjectOverride(Cbject obj)

protected void witeC assDescriptor(ObjectStreanC ass cl assdesc)
protected void witeStreanHeader( )

These all have default implementations in Cbj ect Cut put St r eam That is, annot at eCl ass( )
and annot at eProxyCl ass( ) do nothing. enabl eRepl aceChj ect ( ) returnsf al se, and
so on. However, these methods are still called during serialization. And RMI, by overriding these
methods, customizes the serialization process.

The three most important methods from the point of view of RMI are:

protected void annotateC ass(C ass cl)
prot ect ed bool ean enabl eRepl ace(bj ect (bool ean enabl e)
protected Object replacelhject(Object obj)

Let's describe how RMI overrides each of these.
10.4.3.1 annotateClass()

(hj ect CQut put St reamcalls annot at eCl ass( ) when it writes out class descriptions.
Annotations are used to provide extra information about a class that comes from the serialization
mechanism and not from the class itself. The basic serialization mechanism has no real need for
annotations; most of the information about a given class is already stored in the stream.

o

‘ RMI's dynamic classloading system uses annot at eCl ass(
« 4. ) torecord where .class files are stored. We'll discuss this

more in Chapter 19.

RMI, on the other hand, uses annotations to record codebase information. That is, RMI, in
addition to recording the class descriptions, also records information about the location from
which it loaded the class's bytecode. Codebases are often simply locations in a filesystem.
Incidentally, locations in a filesystem are often useless information, since the JVM that
deserializes the instances may have a very different filesystem than the one from where the
instances were serialized. However, a codebase isn't restricted to being a location in a filesystem.
The only restriction on codebases is that they have to be valid URLs. That is, a codebase is a
URL that specifies a location on the network from which the bytecode for a class can be obtained.
This enables RMI to dynamically load new classes based on the serialized information in the
stream. We'll return to this inChapter 19.

10.4.3.2 replaceObject()

The idea of replacement is simple; sometimes the instance that is passed to the serialization
mechanism isn't the instance that ought to be written out to the data stream. To make this more
concrete, recall what happened when we called r ebi nd( ) to register a server with the RMI
registry. The following code was used in the bank example:

Account _I npl newAccount = new Account I npl (serverDescri ption. bal ance);
Nam ng. r ebi nd(serverDescri ption. nane, newAccount);

System out. println("Account " + serverDescription.nane + " successfully
| aunched. ") ;

This creates an instance of Account | npl and then calls r ebi nd( ) with that instance.
Account | npl is a server that implements the Renot e interface, but not the Seri al i zabl e
interface. And yet, somehow, the registry, which is running in a different JVM, is sent something.



What the registry actually gets is a stub. The stub for Account | npl , which was automatically
generated by r ni c, begins with:

public final class Account | npl_Stub extends java.rm.server. RenpoteStub

java.rm .server. Renpt eSt ub is a class that implements the Seri al | zabl e interface. The
RMI serialization mechanism knows that whenever a remote server is "sent" over the wire, the
server object should be replaced by a stub that knows how to communicate with the server (e.g.,
a stub that knows on which machine and port the server is listening).

Calling Nam ng. rebi nd( ) actually winds up passing a stub to the RMI registry. When clients
make calls to Nami ng. | ookup( ), as in the following code snippet, they also receive copies of
the stub. Since the stub is serializable, there's no problem in making a copy of it

_account = (Account) Nam ng. | ookup(_account NaneFi el d. get Text( ));

In order to enable this behavior, Cbj ect Cut put St r eamcalls enabl eRepl aceObj ect () and
repl aceChj ect () during the serialization process. In other words, when an instance is about
to be serialized, Onj ect Qut put St r eamdoes the following:

1. ltcallsenabl eRepl aceChj ect ( ) to see whether instance replacement is enabled.

2. Ifinstance replacement is enabled, it calls r epl aceOhj ect (), passing in the instance
it was about to serialize, to find out which instance it should really write to the stream.

3. It then writes the appropriate instance to the stream.
10.4.4 Maintaining Direct Connections

A question that frequently arises as distributed applications get more complicated involves
message forwarding. For example, suppose that we have three communicating programs: A, B,
and C. At the start, A has a stub for B, B has a stub for C, and C has a stub for A. See Figure 10-
6.

Figure 10-6. Communication between three applications
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Now, what happens if A calls a method, for example, get O: her Ser ver (), on B that "returns"
C? The answer is that A gets a deep copy of the stub B uses to communicate with C. That is, A
now has a direct connection to C, whenever A tries to send a message to C, B is not involved at
all. This is illustrated in Figure 10-7.

Figure 10-7. Improved communication between three applications
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This is very good from a bandwidth and network latency point of view. But it can also be
somewhat problematic. Suppose, for example, B implements load balancing. Since B isn't
involved in the A to C communication, it has no direct way of knowing whether A is still using C, or
how heavily. We'll revisit this in Chapter 16 and Chapter 17, when we discuss the distributed
garbage collector and the Unr ef er enced interface.

10.5 Versioning Classes
A few pages back, | described the serialization mechanism:

The serialization mechanism automatically, at runtime, converts class objects
into metadata so instances can be serialized with the least amount of
programmer work.

This is great as long as the classes don't change. When classes change, the metadata, which
was created from obsolete class objects, accurately describes the serialized information. But it
might not correspond to the current class implementations.

10.5.1 The Two Types of Versioning Problems

There are two basic types of versioning problems that can occur. The first occurs when a change
is made to the class hierarchy (e.g., a superclass is added or removed). Suppose, for example, a
personnel application made use of two serializable classes: Enpl oyee and Manager (a subclass
of Enpl oyee). For the next version of the application, two more classes need to be added:

Cont ract or and Consul t ant . After careful thought, the new hierarchy is based on the abstract
superclass Per son, which has two direct subclasses: Enpl oyee and Cont r act or.

Consul t ant is defined as a subclass of Cont r act or , and Manager is a subclass of

Enpl oyee. See Figure 10-8.

Figure 10-8. Changing the class hierarchy

Person

Emplayee Contractor Employee

»

Manager Consultant Manager

While introducing Per son is probably good object-oriented design, it breaks serialization. Recall
that serialization relied on the class hierarchy to define the data format.



The second type of version problem arises from local changes to a serializable class. Suppose,
for example, that in our bank example, we want to add the possibility of handling different
currencies. To do so, we define a new class, Cur r ency, and change the definition of Money:

public class Mney extends Val ueGbject {
public float anmount;
public Currency typeO Money;

}

This completely changes the definition of Money but doesn't change the object hierarchy at all.

The important distinction between the two types of versioning problems is that the first type can't
really be repaired. If you have old data lying around that was serialized using an older class
hierarchy, and you need to use that data, your best option is probably something along the lines
of the following:

1. Using the old class definitions, write an application that deserializes the data into
instances and writes the instance data out in a neutral format, say as tab-delimited
columns of text.

2. Using the new class definitions, write a program that reads in the neutral-format data,
creates instances of the new classes, and serializes these new instances.

The second type of versioning problem, on the other hand, can be handled locally, within the
class definition.

10.5.2 How Serialization Detects When a Class Has Changed

In order for serialization to gracefully detect when a versioning problem has occurred, it needs to
be able to detect when a class has changed. As with all the other aspects of serialization, there is
a default way that serialization does this. And there is a way for you to override the default.

The default involves a hashcode. Serialization creates a single hashcode, of type | ong, from the
following information:

The class name and modifiers

The names of any interfaces the class implements

Descriptions of all methods and constructors except pri vat e methods and constructors
Descriptions of all fields except pri vate,static,andprivate transient

This single | ong, called the class's stream unique identifier (often abbreviated sui d), is used to
detect when a class changes. It is an extraordinarily sensitive index. For example, suppose we
add the following method to Money:

public bool ean isBi gBucks( ) {
return _cents > 5000;
}

We haven't changed, added, or removed any fields; we've simply added a method with no side
effects at all. But adding this method changes the sui d. Prior to adding it, the sui d was
6625436957363978372L; afterwards, it was - 31442675894497894741.. Moreover, if we had
made | sBi gBucks( ) a protected method, the sui d would have been
4747443272709729176L.



These numbers can be computed using the serialVer

W program that ships with the JDK. For example, these were all
computed by typing seri al Ver

com ora. rm book. chapt er 10. Money at the command
line for slightly different versions of the Money class.
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The default behavior for the serialization mechanism is a classic "better safe than sorry" strategy.
The serialization mechanism uses the sui d, which defaults to an extremely sensitive index, to tell
when a class has changed. If so, the serialization mechanism refuses to create instances of the
new class using data that was serialized with the old classes.

10.5.3 Implementing Your Own Versioning Scheme

While this is reasonable as a default strategy, it would be painful if serialization didn't provide a
way to override the default behavior. Fortunately, it does. Serialization uses only the defaultsui d
if a class definition doesn't provide one. That is, if a class definition includes ast ati c fi nal

| ong named ser i al Ver si onUl D, then serialization will use thatst ati c fi nal | ong value
as the sui d. In the case of our Money example, if we included the line:

private static final long serialVersionU D = 1;

in our source code, then the sui d would be 1, no matter how many changes we made to the rest
of the class. Explicitly declaring ser i al Ver si onUl D allows us to change the class, and add
convenience methods such as i sBi gBucks( ), without losing backwards compatibility.

‘ seri al Ver si onUl Ddoesn't have to be private. However, it
« 4. mustbestatic,final,andlong.

The downside to using ser i al Ver si onUl Dis that, if a significant change is made (for example,
if a field is added to the class definition), the sui d will not reflect this difference. This means that
the deserialization code might not detect an incompatible version of a class. Again, using Vbney
as an example, suppose we had:

public class Mney extends Val ueGbject {

private static final |long serialVersionUD = 1;
protected int _cents;

and we migrated to:

public class Mney extends Val ueObject {
private static final |long serialVersionUD = 1;

public float anobunt;
public Currency typeO Money;

}

The serialization mechanism won't detect that these are completely incompatible classes.
Instead, when it tries to create the new instance, it will throw away all the data it reads in. Recall
that, as part of the metadata, the serialization algorithm records the name and type of each field.
Since it can't find the fields during deserialization, it simply discards the information.

The solution to this problem is to implement your own versioning inside of r eadChj ect () and
writeChject( ).Thefirstlineinyourw iteCbj ect( ) method should begin:

private void witeObject(java.io.CbjectQutputStreamout) t hrows
| CException {



streamwritel nt ( VERSI ON_NUMBER) ;

}

In addition, your r eadObj ect () code should start with a switch statement based on the
version number:

private void readCbject(java.io.ObjectlnputStreamin) throws

| CExcepti on,
Cl assNot FoundExcepti on {
int version = in.readlnt( );

swi tch(version) {
/'l version specific demarshalling code.
-}
}

Doing this will enable you to explicitly control the versioning of your class. In addition to the added
control you gain over the serialization process, there is an important consequence you ought to
consider before doing this. As soon as you start to explicitly version your classes,

defaul tWiteObject( ) anddefaul t ReadObj ect ( ) lose a lot of their usefulness.

Trying to control versioning puts you in the position of explicitly writing all the marshalling and
demarshalling code. This is a trade-off you might not want to make.

10.6 Performance Issues

Serialization is a generic marshalling and demarshalling algorithm, with many hooks for
customization. As an experienced programmer, you should be skeptica—generic algorithms with
many hooks for customization tend to be slow. Serialization is not an exception to this rule. It is,
at times, both slow and bandwidth-intensive. There are three main performance problems with
serialization: it depends on reflection, it has an incredibly verbose data format, and it is very easy
to send more data than is required.

10.6.1 Serialization Depends on Reflection

The dependence on reflection is the hardest of these to eliminate. Both serializing and
deserializing require the serialization mechanism to discover information about the instance it is
serializing. At a minimum, the serialization algorithm needs to find out things such as the value of
serial Ver si onU D, whether wr i t eCbj ect () is implemented, and what the superclass
structure is. What's more, using the default serialization mechanism, (or calling

defaul tWiteChject( ) fromwithinwiteChject( )) will use reflection to discover all the
field values. This can be quite slow.

‘ Setting ser i al Ver si onUl Dis a simple, and often
WA surprisingly noticeable, performance improvement. If you

don'tset seri al Ver si onUl D, the serialization mechanism
has to compute it. This involves going through all the fields
and methods and computing a hash. If you set

seri al Versi onUl D, on the other hand, the serialization
mechanism simply looks up a single value.

10.6.2 Serialization Has a Verbose Data Format

Serialization's data format has two problems. The first is all the class description information
included in the stream. To send a single instance of Money, we need to send all of the following:



The description of the Val uehj ect class
The description of the Money class
The instance data associated with the specific instance of Mbney.

This isn't a lot of information, but it's information that RMI computes and sends with every method
invocation.l2 Even if the first two bullets comprise only 100 extra bytes of information, the
cumulative impact is probably significant.

[71 Recall that RMI resets the serialization mechanism with every method call.

The second problem is that each serialized instance is treated as an individual unit. If we are
sending large numbers of instances within a single method invocation, then there is a fairly good
chance that we could compress the data by noticing commonalities across the instances being
sent.

10.6.3 It Is Easy to Send More Data Than Is Required

Serialization is a recursive algorithm. You pass in a single object, and all the objects that can be
reached from that object by following instance variables, are also serialized. To see why this can
cause problems, suppose we have a simple application that uses the Enpl oyee class:

public class Enpl oyee inplenents Serializable {
public String firstNane;
public String | ast Nane;
Public String social SecurityNunber;

}

In a later version of the application, someone adds a new piece of functionality. As part of doing
so, they add a single additional field to Enpl oyee:

public class Enpl oyee inplenents Serializable {
public String firstNane;
public String | ast Nane;
Public String social SecurityNunber;
Publ i ¢ Enpl oyee nanager;

}

What happens as a result of this? On the bright side, the application still works. After everything is
recompiled, the entire application, including the remote method invocations, will still work. That's
the nice aspect of serialization—we added new fields, and the data format used to send
arguments over the wire automatically adapted to handle our changes. We didn't have to do any
work at all.

On the other hand, adding a new field redefined the data format associated with Enpl oyee.
Because ser i al Ver si onUl D wasn't defined in the first version of the class, none of the old
data can be read back in anymore. And there's an even more serious problem: we've just
dramatically increased the bandwidth required by remote method calls.

Suppose Bob works in the mailroom. And we serialize the object associated with Bob. In the old
version of our application, the data for serialization consisted of:

The class information for Enpl oyee
The instance data for Bob

In the new version, we send:



The class information for Enpl oyee
The instance data for Bob
The instance data for Sally (who runs the mailroom and is Bob's manager)
The instance data for Henry (who is in charge of building facilities)
The instance data for Alison (Director, Corporate Infrastructure)
The instance data for Mary (VP in charge of IT)
And so on...

The new version of the application isn't backwards-compatible because our old data can't be read
by the new version of the application. In addition, it's slower and is much more likely to cause
network congestion.

10.7 The Externalizable Interface

To solve the performance problems associated with making a class Seri al i zabl e, the
serialization mechanism allows you to declare that a class is Ext er nal i zabl e instead. When
hj ect Qut put Streanlsw i t eCoj ect () method is called, it performs the following
sequence of actions:

1. Ittests to see if the object is an instance of Ext er nal i zabl e. If so, it uses
externalization to marshall the object.

2. Ifthe object isn't an instance of Ext er nal i zabl e, it tests to see whether the object is
an instance of Seri al i zabl e. If so, it uses serialization to marshall the object.

3. If neither of these two cases apply, an exception is thrown.

Ext ernal i zabl e is an interface that consists of two methods:

public void readExternal (Objectlnput in);
public void witeExternal (ObjectQutput out);

These have roughly the same role thatr eadhj ect () andw i teCoj ect ( ) have for
serialization. There are, however, some very important differences. The first, and most obvious, is
thatreadExternal () andw iteExternal () are partof the Ext ernal i zabl e interface.
An object cannot be declared to be Ext er nal i zabl e without implementing these methods.

However, the major difference lies in how these methods are used. The serialization mechanism
always writes out class descriptions of all the serializable superclasses. And it always writes out
the information associated with the instance when viewed as an instance of each individual
superclasses.

Externalization gets rid of some of this. It writes out the identity of the class (which boils down to
the name of the class and the appropriate seri al Ver si onUl D). It also stores the superclass
structure and all the information about the class hierarchy. But instead of visiting each superclass
and using that superclass to store some of the state information, it simply calls

wr it eExt ernal () onthe local class definition. In a nutshell: it stores all the metadata, but
writes out only the local instance information.
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This is true even if the superclass implements

W Seri al i zabl e. The metadata about the class structure will
be written to the stream, but the serialization mechanism will
not be invoked. This can be useful if, for some reason, you
want to avoid using serialization with the superclass. For
example, some of the Swing classes,® while they claim to
implement Ser i al | zabl e, do so incorrectly (and will throw
exceptions during the serialization process). If you really need
to use these classes, and you think serialization would be
useful, you may want to think about creating a subclass and
declaring it to be Ext er nal | zabl e. Instances of your class
will be written out and read in using externalization. Because
the superclass is never serialized or deserialized, the
incorrect code is never invoked, and the exceptions are never
thrown.
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[8 3Text Ar ea is one of the most egregious offenders.

10.7.1 Comparing Externalizable to Serializable

Of course, this efficiency comes at a price. Seri al | zabl e can be frequently implemented by
doing two things: declaring that a class implements the Ser i al i zabl e interface and adding a
zero-argument constructor to the class. Furthermore, as an application evolves, the serialization
mechanism automatically adapts. Because the metadata is automatically extracted from the class
definitions, application programmers often don't have to do anything except recompile the
program.

On the other hand, Ext er nal i zabl e isn't particularly easy to do, isn't very flexible, and requires
you to rewrite your marshalling and demarshalling code whenever you change your class
definitions. However, because it eliminates almost all the reflective calls used by the serialization
mechanism and gives you complete control over the marshalling and demarshalling algorithms, it
can result in dramatic performance improvements.

To demonstrate this, | have defined the Ef f i ci ent Money class. It has the same fields and
functionality as Money but implements Ext er nal i zabl e instead of Seri al i zabl e:

public class EfficientMoney extends Val ueChject inplenents
Externali zabl e {
public static final [ong serial VersionUD = 1;
protected int _cents;

public EfficientMney(lnteger cents) {
this(cents.intValue( ));
}

public EfficientMney(int cents) {
super(cents + " cents.");
_cents = cents;

}

public void readExternal (Objectlnput in) throws | OException,
Cl assNot FoundException {



_cents = in.readlnt( );
_stringifiedRepresentation = cents +

cents.";

}

public void witeExternal (ObjectQutput out) throws | OException {
out.witelnt(_cents);
}

}

We now want to compare Money with Ef f i ci ent Money. We'll do so using the following
application:

public class MoneyWiter {
public static void nmain(String[] args) {
witeOne( );
witeMany( );

}
private static void witeOne( ) {
try {
Systemout.println("Witing one instance");
Money noney = new Money(1000);
witeCbject("C\\tenp\\foo", noney);
}
cat ch(Exception e){}
}
private static void witeMany( ) {
try {
Systemout.println("Witing many instances");
ArrayList |istOfMoney = new ArrayList( );
for (int i=0; i<10000; i++) {
Money noney = new Money(i *100);
i st Of Money. add( noney) ;
}
witeCbject("C\\tenp\\foo2", |istOf Money);
}
cat ch(Exception e){}
}

private static void witeObject(String filename, Cbject object)
t hr ows
Exception {

Fi | eQut put Stream fil eQut put Stream = new
Fi | eCut put St rean(fil enane);

Obj ect Qut put St r eam obj ect Qut put St ream = new

oj ect Qut put Strean(fil eCut put Stream ;

long startTinme = SystemcurrentTineMIlis( );

obj ect Qut put St ream wri t eObj ect (obj ect) ;

obj ect Qut put Stream flush( );

obj ect Qut put Stream cl ose( );

Systemout.printin("Tinme: " + (SystemcurrentTimeM I |is(
) - startTine));

}
}
On my home machine, averaging over 10 trial runs for both Mbney and Ef f i ci ent Money, | get
the results shown in Table 10-1.



1 we need to average because the elapsed time can vary (it depends on what else the computer is doing).
The size of the file is, of course, constant.

Table 10-1. Testing Money and EfficientMoney

Class Number of instances File size Elapsed time
Mboney 1 266 bytes 60 milliseconds
Money 10,000 309 KB 995 milliseconds
Ef fi ci ent Money 1 199 bytes 50 milliseconds
Ef fi ci ent Money 10,000 130 KB 907 milliseconds

These results are fairly impressive. By simply converting a leaf class in our hierarchy to use
externalization, | save 67 bytes and 10 milliseconds when serializing a single instance. In
addition, as | pass larger data sets over the wire, | save more and more bandwidth—on average,
18 bytes per instance.

L) , . :
Which numbers should we pay attention to? The single-
ey . instance costs or the 10,000-instance costs? For most

applications, the single-instance cost is the most important
one. A typical remote method call involves sending three or
four arguments (usually of different types) and getting back a
single return value. Since RMI clears the serialization
mechanism between calls, a typical remote method call looks
a lot more like serializing 3 or 4 single instances than
serializing 10,000 instances of the same class.

If I need more efficiency, | can go further and remove Val ueoj ect from the hierarchy entirely.
The Real | yEf fi ci ent Money class directly extends Obj ect and implements
External i zabl e:

public class Real |l yEfficientMney inplenments Externalizable {
public static final |ong serial VersionU D = 1,
protected int _cents;
protected String _stringifiedRepresentation;

public Real | yEfficient Money(lnteger cents) {
this(cents.intValue( ));
}

public Real | yEfficientMney(int cents) {
_cents = cents;
_stringifiedRepresentation = _cents +

cents.";

}

public void readExternal (Objectlnput in) throws | OCException,
Cl assNot FoundException {
_cents =in.readlnt( );
_stringifiedRepresentation = _cents +

cents.";




public void witeExternal (ObjectQutput out) throws | OException {
out.witelnt(_cents);
}

}

Real | yEf fi ci ent Money has much better performance than either Money or

Ef f1 ci ent Money when a single instance is serialized but is almost identical to

Ef fici ent Money for large data sets. Again, averaging over 10 iterations, | record the numbers
in Table 10-2.

Table 10-2. Testing ReallyEfficientMoney

Class Number of instances File size Elapsed time
Real | yEf fi ci ent Money 1 74 bytes |20 milliseconds
Real | yEf fi ci ent Money 10,000 127 KB 927 milliseconds

Compared to Mbney, this is quite impressive; I've shaved almost 200 bytes of bandwidth and
saved 40 milliseconds for the typical remote method call. The downside is that I've had to
abandon my object hierarchy completely to do so; a significant percentage of the savings resulted
from not including Val ueChj ect in the inheritance chain. Removing superclasses makes code
harder to maintain and forces programmers to implement the same method many times

(Real | yEf fici ent Money can't use Val ue(hj ect 's implementation of equal s( ) and
hashCode( ) anymore). But it does lead to significant performance improvements.

10.7.2 One Final Point

An important point is that you can decide whether to implement Ext er nal | zabl e or

Serial i zabl e on a class-by-class basis. Within the same application, some of your classes
can be Seri al i zabl e, and some can be Ext er nal i zabl e. This makes it easy to evolve your
application in response to actual performance data and shifting requirements. The following two-
part strategy is often quite nice:

Make all your classes implement Seri al i zabl e.

After that, make some of them, the ones you send often and for which serialization is
dramatically inefficient, implement Ext er nal i zabl e instead.

This gets you most of the convenience of serialization and lets you use Ext er nal i zabl e to
optimize when appropriate.

Experience has shown that, over time, more and more objects will gradually come to directly
extend Obj ect and implement Ext er nal | zabl e. But that's fine. It simply means that the code
was incrementally improved in response to performance problems when the application was
deployed.

Chapter 11. Threads

Threads are simple. They allow a program running on a single computer to perform more than
one task at a time in much the same way that an operating system allows more than one program
to run at the same time. Using threads, however, can involve some subtlety. The Java
programming language has extensive support for threading, both in the programming language




and in the libraries that come with the JDK. In this chapter, we'll discuss why threading is
important in distributed programming and cover the fundamentals of using threads in Java.

11.1 More Than One Client

In our previous discussions on deciding on a server, | talked briefly about several issues related
to scalability. The goal of those discussions was simple: we wanted to guarantee that our
systems will be able to simultaneously support many different users, all of whom are attempting
to perform different tasks.

But those discussions carefully dodged a very difficult question: how do we build a server that can
handle more than one request at once? Consider the bank system we built in Chapter 9. If we
take the existence of multiple clients into account, we wind up with the architecture diagram

shown in Figure 11-1.

Figure 11-1. Architecture diagram for the bank system
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This has an important implication: the possibility exists that two separate clients will receive stubs
for the same instance of Account (e.g., they request the same server from the registry) and then
simultaneously attempt to perform banking operations on it. This could be undesirable, for
example, if both clients attempt to withdraw money from the same account at the same time.

This seems like an easily solved problem. It's analogous, in the real world, to having more than
one client in the bank at the same time. In the real world, the clients form a line and wait until a
teller becomes available. And, at first glance, that seems like what we did with the socket-based
printer server. Recall how we implemented the method that accepted print requests:

public void accept( ) {
while (true) {
Socket clientSocket = null;
try {
client Socket = serverSocket.accept( ); //
bl ocki ng cal |
processPrint Request (cl i ent Socket);

}

When one client connects, the request is processed, and our code resumes listening for other
connections. Consequently, while a print request is processed, all the other print requests simply
wait. The requests are trapped in the operating-system layer and never even get to the server
until the server is ready to handle them.

However, this similarity is deceptive. There are two crucial differences between what happens in
the bank and what we implemented. The first is that we never really implemented any sort of
"next in line" functionality. That is, our socket-based printer server doesn't guarantee a first-come,
first-served policy (unless the operating system does). Moreover, if a request is complex and ties



up the printer server for a significant period of time, most of the client requests will simply time
out.

The second difference is similar: the server offers no feedback. In the real world, you can see
how long the line is, and how fast the line is moving. Based on that information, you can decide to
do something else. The socket code simply offers you the opportunity to wait, without knowing
how long you'll wait or whether you'll eventually time out.

In general, the "put all the clients in a queue solution" isn't even a good policy in the real world.
Consider our real-world bank example and suppose that the following situation occurs:

Mr. Jones steps up to the teller's window. He attempts to withdraw $100,000, a
sum large enough to require a branch manager's approval before being
processed. The branch manager, however, has stepped out to the corner store to
buy some cigarettes.

What happens in the real world in this case? The teller would ask Mr. Jones to stand to the side,
promising that as soon as the manager returns and approves his request, he will handle his
business. The teller would then proceed to handle the next customer in line. Mr. Jones might be a
little unhappy with this delay, but at least the other people in line won't have to wait for the branch
manager as well.

We can translate this scenario into computer terms:

A client makes a request on a remote server that requires the use of a currently

unavailable (scarce) resource. Rather than blocking all other clients from making
requests of the server, the current client's request is postponed, and other client

requests are handled until the resource becomes available.

This might seem like a contrived example, but consider our printer server again. Suppose that a
client submits a complex 37-page document that will take 11 minutes to print. The "wait-in-line"
solution then says: no one else can submit print jobs for the next 11 minutes. What we'd really
rather have happen is:

1. The first client attempts to submit the print job.
2. The server accepts the print job and starts printing the document.
3. The second client submits its print job.

4. The server accepts the second print job but also informs the second client that the
current wait is rather long, giving the client an estimate as to when the printed document
will be available.

5. The client can then monitor the printer's status, sending more method calls to the printer
while the printer is still printing other documents, and perhaps cancel its request.

Nailing this down a little further, what we really want in this scenario is an implementation of the
following rough description:

When a print request is received, take the entire document and put it into a print
gueue on the server machine. Immediately return to handle the next remote
method call. At the same time, since marshalling and demarshalling a document
can be a lengthy process, and since the document may take a long time to be
sent over the network, continue to simultaneously accept other documents and
respond to method calls that are querying the server's status.



The second part of this description ("At the same time...") may still seem a little unmotivated. Why
do we need to be able to accept more than one document simultaneously? The reason is that our
application is a distributed application. Network latency and partial failure can cause difficulties,

as in the following scenario:

Bob is working from home this morning on an important presentation. He puts the
finishing touches on it, connects to the Internet, and sends the document to the
company printer. He then heads out for lunch, planning to pick up the printed
document later in the day.

In this scenario, network latency can cause the printer to become unavailable for long periods of
time. Bob's presentation is probably quite large. And sending it over the Internet, from a dialup
connection, might take a long time. If we don't insist that the printer handle simultaneous
connections, then while Bob is sending the document, the printer will be idle and not accept other
documents. Not only do we have the feedback problems we mentioned earlier (i.e., other clients
don't have any idea when, and if, they will be able to submit documents), this is also an inefficient
use of the printer.

The partial failure scenario causes a similar problem. Bob's connection could go down for a little
while before the printer server realizes anything is wrong. In which case, not only does the printer
server not accept documents, it no longer receives Bob's print request.

As you can see, the ability to service requests from more than one client, and to do so at the
same time, is crucial in the world of distributed applications. And the way it is done is by the use
of threads.™

[ »Thread" is shorthand for "thread of execution.” With the exception of overly zealous undergraduates,
very few people use the full name.

11.2 Basic Terminology

To understand threads, we need to step back for a moment and recall some basic ideas from
computer science. In particular, we need to talk for a moment about the stack and the heap.

‘ Readers who feel comfortable with the basic concepts that
W 4. underly threading might want to jump ahead to Section
11.2.5.

11.2.1 The Calling Stack

A stack is a data structure that serves as a container. You can insert and remove items from a
stack. The only restriction is that the only item that can be removed is the item that was most
recently inserted. Stacks are often visualized as a pile of items. You insert items? by placing
them on the top of the stack; you can remove only the item on top of the pile. See Figure 11-2.

[21 These items are often called "stack frames." | will use the terminology interchangeably.

Figure 11-2. The calling stack
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While running, a program maintains a calling stack of methods that it is currently "in." Consider
the following code:

private class GetBal anceAction inplenments ActionListener {
public void actionPerformed(Acti onEvent event) {

try {
get Account ( );
reset Bal anceField( );
rel easeAccount( );

}

When act i onPer f orned( ) is called, the top element of the stack corresponds to the
actionPerfornmed( ) method. When get Account () is called, information corresponding to
get Account () is placed on top of the calling stack. When get Account () returns, the stack
frame corresponding to get Account () is removed from the calling stack, and the information
corresponding to act i onPer f or med( ) is once again at the top of the calling stack. Most Java
programmers are familiar with the depiction of a calling stack shown in Figure 11-3.

Figure 11-3. An exception stack trace
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Stack traces are one of the single most useful debugging
w 4. tools around; they're often very useful in tracking program
flow even when an exception hasn't been thrown. The stack
trace shown earlier was generated by adding ( new




Throwabl e()). printStackTrace( ); tothe bank
example's client application.

This stack is important because it lets us attach information to the program's flow of execution. In
particular, it is useful to think of the stack as containing the following information:

The arguments to the method being called

Primitive arguments are passed by value, and objects are passed by reference. This means that
if you pass an integer into a method, and the method changes the value, the change isn't visible
to the calling method. However, if you pass an object to a method, any changes to the object are
visible to the calling method.

Locally scoped variables with primitive types.

When ani nt orfl oat is declared within a method, that variable is accessible only while that
particular method is on top of the stack. Furthermore, locally scoped variables are accessible by
only one particular stack frame. If a method appears twice in the calling stack, there are two
distinct and independent sets of local variables.

Synchronization information.

| haven't explained this yet. And, technically speaking, this information isn't stored in the stack
frames. But, nonetheless, it is often useful to associate synchronization information with the
method with which it is acquired (and eventually released).

11.2.2 The Heap

We explicitly limited the stack information to locally scoped primitive variables. One reason for
this is because objects in Java never have local scope. That is, the Java VM stores all the objects
for a single application in a single data structure, often referred to as the application's heap. Since
all stack frames have access to the application heap, storing objects in a single heap makes it
easier to return objects from method calls.

In other languages, care has to be taken as to whether an object was allocated on the stack or on
the heap. Objects allocated on the stack have local scope; they are part of the stack frame and
will be thrown away when the stack frame is removed from the calling stack. That is, limiting the
scope makes memory management easier.

Objects allocated on the heap, on the other hand, can be referenced from any stack frame and
hence can be used as return values from method calls. But figuring out when the object is no
longer useful and can be destroyed is much more difficult. Java solves this problem by making
garbage collection, which is the automatic cleanup of the heap to remove objects that are no
longer referenced, part of the basic language specification.

11.2.3 Threads
A thread is basically two things, plus some glue:
A calling stack

A thread-specific cache that contains local copies of some of the heap objects that | will
sometimes, in a flagrant abuse of terminology, call the local heap.



The idea is simple: if you want a program to perform more than one operation at a time, you
ought to keep the information for each thing the program does. A thread is simply the name for
the data structure that does this.

There is a slight problem here. Namely, in a single-processor
machine, how can a program be capable of doing more than
one thing at a time? The answer is that either the JVM (via
so-called green threads) or the operating system (via native
threads) is responsible for making sure that each thread is
occasionally active. That is, either the JVM or the OS
manages the threads and makes sure that each thread can
use a percentage of the processor's time. The process of
doing this is often called time-slicing or context-switching;the
piece of code that does it is often called the thread-scheduler.
Time-slicing is a rather expensive process. The price you pay
for doing two things at once is the cost of switching between
the associated threads and, occasionally, of copying the local
caches to the heap.
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All of this terminology is conveniently, if slightly inaccurately, summed up in the JVM's internal
structure illustrated in Figure 11-4.

Figure 11-4. Internal structure of the JVM
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11.2.4 Mutexes

The final piece of threading terminology we need is the idea of a mutex variable, or mutex.2! A
mutex, short for "mutual exclusion,” is a locking mechanism. Mutex variables have the following
three properties:

BI Mutexes are also frequently referred to as locks, and I will occasionally do so when the meaning is clear.
However, because there are many possible meanings for "lock," I'll stick with mutex most of the time.

1. They support at least two operations: | ock and unl ock (often referred to as get and
rel ease).

2. Both | ock and unl ock are unary operations. That is, at most, one call to | ock will
succeed. After which, all calls to | ock will fail until the thread that locked the mutex
variable calls unl ock.

3. They are global in scope. That is, mutex variables aren't copied into local caches of
threads.

11.2.5 Applying This to the Printer Server



Let's return to our description of the printer server for a moment. We said we wanted the following
behavior:

When a print request is received, take the entire document and put it into a print
gueue on the server machine. Immediately return to handle the next remote
method call. At the same time, since marshalling and demarshalling a document
can be a lengthy process, and since the document may take a long time to be
sent over the network, continue to simultaneously accept other documents and
respond to method calls that are querying the server's status.

This can be split into three simultaneous tasks:

1. Actual printing, which removes documents from the printer queue and sends them to the
printer

2. Answering questions about the status of the printer server
3. Receiving documents
And this naturally leads to a thread-based decomposition of the application:

A single thread for actual printing. Because you can't simultaneously print more than one
document, more threads would simply cause problems.

A single thread for answering questions about the status of the printer server. This is
likely to be a really fast operation, and there aren't going to be many questions in a
typical use scenario. Since threads do cost us resources, we should probably have only a
single thread here, at least until we discover we need more.

Many threads for receiving documents. Since you need to receive more than one
document at once, and because receiving a single document isn't likely to stress the
server (the bottleneck is much more likely to be either the client or the network between
the client and the server), you should allocate multiple threads for receiving documents.

The last point is slightly deceptive. Even if the server was a bottleneck, and even if introducing
threading to respond to multiple print requests at once substantially slowed down the server, it's
still almost always a good idea to do so. Basically, the decision boils down to choosing one of the
following alternatives:

The faster application

Uses only a single thread to receive documents. There's less context-switching going on,
and the overall amount of processor time devoted to receiving documents is fairly high.
However, if a client tries to send a document, and the server is busy, the client simply
waits with no feedback.

The slower application

Uses multiple threads to receive documents. There's more context-switching going on,
and, subsequently, there's less processor time devoted to receiving documents. On the
other hand, the client application can display a progress bar to let the user know what
percentage of the document has been transmitted.

While this may not seem terribly relevant with a simple printer server, this particular design trade-
off is ubiquitous in distributed computing. You can maximize application performance, or you can
trade some performance in order to tell the user what's going on. It might seem counterintuitive;
the faster application is the less-responsive one, but there you have it.

11.3 Threading Concepts



Writing a multi-threaded program is hard.
Writing a correct multi-threaded program is impossible.
—seen in an email signature

So far, this all seems reasonable. A program is attempting to do several things at once. It's
connected to a set of clients and devices. Since the clients and devices are acting independently
of each other, it makes sense that the program's runtime structure reflects this. Threads are
simply a nice abstraction that helps keep the clutter down. Why, then, do threads have such a
bad reputation? Why do most people frequently make mistakes when they try to write
multithreaded code?™!

1 The author included.
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The vocabulary associated with threading can be confusing.
In this book, | use the term multithreaded code to refer to
code that necessarily has several threads running through it
and still executes correctly. | call code that can have multiple
threads running through it, but doesn't necessarily involve
more than one thread, threadsafe. Furthermore, | will
frequently say that a thread is in an object or method, or
active in an object or method. This simply means that the top
frame of the calling stack involves that particular instance and
method.
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The problem with threads is that they can interfere with each other. Consider our bank account
example again. Account | npl contains the following code:

public class Account | npl extends Unicast RenoteCbj ect inplenments Account
{
private Mney _bal ance;
public Account | npl (Money startingBal ance) throws
Renot eException {
_bal ance = startingBal ance;
}

public Money getBal ance( ) throws RenoteException {
return _bal ance;
}

public void nmakeDeposit(Mney ampunt) throws RenoteException,
Negat i veAnount Excepti on {
checkFor Negat i veAnount (anount) ;
_bal ance. add(anount) ;
return;

}

public void nakeWt hdrawal (Money anount) throws RenoteException,
Overdraft Exception, NegativeAmunt Exception {
checkFor Negat i veAnount (anount) ;
checkFor Overdraft (anount);
_bal ance. subt ract (anmount) ;
return;



}

Our banking application was structured as a collection of many instances of Account | mpl .
These instances were bound into the registry as independent servers but ran inside a single JVM.
Suppose we tried to make this a multithreaded application by simply adding some request-
processing threads. In this scenario, each request-processing thread can handle a request from a
client. That is, when a client invokes a method on a server, the request is handled by one of our
request-handling threads. Problems can occur when two or more clients try to modify the same
account. Consider the following scenario:

Rachel and Mary are celebrating their fifth anniversary together. Rachel decides
to buy Mary a diamond necklace as a surprise gift. Meanwhile, Mary decides to
surprise Rachel with a weekend ski vacation. Because they both work in the
computer industry, and hence have very little free time, they wind up buying the
gifts during their lunch hours. But first, each of them heads to an ATM to get
some cash.

What happens? Well, if they own a joint account, we could very well see the following sequence
of events:

1.

Mary's client application asks what the account balance is. As a result, the thread that
processes Mary's requests makes a copy of the appropriate instance of Account | npl
and puts it in the thread's local cache.

Rachel's client application asks what the account balance is. As a result, the thread that
processes Rachel's requests makes a copy of the appropriate instance of
Account | npl and puts it in the thread's local cache.

Mary withdraws $1,200 of the $1,400 in the account. This transaction is processed by her
request-handling thread, using the cached copy of the instance of Account | npl .

Rachel withdraws $900 of the $1,400 in the account. This transaction is processed by her
request-handling thread, using the cached copy of the instance of Account | npl .

Eventually, both threads flush their caches. At the end of all of this, Mary and Rachel
have withdrawn $2,100 from the account, and the account has either $200 or $400 left in
it (either result is erroneous).

Note that while the problem is easy to understand because of the caches, it isn't actually caused
by the cache. Even if there was only one instance of Account | npl that both threads were
using, a similar problem could easily occur. For example:

1.
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Mary starts to withdraw $1,200 of the $1,400 in the account. The thread that services her
request gets part of the way through before being switched out by the time-slicer. In
particular, it gets past the line checkFor Overdraft( ) and is about to call

_bal ance. subtract ( ) when another thread becomes active:

public void nmakeWt hdrawal (Money anount) throws RenpteException,
Overdraft Exception, NegativeAnmount Exception {
checkFor Negat i veAnount (anmount) ;
checkFor Overdraft (anount);
_bal ance. subtract (amount); // (*) calls the method
bel ow.

}

return;



10.// next nmethod is from Money object. This is the nethod called by
t he previous
11.// line marked (*).

12.
13. public void subtract(Mney ot her Money) {
14. _cents --= otherMoney.getCents( );
15. }

}

16. The thread that becomes active is the one handling Rachel's request to withdraw $900.
This transaction completes, and bal ance is now $500.

17. Mary's request now completes (since bal ance. subtract ( ) doesn't actually validate
its argument). At the end of this, Mary and Rachel have withdrawn $2,100 from their
account, and their account shows a balance of $-700.

~—=am Actually, the bank example already is a multithreaded
application. RMI automatically allocates a set of threads
(roughly, one per open socket), which listen for remote
method invocations. The scenario | described can actually
happen if you try to run the bank example, as it was
implemented in Chapter 9, with more than one client.

As these examples show, what is needed is a way to coordinate the actions undertaken by
distinct threads. In particular, we need four pieces of functionality:

A way to control individual threads
A way to coordinate thread activities
A way to manage a thread's cache
A way to assign priorities to threads

I'll now drill down on each of these four categories, explaining exactly what they mean and why
they're required. Then, in the next section, I'll explain how Java implements each of these pieces
of functionality.

11.3.1 Controlling Individual Threads
A thread has a lifecycle. From when it is first created until it is destroyed, it is in one of the
following states:
New
The thread exists, but hasn't begun to do anything.
Running and active

A thread is running if it is in the middle of performing operations. It is active if it is running
and actually occupies a processor at the current time. We also refer to this state as,
simply, active.

Running and inactive

A thread is running and inactive if it is in the middle of performing operations but does not
actually occupy a processor at the current time. We also refer to this state as, simply,
inactive.



Suspended

A thread is suspended if it cannot simply start processing. That is, it isn't running (and
wouldn't be able to use the processor even if it were given some CPU time). But it will, at
some point in the future, run once again.

Dead
A thread is dead if it has no further operations to perform.

It is very hard, inside a program, to distinguish between active
w 4. and inactive threads. The problem is this: suppose you had

“  some way of determining whether a thread was active. By the
time you got around to taking action based on this
information, the answer might very well have changed.

From the point of view of thread management, the important distinction is between running and
suspended. The three operations you need most are:

Suspend a thread for a period of time and then have it resume running. This is frequently
useful when applications are polling a source of information. For example, an email client
will occasionally check to see whether more email has arrived. It doesn't need to do so
very often, so suspending the thread that checks for new email can be a useful thing to
do.

Suspend a thread until a particular mutex becomes available, and then have it grab the
mutex and resume running. This is exactly what we want for our bank example.

Suspend a thread until another thread has died. This is often used for reporting back on
the outcome of a task. For example, generating a monthly report on a database might
involve two threads: one that actually does the computation and another that waits for
that thread to finish so it can tell the world that the monthly report is available.

11.3.2 Coordinating Thread Activities

An operation is sometimes called an atomic operation if it can't be interrupted. That is, if a thread
is active and performing the operation, it cannot be deactivated until the operation is completed.
In a single-processor machine, this also means that no other thread can become active until the
operation is completed. The Java programming language provides a small set of atomic
operations. Many of the atomic operations deal with things such as variable assignments. For
example, a thread executing the following line of code cannot be deactivated until the assignment
is complete:

int i =7;
You can see why this needs to be atomic; if a thread begins to set a variable, it should finish
doing so before relinquishing the processor.

The other important atomic operations involve mutexes. Getting or releasing a mutex is
guaranteed to be atomic.

People new to threading often think that most problems can be solved if we make other, larger
operations atomic. To see why this isn't the case, consider the case of Mary and Rachel
performing multiple withdrawals. If we had an at oni ¢ keyword, the code might be:

public atom c void nakeWthdrawal (Money anount) throws RenoteException,
Overdraft Exception, NegativeAnount Exception {
checkFor Negat i veAnount (anmount) ;



checkFor Overdraft (anount);
_bal ance. subtract (amount); // (*) calls the nmethod bel ow.
return;
}
This only solves the problem while the code is running on a single-processor machine. As soon
as the server moves to a multiple-processor computer, the problem returns. Mary's request is
handled in one processor, and Rachel's is handled in another. Neither thread gets deactivated
and too much money is withdrawn.

Moreover, making operations atomic has a fairly strong practical limitation—if a thread cannot be
deactivated, then nothing else can run on a processor. This means that if an operation can block,
or might take a long time, it should not be atomic.

The key point is that atomic operations "lock" a processor and guarantee that the processor will
do nothing else until the operation completes. But what we really need is a way to "lock" a piece
of program state and guarantee that no other thread will be able to modify that piece of program
state. Traditionally, such locks are created through the use of mutex variables.

Mutex variables allow a thread to prevent other threads from interfering with it. Suppose the
withdrawal code in our bank example had the following logic:

1. Get a mutex associated to the account. If we can't, wait until we can.
2. Make the withdrawal.
3. Release the mutex.

Now, we know that at most one thread will be performing a withdrawal on any given bank account
at a time because the withdrawing thread will lock the other threads out. If we add similar logic to
the other operations, we guarantee that only one thread is performing an operation on a specific
account at any given time. Let's examine each of these in more detail.

11.3.3 Cache Management

Unfortunately, this isn't quite enough to prevent data corruption. Consider Mary's scenario again.
It began with:

Mary's client application asks what the account balance is. As a result, the thread
that processes Mary's requests makes a copy of the appropriate instance of
Account | npl and puts it in the thread's local cache.

If we add in locking functionality, what we end up with is the following guarantee:

As long as the thread that processes Mary's requests is performing a banking
operation on its local cached copy of the instance of Account | npl , no other
thread may perform a banking operation on other local cached copies of the
same instance of Account _| npl .

That is, other threads are still free to make copies of Account | npl . When the lock becomes
available, they will still modify their local copies.

In order to get around this problem, we also need a way to manage the thread's local cache. That
is, what we really want is for our withdrawal logic to look like the following:

1. Get the mutex associated with the account. If we can't, wait until we can.

2. Refresh our copy of Account | npl .



3. Make the withdrawal.
4. Flush our copy of Account | npl back to the heap.
5. Release the mutex.

If we could do these, we would completely eliminate our multiple-withdrawal problems.
11.3.4 Assigning Priorities to Threads

The last thing on our wish list is a way to assign priorities to threads. It is simply the case that
some tasks are more important than others. The thread-scheduler is responsible for making sure
each thread gets processor time so each task can move forward. However, it is not required to
give each thread equal time in the processor. Higher-priority threads can get either larger time
slices or more time slices, depending on the implementation of the scheduler.

There are usually a number of background threads running in any distributed application to
handle "maintenance functions," such as garbage-collection or rebuilding indices into a data
structure.’™ And there are high-priority threads that service actual requests from clients. What
winds up happening is:

51 For example, rebalancing a b-tree, an operation that's fairly expensive, can be done incrementally and is
rarely urgent—a perfect thing to do in the background.

When there are no client requests, the high-priority threads become inactive, and the low-
priority threads get the lion's share of processor time.

When there are client requests, they get most of the processor time because they have
higher priority.

11.4 Support for Threads in Java

Now that we've discussed why we need threads, and what sort of control we need over them, we
can discuss how to use threads in Java. Java is almost unique among programming languages in
that it has explicit, and fairly extensive, support for threading built into the language. This support
is in three main forms:

A mutex variable is associated with every object. Java provides the synchr oni zed
keyword as a way to lock and unlock these mutex variables.

In addition, there is a set of methods defined on Cbj ect that support more finely grained
coordination of related actions taken by threads.

A set of classes, defined in the | ava. | ang package, that enables programmers to
create new threads and manage their lifetimes.

There are other forms of support for threading in Java. One
w 4. exampleisthe vol at i | e keyword. We don't cover these

~ other threading mechanisms because this is a chapter on
threading, not a book on threading. The preceding forms of
support constitute the core of what you need to know in order
to write threadsafe code.

11.4.1 Objects Have Associated Mutex Variables



Every instance in a Java program has an associated lock, including class objects that are
instances of | ava. | ang. Cl ass. In order to request a lock, you simply use the synchr oni zed
keyword, as in the following code snippet:

/'l decl arations

bj ect foo;

...

synchroni zed(foo) {

/'l processing that occurs once the lock is granted

}

That is, you create a synchronized block by using the keyword synchr oni zed in conjunction
with a particular object instance. When this code is executed, the executing thread will attempt to
get the lock associated with f 0o. If the lock is available, the thread will get the lock and then
proceed to execute the code inside the synchronized block. When the thread exits the
synchronized block, it will release the lock associated with f 0o.

If, however, the mutex is not available (e.g., if some other thread has already locked f 00), a
thread attempting to execute this code will block on the line:

synchr oni zed(f 00);

and wait until the lock becomes available. Once the lock becomes available, the thread will
proceed as in the previous case (e.g., it will lock f oo and then execute the synchronized block of
code).

So, for example, we can make sure that only one thread is executing mekeW t hdrawal () ona
particular account by changing the code slightly:

public void nmakeWt hdrawal (Money anount) throws RenbpteException,
Overdraft Excepti on,
Negat i veAnount Exception {
synchroni zed(this) {
checkFor Negat i veAnount (anmount) ;
checkFor Overdraft (anount);
_bal ance. subtract (amount); // (*) calls the nethod
bel ow.
return;

}

Of course, there's no requirement that methods synchronize using the instance variable t hi s. If
we want only one withdrawal to occur at a time, regardless of which account is accessed, we
could synchronize on the class variable, as in the following example:

public void nakeWt hdrawal (Money anount) throws RenoteException,
Overdraft Excepti on,
Negat i veAnount Exception {
synchroni zed(this.getC ass( )) {
checkFor Negat i veAnount (anount) ;
checkFor Overdraft (anount);
_bal ance. subtract (amount); // (*) calls the method
bel ow.
return;

}

Keep in mind that, even as the thread is executing the checkFor Over Draft () method, it still
keeps the lock within the synchronized block associated with nekeW t hdr awal () . Locks are
relinquished only when code exits synchronized blocks, either normally or via exceptions. This is



why | said earlier that it's useful to think of synchronization information as belonging to the stack
frames.

Methods can also be declared as synchronized methods. Declaring a method as synchronized is
equivalent to placing it inside a single synchronized block, which is synchronized on t hi s. The
following code is equivalent to the previous example that used synchroni zed(t hi s):

public synchroni zed voi d makeW t hdr awal ( Money anount) throws
Renot eExcepti on,
Overdraft Exception, NegativeAnount Exception {
checkFor Negat i veAnount (anmount) ;
checkFor Overdraft (anount);
_bal ance. subt ract (anount) ;
return;

5 Synchronization is not part of the method signature. A
method can be synchronized in a superclass and not
synchronized in a subclass. Similarly, methods declared in an

interface cannot be declared synchronized.

There's a very important point here: synchronization only affects the code in synchronized blocks
or inside a synchronized method. Suppose, for example, we synchronize two out of the three
public methods in Account | npl , as in the following declarations:

public Money getBal ance( ) throws RenpteException
public synchroni zed voi d nmakeDeposit(Mney anmount) throws
Renot eExcepti on,

Negat i veArmount Excepti on
public synchronized void nakeWthdrawal (Money anount) throws
Renot eExcepti on,

Overdraft Exception, NegativeAnount Exception

This has the following effects:
Any number of threads can be executing the get Bal ance( ) method at any time.

There are no restrictions whatsoever on the number of threads that can execute
get Bal ance( ).

At most, one thread can be executing either the nakeDeposit( ) or
makeW t hdrawal () methods.

If a thread is executing makeDeposi t (), then no thread can execute nake-
Wt hdrawal ( ).

If a thread is executing nekeW t hdr awal (), then no thread can execute nake-
Deposit( ).

11.4.1.1 The effects of synchronization on the thread's local cache
Synchronizing on an object also affects a thread's local cache. Any time a thread synchronizes on

an object, its cache is partially invalidated. That is, the first time a thread accesses a variable after
acquiring a lock, it must load or reload that variable from main memory.



Unlocking has a similar effect. Any time a thread releases a lock, any variables in its local cache it
has changed since acquiring that particular lock must be flushed to the main heap. It is important
to note that this flushing occurs before the lock is released.

Unfortunately, this isn't quite as powerful as you might think. If two threads synchronize on
different objects, then they might interfere with each other. Suppose, for example, we
implemented a simple logging facility in our bank example. All this does is increment a static
variable that tells us the number of transactions we handled:

public class Account_Inpl extends Uni cast Renot eCbj ect inplenents Account

{

private static int _nunberO Transactions = 0;
private Mney _bal ance;

public syncrhoni zed voi d makeDeposit(Mney anount) throws
Renot eExcepti on,
Negat i veAnount Excepti on {
checkFor Negat i veAnount (anount) ;
_bal ance. add(anount) ;
_nunber O Transact i ons++;
return;

}

Suppose two customers made deposits to different accounts. We know that:

Customer 1 synchronized on her account and then accessed
_nunber O Transact i ons before releasing the lock.

Customer 2 synchronized on his account and then accessed
_nunber O Transact i ons before releasing the lock.

But we don't have any particular guarantees about the order in which the operations executed.
Suppose before either transaction that nunber O Tr ansact i ons was 13. The following
sequence might have occurred:

1. The thread associated to customer 1 synchronized and loaded the value of nunt
ber OF Transact i ons (13) into its local cache.

2. The thread associated to customer 2 synchronized and loaded the value of nunt
ber OF Transact i ons (13) into its local cache.

3. The thread associated to customer 1 finished executing mekeDeposi t () and, before
releasing its lock, stored the value of the local copy of nunber O Transact i ons (14)
out to the main heap.

4. The thread associated to customer 2 finished executing mekeDeposi t () and, before
releasing its lock, stored the value of the local copy of numnber Of Tr ansact i ons (14)
out to the main heap.

Another, equally possible, sequence:

1. The thread associated to customer 1 synchronized and loaded the value of nun+
ber OF Transact i ons (13) into its local cache.

2. The thread associated to customer 1 finished executing mekeDeposi t () and, before
releasing its lock, stored the value of the local copy of nunber Of Transact i ons (14)
out to the main heap.



3. The thread associated to customer 2 synchronized and loaded the value of nunt
ber OF Transact i ons (14) into its local cache.

4. The thread associated to customer 2 finished executing mekeDeposi t () and, before
releasing its lock, stored the value of the local copy of nunber O Transact i ons (15)
out to the main heap.

In one case, number O Transact i ons increments correctly. In the other, it does not. The point
is that if threads share state, they need to coordinate their caches. The only way for them to do
this is to synchronize on the same lock. For example, we could replace the line:

_nunber O Transact i ons++;
with an invocation of the static method i ncr enent Nunber Of Transactions( ) :

public static synchronized void increnment Nunber Of Transactions( ) {
_nunber O Transact i ons++;
}

public synchroni zed voi d nakeDeposit(Money anount) throws
Renot eExcepti on,
Negat i veAnount Excepti on {
checkFor Negat i veAnount (anount) ;
_bal ance. add( anount ) ;
i ncrenment Nunmber OF Tr ansactions( ) ;

return;
}
L) . . . .
Declaring a static method as synchronized simply means that
phy s it synchronizes on the lock associated with the class object

(rather than on the lock associated with a particular instance).
This is a very useful way of coordinating behavior between
instances of the same class.

Now, each thread synchronizes on the class object just before incrementing nun+

ber OF Transact i ons. This means that each request-handling thread is forced to (re)load
_nunber O Transact i ons after obtaining the lock associated with the class object. Moreover,
they write the value out to the main heap before relinquishing the lock associated with the class
object.

This extra layer of synchronization guarantees that nunber O Tr ansact i ons will be correctly
incremented.

11.4.1.2 Acquiring the same lock more than once

All of the previous analysis has been about conflicting threads; if a thread synchronizes on an
object, then no other thread can synchronize on that object, and hence, we can coordinate
multiple threads.

A single thread, however, can acquire the same lock more than once. Suppose, for example, we
made checkFor Negat i veAmount () a synchronized method, as in the following code snippet:

public synchroni zed voi d makeDeposit(Mney anount)
t hrows Renot eException, NegativeAnount Exception {
checkFor Negat i veAnount (anmount) ;
_bal ance. add(anount ) ;
_nunber O Transact i ons++;



return;

}

public synchroni zed voi d checkFor Negati veAvbunt (Money anount) throws
Negat i veAnount Excepti on {
/1

}

This will work. What's more, the thread executing naekeDeposi t () will keep the lock until
makeDeposi t () is exited. Java's locking mechanism keeps a reference count of the number of
times a lock is acquired by a particular thread and only releases the lock when the count returns
to 0.

11.4.2 Thread Manipulation Methods Defined on Object

In addition to the synchr oni zed keyword, the core Java libraries include a number of methods
defined on Chj ect to help manage locks and coordinate the actions of multiple threads. These
methods are:

public void notify( )

public void notifyAl( )

public void wait( )

public void wait(long tineout)

public void wait(long tinmeout, int nanoseconds)

All of these methods require the code calling them to already have the lock associated with the
instance on which they are being called. For example:

foo.wait( );

will throw an exception unless the call is made by a thread that currently owns the lock associated
with f 00. This is because these methods are used for interthread communications based on an
event model. This event model is easily described: some threads wait for an event; other threads
notify the waiting threads that the event has occurred.

11.4.2.1 The wait methods

With the wait methods, a thread waits to be notified that an event has occurred. In the no-
argument version of wai t (), a thread can wait forever. Furthermore, the wait methods actually
relinquish the lock and proceed to block. That is, the following code will block immediately after
the wai t () and not execute pri nt | n until later, when the thread resumes (we'll discuss how
this happens later in the chapter):

synchroni zed(this) {
wait(  ); /1 bl ocked
Systemout.println("W don't get here right away");

}

In the versions of wai t () that take arguments, the thread will wait for, at most, the duration of
the arguments. After which, it will attempt to reaquire the lock it gave up when it called wai t (),
and continue processing.

In either case, whether because it was notified or because time expired, the thread will then
attempt to reacquire the lock; because it is inside a synchronized block, it needs to acquire the
lock to continue processing. This means that, after waiting, the thread will block until the lock
becomes available, just as if it had recently executed synchroni zed( ).

e The wait methods surrender only the locks associated with
the instances on which thev called wai t ( ). If a thread has




the instances on which they called wai t ( ). If a thread has
locks associated with 14 different instances and calls wai t (
) on one of those instances, the sleeping thread still holds on
to the other 13 locks.

11.4.2.2 The notify methods

With the notify methods, a thread sends a simple event ("Wake up!") to one or more threads that
have previously called one of the wai t ( ) methods on the same instance. noti fy( ) wakes
up a single waiting thread; not i f yAl | () wakes up all waiting threads.

All of the awakened threads immediately block because the thread that called the notify method
still holds the lock associated with the instance. Until the thread that called notify relinquishes the
lock, the awakened threads will not be able to continue processing.

Notify Versus NotifyAll

People frequently wonder when to use not i fy( ) and when to use
noti fyA I ( ).Bothare used to announce that an event has occurred
to waiting threads. Since not i fy( ) wakes up a single waiting thread,
and not i fyAll () wakes up all the waiting threads (most of which
immediately block), it's clearly more efficient to use not i fy( ).
However, there are situations when not i f yAl | () is absolutely the
correct choice.

One example is when there is more than one type of thread that needs to
know about an event. For example, in a distributed chat room
application, we might make the following design decisions:

1. There is a single centralized Wi t eBoar d object, which contains
the transcript of the conversation.

2. Every remote participant is assigned a thread that sends new
lines of text.

3. Posting a new piece of text involves locking the whiteboard,
adding the text to the whiteboard and then calling not i f yAl | (
) . Each thread grabs the change and sends it out.

Another example occurs when the same lock is used to signal more than
one type of event (and different types of events are handled by different
types of waiting threads). For example, in a stockticker application, we
may not want lots of information to pile up, waiting to be sent. One
possible design uses a fixed-length queue to control communication.
This involves the following design decisions:

There is a fixed-length queue and two threads. One thread sends
messaaes out to the recipient. pullina them off the aueue. Another




thread gets messages from the sender and puts them on the
queue.

Because the queue is fixed-length, however, both threads also
need to wait on the queue when they get ahead. The client thread
will wait for messages to come into the queue. The server thread
will wait for messages to be sent, so that more space is available
on the queue.

There is only one lock, but there are two events ("message put in
gueue" and "message removed from queue"), each intended for a
different thread. Therefore, not i f yAl | () must be used.

But, even beyond the cases when not i f yAl | () is absolutely
required, there's a simple fact that causes many programmers to use it
as the default: at any point where not i f y( ) can be used,

noti fyA I ( ) canalso be used. You may need to add a check or two,
but that's it; at worst, the program will be a little less efficient.

On the other hand, if noti f yAl | () isrequired, and you use not i fy(
), the program will simply be incorrect, and there's usually no way to fix it
(other than to use not i fyAl | ()).This line of reasoning leads many
programmers to simply use not i f yAl | () whenever they need to alert
a waiting thread.

11.4.3 Classes

So far, we've discussed how to prevent threads from interfering with each other, and how to
loosely coordinate threads by using an object's associated lock. We still need to discuss how to
start and stop a thread. But before we do this, we need to discuss the Thr ead class and the
Runnabl e interface, both of which are defined inthe | ava. | ang package.

Thr ead is a class whose instances correspond to threads. The point of using classes to
represent threads is simple: it gives us a way to refer to specific threads. That is, an instance of
j ava. | ang. Thr ead corresponds exactly to a thread in the way we've used it up until now. By
creating and calling methods on an instance of Thr ead, we will be able to start, stop, and
achieve fine-grained coordination between threads.

—e— It's unfortunate that the word "thread" has two distinct but
related meanings in Java. One meaning is that which we've
been discussing all along: something that has a stack and a
cache and executes code. The other is just an instance of a
class. This can make discussions a little confusing.

The Thr ead class is a large and complicated class; it has 28 nondeprecated methods, some of
which are well beyond the scope of this book. Rather than provide an exhaustive listing of the
methods and their usage, I'll start with some simple uses that illustrate the basics of creating,
using, and terminating a thread.



11.4.3.1 Starting a thread is easy

To create a thread, you must provide two things: something for the thread to do and a way for the
thread to know when it's done. These are usually done at the same time, within a single method
known as the r un( ) method.

The run( ) method is either placed in a separate class that implements the Runnabl e
interface, or is defined in a subclass of Thr ead. In the first case, the code to start a thread
running simply looks like:

Thread thread = new Thread(new M/Runnable( ));
thread.start( );

and in the second case, the code to start the thread running looks like:

Thread thread = new ThreadSubcl ass( );
thread.start( );

The first line in both of these cases creates and allocates the thread. The second actually starts
the thread running.

11.4.3.2 Stopping a thread is harder
This thread will terminate in either of two cases:

You explicitly terminate the thread by calling the st op( ) method on the instance of
Thr ead that you created.

The run( ) method exits.

The first choice here, calling st op( ), is a rather drastic action. It causes the thread to
immediately stop and throw an instance of Thr eadDeat h. Thr eadDeat h is a subclass of
Error, but not of Except i on, and hence, most of your code won't even try to catch it."! The
stack will unwind, which means that all the locks the thread was holding will be released.
However, a crucial point should be made: since Thr eadDeat h usually isn't caught, no finally
blocks will be executed, and no cleanup code will run. This has the potential to be really nasty.
Consider, for example, the following snippet of code:

[81 "An Error is a subclass of Thr owabl e that indicates serious problems that a reasonable application
should not try to catch."—the JavaDoc.
publ i ¢ bool ean updat eDat abase( ) {

try {
openConnection( );

execut eUpdate( );

catch (SQLException databaseError) {
| ogDat abaseErrror (dat abaseError);

}
finally {
cl oseConnection( ); /'l always rel ease dat abase
resour ces
}

}

This is a simple method that tries to update a table in a database. Note that the SQL code has
been abstracted out into submethods.

Suppose this is running in a thread that gets stopped while in the middle of the
execut eUpdat e( ) method. There are two issues that can arise:



We're not sure what the status of the database is. Did the database get updated? There's
no way to know.

We're not going to ever enter that finally block and release the database connection. This
may not be a significant resource drain in the client application, but it may be significant
for the database server, especially if we have a database license that allows only a
limited number of concurrent connections.

For these reasons, Javasoft deprecated st op( ) in JDK1.1 and instead recommended that
people use a boolean flag inside their implementation of r un( ) . Here, for example, is a simple
schema for subclassing Thr ead:

public abstract class Stoppabl eThread extends Thread {
/1 ... many constructors, we've only included one
publ i c St opppabl eThread(String threadNanme, Cbject argl, QOCbject
arg2) {
super (t hreadNane) ;
/1 use argl, arg2, ... toinitialize thread state
start( );
}

private bool ean _shoul dSt opExecuti ng;
public void set Shoul dSt opExecut i ng( bool ean shoul dSt opExecut i ng)

{
_shoul dSt opExecut i ng = shoul dSt opExecuti ng;
publ i c bool ean get Shoul dSt opExecuting( ) {
return _shoul dSt opExecuti ng;
}
public void run( ) {
whil e (!_shoul dSt opExecuting) {
perfornrlask( );
}
}
protected abstract void perfornirask( );
}

This defines an abstract method, per f or mrask( ), and puts it inside a potentially infinite loop.
As long as the instance's set Shoul dSt opExecut i ng( ) method isn't called with a value of
t r ue, the loop will continue, and per f or nifask( ) will be executed repeatedly.

11.4.3.3 Using Runnable instead of subclassing Thread

The preceding example used a subclass of Thr ead to implement the r un( ) method. Another
way to accomplish this is to pass in an object to Thr ead's constructor. This object needs to
implement the Runnabl e interface, which consists of a single method:

public void run( );

Generally speaking, people prefer to do this for two reasons. The first is that it's slightly cleaner—
it separates what the thread does from the instance that represents the thread. The second
reason is that it preserves flexibility. In Java, a class can extend only one other class. If the class
that implements r un( ) extends Thr ead, it cannot extend another class in your application.
This can be annoying.

11.4.3.4 Useful methods defined on the Thread class



In addition to providing the ability to start and stop threads, the Thr ead class also contains some
useful methods that enable you to have a much finer degree of control over individual threads
thanwai t () /notify( ) provide. The most important of these methods are:

public static Thread currentThread( );
public static void sleep(long mllis);
public static void yield( );

public String getName( );

public void setName(String namne);

public boolean isAlive( );

public int getPriority( );

public void setPriority(int newPriority);

The static methods all operate on the currently executing thread. cur r ent Thread( ) returns
the instance of Thr ead corresponding to the currently executing thread. sl eep( ) causes the
calling thread to become inactive for at leastmi | | i s (and quite possibly longer). Note that, while
asleep, the thread retains any locks it has. And yi el d( ) is a milder form of sl eep( ) —it
causes the thread to become momentarily inactive, but does not guarantee that the thread will
remain inactive for any length of time.

One of the more frequent programming errors using threads involves calling sl eep( ) on an
instance of Thr ead. Java allows you to call static methods on instances of a class (and simply
redirects the call to the class object). This can be problematic, as programmers sometimes write
lines of code such as:

i nstanceO't hread. sl eep( );

which are intended to cause the instance of Thr ead to sleep for awhile. But this invokes the
static method sl eep( ) defined on the Thr ead class, which will put the calling thread to sleep.

set Nane( ) and get Nane( ) enable you to name a specific thread and find the name of a
thread, respectively. These don't actually alter program functionality in any significant way but can
be tremendously useful when debugging. Frequently, the first thing you need to do when
something goes wrong is find out which thread is screwing up. If you've given your threads
descriptive names, this becomes much easier. For example, the following line of code can be
very convenient;

Systemout.println("Thread named " + Thread. current Thread(). get Nane( )
+ " is going

haywi re");
i sAlive( ) isamethod that returns t r ue if, when it is called, the thread associated with the

instance is still alive. There is no guarantee, however, that the thread is still alive when the calling
thread acts on the information. Consider, for example, the following code:

if (threadlnstance.isAlive( )) {
/'l do sonet hi ng
}

We could have the following sequence occur in our program:
1. The testis executed and returns t r ue.
2. The thread associated to t hr eadl nst ance expires.
3. The body of the | f statement is executed.

This is usually not what we want to happen. On the other hand, a return value of f al se,
indicating that the thread has died, is reliable. Threads do not restart once dead, and once
i sAl i ve( ) returns false, it will always return f al se.



The final pair of useful methodsisget Priority( ) andsetPriority( ).A threadwitha
higher priority usually gets more processor time. Conversely, a thread with a lower priority usually
gets a smaller percentage of the processor's time. However, there aren't any hard and fast
guarantees about this. In all of The Java Language Specification, 2nd Edition edited by Bill Joy
(Addison-Wesley), there is exactly one paragraph devoted to thread priorities:

Every thread has a priority. When there is competition for processing resources,
threads with higher priority are generally executed in preference to threads with
lower priority. Such preference is not, however, a guarantee that the highest
priority thread will always be running, and thread priorities cannot be used to
reliably implement mutual exclusion.

This means that you can't rely on priorities to guarantee program correctness. You can, however,
use them as a way to hint to the JVM which threads are more important to you. And doing so is
often useful.

Thr ead has many other methods that can be useful in certain
w 4. situations. And there are other classes that can be used when
~dealing with sets of threads. (The two most useful are
ThreadG oup and ThreadLocal . Both are defined in

| ava. | ang.) Covering the additional methods and classes,
however, is just a little too far outside the scope of this book.

11.5 Deadlock

My boss came into my office a couple of weeks ago. "The database metrics
aren't being recorded again. | think the storage thread is running into a
deadlock."

"Why?" | asked.
"Server problems are always deadlocks," he replied.

Technically, he was, of course, incorrect. Servers experience many other types of problems. But
there was, nonetheless, a kernel of truth to what he said. Deadlock, a situation in which two (or
more) threads block each other and force each other to wait forever, is far and away the single
most common serious mistake made in writing multithreaded code.

The simplest deadlock scenario involves two threads and two locks. The first thread already has
the first lock and is trying to acquire the second lock. The second thread has the second lock and
is trying to acquire the first lock.

For example, this could be caused by two methods with the following structure:

public synchronized void nmethodl(...) {
ot her Obj ect. met hod2( );}
}

public synchronized void nmethod2(...) {
ot her Obj ect. met hod1( );}
}

If there are two methods like this in your code, the following situation can arise:



1. The first thread enters net hod1 on obj ect 1. As part of doing so, it grabs the lock
associated with obj ect 1. It then prepares to call net hod2 on another object (which
we'll refer to as obj ect 2).

2. At which point, the thread scheduler deactivates the first thread and activates the second
thread. The second thread calls net hod2 on obj ect 2, and as part of doing so, grabs
the lock associated with obj ect 2.

At this point, neither thread can proceed. The first thread is blocked because it cannot acquire the
lock associated with obj ect 2. And the second thread cannot proceed because it needs the lock
associated with obj ect 1. Each thread blocks the other from continuing. And neither thread will
ever do anything ever again. They are deadlocked. See Figure 11-5.

Figure 11-5. The simplest deadlock
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Deadlock situations require at least two threads with at least two locks in common. A single
thread cannot deadlock itself, nor can two threads block each other when there is only one lock
involved (the thread that has the lock gets to keep going). But beyond this, it is hard to state
general rules about deadlock. It's also difficult to detect in code and to guarantee that your code
doesn't, at least in one place, have a potential deadlock.

The key thing is to be aware of the possibility of deadlock. Whenever you're writing code that
involves two different threads communicating with each other, you should be aware of the
possibility of deadlock, and try to design your code to avoid it. For example, in our bank example
there's a very real possibility that extending the Account interface to include the
transferMoney( ) function could lead to a deadlock in the implementation. Suppose
transferMney( ) isimplemented naively, as in the following code snippet:

public synchroni zed void transferMney(Account source, Account
destinati on, Mney
amount) {
makeW t hdr awal (anount) ;
desti nati on. makeDeposi t (anount) ;
return;
}
public synchroni zed voi d nakeDeposit(Mney anount) throws
Renot eExcepti on
Negat i veAnount Excepti on {
checkFor Negat i veAnount (anount) ;
_bal ance. add( anount) ;
return;

}

public synchroni zed void makeW t hdr awal (Money anmount) {
/1 ... simlar inplenentation



}

The following three-way transaction can cause deadlock:
Bob tries to pay his electric bill by transferring money into the utility company's account.
The utility company is transferring money to Bob's employer, to pay a past-due bill.

Bob's employer is directly depositing Bob's paycheck (again, transferring money).

’

iy HOW do we get around this particular problem? It's hard, and
—— well beyond the scope of this book. The best way to do so is
to use a distributed-transaction manager. Programming with
Enterprise JavaBeans, JTS, and OTS by Andreas Vogel and
Madhavan Rangarao (John Wiley & Sons) is a good place to
start learning about distributed-tranaction management. We'll
also briefly revisit transaction management in Chapter 17.

11.6 Threading and RMI

Given that | opened this chapter by talking about the need for multithreaded servers, and given
that we've spent 30 pages or so on the basic thread manipulation operations in Java, you might
think that the RMI specification goes heavy on the details of the threading model. You'd be
wrong.

Here's all of what the RMI specification says about threading:
3.2 Thread Usage in Remote Method Invocations

A method dispatched by the RMI runtime to a remote object implementation may
or may not execute in a separate thread. The RMI runtime makes no guarantees
with respect to mapping remote object invocations to threads. Since remote
method invocations on the same remote object may execute concurrently, a
remote object implementation needs to make sure its implementation is
threadsafe.

In practice, threading in RMI is fairly simple. On the client side, RMI adds no threading
complications. Remote method invocations on the client side consist, more or less, of code that
behaves exactly like our socket code. That is, a request is marshalled and sent through a socket.
The thread sending the request then tries to read a response back from the server, over the
socket. This means that the calling thread (on the client) blocks until the server sends a response.

This model of remote method invocation is nice because it corresponds to what happens with
local method invocation. That is, we have:

Local method invocation

A new frame is put on the stack, corresponding to the new method call. Processing in the
previous method call stops (the thread is executing the new stack frame). Eventually, a
value is returned, and processing resumes in the original stack frame.

Remote method invocation

A new frame isn't put on the stack. Instead, processing blocks at the socket level, waiting
for the return value. Meanwhile, on the server, a different thread attempts to handle the
request and return a value. As part of this, a request-handling thread executes a local
method invocation.



In essence, the RMI messaging model simply puts part of the stack on the server side.

o This is often referred to as a synchronous messaging model.
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Meanwhile, on the server, things are more complicated. The following sequence of operations
occurs in every RMI server whenever a request is made:

1. When a remote request comes in, it is immediately demarshalled into a request object
that encapsulates the method invocation. This request object, which is an instance of a
class implementing the Renot eCal | interface, has a reference to the socket's output
stream. This means that, although RMI shares sockets, a socket is used only for one
remote method invocation at a time.

2. The thread that received the request from the socket finds the intended remote object for
the method invocation, finds the skeleton associated with that remote object, and invokes
that skeleton's di spat ch( ) method. The dispatch method has the following signature:

3. public void dispatch(java.rm . Renote obj,
java.rm .server.RenpoteCall call, int
opnum | ong hash) throws java.l ang. Exception

4. The skeleton's di spat ch( ) method invokes the right method on the server. This is
where the code you wrote is actually executed.

5. The server method returns a value, which is eventually propagated back through the
socket on which the original request was received.

There are two important points to note. The first, and by far the more important, is that your
server code must be threadsafe. RMI allows many threads to enter a server object. But, if your
server is too heavily synchronized, you will either wind up deadlocked or locking out a lot of the
threads for extended periods of time. Hence, you run the risk of timing out a significant
percentage of the remote method invocations.

The second point concerns socket allocation. RMI shares on sockets. This means that it tries to
reuse sockets between the client JVM and the server JVM whenever possible. But when a socket
is being used by a remote method invocation, it is not available for reuse. This means that the
number of sockets allocated to a client is really equal to the number of simultaneous requests a
client is making. Since the number of sockets available to an RMI server is limited, and socket
allocation is expensive, this can affect scalability.

Congratulations! Between the early socket chapters, in which
w* 4. Yyou learned how to send data over the wire; Chapter 10, in

"~ which you learned how to marshall objects using serialization;
and this chapter, in which | covered threading and the details
of handling remote method invocations in a server, you now
know enough to write an RMI implementation. ™

71| wouldn't recommend it, though. Life's too short.

Chapter 12. Implementing Threading



In Chapter 11, we discussed the support Java provides for threading, both in the language and
in the core libraries. In this chapter, we take a much more pragmatic point of view. The heart of
this chapter is a set of idioms and usage guidelines intended to help you use threads safely and
effectively in your applications. As part of this, we'll reimplement the bank example as a
threadsafe application and, as a final example, talk about how to implement a general-purpose
pooling mechanism. By the end of this chapter, you should have a complete understanding of
how to use threads in a distributed application.

12.1 The Basic Task

Let's walk through the bank example again, this time looking at everything from the point of view
of threads. The first problem is, of course, to discover where the threads are. Recall that we have
three basic executing pieces of code: the server, the client, and the launch code.

Of these, the server must be absolutely threadsafe. As we discussed in Chapter 11, RMI
creates multiple threads. It will gleefully dispatch multiple threads into a single server object if
multiple clients simultaneously make method calls on it. If you don't take this into account while
implementing the server objects, the application will fail.

The launch code, on the other hand, rarely needs to use multiple threads. It's executed once to
configure and launch the application. Launch code is not complex, nor does it need to handle
multiple tasks simultaneously. Making launch code threadsafe is usually a waste of time.

Client code occupies the middle ground. Many clients are fairly simple programs and are single-
threaded, or in the case of Java Swing, dual-threaded. However, in the typical client program,
most activity occurs as a response to user interaction. The user clicks a button or slides a slider,
and then something happens. Consequently, threading is not an issue for most clients. There are
three important exceptions to this: when a client needs to receive an asynchronous callback from
a server, when a client wishes to download a large data set in the background, and when a
remote method call takes a substantial amount of time. In the final case, you probably don't want
the GUI to stop responding simply because a remote method call is executing. We'll discuss
these in more detail in Chapter 21.

Having said that, in order to make the bank example threadsafe, we'll worry only about objects
that are in the server's JVM. In particular, this means we need to focus on Account | npl .
However, it also implies that we need to pay attention to our data objects. Instances of Money are
required by our remote interface and are used in both the client and the server.

As a rule of thumb, data objects should always be made

w 4. threadsafe. This is because the client and server are likely to

" evolve independently, and, over time, they will use the data
objects in different contexts. It is quite possible that in some
future version of your application there will be multiple threads
accessing a data object at the same time, even if this isn't the
case in the current version of the application. In general, data
objects shouldn't make assumptions about how they are
going to be used in either the server or the client. And this
means that, unless it requires significant effort, they should be
made threadsafe as a default development procedure.

12.2 Guidelines for Threading



This section contains some basic guidelines and tips for writing multithreaded code. These
guidelines are similar to the design questions from Chapter 6 and Chapter 7 in that they form a
starting point for design. They're different, however, in that they're not questions that lead to a
clean design. Instead, they are rules of thumb for using threads in everyday code. Because
they're fairly general guidelines, I've interleaved applications to the banking example throughout
this section.

12.2.1 Start with Code That Works

It's all too easy to say something such as:

| need to build a server that meets all these requirements and simultaneously
scales to 150 clients.

Once you start trying to design for all the features in one shot, including thread safety and
scalability, you're doomed. Instead, the preceding situation is really three tasks that should be
performed sequentially:

| need to build a server that meets all these requirements for a single client.
Then | need to make it threadsafe (so it can be used by three clients).
Then | need to make it scale.

If you approach the job of building a distributed application this way, you have a better chance of
succeeding than if you try to satisfy all the requirements at once. Doing the latter is a sure way to
fail.

12.2.2 Above All Else, Ensure Data Integrity

The first rule of threading is that it's better to be threadsafe than sorry. However, there's a trade-
off in thread management. First, synchronizing large blocks of code that need to be executed by a
large percentage of method calls can introduce performance bottlenecks, as most threads will
wind up waiting to enter the synchronized block. This leads to inadequate performance. Second,
synchronizing large blocks of code increases the risk of deadlock.™

[ Though, in my experience, deadlocks most often arise when | try to be a little too clever in my thread
management.

In spite of this, enthusiastically synchronizing code blocks is a good way to start making your
code threadsafe. To see why, think about the types of problems that arise in extreme cases:

Excessive synchronization

The servers are slow and bottlenecked; they lurch from request to request like a 400-
pound person dancing the lead in Swan Lake. And clients occasionally just hang. These
problems are immediately noticed, and users complain loudly until they're fixed. However,
the application is still somewhat usable in the interim, until the problems get solved.

Inadequate synchronization

The application is fast, and problems aren't immediately obvious. Instead, over time,
more and more data gets corrupted, until someone finally notices the problems, at which
point recovery may or may not be possible.

There are two additional reasons to start by ensuring data integrity. The first is that a simple data-
integrity strategy is often fairly easy to formulate and performs well enough so you can possibly
be done with the purchase of a fast server. After all, these days processors are cheap, and
memory is even cheaper.



The second reason is a slight variation on our first rule of thumb: once you have such a strategy
in place, it becomes easier to modify it. Starting with threadsafe code and gradually modifying itto
improve performance is a lot easier to do than trying, in one conceptual leap, to design high-
performance, threadsafe code.

12.2.2.1 Applying this to the bank example

A first attempt at ensuring data integrity in the bank example is simply to synchronize all the
public methods. If only one thread can access an object at any given time, then there will not be
any problems with data integrity when deposits or withdrawals are made. There may be larger
data-integrity problems arising from sequences of calls, but the actual call to rekeDeposi t ()
or mekeW t hdrawal () will be fine:

public synchroni zed Money getBal ance( ) throws RenpteException {
return _bal ance;
}

public synchronized void nakeDeposit(Mney anount) throws
Renot eExcepti on,
Negat i veAnount Excepti on {
checkFor Negat i veAnount (anmount) ;
_bal ance. add( anount) ;
return;

}

public synchroni zed voi d makeW t hdr awal ( Money amount) throws
Renot eExcepti on,
Overdraft Exception, NegativeAnount Exception {
checkFor Negat i veAnount (anmount) ;
checkFor Overdraft (anmount);
_bal ance. subt ract (anount) ;
return;

}

There is, however, a potential problem. Namely, many people check their balance before
deciding how much money to withdraw. They perform the following sequence of actions:

1. Check balance. Thisis a call to get Bal ance( ). As such, it locks the instance of
Account | npl and is guaranteed to return the correct answer.

2. Getmoney. Thisis a call to rakeW t hdrawal (). As such, it locks the instance of
Account | npl before processing the withdrawal.

The problem is that the client doesn't keep the lock between the two method invocations. It's
perfectly possible for a client to check the balance, find that the account has $300 in it, and then
fail to withdraw $300 because, in the time between the first and second steps, another client
withdrew the money. This can be frustrating for end users.

The solution is to have the client maintain a lock between the steps. There are two basic ways to
do this. The first is to simply add in extra remote methods so the client can explicitly manage the
synchronization on Account | npl . For example, we could add a pair of methods, get Lock( )
andr el easelLock( ), tothe interface. We also need another exception type,
LockedAccount Except i on, so the server can tell the client when it has attempted to make an
operation on an account that another client has locked.

This is implemented in the following code snippets:
public interface Account2 extends Renote {



public void getLock( ) throws RenoteException,
LockedAccount Except i on;
public void rel easeLock( ) throws RenoteException;
public Money getBal ance( ) throws RenoteException,
LockedAccount Except i on;
public voi d nmakeDeposit(Mney anount) throws RenoteException,
Negat i veAnmount Excepti on, LockedAccount Excepti on;
public void makeW t hdrawal (Money anmount) throws Renot eExcepti on,
Overdraft Exception, LockedAccount Excepti on,
Negat i veAnount Excepti on;

}
public class Account2_Inpl extends Uni cast RenoteObject inplenments
Account 2 {

private Mney _bal ance;
private String _currentdient;

public Account | npl 2(Money startingBal ance) throws
Renot eExcepti on {
_bal ance = startingBal ance;
}

public synchronized void getlLock( ) throws RenoteException,
LockedAccount Except i on{
if (fal se==beconmeOmer( )) {
t hrow new LockedAccount Exception( );

}
return;
}
public synchroni zed void rel easeLock( ) throws RenoteException
{
String clientHost = w apper AroundGetClientHost( );
if ((null!'=_currentdient) &&
(_currentCient.equal s(clientHost))) {
_currentCient = null;

}
}

public syncrhoni zed Money getBal ance( ) throws RenbteException,
LockedAccount Exception {
checkAccess( );
return _bal ance;

}

public synchroni zed void nakeDeposit(Mney anount) throws
Renot eExcept i on,
LockedAccount Excepti on, Negati veAnount Exception {
.o,
}

public syncrhoni zed void nmakeWt hdrawal (Money anount) throws
Renot eExcept i on,
Overdraft Exception, LockedAccount Excepti on,
Negat i veAnmount Excepti on {
1.,
}



private bool ean becomeOmer( ) {
String clientHost = wapperAroundGetCientHost( );
if (null!=_currentdient) {
if (_currentdient.equals(clientHost)) {
return true;
}

el se {
_currentdient = clientHost;
return true;

return false;

}

private void checkAccess( ) throws LockedAccount Exception {
String clientHost = wapperAroundGetCientHost( );

if ((null!'=_currentCient) &&
(_currentdient.equal s(clientHost))) {
return,;
}

t hrow new LockedAccount Exception( );

}

private String wapperAroundGetCientHost( ) {
String clientHost = null;

try {
clientHost = getClientHost( );

catch (ServerNot Acti veException ignored) {}
return clientHost

}

/1 ....other private nethods

}

This is intended to work as follows:

1. The client program begins a session by calling get Lock( ). If the lock is in use, a
LockedAccount Except i on is thrown, and the client knows that it does not have
permission to call any of the banking methods.

An alternative implementation might be to make get Lock( ) a blocking operation. In
this scenario, clients wait inside get Lock( ) until the account becomes available, as in
the following code example:

public synchroni zed void getlLock( ) throws RenoteException {
whil e (fal se==becomeOmer( )) {
try {
wait( );
} catch (Exception ignored) {}
}

return;

}

public synchroni zed void rel easeLock( ) throws RenoteException {
String clientHost = wapperAroundGetClientHost( );



if ((null!=_currentCient) &&
(_currentClient.equal s(clientHost))) {
_currentCient = null;
noti fyAll ( );
}
}

2. Once it has the lock, the client program can perform banking operations such as
get Bal ance( ) and makeW t hdrawal ( ).

3. After the client program is done, it must call r el easelLock( ) to make the server
available for other programs.

This design has quite a few problems. Among the most significant:
An increase in the number of method calls

Recall that, in Chapter 7, one of our interface design questions was, "Is each conceptual
operation a single method call?" This design, in which getting an account balance
actually entails three method calls, is in direct violation of that principle.

Vulnerability to partial failure

Suppose that something happens between when the client gets the lock and when the
client releases the lock. For example, the network might go down, or the client's computer
might crash. In this case, the lock is never released, and the account is no longer
accessible from any location.”2 What makes this even more galling is that the integrity of
the entire system depends on the client behaving properly. A program running on an
unknown machine somewhere out there on a WAN simply should not have the ability to
cause server failures.

[21 well, until someone figures out what's wrong and restarts the client application, on the same
computer, to release the lock.

This design may have other major faults, depending on how the application is deployed. For
example, it assumes that there is at most one client program running on any given host. This may
or may not be reasonable in any given deployment scenario. But it's an assumption that should
be verified.

On the other hand, this version of Account does solve the original problem: a correctly written
and noncrashing client program running on a reliable network does get to keep a lock on the
account. During a single session, the client program is guaranteed that no other client program
can change or even access the account data in any manner at all.

Our goal is to achieve this with neither the extra method calls nor the increased vulnerability to
partial failure. One solution is to automatically grant a lock and use a background thread to expire
the lock when the client hasn't been active for a while. An implementation of this looks like the
following:

public interface Account3 extends Renote {
public Money getBal ance( ) throws RenoteException,
LockedAccount Excepti on;
public void nakeDeposit( Money anmpount) throws RenoteException,
Negat i veAnount Excepti on, LockedAccount Excepti on;
public void nakeWt hdrawal (Money anount) throws RenoteException,
OverdraftException, LockedAccount Excepti on,
Negat i veAnmount Excepti on;

}



public class Account3 I npl extends Uni cast RenoteChject inplenents
Account 3 {

private static final int TIMER DURATION = 120000; // Two mi nutes

private static final int THREAD SLEEP TI ME = 10000; // 10
seconds

private Mney _bal ance;

private String _currentCient;

private int _tinmeLeftUntil Lockl sRel eased,;

public Account3 I npl (Mney startingBal ance) throws
Renot eExcepti on {
_bal ance = startingBal ance;
_tinmeLeftUntil Lockl sRel eased = 0;
new Thr ead(new Count DownTinmer()).start( );

}

public synchroni zed Money getBal ance( ) throws RenoteException
LockedAccount Exception {
checkAccess( );
return _bal ance;

}

public synchroni zed void nakeDeposit(Mney anount) throws
Renot eExcepti on
LockedAccount Excepti on, Negati veAnount Excepti on {
checkAccess( );
/1

}

public synchroni zed void nakeWt hdrawal (Money anount) throws
Renot eExcept i on,
Overdraft Exception, LockedAccount Exception
Negat i veAnmount Excepti on {
checkAccess( );
/1

}

private void checkAccess( ) throws LockedAccount Exception {
String clientHost = wapperAroundGetC ientHost( );
if (null==_currentdient) {
_currentClient = clientHost;

el se {
if (! _currentdient.equals(clientHost)) {
t hrow new LockedAccount Exception( );
}
}
reset Counter( );
return;

}

private void resetCounter( ) {
_tineUntil Lockl sRel eased = TI MER DURATI ON;
}

private void rel easeLock( ) {
if (null!=_currentdient) {



_currentClient = null;

}
/...

private class Count DownTi mer inplenents Runnable {
public void run( ) {
while (true) {

try {

}
catch (Exception ignored) {}

synchroni zed(Account 3_I npl.this) {
if (_tinmeUntil Lockl sRel eased > 0)

Thr ead. sl eep( THREAD_SLEEP_TI ME) ;

{
_timeUntil Lockl sRel eased -
= THREAD_SLEEP_TI ME;
}
el se {
rel easeLock( );
}
}
}
}
}
}

This works a lot like the previous example. However, there are two major differences. The first is
that when a method call is made, the server automatically attempts to acquire the lock on behalf
of the client. The client doesn't do anything except catch an exception if the account is locked.

The second difference is that the server uses a background thread to constantly check whether
the client has sent any messages recently. The background thread's sole mission in life is to
expire the lock on the server. In order to do this, the background thread executes the following
infinite loop:

1. Sleep 10 seconds.

2. See if the lock needs to be expired. If it does, expire the lock. Otherwise, decrement
_tineLeftUntil Lockl sRel eased by 10 seconds.

3. Return to step 1.

Meanwhile, every time a banking operation is invoked, tineLeftUntil| Lockl s-Rel eased is
reset to two minutes. As long as the client program is executing at least one banking operation
every two minutes, the lock will automatically be maintained. However, if the client finishes, if the
network crashes, or if the client computer crashes, the lock will expire automatically within two
minutes, and the server will once again be available.

This is convenient; it solves our original problem by allowing the client to lock an account across
multiple remote method invocations. In addition, it does so without any extra client overhead—it
simply automatically grants short-term locks to clients whenever it is possible to do so.



It's worth stopping to make sure you fully understand how this
w 4. works. Using background threads to perform maintenance

““ tasks is an important technique in distributed programming.
And the idea of granting short-term privileges to clients, which
must be occasionally renewed, is at the heart of RMI's
distributed garbage collector.

el

There are, however, two significant downsides to this new approach:
The code is more complicated

Using a background thread to expire a remote lock is not an entirely intuitive idea.

Moreover, any new method, such as thet r ansf er Money( ) method we discussed in
previous chapters, will have to somehow accommodate itself to the background thread.
At the very least, it will need to call checkAccess( ) before attempting to do anything.

Threads are expensive

They consume both memory and system resources. Moreover, most operating systems
limit the number of threads available to a process. When most JVM's have only a limited
number of threads available, using an extra thread per account server can be an
unacceptable design decision.

Of course, we can solve the second problem by making the first a little worse. For example, a
single background thread can check the locks on all instances of Account 3 | npl . That is,
instead of creating a thread inside each instance of Account 3_| npl , we can simply register the
instance with a pre-existing thread that expires locks for all instances of Account 3_| npl . Here's
the constructor for this new implementation of the Account 3 interface, Account 3 | npl 2:

public Account3_I npl 2( Money startingBal ance) throws RenoteException {
_bal ance = startingBal ance;
_timeLeftUntil Lockl sRel eased = O0;
(Account 3_I nmpl 2_LockThr ead. get Si ngl eton( )).addAccount (this);
11 register with the | ock-expiration thread

}

The background thread simply loops through all the registered instances of Account 3_| npl 2,
telling them to decrement their lock timers. To do this, we need a new method in
Account 3_I npl 2, decrenent LockTi ner ( ):

protected synchroni zed voi d decrenent LockTi ner (i nt anount ToDecrenent) {

_tinmeLeftUntil Lockl sRel eased -= anpunt ToDecr enent;

if (_tinmeLeftUntil Lockl sRel eased <0) {
_currentCient = null;

}

}
And, finally, we need to implement the background timer:

public class Account3_Inpl2_ LockThread extends Thread {

private static final int THREAD SLEEP_TI ME = 10000; /1 10
seconds

private static Account3 | npl2 LockThread _si ngl eton;

public static synchroni zed Account3_I npl 2 _LockThread
getSingleton( ) {
if (null==_singleton) {
_singleton = new Account3 I npl 2 LockThread( );



_singleton.start( );

}

return _singleton;

}

private ArraylList _accounts;

private Account3 |Inpl2 LockThread( ) {
_accounts = new ArrayList( );
}

public synchroni zed voi d addAccount (Account 3 newAccount) {
_account s. add( newAccount) ;
}

public void run( ) {
while (true) {
try |

}
catch (Exception ignored) {}

decrenent LockTi mers( );

Thr ead. sl eep( THREAD_SLEEP_TI ME) ;

}
}
private synchroni zed voi d decrenent LockTimers( ) {
I[terator i = _accounts.iterator( );
while (i.hasNext( )) {
Account 3_I nmpl 2 next Account = (Account 3_I npl 2)
i.next( );

next Account . decr enent LockTi mer ( THREAD SLEEP TI MVE) ;
}

}
12.2.3 Minimize Time Spent in Synchronized Blocks

This guideline may seem rather obvious. After all, the whole reason for using the synchr oni zed
keyword is to force threads to temporarily suspend execution. If a single thread holds on to a
synchronization lock for a very long time, then the other threads will halt for a very long time. This
often results in unresponsive applications that "feel sluggish"—at least to the clients whose
threads are halted.

However, a tip that says to "minimize time" may be too abstract a rule of thumb, so let's break
that rule down into three very concrete sub-tips: synchronize around the smallest possible block
of code, don't synchronize across device accesses, and don't synchronize across secondary
remote method invocations.

12.2.3.1 Synchronize around the smallest possible block of code

Of the three concrete sub-rules, this is both the most obvious and the vaguest. The essence of it
is looking at each synchronized method and trying to see whether all of the code in that method
needs to be synchronized. Consider our synchronization of Account 3 _| npl 2 earlier:

public synchroni zed Money getBal ance( ) throws RenoteException,



LockedAccount Excepti on {
checkAccess( );
return _bal ance;

}

public synchroni zed voi d makeDeposit(Mney anount) throws
Renot eExcepti on,
LockedAccount Excepti on, Negati veAnount Exception {
checkAccess( );
/1

}

public synchroni zed voi d makeW t hdr awal ( Money anount) throws
Renot eExcepti on,
Overdraft Excepti on, LockedAccount Exception, NegativeAnount Excepti on

{

/1
}
private void checkAccess( ) throws LockedAccount Exception {
String clientHost = wapper AroundGetCl i entHost( );
if (null==_currentCient) {
_currentClient = clientHost;

checkAccess( );

}
el se {
if (! _currentdient.equals(clientHost)) {
t hrow new LockedAccount Exception( );
}
}
reset Counter( );
return;

}

The way this works is we synchronize on the three public interface methods. As a result, each call
to checkAccess( ) occurs within a synchronized block, and only one thread can execute the
checkAccess( ) method at any given time.

Suppose we know that any given computer makes only a single request at a time (which is, in
fact, the case for dedicated ATMs). We may be able to take advantage of this by using only
checkAccess( ) to control synchronization. For example, since checkAccess( ) either
grants a lock or throws a LockedAccount Except i on, we could simply rewrite this as:

public Money getBal ance( ) throws RenoteException,
LockedAccount Exception {

checkAccess( );

return _bal ance;

}
11

private synchroni zed void checkAccess( ) throws LockedAccount Exception

{

/1
}

Now, each time a remote method call is made, checkAccess( ) is called. Because it's
synchronized, the server-locking mechanism almost works. The only difficulty is that because this
is a multithreaded application, the body of an Account 3 | npl 2 public method could take longer
than two minutes. If so, the lock might be released and two clients can access the account

String clientHost = wapper AroundGetClientHost( );



simultaneously. We can fix this with one extra boolean flag, decr enent Ti ner On, as in the
following code:

public void makeWthdrawal (Money anount) throws RenoteException,
Overdraft Excepti on,
LockedAccount Excepti on, Negati veAnmount Exception {
checkAccess( );
/1
_decrenent Ti nerOn= true;

}

private synchroni zed void checkAccess( ) throws LockedAccount Exception
{
String clientHost = wapper AroundGetClientHost( );
if (null==_currentdient) {
_currentClient = clientHost;

}
el se {
if (! _currentdient.equals(clientHost)) {
t hrow new LockedAccount Exception( );
}
}

_decrenent TinerOn = fal se;
reset Counter( );

return;
}
protected synchroni zed voi d decrenent LockTi nmer (i nt anount ToDecrenent) {
if (false == _decrenentTinerOn) {
return;
}
_tineLeftUntil Lockl sRel eased -= anount ToDecr enent;
if (_tinmeLeftUntil Lockl sRel eased <0) ({
_currentCient = null;
}
}

Here's a summary. As part of the checkAccess( ) method, which is synchronized,
~decrenent Ti ner On is setto f al se. Since the method decr ement LockTi ner () is also
synchronized, we know that the next time it is called, the thread that calls it will retrieve the new
value of _decrenent Ti mer On and place it in its cache. Hence, it won't actually start the timer
going until _decrenent Ti mer On is setto t r ue once more. Since the only place where
_decrement Ti mer On is setto t r ue is at the end of the public interface methods, this means
the lock won't be relinquished while a public interface method is being executed.

The trade-off? We traded a single boolean flag for less code inside the synchronized block.
Moreover, we have only two synchronized methods at this point. We've reduced the number of
synchronized blocks of code, which makes the code much easier to understand.

Now, it's much easier to think about how to remove even more synchronization. The method:

private synchroni zed void checkAccess( ) throws
LockedAccount Excepti on {
String clientHost = wapper AroundGetC i entHost( );
if (null==_currentCient) {
_currentClient = clientHost;
}

el se {
if (! _currentdient.equals(clientHost)) {



t hrow new LockedAccount Exception( );
}
}
_decrenent TinerOn = fal se;

reset Counter( );
return;

}

doesn't need to be fully synchronized. In particular, the method wr apper Ar ound-
Cet Cl i ent Host (), which is simply a wrapper around a threadsafe static method in
Renot eSer ver , doesn't need to be synchronized. However, at this point, we're reaching

diminishing returns; there's a certain value in simply having a few core methods that are entirely
synchronized.

o
b

Remember, these last few rewrites are valid only if client

* 4. computers send a single request at a time. For example,

" checkAccess( ) isn't nearly sophisticated enough to
differentiate between two clients running at the same IP
address. If we need to distinguish between two such clients,
the client will probably have to pass in a unique identifier
(we'll actually do this when we discuss testing in Chapter
13). In general, reducing the number of synchronization
blocks often involves making assumptions about client
behavior. It's a good idea to document those assumptions.

=
i

12.2.3.2 Don't synchronize across device accesses

There are times, however, when no matter how small the method or how crucial the data in it, you
should still avoid synchronizing the method. The most common situation is when the method
accesses a physical device with uncertain latency. For example, writing a log file to a hard drive is
a very bad thing to do within a synchronized method. The reason for this is simple. Suppose
we're in a scenario with many instances of Account , and they all log their transactions to a log
file,®! as shown in Figure 12-1.

Bl Or to a database. The discussion applies equally to a database.

Figure 12-1. Using a singleton logger
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A simple version of this is quite easy to implement:

package com ora.rm book. chapter12;
i mport java.io.?*;

public interface Logger {



public void setQutputStrean(PrintStream output Stream;
public void logString(String string);
}

package com ora.rm book. chapter12;
i mport java.io.*;

public class Sinpl eLogger inplenents Logger {
private static SinplelLogger _singleton;
public synchroni zed static SinplelLogger getSingleton( ) {
if (null==_singleton) {
_singleton = new Sinpl eLogger( );
}

return _singleton;

}

private PrintStream | oggi ngStream
private SinpleLogger( ) {

_l oggi ngStream = System err; /'l a good default val ue
}

public void setQutputStrean(PrintStream out put Stream {
|l oggi ngStream = out put St ream
}

public synchronized void logString(String string) {
_loggingStream println(string);
}

}

Note that the static method get Si ngl et on( ) must be synchronized. Otherwise, more than
one instance of Si npl eLogger can be created.

Aside from its rather pathetic lack of functionality—Si npl eLogger takes strings and sends them
to a log file, which is not the world's most sophisticated logging mechanism—there is a significant
flaw in this object: the account servers must all wait for a single lock, which is held for indefinite
amounts of time. This adds a bottleneck to the entire server application. If the hard disk slows
down or is momentarily inaccessible (e.g., the log file is mounted across the network), the entire
application grinds to a halt.

In general, the reasons for using threading in the first place imply that having a single lock that all
the threads acquire fairly often is a bad idea. In the case of logs or database connections, it may
be unavoidable. However, in those cases, we really need to make the time a thread holds a lock
as short as possible.

One common solution is to wrap the actual logging mechanism in an outer shell, which also
implements the Logger interface, as shown in Figure 12-2.

Figure 12-2. An improved singleton logger
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The way this works is that a piece of code calls | ogSt ri ng( ) . The wrapper class takes the
string that is supposed to be logged and simply places it in a container, after which, the method

returns. This is a very fast operation.
Meanwhile, the background thread executes the following loop:
1. Sleep for awhile.
2. Wake up and get all the available strings from the wrapper class.
3. Send the strings to the real logging mechanism.
4. Return to step 1.

The code for this logger isn't all that complicated either. In the following example, we've
implemented the background thread as an inner class:

public class ThreadedLogger inplenments Logger {
private SinplelLogger _actual Logger;
private ArraylList _|ogQueue;

publ i ¢ ThreadedLogger ( Si npl eLogger actual Logger) {
_logQueue = new ArrayList( );
(new BackgroundThread()).start( );

}

public void setQutputStrean(PrintStream out put Stream {
_actual Logger. set Qut put St rean{ out put Stream ;
}

public synchronized void logString(String string) {
_l ogQueue. add(string);

}

private synchroni zed Col |l ecti on get AndRepl aceQueue( ) {
ArraylLi st returnValue = _| ogQueue;
|l ogQueue = new ArrayList( );
return returnVal ue;

}

private class BackgroundThread extends Thread {
public void run( ) {
whil e(true) {
pause( );
| ogEntries( );



}
private void pause( ) {
try {
Thr ead. sl eep(5000) ;
}
catch (Exception ignored){}
}

private void logEntries( ) {
Col l ection entries = get AndRepl aceQueue( );
Iterator i = entries.iterator( );
whi | e(i.hasNext( )) {
String nextString = (String) i.next( );
_actual Logger.logString(nextString);

}

We still have the problem in which different account servers may want to write to the log at the
same time, and an instance of Account may be forced to wait. We've simply replaced a
potentially slow and high-variance bottleneck with a fast and low-variance bottleneck.

This may still be unacceptable for some. If instances of Account are constantly accessing the
log, though each individual | ogSt ri ng( ) operation is quick, each instance of Account still
waits for many other instances to execute | ogSt ri ng( ) . For example, suppose that an
average of 30 instances of Account are waiting to use the log file. Then the| ogString( )
method is really 30 times slower than it appears to be at first glance.

Think about that sentence again. What | just asserted is this: the "real time" it takes to log a string
is approximately the time it takes to log a string multiplied by the number of accounts waiting to
log a string. However, suppose we have a burst of activity. The number of accounts waiting to log
strings may increase, which means that every instance of Account becomes slower. This is
pretty nasty; our system will slow down by more than a linear factor during burst periods.

How nasty is this? Run a profiler and find out. That's really the
W only way to tell why a program isn't performing well.

If this is a problem, and we need to eliminate the bottleneck entirely, a variant of the preceding
technique often works. Namely, we make the following three changes:

Each server has a separate log object into which it stores logging information.
Each of these logs registers with the background thread.

The background thread now visits each of the logs in sequence, getting the entries and
sending them to the real logging mechanism.

This effectively means that accounts cannot interfere with each other. Each instance of Account
writes to a distinct logging object. The instance of Account may be forced to wait momentarily
while the background thread gets the entries from its log. However, that wait is bounded and

small. See Figure 12-3.



Figure 12-3. A more complex logging example
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This approach to logging and other forms of device access is often called using a batch thread.
Our logging code is remarkably similar to our implementation of automatic lock maintenance
using a background thread. You may start to see a pattern here.

12.2.3.3 Don't synchronize across secondary remote method invocations
This is really the same admonition as the previous one. It is illustrated in Figure 12-4.

Figure 12-4. Don't synchronize across remote invocations
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The point is that there's very little difference between a device and a remote server. If we
synchronize a block of code in a server, and that block of code calls on a method in another
server, we may wind up waiting a long time for a response. And, while we're waiting, the first
server is locked.

The t ransfer Money( ) method now looks like a very dangerous method. If we wind up
synchronizing the entire method (e.g., if we can't simply synchronize on checkAccess( ) asin
the preceding example), then the implementation of t r ansf er Money( ) will necessarily involve
synchronizing across a remote method invocation. On the other hand, this isn't nearly so bad as
logging. While the t r ansf er Money( ) method has the potential to lock a single instance of
Account for a long time, it won't block other remote method calls dealing with other accounts.
Depending on the account, this might not be an issue.

12.2.4 Be Careful When Using Container Classes

The JDK comes with a fairly nice group of container classes. These container classes can be
grouped into two sets: those that claim to be threadsafe and those that don't claim to be
threadsafe.

Vect or and Hasht abl e are the containers that claim to be threadsafe. They achieve this by
synchronizing every method. If you peek inside VVect or , you'll see code such as:

public synchroni zed void copyl nt o(Cbject anArray[]) {
System arraycopy(el enentData, 0, anArray, 0, el enentCount);
}



public synchronized void trinfToSize( ) {
nodCount ++;
int oldCapacity = el ementData. |l ength;
if (elenmentCount < ol dCapacity) {
hj ect ol dData[] = el enent Dat a;
el enent Data = new Obj ect [ el ement Count ] ;
System arraycopy(ol dData, 0, elenentData, 0, elenentCount);
}
}

public synchroni zed void ensureCapacity(int m nCapacity) {
nmodCount ++;
ensur eCapaci t yHel per (m nCapaci ty);

}

Because only one thread can modify an instance of Vect or at atime, Vect or is, technically
speaking, threadsafe. | say "technically speaking" because while each individual method of
Vect or is threadsafe, this is rarely good enough. Just as with our bank accounts, you will often
need to hold a lock over several method invocations in order to use Vect or correctly.

For example, suppose we only want to put an object into Vect or ifitisn't already in Vect or . The
following code is incorrect:

public void insertlfAbsent(Vector vector, Object object) {
if (vector.contains(object)) {
return;

vect or. add( obj ect);

}

If more than one thread is executing inside this method, then the same object can wind up being
added to the VVect or more than once. How? More than one thread can make the test before any
of the threads add the object. It's not even enough to synchronize the method, as in the following
version:

public synchroni zed void insertlfAbsent(Vector vector, Cbject object) {
if (vector.contains(object)) {
return;

vect or. add( obj ect) ;

}

because this code implicitly assumes that there is only one instance of the class that contains the
method. If there are two instances of the class, then there are two synchronization locks, one for
each instance. Hence, the same object may be added to the instance of Vect or twice. If there
will be more than one thread manipulating an instance of \Vect or , you probably need to
synchronize on the instance of \Vect or, as in the following code:

public void insertlfAbsent(Vector vector, Object object) {
synchroni zed(vector) {
if (vector.contains(object)) {
return;

vect or. add( obj ect);

}

12.2.4.1 Concurrent modification exceptions



The previous example may seem a little contrived. However, consider the following piece of
generic "event-broadcasting” code, which is similar to the code used to broadcast user-interface
events in the JDK 1.1 event model:

private void broadcast Announcenent( ) {

Enunmeration e = _listeners.elenments( );
while (e.hasMoreEl ements( )) {
(Listener) nextListener = (Listener) e.nextElenment( );

next Li st ener. changeCccurred( );

}

This isn't threadsafe either. We could easily wind up throwing an instance of

Nul | Poi nt er Exceptionif _|isteners is being changed while the enumeration is in
progress. And simply synchronizing on | i st ener s, as in the following version, doesn't quite
solve the problem:

private void broadcast Announcenent( ) {
syncrhoni zed(_listeners) {

Enuneration e = _listeners.elenents( );
while (e.hasMreEl enments( )) {
(Li stener) nextListener = (Listener)

e.nextEl enent( );

}

next Li stener. changeCccurred( );

}

This is because the same thread that owns the synchronization lock can still alter | i st eners.
That is, if the call to next Li st ener . changeCccurred( ) resultsin a change to

_|I'i steners, and that change is made from within the same thread, then the lock won't prevent
the change from happening.

In Java 2, this problem is called a concurrent modification error. The newer Collection classes
attempt to detect it and throw instances of Concur rent Vbodi fi cati on-Excepti on when it
occurs. For more information, see the description of the

Concurrent Modi ficati onException classinthe|java. uti| package and some of the
discussions about fail-fast iterators found on the Internet.

Preventing this sort of error can be difficult to do efficiently. A good, if slightly inefficient solution,
is to simply make a local copy of the container in the methods that alter the container, as in the
following code:

public void addLi stener(Listener listener) {
Vect or copy;
synchroni zed(_vector) {
copy = (Vector) _vector.clone( );
_vector = copy;

}
}
private void broadcast Announcenent( ) { /'l no change necessary to
thi s code.
syncr honi zed(_vector) {
Enuneration e = _listeners.elenents( );
while (e.hasMoreEl ements( )) {
(Li stener) nextListener = (Listener)

e.nextEl enent( );

}

next Li stener. changeCccurred( );



}

This makes the modification to a new copy of | i st ener s. Meanwhile, the enumeration
continues to use the old instance of VVect or , which means that the instance of \Vect or the
enumeration is using is not changing and cannot have a concurrent modification error. On the
other hand, this can result in the creation of a large number of new objects. If the vector is
modified frequently, this can be an expensive technique.

12.2.4.2 The other containers

The other container objects defined in the | ava. uti | package don't even synchronize their
methods. The warnings stated earlier also hold true for them. In addition, since the fine-grained
methods aren't synchronized, you need to be careful if you use an ArrayLi st in a multithreaded
environment.

L

There are some helpful static methods defined on

“a4. java. util.Collections.Forexample, the
synchroni zedCol | ect i on( ) method takes a collection
as an argument and returns a collection with the same
contents, all of whose methods are synchronized.

= Iy
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12.2.5 Use Containers to Mediate Interthread Communication

Another way to write threadsafe code is to try to guarantee that any given instance is used by
only a single thread. The problem with attempting to do this is that it's realisticly impossible; if you
succeed, the threads would execute separate programs. To the extent that threads need to
communicate, objects are touched by more than one thread.

However, phrasing the goal this way leads to an interesting idea: instead of trying to build many
threadsafe classes, we can try to design our program so that threads have very few instances in
common. One of the best ways to achieve this is to encapsulate messages between threads in a
container object (which, of course, must be very safe). For example, consider our
PrinterServer again.

The Print er Ser ver is much like the previous Logger example. The printer is a device, and
we'd really like responses to the client to be fast, rather than wait for the printer to actually handle
the print request. So we'll do the same thing we did in the Logger example, but with two minor
differences. The first is that instead of putting strings in the intermediate container, we'll insert
instances of Docunent Descri pti on. The second is that the thread, instead of receiving
everything in the container when it picks up information, will remove only one instance of
Document Descri ption atatime. See Figure 12-5.

Figure 12-5. Making PrinterServer more responsive

The background fread ferches o single dacurnent
deseription fram the printer quewe dod sends I o the

Printer priarar.

Lof o L[]l

The priter quede (5 fighlly syctonized
el andy ane thread can access
irala time.



This is a fairly general, and quite useful, technique for communicating between threads. For the
most part, the threads operate independently and use different sets of instances (which, because
they are used by only a single thread, don't need to be threadsafe). In order to communicate with
each other, the threads have a highly synchronized and threadsafe container in common. They
either place data objects in the container or remove data objects from the container.

Here's the implementation of Bat chi ngPri nter:

package com ora.rm book.chapterl2.printer.printers;
i mport com ora.rm book. chapter12. printer.*;

i mport java.io.?*;

i mport java.rm.*;

i mport java.rm.server.*;

i mport java.util.*;

public class BatchingPrinter extends Uni cast RenoteCbject inplenents
Printer {

private LinkedLi st _printQueue;

private Printer _realPrinter;

private Object _printerLock = new Qoject( );

private boolean _currentlyPrinting;

public BatchingPrinter(Printer real Printer) throws
Renot eExcepti on {
_printQueue = new LinkedList( );
_realPrinter = real Printer;
(new BackgroundThread()).start( );
}

public synchroni zed bool ean printerAvailable( ) throws
Renot eExcepti on {
if (_currentlyPrinting) {
return false;
}

return _real Printer.printerAvailable( );

}

publ i c synchroni zed bool ean pri nt Docunment ( Docunent Descri ption
docunent) throws
Renot eExcepti on, PrinterException {
_printQueue. add(docunent) ;
notifyAll( );
return true;

}

private synchroni zed void setCurrentlyPrinting(bool ean
currentlyPrinting) {
_currentlyPrinting = currentlyPrinting;
}

private void printNextDocunent( ) {
try {
Docunent Descri pti on docunent ToPrint =
get Next Docunent Fr omQueue( );
setCurrentlyPrinting(true);
_real Printer. printDocunent (docunment ToPrint);
setCurrentlyPrinting(false);



}

catch (Exception ignored) {
/* This is a real issue-- what do we do with PrinterExceptions
when we've bat ched
things up like this. */

}
}

private synchroni zed Docunent Descri ption
get Next Docunent FromQueue( ) {
while (0==_printQueue.size( )) {
try {
wait( );

cat ch( Exception ignored) {}
}
Docunent Descri pti on next Docunent =
(Docunent Descri ption) _print Queue
renove(0);
return nextDocunent ;

}

private class BackgroundThread extends Thread {
public void run( ) {
while(true) {
pri nt Next Docunent () ;
}

}

There are three nice things about building our networked printer this way. The first is, obviously,
that we've greatly improved client performance. Submitting a print request to Bat chi ngPri nt er
returns almost immediately, even if the actual printer is busy at the time.

The second nice aspect is that most of the threadsafe (and thread-aware) code is in a single
object. We don't have to worry about the actual printer code being threadsafe. Since the printer
probably uses native libraries and legacy code, this is a good thing. It's easy to tell that the
application is threadsafe, because most of the application has only a single thread running
through it.

The final point is that this decomposition is good object-oriented design. By explicitly representing
the print queue, we've made it easier to build additional functionality into the application. We have
an object whose explicit role is to handle dispatching print requests. This means we have a place
to store things such as the results of all print requests and a place to implement additional
methods. Recall that in Chapter 3, our list of probable extensions included:

Users will want to have a print queue. Important documents should be moved to
the top of a print queue; less urgent jobs should wait until the printer isn't busy.

If we're going to have a print queue it would be nice to be able to explicitly access
the queue, both to see the entire queue and to make queries about our job. It
should also be possible to cancel a print request that is in the queue but hasn't
already been sent to the printer.

The fact that increasing network performance and building in thread safety leads to this last
benefit is a sure hint that we've done something correctly.



Note that we've made a big trade-off here. In essence, we've replaced synchronous with
asynchronous method calls to allow batching. This means that the return values aren't
meaningful. In addition, in our current framework there's no way to tell the client if something
goes wrong—we can't throw a Pr i nt er Except i on after the method call has already returned.

If the client really needs to know whether the print request succeeded, the client must either make
a second method call later on to explicitly ask about the status of the print request or register for a
callback. We'll cover the latter technique in Chapter 21.

You may have noticed that several of our threading principles are actually concrete versions of a
abstract principle for organizing code:

Things that are logically distinct should not interact with each other.

"Ensure Data Integrity" was about preventing catastrophic interference. "Minimize Time Spent in
Synchronized Blocks" was about reducing the amount of time distinct tasks spend waiting for
each other to finish, and so on. It's apparent that I'm a big fan of eliminating unneccesary
interactions whenever, and wherever, possible. Even if it results in more code in the short-term,
doing so will simplify debugging and long-term maintenance.

12.2.6 Immutable Objects Are Automatically Threadsafe

This is an obvious point that people often overlook. If you can guarantee that an object's state will
never change, then you have guaranteed that the object is threadsafe. The St r i ng class, for
example, is immutable. Once created, an instance of St r i ng does not change. Instead, methods
such as concat () have the following signature:

public String concat(String str)

This method returns a brand new string, which is the concatenation of the two older strings, both
of which remain unchanged. This means that St r i ng is threadsafe.

If we needed to, we could apply this to our Money class as well. The current implementation of
subtract ( ) is:

public void subtract(Mney ot her Money) {
_cents -= otherMoney. getCents( );
}

This could easily be changed to:

publ i c Money subtract (Money ot her Money) ({
int resultCents -= _cents - otherMoney.getCents( );
return new Money( resultCents);

}

If we performed a similar transformation on Vboney's add( ) method, Money would become a
threadsafe class, without a need to synchronize any of the methods or think about whether they
are synchronized correctly.

Of course, once we've changed Voney, we must change our implementation of Account as well
to reflect the new behavior. But have no fear. If we forget to do this, the testing framework we'll
build in Chapter 13 will help to detect the error.

A special case of this rule of thumb is the stateless object; if

il

W 4. an object has no state, its state cannot change. Hence,
stateless objects are automatically threadsafe.




12.2.7 Always Have a Safe Way to Stop Your Threads

| mentioned this in Chapter 11. Threads, especially background threads, are usually set up to
run for a very long period of time. For example, the lock expiration threads we implemented a few
pages back ran in an infinite loop. Similarly, threads that automatically serialize objects to a
datastore often run in the background in an infinite loop. Another example is a thread that
automatically polls for external events, such as the thread in my mailreader that indefinitely
checks for new mail every two minutes.

What happens when you want to stop a thread? The Java language allows you to stop a thread
simply by calling st op( ) . However, as we discussed in Chapter 11, this method is
deprecated, and doing so can leave your program in an inconsistent state. It's much better to use
a boolean stop variable in your r un( ) method. Implement your r un( ) method as a loop that
only continues if the stop variable is set correctly. The following code snippet is from Chapter
11, but it's worth repeating:

public abstract class Stoppabl eThread extends Thread {
/1 ... many constructors, we've only included one
publ i c St opppabl eThread(String threadNanme, Object argl, OCbject

arg2) {
super (t hreadNane) ;
/1 use argl, arg2, ... to initialize thread state
start( );
}

private bool ean _shoul dSt opExecuti ng;
publ i c void set Shoul dSt opExecuti ng( bool ean shoul dSt opExecut i ng)

{
_shoul dSt opExecuti ng = shoul dSt opExecuti ng;
publ i c bool ean get Shoul dSt opExecuting( ) {
return _shoul dSt opExecuti ng;
}
public void run( ) {
whil e (!_shoul dSt opExecuting) {
perfornilask( );
}
}
protected abstract void perfornirask( );
}

12.2.8 Background Threads Should Have Low Priority

In Java, threads can be assigned a priority. Priorities are integers that tell a JVM how important a
particular thread's tasks are. In general, the JVM schedules more processor time for higher-
priority threads.

There are three distinguished, and predefined priorities: VAX PRI ORI TY, NORM PRI ORI TY, and
M N PRI ORI TY. MAX_PRI ORI TY is equal to 10, NORM PRI ORI TY is equal to 5, and
M N PRI ORI TY is equal to 1.



When you create a thread, it gets the same priority as the
« 4. thread which created it.

Background threads perform secondary tasks. Logging into a file, while important, does not need
to be done right away. It can wait until the processor has more time available. On the other hand,
servicing a client request is important and needs to be done quickly. So the general rule is
background tasks get low priorities; client tasks get high priorities.

12.2.8.1 Applying this to the bank example

A very nice illustration of this idea can be shown in the bank example by implementing a
persistence layer. The goal of a persistence layer is to take server state, which is stored in RAM,
and place it in a much more secure and dependable location on a disk. If the computer crashes,
the contents of RAM are gone forever. Whatever's on the hard drive is much more likely to be
recovered. We thus have two different strategies for where to store a single account's state:

The in-memory strategy

State is easily accessible, and the server is incredibly fast and responsive. It can handle
thousands of operations per minute, and as long as the server doesn't crash, data
integrity isn't a problem.

The on-disk strategy

This is much slower and much less responsive. It can handle tens of operations per
minute, but is much more resilient in the face of system failures. Furthermore, if the data
is stored in a database (or database-like system), it can be accessed by other
applications.

Moreover, these are characteristics of the entire system. If all the servers store their state to disk
constantly, then the entire system is only as responsive as the hard drive, since individual
Account s will conflict when they attempt to read from the hard drive. If, on the other hand, all the
Account s store their state in memory, then the system will be much more responsive.

Clearly, neither of these is a particularly desirable situation. Fortunately, there is a fairly nice
compromise strategy: implement a persistence layer. Use the in-memory strategy for active
servers. However, when a server has been inactive for awhile, when clients are not accessing it
and haven't done so for some predetermined amount of time, surreptitiously make a copy of the
server's state and store it on a disk.

The most common place to store a server's state is, of course, in a relational database. But that's
a detail. The important aspect of the strategy is the compromise it effects between the fast
response time necessary for active servers and the long-term data integrity necessary for a
successful enterprise application.

Persistence is usually implemented in a way that's fairly similar to the background lock-
maintenance threads we examined earlier. The design strategy is something like:

A background thread is decrementing a timer, using the "sleep for a while, then wake up
and decrement the count” implementation that the lock strategy used. This is a low-
priority thread.

When a server object has been inactive long enough, the background thread registers
the server with a container that holds objects eligible for persisting.

When the server JVM isn't busy, a persistence thread makes a permanent copy of the
registered servers. This persistence thread is also a low-priority thread.



12.2.9 Pay Careful Attention to What You Serialize

Recall how serialization, the default mechanism for marshalling and demarshalling objects,
works. It starts with a single instance and records all the information associated with that
instance. Some of the attribute values of the instance may themselves be instances of other
classes. Those instances also get serialized, and so on. Serialization traverses all the instances
reachable from the first instance, and records all the information associated with each.

| previously mentioned that serialization uses the reflection API quite extensively and is rather
slow. In the world of multithreaded servers, however, serialization has another flaw that is much
more serious: serialization essentially assumes that the object graph is static.

To see what | mean, assume, for a moment, that our instances of Account also keep records.
That is, in addition to recording the new balance after every operation, they store a list of
transactions to track the individual operations that occur:

public class Transaction inplenents Serializable {
public Money anount;
public int typeO Transacti on;
public time whenMade;

}

In addition, assume we have a persistence layer that serializes out the instance of Account
every how and then (using a background thread).

At first glance, this seems quite nice. Mbney needs to implement Ser i al i zabl e anyway to pass
over the wire. By adding the words "implements Ser i al i zabl e" to our implementation of
Account and implementing a simple background thread, we can restore accounts when the
system crashes and restart accounts on different servers quite easily.

However, care needs to be taken when we do this. Suppose that we do serialize a server ina
background thread, and suppose that a client makes a request on the server while serialization is
occurring. Unless we are careful, scenarios such as the following can happen:

1. Serialization starts. The balance is recorded by the serialization mechanism, and we
begin serializing each of the transactions.

2. Arequest comes in, the balance changes, and a transaction is added to the end of the
list of transactions.

3. Serialization finishes recording all the transactions, including the one that was just
registered.

This is a problem. The balance we stored is inconsistent with the list of transactions we wrote—
it's the balance from before the final request came in. The serialized copy of our implementation
of Account that we saved, which is intended to be a correct copy of our server, is flawed
because another thread changed the data while serialization was occurring.

What makes this problem especially insidious is that it doesn't crash the server. It simply corrupts
the backup copy of your data. So when the server crashes due to some other problem, you won't
be able to recover.

In practice, there's really only one solution to this problem. While the serialization is going on, we
need to block all operations that alter the state of the objects being serialized. Since serialization
is slow, and can traverse a large number of instances, this can be a problem.



In the case of the bank example, this solution doesn't really
«* 4. cause a problem. If we serialize only instances of Account
that haven't been active for a while, the risks of locking out a
client who wants to access her money are minimal. However,
in other applications, using serialization for persistence can
lead to serious problems.
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In practice, serialization is fine for client applications. It's quite easy to design data objects so they
are fast to serialize and involve passing small amounts of information over the wire. Furthermore,
most clients are single-threaded anyway; since the serialization algorithm's data-corruption
problems occur only when multiple threads are running, they rarely occur on the client side.

Yet if you use serialization for persistence, logging, or to pass state between servers, you need to
be careful. The rules are simple:
Make serialization fast

Limit the number of instances that can be reached by the serialization algorithm from any
serializable instance.

Make serialization safe

Make sure that the objects being serialized are locked during the serialization algorithm.
12.2.10 Use Threading to Reduce Response-Time Variance
A typical remote method invocation embodies three distinct types of code:

Resource allocation code

Actual requested functionality

Cleanup code

One of the key observations about threads is that, to a large extent, they allow us to isolate these
three types of code in different threads. The upcoming pool example shows how this is done.
What | want to emphasize here is that when we move functionality into worker threads, we not
only get a more robust server, we get a more responsive and predictable client. The less we do
inside any given client method invocation, the more predictable the outcome will be.

For example, consider what we did in our printer example. We moved the actual printing into a
separate thread. The client threads, which used to print the document, simply drop off an object in
a container and return. Every client thread does the same things in the same order, and they
never block while waiting for resources.

Similarly, when we implemented | oggi ng as a background thread, one of the major gains was
that client threads didn't have to wait for a resource to become available. We turned a variable-
length operation (waiting for the log file) into a faster, fixed-length operation (putting an object into
a container). The servers aren't necessarily faster or more efficient as a result of these
transformations, but the client application feels faster and has a much more uniform response
time as a result.

12.2.11 Limit the Number of Objects a Thread Touches

The next tip in using threads is almost an emergent tip. If you use containers to mediate thread
communication, use background threads to perform resource allocation and cleanup tasks, and



carefully limit the number of objects that serialization will visit, you'll notice something else
happening. Each thread will only ever visit a small number of objects.
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There's a slight exception to this. Since RMI reuses the same
thread across multiple client requests, that thread may
eventually wind up visiting many instances. But during any
given remote method invocation, it will only visit a few.
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This is an important and useful consequence. It's so important and so useful that it deserves to
be a design guideline of its own instead of just a consequence of the others. If all of your threads
touch only a few objects, then your code will be much easier to debug, and you can think about
thread interaction problems such as deadlock. If, on the other hand, a given thread can execute
any method in your code, then you'll have a hard time predicting when thread-interaction
problems will occur and which threads caused a particular problem.

12.2.12 Acquire Locks in a Fixed Order
Recall that deadlock is a situation when a set of threads acquire locks in such a way that none of
them can continue processing. The simplest example requires two threads and two locks and
involves the following sequence of actions:

1. Thread 1 acquires Lock 1.

2. Thread 2 acquires Lock 2.

3. Thread 1 attempts to acquire Lock 2 and blocks (because Thread 2 has Lock 2).

4. Thread 2 attempts to acquire Lock 1 and blocks (because Thread 1 has Lock 1).

The basic idea behind ordering locks is simple. Deadlock depends on locks being acquired in
different orders. In our example scenario, Thread 1 acquires Lock 1 and then Lock 2. And Thread
2 acquires Lock 2 and then Lock 1. However, if both threads acquire the locks in the same order,
then deadlock doesn't occur. Instead, one of the threads blocks until the other thread completes,
as in the following variant scenario:

1. Thread 1 acquires Lock 1.
2. Thread 2 attempts to acquire Lock 1 and blocks because Thread 1 has Lock 1.

3. Thread 1 attempts to acquire Lock 2 and succeeds. After awhile, it relinquishes both
locks.

4. Thread 2 then acquires Lock 1 and continues.
Of course, it's often very difficult to define a global order on all the locks. If there are a large
number of objects being locked, and if the codebase is large enough, enforcing a global ordering
turns out to be a difficult task.

Often, however, you can impose an ordering on the types of locks. A rule as simple as:

Synchronize on instances of class X before synchronizing on instances of class
Y.

often has the same effect as imposing a global ordering on all instances. For example,
"Synchronize on instances of Logf i | e before synchronizing on instances of Account ."



12.2.13 Use Worker Threads to Prevent Deadlocks

Another common trick to prevent deadlocks is to use worker threads to reduce the number of
locks any given thread has. We've already briefly discussed worker threads. Among other
examples, we discussed log files. Our example began with:

A single thread that both received and handled a request and, in the course of
doing so, logged information to the log file.

We transformed this into:

Two threads. One thread received the request and encapsulated the request in
an object that was dropped off in a container. The second (worker) thread, pulled
these objects from the container and registered them in a log.

The main reason | gave for doing this was to prevent clients from blocking each other, or waiting
for an external device to become available. Logging is something that can often be done
independently of the actual client request. But there's another benefit. In the first scenario, a
single thread holds two distinct types of locks: locks associated with the actual client request and
incidental locks associated with the logging mechanism. Using a logging thread changes this in a
very significant way:

There is only one lock associated with logging that the request thread ever
acquires (namely, the lock associated with the container used to communicate
with the worker thread).

Moreover, the lock associated with the container doesn't count when you're reasoning about
deadlock. This is because the container lock has the following two properties:

If another lock is acquired before the container lock, that other lock will be released after
the container lock is released.

No locks are acquired between when the container lock is acquired and when the
container lock is released.

Any lock with these two properties cannot add a deadlock to a system. It can block threads (as
the container lock does in order to ensure data integrity), but it cannot deadlock threads.

12.3 Pools: An Extended Example

At this point, you've read some 70 or so pages of reasonably plausible material on threading. But,
speaking from personal experience, it's almost impossible to read 70 pages of material on
threading and actually understand all of it on the first reading.

The point of this section is to introduce a fairly complex and sophisticated piece of code that
involves threading. If you understand this example, how it works, and why it's built the way it is,
then you've got a reasonable grasp of this material and how to use threads in your applications.

If, however, this seems like an incredibly byzantine and opaque piece of code, then you may want
to reread those 70 pages or grab a copy of one of the references.

12.3.1 The Idea of a Pool

Pooling is an important idiom in designing scalable applications. The central idea is that there is a
resource, encapsulated by an object, with the following characteristics:

It is difficult to create the resource, or doing so consumes other scarce resources.



The resource can be reused many times.

You frequently need more than one instance of the resource because there are many
threads that perform tasks involving this type of resource (I will call these threads the
client threads).

The canonical example of a resource that ought to be pooled is a database connection. In Java,
database connections are embodied as instances of an implementation of the

j ava. sqgl . Connecti on interface. A database vendor will supply a class that implements the
Connect i on interface and is used to communicate with the vendor's database server.

Database connections almost always involve a socket connection to the database server. Socket
connections to the database server are expensive for two reasons. First, the database has a
limited number of sockets it can vend. Second, establishing a connection often involves logging
into the database and establishing a secure communications channel. Performing the security
check is time-consuming and is something you don't want to repeat every time you need to make
a query against a database.

12.3.2 Two Interfaces That Define a Pool

Our goal is to define a generic and reusable pooling mechanism. To do so, we start by defining
two interfaces: Pool and Pool Hel per . These are very simple interfaces, defined in the
com or a. rm book. chapt er12. pool package:

public interface Pool {
public Cbject getCbhject( );
public void returnObject(Cbject object);

}
public interface Pool Hel per
{
public Cbject create( );
publ i c bool ean di spose(Obj ect object);
public boolean isCbhjectStillValid(Object object);
}

Pool and Pool Hel per encaspulate everything that the client threads (which simply use the
pooling mechanism) need to know. Pool defines only two methods: get Cbj ect () lets a client
thread get an object from the pool, and r et ur nChj ect () returns an object to the pool (thereby
making it available for other client threads to use).

The second interface helps us build a generic and reusable pool class. Since there's no way an
implementation of the Pool interface could know how to construct the objects in the pool, or how
to make sure they're still valid, we need to provide a way for the generic pooling mechanism to
create and validate individual objects in the pool. For example, database connections have a
tendency to fail over time. The pooling mechanism should occasionally check them and make
sure they still work. We build this into our system by defining the Pool Hel per interface. Users of
the pooling mechanism will implement Pool Hel per 's three methods in order to customize the
pool to their specific needs.

12.3.3 A First Implementation of Pooling

Ouir first implementation of Pool , called Si npl ePool , is a basic implementation of Pool . It does
the following:

In the constructor, it gets a Pool Hel per, a starting size for the pool, and a maximum
size. Si npl ePool immediately creates a set of available objects. The size of the set is
the starting size of the pool.



Whenever get Chj ect () is called, it checks to see whether it has an object. If it does,
it returns one (first removing it from the set of available objects). If the pool has no
available objects, it calls its helper's cr eat e( ) method.

Whenever r et ur nChj ect () is called, the object is put back into the set of available
objects if two conditions are met: the set of available objects isn't already at the maximum
size (e.g., the pool isn't already full), and the object is still valid, which the pool checks by
calling the helper'si sObj ect Sti || Valid( ) method.

Here's the code for Si npl ePool in its entirety:

public class SinplePool inplenments Pool {
private int _maximum ndex;
private int _currentPosition
private Pool Hel per _hel per;
private Object[] _avail abl eCbjects;
public SinplePool (int startingSize, int maxi munSi ze, Pool Hel per
hel per) {
_maxi mum ndex = maxi nunti ze -1;
_hel per = hel per;
buildlnitial Objects(startingSize, nmaxi nunSi ze) ;

}
public synchronized Object getObject( ) {
if (_currentPosition == -1) {
return _hel per.create( );
}
return get Qj ect Fromarray( );
}

private Object getObjectFromArray( ) {
hj ect returnval ue =
_avail abl eOoj ects[ _currentPosition];
_avail abl eObj ects[ _currentPosition] = null;
_currentPosition--;
return returnVal ue;

}
public synchroni zed void returnCbject(CObject object) {
if (_currentPosition == _maxi num ndex) {
_hel per. di spose(object);
return;
}
if (! _helper.isObjectStillValid(object)) {
_hel per. di spose(object);
return;
}
_current Posi tion++;
_avai l abl eObj ects[ _currentPosition] = object;
}

private void buildlinitial Objects(int startingSize, int

maxi munsi ze) {
_avai l abl eObj ects = new Obj ect [ maxi munti ze] ;
int counter;
for (counter = 0; counter < startingSize; counter++) {
_avail abl eObj ects[counter] =_helper.create( );



}

_currentPosition = startingSize -1;

}
12.3.4 Problems with SimplePool

Si npl ePool has a number of nice attributes. The first is that, as advertised, the code is
straightforward. Another is threadsafety. Since both get Chj ect () andret urnOhj ect ( ) are
synchronized, Si npl ePool is threadsafe. Moreover, because only one thread ever gets to

_hel per atatime, Si npl ePool is threadsafe independent of the implementation of

Pool Hel per.

However, Si npl ePool also has four major problems. First, there is no effective bound on the
number of pooled objects that are created. If all the pooled objects are checked out, then another
object is created. This can be unfortunate. When our server is really busy, it may spend an
inordinate amount of time and resources creating pooled objects that it will then throw away. In
the case of database connections, it may swamp the database server as well.

The second problem is that get Cbj ect ( ) andret urnCbj ect ( ) are both synchronized.
Thus, at most, one thread can either get or return an object. This, in turn, has two effects. First,
returning an object to the pool, an operation that ought to be quite fast for the client threads, may
take a long time. Second, it's quite possible that instances of Si npl ePool will not achieve
efficient reuse during peak usage periods. Suppose, for example, that all the pooled objects have
been vended, and 15 more requests for objects come in. It's possible that 15 new objects will be
created, even if during that same time period, 11 client threads were attempting to return pooled
objects.

The third major problem with Si npl ePool is that the validity checks, and the destruction of
surplus pooled objects, are done in the calling thread. One of the big benefits of using a pool is
that it makes the client threads more responsive by offloading most of their work to the pool. We'd
certainly like to move validation and destruction out of the client threads as well.

The last major defect with Si npl ePool is that the pool doesn't shrink during quiet times. Once
the pool is at maximum size, it will keep all of its allocated objects forever. Given that pooled
objects are usually scarce resources, we'd probably like a way to gradually shrink the pool when
it's not often being used and release those scare resources for other uses.

Each of these problems cries out for background threads inside our pooling mechanism. In
particular, we will implement three threads: one that handles object creation, another that handles
returning objects to the pool, and a third that handles shrinking the pool over time.

12.3.5 The Creation Thread

The first step in solving Si mpl ePool 's problems is to add a separate thread to handle object
creation. This will enable us to solve the first two problems mentioned earlier. The basic idea is:

A separate thread handles object-creation requests. It does so one at a time.

When calls to get Obj ect () are made, the pool first checks its local storage. If no
object is available, it sends a message to the object-creation thread, requesting that a
single object be created, and then waits.



When the object-creation thread receives the message, it creates a single object (if the
pool hasn't exceeded its maximum size limit) and notifies a waiting thread. If the pool is
already at its maximum size, the object-creation thread does nothing.

When objects are checked into the pool, notification also occurs. This accomplishes two
things. First, it handles the problems caused by the object-creation thread's refusal to
create objects when the pool is already at maximum size. Second, it increases the
likelihood that waiting creation requests will be able to reuse objects that were checked in
while they were waiting.

The code to implement this version of Pool isn't much longer than that for Si npl ePool . But it's
much trickier. Avoiding a deadlock between the threads calling get Cbj ect () and the object
creation thread requires some thought. In addition, making sure that all the get Cbj ect () calls
are eventually satisfied also requires some work.

Here's the code for Thr eadedPool 1:

public class ThreadedPool 1 i npl ements Pool {
private int _maxi nunti ze;
private Vector _avail abl e(bjects;
private int _total NunberOf Obj ect s;
private Pool Hel per _hel per;
private ObjectCreator _creator;

publ i c ThreadedPool 1(String pool Nane, int naxinunSi ze,
Pool Hel per hel per) {
_maxi muntSi ze = maxi nunti ze;
_hel per = hel per;
_avail abl eObj ects = new Vector( );
start Creat or Thread( pool Nan®e) ;

}

public Cbject getCbject( ) {
bj ect returnvalue = null;
while (null== (returnVal ue = getLocal | yAvai | abl e(bj ect (
))) |
_creator.askForQoject( );
wai t For Avai | abl eCbject( );
}

return returnVal ue;

}

public void returnQObject(CObject object) {
if (_helper.isChjectStillValid(object)) {
_avai |l abl eoj ect s. add( obj ect) ;
notifyWaitingGets( );

}
el se {
_hel per. di spose(obj ect);
_total Nunber O Qbj ects--;
}
return,

}

protected void createAndAddCbject( ) {
hj ect creatednject = null;
if (_total NunberOr Obj ects < _maxi munti ze) {



hj ect newhj ect = _hel per.create( );
_avai |l abl eObj ect s. add( newthj ect) ;
_total Nunber O Obj ect s++;

}

if (null!=createdbject) {
notifyWaitingGets( );

}
return;
}
private synchroni zed void waitForAvailableCject( ) {
try {
wait();
catch (InterruptedException ignored) {}
}
private synchronized void notifyWitingGets( ) {
notify( );
}

private Object getlLocallyAvail ableGoject( ) {

/'l Locks the container while we check for val ues.

/1 That way, we don't sinmultaneously vend the same
obj ect

/1 to two different requests

synchroni zed( _avai | abl eCbj ects) {

if (! _avail ableObjects.isEmpty( )) {
int lastPosition =

_avail abl eObj ects. size( )-1;

_return
_avai |l abl e(bj ects. renove(l ast Position);
}
return null;

}

private void startCreatorThread(String pool Nane) {
_creator = new ObjectCreator(this);
Thread creator Thread = new Thread(_creator, pool Nane +
creation thread");
creatorThread. setPriority(Thread. NORM PRI ORI TY- 2);
creatorThread.start( );

n

}

There are two important points to note here. The first is that we deliberately choose to use

Vect or instead of ArrayLi sts. Vect or s are a slightly slower container structure, but they
have one important advantage: all method calls on an instance of Vect or are synchronized. This
means that some of the problems are solved for us because we don't have to worry about two
different add( ) operations being performed simultaneously.

The second important point is that object creation is given a lower priority. Object creation is
important—we've offloaded it to a background thread—nbut the last thing we want is for that
thread to get priority. Given our druthers, we'd rather reuse an object. So, we make creation a
slightly lower priority and hope that returned objects satisfy most of the pending requests.



We use a separate class, Obj ect Cr eat or , to implement the Runnabl e interface. All Runnabl e
does is wait for requests to come in and then call Thr eadedPool1l's cr eat eAndAddOhj ect (
) method:

public class ObjectCreator inplenments Runnable {
private ThreadedPool 1 _owner;
private bool ean _request Pendi ng;
publ i c Cbject Creator(ThreadedPool 1 owner) {
_owner = owner;
}

public void run( ) {
bool ean needToCreate = fal se;
while (true) {
synchroni zed(this) {
whil e (!_requestPending) {

try {
wait( );
} catch (InterruptedException
i gnored) {}
needToCreate = _ request Pendi ng;
request Pendi ng = fal se;
if (needToCreate) {
needToCreate = fal se
_owner . creat eAndAddOoj ect ()
}
}
}

public synchroni zed void askForObject( ) {
_request Pendi ng = true;

notify( );

}
12.3.6 Adding a Return Thread

Adding a creation thread partially solved two of the four problems we noticed with Si npl ePool .
There is now an upper bound on the number of objects created ( naxi nunti ze is used to limit
the total number of objects created, as well as the total number of objects stored). And, while
creation requests are queued and waiting, objects can still be returned to the pool and will
immediately be available to get Chj ect () requests.

This did not, however, completely solve our second problem. Returning an object involves
synchronizing, and thus may block for an extended period of time. To solve this problem, we'll
add another thread, which will return objects to the pool. Moreover, in doing so, we will solve our
third problem:

The third major problem with Si npl ePool is that the validity checks, and the
destruction of surplus pooled objects, are done in the calling thread. One of the
big benefits of using a pool is that it makes the client threads more responsive by
offloading most of their work to the pool. We'd certainly like to move validation
and destruction out of the client threads as well.



Adding this thread involves a few small changes to the actual pool object. In particular, in the
class Thr eadedPool 2, we rewrote r et ur nObj ect () to simply delegate all of its functionality
to the background thread. We also added a new method, st art Ret ur ner Thread( ), whichis
called by Thr eadedPool 2's constructor. Thr eadedPool 2 is otherwise almost identical to

Thr eadedPool 1:

public void returnCbject(Object object) {
_returner.val i dat eAndRet ur n( obj ect);
}

protected void returnCbject ToPool (Object object) { // called from
background t hread
if (_helper.isObjectStillValid(object)) {
_avai l abl e(bj ect s. add( obj ect) ;
notifyWaitingGets( );

}
el se {
_hel per. di spose(object);
_total Nunber O Qbj ects--;
}
return;

}

private void startReturnerThread(String pool Nane) {
_returner = new Obj ectReturner(this);
Thread returnerThread = new Thread(_returner, pool Name + "
returner thread");
returnerThread. setPriority(Thread. NORM PRI ORI TY+2) ;
returnerThread.start( );

There's a general programming pattern here. Grady Booch is
generally credited with the aphorism, "If the design of your
program is too complicated, add more objects.” Similarly, if
you are having threading or synchronization problems, the
solution is usually to add more threads. Both statements are
ludicrous and counterintuitive. But they're also both true, and
moreover, they're both really specializations of the old saw
that "adding another level of indirection never hurt anything."

=
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The returner thread has a fairly high priority because we're biased towards returning objects to
the pool and reusing them. We don't want client threads to perform the return and validation
operations, but we definitely want the return thread to return objects to the pool as quickly as
possible. For example, if validating an object requires calling a database, we'd rather not have the
client thread wait for that operation to complete.

_returner is an instance of the Chj ect Ret ur ner class. What happens inside

hj ect Ret ur ner is simple. When val i dat eAndRet ur nObj ect () is called, the instance of
hj ect Ret ur ner places the argument inside a vector and notifies the background thread. The
background thread handles all the validation and reclamation work by calling the pool's protected
returnOoj ect ToPool () method. Meanwhile, the original calling thread, presumably a client
thread, returns from val i dat eAndRet ur nOhj ect () and can continue processing without
anymore delays:

public class ObjectReturner inplenents Runnable {



private Vector _objectsToReturn;

private ThreadedPool 2 _owner;

publ i c Obj ect Returner ( ThreadedPool 2 owner) {
_owner = owner;
_ObjectsToReturn = new Vector( );

}

public void run( ) {
while (true) {
hj ect obj ect ToRet urn;
whil e (0==_objectsToReturn.size( )) {
synchroni zed (_objectsToReturn) {
try {
_obj ectsToReturn.wait( );
} catch (InterruptedException

e){} }
}
int |lastlndex = _objectsToReturn.size( ) -1;
obj ect ToOReturn =

_obj ectsToReturn. renove(l astl ndex);
_owner . returnCbj ect ToPool (obj ect ToRet urn);
}

}

public void validateAndRet urn( Obj ect object) {
synchroni zed(_obj ect sToReturn) {
_0obj ect sToRet ur n. add( obj ect) ;
if (1== _objectsToReturn.size( )) {
_objectsToReturn.notify( );
}

12.3.7 Gradually Shrinking the Pool

The last feature we want to add to our pool is the ability to shrink the pool gradually over time. If
you look at pool utilization you'll notice an interesting fact: it is usually "bursty." That is, most of
the time, a small number of pooled objects will suffice. However, during peak usage times, far
more objects will be required. This makes the design of Thr eadedPool 2 rather awkward. In
particular, we're faced with one of the following choices:

Pass in a large maximum size to the constructor. This means that client threads don't
have to wait very long during peak usage. However, this also means that we're carrying
around a lot of extra baggage during ordinary usage times (our pool will almost always
have many extra objects in it).

Pass in a smaller maximum size to the constructor and have client threads wait inside the
get Ohbj ect () method for a pooled object to become available during peak usage.

A compromise solution to this problem is to pass in two values: a maximum size and a "steady-
state size." They are used to implement the following behavior:

During peak usage, the pool expands to the maximum size and stays that size as long as
there is demand for that many pooled objects.



As demand recedes, objects are gradually removed from the pool until the steady-state
size is reached.

Of course, implementing this behavior requires yet another background thread to remove objects
from the pool. This thread is a lot like the lock maintenance and persistence threads we saw
earlier in the chapter. In other words, it's a background thread that operates on a timer. If enough
time has passed without the pool ever being completely emptied, then the background thread
removes the "surplus" object and resumes waiting.

This is the final version of our threaded pool:

public class ThreadedPool Final inplenments Pool {
private int _maxinmunsti ze;
private int _steadyStateSize;
private Vector _avail abl e(bjects;
private int _total Nunber Of Qbj ect s;
private Pool Hel per _hel per;
private bjectCreator _creator;
private ObjectReturner _returner;
private Pool Shrinker _shrinker;

publ i c ThreadedPool Final (String pool Narme, int steadyStateSize,
i nt maxi nunti ze,
Pool Hel per hel per) {
_SteadyStateSi ze = steadyStateSize;
_maxi muntSi ze = maxi munti ze;
_hel per = hel per;
_avail abl eObj ects = new Vector( );
start Creat or Thr ead( pool Nane) ;
st art Ret ur ner Thr ead( pool Nane) ;
start Shrinki ngThr ead( pool Nane) ;

}

public Cbject getCbject( ) {
oj ect returnvalue = null;
while (null== (returnVal ue = getLocal |l yAvai | abl eCbj ect (
))) A
_creator.askForQoject( );
wai t For Avai | abl eQbject( );
}

return returnVval ue;

}

public void returnObject(CObject object) {
_returner.validat eAndRet urn( obj ect);
}

protected void returnCbj ect ToPool (Cbj ect object) {
if (_helper.isojectStillValid(object)) {
_avai |l abl eObj ect s. add( obj ect) ;
notifyWaitingGets( );

}
el se {
_hel per. di spose(obj ect);
_total Nunber O Obj ect s--;
}

return;



}

protected void createAndAddObject( ) {
bj ect createdObject = null
if (_total Nunmber O Obj ects < _maxi nunti ze) ({
bj ect newObj ect = helper.create( );
_avai | abl ebj ect s. add( newbj ect ) ;
_total Nunber Of Qbj ect s++;

if (null!=createdject) {
noti fyWaitingGets( );
}

return;

}

protected void renmoveAnhject( ) {
if (_total Number O Obj ects < _steadyStateSize) {
return;

bj ect obj ect ToRenmove = get Local | yAvai | abl eObject (  );
i f (null!=0objectToRenove) {
_hel per. di spose( obj ect ToRenove) ;

}
}
private synchroni zed voi d waitForAvail abl eCbject( ) {
_shrinker. pause( ); /1 if we have to wait, the poo
is at full utilization
try {

wait( );

}
catch (InterruptedException e) {/*ignored*/}
_shrinker.resune( ); // if we had to wait, the pool is

at full utilization

}

private synchronized void notifyWitingGets( ) {
notify( );

}

private Object getlLocallyAvail ableObject( ) {

/'l Locks the container while we check for val ues.

/1 That way, we don't sinultaneously vend the sane
obj ect

/1 to two different requests

synchroni zed( _avai | abl eCbj ects) {

if (!_availableCbjects.isEmty( )) {
int [astPosition =

_avai |l abl e(bj ects.size( )-1;

return
_avail abl eObj ects. remove(l ast Position);
}
return null;

}

private void startCreatorThread(String pool Nane) {



_creator = new hjectCreator(this);

Thread creator Thread = new Thread(_creator, pool Nane +
creation thread");

creatorThread. setPriority(Thread. NORM PRI ORI TY- 2);

creatorThread.start( );

}

private void startReturnerThread(String pool Nanme) {
_returner = new Cbj ectReturner(this);
Thread returnerThread = new Thread(_returner, pool Nane +

" returner
thread");
returnerThread. setPriority(Thread. NORM PRI ORI TY+2);
returnerThread.start( );
}

private void start ShrinkingThread(String pool Nane) {
_shrinker = new Pool Shri nker (this);
Thread shrinker Thread = new Thread(_shrinker, pool Nane +

" shrinking
thread");
shrinker Thread. set Priority(Thread. NORM PRI ORI TY- 2);
shrinker Thread. start( );
}

}
And the code for Pool Shri nker is:

public class Pool Shrinker inplenments Runnable {
private static final int DEFAULT _TIME_TO WAIT = 120000;
private static final int DEFAULT TIME | NTERVAL = 5000;
private ThreadedPool Final _owner;
private int _tineLeftUntilWeShrinkThePool
private bool ean _paused;

publ i ¢ Pool Shri nker ( ThreadedPool Fi nal owner) {
_owner = owner;
_timeLeftUntil WeShri nkThePool

DEFAULT_TI ME_TO WAI T;
}

public synchroni zed void pause( ) {
_paused = true;
}

public synchronized void resune( ) {
_tineLeftUntil WeShri nkThePool
_paused = fal se;

DEFAULT_TI ME_TO WAI T;

}

public void run( ) {
while (true) {

try {

}
catch (InterruptedException e) {/* ignored*/}

if (! _paused) {
decrement d ock( );
if (O==_tineLeftUntil WeShrinkThePool) {

Thr ead. sl eep( DEFAULT_TI ME_| NTERVAL) ;



_owner. removeAnhj ect( );
reset d ock( );

}

private synchroni zed void resetC ock( ) {
_timeLeftUntil WeShri nkThePool = DEFAULT TI ME_TO WAI T;
}

private synchroni zed void decrenmentd ock( ) {
_tinmeLeftUntil WeShri nkThePool - = DEFAULT_TI ME_| NTERVAL;
if (0> _tineLeftUntil WeShrinkThePool) {
_tinmeLeftUntil WeShri nkThePool = O;
}

}

The last thread we added, which shrinks the pool, is somewhat inefficient. It counts constantly,
even if the pool has already been reduced to its steady-state size. It can be easily argued that
having a thread do nothing, and do nothing repeatedly, is a bad design.

This suggests two possible modifications to our design. The first is that we make the thread wait
once steady state is reached. That is, we add a lock object and have the shrinking thread wait on
it (the thread would get notified the next time an object is actually created). This can easily be
implemented within Thr eadPool _Fi nal .

A second, more interesting design change, is to eliminate the idea of a steady-state size entirely.
Right now, the shrinker thread checks two things: whether the pool has had objects in it
continually for a long period of time and whether the pool is larger than its steady state. If so, an
object is pulled from the pool and destroyed. We could easily change this behavior so that the
thread monitors the pool constantly and removes any objects it thinks are surplus, regardless of
the pool's size.

12.3.8 Two Additional Considerations When Implementing a Pool

While this example has gone on long enough, there are two additional factors you should
consider when implementing a pool:the initial-resource creation strategy andthe difference
between the steady-state size and the maximum-pool size.

12.3.8.1 The initial-resource creation strategy

In our example, we used a lazy creation strategy and only created objects when they were
needed. That is, when the pool is created, it contains no objects. And it will continue to be empty
until a client thread makes a request for a resource. The alternative strategy is to have the
creation thread fill the pool immediately by creating resource objects.

This doesn't make much of a difference in practice. | prefer a lazy creation strategy simply
because I'd rather not create a lot of extra objects when the server launches (or in servers that
are lightly used). But, if you think that a lazy creation strategy may have a noticeable impact on
either perceived or actual server performance, you should consider either immediately filling the
pool up to its steady-state size, or adding a third variable to control how many objects to
immediately create when the pool is created.

12.3.8.2 The difference between the steady-state size and the maximum-pool size



Suppose you implement a database connection pool with a steady-state size of 10 connections
and a maximum size of 15 connections. Further suppose that, at some point, your server already
has 10 transactions open and needs to use another database connection. In all the
implementations we've discussed, the pool will create the database connection right away.

The problem is this: it's quite possible that your server needs the extra database connection
because it's currently handling an unusually heavy load. In which case, creating extra database
connections may be a really bad idea—it amounts to deciding that the currently pending requests
ought to slow down while extra database connections are created. A better strategy might be:

If the server is really busy, all new database requests are put on hold (and not
serviced by additional database connections).

If you decide to use the second strategy, you can implement it easily enough—just set the
steady-state size equal to the maximum-pool size.

12.4 Some Final Words on Threading

Writing multithreaded programs is incredibly difficult to do well; it is perhaps the most subtle task
you will be called upon to do as a server developer. We've spent two chapters on a topic that
could easily consume a dozen books.

Once you've mastered this material, you should read more. Good references include Concurrent
Programming in Java, Second Edition by Doug Lea (Addison-Wesley) and Concurrent
Programming: Principles and Practice by Gregory Andrews (Addison-Wesley).

Chapter 13. Testing a Distributed Application

In the previous two chapters, we discussed threading in detail. Now that we have threading under
our belts, it's time to return to the idea of testing our distributed application. In this chapter, we'll
discuss the basics of building a testing framework, and walk through a set of minimal tests for the
bank application.

When you think about the amount of code, and the number of independent pieces that must
perform correctly in order for a distributed application to work, it's very easy to feel a certain
amount of despair. Consider that each computer running part of the application has at least four
layers of independently written code: the BIOS, the operating system, the JVM, and the
application. Remote method invocations are sent from one machine to another, forwarded by
other computers and network devices. Persistence is achieved through the user of relational
database management systems, which are themselves huge and complex pieces of code that run
on independent servers.

The complexity involved is incredible. The number of subtle errors that can be made, by any of
the developers involved, is incomprehensible. There is no way to be certain the piece of code
you've written is solid in itself, much less that it behaves well as part of the larger system. In the
face of all the potential errors, and the uncertainty that they produce, the best thing you can do is
test your code. Test early, test often, and always remember that until the code is tested, you don't
know whether it actually works.™

[ strictly speaking, we won't know afterwards either. But we're more likely to believe that it will work, and
that's worth something.

In this chapter, the focus will be on testing the distributed aspects of the bank example (e.qg.,
focusing on how our system functions when there are multiple clients). If we were actually writing
a real application to be deployed to actual desktops, the testing suite would be far more
extensive; the fact that don't talk about how to test the GUI or the business logic should not be
taken as evidence that such tests aren't important. The testing suite is limited because this is a



book about how to build distributed applications, and discussing testing in general is simply
outside the scope of this book.

L

In general, as soon as the framework is in place, and the

<. application can be run as a distributed application, testing

* should commence. Writing the test code as soon as is
feasible, and running the tests as often as is reasonable,
helps guarantee that mistakes will be spotted quickly. This, in
turn, helps make them easier to repair.

il
'
L

13.1 Testing the Bank Application

After all of the alterations in Chapter 11 and Chapter 12, we now have a version of the bank
example that we think is threadsafe and scalable.™ If you can make a claim, you should be able
to provide evidence that the claim is correct. So we will now proceed to test the code we've put in
place.

[21 contained in the package com.ora.rmibook.chapter12.bank.scale and its subpackages.

13.1.1 What We're Testing

Any reasonable set of tests checks two different things: correctness and scalability. Correctness
is a simple property; we're testing whether, for an isolated client, the application actually works.
The questions we have to ask ourselves are:

Can the client connect to the server?
Can the client perform remote method calls?
Does the server do the right thing when the client makes a method call?

Scalability, on the other hand, is a more subtle property. Basically, we're concerned about the
behavior of the application as the load increases. This encompasses five basic questions. In
order of descending importance they are:

Is the application still correct (from the point of view of a single client)?

If the application no longer functions correctly when there are multiple clients, then we've got a
serious problem. It's probably thread related; we probably have two client requests that interfere
with each other.

Is the application's performance under typical client loads acceptable?

This is the single most important performance test. If the user can't use the application because
it's too slow, then the application is useless.

Can the application handle peak loads?

The application is allowed to get slower when usage unexpectedly spikes. But it shouldn't crash,
or consume disproportionate amounts of server resources.

How does the application's response time degrade as the number of clients increases?

The application's performance will degrade as we add clients. The goal is to have the
performance degrade gracefully. Typically, the way you measure this is in terms of average



response time versus the number of users (e.g., "When there are 30 users, the average response
time is 134 milliseconds for a withdrawal"). What we'd love is a flat relationship: constant
response time as the number of users increase. But since each additional user will consume
extra resources and computing time, that's impossible once a server starts to get busy. The best
we can hope for is a linear relationship between the number of users and the the response time.
This is hard to achieve.

How does the application behave over long-term usage?

The issues here revolve around the performance of the server when you leave it running for an
extended period of time. Does it leak memory? Does it gradually lose the ability to respond? The
memory and resource footprint of the server when it has no clients should be the same, no matter
how long the server's been running. And the server should have the same performance
characteristics after five weeks in operation as when it was first started. If this isn't the case, and
there is no explanation for why the server's profile has changed, then the server is not ready to be
deployed.

13.1.2 How to Test a Server

Testing all of this stuff might seem like a tall order, requiring lots of code and an advanced degree
in mathematical statistics. And the truth is that it does involve a fair amount of code. However, it's
also the case that a little bit of work can go a long way. Coding up some simple tests, and
checking them repeatedly during the development cycle, can save a great deal of time and effort
later on.

The basic testing strategy involves the following seven steps:

1. Build simple test objects. These are objects that test if a single server object works
correctly and measure the time a given operation takes.

An important, and often overlooked, point is that it's not enough to test that the server
functions correctly when "good" arguments are passed in. The server must be able to
detect incorrect method calls and respond appropriately.

In this section, I'm coming awfully close to advocating what
w 4. the proponents of Extreme Programming (XP) refer to as unit
“ testing. If this was a general methodology book, | would
strongly advocate unit testing. But, since this book is about
RMI, I'll simply refer you to the definitive XP web site for more
information. It can be found at
http://www.xprogramming.com/.

2. Build aggregate tests that test entire use cases. For complex applications, it is often
useful to build aggregate tests that correspond to the use cases. Just as a use case is a
sequence of user actions, an aggregate test is a sequence of simple tests.

3. Build a threaded tester that repeatedly performs these tests. This is usually just a
subclass of Thr ead that knows how to repeatedly perform tests. It's not very complex,
but it does need to be in a separate thread because the tester is, more or less, analogous
to a sequence of users.

4. Build a container that launches many testers and stores the results of the test in an
indexed structure. The next step, now that you've built a threaded tester that can perform
lots of tests, one after the other, is to add a piece of code that launches many testers.



Once this is done, you have the ability to perform many concurrent operations over a long
period of time. That is, you can perform a crude simulation of a large client load.

5. Build a reporting mechanism. Testing is useless unless you can access the results. This
can be a simple GUI that says "tests succeeded,” or it can be a complex database
containing all sorts of information about each test performed. The complex database can
be a great idea if you're interested in finding out how performance and scalability change
over time. If you're just interested in making sure the application works, it's usually not
necessary.

6. Run the tests repeatedly. You should run simple, low-load tests very often to test whether
the server objects are still correct, preferably as part of a daily build process. Scalability
tests, in which you simulate hundreds of clients and watch the system try to cope, should
also be run often. However, since they're not quite as important for day-to-day
development and consume more resources, they don't need to be run as frequently.

7. Profile using your scale tester. If you run the servers inside a profiler, and then launch a
large-scale test, you will find where your application bottlenecks are located. Profilers are
really the only way to learn about application performance, and the beauty of a testing
framework is that it lets you do intensive profiling of your application under load without
deploying it.

13.1.3 Testing the Bank Application

The first thing we need to do, in the case of the bank application, is alter the infrastructure slightly.
There are two changes we need to make:

Up until now, the launch code has been taking a set of command-line arguments that list
the accounts that will be launched. This is obviously unrealistic and not at all useful for
large-scale testing. We added a NaneReposi t or y object that automatically generates
names for us.

The second change is to the Account 3 interface. We need to add an argument,

cl i ent | DNunber , to each method. This argument is used, instead of the client's IP
address, inside the checkAccess( ) method; it allows us to simulate multiple clients
from a single machine;:

public interface Account3 extends Renote {
public Money getBal ance(String clientlDNunmber) throws
Renot eExcepti on,
LockedAccount Excepti on;
public void nakeDeposit(String clientlDNurber, Money anount)
t hr ows
Renot eExcepti on, Negati veAnount Excepti on,
LockedAccount Excepti on;
public void nmakeWthdrawal (String clientlDNunber, Mney anount)
t hr ows
Renot eExcepti on, OverdraftException, LockedAccount Excepti on,
Negat i veAnount Excepti on;

}

What we're building is a very simple test application. It launches a number of testers, each of
which simply does the following:

1. Gets a random account

2. Performs a random operation



3. Repeats
After all the threads are done, a GUI displays the results, as shown in Figure 13-1.

Figure 13-1. GUI testing framework for our distributed application
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Murbar of operations : 5000
Average opearation irme: 9 milisecands.
Longest oparation ime: 461 millisaconds
Mumber af successas ' 43432
Mumeper of failures - 0
Mumber of locks | B5E.
Mumber of remote exceptions ;0
Mumber of unable 1o cannects | 0.

Note that this isn't particularly detailed information. We find out whether the servers worked
correctly under testing and some preliminary information about the behavior under loads. More
accurately, we find out the average response time, the longest response time, and how many
requests ran into locks on an account.

Ideally, we'd like to analyze the data further. For example, we'd like to know more about the
distribution of response times. If 10 percent of the responses were very slow, and 90 percent
were very fast, then we probably ought to investigate further. Similarly, we should run the tests
with varying numbers of clients to see how the performance changes as we change the load.

However, even without that, running this test every night and seeing that the code performs
similarly (no failures, small average response time) is a good and useful thing to do. Certainly, if |
were project lead, and | knew that new tests were added every time remote functionality was
added, I'd be thrilled to get this sort of information every morning.

We will now walk through the design and implementation of our testing application in more detail,
following the first five steps outlined earlier.

13.1.3.1 Build simple test objects

There are three methods we can call, each of which needs to be tested. In addition, we need to
test the ability of clients to find and connect with servers. We do this by building four classes: an
abstract class named Test and three concrete subclasses corresponding to the three methods
we can invoke remotely.

Test is responsible for three things: it connects to an individual account server, it defines a set of
possible outcomes (things such as, "The account was locked"), and it keeps track of how long a
remote invocation takes. In addition, Test implements the Conpar abl e interface so that
instances of Test can be sorted. The concrete subclasses handle the details of invoking a
particular method.

The time information that Test keeps track of isn't particularly accurate. Test uses
System current TimeM | |1 s( ), which is accurate only to 50 milliseconds. Nonetheless, the
rough order of magnitude calculations are quite nice.

Here is the source code for Test :



public abstract class Test inplenents Conparable {

public static final String UNABLE TO CONNECT = "Unable to
connect";

public static final String ACCOUNT_WAS LOCKED = "Account was
| ocked";

public static final String REMOTE EXCEPTI ON THROMWN =

"A renote exception was thrown";

public static final String FAl LURE
incorrect result"”;

public static final String SUCCESS = "Everything was cool";

"Operation conpleted with

public String status;
public | ong duration;
public long startTine;
public String account Nane;

private NanmeRepository _nanmeRepository;
private String _classNaneg;

protected abstract String performActual Test (String i dNunber,
Account 3 account);
protected abstract String describeQperation( );

public Test(NaneRepository naneRepository) {
_naneRepository = naneRepository;
_classNane = getd ass().getName( );

}
public void performrest (String i dNunmber) {
account Nane = naneRepository. get ANane( );
Account 3 account = null;
try {
account = (Account 3) Nam ng. | ookup(account Nane) ;
}
catch (Exception e) {}
i f (null==account) {
status = UNABLE TO_CONNECT;
duration = 0;
return;
}
startTine = SystemcurrentTimreMIlis( );
status = performActual Test (i dNunber, account);

/1 abstract nmethod inplenented in subcl asses
duration = SystemcurrentTimnreMIlis( )- startTing;
return;

}

public String describeQutcone( ) {
return "Attenpted to " + describeCperation( ) + "

account " + account Nane + "
at " + startTine +". \n\t The operation took " + duration +
mlliseconds and the result was : " + status +"\n";
}

public int conpareTo(Cbject object) {



/* first sort is al phabetical, on class nanme, second test is on
account name

third test is by startTinme, fourth test uses object's hashcode
*/

/1

}

protected Mney get Randomvbney( ) {
/*
Sonetines the noney will be negative. But, nobst of the tineg,
we'll send in
positive anmounts.
*/
int cents = -2000 + (int) (Math.randonm{ ) * 100000);
return new Money(cents);

}

Given the implementation of Test , the actual test objects are as simple as they can be—they
simply test a single method to see whether it functions correctly. Here, for example, is the source
code for VakeW t hdr awal :

public class MakeWt hdrawal extends Test {
public MakeW t hdr awal ( NameReposi tory naneRepository) {
super (nameReposi tory);
}

protected String describeQOperation( ) {
return "make a wi dthdrawal from";
}

protected String performActual Test(String i dNunber, Account3
account) {
Money bal ance = nul | ;
Money anount TOW t hdraw = get RandonMoney( ) ;
Money correct Resul t;
Money act ual Resul tingBal ance;
try {
bal ance = account. get Bal ance(i dNunber) ;
correctResult =
bal ance. subt ract (anmount ToW t hdr aw) ;
account . makeW t hdr awal (i dNunber,
amount TOW t hdr aw) ;
act ual Resul ti ngBal ance =
account . get Bal ance(i dNunber) ;

catch (Renot eException renot eException) {
return REMOTE EXCEPTI ON_THROWN;
}

catch (OverdraftExcepti on overdraftException) {
i f (anobunt TOW t hdr aw. gr eat er Than( bal ance)) {
return SUCCESS;
}
el se {
return FAI LURE;
}
}

cat ch (LockedAccount Excepti on | ockedAccount Exception) {



return ACCOUNT_ WAS LOCKED;

}
catch (Negati veAnmpount Excepti on negati veAnount Excepti on)
{
i f (armount TOWt hdraw. i sNegative( )) {
return SUCCESS:;
}
el se {
return FAI LURE;

}

i f (anount TOW t hdr aw. gr eat er Than(bal ance)) {
return FAI LURE;

}

i f (amount TOWt hdraw. i sNegative( )) {
return FAI LURE;

}

if (correctResult.equal s(actual ResultingBal ance)) {
return SUCCESS:;

}

el se {
return FAI LURE;

}

}
}

There are two things to note here. The first is that we really are using our distributed exceptions
quite heavily. It's important to make sure that the server really does catch improper arguments
(e.g., an attempt to withdraw a negative amount), and that when the server does throw an
exception, it is does so for the correct reasons.

The second point to note is that it's not entirely obvious what a failure means. Suppose
performAct ual Test () fails. This could be due to either of the following reasons:

The lock wasn't set, and another client thread managed to perform an operation.
The actual withdrawal code is flawed.

The right way to distinguish between these is to write additional tests that check only the locking
mechanism. If the locking mechanism works, then we know the withdrawal code must be flawed.
In our case, it's not such a big deal; our codebase is small enough to simply spot errors once we
have a good hint. However, in larger applications, distinguishing between possible causes of error
is incredibly useful.

o

This is an important point. When you're building fine-grained
iy . tests, they rely, to a large extent, on the existence of many
(17T

other fine-grained tests. Every test you add makes the others
work better, and makes the testing suite more effective. The
general rule of thumb: if you can talk about something and
have a name for it (e.g., "the locking mechanism™), you
should be able to test it.

13.1.3.2 Build aggregate tests that test entire use cases



The use case we've been relying on, first defined in Chapter 5, basically consists of a sequence
of simple tests performed on the same account. If this were an industrial application, we'd
implement this as a single test for the reasons outlined in the next section. However, the code to
do so is quite similar to the code for our other tests, and doing so so only serves to make the
testing framework more complex; it serves no pedagogical purpose at all.

13.1.3.3 Build a threaded tester that repeatedly performs these tests

The next step is to build an object that can repeatedly invoke tests. In our case, we've chosen to
do this by extending Thr ead. Instances of Test Thr ead repeatedly create tests purely at
random, invoke the test, and then store the test object in an instance of Test Resul t Hol der .
After doing this a predetermined number of times (the argument nunber O Cper at i ons is
passed into Test Thr ead's constructor), the thread natifies its owner, an instance of

Test AppFr ane, that it is done:

public class Test Thread extends Thread {
private static final int MLLI SECONDS TO PAUSE = 2000;
private static int _idNunberCounter;
private NameRepository _nanmeRepository;
private Test Resul t Hol der _test Resul t Hol der;
private int _nunber Of OperationsLeft;
private Test AppFranme _owner;
private String _idNunber;

publ i c Test Thread( NaneRepository naneRepository, int
nunber O Qper ati ons,

Test Resul t Hol der testResul t Hol der, Test AppFrane owner) {
_testResul t Hol der = testResul t Hol der;
_nanmeRepository = naneRepository;
_nunber O Oper ati onsLeft = nunber O Oper ati ons;
_owner = owner;
_idNurmber = String.val ued (_i dNunber Count er ++) ;

}

public void run( ) {
whi | e(_nunber Of Operati onsLeft > 0) {
Test testToPerform = get RandonTest ( );
test ToPer f orm performlest (_i dNunber);
t est Resul t Hol der . addResul t (t est ToPerform;

t_ry {
Thread. sl eep(M LLI SECONDS _TO PAUSE) ;

catch (Exception ignored){}
_nunber O Oper ati onsLeft --;

}

_owner . t est ThreadFi ni shed(t hi s);

}

private Test getRandomlest( ) {
doubl e choice = Math.randonm( );
if (choice <.1) {
return new Get Bal ance(_naneRepository);

}
if(choice < .6) {

return new MakeDeposit (_naneRepository);
}

return new MakeW t hdrawal (_naneRepository);



}

The only curious thing here is how we determine what test to use. The answer is that we
randomly pick one. At first, this might seem a little disturbing. It may make for more convincing
testing if we followed scripts or what we think an actual user session would be like.

The answer to this objection is twofold. The first is that, to a large extent, if we'd encoded the use
cases as tests, those tests would be scripts and would reflect what we think an actual user
session would be like. However, even past that, random testing has a significant positive aspect.
If an application can handle random method invocations well, it can handle pretty much anything
that gets thrown at it. If, on the other hand, our tests reflect what we think the user will do, we
haven't really tested how robust the application is at all.

This leads to a compromise. We can make Test Thr ead an abstract class with a single abstract
method:

protected abstract Test getRandonlest( )
Then, we create two concrete subclasses of Test Thr ead:
getRandomThread() (Type 1)

Randomly chooses from among all the tests available.
getRandomThread() (Type 2)

Also makes random choices. But Type 2 chooses only from among the use-case tests in
an attempt to simulate the real world more accurately.

The reason for having two subclasses of Test Thr ead is simple. They actually return slightly
different types of information. Type 1 ensures that the application functions correctly and is
reasonably bulletproof. Type 2 can give much more accurate information about application
performance and scalability. In our case, since we have no use-case tests, we've implemented
only Type 1.

13.1.3.4 Build a thread container that launches many threads and stores the resultsof the
test in an indexed structure

In our case, this is the main GUI component, Test AppFr ane. The Perform Test button has the
following action listener attached to it:

private class TestLauncher inplenents ActionListener {
public void actionPerfornmed(Acti onEvent event) {
try {
reset( );
nunber Of Threads =
(I'nteger.val ueO (_nunber O ThreadsFi el d. get Text( )))
i ntvalue( );
i nt nunber O Qperations =
(I'nteger.val ued (_nunber O Operati onsField
get Text())).intValue( );
int counter;
for (counter = 0; counter < _nunber O Threads;
counter++) {
Test Thread next Thread = new
Test Thread( _naneReposi tory,
nunber OF Oper ati ons, _testResul t Hol der,
Test AppFrane. t hi s);
next Thread. start( );



Thr ead. sl eep(100) ; [l wait alittle
bit to spread out the | oad

}
whil e (sonmeThreadsNot Fi ni shed( )) {

Thr ead. sl eep(10000); /1 10 seconds.
I[t's not bad

}

}
catch (Exception exception) {}
finally {resetGU ( );}
}
}

This resets all the data structures in Test AppFr ane by calling Test AppFrane'sreset ()
method:

private void reset( ) {
_testResul t Hol der = new Test Resul t Hol der () ;
_nunber O Fi ni shedThreads = 0;

}

After this is done, Test Launcher creates a number of instances of Test Thr ead, based on the
value the user typed into _number O Thr eadsFi el d, and starts them running. Finally, when all
the threads have finished, Test Launcher calls Test AppFrane'sreset GUI () method, which
simply computes the very simple statistics we display in the main text area:

private void resetGJ ( ) {
_testResul t Hol der.sortResults( );
_account Chooser . renoveActi onLi st ener (_chooserLi st ener);
_account Chooser.renoveAl | ltens( );
_account Chooser . addl t en{ ALL_ACCOUNTS) ;
Iterator i = (_testResultHol der.get AccountNanes()).iterator( );
whil e(i.hasNext( )) {
_account Chooser. addl ten(i.next( ));
}

_resultsArea.set Text("");
_account Chooser . addAct i onLi st ener (_chooser Li st ener);
conput eSurmmar yf or Al | Accounts( );

}

13.1.3.5 Build a reporting mechanism

We chose not to do this, instead relying on displaying information in a JText Ar ea. Ideally, you'd
want to do something much more sophisticated. For example, a relational database is an ideal
storage mechanism. The following two tables would be a fairly nice storage mechanism that
would allow for sophisticated data analysis when required:

IndividualTests

Corresponds to the definition of the Test class. Namely, it has columns for the public
variables: status, duration, st art Ti me, and account Nane. It also has two additional
columns: test type (in our case, there are three different types of tests) and run identifier,
which is a foreign key into the second table

TestRuns

Each row in this table records the metadata for a particular test. It should store all of the
following information: who ran the test, when the test was run, how many clients were
used, how many operations per client, and the version of the codebase tested.



From this information, all of which is already present in our application, we can answer arbitrary
guestions about the sophistication of our application's performance as a distributed application.
You still need to do other things to check resource allocation and memory utilization. But how to
do that is outside the scope of this book.

Chapter 14. The RMI Registry

RMI provides a simple naming service called the RMI registry, which we've already used in our
examples. Now that we've built a few distributed applications and understand threading, it's time
to revisit the RMI registry. After a preliminary discussion of naming services, we'll spend most of
this chapter examining the RMI registry in detail, discussing both how it works and how to use it in
applications. By the end of this chapter, you will not only understand how to use the RMI registry,
you'll have a basic understanding of naming services as well.

14.1 Why Use a Naming Service?

The first step in discussing naming services is to be a little clearer about what they are and what
problems they solve. A first attempt at a definition may look something like the following:

A naming service is a centralized resource that a number of applications use as a
"phone book"-like resource. That s, it is an easily locatable and well-known
application that maps logical names to actual servers so client programs can
easily locate and use appropriate server applications.

This definition is intentionally vague on two points. First, it doesn't define what is meant by "phone
book" or "logical names." And second, it doesn't specify what a naming service returns. This is
because there are a wide range of servers that claim to be naming services. And many of these
services use slightly different meanings for these two points. For example, in the case of the RMI
registry, we have:

The "phone book" is a white-pages-style phone book, and "logical names" are strings.
Finding means retrieval based on case-sensitive string equality.

You get back a stub that encapsulates information about the machine on which the
server runs and the port on which it listens. The stub hides this information from the client
program and simply exposes the remote methods that can be called on the server.

Naming services have one other property that, while not really part of the definition of the server's
functionality, often helps when trying to understand how they are designed:

A naming service is a generic piece of code. It is not intended to solve a
particular problem in a particular application. Rather, it is intended to be a
reusable component that solves a generic problem that recurs in a wide variety of
applications and domains.

Because of this, a naming service is often a little awkward to use in any given application. The
client code that finds a server is often a little convoluted and has to cast the returned stub to the
right type. Even in our simple Renot ePr i nt er application, we had to cast the return value from
the naming service to Pri nt er :

Printer printer = (Printer) Nam ng.| ookup( DEFAULT_PRI NTER _NANE) ;
printer. printDocunent (docunent Descri ption);

14.1.1 Bootstrapping



The bootstrapping problem is simple: in a distributed application, clients running on one machine
need to connect with servers running on another machine. On a large network, there are really
only three ways to solve this problem:™!

1 On smaller networks, automatic discovery by multicasting is also an option. See Java Network
Programming, Second Edition by Elliotte Rusty Harold (O'Reilly) and Jini in a Nutshell by Scott Oaks and
Henry Wong (O'Reilly) for more information on multicasting and automatic discovery, respectively.

The client knows in advance where the server is. Either the server location is actually
compiled into the client application or, more typically, the location of the server is stored
in a secondary resource (for example, in an easily edited text file distributed with the
client application).

The user tells the client application where the server is. The client might then store this
value. For example, in an email client, one part of configuration the user is usually
required to enter is the address of the mail server. The location of the mail server is then
stored, or the user may have to enter the value repeatedly, such as with web browsers.

A standard server in a well-known location serves as a point of indirection. In this
scenario, the client queries a network service to find out where the server is. This is the
solution that naming services provide. The client has to know how to find the naming
service, but then asks the naming service for information about how to connect to the
server applications it requires.

14.1.1.1 Installing a new printer

To illustrate this, consider our printer server. Look what happens in each case when we move an
existing printer to a new location on the network:

The client knows in advance where the server is.

In this case, we need to update each client application or change the secondary resource to
reflect the new information when we move the printer. If we were clever, and stored the list of
printers in a single file to which all machines on the network had access, this might not be so bad.
On the other hand, arranging to have a single machine mounted by all the client computers on a
large network is a difficult chore. Moreover, having a single file with all the printers listed in it
comes awfully close to having a form of centralized indirection and is a hint that we probably want
to use a naming service anyway.

The user tells the client application where the server is.

In this scenario, when the user runs the application, the user enters the information about the new
printer (or the new location of the old printer). This is, more or less, an unworkable solution. End
users don't want to do this, and a significant percentage of them will get it wrong.

The client makes a query to a network service to find out where the server is.

When the printer is installed or moved, the naming service is updated to reflect the new
information. When clients launch, they query the naming service. The clients are always up-to-
date, the client machines didn't need to be modified in any way, and the end users didn't have to
do anything.

14.1.2 When Are Naming Services Appropriate?

Each of the three approaches to the bootstrapping problem has advantages and disadvantages,
depending on the application being written. Servers in a typical client-server application have
many properties, which suggests that the flexibility provided by naming services is worth having.
Among them are:



Servers migrate.

Servers sometimes overwhelm the machine on which they're initially deployed. Sometimes,
server hardware is retired or repurposed. Sometimes network administrators install a firewall, and
the server applications must be moved to another machine. For whatever reason, server
applications are often moved from machine to machine over the application's lifetime.

There may be many servers.

This is obvious in the case of network services such as printers. Every floor may have a printer.
However, it's also true for our bank example; there are thousands of servers, and each client
needs to be able to access each one.

Servers get partitioned and replicated.

One response to overwhelming demand is to replicate servers. We discussed partitioning briefly
in the bank example; the idea was to move some of the instances of Account to another
machine if the server response time was unacceptable. In addition, read-only requests can be
farmed out to any number of replicated servers.

There may be many servers running on one machine.

A single machine can run many servers. Some of these servers may have reserved well-known
ports (for example, port 80 is reserved for web servers). However, reserving ports is a risky
strategy because the more ports that are reserved, the greater the chance of having reservations
conflict. A much better strategy is for servers to randomly grab an available port number when it
launches.

Note that the bank example exhibits all of these properties. In contrast, consider the prototypical
naming service. It's implemented once and reused. It never evolves. There's usually only one,
and it doesn't get partitioned. And it's a simple enough piece of code that an implementation can
usually handle large numbers of requests quite robustly. If you have to hardwire a server's
location into your client (or as a parameter in a configuration file), hardwiring the location of a
naming service involves the least risk of having to update the client.

All of the preceding points are arguments for indirection. If many of them apply to an application,
then the design should include a level of indirection when clients connect to a server. A naming
service provides this indirection in a very simple manner: clients call a stable and welkknown
server whose sole responsibility is to direct them to the server that they really need. That is:

Servers are registered ("bound into") the naming service using logical names.

Clients know the location of the naming service and the logical names of the servers they
require. From this information, they can find the servers at runtime.

14.2 The RMI Registry

We've done three things with the RMI registry: we've launched the actual registry server, we've
bound objects into the registry using strings for names, and we've looked up objects in the
registry.

All of the code we've written has used static methods on the j ava. rnm . Nam ng class to
accomplish these tasks. In particular, Nani ng defines the following five static methods:

public static void bind(String nane, Renote obj)
public static void rebind(String nane, Renote obj)
public static void unbind(String nane)

public static String[] list(String name)



public static Renpte | ookup(String name)

These methods naturally divide into two sets: those called by the launch code and those called by
clients. The launch-code methods, bi nd( ), unbi nd( ),andrebi nd( ), deal with the
mechanics of inserting and removing servers from a registry. The client methods, | i st ( ) and

| ookup( ), deal with querying a registry to find a server.

14.2.1 bind(), rebind(), and unbind()

These three methods deal with binding or unbinding a server into the registry. Each of them takes
a string argument called nane. In addition, bi nd( ) and rebi nd( ) take an instance of a class
that implements the Renot e interface. The first thing that any of them do is parse nane to find
out where the registry is running. nane is a combination of the location of the RMI registry and
the logical name of the server. That s, it is a URL with the following format:

/I registryHost: port/|ogical _nane

Both host and por t are optional. host defaults to the machine that makes the call, and por t
defaults to 1099.

After parsing nae, these methods form a socket connection to the actual registry. The registry is
an RMI server running on the named host machine and listening on the indicated port. In the case
of bi nd and r ebi nd, they serialize the remote object (e.g., serialize the stub that implements the
Renot e interface) and pass it, along with | ogi cal nane, to the registry. The registry then
proceeds to do one of two things:

Reject the request

If a bind was requested, and another object has already been bound to | ogi cal nane,
the request will be rejected.

Bind the object

Otherwise, | ogi cal namne will be associated to the deserialized object that was
received.

There's an interesting point here. What the registry receives is
“ 4. not the object itself, but the output of RMI's customized
“> version of the serialization mechanism. That is, the registry
deserializes a stub that knows how to communicate with the

original server.

LT

In the case of unbi nd( ), the URL is parsed, and the registry is told to forget about whatever
object was bound to | ogi cal nane.

14.2.2 lookup() and list()

| ookup( ) and|ist( ) are similarto each other. Each begins by parsing their argument. In
the case of | ookup( ), nane is a URL with the same format as the URL passed to bi nd( ),
rebind( ),andunbind( ).Inthe caseoflist( ),theargument should be shorter,
specifying only the machine and port for the RMI registry, but not a specific server.

After parsing the URL, each opens a socket connection to the indicated registry and makes a
method invocation. In the case of | cokup( ), | ogi cal nane is passed; in the case of | i st (
) , there are no arguments to send.



| ookup( ) either throws an exception or returns a single stub to the calling application. This
stub is a serialized copy of the stub bound into the registry under | ogi cal nane. And, hence,
the client can use this stub to directly call methods on the server, without using the registry ever
again.

| i st( ) returns an array of strings. These strings are the complete URLS, not just the logical
names, of all the servers bound into the registry.

14.3 The RMI Registry Is an RMI Server

The RMI registry is implemented as an RMI server. Underlying Nami ng's static methods is an
interface that extends Renot e and an implementation of that interface. In Java 2, these are:

The java.rmi.registry.Registry interface

This extends Renpt e and defines the methods an implementation of Regi st ry must
implement.

The sun.rmi.registry.Registrylmpl implementation class
This is an actual RMI server that implements the Regi st r vy interface.

The Regi st ry interface is straightforward. It defines five methods, each of which maps directly
to one of the static methods defined in Nam ng:

public interface Registry extends Renote {
public static final int REG STRY_PORT = 1099;
public Renmote | ookup(String nane) throws RenoteException,
Not BoundExcepti on,
AccessExcepti on;
public void bind(String nane, Renpte obj) throws
Renot eExcepti on,
Al readyBoundExcepti on, AccessExcepti on;
public void unbind(String nane) throws RenoteException,
Not BoundExcepti on,
AccessExcepti on;
public void rebind(String nane, Renpte obj) throws
Renot eExcepti on,
AccessExcepti on;
public String[] list( ) throws RenoteException,
AccessExcepti on;

}
14.3.1 Bootstrapping the Registry

Given that the RMI registry is an RMI server, with both an interface and an implementation, many
people wonder why Nam ng was defined. Why go through the trouble of making static methods
that simply redirect to a standard implementation?

The answer is that we use Nani ng and the static methods because the bootstrapping problem
exists for any server, even a naming service. The problem the designers of RMI had to overcome
was enabling a client to get an initial reference to the RMI registry.

Their solution was to define two additional classes: Nami ng and Locat eRegi stry. Nam ng and
Locat eRegi st ry play the following roles:

Nam ng serves as a static and public mirror of every registry. Because the methods are
static, you don't need to create an instance of Nami ng. Instead, you simply call class
methods.



Locat eRegi st ry handles the initial connection to a running Regi st ry. That is,
Locat eRegi st ry is a class that knows how to create a stub for Regi st ry.

Locat eRegi stry is definedinthe | ava. rm . regi st ry package and implements the
following seven static methods:

public static Registry createRegistry(int port)
public static Registry createRegistry(int port, RMCientSocketFactory
csf,

RM Ser ver Socket Fact ory ssf)
public static Registry getRegistry( )
public static getRegistry(int port)
public static Registry getRegistry(String host)
public static Registry getRegistry(String host, int port)
public static Registry getRegistry(String host, int port,
RM C i ent Socket Factory csf)

The cr eat e methods all create and return a running instance of the class Regi st ryl npl
defined inthe sun. rm . regi st ry package. The get methods attempt to establish a
connection to an already existing registry. If the registry exists, the get methods return a stub.

Given Nam ng and Locat eRegi st ry, the RMI solution to the bootstrapping problem works as
follows:

1. A static method on Nami ng, which has the same name as a method defined in the
Regi st ry interface, is handed a URL.

2. The URL is parsed, and the machine/port information is forwarded to Locat eRegi stry,
which returns a stub for the registry running on that machine and port.

3. Nam ng uses the stub returned by Locat eRegi st ry to invoke the correct method on
the registry.

We'll discuss Locat eRegi stry'screat e( ) methods in more detail later.

14.4 Examining the Registry

bi nd( ), ookup( ),rebind( ),andunbind( ) are all straightforward and easy to
understand. However, | | st () is a somewhat stranger method. It enables a client application to
find the URLs of all the servers bound into a particular registry. At first glance, this isn't
particularly useful. There are, however, two cases when this can be a very useful property.

The first case occurs when the results of querying the RMI registry are combined with reflection.
That is:

i st( ) enables a clientto find all the servers in the registry.

Java's support for reflection enables the client to discover the interfaces each server
implements and thus find a particular server (or give the user a choice of appropriate
servers).

The second case when | | st () is useful occurs when the registry isn't used as a general-
purpose registry, but is instead application-specific. Note that this second case is really a special
case of the first, in which we don't need reflection. That is, in the first case we use reflection to
find a subset of the servers that meet our application-specific criteria. In the second case, we
know in advance, because we are using a specific registry with a specific purpose, that the
servers returned by | i st () meet our application-specific criteria.



To make this more concrete, consider our remote printer application once again. Suppose we
decide on a logical naming convention consisting of the following three components:

Location. A human-readable string describes the location of the printer.
A separator consisting of two colons.
Either the word "Color" or the words "Black and White."

This leads to logical names such as:

Bob's office::Color
Room 445::Black and White

Now we can register these printers in a registry, either a global registry or a registry devoted only
to remote printers. If we use a global registry, the client will wind up using the reflection API to
determine which servers are printers. In the second case, this information is inherent in the fact
that the server is registered. In either case, when the end user wants to print a document, the
client application can display a list of printers and have the end user select a printer from among
the available printers.

Let's implement programs that illustrate both of these approaches.
14.4.1 Querying the Registry

Regi st ryExpl orer , defined inthe com or a. rm book. chapt er14. regi st ry package, is
a simple application that lists each server in the registry, along with all the interfaces it
implements. A screenshot of its user interface is shown in Figure 14-1. Note that this screenshot
was taken immediately after running Example 9-2.

Figure 14-1. The RegistryExplorer user interface
= M[=l 3 |

Semver named rmidllocalhost1088/Bob implements the following remoate interfaces |
Intarface com.ora rmibook.chaplerd.Aceount
interface jaa.rmi.Remote

Serer named rmidllocalhost 1 090iAlex implemeants the following remote inferfaces
inerace com.ora.rmibook.chapterd.Ace ount

interface java.rmiRemoie

Check Registry Contents

The important part of this application is the listener attached to the Check Registry Contents
button. The listener calls | i st ( ) to get all the URLs from the registry and then displays the
information for each URL in the registry:

private class QueryRegistry inplenments ActionListener {
public void actionPerfornmed(Acti onEvent event) {

try {
String[] nanmes = Naming.list("//Ilocal host:1099");
if ((null==nanes) || (O==nanes.length)) {
_resultsArea. set Text ("The Registry is Enpty");
return;
}

_resultsArea.setText("");

for (int counter=0;counter<nanes.| ength;counter++) {
di spl ayl nf or mat i onFor Nanme( nanes[ counter]);

}



}
catch (Exception ignored) { }

}

The di spl ayl nformati on( ) method takes a single URL, retrieves the stub associated with
the URL and then uses reflection to find out which remote interfaces the stub implements:

private void displaylnformati onForNanme(String nane) throws Exception {
bj ect val ue = Nam ng. | ookup( nane);
Col l ection interfaces = get Renotel nterfacesFor Obj ect (val ue);
_resul tsArea. append("Server naned " + nane +
i mpl ements the following renote interfaces\n")
Iterator i = interfaces.iterator( );
while (i.hasNext( )) {
_resultsArea. append("\t" + i.next( ) + "\n");
}

return;

}

private Collection getRenotelnterfacesFor(bject (COhject object) {
Cl ass obj ect Type = object.getd ass( );
Class[] interfaces = objectType.getlinterfaces( );
Class renotelnterface = Renote. cl ass;
ArrayLi st returnValue = new ArrayList( );
for (int counter=0; counter < interfaces.|length; counter++) {
i f
(renotel nterface.i sAssi gnabl eFron(interfaces[counter])) {
returnVal ue. add(i nterfaces[counter]);
}
}

return returnVal ue;

}
14.4.2 Launching an Application-Specific Registry

Another approach to the same problem is to simply launch more than one registry. There are two
ways to do this:

Using the r ni r egi st ry program supplied with the JDK and specifying a particular port
From within your application (via code)

The first approach is easy; the r mi r egi st ry application takes an integer argument, which is the
port that the registry should use. If you omit the port, the default port 1099 is used. Thus, either of
the following two command-line invocations produce the same result:

rmregistry
rmregistry 1099

However, you can also specify another port. For example, the following command-line invocation
will launch an instance of the RMI registry listening on port 10345:

rmregistry 10345

The second approach, launching a registry from within an application, is only slightly more
difficult. You simply use a static method from the Locat eRegi st ry class. Either of the following
will create a registry (we'll discuss the second method in more detail in Chapter 18):

public static Registry createRegistry(int port)



public static Registry createRegistry(int port, RMdientSocket Factory
csf,
RM Ser ver Socket Fact ory ssf)

—e— The Sun Microsystems, Inc. implementation of the RMI

—  registry uses static variables in order to help solve the
bootstrapping problem. These static variables effectively limit
you to creating only one registry per JVM.

Registering a Registry Within a Registry

Given that you can launch a registry from within a JVM using

Locat eRegl st ry, and given that the Regi st ry interface extends
Renot e, it's reasonable to wonder whether the created instances of
Regl st ry can, themselves, be treated like any other RMI server.

The answer is yes. The Nam ng and Locat eRegi st ry classes are
simply bootstrapping conveniences to help you find a running RMI
server. However, they don't in any way affect the behavior of the server
itself or the behavior of the RMI infrastructure.

The following code, for example, creates a registry and binds it into
another registry:

Regi stry ourRegistry =

Locat eRegi stry. creat eRegi stry( OQUR_PCORT) ;

Regi stry preexistingRegistry =

Locat eRegi stry. get Regi stry(1099);

preexi stingRegi stry. rebi nd("secondary registry",
our Regi stry);

This can be very useful; it's almost a way to build a directory structure
inside the RMI registry. For example, you can imagine defining a central
RMI registry, which has only two servers bound into it, using the logical
names Printers and BankAccounts. If each of these servers is, itself, an
RMI registry, then you've effectively added some hierarchical structure to
what was a flat list of servers.

14.5 Limitations of the RMI Registry

At first glance, the RMI registry might seem like a nice solution to the problem of bootstrapping a
distributed application. As a piece of software, it has many nice properties. Among its chief
virtues:

It's easy to administer

The standard download of the JDK provides an application calledr m regi stry. To
launch the RMI registry, you simply run that application. After which, you don't need to do
anything else.

It's easy for clients to find



The RMI registry has a standard port (1099) on which it usually runs. Moreover, clients
don't need to get a stub to the registry—they simply use static methods defined in the
java. rm . Nam ng class. All the client really needs to know about the RMI registry is
the machine on which it runs.

It's easy for clients to use

The interface to the RMI registry consists of just five easily understood methods. In
addition, these methods have reasonable default arguments.

It's fast

The five methods are all very fast.

These are all good for an important piece of infrastructure2! such as a naming service to provide.
The question, however, remains: is the RMI registry a good naming service?

[21 Or any server, for that matter.

In order to answer this question, consider the printer client again. Suppose we want to print a
document. To do this, our application needs to do two things. It must find a printer server and
then send a document to the printer server.

In the last section, we discussed how to find a printer from a registry using the | i st () and

| ookup( ) methods. The problem is that designing an application to use either of these
approaches inevitably runs afoul of the design guidelines we outlined in Part I—unless the user
knows the exact name of the printer we want in advance, finding a printer using the RMI registry
is incredibly clumsy.

If we don't use a printer-specific registry, we need to get the list of all the entries in the RMI
registry and then iterate through them, checking to see whether we've found a printer. Not only is
this code ugly, it involves:

Getting the names of all the entries in the registry.

Retrieving lots of potentially irrelevant information. For example, most of the calls to
Nam ng. | ookup( ) will retrieve stubs for servers that aren't instances of Pri nt er .

Taken together, these are an inordinate waste of bandwidth. And there is an absolutely horrible
failure case: what if the registry doesn't have a printer? The client will download the entire
contents of the registry and then tell the user, "No Printers." Even if we use a printer-specific
registry, there may be a significant problem: we still wind up downloading stubs for all the
printers, in order to ask the user which one she wants to use.

This isn't so bad if we store the user's choice locally and then reuse it whenever possible. That is,
during configuration, have the user select a default printer (this may involve downloading all the
printers) and then store the logical name of the printer the user selects. Afterwards, unless the

user specifically indicates she wants to use a different printer, or the default printer is no longer
registered, the program simply uses the default printer, using the stored logical name to find it.

But what about other types of applications and other types of users? Suppose, for example, you
have dozens of printers, and users want to select a printer based on the following criteria:

The print quality you want
The type of file you're printing

The location of the printer



That is, if I'm in building C and I'm trying to print a PDF file for a meeting I'm attending in building
A, | probably don't want to send it to a dot-matrix printer in building D.

Since a substantial portion of this functionality is almost completely generic (it is required
whenever a client program can contact more than one server), we should probably add more
functionality to our naming service, and make it capable of handling these requests.

The upshot of this discussion is that whenever you have many similar servers between which the
users choose on a regular basis (e.g., when there is no stable notion of a default server), the RMI
registry's design choices are almost certainly inadequate.

14.5.1 Directories and Entries
Recall how we defined a haming service:

A naming service is a centralized resource that a number of applications use as a
"phone book"-like resource. That s, it is an easily locatable and well-known
application that maps logical names to actual servers so client programs can
easily locate and use appropriate server applications.

The "phone book" is a white-pages-style phone book, and "logical names" are
strings. Finding means retrieval based on case-sensitive string equality.

That the design choices inherent in the RMI registry are often inadequate doesn't tell us much
about how to fix them. Fortunately, we have several decent models available. In particular, either
the file systems or the yellow pages approach will work.

14.5.1.1 Filesystems

A filesystem is usually built out of two basic abstractions:
Files

A file typically has two types of properties: access properties and content-description
properties. Access properties include information such as who has permission to edit the
file and when the file was last modified. Content-description properties describe what sort
of data the file contains.

Some operating systems, like Windows, don't really store
w* 4. Mmuch in the way of content description. Other operating

" systems store much more information. For example, BeOS
stores a MIME type for each file.

Directories or folders

A directory (sometimes called a folder) is something that contains and organizes other
things, including files and other directories. Most of the properties associated with a
directory are access properties and apply to all the files in the directory.

14.5.1.2 Yellow pages

The yellow pages are an index to goods-and-services providers, located in the back of most
phone books. They're organized as follows:

Entries

An entry in the yellow pages consists of the name of an organization or company, the
company's main address, and a phone number. In recent years, some yellow pages have



also begun including a line of text. Here, for example, is an entry from the yellow pages
for Mountain View, California:

AQC: Air Quality Control Inc.
Cleaning and Decontamination Services
1-800-433-7117

Topics

A topic is a logical grouping of entries according to similarity of goods or services
provided by the entries. For example, "Cleaners" is a topic. Topics have only one
property: an empty topic can refer you to another topic. Thus, for example, the following
topic is empty in my local yellow pages:

Swing Sets
See: Playground Equipment

Unlike directories, which can be nested, topics don't contain other topics. Instead, topics are
ordered alphabetically, to make it easier for a human being to search the yellow pages.

14.5.1.3 The general idea of directories and entries

What's good enough for the yellow pages and filesystems is most likely good enough for a
naming service. That is, naming services for distributed applications usually consist of two basic
abstractions:

Entries

An entry is a name, a set of name-value pairs, and enough information to construct a
stub.

Contexts

A context®®! is analogous to a directory or a topic. It contains other contexts, and entries
as well. Contexts are named and are often allowed to have properties. In addition, there
is usually a single "base context" from which all entries can be reached, either directly or
by accessing a context contained in the base context.

31 The word "context" is, unfortunately, the standard term.

In addition, we need to define the idea of a "logical name." A logical name is neither an entry nor
a context. It consists of the following information, rendered in a suitable format:

The machine running the naming service containing the base context and the port to
which the server listens

A set of context names that form a "path” (e.g., the first name in the path is the name of a
context contained in the base context, the second name in the path is the name of a
context contained in the first context, and so on)

An entry name

In Chapter 15, when we build a naming service to replace the RMI registry, we will implement
this sort of hierarchical structure.

14.6 Security Issues

The last thing we need to discuss about the RMI registry involves security. The archetypal bad
case is something like the following:

A hacker has written a program that scans the Internet looking for RMI registries.
It does this by simply trying to connect to every port on every machine it finds.



Whenever the program finds a running RMI registry, the program immediately
usesthel i st ( ) method to find the names of all the servers running on the
registry. After which, the program calls r ebi nd( ) and replaces each stub in
the registry with a stub that points to his server.

The point: if you don't restrict access to a naming service, then your network becomes incredibly
vulnerable. Even if each individual server is secure (e.g., each individual server requires the
clients to log in), the naming service itself is a vulnerable point and needs to be protected.

The solution the RMI registry adopted was quite simple: any call that binds a server into the
registry must originate from a process that runs on the same machine as the registry. This
doesn't prevent hackers from finding out which servers are running, or calling methods on a given
server, but it does prevent them from replacing any of the servers, and thus prevents them from
altering the structure of client-server applications, which depend on the registry.

Chapter 15. Naming Services

In Chapter 14, we discussed the RMI registry. In this chapter, we'll build on that discussion to
explore naming services in general. The goal of the chapter is to help you understand just what a
naming service is, and how they're used in distributed computing. We'll also implement a new and
more flexible naming service. As part of doing so, we'll discuss threading and bootstrapping
issues again, this time from an applied perspective. And finally, I'll introduce an important design
technique known as federation. By the end of this chapter, you'll have a much better
understanding of naming services and of how to build multithreaded servers.

Naming services have a long and varied history in distributed computing. Examples of modern
naming services include:

The Domain Name System (DNS)

This is how the Internet resolves logical names such as "www.oreilly.com" into IP
addresses. Because it is used everywhere, and must handle extraordinary loads, DNS is
a very simple protocol with limited query functionality. But it does map logical names to IP
addresses and is, more or less, the definitive example of a naming service.

The Lightweight Directory Access Protocol (LDAP)

This is a protocol and API definition developed at the University of Michigan. It is
commonly used in large enterprises for authentication (e.qg, for storing information about
employees in a way that's easily accessed by computer applications).

The COSNaming Service

This is defined as part of the Common Object Request Broker Architecture (CORBA)
standard. CORBA is a specification for building cross-language distributed systems. That
is, CORBA implementations are frameworks used to build a certain type of distributed
application. And, as such, CORBA requires a naming service to solve the bootstrapping
problem.

These three examples define three distinct points on the performance/flexibility curve. DNS is the
most limited. It can resolve names to IP addresses but nothing else, and it doesn't support any
advanced query capabilities at all.

LDAP has extensive support for attributes. However, it doesn't really support the idea of storing
servers, or stubs to servers. Instead, it's intended to support fast queries for predefined records,
such as static data structures. Cameron Laird (in Sunworld, July 1999, "Lighting up LDAP: A
programmer's guide to directory development, Part 1") gave the following motivating example for
LDAP:



Directories are the online telephone books that keep such information as e-mail
addresses, printers' room locations, and the fax numbers of businesses'
purchasing departments.

COSNaming, on the other hand, is designed specifically for distributed systems. COSNaming
stores only references to CORBA servers. On the other hand, while it supports hierarchical
structures and expects servers to be bound and unbound fairly frequently, it doesn't have much
support for querying either.

Figure 15-1 shows the performance of each of these approaches, graphed with their flexibility.

Figure 15-1. The performance/flexibility curve
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The fact that all of these (and the RMI registry) are all easily recognized as embodying the same
idea suggests two basic conclusions:

Naming services show up in many forms in many types of distributed applications and
are among the most useful server components. Therefore, an understanding of how they
are used, and the basic terminology used when referring to a naming service, is quite
useful when building distributed systems.

Naming services are fairly prototypical servers in many ways. They have well-understood
functional requirements and need to be very scalable. Therefore, the architecture of a
naming service (e.g., how a naming service is built, the basic architectural ideas and
trade-offs that are frequently made) can be a useful example for people learning
distributed programming.

The rest of this chapter attempts to weave these two themes together. We start by discussing in
more detail how naming services are used and finish by implementing a full-fledged naming
service in RMI. Along the way, we'll deal with threading and bootstrapping issues again, and
tackle the idea of scalability head on.

15.1 Basic Design, Terminology,and Requirements

For the most part, our requirements follow from the discussion in Chapter 14, where we
discussed the RMI registry in detail. The RMI registry has two major shortcomings: it uses a flat
namespace instead of hierarchically organizing entries, and entries are names of servers, without
any further information or query capability. In addition to our desire to have hierarchies and a
more extensive querying capability, we also have a requirement that our naming service be as
backwards-compatible with the RMI registry as is possible.



15.1.1 Hierarchies

Basically, we want to define a way to make the naming service look more like a directory
structure. That is, it should have multiple directories or folders, each of which contains a small
percentage of the logical names that have actually been registered with the naming service.

The primary motivation for using hierarchies is the same one that leads me to have 30 top-level
directories on my C: drive. | have close to 30,000 files on a single hard disk; arranging them in a
single list would be a catastrophic organizational scheme. Similarly, naming services use
hierarchies to enable different types of servers to be grouped with each other and apart from
other servers. Some common grouping criteria:

By application/functionality

All servers that perform a similar function are grouped together. For example, "All the
publicly available printers are grouped together under the name Printers."

By ownership

Applications that are run by, or are frequently used by, a single group or department. For
example, "These are the stubs for the servers associated with the Accounting IT Group."

By geographic location
Servers located in a particular area, or even a building. For example, "Servers located in
California."
The terminology associated with hierarchical structures can be a little confusing. Here are some
of the most important definitions:
Context

The traditional name for the "container" structure. It plays a role analogous to a directory
in a filesystem.

Direct subcontext

A context that has been directly registered with another context. Usually, there are two
operations. bi nd( ) is much like the registry operation of the same name; it registers
objects within a context. And there is a special form of bi nd( ) that registers
subcontexts within a context.

Path
A sequence of contexts, each of which is a direct subcontext of the previous context.
Usually, we denote paths as if they are in a filesystem: /contextl/context2/... (the first /
denotes a base context).
Thus, if we form a path from the strings usr, bi n, and ganes (which we denote by
/usr/bin/games) we make the following assertions: there is a context named usr ; if we list
the subcontexts of usr , we will find a subcontext named bi n; if we list the subcontexts of
bi n, we will find a context named ganes.

Subcontext
A context is a subcontext of another context if it is either a direct subcontext or a
subcontext of a context that is a subcontext of the containing context.

Local
A server is local to a context if it has been directly bound into the context.

Contained

A server is contained by a context if it is local to the context or to one its subcontexts.



Figure 15-2 demonstrates how contexts and paths are used.

Figure 15-2. Contexts and paths
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15.1.1.1 Operations on contexts

Contexts have four main types of operations, corresponding to the following two ways of
classifying an operation:

Binding/unbinding and querying

A binding operation is an operation that adds another server or context to the list of
servers or contexts a particular context knows. Querying operations enable a client to find
a particular server or context. These operations are very similar to the methods present in
the RMI registry. They usually take a path as an argument and resolve the path
appropriately by forwarding the binding or querying operation to the appropriate
subcontext.

Context versus ordinary server

Subcontexts are usually treated differently from other types of servers. The basic idea
here is that contexts can be bound in as ordinary servers, or they can be bound in as
subcontexts. In the first case, they can be retrieved by query operations but are not
counted as subcontexts when paths are resolved. In the second case, they aren't
returned as answers to the standard query operations but are used when paths are
resolved.

Designing a Naming Hierarchy

People tend to be somewhat cavalier when designing hierarchies, more
so than when they're designing software or writing code. In part, this
seems to be an attitude that "it's just a lookup mechanism."

It's certainly true that there aren't very many design principles for
hierarchies. However, there are certain things you should keep in mind.
The three most important are:

Hierarchical structures tends to be persistent.

Naming hierarchies and ways to look up objects are embedded in your
application. both in the client (auervina) and in the launch code (bindina).




Moreover, secondary applications also frequently rely on the same
naming structure—just because one application creates the servers and
is the main user of the servers doesn't mean it's the only application that
uses them.

For example, a mortgage application analysis at our bank may fetch an
account object in order to look at the account's transaction history. The
mortgage application isn't the primary user of the servers, and the code
may have been implemented by another group entirely. However, it still
uses the hierarchical structure.

You need to decide whether you're designing for humans or for
machines.

There is often a convenient logical structure for servers, and then there is
a hierarchical structure that humans can navigate. Humans typically
prefer descriptive names and longer paths. On the other hand, flatter
hierarchies generally require less code and are easier for programmers
and systems administrators to maintain. The ultimate example of this is
RMI's flat namespace. It quickly becomes unreadable. But the code that
interacts with the RMI registry is very simple.

The longer the path, the more opportunities you have for federating the
naming service.

We'll talk more about federation later. For now, it's enough to say that
federation is a way of moving subcontexts to another machine to enable
naming services to scale.

15.1.2 Query by Attribute

Generally, a naming service is not quite static, but a "sticky" data structure instead. Once servers
are bound under a particular logical name, they tend to be bound under that name for awhile.

Binding and unbinding are relatively rare operations.

Query operations, on the other hand, occur far more frequently than binding or unbinding. Every

time a client needs to find a server, it needs to issue a query to the naming service.
This implies three basic design requirements:

The naming service has to respond quickly to queries.

Queries from distinct clients should not block each other. It's very important to minimize
the use of synchronization in query methods.

The query functionality should be expressive enough to pick out a single server from the
ones bound into the naming service. If the naming service often returns a list of servers
that the client then narrows down, presumably by querying the server, then using the
naming service will be incredibly inefficient.

15.1.2.1 Attributes are string-valued, name-value pairs



One fairly traditional way to implement a query capability is to allow server entries to be
annotated with a set of attributes that describe the server. These attributes are metadata that help
describe the server and enable the clients to choose a server quickly and easily.

Consider our printer application again. We have a document we need to print. It's a color
PostScript file for an 18" x 24" poster. To find the correct printer in the RMI registry, we must:

1. Getallthe serversbyusing!list( ).

2. Find out which servers are printers. This involves retrieving the stubs (using a | ocokup(
) method for each name) and then using the i nst anceof keyword to discard the stubs
that aren't associated with printers.

3. Query each printer we find to discover what sorts of jobs it can handle. Note that even if
we subclassed the Pri nt er interface by defining, for example, Col or Pri nter or
Postscri pt Printer, we'd probably still wind up asking it about the paper sizes the
printer can handle, and whether the printer is in a nearby location.

Surprisingly enough, hierarchies help, but they don't solve this problem entirely. For example, we
could define the following printer hierarchy:

[printers/postscript
[printers/pdf
/printers/pcl

Assuming we know the hierarchy (e.g., the first classification is based on the printer formatting
language and not on whether the printer can handle color), we can easily find a potential match.
But hierarchy has its limits. Consider what happens when we add location, paper size, and
resolution to the preceding tree. We may wind up with hierarchical paths such as:

/building47/printers/postscript/A12Paper/1200DPI/Color
This type of hierarchy is awful, for a number of reasons. Here are three of the most important:

Many servers are entered multiple times. A server that can print either black-and-white or
color documents and can handle either ordinary or legal paper is entered four tim