
 

  

 

 

 

 

 

 



 

  

 

 

 

 

 

 

 

JavaServer Pages 

 

Hans Bergsten  

 
First Edition, December 2000  

 
ISBN: 1-56592-746-X, 572 pages 

JavaServer Pages shows how to develop Java-based web applications without having to be a 
hardcore programmer. The author provides an overview of JSP concepts and illuminates how JSP 

fits into the larger picture of web applications.  

There are chapters for web authors on generating dynamic content, handling session information, 
and accessing databases, as well as material for Java programmers on creating Java components 
and custom JSP tags for web authors to use in JSP pages.JavaServer Pages shows how to develop 

Java-based web applications without having to be a hardcore programmer. 

 The author provides an overview of JSP concepts and illuminates how JSP fits into the larger 
picture of web applications. There are chapters for web authors on generating dynamic content, 

handling session information, and accessing databases, as well as material for Java programmers 
on creating Java components and custom JSP tags for web authors to use in JSP pages. 

 

 

Release Team[oR] 2001 

 



 

  

 

 Preface 1 
     What's in This Book 
     Audience 
     Organization 
     About the Examples 
    Conventions Used in This Book 
     How to Contact Us 
     Acknowledgments 
 
i JSP Application Basics   
   This part of the book describes the fundamentals of HTTP (the protocol used by all web  applications),  

  how servlets and JSP are related, and how to set up a JSP development environment and install the  
  book examples. 

1 Introducing JavaServer Pages 8 
    1.1  What Is JavaServer Pages? 
    1.2  Why Use JSP? 
    1.3  What You Need to Get Started 
 
2 HTTP and Servlet Basics 13 
    2.1  The HTTP Request/Response Model 
    2.2  Servlets 
    2.3  Packaging Java Web Applications 
 
3 JSP Overview 25 
    3.1  The Problem with Servlets 
    3.2  The Anatomy of a JSP Page 
    3.3  JSP Processing 
    3.4  JSP Application Design with MVC 
 
4 Setting Up the JSP Environment 34 
    4.1  Installing the Java Software Development Kit 
    4.2  Installing the Tomcat Server 
    4.3  Testing Tomcat 
    4.4  Installing the Book Examples 
    4.5  Example Web Application Overview 
 
ii JSP Application Development   
  The focus of this part of the book is on developing JSP-based web applications using both standard JSP 
   elements and custom components. Through the use of practical examples, you will learn how to handle common 
   tasks such as validating user input, accessing databases, authenticating users and protecting web pages, 
   localizing your web site, and more. 

5 Generating Dynamic Content 42 
    5.1  What Time Is It? 
    5.2  Input and Output 
 
6 Using Scripting Elements 55 
    6.1  Java Primer 
    6.2  Implicit JSP Objects 
    6.3  Conditional Processing 
    6.4  Displaying Values 
    6.5  Using an Expression to Set an Attribute 
    6.6  Declaring Variables and Methods 
 
7 Error Handling and Debugging 74 
    7.1  Dealing with Syntax Errors 
    7.2  Debugging a JSP-Based Application 
    7.3  Dealing with Runtime Errors 
 
8 Sharing Data Between JSP Pages, Requests, and Users 87 
    8.1  Passing Control and Data Between Pages 
    8.2  Sharing Session and Application Data 
    8.3  Using Custom Actions 
    8.4  Online Shopping 
    8.5  Memory Usage Considerations 
 
 



 

  

 

9 Database Access 109 
    9.1  Accessing a Database from a JSP Page 
    9.2  Input Validation Without a Bean 
    9.3  Using Transactions 
    9.4  Application-Specific Database Actions 
 
10 Authentication and Personalization 130 
    10.1  Container-Provided Authentication 
    10.2  Application-Controlled Authentication 
    10.3  Other Security Concerns 
 
11 Internationalization 148 
    11.1  How Java Supports Internationalization and Localization 
    11.2  Generating Localized Output 
    11.3  A Brief History of Bits 
    11.4  Handling Localized Input 
 
12 Bits and Pieces 165 
    12.1  Buffering 
    12.2  Including Page Fragments 
    12.3  XML and JSP 
    12.4  Mixing Client-Side and Server-Side Code 
    12.5  Precompiling JSP Pages 
    12.6  Preventing Caching of JSP Pages 
    12.7  How URLs Are Interpreted 
 
III: JSP in J2EE and JSP Component Development 
   If you're a programmer, this is the part of the book where the real action is . Here you will learn how to develop 
   your own custom actions and JavaBeans, and how to combine JSP with other Java server-side technologies, 
   such as servlets and Enterprise JavaBeans (EJB). 
 
13 Web Application Models 182 
    13.1  The Java 2 Enterprise Edition Model 
    13.2  The MVC Model 
    13.3  Scalability 
 
14 Combining Servlets and JSP 190 
    14.1  Using a Servlet as the Controller 
    14.2  A More Modular Design Using Action Objects 
    14.3  Sharing Data Between Servlets and JSP Pages 
    14.4  Using a JSP Error Page for All Runtime Errors 
 
15 Developing JavaBeans for JSP 200 
    15.1  JavaBeans as JSP Components 
    15.2  JSP Bean Examples 
    15.3  Unexpected <jsp:setProperty> Behavior 
 
16 Developing JSP Custom Actions 213 
    16.1  Tag Extension Basics 
    16.2  Developing a Simple Action 
    16.3  Processing the Action Body 
    16.4  Letting Actions Cooperate 
    16.5  Creating New Variables Through Actions 
    16.6  Developing an Iterating Action 
    16.7  Creating the Tag Library Descriptor 
    16.8  Validating Syntax 
    16.9  How Tag Handlers May Be Reused 
    16.10  Packaging and Installing a Tag Library 
 
17 Developing Database Access Components 235 
    17.1  Using Connections and Connection Pools 
    17.2  Using a Generic Database Bean 
    17.3  Developing Generic Database Custom Actions 
    17.4  Developing Application-Specific Database Components 
 
 



 

  

iv Appendixes 
  In this part of the book, you find reference material, such as descriptions of JSP elements and classes, all book 
   example components, the web application deployment descriptor, and more. 
 
A JSP Elements Syntax Reference 260 
    A.1  Directive Elements 
    A.2  Scripting Elements 
    A.3  Action Elements 
    A.4  Comments 
    A.5  Escape Characters 
 
B JSP API Reference 270 
    B.1  Implicit Variables 
    B.2  Servlet Classes Accessible Through Implicit Variables 
    B.3  Tag Extension Classes 
    B.4  Other JSP Classes 
 
C Book Example Custom Actions and Classes Reference 312 
    C.1  Generic Custom Actions 
    C.2  Internationalization Custom Actions 
    C.3  Database Custom Actions 
    C.4  Utility Classes 
    C.5  Database Access Classes 
 
D Web-Application Structure and Deployment Descriptor Reference 337 
    D.1  Web Application File Structure 
    D.2  Web Application Deployment Descriptor 
    D.3  Creating a WAR File 
 
E JSP Resource Reference 346 
    E.1  JSP-Related Products 
    E.2  Web Hosting 
    E.3  Information and Specifications 
 
 Colophon 350 



 

  

 

 

JavaServer Pages (JSP) technology provides an easy way to create dynamic web pages. JSP uses a component-
based approach that allows web developers to easily combine static HTML for look-and-feel with Java components 
for dynamic features. The simplicity of this component-based model, combined with the cross-platform power of 
Java, allows a web development environment with enormous potential.  

JavaServer Pages shows how to develop Java-based web applications without having to be a hardcore 
programmer. The author provides an overview of JSP concepts and discusses how JSP fits into the larger picture 
of web applications. Web page authors will benefit from the chapters on generating dynamic content, handling 
session information, accessing databases, authenticating users, and personalizing content. In the programming-
oriented chapters, Java programmers learn how to create Java components and custom JSP tags for web authors 
to use in JSP pages.  

 

 



JavaSercer Pages 

  page 1

Preface 

JavaServer Pages™ (JSP) is a new technology for web application development that has received a great deal 
of attention since it was first announced. 

Why is JSP so exciting? One reason is that JSP is Java-based, and Java is well-suited for enterprise computing. 
In fact, JSP is a key part of the Java™ 2 Enterprise Edition (J2EE) platform and can take advantage of the 
many Java Enterprise libraries, such as JDBC, JNDI, and Enterprise JavaBeans™. 

Another reason is that JSP supports a powerful model for developing web applications that separates 
presentation from processing. Understanding why this is so important requires a bit of a history lesson. In the 
early days of the Web, the only tool for developing dynamic web content was the Common Gateway Interface 
(CGI). CGI outlined how a web server made user input available to a program, as well as how the program 
provided the web server with dynamically generated content to send back. CGI scripts were typically written in 
Perl. (In fact, CGI Perl scripts still drive numerous dynamic web sites.) However, CGI is not an efficient 
solution. For every request, the web server has to create a new operating-system process, load a Perl 
interpreter and the Perl script, execute the script, and then dispose of the entire process when it's done. 

To provide a more efficient solution, various alternatives to CGI have been added to programmers' toolboxes 
over the last few years: FastCGI, for example, runs each CGI program in an external permanent process (or a 
pool of processes). In addition, mod_perl for Apache, NSAPI for Netscape, and ISAPI for Microsoft's IIS all run 
server-side programs in the same process as the web server itself. While these solutions offer better 
performance and scalability, each one is supported by only a subset of the popular web servers. 

The Java Servlet API, introduced in early 1997, provides a solution to the portability issue. However, all these 
technologies suffer from a common problem: HTML code embedded inside programs. If you've ever looked at 
the code for a servlet, you've probably seen endless calls to out.println( ) that contain scores of HTML tags. 
For the individual developer working on a simple web site this approach may work fine, but it makes it very 
difficult for people with different skills to work together to develop a web application. 

This is becoming a significant problem. As web sites become increasingly complex and are more and more 
critical to the success of an organization, the appearance and usability of the web interface becomes 
paramount. New client technologies, such as client-side scripts and DHTML, can develop more responsive and 
interactive user interfaces, stylesheets can make it easier to globally change fonts and colors, and images can 
make the interface more appealing. At the same time, server-side code is getting more complex, and demands 
for reliability, performance, and fault tolerance are increasing. The growing complexity of web applications 
requires a development model that allows people with different skills to cooperate efficiently. 

JavaServer Pages provides just such a development model, allowing web page authors with skills in graphics, 
layout, and usability to work in tandem with programmers who are experienced in server-side technologies 
such as multithreading, resource pooling, databases, and caching. While there are other technologies, such as 
ASP, PHP, and ColdFusion, that support similar development models, none of them offers all the advantages of 
JSP. 

 

What's in This Book 

This book covers Version 1.1 of the JavaServer Pages specification, which was released in late 1999. 

In this book, you will learn how to use all the standard JSP elements and features, including elements for 
accessing JavaBeans components, separating the processing over multiple pages to increase reusability and 
simplify maintenance, and sharing information between pages, requests, and users. You will also learn how to 
use and develop custom components. A rich set of custom components, for tasks such as integration of 
database data, internationalization, access control, and conditional processing, is described in detail. Many of 
these components are generic enough that you can reuse them directly in your own applications. 

The examples in this book guide you through solutions to common JSP design problems, from basic issues such 
as retrieving and validating user input, to more advanced areas such as developing a database-driven site, 
authenticating users, providing personalized content, and implementing internationalization. The last part of 
the book describes how you can combine JSP with other Java technologies; in particular, I describe the 
combination of JSP and servlets and provide an overview of how JSP fits into the larger scope of J2EE. 



JavaSercer Pages 

  page 2 

Audience 

This book is for anyone interested in using JSP technology to develop web applications. In particular, it is 
written to help the two types of people commonly involved in the development of a JSP-based application: 

Page authors  

Page authors primarily develop the web interface to an application. This group uses HTML, stylesheets, 
and client-side code to develop a rich user interface, and wants to learn how to use JSP elements in 
web pages to interact with the server components of the application, such as databases and Enterprise 
JavaBeans (EJB). 

Java programmers  

Java programmers are comfortable with the Java programming language and Java servlets. This group 
is interested in learning how to develop JSP components that page authors can use in web pages, such 
as JSP custom actions and JavaBeans, and how to combine JSP with other Java server-side 
technologies, such as servlets and EJB. 

This book is structured into three parts, which I describe shortly, to make it easier to find the material you are 
most interested in. 

 

What You Need to Know 

It's always hard to assume how much you, as the reader, already know. For this book, it was even harder, 
since the material is intended for two audiences: page authors and programmers. 

I have assumed that anyone reading this book has experience with HTML; consequently, I will not explain the 
HTML elements used in the examples. But even if you're an HTML wiz, this may be your first exposure to 
dynamic web content and web applications. A thorough introduction to the HTTP protocol that drives all web 
applications, as well as to the concepts and features specific to servlet and JSP-based web applications, is 
therefore included. If you want to learn more about HTML, I recommend HTML and XHTML: The Definitive 
Guide, by Chuck Musciano and Bill Kennedy (O'Reilly & Associates). 

If you're a page author, I have assumed that you don't know anything about programming, although it doesn't 
hurt if you have played around with client-side scripting languages like VBScript or JavaScript (ECMAScript). 
This book contains a brief Java primer with enough information to allow you to use a modest amount of Java 
code in JSP pages. As you will see, I recommend that you use Java components developed by a Java 
programmer instead of putting your own Java code in the pages, so you don't have to know all the intricate 
details of the Java language to use JSP. 

I have assumed that programmers reading this book are familiar with Java programming, object-oriented 
concepts, and Java servlets. If you plan to develop JSP components for page authors and are not familiar with 
Java programming, I recommend that you read an introductory Java book, such as Exploring Java by Patrick 
Niemeyer and Joshua Peck (O'Reilly). If you need to learn about servlets, I recommend Java Servlet 
Programming by Jason Hunter and William Crawford (O'Reilly) or another book that covers servlet technology. 

The chapters dealing with database access require some knowledge of SQL and databases in general. I will 
explain all that you need to know to run the examples, but if you're hoping to develop database-driven 
applications, you will need to know more about databases than what's in this book. 



JavaSercer Pages 

  page 3

Organization 

This book is structured into three parts. The first part describes the fundamentals of HTTP (the protocol used 
by all web applications), how servlets and JSP are related, and how to set up a JSP development environment. 

The focus of the second part is on developing JSP-based web applications using both standard JSP elements 
and custom components. Through practical examples, you will learn how to handle common tasks such as 
validating user input, accessing databases, authenticating users and protecting web pages, localizing your web 
site, and more. This portion of the book is geared more towards web content designers. 

In the third part, you will learn how to develop your own custom actions and JavaBeans, and how to combine 
JSP with other Java server-side technologies, such as servlets and Enterprise JavaBeans (EJB). This portion of 
the book is targeted towards the programming community. 

All in all, the book consists of 17 chapters and five appendixes as follows. 

 

Part I, JSP Application Basics 

Chapter 1  

Explains how JSP fits into the big picture of web applications and how it compares to alternative 
technologies. 

Chapter 2  

Describes the fundamental HTTP and servlet concepts you need to know to use JSP to its full potential. 

Chapter 3  

An overview of the JSP features, as well as the similarities and differences between JSP pages and 
servlets. Also introduces the Model-View-Controller design model and how it applies to JSP. 

Chapter 4  

Describes where to get the JSP reference implementation, Apache Tomcat, and how to set it up on your 
system. Also explains how to install the book examples. 

 

Part II, JSP Application Development 

Chapter 5  

Explains how to use JSP to generate dynamic content and how to receive and validate user input. 

Chapter 6  

A brief introduction to Java programming, followed by descriptions of all the JSP elements that let you 
embed Java code directly in your JSP pages. 

Chapter 7  

Describes the kinds of errors you may encounter during development of a JSP-based application, and 
strategies and JSP features that help you deal with them. 

Chapter 8  

Explains the JSP features that let you separate different types of processing in different pages to 
simplify maintenance and further development. Also describes how sessions can be used to build up 
information over a sequence of requests from the same user, and how information that applies to all 
users can be shared using the application scope. 



JavaSercer Pages 

  page 4

Chapter 9  

A quick overview of relational databases, JDBC, and SQL basics. Introduces a set of generic custom 
actions for reading, updating, and deleting database data. 

Chapter 10  

Describes how authentication and access control can be implemented using container-provided and 
application-controlled mechanisms, and how to use information about the current user to personalize 
the web pages. 

Chapter 11  

Explains internationalization and localization, as well as the Java features available to implement an 
internationalized application. Describes a set of custom actions used to implement a web site with 
support for multiple languages. 

Chapter 12  

Covers various areas not discussed in previous chapters, such as using XML and XSL with JSP, 
combining JSP with client-side code, reusing JSP fragments by including them in JSP pages, 
precompiling JSP pages, and more. 

 

Part III, JSP in J2EE and JSP Component Development 

Chapter 13  

An overview of J2EE and web application architectures using JSP in combination with other Java 
technologies. 

Chapter 14  

Describes in detail how JSP can be combined with servlets. 

Chapter 15  

Provides details about JavaBeans as they relate to JSP, including threading and synchronization 
concerns for session and application-scope JavaBeans, as well as how using JavaBeans can make it 
easier to eventually migrate to an EJB architecture. The beans used in previous chapters are reused as 
examples. 

Chapter 16  

Describes the JSP Tag Extension mechanism and how it is used to develop custom actions, reusing 
many of the custom actions from previous chapters as examples. 

Chapter 17  

Describes the database-access custom actions used in the previous chapters and how to use them with 
both connection pools developed in-house and those provided by a third-party vendor. Also explains 
how you can reuse the database-access beans to develop your own application-specific database 
custom actions. 

 



JavaSercer Pages 

  page 5 

Part IV, Appendixes 

Appendix A  

Contains descriptions of all the standard JSP 1.1 elements. 

Appendix B  

Contains descriptions of all implicit objects available in a JSP page as defined by the servlet and JSP 
APIs, as well as the tag extension mechanism classes and interfaces. 

Appendix C  

Contains descriptions of the custom actions, beans, and utility classes used in the examples. 

Appendix D  

Contains descriptions of the standard web-application structure and all elements in the web-application 
deployment descriptor. 

Appendix E  

Contains references to JSP-related products, web-hosting services, and sites where you can learn more 
about JSP and related technologies. 

If you're a page author, I recommend that you focus on the chapters in Part I and Part II. You may want to 
browse through Part III to get a feel for how things work behind the scenes, but don't expect to understand 
everything if you're not a Java programmer. 

If you are a Java programmer, Part III is where the action is. If you're already familiar with HTTP and servlets, 
you may want to move quickly through Part I. However, this part does include information about the web 
application concept introduced in the Servlet 2.2 API that you may not be familiar with, even if you've worked 
with servlets for some time. I recommend that you read Part II to learn how JSP works, but you may want to 
skip ahead to the chapters in Part III from time to time to see how the components used in the examples are 
actually implemented. 

 

About the Examples 

This book contains over 50 examples that demonstrate useful techniques for database access, application-
controlled authentication and access control, internationalization, XML processing, and more. The examples 
include complete applications, such as an online shopping site, an employee directory, and a personalized 
project billboard, as well as numerous smaller examples and page fragments. The included example tag library 
contains more than 20 custom actions that you can use directly in your application or as a starting point for 
your own development. The code for all the examples and most of the custom actions is contained within the 
text; you can also download all code from the O'Reilly web site at 
http://www.oreilly.com/catalog/jserverpages/. In addition, you can see all the examples in action at 
http://www.TheJSPBook.com. 

All examples have been tested with the official JSP reference implementation, Apache Tomcat, on Windows (98 
and NT 4.0) and Linux (Red Hat Linux 6.2) using Sun's Java 2 SDK (1.2.2 and 1.3). If you need more 
information on downloading and installing the Apache Tomcat server for use with the examples, see Chapter 4. 

http://www.oreilly.com/catalog/jserverpages/
http://www.TheJSPBook.com


JavaSercer Pages 

  page 6 

Conventions Used in This Book 

Italic is used for: 

• Pathnames, filenames, directories, and program names 
• New terms where they are defined 
• Internet addresses, such as domain names and URLs 

Boldface is used for: 

• Particular keys on a computer keyboard 
• Names of user interface buttons and menus 

Constant Width is used for: 

• Anything that appears literally in a JSP page or a Java program, including keywords, datatypes, 
constants, method names, variables, class names, and interface names 

• Command lines and options that should be typed verbatim on the screen 
• All JSP and Java code listings 
• HTML documents, tags, and attributes 

Constant Width Italic is used for: 

• General placeholders that indicate that an item should be replaced by some actual value in your own 
program 

Constant width purple is used for: 

• Text that is typed in code examples by the user 

 

How to Contact Us 

We have tested and verified all the information in this book to the best of our abilities, but you may find that 
features have changed or that we have let errors slip through the production of the book. Please let us know of 
any errors that you find, as well as suggestions for future editions, by writing to: 

 
 O'Reilly & Associates, Inc. 
 101 Morris St. 
 Sebastopol, CA  95472 
 1-800-998-9938 (in the U.S. or Canada) 
 1-707-829-0515 (international/local) 
 1-707-829-0104 (fax) 
 

You can also send messages electronically. To be put on our mailing list or to request a catalog, send email to: 

info@oreilly.com  

To ask technical questions or to comment on the book, send email to: 

bookquestions@oreilly.com  

We have a web site for the book, where we'll list examples, errata, and any plans for future editions. You can 
access this page at: 

http://www.oreilly.com/catalog/jserverpages/  

For more information about this book and others, see the O'Reilly web site: 

http://www.oreilly.com  

http://www.oreilly.com/catalog/jserverpages/
http://www.oreilly.com


JavaSercer Pages 

  page 7 

Acknowledgments 

I love to write and have always wanted to write a book someday. After getting a number of articles about Java 
servlets and a couple of chapters for a server-side Java book published, my confidence was so high that I sent 
an email to O'Reilly & Associates and asked if they wanted me to write a book about JSP. Much to my surprise 
(I guess my confidence was not so high after all), they said, "Yes!" I knew that it would be more work than I 
could imagine, and it turned out to be even more than that. But here I am, almost a year later, with 17 
chapters and 5 appendixes in a nice stack on my desk, written and rewritten countless times. All that remains 
is to give thanks to everyone who helped me fulfill this dream. 

First, I'd like to thank my editors, Paula Ferguson and Bob Eckstein. Paula was the one who accepted my book 
proposal in the first place, and then helped me through my stumbling steps of writing the first half of the book. 
Bob came aboard for the second half, and I'm really grateful to him for thoroughly reading everything and 
giving me helpful advice. 

Thanks also to Rob Romano for doing the illustrations, to Christien Shangraw for helping out with the 
coordination, and to all the production people behind the scenes at O'Reilly who made sure the book got 
published. 

Big thanks also go to the JSP and servlet specification leads, Eduardo Pelegri-Llopart and Danny Coward, for 
providing feedback, answering all my questions, and clarifying the vague and ambiguous areas of the 
specifications. You helped me more than I could ask for. I hope my contributions to the specifications repay my 
debt to some extent. 

Thanks also to all of you who helped me improve the book in other ways: Jason Hunter for letting me borrow 
his connection pool code and Japanese examples; Craig McClanahan, Larry Riedel, Steve Jung (Steve dedicates 
his effort to the memory of his father, Arthur H. Jung, who passed away March 17, 2000), Sean Rohead, Jerry 
Croce, Steve Piccolo, and Vikram David for reviewing the book and giving me many suggestions for how to 
make it better; all the Apache Tomcat developers for making a great JSP reference implementation; and the 
members of the jsp-interest mailing list for all the ideas about what to cover in this book. 

Finally, thanks to everyone who encouraged me and kept my spirits high: Mom, Dad, and my sister, for their 
support and for teaching me to do what I believe in; all my old friends in Sweden, especially Janne Ek, Peter 
Hellström (and his dad, who helped me with the translation of the German example), Janne Andersson, Roger 
Bjärevall and Michael Rohdin; Anne Helgren, my writing teacher who convinced me I could do this; and all the 
guys in and around Vesica Pisces (http://www.vesicapisces.com), Kelly, Brian, Adam, Bill, and James: I really 
enjoyed getting away from the writing now and then to hang with you and listen to you play. 

Hans Bergsten, September 2000 

http://www.vesicapisces.com


JavaSercer Pages 

  page 8

Chapter 1. Introducing JavaServer Pages 

The Java 2 Enterprise Edition ( J2EE) has taken the once-chaotic task of building an Internet presence and 
transformed it to the point where developers can use Java to efficiently create multitier, server-side 
applications. Today, the Java Enterprise APIs have expanded to encompass a number of areas: RMI and 
CORBA for remote object handling, JDBC for database interaction, JNDI for accessing naming and directory 
services, Enterprise JavaBeans for creating reusable business components, JMS ( Java Messaging Service) for 
message-oriented middleware, and JTA ( Java Transaction API) for performing atomic transactions. In addition, 
J2EE supports servlets , an extremely popular Java substitute for CGI scripts. The combination of these 
technologies allows programmers to create distributed business solutions for a variety of tasks. 

In late 1999, Sun Microsystems added a new element to the collection of Enterprise Java tools: JavaServer 
Pages ( JSP). JavaServer Pages are built on top of Java servlets and are designed to increase the efficiency in 
which programmers, and even nonprogrammers, can create web content. This book is all about JavaServer 
Pages. 

 

1.1 What Is JavaServer Pages? 

Put succinctly, JavaServer Pages is a technology for developing web pages that include dynamic content. 
Unlike a plain HTML page, which contains static content that always remains the same, a JSP page can change 
its content based on any number of variable items, including the identity of the user, the user's browser type, 
information provided by the user, and selections made by the user. As you'll see later in the book, functionality 
such as this can be used to create web applications like shopping carts and employee directories. 

A JSP page contains standard markup language elements, such as HTML tags, just like a regular web page. 
However, a JSP page also contains special JSP elements that allow the server to insert dynamic content in the 
page. JSP elements can be used for a wide variety of purposes, such as retrieving information from a database 
or registering user preferences. When a user asks for a JSP page, the server executes the JSP elements, 
merges the results with the static parts of the page, and sends the dynamically composed page back to the 
browser, as illustrated in Figure 1.1. 

Figure 1.1. Generating dynamic content with JSP elements 

 

JSP defines a number of standard elements useful for any web application, such as accessing JavaBeans 
components, passing control between pages, and sharing information between requests, pages, and users. 
Programmers can also extend the JSP syntax by implementing application-specific elements that perform tasks 
such as accessing databases and Enterprise JavaBeans, sending email, and generating HTML to present 
application-specific data. The combination of standard elements and custom elements allows for the creation of 
powerful web applications. 

 

1.2 Why Use JSP? 

In the early days of the Web, the Common Gateway Interface (CGI) was the only tool for developing dynamic 
web content. However, CGI is not an efficient solution. For every request that comes in, the web server has to 
create a new operating system process, load an interpreter and a script, execute the script, and then tear it all 
down again. This is very taxing for the server and doesn't scale well when the amount of traffic increases. 

Numerous CGI alternatives and enhancements, such as FastCGI, mod_ perl from Apache, NSAPI from 
Netscape, ISAPI from Microsoft, and Java Servlets from Sun Microsystems, have been created over the years. 
While these solutions offer better performance and scalability, all of these technologies suffer from a common 
problem: they generate web pages by embedding HTML directly in programming language code. This pushes 
the creation of dynamic web pages exclusively into the realm of programmers. JavaServer Pages, however, 
changes all that. 



JavaSercer Pages 

  page 9 

1.2.1 Embedding Elements in HTML Pages 

JSP tackles the problem from the other direction. Instead of embedding HTML in programming code, JSP lets 
you embed specialized code (sometimes called scripting code) into HTML pages. Java is the default scripting 
language of JSP, but the JSP specification allows for other languages as well, such as JavaScript, Perl, and 
VBScript. We will begin looking at all the JSP elements in detail later, but at this point let's introduce you to a 
simple JSP page: 

 <html> 
   <body bgcolor="white"> 
 
   <% java.util.Date clock = new java.util.Date( ); %> 
   <% if (clock.getHours( ) < 12) { %> 
     <h1>Good morning!</h1> 
   <% } else if (clock.getHours( ) < 18) { %> 
     <h1>Good day!</h1> 
   <% } else { %> 
     <h1>Good evening!</h1> 
   <% } %> 
   Welcome to our site, open 24 hours a day. 
   </body> 
 </html> 

This page inserts a different message to the user based on the time of day: "Good morning!" if the local time is 
before 12:00 P.M., "Good day!" if between 12:00 P.M. and 6:00 P.M., and "Good evening!" if after 6:00 P.M. 
When a user asks for this page, the JSP-enabled web server executes all the highlighted Java code and creates 
a static page that is sent back to the user's browser. For example, if the current time is 8:53 P.M., the 
resulting page sent from the server to the browser looks like this: 

 <html> 
   <body bgcolor="white"> 
 <h1>Good evening!</h1> 
   Welcome to our site, open 24 hours a day. 
   </body> 
 </html> 

A screen shot of this result is shown in Figure 1.2. If you're not a programmer, don't worry if you didn't pick up 
what happened here. Everything will become clear as you progress through this book. 

Figure 1.2. The output of a simple JSP page  

 

Of course, embedding too much code in a web page is no better than programming too many HTML tags in 
server-side code. Fortunately, JSP servers provide a number of reusable action elements that perform common 
tasks, as we'll see starting in Chapter 3. These action elements look similar to HTML elements, but behind the 
scenes they are componentized Java programs that the server executes when the page is requested by a user. 
Action elements are a powerful feature of JSP, as they give web page authors the ability to perform complex 
tasks without having to do any programming. 

In addition to the standard action elements, in-house programmers and third parties can develop custom 
action elements (known as custom actions or custom tags, and packaged in custom tag libraries) that web 
page authors can use to handle even more complex and specialized tasks. This book includes a large set of 
custom actions for conditional processing, database access, internationalization, and more. Custom tag 
libraries are also available from various open source organizations and commercial companies. 



JavaSercer Pages 

  page 10

1.2.2 Using the Right Person for Each Task 

As I alluded to earlier, JSP allows you to separate the markup language code, such as HTML, from the 
programming language code used to process user input, access databases, and perform other application 
tasks. One way this separation takes place is through the use of the JSP standard and custom action elements: 
the elements are implemented with programming code and used the same way as page markup elements in 
regular web pages. Another way is to combine JSP with other Java Enterprise technologies. For example, Java 
servlets can handle input processing, Enterprise JavaBeans (EJB) can take care of the application logic, and JSP 
pages can provide the user interface. 

This separation means that with JSP, a typical business can divide its efforts among two camps that excel in 
their own areas of expertise, and comprise a JSP web development team with programmers who create the 
actions for the logic needed by the application, and page authors who craft the specifics of the interface and 
use the complex actions without having to do any programming. I'll talk more about this benefit as we move 
through the book, although I should reiterate that the first half of the book is devoted more to those without 
programming experience, while the second half is for programmers who wish to use the JSP libraries to create 
their own actions. 

1.2.3 Precompilation 

Another benefit that is important to mention is that a JSP page is always compiled before it's processed by the 
server. Remember that older technologies such as CGI/Perl require the server to load an interpreter and the 
target script each time the page is requested. JSP gets around this problem by compiling each JSP page into 
executable code the first time it is requested, and invoking the resulting code directly on all subsequent 
requests. When coupled with a persistent Java virtual machine on a JSP-enabled web server, this allows the 
server to handle JSP pages much faster. 

1.2.4 Integration with Enterprise Java APIs 

Finally, because JavaServer Pages is built on top of the Java Servlets API, JSP has access to all of the powerful 
Enterprise Java APIs, including: 

• JDBC 
• Remote Method Invocation (RMI) and OMG CORBA support 
• JNDI ( Java Naming and Directory Interface) 
• Enterprise JavaBeans (EJB) 
• JMS ( Java Message Service) 
• JTA ( Java Transaction API) 

This means that you can easily integrate JavaServer Pages with your existing Java Enterprise solutions, or take 
advantage of many aspects of enterprise computing if you're starting from scratch. 

1.2.5 Other Solutions 

At this point, let's digress and look at some other solutions for dynamic web content. Some of these solutions 
are similar to JSP, while others are descendants of older technologies. Many do not have the unique 
combination of features and portability offered by JavaServer Pages. 

1.2.5.1 Active Server Pages (ASP) 

Microsoft's Active Server Pages (ASP) is a popular technology for developing dynamic web sites. Just like JSP, 
ASP lets a page author include scripting code, such as VBScript and JScript, in regular web pages to generate 
the dynamic parts. For complex code, COM (ActiveX) components written in a programming language such as 
C++ can be invoked by the scripting code. The standard distribution includes components for database access 
and more, and other components are available from third parties. When an ASP page is requested, the code in 
the page is executed by the server. The result is inserted into the page and the combination of the static and 
dynamic content is sent to the browser. 

ASP+, currently in beta, will add a number of new features to ASP. As an alternative to scripting, dynamic 
content can be generated by HTML/XML-like elements similar to JSP action elements. For improved 
performance, ASP+ pages will be compiled instead of interpreted, and compiled languages such as C++, C#, 
and VisualBasic will be added to the current list of scripting languages that can be embedded in a page. 



JavaSercer Pages 

  page 11

ASP is bundled with Microsoft's Internet Information Server (IIS). Due to its reliance on native COM code as its 
component model, it's primarily a solution for the Windows platform. Limited support for other platforms, such 
as the Apache web server on Unix, is available through third-party products such as Chili!Soft (Chili!Soft), 
InstantASP (Halcyon Software), and OpenASP (ActiveScripting.org). You can read more about ASP and ASP+ 
on Microsoft's web site, http://www.microsoft.com. 

1.2.5.2 PHP 

PHP1 is an open source web scripting language. Like JSP and ASP, PHP allows a page author to include scripting 
code in regular web pages to generate dynamic content. PHP has a C-like syntax with some features borrowed 
from Perl, C++, and Java. Complex code can be encapsulated in both functions and classes. A large number of 
predefined functions are available as part of PHP, such as accessing databases, LDAP directories, and mail 
servers, creating PDF documents and images, and encrypting and decrypting data. A PHP page is always 
interpreted by the server when it's requested, merging the result of executing the scripts with the static text in 
the page, before it's returned to the browser. The latest version is PHP 4, which uses compiled pages instead of 
interpreted pages to improve performance. 

PHP is supported on a wide range of platforms, including all major web servers, on operating systems like 
Windows, Mac OS, and most Unix flavors, and with interfaces to a large number of database engines. More 
information about PHP is available at http://www.php.net. 

1.2.5.3 ColdFusion 

Allaire's ColdFusion product is another popular alternative for generating dynamic web content. The dynamic 
parts of a page are generated by inserting HTML/XML-like elements, known as the ColdFusion Markup 
Language (CFML), into web pages. CFML includes a large set of elements for tasks like accessing databases, 
files, mail servers, and other web servers, as well as conditional processing elements like loops. The latest 
version of ColdFusion also includes elements for communication with Java servlets and Enterprise JavaBeans. 
Custom elements can be developed in C++ or Java to encapsulate application-specific functions, and CFML 
extensions are available from third parties. ColdFusion did not initially support scripting languages, but in 
ColdFusion 4.5, JavaScript-like code can be embedded in the web pages in addition to the CFML tags. 

The ColdFusion 4.5 Enterprise Edition is supported on Windows, Solaris, HP/UX, and Linux for all major web 
servers and databases. For more information, visit Allaire's web site at http://www.allaire.com. 

1.2.5.4 Java servlet template engines 

A Java servlet template engine is another technology for separating presentation from processing. When 
servlets became popular, it didn't take long before developers realized how hard it was to maintain the 
presentation part when the HTML code was embedded directly in the servlet's Java code. 

As a result, a number of so-called template engines have been developed as open source products to help get 
HTML out of the servlets. These template engines are intended to be used together with pure code components 
(servlets) and use only web pages with scripting code for the presentation part. Requests are sent to a servlet 
that processes the request, creates objects that represent the result, and calls on a web page template to 
generate the HTML to be sent to the browser. The template contains scripting code similar to the alternatives 
described earlier. The scripting languages used by these engines are less powerful, however, because scripting 
is intended only for reading data objects and generating HTML code to display their values. All the other 
products and technologies support general-purpose languages, which can (for better or for worse) be used to 
include business logic in the pages. 

Two popular template engines are WebMacro (http://www.webmacro.org) and FreeMarker 
(http://freemarker.sourceforge.net). 

                                                 
1 The precursor to PHP was a tool called Personal Home Page. Today PHP is not an acronym for anything; it's simply the name of the 

product. 

http://www.microsoft.com
http://www.php.net
http://www.allaire.com
http://www.webmacro.org
http://freemarker.sourceforge.net


JavaSercer Pages 

  page 12 

1.2.6 The JSP Advantage 

JSP 1.1 combines the most important features found in the alternatives: 

• JSP supports both scripting and element-based dynamic content, and allows programmers to develop 
custom tag libraries to satisfy application-specific needs. 

• JSP pages are precompiled for efficient server processing. 

• JSP pages can be used in combination with servlets that handle the business logic, the model 
supported by Java servlet template engines. 

In addition, JSP has a couple of unique advantages that make it stand out from the crowd: 

• JSP is a specification, not a product. This means vendors can compete with different 
implementations, leading to better performance and quality. 

• JSP is an integral part of J2EE, a complete platform for Enterprise class applications. 

1.3 What You Need to Get Started 

Before we begin, let's quickly look at what you need to run the examples and develop your own applications. 
You really need only three things: 

• A PC or workstation with a connection to the Internet, so you can download the software you need 

• A Java 2-compatible Java Software Development Kit ( Java 2 SDK) 

• A JSP 1.1-enabled web server, such as Apache Tomcat from the Jakarta Project 

The Apache Tomcat server is the reference implementation for JSP 1.1. All the examples in this book were 
tested on Tomcat. In Chapter 4, I'll show you how to download, install, and configure the Tomcat server, as 
well as all the examples from this book. 

In addition, there are a wide variety of other tools and servers that support JSP, from both open source 
projects and commercial companies. Close to 30 different server products support JSP to date, and roughly 10 
authoring tools with varying degrees of JSP support are listed on Sun's JSP web site 
(http://java.sun.com/products/jsp/). Appendix E, also contains a collection of references to JSP-related 
products, web hosting services, and sites where you can learn more about JSP and related technologies. You 
may want to evaluate some of these products when you're ready to start developing your application, but all 
you really need to work with the examples in this book are a regular text editor, such as Notepad, vi, or 
Emacs, and of course the Tomcat server. 

So let's get going and take a closer look at what JSP has to offer. We need a solid ground to stand on, though, 
so in the next chapter we will start with the foundations upon which JSP is built: HTTP and Java servlets. 

http://java.sun.com/products/jsp/


JavaSercer Pages 

  page 13

Chapter 2. HTTP and Servlet Basics 

Let's start this chapter by defining the term web application . We've all seen regular client-side applications. 
But what exactly is a web application? Loosely, we could define it as an application running on a server that a 
user accesses through a thin, general-purpose client. Today, the most common client is a web browser on a PC 
or workstation, but soon all kinds of clients will be used, such as wireless PDAs, cellular phones, and other 
specialized devices. 

The lofty goal here is to access all the information and services you need from any type of device you happen 
to have in front of you. This means that the same simple client program must be able to talk to many different 
server applications, and the applications must be able to work with many different types of clients. To satisfy 
this need, the protocol of how a client and a server talk to each other must be defined in detail. That's exactly 
what the HyperText Transport Protocol (HTTP) is for. 

The communication model defined by HTTP forms the foundation for all web application design. You therefore 
need a basic understanding of HTTP to develop applications that fit within the constraints of the protocol, no 
matter which server-side technology you use. In this chapter, we look at the most important details of HTTP 
that you need to be aware of as a web application developer. 

One other item. This book is about using JSP as the server-side technology, so that's what we'll primarily focus 
on. As we saw in Chapter 1, JSP is based on the Java servlet technology. Both technologies share a lot of 
terminology and concepts, so knowing a bit about servlets will help you even when you develop pure JSP 
applications. And to really understand and use the full power of JSP, you need to know a fair bit about servlets. 
We will therefore take a quick look at servlet fundamentals in the last section of this chapter, including a 
programmer's introduction for those of you familiar with Java. 

 

2.1 The HTTP Request/Response Model 

HTTP and all extended protocols based on HTTP are based on a very simple but powerful communications 
model. Here's how it works: a client, typically a web browser, sends a request for a resource to a server, and 
the server sends back a response corresponding to the requested resource (or a response with an error 
message if it can't deliver the resource for some reason). A resource can be a simple HTML file, or it can be a 
program that stores the information sent in a database and generates a dynamic response. This 
request/response model is illustrated in Figure 2.1. 

Figure 2.1. HTTP request/response with two resources 

 



JavaSercer Pages 

  page 14

This simple model implies three things you need to be aware of: 

1. HTTP is a stateless protocol. This means that the server does not keep any information about the 
client after it sends its response, and therefore cannot recognize that multiple requests from the 
same client may be related. 

2. Web applications cannot easily provide the kind of immediate feedback typically found in standalone 
GUI applications such as word processors or traditional client-server applications. Every interaction 
between the client and the server requires a request/response exchange. Performing a 
request/response exchange when a user selects an item in a list box or fills out a form element is 
usually too taxing on the bandwidth available to most Internet users. 

3. There's nothing in the protocol that tells the server how a request is made; consequently, the server 
cannot distinguish between various methods of triggering the request on the client. For example, the 
HTTP protocol does not allow a web server to differentiate between an explicit request caused by 
clicking a link or submitting a form and an implicit request caused by resizing the browser window or 
using the browser's Back button. In addition, HTTP does not allow the server to invoke client-specific 
functions, such as going back in the browser history list or sending the response to a certain frame. 

Over the years, people have come up with various tricks to overcome the first problem: HTTP's stateless 
nature. We'll look at them in general terms later in this chapter. The other two problems are harder to deal 
with, but some amount of interactivity can be achieved by generating a response that includes client-side code 
(code executed by the browser), such as JavaScript or a Java applet. This approach is discussed briefly in 
Chapter 12. 

2.1.1 Requests in Detail 

Let's take a closer look at requests. A user sends a request to the server by clicking a link on a web page, 
submitting a form, or explicitly typing a web page address in the browser's address field. To send a request, 
the browser needs to know which server to talk to and which resource to ask for. This information is specified 
by the Uniform Resource Identifier (URI), also commonly referred to as a Uniform Resource Locator (URL). URI 
is the general term, while a URL is the specific type of URI used to completely identify a web resource such as 
an HTML page. Here is an example of a URL: 

http://www.gefionsoftware.com/index.html  

The first part of this URL specifies that the HTTP protocol is used to request the resource. This is followed by 
the name of the server, www.gefionsoftware.com. The web server waits for requests to come in on a special 
TCP/IP port. Port number 80 is the standard port for HTTP requests. If the web server uses another port, the 
URL must specify the port number in addition to the server name. For example: 

http://www.gefionsoftware.com:8080/index.html  

This URL is sent to a server that uses port 8080 instead of 80. The last part of the URL, /index.html, identifies 
the resource that the client is requesting. This is sometimes called the URI path. 

The client browser always makes a request by sending a request message. An HTTP request message consists 
of three things: a request line, request headers, and sometimes a request body. 

The request line starts with the request method name, followed by a resource identifier and the protocol 
version used by the browser: 

 GET /index.html HTTP/1.0 

The most commonly used request method is named GET. As the name implies, a GET request is used to 
retrieve a resource from the server. It's the default request method, so if you type a URL in the browser's 
address field or click on a link, the request will be sent to the server as a GET request. 

The request headers provide additional information the server may need to process the request. The message 
body is included only in some types of requests, like the POST request discussed later. 

http://www.gefionsoftware.com/index.html
http://www.gefionsoftware.com:8080/index.html


JavaSercer Pages 

  page 15 

Here's an example of a valid HTTP request message: 

 GET /index.html HTTP/1.0 
 Host: www.gefionsoftware.com 
 User-Agent : Mozilla/4.5 [en] (WinNT; I) 
 Accept: image/gif, image/jpeg, image/pjpeg, image/png, */* 
 Accept-language : en 
 Accept-charset : iso-8859-1,*,utf-8 

The request line specifies the GET method and asks for the resource /index.html to be returned using the 
HTTP/1.0 protocol version. The various headers provide additional information the server can use to fulfill the 
request. 

The Host header tells the server the hostname used in the URL. A server may have multiple names, so this 
information is used to distinguish between multiple virtual web servers sharing the same web server process. 

The User-Agent header contains information about the type of browser making the request. The server can 
use this to send different types of responses to different types of browsers. For instance, if the server knows 
whether the request is sent by Internet Explorer or Netscape Navigator, it can send a response that takes 
advantage of each browser's unique features. It can also tell if a browser other than an HTML browser is used, 
such as a Wireless Markup Language (WML) browser on a cell phone or a PDA device, and generate an 
appropriate response. 

The Accept headers provide information about the languages and file formats the browser accepts. These 
headers can be used to determine the capabilities of the browser and the user's preferences, and adjust the 
response to use a supported image format and the preferred language. These are just a few of the headers 
that can be included in a request message. The HTTP specification describes all of them. 

The resource identifier (URI) doesn't necessarily correspond to a static file on the server. It can identify an 
executable program, a record in a database, or pretty much anything the web server knows about. That's why 
the generic term resource is used. In fact, there's no way to tell if the /index.html URI corresponds to a file or 
to something else; it's just a name that means something to the server. The web server is configured to map 
these unique names to the real resources. 

2.1.2 Responses in Detail 

When the web server receives the request, it looks at the URI and decides, based on configuration information, 
how to handle it. It may handle it internally by simply reading an HTML file from the filesystem, or it may 
forward the request to some component that is responsible for the resource corresponding to the URI. This 
might be a program that uses a database to dynamically generate an appropriate response. To the client, it 
makes no difference how the request is handled; all it cares about is getting a response. 

The response message looks similar to the request message. It consists of three things: a status line, response 
headers, and possibly a response body. Here's an example: 

 HTTP/1.0 200 OK 
 Last-Modified: Mon, 20 Dec 1999 23:26:42 GMT 
 Date: Tue, 11 Jan 2000 20:52:40 GMT 
 Status: 200 
 Content-Type: text/html 
 Servlet-Engine: Tomcat Web Server/3.2 
 Content-Length: 59 
  
 <html> 
   <body> 
     <h1>Hello World!</h1> 
   </body> 
 </html> 

The status line starts with the name of the protocol, followed by a result code and a short description of the 
result code. Here the result code is 200, meaning the request was executed successfully. The response 
message has headers just like the request message. In this example, the Last-Modified header gives the 
date and time that the resource was last modified. The client can use this information as a timestamp in a local 
cache; the next time the user asks for this resource, the client can ask the server to send it only if it's been 
updated since the last time it was requested. The Content-Type header tells the client what type of response 
data the body contains, and the Content-Length header shows how large it is. You can likely figure out what 
the other headers are for. A blank line separates the headers from the message body. Here, the body is a 
simple HTML page: 



JavaSercer Pages 

  page 16 

<html> 
   <body> 
     <h1>Hello World!</h1> 
   </body> 
 </html> 

Of course, the body can contain a more complex HTML page or any other type of content. For example, the 
request may return a page with <img> elements. When the browser reads the first response and finds the 
<img> elements, it sends a new request for the resource identified by each element, often in parallel. The 
server returns one response for each request, with a Content-Type header telling what type of image it is (for 
instance, image/gif) and the body containing the bytes that make up the image. All responses are then 
combined by the browser to render the complete page. This interaction is illustrated in Figure 2.2. 

Figure 2.2. Interaction between a web client and a server 

 

2.1.3 Request Parameters 

Besides the URI and headers, a request message can contain additional information in the form of parameters. 
If the URI identifies a server-side program for displaying weather information, for example, request 
parameters can provide information about which city the user wants to see a forecast for. In an e-commerce 
application, the URI may identify a program that processes orders, with the user's customer number and the 
list of items to be purchased transferred as parameters. 

Parameters can be sent in one of two ways: tacked on to the URI in the form of a query string , or sent as part 
of the request message body. Here is an example of a URI with a query string: 

http://www.weather.com/forecast?city=Hermosa+Beach&state=CA  

The query string starts with a question mark (?) and consists of name/value pairs separated by ampersands 
(&). These names and values must be URL encoded , meaning that special characters such as whitespace, 
question marks, ampersands, and all other nonalphanumeric characters are encoded so that they don't get 
confused with characters used to separate name/value pairs. In this example, the space between Hermosa and 
Beach is encoded as a plus sign. Other special characters are encoded as their corresponding hexadecimal 
ASCII value: for instance, a question mark is encoded as %3F. When parameters are sent as part of the request 
body, they follow the same syntax: URL-encoded name/value pairs separated by ampersands. 

http://www.weather.com/forecast?city=Hermosa+Beach&state=CA


JavaSercer Pages 

  page 17 

2.1.4 Request Methods 

As described earlier, GET is the most commonly used request method, intended to retrieve a resource without 
causing anything else to happen on the server. The POST method is almost as common as GET. A POST request 
is intended to request some kind of processing on the server, for instance, updating a database or processing a 
purchase order. 

The way parameters are transferred is one of the most obvious differences between the GET and POST request 
methods. A GET request always uses a query string to send parameter values, while a POST request always 
sends them as part of the body (additionally, it can send some parameters as a query string, just to make life 
interesting). If you code a link to a URI in an HTML page using an <a> element, clicking on the link results in a 
GET request being sent to the server. Since the GET request uses a query string to pass parameters, you can 
include hardcoded parameter values in the link URI: 

 <a href="/forecast?city=Hermosa+Beach&state=CA"> 
   Hermosa Beach weather forecast 
 </a> 

When you use a form to send user input to the server, you can specify whether to use the GET or POST method 
with the method attribute, as shown below: 

 <form action="/forecast" method="POST"> 
   City: <input name="city" type="text"> 
   State: <input name="state" type="text"> 
   <p> 
   <input type="SUBMIT"> 
 </form> 

If the user enters "Hermosa Beach" and "CA" in the form fields and clicks on the Submit button, the browser 
sends a request message like this to the server: 

 POST /index.html HTTP/1.0 
 Host: www.gefionsoftware.com 
 User-Agent : Mozilla/4.5 [en] (WinNT; I) 
 Accept: image/gif, image/jpeg, image/pjpeg, image/png, */* 
 Accept-language : en 
 Accept-charset : iso-8859-1,*,utf-8 
  
 city=Hermosa+Beach&state=CA 

Due to the differences in how parameters are sent by GET and POST requests, as well as the differences in their 
intended purposes, browsers handle the requests in different ways. A GET request, parameters and all, can 
easily be saved as a bookmark, hardcoded as a link, and the response cached by the browser. Also, the 
browser knows that no damage is done if it sends a GET request again automatically, for instance if the user 
clicks the Reload or Back button. 

A POST request, on the other hand, can not be bookmarked as easily; the browser would have to save both the 
URI and the request message body. Since a POST request is intended to perform some possibly irreversible 
action on the server, the browser must also ask the user if it's okay to send the request again. You have 
probably seen this type of confirmation dialog, shown in Figure 2.3, numerous times with your browser. 

Figure 2.3. Repost confirmation dialog 

 



JavaSercer Pages 

  page 18

Besides GET and POST, HTTP specifies the following methods: 

OPTIONS  

The OPTIONS method is used to find out what options (e.g., methods) a server or resource offers. 

HEAD  

The HEAD method is used to get a response with all headers that would be generated by a GET request, 
but without the body. It can be used to make sure a link is valid or to see when a resource was last 
modified. 

PUT  

The PUT method is used to store the message body content on the server as a resource identified by 
the URI. 

DELETE  

The DELETE method is used to delete the resource identified by the URI. 

TRACE  

The TRACE method is used for testing the communication between the client and the server. The server 
sends back the request message, exactly as it was received, as the body of the response. 

Note that these methods are not normally used in a web application. 

2.1.5 State Management 

As I touched on earlier, HTTP is a stateless protocol; when the server sends back the response corresponding 
to the request, it forgets all about the transaction. If a user sends a new request, the server has no way of 
knowing if it is related to the previous request. 

This is fine for static content such as regular HTML files, but it's a problem for web applications where a 
number of requests may be needed to complete a transaction. Consider a shopping cart application: the 
server-side application needs to allow the user to select items in multiple steps, check the inventory when the 
user is ready to make the purchase, and finally process the order. In this scenario, the application needs to 
keep track of information provided by multiple requests from the same browser. In other words, it needs to 
remember the client's transaction state. 

There are two ways to solve this problem, and both have been used extensively for web applications with a 
variety of server-side technologies. The server can either return the complete state with each response and let 
the browser send it back as part of the next request; or, it can save the state somewhere on the server and 
send back only an identifier that the browser returns with the next request. The identifier is then used to locate 
the state information saved on the server. 

In both cases, the information can be sent to the browser in one of three ways: 

• As a cookie 

• Embedded as hidden fields in an HTML form 

• Encoded in the URIs in the response body, typically as links to other application pages (this is known 
as URL rewriting) 



JavaSercer Pages 

  page 19 

Figure 2.4 outlines these methods. 

Figure 2.4. Client state information transportation methods 

 

 

A cookie is a name/value pair the server passes to the browser in a response header. The browser stores the 
cookie for the time specified by the cookie's expiration time attribute. When the browser sends a request to a 
server, it checks its "cookie jar" and includes all cookies it has received from the same server (that have not 
yet expired) in the request headers. Cookies used for state management don't have an expiration time, and 
expire as soon as the user closes the browser. Using cookies is the easiest way to deal with the state issue, but 
cookies are not supported by all browsers. In addition, a user may disable cookies in a browser that does 
support them because of privacy concerns. Hence, we cannot rely on cookies alone. 



JavaSercer Pages 

  page 20

If hidden fields in an HTML form are used to send the state information to the browser, the browser returns the 
information to the server as regular HTTP parameters when the form is submitted. When the state information 
is encoded in URIs, it is returned to the server as part of the request URI, for instance when the user clicks on 
an encoded link. 

Sending all state information back and forth between the browser and server is not efficient, so most modern 
server-side technologies employ the idea of keeping the information on the server and passing only an 
identifier between the browser and the server. This is called session tracking : all requests from a browser that 
contain the same identifier (session ID) belong to the same session, and the server keeps track of all 
information associated with the session. As you will see in the next section, the servlet specification hides the 
mechanisms used to implement session tracking to a large extent, making life easier for the application 
developer. You will learn how the JSP specification makes it even easier to use session tracking in Chapter 8. 

A session is valid until it's explicitly terminated (for instance, when the user logs out) or until it's automatically 
timed out by the server after a period of user inactivity (typically 30 minutes). Note that there's no way for the 
server to tell if the user closes the browser, since there's no permanent connection between the browser and 
the server, and no message is sent to the server when the browser disappears. Still, closing the browser 
usually means losing the session ID; the cookie expires or the encoded URIs are no longer available. So when 
the user opens a browser again, the server is unable to associate the new request with the previous session, 
and therefore creates a new session. However, all the session data associated with the previous session 
remains on the server until the session times out. 

 

2.2 Servlets 

The JSP specification is based on the Java servlet specification. In fact, JSP pages are often combined with 
servlets in the same application. So to use JSP effectively, it's important to understand the similarities and the 
concepts that apply to both technologies. In this section, we first take a brief look at what a servlet is, and 
then discuss the concepts shared by servlets and JSP pages. In Chapter 3, we'll take a closer look at how JSP 
pages are actually turned into servlets automatically. 

If you're already familiar with servlets, this is old news. You can safely skip the rest of this chapter. If you're 
not familiar with programming, don't worry about the details. The important thing is that you get familiar with 
the concepts described in the remainder of this chapter. 

2.2.1 Advantages Over Other Server-Side Technologies 

In simple terms, a servlet is a piece of code that adds new functionality to a server (typically a web server), 
just like CGI and proprietary server extensions such as NSAPI and ISAPI. But compared to other technologies, 
servlets have a number of advantages: 

Platform and vendor independence  

Servlets are supported by all the major web servers and application servers, so a servlet-based solution 
doesn't tie you to one specific vendor. And because servlets are written in the Java programming 
language, they can be used on any operating system with a Java runtime environment. 

Integration  

Servlets are developed in Java and can therefore take advantage of all the other Java technologies, 
such as JDBC for database access, JNDI for directory access, RMI for remote resource access, etc. 
Starting with Version 2.2, the servlet specification is part of the Java 2 Enterprise Edition ( J2EE), 
making servlets an important ingredient of any large-scale enterprise application, with formalized 
relationships to other server-side technologies such as Enterprise JavaBeans (EJB). 

Efficiency  

Servlets execute in a process that runs until the servlet-based application is shut down. Each servlet 
request is executed as a separate thread in this permanent process. This is far more efficient than the 
CGI model, where a new process is created for each request. First of all (and most obviously), a servlet 
doesn't have the overhead of creating the process and loading the CGI script and possibly its 
interpreter. But another timesaver is that between requests, servlets can also access resources that 
remain loaded in the process memory, such as database connections and client state. 



JavaSercer Pages 

  page 21

Scalability  

By virtue of being written in Java and the broad support for servlets, a servlet-based application is 
extremely scalable. You can develop and test the application on a Windows 98 PC using the standalone 
servlet reference implementation, and deploy it on anything from a more powerful server running Linux 
and Apache to a cluster of high-end servers with an application server that supports loadbalancing and 
failover. 

Robustness and security  

Java is a strongly typed programming language. This means that you catch a lot of mistakes in the 
compilation phase that you would only catch during runtime if you used a scripting language like Perl. 
Java's error handling is also much more robust than C/C++, where an error like division by zero 
typically brings down the whole server. 

In addition, servlets use specialized interfaces to server resources that are not vulnerable to the 
traditional security attacks. For instance, a CGI Perl script typically uses shell command strings 
composed of data received from the client to ask the server to do things like sending email. People with 
nothing better to do love to find ways to send data that will cause the server to crash, remove all files 
on the hard disk, or plant a virus or a backdoor when the server executes the command. A CGI script 
programmer must be very careful to screen all input to avoid these threats, but these problems are 
almost non-existent with a servlet since it doesn't communicate with the server in the same insecure 
way. 

As you will see in Chapter 3, JSP inherits all these advantages by being based on the servlet specification. 

2.2.2 Servlet Life Cycle 

If you're already a Java programmer, there are some fundamental points you should know about servlets. A 
servlet is a Java class that uses the Servlet Application Programming Interface (API). The Servlet API consists 
of a number of classes and interfaces that define the methods that make it possible to process HTTP requests 
in a web server-independent manner. 

When a web server receives a request that should be handled by a servlet, it first checks if an instance of the 
specific servlet class exists. If it doesn't, it creates one. This is referred to as loading the servlet. It then asks 
the servlet to process the request. Once a servlet has been loaded, the same servlet instance (object) is called 
to process succeeding requests. Eventually the web server needs to shut down the servlet, typically when the 
web server itself is shut down. It first informs the servlet about the shutdown; this gives the objects a chance 
to do necessary housekeeping, such as closing a database connection, before shutting down. 

These three interactions between the web server and the servlet are defined by methods in the 
javax.servlet.Servlet interface, and are referred to as the servlet's life-cycle methods. Here are their 
formal definitions: 

public void init(ServletConfig config)  

The init( ) method is called when the servlet is loaded so it can initialize its state: for instance, set 
up references to external resources such as a database and read configuration information. 

public void service(ServletRequest req, ServletResponse res)  

The service( ) method is called to service a request. It's called zero or more times during the 
servlet's lifetime, and passes objects representing the request and response messages to the servlet. 

public void destroy( )  

The destroy( ) method is called just before the servlet is taken out of service. It allows the servlet to 
release references to any external resources it has acquired during its lifetime. 



JavaSercer Pages 

  page 22 

Figure 2.5 illustrates how the web server uses the life-cycle methods. 

Figure 2.5. Servlet life cycle 

 

Most interesting to us is the service( ) method. It gives the servlet access to two objects, which are passed 
as arguments to the method: a ServletRequest object and a ServletResponse object (when HTTP is used, 
specialized objects of type HttpServletRequest and HttpServletResponse are used instead). Through 
methods implemented by the ServletRequest object, the servlet can access all information known about the 
request message: parameter values, header values, authentication information, etc. The servlet uses methods 
of the ServletResponse object to generate the response message. It can set headers, the status code, and 
the actual response body, which is typically a dynamically generated HTML page. 

In Chapter 3, I discuss how a JSP page is turned into a servlet the first time it's requested, and then loaded, 
called, and shut down in exactly the same way as a regular servlet. 

2.2.3 Servlet Containers 

A servlet container is the connection between a web server and the servlets. It provides the runtime 
environment for all the servlets on the server as defined by the servlet specification, and is responsible for 
loading and invoking those servlets when the time is right. 

There are many different types of servlet containers. Some containers are called add-ons, or plug-ins, and are 
used to add servlet support to web servers without native servlet support (such as Apache and IIS). They can 
run in the same operating-system process as the web server or in a separate process. Other containers are 
standalone servers. A standalone server includes web server functionality to provide full support for HTTP in 
addition to the servlet runtime environment. Containers can also be embedded in other servers, such as a 
climate-control system, to offer a web-based interface to the system. A container bundled as part of an 
application server can distribute the execution of servlets over multiple hosts. The server can balance the load 
evenly over all containers, and some servers can even provide failover capabilities in case a host crashes. 

No matter what type it is, the servlet container is responsible for mapping incoming requests to a servlet 
registered to handle the resource identified by the URI and passing the request message to that servlet. After 
the request is processed, it is the container's responsibility to convert the response object created by the 
servlet into a response message and send it back to the client. This is illustrated in Figure 2.6. 



JavaSercer Pages 

  page 23

Figure 2.6. Request dispatching 

 

2.2.4 Servlet Contexts 

A servlet container implementing the Servlet 2.1 API (or later) can group servlets and other resources such as 
JSP pages, HTML pages, and image files into separate servlet contexts. Each servlet context represents a web 
application, and is associated with a unique URI path prefix called the context path, as shown in Figure 2.6. For 
instance, your human-resources application can be associated with the context path /hr and your sales-
tracking system with the context path /sales. This allows one servlet container to distinguish between 
applications and dispatch requests like /sales/report?month=Jan to the sales tracking application and 
/hr/emplist to the human-resources application. 

The remaining URI path is then used within the selected context to decide how to process the request by 
comparing it to path mapping rules. Such rules can be set up to send all requests starting with /report to one 
servlet and with /forecast to another. Another type of rule can be set up to let one servlet handle all requests 
with paths ending with a specific file extension, such as .jsp. Figure 2.6 shows how the different parts of the 
URI paths are used to direct the request processing to the right resource through the container and context. 

Each context is self-contained and doesn't know anything about other applications running in the same 
container. All references between the servlets and JSP pages in the application are relative to the context path, 
and therefore referred to as context-relative paths. By using context-relative paths within the application, a 
web application can be deployed using any context path. The servlet specification defines a standard packaging 
format for web applications that all compliant containers know how to install and associate with a context. This 
is described in more detail in Section 2.3. 

A web application can be more than just JSP pages, HTML pages, and images. Therefore, a context can hold on 
to objects shared by all components of the application,2 such as database connections and other shared 
resources needed by multiple servlets and JSP pages. This is represented by the application scope in JSP, and 
we'll take a closer look at how to use it in Chapter 8. Each context also has its own set of configuration data, 
discussed in more detail in the last section of this chapter. 

2.2.5 Sessions 

Earlier, I mentioned that the Servlet API hides the mechanisms used to implement session tracking to a large 
extent. A servlet-based application doesn't need to know if the session ID is passed between the server and 
the browser as a cookie or encoded in the URIs. Instead, the servlet container looks at the information it 
receives with each request and decides which mechanism to use. If it receives a session ID cookie, it uses 
cookie-based tracking; if it receives an encoded URI, it uses URL rewriting. No matter which mechanism is 
used, the container gives the servlet access to the state information associated with the browser through the 
request object it passes to the servlet. 

                                                 
2 There are special considerations for applications distributed over multiple servers. Chapter 13, describes this in more detail. 



JavaSercer Pages 

  page 24

The state information is represented by a session object, which is an instance of a Servlet API class named 
javax.servlet.http.HttpSession. The session object acts as a container for other objects that make up the 
session state, with methods for adding, getting, and removing these objects. For instance, in an e-commerce 
application, the user picks items to buy from an online catalog. When the servlet receives a request to put an 
item in the shopping cart, it gets the session object from the request and places a Java object representing the 
item in the session by calling its setAttribute( ) method. Later, when the user checks out, another servlet 
picks up all items from the session using other methods, and processes the order. 

Since a JSP page is turned into a servlet, it has access to the session in the same way, but JSP makes it even 
easier to work with session data through the concept of a session scope. We look at all aspects of sessions 
from a JSP perspective in Chapter 8. 

 

2.3 Packaging Java Web Applications 

A complete web application may consist of several different resources: JSP pages, servlets, applets, static 
HTML pages, custom tag libraries and other Java class files. Until very recently, different servers required an 
application with all these components to be installed and configured in different ways, making it very hard for 
web application developers to provide easy-to-use installation instructions and tools. 

Version 2.2 of the servlet specification defines a portable way to package all these resources together, along 
with a deployment descriptor. A deployment descriptor is a file that outlines security requirements and 
describes how all the resources fit together. All files for the web application are placed in an archive file, called 
a Web Archive (WAR) file. A WAR file has a .war file extension and can be created with the Java jar command 
or a ZIP utility program such as WinZip (the same compression scheme is used). 

All Servlet 2.2-compliant servers can install a WAR file and associate the application with a servlet context. 
During installation, a server is free to unpack the contents of the file and store it for runtime use in any way it 
sees fit, but the application developer needs to deal with only one delivery format. This standardized 
deployment format also enables server vendors to develop installation and configuration tools that make it 
easy to install a new web application. 

The internal structure for a WAR file is defined by the JSP specification. During development, however, it's 
often more convenient to work with the web application files in an open filesystem instead of packaging and 
repackaging them into a WAR file every time you make a change. As a result, most containers support the 
WAR structure in an open filesystem as well. 

The structure required for both is outlined here: 

 /index.html 
 /company/contact.html 
 /products/list.jsp 
 /images/banner.gif 
 /WEB-INF/web.xml 
 /WEB-INF/lib/bean.jar 
 /WEB-INF/lib/actions.jar 
 /WEB-INF/classes/com/mycorp/servlets/PurchaseServlet.class 
 /WEB-INF/classes/com/mycorp/util/MyUtils.class 
 /WEB-INF/... 

The top-level in this structure is the document root for all web application files, such as HTML pages, JSP 
pages, and image files - in other words, all the files requested directly by the browser. 

You're probably wondering about the WEB-INF directory. This directory contains the application deployment 
descriptor (web.xml ) as well as subdirectories for other types of resources, such as Java class files and 
configuration files. A browser does not have access to the files under this directory, so it's safe to place files 
that you don't want public here. 

The deployment descriptor file, web.xml, is a simple XML file. We will get much more familiar with the contents 
of this file as we proceed through the book. (Appendix D, also contains a complete reference of this file.) In 
addition, two WEB-INF subdirectories have special meaning if you're a programmer: lib and classes. The lib 
directory typically contains Java Archive ( JAR) files (compressed archives of Java class files). As an 
alternative, class files can be stored in the classes directory without being compressed, which can be 
convenient during development. However, class files must be stored in subdirectories of the classes directory 
that mirror their package structure, and must follow standard Java conventions for how class files are 
organized in a directory tree. 



JavaSercer Pages 

  page 25 

Chapter 3. JSP Overview 

JSP is the latest Java technology for web application development, and is based on the servlet technology 
introduced in the previous chapter. While servlets are great in many ways, they are generally reserved for 
programmers. In this chapter, we look at the problems that JSP technology solves, the anatomy of a JSP 
page, the relationship between servlets and JSP, and how a JSP page is processed by the server. 

In any web application, a program on the server processes requests and generates responses. In a simple 
one-page application, such as an online bulletin board, you don't need to be overly concerned about the 
design of this piece of code; all logic can be lumped together in a single program. But when the application 
grows into something bigger (spanning multiple pages, with more options and support for more types of 
clients) it's a different story. The way your site is designed is critical to how well it can be adapted to new 
requirements and continue to evolve. The good news is that JSP technology can be used in all kinds of web 
applications, from the simplest to the most complex. Therefore, this chapter also introduces the primary 
concepts in the design model recommended for web applications, and the different roles played by JSP and 
other Java technologies in this model. 

 

3.1 The Problem with Servlets 

In many Java servlet-based applications, processing the request and generating the response are both 
handled by a single servlet class. A example servlet looks like this: 

 public class OrderServlet extends HttpServlet { 
     public void doGet(HttpServletRequest request,  
         HttpServletResponse response) 
         throws ServletException, IOException  { 
 
         response.setContentType("text/html"); 
         PrintWriter out = response.getWriter( ); 
         
         if (isOrderInfoValid(request)) { 
             saveOrderInfo(request); 
             out.println("<html>"); 
             out.println("  <head>"); 
             out.println("    <title>Order Confirmation</title>"); 
             out.println("  </head>"); 
             out.println("  <body>"); 
             out.println("    <h1>Order Confirmation</h1>"); 
             renderOrderInfo(request); 
             out.println("  </body>"); 
             out.println("</html>"); 
        } 
  ... 

If you're not a programmer, don't worry about all the details in this code. The point is that the servlet 
contains request processing and business logic (implemented by methods such as isOrderInfoValid( ) and 
saveOrderInfo( )) and also generates the response HTML code, embedded directly in the servlet code using 
println( ) calls. A more structured servlet application isolates different pieces of the processing in various 
reusable utility classes, and may also use a separate class library for generating the actual HTML elements in 
the response. But even so, the pure servlet-based approach still has a few problems: 

• Detailed Java programming knowledge is needed to develop and maintain all aspects of the 
application, since the processing code and the HTML elements are lumped together. 

• Changing the look and feel of the application, or adding support for a new type of client (such as a 
WML client), requires the servlet code to be updated and recompiled. 

• It's hard to take advantage of web page development tools when designing the application interface. 
If such tools are used to develop the web page layout, the generated HTML must then be manually 
embedded into the servlet code, a process that is time-consuming, error-prone, and extremely 
boring. 

Adding JSP to the puzzle lets you solve these problems by separating the request processing and business 
logic code from the presentation, as illustrated in Figure 3.1. Instead of embedding HTML in the code, you 
place all static HTML in JSP pages, just as in a regular web page, and add a few JSP elements to generate the 
dynamic parts of the page. The request processing can remain the domain of servlet programmers, and the 
business logic can be handled by JavaBeans and Enterprise JavaBeans (EJB) components. 



JavaSercer Pages 

  page 26 

Figure 3.1. Separation of request processing, business logic, and presentation 

 

As I mentioned before, separating the request processing and business logic from presentation makes it 
possible to divide the development tasks among people with different skills. Java programmers implement the 
request processing and business logic pieces, web page authors implement the user interface, and both 
groups can use best-of-breed development tools for the task at hand. The result is a much more productive 
development process. It also makes it possible to change different aspects of the application independently, 
such as changing the business rules without touching the user interface. 

This model has clear benefits even for a web page author without programming skills who is working alone. A 
page author can develop web applications with many dynamic features, using generic Java components 
provided by open source projects or commercial companies. 

 

3.2 The Anatomy of a JSP Page 

A JSP page is simply a regular web page with JSP elements for generating the parts of the page that differ for 
each request, as shown in Figure 3.2. 

Everything in the page that is not a JSP element is called template text . Template text can really be any text: 
HTML, WML, XML, or even plain text. Since HTML is by far the most common web page language in use 
today, most of the descriptions and examples in this book are HTML-based, but keep in mind that JSP has no 
dependency on HTML; it can be used with any markup language. Template text is always passed straight 
through to the browser. 



JavaSercer Pages 

  page 27

Figure 3.2. Template text and JSP elements 

 

When a JSP page request is processed, the template text and the dynamic content generated by the JSP 
elements are merged, and the result is sent as the response to the browser. 

3.2.1 JSP Elements 

There are three types of elements with JavaServer Pages: directive, action, and scripting elements. 

The directive elements, shown in Table 3.1, are used to specify information about the page itself that remains 
the same between page requests, for example, the scripting language used in the page, whether session 
tracking is required, and the name of a page that should be used to report errors, if any. 

Table 3.1, Directive Elements  

Element Description 

<%@ page ... %> Defines page-dependent attributes, such as scripting language, error 
page, and buffering requirements 

<%@ include ... %> Includes a file during the translation phase 

<%@ taglib ... %> Declares a tag library, containing custom actions, used in the page 

Action elements typically perform some action based on information that is required at the exact time the JSP 
page is requested by a client. An action element can, for instance, access parameters sent with the request to 
do a database lookup. It can also dynamically generate HTML, such as a table filled with information retrieved 
from an external system. 

The JSP specification defines a few standard action elements, listed in Table 3.2, and includes a framework for 
developing custom action elements. A custom action element can be developed by a programmer to extend 
the JSP language. The examples in this book use custom actions for database access, internationalization, 
access control, and more. 

 

 

 

 



JavaSercer Pages 

  page 28

Table 3.2, Standard Action Elements  

Element Description 

<jsp:useBean> Makes a JavaBeans component available in a page 

<jsp:getProperty> Gets a property value from a JavaBeans component and adds it to the 
response 

<jsp:setProperty> Sets a JavaBeans property value 

<jsp:include> Includes the response from a servlet or JSP page during the request 
processing phase 

<jsp:forward> Forwards the processing of a request to a servlet or JSP page 

<jsp:param> Adds a parameter value to a request handed off to another servlet or JSP 
page using <jsp:include> or <jsp:forward> 

<jsp:plugin> 
Generates HTML that contains the appropriate client browser-dependent 
elements (OBJECT or EMBED) needed to execute an Applet with the Java 

Plugin software 

Scripting elements, shown in Table 3.3, allow you to add small pieces of code to a JSP page, such as an if 
statement to generate different HTML depending on a certain condition. Like actions, they are also executed 
when the page is requested. You should use scripting elements with extreme care: if you embed too much 
code in your JSP pages, you will end up with the same kind of maintenance problems as with servlets 
embedding HTML. 

Table 3.3, Scripting Elements  

Element Description 

<% ... %> Scriptlet, used to embed scripting code. 

<%= ... %> Expression, used to embed Java expressions when the result shall be added 
to the response. Also used as runtime action attribute values. 

<%! ... %> Declaration, used to declare instance variables and methods in the JSP page 
implementation class. 

JSP elements, such as action and scripting elements, are often used to work with JavaBeans . Put succinctly, 
a JavaBeans component is a Java class that complies with certain coding conventions. JavaBeans are typically 
used as containers for information that describes application entities, such as a customer or an order. We'll 
cover each of these element types, as well as JavaBeans, in the following chapters. 

 

3.3 JSP Processing 

A JSP page cannot be sent as-is to the browser; all JSP elements must first be processed by the server. This 
is done by turning the JSP page into a servlet, and then executing the servlet. 

Just as a web server needs a servlet container to provide an interface to servlets, the server needs a JSP 
container to process JSP pages. The JSP container is often implemented as a servlet configured to handle all 
requests for JSP pages. In fact, these two containers - a servlet container and a JSP container - are often 
combined into one package under the name web container (as it is referred to in the J2EE documentation). 

A JSP container is responsible for converting the JSP page into a servlet (known as the JSP page 
implementation class ) and compiling the servlet. These two steps form the translation phase . The JSP 
container automatically initiates the translation phase for a page when the first request for the page is 
received. The translation phase takes a bit of time, of course, so a user notices a slight delay the first time a 
JSP page is requested. The translation phase can also be initiated explicitly; this is referred to as 
precompilation of a JSP page. Precompiling a JSP page avoids hitting the user with this delay, and is 
discussed in more detail in Chapter 12. 



JavaSercer Pages 

  page 29

The JSP container is also responsible for invoking the JSP page implementation class to process each request 
and generate the response. This is called the request processing phase. The two phases are illustrated in 
Figure 3.3. 

Figure 3.3. JSP page translation and processing phases 

 

As long as the JSP page remains unchanged, any subsequent processing goes straight to the request 
processing phase (i.e., it simply executes the class file). When the JSP page is modified, it goes through the 
translation phase again before entering the request processing phase. 

So in a way, a JSP page is really just another way to write a servlet without having to be a Java programming 
wiz. And, except for the translation phase, a JSP page is handled exactly like a regular servlet: it's loaded 
once and called repeatedly, until the server is shut down. By virtue of being an automatically generated 
servlet, a JSP page inherits all of the advantages of servlets described in Chapter 2 : platform and vendor 
independence, integration, efficiency, scalability, robustness, and security. 

Let's look at a simple example of a servlet. In the tradition of programming books for as far back as anyone 
cares to remember, we start with an application that just writes Hello World, but this time we will add a twist: 
our application will also show the current time on the server. Example 3.1 shows a hand-coded servlet with 
this functionality. 

Example 3.1. Hello World Servlet  

 public class HelloWorldServlet implements Servlet { 
     public void service(ServletRequest request,  
         ServletResponse response) 
         throws ServletException, IOException  { 
 
         response.setContentType("text/html"); 
         PrintWriter out = response.getWriter( ); 
         
         out.println("<html>"); 
         out.println("  <head>"); 
         out.println("    <title>Hello World</title>"); 
         out.println("  </head>"); 
         out.println("  <body>"); 
         out.println("    <h1>Hello World</h1>"); 
         out.println("    It's " + (new java.util.Date( ).toString( )) + 
             " and all is well."); 
         out.println("  </body>"); 
         out.println("</html>"); 
     } 
 } 

As before, don't worry about the details if you're not a Java programmer. What's important here is that the 
service( ) method is the method called by the servlet container every time the servlet is requested, as 
described in Chapter 2. The method generates all HTML code, using the println( ) method to send the 
strings to the browser. Note that there's no way you could use a web development tool to develop this type of 
embedded HTML, adjust the layout with immediate feedback, verify that links are intact, etc. This example is 
so simple that it doesn't really matter, but imagine a complex page with tables, aligned images, forms, some 
JavaScript code, etc., and you see the problem. 



JavaSercer Pages 

  page 30

Also note the following lines, which add the current date and time to the response (shown in Figure 3.4): 

 out.println("    It's " + (new java.util.Date( ).toString( )) 
               + " and all is well."); 

Figure 3.4. The output from the Hello World servlet 

 

Example 3.2 shows a JSP page that produces the same result as the Hello World servlet. 

Example 3.2. Hello World JSP Page  

 <html> 
   <head> 
     <title>Hello World</title> 
   </head> 
   <body> 
     <h1>Hello World</h1> 
     It's <%= new java.util.Date( ).toString( ) %> and all is well. 
   </body> 
 </html> 

This is as simple as it gets. A JSP page is a regular HTML page, except that it may also contain JSP elements 
like the highlighted element in this example. This element inserts the same Java code in the page as was 
used in the servlet to add the current date and time. If you compare this JSP page to the corresponding 
servlet, you see that the JSP page can be developed using any web page editor that allows you to insert 
extra, non-HTML elements. And the same tool can later be used to easily modify the layout. This is a great 
advantage over a servlet with embedded HTML. 

The JSP page is automatically turned into a servlet the first time it's requested, as described earlier. The 
generated servlet looks something like in Example 3.3. 

Example 3.3. Servlet Generated from JSP Page  

 import javax.servlet.*; 
 import javax.servlet.http.*; 
 import javax.servlet.jsp.*; 
 import javax.servlet.jsp.tagext.*; 
 import java.io.*; 
 import org.apache.jasper.*; 
 import org.apache.jasper.runtime.*; 
  
 public class _0005chello_0002ejsphello_jsp_1 extends HttpJspBase { 
  
     public void _ jspService(HttpServletRequest request,  
         HttpServletResponse  response) 
         throws IOException, ServletException { 
 
         JspFactory _ jspxFactory = null; 
         PageContext pageContext = null; 
         HttpSession session = null; 
         ServletContext application = null; 
         ServletConfig config = null; 
         JspWriter out = null; 
         Object page = this; 
         String  _value = null; 
         try { 
 
             _ jspxFactory = JspFactory.getDefaultFactory( ); 
             response.setContentType("text/html"); 
             pageContext = _ jspxFactory.getPageContext(this, request, 
                 response,"", true, 8192, true); 
 



JavaSercer Pages 

  page 31

            application = pageContext.getServletContext( ); 
             config = pageContext.getServletConfig( ); 
             session = pageContext.getSession( ); 
             out = pageContext.getOut( ); 
 
             out.write("<HTML>\r\n  <HEAD>\r\n    <TITLE>" + 
                 "Hello World</TITLE>\r\n  </HEAD>\r\n" + 
                 "  <BODY>\r\n    <H1>Hello World</H1>\r\n" + 
                 "    It's "); 
             out.print( new java.util.Date( ).toString( ) ); 
             out.write(" and all is well.\r\n  </BODY>\r\n" + 
                 "</HTML>\r\n"); 
  
         } catch (Exception ex) { 
             if (out.getBufferSize( ) != 0) 
                 out.clear( ); 
             pageContext.handlePageException(ex); 
         } finally { 
             out.flush( ); 
             _ jspxFactory.releasePageContext(pageContext); 
         } 
     } 
 } 

The generated servlet in Example 3.3 looks a lot more complex than the hand-coded version in Example 3.1. 
That's because a number of objects you can use in a JSP page must always be initialized (the hand-coded 
version doesn't need this generic initialization). These details are not important now; programming examples 
later in the book will show you how to use all objects of interest. 

Instead, you should note that the servlet generated from the JSP page is a regular servlet. The _jspService( 
) method corresponds to the service( ) method in the hand-coded servlet; it's called every time the page is 
requested. The request and response objects are passed as arguments to the method, so the JSP page has 
access to all the same information as does a regular servlet. This means it can read user input passed as 
request parameters, adjust the response based on header values (like the ones described in Chapter 2), get 
access to the session state, etc. - just like a regular servlet. 

The highlighted code section in Example 3.3 shows how the static HTML from the JSP page in Example 3.2 
has been embedded in the resulting code. Also note that the Java code to retrieve the current date and time 
has been inserted in the servlet as-is. By letting the JSP container convert the JSP page into a servlet that 
combines code for adding HTML to the response with small pieces of Java code for dynamic content, you get 
the best of both worlds. You can use familiar web page development tools to design the static parts of the 
web page, drop in JSP elements that generate the dynamic parts, and still enjoy all the benefits of servlets. 



JavaSercer Pages 

  page 32

 

 

Client-Side Versus Server-Side Code 

Page authors who have some experience developing client-side scripts using JavaScript (ECMAScript) 
or VBScript can sometimes get a bit confused when they start to use a server-side technology like 
JSP. 

Client-side scripts, embedded in <script> elements, execute in the browser. These types of scripts 
are often linked to a form element such as a selection list. When the user selects an item in the list, 
the associated script is executed, perhaps populating another selection list with appropriate choices. 
Since all this code is executed by the browser, the client-side script provides immediate feedback to 
the user. 

Server-side code, like action and scripting elements in a JSP page, executes on the server. Recall 
from Chapter 2 that the browser must make a request to the server to execute a JSP page. The 
corresponding JSP code is then used to produce a dynamic response. 

This brings up an important point: there's no way a client-side script can directly call an individual 
Java code segment in the JSP page. A client-side script can ask the browser to make a request for the 
complete page, but it can't process the response and use it to do something such as populate a 
selection list with the data. 

It is possible, although not very efficient, to link a user action to a client-side script, invoking an 
applet that in turn makes a request to a servlet or JSP page. The applet can then read the response 
and cause some dynamic action in the web browser. This approach may be reasonable on a fast 
intranet, but you probably won't be happy with the response times if you tried it on the Internet 
during peak hours. The reason is that the HTTP request/response model was never intended to be 
used for this type of incremental user interface update. Consequently, there's a great deal of 
overhead involved. If you still want to do this, be careful not to open up a security hole. For instance, 
if you develop an applet that can send any SQL statement to a servlet and get the query result back, 
you have made it possible for anyone to access all data in your database (that is accessible to the 
servlet), not just the data that your applet asks for. 

Client-side and server-side code can, however, be combined with good results. You can embed client-
side scripts as template text in your JSP pages, or generate it dynamically with actions or scripting 
elements. But keep in mind that it's still client-side code; the fact that it's generated by a JSP page 
doesn't change anything. A common use of client-side code is to validate user form input. Doing the 
validation with client-side code gives the user faster feedback about invalid input and reduces the 
load on the server. But don't forget that client-side scripting is not supported in all browsers, and 
even if it is, the user may have disabled the execution of scripts. Therefore, you should always 
perform input validation on the server as well. 

Instead of using client-side scripts, you can of course use a Java applet to provide a more interactive 
user interface. Ideally the applet is self-contained; in other words, it doesn't have to talk to the server 
at all in order to present a user-friendly interface. If it needs to communicate with the server, 
however, it can do so using a far more efficient protocol than HTTP. Java Servlet Programming by 
Jason Hunter and William Crawford (O'Reilly) includes a chapter about different applet communication 
options. 

 



JavaSercer Pages 

  page 33

3.4 JSP Application Design with MVC 

JSP technology can play a part in everything from the simplest web application, such as an online phone list 
or an employee vacation planner, to full-fledged enterprise applications, such as a human resource application 
or a sophisticated online shopping site. How large a part JSP plays differs in each case, of course. In this 
section, we introduce a design model suitable for both simple and complex applications called Model-View-
Controller (MVC). 

MVC was first described by Xerox in a number of papers published in the late 1980s. The key point of using 
MVC is to separate components into three distinct units: the Model, the View, and the Controller. In a server 
application, we commonly classify the parts of the application as: business logic, presentation, and request 
processing. Business logic is the term used for the manipulation of an application's data, i.e., customer, 
product, and order information. Presentation refers to how the application is displayed to the user, i.e., the 
position, font, and size. And finally, request processing is what ties the business logic and presentation parts 
together. In MVC terms, the Model corresponds to business logic and data, the View to the presentation logic, 
and the Controller to the request processing. 

Why use this design with JSP? The answer lies primarily in the first two elements. Remember that an 
application data structure and logic (the Model) is typically the most stable part of an application, while the 
presentation of that data (the View) changes fairly often. Just look at all the face-lifts that web sites have 
gone through to keep up with the latest fashion in web design. Yet, the data they present remains the same. 
Another common example of why presentation should be separated from the business logic is that you may 
want to present the data in different languages or present different subsets of the data to internal and 
external users. Access to the data through new types of devices, such as cell phones and Personal Digital 
Assistants (PDAs), is the latest trend. Each client type requires its own presentation format. It should come as 
no surprise, then, that separating business logic from presentation makes it easier to evolve an application as 
the requirements change; new presentation interfaces can be developed without touching the business logic. 

This MVC model is used for most of the examples in this book. In Part II, JSP pages are used as both the 
Controller and the View, and JavaBeans components are used as the Model. The examples in Chapter 5 
through Chapter 7 use a single JSP page that handles everything, while Chapter 8 through Chapter 11 show 
how you can use separate pages for Control and View to make the application easier to maintain. Many types 
of real-world applications can be developed this way, but what's more important is that this approach allows 
us to examine all the JSP features without getting distracted by other technologies. In Part III, we look at 
other possible role assignments when JSP is combined with servlets and Enterprise JavaBeans. 



JavaSercer Pages 

  page 34

Chapter 4. Setting Up the JSP Environment 

This book contains plenty of examples to illustrate all the JSP features. All examples were developed and 
tested with the JSP reference implementation, known as the Apache Tomcat server, which is developed by the 
Apache Jakarta project. In this chapter you will learn how to install the Tomcat server and add a web 
application containing all the examples used in this book. You can, of course, use any web server that 
supports JSP 1.1, but Tomcat is a good server for development and test purposes. You can learn more about 
the Jakarta project and Tomcat, as well as how you can participate in the development, at the Jakarta web 
site: http://jakarta.apache.org. 

 

4.1 Installing the Java Software Development Kit 

Tomcat is a pure Java web server with support for the Servlet 2.2 and JSP 1.1 specifications. To use it, you 
must first install a Java runtime environment. If you don't already have one, you can download a Java SDK 
for Windows, Linux, and Solaris at http://java.sun.com/j2se/. 

I recommend that you install the Java 2 SDK as opposed to the slimmed-down Runtime Environment ( JRE) 
distribution. The reason is that JSP requires a Java compiler, which is included in the SDK but not in the JRE. 
Sun Microsystems has made the javac compiler from the SDK available separately for redistribution by the 
Apache Software Foundation. So technically, you could use the JRE and download the Java compiler as part of 
the Tomcat package, but even as I write this chapter, the exact legal conditions for distributing the compiler 
are changing. 

Another alternative is to use the Jikes compiler from IBM 
(http://www10.software.ibm.com/developerworks/opensource/jikes/ ). Tomcat can be configured to use Jikes 
instead of the javac compiler from Sun; read the Tomcat documentation if you would like to try this. To make 
things simple, though, I suggest installing the Java 2 SDK from Sun. The examples were developed and 
tested with Java 2 SDK, Standard Edition, v1.2.2 and v1.3. I recommend that you use the latest version of 
the SDK available for your platform. 

If you need an SDK for a platform other than Windows, Linux, or Solaris, there's a partial list of ports made 
by other companies at Sun's web site http://java.sun.com/cgi-bin/java-ports.cgi/  

Also check your operating system vendor's web site. Most operating system vendors have their own SDK 
implementation available for free. 

Installation of the SDK varies depending on platform but is typically easy to do. Just follow the instructions on 
the web site where you download the SDK. 

Before you install and run Tomcat, make sure that the JAVA_HOME environment variable is set to the 
installation directory of your Java environment, and that the Java bin directory is included in the PATH 
environment variable. On a Windows system, you can see if an environment variable is set by typing the 
following command in a Command Prompt window: 

 C:\> echo %JAVA_HOME% 
 C:\jdk1.1.2 

If JAVA_HOME is not set, you can set it and include the bin directory in the PATH like this on a Windows system 
(assuming Java is installed in C:\jdk1.2.2): 

 C:\> set JAVA_HOME=C:\jdk1.1.2 
 C:\> set PATH=%JAVA_HOME%\bin;%PATH% 

On a Windows 95/98 system, you can add these commands to the C:\AUTOEXEC.BAT file to set them 
permanently. Just use a text editor, such as Notepad, and add lines with the set commands. The next time 
you boot the PC, the environment variables will be set automatically. For Windows NT and 2000, you can set 
them permanently from the Environment tab in the System Properties tool. 

If you use Linux or some other Unix platform, the exact commands depend on which shell you use. With 
bash, which is commonly the default for Linux, use the following commands (assuming Java is installed in 
/usr/local/jdk1.2.2): 

 [hans@gefion /] export JAVA_HOME=/usr/local/jdk1.2.2 
 [hans@gefion /] export PATH=$JAVA_HOME/bin:$PATH 
 [hans@gefion /] echo $PATH 
 /usr/local/jdk1.2.2/bin:/usr/local/bin:/bin:/usr/bin 

http://jakarta.apache.org
http://java.sun.com/j2se/
http://www10.software.ibm.com/developerworks/opensource/jikes/
http://java.sun.com/cgi-bin/java-ports.cgi/


JavaSercer Pages 

  page 35

4.2 Installing the Tomcat Server 

You can download the Tomcat Server either in binary format or as source code that you compile yourself. If 
you're primarily interested in learning about JSP, I recommend that you use the binary download to run the 
examples in this book and develop your own applications. If you're a Java programmer and interested in 
seeing how Tomcat is implemented, feel free to download the source and take a look at the internals. 

The binary distribution is available at http://jakarta.apache.org/downloads/binindex.html  

On this page you find three types of builds: 

• Release builds 

• Milestone builds 

• Nightly builds 

Release builds are stable releases that have been tested extensively and verified to comply with the servlet 
and JSP specifications. Milestone builds are created as intermediary steps towards a release build. They often 
contain new features that are not yet fully tested, but are generally known to work. A nightly build, however, 
may be very unstable. It's actually a snapshot of the latest source code and may have been tested only by 
the person who made the latest change. You should use a nightly build only if you're involved in the 
development of Tomcat. 

You should download the latest release build. All examples in this book were developed and tested using the 
3.2 (Beta 3) version, but any release later than 3.2 should work fine as well. When you click on the link for 
the latest release build and select the bin directory, you see a list of archive files in different formats, similar 
to Figure 4.1. 

Figure 4.1. Release build packages 

 

http://jakarta.apache.org/downloads/binindex.html


JavaSercer Pages 

  page 36

Pick a compression format that's appropriate for your platform. For Windows, select jakarta-tomcat.zip and 
save it to your hard drive, for instance in a directory named C:\Jakarta. You can unpack the package either 
with a ZIP utility program such as WinZip, or by using the jar command that's included in the Java 
distribution. Using the Command Prompt window where you set the JAVA_HOME and PATH environment 
variables earlier, change directory to the directory where you downloaded the ZIP file and unpack it: 

 C:\> cd Jakarta 
 C:\Jakarta> jar xvf jakarta-tomcat.zip 

For Unix platforms, download the jakarta-tomcat.tar.gz file, for instance to /usr/local, and use these 
commands to unpack it (assuming you have GNU tar installed): 

 [hans@gefion /] cd /usr/local 
 [hans@gefion /usr/local] tar xzvf jakarta-tomcat.tar.gz 

If you don't have GNU tar installed on your system, you can use this command: 

 [hans@gefion /usr/local] gunzip -c jakarta-tomcat.tar.gz | tar xvf - 

This creates a directory structure with a top directory named jakarta-tomcat with a number of subdirectories. 
Like most software packages, the doc subdirectory contains a file named Readme ; do exactly that. Software 
distributions change and if, for instance, the instructions in this chapter no longer apply when you download 
the software, the Readme file should contain information about how to get started. 

You also need to set the TOMCAT_HOME environment variable. For Windows, use: 

 C:\Jakarta> set TOMCAT_HOME=C:\Jakarta\jakarta-tomcat 

For Unix, use: 

 [hans@gefion /usr/local] export TOMCAT_HOME=/usr/local/jakarta-tomcat 

The jakarta-tomcat directory contains a number of subdirectories: 

bin  

Scripts for starting the Tomcat server. 

conf  

Tomcat configuration files. 

doc  

Documents describing how to install and start Tomcat. Other documentation is available as web pages 
once the server is started. 

lib  

Binary (platform-dependent) modules for connecting Tomcat to other web servers such as Apache. 

src  

The source code for all servlet and JSP specification classes and interfaces. 

webapps  

Default location for web applications served by Tomcat. 

No matter what your platform, the bin directory contains both Windows batch files and Unix scripts for 
starting and stopping the server. 



JavaSercer Pages 

  page 37

4.2.1 Windows Platforms 

The Windows files are named startup.bat, shutdown.bat, and tomcat.bat. The tomcat.bat file is the main 
script for controlling the server; it's called by the two other scripts startup.bat and shutdown.bat. To start the 
server in a separate window, change directory to the bin directory and run the startup.bat file: 

 C:\Jakarta> cd jakarta-tomcat\bin 
 C:\Jakarta\jakarta-tomcat\bin> startup 

A new Command Prompt window pops up and you see startup messages like this: 

 2000-09-01 09:27:10 - ContextManager: Adding context Ctx( /examples ) 
 2000-09-01 09:27:10 - ContextManager: Adding context Ctx( /admin ) 
 Starting tomcat. Check logs/tomcat.log for error messages 
 2000-09-01 09:27:10 - ContextManager: Adding context Ctx( ) 
 2000-09-01 09:27:10 - ContextManager: Adding context Ctx( /test ) 
 2000-09-01 09:27:13 - PoolTcpConnector: Starting HttpConnectionHandler on 8080 
 2000-09-01 09:27:13 - PoolTcpConnector: Starting Ajp12ConnectionHandler on 8007 

Just leave this window open; this is where the server process is running. 

If you're running on a Windows 95 or 98 platform, you may see an error message about "Out of environment 
space" when you try to start the server. That's because the default amount of space allocated for 
environment variables is not enough. To change this default, run this command in the Command Prompt 
window before you run the startup.bat file again: 

 C:\Jakarta\jakarta-tomcat\bin> COMMAND.COM /E:4096 /P 

This command sets the environment space to 4096 bytes (4 KB). That should be enough for the server. 
However, If you still get the same message, use a higher value. 

For some installations, this command may not work. If it doesn't work, try this instead: 

1. Close the Command Prompt window and open a new one. 

2. Click on the MS-DOS icon at the top-left of the window. 

3. Select the Properties option. 

4. Click on the Memory tab. 

5. Change the Initial Environment value from Auto to 4096. 

6. Click on OK and try to start the server again. 

At this point, the server may not start due to other problems. If so, the extra Command Prompt window may 
pop up and then disappear before you have a chance to read the error messages. If this happens, you can let 
the server run in the Command Prompt window with this command instead: 

 C:\Jakarta\jakarta-tomcat\bin> tomcat run 

On Windows NT, first make sure that the Command Prompt window has a large enough screen buffer so that 
you can scroll back in case the error messages don't fit on one screen. Open the Properties window for the 
Command Prompt window (right mouse button in the upper-left corner), select Layout, and set the screen 
buffer size height to a large value (for instance 999). Unfortunately, the Command Prompt screen buffer 
cannot be enlarged for Windows 95/98, so scrolling back is not an option. If you run into problems on these 
platforms, double-check that you have installed the Java SDK correctly and that you have set the JAVA_HOME 
and PATH environment variables as described earlier. 



JavaSercer Pages 

  page 38

4.2.2 Unix Platforms 

For Unix, the corresponding scripts are named startup.sh, shutdown.sh, and tomcat.sh. Start the server with 
this command: 

 [hans@gefion /usr/local/jakarta-tomcat/bin] ./startup.sh 

If you want Tomcat to start each time you boot the system, you can add the following commands to your 
/etc/rc.d/rc.local (or equivalent) startup script: 

 export JAVA_HOME=/usr/local/jdk1.2.2 
 export TOMCAT_HOME=/usr/local/jakarta-tomcat 
 $TOMCAT_HOME/bin/startup.sh & 

Two more subdirectories under the Tomcat home directory are then created the first time you start the 
server: 

logs  

Server log files. If something doesn't work as expected, look at the files in this directory for clues as to 
what's wrong. 

work  

A directory for temporary files that are created by the JSP container and other files. This directory is 
where the servlets generated from JSP pages are stored. 

 

4.3 Testing Tomcat 

To test the server - assuming you're running Tomcat on the same machine as the browser and that you're 
using the default port for Tomcat (8080) - open a browser and enter the following URL in the 
Location/Address field: 

http://localhost:8080/  

The Tomcat main page is shown in the browser (see Figure 4.2), and you can now run all servlet and JSP 
examples bundled with Tomcat to make sure everything works. 

http://localhost:8080/


JavaSercer Pages 

  page 39

Figure 4.2. The Tomcat main page 

 

When you're done testing Tomcat, stop the server like this: 

 C:\Jakarta\jakarta-tomcat\bin> shutdown 

You should always stop the server this way, as opposed to killing the Command Prompt window the server is 
running in. Otherwise, the applications don't get a chance to close down gracefully, and when you start to 
connect external resources, like a database, various problems may occur. 

 

4.4 Installing the Book Examples 

All JSP pages, HTML pages, Java source code, and class files for the book examples can be downloaded 
directly from the O'Reilly web site: 

http://www.oreilly.com/catalog/jserverpages/  

They can also be downloaded from the book web site: 

http://www.TheJSPBook.com  

The file that contains all the examples is called jspbook.zip. Save the file on your hard drive, for instance in 
C:\JSPBook on a Windows platform, and unpack it: 

 C:\JSPBook> jar xvf jspbook.zip 

You can use the same command on a Unix platform. 

http://www.oreilly.com/catalog/jserverpages/
http://www.TheJSPBook.com


JavaSercer Pages 

  page 40

Two new directories are created: ora and src. The first directory contains all examples described in this book, 
and the second contains the Java source files for the JavaBeans, custom actions, and utility classes used in 
the examples. 

The examples' directory structure complies to the standard Java web application format described in Chapter 
2. You can therefore configure any Servlet 2.2-compliant web container to run the examples. If you like to 
use a container other than Tomcat, be sure to read the documentation for that container. 

To install the example application for Tomcat, copy the web application directory structure to Tomcat's default 
directory for applications, called webapps. Use this command on a Windows platform: 

 C:\JSPBook> xcopy /s /i ora %TOMCAT_HOME%\webapps\ora 

On a Unix platform it looks like this: 

 [hans@gefion /usr/local/jspbook] cp -R ora $TOMCAT_HOME/webapps 

Recall from Chapter 2 that each web application in a server is associated with a unique URI prefix. When you 
install an application in Tomcat's webapps directory, the subdirectory name is automatically assigned as the 
URI prefix for the application ( /ora in this case). 

At this point, you must shut down and restart the Tomcat server. After that, you can point your browser to 
the ora application with the following URL: 

http://localhost:8080/ora/  

You should see a start page, as in Figure 4.3, that contains links for all examples in this book. 

Figure 4.3. JSP book examples start page 

 

http://localhost:8080/ora/


JavaSercer Pages 

  page 41

4.5 Example Web Application Overview 

The examples for this book are packaged as a standard Java web application, as described in Chapter 2. This 
file structure is supported by all Servlet 2.2-compliant servers, so you can use the example application as a 
guide when you create your own web applications. How a web application is installed is not defined by the 
specification, however, so it varies between servers. With Tomcat, you simply copy the file structure to the 
special webapps directory and restart the server. To modify the configuration information for an application, 
you need to edit the application's WEB-INF/web.xml file using a text editor. Other servers may offer special 
deployment tools that copy the files to where they belong and let you configure the application using a special 
tool, such as web-based forms. 

If you look in the ora web application directory, you'll see that it contains an index.html file and a number of 
directories corresponding to chapters in this book. These directories contain all the example JSP and HTML 
pages. 

There's also a WEB-INF directory with a web.xml file, a lib directory, a classes directory, and a tlds directory: 

• The web.xml file contains configuration information for the example application in the format defined 
by the Servlet 2.2 specification. It's too early to look at the contents of this file now; we will return 
to parts of it when needed. 

• The lib and classes directories are standard directories, also defined by the Servlet 2.2 specification. 
A common question asked by people new to servlets and JSP (prior to the standard web application 
format) was, "Where do I store my class files so that the server can find them?" The answer, 
unfortunately, differed depending on which implementation was used. With the standard web 
application format, however, it's easy to answer this question: if the classes are packaged in a JAR 
file, store the JAR file in the lib directory; otherwise, use the classes directory (with subdirectories 
mirroring the classes' package structure). The server will always look for Java class files in these two 
directories. 

• The lib directory for the example application contains five JAR files. The orataglib_1_0.jar file 
contains all the Java class files for the custom actions and beans used in this book. The 
jdbc20_stdext_classes.jar file contains classes that are part of the JDBC 2.0 Standard Extension and 
are used in the database examples. The xalan.jar, xerces.jar, and xsl.jar contain XML parser classes 
used for an example in Chapter 12. 

• The classes directory contains the class for a servlet used to display the raw source code for the 
example JSP pages, so you can see what they look like before they are processed by the server. It 
also contains .properties files containing localized text for the example in Chapter 11. 

• The tlds directory is not defined by the Servlet 2.2 specification, but is the name used by convention 
for Tag Library Descriptor (TLD) files. Don't worry about what this means now. As you read through 
this book, it will become clear. 

If you want to try out some of your own JSP pages, beans, and custom actions while reading this book, 
simply add the files to the example application structure: JSP pages in any directory except under WEB-INF, 
and Java class files in either the classes or the lib directory, depending on if the classes are packaged in a JAR 
file or not. If you want to use the book's custom actions and beans in another application, copy the files in 
both the lib and tlds directories to the web application structure for the other application. 

 



JavaSercer Pages 

  page 42

Chapter 5. Generating Dynamic Content 

JSP is all about generating dynamic content: content that differs based on user input, time of day, the state 
of an external system, or any other runtime conditions. JSP provides you with lots of tools for generating this 
content. In this book, you will learn about all of them - standard actions, custom actions, JavaBeans, and 
scripting elements. Before we do that, however, let's start with a few simple examples to get a feel for how 
the basic JSP elements work. 

In this chapter, we develop a page for displaying the current date and time, and look at the JSP directive 
element and how to use JavaBeans in a JSP page along the way. Next, we look at how to process user input 
in your JSP pages and make sure it has the appropriate format. We also look at how you can convert special 
characters in the output, so they don't confuse the browser. 

 

5.1 What Time Is It? 

Recall from Chapter 3, that a JSP page is just a regular HTML page with a few special elements. JSP pages 
should have the file extension .jsp , which tells the server that the page needs to be processed by the JSP 
container. Without this clue, the server is unable to distinguish a JSP page from any other type of file and 
sends it unprocessed to the browser. 

When working with JSP pages, you really just need a regular text editor such as Notepad on Windows or 
Emacs on Unix. Appendix E, however, lists a number of tools that may make it easier for you, such as syntax-
aware editors that color-code JSP and HTML elements. Some Interactive Development Environments (IDEs) 
include a small web container that allows you to easily execute and debug the page during development. 
There are also several web page authoring tools - the type of tools often used when developing regular HTML 
pages - that support JSP. I don't recommend that you use them initially; it's easier to learn how JSP works if 
you see the raw page elements before you use tools that hide them. 

The first example JSP page, named date.jsp , is shown in Example 5.1. 

Example 5.1. JSP Page Showing the Current Date and Time (date.jsp)  

<%@ page language="java" contentType="text/html" %> 
<html> 
  <body bgcolor="white"> 
 
    <jsp:useBean id="clock" class="java.util.Date" /> 
 
    The current time at the server is: 
    <ul> 
      <li>Date: <jsp:getProperty name="clock" property="date" /> 
      <li>Month: <jsp:getProperty name="clock" property="month" /> 
      <li>Year: <jsp:getProperty name="clock" property="year" /> 
      <li>Hours: <jsp:getProperty name="clock" property="hours" /> 
      <li>Minutes: <jsp:getProperty name="clock" property="minutes" /> 
    </ul> 
 
  </body> 
</html> 

The date.jsp page displays the current date and time. We'll look at all the different pieces soon, but first let's 
run the example to see how it works. Assuming you have installed all book examples as described in Chapter 
4, first start the Tomcat server and load the http://localhost:8080/ora/ URL in a browser. You can then run 
Example 5.1 by clicking the "Current Date/Time example" link from the book examples main page, shown in 
Figure 5.1. You should see a result like the one shown in Figure 5.2. 

http://localhost:8080/ora/


JavaSercer Pages 

  page 43

Figure 5.1. JSP book examples main page 

 

Figure 5.2. Current Date/Time JSP page example 

 

Notice that the month seems to be off by one and the year is displayed as 100. That's because the 
java.util.Date class we use here numbers months from to 11, so January is 0, February is 1, and so on, 
and it reports year as the current year minus 1900. That's just the way this example works. As you will see 
later, there are much better ways to display dates. 

The page shown in Example 5.1 contains both regular HTML elements and JSP elements. The HTML elements 
are used as-is, defining the layout of the page. If you use the View Source function in your browser, you 
notice that none of the JSP elements are visible in the page source. That's because the JSP elements are 
processed by the server when the page is requested, and only the resulting output is sent to the browser. To 
see the unprocessed JSP page in a separate window, click on the source link for the date.jsp file in the book 
examples main page. The source link uses a special servlet to send the JSP page as-is to the browser instead 
of letting the server process it. This makes it easier for you to compare the source page and the processed 
result. 

Let's look at each piece of Example 5.1 in detail. 



JavaSercer Pages 

  page 44

5.1.1 Using JSP Directives 

The first line in Example 5.1 is a JSP directive element. Directives are used to specify attributes of the page 
itself, primarily those that affect how the page is converted into a Java servlet. There are three JSP directives: 
page, include, and taglib. In this example, we're using only the page directive. We'll see the others later. 

JSP pages typically start with a page directive that specifies the scripting language and the content type for 
the page: 

<%@ page language="java" contentType="text/html" %> 

A JSP directive element starts with a directive-start identifier (<%@ ) followed by the directive name (e.g., 
page) and directive attributes, and ends with %>. A directive contains one or more attribute name/value pairs 
(e.g., language="java"). Note that JSP element and attribute names are case-sensitive, and in most cases 
the same is true for attribute values. For instance, the language attribute value must be java, not Java. All 
attribute values must also be enclosed in single or double quotes. 

The page directive has many possible attributes. In Example 5.1, two of them are used: language and 
contentType. 

The language attribute specifies the scripting language used in the page. The JSP reference implementation 
(the Tomcat server) supports only Java as a scripting language.3 java is also the default value for the 
language attribute, but for clarity you may still want to specify it. Other JSP implementations support other 
languages besides Java, and hence allow other values for the language attribute. For instance, both JRun 
(http://www.allaire.com) and Resin (http://www.caucho.com) support JavaScript in addition to Java. 

The contentType attribute specifies the type of content the page produces. The most common values are 
text/html for HTML content and text/plain for preformatted, plain text. But you can also specify other 
types, such as text/xml for browsers that support XML or text/vnd.wap.wml for devices like cellular phones 
and PDAs that have built-in Wireless Markup Language (WML) browsers. If the content generated by the page 
includes characters requiring a charset other than ISO-8859-1 (commonly known as Latin-1), you need to 
specify that charset with the contentType attribute. We'll look at the details of charsets in Chapter 11. 

5.1.2 Using Template Text 

Besides JSP elements, notice that the page shown in Example 5.1 contains mostly regular HTML: 

... 
<html> 
  <body bgcolor="white"> 
 
... 
 
    The current time at the server is: 
    <ul> 
      <li>Date: ... 
      <li>Month: ... 
      <li>Year: ... 
      <li>Hours: ... 
      <li>Minutes: ... 
    </ul> 
 
  </body> 
</html> 

In JSP parlance, this is called template text. Everything that's not a JSP element, such as a directive, action, 
or scripting element, is template text. Template text is sent to the browser as-is. This means you can use JSP 
to generate any type of text-based output, such as XML, WML, or even plain text. The JSP container doesn't 
care what the template text is. 

                                                 
3 In fact, Java is the only scripting language formally supported in the JSP specification, but the specification leaves room for other languages 

to be supported. 

http://www.allaire.com
http://www.caucho.com


JavaSercer Pages 

  page 45 

5.1.3 Using JavaBeans 

There is also some dynamic content in this example. Step back a moment and think about the type of 
dynamic content you see on the Web every day. Common examples might be a list of web sites matching a 
search criteria on a search engine site, the content of a shopping cart on an e-commerce site, a personalized 
news page, or messages on a bulletin board. Dynamic content is content generated by some server process, 
for instance the result of a database query. Before it is sent to the browser, the dynamic content needs to be 
combined with regular HTML elements into a page with the right layout, navigation bars, the company logo, 
and so forth. In a JSP page, the regular HTML is the template text described earlier. The result of the server 
processing - the dynamic content - is commonly represented by a JavaBeans component. 

A JavaBeans component, or just a bean for short, is a Java class that follows certain coding conventions, so it 
can be used by tools as a component in a larger application. In this chapter, we discuss only how to use a 
bean, not how to develop one. (If you're a programmer and not already familiar with JavaBeans, you may 
want to skip ahead to Chapter 15, to learn about these coding conventions.) A bean is often used in JSP as 
the container for the dynamic content to be displayed by a web page. Typically, a bean represents something 
specific, such as a person, a product, or a shopping order. A bean is always created by a server process and 
given to the JSP page. The page then uses JSP elements to insert the bean's data into the HTML template 
text. 

The type of element used to access a bean in a page is called a JSP action element. JSP action elements are 
executed when a JSP page is requested (this is called the request processing phase, as you may recall from 
Chapter 3). In other words, JSP actions represent dynamic actions that take place at runtime, as opposed to 
JSP directives, which are used only during the translation phase (when the JSP page is turned into Java 
servlet code). JSP defines a number of standard actions and also specifies how you can develop custom 
actions. For both standard and custom action elements, use the following notation: 

 <action_name attr1="value1" attr2="value2"> 
   action_body 
 </action_name> 

Action elements, or tags as they are sometimes called,4 are grouped into libraries (known as tag libraries). 
The action name is composed of two parts: a library prefix and the name of the action within the library, 
separated by a colon (i.e., jsp:useBean). All actions in the JSP standard library use the prefix jsp, while 
custom actions can use any prefix except jsp, jspx, java, javax, servlet, sun, or sunw. You specify input to 
the action through attribute/value pairs in the opening tag. The attribute names are case-sensitive, and the 
values must be enclosed in single or double quotes. For some actions, you can also enter data that the action 
should process in the action's body. It can be any text value, such as a SQL statement, or even other nested 
JSP action elements. You will see examples of action elements with a body later. 

Before you use a bean in a page, you must tell the JSP container which type of bean it is and associate it with 
a name. The first JSP action in Example 5.1, <jsp:useBean>, is used for this purpose: 

<jsp:useBean id="clock" class="java.util.Date" /> 

The id attribute is used to give the bean a unique name. It must be a name that is a valid Java variable 
name: it must start with a letter and cannot contain special characters such as dots, plus signs, etc. The 
class attribute contains the fully qualified name of the bean's Java class. Here, the name clock is associated 
with an instance of the class java.util.Date. Note that we don't specify a body for this action. When you 
omit the body, you must end the opening tag with />, as in this example. In this case, when the JSP 
container encounters this directive, there is no bean currently available with the name clock, so the 
<jsp:useBean> action creates a bean as an instance of the specified class and makes it available to other 
actions in the same page. In Chapter 8, you will see how <jsp:useBean> can also be used to locate a bean 
that has already been created. 

Incidentally, the <jsp:useBean> action supports three additional attributes: scope, type, and beanName. The 
scope attribute is described in detail in Chapter 8, and the other two attributes are covered in Appendix A. 
We don't need to worry about those attributes here. 

                                                 
4 An element is actually represented by a start tag and an end tag, but the term "tag" is often used to refer to what's formally known as an 

element. 



JavaSercer Pages 

  page 46 

5.1.4 Accessing JavaBean Properties 

The bean's data is represented by its properties . If you're a page author charged with developing a JSP page 
to display the content represented by a bean, you first need to know the names of all the bean's properties. 
This information should be available from the Java programmers on the team or from a third-party source. In 
this example, we use a standard Java class named java.util.Date as a bean with properties representing 
date and time information. Table 5.1 describes the properties used in this example. (If you're not a 
programmer, don't worry about the Java Type and Access columns at this point.) 

Table 5.1, Properties for java.util.Date  

Property Name Java Type Access Description 

date int read The day of the month as a number between 1 and 31 

hours int read The hour as a number between 0 (midnight) and 23 

minutes int read The number of minutes past the hour as a number 
between 0 and 59 

month int read The month as a number from 0 to 11 

year int read The current year minus 1900 

Once you have created a bean and given it a name, you can retrieve the values of the bean's properties in 
the response page with another JSP standard action, <jsp:getProperty>. This action obtains the current 
value of a bean property and inserts it directly into the response body. 

To include the current date property value in the page, use the following tag: 

 <jsp:getProperty name="clock" property="date" /> 

The name attribute, set to clock, refers to the specific bean instance we defined with the <jsp:useBean> 
action previously. This action locates the bean and asks it for the value of the property specified by the 
property attribute. As documented in Table 5.1, the date property contains the day of the month as a 
number between 1 and 31. In Example 5.1, multiple <jsp:getProperty> actions are used to generate a list 
of all the clock bean's property values. The result is the page shown in Figure 5.2. 

 

5.2 Input and Output 

User input is a necessity in modern web pages. Most dynamic web sites generate pages based on user input. 
Unfortunately, users seldom enter information in exactly the format you need, so before you can use such 
input, you probably want to validate it. 

And it's not only the input format that's important. Web browsers are also picky about the format of the HTML 
you send them. For instance, when you generate an HTML form with values taken from a database, a name 
such as O'Reilly can cause problems. The single quote character after the O can fool the browser into 
believing that it's at the end of the string, so you end up with just an O in your form. 

5.2.1 Using JavaBeans to Process Input 

As we saw earlier, a bean is often used as a container for data, created by some server process, and used in 
a JSP page that displays the data. But a bean can also be used to capture user input. The captured data can 
then be processed by the bean itself or used as input to some other server component (e.g., a component 
that stores the data in a database or picks an appropriate banner ad to display). The nice thing about using a 
bean this way is that all information is in one bundle. Say you have a bean that can contain information about 
a person, and it captures the name, birth date, and email address as entered by the person on a web form. 
You can then pass this bean to another component, providing all the information about the user in one shot. 
Now, if you want to add more information about the user, you just add properties to the bean, instead of 
having to add parameters all over the place in your code. Another benefit of using a bean to capture user 
input is that the bean can encapsulate all the rules about its properties. Thus, a bean representing a person 
can make sure the birthDate property is set to a valid date. 



JavaSercer Pages 

  page 47 

Using a bean to capture and validate user input is one aspect of building a web application that's easy to 
maintain and extend as requirements change. But it's not the only option. If you're a page author and intend 
to use JSP to develop sites using components from third parties, you may wonder how you can capture and 
validate input without access to a Java programmer who can develop the beans. Don't worry; we'll see 
another alternative in Chapter 9. 

Processing and validating input can also be performed by a servlet instead of a JSP page. If you're a 
programmer, you'll find examples of this approach in Chapter 14. In this part of the book, however, we use 
JSP pages for all aspects of the applications so we can focus on JSP features. And one JSP feature makes it 
very easy to capture user input, so let's see how it's done. 

5.2.1.1 Setting JavaBeans properties from user input 

In this next example, we capture information about web site users. It could be the frontend to a newsletter 
subscription site, for instance. In order to send the users information that might interest them, we register 
the birth date, sex, and lucky number, along with the full name and email address, for each person that signs 
up for the service. 

To capture and validate the user input, the example uses a bean named 
com.ora.jsp.beans.userinfo.UserInfoBean, with the properties described in Table 5.2. If you're a 
programmer, you may want to skip ahead to peek at the source code for this bean class in Chapter 15. 

Table 5.2, Properties for com.ora.jsp.beans.userinfo.UserInfoBean  

Property Name Java Type Access Description 

userName String read/write The user's full name 

birthDate String read/write 
The user's birth date in the format yyyy-mm-dd 

(e.g., 2000-07-07) 

emailAddr String read/write The user's email address in the format 
name@company.com 

sex String read/write The user's sex (male or female) 

luckyNumber String read/write The user's lucky number (between 1 and 100) 

valid boolean read 
true if the current values of all properties are 

valid, false otherwise 

As shown in the Access column, all properties except valid are read/write properties. This means that, in 
addition to using the bean's properties to generate output (like in Example 5.1), the property values can be 
set based on user input. 

The HTML form shown in Example 5.2 allows the user to enter information corresponding to the bean 
properties. 



JavaSercer Pages 

  page 48

Example 5.2. An HTML Form that Sends User Input to a JSP Page (userinfo.html)  

<html> 
  <head> 
    <title>User Info Entry Form</title> 
  </head> 
  <body bgcolor="white"> 
    <form action="userinfo1.jsp" method="post"> 
      <table> 
        <tr> 
          <td>Name:</td> 
          <td><input type="text" name="userName" > 
          </td> 
        </tr> 
        <tr> 
          <td>Birth Date:</td> 
          <td><input type="text" name="birthDate" > 
          </td> 
          <td>(Use format yyyy-mm-dd)</td> 
        </tr> 
        <tr> 
          <td>Email Address:</td> 
          <td><input type="text" name="emailAddr" > 
          </td> 
          <td>(Use format name@company.com)</td> 
        </tr> 
        <tr> 
          <td>Sex:</td> 
          <td><input type="text" name="sex" > 
          </td> 
          <td>(Male or female)</td> 
        </tr> 
        <tr> 
          <td>Lucky number:</td> 
          <td><input type="text" name="luckyNumber" > 
          </td> 
          <td>(A number between 1 and 100)</td> 
        </tr> 
        <tr> 
          <td colspan=2><input type="submit"></td> 
        </tr> 
      </table> 
    </form> 
  </body> 
</html> 

This is a regular HTML page that presents a form with a number of fields, as shown in Figure 5.3. There are a 
few things worth mentioning here. First, notice that each input field has a name attribute with a value that 
corresponds to a UserInfoBean property name. Matching the names lets us take advantage of a nice JSP 
feature that sets property values automatically, as you'll see shortly. Also note that the action attribute of 
the form specifies that a JSP page, userinfo1.jsp, is invoked when the user clicks the Submit button. Figure 
5.3 shows what the form looks like in a browser. 

Figure 5.3. User input form 

 



JavaSercer Pages 

  page 49 

Example 5.3 shows the JSP page that is invoked when the user submits the form. 

Example 5.3. A JSP Page that Validates User Input with a Bean (userinfo1.jsp)  

<%@ page language="java" contentType="text/html" %> 
<html> 
  <body bgcolor="white"> 
    <jsp:useBean  
      id="userInfo" 
      class="com.ora.jsp.beans.userinfo.UserInfoBean"> 
      <jsp:setProperty name="userInfo" property="*" /> 
    </jsp:useBean> 
 
    The following information was saved: 
    <ul> 
      <li>User Name: <jsp:getProperty 
                       name="userInfo" property="userName" /> 
      <li>Birth Date: <jsp:getProperty 
                        name="userInfo" property="birthDate" /> 
      <li>Email Address: <jsp:getProperty 
                           name="userInfo" property="emailAddr" /> 
      <li>Sex: <jsp:getProperty 
                 name="userInfo" property="sex" /> 
      <li>Lucky number: <jsp:getProperty 
                          name="userInfo" property="luckyNumber" /> 
    </ul> 
    The user input is valid: <jsp:getProperty 
                               name="userInfo" property="valid" /> 
  </body> 
</html> 

Almost at the top of Example 5.3, you see that a <jsp:useBean> action is used to associate a name with the 
bean: 

<jsp:useBean  
  id="userInfo" 
  class="com.ora.jsp.beans.userinfo.UserInfoBean"> 
  <jsp:setProperty name="userInfo" property="*" /> 
</jsp:useBean> 

The <jsp:useBean> action looks similar to the one in Example 5.1. The id attribute specifies the name for the 
bean, and the class attribute specifies the full name of the bean class. But here we also use a 
<jsp:setProperty> action as the body of the <jsp:useBean> action. You must therefore use the complete 
closing tag (</jsp:useBean>) to tell the JSP container where the action ends, instead of the shorthand 
notation used in Example 5.1. The body of the <jsp:useBean> action is executed only when a new bean is 
created. In this example, that's always the case, but as you will learn in Chapter 8, there are cases in which 
the bean already exists and the action is needed only to associate it with a name. 

Now let's take a closer look at the <jsp:setProperty> action. As the name implies, this action is used to set 
the bean's property values. Like the <jsp:getProperty> action, it has a name attribute that must match the 
id attribute of a <jsp:useBean> action, and a property attribute that specifies which property to set. 

When a form is submitted, the form field values are sent as request parameters with the same names as the 
form field elements. In Example 5.3, note that an asterisk (*) is used as the property attribute value of the 
<jsp:setProperty> action. This means that all bean properties with names that match request parameters 
sent to the page are set automatically. That's why it's important that the form element names match the 
bean property names, as they do here. Automatically setting all matching properties is a great feature; if you 
define more properties for your bean, you can set them simply by adding new matching fields in the form that 
invokes the JSP page. 

Besides the property attribute, the <jsp:setProperty> action has two more optional attributes: param and 
value. If for some reason you can't use the same name for the parameters and the property names, you can 
use the param attribute to set a bean property to the value of any request parameter: 

 <jsp:setProperty 
   name="userInfo" 
   property="userName" 
   param="someOtherParam" 
 /> 



JavaSercer Pages 

  page 50

Here, the userName property is set to the value of a request parameter named someOtherParam. 

You can also explicitly set a bean property to a value that is not sent as a request parameter with the value 
attribute: 

 <jsp:setProperty 
   name="userInfo" 
   property="luckyNumber" 
   value="13" 
 /> 

Here, the luckyNumber property is set to the value 13. You typically use the value attribute only when you 
set the bean properties based on something other than user input, for instance values collected from a 
database. 

5.2.1.2 Validating user input 

Never trust your users, at least not when it comes to entering information in the format you need. Often, you 
need to make sure the input is valid before you continue to process a request. A date, for instance, can be 
written in many different formats. If you don't live in the United States, you probably have had to fill out both 
an I-94 and a customs declaration form to be admitted by an immigration officer. You may have noticed that 
on one of the forms you need to write your birth date as yyyy/mm/dd and on the other you write it as 
mm/dd/yyyy. I always get it wrong. 

Four of the UserInfoBean's properties require a special format: birthDate, emailAddr, sex, and 
luckyNumber. A good place to make sure the input is valid is in the bean itself, which is exactly what the 
UserInfoBean does. With this bean, if you try to set any of the above properties to a value that isn't valid, 
the bean will leave the property unset. In addition, the bean has a true/false (Boolean) property named 
valid. This property has the value false unless all other properties have been set to valid values. 

Let's see this in action. Example 5.3 displays the property values using the <jsp:getProperty> action: 

 <li>User Name: <jsp:getProperty 
                 name="userInfo" property="userName" /> 

Since a property is set only if the value is valid, no values are shown for improperly specified properties. Try 
it. Click on the "User Info 1 example" link under the Chapter 5 header in the book examples main page shown 
in Figure 5.1. Enter both valid and invalid values in the form and look at the result produced by the 
userinfo1.jsp page when you click Submit. A sample result is shown in Figure 5.4. 

Figure 5.4. Output from userinfo1.jsp 

 

Note that the Birth Date information is missing (at my age, you're not so eager to reveal your birth date), so 
the input is marked as invalid. 



JavaSercer Pages 

  page 51

5.2.2 Keep On Doing It 'til You Get It Right 

Okay, now you know how to set bean properties and you're aware that beans often validate their values. It 
would be nice if this technique could be used to display the same form over and over until all required input is 
correct. You can do that with just a few changes, as shown in Example 5.4, the userinfo2.jsp page. 

Example 5.4. A JSP Page that Validates and Redisplays Until Correct (userinfo2.jsp)  

<%@ page language="java" contentType="text/html" %> 
<html> 
  <head> 
    <title>User Info Entry Form</title> 
  </head> 
  <body bgcolor="white"> 
    <jsp:useBean 
      id="userInfo" 
      class="com.ora.jsp.beans.userinfo.UserInfoBean"> 
      <jsp:setProperty name="userInfo" property="*" /> 
    </jsp:useBean> 
 
    <%-- Output list of values with invalid format, if any --%> 
    <font color="red"> 
      <jsp:getProperty name="userInfo" property="propertyStatusMsg" /> 
    </font> 
 
    <%-- Output form with submitted valid values --%> 
    <form action="userinfo2.jsp" method="post"> 
      <table> 
        <tr> 
          <td>Name:</td> 
          <td><input type="text" name="userName"  
            value="<jsp:getProperty 
                     name="userInfo" 
                     property="userName" 
                   />"> 
          </td> 
        </tr> 
        <tr> 
          <td>Birth Date:</td> 
          <td><input type="text" name="birthDate"  
            value="<jsp:getProperty 
                     name="userInfo" 
                     property="birthDate" 
                   />"> 
          </td> 
          <td>(Use format yyyy-mm-dd)</td> 
        </tr> 
        <tr> 
          <td>Email Address:</td> 
          <td><input type="text" name="emailAddr"  
            value="<jsp:getProperty 
                     name="userInfo" 
                     property="emailAddr" 
                   />"> 
          </td> 
          <td>(Use format name@company.com)</td> 
        </tr> 
        <tr> 
          <td>Sex:</td> 
          <td><input type="text" name="sex"  
            value="<jsp:getProperty 
                     name="userInfo" 
                     property="sex" 
                   />"> 
          </td> 
          <td>(Male or female)</td> 
        </tr> 
        <tr> 
          <td>Lucky number:</td> 
          <td><input type="text" name="luckyNumber"  
            value="<jsp:getProperty 
                     name="userInfo" 
                     property="luckyNumber" 
                   />"> 
          </td> 
          <td>(A number between 1 and 100)</td> 
        </tr> 
        <tr> 
          <td colspan=2><input type="submit"></td> 
        </tr> 
      </table> 
    </form> 
  </body> 
</html> 



JavaSercer Pages 

  page 52 

Instead of using a static HTML page for the input form and a separate JSP page with the validation code, in 
this example we have combined them into a single JSP page. This page generates the form and provides an 
appropriate message based on whether or not the input is valid. The page also fills in the form with the valid 
values that have already been specified (if any) so the user needs to enter values only for missing or incorrect 
input. 

Let's look at Example 5.4 from the top. The first thing to note is that the page generates a message using the 
UserInfoBean property named propertyStatusMsg. Here is the corresponding snippet: 

 <%-- Output list of values with invalid format, if any --%> 
 <font color="red"> 
   <jsp:getProperty name="userInfo" property="propertyStatusMsg" /> 
 </font> 

The first line here is a JSP comment. Text between <%-- and --%> in a JSP page is treated as a comment and 
never appears in the result sent to the browser. For complex pages, it's always a good idea to include 
comments to explain things that are not obvious. 

The propertyStatusMsg property can have three different values. If none of the properties have been set, 
the value is "Please enter values in all fields". If at least one value is missing or invalid, the message states 
"The following values are missing or invalid" and provides a list of the relevant properties. Finally, if all the 
values are valid, the propertyStatusMsg is "Thanks for telling us about yourself!" 

Next we generate the form, filled out with all valid values. Here's the beginning of the form and the code for 
the userName property: 

 <%-- Output form with submitted valid values --%> 
 <form action="userinfo2.jsp" method="post"> 
   <table> 
     <tr> 
       <td>Name:</td> 
       <td><input type="text" name="userName"  
         value="<jsp:getProperty 
                  name="userInfo" 
                  property="userName" 
                />"> 
       </td> 
     </tr> 

Most of this is plain HTML, which is treated as template text and passed on untouched to the browser. But 
note the use of a <jsp:getProperty> action as the HTML <input> element's value attribute. This is how the 
userName field in the form is filled in with the current value of the userName bean property. Also note how the 
form's action attribute points back to the JSP page itself. 

Try this out by clicking on the "User Info 2 example" link on the book examples page. Enter both valid and 
invalid values in the form and look at the results. In Chapter 8, we'll expand on this example and look at how 
you can move on to another page when all input is valid. 

One item may look a bit strange to you: an element (<jsp:getProperty>) is used as the value of another 
element's attribute (the <input> tag's value attribute). While this is not valid HTML syntax, it is valid JSP 
syntax. Remember that everything not recognized as a JSP element is treated as template text. Whether the 
template text is HTML, XML, WML, or just plain text doesn't matter. As far as the JSP container is concerned, 
the previous code is as valid as: 

 any old template text <jsp:getProperty 
                          name="userInfo" 
                          property="userName" /> more text 

When the JSP page is processed, the action element is replaced with the value of the bean's property. The 
resulting HTML sent to the browser is therefore valid. 



JavaSercer Pages 

  page 53

5.2.3 Formatting HTML Output 

If you enter a value containing double quotes in the Name field of the userinfo2.jsp page, it doesn't work 
right. For example, try "Prince, "the artist"" and you'll see what I mean. Only "Prince," appears in the Name 
field, and the Birth Date field is not shown at all. What's going on here? 

A look at the HTML code generated by the JSP page using your browser's View Source function reveals what's 
wrong: 

 <table> 
   <tr> 
     <td>Name:</td> 
     <td><input type="text" name="userName"  
       value="Prince, "the artist""> 
     </td> 
   </tr> 

In the JSP file, double quotes are used to enclose the value of the <input> element's value attribute, so 
when the value itself includes a double quote, the browser gets confused. The first double quote in the value 
is interpreted as the end of the value. That's why you see only "Prince," in the field. Even worse, the rest of 
the value interferes with the interpretation of the rest of the form, causing the next input field to be ignored 
in most browsers. 

One solution to this problem would be to use single quotes around the values instead, since HTML accepts 
either single quotes or double quotes. But then you would have the same problem if the user enters a value 
that includes a single quote. Fortunately, there's a better way. 

What's needed is special treatment of all characters that can cause HTML interpretation problems when we 
generate HTML from dynamic strings. One way to handle this is to let the bean take care of the special 
treatment. The UserInfoBean can do this through another set of properties: userNameFormatted, 
birthDateFormatted, emailAddrFormatted, sexFormatted, and luckyNumberFormatted. 

These are read-only properties that simply represent formatted versions of the corresponding real property 
values. The bean is designed so that when you use these property names, all troublesome characters in the 
real property values - such as single quotes, double quotes, less-than symbols, greater-than symbols, and 
ampersands - are converted to their corresponding HTML character entities (i.e., &#39;, &#34;, &lt;, &gt;, 
and &amp;). The browser handles the converted values with no problem. If you're curious about the Java code 
for the formatted properties, it's described in Chapter 15. Example 5.5 shows a JSP page that uses the new 
properties. 

It's not always a good idea to have a bean handle this type of formatting, though. A bean is easier to reuse if 
it doesn't contain logic that is specific for one type of use, such as generating strings suitable for HTML. When 
we look at scripting elements and custom actions, we will revisit the subject of HTML formatting and look at 
other solutions to this problem. 

Try the final version of this example by clicking on the "User Info 3 example" link. Now everything works fine, 
even if you happen to be Prince, "the artist." 

 



JavaSercer Pages 

  page 54

Example 5.5. A JSP Page with Validation and Formatting Using a Bean (userinfo3.jsp)  

<%@ page language="java" contentType="text/html" %> 
<html> 
  <head> 
    <title>User Info Entry Form</title> 
  </head> 
  <body bgcolor="white"> 
    <jsp:useBean 
      id="userInfo" 
      class="com.ora.jsp.beans.userinfo.UserInfoBean"> 
      <jsp:setProperty name="userInfo" property="*" /> 
    </jsp:useBean> 
 
    <%-- Output list of values with invalid format, if any --%> 
    <font color="red"> 
      <jsp:getProperty name="userInfo" property="propertyStatusMsg" /> 
    </font> 
 
    <%-- Output form with submitted valid values --%> 
    <form action="userinfo2.jsp" method="post"> 
      <table> 
        <tr> 
          <td>Name:</td> 
          <td><input type="text" name="userName"  
            value="<jsp:getProperty 
                     name="userInfo" 
                     property="userNameFormatted" 
                   />"> 
          </td> 
        </tr> 
        <tr> 
          <td>Birth Date:</td> 
          <td><input type="text" name="birthDate"  
            value="<jsp:getProperty 
                     name="userInfo" 
                     property="birthDateFormatted" 
                   />"> 
          </td> 
          <td>(Use format yyyy-mm-dd)</td> 
        </tr> 
        <tr> 
          <td>Email Address:</td> 
          <td><input type="text" name="emailAddr"  
            value="<jsp:getProperty 
                     name="userInfo" 
                     property="emailAddrFormatted" 
                   />"> 
          </td> 
          <td>(Use format name@company.com)</td> 
        </tr> 
        <tr> 
          <td>Sex:</td> 
          <td><input type="text" name="sex"  
            value="<jsp:getProperty 
                     name="userInfo" 
                     property="sexFormatted" 
                   />"> 
          </td> 
          <td>(Male or female)</td> 
        </tr> 
        <tr> 
          <td>Lucky number:</td> 
          <td><input type="text" name="luckyNumber"  
            value="<jsp:getProperty 
                     name="userInfo" 
                     property="luckyNumberFormatted" 
                   />"> 
          </td> 
          <td>(A number between 1 and 100)</td> 
        </tr> 
        <tr> 
          <td colspan=2><input type="submit"></td> 
        </tr> 
      </table> 
    </form> 
  </body> 
</html> 

 



JavaSercer Pages 

  page 55 

Chapter 6. Using Scripting Elements 

When you develop a JSP-based application, I recommend that you try to place all Java code in JavaBeans, in 
custom actions, or in regular Java classes. However, to tie all these components together, you sometimes 
need additional code embedded in the JSP pages themselves. Recall from Chapter 3, that JSP lets you put 
actual Java code in pages using a set of scripting elements. In this chapter we look at how you can use these 
scripting elements and when it makes sense to do so. 

We start with a brief introduction to the Java language constructs you're likely to use in a JSP page. If you 
already know Java by heart you can safely skip the first section. But if you have never written a Java 
program, or are still a "newbie," you should read it carefully. Don't expect to become a Java guru after 
reading this introduction, of course. The Java language, combined with the standard libraries, provides many 
powerful features not covered here. To learn more about Java, I recommend that you read one of the many 
books dedicated to the language and its libraries, for instance Java in a Nutshell and Java Examples in a 
Nutshell, both by David Flanagan (O'Reilly). 

 

6.1 Java Primer 

You don't have to be a Java expert to develop JSP pages, but it helps to have an understanding of the basic 
concepts. This overview of the Java language and some of the standard classes should be enough to get you 
started. 

6.1.1 Classes and Objects 

Java is an object-oriented language. This means that everything in Java is an object, except for a few 
primitive types such as numbers, characters, and Boolean values. An object is an instance of a class, which 
serves as a source code template describing how the object should behave. It's helpful to think of a class as a 
blueprint from which identical copies (objects) are created. Example 6.1 shows a simple Java class. 

Example 6.1. Simple Java Class  

/** 
 * This is just a simple example of a Java class 
 * with two instance variables, a constructor, and  
 * some methods. 
 */ 
 
public class Rectangle { 
 
  // Data 
  private int width; 
  private int height; 
  // Constructor 
  public Rectangle(int w, int h) { 
    width = w; 
    height = h; 
  } 
  // Methods 
  public int getWidth( ) { 
    return width; 
  } 
  public void setWidth(int w) { 
    width = w; 
  } 
  public int getHeight( ) { 
    return height; 
  } 
  public void setHeight(int h) { 
    height = h; 
  } 
  public double getArea( ) { 
    double area; 
 
    area = width * height; 
    return area; 
  } 
} 

It's important to remember that a class always defines two items: 

• data : a collection of information in an object 

• methods : a set of functions that act on that data 



JavaSercer Pages 

  page 56 

6.1.1.1 Data 

Data, often called variables, can consist of primitive datatypes such as integers, Booleans, and floating-point 
values (both the width and height in this example are integers, represented by the keyword int). In addition, 
data can also be objects. The type value that a variable holds must always be declared. The following 
example declares a variable of the object type String: 

 String title; 

Until you give a variable a value, it contains a default value (0, false, or null). The name of the variable 
must start with a letter followed by a combination of letters and digits. There are many special characters, 
such as dots and plus signs, that are not allowed in a variable name. By convention, variable names often 
start with lowercase letters and do not have spaces: 

 String titleOfBook; 

6.1.1.2 Methods 

Methods are functions that take in zero or more primitive datatypes or objects, and perform some task on the 
object that may or may not result in a return value. If it does, the return value is also a primitive datatype or 
object. Here is an example of a method: 

 public void setHeight(int h) { 
     height = h; 
  } 

This method, called setHeight( ), takes in a single integer, uses it to set the object variable height, and 
returns nothing (note the void keyword before the method name). 

One special method that appears in Example 6.1 is the constructor. The constructor method always shares 
the same name as the class, and its return type is never declared. The constructor allows the object to 
initialize itself; it is invoked when the new keyword is used to create an instance of the class: 

 Rectangle rect1 = new Rectangle(28,72); 

Here we create an instance of the class Rectangle and keep a reference to it in a variable called rect1. The 
new Rectangle object saves the value of the two integer constructor arguments, 28 and 72, in its internal 
variables, width and height. Note that Java is a case-sensitive language: height and Height are not the 
same. The standard naming convention for class names, unlike for variable names, is to capitalize the first 
letter. For both class and variable names, the first letter in internal words is also capitalized; for instance: 

 aVeryLongNameForAVariable      // VARIABLE 
 ANameForAClass                 // CLASS 

6.1.1.3 Statements 

A statement is simply an instruction to do something. For example, the following are statements in Java: 

 area = width * height; 
 return area; 

The first statement takes the value of width and height, multiplies them together, and places the result in 
the variable area. The second statement uses the variable area as the return value for the current method. 
Statements almost always appear inside of methods. In addition, all statements and variable declarations 
must end with a semicolon (;) in Java; this takes after other programming languages, such as C and C++. 



JavaSercer Pages 

  page 57 

6.1.1.4 Inheritance 

Java includes a number of standard classes. For a specific application, you can create your own classes, often 
based on the standard Java classes. Classes can be arranged in a hierarchy, where one class extends the 
functionality of another class. This is one of the fundamental attributes of an object-oriented language, called 
inheritance. A class that extends another class, usually called a subclass, inherits methods and variables from 
the class it extends, usually called the superclass. A subclass can add its own methods, or override the 
existing methods defined in the superclass by creating identical methods in its own class. A typical example is 
a class Vehicle with subclasses Car and Boat. The Vehicle class has a method isLandBound( ), returning 
true. The Car class uses the method as-is, but the Boat class overrides it to return false. This is illustrated 
in Figure 6.1. 

Figure 6.1. Class inheritance 

 

Inheritance lets you write code that works with objects on different levels of abstraction. Let's say the Car 
class adds a method getDoors( ), returning the number of doors for a specific instance of the class. Code 
that works with Vehicle objects can call the isLandBound( ) method and be ignorant about if an object is a 
Car or a Boat, while code dealing exclusively with Car objects can call both the isLandBound( ) and 
getDoors( ) methods: it inherits the former method from Vehicle. 

6.1.2 Primitive Types 

As we mentioned earlier, Java includes a number of primitive types for efficiency. These primitive types are 
listed in the following chart: 

Type Size Values 

int 4 bytes -2,147,483,648 to 2,147,483,647 

short 2 bytes -32,768 to 32,767 

long 8 bytes -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 

byte 1 byte -128 to 127 

float 4 bytes 32-bit IEEE 754 floating-point numbers 

double 8 bytes 64-bit IEEE 754 floating-point numbers 

char 2 bytes Unicode characters 

boolean 1 bit true or false 

 



JavaSercer Pages 

  page 58

6.1.3 Comments 

Java supports two types of comments (Example 6.1 includes both types). 

A comment that spans multiple lines, known as a block comment , starts with the characters /* and ends 
with the characters */: 

 /** 
  * This is just a simple example of a Java class 
  * with two instance variables, a constructor, and  
  * some methods. 
  */ 

Another type of comment is called an end-of-line comment. It starts with two slashes (//) and ends, as the 
name implies, at the end of the same line: 

 // Instance variable 

6.1.4 Standard Classes Commonly Used in JSP Pages 

The Java 2 libraries contain more than 1,500 classes. Don't worry, you don't have to learn about all of them 
to use JSP. The most commonly used standard classes are introduced here. Other classes that you need on 
occasion will be introduced when they are used in the examples in this book. If you would like more 
information, the full documentation for the Java 2 Standard Edition classes is available online at 
http://java.sun.com/j2se/1.3/docs.html. 

6.1.4.1 String and StringBuffer 

The String class represents an immutable string (a series of letters or numerical characters); its value can 
never be changed. A StringBuffer , on the other hand, is intended to be used when you build a string 
dynamically. Note that with the Java language, you can create a String object without using the new 
keyword; instead, just place the contents of the String in quotation marks. 

For example, the following are equivalent: 

 String str1 = new String("The bright day"); 
 String str1 = "The bright day"; 

String is the only object in Java where you can abbreviate its creation this way. 

Some of the most commonly used String methods are: 

public boolean equals(Object anObject)  

Returns true if the target and the argument represent exactly the same sequence of characters. For 
example: 

String hello = new String("hello"); 
hello.equals("hello");  // Returns true 
hello.equals("Hello");  // Returns false 
public boolean equalsIgnoreCase(String anotherString)  

Returns true if the target and the argument represent exactly the same sequence of characters, ignoring 
case. For example: 

String hello = new String("hello"); 
hello.equals("hello"); // Returns true 
hello.equals("Hello"); // Returns true 
public String trim( )  

Returns a new String with all whitespace from both ends of the target String removed. For example: 

String hello = " Hello "; 
String trimmed = hello.trim( ); 
trimmed.equals("Hello");   // Returns true 

http://java.sun.com/j2se/1.3/docs.html


JavaSercer Pages 

  page 59 

Some of the most commonly used StringBuffer methods are: 

public synchronized StringBuffer append(String str)  

Appends the argument to the target. For example: 

StringBuffer buffer = new StringBuffer("Hello"); 
buffer.append(" JSP!");  // New value is "Hello JSP!" 
public String toString( )  

Returns a String representing the data in the target. For example: 

StringBuffer buffer = new StringBuffer("Hello"); 
buffer.append(" JSP!");  // New value is "Hello JSP!" 
String hello = buffer.toString( ); 
hello.equals("Hello JSP!");  // Returns true 

6.1.4.2 Arrays 

An array is a bundling of a number of variables of the same type (a class or a primitive type). In Java, arrays 
are also objects. You create a new array like this: 

 String[] myStrings = new String[4]; 
 int[] myInts = new int[7]; 

The type of component in the array is the type specified before the empty brackets on the left side of the 
equals sign (=). The size of an array is fixed and must be specified within the brackets of the type definition 
following the new keyword. 

You can access the individual components of an array by specifying the index of the component. The indexes 
always begin from and count upward to the defined length minus one: 

 int i = myInts[0]; 

The number of components in an array is available in a variable of the array object named length. You can 
access it like this: 

 int myIntsLength = myInts.length; 

6.1.5 Flow Control Statements 

Flow control statements are used for situations such as testing conditions and looping. Let's briefly look at 
some examples. 

To execute a piece of code only when a condition is true, use the if statement: 

 if ( hello.equals("Hello") ) { 
   // Do something 
 } else { 
   // Do something else 
 } 

The code within parentheses following the if keyword is called an expression : it must be evaluated by the 
Java interpreter to some value, in this case a Boolean true or false value. Here we test if the String 
variable hello equals the string literal "Hello". If it evaluates to true, the block of code between the first 
set of braces is executed. You can optionally use an else clause, like we do in this example, which is 
executed if it evaluates to false. 

In some situations, you can use the conditional operator (?) as an alternative to the if statement: 

 String greeting = (clock.getHours( ) < 12) ?  
   "Good morning" : "Good afternoon"; 



JavaSercer Pages 

  page 60

Here's how it works: first, the code before the ? operator is evaluated. If the result is true, the value 
immediately after the ? is returned. If it's false, the value after the colon is returned. This type of expression 
is more compact than an if statement when the only thing you want is to get one of two values depending 
on a simple condition. 

Other common flow control statements are while and for. They are used to execute a block of code 
repeatedly. Let's look at the while statement first: 

 while (i < myArr.length) { 
   // Do something 
   i = i + 1; 
 } 

Here, the expression following the while keyword is evaluated. If it is true, the code block within the braces 
is executed. After it completes, the expression is evaluated again. If it is still true, the code block is again 
executed. This looping repeats until the expression evalutes to false. 

Here is an example of a for statement: 

 for (int i = 0; i < myArr.length; i++) { 
   // Do something 
 } 

The for statement has three expressions within the parentheses following the for keyword. The first 
expression is executed before anything else; it is typically used to initialize a variable used as an index. The 
expression in the middle must be a Boolean expression. If it evaluates to true, the block of code within 
braces is executed. After each code block iteration, the final statement is executed and the middle expression 
is evaluated again. If it's still true, the body is again executed and the third expression is tested, and so on. 
Note that the final expression is typically used to increment an index variable until the expression in the 
middle evaluates to false, at which point the loop will exit. 

6.1.6 Operators 

Operators are used to assign values to variables, perform numeric operations, and compare values, among 
other things. Java uses the usual operators for numeric addition, subtraction, multiplication, and division: +, -
, *, and /. There are also shortcuts for some common expressions; for instance: 

 i += 3; 

is the same as: 

 i = i + 3; 

and: 

 i++; 

is the same as: 

 i = i + 1; 

The + operator can also be used to concatenate strings: 

 String hello = new String("Hello"); 
 String helloWorld = hello + " World!"; 

This is not the most efficient way of concatenating strings though, so don't overuse it. Where performance is 
critical and you need to concatenate many strings together, it's more efficient to use a StringBuffer: 

 StringBuffer helloWorld = new StringBuffer("Hello"); 
 helloWorld.append(" World!"); 



JavaSercer Pages 

  page 61

The operators for equal (==), not equal (!=), greater than (>), greater than or equal (>=), less than (<), and 
less than or equal (<=) are the same as in many other languages. 

 if (anInt > 2) { 
   // Do something if an int variable value is greater than 2 
 } 

Note that you cannot use the == operator to test if two String objects have the same value. That's because 
the == operator, when used with objects, tests if the variables are referencing the same String object, not if 
the values of two String objects are the same. (== works only when comparing the values of two primitive 
datatypes.) To compare objects with one another you must instead use the equals( ) method described 
earlier: 

 if ( oneString.equals(anotherString) ) { 
   // Do something if the two String values are equal 
 } 

Finally, you can combine comparative expressions using the Boolean operators && (and) and || (or): 

 if ( (i >= 4) && (i <= 10) ) { 
   // Do something if i is between 4 and 10 
 } 

That's it for our brief introduction to programming in the Java language. You should now know enough Java 
programming to follow the remaining examples in this part of the book. 

 

6.2 Implicit JSP Objects 

When you use scripting elements in a JSP page, you always have access to a number of objects (listed in 
Table 6.1) that the JSP container makes available. These are called implicit objects. These objects are 
instances of classes defined by the servlet and JSP specifications. Appendix B, contains complete descriptions 
of all methods for each class, and we will cover them in more detail as we move through the book. However, I 
want to briefly introduce them here, as they are used in a number of examples throughout this book. 

Table 6.1, Implicit JSP Objects  

Variable Name Java Type 

request javax.servlet.http.HttpServletRequest 

response javax.servlet.http.HttpServletResponse 

pageContext javax.servlet.jsp.PageContext 

session javax.servlet.http.HttpSession 

application javax.servlet.ServletContext 

out javax.servlet.jsp.JspWriter 

config javax.servlet.ServletConfig 

page java.lang.Object 

exception java.lang.Throwable 

 



JavaSercer Pages 

  page 62

Here is some more information about each of these implicit objects: 

request  

The request object is an instance of the class named javax.servlet.http.HttpServletRequest. 
This object provides methods that let you access all the information that's available about the current 
request, such as request parameters, attributes, headers, and cookies. We use the request object in a 
couple of examples later in this chapter. 

response  

The response object represents the current response message. It's an instance of the 
javax.servlet.http.HttpServletResponse class, with methods for setting headers and the status 
code and for adding cookies. It also provides methods related to session tracking. These methods are 
the response methods you're most likely to use. We'll look at them in detail in Chapter 8. 

session  

The session object allows you to access the client's session data, managed by the server. It's an 
instance of the javax.servlet.http.HttpSession class. Typically you do not need to directly access 
this object, since JSP also lets you access the session data through action elements, as you will see in 
Chapter 8. One method you may use, however, is invalidate( ) , which explicitly terminates a 
session. An example of this is shown in Chapter 10. 

application  

The application object is another object that you typically access indirectly through action elements. 
It's an instance of the javax.servlet.ServletContext class. This object is used to hold references to 
other objects that more than one user may require access to, such as a database connection shared by 
all application users. It also contains log( ) methods that you can use to write messages to the 
container's log file, as you will see in an example later in this chapter. 

out  

The out object is an instance of javax.servlet.jsp.JspWriter. You can use the print( ) and 
println( ) methods provided by this object to add text to the response message body. We look at an 
example of this later in this chapter. In most cases, however, you will just use template text and JSP 
action elements instead of explicitly printing to the out object. 

exception  

The exception object is available only in error pages and contains information about a runtime error. 
Chapter 7, describes in more detail how you can use this object. 

The remaining three implicit objects (pageContext, config, and page) are so rarely used in scripting 
elements that we will not discuss them here. If you're interested, you can read about them in Appendix B. 

All variable names listed in Table 6.1 are reserved for the implicit objects. If you declare your own variables in 
a JSP page, as you will soon see how to do, you must not use these reserved names for other variables. 

 

6.3 Conditional Processing 

In most web applications, you produce different output based on runtime conditions, such as the state of a 
bean or the value of a request header such as UserAgent (containing information about the type of client that 
is accessing the page). 

If the differences are not too great, you can use JSP scripting elements to control which parts of the JSP page 
are sent to the browser, generating alternative outputs from the same JSP page. However, if the outputs are 
completely different, I recommend using a separate JSP page for each alternative and passing control from 
one page to another. This chapter contains a number of examples in which one page is used. In the 
remainder of this book you'll see plenty of examples where multiple pages are used instead. 



JavaSercer Pages 

  page 63

6.3.1 Using JavaBeans Properties 

In Chapter 5, you saw how to use the <jsp:getProperty> and the <jsp:setProperty> actions to access a 
bean's properties. However, a bean is just a Java class that follows certain coding conventions, so you can 
also call its methods directly. 

Briefly, a bean is a class with a constructor that doesn't take an argument. This makes it possible for a tool, 
such as the JSP container, to create an instance of the bean class simply by knowing the class name. The 
other condition of a bean that we are concerned with is the naming of the methods used to access its 
properties. The method names for reading and writing a property value, collectively known as the bean's 
accessor methods, must be composed of the keywords get and set, respectively, plus the name of the 
property. For instance, you can retrieve the value of a property named month in a bean with the method 
getMonth( ) and set it with the method setMonth( ). Individually, the accessor method for reading a 
property value is known as the getter method, and the accessor method for writing a property value is the 
setter method. A property can be read-only, write-only, or read/write depending on whether a getter method, 
a setter method, or both methods are provided in the class. The Java type for a property, finally, is the type 
returned by the getter method and the type of the setter methods argument. 

To use a bean's property value in a scripting element, call the accessor method directly. To illustrate this, let's 
use one of the properties of the java.util.Date class introduced in Chapter 5. Table 6.2 shows a bean 
property sheet for the hours property. (These tables should be getting clearer now, by the way.) It's a read-
only property of the type int. 

Table 6.2, java.util.Date hours Property  

Property Name Java Type Access Description 

hours int read The hour as a number between 0 (midnight) and 23 

Example 6.2 revisits an example from the first chapter: this page uses the value of this property to greet the 
user with an appropriate message depending on the time of day. 

Example 6.2. Conditional Greeting Page (greeting.jsp)  

 <%@ page language="java" contentType="text/html" %> 
 <html> 
 <body bgcolor="white"> 
 <jsp:useBean id="clock" class="java.util.Date" /> 
 
 <% if (clock.getHours( ) < 12) { %> 
   Good morning! 
 <% } else if (clock.getHours( ) < 17) { %> 
   Good day! 
 <% } else { %> 
   Good evening! 
 <% } %> 
 
 </body> 
 </html> 

As we discussed before, this page will show a different message depending on when you request it. What we 
didn't elaborate on in the first chapter, however, is that this magic is accomplished using a set of JSP scriptlet 
elements. A scriptlet is a block of code enclosed between a scriptlet-start identifier, <%, and an end identifier, 
%>. 

Let's look in detail at Example 6.2. The <jsp:useBean> action is first used to create a bean. Besides making 
the bean available to other actions, such as <jsp:getProperty> and <jsp:setProperty>, the 
<jsp:useBean> action also creates a Java variable that holds a reference to the bean. The name of the 
variable is the name specified by the id attribute, in this case clock. 

The clock bean is then used in four scriptlets, together forming a complete Java if statement with template 
text in the if and else blocks: 

<% if (clock.getHours( ) < 12) { %>  

An if statement, testing if it's before noon, with a block start brace. 

<% } else if (clock.getHours( ) < 17) { %>  



JavaSercer Pages 

  page 64

The if block end brace and an else-if statement, testing if it's before 5:00 P.M., with its block start brace. 

<% } else { %>  

The else-if block end brace, and a final else block start brace, handling the case when it's after 5:00 P.M. 

<% } %>  

The final else block end brace. 

The JSP container combines the code segment in the four scriptlets with code for writing the template text to 
the response body. The end result is that when the first if statement is true, "Good morning!" is displayed; 
when the second if statement is true, "Good day!" is displayed; and if none of the if statements is true, the 
final else block is used, displaying, "Good evening!" 

The tricky part when using scriptlets like this is making sure that all the start and end braces are in place. If 
you miss even one brace, the code that the JSP container generates is not syntactically correct. And 
unfortunately, the error message you get is not always easy to interpret. 

6.3.2 Using Request Information 

Let's look at another example, in which the implicit object request is used to display different messages 
depending on whether the Internet Explorer or Netscape Navigator browser is used. Example 6.3 shows the 
complete page. 

Example 6.3. Browser-Dependent Page (browser.jsp)  

<%@ page language="java" contentType="text/html" %> 
<html> 
<body bgcolor="white"> 
 
<% if (request.getHeader("User-Agent").indexOf("MSIE") != -1) { %> 
  You're using Internet Explorer. 
<%  
   } else  
     if (request.getHeader("User-Agent").indexOf("Mozilla") != 1) {  
%> 
  You're using Netscape. 
<% } else { %> 
  You're using a browser I don't know about. 
<% } %> 
 
</body> 
</html> 

As in Example 6.2, four scriptlets are used to provide the code for the conditional message. The difference is 
the actual if statements used to figure out which type of browser is requesting the page. Let's look at all the 
objects and methods used here. 

The request object is not a bean, since it doesn't follow all the JavaBeans conventions described above, but it 
does provide a number of methods you can use to get information about the request. For instance, the 
request object's getHeader( ) method is used to get the value of a specific request header. Recall that each 
request contains a number of headers that provide detailed information the server may use to process the 
request. In this case, the User-Agent header retrieved in Example 6.2 contains a description of the browser 
making the request. 

The getHeader( ) method returns a String object, so we can then use the indexOf( ) method of the 
String class to look for the piece of a string that identifies the browser. This method returns an integer offset 
from the beginning of the string if the text is found, or -1 if the text is not found. Note that both Internet 
Explorer and Netscape send a description that contains the text "Mozilla", but Internet Explorer also includes 
the text "MSIE", so we must look for "MSIE" first. If we find it, we know it's an Internet Explorer browser. If 
we don't find "MSIE" but find "Mozilla", it's most likely a Netscape browser. The final else block takes care of 
other browsers, such as Lynx and Opera. 



JavaSercer Pages 

  page 65

6.3.3 Working with Arrays 

Another common use of scriptlets is to loop over an array. In Example 6.4, we let the user pick a number of 
items from a group of checkboxes, and then use scriptlets to display all the choices. 

Example 6.4. Looping Over Parameter Array (loop.jsp)  

<%@ page language="java" contentType="text/html" %> 
<html> 
<body bgcolor="white"> 
 
  <form action="loop.jsp"> 
    <input type="checkbox" name="fruits" value="Apple">Apple<br> 
    <input type="checkbox" name="fruits" value="Banana">Banana<br> 
    <input type="checkbox" name="fruits" value="Orange">Orange<br> 
    <input type="submit" value="Enter"> 
  </form> 
 
  <%  
    String[] picked = request.getParameterValues("fruits"); 
    if (picked != null && picked.length != 0) { 
  %> 
      You picked the following fruits: 
      <ul> 
      <%  
        for (int i = 0; i < picked.length; i++) { 
          out.println("<li>" + picked[i]); 
        }  
      %> 
      </ul> 
  <% } %> 
 
</body> 
</html> 

Figure 6.2 shows an example of the resulting page. 

Figure 6.2. Page showing values of multivalue parameter 

 

The first part of the page in Example 6.4 is a regular HTML form, with three checkboxes and a Submit button. 
Again, note that the action of the form is to return to the same page, loop.jsp, but this time with parameter 
values. Then follows three scriptlets. In the first, we use another request method, getParameter-Values ( 
): 

 <%  
   String[] picked = request.getParameterValues("fruits"); 
   if (picked != null && picked.length != 0) { 
 %> 

This method returns a String[] containing all values for the parameter specified as the argument. Here, it's 
the name used for all checkboxes in the form. If no checkbox is selected, this parameter has no value; 
getParameterValues( ) returns null. So before we try to loop through the array, an if statement is used 
to verify that we in fact received at least one value. 



JavaSercer Pages 

  page 66

The next scriptlet contains the actual loop: 

 <% 
     for (int i = 0; i < picked.length; i++) { 
       out.println("<li>" + picked[i]); 
     } 
   } 
 %> 

A for statement is used to process each array component. Here you can also see how the implicit out object 
is used to add content to the response body. 

Again, make sure the braces in the three scriptlets form complete code blocks when they are combined with 
the template text by the JSP container. Note how the start brace for the if block is included in the first 
scriptlet, and the end brace is in the third scriptlet. These braces must balance, or the JSP server will return 
an error. 

 

6.4 Displaying Values 

Besides using scriptlets for conditional output, one more way to employ scripting elements is by using a JSP 
expression element to insert values into the response. A JSP expression element can be used instead of the 
<jsp:getProperty> action in some places, but it is also useful to insert the value of any Java expression that 
can be treated as a String. 

An expression starts with <%= and ends with %>. Note that the only syntax difference compared to a scriptlet 
is the equals sign (=) in the start identifier. An example is: 

 <%= userInfo.getUserName( ) %> 

The result of the expression is written to the response body. One thing is important to note: as opposed to 
statements in a scriptlet, the code in an expression must not end with a semicolon. This is because the JSP 
container combines the expression code with code for writing the result to the response body. If the 
expression ends with a semicolon, the combined code will not be syntactically correct. 

In the final example of Chapter 5, we used <jsp:getProperty> actions to fill out the form fields with 
UserInfoBean values. To recap, it looked like this: 

<tr> 
  <td>Name:</td> 
  <td><input type="text" name="userName"  
    value="<jsp:getProperty 
             name="userInfo" 
             property="userNameFormatted" 
           />"> 
  </td> 
</tr> 

In this case, the <jsp:getProperty> syntax is distracting, since it's used as the value of an HTML element. 
You can use expressions to make the user input form page easier to read. The following example shows the 
same part of the page with the <jsp:getProperty> action replaced with an expression: 

<tr> 
  <td>Name:</td> 
  <td><input type="text" name="userName" 
    value="<%= userInfo.getUserNameFormatted( ) %>" > 
  </td> 
</tr> 

The result is exactly the same, but this is more compact. 

Expressions help you write more compact code, but they can also help you with something even more 
important. The UserInfoBean provides a set of properties with values formatted for HTML output; that's what 
we used in Chapter 5 to avoid confusing the browser with special characters in the bean property values. 
However, it's much easier to reuse a bean if it doesn't need to format its property values for a certain type of 
output. With expressions, we can let the bean be ignorant of how its property values are used, and use a 
utility class to do the formatting instead, as in Example 6.5. 



JavaSercer Pages 

  page 67

Example 6.5. Formatting HTML Output (userinfo4.jsp)  

 <%@ page import="com.ora.jsp.util.*" %> 
   ... 
 <tr> 
   <td>Name:</td> 
   <td><input type="text" name="userName" 
     value="<%= StringFormat.toHTMLString(userInfo.getUserName( )) %>" > 
   </td> 
 </tr> 

This example shows yet another version of the form we first used in Chapter 5. Here a utility class called 
com.ora.jsp.util.StringFormat is used to handle special characters in the property values. I use the term 
utility class for a class that doesn't represent an entity such as a customer, order, or product. Instead, it's 
just a collection of useful methods. In this case, the StringFormat class simply contains methods for 
formatting strings. All of its methods are described in Appendix C. 

The StringFormat class has a method called toHTMLString( ). It formats its argument for HTML output the 
same way as the UserInfoBean does, converting all HTML special characters to the corresponding HTML 
character entities. Here we pass it the unformatted property value by calling the bean's regular property 
getter method. Using this utility class, the ties between the UserInfoBean and HTML can be removed and the 
formatting can be done where it belongs. 

6.4.1 Packages 

You may have noticed that the full name of the class in Example 6.5 is com.ora.jsp.util.StringFormat, 
but in the expression it's simply referred to as StringFormat. This requires an explanation. 

A large application may use many different classes, some of them part of the standard Java libraries, and 
others developed in-house or by third parties. To organize all these classes, Java provides the notion of a 
package. A package is a group of related classes. The fully qualified name of a class is the combination of the 
package name and the class name. For instance, the fully qualified name of the class used in Example 6.5 is 
com.ora.jsp.util.StringFormat. You can always use the fully qualified name in your Java code, but to 
save you some typing, you can also import a package and then refer to the class with just the short class 
name. If you look at the top of Example 6.5, you see a page directive with the import attribute set to the 
name of the package the StringFormat class belongs to: 

 <%@ page import="com.ora.jsp.util.*" %> 

Importing a package doesn't mean that it's physically included in the page. It only tells Java to look for 
classes with short names in the named package. You can use multiple page directives with import attributes 
in the same page, or use one with a comma-separated list of import declarations, if you need to import more 
than one package. In other words, this directive: 

 <%@ page import="java.util.*, com.ora.jsp.util.*" %> 

has the same effect as these two directives: 

 <%@ page import="java.util.* " %> 
 <%@ page import="com.ora.jsp.util.*" %> 

6.4.2 Checking Off Checkboxes Dynamically 

In Example 6.4, a for statement is used to loop through an array, but arrays can also be used in many other 
ways. If the array represents choices the user can make at one time and change at a later time, a form for 
changing the information can contain a set of checkboxes with the current choices checked off. An application 
like this typically gets the current choices from a database, and you will see an example of this in Chapter 10. 
To demonstrate a technique for dynamically checking off checkboxes in a form, however, we keep it simple 
and use the String[] with fruit choices from Example 6.4. 

Example 6.6 is a modified version of the loop example. 



JavaSercer Pages 

  page 68

Example 6.6. Setting Checkbox Values Dynamically (checkbox.jsp)  

<%@ page language="java" contentType="text/html" %> 
<%@ page import="com.ora.jsp.util.*" %> 
<html> 
<body bgcolor="white"> 
 
  <form action="checkbox.jsp"> 
    <input type="checkbox" name="fruits" value="Apple">Apple<br> 
    <input type="checkbox" name="fruits" value="Banana">Banana<br> 
    <input type="checkbox" name="fruits" value="Orange">Orange<br> 
    <input type="submit" value="Enter"> 
  </form> 
 
  <%  
    String[] picked = request.getParameterValues("fruits"); 
    if (picked != null && picked.length != 0) { 
  %> 
      You picked the following fruits: 
      <form> 
        <input type="checkbox" name="fruits" value="Apple" 
          <%= ArraySupport.contains(picked, "Apple") ?  
          "checked" : "" %> >Apple<br> 
        <input type="checkbox" name="fruits" value="Banana" 
          <%= ArraySupport.contains(picked, "Banana") ?  
             "checked" : "" %> >Banana<br> 
        <input type="checkbox" name="fruits" value="Orange" 
          <%= ArraySupport.contains(picked, "Orange") ?  
             "checked" : "" %> >Orange<br> 
      </form> 
  <% } %> 
</body> 
</html> 

Here, the loop is replaced with a second form with the same checkboxes as in the form at the top of the page. 
A browser shows a checkbox as checked off if the HTML <input> element includes the checked keyword. The 
trick, then, is to add that keyword for all checkboxes in the second form that the user had checked off in the 
first form. 

The result of this example is shown in Figure 6.3. 

Figure 6.3. Setting checkboxes dynamically  

 

Another utility class from the com.ora.jsp.util package, ArraySupport, has the method contains( ). This 
method takes two arguments: a String[] (string array) and the String that you want to test to see if it's a 
component in that array. If the second argument is a component in the array, the method returns true. 

The contains( ) method is used in JSP expressions in Example 6.6, inserted in the middle of each HTML 
<input> element. The expressions use the conditional operator (?) described in the Java primer earlier in this 
chapter. As you may recall, the expression before the operator is first evaluated. If the result is true, the 
expression returns the value after the ?. If it's false, the value after the colon is returned. Here the result is 
that if the array contains the choice represented by the checkbox, the checked attribute is inserted to render 
the checkbox as checked. Otherwise, an empty string is inserted, leaving the checkbox unchecked. 



JavaSercer Pages 

  page 69

6.4.3 Using More Request Methods 

We have already used one of the methods of the implicit request object, but this object provides a wealth of 
information you may be interested in. So let's use some more request methods. 

Example 6.7 shows a page with a number of JSP expressions, each one displaying a piece of information 
about the current request. 

Example 6.7. Displaying Request Info (reqinfo.jsp)  

<%@ page language="java" contentType="text/html" %> 
<html> 
  <body bgcolor="white"> 
 
    The following information was received: 
    <ul> 
      <li>Request Method: <%= request.getMethod( ) %> 
      <li>Request URI: <%= request.getRequestURI( ) %> 
      <li>Request Protocol: <%= request.getProtocol( ) %> 
      <li>Servlet Path: <%= request.getServletPath( ) %> 
      <li>Query String: <%= request.getQueryString( ) %> 
      <li>Server Name: <%= request.getServerName( ) %> 
      <li>Server Port: <%= request.getServerPort( ) %> 
      <li>Remote Address: <%= request.getRemoteAddr( ) %> 
      <li>Remote Host: <%= request.getRemoteHost( ) %> 
      <li>Browser Type: <%= request.getHeader("User-Agent") %> 
    </ul> 
  </body> 
</html> 

If you don't remember what some of these things mean, look back at Chapter 2. (The methods are also 
described in Appendix B.) Figure 6.4 shows an example of the output from this page. 

Figure 6.4. Request information page 

 

6.5 Using an Expression to Set an Attribute 

In all our JSP action element examples so far, the attributes are set to literal string values. But in many 
cases, the value of an attribute is not known when you write the JSP page; instead, the value must be 
calculated when the JSP page is requested. For situations like this, you can use a JSP expression as an 
attribute value. This is called a request-time attribute value. Here is an example of how this can be used to 
set an attribute of a fictitious log entry bean: 

 <jsp:useBean id="logEntry" class="com.foo.LogEntryBean" /> 
 <jsp:setProperty name="logEntry" property="entryTime" 
   value="<%= new java.util.Date( ) %>" /> 
 ... 



JavaSercer Pages 

  page 70

This bean has a property named entryTime that holds a timestamp for a log entry, while other properties 
hold the information to be logged. To set the timestamp to the time when the JSP page is requested, a 
<jsp:setProperty> action with a request-time attribute value is used. 

The attribute value is represented by the same type of JSP expression as in the previous snippet, here an 
expression that creates a new java.util.Date object (representing the current date and time). The request-
time attribute is evaluated when the page is requested, and the corresponding attribute is set to the result of 
the expression. As you might have guessed, any property you set this way must have a Java type matching 
the result of the expression. In this case, the entryDate property must be of type java.util.Date. 

Not all attributes support request-time values. One reason is that some attribute values must be known when 
the page is converted into a servlet. For instance, the class attribute value in the <jsp:useBean> action 
must be known in the translation phase so that the JSP container can generate valid Java code for the servlet. 
Request-time attributes also require a bit more processing than static string values, so it's up to the custom 
action developer to decide if request-time attribute values are supported or not. Appendix A, shows which 
attributes for the standard actions accept request-time attributes, and Appendix C provides the same 
information for the custom actions used in this book. If you're a programmer, you may also want to skip 
ahead to Chapter 16, to see how to declare that an attribute in a custom action accepts request-time 
attributes. 

 

6.6 Declaring Variables and Methods 

We have used two of the three JSP scripting elements in this chapter: scriptlets and expressions. There's one 
more, called a declaration element, which is used to declare Java variables and methods in a JSP page. My 
advice is this: don't use it. Let me explain why. 

Java variables can be declared either within a method or outside the body of all methods, like this: 

 public class SomeClass { 
   // Instance variable 
   private String anInstanceVariable; 
  
   // Method 
   public void doSomething( ) { 
     String aLocalVariable; 
   } 
 } 

A variable declared outside the body of all methods is called an instance variable. Its value can be accessed 
from any method in the class, and it keeps its value even when the method that sets it returns. A variable 
declared within the body of a method is called a local variable. A local variable can be accessed only from the 
method where it's declared. When the method returns, the local variable disappears. 

Recall from Chapter 3 that a JSP page is turned into a servlet class when it's first requested, and the JSP 
container creates one instance of this class. If the same page is requested by more than one user at a time, 
the same instance is used for each request. Each user is assigned what is called a thread in the server, and 
each thread executes the main method in the JSP object. When more than one thread executes the same 
code, you have to make sure the code is thread-safe. This means that the code must behave the same when 
many threads are executing as when just one thread executes the code. 

Multithreading and thread-safe code strategies are best left to programmers. However, you should know that 
using a JSP declaration element to declare variables exposes your page to multithreading problems. That's 
because a variable declared using a JSP declaration element ends up as an instance variable in the generated 
servlet, not as a local variable in a method. Since an instance variable keeps its value when the method 
executed by a thread returns, it is visible to all threads executing code in the same instance. If one thread 
changes the value of the instance variable, the value is changed for all threads. To put this in JSP terms, if 
the instance variable is changed because one user accesses the page, all users accessing the same page will 
use the new value. 

When you declare a variable within a scriptlet element instead of in a JSP declaration block, the variable ends 
up as a local variable in the generated servlet's request processing method. Each thread has its own copy of a 
local variable, so local variables can't cause any problems if more than one thread executes the same code. If 
the value of a local variable is changed, it will not affect the other threads. 



JavaSercer Pages 

  page 71

That being said, let's look at a simple example. We use two int variables: one declared as an instance 
variable using a JSP expression, and the other declared as a local variable. We increment them both by one 
and display the new values. Example 6.8 shows the test page. 

Example 6.8. Using a Declaration Element (counter.jsp)  

 <%@ page language="java" contentType="text/html" %> 
 <%!  
   int globalCounter = 0;  
 %> 
 <html> 
   <head> 
     <title>A page with a counter</title> 
   </head> 
   <body bgcolor="white"> 
     This page has been visited: <%= ++globalCounter %> times. 
     <p> 
     <%  
       int localCounter = 0; 
     %> 
     This counter never increases its value: <%= ++localCounter %> 
   </body> 
 </html> 

The JSP declaration element is right at the beginning of the page, starting with <%! and ending with %>. Note 
the exclamation point (!) in the start identifier; that's what makes it a declaration as opposed to a scriptlet. 
The declaration element declares an instance variable named globalCounter, shared by all requests for the 
page. In the body section of the page, a JSP expression increments the variable's value. Next comes a 
scriptlet, enclosed by <% and %>, that declares a local variable named localCounter. The last scriptlet 
increments the value of the local variable. 

When you run this example, the globalCounter value increases every time you load the page, but 
localCounter stays the same. Again, this is because globalCounter is an instance variable (its value is 
available to all requests and remains between requests) while localCounter is a local variable (its value is 
available only to the current request and is dropped when the request ends). 

In this example, nothing terribly bad happens if more than one user hits the page at the same time. The 
worst that could happen is that you skip a number or show the same globalCounter value twice. This can 
happen if two requests come in at the same time, and both requests increment the value before it's inserted 
in the response. You can imagine the consequences, however, if you use an instance variable to save 
something more important, such as a customer's credit card number or other sensitive information. So even 
though it may be tempting to create an instance variable (using a JSP expression) to keep a value such as a 
counter between requests, I recommend that you stay away from this technique. We'll look at better ways to 
share information between requests in Chapter 8. 

A JSP declaration element can also be used to declare a method that can then be used in scriptlets in the 
same page. The only harm this could cause is that your JSP pages end up containing too much code, making 
it hard to maintain the application. A far better approach is to use JavaBeans and custom actions. But to be 
complete, Example 6.9 shows an example of how it can be done. 

Example 6.9. Method Declaration and Use (color.jsp)  

 <%@ page language="java" contentType="text/html" %> 
 <html> 
 <body bgcolor="white"> 
  
   <%! 
     String randomColor( ) { 
       java.util.Random random = new java.util.Random( ); 
       int red = (int) (random.nextFloat( ) * 255); 
       int green = (int) (random.nextFloat( ) * 255); 
       int blue = (int) (random.nextFloat( ) * 255); 
       return "#" +  
         Integer.toString(red, 16) +  
         Integer.toString(green, 16) +  
         Integer.toString(blue, 16); 
     } 
   %> 
  
   <h1>Random Color</h1> 
  
     <table bgcolor="<%= randomColor( ) %>" > 
       <tr><td width="100" height="100">&nbsp;</td></tr> 
     </table> 
  
 </body> 
 </html> 



JavaSercer Pages 

  page 72

The method named randomColor( ), declared between <%! and %>, returns a randomly generated String in 
a format that can be used as an HTML color value. This method is then called from an expression element to 
set the background color for a table. Every time you reload this page, you see a single table cell with a 
randomly selected color. 

6.6.1 jspInit( ) and jspDestroy( ) 

You may remember from Chapter 2 that a servlet has two methods that the container calls when the servlet 
is loaded and shut down. These methods are called init( ) and destroy( ), and they allow the servlet to 
initialize instance variables when it's loaded and clean up when it's shut down, respectively. As you already 
know, a JSP page is turned into a servlet, so it has the same capability. However, with JSP, the methods are 
called jspInit( ) and jspDestroy( ) instead. 

Again, I recommend that you do not declare any instance variables for your JSP pages. If you follow this 
advice, there's also no reason to declare the jspInit( ) and jspDestroy( ) methods. But I know you're 
curious, so here's an example of how they can be used. 

Expanding on Example 6.8, the jspInit( ) method can be used to set an instance variable to a 
java.util.Date( ) object, which represents the date and time when the page is loaded. This variable can 
then be used in the page to show when the counter was started: 

<%@ page language="java" contentType="text/html" %> 
<%@ page import="java.util.Date" %> 
<%!  
  int globalCounter = 0;  
  Date startDate; 
 
  public void jspInit( ) { 
    startDate = new Date( ); 
  } 
 
  public void jspDestroy( ) { 
    ServletContext context = getServletConfig( ).getServletContext( ); 
    context.log("test.jsp was visited " + globalCounter + 
      " times between " + startDate + " and " + (new Date( ))); 
  } 
%> 
<html> 
  <head> 
    <title>A page with a counter</title> 
  </head> 
  <body bgcolor="white"> 
    This page has been visited: <%= ++globalCounter %> times 
    since <%= startDate %>. 
  </body> 
</html> 

The jspDestroy( ) method retrieves a reference to the ServletContext for the page and writes a message 
to the container's log file. If you recall that the implicit application variable contains a reference to the 
ServletContext, you may be wondering why it's not used here. The reason is that the implicit variables are 
available only in the method that the JSP container generates to process the page requests, not in the 
methods that you declare yourself. 

 

 

 

 

 

 

 

 

 



JavaSercer Pages 

  page 73

 

Why Two Notations? 

You may have noticed that two different notations are used for the different JSP elements: XML-style 
notation, like <jsp:useBean>, for action elements, and <% %> notation for directives and scripting 
elements. If you're a purist, you may be wondering why the authors of the JSP specification mixed 
styles like this. Given that XML seems to be the future for all markup languages, why not use XML 
notation for all JSP elements? 

There are two good reasons for not using the XML notation for directives and scripting elements: 

• Scripting elements contain scripting code, and many characters used in code are not valid in 
an XML document. If XML notation were used for the scripting elements, you would have to 
manually encode characters like < and > so they wouldn't be mistaken for XML control 
characters. That would be messy and a source of pernicious errors. 

• The <%@ directive %>, <% code %>, <%= expression %>, and <%! declaration %> notations 
are familiar for many developers since they are also used in Microsoft's Active Server Pages 
(ASP). 

JSP actually defines XML-style equivalents for directives and scripting elements. But the XML notation 
for these elements is intended to be used only by tools that generate complete JSP pages. The tools 
can handle encoding of special characters automatically, as well as a number of other details needed 
to make a JSP page a well-formed XML document. The XML style is also not completely defined in JSP 
1.1; therefore, a JSP 1.1 container is not required to support it. 

 
 
 



JavaSercer Pages 

  page 74

Chapter 7. Error Handling and Debugging 

When you develop any application that's more than a trivial example, errors are inevitable. A JSP-based 
application is no exception. There are many types of errors you will deal with. Simple syntax errors in the JSP 
pages are almost a given during the development phase. And even after you have fixed all the syntax errors, 
you may still have to figure out why the application doesn't work as you intended due to design mistakes. The 
application must also be designed to deal with problems that can occur when it's deployed for production use. 
Users can enter invalid values and try to use the application in ways you never imagined. External systems, 
such as databases, can fail or become unavailable due to network problems. 

Since a web application is the face of a company, making sure it behaves well, even when the users 
misbehave and the world around it falls apart, is extremely important for a positive customer perception. 
Proper design and testing is the only way to accomplish this goal. Unfortunately, many developers seem to 
forget the hard-learned lessons from traditional application development when designing web applications. 
For instance, a survey of 100 e-commerce managers, conducted by InternetWeek magazine (April 3, 2000 
issue), shows that 50% of all web site problems were caused by application coding errors. That's the highest 
ranking reason in the survey, ahead of poor server performance (38%), poor service provider performance 
(35%), and poor network performance (22%). 

In this chapter, we look at the types of problems you can expect during development, as well as those 
common in a production system. We see how you can track down JSP syntax and design errors, and how to 
deal with runtime problems in a graceful manner. 

 

7.1 Dealing with Syntax Errors 

The first type of error you will encounter is the one you, or your co-workers, create by simple typos: in other 
words, syntax error. The JSP container needs every JSP element to be written exactly as it's defined in the 
specification in order to turn the JSP page into a valid servlet class. When it finds something that's not right, 
it will tell you. But how easy it is to understand what it tells you depends on the type of error, the JSP 
container implementation, and sometimes, on how fluent you are in computer gibberish. 

7.1.1 Element Syntax Errors 

Let's first look at how Tomcat reports some typical syntax errors in JSP directives and action elements. 
Example 7.1 shows a version of the date.jsp page from Chapter 5, with a syntax error. 

Example 7.1. Improperly Terminated Directive (error1.jsp)  

<%@ page language="java" contentType="text/html" > 
<html> 
<body bgcolor="white"> 
<jsp:useBean id="clock" class="java.util.Date" /> 
 
The current time at the server is: 
<ul> 
<li>Date: <jsp:getProperty name="clock" property="date" /> 
<li>Month: <jsp:getProperty name="clock" property="month" /> 
<li>Year: <jsp:getProperty name="clock" property="year" /> 
<li>Hours: <jsp:getProperty name="clock" property="hours" /> 
<li>Minutes: <jsp:getProperty name="clock" property="minutes" /> 
</ul> 
 
</body> 
</html> 

The syntax error here is that the page directive on the first line is not closed properly with %>; the percent 
sign is missing. Figure 7.1 shows what Tomcat has to say about it. 



JavaSercer Pages 

  page 75

Figure 7.1. Error message about an unterminated JSP directive 

 

Tomcat reports the error by sending an error message to the browser. This is the default behavior for 
Tomcat, but it's not mandated by the JSP specification. The specification requires only that a response with 
the HTTP status code for a severe error (500) is returned, but how a JSP container reports the details is 
vendor-specific. For instance, the error message can be written to a file instead of to the browser. If you use 
a container other than Tomcat, check the container documentation to see how it reports these types of errors. 

The actual error message in Figure 7.1 is what is called an exception stack trace. When something goes really 
wrong in a Java method, it typically throws an exception. An exception is a special Java object, and throwing 
an exception is the method's way of saying it doesn't know how to handle a problem. Sometimes another part 
of the program can take care of the problem in a graceful manner, but in many cases the best that can be 
done is to tell the user about it and move on. That's what the Tomcat container does when it finds a problem 
with a JSP page during the translation phase: it sends the exception stack trace to the browser. The stack 
trace contains a message about what went wrong and where the problem occurred. The message is intended 
to be informative enough for a user to understand, but the actual trace information is of value only to a 
programmer. As you can see in Figure 7.1, the message is: 

 D:\ch7\error1.jsp(0,49) Unterminated <%@ tag 

The first part of the message is the name of the JSP page. The numbers within parentheses indicate on which 
line and character position in the file the error was found (both the line and the position are numbered from 
0), and then the message states what the problem is. So this message tells us that a directive on the first line 
(a tag starting with <@) is not terminated as expected at position 49. And in this case it's both the correct 
diagnosis and the right location. 

It's not always this easy to interpret the error message, though. Example 7.2 shows another version of 
date.jsp with a different syntax error. 



JavaSercer Pages 

  page 76

Example 7.2. Improperly Terminated Action (error2.jsp)  

<%@ page language="java" contentType="text/html" %> 
<html> 
<body bgcolor="white"> 
<jsp:useBean id="clock" class="java.util.Date" > 
 
The current time at the server is: 
<ul> 
<li>Date: <jsp:getProperty name="clock" property="date" /> 
<li>Month: <jsp:getProperty name="clock" property="month" /> 
<li>Year: <jsp:getProperty name="clock" property="year" /> 
<li>Hours: <jsp:getProperty name="clock" property="hours" /> 
<li>Minutes: <jsp:getProperty name="clock" property="minutes" /> 
</ul> 
 
</body> 
</html> 

The syntax error here is almost the same as the "unterminated tag" in Example 7.1, but now it's the 
<jsp:useBean> action element that's not terminated properly (it's missing the closing slash). The message 
reported by Tomcat in this case is: 

 D:\ch7\error2.jsp(16,0) useBean tag must begin and end in the same physical file 

This is not as easy to relate to the actual location of the error. The line and position information points to the 
last character in the file. The reason for this is that since the action element doesn't have a body, the opening 
tag must end with />, as you may remember from Chapter 5. But in Example 7.2, it's terminated with just >. 
Since that's valid syntax for a JSP action that contains a body, the JSP container can't tell that it's a syntax 
error at this point. Instead it treats it as the opening tag for an element with a body, and complains that it 
can't find the closing tag before the file ends. In this case, it's still not too hard to figure out what the real 
problem is, but if you have multiple <jsp:useBean> elements in the same file, it can be more complicated. 

Another common error is a typo in an attribute name, as shown in Example 7.3. In the first 
<jsp:getProperty> action, the name attribute is missing the e. 

Example 7.3. Mistyped Attribute Name (error3.jsp)  

<%@ page language="java" contentType="text/html" %> 
<html> 
<body bgcolor="white"> 
<jsp:useBean id="clock" class="java.util.Date" /> 
 
The current time at the server is: 
<ul> 
<li>Date: <jsp:getProperty nam="clock" property="date" /> 
<li>Month: <jsp:getProperty name="clock" property="month" /> 
<li>Year: <jsp:getProperty name="clock" property="year" /> 
<li>Hours: <jsp:getProperty name="clock" property="hours" /> 
<li>Minutes: <jsp:getProperty name="clock" property="minutes" /> 
</ul> 
 
</body> 
</html> 

Tomcat reports the problem like this: 

 D:\ch7\error3.jsp(7,10) getProperty: Mandatory attribute name missing 

In this case, the typo is in the name of a mandatory attribute, so Tomcat reports it as missing. If the typo is 
in the name of an optional attribute, Tomcat reports it as an invalid attribute name. 

The examples here are the most common ones for JSP actions, and as you can see, Tomcat can give you 
pretty good information about what's wrong in these cases. But this is still an area where I expect many 
improvements to be implemented in later versions of Tomcat as well as other JSP containers. The JSP 
authoring tools that are emerging now also help. By providing GUI-based interfaces that generate the action 
elements automatically, they can eliminate this type of syntax problem. 



JavaSercer Pages 

  page 77

7.1.2 Scripting Syntax Errors 

So far, so good, right? Not quite. Unfortunately, syntax errors in scripting elements result in error messages 
that are much harder to interpret. This is because of the way the JSP container deals with scripting code when 
it converts a JSP page into a servlet. The container reads the JSP page and generates servlet code by 
replacing all JSP directives and actions with code that produces the appropriate result. To do this, it needs to 
analyze these types of elements in detail. If there's a syntax error in a directive or action element, it can 
easily tell which element is incorrect (as you saw in the previous section). 

Scripting elements, on the other hand, are more or less used as-is in the generated servlet code. A syntax 
error in scripting code is not discovered when the JSP page is read, but instead when the generated servlet is 
compiled. The compiler reports an error in terms of its location in the generated servlet code (as opposed to 
the location in the JSP page), with messages that don't always make sense to a JSP page author. Let's look at 
some examples to illustrate this. 

Example 7.4 shows a modified version of the greeting.jsp page from Chapter 6. The last scriptlet, with a 
brace closing the last else block, is missing. 

Example 7.4. Missing End Brace (error4.jsp)  

<%@ page language="java" contentType="text/html" %> 
<html> 
<body bgcolor="white"> 
<jsp:useBean id="clock" class="java.util.Date" /> 
 
<% if (clock.getHours( ) < 12) { %> 
  Good morning! 
<% } else if (clock.getHours( ) < 17) { %> 
  Good day! 
<% } else { %> 
  Good evening! 
 
</body> 
</html> 

This is the error description Tomcat sends to the browser (with some line breaks added to make it fit the 
page): 

org.apache.jasper.JasperException: Unable to compile class for JSP 
D:\tmp\Tomcat\jakarta-tomcat\work\localhost_8080%2Fora\ 
_0002fch_00037_0002ferror_00034_0002ejsperror4_jsp_0.java:105:  
'catch' without 'try'. 
        } catch (Exception ex) { 
          ^ 
D:\tmp\Tomcat\jakarta-tomcat\work\localhost_8080%2Fora\ 
_0002fch_00037_0002ferror_00034_0002ejsperror4_jsp_0.java:114:  
'try' without 'catch' or 'finally'. 
} 
^ 
D:\tmp\Tomcat\jakarta-tomcat\work\localhost_8080%2Fora\ 
_0002fch_00037_0002ferror_00034_0002ejsperror4_jsp_0.java:114:  
'}' expected. 
} 
 ^ 
3 errors 

This message probably doesn't make much sense to you. First of all, the filename is not the name of the JSP 
page, it's the name of the generated servlet, which contains sequence numbers and special encodings to 
make it a unique filename. Part of the name corresponds to the JSP page name, but a different JSP container 
than Tomcat may not use the same kind of naming convention, so there's no guarantee that this is true for all 
containers. Secondly, the line numbers listed are line numbers in the generated servlet source code file, not 
the line numbers in the JSP file. And lastly, the error message refers to 'catch' without 'try', which doesn't 
seem to match any code in the JSP page scriptlets. That's because the code with the missing brace is inserted 
into the block of code that outputs template text, invokes actions, and so forth - so the compiler gets 
confused about what the real problem is. 

How can you find the real problem when you get this type of message? If you know how to program Java, 
you can look at the generated servlet source file and try to figure out what's really wrong. Most JSP 
containers can be configured to save the generated source code for you to look at. For Tomcat, it's the default 
behavior, and the complete name of the file is shown in the error message. 



JavaSercer Pages 

  page 78

But if you're not a programmer, the only thing you can do is to study all scriptlets in your JSP page carefully 
and try to figure out what's wrong. That's not always easy, and it's yet another reason to avoid scripting in 
your JSP pages in the first place. When you have to use scripting, use only extremely simple code and be 
very careful with the syntax. 

Let's look at couple of other common syntax errors so you at least know the types of messages to expect. 
Example 7.5 shows a version of the browser.jsp file from Chapter 6 in which a closing parenthesis for the first 
if statement is missing. 

Example 7.5. Missing Closing Parenthesis (error5.jsp)  

<%@ page language="java" contentType="text/html" %> 
<html> 
<body bgcolor="white"> 
 
<% if (request.getHeader("User-Agent").indexOf("MSIE") != -1 { %> 
  You're using Internet Explorer. 
<%  
   } else  
     if (request.getHeader("User-Agent").indexOf("Mozilla") != 1) {  
%> 
  You're using Netscape. 
<% } else { %> 
  You're using a browser I don't know about. 
<% } %> 
 
</body> 
</html> 

The error message for this type of error is a bit easier to understand: 

org.apache.jasper.JasperException: Unable to compile class for JSP 
D:\tmp\Tomcat\jakarta-tomcat\work\localhost_8080%2Fora\ 
_0002fch_00037_0002ferror_00035_0002ejsperror5_jsp_0.java:61:  
')' expected. 
  if (request.getHeader("User-Agent").indexOf("MSIE") != -1 {  
                                                           ^ 
D:\tmp\Tomcat\jakarta-tomcat\work\localhost_8080%2Fora\ 
_0002fch_00037_0002ferror_00035_0002ejsperror5_jsp_0.java:68:  
'else' without 'if'. 
  } else  
    ^ 
2 errors 

Here the syntax error doesn't cause any strange side effect errors when the scripting code is combined with 
other generated code, as the error in Example 7.4 did. Instead, the message shows the code fragment where 
the real error is located. 

Another typical mistake is shown in Example 7.6. It's a part of the reqinfo.jsp page from Chapter 6. 

Example 7.6. Scriptlet Instead of Expression (error6.jsp)  

<%@ page language="java" contentType="text/html" %> 
<html> 
<body bgcolor="white"> 
 
  The following information was received: 
  <ul> 
    <li>Request Method: <%= request.getMethod( ) %> 
    <li>Request URI: <% request.getRequestURI( ) %> 
    <li>Request Protocol: <%= request.getProtocol( ) %> 
  </ul> 
</body> 
</html> 



JavaSercer Pages 

  page 79

This is simply a case where the opening tag for a JSP expression (<%=) has been mistakenly written as the 
opening tag for a JSP scriptlet (<%). It looks like an innocent error, but the error message does not give you 
much help to find it: 

org.apache.jasper.JasperException: Unable to compile class for JSP 
D:\tmp\Tomcat\jakarta-tomcat\work\localhost_8080%2Fora\ 
_0002fch_00037_0002ferror_00036_0002ejsperror6_jsp_0.java:67:  
Invalid type expression. 
                 request.getRequestURI( )  
                                      ^ 
D:\tmp\Tomcat\jakarta-tomcat\work\localhost_8080%2Fora\ 
_0002fch_00037_0002ferror_00036_0002ejsperror6_jsp_0.java:70:  
Invalid declaration. 
                out.write("\r\n     
  Request Protocol: "); 
                         ^ 
2 errors 

Again, the scripting code and the generated code clash, resulting in a message that's hard to understand; but 
at least you can recognize the code from the JSP page and try to see what's really wrong. 

The misleading and confusing error messages reported for scripting syntax errors are, in my opinion, a big 
problem, and one that's hard to solve completely, even with better JSP container implementations and tools. 
It can be minimized, for instance by providing information about where in the JSP page the error is 
introduced, but it's always hard for a container to pinpoint the real problem when scripting code is mixed with 
other generated code. My only advice at this point is (again) to avoid scripting code as much as possible. 

 

7.2 Debugging a JSP-Based Application 

After you have fixed all syntax errors, pat yourself on the back and enjoy the moment. If the application is 
more than a trivial example, however, this moment will probably be short-lived: you will likely find that one 
or more things still don't work as you expected. Logic errors, such as not taking care of all possible input 
combinations, can easily slip into an application during development. Finding and correcting this type of 
problem is called debugging. 

For applications developed in compiled languages such as Java, C, or C++, a tool called a debugger is often 
used in this phase. A debugger steps through the program line by line or runs until it reaches a break point 
that you have defined, and lets you inspect the values of all variables in the program. With careful analysis of 
the program flow in runtime, you can discover why it works the way it does, and not the way you want it to. 
There are debuggers for JSP as well, such as IBM's Visual Age for Java. This product lets you debug a JSP 
page exactly the same way as you would a program written in a more traditional programming language. 

But a real debugger is often overkill for JSP pages. If your pages are so complex that you feel you need a 
debugger, you may want to move code from the pages into JavaBeans or custom actions instead. These 
components can then be debugged with a standard Java debugger, which can be found in most Java 
Interactive Development Environments (IDEs). To debug JSP pages, another time-tested debugging approach 
is usually sufficient: simply add code to print variable values to the screen. 

Example 7.7 shows how you can use this approach to find an error in a modified version of the browser.jsp 
page from Chapter 6. 

Example 7.7. Testing Header Values in the Wrong Order (browser.jsp)  

<%@ page language="java" contentType="text/html" %> 
<html> 
<body bgcolor="white"> 
 
<% if (request.getHeader("User-Agent").indexOf("Mozilla") != -1) { %> 
  You're using Netscape. 
<%  
   } else  
     if (request.getHeader("User-Agent").indexOf("MSIE") != 1) {  
%> 
  You're using Internet Explorer. 
<% } else { %> 
  You're using a browser I don't know about. 
<% } %> 
 
</body> 
</html> 



JavaSercer Pages 

  page 80

If you run this example in a Netscape browser, it responds with "You're using Netscape," as expected. The 
problem is that if you run it with Internet Explorer, you get the same response. Clearly there's something 
wrong with the way the User-Agent header value is tested. 

To find out why it doesn't work with Internet Explorer, you can add a one-line JSP expression that includes 
the value of the User-Agent header in the response: 

 <%@ page language="java" contentType="text/html" %> 
 <html> 
 <body bgcolor="white"> 
  
 User-Agent header value: <%= request.getHeader("User-Agent") %> 
 <p> 
 ... 

The result is shown in Figure 7.2. 

Figure 7.2. Response with debug output 

 

Now it's clear why it doesn't work: the User-Agent header value set by Internet Explorer also contains the 
string "Mozilla". So the test in the JSP page must be reversed, first looking for the string "MSIE" (to identify 
Internet Explorer) and looking for "Mozilla" only if it's not found. 

Adding a couple of JSP expressions to see variable values as part of the response in the browser is the easiest 
way to debug a JSP page. But sometimes multiple pages are involved in the processing of a single request, as 
you will see in Chapter 8. In this case, it may be better to write the debug output to a file or the command 
window where you started the server instead. To write to the standard log file for the server, replace the JSP 
expression with this scriptlet: 

 <% application.log("User-Agent header value: " +  
     request.getHeader("User-Agent")); %> 

The application variable is one of the implicit JSP objects described in Chapter 6, containing a reference to 
the javax.servlet.ServletContext object for the application. It provides a log( ) method that writes 
messages to the application log file. The name and location of the file are server-dependent. With a default 
configuration of Tomcat, it's named logs/servlet.log. 

Most servers, including Tomcat, also let you write messages to the window where the server was started, 
represented by the System.out object: 

 <% System.out.println("User-Agent header value: " +  
      request.getHeader("User-Agent")); %> 

This approach works fine during development, when you run your own web server started in a command 
window, but you need to remember to remove these lines in your production code. Writing to the log file is 
useful when you debug an application that is running in a web server you don't have control over, or if you 
need to record the debug messages in a file for further analysis later. 

To make it easier to generate the most common types of debug output, you can use the DebugBean class that 
I developed for this book. Its properties represent information that's available in a JSP page, as shown in 
Table 7.1. 

 

 



JavaSercer Pages 

  page 81

Table 7.1, Properties of com.ora.jsp.util.DebugBean  

Property Name Java Type Access Description 

pageContext javax.servlet.jsp.PageContext write 
Must be set in order for the 

bean to find the value of 
its other properties 

elapsedTime String read 

A string with the number 
of milliseconds elapsed 

since the bean was created 
or this property was last 

read 

requestInfo String read 

A string, formatted as a 
table, with information 

about the request, such as 
authentication type, 
content length and 

encoding, path 
information, remote host 

and user, etc. 

headers String read 

A string, formatted as a 
table, with the names and 

values of all headers 
received with the request 

cookies String read 

A string, formatted as a 
table, with the names and 

values of all cookies 
received with the request 

parameters String read 

A string, formatted as a 
table, with the names and 
values of all parameters 
received with the request 

pageScope String read 

A string, formatted as a 
table, with the names and 
values of all page scope 

variables 

requestScope String read 

A string, formatted as a 
table, with the names and 
values of all request scope 

variables 

sessionScope String read 

A string, formatted as a 
table, with the names and 
values of all session scope 

variables 

applicationScope String read 

A string, formatted as a 
table, with the names and 
values of all application 

scope variables 

The DebugBean has one write-only property, pageContext, that must be set to the corresponding implicit 
object to provide the bean access to all the information it can report on. All the other properties are read-
only, providing access to different subsets of information of interest when debugging a JSP application. 



JavaSercer Pages 

  page 82

To control where the information is written, pass a debug parameter with the request for the page with the 
bean. This parameter must have one or more of the following values (separated by plus signs): 

resp  

Include the debug information in the response as an HTML table 

stdout  

Write the debug information to System.out 

log  

Write the debug information to the application log file 

Let's look at an example. The JSP page shown in Example 7.8 creates an instance of the DebugBean using a 
<jsp:useBean> action. It also sets the mandatory pageContext property using a nested <jsp:setProperty> 
action. The <jsp:setProperty> uses a request-time attribute value to assign the pageContext property a 
reference to the implicit pageContext variable. 

Example 7.8. Page with the DebugBean (debug.jsp)  

<%@ page language="java" contentType="text/html" %> 
<%@ page import="java.util.*" %> 
<html> 
<body bgcolor="white"> 
 
  <jsp:useBean id="debug" class="com.ora.jsp.util.DebugBean" > 
    <jsp:setProperty name="debug" property="pageContext" 
      value="<%= pageContext %>"  
    /> 
  </jsp:useBean> 
  <p> 
 
  <%-- Add test variables to the request scope --%> 
  <%  
    String[] arr = {"a", "b", "c"};  
    request.setAttribute("arr", arr); 
    java.util.Date date = new Date( ); 
    request.setAttribute("now", date); 
  %> 
 
  <jsp:getProperty name="debug" property="headers" /> 
  <jsp:getProperty name="debug" property="cookies" /> 
  <jsp:getProperty name="debug" property="parameters" /> 
  <jsp:getProperty name="debug" property="requestScope" /> 
  <jsp:getProperty name="debug" property="elapsedTime" /> 
 
</body> 
</html> 

A scriptlet is used to set two request attributes, referred to in JSP as placing objects in the request scope . 
Objects placed in the request scope can be accessed by all JSP pages used to process the same request. 
Don't worry about how this works now; you'll learn more about all the JSP scopes in Chapter 8. Here, it's only 
used to show you how the DebugBean displays scope information. Next, five <jsp:getProperty> actions are 
used to display the headers, cookies, parameters, requestScope, and elapsedTime properties. 

The DebugBean returns its property values only if the request contains a debug parameter with a valid value. 
Therefore, you can keep the bean in your pages all the time and activate it only when you need the debug 
info. If you request the page with the URL: 

http://localhost:8080/ora/ch7/debug.jsp?debug=resp+stdout&a=b  

http://localhost:8080/ora/ch7/debug.jsp?debug=resp+stdout&a=b


JavaSercer Pages 

  page 83

you get the response shown in Figure 7.3. 

Figure 7.3. Debug output 

 

Since the debug parameter specifies both resp and stdout, you also get all the debug information in the 
window where you started Tomcat. 

 

7.3 Dealing with Runtime Errors 

Eventually, your application will work as you like. But things can still go wrong due to problems with external 
systems that your application depends on, such as a database. And even though you have tested and 
debugged your application, there may be runtime conditions that you didn't anticipate. 

Well-behaved components such as JavaBeans or JSP actions (standard and custom) deal with expected error 
conditions in a graceful manner. For instance, the UserInfo bean used in Chapter 5 has a valid attribute 
that is false unless all properties are set to valid values. Your JSP page can then test the property value and 
present the user with an appropriate message. 

But if something happens that makes it impossible for the component to do its job, it needs to tell the user 
about the problem. The standard way Java does this is to throw an exception. That's what the JSP container 
does when it finds a problem with a JSP page during the translation phase, as I described in the first section 
of this chapter. Components, such as JavaBeans and JSP actions, and the code in JSP scripting elements, can 
also throw exceptions when something goes really wrong. By default, the JSP container catches the exception 
and displays its message and stack trace in the browser, similar to what's shown in Figure 7.1. But that's 
hardly the type of error message you want the application users to see. It's better to tell the JSP container to 
use a customized error page instead. 



JavaSercer Pages 

  page 84

Example 7.9 shows a JSP page with a page directive that defines an error page. 

Example 7.9. Page with an Error Page Definition (calc.jsp)  

<%@ page language="java" contentType="text/html" %> 
<%@ page errorPage="errorpage.jsp?debug=log" %> 
<% request.setAttribute("sourcePage", request.getRequestURI( )); %> 
<html> 
<body bgcolor="white"> 
 
  <jsp:useBean id="calc" class="com.ora.jsp.beans.calc.CalcBean"> 
    <jsp:setProperty name="calc" property="*" /> 
  </jsp:useBean> 
 
  <%-- Calculate the new numbers and state info --%> 
  <% String currentNumber = calc.getCurrentNumber( ); %> 
  <form action="calc.jsp" method="post"> 
    <table border=1> 
      <tr> 
        <td colspan="4" align="right"> 
          <%= currentNumber.equals("") ? "&nbsp;" :  
            currentNumber %> 
          <input type="hidden" name="currentNumber" 
            value="<%= currentNumber %>"> 
          <input type="hidden" name="previousNumber" 
            value="<%= calc.getPreviousNumber( ) %>"> 
          <input type="hidden" name="currentOperation" 
            value="<%= calc.getCurrentOperation( ) %>"> 
          <input type="hidden" name="previousOperation" 
            value="<%= calc.getPreviousOperation( ) %>"> 
          <input type="hidden" name="reset" 
            value="<%= calc.getReset( ) %>"> 
        </td> 
      </tr> 
      <tr> 
        <td><input type="submit" name="digit" value=" 7 "></td> 
        <td><input type="submit" name="digit" value=" 8 "></td> 
        <td><input type="submit" name="digit" value=" 9 "></td> 
        <td><input type="submit" name="oper" value=" / "></td> 
      </tr> 
      <tr> 
        <td><input type="submit" name="digit" value=" 4 "></td> 
        <td><input type="submit" name="digit" value=" 5 "></td> 
        <td><input type="submit" name="digit" value=" 6 "></td> 
        <td><input type="submit" name="oper" value=" * "></td> 
      </tr> 
      <tr> 
        <td><input type="submit" name="digit" value=" 1 "></td> 
        <td><input type="submit" name="digit" value=" 2 "></td> 
        <td><input type="submit" name="digit" value=" 3 "></td> 
        <td><input type="submit" name="oper" value=" - "></td> 
      </tr> 
      <tr> 
        <td><input type="submit" name="digit" value=" 0 "></td> 
        <td>&nbsp;</td> 
        <td><input type="submit" name="dot" value=" . "></td> 
        <td><input type="submit" name="oper" value=" + "></td> 
      </tr> 
      <tr> 
        <td>&nbsp;</td> 
        <td>&nbsp;</td> 
        <td><input type="submit" name="clear" value=" C "></td> 
        <td><input type="submit" name="oper" value=" = "></td> 
    </table> 
  </form> 
 
</body> 
</html> 

The errorPage attribute in the page directive specifies the URL path for the page displayed if an exception is 
thrown by any component or scripting code. In JSP 1.1, you cannot specify a regular HTML page as the error 
page; it must be another JSP page. When the path is specified as in Example 7.9, the error page must be 
located in the same directory as the page that references it. However, if it starts with a slash (/), it's 
interpreted as relative to the application's context path. The context path is simply the root for all HTML, 
image, and JSP pages in an application, such as C:\Jakarta\jakarta-tomcat\webapps\ora for the application 
containing all book examples (if you installed it in the directory specified in Chapter 4 ). This means you can 
define a common error page for all the JSP pages in an application, even if you place them in multiple 
subdirectories, by using a path like /errorpage.jsp. 



JavaSercer Pages 

  page 85

Also note that the error page URL in Example 7.9 includes the debug request parameter, and that a scriptlet 
is used to set a request attribute: 

 <%@ page errorPage="errorpage.jsp?debug=log" %> 
 <% request.setAttribute("sourcePage", request.getRequestURI( )); %> 

The debug parameter lets you use the DebugBean to log information about what went wrong in the error 
page. The sourcePage attribute, set to the URL for the current page, is also used in the error page, as you 
will see shortly. 

The rest of the page in Example 7.9 implements a simple calculator, shown in Figure 7.4. It's intended only to 
illustrate how the error page handling works, so I will not describe it in detail. When you're done reading this 
book, it might be a good exercise to figure it out yourself by looking at the source code. 

Figure 7.4. Calculator page 

 

If a user tries to divide a number by zero, the CalcBean used in this page to implement the calculator throws 
an exception. This triggers the error page shown in Example 7.10 to be invoked. 

Example 7.10. Error Page (errorpage.jsp)  

<%@ page language="java" contentType="text/html" %> 
<%@ page isErrorPage="true" %> 
<html> 
<body bgcolor="white"> 
  We're sorry but the request could not be processed. The processing 
  error message is: 
  <blockquote> 
  <%= exception.getMessage( ) %>  
  </blockquote> 
  The message has been logged together with more detailed information  
  about the error so we can analyze it further. Please try again, and  
  <a href="mailto:webmaster@mycompany.com">let us know</a> if the 
  problem persists. 
 
  <% 
    application.log((String) request.getAttribute("sourcePage"),  
      exception); 
  %> 
  <jsp:useBean id="debug" class="com.ora.jsp.util.DebugBean"> 
    <jsp:setProperty name="debug" property="pageContext" 
      value="<%= pageContext %>" /> 
  </jsp:useBean> 
  <jsp:getProperty name="debug" property="parameters" /> 
 
</body> 
</html> 

mailto:webmaster@mycompany.com">let


JavaSercer Pages 

  page 86

At the top of the page is a page directive with the attribute isErrorPage set to true. This tells the JSP 
container that a special implicit JSP object named exception should be initialized with a reference to the 
exception that caused the page to be invoked. The type of the exception object is java.lang.Throwable . 
This class provides a method named getMessage( ) that returns a string with a message about what went 
wrong. A JSP expression is used to display this message to the user, as shown in Figure 7.5. 

Figure 7.5. Customized error page 

 

Next follows a scriptlet and a couple of actions to create and use the DebugBean introduced in the previous 
section. The scriptlet writes the value of the sourcePage request attribute plus the exception itself to the 
application log file, and the DebugBean writes all parameters received with the request to the same file. In 
this way, information about which page caused the problem, the exception that was thrown, and all 
parameter values that were received with the request causing the problem is logged in the application log file 
when something unexpected happens. You can therefore look at the log file from time to time and see what 
kinds of problems occur frequently, and hopefully fine-tune the application to avoid them or at least provide 
more specific error messages. 

Dealing with syntax errors and bugs is part of the application development process. In this chapter, we have 
looked at some of the ways you can ease the pain. To minimize syntax errors, you can use the types of JSP 
development tools listed in Appendix E, that provide JSP syntax highlighting. You can also minimize the 
scripting code you put in your JSP pages by using beans and custom actions instead. The DebugBean 
presented in this chapter helps you to see what's going on at runtime, and you can use it in a customized 
error page to log information about unexpected errors. 

 



JavaSercer Pages 

  page 87

Chapter 8. Sharing Data Between JSP Pages, Requests, and Users 

So far we've covered the JSP basics: how to generate dynamic content and capture user input using JSP 
standard action elements for working with beans, how to do conditional processing and embed Java code in 
pages using JSP scripting elements, and how to locate and fix different types of errors in a JSP page. With 
that out of the way, we can turn our attention to the JSP features and techniques needed to develop real 
applications. 

Any real application consists of more than a single page, and multiple pages often need access to the same 
information and server-side resources. When multiple pages are used to process the same request, for 
instance one page that retrieves the data the user asked for and another that displays it, there must be a way 
to pass data from one page to another. In an application in which the user is asked to provide information in 
multiple steps, such as an online shopping application, there must be a way to collect the information 
received with each request and get access to the complete set when the user is ready. Other information and 
resources need to be shared among multiple pages, requests, and all users. Examples are information about 
currently logged-in users, database connection pool objects, and cache objects to avoid frequent database 
lookups. 

In this chapter you will learn how scopes in JSP provide access to this type of shared data. You will also see 
how using multiple pages to process a request leads to an application that's easier to maintain and expand, 
and learn about a JSP action that lets you pass control between the different pages. 

 

8.1 Passing Control and Data Between Pages 

As discussed in Chapter 3, one of the most fundamental features of JSP technology is that it allows for 
separation of request processing, business logic, and presentation, using what's known as the Model-View-
Controller (MVC) model. As you may recall, the roles of Model, View, and Controller can be assigned to 
different types of server-side components. In this part of the book, JSP pages are used for both the Controller 
and View roles, and the Model role is played by either a bean or a JSP page. This is not necessarily the best 
approach, but it lets us focus on JSP features instead of getting into Java programming. If you're a 
programmer and interested in other role assignments, you may want to take a peek at Chapter 13, and 
Chapter 14. These chapters describe other alternatives and focus on using a servlet as the Controller. 

Using different JSP pages as Controller and View means that more than one page is used to process a 
request. To make this happen, you need to be able to do two things: 

1. Pass control from one page to another. 

2. Pass data from one page to another. 

In this section, we look at a concrete example of how to separate the different aspects of an application and 
how JSP supports the two requirements above. 

Let's revisit the User Info example developed in Chapter 5, to describe how the different aspects of an 
application can be separated. In this example, the business logic piece is trivial. However, it sets the stage for 
more advanced application examples in the next section and the remaining chapters in this part of the book, 
all using the model introduced here. 

We can categorize the different aspects of the User Info example like this: 

• Display the form for user input (presentation). 

• Validate the input (request processing and business logic). 

• Display the result of the validation (presentation). 



JavaSercer Pages 

  page 88

Let's use a separate JSP page for each aspect. The restructured application contains three JSP pages, as 
shown in Figure 8.1. 

Figure 8.1. User Info application pages 

 

Here's how it works. The userinfoinput.jsp page displays an input form. The user submits this form to 
userinputvalidate.jsp to validate the input. This page processes the request using the UserInfoBean and 
passes control (forwards) to either the userinfoinput.jsp page (if the input is invalid) or the userinfovalid.jsp 
page (if the input is valid). If valid, the userinfovalid.jsp page displays a "thank you" message. In this 
example, the UserInfoBean represents the Model, the userinputvalidate.jsp page the Controller, and 
userinfoinput.jsp and userinfovalid.jsp represent the Views. 

This gives you the flexibility and maintainability discussed in Chapter 3. If the validation rules change, a Java 
programmer can change the UserInfoBean implementation without touching any other part of the 
application. If the customer wants a different look, a page author can modify the View JSP pages without 
touching the request processing or business logic code. 

8.1.1 Passing Control from One Page to Another 

Before digging into the modified example pages, let's go through the basic mechanisms. As shown in Figure 
8.1, the userinfovalidate.jsp page passes control to one of two other pages based on the result of the input 
validation. JSP supports this through the <jsp:forward> action: 

 <jsp:forward page="userinfovalid.jsp" /> 

This action stops processing one page and starts processing the page specified by the page attribute instead, 
called the target page. The control never returns to the original page. 

The target page has access to all information about the request, including all request parameters. You can 
also add additional request parameters when you pass control to another page by using one or more nested 
<jsp:param> action elements: 

 <jsp:forward page="userinfovalid.jsp" > 
   <jsp:param name="msg" value="Invalid email address" /> 
 </jsp:forward> 

Parameters specified with <jsp:param> elements are added to the parameters received with the original 
request. The target page, therefore, has access to both the original parameters and the new ones, and can 
access both types in the same way. If a parameter is added to the request using the name of a parameter 
that already exists, the new value is added to the list of values for the existing parameter. 



JavaSercer Pages 

  page 89

The page attribute is interpreted relative to the location of the current page if it doesn't start with /. This is 
called a page-relative path. If the source and target page are located in the same directory, just use the 
name of the target page as the page attribute value, as in the previous example. You can also refer to a file in 
a different directory using notation like ../foo/bar.jsp or /foo/bar.jsp. When the page reference starts with /, 
it's interpreted relative to the top directory for the application's web page files. This is called a context-
relative path. 

Let's look at some concrete examples to make this clear. If the application's top directory is 
C:\Tomcat\webapps\myapp, page references in a JSP page located in 
C:\Tomcat\webapps\myapp\registration\userinfo are interpreted like this: 

page="bar.jsp"  

C:\Tomcat\webapps\myapp\registration\userinfo\ bar.jsp 

page="../foo/bar.jsp"  

C:\Tomcat\webapps\myapp\registration\foo\ bar.jsp 

page="/foo/bar.jsp"  

C:\Tomcat\webapps\myapp\foo\ bar.jsp 

8.1.2 Passing Data from One Page to Another 

JSP provides different scopes for sharing data objects between pages, requests, and users. The scope defines 
for how long the object is available and whether it's available only to one user or to all application users. The 
following scopes are defined: 

• Page 

• Request 

• Session 

• Application 

Figure 8.2. Lifetime of objects in different scopes 

 



JavaSercer Pages 

  page 90

Objects placed in the default scope, the page scope , are available only to actions and scriptlets within one 
page. That's the scope used in all examples you have seen so far. The request scope is for objects that need 
to be available to all pages processing the same request. The session scope is for objects shared by multiple 
requests by the same user, and the application scope is for objects shared by all users of the application. See 
Figure 8.2. 

The <jsp:useBean> action has a scope attribute that you use to specify in what scope the bean should be 
placed. Here is an example: 

 <jsp:useBean id="userInfo" scope="request" 
   class="com.ora.jsp.beans.userinfo.UserInfoBean" /> 

The <jsp:useBean> action looks for a bean with the name specified by the id attribute in the specified scope. 
If one already exists, it uses that one. If it cannot find one, it creates a new instance of the class specified by 
the class attribute and makes it available with the specified name within the specified scope. If you would 
like to perform an action only when the bean is created, place the elements in the body of the <jsp:useBean> 
action: 

 <jsp:useBean id="userInfo" scope="request" 
   class="com.ora.jsp.beans.userinfo.UserInfoBean" > 
   <jsp:setProperty name="userInfo" property="*" /> 
 </jsp:useBean> 

In this example, the nested <jsp:setProperty> action sets all properties when the bean is created. If the 
bean already exists, the <jsp:useBean> action associates it with the name specified by the id attribute so it 
can be accessed by other actions and scripting code. In this case, the <jsp:setProperty> action is not 
executed. 

8.1.3 All Together Now 

At this point, you have seen the two mechanisms needed to let multiple pages process the same request: 
passing control and passing data. These mechanisms allow you to employ the MVC design, using one page for 
request processing and business logic, and another for presentation. The <jsp:forward> action can be used 
to pass control between the pages, and information placed in the request scope is available to all pages 
processing the same request. 

Let's apply this to the User Info example. In Chapter 5, different output was produced depending on whether 
or not the user input was valid. This was done by using a UserInfoBean property called propertyStatusMsg 
to display either a success or failure message. Yet the input form was always shown, even when the input 
was valid. 

No more of that. When we split up the different aspects of the application into separate JSP pages as shown 
in Figure 8.1, we will also change the example so that the form is shown only when something needs to be 
corrected. When all input is valid a confirmation page is shown instead. 

Example 8.1 shows the top part of the userinfoinput.jsp page. 

Example 8.1. Page for Displaying Entry Form (userinfoinput.jsp)  

<%@ page language="java" contentType="text/html" %> 
<html><head> 
    <title>User Info Entry Form</title> 
  </head><body bgcolor="white"> 
    <jsp:useBean 
      id="userInfo" 
      scope="request" 
      class="com.ora.jsp.beans.userinfo.UserInfoBean" /> 
 
    <%-- Output list of values with invalid format, if any --%> 
    <font color="red"> 
      <jsp:getProperty name="userInfo" property="propertyStatusMsg" /> 
    </font> 
    <%-- Output form with submitted valid values --%> 
    <form action="userinfovalidate.jsp" method="post"> 
      <table> 
        <tr> 
          <td>Name:</td> 
          <td><input type="text" name="userName"  
    value="<%= StringFormat.toHTMLString(userInfo.getUserName( )) %>" > 
          </td> 
        </tr> 
        ... 



JavaSercer Pages 

  page 91

The rest of the example is the same as before. If you compare Example 8.1 with the JSP page used in 
Chapter 5, the only differences are that the userInfo bean is placed in the request scope (the scope attribute 
is set to request) and the form's action attribute is set to the URL for the validation page instead of pointing 
back to the same page. 

The validation page, userinfovalidate.jsp , is given in Example 8.2. 

Example 8.2. Input Validation Page (userinfovalidate.jsp)  

<%@ page language="java" %> 
<jsp:useBean 
  id="userInfo" 
  scope="request" 
  class="com.ora.jsp.beans.userinfo.UserInfoBean" > 
  <jsp:setProperty name="userInfo" property="*" /> 
</jsp:useBean> 
<% if (userInfo.isValid( )) { %> 
  <jsp:forward page="userinfovalid.jsp" /> 
<% } else { %> 
  <jsp:forward page="userinfoinput.jsp" /> 
<% } %> 

This is the request processing page, using the bean to perform the business logic. Note that there's no HTML 
at all in this page, only a page directive specifying the scripting language, action elements, and scriptlets. 
This is typical of a request processing page: it doesn't produce a visible response message, it simply takes 
care of business and passes control to the appropriate presentation page. 

This example is relatively simple. We first create a new userInfo Bean named userInfo in the request scope 
and set its properties from the request parameters of the previous form. (Note that we don't obtain the data 
from an already existing userInfo Bean in that scope; we'll see why shortly.) A scriptlet calls the bean's 
isValid( ) method to validate the properties and uses the <jsp:forward> action to pass control to the 
appropriate View page. 

If the input is invalid, the userinfoinput.jsp page is used again. This time the <jsp:useBean> action finds the 
existing userInfo bean in the request scope, and its properties are used to show an error message and fill 
out the fields that were entered correctly, if any. If all input is valid, the control is passed to the 
userinfovalid.jsp page shown in Example 8.3 to present the "thank you" message. 

Example 8.3. Valid Input Message Page (userinfovalid.jsp)  

<html> 
  <head> 
    <title>User Info Validated</title> 
  </head> 
  <body bgcolor="white"> 
    <font color=green size=+3> 
      Thanks for entering valid information! 
    </font> 
  </body> 
</html> 

This page tells the user all input was correct. It consists only of template text, so this could have been a 
regular HTML file. Making it a JSP page allows you to add dynamic content later without changing the 
referring page, however. The results are shown in Figure 8.3. 

Figure 8.3. The valid input message page 

 



JavaSercer Pages 

  page 92

Let's review how placing the bean in the request scope lets you access the same bean in all pages. The user 
first requests the userinfoinput.jsp page (Example 8.1). A new instance of the userInfo bean is created in 
the request scope and used to generate the "enter all fields" status message. The user fills out the form and 
submits it as a new request to the userinfovalidate.jsp page (Example 8.2). The previous bean is then out of 
scope, so this page creates a new userInfo bean in the request scope and sets all bean properties based on 
the form field values. If the input is invalid, the <jsp:forward> action passes the control back to the 
userinfoinput.jsp page. Note that we're still processing the same request that initially created the bean and 
set all the property values. Since the bean is saved in the request scope, the <jsp:useBean> action finds it 
and uses it to generate an appropriate error message and fill out the form with any valid values already 
entered. 

 

8.2 Sharing Session and Application Data 

As described in Chapter 2, HTTP is a stateless, request-response protocol. This means that the browser sends 
a request for a web resource, and the web server processes the request and returns a response. The server 
then forgets this transaction ever happened. So when the same browser sends a new request, the web server 
has no idea that this request is related to the previous one. This is fine if you're dealing with static files, but 
it's a problem in an interactive web application. In a travel agency application, for instance, it's important to 
remember the dates and destination entered to book the flight so the customer doesn't have to enter the 
same information again when it's time to make hotel and rental car reservations. 

The way to solve this problem is to let the server send a piece of information to the browser that the browser 
then includes in all subsequent requests. This piece of information, called a session ID, is used by the server 
to recognize a set of requests from the same browser as related: in other words, as part of the same session. 
A session starts when the browser makes the first request for a JSP page in a particular application. The 
session can be ended explicitly by the application, or the JSP container can end it after a period of user 
inactivity (the default value is typically 30 minutes after the last request). 

Thanks to the session ID, the server knows that all requests from the same browser are related. Information 
can therefore be saved on the server while processing one request and accessed later when another request 
is processed. The server uses the session ID to associate the requests with a session object, a temporary in-
memory storage area where servlets and JSP pages can store information. 

The session ID can be transferred between the server and browser in a few different ways. The Servlet 2.2 
API, which is the foundation for the JSP 1.1 specification, identifies three methods: using cookies, using 
encoded URLs, and using the session mechanism built into the Secure Socket Layer (SSL), the encryption 
technology used by HTTPS. SSL-based session tracking is currently not supported by any of the major servlet 
containers, but all of them support the cookie and URL rewriting techniques. JSP hides most of the details 
about how the session ID is transferred and how the session object is created and accessed, providing you 
with the session scope to handle session data at a convenient level of abstraction. Information saved in the 
session scope is available to all pages requested by the same browser during the lifetime of the session. 

However, some information is needed by multiple pages independent of who the current user is. JSP supports 
access to this type of shared information through another scope, the application scope. Information saved in 
the application scope by one page can later be accessed by another page, even if the two pages were 
requested by different users. Examples of information typically shared through the application scope are 
database connection pool objects, information about currently logged-in users, and cache objects to avoid 
frequent database lookups. 



JavaSercer Pages 

  page 93

Figure 8.4 shows how the server provides access to the two scopes for different clients. 

Figure 8.4. Session and application scopes 

 

The upcoming examples in this chapter will help you see how the session and application scopes can be used. 

8.2.1 Counting Page Hits 

A simple page counter bean can be used to illustrate how the scope affects the lifetime and reach of shared 
information. The difference between the two scopes becomes apparent when you place the bean in both the 
session and application scopes. Consider the page shown in Example 8.4. 

Example 8.4. Page with Counter Beans (counter1.jsp)  

<%@ page language="java" contentType="text/html" %> 
<html> 
  <head> 
    <title>Counter page</title> 
  </head> 
  <body bgcolor="white"> 
    <jsp:useBean  
      id="sessionCounter" 
      scope="session" 
      class="com.ora.jsp.beans.counter.CounterBean" 
    /> 
    <jsp:useBean  
      id="applCounter" 
      scope="application" 
      class="com.ora.jsp.beans.counter.CounterBean" 
    /> 
    <% String uri = request.getRequestURI( ); %> 
    <h1>Counter page</h1> 
    This page has been visited <b>  
    <%= sessionCounter.getNextValue(uri) %> 
    </b> times by the current user in the current session, and <b> 
    <%= applCounter.getNextValue(uri) %> 
    </b> times by all users since the application was started. 
  </body> 
</html> 



JavaSercer Pages 

  page 94

The bean used in this example, the com.ora.jsp.beans.counter.CounterBean, keeps a separate counter for 
each page where it's used. It's a class with just one method: 

 public int getNextValue(String uri); 

The method increments the counter for the page identified by the uri argument and returns the new value. 

In Example 8.4, two <jsp:useBean> actions are used to create one bean each for the session and application 
scopes. The bean placed in the session scope is found every time the same browser requests this page, and 
therefore counts hits per browser. The bean in the application scope, on the other hand, is shared by all 
users, so it counts the total number of hits for this page. 

A scriptlet is used to ask the request object for the URI of the current page. The URI is then passed as an 
argument to the bean's getNextValue( ) method. A page is uniquely identified by its URI, so the bean uses 
the URI as a unique identifier to represent the counter it manages for each page. If you run this example, you 
should see a page similar to Figure 8.5. 

Figure 8.5. A page with session and application page hit counters 

 

As long as you use the same browser, the session and application counters stay in sync. But if you exit your 
browser and restart it, a new session is created when you access the first page. The session counter starts 
from 1 again but the application counter takes off from where it was at the end of the first session. 

Note that the bean described here keeps the counter values in memory only, so if you restart the server, both 
will start from 0 again. 



JavaSercer Pages 

  page 95

 

 

Sessions and Multiple Windows 

Even though session tracking lets an application recognize related requests, there's still one problem. 
This problem is related to the server's lack of knowledge of the client, and does not become obvious 
until you start testing an application that depends on session information. Consider what happens if 
you open two browser windows and start accessing the same web application. Will each window be 
associated with its own session, or will they share the same session? Unfortunately, the answer is not 
well-defined. And it doesn't matter if the server-side logic is implemented as servlets, JSP, ASP, CGI, 
or any other server-side technology. 

The most commonly used browsers, Netscape Navigator and Microsoft Internet Explorer, both let you 
open multiple windows that are actually controlled by the same operating system process. Internet 
Explorer can be configured so that each window is instead controlled by a separate process. In the 
latter case, it's easy to answer the question: each window is associated with its own session. It's only 
when one process controls multiple windows that it gets a bit tricky; in this case, the answer depends 
on whether URL rewriting or cookies are used for session tracking. 

When URL rewriting is used, the first request to the application from one window doesn't include a 
session ID, since no response with the session ID has been received yet. The server sends back the 
new session ID encoded in all URLs in the page. If a request is then submitted from the other 
window, the same thing happens: the server sends back a response with a new session ID. Hence, in 
this scenario each window is associated with a separate session. 

If cookies are used to pass the session ID, the reverse is true. The first request submitted from one 
window doesn't contain a session ID, so the server generates a new ID and sends it back as a cookie. 
Cookies are shared by all windows controlled by the same process. When a request is then made 
from the other window, it contains the session ID cookie received as a result of the first request. The 
server recognizes the session ID and therefore assumes that the request belongs to the same session 
as the first request; both windows share the same session. 

There's not much you can do about this. If you want each window to have its own session, most 
servers can be configured to always use the URL rewriting method for session tracking. But this is not 
foolproof. The user can open a new window by using the mouse pop-up menu for a link (with the 
session ID encoded in the URI) and ask to see the linked page in a new window. Now there are two 
windows with the same session ID anyway. The only way to handle this, unfortunately, is to educate 
your users. 

 



JavaSercer Pages 

  page 96

8.2.1.1 Thread-safe beans 

You probably noticed that the CounterBean doesn't have the type of property getter method used in the 
examples in previous chapters. Instead, it has a method named getNextValue( ) that takes the URI for the 
page as an argument. The <jsp:getProperty> action can be used only to display properties when the bean 
implements the standard no-arguments getter methods, so in Example 8.4, JSP expressions are used to 
display the counter values instead. 

The use of a method with an argument instead of a typical no-argument JavaBeans getter method is by 
design, and highlights a very important consideration for beans used in the session and application scopes. In 
Chapter 6, we discussed how multiple requests are handled by the server in parallel by separate threads. The 
server assigns one execution thread to each request, and all threads have access to the same variable values 
for variables declared with JSP declaration elements. The result is that if such a variable is changed while 
processing one page request, the new values are used by all other requests as well. Beans in the session and 
application scopes are open to the same kind of problem, since they are also shared by multiple threads. 

To illustrate this, let's look at what could happen if we used a bean with the traditional setter and getter 
methods to implement the counter instead. Such a bean could have the properties shown in Table 8.1. 

Table 8.1, Traditional Counter Bean Properties  

Property Name Java Type Access Description 

uri String write The unique URI used to identify the 
page counter 

nextValue int read The counter's value incremented by 
one read-only property 

Part of the JSP page would then look like this: 

<jsp:useBean  
  id="applCounter" 
  scope="application" 
  class="com.ora.jsp.beans.counter.CounterBean" 
/> 
<jsp:setProperty  
  name="applCounter" 
  property="uri" 
  value="<%= request.getRequestURI( ) %>" 
/> 
 
<h1>Counter page</h1> 
 
This page has been visited <b>  
<jsp:getProperty 
  name="applCounter" 
  property="nextValue" 
/> 
</b> times by all users since the application was started. 

The first time you access this page, the <jsp:useBean> action creates the bean and saves it in the 
application scope. The <jsp:setProperty> action sets the uri property to the unique URI for this page. 
Then the <jsp:getProperty> action calls the nextValue property getter method. This method uses the uri 
property value to locate the counter for the page and increments it. 

As long as you use this bean in only one page, this works fine. But if you want to keep track of all hits for two 
pages, each with its unique URI, and the two pages are requested at almost the same time, you're in trouble. 
Say one user requests the first page, called /ora/pageOne. This page sets the uri property to /ora/pageOne. 
But before it gets to the <jsp:getProperty> action, another user requests the second page, say 
/ora/pageTwo. Now the second page finds the same bean (applCounter) and sets the uri property to its URI 
(/ora/pageTwo). So when the first page eventually executes the <jsp:getProperty> action, it increments 
and displays the counter for the second page instead of its own counter. 

Here I used a bean in the application scope as an example, because it's easy to understand that beans shared 
by all users can be accessed by more than one request at a time. But session scope beans can also be 
accessed at roughly the same time, by the same user. A good example of when two requests are made at 
nearly the same time by the same user is when an HTML frame set is used and each frame contains a JSP 
page. 



JavaSercer Pages 

  page 97

You can solve this problem by using a bean with a regular method that takes the URI as an argument, instead 
of setting the URI with one setter method and incrementing the corresponding counter value with another 
method that depends on the URI value set by the first. This way, the method gets all the information it needs 
in one shot, and there's no risk of interference by other threads. 

8.2.2 URL Rewriting 

As I mentioned earlier, the session ID needed to keep track of requests within the same session can be 
transferred between the server and the browser in a number of different ways. One way is to encode it in the 
URLs created by the JSP pages, called URL rewriting . This approach works even if the browser doesn't 
support cookies (perhaps because the user has disabled them). A URL with a session ID looks like this: 

 counter3.jsp;jsessionid=be8d691ddb4128be093fdbde4d5be54e00 

When the user clicks on a link with an encoded URL, the server extracts the session ID from the request URI 
and associates the request with the correct session. The JSP page can then access the session data in the 
same fashion as when cookies are used to keep track of the session ID, so you don't have to worry about how 
it's handled. What you do need to do, however, is to call a method that lets the JSP container encode the URL 
when needed. To see how it's done, let's create two pages that reference each other using a regular HTML 
link. A CounterBean in the session scope is used to increment a counter for each page. Example 8.5 shows 
one of the pages. The other page is identical, except for the title and the link at the bottom. 

Example 8.5. Page with an Encoded Reference to Another Page (counter2.jsp)  

<%@ page language="java" contentType="text/html" %> 
<html> 
  <head> 
    <title>Counter page 1</title> 
  </head> 
  <body bgcolor="white"> 
    <jsp:useBean  
      id="sessionCounter" 
      scope="session" 
      class="com.ora.jsp.beans.counter.CounterBean" 
    /> 
    <% String uri = request.getRequestURI( ); %> 
 
    <h1>Counter page 1</h1> 
 
    This page has been visited <b>  
    <%= sessionCounter.getNextValue(uri) %> 
    </b> times by the current user in the current session. 
    <p> 
    Click here to get to  
    <a href="<%= response.encodeURL("counter3.jsp") %>"> 
      Counter page 2</a>. 
 
  </body> 
</html> 

The only differences compared to Example 8.4 are that only the session counter is used, and the link to the 
other page has been added. 

The <a> element's href attribute value is converted using the encodeURL( ) method of the implicit JSP 
response object, described in Chapter 6. If a cookie is used to transfer the session ID between the browser 
and server, the encodeURL( ) method just returns the URL untouched. But if the browser doesn't support 
cookies, or cookie support is disabled, this method returns the URL with the session ID encoded as a part of 
the URL, as shown earlier. 

If you want to provide session tracking for browsers that don't support cookies, you must use the encodeURL( 
) method to rewrite all URL references in your application: in <a> tags, <form> tags, and <frameset> tags. 
This means all pages in your application (or at least all pages with references to other pages) must be JSP 
pages, so that all references can be dynamically encoded. If you miss one single URL, the server will lose 
track of the session. 

I recommend that you take the time to add encodeURL( ) calls for all references up front, even if you know 
that all your current users have browsers that support cookies. One day you may want to extend the user 
base and lose control over the browsers they use. It's also common that users disable cookies in fear of Big 
Brother watching. Yet another reason to prepare for URL rewriting from the beginning is to support new types 
of clients that are becoming more and more common, such as PDAs and cell phones. Cookie support in these 
small devices is not a given. 



JavaSercer Pages 

  page 98

8.3 Using Custom Actions 

You might be wondering if we are stretching the bean model too far in the previous example. Perhaps. The 
CounterBean does more than hold information; it also has a non-conforming method for incrementing the 
counter. If we stray away from the purely bean model and use methods with arguments, this may force us to 
use scriptlets instead of the standard actions. That's not necessarily bad, but in this case we can do better 
using a custom action instead of a bean and the standard actions. 

A custom action is just like the standard actions we've used so far. It has a start tag, which may contain 
attributes, and an end tag. It can also have a body. Here's what a custom action looks like: 

 <ora:incrementCounter scope="session"/> 

The JSP specification defines how the standard set of actions can be extended with custom actions developed 
by Java programmers in the team or by a third party. A custom action is used in a JSP page in exactly the 
same way as the standard JSP actions you have seen in previous examples, such as <jsp:getProperty>. 
This makes them easier to use than beans with methods that must be invoked with scripting code, since you 
don't have to worry about missing braces and semicolons and other syntax details. A custom action can do 
pretty much anything: it has access to all information about the request and can add content to the response 
body as well as set response headers. 

If you're a programmer, you should know that a custom action is basically a JavaBeans class, with property 
setter methods corresponding to the action's attributes, plus a few extra methods used by the JSP container 
to invoke the action. You can read all about how to develop your own custom actions in Chapter 16. 

As is often the case in software development, it's hard to say exactly whether a bean or a custom action is 
the preferred component type. My rule of thumb is that a bean is a great carrier of information, and a custom 
action is great for processing information. Custom actions can use beans as input and output. For instance, an 
action can be used to save the properties of a bean in a database, or to get information from a database and 
make it available to the page as a bean. 

If you're a page author, you don't have to worry about the implementation details. All you need to know right 
now is how to use the custom actions you have available. You'll find many custom actions in this book that 
you can use, and more are available from open source projects and commercial companies listed in Appendix 
E. 

Custom actions are grouped together in a tag library. Consequently, you often see custom actions referred to 
as custom tags, even though that is not strictly correct. A tag library consists of a Tag Library Descriptor 
(TLD) and the Java classes used to implement the custom actions. The TLD contains information about the 
action names and attributes. It's used by the JSP container during the translation phase to verify that all 
actions are used correctly in the page, for instance that all mandatory attributes are specified. Typically, the 
TLD and all classes are packaged in a Java Archive (JAR) file. You install such a library by placing the JAR file 
in the WEB-INF/lib subdirectory for the application in which it's used. If you look at the files in your Tomcat 
installation for the ora application (containing all the book examples), you see the JAR file in WEB-
INF/lib/orataglib_1_0.jar and the TLD in WEB-INF/tlds/orataglib_1_0.tld. 

When you use custom actions in a JSP page, you must identify the library using the taglib directive: 

 <%@ taglib uri="/orataglib" prefix="ora" %> 

The uri attribute value identifies the library. Depending on how the library is installed, different types of 
values are used: a symbolic name, the path to the JAR file, or the path to the TLD file. My recommendation is 
to use a symbolic name, as shown in the example. The symbolic name must then be mapped to the location 
of the library in the WEB-INF/web.xml file for the application: 

 <web-app> 
   ... 
   <taglib> 
     <taglib-uri> 
       /orataglib 
     </taglib-uri> 
     <taglib-location> 
       /WEB-INF/tlds/orataglib_1_0.tld 
     </taglib-location> 
   </taglib> 
   ... 
 </web-app> 



JavaSercer Pages 

  page 99

The <taglib-uri> element contains the symbolic name, and the <taglib-location> element contains the 
path to either the JAR file or the TLD file. The path typically starts with a slash (/) and is then interpreted as 
a context-relative path, in other words, relative to the top directory for the application. This indirection - 
using a symbolic name that's mapped to the real location - is especially helpful as it allows you to change the 
name of the tag library file for all JSP pages in one place, for instance when you upgrade to a later version of 
the library. 

For a simple application, you may feel that the indirection is overkill. If so, you can use the path to the JAR 
file explicitly as the uri attribute value: 

 <%@ taglib uri="/WEB-INF/lib/orataglib_1_0.jar" prefix="ora" %> 

All JSP 1.1-compliant containers should be able to find the TLD file in the JAR file, but this is a recent 
clarification of the specification. If the container you use doesn't support this yet (such as Tomcat 3.1), you 
must use the path to the TLD file instead of the path to the JAR file: 

 <%@ taglib uri="/WEB-INF/tlds/orataglib_1_0.tld" prefix="ora" %> 

In both cases, the path may start with a slash and is then interpreted as a context-relative path. Without a 
starting slash, the path is interpreted as relative to the JSP page. 

The prefix attribute defines a prefix used for the actions in this library. This prefix is used as part of the 
custom action names, as you will soon see. If you use more than one library in a page, each must have a 
unique prefix. You can use any prefix you like except jsp, jspx, java, javax, servlet, sun, and sunw, 
which are reserved. The ora prefix is used for all custom actions in the examples in this book. 

As I mentioned earlier, a custom action is used in a JSP page just like the standard actions we've used so far. 
In other words, it has a start tag, which may contain attributes, and an end tag. It can also have a body. Let's 
revisit our example from earlier: 

 <ora:incrementCounter scope="session"/> 

The name consists of the prefix you specified with the taglib directive, and a unique name within the library, 
separated by a colon (:). As with standard actions, all attribute names are case-sensitive, and the value must 
be enclosed in single or double quotes. 

Now let's see how we can use two custom tags to improve the counter example. The attributes for the custom 
actions are described in Table 8.2 and Table 8.3. 

Table 8.2, Attributes for <ora:incrementCounter>  

Attribute 
Name 

Java 
Type 

Request-Time Value 
Accepted 

Description 

scope String No 
Specifies the scope for the counter. Valid 
values are page, request, session, and 
application. Default is page. 

The <ora:incrementCounter> action increments a unique counter for the page where it's used. The counter 
can be placed in any of the standard JSP scopes. For instance, it can be placed in the session scope to count 
hits by different clients, or the application scope to count hits by all clients. The first time the action is used 
for a specific scope, the counter is created and set to 1. 

Table 8.3, Attributes for <ora:showCounter>  

Attribute 
Name 

Java 
Type 

Request-Time Value 
Accepted 

Description 

scope String No 
Specifies the scope for the counter. Valid 
values are page, request, session, and 
application. Default is page. 

 



JavaSercer Pages 

  page 100

The <ora:showCounter> action inserts the value of the page counter for the specified scope in the response. 
If a counter has not been created using the <ora:incrementCounter> action, the value -1 is displayed. 

These two actions are generic, so you can use them in your own pages if you want to keep track of the 
number of hits. The type of information shown in Tables 8-2 and 8-3 is what you should expect (or even 
demand!) from the custom action developer, whether it's developed in-house or by a third party. 

Example 8.6 shows how our custom actions are used. 

Example 8.6. Page with Counter Custom Actions ( counter4.jsp)  

<%@ page language="java" contentType="text/html" %> 
<%@ taglib uri="/orataglib" prefix="ora" %> 
<html> 
  <head> 
    <title>Counter page 1</title> 
  </head> 
  <body bgcolor="white"> 
    <ora:incrementCounter scope="session"/> 
    <ora:incrementCounter scope="application"/> 
 
    <h1>Counter page 1</h1> 
 
    This page has been visited <b>  
    <ora:showCounter scope="session"/> 
    </b> times by the current user in the current session, and <b> 
    <ora:showCounter scope="application"/> 
    </b> times by all users since the counter was reset. 
    <p> 
    To see that a unique counter is maintained per page, 
    take a look at 
    <a href="<ora:encodeURL url="counter5.jsp" />">Counter page 2</a>. 
 
  </body> 
</html> 

As described in Tables 8-2 and 8-3, both actions have a scope attribute, supporting the same scopes as the 
JSP standard actions: page, request, session, and application. The <ora:incrementCounter> action finds 
or creates a counter for the current page in the specified scope and increments it by one, while 
<ora:showCounter> displays the current value of the counter. Notice that you don't have to tell the actions 
about the URI as you did with the beans in Example 8.5. That's because the JSP container makes all the 
implicit objects, such as the request object, available to a custom action automatically. The action can 
therefore figure out the current URI all by itself. 

Another custom action, <ora:encodeURL>, is used to take care of the URL encoding of the link to the next 
page. It's described in Table 8.4. 

Table 8.4, Attributes for <ora:encodeURL>  

Attribute 
Name 

Java 
Type 

Request-Time Value 
Accepted 

Description 

url String Yes Mandatory. Specifies the URL to 
encode. 

You can use this action element as an alternative to the scripting code used for URL encoding in Example 8.5. 
This action performs the same session ID encoding as the scripting code. Also, it encodes the parameters 
defined by nested <ora:param> actions (see Table 8.5) according to the syntax rules for HTTP parameters: 

 <ora:encodeURL url="product.jsp"> 
   <ora:param name="id" value="<%= product.getId( )%>" /> 
   <ora:param name="customer" value="Hans Bergsten" /> 
 </ora:encodeURL> 

Recall that all special characters, such as whitespace, quotes, etc., in a parameter value must be encoded. 
For instance, all spaces in a parameter value must be replaced with plus signs. When you use the 
<ora:encodeURL> action, it takes care of all this encoding. The encoded URL created by the action for this 
example looks something like this: 

 product.jsp;jsessionid=be8d691ddb4128be0?id=3&customer=Hans+Bergsten 



JavaSercer Pages 

  page 101

Here, the session ID and the request parameters are added, and encoded if needed (the space between 
"Hans" and "Bergsten" is replaced with a plus sign). 

Table 8.5, Attributes for <ora:param>  

Attribute Name Java Type Request-Time Value 
Accepted 

Description 

name String Yes Mandatory. The parameter 
name. 

value String Yes Mandatory. The parameter 
value. 

As illustrated by the counter example, custom actions allow you to write cleaner pages, avoiding most (if not 
all) scripting code. Since pages without code are easier to develop and maintain, plenty of custom actions are 
used in the remainder of the examples in this book. Many are generic, so you can use them in your own 
applications as well. How to implement most of them is described in Chapter 16 and Chapter 17, and you'll 
find the source code for all actions included in the example code package for this book. 

You may be wondering why it's necessary to develop custom actions for generic things such as looping and 
URL encoding, as well as for common functions such as accessing a database. The reason is that the 
specification writers only defined a small set of standard actions in JSP 1.1. This was primarily motivated by 
time constraints; it was important to get the JSP 1.1 specification released as soon as possible. But perhaps 
more importantly, before specifying a larger set of actions, the specification group wanted feedback on the 
type of actions users needed. At the time this book is being written, a specification of more standard actions 
is being prepared. It will likely contain many actions similar to the custom actions you find in this book to be 
rolled into a future version of the JSP specification. 

 

8.4 Online Shopping 

Now let's look at a more useful example: an online shopping site. Besides showing you how the session and 
application scopes can be used effectively in a larger application, this example also introduces many other 
useful tools. You'll see a number of generic custom actions you can use in your own applications, and learn 
how to use the java.text.NumberFormat class to format numbers. 

The application consists of three pages. The main page lists all available products. Each product is linked to a 
product description page, where the product can be added to the shopping cart. A product is added to the 
shopping cart by a request processing page. The main page with the product list is then displayed again, but 
now with the current contents of the shopping cart as well, as shown in Figure 8.6. 

Figure 8.6. The product list and the contents of the shopping cart 

 



JavaSercer Pages 

  page 102

Two beans are used to keep track of the products: the com.ora.jsp.beans.shopping.CatalogBean contains 
all available products, and the com.ora.jsp.beans.shopping.CartBean represents one user's shopping cart. 
Each product in the catalog is represented by a ProductBean . 

Tables Table 8.6, Table 8.7, and Table 8.8 show all the properties for the beans. 

Table 8.6, Properties for com.ora.jsp.beans.shopping.CatalogBean  

Property Name Java Type Access Description 

productList com.ora.jsp.beans. 
shopping.ProductBean[] read A list of all products in the 

catalog 

 
 

Table 8.7, Properties for com.ora.jsp.beans.shopping.CartBean  

Property Name Java Type Access Description 

empty boolean read 
true if the cart is empty, false 
otherwise 

productList com.ora.jsp.beans. 
shopping.ProductBean[] read A list of all products in the cart 

product com.ora.jsp.beans. 
shopping.ProductBean write Adds a product to the cart 

total float read The total price for all products in 
the cart 

 
 

Table 8.8, Properties for com.ora.jsp.beans.shopping.ProductBean  

Property Name Java Type Access Description 

name String read The product name 

price float read The product price 

id String read The unique product ID 

descr String read A description of the product 

The ProductBean objects are created by the CatalogBean when it's created. Figure 8.7 shows how the beans 
are related. 

Figure 8.7. Application and session scope beans 

 



JavaSercer Pages 

  page 103

The CatalogBean and the ProductBean objects are placed in the application scope, since all users have 
access to the same product catalog. A unique CartBean is needed for each user to keep track of individual 
purchases, so each user has an instance of this bean in the session scope. When a user picks a product from 
the catalog, a reference to the corresponding ProductBean is added to the user's CartBean. 

The main page for this application is shown in Example 8.7. 

Example 8.7. Page with a List of Products (catalog.jsp)  

<%@ page language="java" contentType="text/html" %> 
<%@ page import="java.text.*" %> 
<%@ taglib uri="/orataglib" prefix="ora" %> 
<html> 
  <head> 
    <title>Product Catalog</title> 
  </head> 
  <body bgcolor="white"> 
    <h1>Product Catalog</h1> 
 
    Please select a book from our catalog to read more about it and 
    decide if you would like to purchase a copy: 
 
    <jsp:useBean  
      id="catalog" 
      scope="application" 
      class="com.ora.jsp.beans.shopping.CatalogBean" 
    /> 
 
    <%--  
      Generate a list of all products with links to the product page. 
    --%> 
    <ul> 
      <ora:loop name="catalog"  
        property="productList"  
        loopId="product" 
        className="com.ora.jsp.beans.shopping.ProductBean"> 
         <li> 
           <a href="<ora:encodeURL url="product.jsp"> 
                      <ora:param name="id"  
                        value="<%= product.getId( )%>"/> 
                    </ora:encodeURL>"><%= product.getName( ) %></a> 
      </ora:loop> 
    </ul> 
 
    <jsp:useBean  
      id="cart" 
      scope="session" 
      class="com.ora.jsp.beans.shopping.CartBean" 
    /> 
 
    <%-- Show the contents of the shopping cart, if any --%> 
    <% 
       if (!cart.isEmpty( )) { 
         NumberFormat numFormat = NumberFormat.getCurrencyInstance( ); 
    %> 
         Your shopping cart contains the following items: 
         <p> 
         <table border=0> 
           <ora:loop name="cart"  
             property="productList"  
             loopId="product" 
             className="com.ora.jsp.beans.shopping.ProductBean"> 
             <tr> 
               <td><%= product.getName( ) %></td> 
               <td><%= numFormat.format(product.getPrice( )) %></td> 
             </tr> 
           </ora:loop> 
 
           <tr><td colspan=2><hr></td></tr> 
           <tr> 
             <td><b>Total:</b></td> 
             <td><%= numFormat.format(cart.getTotal( )) %></td></tr> 
        </table> 
    <% } %> 
 
  </body> 
</html> 



JavaSercer Pages 

  page 104

The <jsp:useBean> action near the top of Example 8.7 creates an instance of the CatalogBean the first time 
a user requests the page. Since the bean is placed in the application scope, all users will then share this 
single instance. 

The CatalogBean has a property that contains a list of all the products in the catalog, named productList. 
Its value is an array of ProductBean objects. A custom action called <ora:loop> , described in Table 8.9, is 
used to loop through the list and generate an HTML list item element for each product. 

Table 8.9, Attributes for <ora:loop>  

Attribute 
Name 

Java 
Type 

Request-
Time Value 
Accepted 

Description 

name String No 

Mandatory. The name of a data structure object or 
bean. The object must be of type Object[], Vector, 
Dictionary, or Enumeration, or be a bean with a 
property of one of these types. The object or bean 
can be located in any JSP scope. 

property String No 
Optional. The name of a bean property. The property 
must be of type Object[], Vector, Dictionary, or 
Enumeration. 

loopId String No 
Mandatory. The name of the variable that holds a 
reference to the current element when the action's 
body is evaluated. 

className String No Mandatory. The class name for the elements of the 
bean or property. 

The <ora:loop> action iterates through the elements of an object, or the elements represented by a 
property, and evaluates the body once for each element, making the element available to other actions and 
scripting elements in the body through the variable name specified by loopId. The implementation of the 
loop action is described in Chapter 16. 

In Example 8.7, the name attribute specifies the cart bean. The cart bean has an indexed (multivalue) 
property named productList. That's the one we ask the <ora:loop> action to loop over, by naming it in the 
property attribute. Finally, we set the loopId attribute to product, so we can use product as a variable 
name in the action element body, and specify the class name for the ProductBean with the className 
attribute. 

The body of the <ora:loop> action is evaluated once per element. The action body can contain a mixture of 
template text, scripting elements, and other actions. Here the body contains the HTML for a list item with a 
reference to another page, using the product name as the link text. Let's look at how the link is generated: 

 <a href="<ora:encodeURL url="product1.jsp"> 
   <ora:param name="id"  
     value="<%= product.getId( )%>"/> 
   </ora:encodeURL>"><%= product.getName( ) %></a> 

Within the body, the <ora:encodeURL> custom action described earlier is used to generate the <a> element's 
href attribute value. A nested <ora:param> action adds a parameter named id with the value set to the 
product ID for the current product. It's done by using a JSP expression (a request-time attribute value, 
described in Chapter 6) that calls the ProductBean property getter method getID( ). A similar expression is 
used to set the link text to the name of the current product. 

After the code for generating the product list in Example 8.7, you see almost identical code for generating a 
list of the current contents of the shopping cart. First, the <jsp:useBean> action places the cart bean in the 
session scope, as opposed to the catalog bean, which is placed in the application scope. This means that 
each user gets a unique shopping cart that remains on the server for the duration of the session, while all 
users share the same catalog. 



JavaSercer Pages 

  page 105

8.4.1 Number Formatting 

Unless the shopping cart is empty, the second <ora:loop> action generates a list of the contents as an HTML 
table with the name and price of each product. Note the java.text.NumberFormat object created in the same 
scriptlet as the if statement: 

 <% 
   if (!cart.isEmpty( )) { 
     NumberFormat numFormat = NumberFormat.getCurrencyInstance( ); 
 %> 

The NumberFormat class is a Java standard class used to format numbers. You can set up rules for the 
number of decimals to show, where to put number grouping characters, prefix and suffix, etc. Even more 
important, the number is formatted according to the number format rules for the specific geographical, 
political, or cultural region where the server is located (by default). A collection of rules for a region is called a 
locale. It defines things such as which characters to use as a decimal separator, thousand grouping, and 
currency symbol. You can read more about the NumberFormat class in the standard Java API documentation. 
We will discuss locales in detail in Chapter 11, but to give you an idea of how formatting varies between 
regions, here's an example of the number 10,000.00 formatted as currency for USA, Sweden, and Italy: 

USA: $10,000.00  
Sweden: 10 000,00 kr  
Italy: L. 10 000  

We get a reference to the default formatter for currency information, using the getCurrencyInstance( ) 
method, and assign it to a variable named numFormat It's then used in the <ora:loop> body to format the 
price information for each product and for everything in the cart. 

8.4.2 Using Request Parameters 

As discussed earlier, a link to a description page for each product is generated using the <ora:loop> action in 
the main page, shown in Example 8.7. The link includes the request parameter id, specifying the product to 
display information about. When the user clicks on one of the links, the page shown in Example 8.8 is 
invoked. 

Example 8.8. Product Description Page (product.jsp)  

<%@ page language="java" contentType="text/html" %> 
<%@ taglib uri="/orataglib" prefix="ora" %> 
<html> 
  <head> 
    <title>Product Description</title> 
  </head> 
  <body bgcolor="white"> 
 
    <jsp:useBean  
      id="catalog" 
      scope="application" 
      className="com.ora.jsp.beans.shopping.CatalogBean" 
    /> 
 
    <%-- Get the ProductBean from the catalog --%> 
    <ora:useProperty id="product" name="catalog" property="product"  
      arg="<%= request.getParameter(\"id\") %>" 
      className="com.ora.jsp.beans.shopping.ProductBean" /> 
 
    <h1> 
      <jsp:getProperty name="product" property="name" /> 
    </h1> 
 
    <jsp:getProperty name="product" property="descr" /> 
 
    <p> 
    <a href="<ora:encodeURL url="addtocart.jsp"> 
               <ora:param name="id" value="<%= product.getId( ) %>"/> 
             </ora:encodeURL>">Add this book to the shopping cart</a> 
 
  </body> 
</html> 



JavaSercer Pages 

  page 106

The value of a request parameter can be retrieved from the implicit request object using the getParameter( 
) method. As described in Chapter 6, the request object is an instance of the class HttpServletRequest, 
and provides methods to find out everything the server knows about the request. The results are shown in 
Figure 8.8. 

Figure 8.8. The product description page 

 

In Example 8.8, the getParameter( ) method is used as a request-time attribute value to set the arg 
attribute for the <ora:useProperty> custom action, described in Table 8.10. 

Table 8.10, Attributes for <ora:useProperty>  

Attribute 
Name 

Java 
Type 

Request-Time Value 
Accepted 

Description 

id String No 
Mandatory. The name of the variable to 
hold the retrieved bean. The bean is 
placed in the page scope. 

name String No 
Mandatory. The name of the object with 
the bean to retrieve. The object must be 
available in one of the standard scopes. 

property String No Mandatory. The name of the property 
holding the bean. 

arg String Yes Optional. The argument value used to 
identify one specific bean. 

className String No Mandatory. The class name for the 
retrieved bean. 

The <ora:useProperty> action is similar to the <jsp:useBean> action in that it associates a bean with a 
variable name. But instead of trying to locate the bean in a specified scope and create it if it isn't found, the 
<ora:useProperty> action gets the bean from another object (available in any of the standard scopes). It 
does this by calling the getter method for the specified property with the argument specified by the arg 
attribute if present. In Example 8.8, the <ora:useProperty> action is used to get the ProductBean that 
matches the ID passed as a parameter to the page from the catalog. 

Note how the double quotes in the getParameter( ) method argument are preceded with a backslash (\): 

 arg="<%= request.getParameter(\"id\") %>" 

Whenever you use the same type of quote within an attribute value as you use to enclose the attribute value, 
you must escape it with a backslash. If you forget this, the JSP container is unable to figure out where the 
attribute value ends, and the page will not be converted to a valid servlet. Instead you will get a syntax error 
message when you access the page the first time. An alternative is to use one type of quote within the value 
and another to enclose the value. For instance, here you could use single quotes to enclose the value instead: 

 arg='<%= request.getParameter("id") %>' 



JavaSercer Pages 

  page 107

The remainder of Example 8.8 uses actions we have already discussed to generate the product information 
and the link to the business logic page that adds the product to the shopping cart. The request processing 
page is shown in Example 8.9. 

Example 8.9. Adding a Product to the Shopping Cart (addtocart.jsp)  

<%@ page language="java" contentType="text/html" %> 
<%@ taglib uri="/orataglib " prefix="ora" %> 
 
<jsp:useBean  
  id="catalog" 
  scope="application" 
  class="com.ora.jsp.beans.shopping.CatalogBean" 
/> 
 
<jsp:useBean  
  id="cart" 
  scope="session" 
  class="com.ora.jsp.beans.shopping.CartBean" 
/> 
 
<%-- Get the ProductBean from the catalog and save it in the cart --%> 
<ora:useProperty id="product" name="catalog" property="product"  
  arg='<%= request.getParameter("id") %>' 
  className="com.ora.jsp.beans.shopping.ProductBean" /> 
 
<jsp:setProperty name="cart" property="product"  
  value="<%= product %>" /> 
 
<%-- Redirect back to the catalog page --%> 
<ora:redirect page="catalog.jsp" /> 

Since this is a request processing page, it doesn't contain any HTML. The <jsp:useBean> actions locate the 
CatalogBean and CartBean and associate them with the variables catalog and cart, respectively. Next, the 
<ora:useProperty> action gets the ProductBean corresponding to the id request parameter value and 
associates it with the variable named product. A standard <jsp:setProperty> action adds a reference to the 
product in the cart bean. Once all this is done, the application needs to redisplay the catalog page. 

8.4.3 Redirect Versus Forward 

There are two ways you can invoke another page: redirecting or forwarding. Forwarding is used in Example 
8.2 to display an appropriate page depending on the result of the user input validation. In Example 8.9, 
redirection is used to display the main page for the application after adding a new product to the cart, using 
the <ora:redirect> custom action described in Table 8.11. 

Table 8.11, Attributes for <ora:redirect>  

Attribute 
Name 

Java 
Type 

Request-Time 
Value Accepted 

Description 

page String Yes 
Mandatory. The URL of the page to redirect 
to, relative to the current page or, if it starts 
with a /, relative to the context path. 

The <ora:redirect> action sends a redirect response to the client with the new location defined by the page 
attribute. If URL rewriting is used for session tracking, the URL is encoded with the session ID. If the body of 
this action contains <ora:param> actions, described in Table 8.5, each parameter is added to the URL as a 
query string parameter, encoded according to rules in the HTTP specification. 

There's an important difference between a forward and a redirect. When you forward, the target page is 
invoked through an internal method call by the JSP container; the new page continues to process the same 
request and the browser is not aware that more than one page is involved. A redirect, on the other hand, 
means that the first page tells the browser to make a new request to the target page. The URL shown in the 
browser therefore changes to the URL of the new page when you redirect, but stays unchanged when you use 
forward. A redirect is slower than a forward, since the browser has to make a new request. Also, because it 
results in a new request, request scope objects are no longer available after a redirect. 

So how do you decide if you should use forward or redirect? To a large extent it's a matter of preference. I 
look at it like this: forwarding is always faster, so that's the first choice. But since the URL in the browser 
refers to the start page even after the forward, I ask myself what happens if the user decides to reload the 
page (or even just resize the window; this often reloads the page automatically). In this example, the start 
page is the page that adds an item to the shopping cart. I don't want it to be invoked again on a reload, so I 
redirect to the page that displays the catalog and shopping cart content instead. 



JavaSercer Pages 

  page 108

8.5 Memory Usage Considerations 

You should be aware that all objects you save in the application and session scopes take up memory in the 
server process. It's easy to calculate how much memory is used for application objects since you have full 
control over the number of objects you place there. But the total number of objects in the session scope 
depends on the number of concurrent sessions, so in addition to the size of each object, you also need to 
know how many concurrent users you have and how long a session lasts. Let's look at an example. 

The CartBean used in this chapter is small. It stores only references to ProductBean instances, not copies of 
the beans. An object reference in Java is 8 bytes, so with three products in the cart we need 24 bytes. The 
java.util.Vector object used to hold the references adds some overhead, say 32 bytes. All in all, we need 
56 bytes per shopping cart bean with three products. 

If this site has a modest number of customers, you may have 10 users shopping per hour. The default 
timeout for a session is 30 minutes, so let's say that at any given moment, you have 10 active users and 
another 10 sessions that are not active but have not timed out yet. This gives a total of 20 sessions times 56 
bytes per session, a total of 1,120 bytes. In other words, a bit more than 1 KB. That's nothing to worry about. 

Now let's say your site becomes extremely popular, with 2,000 customers per hour. Using the same method 
to calculate the number of concurrent sessions, you now have 4,000 sessions at 56 bytes, a total of roughly 
220 KB - still nothing to worry about. However, if you store larger objects in each session, for instance the 
results of a database search, with an average of 10 KB per active session, that corresponds to roughly 40 MB 
for 4,000 sessions. A lot more, but still not extreme, at least not for a site intended to handle this amount of 
traffic. However, it should become apparent that with that many users, you have to be a bit more careful with 
how you use the session scope. 

Here are some things you can do to keep the memory requirements under control: 

• Place only those objects that really need to be unique for each session in the session scope. In the 
shopping cart example, for instance, each cart contains references only to the shared product beans, 
and the catalog bean is shared by all users. 

• Set the timeout period for sessions to a lower value than the default. If you know it's rare that your 
users leave the site for 30 minutes and then return, use a shorter period. You can change the 
timeout for all sessions in an application through the application's Deployment Descriptor (see 
Appendix D), or call session.setMax-InactiveInterval( ) (see Appendix B) to change it for an 
individual session. 

• Provide a way to end the session explicitly. A good example is a logout function. Another possibility 
is to invalidate the session when something is completed (such as submitting the order form). You 
can use the session.invalidate( ) method to invalidate a session and make all objects available 
for garbage collection (the term used when the Java runtime is allowed to remove unused objects to 
conserve memory). You will see an example of this in Chapter 10. 

We have covered a lot of ground in this chapter, so let's recap the key points. 

The scope concept gives you full control over the lifetime and reach of shared information at a convenient 
abstraction level. However, be careful about designing your beans for thread safety if they are to be used in 
the session and application scope, and resist the temptation to keep too much information around in the 
session scope. 

Action elements for passing control between pages, such as the standard <jsp:forward> action and the 
custom <ora:redirect> action, allow you to allocate different roles to different pages. Other actions, such as 
the <ora:loop> and <ora:encodeURL> custom actions, can be used to minimize the amount of scripting code 
needed in the JSP pages. The scope abstraction and the actions together make it possible to develop JSP-
based applications that are easy to maintain and extend. 

 



JavaSercer Pages 

  page 109

Chapter 9. Database Access 

Almost any web application you see on the Internet accesses a database. Databases are used to store 
customer information, order information, product information, even discussion forum messages - in short, all 
information that needs to survive a server restart and is too complex to handle in plain text files. 

There are many types of databases used in the industry today. However, relational databases are by far the 
most common. A relational database uses tables to represent the information it handles. A table consists of 
rows of columns, with each column holding a single value of a predefined datatype. Examples of these data 
types are text data, numeric data, dates, and binary data such as images and sound. A specialized language 
called Structured Query Language (SQL) is used to access the data. SQL is an ANSI standard and is 
supported by all major database vendors. 

Relational database engines come in all shapes and sizes, from simple one-person databases with limited 
features to sophisticated databases capable of handling large numbers of concurrent users, with support for 
transactions distributed over multiple servers and extremely optimized search algorithms. Even though they 
all use SQL as the data access language, the API used to execute SQL statements is different for each 
database engine. To help programmers write code that's portable between database engines, the standard 
Java libraries include an API called the Java Database Connectivity (JDBC) API. JDBC defines a set of classes 
that can be used to execute SQL statements the same way in any relational database. 

The complexity of databases varies extensively. A database for an online discussion forum, for instance, 
requires only one or two tables, while a database for a human resources system may contain hundreds of 
related tables. In this chapter, we look at a set of generic database custom actions you can use to build any 
type of database-driven web application. But if the database is complex, you may want to use another 
approach: hiding the database behind application-specific beans and custom actions, or moving all the 
database processing to a servlet and using JSP only to show the result. Both these approaches are discussed 
briefly at the end of this chapter, and in more detail in Chapter 13, Chapter 14, and Chapter 17. 

 

9.1 Accessing a Database from a JSP Page 

First, the bad news: JSP 1.1 doesn't specify a standard way to access databases from a JSP page. As I 
mentioned in Chapter 8, work is underway to define a larger set of standard JSP action elements, and actions 
for database access are high on the priority list. 

The good news is that the JDBC API allows Java applications to access databases in a vendor-independent 
way. You could use JDBC directly in your JSP pages, embedding code in scriptlet elements. But this quickly 
gets out of hand, leading to too much code in the pages, minimal amount of reuse, and, in general, a web 
application that's hard to maintain. A better approach is to develop a set of custom action elements based on 
JDBC. That's what I have done here, and in this chapter we look at how to use them in an employee register 
application. If you're a programmer and interested in how they are implemented, skip ahead and glance at 
Chapter 16 and Chapter 17. Chapter 16, describes how to develop custom actions in general, and Chapter 17, 
describes the actual database access custom actions. 

The database access custom actions developed for this book provide the following features: 

• Using a connection pool for better performance and scalability 

• Supporting queries, updates, and inserts 

• Handling the most common datatype conversions 

• Supporting a combination of database operations in one transaction 

These custom actions are generic, so you can use them to develop your own database-driven web application. 
Each action is introduced as it is used in the examples in this chapter. In addition, you can find a complete 
description of all the actions in Appendix C. 

9.1.1 Example Application Architecture 

In this chapter, we build an employee register application. This application contains functions for adding and 
changing employee information, as well as for searching for employees. The employee information is stored in 
a relational database and accessed through the database access custom actions. 



JavaSercer Pages 

  page 110

The employee registration part of the application contains the pages shown in Figure 9.1. 

Figure 9.1. Employee registration pages 

 

This example looks similar (but not identical) to our example from the previous chapter. The enter.jsp page 
presents a form where the user enters information about an employee. When the form is submitted, it 
invokes the validate.jsp page, where all input is validated. If the input is invalid, the request is forwarded 
back to the enter.jsp page to display an error message and the form with all the values the user previously 
entered. The user can then correct the invalid values and submit the form again. When all input is valid, the 
validate.jsp page forwards the request to the store.jsp page, where the information is stored in the database. 
Finally, the store.jsp page redirects to the confirmation.jsp page, which displays the information actually 
stored in the database as a confirmation to the user. 

Figure 9.2 shows the pages used to implement the employee search function. 

Figure 9.2. Employee search pages 

 



JavaSercer Pages 

  page 111

The search.html page is a regular HTML page with a form for entering the search criteria. The user can enter 
a partial first name, last name, and department name. Submitting the form invokes the find.jsp page. Here 
the database is searched for employees matching the criteria specified by the user, and the result is kept in 
the request scope. The find.jsp page forwards to the list.jsp page, where the result is displayed. For each 
employee listed, the list.jsp page adds a Delete button. Clicking on the Delete button invokes the delete.jsp 
page, removing the employee information from the database. The delete.jsp then redirects to the find.jsp 
page to get an updated collection of employees matching the search criteria, and the find.jsp forwards to 
list.jsp as before, to show the result after deleting the employee. 

9.1.2 Example Tables 

If you develop a database-driven web application from scratch, you must first develop a database schema. 
The database schema shows how all persistent information in the application is modeled as a set of related 
tables. For a large application this is a great deal of work, and it's extremely important to find the right 
balance between flexibility and performance of frequent queries. How database schemas are developed is 
beyond the scope of this book, but there are plenty of other books available on this subject. Examples are C. 
J. Date's classic, very academic An Introduction to Database Systems (Addison Wesley), and a book that's 
easier to read, Database Design for Mere Mortals: A Hands-On Guide to Relational Database Design by 
Michael J. Hernandez (Addison Wesley). In the event that you're developing a web interface to an existing 
database, you're probably relieved of the schema development, but you should study the schema anyway to 
make sure you understand how all the tables fit together. 

The schema for the examples in this chapter is simple. To store the employee information, we need only the 
information described in Table 9.1. 

Table 9.1, Employee Database Table  

Column Name SQL Datatype Primary Key 

UserName CHAR (Text) Yes 

Password CHAR (Text) No 

FirstName CHAR (Text) No 

LastName CHAR (Text) No 

Dept CHAR (Text) No 

EmpDate DATE (Date/Time) No 

EmailAddr CHAR (Text) No 

ModDate TIMESTAMP (Date/Time) No 

In a relational database, one column (or a combination of columns) can be marked as a primary key. The 
primary key uniquely identifies one specific row in the table; no two rows can have the same primary key. 
Here we use a column called UserName as the unique primary key for the table. Each employee must 
therefore be assigned a unique username, just like the username used to log into an operating system. As 
you will see in Chapter 10, the username, combined with the password you also find in the Employee table, 
can be used for application-controlled authentication. Assigning unique usernames can, however, be a 
problem in a web application available to anyone on the Internet. Therefore, some applications use a numeric 
code as the unique identifier instead, such as social security number or a generated sequence number. The 
tables above are only intended as an example of how to work with databases in JSP, so we allow ourselves to 
keep it simple. 

The SQL datatype name within parentheses in Table 9.1 is the name used in the Microsoft Access product, to 
help you create the tables in this commonly used database. This is by no means an endorsement of the 
Access database for a database-driven web site. (In fact, I recommend that you don't use Access for a real 
application. It's a product that's intended as a single-user database, and it doesn't work well with the number 
of accesses typical for a web application.) For a real site, you should use a more robust multiuser database 
such as Oracle, Sybase, DB2, or Microsoft SQL Server. The only reason I use Access in this book when I refer 
to a specific product is that it's a database that you may already have installed. It's also easy to use during 
development of an application.  



JavaSercer Pages 

  page 112

If you don't have a database installed and you're not ready to spend big bucks for one of the products just 
listed, there are plenty of free or inexpensive databases you can use. Two examples are Lutris Technologies' 
InstantDB, a pure Java database available at http://www.lutris.com/products/instantDBNews.html, and 
T.c.X's mySQL, a popular database that you can use free of charge for most purposes, available at 
http://www.mysql.com. 

To run the examples described in this chapter, you must first create the table outlined in Table 9.1 in your 
database. How to do this varies between database engines, so consult the documentation for the database 
engine you use. 

9.1.3 Reading and Storing Information in a Database 

The first page the user loads to register an employee in the example application is enter.jsp. This page 
contains a form for entering all information about an employee, shown in Figure 9.3. 

Figure 9.3. Employee information entry form 

 

The input is validated by the validate.jsp page when the form is submitted. The enter.jsp and validate.jsp 
pages are similar to the pages discussed in detail in Chapter 8 and don't access the database. Instead of 
going through these pages now, let's jump directly to the store.jsp page, where the database access takes 
place. We'll return to the enter.jsp and validate.jsp pages at the end of this chapter, as they contain some 
interesting things not related to database access. 

Example 9.1 shows the complete store.jsp page. This page first searches the database for information about 
an employee with the specified username. If one is found, the database is updated with all the other 
information about the employee the user entered. Otherwise, a new employee entry is stored in the database. 
Then all database information about the employee is collected and the request is forwarded to the 
confirmation.jsp page. Let's look at the complete page first and then discuss the different pieces in detail. 

http://www.lutris.com/products/instantDBNews.html
http://www.mysql.com


JavaSercer Pages 

  page 113

Example 9.1. Database Access Page (store.jsp)  

<%@ page language="java" contentType="text/html" %> 
<%@ taglib uri="/orataglib" prefix="ora" %> 
 
<ora:useDataSource id="example"  
  className="sun.jdbc.odbc.JdbcOdbcDriver"  
  url="jdbc:odbc:example" /> 
 
<%--  
  See if the employee is already defined. If not, insert the 
  info, else update it. 
--%> 
<ora:sqlQuery id="empDbInfo" dataSource="example"> 
  SELECT * FROM Employee  
    WHERE UserName = ? 
  <ora:sqlStringValue param="userName" /> 
</ora:sqlQuery> 
 
<% if (empDbInfo.size( ) == 0) { %> 
 
     <ora:sqlUpdate dataSource="example"> 
       INSERT INTO Employee  
         (UserName, Password, FirstName, LastName, Dept,  
           EmpDate, EmailAddr, ModDate) 
         VALUES(?, ?, ?, ?, ?, ?, ?, ?) 
       <ora:sqlStringValue param="userName" /> 
       <ora:sqlStringValue param="password" /> 
       <ora:sqlStringValue param="firstName" /> 
       <ora:sqlStringValue param="lastName" /> 
       <ora:sqlStringValue param="dept" /> 
       <ora:sqlDateValue param="empDate" pattern="yyyy-MM-dd" /> 
       <ora:sqlStringValue param="emailAddr" /> 
       <ora:sqlTimestampValue value="<%= new java.util.Date( ) %>" /> 
     </ora:sqlUpdate> 
 
<% } else { %> 
 
     <ora:sqlUpdate dataSource="example"> 
       UPDATE Employee 
         SET Password = ?,  
             FirstName = ?,  
             LastName = ?,  
             Dept = ?, 
             EmpDate = ?, 
             EmailAddr = ?, 
             ModDate = ? 
         WHERE UserName = ? 
       <ora:sqlStringValue param="password" /> 
       <ora:sqlStringValue param="firstName" /> 
       <ora:sqlStringValue param="lastName" /> 
       <ora:sqlStringValue param="dept" /> 
       <ora:sqlDateValue param="empDate" pattern="yyyy-MM-dd" /> 
     <ora:sqlStringValue param="emailAddr" /> 
       <ora:sqlTimestampValue value="<%= new java.util.Date( ) %>" /> 
       <ora:sqlStringValue param="userName" /> 
     </ora:sqlUpdate> 
 
<% } %> 
 
<%-- Get the new or updated data from the database --%> 
<ora:sqlQuery id="newEmpDbInfo" dataSource="example" scope="session"> 
  SELECT * FROM Employee  
    WHERE UserName = ? 
  <ora:sqlStringValue param="userName" /> 
</ora:sqlQuery> 
 
<%-- Redirect to the confirmation page --%> 
<ora:redirect page="confirmation.jsp" /> 

At the top of the page in Example 9.1 you find the taglib directive for the custom action library, as in the 
previous examples. Then follows a number of database custom actions. 



JavaSercer Pages 

  page 114

9.1.3.1 JDBC drivers and the DataSource class 

The first database custom action you see in Example 9.1 is the <ora:useDataSource> action (described in 
Table 9.2): 

 <ora:useDataSource id="example"  
   className="sun.jdbc.odbc.JdbcOdbcDriver" url="jdbc:odbc:example" /> 
 
 

Table 9.2, Attributes for <ora:useDataSource>  

Attribute 
Name 

Java 
Type 

Request-Time 
Value Accepted 

Description 

id String No Mandatory. The name used to reference 
the data source from other actions. 

className String No Mandatory. The name of the JDBC driver 
class used to access the database. 

url String No Mandatory. The JDBC URL for the 
database. 

user String No Optional. The database user account 
name. 

pw String No Optional. The password for the database 
user account name. 

This action looks for a javax.sql.DataSource object with the name specified by the id attribute in the 
application scope. If it doesn't find it, it creates one for the JDBC driver specified by the class attribute, 
associates it with the JDBC URL specified by the url attribute, then saves it in the application scope where it 
will be found the next time around. Before we continue with the rest of the page and the other database 
custom actions, let's review the DataSource, JDBC driver, and JDBC URL in more detail. 

The DataSource class is defined by the JDBC 2.0 Standard Extension. It represents a data source that can be 
accessed through the JDBC API. The JDBC API is a set of classes and interfaces that allows a Java application 
to send SQL statements to a database in a vendor-independent way. For each type of database, an 
implementation of the interfaces defined by the JDBC API is needed. This is called a JDBC driver. Using 
different drivers that all provide the same interface allows you to develop your application on one platform 
(for instance, a PC with an Access database), and then deploy the application on another platform (for 
instance, a Solaris server with an Oracle database). 

At least in theory it does. SQL is unfortunately one of these standards that leave a few things open, eagerly 
filled by different vendors' proprietary solutions. Examples are how to handle embedded quotes in a string 
value, how to deal with the input and output of date and time values, semantics for certain datatypes, and 
creation of unique numbers. The custom actions used in this book take care of some of this, such as string 
quoting and date/time string format, so if you use these actions and stick to ANSI SQL you should be able to 
migrate from one database to another without too much tweaking. However, you should always read your 
database documentation carefully and try to stay away from proprietary features. And be prepared to spend 
at least some time in transition when you need to move the application to another database. 

All other database custom actions in the example tag library use the DataSource to get a database 
connection for executing the SQL statement. One nice thing with a DataSource is that it can represent 
something called a connection pool . This is described in more detail in Chapter 17, but a connection pool is 
exactly what it sounds like: a pool of database connections that can be shared by multiple clients. Opening a 
database connection is very time-consuming. With a connection pool, a connection to the database is opened 
once and stays open until the application is shut down. When a database custom action needs a connection, it 
gets it from the pool, through the DataSource object, and uses it to execute one or more SQL statements. 
When the action closes the connection, the connection is returned to the pool where it can be picked up by 
the next action that needs it. The DataSource created by the <ora:useDataSource> action implements a 
basic connection pool. 

Back to our custom action. The <ora:useDataSource> action has three mandatory attributes: id, className, 
and url. Optionally you can also specify user and pw attributes, required to connect to some databases. The 
id attribute defines the name used for the DataSource object in the application scope. The className and 
url attributes require a bit more explanation. 



JavaSercer Pages 

  page 115

As I mentioned earlier, what makes it possible to access databases from different vendors through the 
standard JDBC API is that JDBC relies on drivers, written for each specific database engine. A driver converts 
the JDBC API methods to the proprietary equivalents for a specific database engine. You can find JDBC drivers 
for most database engines on the market, both commercial and open source. If you can't get one from your 
vendor, Sun has a list of JDBC drivers from third parties at 
http://industry.java.sun.com/products/jdbc/drivers/. 

The class attribute is used to specify the JDBC driver classname, for instance 
sun.jdbc.odbc.JdbcOdbcDriver. It must be specified as a fully qualified classname, i.e., it must include the 
package name. In this example we use the JDBC-ODBC bridge driver included in the Java SDK. This driver 
can be used to access databases that provide an ODBC interface but have no direct JDBC driver interface, as 
is the case for Microsoft Access. Sun doesn't recommend that you use the JDBC-ODBC driver for a production 
application, but for development it works fine. When you deploy your application, you should use production-
quality drivers, available from the database vendor or a third party. 

A database is identified by a JDBC URL. Different JDBC drivers use different URL syntax. All JDBC URLs start 
with jdbc:, followed by a JDBC driver identifier, such as odbc:, for the JDBC-ODBC bridge driver. The rest of 
the URL is used to identify the database instance. For the JDBC-ODBC bridge driver, it's an ODBC Data Source 
Name (DSN). If you use an Access database, you need to create a System DSN using the ODBC control in the 
Windows Control Panel to run this example, as shown in Figure 9.4. Note that you must create a System DSN 
as opposed to a User DSN. The reason for this is that the web server where your JSP pages are executed 
usually runs as a different user account than the account you use for development. If you specify a User DSN 
with your development account, the web server's servlet container will not be able to find it. 

If you use a different JDBC driver than the JDBC-ODBC bridge driver or use a different ODBC DSN, modify the 
<ora:useDataSource> attributes in store.jsp accordingly before you try to run the example. 

Figure 9.4. System DSN definition window 

 

The <ora:useDataSource> action is intended only for simple examples or during the prototyping phase in a 
real project. From a maintenance standpoint, it's not a good idea to have the JDBC URL and driver classname 
in multiple pages. Also, if you need to specify a username and password, a JSP page is not a secure place to 
put this information. Another reason is that in JSP 1.1, there's no way for a custom action to know when an 
application is being shut down. This means a custom tag can't gracefully shut down the connections in the 
pool, potentially leading to problems with database resources not being released as they should. 

Instead of using the <ora:useDataSource> action, you should use a servlet that's loaded when the 
application is started and notified when it's being shut down. This solves all of these problems, and we'll look 
at such a servlet in Chapter 17. As more and more database and JDBC driver vendors add support for JDBC 
2.0 SE and implement their own connection pools, the servlet approach also lets you use a connection pool 
that's potentially more efficient than the one created by the custom action. No matter how the data source is 
created, other database custom actions described in this chapter work the same, since they just need the 
name the DataSource is saved under in the application scope. 

http://industry.java.sun.com/products/jdbc/drivers/


JavaSercer Pages 

  page 116

9.1.3.2 Reading database information 

Now that we've connected to a data source, we can begin to send queries to it. The first SQL custom action 
that accesses the database in Example 9.1 is the <ora:sqlQuery> action, described in Table 9.3. 

Table 9.3, Attributes for <ora:sqlQuery>  

Attribute 
Name 

Java 
Type 

Request-Time Value 
Accepted 

Description 

id String No Mandatory. The name of the bean to hold 
the result. 

dataSource String No 
Mandatory, unless used with 
<ora:sqlTransaction>. The name of the 
data source. 

scope String No 
Optional. The scope for the result, one of 
page, request, session, or application. 
Default is page. 

The <ora:sqlQuery> action is used to read information from a database using the SQL SELECT statement 
specified in the element's body. A SELECT statement selects data from the database. It does this by specifying 
various clauses that identify the table to search, the columns to return, the search criteria, and other options. 
If you're not familiar with the SELECT statement, you can read up on it in the documentation for your 
database. The SELECT statement in Example 9.1 gets all columns in the Employee table for every row where 
the UserName column has the value specified in the userName field in the entry form. Since the username is 
unique in our application, either 0 or 1 row is returned. 

The <ora:sqlQuery> action gets a connection from the data source identified by the dataSource attribute. It 
then executes the SQL SELECT statement in the action's body, and saves the result as a java.util.Vector 
with com.ora.jsp.sql.Row objects in the scope specified by the scope attribute, using the name specified by 
the id attribute. If no scope is specified, as in this example, the result is saved in the page scope. The 
dataSource attribute value must be the name of a DataSource available in the application scope. Note how it 
matches the id attribute of the <ora:useDataSource> action in Example 9.1. 

Besides the SQL statement, the action element body also contains a <ora:sqlStringValue> action, described 
in Table 9.4. 

Table 9.4, Attributes for <ora:sqlStringValue>  

Attribute 
Name 

Java 
Type 

Request-Time Value 
Accepted 

Description 

value String Yes Optional. The value to use for a placeholder in the 
enclosing database action. 

param String Yes Optional. The name of the request parameter 
holding the value. 

name String No Optional. The name of the bean with a property 
holding the value. 

property String No 
Mandatory if name is specified. The name of the 
bean property holding the value. 

prefix String Yes Optional. A string that should be concatenated to 
the beginning of the value. 

suffix String Yes Optional. A string that should be concatenated to 
the end of the value. 

 



JavaSercer Pages 

  page 117

The <ora:sqlStringValue> action replaces a placeholder, marked with a question mark (?), in the SQL 
statement with a value. The value can be specified in one of three ways: 

• Using the value attribute to specify the value as a literal string or as a request-time attribute that 
returns a String: 

  <ora:sqlStringValue value='<%= anObject.getString("Arg") %>' /> 

• Using the param attribute to specify the name of a request parameter that holds the String value: 

  <ora:sqlStringValue param="aParameterName" /> 

• Using the name and property attributes to specify a bean property that holds the String value: 

  <ora:sqlStringValue name="aBeanName" property="aPropertyName" /> 

In Example 9.1, the param attribute is used to get the userName request parameter value, corresponding to 
the form field with the same name in the enter.jsp page: 

 <ora:sqlQuery id="empDbInfo" dataSource="example"> 
   SELECT * FROM Employee  
     WHERE UserName = ? 
   <ora:sqlStringValue param="userName" /> 
 </ora:sqlQuery> 

You could use a JSP expression in the body instead to insert the username directly into the SQL statement, 
like this: 

 <ora:sqlQuery id=" empDbInfo " dataSource="example"> 
   SELECT * FROM Employee 
     WHERE UserName = '<%= request.getParameter("userName") %>' 
 </ora:sqlQuery> 

But then you run into the problem of string quoting in SQL. Most database engines require a string literal to 
be enclosed in single quotes in a SQL statement. That's easy to handle by just putting single quotes around 
the JSP expression, like I've done in this example. What's not so easy is how to handle quotes within the 
string value. Different database engines employ different rules for how to encode embedded quotes. Most 
require a single quote in a string literal to be duplicated, while others use a backslash as an escape character 
or let you enclose the string literal with double quotes if the value includes single quotes. When you use the 
<ora:sqlStringValue> action, you don't have to worry about this type of formatting at all; the value is 
encoded according to the rules for the database you're currently accessing. 

The <ora:sqlQuery> element body can contain multiple placeholders and <ora:sqlStringValue> actions. 
The first <ora:sqlStringValue> action replaces the first question mark in the SQL statement with its value, 
formatted correctly for the database engine you are currently using, the second replaces the second question 
mark, and so on. Only one dynamic value is needed in the query in Example 9.1. If you need more, just add 
question marks in the SQL statements and <ora:sqlStringValue> actions in the <ora:sqlQuery> body in 
the same order. 

Back to the result generated by the <ora:sqlQuery> action. As I mentioned earlier, it's a java.util.Vector 
with com.ora.jsp.sql.Row objects. A Vector is like a dynamic array that provides methods for accessing its 
elements: one by one with the elementAt( ) , firstElement( ), and lastElement( ) methods, or as a 
java.util.Enumeration of all elements with the elements( ) method. The Java API documents contain a 
complete list of the Vector methods. We look at the Row class later in this chapter. 

The Vector class also provides a method used in Example 9.1 to see if the query returned any rows at all: 
the size( ) method. The SELECT statement searches the database for information about the employee 
entered in the form. If the employee is already registered, the query will return one row. To figure out 
whether or not the database already contains information about the employee, you can use the size( ) 
method to test on the number of rows using a simple scriptlet with an if statement: 

 <% if (empDbInfo.size( ) == 0) { %> 
   insert 
 <% } else { 
   update 
 <% } %> 



JavaSercer Pages 

  page 118

9.1.3.3 Inserting database information 

Now that you know how to retrieve data from the database, we can move on to inserting information. You can 
insert information into a database with a SQL INSERT statement. To execute an INSERT statement, use the 
<ora:sqlUpdate> custom action, described in Table 9.5. 

Table 9.5, Attributes for <ora:sqlUpdate>  

Attribute 
Name 

Java 
Type 

Request-Time Value 
Accepted 

Description 

id String No 
Optional. The name of an Integer 
object to hold the number of rows 
affected by the statement. 

dataSource String No 
Mandatory, unless used with 
<ora:sqlTransaction>. The name of 
the data source. 

scope String No 
Optional. The scope for the result, one 
of page, request, session, or 
application. Default is page. 

The <ora:sqlUpdate> action executes any SQL statement that doesn't return rows: INSERT, UPDATE, DELETE, 
and even so-called Data Definition Language (DDL) statements such as CREATE TABLE. These statements do 
exactly what they sound like they do: insert, update, and delete information, and create a new table, 
respectively. (Refer to your database documentation for details about the syntax.) For INSERT, UPDATE, and 
DELETE, the <ora:sqlUpdate> action can optionally save an Integer object, telling how many rows were 
affected by the statement. The Integer is saved in the scope specified by the scope attribute using the name 
specified by the id attribute. This feature is not used in Example 9.1, but in some applications it can be used 
as feedback to the user or to decide what to do next. 

The only mandatory attribute for <ora:sqlUpdate> is dataSource. It must be the name of a DataSource 
available in the application scope, in the same way as for the <ora:sqlQuery> action. The 
<ora:sqlStringValue> action can be used in the body of an <ora:sqlUpdate> element as well. Multiple 
<ora:sqlStringValue> actions are used in Example 9.1, each one setting the value for a placeholder to the 
value of a request parameter: 

 <ora:sqlUpdate dataSource="example"> 
   INSERT INTO Employee  
     (UserName, Password, FirstName, LastName, Dept,  
       EmpDate, EmailAddr, ModDate) 
     VALUES(?, ?, ?, ?, ?, ?, ?, ?) 
   <ora:sqlStringValue param="userName" /> 
   <ora:sqlStringValue param="password" /> 
   <ora:sqlStringValue param="firstName" /> 
   <ora:sqlStringValue param="lastName" /> 
   <ora:sqlStringValue param="dept" /> 
   <ora:sqlDateValue param="empDate" pattern="yyyy-MM-dd" /> 
   <ora:sqlStringValue param="emailAddr" /> 
   <ora:sqlTimestampValue value="<%= new java.util.Date( ) %>" /> 
 </ora:sqlUpdate> 



JavaSercer Pages 

  page 119

Besides <ora:sqlStringValue> actions, an <ora:sqlDateValue> action is used to set the EmpDate column 
value. This action is described in Table 9.6. 

Table 9.6, Attributes for <ora:sqlDateValue>  

Attribute 
Name 

Java Type Request-Time Value 
Accepted 

Description 

value java.util.Date Yes 
Optional. The value to use for a 
placeholder in the enclosing 
database action. 

stringValue String Yes Optional. The String to use as 
the value. 

param String Yes 
Optional. The name of the 
request parameter holding the 
value. 

name String No 
Optional. The name of the bean 
with a property holding the 
value. 

property String No 
Mandatory if name is specified. 
The name of the bean property 
holding the value. 

pattern String Yes 

The pattern used to interpret a 
String specified by the 
stringValue, param, or 
name/property attributes. 

Databases are picky about the format for date and time datatypes. In Example 9.1 we get the date from the 
form as a string in the format yyyy-MM-dd (e.g., 2000-03-31), but the EmpDate column is declared as a DATE 
column, as you can see in Table 9.1. Some databases accept a string in the format used here as a value for a 
DATE column, but others do not. To be on the safe side, it's best to convert the string into its native date 
format, a java.sql.Date object, before sending it to the database. The <ora:sqlDateValue> action does this 
for you when you specify the value using the stringValue, param, or name and property attributes (if the 
property is of type String). 

The pattern attribute contains a pattern that describes the order and format of the year, month, and day 
parts in the string representation of the date. Appendix C shows all the types of patterns you can use - it's 
very flexible. Say, for instance, that you want the user to enter dates in a format like "Friday July 14, 2000." 
You then use the pattern EEEE MMMM dd, yyyy instead of the yyyy-MM-dd pattern used in this example to tell 
the <ora:sqlDateValue> action how to interpret the date string. 

The Employee table also has a column named ModDate, to hold the date and time the information was last 
modified. It is declared as a TIMESTAMP column. To set its value, an instance of the java.util.Date class is 
used as the value attribute of a <ora:sqlTimestampValue> action in Example 9.1: 

 <ora:sqlTimestampValue value="<%= new java.util.Date( ) %>" /> 

Besides the SQL value actions for dates and timestamps described here, the custom library contains similar 
value actions for columns declared as TIME as well as all numeric datatypes. They all support the same 
attributes as the <ora:sqlDateValue> action and perform the conversion from a string value to the 
appropriate native type. Appendix C contains information about all of these actions. 



JavaSercer Pages 

  page 120

9.1.3.4 Updating database information 

Once you know how to insert information in a database, updating it is a piece of cake. You just use the 
<ora:sqlUpdate> action with a SQL UPDATE statement instead of an INSERT statement: 

<ora:sqlUpdate dataSource="example"> 
  UPDATE Employee 
    SET Password = ?,  
        FirstName = ?,  
        LastName = ?,  
        Dept = ?, 
        EmpDate = ?, 
        EmailAddr = ?, 
        ModDate = ? 
    WHERE UserName = ? 
  <ora:sqlStringValue param="password" /> 
  <ora:sqlStringValue param="firstName" /> 
  <ora:sqlStringValue param="lastName" /> 
  <ora:sqlStringValue param="dept" /> 
  <ora:sqlDateValue param="empDate" pattern="yyyy-MM-dd" /> 
  <ora:sqlStringValue param="emailAddr" /> 
  <ora:sqlTimestampValue value="<%= new java.util.Date( ) %>" /> 
  <ora:sqlStringValue param="userName" /> 
</ora:sqlUpdate> 

No surprises here. The only difference from how you insert information is the SQL statement. The UPDATE 
statement sets all the specified values for rows matching the WHERE clause, in this case the single row for the 
specified employee. 

9.1.4 Generating HTML from a Query Result 

Just before the page in Example 9.1 redirects to the confirmation page, there's one more <ora:sqlQuery> 
action that retrieves the employee information that was just stored in the database: 

<ora:sqlQuery id="newEmpDbInfo" dataSource="example" scope="session"> 
  SELECT * FROM Employee  
    WHERE UserName = ? 
  <ora:sqlStringValue param="userName" /> 
</ora:sqlQuery> 

The intention here is to present the information actually stored in the database to the user on the final page 
in this application, shown in Figure 9.5, as a confirmation that the operation was successful. 

Figure 9.5. Employee registration confirmation page 

 

Since we redirect to the confirmation page, ending the processing of the current request, the result is placed 
in the session scope. The redirect response tells the browser to automatically make a new request for the 
confirmation page. Because the new request is part of the same session, it finds the result saved away by the 
previous page. Example 9.2 shows the code for the confirmation.jsp page. 



JavaSercer Pages 

  page 121

Example 9.2. Page Displaying Query Result (confirmation.jsp)  

<%@ page language="java" contentType="text/html" %> 
<%@ page import="com.ora.jsp.sql.*" %> 
<%@ taglib uri="/orataglib" prefix="ora" %> 
<html> 
  <head> 
    <title>Employee Info Stored</title> 
  </head> 
  <body bgcolor="white"> 
    This is the information stored in the employee database: 
 
    <table> 
      <ora:loop name="newEmpDbInfo" loopId="row" className="Row" > 
        <ora:loop name="row" property="columns" loopId="col"  
          className="Column" > 
          <tr> 
            <td align=right> 
              <b><jsp:getProperty name="col" property="name" />:</b> 
            </td> 
            <td> 
              <jsp:getProperty name="col" property="string" /> 
            </td> 
          </tr> 
        </ora:loop> 
      </ora:loop> 
    </table> 
 
  </body> 
</html> 

At the top of the page is the same JSP directive for using the custom action tag library as in Example 9.1, 
plus a page directive that imports the com.ora.jsp.sql package. This package contains two classes used to 
represent rows and columns in the query result, named Row and Column, respectively. You'll see how they are 
used in a moment. 

Then comes a loop to create an HTML table with cells for all columns in the single row retrieved from the 
Employee table. The newEmpDbInfo variable contains the Vector of Row objects returned by the 
<ora:sqlQuery> action in Example 9.1. So far, we have used the <ora:loop> action only to loop through 
arrays, but it can also be used to loop through multiple values contained by a java.util.Vector, a 
java.util.Enumeration, or a java.util.Dictionary. Arrays and these three classes are all commonly used 
in Java to represent a set of values. You can read more about them in the Java API specification 
(http://java.sun.com/docs/index.html ). 

Inside the <ora:loop> action used to loop through the Vector of Row objects, another nested <ora:loop> 
action is used to loop through the columns of each Row. In the outer loop, the loopId attribute is set to row, 
which means that for each pass through the loop, a variable named row contains the current Row element of 
the Vector. In the inner loop, the row variable is used as the name attribute, and the property attribute is set 
to columns. The columns property of a Row object is an Enumeration of Column objects. A Column object, in 
turn, has properties name and string . The name property is a String containing the column's name, and the 
string property is a String representation of the value independent of its real datatype. The Column has 
other properties that let you access the value in its native form as well; see Appendix C for a complete list. In 
the body of the inner loop, the standard <jsp:getProperty> action is used to create cells with the column 
name and value. 

http://java.sun.com/docs/index.html


JavaSercer Pages 

  page 122

9.1.5 Searching for Rows Based on Partial Information 

Let's move on to the other part of the application, where a user can search for an employee based on a 
partial first name, last name, and department name. The first page, search.html, contains a form for entering 
the search criteria, shown in Figure 9.6. 

Figure 9.6. Search criteria form 

 

The three fields in the search.html page are firstName, lastName, and dept, and when the user clicks the 
Search button, the find.jsp page is invoked with the information the user entered in the corresponding 
request parameters. Example 9.3 shows the complete find.jsp page. 

Example 9.3. Search Based on Partial Information (find.jsp)  

<%@ page language="java" contentType="text/html" %> 
<%@ taglib uri="/orataglib" prefix="ora" %> 
 
<ora:useDataSource id="example"  
  className="sun.jdbc.odbc.JdbcOdbcDriver"  
  url="jdbc:odbc:example" /> 
 
<ora:sqlQuery id="empList" dataSource="example" scope="request"> 
  SELECT * FROM Employee  
    WHERE FirstName LIKE ? 
      AND LastName LIKE ? 
      AND Dept LIKE ? 
    ORDER BY LastName 
  <ora:sqlStringValue param="firstName" prefix="%" suffix="%" /> 
  <ora:sqlStringValue param="lastName" prefix="%" suffix="%" /> 
  <ora:sqlStringValue param="dept" prefix="%" suffix="%" /> 
</ora:sqlQuery> 
 
<jsp:forward page="list.jsp" /> 

As you probably expected, the <ora:sqlQuery> action is used to search for the matching employees. But 
here, the SELECT statement uses the LIKE operator to find rows matching a pattern instead of an exact match 
condition. LIKE is a standard SQL operator. It must be followed by a string consisting of fixed text plus 
wildcard characters. There are two standard wildcard characters you can use: an underscore (_), which 
matches exactly one character, and a percent sign (%), which matches zero or more characters. In this 
example, we want to search for all rows that contain the values specified in the form somewhere in the 
corresponding column values. The form field values must therefore be enclosed with percent signs. This can 
be accomplished by using the <ora:sqlStringValue> action's prefix and suffix attributes, described in 
Table 9.4. The values of these attributes - in this case, percent signs - are added at the beginning and the 
end of the value, respectively. If you want to find values that start with any sequence of characters but end 
with the string entered by the user, use only the prefix attribute. If you use only the suffix attribute, you 
get the reverse result: values that start with the specified string but end with any characters. 

The three LIKE conditions are combined with AND operators in Example 9.3. This means that the SELECT 
statement finds only rows where all three columns contain the corresponding values entered by the user. 



JavaSercer Pages 

  page 123

9.1.6 Deleting Database Information 

The find.jsp page forwards the request to the list.jsp page to display the result of the search. It generates an 
HTML table with one row per employee, as shown in Example 9.4. 

Example 9.4. Displaying the Search Result (list.jsp)  

... 
<table border=1> 
  <th>Last Name</th> 
  <th>First Name</th> 
  <th>Department</th> 
  <th>Email Address</th> 
  <th>Modified</th> 
  <ora:loop name="empList" loopId="row"  
    className="com.ora.jsp.sql.Row" > 
    <tr> 
      <td><%= row.getString("LastName") %></td> 
      <td><%= row.getString("FirstName") %></td> 
      <td><%= row.getString("Dept") %></td> 
      <td><%= row.getString("EmailAddr") %></td> 
      <td><%= row.getString("ModDate") %></td> 
      <td> 
        <form action="delete.jsp" method="post"> 
          <input type="hidden" name="userName" 
            value='<%= StringFormat.toHTMLString( 
              row.getString("UserName")) %>'> 
          <input type="hidden" name="firstName" 
            value='<%= StringFormat.toHTMLString( 
              request.getParameter("firstName")) %>'> 
          <input type="hidden" name="lastName" 
            value='<%= StringFormat.toHTMLString( 
              request.getParameter("lastName")) %>'> 
          <input type="hidden" name="dept" 
            value='<%= StringFormat.toHTMLString( 
              request.getParameter("dept")) %>'> 
          <input type="submit" value="Delete"> 
        </form> 
      </td> 
    </tr> 
  </ora:loop> 
</table> 
... 

The result is shown in Figure 9.7. 

Figure 9.7. Displaying the search result 

 



JavaSercer Pages 

  page 124

An <ora:loop> action is used to loop over all rows returned by the query in Example 9.3. The loopId 
attribute is set to row, so for each pass through the action body, a variable named row holds a reference to 
the current Row object. For each row, a number of table cells are generated. The value of the cell is retrieved 
from the Row using the getString( ) method: 

 public String getString(String columnName) 

The argument to the method is the name of a column. The method returns the column's value as a String. 
Another version of this method takes an index number instead of a column name. The first column has index 
1: 

 public String getString(int columnIndex) 

The Row class also provides methods to get the column value in its native form, for instance as a Date: 

 public java.sql.Date getDate(String columnName) 
 public java.sql.Date getDate(int columnIndex) 

You may want to use these methods if you use one query result as input to another query. Again, see 
Appendix C for a description of all the methods. 

The last generated cell contains a simple HTML form with a Delete button and a number of hidden fields. The 
action for the form is set to invoke the delete.jsp page. The hidden fields hold the value of UserName for the 
current row, plus all the parameters used to perform the search. All hidden field values are encoded using the 
same StringFormat toHTMLString( ) method we used in Chapter 6, to make sure that quotes in the value 
don't cause syntax errors in the generated HTML. Example 9.5 shows how all these parameters are used in 
the delete.jsp page. 

Example 9.5. Deleting a Row (delete.jsp)  

<%@ page language="java" contentType="text/html" %> 
<%@ taglib uri="/orataglib" prefix="ora" %> 
 
<ora:useDataSource id="example"  
  className="sun.jdbc.odbc.JdbcOdbcDriver"  
  url="jdbc:odbc:example" /> 
 
<ora:sqlUpdate dataSource="example"> 
  DELETE FROM Employee  
    WHERE UserName = ? 
  <ora:sqlStringValue param="userName" /> 
</ora:sqlUpdate> 
 
<ora:redirect page="find.jsp"> 
  <ora:param name="firstName"  
    value='<%= request.getParameter("firstName") %>' /> 
  <ora:param name="lastName"  
    value='<%= request.getParameter("lastName") %>' /> 
  <ora:param name="dept"  
    value='<%= request.getParameter("dept") %>' /> 
</ora:redirect> 

The userName request parameter value is used to uniquely identify the row to remove. The SQL DELETE 
statement supports the same type of WHERE clause condition you have seen used in SELECT and UPDATE 
statements previously. Here, the condition is used to make sure only the row for the right employee is 
deleted. And like the INSERT and UPDATE statements, a DELETE statement is executed with the help of the 
<ora:sqlUpdate> action. 

The other parameters passed from the list.jsp page are used in the redirect call to the find.jsp page. This 
way, the find.jsp page uses the same search criteria as when it was called directly from the search.html file, 
so the new result is consistent with the first. The only difference is that the employee who was just deleted 
doesn't show up in the list. 



JavaSercer Pages 

  page 125

9.2 Input Validation Without a Bean 

Before we look at the two remaining database sections, let's go back and take a look at the two application 
pages we skipped earlier, namely the enter.jsp and validate.jsp pages used for input to the employee 
registration. 

In Chapter 5, I introduced you to validation of user input using an application-specific bean. The bean 
contains all validation code and provides an isValid( ) method that can be used in a JSP page to decide 
how to proceed. This is the approach I recommend, but if you're developing a JSP-based application and 
there isn't a Java programmer around, there's another way to do the validation. I'll describe this alternative 
here. 

The validate.jsp page uses the StringFormat utility class to validate the input format without a bean. If an 
input parameter is not valid, an error message is saved in a Vector object and the request is forwarded back 
to the enter.jsp page. The enter.jsp page loops through all error messages in the Vector and adds them to 
the response, so to the user, the result is identical to that of the bean-based validation approach you saw in 
Chapter 5. 

Let's look at validate.jsp first, shown in Example 9.6. 

Example 9.6. Validation Without Application Beans (validate.jsp)  

<%@ page language="java" %> 
<%@ page import="com.ora.jsp.util.*" %> 
 
<jsp:useBean id="errorMessages" scope="request"  
  class="java.util.Vector" /> 
 
<%  
  if (request.getParameter("userName").length( ) == 0) {  
    errorMessages.addElement("User Name missing"); 
  } 
  if (request.getParameter("password").length( ) == 0) {  
    errorMessages.addElement("Password missing"); 
  } 
  if (request.getParameter("firstName").length( ) == 0) {  
    errorMessages.addElement("First Name missing"); 
  } 
  if (request.getParameter("lastName").length( ) == 0) {  
    errorMessages.addElement("Last Name missing"); 
  } 
  if (request.getParameter("dept").length( ) == 0) {  
    errorMessages.addElement("Department missing"); 
  } 
  if (!StringFormat.isValidDate(request.getParameter("empDate"), 
    "yyyy-MM-dd")) {  
    errorMessages.addElement("Invalid Employment Date"); 
  } 
  if (!StringFormat.isValidEmailAddr( 
    request.getParameter("emailAddr"))) {  
    errorMessages.addElement("Invalid Email Address"); 
  } 
 
  if (errorMessages.size( ) > 0) { 
%> 
  <jsp:forward page="enter.jsp" /> 
 
<% } else { %> 
 
  <jsp:forward page="store.jsp" /> 
 
<% } %> 

At the top of Example 9.6, a <jsp:useBean> action creates a Vector instance in the request scope to hold 
possible error messages. Even though the Vector class doesn't provide bean getter and setter methods, an 
instance of this class can be created by the <jsp:useBean> action (because it has a no-argument 
constructor). 



JavaSercer Pages 

  page 126

Next comes a scriptlet with an if statement for each input parameter that needs to be validated. For most of 
them, it's enough to verify that the parameter has a value. This is done by using the length( ) method. If 
the result is 0, the parameter doesn't have a value, and the body of the if block adds an appropriate error 
message to the errorMessages Vector . 

Two parameters require a more careful validation: the empDate parameter must contain a valid date string, 
and the emailAddr a valid email address: 

 if (!StringFormat.isValidDate(request.getParameter("empDate"),"yyyy-MM-dd")) {  
     errorMessages.addElement("Invalid Employment Date"); 
   } 
   if (!StringFormat.isValidEmailAddr( 
     request.getParameter("emailAddr"))) {  
     errorMessages.addElement("Invalid Email Address"); 
   } 

The empDate parameter is validated with the StringFormat isValidDate( ) method. This method takes a 
string representation of a date, here retrieved from the empDate request parameter, and a date format 
pattern. The date format pattern is the same as for the <ora:sqlDateValue> action discussed earlier. If the 
date string forms a valid date when interpreted according to the pattern, this method returns true. 

The emailAddr parameter is validated with another StringFormat method, called isValidEmailAddr( ) . 
This method returns true if the string looks like a valid email address, that is, if it has the form 
name@company.topdomain, for instance, hans@gefionsoftware.com. 

After the validation scriptlets, there's another set of scriptlets. The if statement tests the size of the 
errorMessages Vector. If it's greater than 0, at least one parameter value is invalid, so the request is 
forwarded to the enter.jsp page again. Otherwise, the processing continues on the store.jsp page, as 
discussed in the first section of this chapter. 

If the request is forwarded to the enter.jsp page, the error messages are displayed and all the values the user 
entered are used as the default values for all form fields. Example 9.7 shows how the error messages are 
handled. 

Example 9.7. Displaying Error Messages (enter.jsp)  

... 
<jsp:useBean id="errorMessages" scope="request"  
  class="java.util.Vector" /> 
 
<%-- Output list of values with invalid format, if any --%> 
<ul> 
  <font color="red"> 
    <ora:loop name="errorMessages" loopId="msg" class="String" > 
      <li> <%= msg %> 
    </ora:loop> 
  </font> 
</ul> 
... 



JavaSercer Pages 

  page 127

The <jsp:useBean> action finds the Vector created by the validate.jsp page and makes it available through 
the errorMessages variable. The <ora:loop> action is then used to loop through the Vector and display 
each message as a list item. The results are shown in Figure 9.8. 

Figure 9.8. The enter.jsp page 

 

Example 9.8 shows how the form field values are filled out with the values submitted by the user. 

Example 9.8. Filling Form Field Values with Request Data  

... 
<form action="validate.jsp" method="post"> 
  <table> 
    <tr> 
      <td>User Name:</td> 
      <td><input type="text" name="userName" 
        value='<%= StringFormat.toHTMLString( 
          request.getParameter("userName")) %>' > 
      </td> 
    </tr> 
... 

This is very similar to how it was done with a bean in Chapter 5. The difference is that the value is retrieved 
from the implicit request object instead of a bean. Remember that since the validate.jsp page forwards to 
the enter.jsp page, the enter.jsp page is processing the same request as validate.jsp; therefore, all request 
parameters are still available. The request parameter value is formatted with the toHTMLString( ) method 
as before, to make sure possible quotes in the value don't confuse the browser. 



JavaSercer Pages 

  page 128

9.3 Using Transactions 

There's one important database feature we have not discussed yet. In the examples in this chapter, only one 
SQL statement is needed to complete all database modifications required for a function. This statement either 
succeeds or fails. However, it's very common that you need to execute two or more SQL statements in 
sequence to update the database. A typical example is transferring money between two accounts: one 
statement removes some amount from the first account and another statement adds the same amount to the 
second account. If the first statement is successful but the second fails, you have performed a disappearing 
act that your customers are not likely to applaud. 

The solution to this problem is to group all related SQL statements into what is called a transaction. A 
transaction is an atomic operation, so if one statement fails, they all fail. Otherwise, they all succeed. This is 
referred to as committing (if it succeeds) or rolling back (if it fails) the transaction. If there's a problem in the 
middle of a money transfer, for instance, the database makes sure the money is returned to the first account 
by rolling back the transaction. If no problems are encountered, the transaction is committed, permanently 
storing the changes in the database. 

There's a custom action in the book tag library to handle transactions, described in Table 9.7. 

Table 9.7, Attributes for <ora:sqlTransaction>  

Attribute 
Name 

Java 
Type 

Request-Time 
Value Accepted 

Description 

dataSource String No Mandatory. The name of the data source to 
use for all nested database access actions. 

We will use it for real in Chapter 10, but let's now take a quick look at how it could be used in this fictitious 
example: 

<ora:sqlTransaction dataSource="example"> 
 
  <ora:sqlUpdate> 
    UPDATE Account SET Balance = Balance - 1000 
      WHERE AccountNumber = 1234 
  </ora:sqlUpdate> 
  <ora:sqlUpdate> 
    UPDATE Account SET Balance = Balance + 1000 
      WHERE AccountNumber = 5678 
  </ora:sqlUpdate> 
 
</ora:sqlTransaction> 

All SQL actions that make up a transaction are placed in the body of an <ora:sqlTransaction> action. Note 
that instead of specifying the dataSource attribute for all database actions, it's specified only in the enclosing 
<ora:sqlTransaction> action. 

The <ora:sqlTransaction> action gets a connection from the data source and makes it available to all 
database actions within its body. If one of the actions fails, the transaction is rolled back. Otherwise the 
transaction is committed at the end of the <ora:sqlTransaction> body. 

 



JavaSercer Pages 

  page 129

9.4 Application-Specific Database Actions 

You can use the database actions described in this chapter to develop many types of interesting web 
applications, such as product catalog interfaces, employee directories, or online billboards, without being a 
Java programmer. These types of applications account for a high percentage of the web applications 
developed today. But at some level of complexity, putting SQL statements directly in the web pages can 
become a maintenance problem. The SQL statements represent business logic, and for more complex 
applications, business logic is better developed as separate Java classes. 

Therefore, for a complex application, it may be better to use application-specific custom actions instead of the 
generic database actions described in this chapter. For example, all of the generic database actions in 
Example 9.1, which SELECT and then INSERT or UPDATE the database, can be replaced with one application-
specific action, like this: 

 <myLib:saveEmployeeInfo dataSource="example" /> 

Chapter 16 and Chapter 17 describe how you can develop this type of custom action. Besides making it easier 
for the page designer to deal with, the beauty of using an application-specific custom action is that it lets you 
evolve the application behind the scene. Initially, this action can be implemented so it uses JDBC to access 
the database directly, similar to how the generic actions work. But at some point it may make sense to 
migrate the application to an Enterprise JavaBeans architecture, perhaps to support types of clients other 
than web browsers. The action can then be modified to interact with an Enterprise JavaBeans component 
instead of directly accessing the database. From the JSP page developer's point of view, it doesn't matter; the 
custom action is still used in exactly the same way. 

Another approach is to use a servlet for all database processing, and use JSP pages only to show the result. 
You will find an example of this approach in Chapter 14. 



JavaSercer Pages 

  page 130

Chapter 10. Authentication and Personalization 

Authentication means establishing that a user really is who he or she claims to be. Today, it's typically done 
by asking the user for a username and a matching password, but other options are becoming more and more 
common. For example, most web servers support client certificates for authentication. Biometrics, which is 
the use of unique biological patterns like fingerprints for identification, will likely be another option in the near 
future. What's important is that an application should not be concerned with the way a user has been 
authenticated (since the method may change), but only that he or she has passed the test. 

Access control, or authorization, is another security mechanism that's strongly related to authentication. 
Different users may be allowed different types of access to the content and services a web site offers. When 
you have established who the user is through an authentication process, access control mechanisms let you 
ensure that the user can access only what he or she is allowed to access. 

In the end, authentication provides information about who the user is, and that's what is needed to provide 
personalized content and services. For some types of personalization, the procedures we might think of as 
authentication may be overkill. If the background colors and type of news listed on the front page are the 
extent of the personalization, a simple cookie can be used to track the user instead. But if personalization 
means getting access to information about taxes, medical records, or other confidential personal information, 
true authentication is definitely needed. 

In this chapter we look at different approaches to authentication and access control with JSP, and we use the 
information about who the user is to provide modest personalization of the application pages. Security, 
however, is about more than authentication and access control. So the last section of this chapter presents a 
brief summary of other areas that need to be covered for applications dealing with sensitive data. 

10.1 Container-Provided Authentication 

A JSP page is always executing in a runtime environment provided by a container. Consequently, all 
authentication and access control can be handled by the container, relieving the application developer from 
the important task of implementing an appropriate security level. Security is hard to get right, so your first 
choice should always be to use the time-tested mechanisms provided by the container. 

10.1.1 Authenticating Users 

The Servlet 2.2 specification, which is the base for JSP 1.1, describes three authentication mechanisms 
supported by most web clients and web servers that a container can utilize: 

• HTTP basic authentication 

• HTTP digest authentication 

• HTTPS client authentication 

In addition, it specifies one additional mechanism that should be implemented by a compliant servlet 
container: 

• Form-based authentication 

HTTP basic authentication has been part of the HTTP protocol since the beginning. It's a very simple and not 
very secure authentication scheme. When a client requests access to a protected resource, the server sends 
back a response asking for the user's credentials (username and password). The web client prompts the user 
for this information and sends the same request again, but this time with the user credentials in one of the 
request headers so the server can authenticate the user. But the username and password are not encrypted, 
only slightly obfuscated by the well-known Base64 encoding. This means it can easily be reversed by anyone 
who grabs it as it's passed over the network. This problem can be resolved by using an encrypted connection 
between the client and the server, such as the Secure Sockets Layer (SSL) protocol. We talk more about this 
in the last section of this chapter. 

HTTP 1.1 introduced HTTP digest authentication. As with basic authentication, the server sends a response 
back to the client when it receives a request for a protected resource. But with the response, it also sends a 
string called a nonce . The nonce is a unique string generated by the server, typically composed of a 
timestamp, information about the requested resource, and a server identifier. The client creates an MD5 
checksum, also known as a message digest, of the username, the password, the given nonce value, the HTTP 
method, and the requested URI, and sends it back to the server in a new request. The use of an MD5 
message digest means the password cannot easily be extracted from information recorded from the network.  



JavaSercer Pages 

  page 131

Additionally, using information such as timestamps and resource information in the nonce minimizes the risk 
of "replay" attacks. The digest authentication is a great improvement over basic authentication. The only 
problem is that it's not broadly supported in today's web clients and servers. 

HTTPS client authentication is the most secure authentication method supported today. This mechanism 
requires the user to possess a Public Key Certificate (PKC). The certificate is passed to the server when the 
connection between the client and server is established, using a very secure challenge-response handshake 
process, and is used by the server to uniquely identify the user. As opposed to the mechanisms described 
above, the server keeps the information about the client's identity as long as the connection remains open. 
When the client requests a protected resource, the server uses this information to grant or refuse access. 

The three mechanisms described here are defined by Internet standards. They are used for all sorts of web 
applications, servlet-based or not, and are usually implemented by the web server itself as opposed to the 
servlet container. The servlet specification only defines how an application can gain access to information 
about a user authenticated with one of them, as you will see soon. 

The final mechanism, form-based authentication, is unique to the servlet specification and is implemented by 
the servlet container itself. Form-based authentication is about as insecure as basic authentication for the 
same reason: the user's credentials are sent as clear text over the network. To protect access to sensitive 
resources, it should be combined with encryption such as SSL. 

Unlike basic and digest authentication, form-based authentication lets you control the appearance of the login 
screen. The login itself is a form containing two mandatory input fields named j_username and j_ password, 
and the action attribute is set to the string j_security_check: 

 <form method="POST" action="j_security_check"> 
   <input type="text" name="j_username"> 
   <input type="password" name="j_password"> 
 </form> 

From the user's point of view, it works just like basic and digest authentication. When the user requests a 
protected resource, the login form is shown, prompting the user to enter a username and password. The 
j_security_check action attribute value is a special URI that is recognized by the container. When the user 
submits the form, the container authenticates the user using the j_username and j _ password parameter 
values. If the authentication is successful, it redirects the client to the requested resource. Otherwise an error 
page is returned. We'll get to how you specify the login page and error page shortly. 

10.1.2 Controlling Access to Web Resources 

All of the authentication mechanisms described so far rely on two pieces of information: user definitions and 
information about the type of access control needed for the web application resources. 

How users and groups of users are defined depends on the server you're using. Some web servers, such as 
Microsoft's Internet Information Server (IIS), can use the operating system's user and group definitions. 
Others, such as the iPlanet Web Server (formerly Netscape Enterprise Server), let you use its own user 
directory or an external LDAP server. The security mechanism defined by the servlet specification describes 
how to specify the access control constraints for a web application, but access is granted to a role instead of 
directly to a user or a group. A role is an abstract grouping of users that needs to be mapped to real user and 
group names for a particular server. How the mapping is done also depends on the server, so you need to 
consult your web server and servlet container documentation if you use a different server than Tomcat. 

The Tomcat server uses a simple XML file to define users and assign them roles at the same time. The file is 
named tomcat-users.xml and is located in the conf directory. To run the examples in this chapter you need to 
define at least two users and assign one of them the role admin and the other the role user, like this: 

 <tomcat-users> 
   <user name="paula" password="boss" roles="admin" /> 
   <user name="hans" password="secret" roles="user" /> 
 </tomcat-users> 

Here the user paula is assigned the admin role and hans is assigned the user role. 

The type of access control that should be enforced for a web application resource, such as a JSP page or all 
files in a directory, is defined in the web application deployment descriptor. The deployment descriptor format 
is defined by the servlet specification, so all compliant servlet containers support this type of configuration 
file. It's an XML file named web.xml, located in the WEB-INF directory for the application. Details about how 
to package and deploy web applications, as well the complete syntax of the web.xml file, are described in 
Appendix D. 



JavaSercer Pages 

  page 132

Let's look at how you can define the security constraints for the example we developed in Chapter 9. To 
restrict access to all pages dealing with employee registration, it's best to place them in a separate directory. 
The directory with all examples for Chapter 10, has a subdirectory named admin where all these pages are 
stored. The part of the web.xml page that protects this resulting directory looks like this: 

<security-constraint> 
  <web-resource-collection> 
    <web-resource-name>admin</web-resource-name> 
    <url-pattern>/ch10/admin/*</url-pattern> 
  </web-resource-collection> 
 
  <auth-constraint> 
    <role-name>admin</role-name> 
  </auth-constraint> 
</security-constraint> 
 
<login-config> 
  <auth-method>BASIC</auth-method> 
  <realm-name>ORA Examples</realm-name> 
</login-config> 
 
<security-role>admin</security-role> 

The <security-constraint> element contains a <web-resource-collection> element that defines the 
resources to be protected, and an <auth-constraint> element that defines who has access to the protected 
resources. Within the <web-resource-collection> element, the URL pattern for the protected resource is 
specified with the <url-pattern> element; here it is set to the directory with all the registration pages: 
/ch10/admin/*. The <role-name> element within the <auth-constraint> element says that only users with 
the role admin can access the protected resources. 

You define the type of authentication to use and a name associated with the protected parts of the 
application, known as the realm , with the <login-config> element. The <auth-method> element accepts the 
values BASIC, DIGEST, FORM, and CLIENT-CERT, corresponding to the authentication methods described 
earlier. Any text can be used as the value of the <realm-name> element. The text is shown as part of the 
message in the dialog the browser displays when it prompts the user for the credentials. 

If you use form-based authentication, you must specify the names of your login form and error page in the 
<login-config> element as well: 

<login-config> 
  <auth-method>FORM</auth-method> 
  <form-login-config> 
    <form-login-page>/login/login.html</form-login-page> 
    <form-error-page>/login/error.html</form-error-page> 
  </form-login-config> 
</login-config> 

<security-role> elements are used to declare all role names that must be mapped to users and groups in 
the container's security domain. This information can be used by an application deployment tool to help the 
deployer with this task. Some containers, like Tomcat, work fine without this element, but to make sure your 
application can be deployed in any compliant container, you should still declare all roles with <security-
role> elements. 

With these security requirement declarations in the WEB-INF/web.xml file, the web server and servlet 
container take care of all authentication and access control for you. But you may still need to know who the 
current user is, for instance to personalize the content. Or, if you configure your server to let different types 
of users access the same pages, you may need to know what type of user is actually accessing a page right 
now. The Servlet 2.2 API contains methods you can use to get access to this information in your JSP pages, 
using the implicit request object. Let's add another security constraint in the WEB-INF/web.xml file for the 
search pages from Chapter 9: 

<security-constraint> 
  <web-resource-collection> 
   <web-resource-name>search</web-resource-name> 
    <url-pattern>/ch10/search/*</url-pattern> 
  </web-resource-collection> 
 
  <auth-constraint> 
    <role-name>admin</role-name> 
    <role-name>user</role-name> 
  </auth-constraint> 
</security-constraint> 



JavaSercer Pages 

  page 133

With this constraint, the server will allow only authenticated users with the roles admin and user to access 
the pages in the /ch10/search directory. You can then use information about who the user is to provide 
different responses. Example 10.1 shows a fragment of a modified version of the list.jsp page from Chapter 9. 

Example 10.1. Generating the Response Based on the Current User (list.jsp)  

... 
<ora:loop name="empList" loopId="row" class="Row" > 
  <tr> 
    <td><%= row.getString("LastName") %></td> 
    <td><%= row.getString("FirstName") %></td> 
    <td><%= row.getString("Dept") %></td> 
    <td><%= row.getString("EmailAddr") %></td> 
    <td><%= row.getString("ModDate") %></td> 
    <% if (request.isUserInRole("admin") || 
      row.getString("UserName").equals(request.getRemoteUser( ))) { %> 
      <td><%= row.getString("UserName") %></td> 
      <td><%= row.getString("Password") %></td> 
    <% } else { %> 
      <td>****</td> 
      <td>****</td> 
    <% } %> 
    <% if (request.isUserInRole("admin")) { %> 
      <td> 
        <form action="delete.jsp" method="post"> 
          <input type="hidden" name="userName" 
            value='<%= StringFormat.toHTMLString( 
              row.getString("UserName")) %>'> 
          <input type="hidden" name="firstName" 
            value='<%= StringFormat.toHTMLString( 
              request.getParameter("firstName")) %>'> 
          <input type="hidden" name="lastName" 
            value='<%= StringFormat.toHTMLString( 
              request.getParameter("lastName")) %>'> 
          <input type="hidden" name="dept" 
            value='<%= StringFormat.toHTMLString( 
              request.getParameter("dept")) %>'> 
          <input type="submit" value="Delete"> 
        </form> 
      </td> 
    <% } %> 
  </tr> 
</ora:loop> 
... 

The first scriptlet uses the isUserInRole( ) method to see if the authenticated user is an admin, and the 
getRemoteUser( ) method to see if the employee information to be displayed is information about the 
authenticated user or someone else. If it turns out that the authenticated user is either an admin or is 
displaying information about him- or herself, the username and password information is displayed. Otherwise, 
the username and password fields are filled with dummy values. 

The second scriptlet uses the isUserInRole( ) method again. Here, it is used to add the form with the 
Delete button only if the user is an admin. 

 

10.2 Application-Controlled Authentication 

Using one of the container-provided mechanisms described in the previous section should be your first choice 
for authentication. But by definition, being container-provided means the application cannot dynamically add 
new users and roles to control who is granted access, at least not through a standard API defined by the 
servlet and JSP specifications. 

For some types of applications, it's critical to have a very dynamic authentication model, one that doesn't 
require an administrator to define access rules before a new user can join the party. I'm sure you have seen 
countless sites where you can sign up for access to restricted content simply by filling out a form. One 
example is project management sites, where registered users can access document archives, discussion 
groups, calendars, and other tools for distributed cooperation. Another example is personalized news sites 
that you can customize to show news only about things you care about. 

Unless you can define new users programmatically in the database used by an external authentication 
mechanism, you need to roll your own authentication and access control system for these types of 
applications. In this section, we'll look at the principles for how to do this. Note that this approach sends the 
user's password as clear text, so it has the same security issues as the container-provided basic and form-
based authentication methods. 



JavaSercer Pages 

  page 134

Application-controlled authentication and access control require the following: 

1. User registration 

2. A login page 

3. The authentication mechanism, invoked by the login page 

4. User information saved in the session scope to serve as proof of successful authentication 

5. Validation of the session information in all JSP pages requiring restricted access 

We'll reuse the example from Chapter 9 for user registration: this allows us to focus on the parts of the 
application that require access control. The application is a simple billboard service, where employees can 
post messages related to different projects they are involved with. An employee can customize the application 
to show messages only about the projects he or she is interested in. Figure 10.1 shows all the pages and how 
they are related. 

Figure 10.1. Application with authentication and access control 

 

Let's go over it step by step. The login.jsp page is our login page. It contains a form that invokes the 
authenticate.jsp page, where the username and password are compared to the information in the employee 
information database created in Chapter 9. If a matching user is found, the autheticate.jsp page creates an 
EmployeeBean object and saves it in the session scope. This bean serves as proof of authentication. It then 
redirects the client to a true application page. The page the client is redirected to depends on if the user 
loaded the login.jsp page or tried to directly access an application page without first logging in. All application 
pages, that is main.jsp, entermsg.jsp, storemsg.jsp, and updateprofile.jsp, contain a custom action that looks 
for the EmployeeBean object and forwards to the login.jsp page if it's not found, so the user is forced to log 
in. When the login.jsp page is loaded this way, we keep track of the page that the user tried to access so we 
can automatically display it after successful authentication. Finally, there's the logout.jsp page; this page can 
be loaded from a link in the main.jsp page. It simply terminates the session and redirects to the login.jsp 
page again. 

10.2.1 A Table for Personalization Information 

Since the sample application in this chapter lets the user personalize the content of the billboard, we need a 
database table to store information about each employee's choices. The new table is shown in Table 10.1. 

Table 10.1, EmployeeProjects Database Table  

Column Name SQL Datatype Primary Key? 

UserName CHAR (Text) Yes 

ProjectName CHAR (Text) Yes 

The table holds one row per unique user-project combination. You need to create this table in your database 
before you can run the example. 



JavaSercer Pages 

  page 135

10.2.2 Logging In 

The login page contains an HTML form with fields for entering the user credentials: a username and a 
password. This is why the information was included in the Employee table in Chapter 9. Example 10.2 shows 
the complete login.jsp page. 

Example 10.2. Login Page (login.jsp)  

<%@ page import="com.ora.jsp.util.*" %> 
<%@ taglib uri="/orataglib" prefix="ora" %> 
<html> 
  <head> 
    <title>Project Billboard</title> 
  </head> 
  <body bgcolor="white"> 
    <h1>Welcome to the Project Billboard</h1> 
    Your personalized project news web site. 
    <p> 
    <font color="red"> 
      <% String errorMsg = request.getParameter("errorMsg"); %> 
      <%= errorMsg == null ? "" : errorMsg %> 
    </font> 
 
    <form action="authenticate.jsp" method="post"> 
 
      <% String origURL = request.getParameter("origURL"); %> 
      <input type="hidden" name="origURL"  
        value="<%= origURL == null ? "" : origURL %>"> 
 
      Please enter your User Name and Password, and click Enter. 
      <p> 
      Name:  
      <input name="userName"  
        value="<ora:getCookieValue name="userName" />" size="10"> 
      Password:  
      <input type="password" name="password"  
        value="<ora:getCookieValue name="password" />" size="10"> 
      <input type="submit" value="Enter"> 
      <p> 
      Remember my name and password: 
      <input type="checkbox" name="remember"  
        <%= CookieUtils.isCookieSet("userName", request) ?  
          "checked" : "" %> > 
      <br> 
      (This feature requires cookies to be enabled in your browser.) 
    </form> 
  </body> 
</html> 

The form contains the fields for the username and password, and the action attribute is set to the 
authenticate.jsp page as expected. However, it also contains scripting elements that need an explanation. 

The following fragment is used to display a message that gives the user a hint about why the login page is 
shown after an error: 

 <font color="red"> 
       <% String errorMsg = request.getParameter("errorMsg"); %> 
       <%= errorMsg == null ? "" : errorMsg %> 
     </font> 

First, the errorMsg variable is set to the value of the errorMsg request parameter, using the implicit request 
object and accessed using the getParameter( ) method. This method returns the value of a parameter sent 
with the request, or null if the specified parameter isn't present. The errMsg parameter is set by the other 
pages when they forward to the login page, as you will soon see. When the user loads the login.jsp directly, 
the parameter is not available in the request, so the value of the errorMsg variable is set to null. The 
message, or an empty string if it's null, is displayed by a JSP expression using the conditional operator 
described in Chapter 6. Figure 10.2 shows an example of the login page with an error message. 



JavaSercer Pages 

  page 136

Figure 10.2. Login page with error message 

 

Within the form, you find similar scripting elements: 

 <% String origURL = request.getParameter("origURL"); %> 
       <input type="hidden" name="origURL"  
         value="<%= origURL == null ? "" : origURL %>"> 

Here, a hidden field is set to the value of the originally requested URL. The field is passed as a parameter to 
the login page when another page forwards to it. This is how we keep track of which page the user wasn't 
allowed access to because he or she wasn't authenticated yet. Later you'll see how this information is used to 
load the originally requested page after authentication. 

10.2.2.1 Using cookies to remember the username and password 

The more web applications with restricted access a web surfer uses, the more usernames and passwords he 
or she needs to remember. After a while, it may be tempting to resort to the greatest security sin of all: 
writing down all usernames and passwords in a file such as mypasswords.txt. This invites anyone with access 
to the user's computer to roam around in all the secret data. 

It can be a big problem keeping track of all accounts. Some sites therefore offer to keep track of the 
username and password using cookies. Cookies are small pieces of text that a server sends to the browser. A 
cookie with an expiration date is saved on the hard disk and returned to the server every time the user visits 
the same site until the cookie expires. So is this feature a good thing? Not really, as it amounts to the same 
security risk as writing down the username and password in a file. Even greater, since anyone with access to 
the user's computer doesn't even have to find the mypasswords.txt file; the browser takes care of sending 
the credentials automatically. But for sites that use authentication mainly to provide personalization and that 
don't contain sensitive data, using cookies can be an appreciated tool. 

This example shows you how it can be done. If you decide to use it, be sure to make it optional so the user 
can opt out. We use a custom action called <ora:getCookieValue> to set the value of the input fields for the 
username and password: 

      Name:  
      <input name="userName"  
        value="<ora:getCookieValue name="userName" />" size="10"> 
      Password:  
      <input type="password" name="password"  
        value="<ora:getCookieValue name="password" />" size="10"> 



JavaSercer Pages 

  page 137

The action has just one attribute: name. It's set to the name of the cookie that you're looking for. The action 
writes the value of the cookie to the response. If the specified cookie is not available, an empty string is 
returned. Here, the <ora:getCookieValue> action is used to set the default values for the username and 
password fields if the corresponding cookies are received with the request. You'll see how to send a cookie to 
the browser later. 

The last part of the form creates a checkbox where the user can tell if this feature should be used or not: 

       Remember my name and password: 
      <input type="checkbox" name="remember"  
        <%= CookieUtils.isCookieSet("userName", request) ?  
          "checked" : "" %> > 

To set the checked attribute, a utility method called isCookieSet( ) in the com.ora.jsp.util.CookieUtils 
class is used. It takes two arguments: the cookie name and the implicit request object. If the cookie is 
found, the method returns true; otherwise, it returns false. Here, the method is used with a conditional 
operator to set the checked attribute only if the userName cookie is received from the browser. 

10.2.3 Authentication Using a Database 

To authenticate a user, you need access to information about the registered users. For this chapter's 
examples, we keep all user information in a database. There are other options, including flat files and LDAP 
directories. When a user fills out the login page form and clicks Enter, the authentication page shown in 
Example 10.3 is processed. This is a large page, so each part is discussed in detail after the complete page. 

Example 10.3. Authentication Page (authenticate.jsp)  

<%@ page language="java" %> 
<%@ page import="com.ora.jsp.sql.*" %> 
<%@ taglib uri="/orataglib" prefix="ora" %> 
 
<%-- Remove the validUser session bean, if any --%> 
<%  session.removeValue("validUser"); %> 
 
<%  
  if (request.getParameter("userName").length( ) == 0 || 
      request.getParameter("password").length( ) == 0) {  
%> 
 
     <ora:redirect page="login.jsp" > 
       <ora:param name="errorMsg"  
         value="You must enter a User Name and Password." /> 
     </ora:redirect> 
 
<% } %> 
 
<%--  
  See if the user name and password combination is valid. If not, 
  redirect back to the login page with a message. 
--%> 
<ora:useDataSource id="example"  
  className="sun.jdbc.odbc.JdbcOdbcDriver"  
  url="jdbc:odbc:example" /> 
 
<ora:sqlQuery id="empInfo" dataSource="example"> 
  SELECT * FROM Employee  
    WHERE UserName = ? AND Password = ? 
  <ora:sqlStringValue param="userName" /> 
  <ora:sqlStringValue param="password" /> 
</ora:sqlQuery> 
 
<% if (empInfo.size( ) != 1) { %> 
 
     <ora:redirect page="login.jsp" > 
       <ora:param name="errorMsg"  
       value="The User Name and Password you entered are not valid." /> 
     </ora:redirect> 
 



JavaSercer Pages 

  page 138

<% } else { %> 
 
     <%--     
       Create an EmployeeBean and save it in  
       the session scope and redirect to the appropriate page. 
     --%> 
     <% Row oneRow = (Row) empInfo.firstElement( );  %> 
 
     <jsp:useBean id="validUser" scope="session" 
       class="com.ora.jsp.beans.emp.EmployeeBean" > 
       <jsp:setProperty name="validUser" property="userName"  
         value='<%= oneRow.getString("UserName") %>' /> 
       <jsp:setProperty name="validUser" property="firstName"  
         value='<%= oneRow.getString("FirstName") %>' /> 
       <jsp:setProperty name="validUser" property="lastName"  
         value='<%= oneRow.getString("LastName") %>' /> 
       <jsp:setProperty name="validUser" property="dept"  
         value='<%= oneRow.getString("Dept") %>' /> 
       <jsp:setProperty name="validUser" property="empDate"  
         value='<%= oneRow.getString("EmpDate") %>' /> 
       <jsp:setProperty name="validUser" property="emailAddr"  
         value='<%= oneRow.getString("EmailAddr") %>' /> 
     </jsp:useBean> 
 
     <%-- Add the projects --%> 
     <ora:sqlQuery id="empProjects" dataSource="example"> 
       SELECT * FROM EmployeeProjects  
         WHERE UserName = ? 
       <ora:sqlStringValue param="userName" /> 
     </ora:sqlQuery> 
 
     <%  
       String[] projects = new String[empProjects.size( )];  
       int i = 0; 
     %> 
     <ora:loop name="empProjects" loopId="row"  
       className="com.ora.jsp.sql.Row" > 
       <% projects[i++] = row.getString("ProjectName"); %> 
     </ora:loop> 
        
     <jsp:setProperty name="validUser" property="projects"  
      value="<%= projects %>" /> 
 
     <% if (request.getParameter("remember") != null) { %> 
 
          <ora:addCookie name="userName"  
            value='<%= request.getParameter("userName") %>' 
            maxAge="2592000" /> 
          <ora:addCookie name="password"  
            value='<%= request.getParameter("password") %>' 
           maxAge="2592000" /> 
 
     <% } else { %> 
 
          <ora:addCookie name="userName"  
            value='<%= request.getParameter("userName") %>' 
            maxAge="0" /> 
          <ora:addCookie name="password"  
            value='<%= request.getParameter("password") %>' 
            maxAge="0" /> 
     <% } %> 
    
     <%--  
       Redirect to the main page or to the original URL, if 
       invoked as a result of an access attempt to a protected 
       page. 
     --%> 
     <% if (request.getParameter("origURL").length( ) != 0) { %> 
          <ora:redirect  
            page='<%= request.getParameter("origURL") %>' /> 
     <% } else { %> 
          <ora:redirect page="main.jsp" /> 
     <% } %> 
 
 
<% } %> 

The first thing that happens in Example 10.3 is that a session scope object named validUser is removed if it 
exists. As you will see later, validUser is the name we use for the EmployeeBean object, and its presence in 
the session scope indicates that the corresponding user has successfully logged in. If an EmployeeBean object 
is already saved in the session scope, it may represent a user that forgot to log out, so we must make sure 
it's removed when a new login attempt is made. 



JavaSercer Pages 

  page 139

Next, a scriptlet is used to ensure that both the username and the password are passed as parameters. The 
same getParameter( ) method used in Example 10.2 is used here to retrieve the parameter values. If one 
or both parameters are missing, the <ora:redirect> action redirects back to the login page again. Here you 
see how the errorMsg parameter used in the login.page gets its value. 

If the request contains both parameters, one of the database actions introduced in Chapter 9 is used to see if 
there's a user with the specified name and password in the database: 

<ora:sqlQuery id="empInfo" dataSource="example"> 
  SELECT * FROM Employee  
    WHERE UserName = ? AND Password = ? 
  <ora:sqlStringValue param="userName" /> 
  <ora:sqlStringValue param="password" /> 
</ora:sqlQuery> 
 
<% if (empInfo.size( ) == 0) { %> 
 
     <ora:redirect page="login.jsp" > 
       <ora:param name="errorMsg"  
         value="The User Name and Password you entered are not valid." /> 
     </ora:redirect> 

If the query doesn't match a registered user (i.e., empInfo.size( ) returns 0), an <ora:redirect> action 
redirects back to the login page with an appropriate error message. Otherwise, the processing continues. 

10.2.3.1 Creating the validation object 

If a user is found, the single row from the query result is extracted and the column values are used to 
populate the single value properties of an EmployeeBean object. An EmployeeBean has the properties shown 
in Table 10.2. 

Table 10.2, Properties for com.ora.jsp.beans.emp.EmployeeBean  

Property 
Name 

Java 
Type 

Access Description 

userName String read/write The employee's unique username 

firstName String read/write The employee's first name 

lastName String read/write The employee's last name 

dept String read/write The employee's department name 

empDate String read/write The employee's employment date in the 
format yyyy-MM-dd 

emailAddr String read/write The employee's email address 

projects String[] read/write A list of all projects the employee is 
involved in 

The bean is named validUser and placed in the session scope using the standard <jsp:useBean> action. All 
properties are set to the values returned from the database using <jsp:setProperty> actions: 

<% Row oneRow = (Row) empInfo.firstElement( );  %> 
 
     <jsp:useBean id="validUser" scope="session" 
       class="com.ora.jsp.beans.emp.EmployeeBean" > 
       <jsp:setProperty name="validUser" property="userName"  
         value='<%= oneRow.getString("UserName") %>' /> 
       <jsp:setProperty name="validUser" property="firstName"  
         value='<%= oneRow.getString("FirstName") %>' /> 
       <jsp:setProperty name="validUser" property="lastName"  
         value='<%= oneRow.getString("LastName") %>' /> 
       <jsp:setProperty name="validUser" property="dept"  
         value='<%= oneRow.getString("Dept") %>' /> 
       <jsp:setProperty name="validUser" property="empDate"  
         value='<%= oneRow.getString("EmpDate") %>' /> 
       <jsp:setProperty name="validUser" property="emailAddr"  
         value='<%= oneRow.getString("EmailAddr") %>' /> 
     </jsp:useBean> 



JavaSercer Pages 

  page 140

As I mentioned earlier, this application lets the user select the projects he or she is interested in, so that only 
messages related to these projects are shown on the main page. The user's choices are stored in the 
EmployeeProjects database table described in Table 10.1. Next, we retrieve all projects from 
EmployeeProjects for the current user and set the value of the corresponding property in the bean to the 
complete list: 

<%-- Add the projects --%> 
     <ora:sqlQuery id="empProjects" dataSource="example"> 
       SELECT * FROM EmployeeProjects  
         WHERE UserName = ? 
       <ora:sqlStringValue param="userName" /> 
     </ora:sqlQuery> 
 
     <%  
       String[] projects = new String[empProjects.size( )];  
       int i = 0; 
     %> 
     <ora:loop name="empProjects" loopId="row" class="Row" > 
       <% projects[i++] = row.getString("ProjectName"); %> 
     </ora:loop> 
        
     <jsp:setProperty name="validUser" property="projects"  
      value="<%= projects %>" /> 

The value of the EmployeeBean projects property must be set as a String array. A scriptlet combined with 
an <ora:loop> action is used to first create a String array with the result from the database. A 
<jsp:setProperty> action is then used to set it as the projects property value of the validUser bean. 

10.2.3.2 Setting and deleting cookies 

If the user asked for the user credentials to be remembered, we need to send the corresponding cookies to 
the browser. The checkbox value is sent to the authentication page as a parameter named remember: 

<% if (request.getParameter("remember") != null) { %> 
 
          <ora:addCookie name="userName"  
            value='<%= request.getParameter("userName") %>' 
            maxAge="2592000" /> 
          <ora:addCookie name="password"  
            value='<%= request.getParameter("password") %>' 
           maxAge="2592000" /> 
 
     <% } else { %> 
 
          <ora:addCookie name="userName"  
            value='<%= request.getParameter("userName") %>' 
            maxAge="0" /> 
          <ora:addCookie name="password"  
            value='<%= request.getParameter("password") %>' 
            maxAge="0" /> 
     <% } %> 

The <ora:addCookie> custom action is used to send cookies to the browser. If the parameter is set, the 
cookies are sent with a maximum age value representing 30 days, expressed in seconds (2592000). As long 
as the user returns to this site within this time frame, the cookies are sent with the request and the login 
page uses the values to automatically fill out the form fields. If the user decides not to use this feature and 
unchecks the box, we still send the cookies, but with a maximum age of 0. This means the cookies expire 
immediately and will never be sent to this server again. If you want to send a cookie to a browser that should 
be valid only until the user closes the browser, set the maximum age to a negative number (i.e., -1). 

10.2.3.3 Redirect to the application page 

The only thing left is to redirect the browser to the appropriate page. If the authentication process was 
started as a result of the user requesting a protected page without being logged in, the original URL is sent by 
the login page as the value of the origURL parameter: 

<% if (request.getParameter("origURL").length( ) != 0) { %> 
          <ora:redirect  
            page='<%= request.getParameter("origURL") %>' /> 
     <% } else { %> 
          <ora:redirect page="main.jsp" /> 
     <% } %> 

If this parameter has a value, the browser is redirected to the originally requested page; otherwise, it is 
redirected to the main entry page for the application. 



JavaSercer Pages 

  page 141

10.2.4 Checking for a Valid Session 

Authentication is only half of the solution. We must also add access control to each page in the application. 
Example 10.4 shows the main.jsp page as an example of a protected page. This page shows all messages for 
the projects of the user's choice. It also has a form where the user can change the list of projects, and links 
to a page for posting new messages and to log out. 

Example 10.4. Protected JSP Page (main.jsp)  

<%@ page language="java" contentType="text/html" %> 
<%@ page import="com.ora.jsp.beans.news.*" %> 
<%@ page import="com.ora.jsp.util.*" %> 
<%@ taglib uri="/orataglib" prefix="ora" %> 
<html> 
  <head><title>Project Billboard</title></head> 
  <body bgcolor="white"> 
    <%-- Verify that the user is logged in --%> 
    <ora:validateSession name="validUser" 
     loginPage="login.jsp" errorMsg="Please log in first." /> 
 
    <jsp:useBean id="validUser" scope="session" 
       class="com.ora.jsp.beans.emp.EmployeeBean" /> 
 
    <h1>Welcome <%= validUser.getFirstName( ) %></h1> 
    Your profile currently shows you like information about the  
    following checked-off projects. If you would like to update your 
    profile, make the appropriate changes below and click  
    Update Profile. 
    <form action="updateprofile.jsp" method="post"> 
      <input type="checkbox" name="projects" value="JSP" 
        <%= ArraySupport.contains(validUser.getProjects( ), "JSP") ?  
              "checked" : "" %> >JSP<br> 
      <input type="checkbox" name="projects" value="Servlet" 
        <%= ArraySupport.contains(validUser.getProjects( ), "Servlet") ? 
              "checked" : "" %> >Servlet<br> 
      <input type="checkbox" name="projects" value="EJB" 
        <%= ArraySupport.contains(validUser.getProjects( ), "EJB") ? 
              "checked" : "" %> >EJB<br> 
      <input type="submit" value="Update Profile"> 
    </form> 
    <hr> 
    When you're done reading the news, please <a href="logout.jsp">log out</a>. 
    <hr> 
    <a href=entermsg.jsp>Post a new message</a> 
    <p> 
 
    <jsp:useBean id="news" scope="application" 
      class="com.ora.jsp.beans.news.NewsBean" /> 
 
    <%  
      NewsItemBean[] newsItems =  
        news.getNewsItems(validUser.getProjects( )); 
      pageContext.setAttribute("newsItems", newsItems); 
    %> 
     
    <table> 
      <ora:loop name="newsItems" loopId="newsItem"  
        className=" com.ora.jsp.beans.news.NewsItemBean" > 
        <tr> 
          <td colspan="2"> 
            Project:  
              <jsp:getProperty name="newsItem" property="category" /> 
          </td> 
        </tr> 
        <tr> 
          <td> 
            <jsp:getProperty name="newsItem" property="postedBy" /> 
          </td> 
          <td> 
            <jsp:getProperty name="newsItem" property="postedDate" /> 
          </td> 
        </tr> 
        <tr> 
          <td colspan="2"> 
            <jsp:getProperty name="newsItem" property="msg" /> 
          </td> 
        </tr> 
        <tr> 
          <td colspan="2"><hr></td> 
        </tr> 
      </ora:loop> 
    </table> 
  </body> 
</html> 



JavaSercer Pages 

  page 142

The most interesting piece of the example, from an access control point of view, is this: 

 <%-- Verify that the user is logged in --%> 
     <ora:validateSession name="validUser" 
       loginPage="login.jsp" errorMsg="Please log in first." /> 

The <ora:validateSession> custom action must be placed at the beginning of all protected pages in the 
application. It has three mandatory attributes. The name attribute specifies the name of the session scope 
object used to indicate that the session belongs to an authenticated user. Here we specify a name for the 
EmployeeBean object created by the authentication page. If the specified object is not found in the session, it 
means the page is being requested by a user that has not been authenticated. The custom action then 
forwards to the URL specified by the loginPage attribute, adding an errorMsg parameter with the value 
specified by the errorMsg attribute. As in Example 10.2, the errorMsg parameter is used to add a message 
on the login page to let the user know why a different page than the requested one is displayed. As with a 
regular forward, the conditional forward function implemented by the <ora:validateSession> action aborts 
the processing of the rest of the page. 

10.2.4.1 Providing personalized content 

The rest of the page shown in Example 10.4 produces a personalized page for the authenticated user. Figure 
10.3 shows what it might look like. 

Figure 10.3. Personalized application page 

 



JavaSercer Pages 

  page 143

First, the validUser bean properties are used to welcome the user to the site by name. Next comes a form 
with checkboxes for all projects. The same technique used in Chapter 6 is also used here to set the checked 
attribute for the projects listed in the user's profile. The user can modify the list of projects and click Update 
Profile to invoke the updateprofile.jsp page. This page modifies the profile information in the database. We'll 
take a look at how it's done later. 

A NewsBean containing NewsItemBean objects is then used to display news items for all projects matching the 
user's profile. The implementations of these beans are intended only as examples. Initially, the NewsBean 
contains one hard-coded message for each news category, and the news items are kept in memory only. A 
real implementation would likely store all news items permanently in a database. 

Example 10.4 also contains a link to a page where a news item can be posted. If you look at the source for 
the entermsg.jsp file, you can see that it's just a JSP page with the <ora:validateSession> action at the top 
and a regular HTML form that invokes the storemsg.jsp file with a POST request. The POST method is 
appropriate here, since the form fields are used to update information on the server (the in-memory 
NewsBean database). 

The complete storemsg.jsp page is shown in Example 10.5. 

Example 10.5. POST Page with Restricted Access (storemsg.jsp)  

<%@ page language="java" %> 
<%@ taglib uri="/orataglib" prefix="ora" %> 
 
<%-- Verify that the user is logged in --%> 
<ora:validateSession name="validUser" 
  loginPage="login.jsp" errorMsg="Please log in first." /> 
 
<%-- Verify that it's a POST method --%> 
<% if (!request.getMethod( ).equals("POST")) { %> 
     <ora:redirect page="main.jsp" /> 
<% } %> 
 
<jsp:useBean id="validUser" scope="session" 
  class="com.ora.jsp.beans.emp.EmployeeBean" /> 
<%-- Create a new news item bean with the submitted info --%> 
<jsp:useBean id="newsItem"  
  class="com.ora.jsp.beans.news.NewsItemBean" > 
  <jsp:setProperty name="newsItem" property="*" /> 
  <jsp:setProperty name="newsItem" property="postedBy"  
    value='<%= validUser.getFirstName( ) + " " + 
      validUser.getLastName( ) %>' /> 
</jsp:useBean> 
<%-- Make the news bean available to this page --%> 
<jsp:useBean id="news" scope="application" 
  class="com.ora.jsp.beans.news.NewsBean" /> 
<%-- Add the new news item bean to the list --%> 
<jsp:setProperty name="news" property="newsItem"  
  value="<%= newsItem %>" /> 
 
<ora:redirect page="main.jsp" /> 

This page creates a new NewsItemBean, sets all properties based on field parameters passed from the 
entermsg.jsp page, plus the postedBy property using the firstName and lastName properties of the 
validUser bean. It then adds the new news item to the NewsBean and redirects to the main page, where the 
new item is shown as a confirmation. 

Let's focus on the access control aspects. At the top of the page, you find the same <ora:validateSession> 
action as with all other protected application pages. If a user fills out the form in entermsg.jsp and walks 
away from the computer without submitting the form, the user's session may time out. When the user then 
returns and clicks Submit, the <ora:validateSession> action doesn't find the validUser bean in the session 
and therefore forwards to the login page, setting the origURL parameter to the URL of the storemsg.jsp. After 
successful authentication, the authentication page redirects to the original URL, the storemsg.jsp. However, a 
redirect is always a GET request.5 All the parameters sent with the original POST request for storemsg.jsp are 
lost; a POST request carries the parameter values in the message body, instead of in the URL (as a query 
string) as a GET request does, so the original URL we saved doesn't include the parameters. If we don't take 
care of this special case, an empty NewsItemBean will be added to the list. 

                                                 
5 The HTTP specification (RFC 2616) states that a browser is not allowed to change the method for the request when it receives a redirect 

response (status code 302). But, as acknowledged by the HTTP specification, all major browsers available today change a POST request 
into a GET anyway. 



JavaSercer Pages 

  page 144

There are at least two ways to deal with this. In Example 10.5, the <ora:validateSession> action is 
followed by a scriptlet checking that the request for this page is a POST request. If not, it redirects to the main 
page without processing the request. This is the easiest way to deal with the problem, but it also means that 
the user will have to retype the message again. The chance that a session times out before a form is 
submitted is small, so in most cases this is not a big deal. It's therefore the solution I recommend. 

If you absolutely must find a way to not lose the POST parameters when a session times out, here is a brief 
outline of a solution: 

1. Modify the <ora:validateSession> action to send a URL in the origURL parameter suitable for use 
as a forward URL, as opposed to a redirect URL, if the page is invoked with a POST request. A 
forward URL must be relative to the servlet context path, while a redirect URL should be absolute. 

2. Use a scriptlet in the login page to save all POST parameter values as hidden fields in the form, along 
with a hidden field that tells if the original request was a GET or a POST request. 

3. In the authentication page, forward to the originally requested URL if the method was a POST and 
redirect only if it was a GET. The authentication page is always invoked as a POST request. A forward 
is just a way to let another page continue to process the same request, so the originally requested 
page is invoked with a POST request as expected, along with all the originally submitted parameters 
saved as hidden fields in the login page. 

Depending on your application, you may also need to save session data as hidden fields in the page that 
submits the POST request, so that the requested page doesn't have to rely on session information. But this 
leads to another problem. What if someone other than the user who filled out the form comes along and 
submits it? Information will then be updated on the server with information submitted by a user that's no 
longer logged in. One way out of this is to save information about the current user as a hidden field in the 
form that sends the POST request, and let the authentication page compare this information with the new 
user's information. If they don't match, the client can be redirected to the main application page instead of 
forwarded to the originally requested URL. 

As you can see, there are a number of things to think about. Whether or not it makes sense to address all the 
issues depends on the application. My general advice is to keep it simple and stick to the first solution unless 
your application warrants a more complex approach. 

10.2.5 Updating the User Profile 

The updateprofile.jsp page, used if the user makes new project selections in the main page and clicks Update 
Profile, is also invoked through the POST method. It follows the same approach as the storemsg.jsp page, and 
is shown in Example 10.6. But what's interesting about the updateprofile.jsp page is that it shows how to 
replace multirow data for a user, and is an instance of when you need to care about transactions. 

Example 10.6. Updating Multiple Database Rows (updateprofile.jsp)  

<%@ page language="java" %> 
<%@ taglib uri="/orataglib" prefix="ora" %> 
 
<%-- Verify that the user is logged in --%> 
<ora:validateSession name="validUser" 
  loginPage="login.jsp" errorMsg="Please log in first." /> 
 
<%-- Verify that it's a POST method --%> 
<% if (!request.getMethod( ).equals("POST")) { %> 
     <ora:redirect page="main.jsp" /> 
<% } %> 
 
<%-- Make the bean available for scripting elements --%> 
<jsp:useBean id="validUser" scope="session" 
  class="com.ora.jsp.beans.emp.EmployeeBean" /> 
 
<%-- Update the project list in the bean --%> 
<jsp:setProperty name="validUser" property="projects" 
  value='<%= request.getParameterValues("projects") %>' /> 
 
<ora:useDataSource id="example"  
  className="sun.jdbc.odbc.JdbcOdbcDriver"  
  url="jdbc:odbc:example" /> 
 



JavaSercer Pages 

  page 145 

<ora:sqlTransaction dataSource="example"> 
 
  <%-- Delete the old project (if any) and insert the new ones --%> 
  <ora:sqlUpdate> 
    DELETE FROM EmployeeProjects 
      WHERE UserName = ? 
    <ora:sqlStringValue name="validUser" property="userName" /> 
  </ora:sqlUpdate> 
 
  <ora:loop name="validUser" property="projects" loopId="project"  
    className="String" > 
    <ora:sqlUpdate> 
      INSERT INTO EmployeeProjects 
        (UserName, ProjectName) VALUES(?, ?) 
      <ora:sqlStringValue name="validUser" property="userName" /> 
      <ora:sqlStringValue value="<%= project %>" /> 
    </ora:sqlUpdate> 
  </ora:loop> 
 
</ora:sqlTransaction> 
 
<%-- Redirect to main page --%> 
<ora:redirect page="main.jsp" /> 

The list of new projects selected by the user is sent to the updateprofile.jsp page in the projects request 
parameter. The projects bean property can therefore be updated using a <jsp:setProperty> action, setting 
the value to the result of the getParameterValues( ) method. As you may remember from Chapter 6, this 
method returns a String[] with all values for a parameter, and that's also the data type defined for the 
projects property in the bean. 

One important item to note here. If the user deselects all checkboxes in the main.jsp page (Example 10.4), 
all projects should be removed from the bean as well. The problem here is that if no checkbox is selected, the 
projects request parameter is not sent at all. You must therefore use the type of request-time attribute 
value shown in Example 10.6, as opposed to using the param property, for the <jsp:setProperty> action. 
The <jsp:setProperty> action calls a property setter method only if it can find a corresponding parameter in 
the request. With no checkbox selected, the project's property setter is not called and the previous value is 
not cleared. When you use the getParameterValues( ) method as a request-time attribute value, however, 
it works as it should: if no checkbox is selected the method returns null, clearing the property value; 
otherwise, it returns a String[] with the currently selected values, setting the property to the current list. 

The EmployeeProjects table (Table 10.1) contains one row per project for a user, with the username in the 
UserName column and the project name in the ProjectName column. The easiest way to update the database 
information is to first delete all existing rows, if any, and then insert rows for the new projects selected by the 
user. Since this requires execution of multiple SQL statements and all must either succeed or fail, the 
<ora:sqlUpdate> actions are placed within the body of an <ora:sqlTransaction> action. If the first 
<ora:sqlUpdate> action is successful but one of the others fails, the database information deleted by the first 
is restored so the database correctly reflects the state before the change. 

To delete the rows in the database, use the <ora:sqlUpdate> action with a SQL DELETE statement. A WHERE 
clause is used so that only the rows for the current user are deleted. Then the <ora:loop> action is used to 
loop through all projects for the validUser bean. The body of the <ora:loop> action contains an 
<ora:sqlUpdate> action that executes an INSERT statement for each project: 

<ora:loop name="validUser" property="projects" loopId="project"  
    className="String" > 
    <ora:sqlUpdate> 
      INSERT INTO EmployeeProjects 
        (UserName, ProjectName) VALUES(?, ?) 
      <ora:sqlStringValue name="validUser" property="userName" /> 
      <ora:sqlStringValue value="<%= project %>" /> 
    </ora:sqlUpdate> 
  </ora:loop> 

The variable name to use for the component within the loop body is specified by the loopId attribute. Here 
it's set to project. Within the body, the loop variable is then used with the <ora:sqlStringValue> action to 
set the value for the ProjectName column, so a new value is used for each pass through the projects 
property array. The UserName column has the same value in each row, so the validUser bean's userName 
property is used as the value for the corresponding <ora:sqlStringValue> action. 



JavaSercer Pages 

  page 146 

10.2.6 Logging Out 

Since the proof of authentication is kept in the session scope, the user will be automatically logged out when 
the session times out. But even so, an application that requires authentication should always provide a way 
for the user to explicitly log out. This way a user can be sure that if he or she leaves the desk, no one else 
can come by and use the application. 

The main page in the example application contains a link to the logout page, shown in Example 10.7. 

Example 10.7. Logout Page (logout.jsp)  

<%@ page language="java" %> 
<%@ taglib uri="/orataglib" prefix="ora" %> 
 
<%--  
  Terminate the session and redirect to the login page. 
--%> 
<%  session.invalidate( ); %> 
 
<ora:redirect page="login.jsp" /> 

This page explicitly terminates the session by calling the invalidate( ) method of the session object in a 
scriptlet, and then redirects back to the login page. All objects kept in the session are removed and the 
session is marked as invalid. The next time someone logs in, a new session is created. 

If you want to test the examples described in this chapter, you first must create at least one user with the 
application we developed in Chapter 9. To see how the automatic redirect to the originally requested page 
works, you can open two browser windows and log in from both. They both share the same session, so if you 
log out using one window and then try to load the "post a new message" page with the other, you will first be 
redirected to the login page. After you've entered your username and password, you're redirected to the page 
for posting a message. 

 

10.3 Other Security Concerns 

In this chapter we have discussed only authentication and access control, but there's a lot more to web 
application security. You also need to ensure that no one listening on the network can read the data. In 
addition, you need to consider ways to verify that the data has not been modified. The common terms for 
these concepts (also used in the Servlet 2.2 specification) are confidentiality and data privacy for the first, 
and integrity checking for the second. 

On an intranet, users can usually be trusted not to use network listeners to get to data they shouldn't see. 
But on the Internet, you can make no assumptions. If you provide access to sensitive data, you have to make 
sure it's protected appropriately. Network security is a huge subject area, and clearly not within the scope of 
this book. Therefore I will touch on only the most common way to take care of both confidentiality and 
integrity checking: the Secure Socket Layer (SSL) protocol. 

SSL is a protocol based on public key cryptography: it relies on a public key and a private key pair. Messages 
sent by someone, or something (such as a server), are encoded using the private key, and can be decoded by 
the receiver only by using the corresponding public key. Besides confidentiality and integrity checking, public 
key cryptography also provides the means for very secure authentication: if a message can be decoded with a 
certain public key, you know it was encoded with the corresponding private key. The keys are issued, in the 
form of certificates together with user identity information, by a trusted organization such as VeriSign 
(http://www.verisign.com). 

Both the client and the server can have certificates. However, the most common scenario today is that only 
the server has a certificate, and can thereby positively identify itself to the client. The SSL protocol takes care 
of this server authentication during the handshaking phase of setting up the connection. If the server 
certificate doesn't match the server's hostname, the user is warned or the connection is refused. If the client 
also has a certificate, it can be used to authenticate the client to the server in a more secure fashion than 
basic and digest authentication. 

http://www.verisign.com


JavaSercer Pages 

  page 147 

Even if only a server certificate is used, however, the communication between the client and the server is still 
encrypted. This means that the issue of sending passwords as clear text for basic authentication and form-
based authentication, as well as the application-controlled authentication we developed in this chapter, is 
nullfied. 

Most web servers today support server certificates and SSL. When you use HTTP over SSL (HTTPS), the URLs 
start with https instead of http. Not all applications need the kind of tight security offered by HTTPS, but you 
should be aware of all security threats, and carefully evaluate if the risks of not using it are acceptable for 
your application. 

 



JavaSercer Pages 

  page 148

Chapter 11. Internationalization 

Taking the term World Wide Web literally means that your web site needs to respect the languages and 
customs of all visitors, no matter where they come from. More and more, large web sites provide content in 
several different languages. Just look at a site like Yahoo!, which provides directory services in the local 
languages of more than 20 countries in Europe, Asia, and North America. Other good examples are CNN, with 
local news for 8 different countries, and Vitaminic (http://www.vitaminic.com), a site with MP3 music and 
artist information customized for different countries. If the site contains only static content, it's fairly easy to 
support multiple languages: just make a static version of the site for each language. But this approach is not 
practical for a site with dynamic content. If you develop a separate site for each language, you will have to 
duplicate the code that generates the dynamic content as well, leading to maintenance problems when errors 
are discovered or when it's time to add new features. Luckily, Java and JSP provide a number of tools to 
make it easier to develop one version of a site that can handle multiple languages. 

The process of developing an application that caters to the needs of users from different parts of the world 
includes two phases: internationalization and localization. 

Internationalization means preparing the application by identifying everything that will be different for 
different geographical regions, and providing means to use different versions of all these items instead of 
hardcoded values. Examples of this are labels and messages, online help texts, graphics, format of dates, 
times, and numbers, currencies, measurements, and sometimes even the page layouts and colors. You should 
note that instead of spelling out the word internationalization, the abbreviation I18N is often used. It stands 
for "an I followed by 18 characters and an N." 

When an application has been internationalized, it can also be localized for different regions. This means 
providing the messages, the help texts, the graphics and so forth, as well as the rules for formatting dates, 
times, and numbers, for one or more regions that the internationalized application can use. Localization is 
sometimes abbreviated L10N, following the same logic as the I18N abbreviation. The set of localized 
information for one region is called a locale. Support for new locales can be added without changing the 
application itself. 

In this chapter, we first look at the basic Java classes used for internationalization. If you're not a 
programmer, you can skim through this section without worrying about the details. (However, you should 
understand the terminology, and knowing a bit about the inner workings of these classes also makes it easier 
to understand the rest of the chapter.) We then develop a web application in which visitors can answer a poll 
question and see statistics over how other visitors have answered, using a set of custom actions that hide the 
Java classes to make internationalization a lot easier. You can reuse these custom actions in your own 
application to handle most internationalization needs. The poll site is localized for three languages. The initial 
language is based on the user's browser configuration. The user can also explicitly select one of the supported 
languages. 

 

11.1 How Java Supports Internationalization and Localization 

Java was designed with internationalization in mind and includes a number of classes to make the effort as 
painless as possible. The primary class used for internationalization represents a specific geographical region. 
Instances of this class are used by other classes to format dates and numbers, as well as including localized 
strings and other objects in an application. There are also classes for dealing with different character 
encodings, which we will see later in the chapter. 

11.1.1 The Locale Class 

All Java classes that provide localization support use a class named java.util.Locale. An instance of this 
class represents a particular geographical, political, or cultural region, as specified by a combination of a 
language code and a country code. Java classes that perform tasks that differ depending on a user's language 
and local customs, called locale-sensitive operations, use a Locale instance to decide how to operate. 
Examples of locale-sensitive operations are the interpretation of date strings and formatting numeric values. 

You create a Locale instance using a constructor that takes the country code and language code as 
arguments: 

 java.util.Locale usLocale = new Locale("en", "US"); 

http://www.vitaminic.com


JavaSercer Pages 

  page 149 

Here, a Locale for U.S. English is created. George Bernard Shaw (a famous Irish playwright) once observed, 
"England and America are two countries divided by a common language," so it's no surprise that both a 
language code and a country code are needed to describe some locales completely. The language code, a 
lowercase two-letter combination, is defined by the ISO 639 standard, available at 
http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt. The country code, an uppercase two-letter 
combination, is defined by the ISO 3166 standard, available at http://www.chemie.fu-
berlin.de/diverse/doc/ISO_3166.html. Table 11.1 and Table 11.2 show some of these codes. 

Table 11.1, ISO-639 Language Codes  

Language Code Language 

af Afrikaans 

da Danish 

de German 

el Greek 

en English 

es Spanish 

fr French 

ja Japanese 

pl Polish 

ru Russian 

sv Swedish 

zh Chinese 

 

Table 11.2, ISO-3166 Country Codes  

Country Code Country 

DK Denmark 

DE Germany 

GR Greece 

MX Mexico 

NZ New Zealand 

ZA South Africa 

GB United Kingdom 

US United States 

As luck would have it, these two standards are also used to define language and country codes in HTTP. As 
you may remember from Chapter 2, a browser can send an Accept-Language header with a request for a 
web resource such as a JSP page. The value of this header contains one or more codes for languages that the 
user prefers, based on how the browser is configured. If you use a Netscape 4 browser, you can specify your 
preferred languages in the Edit->Preferences dialog, under the Languages tab. In Internet Explorer 4, you 
find the same thing in View->Internet Options when you click the Language button under the General tab. 
If you specify more than one language, they are included in the header as a comma-separated list: 

 Accept-Language: en-US, en, sv 

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt
http://www.chemie.fuberlin.de/diverse/doc/ISO_3166.html


JavaSercer Pages 

  page 150

The languages are listed in order of preference, with each language represented either by just the language 
code or by the language code and country code separated by a dash (-). This example header specifies the 
first choice as U.S. English, followed by any type of English, and finally Swedish. The HTTP specification allows 
an alternative to listing the codes in order of preference, namely adding a so-called q-value to each code. The 
q-value is a value between 0.0 and 1.0 indicating the relative preference between the codes. Very few 
browsers, if any, use this alternative today, however. 

The Accept-Language header helps you localize your application. You could write code that reads this header 
and creates the corresponding Locale instances. The good news is you don't have to do this yourself; the 
servlet container takes care of it for you and makes the locale information available through two methods on 
the implicit request object: 

 java.util.Locale preferredLocale = request.getLocale( ); 
 java.util.Enumeration allLocales = request.getLocales( ); 

The getLocale( ) method returns the Locale with the highest preference ranking, and the getLocales( ) 
method returns an Enumeration of all locales in order of preference. All you have to do is match the preferred 
locales to the ones that your web application supports. The easiest way to do this is to loop through the 
preferred locales and stop when you find a match. As you will see later, the custom actions developed for this 
book relieve you of all of this, but now you know how it's done. 

11.1.2 Formatting Numbers and Dates 

Let's look at how a locale can be used. One thing that we who live on this planet have a hard time agreeing 
upon is how to write dates and numbers. The order of the month, the day, and the year; if the numeric value 
or the name should be used for the month; what character to use to separate the fractional part of a number: 
all of these details differ between countries, even between countries that speak the same language. And even 
though these details may seem picky, using the wrong format can cause a great deal of confusion. For 
instance, if you ask for something to be done by 5/2, an American thinks you mean May 2 while a Swede 
believes that it's due by February 5. 

Java provides two main classes to deal with formatting of numbers and dates for a specific locale, 
appropriately named java.text.NumberFormat and java.text.DateFormat, respectively. 

The NumberFormat class was used in Chapter 9, to format the price information for items in a shopping cart 
according to the customs of the country where the server is located. By default, the NumberFormat class uses 
the locale of the underlying operating system. If used on a server configured to use a U.S. English locale, it 
formats numbers according to American customs; on a server configured with an Italian locale, it formats 
them according to Italian customs, and so forth. But you can also explicitly specify the locale to format 
numbers according to the rules for locales other than the one used by the operating system: 

 java.util.Locale locale = request.getLocale( ); 
 java.text.NumberFormat nf = java.text.NumberFormat.getNumberInstance(locale); 
 String localNumber = nf.format(10000.00); 

This piece of code creates a String with the number 10000.00 formatted according to the locale that 
corresponds to the preferred language specified by the Accept-Language header in a request. Besides the 
getNumberInstance( ) method, you can use the getPercentInstance( ) and the getCurrency-Instance( 
) to format a decimal number as a percentage string or any number as a currency string. 

The DateFormat class works basically the same way, but how dates are written differs a lot more between 
locales than numbers do, since the day and month names are sometimes spelled out in the local language. 
Besides the locale, a formatting style is also specified as one of DEFAULT, SHORT, MEDIUM, LONG, or FULL: 

 java.util.Locale locale = request.getLocale( ); 
 java.text.DateFormat df = java.text.DateFormat.getDateInstance(df.SHORT, locale); 
 String localDate = df.format(new java.util.Date( )); 

If the current date is May 2, 2000, this code formats the date as 5/2/00 with an American locale and as 
2000-05-02 with a Swedish locale. If you use the FULL formatting style, the results are Tuesday, May 2, 2000 
and den 2 maj 2000 instead. 

As with the NumberFormat class, there are other specialized date formatters besides the one used here. You 
can use the getDateTimeInstance( ) and getTimeInstance( ) methods to produce strings including both 
the date and time or just the time. 



JavaSercer Pages 

  page 151

11.1.3 Using Localized Text 

Automatic translation of numbers and dates into the local language is a great help. But until automatic 
translation software is a lot smarter than it is today, you have to translate all the text used in the application 
yourself. A set of Java classes then helps you pick the right version for a specific locale. 

The main class for dealing with localized resources (such as text, images, and sounds) is named 
java.util.ResourceBundle. This class is actually the abstract superclass for the two subclasses that do the 
real work, ListResourceBundle and PropertyResourceBundle, but it provides methods that let you get an 
appropriate subclass instance, hiding the details about which subclass actually provides the resources. Details 
about the difference between these two subclasses are beyond the scope of this book. It suffices to say, 
however, that the ListResourceBundle is overkill for our needs when developing web applications, so we will 
be using an instance of the PropertyResourceBundle. To learn more about these classes, I suggest glancing 
at the Java API documentation. 

A PropertyResourceBundle instance is associated with a named set of localized text resources, where each 
resource is identified by a key. The keys and their corresponding text strings are stored in a regular text file 
as key-value pairs: 

 site_name=The Big Corporation Inc. 
 company_logo=/images/logo_en.gif 
 welcome_msg=Hello! 

Here, three keys, site_name, company_logo, and welcome_msg, have been assigned string values. The key is 
a string, without spaces or other special characters, and the value is any text. If the value spans more than 
one line, the line break must be escaped with a backslash character (\): 

 multi_line_msg=This text value\ 
 continues on the next line. 

The file must use the extension .properties, for instance sitetext.properties, and be located in the class path 
used by the Java Virtual Machine. In the case of web applications, you should store the file in the application's 
WEB-INF/classes directory, since this directory is always included in the class path. 

When you have created a properties file, you can obtain the text corresponding to a key like this: 

 java.util.Locale locale = request.getLocale( ); 
 java.util.ResourceBundle bundle =  
  java.util.ResourceBundle.getBundle("sitetext", locale); 
 String msg = bundle.getString("welcome_msg"); 

Note that the getBundle( ) method takes two arguments: a Locale argument, the same as the methods for 
getting number and date formatters; and a bundle name. These arguments are used like this: the method 
gets the language and country codes from the Locale object and starts looking for a file with a name 
composed of both the bundle name and the language and country codes. If you pass it a locale for Mexican 
Spanish, for example, it first looks for a file named sitetext_es_MX.properties, where es is the language code 
for Spanish and MX is the country code for Mexico. If it can't find a file with this name, it looks for 
sitetext_es.properties, ignoring the country code. If there's still no such file, it uses the file with just the 
bundle name, sitetext.properties. 

As you can see, this makes it possible for you to create multiple properties files, each with the text values 
translated into a specific language for a specific country. In other words, you can create one file for each 
supported locale. The ResourceBundle ensures that when you ask for a bundle, you get the one that most 
closely matches the specified locale, or the default bundle if there is no match. We'll look at an example in 
detail in the next section. 

Besides the ResourceBundle class, there's a class named java.text.MessageFormat that you can use for 
messages composed of fixed text plus variable values, such as, "An earthquake measuring 6.7 on the Richter 
scale hit Northridge, CA, on January 17, 1994." Here, each underlined word represents a variable value. 
Another class related to localization is the java.text.Collator class, used for localized string comparison 
and sorting. These classes are less commonly used, so they are not covered in detail here. You can read more 
about them in the Java API documentation. 



JavaSercer Pages 

  page 152 

11.2 Generating Localized Output 

Now that you have an understanding of the type of internationalization support Java provides, let's look at a 
concrete example. But instead of using the internationalization classes directly in the pages, let's use a set of 
custom actions based on these classes. Using custom actions minimizes the need for Java code in the JSP 
pages, making it easier for page authors to develop an internationalized site. 

The example application, briefly described in the introduction to this chapter, lets visitors voice their opinions 
by selecting one of the answers to a question, as well as seeing how others have answered. The text, 
numbers, and dates are available in three different languages. Figure 11.1 shows all pages used in this 
application and how they are related. 

Figure 11.1. Localized poll application pages 

 

The first page the user sees is the poll.jsp page, shown in Figure 11.2. The language used to display the 
contents the first time this page is displayed is based on the Accept-Language header value in the request. 
The top part of the page contains radio buttons for the three supported languages and a Submit button. If the 
user wants the application to be presented in another language, he or she selects the corresponding radio 
button and clicks Submit, causing the page to be requested again, this time with a language parameter 
included in the request. The value of the language parameter is then used to display the page in the selected 
language. Information about the selected language is saved as session data, so it's available to all the other 
application pages. 

Figure 11.2. The language selection and question page 

 



JavaSercer Pages 

  page 153

The poll.jsp page also includes a question, linked to a page with background information for the question, and 
a group of radio buttons representing the different answers, as well as a Submit button. Clicking on the 
Submit button invokes the calculate.jsp page, where the vote is validated. If it's valid, it's added to the global 
poll result. The request is then forwarded to the result.jsp page, which displays the poll statistics with all 
numbers formatted according to the selected locale. If it's not valid, the request is forwarded back to the 
poll.jsp page. 

Both the poll.jsp page and the result.jsp page are designed to show text, numbers, and dates according to 
the selected locale using custom actions based on the Java classes described in the previous section. This 
approach is perfect when the amount of text is small; only one page has to be maintained. But if a page 
needs to contain a great deal of text, typing it into a properties file and escaping all line breaks may not be 
the best approach. Some pages also need to use different layouts, colors, images, and general appearances 
based on the locale. In this case, it's easier to use a separate page per locale. This approach is illustrated by 
the pages providing more detailed information about the question in this example. The link on the poll.jsp 
page leads to different JSP pages depending on the selected language, named according to the same naming 
convention as ResourceBundle properties files: details.jsp, details_de.jsp, and details_sv.jsp for English (the 
default), German, and Swedish pages, respectively. Let's look at the one-page and the multipage approaches 
separately. 

11.2.1 Using One Page for Multiple Locales 

Example 11.1 shows the poll.jsp page. That's where the magic of locale selection happens, and the selection 
is then used to produce text in the corresponding language throughout the page. 

Example 11.1. Language Selection and Vote Page (poll.jsp)  

<%@ page language="java" contentType="text/html" %> 
<%@ taglib uri="/orataglib" prefix="ora" %> 
 
<ora:useLocaleBundle id="locale" bundleName="poll"  
  supportedLangs="en, sv, de" /> 
 
<html> 
  <head> 
    <title> 
      <ora:getLocalText name="locale" key="poll.title" /> 
    </title> 
  </head> 
  <body bgcolor="white"> 
    <h1> 
      <ora:getLocalText name="locale" key="poll.title" /> 
    </h1> 
 
    <ora:getLocalText name="locale" key="poll.select_language" />: 
    <form action="poll.jsp"> 
      <p> 
      <input type="radio" name="language" value="en" 
        <%= locale.getLanguage( ).equals("en") ? "checked" : "" %>> 
        <%= locale.getText("poll.english") %><br> 
      <input type="radio" name="language" value="sv" 
        <%= locale.getLanguage( ).equals("sv") ? "checked" : "" %>> 
        <%= locale.getText("poll.swedish") %><br> 
      <input type="radio" name="language" value="de" 
        <%= locale.getLanguage( ).equals("de") ? "checked" : "" %>> 
        <%= locale.getText("poll.german") %><br> 
      <p> 
      <input type="submit"  
        value="<ora:getLocalText name="locale"  
          key="poll.new_language" />"> 
    </form> 
 
    <a href="<ora:getLocalPageName  
      name="locale" pageName="details.jsp" />"> 
      <ora:getLocalText name="locale" key="poll.question" /> 
    </a> 
    <form action="calculate.jsp" method="post"> 
      <input type="radio" name="answerId" value="1"> 
      <ora:getLocalText name="locale" key="poll.answer1" /> 
      <br> 
      <input type="radio" name="answerId" value="2"> 
      <ora:getLocalText name="locale" key="poll.answer2" /> 
      <br> 
      <input type="radio" name="answerId" value="3"> 
      <ora:getLocalText name="locale" key="poll.answer3" /> 
      <p> 
      <input type="submit"  
        value="<ora:getLocalText name="locale"  
          key="poll.submit" />"> 
    </form> 
  </body> 
</html> 



JavaSercer Pages 

  page 154

At the top of the page, the taglib directive is used to identify the library containing all custom actions, as in 
previous chapters. Then follows the first custom action for localization: <ora:useLocaleBundle> . It's 
described in Table 11.3. 

Table 11.3, Attributes for <ora:useLocaleBundle>  

Attribute 
Name 

Java 
Type 

Request-Time 
Value Accepted 

Description 

id String No Mandatory. The name used to 
reference the LocaleBean instance. 

bundleName String Yes Mandatory. The base name for text 
resource properties files. 

supportedLangs String Yes 
Mandatory. A comma-separated list of 
language/country codes. The first code 
is used as the default language. 

This innocent-looking action does a number of things. First, it looks for a LocaleBean with the name specified 
by the id attribute in the session scope, and creates one if it doesn't exist. The LocaleBean, described in 
Table 11.4, handles all localization tasks. It can be used as-is, as you will soon see, but in most cases it's 
used indirectly by other custom actions in the set of localization actions. The action then asks the implicit 
request object for the list of locales specified by the Accept-Language header, and uses that list to set the 
bean's requestLocales property. It also looks for a request parameter named language, and if it's present, 
it uses the value to set the corresponding language property in the bean. Finally, it sets the bean's 
supportedLangs property to the value of the action attribute with the same name. Both the language 
property and the supportedLangs property take a value that's either just a language code, or a language 
code plus a country code separated by a dash (e.g., Es-MX). As shown in Example 11.1, you can specify a 
number of supported languages as a comma-separated list of codes. The final attribute is called bundleName; 
this attribute is the base name for a set of ResourceBundle properties files, as described in the first section of 
this chapter. 

Table 11.4, Properties for com.ora.jsp.bean.locale.LocaleBean  

Property Name Java Type Access Description 

bundleName String write The base name for the 
properties files 

charset String write The charset used to decode 
parameters 

language String read/write The language code for the 
selected locale 

locale java.util.Locale read The locale, selected based on 
other properties 

requestLocales java.util.Locale[] write The locales received with the 
request 

supportedLangs String write A comma-separated list of 
language codes 

With all these properties set, the bean can decide which locale to use for the user requesting the page. The 
first time the page is requested, the language property is not set, so it compares the language specified by 
each locale in the requestLocales property to the set of languages in the supportedLangs property, and 
selects the first locale that is supported. Since the request locales are ordered by preference, the locale with 
the highest ranking that represents a supported language is selected. As you will soon see, the user can also 
request this page with a specific language specified by the language parameter. In this case, the action sets 
the corresponding bean property and the bean uses this value to select the locale, assuming it's one of the 
supported languages. If neither the request locales nor the explicitly specified language is supported, the 
bean selects a locale that represents the first language listed in the supportedLanguages property. 



JavaSercer Pages 

  page 155 

The next action in Example 11.1 is <ora:getLocalText> . This is described in Table 11.5. 

Table 11.5, Attributes for <ora:getLocalText>  

Attribute 
Name 

Java 
Type 

Request-Time Value 
Accepted 

Description 

name String No Mandatory. The name of the 
LocaleBean instance. 

key String Yes Mandatory. The name of a property 
in the text resource properties files. 

The <ora:getLocalText> action is used to get the page title and header. The name attribute specifies the 
name of the LocaleBean created by the <ora:useLocaleBundle> action, and the key attribute specifies one 
of the properties in the files with localized strings. These files are named exactly like the files used by the 
ResourceBundle described in the previous section. In other words, you need one file with the same name as 
the base name (specified as the bundleName for the <ora:useLocaleBundle> action) for the default locale, 
and one file with a name that combines the base name and a language code for all other locales. In this 
example, then, you need the files poll.properties, poll_de.properties, and poll_sv.properties. If you want to 
add support for another language, say Italian, just create a poll_it.properties file and add it (the language 
code for Italian) to the list of supported languages for the <ora:useLocaleBundle> action. All properties files 
must be placed in the WEB-INF/classes directory for the web application so that the ResourceBundle can find 
them. Here's what the poll.properties file looks like: 

poll.title=Industry Trends 
poll.select_language=Select your preferred language 
poll.new_language=New Language 
poll.english=English 
poll.swedish=Swedish 
poll.german=German 
poll.question=What's the longest development time you dare to plan with? 
poll.answer1=One year 
poll.answer2=Six months 
poll.answer3=Less than six months 
poll.submit=Vote 
poll.number_of_votes=Total number of votes 
poll.result=Poll result 

The value of the poll.title key, used by the first two <ora:getLocalText> actions, is set to "Industry 
Trends"; that's what will appear as the title and header of the page when the default locale is selected. If a 
Swedish locale was selected instead, the text "Industri Trender" would be used, which is how it is listed in the 
poll_sv.properties file. The <ora:getLocalText> action is used with different keys for all text content in the 
page. Internally, it uses one of the bean's regular methods: 

 public String getText(String propertyName) 

This method returns the specified property (the action element uses the key attribute value) from the 
properties file that most closely matches the selected locale. The bean provides similar methods for date and 
numeric values, as you can see in Appendix C. 

To let the user pick another language than the one selected based on the Accept-Language header, the page 
contains a form with a set of radio buttons and a Submit button. Every time the page is displayed, the radio 
button group must reflect the currently selected language. This is done by calling the bean's language 
property access method and comparing the return value with the language code represented by each radio 
button: 

 ... 
 <input type="radio" name="language" value="en" 
   <%= locale.getLanguage( ).equals("en") ? "checked" : "" %>> 
   <%= locale.getText("poll.english") %><br> 
 ... 

You probably recognize the type of JSP expression used to set the checked attribute for the radio button from 
previous chapters. The getLanguage( ) method returns the language code for the selected locale as a 
String. The equals( ) method compares the return value to its argument and returns true if they are the 
same. If they are, the first string after the question mark is returned as the value of the expression. If not, 
the second string is used. You also may have noticed that you can use the bean's getText( ) method 
directly, as an alternative to the <ora:getLocalText> action. Which alternative to use is largely a matter of 
preference. I used the method here because it's more compact and less intrusive when the text is used as 
part of an HTML element. 



JavaSercer Pages 

  page 156 

All radio button elements have the name language, which means that they form a group where only one of 
them can be selected. When the user clicks on the Submit button, the same page is requested with the value 
of the selected radio button included as a request parameter named language. As described above, this 
triggers the <ora:useLocaleBundle> action to switch to the selected language. 

Next comes another form with radio buttons representing the three possible answers to the poll question. As 
you can see, both the question and the answers are displayed in the selected language. When the user 
selects an answer and clicks on the button to submit a vote, the calculate.jsp page shown in Example 11.2 is 
invoked. 

Example 11.2. Validation and Calculation of Votes (calculate.jsp)  

<jsp:useBean id="pollResult" scope="application" 
  class="com.ora.jsp.beans.poll.PollBean" /> 
 
<jsp:useBean id="answer" class="com.ora.jsp.beans.poll.AnswerBean" > 
  <jsp:setProperty name="answer" property="*" /> 
</jsp:useBean> 
 
<% if (answer.isValid( )) { %> 
     <jsp:setProperty name="pollResult" property="answer" 
       value="<%= answer %>" /> 
     <jsp:forward page="result.jsp" /> 
<% } else { %> 
     <jsp:forward page="poll.jsp" /> 
<% } %> 

As with all pure logic pages, this page contains only actions and a few simple scriptlets; no response text is 
generated. A PollBean in the application scope is used to keep track of the answers from all visitors, and an 
AnswerBean in the page scope captures and validates a single answer. The AnswerBean has one property 
named answer, which is set to the value of the corresponding request parameter using the 
<jsp:setProperty> action. It also has an isValid( ) method, used in a scriptlet to test if the answer is 
valid or not. In this example, it returns true if the answer ID is valid (1, 2, or 3). However, in a real 
application you may want to include other validation rules. For instance, if the poll information was stored in a 
database, you could use cookies or a username to make sure each user answers only once. If the answer is 
valid, a <jsp:setProperty> action is used to set the answer property of the PollBean to the valid answer, 
and the request is forwarded to the result.jsp page to display the poll statistics. Figure 11.3 shows a sample 
of the result page with the Swedish locale. 

Figure 11.3. The result page using the Swedish locale 

 



JavaSercer Pages 

  page 157 

The result.jsp page, shown in Example 11.3, uses a couple of custom actions we haven't covered yet to 
display the localized date and numbers. 

Example 11.3. Showing the Result (result.jsp)  

<%@ page language="java" contentType="text/html" %> 
<%@ page import="java.util.Date" %> 
<%@ taglib uri="/orataglib" prefix="ora" %> 
 
<ora:useLocaleBundle id="locale" bundleName="poll"  
  supportedLangs="en, sv, de" /> 
 
<html> 
  <head><title> 
      <ora:getLocalText name="locale" key="poll.title" /> 
    </title></head> 
  <body bgcolor="white"> 
    <jsp:useBean id="pollResult" scope="application" 
         class="com.ora.jsp.beans.poll.PollBean" /> 
    <h1> 
      <ora:getLocalText name="locale" key="poll.result" />: 
      <ora:getLocalDate name="locale" date="<%= new Date( ) %>" /> 
    </h1> 
 
    <ora:getLocalText name="locale" key="poll.question" /> 
    <p> 
    <ora:getLocalText name="locale" key="poll.number_of_votes" />: 
    <ora:getLocalNumber name="locale"  
      value="<%= pollResult.getTotal( ) %>" /> 
 
    <table width="70%"> 
      <tr> 
        <td width="30%"> 
          <ora:getLocalText name="locale" key="poll.answer1" />: 
          <ora:getLocalNumber name="locale"  
            value="<%= pollResult.getAnswer1Percent( ) %>" />% 
          (<ora:getLocalNumber name="locale"  
            value="<%= pollResult.getAnswer1( ) %>" />) 
        </td> 
        <td> 
          <table width="<%= pollResult.getAnswer1Percent( ) %>%"  
            bgcolor="lightgreen"> 
            <tr> 
              <td>&nbsp;</td> 
            </tr> 
          </table> 
        </td> 
      </tr> 
      <tr> 
        <td width="30%"> 
          <ora:getLocalText name="locale" key="poll.answer2" />: 
          <ora:getLocalNumber name="locale"  
            value="<%= pollResult.getAnswer2Percent( ) %>" />% 
          (<ora:getLocalNumber name="locale"  
            value="<%= pollResult.getAnswer2( ) %>" />) 
        </td> 
        <td> 
          <table width="<%= pollResult.getAnswer2Percent( ) %>%"  
            bgcolor="lightblue"> 
            <tr> 
              <td>&nbsp;</td> 
            </tr> 
          </table> 
        </td> 
      </tr> 
      <tr> 
        <td width="30%"> 
          <ora:getLocalText name="locale" key="poll.answer3" />: 
          <ora:getLocalNumber name="locale"  
            value="<%= pollResult.getAnswer3Percent( ) %>" />% 
          (<ora:getLocalNumber name="locale"  
            value="<%= pollResult.getAnswer3( ) %>" />) 
        </td> 
        <td> 
          <table width="<%= pollResult.getAnswer3Percent( ) %>%"  
            bgcolor="orange"> 
            <tr> 
              <td>&nbsp;</td> 
            </tr> 
          </table> 
        </td> 
      </tr> 
    </table> 
  </body> 
</html> 



JavaSercer Pages 

  page 158

This page starts with the <ora:useLocaleBundle> action, just like the poll.jsp page, to make the LocaleBean 
available to the other actions and scriptlets on the page. It also uses a number of <ora:getLocalText> 
actions to produce text in the selected language. 

The first new action is the <ora:getLocalDate> action, described in Table 11.6. 

Table 11.6, Attributes for <ora:getLocalDate>  

Attribute 
Name 

Java Type Request-Time Value 
Accepted 

Description 

name String No Mandatory. The name of the 
LocaleBean instance. 

date java.util.Date Yes 
Mandatory. The date to 
format according to the 
selected locale. 

The <ora:getLocalDate> action is used to add today's date to the header. As with all other localization 
actions, it has a name attribute to specify the name of the bean. The date to format (as dictated by the 
selected locale) is specified by the date attribute. In Example 11.3, a JSP expression that creates a new Date 
object representing the current date is used as the attribute value. When you play around with this 
application, you see how the date format changes depending on the language you select. 

The other new action is the <ora:getLocalNumber> action, used to generate numeric values formatted 
according to the selected locale. It's described in Table 11.7. 

Table 11.7, Attributes for <ora:getLocalNumber>  

Attribute 
Name 

Java 
Type 

Request-Time Value 
Accepted 

Description 

name String No Mandatory. The name of the 
LocaleBean instance. 

value double Yes Mandatory. The number to format 
according to the selected locale. 

The first occurrence of the <ora:getLocalNumber> action is used to display the total number of votes, just 
before the table that shows the distribution of the votes. Besides the name attribute, it has an attribute named 
value that specifies the number to be formatted. In Example 11.3, it calls the poll bean's getTotal( ) 
method to set the value. 

The table with details about the distribution comes next. Here I have used a trick with nested tables to 
generate a simple bar chart: 

... 
<table width="70%"> 
  <tr> 
    <td width="30%"> 
      <ora:getLocalText name="locale" key="poll.answer1" />: 
      <ora:getLocalNumber name="locale"  
        value="<%= pollResult.getAnswer1Percent( ) %>" />% 
      (<ora:getLocalNumber name="locale"  
         value="<%= pollResult.getAnswer1( ) %>" />) 
    </td> 
    <td> 
      <table width="<%= pollResult.getAnswer1Percent( ) %>%"  
        bgcolor="lightgreen"> 
        <tr> 
          <td>&nbsp;</td> 
        </tr> 
      </table> 
    </td> 
  </tr> 
... 

The main table contains a row with two cells for each poll answer. The first cell is just a regular cell, 
containing the answer text, the percentage of votes with this answer, and the absolute number of votes with 
this answer. The values are generated by the <ora:getLocalText> and <ora:getLocalNumber> actions. The 
next cell, however, is more interesting. It contains a nested table, and the width of the table is set to the 
same percentage value as the percentage of votes with this answer. By specifying a required space (using the 



JavaSercer Pages 

  page 159 

&nbsp; HTML code) as the value of the single cell and a unique background color, the result is a simple 
dynamic bar chart. As the percentage values of the answers change, the width of each nested table changes 
as well, as shown in Figure 11.3. Pretty neat! 

11.2.2 Using a Separate Page for Each Locale 

The <ora:getLocalText> action, as well as the other localization actions, makes it easy to use the same 
page for all locales. But as described earlier, sometimes it's better to use a separate page for each locale. The 
poll example uses this approach for the detailed description of the question. 

As shown in Example 11.1, the poll.jsp page uses the <ora:getLocalPageName> action to insert the name of 
a localized page in an HTML link: 

 <a href="<ora:getLocalPageName name="locale" pageName="details.jsp" />"> 
       <ora:getLocalText name="locale" key="poll.question" /> 
     </a> 

This action, described in Table 11.8, generates filenames based on the same naming convention as for 
localized property files. 

Table 11.8, Attributes for <ora:getLocalPageName>  

Attribute 
Name 

Java 
Type 

Request-Time Value 
Accepted 

Description 

name String No Mandatory. The name of the 
LocaleBean instance. 

pageName String Yes Mandatory. The page base name. 

The pageName attribute value represents the page base name. From this base name, the action inserts the 
language code and the country code (if any) of the selected locale, unless the selected locale represents the 
default language. The default language is the first language listed in the supportedLang attribute for the 
<ora:useLocaleBundle> action. For the languages supported in this example, you therefore need the 
details.jsp file for the English locale (default), the details_de.jsp file for the German locale, and the 
details_sv.jsp file for the Swedish locale. Note that the <ora:getLocalPageName> action doesn't verify that 
the localized page exists; it just generates the name of the localized page, based on the currently selected 
locale. Example 11.4 shows the Swedish page. 

Example 11.4. Swedish Details Page ( details_sv.jsp)  

<%@ page language="java" contentType="text/html" %> 
<%@ taglib uri="/orataglib" prefix="ora" %> 
 
<ora:useLocaleBundle id="locale" bundleName="poll"  
  supportedLangs="en, sv, de" /> 
 
<html><head> 
    <title> 
      <ora:getLocalText name="locale" key="poll.title" /> 
    </title> 
  </head> 
  <body bgcolor="yellow"> 
    <h1> 
      <font color="blue"> 
        <ora:getLocalText name="locale" key="poll.question" /> 
      </font> 
    </h1> 
      <font color="blue"> 
        Idag introduceras nya teknologier och affärsideer mycket 
        snabbt. Produkter som såg ut som givna vinstbringare 
        igår är idag så vanliga att det inte går att tjäna 
        pengar på dem, med flera versioner tillgängliga gratis 
        som Open Source. En affärsplan baserad på inkomst från 
        annonser på en populär web site, eller att lägga till 
        ".com" till företagsnamnet, väcker inte samma intresse 
        hos investerare idag som det gjorde för bara några månader 
        sedan. 
        <p> 
        I en industri som rör sig så här snabbt, hur lång tid 
        törs du allokera till utveckling av en ny produkt eller 
        tjänst, utan att riskera att den är ointressant när den 
        väl är färdig? 
      </font> 
  </body> 
</html> 



JavaSercer Pages 

  page 160

As you can see, most of this page consists of Swedish text. The colors of the Swedish flag (yellow and blue) 
are also used as the background, header, and text colors. The detail pages for the other locales follow the 
same pattern. When the amount of text is large and other details of the page differ, like the colors in this 
example, it's often convenient to use a separate page for each locale instead of the one-page approach 
described earlier. 

 

11.3 A Brief History of Bits 

Before we discuss the different charsets, let's shift gears a little. Once upon a time, not so long ago, bits were 
very expensive. Hard disks for storing bits, memory for loading bits, communication equipment for sending 
bits over the wire; all the resources needed to handle bits were costly. To save on these expensive resources, 
characters were initially represented by only seven bits. This was enough to represent all letters in the English 
alphabet, the numbers through 9, punctuation characters, and some control characters. And that was all that 
was really needed in the early days of computing, since most computers were kept busy doing number 
crunching. 

But as computers were given new tasks, often dealing with human-readable text, seven bits didn't cut it. 
Adding one bit made it possible to represent all letters used in the western European languages. But there are 
other languages besides the western European languages, even though companies based in English-speaking 
countries often seem to ignore them. And eight bits is not enough to represent all characters used around the 
world. At first, this problem was partially solved by defining a number of standards for how eight bits should 
be used to represent different character subsets. Each of the ten ISO-8859 standards defines what is called a 
charset: a mapping between eight bits (a byte) and a character. For instance, ISO-8859-1, also known as 
Latin-1, defines the subset used for western European languages, such as English, French, Italian, Spanish, 
German, and Swedish. This is the default charset for HTTP. Other standards in the same series are ISO-8859-
2, covering central and eastern European languages such as Hungarian, Polish, and Romanian; and ISO-
8859-5, with Cyrillic letters used in Russian, Bulgarian, and Macedonian. You can find information about all 
ten charsets in the ISO-8859 series at http://czyborra.com/charsets/iso8859.html. 

Some languages such as Chinese and Japanese contain thousands of characters, but with eight bits you can 
only represent 256. A set of multibyte charsets have therefore been defined to handle these languages, such 
as Big5 for Chinese, Shift_JIS for Japanese, and EUC-KR for Korean. 

As you can imagine, all these different standards make it hard to exchange information encoded in different 
ways. To simplify life, the Unicode standard was defined by the Unicode Consortium, which was founded in 
1991 by large companies such as Apple, IBM, Microsoft, Novell, Sun, and Xerox. Unicode uses two bytes (16 
bits) to define unique codes for 49,194 characters in Version 3.0. Java uses Unicode for its internal 
representation of characters, and Unicode is also supported by many new technologies such as XML and 
LDAP. Support for Unicode is included in all modern browsers, such as Netscape and Internet Explorer since 
Version 4. If you would like to learn more about Unicode, visit http://www.unicode.org. 

What does all of this mean to you as a web application developer? Well, since Latin-1 is the default charset 
for HTTP, you don't have to worry about this at all when you work with western European languages. But if 
you provide content in another language, such as Japanese or Russian, you need to tell the browser which 
charset you're using so it can interpret and render the characters correctly. In addition, the browser must be 
configured with a font that can display the characters. You find information about fonts for Netscape at 
http://home.netscape.com/eng/intl/, and for Internet Explorer at http://www.microsoft.com/ie/intlhome.htm. 

You can specify a charset in a JSP page using the page directive and the contentType attribute, as shown in 
Example 11.5. The charset you specify is used for multiple purposes. First, it tells the JSP container the 
charset used to encode the bytes in the JSP page file itself, so the container can translate the bytes correctly 
to Unicode for internal processing. It's also used to convert the Unicode characters used internally to the 
specified charset encoding when the response is sent to the browser, and to set the charset attribute in the 
Content-Type header to let the browser know how to interpret the response. You may think it's a waste of 
time to first convert from one charset to Unicode, and then from Unicode back to the same charset. But using 
Unicode as an intermediary format makes it possible to store the page in one charset, say Shift_JIS, and send 
it to the browser as another, for instance UTF-8 (an efficient charset that encodes Unicode characters as one, 
two, or three bytes, as needed). This is not possible in JSP 1.1, but it's being discussed for a future version. 

http://czyborra.com/charsets/iso8859.html
http://www.unicode.org
http://home.netscape.com/eng/intl/
http://www.microsoft.com/ie/intlhome.htm


JavaSercer Pages 

  page 161

Enough theory. Figure 11.4 shows a simple JSP page that sends the text "Hello World" in Japanese to the 
browser. The Japanese characters are copied with permission from Jason Hunter's Java Servlet Programming 
(O'Reilly). 

Figure 11.4. Japanese JSP page ( japanese.jsp)  

 

To create a file in Japanese or another non-western language, you obviously need a text editor that can 
handle multibyte characters. The JSP page in Figure 11.4 was created with WordPad on a Windows NT 
system, using a Japanese font called MS Gothic and saved as a file encoded with the Shift_ JIS charset. Shift_ 
JIS is therefore the charset specified by the contentType attribute, using the charset attribute. Note that the 
page directive that defines the charset must appear as early as possible in the JSP page, before any 
characters that can be interpreted only when the charset is known. I recommend that you insert it as the first 
line in the file to avoid problems. 

 

11.4 Handling Localized Input 

So far we have discussed only how to generate pages in different languages, but most applications also need 
to deal with localized input. As long as you're supporting only western European languages, the only thing 
you typically need to worry about is how to interpret dates and numbers. The LocaleBean introduced in the 
previous section can help with this. 

Example 11.5 shows a JSP page with the same form for selecting a language as you saw in Example 11.1, 
plus a form with one field for a date and another for a number. 

Example 11.5. Date and Number Input Form (input.jsp)  

<%@ page language="java" contentType="text/html" %> 
<%@ page import="java.util.*" %> 
<%@ taglib uri="/orataglib" prefix="ora" %> 
 
<ora:useLocaleBundle id="locale" bundleName="input"  
  supportedLangs="en, sv, de" /> 
 
<html> 
  <head> 
    <title> 
      <ora:getLocalText name="locale" key="input.title" /> 
    </title> 
  </head> 
  <body bgcolor="white"> 
    <h1> 
      <ora:getLocalText name="locale" key="input.title" /> 
    </h1> 
 
    <ora:getLocalText name="locale" key="input.select_language" />: 
    <form action="input.jsp"> 
      <p> 
      <input type="radio" name="language" value="en" 
        <%= locale.getLanguage( ).equals("en") ? "checked" : "" %>> 
        <%= locale.getText("input.english") %><br> 
      <input type="radio" name="language" value="sv" 
        <%= locale.getLanguage( ).equals("sv") ? "checked" : "" %>> 
        <%= locale.getText("input.swedish") %><br> 
      <input type="radio" name="language" value="de" 
        <%= locale.getLanguage( ).equals("de") ? "checked" : "" %>> 
        <%= locale.getText("input.german") %><br> 
      <p> 
      <input type="submit"  
        value="<ora:getLocalText name="locale"  
          key="input.new_language" />"> 
    </form> 
 
     



JavaSercer Pages 

  page 162 

<form action="store.jsp" method="post"> 
      <ora:getLocalText name="locale" key="input.date" /> 
      <br> 
      <input type="text" name="date"> 
      (<ora:getLocalDate name="locale" date="<%= new Date( ) %>" />) 
      <p> 
      <ora:getLocalText name="locale" key="input.number" /> 
      <br> 
      <input type="text" name="number"> 
      (<ora:getLocalNumber name="locale" value="<%= 10000.11 %>" />) 
      <p> 
      <input type="submit"  
        value="<ora:getLocalText name="locale"  
          key="input.submit" />"> 
    </form> 
  </body> 
</html> 

As in Example 11.1, custom actions are used to display various text labels in the selected language. In the 
date and number entry form, the <ora:getLocalDate> and <ora:getLocalNumber> actions are used as 
before to generate samples for the date and number format, respectively. 

Now the interesting part. Example 11.6 shows the JSP page that is requested when the form is submitted. 

Example 11.6. Processing Localized Input (store.jsp)  

<%@ taglib uri="/orataglib" prefix="ora" %> 
 
<ora:useLocaleBundle id="locale" bundleName="input"  
  supportedLangs="en, sv, de" /> 
 
<ora:useDataSource id="example"  
  class="sun.jdbc.odbc.JdbcOdbcDriver"  
  url="jdbc:odbc:example" /> 
 
<ora:sqlUpdate dataSource="example"> 
  INSERT INTO InputTest VALUES(?, ?) 
    <ora:sqlDateValue  
      value='<%= locale.getDate(request.getParameter("date")) %>' /> 
    <ora:sqlDoubleValue  
      value='<%= locale.getDouble(request.getParameter("number")) %>'/> 
</ora:sqlUpdate> 
 
<jsp:forward page="input.jsp" /> 

This page stores the values in a database. However, in order to do that, the date and number strings must be 
interpreted and turned into the corresponding Java object. The LocaleBean provides methods to handle the 
conversion, with a little bit of help from the DateFormat and NumberFormat classes described earlier: 

 public Date getDate(String date) 
    throws ParseException 
 public double getDouble(String number)  
    throws ParseException 

These two methods use the format classes, initialized with the currently selected locale, to convert the String 
argument to the appropriate return type. With the strings converted to the corresponding Java type, the 
custom actions introduced in Chapter 9 are used to store the values in a database. To run this example, you 
must first create a table named InputTest with a DATE and a NUMBER column in your database. 

11.4.1 Dealing with Non-Western European Input 

An HTML form can be used for input in languages other than western European languages, but the charset 
discussed in the previous section comes into play here as well. When you create a page with a form for 
entering non-western characters, you must define the charset with the contentType attribute of the page 
directive, the same as for any page with non-western content, as shown in Chapter 11. The user can then 
enter values with the characters of the corresponding language (e.g., Japanese characters). 

There's something else to be aware of here. Parameter values sent from a form are encoded according to a 
special format. Characters other than a-z, A-Z, and 0-9 are converted to byte values in a hexadecimal format, 
preceded by a percent sign (%). For instance, the characters for "Hello World" in Japanese (shown in Figure 
11.4) are sent like this: 

 %8D%A1%93%FA%82%CD%90%A2%8AE 



JavaSercer Pages 

  page 163

This code represents the byte codes for the five Japanese characters. In order to process this information, the 
target JSP page must know which charset was used by the browser to encode it. The problem is that today's 
browser versions don't provide this information. You must therefore provide this information yourself, and 
convert the bytes in the parameter values accordingly. Let's see how that can be done. 

Example 11.7 shows a JSP page with a form for entering a date and a text value in Japanese. 

Example 11.7. Japanese Input Page ( input_ja.jsp)  

<%@ page language="java" contentType="text/html;charset=Shift_JIS" %> 
<%@ page import="java.util.*" %> 
<%@ taglib uri="/orataglib" prefix="ora" %> 
 
<ora:useLocaleBundle id="locale" bundleName="input"  
  supportedLangs="ja" /> 
 
<html> 
  <head> 
    <title> 
      Japanese Input Test 
    </title> 
  </head> 
  <body bgcolor="white"> 
    <h1> 
      Japanese Input Test 
    </h1> 
 
    <form action="process_ja.jsp" method="post"> 
      Enter a date: 
      <br> 
      <input type="text" name="date"> 
      (<ora:getLocalDate name="locale" date="<%= new Date( ) %>" />) 
      <p> 
      Enter some text: 
      <br> 
      <input type="text" name="text"> 
      <p> 
      <input type="submit" value="Send" > 
      <input type="hidden" name="charset" value="Shift_JIS"> 
    </form> 
  </body> 
</html> 

This page sets the charset to Shift_JIS and creates a LocaleBean for the Japanese locale through the 
<ora:useLocaleBundle> action with just one supported language: ja, the language code for Japanese. In the 
form, the <ora:getLocalDate> action is used to generate an example of how the date must be entered. The 
most important part of this page, however, is the hidden charset field, set to the same encoding value as is 
used for the page. This field value is sent to the target JSP page, process_ja.jsp , together with the other field 
values when the form is submitted. Example 11.8 shows the process_ja.jsp page. 

Example 11.8. Processing Japanese Input (process_ja.jsp)  

<%@ page language="java" contentType="text/html;charset=Shift_JIS" %> 
<%@ taglib uri="/orataglib" prefix="ora" %> 
<html> 
  <head> 
    <title>Processing Japanese Input</title> 
  </head> 
  <body> 
    <h1>Processing Japanese Input</h1> 
 
      <ora:useLocaleBundle id="locale" bundleName="input"  
        supportedLangs="ja" /> 
 
      Text string converted to a Java Unicode string: 
      <%= locale.getParameter("text") %> 
      <p> 
      Date string converted to the internal Java Date type: 
      <%= locale.getDate(locale.getParameter("date")) %> 
 
  </body> 
</html> 



JavaSercer Pages 

  page 164

The LocaleBean, initialized by the <ora:useLocaleBundle> action, takes care of all conversion for you. The 
action element reads the value of the charset parameter from the hidden field and sets the corresponding 
bean property. You can then use the following bean method to get the decoded values of all the other request 
parameters: 

 public String getParameter(String parameter) 
     throws UnsupportedEncodingException 

This method uses the specified charset value to decode the value for the parameter you ask for and returns it 
as a regular Java Unicode string. The string can then be used with all the other bean methods introduced in 
Example 11.6. For instance, the value of the date parameter can be converted to a Java Date object with the 
getDate( ) method, as shown in Example 11.8. 

Note that if you use the getParameter( ) method provided by the implicit request object instead of the 
bean's method, you get a corrupt string. The reason for this is that the request object doesn't know how the 
parameter values were encoded, so it tries to interpret the values as if they were encoded based on the Latin-
1 charset. 

The result of the processing by the page in Example 11.8 is shown in Figure 11.5. 

Figure 11.5. Processed Japanese input 

 

In this example, we simply display the processed values. In a real-world application you can do anything you 
like with the values, such as storing them in a database. 



JavaSercer Pages 

  page 165 

Chapter 12. Bits and Pieces 

In the previous chapters, I have demonstrated the standard JSP features as well as a number of custom 
actions through practical, complete examples. But some features are hard to fit nicely into these examples 
without losing focus, so they are described separately in this chapter instead. Things covered here include 
buffering of the response body, ways to include shared page fragments, using XML and XSL with JSP, using 
client-side code to provide a more interactive interface, preventing JSP pages from being cached, and a 
discussion about the different types of URIs used in JSP pages. 

 

12.1 Buffering 

There's one important thing about how a JSP page is processed that has not been covered in any example so 
far: buffering of the response body. As you may recall from Chapter 2, an HTTP response message contains 
both headers and a body. The headers tell the browser things like what type of data the body contains (HTML 
text, an image), the size of the body, if the body can be cached, and so forth. Headers are also used to set 
cookies and to tell the browser to automatically get another page (a redirect). All response headers must be 
sent to the browser before the body is sent. 

As soon as a JSP page writes something to the body of the message, the JSP container may start sending the 
response to the browser. It is then too late to set headers, since they have to be sent first. In a servlet, you 
have full control over when something is written to the response body, so you can make sure that you set all 
the headers you need before you generate the body. In a JSP page, however, it's not that easy. Everything 
you put in a JSP page that is not a JSP element is written to the response body automatically by the JSP 
container. Here's the top part of the autheticate.jsp page from Chapter 10: 

 <%@ page language="java" %> 
 <%@ page import="com.ora.jsp.sql.*" %> 
 <%@ taglib uri="/orataglib" prefix="ora" %> 
  
 <%-- Remove the validUser session bean, if any --%> 
 <%  session.removeValue("validUser"); %> 
 ... 

It doesn't contain any HTML, so you may think that this does not add anything to the response body. But 
actually it does. This fragment contains six lines: five lines with JSP elements and one blank line. The JSP 
elements themselves are evaluated by the JSP container and never show up in the response, but the linefeed 
character at the end of each line is not a JSP element, so it's added to the response body. 

Later in the same page, custom actions are used to set cookies, or in other words, set response headers: 

<% if (request.getParameter("remember") != null) { %> 
 
     <ora:addCookie name="userName"  
       value='<%= request.getParameter("userName") %>' 
       maxAge="2592000" /> 
     <ora:addCookie name="password"  
       value='<%= request.getParameter("password") %>' 
      maxAge="2592000" /> 
 
<% } else { %> 
 
     <ora:addCookie name="userName"  
       value='<%= request.getParameter("userName") %>' 
       maxAge="0" /> 
     <ora:addCookie name="password"  
       value='<%= request.getParameter("password") %>' 
       maxAge="0" /> 
<% } %> 

This does not work if the linefeed characters added to the body have caused the response to be sent to the 
browser (if the response has been committed, as it's called in the servlet specification). Besides not being 
able to set headers after the response has been committed, the servlet specification also prohibits a request 
to be forwarded when data has already been written to the response body. This is because when you forward 
to another JSP page or servlet, the target servlet should have full control over the request. If the originating 
page has already started to generate the response body, the target is no longer in charge. 



JavaSercer Pages 

  page 166 

Buffering solves this problem. Instead of sending the response to the browser as soon as something is written 
to the response body, the JSP container writes everything that's not a JSP element and all dynamic content 
generated by JSP elements to a buffer. At some point, such as when the buffer is full or the end of the page is 
reached, the container sends all headers that have been set, followed by the buffered body content. So in this 
example, all linefeed characters end up in the buffer, and the cookie headers are set. When the whole page 
has been processed, the JSP container sends all headers first and then the contents of the buffer. Works like 
a charm. 

You can control the size of the buffer and what to do when the buffer is full with two page directive attributes: 

 <%@ page buffer="12kb" autoFlush="false" %> 

Note that the buffer attribute accepts a value that specifies the minimum size of the buffer; the container 
may choose to use a bigger buffer than specified. The value must be the number of kilobytes followed by kb. 
A buffer that holds at least 8 KB is used by default. The keyword none is also accepted. If you use this 
keyword, the JSP container will not perform any buffering of the response body. 

The autoFlush attribute can be set to true or false, with true being the default. It specifies what to do 
when the buffer is full. If the value is true, the headers currently set and the buffered content is sent 
(flushed) to the browser when the buffer is full, and the rest of the page gets buffered until the buffer is full 
again. If you specify the value false, the JSP container throws an exception when the buffer is full, ending 
the processing of the page. 

In most cases, you want to use the default values. If you have an extremely large page where you set 
headers at the end of the page, you may need to increase the buffer size. 8 KB, however, is enough for most 
pages. Disabling buffering may make sense if you have a page that generates the result slowly and you want 
to send what's ready to the browser as soon as possible. But even if you disable the JSP buffering, the servlet 
container may still do some buffering of the result, so there's no guarantee that it will be sent immediately. 
No matter what value you use for the buffer attribute, however, you can force the buffer to be flushed with a 
scriptlet like this: 

 <% out.flush( ); %> 

Setting the autoFlush attribute to false is rare. A possible use for this is if you have no control over the size 
of the dynamic content you generate and you want to ensure that the processing is aborted if you reach a 
certain limit. 

 

12.2 Including Page Fragments 

You can use a JSP directive and an action to include page fragments in a JSP page. This is a useful technique 
when parts of all pages in an application are the same, such as headers, footers, and navigation bars. 

The JSP include directive reads the content of the specified page in the translation phase (when the JSP 
page is converted into a servlet) and merges it with the original page: 

 <%@ include file="header.html" %> 

The file attribute is a relative URL. If it starts with a slash, it's a context-relative path, interpreted relative to 
the URI prefix assigned for the application. If it doesn't start with a slash, it's a page-relative path, 
interpreted relative to the path for the page that includes the file. 

The included file can contain only static content (such as HTML) or it can be a regular JSP page. Its contents 
are merged with the page that includes it, and the resulting page is converted into a servlet, as described in 
Chapter 3. This means that all scripting variables declared in JSP declarations, scriptlets, or actions, such as 
<jsp:useBean> or custom actions that introduce scripting variables, are shared by the main page and all 
included pages. If the main page declares a variable and the same name is used to declare another variable 
in an included page, it will result in a translation phase error, since the combined page cannot be compiled. 

What happens when the file you include using the include directive is changed actually isn't specified by the 
JSP specification. With Tomcat, you must change the modification date for the main page, for example using 
the touch command on a Unix system, before the changes take effect. An alternative is to delete the class file 
(the compiled version of the page) for the page. Other JSP containers may detect changes in included files 
automatically and go through the translation phase just like when you modify the main JSP page. 



JavaSercer Pages 

  page 167 

The <jsp:include> action is an alternative to the include directive, used to include another resource at 
runtime: 

 <jsp:include page="navigation.jsp" flush="true" /> 

The action is executed in the request processing phase instead of in the translation phase. The page attribute 
value is interpreted as a relative URI, the same way as the include directive's file attribute. The 
<jsp:include> action does not include the actual contents of the specified page: it includes the response 
produced by executing the page. This means you can specify any type of web resource (e.g., a servlet or a 
JSP page) that produces a response of the same content type as the JSP page. The JSP container executes 
the specified resource by an internal function call. Hence, the included resource helps to process the original 
request, and therefore has access to all objects in the request scope as well as all original request 
parameters. 

Since the page is not included until the main page is requested, you can use a request-time attribute value 
for the page attribute to decide which page to include depending on a runtime condition, and add request 
parameters that can be read by the included page: 

 <jsp:include page="<%= pageSelectedAtRuntime %>" flush="true"> 
   <jsp:param name="aNewParamer" value="aStaticValue" /> 
   <jsp:param name="anotherParameter" value="<%= aDynamicValue %>" /> 
 </jsp:include> 

If you change the included JSP page, the new version is used immediately. This is because the included page 
is treated in the same way as a JSP page invoked directly by a browser: the container detects the 
modification and goes through the translation phase for the new version of the page. 

The flush attribute requires an explanation. It specifies whether the response body should be flushed (sent 
to the browser) before the page is included or not. Due to limitations in the Servlet 2.2 API, this value must 
be set to true in JSP 1.1, meaning that the response body is always flushed before the page is included. The 
consequence is that the included page cannot set headers, such as cookies or redirect headers, or forward to 
another page. It also means that the main page cannot set headers or forward to another page after the 
<jsp:include> action element is executed. Work is in progress to remove the flushing requirement for a 
future version of the JSP specification. 

Table 12.1 outlines the differences between the include directive and the <jsp:include> action. 

Table 12.1, Differences Between the include Directive and the <jsp:include> Action  

Syntax When What 

<%@ include 
file="relativeURI" %> Translation phase Static text (HTML, JSP) merged with the JSP 

page before it's converted to a servlet 

<jsp:include 
page="relativeURI" 
  flush="true" /> 

Request 
processing phase 

The response text generated by executing the 
page or servlet 

Let's look at a concrete example of how you can use the two methods for including pages. Example 12.1 
shows a page that includes three other pages. 

Example 12.1. Including Pages (page1.jsp)  

 <%@ page language="java" contentType="text/html" %> 
 <%@ include file="header.html" %> 
 <table width="90%"> 
   <tr> 
     <td valign="top" align="center" bgcolor="lightblue"> 
       <jsp:include page="navigation.jsp" flush="true" /> 
     </td> 
     <td valign="middle" align="center" width="80%"> 
       This is page 1 
     </td> 
   </tr> 
 </table> 
 <%@ include file="footer.html" %> 



JavaSercer Pages 

  page 168

The application here contains two more main pages, page2.jsp and page3.jsp, that differ from page1.jsp only 
in the HTML they contain (i.e., "This is page 2", "This is page 3"). The common header and footer for all 
pages in the example application consist of static HTML, shown in Example 12.2 and Example 12.3. The 
include directive is used to include the header and footer files in each main page. 

Example 12.2. Header (header.html)  

 <html> 
   <head> 
     <title>Welcome to My Site</title> 
   </head> 
   <body bgcolor="white"> 
     <h1>My Site</h1> 

Note that the header.html file is not a complete HTML page. It contains only the start tags for the <html> and 
<body> elements. 

Example 12.3. Footer (footer.html)  

 <hr> 
   Copyright &copy; 2000 My Company 
   </body> 
 </html> 

The end tags for the <body> and <html> tags are included in the footer.html file. Merging header.html, one of 
the main pages, and footer.html results in a complete HTML page. 

Each page in the application also has a navigation bar, with links to all pages in the application. The page 
names in the navigation bar are links to the corresponding pages, except for the current page, which is just 
written as plain text as shown in Figure 12.1. 

Figure 12.1. A page composed by including other pages 

 

The JSP code for the navigation bar is separated out into its own file, shown in Example 12.4, and included in 
each page with the <jsp:include> action as shown in Example 12.1. 

Example 12.4. Navigation Bar with Scriptlets (navigation_script.jsp)  

<%@ page language="java" %> 
<% String uri = request.getServletPath( ); %> 
<table bgcolor="lightblue"> 
  <tr> 
    <td> 
    <% if (uri.equals("/ch12/page1.jsp")) { %> 
       <b>Page 1</b> 
    <% } else { %> 
       <a href="page1.jsp">Page 1</a> 
    <% } %> 
    </td> 
  </tr> 



JavaSercer Pages 

  page 169 

  <tr> 
    <td> 
    <% if (uri.equals("/ch12/page2.jsp")) { %> 
       <b>Page 2</b> 
    <% } else { %> 
       <a href="page2.jsp">Page 2</a> 
    <% } %> 
    </td> 
  </tr> 
  <tr> 
    <td> 
    <% if (uri.equals("/ch12/page3.jsp")) { %> 
       <b>Page 3</b> 
    <% } else { %> 
       <a href="page3.jsp">Page 3</a> 
    <% } %> 
    </td> 
  </tr> 
</table> 

The navigation bar page first gets the context-relative path for the current page by calling the 
getServletPath( ) method on the implicit request object. This works because the request object reflects 
the information about the page that includes the navigation bar page, not about the included page. An HTML 
table is then built with one cell for each main page in the application. In each cell, a scriptlet is used to test if 
the cell represents the current page or not. If it does, the page name is written as bold text; otherwise, it's 
written as an HTML link. 

To be honest, Example 12.4 contains too much scripting code for my taste. An alternative is to use a custom 
action that does all the testing and generates the appropriate HTML, as shown in Example 12.5. 

Example 12.5. Navigation Bar with Custom Action (navigation.jsp)  

<%@ page language="java" %> 
<%@ taglib uri="/orataglib" prefix="ora" %> 
<table bgcolor="lightblue"> 
  <tr> 
    <td> 
      <ora:menuItem page="page1.jsp"> 
        <b>Page 1</b> 
      </ora:menuItem> 
    </td> 
  </tr> 
  <tr> 
    <td> 
      <ora:menuItem page="page2.jsp"> 
        <b>Page 2</b> 
      </ora:menuItem> 
    </td> 
  </tr> 
  <tr> 
    <td> 
      <ora:menuItem page="page3.jsp"> 
        <b>Page 3</b> 
      </ora:menuItem> 
    </td> 
  </tr> 
</table> 

The <ora:menuItem> action inserts the HTML found in its body into the page. If the page specified by the 
page attribute is not the current page, the HTML is inserted as is. Otherwise, it's embedded as an HTML link 
element, the same way as with the scriptlets in Example 12.4. But unlike the scriptlet version of this page, 
the <ora:menuItem> action also performs URL rewriting on the HTML link URI if needed (this includes the 
session ID in the URI). 

You may wonder why I use the include directive for the header and footer and the <jsp:include> action for 
the navigation bar. Either one will do for all files in this example, but I chose the action for the navigation bar 
because this page needs to be updated as new pages are added to the application. Using the action 
guarantees that the new version of the file is used immediately. I picked the directive for the header and 
footer pages because there's a slight performance penalty when using the action (the container must make a 
function call at request time). In this example, I assumed that both the header and footer contain stable 
information. In the rare event that they change, I'm willing to force the JSP container to go through the 
translation phase by deleting the class files corresponding to each main page or by changing the modification 
date for each page as described earlier. 

If the included file sets headers or forwards to another page, you must use the include directive, since the 
<jsp:include> action flushes the buffer and commits the response before including the page. Same thing if 
you need to set headers or forward in the main page after including another page. On the other hand, if you 
can't decide which page to include until runtime, you must use the <jsp:include> action. 



JavaSercer Pages 

  page 170

12.3 XML and JSP 

If you're developing web sites for a living, you've surely encountered the Extensible Markup Language (XML). 
XML is a set of syntax rules for how to represent structured data using markup elements represented by a 
start tag (optionally with attributes), a body, and an end tag: 

 <employee id="123"> 
   <first-name>Hans</first-name> 
   <last-name>Bergsten</last-name> 
   <telephone>310-555-1212</telephone> 
 </employee> 

This XML example contains four elements: <employee>, <first-name>, <last-name>, and <telephone>. 

By selecting sensible element names, an XML file may be understandable to a human, but to make sense to a 
program it must use only a restricted set of elements in which each element has a well-defined meaning. This 
is known as an XML application (the XML syntax applied to a certain application domain). A couple of 
examples are the Wireless Markup Language (WML), used for browsers in cellular phones and other small 
devices, and XHTML, which is HTML 4.0 reformulated as an XML application. Other examples are JSP action 
elements and the Web Application Deployment Descriptor elements introduced in Chapter 2. 

12.3.1 Generating an XML Document 

As we discussed in Chapter 3 and Chapter 5, everything in a JSP page that is not a JSP element is template 
text. In all the examples so far, we have used HTML as the template text. But we can use any text, such as 
XML elements. Example 12.6 shows a JSP page that sends a simple phone book to a wireless device, using 
the XML elements defined by the WML specification as the template text. 

Example 12.6. WML Phone Book JSP Page (phone_wml.jsp)  

<?xml version="1.0"?> 
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"  
  "http://www.wapforum.org/DTD/wml_1.1.xml"> 
<%@ page contentType="text/vnd.wap.wml" %> 
<wml> 
  <card id="list" title="Phone List" newcontext="true"> 
    <p> 
      <anchor>Bergsten, Hans 
        <go href="#Bergsten_Hans"/> 
      </anchor> 
      <br/> 
      <anchor>Eckstein, Robert 
        <go href="#Eckstein_Robert"/> 
      </anchor> 
      <br/> 
      <anchor>Ferguson, Paula 
        <go href="#Ferguson_Paula"/> 
      </anchor> 
    </p> 
  </card> 
 
  <card id="Bergsten_Hans" title="Bergsten, Hans"> 
    <p> 
      Phone: 310-555-1212 
      <do type="prev" label="Back"> 
        <prev/> 
      </do> 
    </p> 
  </card> 
  <card id="Eckstein_Robert" title="Eckstein, Robert"> 
    <p> 
      Phone: 512-555-5678 
      <do type="prev" label="Back"> 
        <prev/> 
      </do> 
    </p> 
  </card> 
  <card id="Ferguson_Paula" title="Ferguson, Paula"> 
    <p> 
      Phone: 213-555-1234 
      <do type="prev" label="Back"> 
        <prev/> 
      </do> 
    </p> 
  </card> 
</wml> 

http://www.wapforum.org/DTD/wml_1.1.xml


JavaSercer Pages 

  page 171

A discussion of the WML elements is outside the scope of this book, but let's look at some important details of 
the JSP page. The first line in Example 12.6 is an XML declaration , telling which version of XML the document 
conforms to. Some WML browsers are very picky that this is the very first thing in an XML document, and 
even whitespaces - regular spaces, linefeed characters, and tab characters - before the declaration can throw 
them off. In all examples you have seen so far, the JSP page directive has been on the first line. Here, I have 
moved it down, so that the linefeed character that ends the directive line doesn't cause any problems. 

The second and third lines in Example 12.6 contain an XML document type declaration. This identifies the so-
called Document Type Definition (DTD) for the document, basically the definition of all XML elements that a 
conforming document of this type can contain. Here, it's the DTD for the WML elements. 

The JSP page directive on the fourth line is important. The content type for a JSP page is html/text by 
default. For a WML document, you must specify the content type text/vnd.wap.wml using the contentType 
attribute. Otherwise, the WML browser doesn't accept the document. 

The rest of the page in Example 12.6 is just static WML code. To run this example, you need a WML browser. 
You can use the WML browser included in Nokia's WAP Toolkit, available at http://www.forum.nokia.com. 
Figure 12.2 shows what the phone list menu card and a details card look like in Nokia's WML browser. The 
toolkit also includes WML documentation, in case you want to learn more about how to serve content to 
devices like cellular phones and PDAs. 

Figure 12.2. Phone list in WML browser 

 

http://www.forum.nokia.com


JavaSercer Pages 

  page 172 

12.3.2 Transforming XML into HTML 

You may also have heard about the Extensible Stylesheet Language (XSL). XSL defines one set of XML 
elements used to transform an XML document into some other type of document, and another set of elements 
used to produce a formatted version of an XML document suitable for display. The formatting part of XSL is 
used by browsers and other programs that need to render an XML document, using different styles for 
different elements, such as a bold large font for a header and a regular font for paragraph text. The 
transformation part of XSL is referred to as XSLT. XSLT can be used to turn a source XML document, such as 
a document representing an order, into different forms by using different stylesheets. This is useful in 
business-to-business (B2B) applications, where different partners often require the same information in 
slightly different formats. You can read more about XSL and XSLT at http://www.w3.org/TR/xsl/. 

XSLT can also be used to transform structured XML data into HTML. Example 12.7 shows an example in which 
the same phone book information used in Example 12.6 is transformed into an HTML table. 

Example 12.7. Transforming XML to HTML (phone_html.jsp)  

<%@ page language="java" contentType="text/html" %> 
<%@ taglib uri="/xsltaglib" prefix="xsl" %> 
 
<html> 
  <head> 
    <title>Phone List</title> 
  </head> 
  <body bgcolor="white"> 
 
    <xsl:apply xsl="/ch12/htmltable.xsl"> 
      <?xml version="1.0" encoding="ISO-8859-1"?> 
      <employees> 
        <employee id="123"> 
          <first-name>Hans</first-name> 
          <last-name>Bergsten</last-name> 
          <telephone>310-555-1212</telephone> 
        </employee> 
        <employee id="456"> 
          <first-name>Robert</first-name> 
          <last-name>Eckstein</last-name> 
          <telephone>512-555-5678</telephone> 
        </employee> 
        <employee id="789"> 
          <first-name>Paula</first-name> 
          <last-name>Ferguson</last-name> 
          <telephone>213-555-1234</telephone> 
        </employee> 
      </employees> 
    </xsl:apply> 
 
  </body> 
</html> 

The transformation is performed by a custom action, named <xsl:apply>, from the Jakarta Taglibs project. 
The binary version of the Jakarta XSL tag library and the necessary JAR files with XML and XSL processing 
classes are bundled with the examples for this book, and can be downloaded from the book's catalog page 
(http://www.oreilly.com/catalog /jserverpages/ ). The body of the <xsl:apply> action contains an XML 
document with elements representing information about employees. The xsl attribute specifies an XSL 
stylesheet with XSLT elements that transform the XML document into an HTML table. The resulting table is 
inserted into the JSP page. Descriptions of all the XSLT elements would fill an entire book, but Example 12.8 
shows the stylesheet used here to give you a glimpse of what XSLT looks like. 

Example 12.8. XSL Stylesheet that Generates an HTML Table (htmltable.xsl)  

<?xml version="1.0"?>  
<xsl:stylesheet version="1.0"  
  xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> 
 
  <xsl:template match="employees"> 
    <html> 
      <head> 
        <title>Phone List</title> 
      </head> 
      <body bgcolor="white"> 
        <table border="1" width="100%"> 
          <tr> 
            <th>ID</th> 
            <th>Employee Name</th> 
            <th>Phone Number</th> 
          </tr> 

http://www.w3.org/TR/xsl/
http://www.oreilly.com/catalog
http://www.w3.org/1999/XSL/Transform


JavaSercer Pages 

  page 173

          <xsl:for-each select="employee"> 
            <tr> 
              <td> 
                <xsl:value-of select="@id"/> 
              </td> 
              <td> 
                <xsl:value-of select="last-name"/>,  
                <xsl:value-of select="first-name"/> 
              </td> 
              <td> 
                <xsl:value-of select="telephone"/> 
              </td> 
            </tr> 
          </xsl:for-each> 
        </table> 
      </body> 
    </html> 
  </xsl:template> 
 
</xsl:stylesheet> 

The <xsl:template> uses the non-XSLT elements in its body as a template to generate a new document 
from the <employees> element in the source XML document. The <xsl:for-each> element loops over all 
<employee> elements in the source, and the <xsl:value-of> elements extracts the values of attributes and 
nested elements. You get the idea. 

The <xsl:apply> action, together with other actions in the Jakarta Taglibs XSL library, can apply a stylesheet 
to XML documents from other sources than its body, such as an external file or a database column value 
saved as a String in one of the JSP scopes. You can read more about the Jakarta XSL tag library and 
download the source code from http://jakarta.apache.org/taglibs/index.html. 

12.3.3 Transforming XML into a Request-Dependent Format 

As a final example of using XML with JSP, let's look at a page that uses the <xsl:apply> action to apply 
different stylesheets depending on if the page is requested by a WML browser or an HTML browser. Example 
12.9 shows such a page. 

Example 12.9. XSL Stylesheet that Generates HTML or WML (phone.jsp)  

<%@ taglib uri="/xsltaglib" prefix="xsl" %><% 
  String xslURI = null; 
  if (request.getHeader("User-Agent").indexOf("WAP") != -1) { 
    xslURI = "/ch12/wml.xsl"; 
    response.setContentType("text/vnd.wap.wml"); 
  } 
  else { 
    xslURI = "/ch12/html.xsl"; 
    response.setContentType("text/html"); 
  } 
%><xsl:apply  
 xsl="<%= xslURI %>"> 
  <?xml version="1.0" encoding="ISO-8859-1"?> 
  <employees> 
    <employee id="123"> 
      <first-name>Hans</first-name> 
      <last-name>Bergsten</last-name> 
      <telephone>310-555-1212</telephone> 
    </employee> 
    <employee id="456"> 
      <first-name>Robert</first-name> 
      <last-name>Eckstein</last-name> 
      <telephone>512-555-5678</telephone> 
    </employee> 
    <employee id="789"> 
      <first-name>Paula</first-name> 
      <last-name>Ferguson</last-name> 
      <telephone>213-555-1234</telephone> 
    </employee> 
  </employees> 
</xsl:apply> 

There are a number of things to note here. First, this page uses the HTTP User-Agent header to figure out 
which type of browser is requesting the page, and selects an appropriate XSL stylesheet to transform the XML 
data for the current type of browser. Be aware that this test may not work for all WML browsers. The WML 
browser in Nokia's WAP Toolkit happens to include the WAP acronym in the User-Agent header, but that's not 
necessarily the case for other WML browsers. The two stylesheets used here, wml.xsl and html.xsl, generate 
complete WML and HTML pages, respectively. 

http://jakarta.apache.org/taglibs/index.html


JavaSercer Pages 

  page 174

Since the page can serve both HTML and WML content, the page directive's contentType attribute cannot be 
used to set the content type as we have done in all other examples. Instead, the content type is set to the 
appropriate type using the setContentType( ) method of the implicit response object, depending on the 
type of browser asking for the page. 

Finally, note how the start tags for all JSP directives, scriptlets, and custom actions on this page are written 
on the same line as the end tag for the preceding element. This is to ensure that no extra linefeeds are added 
to the response. As described earlier, leading whitespace in a WML page can cause a WML browser to reject 
the page. 

For a simple example like this, letting an XSLT stylesheet transform the XML source into a complete web page 
works fine. However, on most real web sites, the HTML version of the site differs significantly from the WML 
version. You want to provide a rich interface for HTML browsers with a nice layout, navigation bars, images, 
colors, nice fonts, and typically as much content as you can fit on each page. A WML browser, on the other 
hand, has a very small screen with limited layout, font, and graphics capabilities. Developing an efficient 
interface for this type of device is very different. A more practical approach for combining XML, XSL, and JSP 
to serve different types of browsers is to keep the actual content (articles, product information, phone lists, 
etc.) in a device-independent XML format, but use separate JSP pages for each device type. The JSP pages 
can then use a custom action like the <xsl:apply> action to transform the key content and merge it with the 
device dependent template text to form a complete page suitable for each specific device type, like in 
Example 12.9. 

 

12.4 Mixing Client-Side and Server-Side Code 

I touched on the differences between server-side code and client-side code in Chapter 3. JSP is a server-side 
technology, so all JSP elements such as actions and scriptlets execute on the server before the resulting page 
is sent to the browser. A page can also contain client-side code, such as JavaScript code or Java applets. This 
code is executed by the browser itself. There is no way that a JavaScript event handler such as onClick or 
onSelect can directly invoke a JSP element such as an action, a scriptlet, or a Java method declared with a 
JSP declaration. 

However, a JSP page can generate JavaScript code dynamically the same way it generates HTML, WML, or 
any type of text content. Therefore, you can add client-side scripting code to your JSP pages to provide a 
more interactive user interface. You can also use applets on your pages to provide a more interesting and 
easier to use interface than what's possible with pure HTML. 

12.4.1 Generating JavaScript Code 

Example 12.10 shows a modified version of the User Info page used in the examples in Chapter 5. 

Example 12.10. Input Form with Client-Side Validation Code (clientscript.jsp)  

<%@ page language="java" contentType="text/html" %> 
<%@ page import="com.ora.jsp.util.*" %> 
 
<script language="JavaScript"> 
  <!-- Hide from browsers without JavaScript support 
 
  function isValidForm(theForm) { 
    if (isEmpty(theForm.userName.value)) { 
      theForm.userName.focus( ); 
      return false; 
    } 
    if (!isValidDate(theForm.birthDate.value)) { 
      theForm.birthDate.focus( ); 
      return false; 
    } 
    if (!isValidEmailAddr(theForm.emailAddr.value)) { 
      theForm.emailAddr.focus( ); 
      return false; 
    } 
    var choices = new Array("male", "female"); 
    if (!isValidChoice(theForm.sex.value, choices)) { 
      theForm.sex.focus( ); 
      return false; 
    } 
    if (!isValidNumber(theForm.luckyNumber.value, 1, 100)) { 
      theForm.luckyNumber.focus( ); 
      return false; 
    } 
    return true; 
  } 



JavaSercer Pages 

  page 175 

 
  function isEmpty(aStr) { 
    if (aStr.length == 0) { 
      alert("Mandatory field is empty"); 
      return true; 
    } 
    return false; 
  } 
  function isValidDate(dateStr) { 
    var matchArray = dateStr.match(/^[0-9]+-[0-1][0-9]-[0-3][0-9]$/) 
    if (matchArray == null) { 
      alert("Invalid date: " + dateStr); 
      return false; 
    } 
    return true; 
  } 
  function isValidEmailAddr(emailStr) { 
    var matchArray = emailStr.match(/^(.+)@(.+)\.(.+)$/) 
    if (matchArray == null) { 
      alert("Invalid email address: " + emailStr); 
      return false; 
    } 
    return true; 
  } 
  function isValidNumber(numbStr, start, stop) { 
    var matchArray = numbStr.match(/^[0-9]+$/) 
    if (matchArray == null) { 
      alert("Invalid number: " + numbStr); 
      return false; 
    } 
    if (numbStr < start || numbStr > stop) { 
      alert("Number not within range (" + start + "-" + 
        stop + "): " + numbStr); 
      return false; 
    } 
    return true; 
  } 
  function isValidChoice(choiceStr, choices) { 
    var isValid = false; 
    for (var i = 0; i < choices.length; i++) { 
      if (choices[i].toLowerCase( ) == choiceStr.toLowerCase( )) { 
        isValid = true; 
        break; 
      } 
    } 
    if (isValid == false) { 
      alert("Invalid choice: " + choiceStr); 
    } 
    return isValid; 
  } 
 
--> 
</script> 
 
<html> 
  <head> 
    <title>User Info Entry Form</title> 
  </head> 
  <body bgcolor="white"> 
    <jsp:useBean id="userInfo" 
      class="com.ora.jsp.beans.userinfo.UserInfoBean" 
      scope="request" /> 
    </jsp:useBean> 
 
    <%-- Output list of values with invalid format, if any --%> 
    <font color="red"> 
      <jsp:getProperty name="userInfo" property="propertyStatusMsg" /> 
    </font> 
 
    <%-- Output form with submitted valid values --%> 
    <form action="userinfovalidate.jsp" method="post" 
      onSubmit="return isValidForm(this)"> 
      <table> 
        <tr> 
          <td>Name:</td> 
          <td><input type="text" name="userName" 
            value="<%= StringFormat.toHTMLString( 
              userInfo.getUserName( )) %>" > 
          </td> 
        </tr> 
        ... 
        <tr> 
          <td colspan=2><input type="submit"></td> 
        </tr> 
      </table> 
    </form> 
  </body> 
</html> 



JavaSercer Pages 

  page 176 

When the user submits the form, the JavaScript isValidForm( ) method is first executed by the browser to 
validate all input field values. Only if all values pass the test is the form actually submitted to the 
userinfovalidate.jsp page specified as the form's action URI. In this way, the user is alerted to mistakes much 
faster, and the server is relieved from processing invalid requests. 

However, the validation is also performed by the server when the form is finally submitted, in exactly the 
same way as described in Chapter 5. This is important, because you don't know if the user's browser supports 
JavaScript or if scripting has been disabled in the browser. 

Note that the JavaScript validation code shown in Example 12.10 is far from perfect. It's really intended only 
as an example. You can find much better validation code on sites such as the JavaScript Source 
(http://javascript.internet.com). 

In Example 12.10, all JavaScript code is written as static template text. However, nothing prevents you from 
generating parts of the JavaScript code, for instance a JavaScript array, with values retrieved from a 
database by the JSP page. Just remember which code executes where and when. To the code in the JSP page 
executing on the server, the JavaScript code it generates is just plain text; it doesn't even try to understand 
it. It's only when the page that contains the dynamically generated JavaScript code reaches the browser that 
it becomes meaningful and can be executed by the browser. The browser, on the other hand, couldn't care 
less that the JavaScript code was created by a JSP page; it has no idea how the code was created. It should 
be clear, then, that JavaScript code cannot call Java code in the JSP page, and vice versa. 

12.4.2 Using Java Applets 

A Java applet is a Java class that is embedded in an HTML page and executed by the browser. It can be used 
to provide a nice user interface on a web page. The problem here is that the native Java support in the web 
browsers doesn't keep up with the Java release cycles. Many users still have browsers that support only JDK 
1.0, and more current browsers have so many limitations and bugs in their implementations that you're still 
limited to JDK 1.0 features to make the applet work. 

To address this issue, Sun provides a Java runtime environment that can be integrated in a browser using the 
browser's native plug-in API. The product is appropriately named the Java Plug-in, and as of this writing the 
JDK 1.3 version is available for Netscape Navigator and Internet Explorer on Windows 95, 98, and NT, Linux, 
and Solaris. For an up-to-date list of supported platforms, visit Sun's Java Plug-in page at 
http://java.sun.com/products/plugin/index.html. 

With the Java Plug-in, you can use the latest Java features in your applets, such as the Swing GUI classes, 
collection classes, enhanced security, and more. But there's one more hurdle you have to jump. The HTML 
element you need in a page to get the Java Plug-in (or any plug-in component) installed and loaded by the 
browser differs between Internet Explorer and Netscape Navigator. For Netscape, you need to use the 
<embed> element, while Internet Explorer requires the <object> element. Fortunately, JSP provides an easy 
solution to this problem, namely the <jsp:plugin> action. 

The <jsp:plugin> action looks at the User-Agent request header to figure out which type of browser is 
requesting the page, and inserts the appropriate HTML element for using the Java Plug-in to run the applet. 
Example 12.11 shows an example borrowed from the Tomcat JSP examples. 

Example 12.11. Embedding an Applet in a JSP Page (applet.jsp)  

<%@ page language="java" contentType="text/html" %> 
<html> 
  <head> 
    <title>Embedding an applet</title> 
  </head> 
  <body bgcolor="white"> 
    <h1>Embedding an applet</h1> 
    <jsp:plugin type="applet" code="Clock2.class"  
      codebase="applet"  
      jreversion="1.2" width="160" height="150" > 
      <jsp:params> 
        <jsp:param name="bgcolor" value="ccddff" /> 
      </jsp:params> 
      <jsp:fallback> 
        Plugin tag OBJECT or EMBED not supported by browser. 
      </jsp:fallback> 
    </jsp:plugin> 
  </body> 
</body> 

http://javascript.internet.com
http://java.sun.com/products/plugin/index.html


JavaSercer Pages 

  page 177 

The <jsp:plugin> action has three mandatory attributes: type, code, and codebase. The type attribute 
must be set to either applet or bean (to include a JavaBeans object), code is used to specify the class name, 
and codebase is the absolute or relative URL for the directory or archive file that contains the class. Note that 
the applet class must be stored in a directory that can be accessed by the web browser; that is, it must be 
part of the public web page structure for the application. As you may recall, class files for beans and custom 
actions are typically stored in the WEB-INF lib and classes subdirectories, accessible only to the container. 
The different locations make sense when you think about where the code is executed: the applet is loaded 
and executed by the browser, and beans and custom action classes are loaded and executed by the 
container. 

The <jsp:plugin> action also has a number of optional attributes, such as the width, height, and 
jreversion attributes used here. Appendix A, contains a description of all attributes. 

The body of the action element can contain nested elements. The <jsp:params> element, which in turn 
contains one or more <jsp:param> elements, is used to provide parameter values to the applet. In Example 
12.11, the applet's bgcolor parameter is set to the hexadecimal RGB value for light blue. The 
<jsp:fallback> element can optionally be used to specify text that should be displayed instead of the applet 
in a browser that doesn't support the HTML <object> or <embed> element. 

Figure 12.3 shows what the page in Example 12.11 looks like in a browser. 

Figure 12.3. A page with an applet using the Java Plug-in 

 

An applet can communicate with the server in many different ways, but how it's done is off-topic for this 
book. If you would like to learn how to develop applets that communicate with a servlet, I suggest you read 
Jason Hunter and William Crawford's Java Servlet Programming (O'Reilly). 

 

12.5 Precompiling JSP Pages 

To avoid hitting your site visitors with the delay caused by converting a JSP page into a servlet on the first 
access, you can precompile all pages in the application. Another use of precompilation is if you do not want 
anyone to change the pages in a JSP-based application after the application is deployed. In this case you can 
precompile all pages, define URI mappings for all JSP pages in the WEB-INF/web.xml file, and install the Java 
class files only for the compiled pages. We look at both these scenarios in this section. 

One way of precompiling all pages in an application is to simply run through the application in a development 
environment and make sure you hit all pages. You can then copy the class files together with all the other 
application pages to the production server when you deploy the application. Where the class files are stored 
varies between containers. However, Tomcat stores all JSP page implementation classes in its work directory 
by default, in a subdirectory for the particular web application. As long as the modification dates of the class 
files are more recent than for the corresponding JSP pages, the production server uses the copied class files. 



JavaSercer Pages 

  page 178

The JSP specification also defines a special request parameter that can be used to give the JSP container a 
hint that the page should be compiled without letting the page process the request. An advantage of using 
this method is that you can automatically invoke each page, perhaps using a simple load testing tool, without 
having to provide all the regular request parameters the pages use. Since the pages are not executed, 
application logic that requires pages to be invoked in a certain order or enforces similar rules cannot interfere 
with the compilation. The request parameter name is jsp_precompile, and valid values are true and false, 
or no value at all. In other words, the following URIs are all valid: 

/ora/ch12/applet.jsp?jsp_precompile  
/ora/ch12/applet.jsp?jsp_precompile=true  
/ora/ch12/applet.jsp?jsp_precompile=false  

The third example is not very useful, since if the parameter value is false, the request is treated exactly as 
any other request, and is therefore processed by the JSP page. A JSP container that receives a request like 
the ones in the first and second examples should compile the JSP page (go through the translation phase) but 
not allow the page to process the request. Most JSP containers support this feature, even though the 
specification doesn't require it. A compliant JSP container is allowed to ignore the compilation request, as long 
as it doesn't let a JSP page process a request that includes a jsp_precompile parameter with the value true 
or with no value at all. 

When you have compiled the JSP pages, you can package your application without the JSP pages themselves 
by using only the generated servlet class files. You do this by adding URI mapping definitions in the WEB-
INF/web.xml file for the applications, so that a request for a certain JSP page is served directly by the 
corresponding servlet instead. There are two reasons why you might want to do this. One is that using the 
servlet files directly is slightly faster, since the container doesn't have to go through the JSP container code to 
figure out which servlet class to use. The other is that if you do not include the JSP pages in the application 
packet, no one can change the application. This can be an advantage if you resell prepackaged JSP-based 
applications. 

Unfortunately, it's much harder to do this than it should be if you use Tomcat as your web container. This is 
because Tomcat's JSP container uses a very creative naming convention for the class files it generates. 
Because Tomcat is such a widely used container, I describe this problem in detail here, even though other 
containers may handle this in a different way. 

Tomcat stores all class files for an application's JSP pages in a subdirectory to its work directory, using 
filenames composed of the URI path for each JSP page plus a lot of extra characters to make sure the name 
doesn't contain any special characters that can cause problems. Here is an example: 

 _0002fch_00031_00032_0002fhello_0002ejsphello.class 

This is the name Tomcat picks for a JSP file with the URI /ch12/hello.jsp. The problem is that the filename 
does not match the Java class name, something the standard Java class loader expects. For instance, the 
class file here contains a class named: 

 ch_00031_00032._0002fch_00031_00032_0002fhello_0002ejsphello_jsp_0 

When you let the JSP container handle the class, this name mismatch doesn't cause a problem because the 
container has its own class loader that's able to deal with this kind of class file. If, however, you want to use 
the generated class files as regular servlets, handled by a class loader that understands only the standard 
naming scheme, you have to rename the files. Here are the steps you need to go through to make the class 
files usable as regular servlets. 

First, use the javap command (part of the Java runtime environment) to get the real class name for each 
class file. 

 javap _0002fch_00031_00032_0002fhello_0002ejsphello.class 

This gives an error message that includes the real class name: 

 Error: Binary file '_0002fch_00031_00032_0002fhello_0002ejsphello'  
 contains ch_00031_00032._0002fch_00031_00032_0002fhello_0002ejsphello_jsp_0 



JavaSercer Pages 

  page 179 

Then move the class file to the WEB-INF/classes directory, using the real class name as the filename, in a 
subdirectory matching the package name, if any. In this example, the class file should be moved to a 
subdirectory named ch_00031_00032, like this: 

 WEB-INF/ 
   classes/ 
     ch_00031_00032/ 
       _0002fch_00031_00032_0002fhello_0002ejsphello_jsp_0.class 

Finally, add a URI mapping rule for the JSP page in the WEB-INF/web.xml file. For this example, it should look 
like this: 

 <servlet-mapping> 
   <servlet-name> 
     ch_00031_00032._0002fch_00031_00032_0002fhello_0002ejsphello_jsp_0 
   </servlet-name> 
   <url-pattern>/ch12/hello.jsp</url-pattern> 
 </servlet-mapping> 

You can then remove the JSP page file and the application will use the servlet class file directly instead. 

Some containers, such as Allaire's JRun, provide proprietary programs you can use to convert JSP pages into 
servlets. Tomcat 3.2 includes an early version of a command-line tool for converting JSP pages into servlet 
Java files. The tool is named jspc , and it's invoked with the jspc.bat (Windows) or jspc.sh (Unix) script files in 
Tomcat's bin directory. It's not yet fully tested and currently doesn't compile the servlet source files it 
generates. These kinds of tools may eventually make the packaging and mapping of precompiled JSP pages 
easier. 

There is one more thing to be aware of. The technique described in this section works fine as long as you 
compile and deploy the generated servlet classes using the same web container product, for instance 
generating the files in one Tomcat installation and deploying in another Tomcat installation. But a web 
container is allowed to use its own internal classes in the generated servlets, which means that you may not 
be able to generate the servlets with one web container (such as Tomcat) and deploy them in another (such 
as Unify's ServletExec). 

 

12.6 Preventing Caching of JSP Pages 

A browser can cache web pages so that it doesn't have to get them from the server every time the user asks 
for them. Proxy servers can also cache pages that are frequently requested by all users going through the 
proxy. Caching helps cut down the network traffic and server load, and provides the user with faster 
responses. But caching can also cause problems in a web application where you really want the user to see 
the latest version of a dynamically generated page. 

Both browsers and proxy servers can be told not to cache a page by setting response headers. You can use a 
scriptlet like this in your JSP pages to set these headers: 

 <% 
   response.addHeader("Pragma", "No-cache");  
   response.addHeader("Cache-Control", "no-cache"); 
   response.addDateHeader("Expires", 1); 
 %> 

An alternative is to use a custom action that's included with the book examples: 

 <%@ taglib uri="/orataglib" prefix="ora" %> 
 <ora:noCache/> 

The <ora:noCache> action sets the exact same headers as the scriptlet example, but it's cleaner. 



JavaSercer Pages 

  page 180

12.7 How URLs Are Interpreted 

One thing that can be confusing in a JSP-based application is the different types of URIs used in the HTML and 
JSP elements. The confusion stems from a combination of conflicting terms used to describe URIs in the 
HTTP, servlet, and JSP specifications, as well as the fact that some types of URIs are interpreted differently in 
the HTML and the servlet world. 

In HTML, URIs are used as attribute values in elements like <a>, <img>, and <form>. JSP elements that use 
URI attribute values are the page, include, and taglib directives and the <jsp:forward> and 
<jsp:include> actions. Custom actions can also define attributes that take URI values. 

The HTTP/1.1 specification (RFC 2616, with more details in RFC 2396) defines a Uniform Resource Identifier 
(URI) as a string, following certain rules, that uniquely identifies a resource of some kind. A Uniform Resource 
Locator (URL) is just a special kind of URI that includes a location (such as the server name in an HTTP URL). 
An absolute URI is a URI that starts with the name of a so called scheme, such as http or https, followed by 
a colon (:) and the rest of the resource identifier. An example of an absolute URI for a resource accessed 
through the HTTP protocol is: 

 http://localhost:8080/ora/ch12/login.jsp 

Here, http is the scheme, localhost:8080 is the location (a server name and a port number), and 
/ora/ch12/login.jsp is the path. 

The URIs used in the HTML elements generated by a JSP page are interpreted by the browser. A browser 
needs the absolute URI to figure out how to send the requests for the resources referenced by the HTML 
elements. It uses the scheme to select the correct protocol, and the location to know where to send the 
request. The path is sent as part of the request to the server, so the server can figure out which resource is 
requested. But when you write a URI in an HTML document, such as the action attribute of a form element 
or the src attribute of an image element, you don't have to specify an absolute URI if the resource is located 
on the same server. Instead you can use just the URI path, like this: 

 <img src="/images/hello.gif"> 

This type of URI is called an absolute path, meaning it contains the complete path for the resource within a 
server; the only difference compared to an absolute URI is that the scheme and location are not specified. 
The browser interprets an absolute path URI as a reference to a resource on the same server, so it adds the 
scheme and location it used to make the request that returned the page to the absolute path URI it finds in 
the page. It then has the absolute URI it needs to make a request for the referenced resource. 

Another type of URI is a relative path, interpreted relative to the path of the current page. A relative path is a 
path that does not start with a slash (/): 

 <form action="process.jsp"> 
 <img src="../images/hello.gif" 

Here the action attribute references a JSP file at the same level in the path structure as the page that 
contains the reference. The src attribute value uses the ../ notation to refer to a resource one level up in 
the structure. The browser interprets a relative path URI as relative to the URI path for the request that 
produced the page. If the two relative paths in this example are used in a page generated by a request for 
http://localhost:8080/ora/ch12/login.jsp, the browser interprets them as the following absolute URIs: 

http://localhost:8080/ora/ch12/process.jsp  
http://localhost:8080/ora/images/hello.gif  

Relative URI paths offer a lot of flexibility. If all references between the web resources in an application are 
relative, you can move the application to a different part of the path structure without changing any URIs. For 
instance, if you move the pages from /ora/ch12 to /foo/bar, the relative paths still reference the same 
resources. 

So far, so good. Now let's see what happens in a Java web container when it receives a request. The first part 
of a URI for a servlet or JSP page has a special meaning. It's called the context path -  one example is the 
/ora path used for all examples in this book. As described in Chapter 2, a servlet container can contain 
multiple web applications, handled by a corresponding servlet context. Each web application is associated 
with a unique context path assigned when the web application is installed. When a request is received by the 
web container, it uses the context path to select the servlet context that's responsible for handling the 
request.  

http://localhost:8080/ora/ch12/login.jsp
http://localhost:8080/ora/ch12/login.jsp
http://localhost:8080/ora/ch12/process.jsp
http://localhost:8080/ora/images/hello.gif


JavaSercer Pages 

  page 181

The container hands over the request to the selected context, which then uses the URI path minus the 
context path to locate the requested resource (a servlet or a JSP page) within the context. For instance, an 
absolute URI like http://localhost:8080/ora/ch12/login.jsp is interpreted by the container as a request for a 
JSP page named /ch12/login.jsp within the context path /ora. 

Because a web application can be assigned any context path when the application is installed, the context 
path must not be part of the URIs used in JSP elements (and servlet methods) to refer to other parts of the 
same application. You can always use a relative-path URI, just as you do in HTML, for example to refer to 
another page in a <jsp:include> action: 

 <jsp:include page="navigation.jsp" flush="true" /> 

This type of URI is called a page-relative path in the JSP specification. It's interpreted by the container as 
relative to the page where it's used. 

Sometimes it's nice to be able to refer to an internal application resource with a URI that is not interpreted 
relative to the containing page. An example is a reference to a customized error page that is used by all 
pages in the application independent of where in the path structure they are located: 

 <%@ page errorPage="/errorMsg.jsp" %> 

A URI used as a JSP element attribute that starts with a slash is interpreted by the container as relative to the 
application's context path. The JSP specification calls this type of URI a context-relative path. This type of URI 
is useful for all sorts of common resources used in an application, such as error pages and images, that have 
fixed URIs within the application path structure. 

In summary, a URI used in an HTML element can be: 

• An absolute URI (including the scheme and server name) 

• An absolute-path URI (a path starting with a slash), interpreted as the path to a resource on the 
same server 

• A relative-path URI (a path not starting with a slash), interpreted as relative to the path for the page 
where it's used 

A URI used in a JSP element (or a servlet method) can be: 

• A context-relative path (a path starting with a slash), interpreted as relative to the application's 
context path 

• A page-relative path (a path not starting with a slash), interpreted as relative to the path for the 
page where it's used 

As long as you remember that URIs used in HTML elements are interpreted by the browser, and URIs used in 
JSP elements are interpreted by the web container, it's not so hard to figure out which type of URI to use in 
any given situation. 

http://localhost:8080/ora/ch12/login.jsp


JavaSercer Pages 

  page 182 

Chapter 13. Web Application Models 

Part II of this book described how you can create many different types of applications using only JSP pages 
with generic components, such as custom actions and beans, to access databases, present content in 
different languages, protect pages, and so forth - all without knowing much about Java programming. This 
approach works fine for many types of web applications, such as employee registers, product catalogs, and 
conference room reservation systems. But for applications with complicated schemas, intricate business rules, 
and tricky control flows, the generic components just don't cut it, and you suddenly find that you need a more 
powerful way to handle the request processing and the business logic. 

As I mentioned in Chapter 3, JSP pages can also be combined with other Java technologies such as servlets 
and EJB in more complex applications. In this chapter, we look at how JSP fits into this larger picture. After 
this brief description of the most common application models, Chapter 14, describes the combination of 
servlets and JSP pages in detail. 

The material presented in this part of the book is geared towards Java programmers. If you're not a 
programmer, you may still want to browse through this part to get a feel for the possibilities, but don't expect 
to understand everything. To really appreciate the techniques described in this part of the book, you should 
have experience with Java programming in general and also be familiar with Java servlets. 

 

13.1 The Java 2 Enterprise Edition Model 

At the JavaOne conference in San Francisco in June 1999, Sun Microsystems announced a new architecture 
for Java, with separate editions for different types of applications: the Java 2 Platform, Standard Edition ( 
J2SE) for desktop and workstation devices; the Java 2 Platform, Micro Edition ( J2ME) for small devices like 
cell phones, pagers, and Personal Digital Assistants (PDAs); and the Java 2 Platform, Enterprise Edition ( 
J2EE) for server-based applications. 

J2EE is a compilation of various Java APIs that have previously been offered as separate packages, an 
Application Programming Model (APM), also known as the J2EE Blueprints, that describes how they can all be 
combined, and a test suite that J2EE vendors can use to test their products for compatibility. J2EE includes 
the following enterprise-specific APIs: 

• JavaServer Pages ( JSP) 

• Java Servlets 

• Enterprise JavaBeans (EJB) 

• Java Database Connection ( JDBC) 

• Java Transaction API ( JTA) and Java Transaction Service ( JTS) 

• Java Naming and Directory Interface ( JNDI) 

• Java Message Service ( JMS) 

• Java IDL and Remote Method Invocation (RMI) 

• Java XML 

In addition, all the J2SE APIs can be used when developing a J2EE application. These groups of APIs can be 
used in numerous combinations. The first three APIs - EJB, JSP, and servlets - represent different component 
technologies, managed by what the J2EE documents call containers . As you may remember from Chapter 2 
and Chapter 3, servlets and JSP pages are managed by a container that provides the runtime environment for 
these components, translating requests and responses into standard Java objects. This container is called a 
web container . EJB components are similarly handled by an EJB container. Components in the two types of 
containers use the other APIs to access databases ( JDBC and JTA/JTS), locate various resources (JNDI), and 
communicate with other server resources (JMS, Java IDL, RMI, and XML). Figure 13.1 shows a high-level view 
of all the pieces and their relationships. 



JavaSercer Pages 

  page 183

Figure 13.1. J2EE overview 

 

Enterprise applications are often divided into a set of tiers, and J2EE identifies three: the client tier, the 
middle tier, and the Enterprise Information System (EIS) tier. The middle tier can be further divided into the 
web tier and the EJB tier. This logical separation, with well-defined interfaces, makes it possible to build 
scalable applications. Initially one or more tiers can be running on the same physical server. With increased 
demands, the tiers can be separated and distributed over multiple servers without modifying the code, just by 
changing the configuration. 

The client tier contains browsers as well as regular GUI applications. A browser communicates with the web 
container using HTTP. A standalone application can also use HTTP or communicate directly with the EJB 
container using RMI or IIOP (a CORBA protocol). Another type of client that's becoming more and more 
popular is the extremely thin client, such as a cellular phone or PDA. This type of client typically uses the 
Wireless Access Protocol (WAP), often converted into HTTP via a gateway, to communicate with the web 
container. 

The middle tier provides client services through the web container and the EJB container. A client that 
communicates through HTTP with the server uses components in the web container, such as servlets and JSP 
pages, as entry points to the application. Many applications can be implemented solely as web container 
components. In other applications, the web components just act as an interface to the application logic 
implemented by EJB components. A standalone application, written in Java or any other programming 
language, can also communicate directly with the EJB components. General guidelines for when to use the 
different approaches are discussed later in this chapter. Components in this tier can access databases and 
communicate with other server applications using all of the other J2EE APIs. 

The Enterprise Information System (EIS) tier holds the application's business data. Typically, it consists of 
one or more relational database management servers, but other types of databases such as IMS databases, 
applications such as Enterprise Resource Planning (ERP), and mainframe transaction processing systems such 
as CICS, are also included in this tier. The middle tier uses J2EE APIs such as JDBC and JTA/JTS to interact 
with the EIS tier. 

 

13.2 The MVC Model 

In addition to the separation of responsibilities into different tiers, J2EE also encourages the use of the Model-
View-Controller (MVC) design model, briefly introduced in Chapter 3, when designing applications. 

The MVC model was first described by Xerox in a number of papers published in the late 1980s in conjunction 
with the Smalltalk language. But this model has since been used for GUI applications developed in all popular 
programming languages. Let's review: the basic idea is to separate the application data and business logic, 
the presentation of the data, and the interaction with the data into distinct entities labeled the Model, the 
View, and the Controller, respectively. This makes for a flexible design, where multiple presentations (Views) 
can be provided and easily modified, and changes in the business rules or physical representation of the data 
(the Model) can be made without touching any of the user interface code. 



JavaSercer Pages 

  page 184

Even though the model was originally developed for standalone GUI applications, it translates fairly well into 
the multitier application domain of J2EE. The user interacts with the Controller to ask for things to be done, 
and the Controller relays these requests to the Model in a client-type independent way. Say, for instance, that 
you have two types of clients: an HTTP client such as a browser, and a GUI client application using IIOP to 
talk to the server. In this scenario you can have one Controller for each protocol that receives the requests 
and extracts the request information in a protocol-dependent manner. Both Controllers then call the Model 
the same way; the Model doesn't need to know what kind of client it was called by. The result of the request 
is then presented to the two types of clients using different Views. The HTTP client typically gets an HTTP 
response message, possibly created by a JSP page, while the GUI application may include a View component 
that communicates directly with the Model to get its new state and render it on the screen. 

The assignment of roles to the different types of J2EE components varies depending on the scenario, the 
types of clients supported, and whether or not EJB is used. The following sections describe possible role 
assignments for the three most common scenarios where JSP pages play an important role. 

13.2.1 Using Only JSP 

The J2EE platform includes many APIs and component types, as I have just shown. However, there's no 
reason to use them all for a specific application. You can pick and choose the technology that makes most 
sense for your application scope and functionality, the longevity of the application, the skills in your 
development team, and so on. 

As you saw in Part II of this book, there are all sorts of applications that can be developed using just JSP 
pages, a few JavaBeans components, and custom actions. If you're primarily a page author working alone, 
with limited or no Java knowledge, you can still develop fairly sophisticated applications using the custom 
actions in this book to access databases, serve localized content, perform authentication and access control, 
and so forth. And as JSP's popularity grows, I'm sure you'll see more and more generic tag libraries offered 
by both commercial companies and open source projects, making it possible to do even more with just the 
JSP part of the J2EE platform. 

A pure JSP approach can be a good approach even for a team, if most of the team members are skilled in 
page design and layout and only a few are Java programmers. The programmers can then develop 
application-specific beans and custom actions to complement the generic components and minimize the 
amount of SQL and Java code in the JSP pages. 

Using pure JSP is also a suitable model for testing out new ideas and prototyping. Using generic components, 
a bit of scripting code, and a few application-specific beans and actions is often the fastest way to reach a 
visible result. Once the ideas have been proven and the team has a better understanding of the problems, a 
decision can be made about the ultimate application architecture for the real thing. The danger here is that 
the last step - evaluating the prototype and deciding how it should be redesigned - never happens; I have 
seen prototypes being relabeled as production systems overnight too many times, and also experienced the 
inevitable maintenance nightmares that follow. 

Figure 13.2. MVC roles in a pure JSP scenario 

 



JavaSercer Pages 

  page 185 

The MVC model makes sense even for a pure JSP play. I recommend that you use separate JSP pages for 
presentation (the View) and request processing (the Controller), and place all business logic in beans, (the 
Model), as shown in Figure 13.2. Let the Controller pages initialize the beans, and the View pages generate a 
response by reading its properties. That's the model used in most examples in Part II. If you follow this 
model, it's easy to move to a combination of servlets and JSP the day you find that the pure JSP application is 
becoming hard to maintain. 

13.2.2 Using Servlets and JSP 

The combination of servlets and JSP is a powerful tool for developing well-structured applications that are 
easy to maintain and extend as new requirements surface. Since a servlet is a regular Java class, you can use 
the full power of the Java language to implement the request processing, using standard Java development 
and debugging environments instead of debugging JSP pages filled with scripting code. JSP pages can then be 
used for what they are best at: rendering the response by including information collected or generated by the 
servlets. 

A common combination of servlets and JSP is to use a servlet as the Controller (or front component, as it's 
called in the J2EE documents) for an application, with a number of JSP pages acting as Views. The advantage 
of this model, compared to the pure JSP approach, becomes apparent as the application gets more complex. 
For instance, if you need to roll your own authentication and access control code, centralizing the security 
controls in a servlet instead of counting on everyone remembering to put custom actions in all protected 
pages is less error-prone. A servlet as the single entry point to the application also makes it easy to do 
application-specific logging (for instance, collecting statistics in a database), maintain a list of currently active 
users, and other things. 

Figure 13.3. MVC roles in a servlet/JSP scenario 

 

In this scenario, all requests are sent to the servlet acting as the Controller with an indication about what 
needs to be done. The indication can be in the form of a request parameter or as a part of the URI path. 
Figure 13.3 shows how the MVC roles are allocated in this scenario. The same way as in the pure JSP 
scenario, beans are used to represent the Model. The servlet locates the appropriate bean and asks it to 
perform the requested action. Depending on the result of the request, the Controller servlet picks an 
appropriate JSP page to generate a response to the user (a View). For instance, if a request to delete a 
document in a document archive is executed successfully, the servlet can pick a JSP page that shows the 
updated archive contents. If the request fails, it can pick a JSP page that describes exactly why it failed. We 
look at this approach in more detail later in Chapter 14. 



JavaSercer Pages 

  page 186 

13.2.3 Using Servlets, JSP, and EJB 

An application based on Enterprise JavaBeans (EJB) is commonly viewed as the Holy Grail today. However, 
this is the most complex model of the ones described in this chapter, and it therefore comes with overhead in 
the development, deployment, operation, and administration areas. Still, EJB may be the way to go for many 
types of applications. 

What EJB brings to the table is primarily transaction management and a client type-independent component 
model. Even though it's impossible to say that a specific type of application should use EJB, if you develop an 
application with numerous database write-access operations accessed through different types of clients (such 
as browsers, standalone applications, PDAs, or another server in a B2B application), EJB is probably the way 
to go. An EJB-based application also enforces the separation between the Model, View, and Controller 
aspects, leading to an application that's easy to extend and maintain. 

There are two primary types of EJB components: entity beans and session beans. An entity bean represents a 
specific piece of business data such as an employee or a customer. Each entity bean has a unique identity, 
and all clients that need access to the entity represented by the bean use the same bean instance. Session 
beans, on the other hand, are intended to handle business logic and are used only by the client that created 
them. Typically, a session bean operates on entity beans on behalf of its client. 

With EJB in the picture, the MVC roles typically span over multiple components in the web container and EJB 
container. In a web-based interface to an EJB application, requests are sent to a servlet just as in the 
servlet/JSP scenario. But instead of the servlet locating a JavaBeans component to process the request, it 
asks an EJB session bean (or a JavaBeans component that acts as an interface to an EJB session bean) to do 
its thing. The Controller role therefore spans the servlet and the EJB session bean, as illustrated in Figure 
13.4. The Model can also span multiple components. Typically, JavaBeans components in the web tier are 
used to mirror the data maintained by EJB entity beans to avoid expensive communication between the web 
tier and the EJB tier. The session bean may update a number of the EJB entity beans as a result of processing 
the request. The JavaBeans components in the web tier get notified so they can refresh their state, and are 
then used in a JSP page to generate a response. With this approach, the Model role is shared by the EJB 
entity beans and the web tier JavaBeans components. 

Figure 13.4. MVC roles in a servlet/JSP/EJB scenario 

 

We have barely scratched the surface of how to use EJB in an application here. If you believe that this model 
fits your application, I recommend that you read the J2EE Blueprints (http://java.sun.com/j2ee/blueprints/ ) 
and a book dedicated to this subject, such as Richard Monson-Haefel's Enterprise JavaBeans (O'Reilly). 

 

http://java.sun.com/j2ee/blueprints/


JavaSercer Pages 

  page 187 

13.3 Scalability 

For a large, complex application, there are many reasons to move to a model that includes Enterprise 
JavaBeans components. But, contrary to popular belief, scalability and great performance should not be the 
number one deciding factor. There are many ways to develop scalable applications using just JSP or the 
servlet/JSP combination, often with better performance than an EJB-based application, since the 
communication overhead between the web tier and EJB tier is avoided. 

Scalability means that an application can deal with more and more users by changing the hardware 
configuration rather than the application itself. Typically this means, among other things, that it's partitioned 
into pieces that can run on separate servers. Most servlet- and JSP-based applications use a database to 
handle persistent data, so the database is one independent piece. They also use a mixture of static and 
dynamically generated content. Static content, such as images and regular HTML pages, is handled by a web 
server, while dynamic content is generated by the servlets and JSP pages running within a web container. So 
without even trying, we have three different pieces that can be deployed separately. 

Initially, you can run all three pieces on the same server. However, both the web container and the database 
use a lot of memory. The web container needs memory to load all servlet and JSP classes, session data, and 
shared application information. The database server needs memory to work efficiently with prepared 
statements, cached indexes, statistics used for query optimization, etc. The server requirements for these two 
types of servers are also different; for instance, the web server must be able to cope with a large number of 
network connections, and the database server needs fast disk access. Therefore, the first step in scaling a 
web application is typically to use one server for the web server and servlet container, and another for the 
database. 

If this is not enough, you can distribute the client requests over a set of servers processing HTTP requests. 
There are two common models: distributing requests only for dynamic content (servlet and JSP requests), or 
distributing requests for all kinds of content. 

If the web server can keep up with the requests for static content, such as images, regular HTML, and audio 
and video files, but not with the servlet and JSP requests, you can spread the dynamic content processing 
over multiple web containers on separate servers, as shown in Figure 13.5. A number of load balancing web 
container modules are available for the major web servers (Apache, iPlanet Web Server, and Microsoft's 
Internet Information Server): for instance, Apache's Tomcat™ (http://jakarta.apache.org), BEA's WebLogic™ 
(http://www.bea.com), Caucho Technology's Resin™ (http://www.caucho.com), and Unify's ServletExec™ 
(http://www.unify.com). 

The tricky part when distributing servlet loads over multiple servers is ensuring that session data is handled 
appropriately. Most containers keep session data in memory. The load balance module therefore picks the 
server with the lowest load to serve the first request from a client. If a session is created by this request, all 
subsequent requests within the same session are sent to the same server. But a container can also save 
session data on disk or in a database instead of in memory. It can then freely distribute each request over all 
servers in the cluster, and can also offer failure recovery in case a server crashes. A container is allowed to 
move a session from one server to another only for applications marked as distributable, as described in the 
next section. 

Figure 13.5. Web server distributing load over multiple web containers 

 

http://jakarta.apache.org
http://www.bea.com
http://www.caucho.com
http://www.unify.com


JavaSercer Pages 

  page 188

For a high-traffic site, you may need to distribute requests for both static and dynamic content over multiple 
servers, as illustrated in Figure 13.6. You can then place a load balancing server in front of a set of servers, 
each running a web server and a servlet container. As with the previous configuration, session data must be 
considered when selecting a server for the request. The easiest way to deal with this is to use a load 
balancing product that sends all requests from the same client to the same server. This is not ideal, though, 
since all clients behind the same proxy or firewall appear as the same host. Some load balancing products try 
to solve this problem by using cookies or SSL sessions to identify individual clients behind proxies and 
firewalls. In this configuration, you get the best performance from a web server than runs a servlet container 
in the same process, eliminating the process-to-process communication between the web server and the 
servlet container. Most of the servlet containers mentioned above can also be used in-process with all the 
major web servers. Another alternate configuration is a pure Java server that acts both as a web server and a 
servlet container. Examples are Apache's Tomcat, Sun's Java Web Server 
(http://www.sun.com/software/jwebserver/ ), and Gefion software's LiteWebServer 
(http://www.gefionsoftware.com/LiteWebServer/ ). Compared to adding a servlet container to a standard 
web server, this all-in-one alternative is easier to configure and maintain. The traditional servers written in C 
or C++ may still be faster for serving static content, but with faster and faster Java runtimes, pure Java 
servers will soon be just as fast. 

Figure 13.6. Load balancing server distributing requests over multiple servers 

 

You should not rely on configuration strategies alone to handle the scalability needs of your application. The 
application must also be designed for scalability, using all the traditional tricks of the trade. Finally, you must 
load-test your application with the configuration you will deploy it on to make sure it can handle the expected 
load. There are many pure Java performance testing tools to choose from, from the simple but powerful 
Apache JMeter (http://java.apache.org/jmeter/index.html ) to sophisticated tools like Innovative IT 
Development's PureLoad (http://www.ideit.com/products/pureload/ ), that support data-driven, session-
aware tests to be executed on a cluster of test machines. 

13.3.1 Preparing for Distributed Deployment 

As described in the previous section, some web containers can distribute requests for a web application's 
resources over multiple servers, each server running its own Java Virtual Machines ( JVM). Of course, this has 
implications for how you develop your application. So, by default, a web container must use only one JVM for 
an application. 

If you want to take advantage of web container-controlled load balancing, you must do two things: mark the 
application as distributable, and follow the rules for a distributed application defined by the Servlet 2.2 API. 

To mark an application as distributable means adding the following element to the WEB-INF/web.xml file for 
the application: 

 <web-app> 
   ... 
   <distributable/> 
   ... 
 </web-app> 

http://www.sun.com/software/jwebserver/
http://www.gefionsoftware.com/LiteWebServer/
http://java.apache.org/jmeter/index.html
http://www.ideit.com/products/pureload/


JavaSercer Pages 

  page 189 

By doing so, you're telling the web container that your application adheres to the rules for distributed 
applications. According to the Servlet 2.2 API, a distributed application must be able to work within the 
following constraints: 

• Each JVM has a unique servlet instance for each servlet definition. In case the servlet implements 
the javax.servlet.SingleThreadModel interface, each JVM may contain multiple instances of the 
same servlet. 

• Each JVM has a unique instance of the javax.servlet.ServletContext class. 

• Each object stored in the session must be serializable (must implement the java.io.Serializable 
interface, and all variables must be serializable). 

This means that your servlets cannot rely on instance variables to keep data shared by all requests for a 
certain servlet. It also means that application scope objects (ServletContext attributes) are not shared 
between JVMs. In most cases, this is not a problem. For instance, if you use the application scope to provide 
shared access to cached read-only data, it just means that each JVM has its own copy. If you really need to 
share some resource between JVMs, you must share it through an external mechanism, such as a directory 
server accessed through JNDI, a database, or a file in a filesystem that is available to all servers. 

The most interesting part about distributed applications is how sessions are handled. The web container 
allows only one server at a time to handle a request that's part of a session. But since all objects put into the 
session must be serializable, the container can save them on disk or in a database as well as in memory. If 
the server that handles a session gets overloaded or crashes, the container can therefore move the 
responsibility for the session to another server. The new server simply loads all serialized session data and 
picks up where the previous server left off. 



JavaSercer Pages 

  page 190

Chapter 14. Combining Servlets and JSP 

As I described in the previous chapter, combining servlets and JSP pages lets you clearly separate the 
application logic from the presentation of the application; in other words, it lets you use the most appropriate 
component type for the roles of Model, View, and Controller. To illustrate how a servlet can act as the 
Controller for an application - using beans as the Model and JSP pages as Views - we redesign the Project 
Billboard application from Chapter 10, in this chapter. Along the way, we look at how servlets and JSP pages 
can share data, how to deal with URL references between servlets and JSP pages in a flexible manner, and 
how to handle runtime errors consistently in an application that mixes these two technologies. 

Java servlets offer a powerful API that provides access to all the information about the request, the session, 
and the application data maintained as servlet context attributes. Chapter 2, contains a very brief introduction 
to the servlet API, and Appendix B, contains reference material for the main classes and interfaces. To really 
make use of the techniques described in this chapter, however, you need to know more. If you haven't 
worked with servlets, I recommend that you read up on them (try Jason Hunter and William Crawford's Java 
Servlet Programming from O'Reilly) before you apply the ideas presented here in your own application. 

 

14.1 Using a Servlet as the Controller 

In an application in which all requests must be preprocessed or postprocessed in some way, using a servlet as 
the common entry point - the Controller - for all requests makes a lot of sense. Examples of this type of 
processing are application-controlled authentication and access control, application-specific logging, accessing 
a database, and so forth. Another common reason for using servlets instead of JSP pages for parts of an 
application is that the request processing requires so much code that putting it in a JSP page makes the 
resulting application hard to develop, debug, and maintain. If you find yourself spending too much time trying 
to locate the source of code-based syntax errors or trying to figure out why the code in a page doesn't 
behave as it should, you may want to move the code to a servlet instead. Since a servlet is just a regular 
Java class, you can make use of a Java compiler and debugger to fix the problems. 

The Project Billboard application introduced in Chapter 10 is a good candidate for using a servlet as the 
Controller; it uses application-controlled authentication and contains code for accessing a database. In this 
chapter, it's used as a concrete example of the servlet-based approach. The components of the new design 
are shown in Figure 14.1. 

Figure 14.1. Project Billboard application combining servlet and JSP components 

 

Compare this design with the one described in Chapter 10. Note that the pure presentation JSP pages remain 
the same, but the request processing pages are replaced by the servlet. So, as before, the user first requests 
the login.jsp page. This page still contains a form with fields for username and password, but with the new 
design it invokes the controller servlet instead of a request processing JSP page. The servlet is invoked with a 
request parameter named action with the value authenticate. The servlet performs the authentication, and 
if successful, it creates an EmployeeBean object and saves it in the session scope as proof of authentication. 
It then redirects the browser back to itself, this time with action set to showPage and a page parameter set 
to the URL of an application JSP page. When the servlet receives a request with a showPage action, it 
forwards the request to the specified page. (I will explain why it's done this way instead of just redirecting 
straight to the JSP page shortly.) As before, the selected page depends on whether the user loaded the 
login.jsp page or tried to access an application page directly, without first logging in. 



JavaSercer Pages 

  page 191

The main.jsp page contains a form for updating the project subscription list, and links for posting a new 
message or logging out. The difference from the page in Chapter 10 is that the form and the links now invoke 
the servlet instead of request processing JSP pages. Different action parameter values are used to 
distinguish each type of request. For all types of requests, the servlet first verifies that the user is 
authenticated. If not, it forwards the request to the login.jsp page, where the URL for the requested page is 
saved as a hidden field in the same way as in Chapter 10. If the user is authenticated, the servlet performs 
the requested action and redirects to itself with the showPage action and the appropriate page parameter 
value, just as after a successful authentication. Redirecting to the servlet with a showPage action instead of 
directly invoking the JSP page lets the servlet perform access control for the JSP pages as well. 

This example illustrates a number of interesting things: servlet-initialized application scope objects, 
centralized request processing, how to map a URL pattern to a servlet, and additional access-control 
requirements for protected JSP pages when using a servlet as the Controller. 

14.1.1 Initializing Application Scope Objects 

The Project Billboard application uses two business logic beans that must be available to all users; in other 
words, they must be available as application scope objects. You may remember the NewsBean from Chapter 
10. This bean is the repository for all news items relating to projects, and it's used as the source for the 
personalized message list. The other business logic bean is called EmployeeRegistryBean. It acts as an 
abstraction of the database with employee information, and contains methods for authenticating a user and 
retrieving and saving employee information. The EmployeeRegistryBean class is described in more detail in 
Chapter 15. 

The controller servlet, named PBControllerServlet, needs access to these beans to do its work, so it's a 
good idea to let it create and initialize the beans. By placing references to the beans in ServletContext 
attributes, they are made available to all JSP pages in the application as application scope beans. That's 
because the application scope is just an abstraction of the ServletContext attributes. If a servlet places a 
reference to a bean in a context attribute, the bean can be accessed by any JSP page using the 
<jsp:useBean> action with the scope attribute set to application. Example 14.1 shows the 
PBControllerServlet's init( ) method, where the two beans are initialized and saved as context 
attributes. 

Example 14.1. Initialization of Application Scope Beans  

package com.ora.jsp.servlets; 
 
... 
import javax.servlet.*; 
import javax.sql.*; 
import com.ora.jsp.beans.emp.*; 
import com.ora.jsp.beans.news.*; 
import com.ora.jsp.sql.*; 
public class PBControllerServlet extends HttpServlet { 
 
    public void init( ) throws ServletException { 
        DataSource ds = null; 
        try { 
            ds = new DataSourceWrapper("sun.jdbc.odbc.JdbcOdbcDriver",  
                "jdbc:odbc:example", null, null); 
        } 
        catch (Exception e) {} // Ignore all in this example 
        EmployeeRegistryBean empReg = new EmployeeRegistryBean( ); 
        empReg.setDataSource(ds); 
        getServletContext( ).setAttribute("empReg", empReg); 
 
        NewsBean news = new NewsBean( ); 
        getServletContext( ).setAttribute("news", news); 
    } 
... 

First, a javax.sql.DataSource instance is created. The DataSource, an interface that's part of the JDBC 2.0 
Standard Extension (SE) package, allows you to open JDBC database connections to retrieve and modify 
database data. It can represent a connection pool, letting connections be reused instead of opened and closed 
over and over again. Many JDBC driver vendors offer connection pool DataSource implementations, but here 
we use a simple wrapper class that implements its own connection pool based on standard JDBC 1.0 classes. 
The wrapper class is discussed in more detail in Chapter 17, where I also describe how to use a vendor-
provided DataSource implementation. Also note that in Example 14.1, the DataSource instance is created 
with hardcoded values for the JDBC driver class and URL. Of course, that is not the best way. A better 
approach is to specify this information externally, for instance as servlet initialization parameters. Again, 
more about this in Chapter 17. 



JavaSercer Pages 

  page 192 

The DataSource is used by the EmployeeRegistryBean, which is the bean the Project Billboard application 
uses instead of accessing the database directly. An instance of the bean is created, initialized with the 
DataSource, and saved as a context attribute named empReg. Next, the NewsBean instance is created and 
saved as a context attribute named news. The implementation used in this book keeps all messages in 
memory as opposed to in a database. If a database were used, the NewsBean would also need to be initialized 
with the DataSource. 

Servlets as well as JSP pages can now access these two beans by asking the context for the corresponding 
attribute. A servlet uses the getAttribute( ) method: 

 NewsBean newsBean =  
   (NewsBean) getServletContext( ).getAttribute("news"); 

Note that the getAttribute( ) method has the return type Object, so you have to cast the attribute value 
to the correct type. 

A JSP page uses the <jsp:useBean> action to make the bean available to other action elements and scriptlets 
in the page: 

 <jsp:useBean id="news" scope="application" 
       class="com.ora.jsp.beans.news.NewsBean" /> 

Since the id attribute value matches the context attribute value, the <jsp:useBean> action retrieves the 
bean created by the servlet instead of creating a new one. 

In the application described in this chapter, only one servlet is used. But that's not always the case. In a large 
application, it's sometimes better to use different controller servlets for different parts of the application, for 
instance, one controller for all functions used by an administrator, and another for end users. If that's the 
case, you can use a separate servlet with the sole purpose of taking care of all initialization of beans for the 
application. Whether you use the one-servlet approach described here or a separate application initialization 
servlet, the servlet that creates the beans used by the rest of the application must be loaded by the servlet 
container before any other parts of the application. You can tell a container to load a servlet when the web 
application is initialized by using elements in the application deployment descriptor, the WEB-INF/web.xml 
file: 

 <web-app> 
   ... 
   <servlet> 
     <servlet-name>pbController</servlet-name> 
     <servlet-class> 
       com.ora.jsp.servlets.PBControllerServlet 
     </servlet-class> 
     <load-on-startup>1</load-on-startup> 
   </servlet> 
   ... 

Within the <servlet> element, which is described in further detail later, the <load-on-startup> element 
specifies that this servlet must be loaded when the web application is started by the container. The value is a 
positive integer, indicating when this servlet should be loaded relative to other servlets. Servlets with low 
values are always loaded before servlets with higher values. 

A servlet that creates and initializes shared beans should also make sure that the beans are being removed 
and shut down gracefully, if needed. This is done in the servlet's destroy( ) method, as shown in Example 
14.2. 

Example 14.2. Removing Application Scope Beans  

 public void destroy( ) { 
     getServletContext( ).removeAttribute("empReg"); 
     getServletContext( ).removeAttribute("news"); 
 } 



JavaSercer Pages 

  page 193

14.1.2 Centralized Request Processing 

When all requests for an application are first processed by one servlet, it's easy to handle common functions 
in one place. In this example, the controller servlet is used for authentication and access control. But there 
are other possibilities. Say you have a site where you charge the users based on what they do, or need to 
keep an audit log over all database modifications. A servlet serving as a common entry point for all 
application requests is a good place to put this logic. 

The controller servlet needs to handle both GET and POST requests, so its doGet( ) method simply calls the 
doPost( ) method: 

 public void doGet(HttpServletRequest request,  
   HttpServletResponse response)  
   throws IOException, ServletException { 
     doPost(request, response); 
 } 

It's in the doPost( ) method, shown in Example 14.3, that all processing takes place. 

Example 14.3. Centralized Request Processing  

public void doPost(HttpServletRequest request,  
    HttpServletResponse response)  
    throws IOException, ServletException { 
  
    String action = request.getParameter("action"); 
  
    // Check if the user is authenticated 
    if (!isAuthenticated(request) &&  
        (!"authenticate".equals(action) ||  
        "logout".equals(action))) { 
        doForwardToLogin(request, response); 
    } 
    else { 
        if ("authenticate".equals(action)) { 
            doAuthenticate(request, response); 
        } 
        else if ("logout".equals(action)) { 
            doLogout(request, response); 
        } 
        else if ("storeMsg".equals(action)) { 
            doStoreMsg(request, response); 
        } 
        else if ("updateProfile".equals(action)) { 
            doUpdateProfile(request, response); 
        } 
        else if ("showPage".equals(action)) { 
            doShowPage(request, response); 
        } 
        else { 
            response.sendError( 
                HttpServletResponse.SC_NOT_IMPLEMENTED); 
        } 
    } 
} 

In this example, a request parameter named action is used to decide what to do. An alternative to this is 
using part of the URI itself as the indication about which action to perform, as you will see in the next section 
when we look at the URI used to invoke the servlet. If the user isn't already authenticated, and the request is 
not to authenticate or log off, the request is forwarded to the login page. 

The isAuthenticated( ) method simply checks if an authentication token is available in the session: 

private boolean isAuthenticated(HttpServletRequest request) { 
    boolean isAuthenticated = false; 
    HttpSession session = request.getSession( ); 
    if (session.getAttribute("validUser") != null) { 
        isAuthenticated = true; 
    } 
    return isAuthenticated; 
} 

In this example, a bean named validUser is used as an authentication token. This bean is placed in the 
session scope by the servlet's doAuthenticate( ) method if the user is successfully authenticated. The 
isAuthenticated( ) method looks for the bean. If it finds it, it knows that the user has already been 
authenticated. 



JavaSercer Pages 

  page 194

If the user is not authenticated, the doForwardToLogin( ) method is called: 

private void doForwardToLogin(HttpServletRequest request,  
    HttpServletResponse response)  
    throws IOException, ServletException { 
    String origURL = HttpUtils.getRequestURL(request).toString( ); 
    String queryString = request.getQueryString( ); 
    if (queryString != null) { 
        origURL += "?" + queryString; 
    } 
    String loginURL = "login.jsp" + "?origURL=" +  
        URLEncoder.encode(origURL) + 
        "&errorMsg=" + URLEncoder.encode("Please log in first"); 
    forward(loginURL, request, response); 
} 

In order for the login page to save the URL of the requested page so it can be shown automatically after 
successful authentication, the URL must be passed to the login.jsp page as a parameter. The URL is 
constructed from the getRequestURL( ) method, which returns the URL of the current request minus the 
query string; a call is made to getQueryString( ) to append the query string if it's present. The complete 
URL is then used as the value of the origURL parameter. Another parameter, errorMsg, is added with a 
message to display on the login page. Both parameter values are encoded using the java.net.URLEncoder 
class. This is necessary to convert special characters, such as the space character, into encoded values that 
are accepted in a URL. 

The request is finally forwarded to the URL for the login.jsp page, including both parameters, using the 
forward( ) method: 

private void forward(String url, HttpServletRequest request, 
  HttpServletResponse response)  
  throws IOException, ServletException { 
    RequestDispatcher rd = request.getRequestDispatcher(url); 
    rd.forward(request, response); 
} 

The RequestDispatcher is a servlet API class used to programmatically invoke another servlet or a JSP page 
to continue the processing of a request. The servlet's forward( ) method gets an instance of the 
RequestDispatcher class that represents the login.jsp page and calls its forward( ) method. This is almost 
exactly what the <jsp:forward> action element in a JSP page does. The difference is that the action element 
also aborts processing of the rest of the page. When a request is forwarded, the originating servlet delegates 
all processing of the request to the target servlet (or JSP page). The originating servlet is not allowed to 
modify the response in any way, neither before calling forward( ) nor when the method returns. In most 
cases, it should simply return after calling forward( ), possibly after doing some cleanup that does not 
involve modifying the response. As you can see in Example 14.3, the PBControllerServlet doesn't do 
anything after calling doForwardToLogin( ), which in turn calls the forward( ) method. 

If the user is authenticated, the requested action is performed by calling the corresponding method. Some of 
the methods are described in the next section. You can look at the source code for the PBControllerServlet 
class to see how the other actions are performed. 

14.1.3 Mapping a URI Pattern to a Servlet 

Using a URI starting with /servlet to invoke a servlet is a convention introduced by Sun's Java Web Server 
(JWS), the first product to support servlets before the API was standardized. This convention is supported by 
most servlet containers today. But using this type of URI has a couple of problems. First, it makes it perfectly 
clear to a user (at least a user who knows about servlets) what technology is used to implement the 
application. Not that you shouldn't be proud of using servlets, but a hint like this can help a hacker explore 
possible security holes. Even though no servlet-related security issues are known at this time, it never hurts 
to be a bit paranoid when it comes to security. The other problem is of a more practical nature. 

As I described in Chapter 12, using relative URIs to refer to resources within an application makes life a lot 
easier. As you know, a relative URI is interpreted as relative to the URI of the current request. But if a 
servlet, like the controller servlet in this chapter, is invoked using a URI like /ora/servlet/PBController, it can't 
easily use a relative URI to refer to a View JSP page, such as /ora/ch14/main.jsp. This is because the two 
resources are identified by URIs at different levels in the application's URI path structure. If you invoke the 
servlet with this type of URI, it has to refer to the JSP page with a relative path like ../ch14/main.jsp, or a 
context-relative path like /ch14/main.jsp. This works, but if you later decide to change the path structure, for 
instance to use the path /billboard/main.jsp instead, you have to modify all path references in the servlet. 



JavaSercer Pages 

  page 195 

A simple solution to this problem is to define a URI pattern mapping for the servlet, so it can be accessed 
using a URI with the same path structure as the JSP pages. This type of mapping has been supported by 
servlet containers in a proprietary way for a long time, but the Servlet 2.2 API standardizes the rules. The 
mapping is done with XML elements in the web application's deployment descriptor (the WEB-INF/web.xml 
file) like this: 

<web-app> 
  ... 
  <servlet> 
    <servlet-name>pbController</servlet-name> 
    <servlet-class> 
      com.ora.jsp.servlets.PBControllerServlet 
    </servlet-class> 
  </servlet> 
  ... 
  <servlet-mapping> 
    <servlet-name>pbController</servlet-name> 
    <url-pattern>/ch14/process</url-pattern> 
  </servlet-mapping> 
  ... 

Two main elements are used here. The <servlet> element, with subelements <servlet-name> and 
<servlet-class>, are used to associate the servlet class with a symbolic name. The name must be unique 
within the application. The <servlet-mapping> element is then used to define the path pattern used to 
invoke the servlet. The <servlet-name> subelement value must match the symbolic name of the servlet, and 
the <url-pattern> subelement defines the pattern. The pattern can be a context-relative path, as in this 
example. This type of pattern tells the container to invoke the named servlet only if the request URI path 
matches the pattern exactly (a query string is of course allowed, but no other path parts). 

This is the pattern used for the servlet in the Project Billboard application described in this chapter. To see 
how it works, let's first look at the action attribute in the login.jsp page: 

 <form action="process?action=authenticate" method="post"> 

The action attribute contains a relative path (i.e., it doesn't start with a slash). Since the login.jsp page is 
requested with the URI /ora/ch14/login.jsp, the browser converts the relative path into the absolute path 
/ora/ch14/process?action=authenticate. The /ora part is the context path, and the rest of the path, 
/ch14/process, matches the context-relative path pattern for the servlet in the web.xml file. If you decide to 
install this web application with a different context path, the action URI still invokes the correct servlet. If you 
then decide to change the internal application path structure, you only have to change the pattern in the 
web.xml file; no changes to paths in the JSP pages or the servlet are needed. 

Other types of patterns let you use a part of the URI path to indicate what the servlet is asked to do instead 
of using an action parameter. A path pattern matches a URI starting with the specified path (as opposed to 
the exact path match required in the previous case): 

... 
  <servlet-mapping> 
    <servlet-name>pbController</servlet-name> 
    <url-pattern>/ch14/process/*</url-pattern> 
  </servlet-mapping> 
  ... 

Note that the pattern ends with /*, which is a wildcard sequence matching any subpath. With a path pattern, 
the servlet can be invoked with a URI such as /ch14/process/autheticate, and it can get the action name 
specified by the last part of the URI with this code: 

public void doPost(HttpServletRequest request,  
    HttpServletResponse response)  
    throws IOException, ServletException { 
  
    String action = request.getPathInfo( ); 
    ... 

Another popular way to invoke the controller server is with a URI that ends with a special extension, like 
/ch14/authenticate.do, instead of a special URI prefix. To have all requests with the selected extension 
processed by the controller servlet, use an extension pattern: 

... 
  <servlet-mapping> 
    <servlet-name>pbController</servlet-name> 
    <url-pattern>*.do</url-pattern> 
  </servlet-mapping> 
  ... 



JavaSercer Pages 

  page 196 

The servlet then gets the action name by stripping off the extension: 

public void doPost(HttpServletRequest request,  
    HttpServletResponse response)  
    throws IOException, ServletException { 
  
    String action = request.getServletPath( ); 
    int extension = action.lastIndexOf("."); 
    if (extension != -1) { 
        action = action.substring(0, extension); 
    } 
... 

All pattern-mapping types described here allow you to use a relative path to invoke the controller servlet, 
making it easier to refer to all the pieces of the application. 

Relative paths are also supported by the servlet API methods used to forward and redirect to another 
resource within the same application. To forward a request, you first need to get a RequestDispatcher. 
There are two ways to obtain one. To use a relative path URI, call the ServletRequest's 
getRequestDispatcher( ) method, like in the forward( ) method in the servlet described earlier: 

private void forward(String url, HttpServletRequest request, 
  HttpServletResponse response)  
  throws IOException, ServletException { 
 
    RequestDispatcher rd = request.getRequestDispatcher(url); 
    rd.forward(request, response); 
} 

If you look at how this method is called in the previous section, you see that a relative path (login.jsp) is 
passed as the value of the url parameter. The request object knows the absolute path that was used to 
make the current request, so it can use a relative path to locate the target resource. The 
javax.servlet.ServletContext class also has a getRequestDispatcher( ) method, but it works only with 
context-relative paths, since the context has no knowledge about the absolute path for the current request. 

In versions of the servlet API prior to 2.2, the sendRedirect( ) method, used to send a redirect response to 
the browser, required that an absolute URL was used to specify the target resource. However, in the 2.2 
version, this requirement was relaxed, so both absolute and relative paths are now also supported (note that 
context-relative paths are not supported, for backward-compatibility reasons: there's no way to distinguish an 
absolute path from a context-relative path, since both start with a slash). The method that handles the logout 
action in the controller servlet uses a relative path to redirect to the login page: 

private void doLogout(HttpServletRequest request,  
    HttpServletResponse response) throws IOException { 
 
    HttpSession session = request.getSession( ); 
    session.invalidate( ); 
    response.sendRedirect("login.jsp"); 
} 

14.1.4 Access Control for JSP Pages 

You may have noticed that the access control performed by the controller servlet in Example 14.3 doesn't 
prevent a user from invoking one of the protected JSP pages directly, for instance with a URL like 
/ch14/main.jsp instead of /ch14/process?action=showPage&page=main.jsp. In most applications, this is not 
as bad as it looks. When you use a servlet as the controller, it is responsible for retrieving all protected data, 
and the JSP page displays only the data it receives from the servlet. Invoking the JSP page directly, without 
going through the controller servlet, therefore yields a page with only static template text. 

However, if some of your application contains JSP pages or HTML pages with static data that needs to be 
protected, you can configure the application with a security constraint in the WEB-INF/web.xml file that 
makes it impossible for anyone to load the pages directly: 

<security-constraint> 
    <web-resource-collection> 
      <web-resource-name>no-access</web-resource-name> 
      <url-pattern>/ch14/main.jsp</url-pattern> 
      <url-pattern>/ch14/entermsg.jsp</url-pattern> 
    </web-resource-collection> 
    <auth-constraint> 
      <role-name>nobody</role-name> 
    </auth-constraint> 
  </security-constraint> 



JavaSercer Pages 

  page 197 

This protects the two JSP pages in the example application, identified by the <url-pattern> elements. The 
<auth-constraint> element defines a single role named nobody. If no user is assigned this role, nobody can 
access these pages directly. When the controller servlet is invoked with the showPage action, however, it uses 
a RequestDispatcher to forward control to the pages. Since forwarding is an internal affair, the security 
constraint doesn't have any effect. 

 

14.2 A More Modular Design Using Action Objects 

The approach in Example 14.3 is to implement each action as a separate method in the servlet, so every time 
you add a new action, you also have to update the servlet. In a large application, you may find yourself 
adding more and more code to the controller servlet, eventually ending up with a class that's hard to 
maintain. 

A more modular approach is to treat each action as a separate class that implements a common interface, for 
instance called Action.6 The Action interface may look like this: 

import java.io.*; 
import javax.servlet.*; 
import javax.servlet.http.*; 
 
public interface Action { 
    public void perform(HttpServlet servlet,  
        HttpServletRequest request, 
        HttpServletResponse response)  
        throws IOException, ServletException; 
} 

The single method, perform( ) , has arguments that give the action class access to all the same objects as a 
regular servlet: the request and response objects. In addition, the servlet argument lets the action class 
access the servlet context and servlet configuration objects if needed. 

With this approach, each action ends up as a simple class. For instance, the logout action is handled by a nice 
little class like this: 

import java.io.*; 
import javax.servlet.*; 
import javax.servlet.http.*; 
 
public class LogoutAction implements Action { 
    public void perform(HttpServlet servlet,  
        HttpServletRequest request, 
        HttpServletResponse response)  
        throws IOException, ServletException { 
 
        HttpSession session = request.getSession( ); 
        session.invalidate( ); 
        response.sendRedirect("login.jsp"); 
    } 
} 

In most cases, you can develop the action classes so that they do not keep any state information in instance 
variables. The controller servlet therefore only needs one instance of each class. They can be created when 
the first request is received for a certain action ( "lazy instantiation") or in the controller servlet's init( ) 
method: 

public void init( ) throws ServletException { 
    ... 
    initActions( ); 
} 
 
private void initActions( ) { 
    actions = new Hashtable( ); 
    actions.put("authenticate", new AuthenticateAction( )); 
    actions.put("logout", new LogoutAction( )); 
    actions.put("storeMsg", new StoreMsgAction( )); 
    actions.put("updateProfile", new UpdateProfileAction( )); 
    actions.put("showPage", new ShowPageAction( )); 
    actions.put("login", new LoginAction( )); 
} 

                                                 
6 There is an Action interface already defined in the Java Swing ( JFC) classes. However, since you will probably not be using the Swing 

GUI classes in this context, the two should not conflict. 



JavaSercer Pages 

  page 198

In this example, all action class names are hardcoded. An alternative is to use servlet initialization parameters 
or a separate configuration file to specify the mapping between action names and action class names. If you 
do that, you can add new actions to the application without touching the controller servlet code at all. 

With the action class approach, the controller servlet's doPost( ) method gets the action name from an 
action parameter (or a part of the URL, as discussed earlier), finds the corresponding action class, and calls 
its perform( ) method: 

public void doPost(HttpServletRequest request,  
    HttpServletResponse response)  
    throws IOException, ServletException { 
  
    String actionName = request.getParameter("action"); 
    if (actionName == null) { 
        response.sendError(HttpServletResponse.SC_NOT_ACCEPTABLE); 
        return; 
    } 
  
    Action action = (Action) actions.get(actionName); 
    if (action == null) { 
        response.sendError(HttpServletResponse.SC_NOT_IMPLEMENTED); 
        return; 
    } 
  
    // Use the login action if the user is not authenticated 
    if (!isAuthenticated(request) &&  
        (!"authenticate".equals(actionName) ||  
        "logout".equals(actionName))) { 
        action = (Action) actions.get("login"); 
    } 
    action.perform(this, request, response); 
} 

The source code for a controller servlet and action classes using this approach is available in the code 
package for this book, so you can look at the details of all classes yourself. A framework for applications using 
a servlet with action classes and JSP pages is also available as part of the Apache Jakarta project, at 
http://jakarta.apache.org/struts/index.html. 

 

14.3 Sharing Data Between Servlets and JSP Pages 

When you use servlets for request processing and JSP pages to render the user interface, you often need a 
way to let the different components access the same data. The model I recommend is having the servlet 
create beans and pass them to a JSP page for display. 

As I described earlier, the application scope is just a JSP abstraction of javax.servlet.ServletContext 
attributes. Similarly, the request and session scopes are JSP abstractions for attributes associated with 
javax.servlet.ServletRequest and javax.servlet.http.HttpSession, respectively. All three classes 
provide setAttribute( ) , getAttribute( ), and removeAttribute( ) methods. A servlet uses the 
setAttribute( ) method to make a bean available to a JSP page. For instance, a servlet can create a bean, 
save it as a request attribute, and then forward control to a JSP page like this: 

public void doGet(HttpServletRequest request,  
        HttpServletResponse response) throws ServletException, 
        IOException { 
 
        String userName = request.getParameter("userName"); 
        UserInfoBean userInfo = userReg.getUserInfo(userName); 
 
        request.setAttribute("userInfo", userInfo); 
        RequestDispatcher rd =  
            request.getRequestDispatcher("welcome.jsp"); 
        rd.forward(request, response); 
    } 

To the JSP page, the bean appears as a request scope variable. It can therefore obtain the bean using the 
<jsp:useBean> action and then access the properties of the bean as usual, in this case using 
<jsp:getProperty> : 

<h1>Welcome 
  <jsp:useBean id="userInfo" scope="request" 
    class="com.ora.jsp.beans.userinfo.UserInfoBean" /> 
  <jsp:getProperty name="userInfo" property="userName" /> 
</h1> 

http://jakarta.apache.org/struts/index.html


JavaSercer Pages 

  page 199 

The <jsp:useBean> action, with an id attribute value matching the request attribute name set by the servlet, 
is needed to make the bean known to the JSP container before other actions or scripting code can access it. 

If the bean needs to be available throughout the session, the servlet uses an HttpSession attribute instead: 

 HttpSession session = request.getSession( ); 
 session.setAttribute("userInfo", userInfo); 

Using a ServletContext attribute, the bean becomes available in the application scope: 

 ServletContext context = getServletContext( ); 
 context.setAttribute("userInfo", userInfo); 

The only difference in the JSP page is that the scope attribute for the <jsp:useBean> action must match the 
scope used by the servlet. 

Passing beans in the other direction, from a JSP page to a servlet, is not so common, but it can be done. 
Here's how. The JSP page creates the bean using <jsp:useBean> and sets the properties using 
<jsp:setProperty>: 

 <jsp:useBean id="userInfo" scope="request" 
   class="com.ora.jsp.beans.userinfo.UserInfoBean" > 
   <jsp:setProperty name="userInfo" property="*" /> 
 </jsp:useBean> 
  
 <jsp:forward page="/myServlet" /> 

It then forwards the request to the servlet (mapped to the URI /myServlet) using <jsp:forward>, and the 
servlet retrieves the bean using getAttribute( ): 

UserInfoBean userInfo =  
    (UserInfo) request.getAttribute("userInfo"); 

 

14.4 Using a JSP Error Page for All Runtime Errors 

Even if an application is developed with different types of components, it should deal with runtime errors in a 
consistent way. Recall from Chapter 7, how the page directive can specify a JSP page to be used when code in 
the JSP page throws an exception. The error page gets access to the exception through an implicit variable 
named exception, and can display a user-friendly message as well as log details about the problem. The way 
the error page is invoked and how the implicit variable gets its value can easily be mimicked by a servlet. 
Example 14.4 shows how to do this in the controller servlet used in previous examples in this chapter. 

Example 14.4. Invoking a JSP Error Page from a Servlet  

public void doPost(HttpServletRequest request,  
    HttpServletResponse response) { 
  
    ... 
    try { 
        action.perform(this, request, response); 
    } 
    catch (Throwable t) { 
        request.setAttribute("javax.servlet.jsp.jspException", t); 
         
        RequestDispatcher rd =  
            getServletContext( ).getRequestDispatcher("/error.jsp"); 
        rd.forward(request, response); 
    } 
} 

The servlet calls the action's perform( ) method within a try block. If any type of exception occurs while 
executing an action, the servlet catches it, sets the javax.servlet.jsp.jspException request attribute to 
the exception object, and forwards the request to the error JSP page. The javax.servlet.jsp.jspException 
attribute name is reserved for the exception object in the JSP specification, so the JSP container picks up the 
exception object from the request attribute and makes it available to the JSP page through the exception 
variable. 



JavaSercer Pages 

  page 200

Chapter 15. Developing JavaBeans for JSP 

The JavaBeans specification was primarily developed with graphical components in mind. But JavaBeans 
represents a design pattern for components that also makes sense for faceless components used to structure 
a server-side application. The JSP specification provides a number of standard actions to support the use of 
JavaBeans, as described in the previous chapters. 

 

15.1 JavaBeans as JSP Components 

JavaBeans are simply regular Java classes designed according to a set of guidelines. By following these 
guidelines, development tools can figure out how the bean is intended to be used and how it can be linked to 
other beans. The JavaBeans specification characterizes beans as classes that: 

• Support introspection so that a builder tool can analyze how a bean works 

• Support customization, so that when using an application builder, a user can customize the 
appearance and behavior of a bean 

• Support events as a simple communication metaphor that can be used to notify beans of interesting 
things 

• Support properties, both for customization through a tool and for programmatic use 

• Support persistence, so that a bean can be customized in an application builder and then have its 
state saved away and reloaded later 

Introspection means that information about a class, such as details about its methods and their arguments 
and return type, can be discovered by another class. By following certain naming conventions for the 
methods, the external class can figure out how the bean class is intended to be used. Specifically, the bean's 
properties and the events it generates or observes can be found using introspection. For GUI beans, 
introspection is typically used by a builder tool to allow properties to be set by the user in a property window. 
In a JSP scenario, the JSP standard actions and custom actions use introspection to find the methods used for 
reading or writing property values, and to declare variables of appropriate types. 

A property is an attribute of a bean that can be read or written by the bean's client through regular methods 
named according to the JavaBeans guidelines. Typically, the property value is represented by an instance 
variable in the bean, but a read-only property can also represent a value that's calculated at runtime. The 
property methods are intended to be used to customize the bean, for instance, setting the label text for a 
bean used as a button in a GUI application, or setting the name of the data source to be used for a faceless 
server-side bean. Besides property access methods, a bean class can have regular methods that perform 
actions such as saving the bean's properties in a database or sending a mail composed from its properties. 

A bean can generate or observe events. In a GUI bean, typical events are "button clicked" and "item 
selected." A server-side bean can deal with events indicating that the source of the data it represents has 
been updated so it can refresh its copy. 

Support for persistence means that a bean should implement the java.io.Serializable interface. This 
interface flags a class that can be saved in an external format, such as a file. When tools are used to 
customize a bean, it is possible to save the customized state during application development and then let the 
customized bean be instantiated in runtime. The <jsp:useBean> action allows you to take advantage of this 
feature, but it's not commonly used today since no JSP authoring tools provide a customization interface yet. 
There's another reason for supporting persistence in JSP beans, however. A servlet container can support 
session persistence, saving all session data when a servlet context is shut down and reloading it again when 
the context is restarted. This works only if the beans you save in the session scope implement Serializable. 
In addition, beans (or any other object) placed in the session scope of an application marked as being 
distributable must be serializable, so that the container can migrate the session from one server to another. 



JavaSercer Pages 

  page 201

15.1.1 JavaBeans Naming Conventions 

As we mentioned early in the book, a Java bean is a class that has a no-argument constructor and conforms 
to the JavaBeans naming conventions. The bean properties are accessed through getter and setter methods, 
collectively known as a bean's accessor methods. Getter and setter method names are composed of the word 
get or set, respectively, plus the property name, with the first character of each word capitalized. A regular 
getter method has no arguments, but returns a value of the property's type, while a setter method takes a 
single argument of the property's type and has a void return type. Here's an example: 

public class CustomerBean implements java.io.Serializable { 
 
    private String firstName; 
    private String lastName; 
    private int accountNumber; 
    private int[] categories; 
    private boolean preferred; 
 
    public String getFirstName( ) { 
      return firstName; 
    } 
 
    public void setFirstName(String firstName) { 
      this.firstName = firstName; 
    } 

A readable property has getter methods, a writable property has setter methods. Depending on the 
combination of getter and setter methods, a property is read-only, write-only, or read/write. 

A read-only property doesn't necessarily have to match an instance variable exactly. Instead, it can combine 
instance variable values, or any values, and return a computed value: 

public String getFullName( ) { 
      return (new StringBuffer(firstName).append(" ") 
        .append(lastName).toString( )); 
    } 

The type of a property can be a Java class, interface, or a primitive type such as int: 

public int getAccountNumber( ) { 
      return accountNumber; 
    } 

Besides simple single-value properties, beans can also have multivalue properties represented by an array of 
any type. This is called an indexed property in the specification. Two types of access methods can be used for 
an indexed property: methods reading or writing the whole array, or methods working with just one element, 
specified by an index: 

public int[] getCategories( ) { 
      return categories; 
    } 
 
    public void setCategories(int[] categories) { 
      this.categories = categories; 
    } 
 
    public int getCategories(int i) { 
      return categories[i]; 
    } 
 
    public void setCategories(int i, int category) { 
      this.categories[i] = category; 
    } 

The naming convention for a Boolean property getter method is different than for all other types. You could 
use the regular getter name patterns, but the recommendation is to use the word is combined with the 
property name, to form a question: 

 public boolean isPreferred( ) { 
       return preferred; 
     } 



JavaSercer Pages 

  page 202 

This helps to make the source code more readable. The setter method for a Boolean property follows the 
regular pattern: 

 public void setPreferred(boolean preferred) { 
       this.preferred = preferred; 
     } 
 } 

Event handling is based on observers implementing a listener interface, and generators providing methods for 
observers to register their interest in the events. A listener interface defines the methods a listener needs to 
implement to be notified when the corresponding event is triggered. A bean identifies itself as a listener by 
declaring that it's implementing a listener interface, and an event source is identified by its listener 
registration methods. 

Let's look at an example. A listener interface for observing events related to the customer data handled by 
the example bean looks like this: 

 import java.util.EventListener; 
  
 public interface CustomerUpdatedListener extends EventListener { 
     void customerUpdated(CustomerUpdatedEvent e); 
 } 

The interface shown here defines only one event, but an interface may also group a number of related events. 
The CustomerBean identifies itself as an observer of the event by implementing the interface: 

 public class CustomerBean implements CustomerUpdatedListener { 
   ... 
     public void customerUpdated(CustomerUpdatedEvent e) { 
       if (e.getAccountNumber( ) == accountNumber) { 
           // Refresh local copy 
       } 
     } 

Another bean, perhaps one acting as the gatekeeper to the customer database, identifies itself as a source for 
the event by defining methods for registration of listeners: 

import java.util.Vector; 
 
public class CustomerRegister { 
    private Vector listeners = new Vector( ); 
 
    public  
    void addCustomerUpdatedListener(CustomerUpdatedListener cul) { 
      listeners.addElement(cul); 
    } 
 
    public  
    void removeCustomerUpdatedListener(CustomerUpdatedListener cul) { 
      listeners.removeElement(cul); 
    } 
 
    public void updateCustomer(CustomerBean customer) { 
      // Update persistent customer storage 
      notifyUpdated(customer); 
    } 

It notifies all listeners when the customer data is modified, like this: 

protected void notifyUpdated(CustomerBean customer) { 
        Vector l; 
        CustomerUpdatedEvent e =  
            new CustomerUpdatedEvent(this, customer.getAccountNumber( )); 
        synchronized(listeners) {  
            l = (Vector)listeners.clone( );  
        } 
        for (int i = 0; i < l.size( ); i++) { 
            ((CustomerUpdatedListener)l.elementAt(i)).customerUpdated(e); 
        } 
    } 
} 



JavaSercer Pages 

  page 203

By following these simple naming conventions, the JSP standard actions <jsp:getProperty> and 
<jsp:setProperty>, as well as custom actions like <ora:loop>, can discover how to use your beans 
correctly. At this time, no JSP features rely on the event naming conventions, but future development tools 
may do so. So if your beans need to handle events, it's a good idea to follow the conventions. Besides, it's a 
well-known design pattern, so using it makes your code more readable to other developers familiar with this 
design. 

15.1.1.1 Handling session events 

A bean used in a JSP application can actually register itself to receive session-related events. The servlet API 
includes an interface called javax.servlet.http.HttpSessionBindingListener . An object that implements 
this interface is notified when the object is placed in or removed from a session, through these two methods: 

 public void valueBound(HttpSessionBindingEvent event); 
 public void valueUnbound(HttpSessionBindingEvent event); 

The valueBound( ) method is called when the object is added to a session, and the valueUnbound( ) 
method when it's removed. The HttpSessionBindingEvent class contains these two methods: 

 public String getName( ); 
 public HttpSession getSession( ); 

The getName( ) method returns the name used for the object in the session, and the getSession( ) method 
returns a reference to the session object itself. 

One way to use a bean that implements the HttpSessionBindingListener interface is to keep track of 
currently logged-in users. A bean representing a user is added to the session after a successful 
authentication, and is given access to the servlet context for the application through a write-access property. 
In the valueBound( ) method, the bean adds a reference to itself to the list of users maintained by a context 
attribute object, such as a java.util.Vector. The valueUnbound( ) method removes the reference: 

import java.io.*; 
import java.util.*; 
import javax.servlet.*; 
import javax.servlet.http.*; 
 
public class UserBean implements HttpSessionBindingListener, 
  Serializable { 
 
  private ServletContext context; 
  private String name; 
  ... 
 
  public void setContext(ServletContext context) { 
    this.context = context; 
  } 
 
  public void setName(String name) { 
    this.name = name; 
  } 
  ... 
 
  public void valueBound(HttpSessionBindingEvent e) { 
    Vector currentUsers =  
      (Vector) context.getAttribute("currentUsers"); 
    if (currentUsers == null) { 
      currentUsers = new Vector( ); 
    } 
    currentUsers.addElement(this); 
  } 
 
  public void valueUnbound(HttpSessionBindingEvent e) { 
    Vector currentUsers =  
      (Vector) context.getAttribute("currentUsers"); 
    currentUsers.removeElement(this); 
  } 
  ... 
} 

A JSP page can then generate a list of all current users by looping through the Vector, available as an 
application scope object. 



JavaSercer Pages 

  page 204

15.2 JSP Bean Examples 

In a JSP-based application, two types of beans are primarily used: value beans and utility beans. A value 
bean encapsulates all information about some entity, such as a user or a product. A utility bean performs 
some action, such as saving information in a database or sending email. Utility beans can use value beans as 
input, or produce value beans as a result of an action. 

If you develop JavaBeans for your application, you're also preparing for migration to a full-blown J2EE 
application. The utility beans can be changed into proxies for one or more EJB session beans, acting as 
controllers for the application. 

Value beans may be used as-is, acting as what are called Value Objects in Sun's paper, "Developing 
Enterprise Applications With the Java 2 Platform, Enterprise Edition," also known as the J2EE blueprint. In 
EJB-based applications, the application's data is represented by EJB entity beans. Getting a property value 
from an EJB entity bean requires a remote call, consuming both system resources and bandwidth. Instead of 
making a remote call for each property value that is needed, the web component can make one remote call to 
an EJB session bean (possibly via a JSP utility bean) that returns all properties of interest packaged as a value 
bean. The web component can then get all the properties from the value bean with inexpensive local calls. 
The value bean can also act as cache in the web container to minimize remote calls even more, and can 
combine information from multiple EJB entity beans that is meaningful to the web interface. If you plan to 
eventually move to the EJB model, I recommend that you read the J2EE blueprint paper 
(http://java.sun.com/j2ee/blueprints/ ) before you design your application, so that you can make the 
migration as smooth as possible. 

15.2.1 Value Beans 

Value beans are useful even without EJB. They are handy for capturing form input, since the 
<jsp:setProperty> JSP action automatically sets all properties with names corresponding to request 
parameter names, as described in Chapter 5. In addition, the <jsp:getProperty> action lets you include the 
property values in the response without using scriptlets. 

Another benefit of value beans is that they can be used to minimize expensive database accesses for entities 
that rarely change their value. By placing a value bean in the application scope, all users of your application 
can use the cached value instead. Example 15.1 shows the source code for the ProductBean used in Chapter 
8, to represent products in an online shopping application. This is a pure value bean, with only property 
accessor methods, that could represent data stored in a database. 

Example 15.1. ProductBean  

package com.ora.jsp.beans.shopping; 
 
import java.io.*; 
 
public class ProductBean implements Serializable { 
    private int id; 
    private String name; 
    private String descr; 
    private float price; 
 
    public int getId( ) { 
        return id; 
    } 
    public String getName( ) { 
        return name; 
    } 
    public String getDescr( ) { 
        return descr; 
    } 
    public float getPrice( ) { 
        return price; 
    } 
    void setId(int id) { 
        this.id = id; 
    } 
    void setName(String name) { 
        this.name = name; 
    } 
    void setDescr(String descr) { 
        this.descr = descr; 
    } 
    void setPrice(float price) { 
        this.price = price; 
    } 
} 

http://java.sun.com/j2ee/blueprints/


JavaSercer Pages 

  page 205 

This bean is created and initialized by the single instance of the CatalogBean. All setter methods have 
package accessibility, while the getter methods are public. Using package accessibility for the setter methods 
ensures that only the CatalogBean can set the property values. For instance, a JSP page can read the 
product information, but not change the price. 

Another example of a value bean is the UserInfoBean introduced in Chapter 5. Part of this bean is shown in 
Example 15.2. Besides encapsulating the property values of the entity it represents, it also provides methods 
for validating the data. 

Example 15.2. Part of the UserInfoBean  

package com.ora.jsp.beans.userinfo; 
 
import java.io.*; 
import java.util.*; 
import com.ora.jsp.util.*; 
 
public class UserInfoBean implements Serializable { 
    // Validation constants 
    private static String DATE_FORMAT_PATTERN = "yyyy-MM-dd"; 
    private static String[] SEX_LIST = {"male", "female"}; 
    private static int MIN_LUCKY_NUMBER = 0; 
    private static int MAX_LUCKY_NUMBER = 100; 
 
    // Properties 
    private String birthDate; 
    private String birthDateInput; 
    private String emailAddr; 
    private String emailAddrInput; 
    private String[] interests; 
    private String luckyNumber; 
    private String luckyNumberInput; 
    private String sex; 
    private String sexInput; 
    private String userName; 
    private boolean isInitialized; 
     
    public String getBirthDate( ) { 
        return birthDate; 
    } 
 
    public void setBirthDate(String birthDate) { 
        isInitialized = true; 
        birthDateInput = birthDate; 
        if (StringFormat.isValidDate(birthDate, DATE_FORMAT_PATTERN)) { 
            this.birthDate = birthDate; 
        } 
    } 
    ... 

All setter methods save the value passed as the argument in an instance variable representing the input 
value. They then validate the value and, if it's valid, save it in another instance variable representing the 
property. The getter methods return the value of the property value variable. The effect is that only validated 
values can be accessed through the getter methods. The saved input values are, however, used for another 
purpose, as shown in Example 15.3. 

Example 15.3. UserInfoBean Validation Methods  

public String getPropertyStatusMsg( ) { 
        StringBuffer msg = new StringBuffer( ); 
        if (!isInitialized( )) { 
            msg.append("Please enter values in all fields"); 
        } 
        else if (!isValid( )) { 
            msg.append("The following values are missing or invalid: "); 
            msg.append("<ul>"); 
            if (birthDate == null) { 
                if (birthDateInput == null) { 
                    msg.append("<li>Birth date is missing"); 
                } 
                else { 
                    msg.append("<li>Birth date value is invalid: " +  
                      birthDateInput); 
                } 
            } 



JavaSercer Pages 

  page 206 

            if (emailAddr == null) { 
                if (emailAddrInput == null) { 
                    msg.append("<li>Email address is missing"); 
                } 
                else { 
                    msg.append("<li>Email address value is invalid: " + 
                      emailAddrInput); 
                } 
            } 
            ... 
        } 
        else { 
            msg.append("Thanks for telling us about yourself!"); 
        } 
        return msg.toString( ); 
    } 
     
    public boolean isInitialized( ) { 
        return isInitialized; 
    } 
     
    public boolean isValid( ) { 
        return isInitialized( ) &&  
            getBirthDate( ) != null && 
            getEmailAddr( ) != null && 
            getLuckyNumber( ) != null && 
            getSex( ) != null && 
            getUserName( ) != null; 
    } 

The getPropertyStatusMsg( ) method returns a string with a message about the validation status of the 
properties. If one or more properties have invalid values, the message contains an HTML list with a list item 
element for each invalid value, showing the input value plus an explanation about why it was not accepted. 

This behavior serves a purpose in the examples where the bean is used, as it allows me to introduce one JSP 
concept at a time. But it may not be ideal for a real application. First, it may be better to always save the 
input value as the property value, and let the isValid( ) method, instead of the setter method, handle all 
validation. This way, the getter methods return the input value whether it's valid or not. When the bean is 
used to fill out an input form, like in the last two examples in Chapter 5, the user will then be able to correct 
the invalid values instead of typing new values from scratch. Example 15.4 shows an outline of these 
changes. 

Example 15.4. Centralized UserInfoBean Validation  

package com.ora.jsp.beans.userinfo; 
 
import java.io.*; 
import java.util.*; 
import com.ora.jsp.util.*; 
 
public class UserInfoBean implements Serializable { 
    // Validation constants 
    private static String DATE_FORMAT_PATTERN = "yyyy-MM-dd"; 
    private static String[] SEX_LIST = {"male", "female"}; 
    private static int MIN_LUCKY_NUMBER = 0; 
    private static int MAX_LUCKY_NUMBER = 100; 
 
    // Properties 
    private String birthDate; 
    private String emailAddr; 
    private String[] interests; 
    private String luckyNumber; 
    private String sex; 
    private String userName; 
    private boolean isInitialized; 
 
    public String getBirthDate( ) { 
        return birthDate; 
    } 
 
    public void setBirthDate(String birthDate) { 
        isInitialized = true; 
        this.birthDate = birthDate; 
    } 
    ... 
    public boolean isValid( ) { 
        return  
            StringFormat.isValidDate(birthDate, DATE_FORMAT_PATTERN) && 
            StringFormat.isValidEmailAddr(emailAddr) && 
            StringFormat.isValidInteger(luckyNumber, MIN_LUCKY_NUMBER, 
                MAX_LUCKY_NUMBER) && 
            StringFormat.isValidString(sex, SEX_LIST, true) && 
            userName != null; 
    } 



JavaSercer Pages 

  page 207 

Secondly, a bean is easier to reuse if it's not tied to one form of presentation. It's therefore a good idea to 
remove the HTML in the getPropertyStatusMsg( ) method. One way of doing this is by splitting the method 
into two methods, as outlined in Example 15.5. 

Example 15.5. HTML Free Status Messages  

public String getPropertyStatusMsg( ) { 
        String msg = "Thanks for telling us about yourself!"; 
        if (!isInitialized( )) { 
            msg ="Please enter values in all fields"; 
        } 
        else if (!isValid( )) { 
            msg = "The following values are missing or invalid: "; 
        } 
        return msg; 
    } 
 
    public String[] getPropertyStatusDetails( ) { 
        Vector details = new Vector( ); 
        if (isInitialized( ) && !isValid( )) { 
            if (birthDate == null) { 
                details.addElement("Birth date is missing"); 
            } 
            else if (!StringFormat.isValidDate(birthDate, 
                DATE_FORMAT_PATTERN)) { 
                details.addElement("Birth date value is invalid: " + 
                    birthDate); 
            } 
            ... 
        } 
        String[] arr = new String[details.size( )]; 
        details.copyInto(arr); 
        return arr; 
    } 

With this approach, a JSP page can render the messages in any format that fits the overall layout of the page. 
First it gets the main message, and then it loops through the indexed propertyStatusDetails values: 

<font color="red"> 
  <jsp:getProperty name="userInfo" property="propertyStatusMsg" /> 
  <ul> 
    <ora:loop name=userInfo" property="propertyStatusDetails" 
      loopId="details" className="String" > 
      <li><%= details %> 
    </ora:loop> 
  </ul> 
</font> 

15.2.2 Utility Beans 

A utility bean performs some action, such as processing information, as opposed to simply acting as a 
container for information. 

The UserInfoBean contains processing code, namely code for encoding special characters such as HTML 
character entities and for validation of all property values. We can move this code to a separate bean so that 
the UserInfoBean becomes a pure property value container. Whether this change makes sense or not 
depends on the application that uses it. 

One set of property getter methods used in Chapter 5 returns the UserInfoBean property values with all 
special characters that can cause problems in an HTML form converted to the corresponding HTML character 
entity codes. Here's one example: 

public String getUserNameFormatted( ) { 
        return StringFormat.toHTMLString(getUserName( )); 
    } 



JavaSercer Pages 

  page 208

The actual conversion is performed by a method in the com.ora.jsp.util.StringFormat utility class: 

public static String toHTMLString(String in) { 
        StringBuffer out = new StringBuffer( ); 
        for (int i = 0; in != null && i < in.length( ); i++) { 
            char c = in.charAt(i); 
            if (c == '\'') { 
                out.append("&#39;"); 
            } 
            else if (c == '\"') { 
                out.append("&#34;"); 
            } 
            else if (c == '<') { 
                out.append("&lt;"); 
            } 
            else if (c == '>') { 
                out.append("&gt;"); 
            } 
            else if (c == '&') { 
                out.append("&amp;"); 
            } 
            else { 
                out.append(c); 
            } 
        } 
        return out.toString( ); 
    } 

Moving this HTML-specific code out of the bean and instead using the utility class directly in the JSP page 
makes the bean easier to reuse in parts of the application that do not render the values as HTML. 

The way the UserInfoBean bean is used in this book, it's perfectly okay to keep the validation code in the 
bean itself. However, let's say you would like to add a property referencing another bean, a friends property 
for instance, that holds an array of other UserInfoBean objects. It may then be better to let a utility bean 
that knows about all users in the application perform the validation, including verifying that the friends exist. 

A bean used for validation is one example of a utility bean that makes the application easy to maintain. The 
CatalogBean used in Chapter 8 is another example. The version developed for this book simply creates a set 
of ProductBean objects with hardcoded values, and provides a method that returns all products in the 
catalog. In a real application, it would likely get the information from a database and have methods for 
updating catalog information, such as adding and removing products or changing the information about a 
product, as well as methods that return only products matching a search criterion. If all catalog update 
requests go through the CatalogBean, it can create, delete, and update the ProductBean objects so that they 
always match the information stored in the database. The number of database accesses can be greatly 
reduced this way. 

Chapter 9, and Chapter 10, offer another example of how you can use a utility bean. The purpose of these 
chapters is to show you how to use the generic database custom actions to access a database, but a Java 
programmer may want to encapsulate all database-access code in a bean instead. Example 15.6 shows part 
of a utility bean that handles all database interactions needed for these two chapters. 

Example 15.6. Employee RegistryBean  

package com.ora.jsp.beans.emp; 
 
import java.io.*; 
import java.sql.*; 
import java.text.*; 
import java.util.*; 
import javax.sql.*; 
import com.ora.jsp.sql.*; 
import com.ora.jsp.sql.value.*; 
import com.ora.jsp.util.*; 
 
public class EmployeeRegistryBean implements Serializable { 
    private DataSource dataSource; 
 
    /** 
     * Sets the dataSource property value. 
     */ 
    public void setDataSource(DataSource dataSource) { 
        this.dataSource = dataSource; 
    } 
     
    /** 
     * Returns true if the specified user name and password 
     * match an employee in the database. 
     */ 



JavaSercer Pages 

  page 209 

    public boolean authenticate(String userName, String password)  
        throws SQLException { 
             
        EmployeeBean empInfo = getEmployee(userName); 
        if (empInfo != null &&  
            empInfo.getPassword( ).equals(password)) { 
            return true; 
        } 
        return false; 
    } 
 
    /** 
     * Returns an EmployeeBean initialized with the information 
     * found in the database for the specified employee, or null if 
     * not found. 
     */ 
    public EmployeeBean getEmployee(String userName)  
        throws SQLException { 
         
        // Get the user info from the database 
        Connection conn = dataSource.getConnection( ); 
        Row empRow = null; 
        Vector projectRows = null; 
        try { 
            empRow = getSingleValueProps(userName, conn); 
            projectRows = getProjects(userName, conn); 
        } 
        finally { 
            try { 
                conn.close( ); 
            } 
            catch (SQLException e) {} // Ignore 
        } 
 
        // Create a EmployeeBean if the user was found 
        if (empRow == null) { 
            // Not found 
            return null; 
        } 
         
        EmployeeBean empInfo = new EmployeeBean( ); 
        try { 
            empInfo.setDept(empRow.getString("Dept")); 
            empInfo.setEmpDate(empRow.getString("EmpDate")); 
            empInfo.setEmailAddr(empRow.getString("EmailAddr")); 
            empInfo.setFirstName(empRow.getString("FirstName")); 
            empInfo.setLastName(empRow.getString("LastName")); 
            empInfo.setPassword(empRow.getString("Password")); 
            empInfo.setUserName(empRow.getString("UserName")); 
            empInfo.setProjects(toProjectsArray(projectRows)); 
        } 
        catch (NoSuchColumnException nsce) {} // Cannot happen here 
        catch (UnsupportedConversionException nsce) {}  
        return empInfo; 
    } 
 
    /** 
     * Inserts the information about the specified employee, or  
     * updates the information if it's already defined. 
     */ 
    public void saveEmployee(EmployeeBean empInfo) throws SQLException { 
         
        // Save the user info from the database 
        Connection conn = dataSource.getConnection( ); 
        conn.setAutoCommit(false); 
        Row userRow = null; 
        Vector interestRows = null; 
        try { 
            saveSingleValueProps(empInfo, conn); 
            saveProjects(empInfo, conn); 
            conn.commit( ); 
        } 
        finally { 
            try { 
                conn.setAutoCommit(true); 
                conn.close( ); 
            } 
            catch (SQLException e) {} // Ignore 
        } 
    } 
     



JavaSercer Pages 

  page 210

    /** 
     * Returns a Row with all information about the specified 
     * employee except the project list, or null if not found. 
     */ 
    private Row getSingleValueProps(String userName, Connection conn)  
        throws SQLException { 
 
        if (userName == null) { 
            return null; 
        } 
         
        SQLCommandBean sqlCommandBean = new SQLCommandBean( ); 
        sqlCommandBean.setConnection(conn); 
        StringBuffer sql = new StringBuffer( ); 
        sql.append("SELECT * FROM Employee ") 
            .append("WHERE UserName = ?"); 
        sqlCommandBean.setSqlValue(sql.toString( )); 
        Vector values = new Vector( ); 
        values.addElement(new StringValue(userName)); 
        sqlCommandBean.setValues(values); 
        Vector rows = null; 
        try { 
            rows = sqlCommandBean.executeQuery( ); 
        } 
        catch (UnsupportedTypeException e) {} // Cannot happen here 
         
        if (rows == null || rows.size( ) == 0) { 
            // User not found 
            return null; 
        } 
        return (Row) rows.firstElement( ); 
    } 
    ... 

The EmployeeRegistryBean has one property, dataSource, that needs to be set when the bean is created. 
Chapter 14, describes how a servlet can create the bean and initialize it with a DataSource when the 
application starts, and then save it in the application scope where all JSP pages can reach it. The other public 
methods in this bean perform the same functions as the generic database actions in Chapter 9 and Chapter 
10. The getSingleValueProps( ) method, as well other private methods not shown in Example 15.6, use an 
SQLCommandBean to execute the SQL statement. This bean is included in the source code package for this 
book, so you can use it in your own beans as well. We will take a look at the implementation in Chapter 17. 

Using the EmployeeRegistryBean instead of the generic database actions means you can greatly simplify the 
JSP pages. For instance, the authentication code in Example 10.3 can be reduced to this: 

<jsp:useBean id="empReg" scope="application" 
  class="com.ora.jsp.beans.emp.EmployeeRegistryBean" /> 
 
<%  
  String userName = request.getParameter("userName"); 
  String password = request.getParameter("password"); 
  if (!userReg.authenticate(userName, password)) {  
%> 
 
     <ora:redirect page="index.jsp" > 
       <ora:param name="errorMsg"  
         value="The User Name and Password you entered are not valid." /> 
     </ora:redirect> 
 
<%  
  }  
  else {  
    com.ora.jsp.beans.emp.EmployeeBean validUser =  
      empReg.getEmployee(userName); 
    session.setAttribute("validUser", validUser); 
%> 

The <jsp:useBean> action finds the single instance in the application scope and associates it with a scripting 
variable named empReg, which is then used in the scriptlets to call the bean's methods. 



JavaSercer Pages 

  page 211

15.2.3 Multithreading Considerations 

As you have seen, putting business logic in beans leads to a more structured and maintainable application. 
But there's one thing you need to be aware of: beans shared between multiple pages must be thread-safe. 

Multithreading is an issue only for beans in the session and application scopes. Beans in the page and request 
scopes are executed by only one thread at a time. A bean in the session scope can be executed by more than 
one thread, initiated by requests from the same client. This may happen if the user brings up multiple 
browsers, repeatedly clicks a Submit button in a form, or if the application uses frames to request multiple 
JSP pages at the same time. Application scope beans are shared by all application users, hence it's very likely 
that more than one thread is using an application scope bean. 

Java provides mechanisms for dealing with concurrent access to resources, such as synchronized blocks and 
thread notification methods. But there are other ways to avoid multithreading issues in the type of beans 
used in JSP pages. 

Value beans are typically placed in the request or session scope, as containers of related information used in 
multiple pages. In most cases, they are created and initialized in one place only, such as by a Controller 
servlet or by a <jsp:useBean> and <jsp:setProperty> combination in the request processing page invoked 
by a form, or by a custom action or utility bean. In all other places, the bean is used only with 
<jsp:getProperty> or scripting elements to read its property values. Since only one thread writes to the 
bean and all others just read it, you don't have to worry about different threads overwriting each other. 

But if you have a value bean that can be updated, such as the NewsBean used in Chapter 10, you have to be 
careful. The NewsBean contains an instance variable that holds a list of NewsItemBean objects and has 
methods for retrieving new items matching a search criterion, as well as for adding and removing new items. 
If one thread calls removeNewsItem( ) while another is executing getNewsItems( ), a runtime exception 
may occur. Example 15.7 shows how you can use synchronization to guard against this problem. 

Example 15.7. Synchronized Access to Instance Variable  

package com.ora.jsp.beans.news; 
 
import java.io.*; 
import java.util.*; 
import com.ora.jsp.util.*; 
 
public class NewsBean implements Serializable { 
    private Vector newsItems = new Vector( ); 
    private int[] idSequence = new int[1]; 
     
    ... 
    public NewsItemBean[] getNewsItems(String[] categories) { 
        Vector matches = new Vector( ); 
        synchronized (newsItems) { 
            for (int i = 0; i < newsItems.size( ); i++) { 
                NewsItemBean item =  
                    (NewsItemBean) newsItems.elementAt(i); 
                if (ArraySupport.contains(categories,  
                    item.getCategory( ))) { 
                    matches.addElement(item); 
                } 
            } 
        } 
        NewsItemBean[] matchingItems =  
            new NewsItemBean[matches.size( )]; 
        matches.copyInto(matchingItems); 
        return matchingItems; 
    } 
 
    public void setNewsItem(NewsItemBean newsItem) { 
        synchronized (idSequence) { 
            newsItem.setId(idSequence[0]++); 
        } 
        newsItems.addElement(newsItem); 
    } 
    public void removeNewsItem(int id) { 
        synchronized (newsItems) { 
            for (int i = 0; i < newsItems.size( ); i++) { 
                NewsItemBean item =  
                    (NewsItemBean) newsItems.elementAt(i); 
                if (id == item.getId( )) { 
                    newsItems.removeElementAt(i); 
                    break; 
                } 
            } 
        } 
    } 
    ... 



JavaSercer Pages 

  page 212 

Both the getNewsItems( ) and the removeNewsItem( ) methods synchronize on the newsItems object, and 
the addElement( ) method used in setNewsItem( ) is a synchronized method. The effect is that while one 
thread is manipulating the list of news items through one of these methods, all other threads wait until the 
current thread leaves the synchronized block. 

The setNewsItem( ) method also synchronizes on idSequence, a variable used to generate a unique ID for 
each item. idSequence is an int array with one component. It's a neat trick to be able to use synchronization 
for an integer value: Java doesn't allow synchronization on primitive types, only on objects, but an array is an 
object. You could use an Integer object instead, but you can't change the value of an Integer. To increment 
the value, a new Integer must be created. Using an array avoids these repeated object creations (and 
creating an object is a fairly expensive operation in Java). 

Another approach that avoids multithreading problems is used in the utility beans in this book, such as the 
CounterBean used in Chapter 8 and the EmployeeRegistryBean described in the previous section. These 
beans only define setter methods for customization that takes place when the bean is created, and define all 
data needed to perform a function as method arguments instead of properties. Each thread has its own copies 
of argument values and local variables, so with this approach there's no risk of one thread stepping on 
another. 

 

15.3 Unexpected <jsp:setProperty> Behavior 

The <jsp:setProperty> action can be used to automatically set all properties in a bean with names matching 
the names of the parameters received with the request. This is a great feature that's used in many of the 
examples in this book. But unless you know how this works behind the scenes, you could be in for a surprise. 

When the <jsp:setProperty> code is invoked, it gets a list of all request parameter names and uses bean 
introspection to find the corresponding property setter methods. It then calls all setter methods to set the 
properties to the values of the parameters. This means that if you have a property in your bean that doesn't 
match a parameter, the setter method for this property is not called. In most cases, this is not surprising. 
However, if the parameter is present in some requests but not in others, things may get a bit confusing. This 
is the case with parameters corresponding to checkbox, radio button, and selection list elements in an HTML 
form. If this type of element is selected, the browser sends a parameter with the element's name and the 
value of the selected item. But if the element is not selected, it doesn't send a parameter at all. 

For example, let's say you have a bean with an indexed property, such as the projects property in the 
com.ora.jsp.beans.emp.EmployeeBean used in Chapter 10. This bean is kept in the session scope. The user 
can change the value of the property through a group of checkboxes in a form. To unregister all projects, a 
user deselects all checkboxes and submits the form. You may think the following code would then clear the 
property (setting it to null): 

 <jsp:setProperty name="validUser" property="projects" param="projects" /> 

Yet it doesn't. Without any checkbox selections, the projects parameter is not sent and the corresponding 
property setter method is not called. The workaround used in Chapter 10 is to use a request-time attribute 
expression to explicitly set the property to either the array of selected checkboxes or null if none is selected: 

 <jsp:setProperty name="validUser" property="projects" 
   value='<%= request.getParameterValues("projects") %>' /> 

If you have been developing web applications for a while, you may not think this is so surprising. The 
<jsp:setProperty> action behaves the same way, however, even when a parameter matching a property is 
received but its value is an empty string. This happens for text fields that the user leaves empty. 

If you have properties matching text fields, make sure the code that uses the values of the corresponding 
properties can deal with null values, or initialize them to empty strings. If you keep a bean like this in a 
scope other than the page and request scopes (where a new instance is created for each request), also be 
aware that the user cannot clear the property by erasing the field in a form. One possible workaround is to 
define a reset property, with a setter method that clears all properties. Then call it explicitly in the JSP page 
before setting the other properties, like this: 

 <jsp:setProperty name="validUser" property="reset" value="any value" /> 
 <jsp:setProperty name="validUser" property="*" /> 

This way, all properties are first reset by the first <jsp:setProperty> action, and then all properties 
matching request parameters are set by the second action. 



JavaSercer Pages 

  page 213

Chapter 16. Developing JSP Custom Actions 

Custom actions let you encapsulate logic and make it available to page authors in a familiar format. 
Throughout this book, a number of generic custom actions are used for such tasks as accessing a database, 
including localized content, encoding URLs, and much more. Using these actions, the amount of Java code in 
the JSP pages can be kept to a minimum, making the application easier to debug and maintain. However, for 
a complex application, the generic actions presented in this book are not enough. Perhaps you want to 
develop application-specific actions to access the database instead of putting SQL statements in the JSP 
pages. Or you may want to present complex data as a set of nested HTML tables with cells formatted 
differently depending on their values. Instead of using conditional scripting code in the JSP page to generate 
this table, an application-specific custom action can be used. 

Custom actions know about their environment. They automatically get access to all information about the 
request, the response, and all the variables in the JSP scopes. Another common use for a custom action is as 
an HTTP-specific adapter to a bean. JavaBeans components are frequently used in a JSP application, and a 
bean is easier to reuse if it doesn't know about the environment where it's used. 

To develop a custom action, you use a set of classes and interfaces referred to in the JSP 1.1 specification as 
the tag extension mechanism. The simplest custom action implementation is just a class with bean-like 
accessor methods plus a couple of other well-defined methods. But it's a very powerful mechanism, letting 
you develop custom actions to do pretty much anything. As always, with increased power comes some 
amount of complexity. For more advanced actions you need to implement additional methods, and in some 
cases an extra class. But it's still not rocket science. We'll take it step by step, starting with the most common 
and simple cases, and then work through some examples of the advanced features in the later sections of this 
chapter. 

 

16.1 Tag Extension Basics 

A custom action - actually a tag handler class for a custom action - is basically a bean with property setter 
methods corresponding to the custom action element's attributes. In addition, the tag handler class must 
implement one of two Java interfaces defined by the JSP specification. 

All the interfaces and classes you need to implement a tag handler are defined in the 
javax.servlet.jsp.tagext package. The two primary interfaces are named Tag and BodyTag. The Tag 
interface defines the methods you need to implement for any action. The BodyTag interface extends the Tag 
interface and adds methods used to access the body of an action element. To make it easier to develop a tag 
handler, two support classes are defined by the API: TagSupport and BodyTagSupport, as shown in Figure 
16.1. These classes provide default implementations for the methods in the corresponding interface. 

Figure 16.1. The primary tag extension interfaces and support classes 

 

The reason the specification defines both interfaces and the support classes that implement those interfaces 
is simply to cover all the bases. If you already have a class with functionality that you want to access as a 
custom action, you can specify that it implements the appropriate interface and add the few methods defined 
by that interface. In practice, though, I recommend that you implement your tag handlers as extensions to 
the support classes. This way, you get most of the methods implemented for free, and you can still reuse the 
existing classes by calling them from the tag handler. 



JavaSercer Pages 

  page 214

A tag library is a collection of custom actions. For instance, all custom actions used in this book are packaged 
as one tag library. Besides the tag handler class files, a tag library must contain a Tag Library Descriptor 
(TLD) file. This is an XML file that maps all custom action names to the corresponding tag handler classes, 
and describes all attributes supported by each custom action. The class files and the TLD can be packaged in 
a JAR file to make it easy to install. We look at the TLD syntax and packaging details at the end of this 
chapter. 

Before we get into all the intricate details, let's take a brief look at what it takes to develop, deploy, and use a 
custom action. First, you implement a tag handler class, like the following: 

package com.mycompany; 
 
import java.io.*; 
import javax.servlet.jsp.*; 
import javax.servlet.jsp.tagext.*; 
 
public class HelloTag extends TagSupport { 
    private String name = "World"; 
 
    public void setName(String name) { 
        this.name = name; 
    } 
 
    public int doEndTag( ) { 
        try { 
            pageContext.getOut( ).println("Hello " + name); 
        } 
        catch (IOException e) {} // Ignore it 
        return EVAL_PAGE; 
    } 
} 

The tag handler class contains a setter method for an attribute named name. The doEndTag( ) method 
(defined by the Tag interface) simply writes "Hello" plus the name attribute value to the response. You compile 
the class and place the resulting class file in the WEB-INF/classes directory for the application. 

Next, you create the TLD file. The following is a minimal TLD file for a library with just one custom action 
element: 

<?xml version="1.0" encoding="ISO-8859-1" ?> 
<!DOCTYPE taglib 
  PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN" 
  "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd"> 
 
<taglib> 
  <tlibversion>1.0</tlibversion> 
  <jspversion>1.1</jspversion> 
  <shortname>test</shortname> 
 
  <tag> 
    <name>hello</name> 
    <tagclass>com.mycompany.HelloTag</tagclass> 
    <bodycontent>empty</bodycontent> 
    <attribute> 
      <name>name</name> 
    </attribute> 
  </tag> 
</tablib> 

The TLD maps the custom action name hello to the tag handler class com.mycompany.HelloTag, and defines 
the name attribute. Place the TLD file in the application's WEB-INF/tlds directory, for instance with the 
filename mylib.tld. 

Now you're ready to use the custom action in a JSP page, like this: 

 <%@ taglib uri="/WEB-INF/mylib.tld" prefix="test" %> 
 <html> 
   <body bgcolor="white"> 
     <test:hello name="Hans" /> 
   </body> 
 </html> 

When the page is requested, the JSP container uses the TLD to figure out which class to execute for the 
custom action. It then calls all the appropriate methods, resulting in the text "Hello Hans" being added to the 
response. That's all there's to it for the most simple case. In the remainder of this chapter, we go through all 
of this in greater detail. 

http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd


JavaSercer Pages 

  page 215 

16.2 Developing a Simple Action 

As you have seen in the previous chapters, a custom action element in a JSP page consists of a start tag 
(possibly with attributes), a body, and an end tag: 

 <prefix:actionName attr1="value1" attr2="value2"> 
   The body 
 </prefix:actionName> 

If the action element doesn't have a body, the following shorthand notation can be used instead of the start 
tag and the end tag: 

 <prefix:actionName attr1="value1" attr2="value2" /> 

A tag handler is the object invoked by the JSP container when a custom action is found in a JSP page. In 
order for the tag handler to do anything interesting, it needs access to all information about the request and 
the page, as well as the action element's attribute values (if any). At a minimum, the tag handler must 
implement the Tag interface, which contains methods for giving it access to the request and page 
information, as well as methods called when the start tag and end tag are encountered. Note that an action 
element supported by a tag handler that implements the Tag interface may have a body, but the tag handler 
has more limited control over the body content than a tag handler that implements the BodyTag interface. For 
the attribute values, the JSP container treats the tag handler as a bean and calls a property setter method 
corresponding to each attribute, as shown in Figure 16.2. 

Figure 16.2. Tag interface methods and property setter methods 

 

Here are the most important methods of the Tag interface: 

 public void setPageContext(PageContext pageContext); 
 public int doStartTag( ) throws JspException; 
 public int doEndTag( ) throws JspException; 

To be complete, let's first look at the implementation of these methods provided by the TagSupport class. 
This is the class that most simple tag handlers extend, so it's important to know how TagSupport implements 
the methods a tag handler inherits. 

The first method of interest is the setPageContext( ) method: 

 public class TagSupport implements Tag, Serializable { 
     ... 
     protected PageContext pageContext; 
     ... 
     public void setPageContext(PageContext pageContext) { 
         this.pageContext = pageContext; 
     } 

This method is called by the JSP container before the tag handler is used. The TagSupport implementation 
simply sets an instance variable to the current PageContext object. The PageContext provides access to the 
request and response objects and all the JSP scope variables, and it implements a number of utility methods 
that the tag handler may use. Appendix B, includes a complete list of all PageContext methods. 

When the start tag is encountered, the JSP container calls the doStartTag( ) method, implemented like this 
in the TagSupport class: 

 public int doStartTag( ) throws JspException { 
         return SKIP_BODY; 
     } 



JavaSercer Pages 

  page 216 

This method gives the tag handler a chance to initialize itself, perhaps verifying that all attributes have valid 
values. Another use for this method is to decide what to do with the element's body content, if a body exists. 
The method returns an int, which must be one of two values defined by the Tag interface: SKIP_BODY or 
EVAL_BODY_INCLUDE. The default implementation returns SKIP_BODY. As the name implies, this tells the JSP 
container to ignore the body completely. If EVAL_BODY_INCLUDE is returned instead, the JSP container 
processes the body (for instance, executes scripting elements and other actions in the body) and includes the 
result in the response. A simple conditional tag - a replacement for a scriptlet with an if statement - can be 
created by testing some condition (set by action attributes) in the doStartTag( ) and returning either 
SKIP_BODY or EVAL_BODY_INCLUDE, depending on if the condition is true or false. 

No matter which value the doStartTag( ) method returns, the JSP container calls doEndTag( ) when it 
encounters the end tag: 

 public int doEndTag( ) throws JspException { 
         return EVAL_PAGE; 
     } 

This is the method that most tag handlers override to do the real work. It can also return one of two int 
values defined by the Tag interface. The TagSupport class returns EVAL_PAGE, telling the JSP container to 
continue to process the rest of the page. But a tag handler can also return SKIP_PAGE, which aborts the 
processing of the rest of the page. This is appropriate for a tag handler that forwards processing to another 
page or that sends a redirect response to the browser, like the <ora:redirect> custom action introduced in 
Chapter 8. 

An example of a custom action that can be implemented as a simple tag handler is the <ora:addCookie> 
action, introduced in Chapter 10. The tag handler class is called com.ora.jsp.tags.generic.AddCookieTag 
and extends the TagSupport class to inherit most of the Tag interface method implementations: 

 package com.ora.jsp.tags.generic; 
 
 import javax.servlet.http.*; 
 import javax.servlet.jsp.*; 
 import javax.servlet.jsp.tagext.*; 
 import com.ora.jsp.util.*; 
 
 public class AddCookieTag extends TagSupport { 

The <ora:addCookie> action has two mandatory attributes, name and value, and one optional attribute, 
maxAge. Each attribute is represented by an instance variable and a standard property setter method: 

 private String name; 
     private String value; 
     private String maxAgeString; 
  
     public void setName(String name) { 
         this.name = name; 
     } 
  
     public void setValue(String value) { 
         this.value = value; 
     } 
  
     public void setMaxAge(String maxAgeString) { 
         this.maxAgeString = maxAgeString; 
     } 

The purpose of the custom action is to create a new javax.servlet.Cookie object, with the name, value, 
and max age values specified by the attributes, and to add the cookie to the response. The tag handler class 
overrides the doEndTag( ) method to carry out this work: 

public int doEndTag( ) throws JspException { 
        int maxAge = -1; 
        if (maxAgeString != null) { 
            try { 
                maxAge = Integer.valueOf(maxAgeString).intValue( ); 
            } 
            catch (NumberFormatException e) { 
                throw new JspException("Invalid maxAge: " +  
                    e.getMessage( )); 
            } 
        } 
        CookieUtils.sendCookie(name, value, maxAge, 
            (HttpServletResponse) pageContext.getResponse( )); 
        return EVAL_PAGE; 
    } 



JavaSercer Pages 

  page 217 

The maxAge attribute is optional, so before the corresponding String value is converted into an int, a test is 
performed to see if it is set or not. You may wonder why similar tests are not done for the name and value 
variables. The reason is that the JSP container verifies that all mandatory attributes are set in the custom 
action. If a mandatory attribute is not set, the JSP container refuses to process the page, so you can always 
be sure that a variable corresponding to a mandatory attribute has a value. I describe how to specify a 
mandatory attribute at the end of this chapter. 

The code that actually creates the Cookie object and adds it to the response object is executed by the 
sendCookie( ) method in the com.ora.jsp.util.CookieUtils class. This is a pretty common practice; the 
tag handler is just a simple adapter for logic that's implemented in another class, providing a JSP-specific 
interface to the reusable class. 

One last thing to note in this example is that the property setter method for the maxAge attribute, and the 
corresponding instance variable, is of type String, even though it's later converted to an int before it's used. 
In a regular bean, you would likely make it a property of type int to begin with instead. Using a String 
property and converting it to an int in the tag handler is not necessarily the best implementation strategy, 
but it's the safest. A JSP 1.1-compliant container should automatically convert a literal string attribute value 
to the appropriate type, as shown in Table 16.1. 

Table 16.1, Conversion of String Value to Property Type  

Property Type Conversion Method 

boolean or Boolean Boolean.valueOf(String) 

byte or Byte Byte.valueOf(String) 

char or Character String.charAt(int) 

double or Double Double.valueOf(String) 

int or Integer Integer.valueOf(String) 

float or Float Float.valueOf(String) 

long or Long Long.valueOf(String) 

This is a very recent clarification of the specification, documented in the specification errata document 
available at http://java.sun.com/products/jsp/. Even though Tomcat 3.2 works according to the updated 
specification, other early implementations may not. If the conversion from a String to the appropriate type is 
not done by the container, a page author has to use a request-time attribute expression to set a non-String 
attribute value: 

 <ora:addCookie name="myCookie"  
   value="myValue" 
   maxAge="<%= 2592000 %>" /> 

That's likely to cause at least some confusion; it can be avoided by taking care of the conversion in the tag 
handler instead. 

Whether to count on the container to do the conversion or to do it in the tag handler depends on how mature 
container implementations are when you read this. Letting the container take care of it is easiest, of course, 
but if the containers you plan to deploy with your application are still first-generation JSP 1.1 
implementations, you should test to make sure they handle the conversion correctly. 

The tag handler class should also implement the release( ) method, to release all references to objects that 
it has acquired: 

 public void release( ) { 
         name = null; 
         value = null; 
         maxAgeString = null; 
         super.release( ); 
     } 

The release( ) method is called when the tag handler is no longer needed. The AddCookieTag class sets all 
its properties to null and calls super.release( ) to let the TagSupport class do the same. This makes all 
property objects available for garbage collection. 

http://java.sun.com/products/jsp/


JavaSercer Pages 

  page 218

16.3 Processing the Action Body 

As you can see, it's easy to develop a tag handler that doesn't need to do anything with the action element's 
body. For a tag handler that does need to process the body, however, just a few more methods are needed. 
They are defined by the BodyTag interface, which extends the Tag interface. 

The action element's body has many possible uses. It can be used for input values spanning multiple lines; 
the SQL custom actions introduced in Chapter 9, use the body this way. The SQL statement is often large, so 
it's better to let the page author write it in the action body instead of forcing it to fit on one line, which is a 
requirement for an attribute value. The body can also contain nested actions that rely on the enclosing action 
in some way. The <ora:sqlTransaction> action, also from Chapter 9, provides the nested SQL actions with 
the DataSource object they use to communicate with the database, and ensures that the SQL statements in 
all actions are treated as one transaction that either fails or succeeds. 

A third example is an action that processes the body content in one way or another before it's added to the 
response. Chapter 12, contains an example of an action that processes its XML body using the XSL stylesheet 
specified as an attribute. Later in this section we look at an action that replaces characters that have special 
meanings in HTML with the corresponding HTML character entities. 

As with the Tag interface, there's a BodyTagSupport class that implements all the methods of the BodyTag 
interface, plus a few utility methods: 

 public class BodyTagSupport extends TagSupport implements BodyTag { 

A tag handler that implements the BodyTag interface is at first handled the same way as a tag handler 
implementing the Tag interface: the container calls all property setter methods and the doStartTag( ) 
method. But then things divert, as illustrated in Figure 16.3. 

Figure 16.3. BodyTag interface methods 

 

First of all, the BodyTagSupport class overrides the doStartTag( ) method inherited from the TagSupport 
class: 

 public int doStartTag( ) throws JspException { 
     return EVAL_BODY_TAG; 
 } 

Instead of returning SKIP_BODY, like the TagSupport class does, it returns EVAL_BODY_TAG . The 
EVAL_BODY_TAG value is valid only for a tag handler that implements the BodyTag interface. It means that not 
only should the action's body be processed, but the container must also make the result available to the tag 
handler. 

To satisfy this requirement, the container uses a BodyContent object. This is a subclass of the JspWriter, the 
class used to write text to the response body. In addition to the inherited methods for writing to the object, 
the BodyContent class has methods that the tag handler can use to read the content. 

This is how it works. The JSP container assigns a reference to a JspWriter to the implicit out variable at the 
top of the page. Everything that's added to the response body - either explicitly by JSP elements or implicitly 
by the JSP container (template text) - is written to out, so it ends up in the JspWriter before it's sent to the 
browser. When the JSP container encounters a custom action with a tag handler that implements the BodyTag 
interface, it temporarily reassigns out to a BodyContent object until the action's end tag is encountered. The 
content produced when the element body is processed is therefore buffered in the BodyContent object where 
the tag handler can read it. 



JavaSercer Pages 

  page 219 

The tag handler gets a reference to the BodyContent object through the setBodyContent( ) method: 

     ... 
     protected BodyContent   bodyContent; 
     ... 
     public void setBodyContent(BodyContent b) { 
         this.bodyContent = b; 
     } 

The BodyTagSupport class simply saves the reference to the BodyContent object in an instance variable. 

Next, the container gives the tag handler a chance to initialize itself before the body is processed by calling 
doInitBody( ): 

     public void doInitBody( ) throws JspException { 
     } 

The implementation in BodyTagSupport does nothing. A tag handler can, however, use this method to 
prepare for the first pass through the action body, perhaps initializing scripting variables that it makes 
available to the body. We look at this in more detail later. A tag handler that doesn't introduce variables 
rarely overrides this method. 

When the body has been processed, the doAfterBody( ) method is invoked: 

     public int doAfterBody( ) throws JspException { 
         return SKIP_BODY; 
     } 

A tag handler can use this method to read the buffered body content and process it in some way. This 
method also gives the tag handler a chance to decide whether the body should be processed again. If so, it 
returns the EVAL_BODY_TAG value. We'll look at an example of an iteration action that takes advantage of this 
later. The BodyTagSupport implementation returns SKIP_BODY to let the processing continue to the 
doEndTag( ) method. As with a tag handler implementing the Tag interface, this method returns either 
EVAL_PAGE or SKIP_PAGE. 

Let's look at a tag handler class that extends the BodyTagSupport class. The EncodeHTMLTag class is the tag 
handler class for a custom action called <ora:encodeHTML>. This action reads its body, replaces all characters 
with special meanings in HTML (single quotes, double quotes, less-than and greater-than symbols, and 
ampersands) with their corresponding HTML character entities (&#39;, &#34;, &lt;, &gt;, and &amp;) and 
inserts the result in the response body. Example 16.1 shows how the action can be used in a JSP page, and 
Figure 16.4 what the processed result looks like in a browser. 

Example 16.1. A JSP Page Using the <ora:encodeHTML> Action  

<%@ page language="java" %> 
<%@ taglib uri="/orataglib" prefix="ora" %> 
<html> 
  <head> 
    <title>Encoded HTML Example</title> 
  </head> 
  <body> 
    <h1>Encoded HTML Example</h1> 
    The following text is encoded by the &lt;ora:encodeHTML&gt;  
    custom action: 
    <pre> 
      <ora:encodeHTML> 
        HTML 3.2 Documents start with a <!DOCTYPE>  
        declaration followed by an HTML element containing  
        a HEAD and then a BODY element:  
 
        <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN"> 
        <HTML> 
        <HEAD> 
        <TITLE>A study of population dynamics</TITLE> 
        ... other head elements 
        </HEAD> 
        <BODY> 
        ... document body 
        </BODY> 
        </HTML>       
      </ora:encodeHTML> 
    </pre> 
  </body> 
</html> 



JavaSercer Pages 

  page 220

Figure 16.4. A JSP page with HTML source processed by the <ora:encodeHTML> action  

 

Note how the body of the <ora:encodeHTML> action in Example 16.1 contains HTML elements. Unless the 
special characters were converted to HTML character entities, the browser would interpret the HTML and show 
the result instead of the elements themselves. Besides static text, the action body can contain any JSP 
element. A more realistic example of the use of this action is to insert text from a database into a JSP page, 
without having to worry about how special characters in the text are interpreted by the browser. 

The tag handler class is very trivial, as shown in Example 16.2. 

Example 16.2. The EncodeHTMLTag Class  

package com.ora.jsp.tags.generic; 
 
import java.io.*; 
import javax.servlet.jsp.*; 
import javax.servlet.jsp.tagext.*; 
import com.ora.jsp.util.*; 
 
public class EncodeHTMLTag extends BodyTagSupport { 
     
    public int doAfterBody( ) throws JspException { 
        BodyContent bc = getBodyContent( ); 
        JspWriter out = getPreviousOut( ); 
        try { 
            out.write(StringFormat.toHTMLString(bc.getString( ))); 
        } 
        catch (IOException e) {} // Ignore 
        return SKIP_BODY; 
    } 
} 

The action doesn't have any attributes, so the tag handler doesn't need any instance variables and property 
access methods. The tag handler can reuse all BodyTag methods implemented by the BodyTagSupport class 
except for the doAfterBody( ) method. 

In the doAfterBody( ) method, two utility methods provided by the BodyTagSupport class are used. The 
getBodyContent( ) method returns a reference to the BodyContent object that contains the result of 
processing the action's body. The getPreviousOut( ) method returns the BodyContent of the enclosing 
action (if any) or the main JspWriter for the page if the action is at the top level. 



JavaSercer Pages 

  page 221

You may be wondering why the method is called getPreviousOut( ) as opposed to getOut( ). The name is 
intended to emphasize the fact that you want to use the object assigned as the output to the enclosing 
element in a hierarchy of nested action elements. Say you have the following action elements in a page: 

<xmp:foo> 
    <xmp:bar> 
        Some template text 
    </xmp:bar> 
</xmp:foo> 

The JSP container first creates a JspWriter and assigns it to the out variable for the page. When it 
encounters the <xmp:foo> action, it creates a BodyContent object and temporarily assigns it to the out 
variable. It creates another BodyContent for the <xmp:bar> action and, again, assigns it to out. The 
container keeps track of this hierarchy of output objects. Template text and output produced by the standard 
JSP elements end up in the current output object. Each element can get access to its own BodyContent object 
by calling the getBodyContent( ) method and reading the content. For the <xmp:bar> element, the content 
is the template text. After processing the content, it can write it to the <xmp:foo> body by getting the 
BodyContent for this element through the getPreviousOut( ) method. Finally, the <xmp:foo> element can 
process the content provided by the <xmp:bar> element and add it to the top-level output object: the 
JspWriter object it gets by calling the getPreviousOut( ) method. 

The tag handler in Example 16.2 converts all the special characters it finds in its BodyContent object using 
the toHTMLString( ) method in the com.ora.jsp.utils.StringFormat class, introduced in Chapter 6. It 
gets the content of the BodyContent by using the getString( ) method, and uses it as the argument to the 
toHTMLString( ) method. The result is written to the JspWriter obtained by calling getPreviousOut( ). 
The doAfterBody( ) method then returns SKIP_BODY, since no iteration is needed. 

 

16.4 Letting Actions Cooperate 

Now that you've seen how to develop basic tag handlers, let's discuss some more advanced features. In this 
section, we look at tag handlers that let a page author use custom actions that cooperate with each other. 

You have seen examples of this throughout this book. For instance, in Chapter 9, various types of value 
actions are nested within the body of an <ora:sqlQuery> action to set the values of place holders in the SQL 
statement. Another example is the <ora:encodeURL> action with nested <ora:param> actions, which are used 
in Chapter 8: 

<ora:encodeURL url="product1.jsp"> 
  <ora:param name="id" value="<%= product.getId( )%>" /> 
</ora:encodeURL> 

How does the <ora:param> action tell the enclosing <ora:encodeURL> action about the parameter it defines? 
The answer to this question lies in a couple of Tag interface methods and a utility method implemented by the 
TagSupport class that I skipped earlier. 

The Tag interface methods are setParent( ) and getParent( ), implemented like this by the TagSupport 
class: 

    ... 
    private Tag parent; 
    ... 
    public void setParent(Tag t) { 
        parent = t; 
    } 
 
    public Tag getParent( ) { 
        return parent; 
    } 

These two methods are standard accessor methods for the parent instance variable. For a nested action 
element, the setParent( ) method is always called on the tag handler with the value of the enclosing Tag as 
its value. This way, a nested tag handler always has a reference to its parent. So a tag handler at any nesting 
level can ask for its parent using getParent( ), and then ask for the parent's parent, and so on until it 
reaches a Tag that doesn't have a parent (that is, getParent( ) returns null). This means it has reached the 
top level. 



JavaSercer Pages 

  page 222 

This is part of the puzzle. However, a tag handler is usually interested only in finding a parent it's been 
designed to work with. It would be nice to have a method that works its way up the hierarchy until it finds the 
parent of interest. That's exactly what the findAncestorWithClass( ) method implemented by the 
TagSupport class does: 

public static final Tag findAncestorWithClass(Tag from, Class klass) { 
    boolean isInterface = false; 
 
    if (from == null || 
        klass == null || 
        (!Tag.class.isAssignableFrom(klass) && 
            !(isInterface = klass.isInterface( )))) { 
        return null; 
    } 
 
    for (;;) { 
        Tag tag = from.getParent( ); 
        if (tag == null) { 
            return null; 
        } 
        if ((isInterface && klass.isInstance(tag)) || 
            klass.isAssignableFrom(tag.getClass( ))) 
                return tag; 
        else 
            from = tag; 
    } 
} 

First of all, note that this is a static method. Consequently, it can be used even by tag handlers that 
implement the Tag interface directly, instead of extending the TagSupport class. The method takes two 
arguments: the tag handler instance to start searching from, and the class or interface of the parent. After 
making sure that all parameters are valid, it starts working its way up the nested tag handlers. It stops when 
it finds a tag handler of the specified class or interface and returns it. If the specified parent type is not found, 
the method returns null. 

This is all that's needed to let a nested action communicate with its parent: the parent accessor methods, 
and the method that walks the action hierarchy to find the parent of interest. Example 16.3 shows how the 
ParamTag class uses this mechanism to find the enclosing EncodeURLTag instance. 

Example 16.3. The ParamTag Class  

package com.ora.jsp.tags.generic; 
 
import java.net.*; 
import javax.servlet.jsp.*; 
import javax.servlet.jsp.tagext.*; 
 
public class ParamTag extends TagSupport { 
    private String name; 
    private String value; 
 
    public void setName(String name) { 
        this.name = name; 
    } 
 
    public void setValue(String value) { 
        this.value = value; 
    } 
 
    public int doEndTag( ) throws JspException { 
        Tag parent = findAncestorWithClass(this, ParamParent.class); 
        if (parent == null) { 
            throw new JspException("The param action is not " + 
                "enclosed by a supported action type"); 
        } 
        ParamParent paramParent = (ParamParent) parent; 
        paramParent.setParam(name, URLEncoder.encode(value)); 
        return EVAL_PAGE; 
    } 
} 



JavaSercer Pages 

  page 223

The class has two instance variables, name and value, and the corresponding setter methods. The most 
interesting method is the doEndTag( ) method. This method first uses the findAncestorWithClass( ) 
method to try to locate the enclosing EncodeURLTag instance. Note that this is not the class name used as the 
argument value. Instead, the ParamParent interface is used. The reason is that the <ora:param> action is 
supported in the body of other actions besides <ora:encodeURL>, such as the <ora:redirect> action. The 
ParamParent interface is implemented by all tag handlers for actions that can contain nested <ora:param> 
actions: 

 package com.ora.jsp.tags.generic; 
 
 public interface ParamParent { 
     void setParam(String name, String value); 
 } 

The interface defines one method: the setParam( ) method. This is the method the nested ParamTag tag 
handler uses to communicate with its parent. For each nested <ora:param> action, the setParam( ) method 
gets called when the parent's action body is processed. The name and value for each <ora:param> action are 
accumulated in the parent tag handler, ready to be used when the parent's doEndTag( ) method is called. 
Example 16.4 shows the setParam( ) and doEndTag( ) methods implemented by the EncodeURLTag class. 

Example 16.4. EncodeURLTag  

    ... 
    private Vector params; 
    ... 
    public void setParam(String name, String value) { 
        if (params == null) { 
            params = new Vector( ); 
        } 
        Param param = new Param(name, value); 
        params.addElement(param); 
    } 
 
    public int doEndTag( ) throws JspException { 
        StringBuffer encodedURL = new StringBuffer(url); 
        if (params != null && params.size( ) > 0) { 
            encodedURL.append('?'); 
            boolean isFirst = true; 
            Enumeration e = params.elements( ); 
            while (e.hasMoreElements( )) { 
                Param p = (Param) e.nextElement( ); 
                if (!isFirst) { 
                    encodedURL.append('&'); 
                } 
                encodedURL.append(p.getName( )).append('='). 
                    append(p.getValue( )); 
                isFirst = false; 
            } 
        } 
        try { 
            HttpServletResponse res =  
                (HttpServletResponse) pageContext.getResponse( ); 
            JspWriter out = pageContext.getOut( ); 
            out.print(res.encodeURL(encodedURL.toString( ))); 
        } 
        catch (IOException e) {} 
        return SKIP_BODY; 
    } 

In setParam( ), the parameter name and value are saved as instances of a simple value holder class named 
Param, held in a Vector. In the doEndTag( ) method, each parameter's name/value pair is added to the URL 
before the complete URL is encoded to support session tracking through URL rewriting. If you don't remember 
what all of this means, you can refresh your memory by looking at Chapter 8 again. 

 

16.5 Creating New Variables Through Actions 

Actions can also cooperate through objects available in the standard JSP scopes (page, request, session, and 
application). One example of this type of cooperation is illustrated by the three standard JSP actions: 
<jsp:useBean>, <jsp:setProperty>, and <jsp:getProperty>. The <jspUseBean> action creates a new 
object and makes it available in one of the JSP scopes. The other two actions can then access the properties 
of the object by searching for it in the scopes. Besides making the object available in one of the scopes, the 
<jsp:useBean> action also makes it available as a scripting variable, so it can be accessed by scripting 
elements in the page. 



JavaSercer Pages 

  page 224

The JSP 1.1 specification defines that an attribute named id typically is used to name a variable created by 
an action.7 The value of the id attribute must be unique within the page. Because it's used as a scripting 
variable name, it must also follow the variable name rules for the scripting language. For Java, this means it 
must start with a letter followed by a combination of letters and digits, and must not contain special 
characters, such as a dot or a plus sign. The attribute used in another action to refer to the variable can be 
named anything, but the convention established by the standard actions is to call it name. 

When a custom action creates a variable, it must cooperate with the JSP container to make it happen. To 
understand how this works, recall that the JSP page is turned into a servlet by the JSP container. The JSP 
container needs to generate code that declares the scripting variable in the generated servlet and assigns the 
variable a value. Before getting into how the tag handler and the container cooperate, let's look at the kind of 
code that is generated for the <ora:useProperty> custom action introduced in Chapter 8. Here's a JSP page 
fragment: 

 <jsp:useBean id="catalog"  
   class="com.ora.jsp.beans.shopping.CatalogBean" /> 
 <ora:useProperty name="catalog" id="prod" 
   property="product" arg="1" 
   className="com.ora.jsp.beans.shopping.ProductBean" /> 
 <jsp:getProperty name="prod" property="name" /> 
 <% prod.getName( ); %> 

The <jsp:useBean> action creates an instance of the CatalogBean (or locates an existing instance) and saves 
it in the page scope with the name catalog. It also declares a scripting variable named catalog and sets it to 
the same CatalogBean instance. The <ora:useProperty> custom action retrieves the product property from 
the CatalogBean and introduces it as a page scope object named prod and a scripting variable with the same 
name, in the same manner as the <jsp:useBean> action. Finally, the value of prod is added to the response 
twice: first using the <jsp:getProperty> action, and then again using a JSP expression. 

This JSP page fragment results in code similar to Example 16.5 in the generated servlet. 

Example 16.5. Code Generated for JSP Actions  

// Code for <jsp:useBean> 
com.ora.jsp.beans.shopping.CatalogBean catalog = null; 
catalog= (com.ora.jsp.beans.shopping.CatalogBean) 
  pageContext.getAttribute("catalog",PageContext.PAGE_SCOPE); 
if ( catalog == null ) { 
  try { 
    catalog = (com.ora.jsp.beans.shopping.CatalogBean)  
      Beans.instantiate(getClassLoader( ),  
        "com.ora.jsp.beans.shopping.CatalogBean"); 
  } catch (Exception exc) { 
    throw new ServletException ("Cannot create bean of class "+ 
      "com.ora.jsp.beans.shopping.CatalogBean"); 
  } 
  pageContext.setAttribute("catalog", catalog, PageContext.PAGE_SCOPE); 
} 
... 
// Code for <ora:useProperty> 
com.ora.jsp.tags.generic.UsePropertyTag _jspx_th_ora_useProperty_1 =  
  new com.ora.jsp.tags.generic.UsePropertyTag( ); 
_jspx_th_ora_useProperty_1.setPageContext(pageContext); 
_jspx_th_ora_useProperty_1.setParent(null); 
_jspx_th_ora_useProperty_1.setId("prod"); 
_jspx_th_ora_useProperty_1.setName("catalog"); 
_jspx_th_ora_useProperty_1.setProperty("product"); 
_jspx_th_ora_useProperty_1.setArg("1"); 
_jspx_th_ora_useProperty_1.setClassName( 
  "com.ora.jsp.beans.shopping.ProductBean"); 
try { 
  _jspx_th_ora_useProperty_1.doStartTag( ); 
  if (_jspx_th_ora_useProperty_1.doEndTag( ) == Tag.SKIP_PAGE) 
    return; 
} finally { 
  _jspx_th_ora_useProperty_1.release( ); 
} 
com.ora.jsp.beans.shopping.ProductBean prod = null; 
prod = (com.ora.jsp.beans.shopping.ProductBean)  
  pageContext.findAttribute("prod"); 
... 
// Code for <jsp:getProperty> 
out.print(pageContext.findAttribute("prod"), "name"))); 
... 
// Code for <%= prod.getName( ) %> 
out.print( prod.getName( ) ); 

                                                 
7 If an action creates more than one variable, the id attribute is typically used to name one of them. 



JavaSercer Pages 

  page 225 

The <jsp:useBean> action results in code for locating or creating the CatalogBean, and declaring and 
assigning a Java variable named catalog. But since we're talking about custom actions here, let's focus on 
the code generated for the <ora:useProperty> action. 

First, a tag handler instance is created and initialized with the standard properties (pageContext and parent) 
plus all properties corresponding to the action attributes. Next, the doStartTag( ) and doEndTag( ) 
methods are called. Then comes the code that makes the object created by the action available as a scripting 
variable. Note how a variable with the name specified by the id attribute (prod) is declared, using the type 
specified by the className attribute. Also note that the variable is declared at the top level of the method. 
This means that it's available to scripting elements anywhere on the page after the action element. The 
variable is then assigned the value of the object with same name located in one of the standard JSP scopes, 
using the findAttribute( ) method. This method searches through the scopes, in the order page, request, 
session, and application, until it finds the specified object. 

With the object available in the JSP page scope, the code generated for the <jsp:getProperty> action can 
find it. Since it's also assigned to a Java variable, the JSP expression works correctly as well. 

At least two things are required for a tag handler to create a new object and make it accessible for other 
actions and JSP scripting code: 

1. The JSP container must know the name and the Java type for the object, so it can generate the code 
for the variable declaration. 

2. The object must be placed in one of the JSP scopes, so it can be found by findAttribute( ) and 
assigned to the variable. 

The first requirement is fulfilled by a class called TagExtraInfo . When you develop a tag handler for an 
action that introduces an object, you must also create a subclass of the TagExtraInfo class. The JSP 
container consults an instance of this class when it generates the code. Example 16.6 shows the class 
associated with the <ora:useProperty> action. 

Example 16.6. UsePropertyTagExtraInfo Class  

package com.ora.jsp.tags.generic; 
 
import javax.servlet.jsp.tagext.*; 
 
public class UsePropertyTagExtraInfo extends TagExtraInfo { 
    public VariableInfo[] getVariableInfo(TagData data) { 
        return new VariableInfo[] 
        { 
            new VariableInfo(data.getAttributeString("id"), 
                data.getAttributeString("className"), 
                true, 
                VariableInfo.AT_END) 
        }; 
    } 
} 

The method used by the JSP container during code generation is called getVariableInfo( ). It returns an 
array of VariableInfo objects, one per variable introduced by the tag handler. 

The VariableInfo class is a simple bean with four properties, all of them initialized to the values passed as 
arguments to the constructor: varName, className, declare, and scope. The meaning of the first two is not 
hard to guess: the name of the variable and the name of its class. The declare property is a boolean, in 
which true means that a new variable is created by the action. In other words, a declaration of the variable 
must be added to the generated servlet. A value of false means that the variable has already been created 
by another action or by another occurrence of the same action, so the generated code already contains the 
declaration. This is all the information the JSP container needs to generate the code for the variable 
declaration; the first requirement is satisfied. 

The scope property has nothing to do with the JSP scopes we have seen so far (page, request, session, and 
application). Instead, it defines where the new variable is available to JSP scripting elements. A value of 
AT_BEGIN means that it is available from the action's start tag and stays available after the action's end tag. 
AT_END means it is not available until after the action's end tag. A variable with scope NESTED is available only 
in the action's body, between the start and the end tags. The scope therefore controls where the variable 
declaration and value assignment code is generated, and the tag handler class must make sure the variable is 
available in one of the JSP scopes at the appropriate time. 



JavaSercer Pages 

  page 226 

The UsePropertyTagExtraInfo class sets the scope to AT_END . As you can see in Example 16.5, this results 
in the variable declaration and assignment code being added after the doEndTag( ) call. To satisfy the second 
requirement, the tag handler must therefore give the variable a value and save it in one of the JSP scopes at 
the very latest in the doEndTag( ) method. Example 16.7 shows the doEndTag( ) method for the 
UsePropertyTag class. 

Example 16.7. Saving the New Object in a JSP Scope  

     public int doEndTag( ) throws JspException { 
         Object obj = pageContext.findAttribute(name); 
         if (obj == null) { 
             throw new JspException("Variable " + name + " not found"); 
         } 
         Object propObj = getProperty(obj, property, className); 
         pageContext.setAttribute(id, propObj); 
         return SKIP_BODY; 
     } 

The value is added to the page scope by calling the setAttribute( ) method on the current PageContext 
object, using the name specified by the id attribute. 

If the scope is specified as AT_BEGIN instead, the declaration is added before the doStartTag( ) call and the 
assignment code is added right after the call. In this case, the tag handler must save the variable in a JSP 
scope in the doStartTag( ) method. If the tag handler implements BodyTag, assignment code is also added 
so that it is executed for every evaluation of the body, and after the call to doAfterBody( ) . This allows the 
tag handler to modify the variable value in the doAfterBody( ) method, so each evaluation of the body has a 
new value. When we look at an iteration action later, you'll see why this is important. 

Finally, if the scope is set to NESTED, both the declaration and the value assignment code are inserted in the 
code block representing the action body. The tag handler must therefore make the variable available in either 
the doStartTag( ) method or the doInitBody( ) method, and can also modify the value in the 
doAfterBody( ) method. 

The UsePropertyTagExtraInfo class sets the varName and className properties of the VariableInfo bean 
to the values of the id and className attributes specified by the page author in the JSP page. This is done 
using another simple class named TagData , passed as the argument to the getVariableInfo( ) method, as 
shown in Example 16.6. The TagData instance is created by the JSP container and contains information about 
all action attributes that the page author specified in the JSP page. It has two methods of interest. First, the 
getAttributeString( ) method, used in Example 16.6, simply returns the specified attribute as a String. 
But some attribute values may be specified by a JSP expression instead of a string literal, so-called request-
time attributes. Since these values are not known during the translation phase, the TagData class also 
provides the getAttribute( ) method to indicate if an attribute value is a literal string, a request-time 
attribute, or not set at all. The getAttribute( ) method returns an Object. If the attribute is specified as a 
request-time value, the special REQUEST_TIME_VALUE object is returned. Otherwise, a String is returned, or 
null if the attribute is not set. 

 

16.6 Developing an Iterating Action 

As I alluded to earlier, a tag handler can iterate over the element's body until some condition is true. The 
evaluation of the body may be different for each iteration, since the tag handler can introduce a variable 
(used in the body) that changes its value. An example of an iterating action is the <ora:loop> used in this 
book. It can be used to iterate over the element body once for each value in an array, a java.util.Vector, 
a java.util.Dictionary, or a java.util.Enumeration. Here's an example of how the <ora:loop> action 
can be used: 

<%@ page language="java" contentType="text/html" %>  
<%@ taglib uri="/orataglib" prefix="ora" %> 
<html> 
  <body bgcolor="white"> 
    <% 
      String[] test = new String[4]; 
      test[0] = "first"; 
      test[1] = "second"; 
      test[2] = "third"; 
      test[3] = "fourth"; 
      pageContext.setAttribute("test", test); 
    %> 
 



JavaSercer Pages 

  page 227 

    <pre> 
      <ora:loop name="test" loopId="x" className="java.lang.String"> 
        Current value: <%= x %> 
      </ora:loop> 
    </pre> 
  </body> 
</html> 

Here, the <ora:loop> tag iterates over the elements of a String array, adding the current value to the 
response using a JSP expression in the action's body. 

The com.ora.jsp.tags.generic.LoopTag class is the tag handler class for the <ora:loop> action. It extends 
BodyTag support and has four properties: 

 public class LoopTag extends BodyTagSupport { 
     private String name; 
     private String loopId; 
     private String className; 
     private String property; 
     ... 

A standard property setter method is provided for each property. This is no different than in previous 
examples, so it's not shown here. The name, loopId, and className properties are mandatory. The name is 
the name of a JSP scope variable of one of the types listed earlier. The current value of the data structure is 
made available in the element body through a variable with the name specified by loopId, of the type 
specified by className. Optionally, property can be specified. If it is, it's used to get the data structure from 
the specified property of the bean named by name, instead of using the name object itself as the data 
structure. 

To make the loopId variable available in the element's body, a TagExtraInfo subclass is needed, as 
described in the previous section. The LoopTagExtraInfo class looks like this: 

public class LoopTagExtraInfo extends TagExtraInfo { 
    public VariableInfo[] getVariableInfo(TagData data) { 
        return new VariableInfo[] 
        { 
            new VariableInfo(data.getAttributeString("loopId"), 
                data.getAttributeString("className"), 
                true, 
                VariableInfo.NESTED) 
        }; 
    } 
} 

It introduces a variable named by the loopId attribute, with the type specified by the className attribute. 
The scope is specified as NESTED, meaning the variable is available only within the action element's body. 

In addition to the property variables, the tag handler class has an Enumeration instance variable: 

 private Enumeration enum; 

This variable is initiated by the doStartTag( ) method: 

public int doStartTag( ) throws JspException { 
    Object obj = pageContext.findAttribute(name); 
    if (obj == null) { 
        throw new JspException("Variable " + name + " not found"); 
    } 
     
    Object mvObj = obj; 
    try { 
        // Get the multi-value object using the specified property  
        // getter method, if any 
        if (property != null) { 
            mvObj = getProperty(obj, property); 
        } 
 
        enum = getEnumeration(mvObj); 
    } 
    catch (JspException e) { 
        throw new JspException("Error getting loop data from " +  
            name + ": " + e.getMessage( )); 
    } 
     



JavaSercer Pages 

  page 228

    // Set the first loop value, if any 
    if (enum != null && enum.hasMoreElements( )) { 
        Object currValue = enum.nextElement( ); 
        pageContext.setAttribute(loopId, currValue); 
        return EVAL_BODY_TAG; 
    } 
    else { 
        return SKIP_BODY; 
    } 
} 

After verifying that there really is an object with the specified name, a test is done to see if a property name 
is specified. If it is, the getProperty( ) method is called to retrieve the property value from the specified 
object so it can be used for the iteration. If a property name is not specified, the object itself is used. All the 
supported data structure types can be turned into an Enumeration. That's done by calling the 
getEnumeration( ) method. The getProperty( ) method and the getEnumeration( ) method are not 
shown here, because this code is just plain Java code that has nothing to do with implementing iteration in a 
tag handler. You can look at the source code to see how they work. 

When the Enumeration has been created, the doStartTag( ) method initializes the loopId variable and 
places it in the JSP page scope. As you learned in the previous section, the code generated for the page uses 
the information gained from the LoopTagExtraInfo class to declare a Java variable and assign it the value it 
finds in one of the JSP scopes, right after the doStartTag( ) call. 

When the body has been evaluated, the doAfterBody( ) method is called: 

 public int doAfterBody( ) throws JspException { 
     if (enum.hasMoreElements( )) { 
         Object currValue = enum.nextElement( ); 
         pageContext.setAttribute(loopId, currValue); 
         return EVAL_BODY_TAG; 
     } 
     else { 
         return SKIP_BODY; 
     } 
 } 

The Enumeration is tested to see if it contains any more values. If it does, the loopId page scope variable is 
reassigned to the new value, and EVAL_BODY_TAG is returned to evaluate the body again. When the end of the 
Enumeration is reached, SKIP_BODY is returned to break the iteration. 

When the doAfterBody( ) method returns SKIP_BODY, the doEndTag( ) method is called: 

 public int doEndTag( ) throws JspException { 
     // Test if bodyContent is set, since it will be null if the 
     // body was never evaluated (doStartTag returned SKIP_BODY) 
     if (getBodyContent( ) != null) { 
         try { 
            getPreviousOut().print(getBodyContent( ).getString( )); 
         } 
         catch (IOException e) {} 
     } 
     return EVAL_PAGE; 
 } 

For every iteration, the content of the evaluated body is buffered in the BodyContent instance assigned to the 
tag handler. In the doEndTag( ), the content is simply moved to the parent's BodyContent instance or the 
main JspWriter instance for the page. An alternative to accumulating the content until the doEndTag( ) 
method is called is to write it to the parent's output stream already in the doAfterBody( ) method, using the 
same code as shown here. 



JavaSercer Pages 

  page 229 

 

class Versus className 

You may have noticed that all the custom actions in this book use an attribute named className to 
specify a class name, while all the standard JSP actions use an attribute named class for the same 
purpose. 

The reason for this inconsistency is the fact that tag handlers are handled as JavaBeans components 
with regards to the attributes, combined with an unfortunate name clash. 

The attribute is used to specify a class name, in other words a String. If the attribute name class is 
used, the corresponding property setter method must be named setClass( ), with a String as its 
argument. The Object class, however, implements a method named getClass( ) that returns a 
Class object. The java.beans.Introspector class, used to figure out which properties a bean 
supports by looking for accessor methods, doesn't approve of what it sees as a type mismatch 
between the setter and getter methods for the class property. It therefore refuses to accept that 
class is a valid bean property. 

To work around this problem, all custom actions in this book use an attribute called className 
instead of class. 

 

16.7 Creating the Tag Library Descriptor 

Now you have a good idea about what the code for a tag handler looks like. But when the JSP container 
converts custom action elements into code that creates and calls the correct tag handler, it needs information 
about which tag handler implements which custom action element. It gets this information from the Tag 
Library Descriptor (TLD). As you will see in the next section, the JSP container also uses the TLD information 
to verify that the attribute list for an action element is correct. 

The TLD is an XML file with information about all custom actions in one library. A JSP page that uses custom 
actions must identify the corresponding TLD and the namespace prefix used for the actions in the page with 
the taglib directive (this is described in more detail later). 

 <%@ taglib uri="/WEB-INF/tlds/orataglib_1_0.tld" prefix="ora" %> 
 ... 
 <ora:redirect page="main.jsp" /> 

The JSP page then uses the TLD to find the information it needs when it encounters an action element with a 
matching prefix. 

Example 16.8 shows a part of the TLD for the custom actions in this book. 

Example 16.8. Tag Library Descriptor (TLD)  

<?xml version="1.0" encoding="ISO-8859-1" ?> 
<!DOCTYPE taglib 
  PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN" 
  "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd"> 
 
<taglib> 
  <tlibversion>1.0</tlibversion> 
  <jspversion>1.1</jspversion> 
  <shortname>ora</shortname> 
  <uri> 
    /orataglib 
  </uri> 
  <info> 
    A tab library for the examples in the O'Reilly JSP book 
  </info> 
 

http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd


JavaSercer Pages 

  page 230

  <tag> 
    <name>redirect</name> 
    <tagclass>com.ora.jsp.tags.generic.RedirectTag</tagclass> 
    <bodycontent>JSP</bodycontent> 
    <info> 
      Encodes the url attribute and possible param tags in the body 
      and sets redirect headers. 
    </info> 
    <attribute> 
      <name>page</name> 
      <required>true</required> 
      <rtexprvalue>true</rtexprvalue> 
    </attribute> 
  </tag> 
  ... 
</taglib> 

At the top of the TLD file, you find a standard XML declaration and a DOCTYPE declaration, specifying the 
Document Type Definition (DTD) for this file. A DTD defines the rules for how elements in an XML file must be 
used, such as the order of the elements, which elements are mandatory and which are optional, if an element 
can be included multiple times, etc. If you're not familiar with XML, don't worry about this. Just accept the 
fact that you need to copy the first two elements of Example 16.8 faithfully into your own TLD files. Regarding 
the order of the elements, just follow the same order as in Example 16.8. Whether an element is mandatory 
or optional is spelled out in the following descriptions of each element. 

After the two declarations, the first element in the TLD file must be the <taglib> element. This is the main 
element for the TLD, enclosing all more specific elements that describe the library. Within the body of the 
<taglib> element, you can specify elements that describe the library as such, as well as each individual tag 
handler. Let's start with the five elements that describe the library itself. 

The <tlibversion> element is mandatory and is used to specify the tag library version. The version should 
be specified as a series of numbers separated by dots. In other words, the normal conventions for software 
version numbers, such as 1.1 or 2.0.3, should be used. 

The <jspversion> element, specifying the version of the JSP specification that the library depends on, is 
optional. The default value is 1.1. 

The <shortname> element is intended to be used by page authoring tools. It's a mandatory element that 
should contain the default prefix for the action elements. In Example 16.8 the value is ora, meaning that an 
authoring tool by default generates custom action elements using the ora prefix, for instance <ora:redirect 
page="main.jsp">. This element value can also be used by a tool as the value of the prefix attribute if it 
generates the taglib directive in the JSP page. The element value must not include whitespace or other 
special characters, or start with a digit or underscore. 

The <uri> element is also intended to benefit authoring tools. The value can be used as the default value for 
the uri attribute in a taglib directive. It's an optional element, following the same character rules as the 
<shortname> element. 

The last element that describes the library as such is the optional <info> element. It can be used to provide a 
short description of the library, perhaps something a tool might display to help users decide if the library is 
what they are looking for. 

Besides the general elements, the TLD must include at least one <tag> element. The <tag> element contains 
other elements that describe different aspects of the custom action: <name>, <tagclass>, <teiclass>, 
<bodycontent>, <info>, and <attribute>. 

The <name> element is mandatory and contains the unique name for the corresponding custom action 
element. 

The <tagclass> element, also mandatory, contains the fully qualified class name for the tag handler class. 

If the action introduces variables or needs to do additional syntax validation as described in the next section, 
the optional <teiclass> element is used to specify the fully qualified class name for the TagExtraInfo 
subclass. 



JavaSercer Pages 

  page 231

Another optional element is <bodycontent>. It can contain one of three values. A value of empty means that 
the action body must be empty. If the body can contain JSP elements, such as standard or custom actions or 
scripting elements, the JSP value should be used. All JSP elements in the body are processed, and the result 
is handled as specified by the tag handler (i.e., processed by the tag handler or sent through to the response 
body). This is also the default value, in case you omit the <bodycontent> element. The third alternative is 
tagdependent. This value means that possible JSP elements in the body are not processed. Typically, this 
value is used when the body is processed by the tag handler and the content may contain characters that 
could be confused with JSP elements, for example, SELECT * FROM MyTable WHERE Name LIKE '<%>'. If a 
tag that expects this kind of body content is declared as JSP, the <%> is likely to confuse the JSP container. 
The tagdependent value can be used to avoid this risk for confusion. 

The <info> element can optionally be used to describe the purpose of the action. 

The <tag> element must also contain an <attribute> element for each action attribute. Each element in turn 
contains other elements that describe the attribute: <name>, <required>, and <rtexprvalue>. 

The mandatory <name> element contains the attribute name. The optional <required> element tells if the 
attribute is required or not. The values true, false, yes, and no are valid, with false being the default. 
Finally, the <rtexprvalue> element is an optional element that can have the same values as the <required> 
element. If the value is true or yes, a request-time attribute expression can be used to specify the attribute 
value, for instance 'attr="<%= request.getParameter("par") %>'. The default value is false. 

 

16.8 Validating Syntax 

The TLD for a tag library contains information about the attributes each action element supports. Therefore, 
the JSP container can help by verifying that the custom action is used correctly by the page author, at least 
with respect to the attributes. 

When the JSP container converts a JSP page to a servlet, it compares each custom action element to the 
specification of the action element in the TLD. First, it makes sure that the action name matches the name of 
an action specified in the TLD corresponding to the action element's prefix. It then looks at the attribute list in 
the page and compares it to the attribute specification in the TLD. If a required attribute is missing, or an 
attribute is used in the page but not specified in the TLD, it reports it as an error so the page author can 
correct the mistake. 

But for some actions, it's not that simple. Some attributes may depend on the presence of other attributes. 
Attributes may be mutually exclusive, so that if one is used, the other must not be used. Or an optional 
attribute may require that another optional attribute is used as well. To be able to verify these kinds of 
dependencies, the JSP container asks the tag handler's TagExtraInfo subclass for assistance. 

After the JSP container has checked everything it can on its own, it looks for a TagExtraInfo subclass, 
defined by the <teiclass> element, for the action. If one is defined, it puts all attribute information in an 
instance of the TagData class and calls the TagExtraInfo isValid( ) method: 

public boolean isValid(TagData data) { 
    // Mutually exclusive attributes 
    if (data.getAttribute("attr1") != null && 
        data.getAttribute("attr2" != null) { 
        return false; 
    } 
 
    // Dependent optional attributes 
    if (data.getAttribute("attr3") != null && 
        data.getAttribute("attr4" == null) { 
        return false; 
    } 
    return true; 
} 

A TagExtraInfo subclass can use the TagData instance to verify that all attribute dependencies are okay, as 
in this example. In JSP 1.1, unfortunately, there's no way to generate an appropriate error message; the 
method can only return false to indicate that something is not quite right. This will hopefully be rectified in a 
future version of JSP. 



JavaSercer Pages 

  page 232 

16.9 How Tag Handlers May Be Reused 

Creating new objects is a relatively expensive operation in Java. For high-performance applications, it's 
common to try to minimize the number of objects created and reuse the same objects instead. The JSP 1.1 
specification describes how a tag handler instance can be reused within the code generated for a JSP page if 
the same type of custom action appears more than once. The reuse is subject to a number of restrictions and 
relies on tag handler classes dealing with their internal state as specified. It's important to understand the 
reuse rules, so your tag handler classes behave as expected in a JSP implementation that takes advantage of 
this mechanism. 

As discussed in the previous sections of this chapter, a tag handler's state is initiated through property setter 
methods corresponding to the action element's attributes. The tag handler is then offered a chance to do its 
thing in various stages, represented by the doStartTag( ), doInitBody( ), doAfterBody( ), and 
doEndTag( ) methods. It's clear that the property values must be kept at least until the tag handler has done 
what it intends to do. But when can it safely reset its state? If a tag handler implements all logic in the 
doStartTag( ) method, can it reset all instance variables before it returns from this method? Or should it 
wait until the doEndTag( ) method is called? The answer is that it must not reset the state until the release( 
) method is called. Let's use a JSP page fragment to discuss why: 

 <test:myAction attr1="one" attr2="two" /> 
 <test:myAction attr1="one" attr2="new" /> 

In this case, a JSP container is allowed to use one instance of the tag handler for both <test:myAction> 
action elements, with generated code similar to this: 

 // Code for first occurrence 
 MyActionTag _jspx_th_test_myAction_1 = new MyActionTag( ); 
 _jspx_th_test_myAction_1.setPageContext(pageContext); 
 _jspx_th_test_myAction_1.setParent(null); 
 _jspx_th_test_myAction_1.setAttr1("one"); 
 _jspx_th_test_myAction_1.setAttr2("two"); 
 _jspx_th_test_myAction_1.doStartTag( ); 
 if (_jspx_th_test_myAction_1.doEndTag( ) == Tag.SKIP_PAGE) 
   return; 
  
 // Code for second occurrence 
 _jspx_th_test_myAction_1.setAttr2("new"); 
 _jspx_th_test_myAction_1.doStartTag( ); 
 if (_jspx_th_test_myAction_1.doEndTag( ) == Tag.SKIP_PAGE) 
   return; 
  
 _jspx_th_test_myAction_1.release( ); 

As you can see, all the property setter methods are called to initialize the instance for the first occurrence of 
the element. But for the second occurrence, only the setter method for the property with a different value is 
called. The release( ) method is called when the tag handler has been used for both occurrences. If the tag 
handler class resets all property variables in any method other than release( ), the processing of the 
second action element fails. 

The only scenario in which a tag handler can be reused in JSP 1.1 is the one described above. If the same 
action element is used multiple times on the same page but with different sets of attributes, the state of the 
tag handler is not guaranteed to be correct if the same instance is reused. 

Reuse between pages, using a tag handler object pool, is not explicitly supported in JSP 1.1. For this reason, 
most JSP containers do not implement tag handler pooling today. To get your tag handler classes to work 
with the few that do, you must reset all properties before the tag handler is used to handle a new request. I 
recommend that you do this in the release( ) method, as shown in the examples in this chapter. Note that 
if some properties must have a default value set instead of null, you must set it in the release( ) method 
as well. A typical example is a primitive type property, such as an int property: 

 public void release( ) { 
     aStringProperty = null; 
     anIntProperty = -1; 
 } 

To make it easier for a container to reuse tag handlers, both within a page and between pages, a future 
version of JSP will likely introduce a method that resets all properties in a controlled manner. 



JavaSercer Pages 

  page 233

16.10 Packaging and Installing a Tag Library 

During development, you may want to let the tag library classes and the TLD file reside as-is in the 
filesystem, since it makes it easy to change the TLD and modify and recompile the classes. Just make sure 
the class files are stored in a directory that's part of the classpath for the JSP container, such as the WEB-
INF/classes directory for the web application. The TLD must also be in a directory where the JSP container 
can find it. The recommended location is the WEB-INF/tlds directory. To identify the library with the TLD 
stored in this location, use a taglib directive in the JSP pages like this: 

 <%@ taglib uri="/WEB-INF/tlds/orataglib_1_0.tld" prefix="ora" %> 

Here the uri attribute refers directly to the TLD file's location. 

When you're done with the development, you may want to package all tag handler classes, TagExtraInfo 
classes, beans used by the tag handler classes, and the TLD in a JAR file. This makes it easier to install the 
library in an application. The TLD must be saved as /META-INF/taglib.tld within the JAR file. 

To create the JAR file, first arrange the files in a directory with a structure like this: 

 META-INF/ 
   taglib.tld 
 com/ 
   ora/ 
     jsp/ 
       tags/ 
         generic/ 
           EncodeHTMLTag.class 
           ... 
       util/ 
         StringFormat.class 
         ... 

The structure for the class files must match the package names for your classes. Here a few of the classes in 
the tag library for this book are shown as an example. 

With the file structure in place, use the jar command to create the JAR file: 

 jar cvf orataglib_1_0.jar META-INF com 

This command creates a JAR file named orataglib_1_0.jar containing the files in the META-INF and com 
directories. Use any JAR filename that makes sense for your own tag library. Including the version number for 
the library is also a good idea, since it lets the users know which version of the library they are using. 

You can now use the packaged tag library in any application. Just copy the JAR file to the application's WEB-
INF/lib directory and use a taglib directive like this in the JSP pages: 

 <%@ taglib uri="/WEB-INF/lib/orataglib_1_0.jar" prefix="ora" %> 

Note that the uri attribute now refers to the JAR file instead of the TLD file. A JSP 1.1 container is supposed 
to be able to find the TLD file in the JAR file, but this is a fairly recent clarification of the specification. If the 
JSP container you use doesn't support this notation yet, you have to extract the TLD file from the JAR file, 
save it somewhere else, for instance in WEB-INF/tlds, and let the uri attribute refer to the TLD file instead. 

Instead of letting the taglib directive point directly to the TLD or JAR file, you can specify a symbolic name 
as the uri attribute value, and provide a mapping between this name and the real location in the WEB-
INF/web.xml file for the application: 

 <%@ taglib uri="/orataglib" prefix="ora" %> 



JavaSercer Pages 

  page 234

The WEB-INF/web.xml file must then contain the following elements: 

<web-app> 
  ... 
  <taglib> 
    <taglib-uri> 
      /orataglib 
    </taglib-uri> 
    <taglib-location> 
      /WEB-INF/lib/orataglib_1_0.jar 
    </taglib-location> 
  </taglib> 
  ... 
</web-app> 

The <taglib-uri> element contains the symbolic name, and the <taglib-location> element contains the 
path to either the JAR file or the extracted TLD file. 



JavaSercer Pages 

  page 235 

Chapter 17. Developing Database Access Components 

In this final chapter, we look at more examples of how to develop custom actions, namely the database 
custom actions introduced in Chapter 9. 

Before digging into the code for these actions, a number of fundamental Java database access features are 
discussed. First, we take a look at the JDBC Connection class, and how pooling Connection objects helps 
solve a number of common problems. We look at two ways to provide connection pooling capabilities to an 
application: with JDBC 2.0, and by letting a JDBC 1.0 connection pool simulate a JDBC 2.0 pool. The purpose 
of a connection pool is to be able to share database connections between all components of an application. 
The approach discussed in this chapter is to use an application initialization servlet that makes the pool 
available to all servlets and JSP pages. 

No matter if you use a servlet or a custom action in a JSP page to access the database, there are a number of 
things to think about. We look at a generic database access bean and related classes that take care of 
datatype issues and make the result of a query easy to access. Next, we look at how the bean is used by the 
database access custom actions described in Chapter 9. You can also use the bean directly in servlets, as 
described in Chapter 15, or in your own application-specific database access actions. The last section contains 
an example of an application-specific custom action using the bean. 

To really appreciate the material in this chapter, you should already be familiar with JDBC. If this is not the 
case, I recommend that you look at the JDBC documentation online at http://java.sun.com/products/jdbc/ or 
read a book about JDBC, such as George Reese's Database Programming with JDBC and Java (O'Reilly). 

 

17.1 Using Connections and Connection Pools 

In a JDBC-based application, a lot revolves around the java.sql.Connection interface. Before any database 
operations can take place, the application must create a Connection to the database. It then acts as the 
communication channel between the application and the database, carrying the SQL statements sent by the 
application and the results returned by the database. A Connection is associated with a database user 
account, to allow the database to enforce access control rules for the SQL statements submitted through the 
Connection. Finally, the Connection is also the boundary for database transactions. Only SQL statements 
executed through the same Connection can make up a transaction. A transaction consists of a number of 
SQL statements that must either all succeed or all fail as one atomic operation. A transaction can be 
committed (the changes resulting from the statements are permanently saved) or rolled back (all changes are 
ignored) by calling Connection methods. 

In a standalone application, a Connection is typically created once and kept open until the application is shut 
down. This is not surprising, since a standalone application serves only one user at a time, and all database 
operations initiated by a single user are typically related to each other. In a server application that deals with 
unrelated requests from many different users, it's not so obvious how to deal with connections. There are 
three things to consider: a Connection is time-consuming to create, it must be used for only one user at a 
time to avoid transaction clashes, and it is expensive to keep open. 

Creating a Connection is an operation that can actually take a second or two to perform. Besides establishing 
a network connection to the database, the database engine must authenticate the user and create a context 
with various data structures to keep track of transactions, cached statements, results, and so forth. Creating 
a new Connection for each request received by the server, while simple to implement, is far too time-
consuming in a high-traffic server application. 

One way to minimize the number of times a connection needs to be created is to keep one Connection per 
servlet or JSP page that need access to the database. A Connection can be created when the web resource is 
initialized, and kept in an instance variable until the application is shut down. As you will discover when you 
deploy an application based on this approach, this route will lead to numerous multithreading issues. Each 
request executes as a separate thread through the same servlet or JSP page. Many JDBC drivers do not 
support multiple threads accessing the same Connection, causing all kinds of runtime errors. Others support 
it by serializing all calls, leading to poor scalability. An even more serious problem with this approach is that 
requests from multiple users, all using the same Connection, operate within the same transaction. If one 
request leads to a rollback, all other database operations using the same Connection are also rolled back. 

http://java.sun.com/products/jdbc/


JavaSercer Pages 

  page 236 

A connection is expensive to keep open in terms of server resources such as memory. Many commercial 
database products also use licenses that are priced based on the number of simultaneously open connections, 
so a connection can also be expensive in terms of real money. Therefore, it's wise to try to minimize the 
number of connections the application needs. An alternative to the "one Connection per resource" approach 
is to create a Connection for each user when the first request is received and keep it as a session scope 
object. However, a drawback with this approach is that the Connection will be inactive most of the time, 
since the user needs time to look at the result of one request before making the next. 

The best alternative is to use a connection pool. A connection pool contains a number of Connection objects 
shared by all servlets and JSP pages. For each request, one Connection is checked out, used, and checked 
back in. Using a pool solves the problems described for the other alternatives: 

It's time-consuming to create a Connection.  

A pooled Connection is created only once and then reused. Most pool implementations let you specify 
an initial number of Connection objects to create at startup, as well as a max number. New 
Connection objects are created as needed up to the max number. Once the max number has been 
reached, the pool clients wait until an existing Connection object becomes available instead of 
creating a new one. 

There are multithreading problems with a shared Connection.  

Each request gets its own Connection, so it's used by only one thread at a time, eliminating any 
potential multithreading issues. 

A Connection is a limited resource.  

With a pool, each Connection is used efficiently. It never sits idle if there are requests pending. If the 
pool allows you to specify a max number of Connection objects, you can also balance a license limit 
for the number of simultaneous connections against acceptable response times. 

A connection pool, however, doesn't solve all problems. Since all users are using the same Connection 
objects, you cannot rely on the database engine to limit access to protected data on a per-user basis. 
Instead, you have to define data access rules in terms of roles (groups of users with the same access rights). 
You can then use separate pools for different roles, each pool creating Connection objects with a user 
account that represents the role. 

17.1.1 Using a JDBC 2.0 Optional Package Connection Pool 

Connection pools exist in many forms. You can find them in books, articles, and on the Web. Yet prior to JDBC 
2.0, there was no standard defined for how a Java application would interact with a connection pool. The 
JDBC 2.0 Optional Package (formerly known as a Standard Extension) changes this by introducing a set of 
interfaces that connection pools should implement: 

javax.sql.PooledConnection  

The objects that a DataSource keeps in its pool implement the PooledConnection interface. When the 
application asks the DataSource for a Connection, it locates an available PooledConnection object, 
or gets a new one from its ConnectionPoolDataSource if the pool is empty. 

The PooledConnection provides a getConnection( ) method that returns a Connection object. The 
DataSource calls this method and returns the Connection to the application. This Connection object 
behaves like a regular Connection with one exception: when the application calls the close( ) 
method, instead of closing the connection to the database, it informs the PooledConnection it belongs 
to that it's no longer being used. The PooledConnection relays this information to the DataSource, 
which returns the PooledConnection to the pool. 

javax.sql.DataSource  

A DataSource represents a database. This is the interface the application always uses to get a 
Connection. The class that implements the interface can provide connection pooling capabilities or 
hand out regular, unpooled Connection objects; the application code is identical for both cases, as 
described later. 



JavaSercer Pages 

  page 237 

javax.sql.ConnectionPoolDataSource  

A DataSource implementation that provides pooling capabilities uses a class that implements the 
ConnectionPoolDataSource interface. A ConnectionPoolDataSource is a factory for 
PooledConnection objects. 

Figure 17.1 outlines how an application uses implementations of these interfaces to obtain a pooled 
connection and how to return that connection to the pool. 

Figure 17.1. Application using a JDBC 2.0 connection pool 

 

The application calls the DataSource getConnection( ) method. The DataSource looks for an available 
PooledConnection object in its pool. If it doesn't find one, it uses its ConnectionPoolDataSource object to 
create a new one. It then calls the getConnection( ) method on the PooledConnection object and returns 
the Connection object associated with the PooledConnection. The application uses the Connection, and 
calls its close( ) method when it's done. This results in a notification event being sent to the DataSource, 
which puts the corresponding PooledConnection object back in the pool. If you would like to learn more 
about the JDBC 2.0 connection pool model, you can download the JDBC 2.0 Optional Package specification 
from http://java.sun.com/products/jdbc/. 

The real beauty of these interfaces is that the application doesn't have to be aware that it's using a 
connection pool. All configuration data, such as which JDBC driver and JDBC URL to use, the initial and 
maximum numbers of pooled connections, and the database account name and password, can be set by a 
server administrator. The completely configured DataSource object is registered as a JNDI resource, and the 
application can obtain a reference to it with the following code: 

 Context ctx = new InitialContext( ); 
 DataSource ds = (DataSource) ctx.lookup("jdbc/EmployeeDB"); 

It then gets a Connection, uses it, and returns it with the following code: 

 Connection conn = ds.getConnection( ); 
 // Uses the Connection 
 conn.close( ); // Returns the Connection to the pool 

By implementing these JDBC 2.0 interfaces, JDBC driver and middleware vendors can offer portable 
connection pooling implementations. Sun's JDBC driver list contains roughly ten different companies that 
claim to either offer implementations of connection pools today or have announced products to be delivered 
during 2000. 

17.1.2 Making a JDBC 1.0 Connection Pool Behave as a JDBC 2.0 Connection Pool 

If you can't find a JDBC 2.0 connection pool implementation for your database, there are plenty of 
implementations based on JDBC 1.0 available. I describe one in an article I wrote for the Web Developer's 
Journal, titled "Improved Performance With a Connection Pool," available at 
http://www.webdevelopersjournal.com/columns/connection_pool.html. Another is the DBConnectionBroker , 
available at http://www.javaexchange.com. It's easy to develop a couple of wrapper classes for one of these 
implementations so that it can be used in place of a JDBC 2.0 connection pool implementation. This way, you 
can switch out the JDBC 1.0 pool with a JDBC 2.0 pool when one becomes available from your database 
vendor or a third party. 

http://java.sun.com/products/jdbc/
http://www.webdevelopersjournal.com/columns/connection_pool.html
http://www.javaexchange.com


JavaSercer Pages 

  page 238

The interaction between the wrapper classes and a connection pool implementation is illustrated in Figure 
17.2. 

Figure 17.2. A JDBC 1.0 connection pool wrapped with JDBC 2.0 interface classes 

 

Figure 17.2 can be explained like this: the application calls the DataSourceWrapper getConnection( ) 
method. The DataSourceWrapper obtains a Connection object from its ConnectionPool object. The 
ConnectionPool either finds an available Connection in its pool or creates a new one. The 
DataSourceWrapper creates a new ConnectionWrapper object for the Connection it obtained, and returns 
the ConnectionWrapper to the application. The application uses the ConnectionWrapper object as a regular 
Connection. The ConnectionWrapper relays all calls to the corresponding method in the Connection it 
wraps, except for the close( ) method. When the application calls the close( ) method, the 
ConnectionWrapper returns its Connection to the DataSourceWrapper, which in turn returns it to its 
ConnectionPool. 

In this example, I show you how to wrap the connection pool described in Jason Hunter and William 
Crawford's Java Servlet Programming (O'Reilly). It's a simple implementation, intended only to illustrate the 
principles of connection pooling. The source code for the connection pool is included with the code for this 
book, but I will not discuss the implementation of the pool itself, only how to make it look like a JDBC 2.0 
connection pool. For production use, I recommend that instead of this code, you use a pool intended for real 
use, such as one of the implementations mentioned earlier. The first wrapper class is called 
com.ora.jsp.sql.ConnectionWrapper , shown in Example 17.1. 

Example 17.1. The ConnectionWrapper Class  

package com.ora.jsp.sql; 
 
import java.sql.*; 
import java.util.*; 
 
class ConnectionWrapper implements Connection { 
    private Connection realConn; 
    private DataSourceWrapper dsw; 
    private boolean isClosed = false; 
 
    public ConnectionWrapper(Connection realConn,  
        DataSourceWrapper dsw) { 
        this.realConn = realConn; 
        this.dsw = dsw; 
    } 
 
    /** 
     * Inform the DataSourceWrapper that the ConnectionWrapper 
     * is closed. 
     */ 
    public void close( ) throws SQLException { 
        isClosed = true; 
        dsw.returnConnection(realConn); 
    } 
 
    /** 
     * Returns true if the ConnectionWrapper is closed, false 
     * otherwise. 
     */ 
    public boolean isClosed( ) throws SQLException { 
        return isClosed; 
    } 
 
    /* 
     * Wrapped methods. 
     */ 



JavaSercer Pages 

  page 239 

    public void clearWarnings( ) throws SQLException { 
        if (isClosed) { 
            throw new SQLException("Pooled connection is closed"); 
        } 
        realConn.clearWarnings( ); 
    } 
    ... 
} 

An instance of this class is associated with a real Connection object, retrieved from a connection pool, 
through the constructor. The constructor also provides a reference to the DataSourceWrapper instance that 
creates it, described next. 

The ConnectionWrapper class implements the Connection interface. The implementations of all the methods 
except two simply relay the call to the real Connection object so it can perform the requested database 
operation. The implementation of the close( ) method, however, doesn't call the real Connect object's 
method. Instead, it calls the DataSourceWrapper object's return-Connection( ) method, to return the 
Connection to the pool. The isClosed( ) method, finally, returns the state of the ConnectionWrapper object 
as opposed to the real Connection object. 

Example 17.2 shows how the com.ora.jsp.sql.DataSourceWrapper gets a connection from a pool, and 
returns it when the pool client is done with it. 

Example 17.2. The DataSourceWrapper Class  

package com.ora.jsp.sql; 
 
import java.io.*; 
import java.sql.*; 
import javax.sql.*; 
 
public class DataSourceWrapper implements DataSource { 
    private ConnectionPool pool; 
     
    public DataSourceWrapper(String driverClass, String url,  
        String user, String pw)  
        throws ClassNotFoundException, InstantiationException, 
        SQLException, IllegalAccessException { 
        pool = new ConnectionPool(url, user, pw, driverClass, 1, 1); 
    } 
 
    /** 
     * Gets a connection from the pool and returns it wrapped in 
     * a ConnectionWrapper. 
     */ 
    public Connection getConnection( ) throws SQLException { 
        return new ConnectionWrapper(pool.getConnection( ), this); 
    } 
     
    /** 
     * Returns a Connection to the pool. This method is called by 
     * the ConnectionWrapper's close( ) method. 
     */ 
    public void returnConnection(Connection conn) { 
        pool.returnConnection(conn); 
    } 
     
    /** 
     * Always throws a SQLException. Username and password are set 
     * in the constructor and can not be changed. 
     */ 
    public Connection getConnection(String username, String password)  
            throws SQLException { 
        throw new SQLException("Not supported"); 
    } 
     
    public int getLoginTimeout( ) throws SQLException { 
        throw new SQLException("Not supported"); 
    } 
     
    public PrintWriter getLogWriter( ) throws SQLException { 
        throw new SQLException("Not supported"); 
    } 
     
    public void setLoginTimeout(int seconds) throws SQLException { 
        throw new SQLException("Not supported"); 
    } 
     
    public synchronized void setLogWriter(PrintWriter out)  
        throws SQLException { 
        throw new SQLException("Not supported"); 
    } 
} 



JavaSercer Pages 

  page 240

The DataSourceWrapper class implements the DataSource interface, so that it can be used in place of a pure 
JDBC 2.0 connection pool implementation. The constructor creates an instance of the real connection pool 
class, using the provided JDBC driver, URL, user and password information. Besides the constructor, the two 
most interesting methods are getConnection( ) and returnConnection( ). 

The pool client application calls the getConnection( ) method, and the DataSourceWrapper relays the call to 
the connection pool class. It then wraps the Connection object it receives in a ConnectionWrapper object 
and returns it to the client application. 

As described earlier, the ConnectionWrapper object calls the return-Connection( ) method when the pool 
client calls close( ) on the ConnectionWrapper object. The returnConnection( ) method hands over the 
Connection to the real connection pool so it can be returned to the pool. 

All other DataSource interface methods are implemented to throw an SQLException. If you use the wrapper 
classes presented here to wrap a more sophisticated connection pool, you may be able to relay some of these 
method calls to the real connection pool instead. 

17.1.3 Making a Connection Pool Available to Application Components 

Through a DataSource object, the servlets and JSP pages in an application can get the Connection they need 
to access a database. What's missing is how they get access to the DataSource . I touched on this in Chapter 
14, but let's recap and add a few details. 

The place for resources that all components in an application need access to is the application scope, 
corresponding to ServletContext attributes in the servlet world. The current versions of the servlet and JSP 
specifications, 2.2 and 1.1 respectively, do not provide a specific mechanism for automatic creation and 
release of application scope objects when the application starts and stops (but this is being discussed as a 
feature for future versions of the specifications). A regular servlet can, however, fill this need nicely.8  

As described in Chapter 14, the container can be configured to load and initialize a servlet when the 
application starts. Such a servlet can create objects and make them available to other application components 
in its init( ) method before any user requests are received. The servlet is also informed when the 
application is shut down by a call to its destroy( ) method, allowing it to release all shared objects. Finally, a 
servlet can read configuration data, defined as servlet initialization parameters, so that it can work in different 
settings. In this section, we look at how all of this can be used to make a DataSource object available to all 
components of an application. 

The servlet used to manage the shared DataSource can be defined like this in the application's WEB-
INF/web.xml file: 

<web-app> 
  <servlet> 
    <servlet-name>appInit</servlet-name> 
    <servlet-class>com.mycompany.AppInitServlet</servlet-class> 
    <init-param> 
      <param-name>jdbcDriverClassName</param-name> 
      <param-value>sun.jdbc.odbc.JdbcOdbcDriver</param-value> 
    </init-param> 
    <init-param> 
      <param-name>jdbcURL</param-name> 
      <param-value>jdbc:odbc:example</param-value> 
    </init-param> 
    <init-param> 
      <param-name>dbUserName</param-name> 
      <param-value>foo</param-value> 
    </init-param> 
    <init-param> 
      <param-name>dbUserPassword</param-name> 
      <param-value>bar</param-value> 
    </init-param> 
    <load-on-startup>1</load-on-startup> 
  </servlet> 
  ... 

                                                 
8 Theoretically, a web container is allowed to unload a servlet at any time, for instance to preserve memory. This could cause the shared 

resources to be removed while other parts of the application are still active and need access to them. In practice, though, none of the major 
web containers unloads a servlet before the application as such is shut down. 



JavaSercer Pages 

  page 241

The servlet class, defined by the <servlet-class> element, is given a name through the <servlet-name> 
element. A number of <init-param> elements, with nested <param-name> and <param-value> elements, are 
used to define the following initialization parameters: jdbcDriverClassName, jdbcURL, dbUserName, and 
dbUserPassword. If you use a JDBC 2.0 connection pool, you need to define the URL used to get a reference 
from JNDI to it instead of all these parameters. The last servlet element, <load-on-startup> , tells the 
container that this servlet should be initialized when the web application is started. The container initializes 
servlets in the relative order specified by this element, from the lowest number to the highest. If two servlets 
have the same value, their relative start order is undefined. 

The servlet reads all the initialization parameters in its init( ) method, creates a DataSourceWrapper 
instance, and sets it as a ServletContext attribute named exampleDS: 

public void init( ) throws ServletException { 
    ServletConfig config = getServletConfig( ); 
    String jdbcDriverClassName =  
        config.getInitParameter("jdbcDriverClassName"); 
    String jdbcURL = config.getInitParameter("jdbcURL"); 
    String dbUserName = config.getInitParameter("dbUserName"); 
    String dbUserPassword = config.getInitParameter("dbUserPassword"); 
 
    // Make sure a driver class and JDBC URL is specified 
    if (jdbcDriverClassName == null || jdbcURL == null) { 
        throw new UnavailableException("Init params missing"); 
    } 
    DataSource ds = null; 
    try { 
      ds = new DataSourceWrapper(jdbcDriverClassName, jdbcURL, 
          dbUserName, dbUserPassword); 
    } 
    catch (Exception e) { 
        throw new UnavailableException("Cannot create connection pool" 
            + ": " + e.getMessage( )); 
    } 
    getServletContext( ).setAttribute("exampleDS", ds); 
} 

All servlets and JSP pages in the application can now obtain a reference to the DataSource. Servlets use the 
ServletContext getAttribute( ) method to accomplish this. For JSP pages, the DataSource appears as an 
application scope object. All the database custom actions introduced in Chapter 9 look for a DataSource in 
the application scope, so all you have to do to use the one created by the initialization servlet is to provide 
the name: 

<%@ page language="java" contentType="text/html" %> 
<%@ taglib uri="/orataglib" prefix="ora" %> 
<ora:sqlQuery id="empList" dataSource="exampleDS" scope="request"> 
  SELECT * FROM Employee  
    WHERE FirstName LIKE ? 
      AND LastName LIKE ? 
      AND Dept LIKE ? 
    ORDER BY LastName 
  <ora:sqlStringValue param="firstName" prefix="%" suffix="%" /> 
  <ora:sqlStringValue param="lastName" prefix="%" suffix="%" /> 
  <ora:sqlStringValue param="dept" prefix="%" suffix="%" /> 
</ora:sqlQuery> 
<jsp:forward page="list.jsp" /> 

Note how the dataSource attribute value matches the name of the ServletContext attribute holding the 
reference to the DataSource, set by the initialization servlet. 

It's much better to let an initialization servlet create the DataSource, as described here, than to use the 
<ora:useDataSource> custom action described in Chapter 9. With a servlet, all information about the JDBC 
driver class, URL, user and password is in one place (the WEB-INF/web.xml file), as opposed to being 
repeated in every JSP page that uses the database custom actions. This makes it easier to change the 
information when needed. Also, if you decide at some point to use another connection pool implementation, 
such as a true JDBC 2.0 connection pool available from your JDBC driver or database vendor, you can easily 
change the servlet's init( ) method. So even for a pure JSP application, I recommend that you use an 
application initialization servlet like the one described here. 



JavaSercer Pages 

  page 242 

The initialization servlet should also clean up when the application is shut down. The web container calls the 
destroy( ) method: 

 public void destroy( ) { 
     getServletContext( ).removeAttribute("exampleDS"); 
 } 

Most connection pools used in production provide a method that should be called at shutdown to let it close 
all connections. If you use such a pool, you need to call this method in the servlet's destroy( ) method as 
well. The example pool used here doesn't provide a shutdown method. 

 

17.2 Using a Generic Database Bean 

All the database custom action tag handler classes described later in this chapter are based on a generic 
database bean named com.ora.jsp.sql.SQLCommandBean . This bean uses a number of other classes. Figure 
17.3 shows the relationship between all these classes. 

Figure 17.3. The SQLCommandBean and related classes 

 

The SQLCommandBean takes care of setting all values in a JDBC java.sql.PreparedStatement and executing 
the statement. For SELECT statements, it also processes the result by creating com.ora.jsp.sql.Row objects 
containing a com.ora.jsp.sql.Column object for each column in the result. The rows returned by the SELECT 
statement are returned to the caller as a java.util.Vector with Row objects. The EmployeeRegistryBean 
described in Chapter 15 is one example of how to use this bean, and other examples follow in this chapter. 
Let's look at each class in detail, starting with the SQLCommandBean itself. 



JavaSercer Pages 

  page 243

17.2.1 The SQLCommandBean and Value Classes 

The SQLCommandBean has three write-only properties. Example 17.3 shows the beginning of the class file with 
the setter methods. 

Example 17.3. SQLCommandBean Property Setter Methods  

package com.ora.jsp.sql; 
 
import java.util.*; 
import java.sql.*; 
import com.ora.jsp.sql.value.*; 
 
public class SQLCommandBean { 
    private Connection conn; 
    private String sqlValue; 
    private Vector values; 
    private boolean isExceptionThrown = false; 
 
    public void setConnection(Connection conn) { 
        this.conn = conn; 
    } 
     
    public void setSqlValue(String sqlValue) { 
        this.sqlValue = sqlValue; 
    } 
     
    public void setValues(Vector values) { 
        this.values = values; 
    } 
    ... 

The connection property holds the Connection to use, and the sqlValue property is set to the SQL 
statement to execute, with question marks as placeholders for variable values, if any. The placeholders are 
then replaced with the values defined by the values property, a Vector with one com.ora.jsp.sql.Value 
object per placeholder. Before we look at the other SQLCommandBean methods, let's look at the Value class. 

The Value class is an abstract class used as a superclass for classes representing specific Java types, as 
shown in Figure 17.3. It contains default implementations of methods for getting the specific type of value a 
subclass represents. Example 17.4 shows two of the methods. 

Example 17.4. Two Value Class Methods  

public abstract class Value { 
 
    public BigDecimal getBigDecimal( )  
        throws UnsupportedConversionException { 
        throw new UnsupportedConversionException( 
            "No conversion to BigDecimal"); 
    } 
 
    public boolean getBoolean( )  
        throws UnsupportedConversionException { 
        throw new UnsupportedConversionException( 
             "No conversion to boolean"); 
    } 
    ... 

The default implementation for each method simply throws a 
com.ora.jsp.sql.UnsupportedConversionException . Each subclass implements the method that returns 
the value of the type it represents, as well as the getString( ) method. The getString( ) method returns 
the value converted to a String. Example 17.5 shows the com.ora.jsp.sql.value.IntValue subclass. 

Example 17.5. The IntValue Class  

package com.ora.jsp.sql.value; 
 
import com.ora.jsp.sql.Value; 
 
public class IntValue extends Value { 
    private int value; 
 
    public IntValue(int value) { 
        this.value = value; 
    } 
 



JavaSercer Pages 

  page 244

    public int getInt( ) { 
        return value; 
    } 
 
    public String getString( ) { 
        return String.valueOf(value); 
    } 
} 

An application that uses the SQLCommandBean can create Value objects and set the bean's properties like this: 

SQLCommandBean sqlBean = new SQLCommandBean( ); 
sqlBean.setConnection(ds.getConnection( )); 
String sqlValue =  
    "SELECT * FROM MyTable WHERE IntCol = ? AND TextCol = ?"; 
sqlBean.setSqlValue(sqlValue); 
Vector values = new Vector( ); 
values.addElement(new IntValue(10)); 
values.addElement(new StringValue("Hello!")); 
sqlBean.setValues(values); 

One of two methods in the SQLCommandBean is used to execute the SQL statement: the executeQuery( ) 
method for a SELECT statement, and the executeUpdate( ) method for all other types of statements. 
Example 17.6 shows the executeQuery( ) method. 

Example 17.6. The SQLCommandBean's executeQuery( ) Method  

public Vector executeQuery( ) throws SQLException,  
        UnsupportedTypeException { 
        Vector rows = null; 
        ResultSet rs = null; 
        PreparedStatement pstmt = null; 
        Statement stmt = null; 
        try { 
            if (values != null && values.size( ) > 0) { 
                // Use a PreparedStatement and set all values 
                pstmt = conn.prepareStatement(sqlValue); 
                setValues(pstmt, values); 
                rs = pstmt.executeQuery( ); 
            } 
            else { 
                // Use a regular Statement 
                stmt = conn.createStatement( ); 
                rs = stmt.executeQuery(sqlValue); 
            } 
            // Save the result in a Vector of Row object 
            rows = toVector(rs); 
        } 
        finally { 
            try { 
                if (rs != null) { 
                    rs.close( ); 
                } 
                if (stmt != null) { 
                    stmt.close( ); 
                } 
                if (pstmt != null) { 
                    pstmt.close( ); 
                } 
            } 
            catch (SQLException e) { 
                // Ignore. Probably caused by a previous  
                // SQLException thrown by the outer try block 
            } 
        } 
        return rows; 
    } 

If the values property is set, a JDBC PreparedStatement is needed to associate the values with the question 
mark placeholders in the SQL statement. A method named setValues( ) takes care of setting all values, 
using the appropriate JDBC method for the datatype represented by each Value object. If the values 
property is not set, a regular JDBC Statement is created instead. In both cases, the JDBC driver is asked to 
execute the statement, and the resulting ResultSet is turned into a Vector with Row objects by the 
toVector( ) method. The Vector is then returned to the caller. 

You may wonder why the ResultSet is not returned directly instead of creating a Vector with Row objects. 
The reason is that a ResultSet is tied to the Connection that was used to generate it. When the Connection 
is closed or used to execute a new SQL statement, all open ResultSet objects for the Connection are 
released. You must therefore make sure to save the information from the ResultSet in a new data structure 
before reusing the Connection or returning it to the pool. 



JavaSercer Pages 

  page 245 

The code for creating the PreparedStatement or Statement object and executing the statement is enclosed 
in a try/finally block. This is important, because if something fails (due to an invalid SQL statement, for 
instance), the JDBC methods throw an SQLException . You want the exception to be handled by the 
application using the SQLCommandBean, but first you must make sure that all JDBC resources are released and 
the Connection object is returned to the pool. Using a try block with a finally clause but no catch clause 
gives this behavior. If an exception is thrown, the finally clause is executed, and then the exception is 
automatically thrown to the object that called the executeQuery( ) method. In the finally clause, the 
ResultSet object and either the PreparedStatement or Statement object are closed. It should be enough to 
close the statement object according to the JDBC specification (closing the statement should also close the 
ResultSet associated with the statement), but doing it explicitly doesn't hurt and makes the code work even 
with a buggy JDBC driver. 

Example 17.7 shows a part of the setValues( ) method. 

Example 17.7. The SQLCommandBean's setValues( ) Method  

private void setValues(PreparedStatement pstmt, Vector values) 
        throws SQLException { 
        for (int i = 0; i < values.size( ); i++) { 
            try { 
                Value v = (Value) values.elementAt(i); 
                // Set the value using the method corresponding to  
                // the type. 
                // Note! Set methods are indexed from 1, so we add  
                // 1 to i 
                if (v instanceof BigDecimalValue) { 
                    pstmt.setBigDecimal(i + 1, v.getBigDecimal( )); 
                } 
                else if (v instanceof BooleanValue) { 
                    pstmt.setBoolean(i + 1, v.getBoolean( )); 
                } 
                ... 
            } 
            catch (UnsupportedConversionException e) { 
                // Can not happen here since we test the type first 
            } 
        } 
    } 

The setValue( ) method loops through all elements in the Vector with values. For each element, it tests 
which Value subclass it is and uses the corresponding JDBC method to set the value for the 
PreparedStatement object. You may wonder why a PreparedStatement is used here, since it's used only 
once. It's true that a PreparedStatement is intended to be reused over and over again to execute the same 
SQL statement with new values. But it offers a convenient solution to the problem of different syntax for 
values of type date/time and numbers when represented by a string literal. When a PreparedStatement is 
used, the variable values in the SQL statement can be represented by Java variables of the appropriate types 
without worrying about what literal representation a certain JDBC driver supports. So even though it's used 
only once, a PreparedStatement still has an advantage over a regular Statement. 

The toVector( ) method is shown in Example 17.8. 

Example 17.8. The SQLCommandBean's toVector( ) Method  

private Vector toVector(ResultSet rs) throws SQLException, 
        UnsupportedTypeException { 
        Vector rows = new Vector( ); 
        while (rs.next( )) { 
            Row row = new Row(rs); 
            rows.addElement(row); 
        } 
        return rows; 
    } 

This method simply walks through the ResultSet and adds a new Row object for each row to a Vector that it 
then returns. As you will see later, the Row constructor reads all column values and creates a Column object 
for each. 



JavaSercer Pages 

  page 246 

The executeUpdate( ) method, shown in Example 17.9, is very similar to the executeQuery( ) method. 

Example 17.9. The SQLCommandBean's executeUpdate( ) Method  

public int executeUpdate( ) throws SQLException, UnsupportedTypeException { 
        int noOfRows = 0; 
        ResultSet rs = null; 
        PreparedStatement pstmt = null; 
        Statement stmt = null; 
        try { 
            if (values != null && values.size( ) > 0) { 
                // Use a PreparedStatement and set all values 
                pstmt = conn.prepareStatement(sqlValue); 
                setValues(pstmt, values); 
                noOfRows = pstmt.executeUpdate( ); 
            } 
            else { 
                // Use a regular Statement 
                stmt = conn.createStatement( ); 
                noOfRows = stmt.executeUpdate(sqlValue); 
            } 
        } 
        finally { 
            try { 
                if (rs != null) { 
                    rs.close( ); 
                } 
                if (stmt != null) { 
                    stmt.close( ); 
                } 
                if (pstmt != null) { 
                    pstmt.close( ); 
                } 
            } 
            catch (SQLException e) { 
                // Ignore. Probably caused by a previous  
                // SQLException thrown by the outer try block. 
            } 
        } 
        return noOfRows; 
    } 

The main difference is that the executeUpdate( ) method is used to execute SQL statements that do not 
return rows, only the number of rows affected by the statement. Examples of such statements are UPDATE, 
INSERT, and DELETE. In the same way as the executeQuery( ) method, a PreparedStatement is created and 
initialized with the values defined by the values property, if set. Otherwise a regular Statement is used. The 
statement is executed and the number of affected rows is returned to the caller. 



JavaSercer Pages 

  page 247 

17.2.2 The Row and Column Classes 

Let's now look at the Row and Column classes. Example 17.10 shows a part of the Row class constructor. 

Example 17.10. The Row Class Constructor  

package com.ora.jsp.sql; 
 
import java.util.*; 
import java.sql.*; 
import java.sql.Date; 
import java.math.*; 
import com.ora.jsp.sql.column.*; 
 
public class Row  { 
    private Column[] columns; 
 
    public Row(ResultSet rs) throws SQLException,  
        UnsupportedTypeException { 
        ResultSetMetaData rsmd = rs.getMetaData( ); 
        int cols = rsmd.getColumnCount( ); 
        columns = new Column[cols]; 
        // Note! Columns are numbered from 1 in the ResultSet 
        for (int i = 1; i <= cols; i++) { 
            int type = rsmd.getColumnType(i); 
            switch (type) { 
                case Types.DATE: 
                    columns[i - 1] =  
                        new DateColumn(rsmd.getColumnName(i), 
                            rs.getDate(i)); 
                    break; 
                case Types.TIME: 
                    columns[i - 1] =  
                        new TimeColumn(rsmd.getColumnName(i), 
                            rs.getTime(i)); 
                    break; 
                ... 
                default: 
                    throw new  
                        UnsupportedTypeException("Unsupported SQL " + 
                        "data type: " + type); 
            } 
        } 
    } 

The Row class keeps all column values as an array of Column objects. The constructor is called with a 
ResultSet that has been positioned at a new row by the caller using the next( ) method. It loops through 
all columns in the row and creates a Column subclass instance for each. The column's datatype, retrieved 
from the ResultSetMetaData object, is used to decide which Column subclass to create. Similarly to the 
Value class structure, the Column class structure contains subclasses corresponding to JDBC column 
datatypes, as shown in Figure 17.3. 

Two methods provide access to the number of columns and the array of Column objects, shown in Example 
17.11. 

Example 17.11. The Row's getColumnCount( ) and getColumns( ) Methods  

public int getColumnCount( ) { 
        return columns.length; 
    } 
 
    public Column[] getColumns( ) { 
        return columns; 
    } 

Another set of methods can be used to retrieve the value of an individual column, given its name or index. 
This set of methods contains one pair per supported datatype. Example 17.12 shows the methods for the 
BigDecimal, boolean, and String types. 



JavaSercer Pages 

  page 248

Example 17.12. The Row's Column Value Access Methods  

public BigDecimal getBigDecimal(int columnIndex) 
        throws NoSuchColumnException, UnsupportedConversionException { 
        Column col = null; 
        try { 
            col = columns[columnIndex - 1]; 
        } 
        catch (ArrayIndexOutOfBoundsException e) { 
            throw  
                new NoSuchColumnException(String.valueOf(columnIndex)); 
        } 
        return col.getBigDecimal( ); 
    } 
 
    public BigDecimal getBigDecimal(String columnName) 
        throws NoSuchColumnException, UnsupportedConversionException { 
        return getBigDecimal(getIndex(columnName)); 
    } 
 
    public boolean getBoolean(int columnIndex) 
        throws NoSuchColumnException, UnsupportedConversionException { 
        Column col = null; 
        try { 
            col = columns[columnIndex - 1]; 
        } 
        catch (ArrayIndexOutOfBoundsException e) { 
            throw  
                new NoSuchColumnException(String.valueOf(columnIndex)); 
        } 
        return col.getBoolean( ); 
    } 
 
    public boolean getBoolean(String columnName) 
        throws NoSuchColumnException, UnsupportedConversionException { 
        return getBoolean(getIndex(columnName)); 
    } 
    ... 
    public String getString(int columnIndex) 
        throws NoSuchColumnException { 
        Column col = null; 
        try { 
            col = columns[columnIndex - 1]; 
        } 
        catch (ArrayIndexOutOfBoundsException e) { 
            throw  
                new NoSuchColumnException(String.valueOf(columnIndex)); 
        } 
        return col.getString( ); 
    } 
 
    public String getString(String columnName) 
        throws NoSuchColumnException { 
        return getString(getIndex(columnName)); 
    } 

All these methods locate the Column subclass instance specified by the argument and call the corresponding 
method on the instance. Except for the getString( ) method, this call results in an 
UnsupportedConversionException if the column is not of the requested type. All types can be converted to a 
String, however, so a getString( ) call is successful provided that the requested column exists. 



JavaSercer Pages 

  page 249 

The Column class is an abstract class, very similar to the Value class shown in Example 17.4. It contains 
access methods for all datatypes, with default implementations that throw an 
UnsupportedConversionException . Each subclass provides a real implementation of the access method 
corresponding to its type, plus the getString( ) method. Example 17.13 shows the IntColumn class. 

Example 17.13. The IntColumn Class  

package com.ora.jsp.sql.column; 
 
import com.ora.jsp.sql.Column; 
 
public class IntColumn extends Column { 
    private int value; 
 
    public IntColumn(String name, int value) { 
        super(name); 
        this.value = value; 
    } 
 
    public int getInt( ) { 
        return value; 
    } 
 
    public String getString( ) { 
        return String.valueOf(value); 
    } 
} 

The constructor takes the column name and value as arguments. The name is used to initialize the Column 
superclass and is returned by its getName( ) method. 

 

17.3 Developing Generic Database Custom Actions 

The database custom actions introduced in Chapter 9 can be used like this in a JSP page: 

<ora:sqlTransaction dataSource="example"> 
 
  <ora:sqlUpdate> 
    UPDATE Account SET Balance = Balance - ? 
      WHERE AccountNumber = ? 
    <ora:floatValue param="amount" /> 
    <ora:intValue param="account" /> 
  </ora:sqlUpdate> 
  <ora:sqlUpdate> 
    UPDATE Account SET Balance = Balance + ? 
      WHERE AccountNumber = ? 
    <ora:floatValue param="amount" /> 
    <ora:intValue param="account" /> 
  </ora:sqlUpdate> 
 
</ora:sqlTransaction> 

The database custom actions use all of the classes described previously in this chapter. A DataSource 
available in the application scope is used to get a Connection, and an SQLCommandBean is used to execute the 
SQL statement specified in the database action element body. The nested value actions create Value subclass 
instances and add them to a list held by the parent action tag handler. The <ora:sqlQuery> action saves the 
result as a Vector of Row objects in the scope specified by the page author. In this section, we first look at 
how the tag handlers for the <ora:sqlQuery>, <ora:sqlUpdate>, and <ora:sqlIntValue> actions are 
implemented. All value actions follow the same pattern as <ora:sqlIntValue>, so they are not described 
here. At the end of this section, we also look at the tag handler for the <ora:sqlTransatction> action to see 
how it provides a transaction scope for the database actions nested in its body. 



JavaSercer Pages 

  page 250

17.3.1 The <ora:sqlQuery> and <ora:sqlUpdate> Actions 

The <ora:sqlQuery> and <ora:sqlUpdate> actions both need access to the action body to read the SQL 
statement. Hence, the corresponding tag handlers extend the BodyTagSupport class described in Chapter 16. 
They also implement an interface called com.ora.jsp.sql.ValueParent, which is used by the nested value 
actions to find the correct parent, following the pattern described for cooperating actions in Chapter 16. 

These two actions share the same set of attributes and have almost the same behavior, so a common 
superclass called com.ora.jsp.tags.sql.DBTag implements most of the tag handler functionality for both 
actions. Example 17.14 shows the top part of the DBTag class, with the class declaration and all property 
setter methods. 

Example 17.14. The DBTag Declaration and Properties  

package com.ora.jsp.tags.sql; 
 
import java.util.*; 
import java.sql.*; 
import javax.sql.*; 
import javax.servlet.jsp.*; 
import javax.servlet.jsp.tagext.*; 
import com.ora.jsp.sql.*; 
import com.ora.jsp.sql.value.*; 
 
public abstract class DBTag extends BodyTagSupport  
    implements ValueTagParent { 
    private SQLCommandBean sqlCommandBean = new SQLCommandBean( ); 
    private String dataSourceName; 
    private String id; 
    private int scope = PageContext.PAGE_SCOPE; 
    private String sqlValue; 
    private Vector values; 
    private boolean isExceptionThrown = false; 
    private boolean isPartOfTransaction = false; 
 
    public void setDataSource(String dataSourceName) { 
        this.dataSourceName = dataSourceName; 
    } 
 
    public void setId(String id) { 
        this.id = id; 
    } 
 
    public void setScope(String scopeName) { 
        if ("page".equals(scopeName)) { 
            scope = PageContext.PAGE_SCOPE; 
        } 
        else if ("request".equals(scopeName)) { 
            scope = PageContext.REQUEST_SCOPE; 
        } 
        else if ("session".equals(scopeName)) { 
            scope = PageContext.SESSION_SCOPE; 
        } 
        else if ("application".equals(scopeName)) { 
            scope = PageContext.APPLICATION_SCOPE; 
        } 
    } 

An instance of the SQLCommandBean is kept as a private instance variable. The bean is used to perform all 
database operations; the tag handler just provides an easy-to-use interface to the bean for page authors. The 
setter methods for the dataSource and id properties set the corresponding instance variables. The setter 
method for the scope property converts the String value to the corresponding scope int value defined by 
the PageContext class before saving the value, since the int value is later needed in the doEndTag( ) 
method. 

The page author specifies the SQL statement to execute in the action element's body. Because the tag 
handler implements the BodyTag interface (by extending the BodyTagSupport class), it can read the SQL 
statement in the doAfterBody( ) method as shown in Example 17.15. 



JavaSercer Pages 

  page 251

Example 17.15. The DBTag's doAfterBody( ) Method  

 public int doAfterBody( ) throws JspException { 
         sqlValue = bodyContent.getString( ); 
         return SKIP_BODY; 
     } 

The SQL statement may contain question marks as placeholders for values set by nested value actions. As 
you will see later, the value actions create the appropriate Value subclass and call the DBTag 's addValue( ) 
method, shown in Example 17.16. 

Example 17.16. The DBTag's addValue( ) Method  

 public void addValue(Value value) { 
         if (values == null) { 
             values = new Vector( ); 
         } 
         values.addElement(value); 
     } 

This method creates a Vector to hold all values the first time it's called, and then adds the Value object to 
the Vector. When called by subsequent value action tag handlers, the Value objects are simply added to the 
list. 

The real processing happens in the doEndTag( ) method, shown in Example 17.17. This method is called by 
the container when the action element's body has been processed and the end tag is encountered. 

Example 17.17. The DBTag's doEndTag( ) Method  

public int doEndTag( ) throws JspException { 
        Connection conn = getConnection( ); 
        sqlCommandBean.setConnection(conn); 
        sqlCommandBean.setSqlValue(sqlValue); 
        sqlCommandBean.setValues(values); 
        Object result = null; 
        try { 
            result = execute(sqlCommandBean); 
        } 
        catch (SQLException e) { 
            ... 
        } 
        catch (UnsupportedTypeException e) { 
            ... 
        } 
        finally { 
            ... 
        } 
        // Save the result with the specified id in the specified scope 
        if (id != null) { 
            pageContext.setAttribute(id, result, scope); 
        } 
        return EVAL_PAGE; 
    } 

The private getConnection( ) method is used to get a Connection. The Connection is retrieved either from 
the DataSource specified by the dataSource attribute value for the <ora:sqlQuery> or the <ora:sqlUpdate> 
action itself, or from an enclosing <ora:sqlTransaction> element. We'll return to getConnection( ) and 
the exception handling code later when we look at transaction support. The Connection, the SQL statement, 
and all values (if any) are passed to the bean. Then, the abstract execute( ) method is called to ask the 
bean to execute the SQL statement. The Object returned by execute( ) is saved in the scope specified by 
the scope attribute, using the name specified by the id attribute. 

The implementation of the execute( ) method is the only thing that differs between the tag handlers for the 
<ora:sqlQuery> action and the <ora:sqlUpdate> action. The corresponding tag handler classes, QueryTag 
and UpdateTag, extend the DBTag class and implement the execute( ) method. Example 17.18 shows the 
implementation in the QueryTag tag handler. 



JavaSercer Pages 

  page 252 

Example 17.18. The QueryTag's execute( ) Method  

 public Object execute(SQLCommandBean sqlCommandBean)  
         throws SQLException, UnsupportedTypeException { 
         return sqlCommandBean.executeQuery( ); 
     } 

This method simply calls the bean's executeQuery( ) method. 

The UpdateTag tag handler uses the bean's executeUpdate( ) method instead, and wraps the returned int 
in an Integer object, as shown in Example 17.19. 

Example 17.19. The UpdateTag's execute( ) Method  

public Object execute(SQLCommandBean sqlCommandBean) 
        throws SQLException, UnsupportedTypeException { 
        return new Integer(sqlCommandBean.executeUpdate( )); 
    } 

The reason for wrapping the int in an Integer is that only real objects can be saved as JSP scope objects; 
primitive types are not supported. 

The <ora:sqlQuery> and the <sql:Update> actions define separate TagExtraInfo classes, named 
QueryTagExtraInfo and UpdateTagExtraInfo, respectively. They both extend a class called 
com.ora.jsp.tags.sql.DBTagExtraInfo. The isValid( ) method for the DBTagExtraInfo class makes sure 
a valid value is specified for the scope attribute. It's shown in Example 17.20. 

Example 17.20. The DBTagExtraInfo Class  

package com.ora.jsp.tags.sql; 
 
import javax.servlet.jsp.tagext.*; 
 
public class DBTagExtraInfo extends TagExtraInfo { 
    /** 
     * Returns true only if a valid scope value is specified: 
     * page, request, session or application. 
     */ 
    public boolean isValid(TagData data) { 
        boolean isValid = false; 
        String scope = data.getAttributeString("scope"); 
         
        if (scope == null || scope.equals("page") ||  
            scope.equals("request") || 
            scope.equals("session") || scope.equals("application")) { 
            isValid = true; 
        } 
        return isValid; 
    } 
} 

The QueryTagExtraInfo and UpdateTagExtraInfo classes implement the getVariableInfo( ) method to 
tell the container about the result variables they create. Here's the UpdateTagExtraInfo class: 

package com.ora.jsp.tags.sql; 
 
import javax.servlet.jsp.tagext.*; 
public class UpdateTagExtraInfo extends DBTagExtraInfo { 
    public VariableInfo[] getVariableInfo(TagData data) { 
        if (data.getAttributeString("id") == null) { 
            return new VariableInfo[0]; 
        } 
        else { 
            return new VariableInfo[] 
            { 
                new VariableInfo(data.getAttributeString("id"), 
                    "java.lang.Integer", 
                    true, 
                    VariableInfo.AT_END) 
            }; 
        } 
    } 
} 

The QueryTagExtraInfo class is almost identical. The only difference is that it sets the class name to 
com.ora.jsp.sql.Row instead of java.lang.Integer. 



JavaSercer Pages 

  page 253

17.3.2 The <ora:intValue> Action 

A set of value actions can be used inside the body of an <ora:sqlQuery> or <ora:sqlUpdate> action to set 
the values for placeholders in the SQL statement. The example tag library contains value actions for 
date/time values as well as for numeric and string values. The tag handlers for all these actions have a great 
deal in common, so they all extend a common superclass called com.ora.jsp.tags.sql.value.ValueTag . 
This superclass contains instance variables and property setter methods for the attributes shared by all value 
actions: stringValue, pattern, param, name, and property. In addition, it contains methods used by the 
subclasses to get the value when it's specified as a parameter name or a bean name plus a property name. 

Let's look at the tag handler class for the <ora:intValue> action as an example. All other value actions follow 
the same pattern. The com.ora.jsp.tags.sql.IntValueTag class extends the ValueTag class as shown in 
Example 17.21. 

Example 17.21. The IntValueTag Class  

package com.ora.jsp.tags.sql.value; 
 
import java.lang.reflect.*; 
import java.text.*; 
import javax.servlet.jsp.*; 
import javax.servlet.jsp.tagext.*; 
import com.ora.jsp.sql.value.*; 
import com.ora.jsp.tags.sql.ValueTagParent; 
import com.ora.jsp.util.*; 
 
public class IntValueTag extends ValueTag { 
    private int value; 
 
    public void setValue(int value) { 
        this.value = value; 
    } 
 
    public int doEndTag( ) throws JspException { 
        if (stringValue != null) { 
            value = toInt(stringValue, pattern); 
        } 
        else if (param != null) { 
            String paramValue = getParameter(param); 
            value = toInt(paramValue, pattern); 
        } 
        else if (name != null) { 
            value = getInt(name, property, pattern); 
        } 
        ValueTagParent parent =  
            (ValueTagParent) findAncestorWithClass(this,  
                ValueTagParent.class); 
        if (parent == null) { 
            throw new JspException("The sqlIntValue action is not " + 
                "enclosed by a supported action type"); 
        } 
        parent.addValue(new IntValue(value)); 
        return EVAL_PAGE; 
    } 
    ... 
} 

The Java datatype is different for each value action, so all subclasses implement their own value property 
setter methods to store the value in an instance variable. The value property for the IntValueTag is of course 
an int. 

Besides the value attribute, all value actions support three other ways to set the value: as a String value 
specified by the stringValue attribute, as a request parameter specified by the param attribute, or as a bean 
property specified by the name and property attributes. The ValueTag superclass contains the setter methods 
and instance variables for these attributes, and the ValueTagExtraInfo class makes sure that a page author 
uses only one of these alternatives to specify the value. The doEndTag( ) method finds out which alternative 
is used by looking at all property instance variables in turn. If it's a String value, defined by the 
stringValue or param attributes, the method converts the value to an int using a private toInt( ) method. 
If it's specified as a bean property, another private method, getInt( ) , is used to invoke the bean to get the 
value. These private methods are not shown here, but you can look at the source code if you want to see how 
they work. 

The enclosing <ora:sqlQuery> or <ora:sqlUpdate> action's tag handler is then located, as described in 
Chapter 16, using the findAncestorWithClass( ) method. The tag handlers for the enclosing actions 
implement the ValueTagParent interface used as the parent class argument. If an enclosing action is found, 
its addValue( ) method is called to add the int value wrapped in an IntValue object to the parent's value 
list. 



JavaSercer Pages 

  page 254

17.3.3 The <ora:sqlTransaction> Action 

The final database action in the example tag library is the <ora:sqlTransaction> action. A database 
transaction consists of the execution of a number of SQL statements on the same Connection; they either all 
succeed or all fail. As you may recall, the data changes resulting from executing all statements are then 
either permanently saved by committing the transaction, or ignored by rolling back the transaction. The task 
for the <ora:sqlTransaction> action is to provide a Connection to all database actions enclosed in its body, 
and commit the transaction when they have all been executed. The nested database actions must cooperate 
with the <ora:sqlTransaction> action tag handler by retrieving the shared Connection and rolling back the 
transaction if they fail. 

Let's look at how the Connection is handled first. Example 17.22 shows the TransactionTag class 
declaration, the dataSource property setter method, and the doStartTag( ) method. 

Example 17.22. Part of the TransactionTag Class  

package com.ora.jsp.tags.sql; 
 
import java.io.*; 
import java.util.*; 
import java.sql.*; 
import javax.sql.*; 
import javax.servlet.jsp.*; 
import javax.servlet.jsp.tagext.*; 
 
public class TransactionTag extends TagSupport { 
    private String dataSourceName; 
    private Connection conn; 
 
    public void setDataSource(String dataSourceName) { 
        this.dataSourceName = dataSourceName; 
    } 
 
    public int doStartTag( ) throws JspException { 
        conn = getTransactionConnection( ); 
        return EVAL_BODY_INCLUDE; 
    } 

The TransactionTag class extends the TagSupport class. It doesn't need to access its body content; it only 
needs to tell the JSP container to execute all actions and possible scripting elements in the body, so the 
TagSupport class is the proper choice. The dataSource property corresponds to the attribute with the same 
name. The page author sets it to the name of the DataSource object in the application scope to use for all 
nested database actions. 

The doStartTag( ) method, invoked by the container before the actions in the body are processed, sets the 
conn instance variable by calling the get-TransactionConnection( ) method, shown in Example 17.23. 

Example 17.23. The TransactionTag's getTransactionConnection( ) and getConnection( ) Methods  

private Connection getTransactionConnection( ) throws JspException { 
        DataSource dataSource = (DataSource) 
            pageContext.getAttribute(dataSourceName,  
                PageContext.APPLICATION_SCOPE); 
        if (dataSource == null) { 
            throw new JspException("dataSource " + dataSourceName +  
                " not found"); 
        } 
        try { 
            conn = dataSource.getConnection( ); 
            conn.setAutoCommit(false); 
        } 
        catch (SQLException e) { 
            throw new JspException("SQL error: " + e.getMessage( )); 
        } 
        return conn; 
    } 
 
    Connection getConnection( ) { 
        return conn; 
    } 

This method retrieves the DataSource object from the application scope and gets a Connection. A 
Connection automatically commits each SQL statement by default. In order to use the Connection to 
execute more than one statement within the same transaction, the setAutoCommit( ) method is called with 
the value false. 



JavaSercer Pages 

  page 255 

The package scope getConnection( ) method, also shown in Example 17.23, is used by the tag handlers for 
the <ora:sqlQuery> and <ora:sqlUpdate> actions. To see how it's used, let's look at the method with the 
same name in the DBTag class that we skipped earlier. The DBTag 's getConnection( ) method is shown in 
Example 17.24. 

Example 17.24. The DBTag's getConnection( ) Method  

private Connection getConnection( ) throws JspException { 
        Connection conn = null; 
        TransactionTag transactionTag = (TransactionTag) 
            findAncestorWithClass(this, TransactionTag.class); 
        if (transactionTag != null) { 
            conn = transactionTag.getConnection( ); 
            isPartOfTransaction = true; 
            if (dataSourceName != null) { 
                throw new JspException("A dataSource must not be " + 
                    "specified when the action is part of a " + 
                    "transaction"); 
            } 
        } 
        else { 
            DataSource dataSource = (DataSource) 
                pageContext.getAttribute(dataSourceName,  
                    PageContext.APPLICATION_SCOPE); 
            if (dataSource == null) { 
                throw new JspException("dataSource " +  
                    dataSourceName + " not found"); 
            } 
            try { 
                conn = dataSource.getConnection( ); 
            } 
            catch (SQLException e) { 
                throw new JspException("SQL error: " + e.getMessage( )); 
            } 
        } 
        return conn; 
    } 

The findAncestorWithClass( ) is used to find out whether or not the action is nested in the body of an 
<ora:sqlTransaction> tag. If a TransactionTag is found, the action is part of a transaction, so the 
TransactionTag's get-Connection( ) is used to retrieve the shared Connection, and a boolean flag is set 
to remember that the action is part of a transaction. If a parent tag handler is not found, the action is not 
part of a transaction. In this case, the DBTag's dataSource property value is used instead to locate the 
DataSource in the application scope and get a Connection. 

The doEndTag( ) method in the DBTag class contains some details related to database transactions that we 
also skipped earlier. Let's revisit this method, shown in Example 17.25. 

Example 17.25. The DBTag's doEndTag( ) Method  

public int doEndTag( ) throws JspException { 
        Connection conn = getConnection( ); 
        sqlCommandBean.setConnection(conn); 
        sqlCommandBean.setSqlValue(sqlValue); 
        sqlCommandBean.setValues(values); 
        Object result = null; 
        try { 
            result = execute(sqlCommandBean); 
        } 
        catch (SQLException e) { 
            try { 
                isExceptionThrown = true; 
                conn.rollback( ); 
            } 
            catch (SQLException se) { 
                 // Ignore, probably a result of the main exception 
            } 
            throw new JspException("SQL error: " + e.getMessage( )); 
        } 
        catch (UnsupportedTypeException e) { 
            try { 
                isExceptionThrown = true; 
                conn.rollback( ); 
            } 
            catch (SQLException se) { 
                // Ignore, probably caused by the main exception 
            } 
            throw new JspException("Query result error: " +  
                e.getMessage( )); 
        } 



JavaSercer Pages 

  page 256 

        finally { 
            try { 
                if (isPartOfTransaction && isExceptionThrown) { 
                    // Reset auto commit in case the connection is 
                    // pooled before it's returned to the pool by close 
                    conn.setAutoCommit(true); 
                    conn.close( ); 
                } 
                else if (!isPartOfTransaction) { 
                    // If we're not part of a transaction, the  
                    // connection is in auto commit mode so we only  
                    // close it 
                    conn.close( ); 
                } 
            } 
            catch (SQLException e) { 
                e.printStackTrace(System.err); 
            } 
        } 
        // Save the result with the specified id in the specified scope 
        if (id != null) { 
            pageContext.setAttribute(id, result, scope); 
        } 
        return EVAL_PAGE; 
    } 

The interesting code is in the catch and finally clauses of the try block. If the execution of the SQL 
statement causes an exception to be thrown, the transaction is rolled back and a JspException is thrown. 
This aborts the processing of the rest of the page and informs the user about the error. A boolean flag is also 
set to be able to handle this case in the finally clause. The finally clause is executed whether or not an 
exception is thrown. If this action is part of a transaction and an exception is thrown by the execute( ) 
method, the Connection is returned to the pool by calling the close( ) method after auto commit is turned 
on again to reset it to its default state. If the action is not part of a transaction, there's no need to reset the 
auto commit since it has never been changed; the Connection is just returned to the pool by calling the 
close( ) method. If the action is part of a transaction and no exception is thrown, the result is saved in the 
specified scope, and processing continues with the next nested database action. Note that the Connection is 
not closed in this case, as the same Connection must be used for all SQL statements in the transaction. 

If all actions execute successfully, the TransactionTag 's doEndTag( ), shown in Example 17.26, is invoked. 

Example 17.26. The TransactionTag's doEndTag( ) Method  

public int doEndTag( ) throws JspException { 
        try { 
            conn.commit( ); 
            conn.setAutoCommit(true); 
            conn.close( ); 
        } 
        catch (SQLException e) { 
            throw new JspException("SQL error: " + e.getMessage( )); 
        } 
        return EVAL_PAGE; 
    } 

The doEndTag( ) method commits the transaction, resets the auto commit for the Connection, and returns 
the Connection to the pool by calling the close( ) method. 

 



JavaSercer Pages 

  page 257 

17.4 Developing Application-Specific Database Components 

The classes described in this chapter can also be used for application-specific components that access a 
database. Chapter 15 includes one example of an application-specific bean, the EmployeeRegisterBean, that 
uses the SQLCommandBean to execute its SQL statements. 

You can also use these classes in your application-specific custom actions. One example is the custom action 
that's mentioned in Chapter 9 as an alternative to the generic database actions for inserting or updating 
employee information: 

<%@ page language="java" contentType="text/html" %> 
<%@ taglib uri="/orataglib" prefix="ora" %> 
<%@ taglib uri="/mytaglib" prefix="myLib" %> 
 
<myLib:saveEmployeeInfo dataSource="example" /> 
 
<%-- Get the new or updated data from the database --%> 
<ora:sqlQuery id="newEmpDbInfo" dataSource="example" scope="session"> 
  SELECT * FROM Employee  
    WHERE UserName = ? 
  <ora:sqlStringValue param="userName" /> 
</ora:sqlQuery> 
 
<%-- Redirect to the confirmation page --%> 
<ora:redirect page="confirmation.jsp" /> 

Example 17.27 shows one way to implement this custom action. 

Example 17.27. SaveEmployeeInfoTag Class  

package com.mycompany.tags; 
 
import java.sql.*; 
import java.text.*; 
import java.util.Vector; 
import javax.sql.*; 
import javax.servlet.*; 
import javax.servlet.jsp.*; 
import javax.servlet.jsp.tagext.*; 
import com.ora.jsp.sql.*; 
import com.ora.jsp.sql.value.*; 
import com.ora.jsp.util.*; 
 
public class SaveEmployeeInfoTag extends TagSupport { 
    private String dataSourceName; 
     
    public void setDataSource(String dataSourceName) { 
        this.dataSourceName = dataSourceName; 
    } 
     
    public int doEndTag( ) throws JspException { 
        // Get all request parameters 
        ServletRequest request = pageContext.getRequest( ); 
        String userName = request.getParameter("userName"); 
        String password = request.getParameter("password"); 
        String firstName = request.getParameter("firstName"); 
        String lastName = request.getParameter("lastName"); 
        String dept = request.getParameter("dept"); 
        String empDate = request.getParameter("empDate"); 
        String emailAddr = request.getParameter("emailAddr"); 
        if (userName == null || password == null ||  
            firstName == null || lastName == null ||  
            dept == null || empDate == null || 
            emailAddr == null) { 
            throw new JspException("Missing a mandatory parameter"); 
        } 
 
        SQLCommandBean sqlCommandBean = new SQLCommandBean( ); 
        DataSource dataSource = (DataSource) 
            pageContext.getAttribute(dataSourceName,  
                PageContext.APPLICATION_SCOPE); 
        if (dataSource == null) { 
            throw new JspException("The data source " + dataSource + 
                " is not found in the application scope"); 
        } 
        Connection conn = null; 
        try { 
            conn = dataSource.getConnection( ); 
            sqlCommandBean.setConnection(conn); 
             
            // See if the user exists 
            String sqlValue = 
                "SELECT * FROM Employee WHERE UserName = ?"; 



JavaSercer Pages 

  page 258

            Vector values = new Vector( ); 
            values.addElement(new StringValue(userName)); 
            sqlCommandBean.setSqlValue(sqlValue); 
            sqlCommandBean.setValues(values); 
            Vector rows = sqlCommandBean.executeQuery( ); 
             
            // Create values for insert/update 
            values.removeAllElements( ); 
            values.addElement(new StringValue(password)); 
            values.addElement(new StringValue(firstName)); 
            values.addElement(new StringValue(lastName)); 
            values.addElement(new StringValue(dept)); 
            values.addElement(new DateValue( 
                new Date(StringFormat.toDate(empDate,  
                    "yyyy-MM-dd").getTime( )))); 
            values.addElement(new StringValue(emailAddr)); 
            values.addElement(new TimestampValue( 
                new Timestamp(System.currentTimeMillis( )))); 
            values.addElement(new StringValue(userName)); 
             
            if (rows.size( ) == 0) { 
                // New user. Insert 
                StringBuffer sb = new StringBuffer( ); 
                sb.append("INSERT INTO Employee "). 
                    append("(Password, FirstName, LastName, Dept, "). 
                    append("EmpDate, EmailAddr, ModDate, UserName) "). 
                    append("VALUES(?, ?, ?, ?, ?, ?, ?, ?)"); 
                sqlCommandBean.setSqlValue(sb.toString( )); 
            } 
            else { 
                // Existing user. Update 
                StringBuffer sb = new StringBuffer( ); 
                sb.append("UPDATE Employee "). 
                    append("SET Password = ?, FirstName = ?, "). 
                    append("LastName = ?, Dept = ?, EmpDate = ?, "). 
                    append("EmailAddr = ?, ModDate = ? "). 
                    append("WHERE UserName = ?"); 
                sqlCommandBean.setSqlValue(sb.toString( )); 
            } 
            sqlCommandBean.executeUpdate( ); 
        } 
        catch (SQLException e) { 
            throw new JspException("SQL error: " + e.getMessage( )); 
        } 
        catch (UnsupportedTypeException e) { 
            throw new JspException("Query result error: " +  
                e.getMessage( )); 
        } 
        catch (ParseException e) { 
            throw new JspException("Invalid empDate format: " +  
                e.getMessage( )); 
        } 
        finally { 
            try { 
                if (conn != null) { 
                    conn.close( ); 
                } 
            } 
            catch (SQLException e) { 
                // Ignore 
            } 
        } 
        return EVAL_PAGE; 
    } 
    public void release( ) { 
        dataSourceName =  null; 
        super.release( ); 
    } 
} 

This tag handler has one property, named dataSource. It's marked as required in the TLD for the tag, so it 
will always be set: 

 ... 
   <tag> 
     <name>saveEmployeeInfo</name> 
     <tagclass>com.mycompany.tags.SaveEmployeeInfoTag</tagclass> 
     <bodycontent>empty</bodycontent> 
     <info> 
     </info> 
     <attribute> 
       <name>dataSource</name> 
       <required>true</required> 
     </attribute> 
   </tag> 
   ... 



JavaSercer Pages 

  page 259 

In the doEndTag( ) method, all request parameters with information about the employee are first retrieved. 
If a parameter is missing, an exception is thrown. Then an SQLCommandBean instance is created, the 
DataSource object fetched from the application scope, and a Connection created and provided to the bean. 

The bean is used to execute a SELECT statement to find out if the specified employee is already defined in the 
database. If not, the bean is used to execute an INSERT statement with all the information provided through 
the request parameters. Otherwise, the bean is used to execute an UPDATE statement. 

The tag handler class described here is intended only to show how you can use the database access classes to 
implement your own custom actions. The tag handler class could be improved in several ways. For instance, it 
could provide default values for missing parameters, such as the current date for a missing employment date, 
or an email address based on the employee's first and last names if the email address is missing. You could 
also use a bean as input to the action instead of reading request parameters directly. This would allow the 
bean to be used as described in Chapter 6, and Chapter 8, to capture and validate the user input until all 
information is valid, and then pass it on to the custom action for permanent storage of the information in a 
database. 



JavaSercer Pages 

  page 260

Appendix A. JSP Elements Syntax Reference 

JSP defines three types of elements: directives, scripting elements, and action elements. In addition, you can 
define your own custom actions. This appendix contains descriptions of all JSP elements as well as the 
general syntax rules for custom actions. 

A.1 Directive Elements 

Directive elements are used to specify information about the page itself, especially information that doesn't 
differ between requests for the page. The general directive syntax is: 

 <%@ directiveName attr1="value1" attr2="value2" %> 

The attribute values can be enclosed with single quotes instead of double quotes. The directive name and all 
attribute names are case-sensitive. 

A.1.1 include Directive 

The include directive includes a static file, merging its content with the including page before the combined 
result is converted to a JSP page implementation class. The include directive supports the attribute 
described in Table A.1. 

Table A.1, include Directive Attribute  

Attribute Name Default Description 

file No default A page-relative or context-relative URI path for the file to include 

A page can contain multiple include directives. The including page and all included pages together form what 
is called a JSP translation unit. 

Example: 

 <%@ include file="header.html" %> 

A.1.2 page Directive 

The page directive defines page-dependent attributes, such as scripting language, error page, and buffering 
requirements. It supports the attributes described in Table A.2. 

Table A.2, page Directive Attributes  

Attribute 
Name 

Default Description 

autoFlush true Set to true if the page buffer should be flushed automatically when it's 
full, or to false if an exception should be thrown when it's full. 

buffer 8kb 
Specifies the buffer size for the page. The value must be expressed as 
the size in kilobytes followed by kb, or be the keyword none to disable 
buffering. 

contentType text/html 
The MIME type for the response generated by the page, and optionally 
the charset for the source page as well as the response; e.g., 
text/html;charset=Shift_JIS. 

errorPage No default A page-relative or context-relative URI path for the JSP page to forward 
to if an exception is thrown by code in the page. 

extends No default 

The fully qualified name of a Java class that the generated JSP page 
implementation class extends. The class must implement the JspPage or 
HttpJspPage interface in the javax.servlet.jsp package. 

Note that the recommendation is to not use this attribute. Specifying 
your own superclass restricts the JSP container's ability to provide a 
specialized, high-performance superclass. 



JavaSercer Pages 

  page 261

import No default 
A Java import declaration, i.e., a comma-separated list of fully qualified 
class names or package names followed by .* (for all public classes in 
the package). 

info No default Text that a web container may use as a description of the page in its 
administration user interface. 

isErrorPage false 
Set to true for a page that is used as an error page, to make the 
implicit exception variable available to scripting elements. Use false 
for regular JSP pages. 

isThreadSafe true 

Set to true if the container is allowed to run multiple threads through 
the page (i.e., lets the page serve parallel requests). If set to false, the 
container serializes all requests for the page. It may also use a pool of 
page implementation class instances to serve more than one request at 
a time. The recommendation is to always use true, and handle 
multithread issues by avoiding JSP declarations and ensuring that all 
objects used by the page are thread-safe. 

language java Defines the scripting language used in the page. 

session true 
Set to true if the page should participate in a user session. If set to 
false, the implicit session variable is not available to scripting 
elements in the page. 

A translation unit (the JSP source file and any files included via the include directive) can contain more than 
one page directive, as long as there is only one occurrence of an attribute, with the exception of the import 
attribute. If multiple import attribute values are used, they are combined into one list of import definitions. 

Example: 

 <%@ page language="java" contentType="text/html;charset=Shift_JIS"%> 
 <%@ page import="java.util.*, java.text.*" %> 
 <%@ page import="java.sql.Date" %> 

A.1.3 taglib Directive 

Declares a tag library, containing custom actions, that is used in the page. The taglib directive supports the 
attributes described in Table A.3. 

Table A.3, taglib Directive Attributes  

Attribute 
Name 

Default Description 

prefix No 
default 

Mandatory. The prefix to use in the action element names for all actions in 
the library. 

uri No 
default 

Mandatory. Either a symbolic name for the tag library defined in the web.xml 
file for the application, or a page-relative or context-relative URI path for the 
library's TLD file or JAR file. 

Example: 

 <%@ taglib uri="/orataglib" prefix="ora" %> 



JavaSercer Pages 

  page 262 

A.2 Scripting Elements 

Scripting elements let you add small pieces of code to a JSP page, such as an if statement that generates 
different HTML depending on some condition. The scripting code must be written in the language defined by 
the page directive. It is executed when the JSP page is requested. 

A.2.1 Declaration 

A declaration starts with <%! and ends with %>. The content between the start and the end characters must 
be a complete, valid declaration in the scripting language defined by the page directive. The JSP implicit 
variables are not visible in a declaration element. 

A declaration can be used to declare a scripting language variable or method. When the scripting language is 
Java, a variable declared by a declaration element ends up as an instance variable in the JSP page 
implementation class. It is therefore visible to parallel threads (requests) processing the page, and needs to 
be handled in a thread-safe manner. A thread-safe alternative is to declare variables within a scriptlet 
element instead. It then becomes a local variable of the method in the page implementation class used to 
process each request, and is not shared by parallel threads. 

Example: 

 <%! int globalCounter = 0; %> 

A.2.2 Expression 

An expression starts with <%= and ends with %>. The content between the start and the end characters must 
be a complete, valid expression in the scripting language defined by the page directive that results in or can 
be converted to a string. All JSP implicit variables are visible in an expression element. 

Example: 

 <%= globalCounter++ %> 

A.2.3 Scriptlet 

A scriptlet starts with <% and ends with %>. The content between the start and the end characters must be a 
code fragment in the scripting language defined by the page directive. Scriptlet code fragments are combined 
with code for sending the template data between them to the browser. The combination of all scriptlets in a 
page must form valid scripting language statements. All JSP implicit variables are visible in a scripting 
element. 

Example: 

 <% java.util Date clock = new java.util.Date( ) %> 
  
 <% if (clock.getHours( ) < 12) { %> 
   Good morning! 
 <% } else if (clock.getHours( ) < 17) { %> 
   Good day! 
 <% } else { %> 
   Good evening! 
 <% } %> 
 
 



JavaSercer Pages 

  page 263

A.3 Action Elements 

Actions are executed when the JSP page is requested by a client. They are inserted in a page using XML 
element syntax, and encapsulate functionality such as input validation using beans, database access, or 
passing control to another page. The JSP specification defines a few standard action elements, described in 
this section, and also includes a framework for developing custom action elements. 

An action element consists of a start tag (optionally with attributes), a body, and an end tag. Other elements 
can be nested in the body. Here's an example: 

 <jsp:forward page="nextPage.jsp"> 
   <jsp:param name="aParam" value="aValue" /> 
 </jsp:forward> 

If the action element doesn't have a body, a shorthand notation can be used in which the start tag ends with 
/> instead of >, as shown by the <jsp:param> action in this example. The action element name and attribute 
names are case-sensitive. 

Some action attributes accept a request-time attribute value, using the JSP expression syntax: 

 <% String headerPage = currentTemplateDir + "/header.jsp"; %> 
 <jsp:include page="<%= headerPage %>" /> 

The attribute descriptions for each action in this section define whether a request-time attribute value is 
accepted or not. 

A.3.1 <jsp:fallback> 

The <jsp:fallback> action can only be used in the body of a <jsp:plugin> action. Its body is used to 
specify the template text to use for browsers that do not support the HTML <embed> or <object> elements. 
This action supports no attributes. 

Example: 

 <jsp:plugin type="applet" code="Clock2.class"  
   codebase="applet"  
   jreversion="1.2" width="160" height="150" > 
   <jsp:fallback> 
     Plugin tag OBJECT or EMBED not supported by browser. 
   </jsp:fallback> 
 </jsp:plugin> 

A.3.2 <jsp:forward> 

The <jsp:forward> action passes the request processing control to another JSP page or servlet in the same 
web application. The execution of the current page is terminated, giving the target resource full control over 
the request. 

If any response content has been buffered when the <jsp:forward> action is executed, the buffer is cleared 
first. If the response has already been committed (i.e., partly sent to the browser), the forwarding fails with 
an IllegalStateException. 

The URI path information available through the implicit request object is adjusted to reflect the URI path 
information for the target resource. All other request information is left untouched, so the target resource has 
access to all the original parameters and headers passed with the request. Additional parameters can be 
passed to the target resource through <jsp:param> elements in the <jsp:forward> element's body. 



JavaSercer Pages 

  page 264

The <jsp:forward> action supports the attributes described in Table A.4. 

Table A.4, <jsp:forward> Attributes  

Attribute 
Name 

Java 
Type 

Request-Time 
Value Accepted 

Description 

Page String Yes Mandatory. A page-relative or context-relative URI 
path for the resource to forward to. 

Example: 

 <jsp:forward page="list.jsp" /> 

A.3.3 <jsp:getProperty> 

The <jsp:getProperty> action adds the value of a bean property, converted to a string, to the response 
generated by the page. The attributes described in Table A.5 are supported. 

Table A.5, <jsp:getProperty> Attributes  

Attribute 
Name 

Java 
Type 

Request-Time Value 
Accepted 

Description 

name String No Mandatory. The name assigned to a bean in 
one of the JSP scopes. 

property String No Mandatory. The name of the bean's property to 
include in the page. 

Example: 

 <jsp:getProperty name="clock" property="hours" /> 

A.3.4 <jsp:include> 

The <jsp:include> action includes the response from another JSP page, servlet, or static file in the same 
web application. The execution of the current page continues after including the response generated by the 
target resource. 

If any response content has been buffered when the <jsp:include> action is executed, the buffer is flushed 
first. Even though this behavior can be controlled by the flush attribute, the only valid value in JSP 1.1 is 
true. This limitation will likely be lifted in a future version of JSP. 

The URI path information available through the implicit request object reflects the URI path information for 
the source JSP page even in the target resource. All other request information is also left untouched, so the 
target resource has access to all the original parameters and headers passed with the request. Additional 
parameters can be passed to the target resource through <jsp:param> elements in the <jsp:include> 
element's body. 

The <jsp:include> action supports the attributes described in Table A.6. 

Table A.6, <jsp:include> Attributes  

Attribute 
Name 

Java 
Type 

Request-Time Value 
Accepted 

Description 

page String Yes Mandatory. A page-relative or context-relative URI 
path for the resource to include. 

flush boolean No 
Mandatory in JSP 1.1 with true as the only 
accepted value. 

Example: 

 <jsp:include page="navigation.jsp" /> 



JavaSercer Pages 

  page 265 

A.3.5 <jsp:param> 

The <jsp:param> action can be used in the body of a <jsp:forward> or <jsp:include> action to specify 
additional request parameters for the target resource, as well as in the body of a <jsp:params> action to 
specify applet parameters. The attributes described in Table A.7 are supported. 

Table A.7, <jsp:param> Attributes  

Attribute Name Java Type Request-Time Value Accepted Description 

name String No Mandatory. The parameter name. 

value String Yes Mandatory. The parameter value. 

Example: 

 <jsp:include page="navigation.jsp"> 
   <jsp:param name="bgColor" value="<%= currentBGColor %>" /> 
 </jsp:include> 

A.3.6 <jsp:params> 

The <jsp:params> action can only be used in the body of a <jsp:plugin> action to enclose a set of 
<jsp:param> actions that are used to specify applet parameters. This action supports no attributes. 

Example: 

 <jsp:plugin type="applet" code="Clock2.class"  
   codebase="applet"  
   jreversion="1.2" width="160" height="150" > 
   <jsp:params> 
     <jsp:param name="bgcolor" value="ccddff" /> 
   </jsp:params> 
 </jsp:plugin> 

A.3.7 <jsp:plugin> 

The <jsp:plugin> action generates HTML <embed> or <object> elements (depending on the browser type) 
that result in the download of the Java Plugin software (if required) and subsequent execution of the specified 
Java Applet or JavaBeans component. The body of the action can contain a <jsp:params> element to specify 
applet parameters, and a <jsp:fallback> element to specify the text shown in browsers that do not support 
the <embed> or <object> HTML elements. For more information about the Java Plugin, see 
http://java.sun.com/products/plugin/. 

The attributes described in Table A.8 are supported. 

Table A.8, <jsp:plugin> Attributes  

Attribute 
Name 

Java 
Type 

Request-
Time 
Value 
Accepted 

Description 

align String No 
Optional. Alignment of the applet area. One of bottom, middle, 
or top. 

archive String No 

Optional. A comma-separated list of URIs for archives containing 
classes and other resources that will be preloaded. The classes 
are loaded using an instance of an AppletClassLoader with the 
given codebase. Relative URIs for archives are interpreted with 
respect to the applet's codebase. 

code String No Mandatory. The fully qualified class name for the object. 

codebase String No 
Mandatory. The relative URL for the directory that contains the 
class file. The directory must be a subdirectory to the directory 
holding the page, according to the HTML 4.0 specification. 

height String No Optional. The height of the applet area, in pixels or percentage. 

http://java.sun.com/products/plugin/


JavaSercer Pages 

  page 266 

hspace String No Optional. The amount of whitespace to be inserted to the left 
and right of the applet area, in pixels. 

iepluginurl String No Optional. The URL for the location of the Internet Explorer Java 
Plugin. The default is implementation-dependent. 

jreversion String No Optional. Identifies the spec version number of the JRE the 
component requires in order to operate. The default is 1.1. 

name String No Optional. The applet name, used by other applets on the same 
page that need to communicate with it. 

nspluginurl String No Optional. The URL for the location of the Netscape Java Plugin. 
The default is implementation-dependent. 

title String No Optional. Text to be rendered by the browser for the applet in a 
some way, for instance as a "tool tip." 

type String No Mandatory. The type of object to embed, one of applet or bean. 

vspace String No Optional. The amount of whitespace to be inserted above and 
below the applet area, in pixels. 

width String No Optional. The width of the applet area, in pixels or percentage. 

Example: 

 <jsp:plugin type="applet" code="Clock2.class"  
   codebase="applet"  
   jreversion="1.2" width="160" height="150" > 
   <jsp:params> 
     <jsp:param name="bgcolor" value="ccddff" /> 
   </jsp:params> 
   <jsp:fallback> 
     Plugin tag OBJECT or EMBED not supported by browser. 
   </jsp:fallback> 
 </jsp:plugin> 
 

A.3.8 <jsp:setProperty> 

The <jsp:setProperty> action sets the value of one or more bean properties. The attributes described in 
Table A.9 are supported. 

Table A.9, <jsp:setProperty> Attributes  

Attribute 
Name 

Java 
Type 

Request-Time 
Value 
Accepted 

Description 

name String No Mandatory. The name assigned to a bean in one of the JSP 
scopes. 

property String No 
Mandatory. The name of the bean's property to set, or an 
asterisk (*) to set all properties with names matching 
request parameters. 

param String No 

Optional. The name of a request parameter that holds the 
value to use for the specified property. If omitted, the 
parameter name and the property name must be the 
same. 

value See 
below 

Yes Optional. An explicit value to assign to the property. This 
attribute cannot be combined with the param attribute. 

The property type can be any valid Java type, including primitive types and arrays (i.e., an indexed property). 
If a runtime attribute value is specified by the value attribute, the type of the expression must match the 
property's type. 



JavaSercer Pages 

  page 267 

If the value is a string, either in the form of a request parameter value or explicitly specified by the value 
attribute, it is converted to the property's type as described in Table A.10. 

Table A.10, Conversion of String Value to Property Type  

Property Type Conversion Method 

boolean or Boolean Boolean.valueOf(String) 

byte or Byte Byte.valueOf(String) 

char or Character String.charAt(int) 

double or Double Double.valueOf(String) 

int or Integer Integer.valueOf(String) 

float or Float Float.valueOf(String) 

long or Long Long.valueOf(String) 

Example: 

 <jsp:setProperty name="user" property="*" /> 
 <jsp:setProperty name="user" property="modDate"  
   value="<%= new java.util.Date( ) %>" /> 

A.3.9 <jsp:useBean> 

The <jsp:useBean> action associates a Java bean with a name in one of the JSP scopes and also makes it 
available as a scripting variable. An attempt is first made to find a bean with the specified name in the 
specified scope. If it's not found, a new instance of the specified class is created. The attributes described in 
Table A.11 are supported. 

Table A.11, <jsp:useBean> Attributes  

Attribute 
Name 

Java 
Type 

Request-Time 
Value Accepted 

Description 

beanName String Yes 
Optional. The name of the bean, as expected by the 
instantiate( ) method of the Beans class in the 
java.beans package. 

class String No Optional. The fully qualified class name for the bean. 

id String No 
Mandatory. The name to assign to the bean in the 
specified scope, as well as the name of the scripting 
variable. 

scope String No 
Optional. The scope for the bean, one of page, request, 
session, or application. The default is page. 

type String No 
Optional. The fully qualified type name for the bean 
(i.e., a superclass or an interface implemented by the 
bean's class). 

Of the optional attributes, at least one of class or type must be specified. If both are specified, class must 
be assignable to type. The beanName attribute must be combined with the type attribute, and is not valid 
with the class attribute. 

The action is processed in these steps: 

1. Attempt to locate an object based on the id and scope attribute values. 

2. Define a scripting language variable with the given id of the specified type or class. 

3. If the object is found, the variable's value is initialized with a reference to the located object, cast to 
the specified type or class. This completes the processing of the action. If the action element has 
a nonempty body, it is ignored. 

4. If the object is not found in the specified scope and neither class nor beanName is specified, a 
InstantiationException is thrown. This completes the processing of the action. 



JavaSercer Pages 

  page 268

5. If the object is not found in the specified scope, and the class attribute specifies a nonabstract class 
with a public no-arg constructor, a new instance of the class is created and associated with the 
scripting variable and with the specified name in the specified scope. After this, Step 7 is performed. 

 If the object is not found and the specified class doesn't fulfill the requirements, a 
InstantiationException is thrown. This completes the processing of the action. 

6. If the object is not found in the specified scope and the beanName attribute is specified, the 
instantiate( ) method of the java.beans.Beans class is invoked, with the ClassLoader of the 
JSP implementation class instance and the beanName as arguments. If the method succeeds, the 
new object reference is associated with the scripting variable and with the specified name in the 
specified scope. After this, Step 7 is performed. 

7. If the action element has a nonempty body, the body is processed. The scripting variable is 
initialized and available within the scope of the body. The text of the body is treated as elsewhere: 
any template text is passed through to the response, and scriptlets and action tags are evaluated. 

 A common use of a nonempty body is to complete initializing the created instance; in that case, the 
body typically contains <jsp:setProperty> actions and scriptlets. This completes the processing of 
the action. 

Example: 

 <jsp:useBean id="clock" class="java.util.Date" /> 

A.3.10 Custom Actions 

A custom action element can be developed by a programmer to extend the JSP language. The examples in 
this book use custom actions for database access, internationalization, access control, and more. They are 
described in Appendix C. The general syntax for custom actions is the same as for the JSP standard actions: a 
start tag (optionally with attributes), a body, and an end tag. Other elements and template text can be 
nested in the body. Here's an example: 

 <ora:loop name="anArray" loopId="current" className="String"> 
   <li><%= current %> 
 </ ora:loop > 

The tag library containing the custom actions must be declared by the taglib directive, assigning a prefix for 
the custom action elements (ora in this example) before a custom action can be used in a JSP page. 

 

A.4 Comments 

You can use JSP comments in JSP pages to describe what a scripting element or action is doing: 

 <%-- This is a comment --%> 

All text between the start and stop tags is ignored by the JSP container and is not included in the response. 
The comment text can be anything except the character sequence representing the closing tag: --%>. 

Besides describing what's going on in the JSP page, comments can also be used to "comment out" portions of 
the JSP page, for instance during testing: 

 <jsp:useBean id="user" class="com.mycompany.UserBean" /> 
 <%-- 
 <jsp:setProperty name="user" property="*" /> 
 <jsp:setProperty name="user" property="modDate"  
   value="<%= new java.util.Date( ) %>" /> 
 <% boolean isValid = user.isValid( ); %> 
 --%> 

The action and scripting elements within the comment are not executed. 



JavaSercer Pages 

  page 269 

A.5 Escape Characters 

Since certain character sequences are used to represent start and stop tags, you sometimes need to escape a 
character so the container doesn't interpret it as part of a special character sequence. 

In a scripting element, if you need to use the characters %> literally, you must escape the greater-than 
character with a backslash: 

 <% String msg = "Literal %\> must be escaped"; %> 

To avoid the character sequence <% in template text being interpreted as the start of a scripting element, you 
must escape the percent sign: 

 This is template text, and <\% is not a start of a scriptlet. 

In an attribute value, you must use the following escapes: 

 attr='a value with an escaped \' single quote' 
 attr="a value with an escaped \" double quote" 
 attr="a value with an escaped \\ backslash" 
 attr="a value with an escaped %\> scripting end tag" 
 attr="a value with an escaped <\% scripting start tag" 



JavaSercer Pages 

  page 270

Appendix B. JSP API Reference 

Besides the JSP elements described in Appendix A, the JSP specification also defines a number of Java classes 
and interfaces. Instances of some of these classes are assigned to the implicit variables available to scripting 
elements in a JSP page. Others are used for development of custom actions and to allow JSP container 
vendors to encapsulate internal implementations. This appendix describes the classes and interfaces in all 
these categories. 

B.1 Implicit Variables 

The JSP specification defines a number of implicit variables. Most of the implicit variables have types defined 
by classes and interfaces in the servlet specification's javax.servlet.http package, but two are part of the 
JSP javax.servlet.jsp package and one is part of the Java core API. Scripting elements in a JSP page can 
use these objects to access request and response information as well as objects saved in one of the JSP 
scopes: page, request, session, and application. 

 

application   

 

  

Synopsis 

Variable Name: application 

Interface Name: javax.servlet.ServletContext 

Extends: None 

Implemented by: Internal container-dependent class 

JSP Page Type: Available in both regular JSP pages and error pages 

Description 

The ServletContext provides resources shared within a web application. It holds attribute values 
representing the JSP application scope. An attribute value can be an instance of any valid Java class. It also 
defines a set of methods that a JSP page or a servlet uses to communicate with its container, for example, to 
get the MIME type of a file, dispatch requests, or write to a log file. The web container is responsible for 
providing an implementation of the ServletContext interface. 

A ServletContext is assigned a specific URI path prefix within a web server. For example, a context could be 
responsible for all resources under http://www.mycorp.com/catalog. All requests that start with the /catalog 
request path, which is known as the context path, are routed to this servlet context. 

Only one instance of a ServletContext may be available to the servlets and JSP pages in a web application. 
If the web application indicates that it is distributable, there must be only one instance of the 
ServletContext object in use per application per Java Virtual Machine. 

Interface Declaration 

public interface ServletContext { 
 
  public Object getAttribute(String name); 
  public Enumeration getAttributeNames( ); 
  public ServletContext getContext(String uripath); 
  public String getInitParameter(String name); 
  public Enumeration getInitParameterNames( ); 
  public int getMajorVersion( ); 
  public String getMimeType(String filename); 
  public int getMinorVersion( ); 
  public RequestDispatcher getNamedDispatcher(String name); 
  public String getRealPath(String path); 
  public RequestDispatcher getRequestDispatcher(String path); 
  public URL getResource(String path) throws MalformedURLException; 

http://www.mycorp.com/catalog


JavaSercer Pages 

  page 271

  public InputStream getResourceAsStream(String path); 
  public String getServerInfo( ); 
  public void log(String message); 
  public void log(String message, Throwable cause); 
  public void removeAttribute(String name); 
  public void setAttribute(String name, Object attribute); 
 
  // Deprecated methods 
  public Servlet getServlet(String name) throws ServletException; 
  public Enumeration getServlets( ); 
  public Enumeration getServletNames( ); 
  public void log(Exception exception, String message); 
} 

Methods 

public Object getAttribute(String name)  

Returns the servlet context attribute with the specified name, or null if there is no attribute by that 
name. Context attributes can be set by a servlet or a JSP page, representing the JSP application scope. 
A container can also use attributes to provide information that is not already available through 
methods in this interface. 

public java.util.Enumeration getAttributeNames( )  

Returns an Enumeration of String objects containing the attribute names available within this servlet 
context. 

public ServletContext getContext(String uripath)  

Returns a ServletContext object that corresponds to a specified URI in the web container. This 
method allows servlets and JSP pages to gain access to contexts other than its own. The URI path 
must be absolute (beginning with /) and is interpreted based on the container's document root. In a 
security-conscious environment, the container may return null for a given URI. 

public String getInitParameter(String name)  

Returns a String containing the value of the named context-wide initialization parameter, or null if 
the parameter does not exist. Context initialization parameters can be defined in the web application 
deployment descriptor. 

public java.util.Enumeration getInitParameterNames( )  

Returns the names of the context's initialization parameters as an Enumeration of String objects, or 
an empty Enumeration if the context has no initialization parameters. 

public int getMajorVersion( )  

Returns the major version of the Java servlet API that this web container supports. For example, a 
container that complies with the Servlet 2.3 API returns 2. 

public String getMimeType(String filename)  

Returns the MIME type of the specified file, or null if the MIME type is not known. The MIME type is 
determined by the configuration of the web container, and may be specified in a web application 
deployment descriptor. 

public int getMinorVersion( )  

Returns the minor version of the Java servlet API that this web container supports. For example, a 
container that complies with the Servlet 2.3 API returns 3. 

public RequestDispatcher getNamedDispatcher(String name)  

Returns a RequestDispatcher object that acts as a wrapper for the named servlet or JSP page. 
Names can be defined for servlets and JSP pages in the web application deployment descriptor. 



JavaSercer Pages 

  page 272

public String getRealPath(String path)  

Returns a String containing the filesystem path for a specified context-relative path. This method 
returns null if the web container cannot translate the path to a filesystem path for any reason (such 
as when the content is being made available from a WAR archive). 

public RequestDispatcher getRequestDispatcher(String path)  

Returns a RequestDispatcher object that acts as a wrapper for the resource located at the specified 
context-relative path. The resource can be dynamic (servlet or JSP) or static (for instance, a regular 
HTML file). 

public java.net.URL getResource(String path) throws MalformedURLException  

Returns a URL to the resource that is mapped to the specified context-relative path. This method 
allows the web container to make a resource available to servlets and JSP pages from other sources 
than a local filesystem, such as a database or a WAR file. 

The URL provides access to the resource content directly, so be aware that requesting a JSP page 
returns a URL for the JSP source code as opposed to the processed result. Use a RequestDispatcher 
instead to include results of an execution. 

This method returns null if no resource is mapped to the pathname. 

public java.io.InputStream getResourceAsStream(String path)  

Returns the resource mapped to the specified context-relative path as an InputStream object. See 
getResource( ) for details. 

public String getServerInfo( )  

Returns the name and version of the servlet container on which the servlet or JSP page is running as a 
String with the format "servername/versionnumber" (for example, "Tomcat/3.2"). Optionally, a 
container may include other information, such as the Java version and operating system information, 
within parentheses. 

public void log(String message)  

Writes the specified message to a container log file. The name and type of the log file is container-
dependent. 

public void log(String message, Throwable cause)  

Writes the specified message and a stack trace for the specified Throwable to the servlet log file. The 
name and type of the log file is container-dependent. 

public void removeAttribute(String name)  

Removes the attribute with the specified name from the servlet context. 

public void setAttribute(String name, Object attribute)  

Binds an object to the specified attribute name in this servlet context. If the specified name is already 
used for an attribute, this method removes the old attribute and binds the name to the new attribute. 

The following methods are deprecated: 

public Servlet getServlet(String name) throws ServletException  

This method was originally defined to retrieve a servlet from a ServletContext. As of the Servlet 2.1 
API, this method always returns null, and remains only to preserve binary compatibility. This method 
will be permanently removed in a future version of the Java servlet API. 



JavaSercer Pages 

  page 273

public Enumeration getServlets( )  

This method was originally defined to return an Enumeration of all the servlets known to this servlet 
context. As of the Servlet 2.1 API, this method always returns an empty Enumeration, and remains 
only to preserve binary compatibility. This method will be permanently removed in a future version of 
the Java servlet API. 

public Enumeration getServletNames( )  

This method was originally defined to return an Enumeration of all the servlet names known to this 
context. As of the Servlet 2.1 API, this method always returns an empty Enumeration, and remains 
only to preserve binary compatibility. This method will be permanently removed in a future version of 
the Java servlet API. 

public void log(Exception exception, String message)  

This method was originally defined to write an exception's stack trace and an explanatory error 
message to the web container log file. As of the Servlet 2.1 API, the recommendation is to use 
log(String, Throwable) instead. 

 

config   

 

  

Synopsis 

Variable Name: config 

Interface Name: javax.servlet. 
ServletConfig 

Extends: None 

Implemented by: Internal container-dependent class 

JSP Page Type: Available in both regular JSP pages and error pages 

Description 

A ServletConfig instance is used by a web container to pass information to a servlet or JSP page during 
initialization. The configuration information contains initialization parameters (defined in the web application 
deployment descriptor) and the ServletContext object representing the web application the servlet or JSP 
page belongs to. 

Interface Declaration 

public interface ServletConfig { 
  public String getInitParameter(String name); 
  public Enumeration getInitParameterNames( ); 
  public ServletContext getServletContext( ); 
  public String getServletName( ); 
} 

Methods 

public String getInitParameter(String name)  

Returns a String containing the value of the specified servlet or JSP page initialization parameter, or 
null if the parameter does not exist. 



JavaSercer Pages 

  page 274

public java.util.Enumeration getInitParameterNames( )  

Returns the names of the servlet's or JSP page's initialization parameters as an Enumeration of 
String objects, or an empty Enumeration if the servlet has no initialization parameters. 

public ServletContext getServletContext( )  

Returns a reference to the ServletContext that the servlet or JSP page belongs to. 

public String getServletName( )  

Returns the name of the servlet instance or JSP page. The name may be assigned in the web 
application deployment descriptor. For an unregistered (and thus unnamed) servlet instance or JSP 
page, the servlet's class name is returned. 

 

exception   

 

  

Synopsis 

Variable Name: exception 

Class Name: java.lang. 
 
 
 
 
 
 
Throwable 

Extends: None 

Implements: java.io.Serializable 

Implemented 
by: 

Part of the standard Java library 

JSP Page Type: Available only in a page marked as an error page using the page directive 
isErrorPage attribute 

Description 

The exception variable is assigned to the subclass of Throwable that caused the error page to be invoked. 
The Throwable class is the superclass of all errors and exceptions in the Java language. Only objects that are 
instances of this class (or of one of its subclasses) are thrown by the Java Virtual Machine or by the Java 
throw statement. See the Java documentation at http://java.sun.com/docs/index.html for a description of the 
Throwable class. 

 

out   

 

  

Synopsis 

Variable Name: out 

Class Name: javax.servlet.jsp.JspWriter 

http://java.sun.com/docs/index.html


JavaSercer Pages 

  page 275 

Extends: java.io.Writer 

Implements: None 

Implemented 
by: 

A concrete subclass of this abstract class is provided as an internal container-
dependent class 

JSP Page Type: Available in both regular JSP pages and error pages 

Description 

The out variable is assigned to a concrete subclass of the JspWriter abstract class by the web container. 
JspWriter emulates some of the functionality found in the java.io.BufferedWriter and 
java.io.PrintWriter classes. It differs, however, in that it throws a java.io.IOException from the print 
methods, while the PrintWriter does not. 

If the page directive attribute autoflush is set to true, all the I/O operations on this class automatically flush 
the contents of the buffer when it's full. If autoflush is set to false, all the I/O operations on this class 
throw an IOException when the buffer is full. 

Class Summary 

public abstract class JspWriter extends java.io.Writer { 
  // Constructor 
  protected JspWriter(int bufferSize, boolean autoFlush); 
 
  // Methods 
  public abstract void clear( ) throws java.io.IOException; 
  public abstract void clearBuffer( ) throws java.io.IOException; 
  public abstract void close( )throws java.io.IOException; 
  public abstract void flush( ) throws java.io.IOException; 
  public int getBufferSize( ); 
  public abstract int getRemaining( ); 
  public boolean isAutoFlush( ); 
} 

Constructor 

protected JspWriter(int bufferSize, boolean autoFlush)  

Creates an instance with at least the specified buffer size and auto-flush behavior. 

Methods 

public abstract void clear( ) throws java.io.IOException  

Clears the contents of the buffer. If the buffer has already been flushed, throws an IOException to 
signal that some data has already been irrevocably written to the client response stream. 

public abstract void clearBuffer( ) throws java.io.IOException  

Clears the current contents of the buffer. Unlike clear( ), this method does not throw an 
IOException if the buffer has already been flushed. It just clears the current content of the buffer and 
returns. 

public abstract void close( ) throws java.io.IOException  

Closes the JspWriter after flushing it. A call to flush( ) or write( ) after a call to close( ) results 
in an IOException being thrown. If close( ) is called on a previously closed JspWriter, it is ignored. 

public abstract void flush( ) throws java.io.IOException  

Flushes the current contents of the buffer to the underlying writer, and flushes the underlying writer as 
well. This means the buffered content is delivered to the client immediately. 

public int getBufferSize( )  

Returns the size of the buffer in bytes, or 0 if it is not buffered. 



JavaSercer Pages 

  page 276

public abstract int getRemaining( )  

Returns the number of bytes unused in the buffer. 

public boolean isAutoFlush( )  

Returns true if this JspWriter is set to auto-flush the buffer, false otherwise. 

 

page   

 

  

Synopsis 

Variable Name: page 

Class Name: Object 

Extends: None 

Implements: None 

Implemented by: Part of the standard Java library 

JSP Page Type: Available in both regular JSP pages and error pages 

Description 

The page variable is assigned to the instance of the JSP implementation class declared as an Object. This 
variable is rarely, if ever, used. See the Java documentation at http://java.sun.com/docs/index.html for a 
description of the Object class. 

 

pageContext   

 

  

Synopsis 

Variable Name: pageContext 

Class Name: javax.servlet.jsp.PageContext 

Extends: None 

Implements: None 

Implemented 
by: 

A concrete subclass of this abstract class is provided as an internal container-
dependent class 

JSP Page Type: Available in both regular JSP pages and error pages 

Description 

A PageContext instance provides access to all the JSP scopes and several page attributes, and offers a layer 
above the container implementation details to enable a container to generate portable JSP implementation 
classes. The JSP page scope is represented by PageContext attributes. A unique instance of this object is 
created by the web container and assigned to the pageContext variable for each request. 

http://java.sun.com/docs/index.html


JavaSercer Pages 

  page 277 

Class Summary 

public abstract class PageContext { 
  // Constants 
  public static final int APPLICATION_SCOPE; 
  public static final int PAGE_SCOPE; 
  public static final int REQUEST_SCOPE; 
  public static final int SESSION_SCOPE; 
 
  // Constructor 
  public PageContext( ); 
 
  // Methods 
  public abstract java.lang.Object findAttribute(String name); 
  public abstract void forward(String relativeUrlPath) 
    throws ServletException, java.io.IOException; 
  public abstract Object getAttribute(String name); 
  public abstract Object getAttribute(String name, 
    int scope); 
  public abstract  
    java.util.Enumeration getAttributeNamesInScope(int scope); 
  public abstract int getAttributesScope(String name); 
  public abstract Exception getException( ); 
  public abstract JspWriter getOut( ); 
  public abstract Object getPage( ); 
  public abstract ServletRequest getRequest( ); 
  public abstract ServletResponse getResponse( ); 
  public abstract ServletConfig getServletConfig( ); 
  public abstract ServletContext getServletContext( ); 
  public abstract HttpSession getSession( ); 
  public abstract void handlePageException(Exception e) 
    throws ServletException, java.io.IOException; 
  public abstract void include(String relativeUrlPath) 
    throws ServletException, java.io.IOException; 
  public abstract void initialize(Servlet servlet, 
    ServletRequest request, ServletResponse response, 
    String errorPageURL, boolean needsSession, int bufferSize, 
    boolean autoFlush) throws java.io.IOException, 
    IllegalStateException, IllegalArgumentException; 
  public JspWriter popBody( ); 
  public BodyContent pushBody( ); 
  public abstract void release( ); 
  public abstract void removeAttribute(String name); 
  public abstract void removeAttribute(String name, int scope); 
  public abstract void setAttribute(String name, Object attribute); 
  public abstract void setAttribute(String name, Object o, int scope); 
} 

Constructor 

public PageContext( )  

Creates an instance of the PageContext class. Typically, an instance is created and initialized by the 
JspFactory class. 

Methods 

public abstract Object findAttribute(String name)  

Searches for the named attribute in page, request, session (if valid), and application scopes, in order, 
and returns the associated value, or null if the attribute is not found. 

public abstract void forward(String relativeUrlPath) throws ServletException, 
java.io.IOException  

This method is used to forward the current request to another active component, such as a servlet or 
JSP page, in the application. If the specified URI starts with a slash, it's interpreted as a context-
relative path; otherwise, it's interpreted as a page-relative path. 

The response must not be modified after calling this method, since the response is committed before 
this method returns. 

public abstract Object getAttribute(String name)  

Returns the object associated with the specified attribute name in the page scope, or null if the 
attribute is not found. 



JavaSercer Pages 

  page 278

public abstract Object getAttribute(String name, int scope)  

Returns the object associated with the specified attribute name in the specified scope, or null if the 
attribute is not found. The scope argument must be one of the int values specified by the 
PageContext static scope variables. 

public abstract java.util.Enumeration getAttributeNamesInScope(int scope)  

Returns an Enumeration of String objects containing all attribute names for the specified scope. The 
scope argument must be one of the int values specified by the PageContext static scope variables. 

public abstract int getAttributesScope(String name)  

Returns one of the int values specified by the PageContext static scope variables for the scope of the 
object associated with the specified attribute name, or if the attribute is not found. 

public abstract Exception getException( )  

Returns the Exception that caused the current page to be invoked if its page directive isErrorPage is 
set to true. 

public abstract JspWriter getOut( )  

Returns the current JspWriter for the page. When this method is called by a tag handler that 
implements BodyTag or is nested in the body of another action element, the returned object may be an 
instance of the BodyContent subclass. 

public abstract Object getPage( )  

Returns the object that represents the JSP page implementation class instance that this PageContext 
is associated with. 

public abstract ServletRequest getRequest( )  

Returns the current ServletRequest. 

public abstract ServletResponse getResponse( )  

Returns the current ServletResponse. 

public abstract ServletConfig getServletConfig( )  

Returns the ServletConfig for this JSP page implementation class instance. 

public abstract ServletContext getServletContext( )  

Returns the ServletContext for this JSP page implementation class instance. 

public abstract HttpSession getSession( )  

Returns the current HttpSession, or null if the page directive session attribute is set to false. 

public abstract void handlePageException(Exception e) throws ServletException, 
java.io.IOException  

This method is intended to be called by the JSP page implementation class only to process unhandled 
exceptions by forwarding the request exception to either the error page specified by the page 
directive's errorPage attribute, or to perform an implementation-dependent action if no error page is 
specified. 



JavaSercer Pages 

  page 279

public abstract void include(String relativeUrlPath) throws ServletException, 
java.io.IOException  

Causes the specified resource to be processed as part of the current request. The current JspWriter is 
flushed before invoking the target resource, and the output of the target resource's processing of the 
request is written directly to the current ServletResponse object's writer. If the specified URI starts 
with a slash, it's interpreted as a context-relative path, otherwise as a page-relative path. 

public abstract void initialize(Servlet servlet, ServletRequest request, ServletResponse 
response, String errorPageURL, boolean needsSession, int bufferSize, boolean autoFlush) 
throws java.io.IOException, IllegalStateException, IllegalArgumentException  

This method is called to initialize a PageContext object so that it can be used by a JSP implementation 
class to service an incoming request. This method is typically called from the 
JspFactory.getPageContext( ) method. 

public JspWriter popBody( )  

This method is intended to be called by the JSP page implementation class only to reassign the 
previous JspWriter, saved by the matching pushBody( ) method, as the current JspWriter. 

public BodyContent pushBody( )  

This method is intended to be called by the JSP page implementation class only to get a new 
BodyContent object, and to save the current JspWriter on the PageContext object's internal stack. 

public abstract void release( )  

Resets the internal state of a PageContext, releasing all internal references and preparing the 
PageContext for potential reuse by a later invocation of initialize( ). This method is typically 
called from the JspFactory.releasePageContext( ) method. 

public abstract void removeAttribute(String name)  

Removes the object reference associated with the specified attribute name in the page scope. 

public abstract void removeAttribute(String name, int scope)  

Removes the object reference associated with the specified attribute name in the specified scope. The 
scope argument must be one of the int values specified by the PageContext static scope variables. 

public abstract void setAttribute(String name, Object attribute)  

Saves the specified attribute name and object in the page scope. 

public abstract void setAttribute(String name, Object o, int scope)  

Saves the specified attribute name and object in the specified scope. The scope argument must be one 
of the int values specified by the PageContext static scope variables. 

 

request   

 

  

Synopsis 

Variable Name: request 

Interface Name: javax.servlet.http.HttpServletRequest 

Extends: javax.servlet.ServletRequest 



JavaSercer Pages 

  page 280

Implemented by: Internal container-dependent class 

JSP Page Type: Available in both regular JSP pages and error pages 

Description 

The request variable is assigned a reference to an internal container-dependent class that implements a 
protocol-dependent interface extending the javax.servlet.ServletRequest. Since HTTP is the only protocol 
supported by JSP 1.1, the class always implements the javax.servlet.http.HttpServletRequest interface. 
The method descriptions in this section include all methods from both interfaces. 

Interface Declarations 

public interface ServletRequest { 
 
  public Object getAttribute(String name); 
  public java.util.Enumeration getAttributeNames( ); 
  public String getCharacterEncoding( ); 
  public int getContentLength( ); 
  public String getContentType( ); 
  public ServletInputStream getInputStream( )  
    throws java.io.IOException; 
  public java.util.Locale getLocale( ); 
  public java.util.Enumeration getLocales( ); 
  public String getParameter(String name); 
  public java.util.Enumeration getParameterNames( ); 
  public String[] getParameterValues( ); 
  public String getProtocol( ); 
  public java.io.BufferedReader getReader( )  
    throws java.io.IOException; 
  public String getRemoteAddr( ); 
  public String getRemoteHost( ); 
  public RequestDispatcher getRequestDispatcher(String path); 
  public String getScheme( ); 
  public String getServerName( ); 
  public int getServerPort( ); 
  public boolean isSecure( ); 
  public void removeAttribute(String name); 
  public Object setAttribute(String name, Object attribute); 
 
  // Deprecated methods 
  public String getRealPath( ); 
} 
 
public interface HttpServletRequest extends ServletRequest { 
 
  public String getAuthType( ); 
  public String getContextPath( ); 
  public Cookie[] getCookies( ); 
  public long getDateHeader(String name); 
  public String getHeader(String name); 
  public java.util.Enumeration getHeaderNames( ); 
  public java.util.Enumeration getHeaders(String name); 
  public int getIntHeader(String name); 
  public String getMethod( ); 
  public String getPathInfo( ); 
  public String getPathTranslated( ); 
  public String getQueryString( ); 
  public String getRequestedSessionId( ); 
  public String getRequestURI( ); 
  public String getRemoteUser( ); 
  public String getServletPath( ); 
  public HttpSession getSession( ); 
  public HttpSession getSession(boolean create); 
  public java.security.Principal getUserPrincipal( ); 
  public boolean isRequestedSessionIdFromCookie( ); 
  public boolean isRequestedSessionIdFromURL( ); 
  public boolean isRequestedSessionIdValid( ); 
  public boolean isUserInRole(String role); 
 
  // Deprecated methods 
  public boolean isRequestSessionIdFromUrl( ); 
} 

Methods 

public Object getAttribute(String name)  

Returns the value of the named attribute as an Object, or null if no attribute of the given name 
exists. 



JavaSercer Pages 

  page 281

public java.util.Enumeration getAttributeNames( )  

Returns an Enumeration containing the names of the attributes available to this request. The 
Enumeration is empty if the request doesn't have any attributes. 

public String getAuthType( )  

Returns the name of the authentication scheme used to protect the servlet, for example BASIC or SSL, 
or null if the servlet is not protected. 

public String getCharacterEncoding( )  

Returns the name of the character encoding used in the body of this request, or null if the request 
does not specify a character encoding. 

public int getContentLength( )  

Returns the length, in bytes, of the request body made available by the input stream, or -1 if the 
length is not known. 

public String getContentType( )  

Returns the MIME type of the body of the request, or null if the type is not known. 

public String getContextPath( )  

Returns the portion of the request URI that indicates the context of the request. 

public Cookie[] getCookies( )  

Returns an array containing all of the Cookie objects the client sent with this request, or null if the 
request contains no cookies. 

public long getDateHeader(String name)  

Returns the value of the specified request header as a long value that represents a date value, or -1 if 
the header is not included in the request. 

public String getHeader(String name)  

Returns the value of the specified request header as a String, or null if the header is not included 
with the request. 

public java.util.Enumeration getHeaderNames( )  

Returns all the header names contained by this request as an Enumeration of String objects. The 
Enumeration is empty if the request doesn't have any headers. 

public java.util.Enumeration getHeaders(String name)  

Returns all the values of the specified request header as an Enumeration of String objects. The 
Enumeration is empty if the request doesn't contain the specified header. 

public ServletInputStream getInputStream( ) throws java.io.IOException  

Retrieves the body of the request as binary data using a ServletInputStream. 

public int getIntHeader(String name)  

Returns the value of the specified request header as an int, or -1 if the header is not included in the 
request. 



JavaSercer Pages 

  page 282

public java.util.Locale getLocale( )  

Returns the preferred Locale in which the client accepts content, based on the Accept-Language 
header. 

public java.util.Enumeration getLocales( )  

Returns an Enumeration of Locale objects indicating, in decreasing order and starting with the 
preferred locale, the locales that are acceptable to the client based on the Accept-Language header. 

public String getMethod( )  

Returns the name of the HTTP method with which this request was made, for example GET, POST, or 
PUT. 

public String getParameter(String name)  

Returns the value of a request parameter as a String, or null if the parameter does not exist. 

public java.util.Enumeration getParameterNames( )  

Returns an Enumeration of String objects containing the names of the parameters contained in this 
request. 

public String[] getParameterValues( )  

Returns an array of String objects containing all of the values the given request parameter has, or 
null if the parameter does not exist. 

public String getPathInfo( )  

Returns any extra path information associated with the URI the client sent when it made this request, 
or null if there is no extra path information. For a JSP page, this method always returns null. 

public String getPathTranslated( )  

Returns the result of getPathInfo( ) translated into the corresponding filesystem path. Returns null 
if getPathInfo( ) returns null. 

public String getProtocol( )  

Returns the name and version of the protocol the request uses in the form 
protocol/majorVersion.minorVersion, for example, HTTP/1.1. 

public String getQueryString( )  

Returns the query string that is contained in the request URI after the path. 

public java.io.BufferedReader getReader( ) throws java.io.IOException  

Retrieves the body of the request as character data using a BufferedReader. 

public String getRemoteAddr( )  

Returns the Internet Protocol (IP) address of the client that sent the request. 

public String getRemoteHost( )  

Returns the fully qualified name of the client host that sent the request, or the IP address of the client 
if the hostname cannot be determined. 



JavaSercer Pages 

  page 283

public String getRemoteUser( )  

Returns the login name of the user making this request if the user has been authenticated, or null if 
the user has not been authenticated. 

public RequestDispatcher getRequestDispatcher(String path)  

Returns a RequestDispatcher object that acts as a wrapper for the resource located at the given 
path. The path must be context-relative or relative to the current URL. 

public String getRequestedSessionId( )  

Returns the session ID specified by the client. 

public String getRequestURI( )  

Returns the part of this request's URL from the protocol name up to the query string in the first line of 
the HTTP request. 

public String getScheme( )  

Returns the name of the scheme (protocol) used to make this request, for example, http, https, or 
ftp. 

public String getServerName( )  

Returns the hostname of the server that received the request. 

public int getServerPort( )  

Returns the port number on which this request was received. 

public String getServletPath( )  

Returns the part of this request's URI that calls the servlet. For a JSP page, this is the complete 
context-relative path for the JSP page. 

public HttpSession getSession( )  

Returns the current HttpSession associated with this request. If the request does not have a session, 
a new HttpSession object is created, associated with the request, and returned. 

public HttpSession getSession(boolean create)  

Returns the current HttpSession associated with this request. If there is no current session and 
create is true, a new HttpSession object is created, associated with the request, and returned. If 
create is false and the request is not associated with a session, this method returns null. 

public java.security.Principal getUserPrincipal( )  

Returns a Principal object containing the name of the current authenticated user, or null if the user 
is not authenticated. 

public boolean isRequestedSessionIdFromCookie( )  

Checks whether the requested session ID came in as a cookie. 

public boolean isRequestedSessionIdFromURL( )  

Checks whether the requested session ID came in as part of the request URL. 

public boolean isRequestedSessionIdValid( )  

Checks whether the requested session ID is still valid. 



JavaSercer Pages 

  page 284

public boolean isSecure( )  

Returns a boolean indicating whether this request was made using a secure channel, such as HTTPS. 

public boolean isUserInRole(String role)  

Returns a boolean indicating whether the authenticated user is included in the specified logical "role." 

public void removeAttribute(String name)  

Removes the specified attribute from this request. 

public Object setAttribute(String name, Object attribute)  

Stores the specified attribute in this request. 

The following methods are deprecated: 

public String getRealPath( )  

As of the Servlet 2.1 API, use ServletContext.getRealPath(String) instead. 

public boolean isRequestSessionIdFromUrl( )  

As of the Servlet 2.1 API, use isRequestedSessionIdFromURL( ) instead. 

 

response   

 

  

Synopsis 

Variable Name: response 

Interface Name: javax.servlet.http.HttpServletResponse 

Extends: javax.servlet.ServletResponse 

Implemented by: Internal container-dependent class 

JSP Page Type: Available in both regular JSP pages and error pages 

Description 

The response variable is assigned a reference to an internal container-dependent class that implements a 
protocol-dependent interface extending the javax.servlet.ServletResponse. Since HTTP is the only 
protocol supported by JSP 1.1, the class always implements the javax.servlet.http.HttpServletResponse 
interface. The method descriptions in this section include all methods from both interfaces. 

Interface Declarations 

public interface ServletResponse { 
 
  public void flushBuffer( ) throws IOException; 
  public int getBufferSize( ); 
  public String getCharacterEncoding( ); 
  public Locale getLocale( ); 
  public ServletOutputStream getOutputStream( ) throws IOException 
  public PrintWriter getWriter throws IOException 
  public boolean isCommitted( ); 
  public void reset( ); 
  public void setBufferSize(int size); 
  public void setContentLength(int length); 



JavaSercer Pages 

  page 285 

  public void setContentType(String type); 
  public void setLocale(Locale locale); 
} 
 
public interface HttpServletResponse extends ServletResponse { 
  public void addCookie(Cookie cookie); 
  public void addDateHeader(String headername, long date); 
  public void addHeader(String headername, String value); 
  public void addIntHeader(String headername, int value); 
  public boolean containsHeader(String name); 
  public String encodeRedirectURL(String url); 
  public String encodeURL(String url); 
  public void sendError(int status) throws IOException; 
  public void sendError(int status, String message) 
    throws IOException; 
  public void sendRedirect(String location) throws IOException; 
  public void setDateHeader(String headername, long date); 
  public void setHeader(String headername, String value); 
  public void setIntHeader(String headername, int value); 
  public void setStatus(int statuscode); 
 
  // Deprecated methods 
  public String encodeRedirectUrl(String url);} 
  public String encodeUrl(String url); 
  public void setStatus(int statuscode, String message); 
} 

Methods 

public void addCookie(Cookie cookie)  

Adds the specified cookie to the response. 

public void addDateHeader(String headername, long date)  

Adds a response header with the given name and date value. The date is specified in terms of 
milliseconds since the epoch (January 1, 1970, 00:00:00 GMT). 

public void addHeader(String headername, String value)  

Adds a response header with the specified name and value. 

public void addIntHeader(String headername, int value)  

Adds a response header with the given name and integer value. 

public boolean containsHeader(String name)  

Returns a boolean indicating whether the named response header has already been set. 

public String encodeRedirectURL(String url)  

Encodes the specified URL for use in the sendRedirect( ) method by including the session ID in it. If 
encoding (URL rewriting) is not needed, it returns the URL unchanged. 

public String encodeURL(String url)  

Encodes the specified URL for use in a reference element (e.g., <a>) by including the session ID in it. If 
encoding (URL rewriting) is not needed, it returns the URL unchanged. 

public void flushBuffer( ) throws IOException  

Forces any content in the response body buffer to be written to the client. 

public int getBufferSize( )  

Returns the actual buffer size (in bytes) used for the response. If no buffering is used, this method 
returns 0. 



JavaSercer Pages 

  page 286

public String getCharacterEncoding( )  

Returns the name of the charset used for the MIME body sent in this response. 

public Locale getLocale( )  

Returns the locale assigned to the response. This is either a Locale object for the server's default 
locale, or the Locale set with setLocale( ). 

public ServletOutputStream getOutputStream( ) throws IOException  

Returns a ServletOutputStream suitable for writing binary data in the response. It's recommended 
that this method is not used in a JSP page, since JSP pages are intended for text data. 

public PrintWriter getWriter throws IOException  

Returns a PrintWriter object that can send character text to the client. It's recommended that this 
method is not used in a JSP page, since it may interfere with the container's writer mechanism. Use 
the PageContext methods instead to get the current JspWriter. 

public boolean isCommitted( )  

Returns a boolean indicating if the response has been committed. 

public void reset( )  

Clears any data that exists in the buffer as well as the status code and headers. If the response has 
been committed, this method throws an IllegalStateException. 

public void sendError(int status) throws IOException  

Sends an error response to the client using the specified status. If the response has already been 
committed, this method throws an IllegalStateException. After using this method, the response 
should be considered to be committed and should not be written to. 

public void sendError(int status, String message) throws IOException  

Sends an error response to the client using the specified status code and a descriptive message. If the 
response has already been committed, this method throws an IllegalStateException. After using 
this method, the response should be considered to be committed and should not be written to. 

public void sendRedirect(String location) throws IOException  

Sends a temporary redirect response to the client using the specified redirect location URL. This 
method can accept relative URLs; the servlet container converts the relative URL to an absolute URL 
before sending the response to the client. If the response is already committed, this method throws an 
IllegalStateException. After using this method, the response should be considered to be committed 
and should not be written to. 

public void setBufferSize(int size)  

Sets the preferred buffer size (in bytes) for the body of the response. The servlet container uses a 
buffer at least as large as the size requested. The actual buffer size used can be found using 
getBufferSize( ). 

public void setContentLength(int length)  

Sets the length (in bytes) of the content body in the response. In HTTP servlets, this method sets the 
HTTP Content-Length header. It's recommended that this method is not used in a JSP page, since it 
may interfere with the container's writer mechanism. 

public void setContentType(String type)  

Sets the content type of the response being sent to the client. 



JavaSercer Pages 

  page 287 

public void setDateHeader(String headername, long date)  

Sets a response header with the given name and date value. The date is specified in terms of 
milliseconds since the epoch (January 1, 1970, 00:00:00 GMT). If the header is already set, the new 
value overwrites the previous one. 

public void setHeader(String headername, String value)  

Sets a response header with the given name and value. If the header is already set, the new value 
overwrites the previous one. 

public void setIntHeader(String headername, int value)  

Sets a response header with the given name and integer value. If the header is already set, the new 
value overwrites the previous one. 

public void setLocale(Locale locale)  

Sets the locale of the response, setting the headers (including the Content-Type header's charset) as 
appropriate. 

public void setStatus(int statuscode)  

Sets the status code for this response. As opposed to the sendError( ) method, this method only sets 
the status code; it doesn't add a body or commit the response. 

The following methods are deprecated: 

public String encodeRedirectUrl(String url)  

As of the Servlet 2.1 API, use encodeRedirectURL(String url) instead. 

public String encodeUrl(String url)  

As of the Servlet 2.1 API, use encodeURL(String url) instead. 

public void setStatus(int statuscode, String message)  

Due to ambiguous meaning of the message parameter, different methods should be used as of the 
Servlet 2.1 API. To set a status code, use setStatus(int); to send an error with a description, use 
sendError(int, String). 

 

session   

 

  

Synopsis 

Variable Name: session 

Interface 
Name: 

javax.servlet.http.HttpSession 

Extends: None 

Implemented 
by: 

Internal container-dependent class 

JSP Page Type: Available in both regular JSP pages and error pages, unless the page directive 
session attribute is set to false 



JavaSercer Pages 

  page 288

Description 

The session variable is assigned a reference to the HttpSession object that represents the current client 
session. Information stored as HttpSession attributes corresponds to objects in the JSP session scope. 

By default, the session persists for a time period specified in the web application deployment descriptor, 
across more than one page request from the user. The container can maintain a session in many ways, such 
as using cookies or rewriting URLs. 

Interface Declarations 

public interface HttpSession { 
 
  public Object getAttribute(String name); 
  public java.util.Enumeration getAttributeNames( ); 
  public long getCreationTime( ); 
  public String getId( ); 
  public long getLastAccessedTime( ); 
  public int getMaxInactiveInterval( ); 
  public void invalidate( ); 
  public boolean isNew( ); 
  public void removeAttribute(String name); 
  public void setAttribute(String name, Object attribute); 
  public void setMaxInactiveInterval(int interval); 
 
  // Deprecated methods 
  public HttpSessionContext getSessionContext( ); 
  public Object getValue(String name); 
  public String[] getValueNames( ); 
  public void putValue(String name, Object value); 
  public void removeValue(String name); 
} 

Methods 

public Object getAttribute(String name)  

Returns the object associated with the specified name in this session, or null if the object is not 
found. 

public java.util.Enumeration getAttributeNames( )  

Returns an Enumeration of String objects containing the names of all the objects in this session. 

public long getCreationTime( )  

Returns the time when this session was created, measured in milliseconds since the epoch (January 1, 
1970, 00:00:00 GMT). 

public String getId( )  

Returns a string containing the unique identifier assigned to this session. 

public long getLastAccessedTime( )  

Returns the last time the client sent a request associated with this session, measured in milliseconds 
since the epoch (January 1, 1970, 00:00:00 GMT). 

public int getMaxInactiveInterval( )  

Returns the maximum time interval, in seconds, that the servlet container will keep this session active 
between client accesses. 

public void invalidate( )  

Invalidates this session and unbinds any objects bound to it, calling the valueUnbound( ) methods of 
all objects in the session implementing the HttpSessionBindingListener interface. 



JavaSercer Pages 

  page 289

public boolean isNew( )  

Returns true if a request for this session has not yet been received from the client. 

public void removeAttribute(String name)  

Removes the object bound with the specified name from this session. 

public void setAttribute(String name, Object attribute)  

Associates the specified object with this session using the name specified. 

public void setMaxInactiveInterval(int interval)  

Specifies the time, in seconds, between client requests before the servlet container invalidates this 
session. 

The following methods are deprecated: 

public HttpSessionContext getSessionContext( )  

As of the Servlet 2.1 API, this method is deprecated and has no replacement. 

public Object getValue(String name)  

As of the Servlet 2.2 API, this method is replaced by getAttribute(String). 

public String[] getValueNames( )  

As of the Servlet 2.2 API, this method is replaced by getAttributeNames( ). 

public void putValue(String name, Object value)  

As of the Servlet 2.2 API, this method is replaced by setAttribute(String, Object). 

public void removeValue(String name)  

As of the Servlet 2.2 API, this method is replaced by setAttribute(String, Object). 

 

B.2 Servlet Classes Accessible Through Implicit Variables 

This section contains descriptions of the servlet API classes that methods on the objects assigned to the 
implicit variables can return. 

 

Cookie   

 

  

Synopsis 

Class Name: javax.servlet.http.Cookie 

Extends: None 

Implements: Cloneable 

Implemented Internal container-dependent class. Most containers use the reference 



JavaSercer Pages 

  page 290

by: implementation of the class (developed in the Apache Jakarta project). 

Description 

A Cookie object represents an HTTP cookie: a small amount of information sent by a servlet to a web 
browser, saved by the browser, and later sent back to the server with new requests. A cookie's value can 
uniquely identify a client, so cookies are commonly used for session management. A cookie has a name, a 
single value, and optional attributes such as comments, path and domain qualifiers, a maximum age, and a 
version number. 

This class supports both the Version (the informal specification first introduced by Netscape) and the Version 
1 (formally defined by RFC 2109) cookie specifications. By default, cookies are created using Version to 
ensure the best interoperability. 

Class Summary 

public class Cookie implements Cloneable { 
  // Constructor 
  public Cookie(String name, String value); 
 
  // Methods 
  public Object clone( ); 
  public String getComment( ); 
  public String getDomain( ); 
  public int getMaxAge( ); 
  public String getName( ); 
  public String getPath( ); 
  public boolean getSecure( ); 
  public String getValue( ); 
  public int getVersion( ); 
  public void setComment(String comment); 
  public void setDomain(String domain); 
  public void setMaxAge(int expiry); 
  public void setPath(String uriPath); 
  public void setSecure( ); 
  public void setValue(String value); 
  public void setVersion(int version); 
} 

Constructor 

public Cookie(String name, String value)  

Creates a new instance with the specified name and value. 

Methods 

public Object clone( )  

Overrides the standard Object.clone( ) method to return a copy of this cookie. 

public String getComment( )  

Returns the comment describing the purpose of this cookie, or null if the cookie has no comment. 

public String getDomain( )  

Returns the domain name set for this cookie. 

public int getMaxAge( )  

Returns the maximum age of the cookie, specified in seconds. A value of -1 indicates that the cookie 
will persist until browser shutdown. 

public String getName( )  

Returns the name of the cookie. 



JavaSercer Pages 

  page 291

public String getPath( )  

Returns the server path to which the browser returns this cookie. 

public boolean getSecure( )  

Returns true if the browser is sending cookies only over a secure protocol, or false if the browser can 
send cookies using any protocol. 

public String getValue( )  

Returns the value of the cookie. 

public int getVersion( )  

Returns the version of the protocol this cookie complies with. A value of means that the cookie should 
comply with the original Netscape specification; 1 means that it should comply with RFC 2109. 

public void setComment(String comment)  

Specifies a comment that describes a cookie's purpose. 

public void setDomain(String domain)  

Specifies the domain within which this cookie should be presented. 

public void setMaxAge(int expiry)  

Sets the maximum age of the cookie in seconds. 

public void setPath(String uriPath)  

Specifies a server path to which the client should return the cookie. 

public void setSecure( )  

Indicates to the browser whether the cookie should be sent only using a secure protocol, such as 
HTTPS. 

public void setValue(String value)  

Assigns a new value to a cookie after the cookie is created. 

public void setVersion(int version)  

Sets the version of the cookie protocol this cookie complies with. 

 

RequestDispatcher   

 

  

Synopsis 

Interface Name: javax.servlet. 
RequestDispatcher 

Extends: None 

Implemented by: Internal container-dependent class 



JavaSercer Pages 

  page 292

Description 

The RequestDispatcher class defines an object that receives requests from the client and sends them to any 
resource (such as a servlet, HTML file, or JSP file) in the same web container. The container creates the 
RequestDispatcher object, which is used as a wrapper around a resource located at a particular URI path or 
identified by a particular name. 

Interface Declarations 

public interface RequestDispatcher { 
  public void forward(ServletRequest req, ServletResponse res); 
  public void include(ServletRequest req, ServletResponse res); 
} 

Methods 

public void forward(ServletRequest req, ServletResponse res)  

Forwards a request from a servlet to another resource (servlet, JSP file, or static file) on the server. 
For a RequestDispatcher obtained via the getRequestDispatcher( ) method, the ServletRequest 
object has its path elements and parameters adjusted to match the path of the target resource. 

This method must be called before the response has been committed to the client (before response 
body output has been flushed). If the response has already been committed, this method throws an 
IllegalStateException. Uncommitted output in the response buffer is automatically cleared before 
the forward. 

The request and response parameters must be the same objects that were passed to the calling 
servlet's service method. 

public void include(ServletRequest req, ServletResponse res)  

Includes the response generated by a resource (servlet, JSP page, static file) in the response. 

The ServletRequest object's path elements and parameters remain unchanged from the caller's. The 
included servlet cannot change the response status code or set headers; any attempt to make a 
change is ignored. 

The request and response parameters must be the same objects that were passed to the calling 
servlet's service method. 

 

B.3 Tag Extension Classes 

The JSP specification defines a number of classes and interfaces in the javax.servlet.jsp.tagext package. 
These classes are used to develop tag handler classes for JSP custom actions. This section contains 
descriptions of each class and interface. Chapter 16 and Chapter 17 show examples of how you can use these 
classes and interfaces to develop custom actions. 

 

BodyContent   

 

  

Synopsis 

Class Name: javax.servlet.jsp.tagext.BodyContent 

Extends: javax.servlet.jsp.JspWriter 

Implements: None 



JavaSercer Pages 

  page 293

Implemented by: Internal container-dependent class 

Description 

The container creates an instance of the BodyContent class to encapsulate the element body of a custom 
action element if the corresponding tag handler implements the BodyTag interface. The container makes the 
BodyContent instance available to the tag handler by calling the setBodyContent( ) method, so the tag 
handler can process the body content. 

Class Summary 

public abstract class BodyContent extends JspWriter { 
  // Constructor 
  protected BodyContent(JspWriter e); 
 
  // Methods 
  public void clearBody( ); 
  public void flush( ) throws java.io.IOException; 
  public JspWriter getEnclosingWriter( ); 
  public abstract java.io.Reader getReader( ); 
  public abstract String getString( ); 
  public abstract void writeOut(java.io.Writer out) 
    throws java.io.IOException; 
} 

Constructor 

protected BodyContent(JspWriter e)  

Creates a new instance with the specified JspWriter as the enclosing writer. 

Methods 

public void clearBody( )  

Removes all buffered content for this instance. 

public void flush( ) throws java.io.IOException  

Overwrites the behavior inherited from JspWriter to always throw an IOException, since it's invalid 
to flush a BodyContent instance. 

public JspWriter getEnclosingWriter( )  

Returns the enclosing JspWriter, which is either the top level JspWriter or the JspWriter 
(BodyContent subclass) of the parent tag handler. 

public abstract java.io.Reader getReader( )  

Returns the value of this BodyContent as a Reader with the content produced by evaluating the 
element's body. 

public abstract String getString( )  

Returns the value of this BodyContent as a String with the content produced by evaluating the 
element's body. 

public abstract void writeOut(java.io.Writer out) throws java.io.IOException  

Writes the content of this BodyContent into a Writer. 

 

 



JavaSercer Pages 

  page 294

BodyTag   

 

  

Synopsis 

Interface Name: javax.servlet.jsp.tagext. 
BodyTag 

Extends: javax.servlet.jsp.tagext.Tag 

Implemented 
by: 

Custom action tag handler classes and 
javax.servlet.jsp.tagext.BodyTagSupport 

Description 

The BodyTag interface must be implemented by tag handler classes that need access to the body contents of 
the corresponding custom action element, perhaps to perform a transformation of the contents before it's 
included in the response. This interface must also be implemented by tag handlers that need to iterate over 
the body of a custom action element. 

Interface Declarations 

public interface BodyTag extends Tag { 
  // Constants 
  public static final int EVAL_BODY_TAG; 
 
  // Methods 
  public int doAfterBody( ) throws JspException; 
  public void doInitBody( ) throws JspException; 
  public void setBodyContent(BodyContent b); 
} 

Methods 

public int doAfterBody( ) throws JspException  

Performs actions after the body has been evaluated. It is invoked after every body evaluation. If this 
method returns EVAL_BODY_TAG, the body is evaluated again, typically after changing the value of 
variables used in the body. If it returns SKIP_BODY, the processing continues with a call to doEndTag( 
). 

If the element body is empty, or if doStartTag( ) returns SKIP_BODY, this method is not invoked. 

public void doInitBody( ) throws JspException  

Prepares for evaluation of the body. This method is invoked once per action invocation by the page 
implementation, after a new BodyContent has been obtained and set on the tag handler via the 
setBodyContent( ) method, just before the evaluation of the element's body. 

If the element body is empty, or if doStartTag( ) returns SKIP_BODY, this method is not invoked. 

public void setBodyContent(BodyContent b)  

Sets the BodyContent created for this tag handler. If the element body is empty, or if doStartTag( ) 
returns SKIP_BODY, this method is not invoked. 

 

 

 



JavaSercer Pages 

  page 295 

BodyTagSupport   

 

  

Synopsis 

Class Name: javax.servlet.jsp.tagext.BodyTagSupport 

Extends: javax.servlet.jsp.tagext.TagSupport 

Implements: BodyTag 

Implemented 
by: 

Internal container-dependent class. Most containers use the reference 
implementation of the class (developed in the Apache Jakarta project). 

Description 

BodyTagSupport is a support class that provides default implementations of all BodyTag interface methods. 
It's intended to be used as a superclass for tag handlers that need access to the body contents of the 
corresponding custom action element. 

Class Summary 

public class BodyTagSupport extends TagSupport implements BodyTag { 
  // Constructor 
  public BodyTagSupport( ); 
 
  // Methods 
  public int doAfterBody( ) throws JspException; 
  public int doEndTag( ) throws JspException; 
  public void doInitBody( ); 
  public BodyContent getBodyContent( ); 
  public JspWriter getPreviousOut( ); 
  public void release( ); 
  public void setBodyContent(BodyContent b); 
} 

Constructor 

public BodyTagSupport( )  

Creates a new BodyTagSupport instance. 

Methods 

public int doAfterBody( ) throws JspException  

Returns SKIP_BODY. 

public int doEndTag( ) throws JspException  

Returns EVAL_PAGE. 

public void doInitBody( )  

This method currently does nothing. You should override this method in a class that extends 
BodyTagSupport to perform initialization. 

public BodyContent getBodyContent( )  

Returns the BodyContent object assigned to this instance. 

public JspWriter getPreviousOut( )  

Returns the enclosing writer of the BodyContent object assigned to this instance. 



JavaSercer Pages 

  page 296

public void release( )  

Removes the references to all objects held by this instance. 

public void setBodyContent(BodyContent b)  

Saves a reference to the assigned BodyContent as an instance variable. 

 

Tag   

 

  

Synopsis 

Interface Name: javax.servlet.jsp.tagext.Tag 

Extends: None 

Implemented by: Custom action tag handler classes and javax.servlet.jsp.tagext.TagSupport 

Description 

The Tag interface should be implemented by tag handler classes that do not need access to the body contents 
of the corresponding custom action element, and that do not need to iterate over the body of a custom action 
element. 

Interface Declarations 

public interface Tag { 
  // Constants 
  public static final int EVAL_BODY_INCLUDE; 
  public static final int EVAL_PAGE; 
  public static final int SKIP_BODY; 
  public static final int SKIP_PAGE; 
 
  // Methods 
  public int doEndTag( ) throws JspException; 
  public int doStartTag( ) throws JspException; 
  public Tag getParent( ); 
  public void release( ); 
  public void setPageContext(PageContext pc); 
  public void setParent(Tag t) 
} 

Methods 

public int doEndTag( ) throws JspException  

Performs actions when the end tag is encountered. If this method returns SKIP_PAGE, execution of the 
rest of the page is aborted and the _jspService( ) method of JSP page implementation class returns. 
If EVAL_PAGE is returned, the code following the custom action in the _jspService( ) method is 
executed. 

public int doStartTag( ) throws JspException  

Performs actions when the start tag is encountered. This method is called by the JSP container after all 
property setter methods have been called. The return value from this method controls how the action's 
body is handled, if there is one. If it returns EVAL_BODY_INCLUDE, the JSP container evaluates the body 
and processes possible JSP elements. The result of the evaluation is then added to the response. If 
SKIP_BODY is returned, the body is ignored. 

A tag handler class that implements the BodyTag interface (extending the Tag interface) can return 
EVAL_BODY_TAG instead of EVAL_BODY_INCLUDE. The JSP container then creates a BodyContent 
instance and makes it available to the tag handler for special processing. 



JavaSercer Pages 

  page 297 

public Tag getParent( )  

Returns the tag handler's parent (the Tag instance for the enclosing action element, if any) or null if 
the tag handler doesn't have a parent. 

public void release( )  

Removes the references to all objects held by this instance. 

public void setPageContext(PageContext pc)  

Saves a reference to the current PageContext. 

public void setParent(Tag t)  

Saves a reference to the tag handler's parent (the Tag instance for the enclosing action element). 

 

TagAttributeInfo   

 

  

Synopsis 

Class Name: javax.servlet.jsp.tagext. 
TagAttributeInfo 

Extends: None 

Implements: None 

Implemented 
by: 

Internal container-dependent class. Most containers use the reference 
implementation of the class (developed in the Apache Jakarta project). 

Description 

TagAttributeInfo instances are created by the JSP container to provide information found in the Tag Library 
Descriptor (TLD) about each attribute supported by a custom action. It's primarily intended to be used by the 
JSP container itself during the translation phase. 

Class Summary 

public class TagAttributeInfo { 
  // Constructor 
  public TagAttributeInfo(String name, boolean required, 
    boolean rtexprvalue, String type, boolean reqTime); 
 
  // Methods 
  public boolean canBeRequestTime( ); 
  public static TagAttributeInfo getIdAttribute(TagAttributeInfo[] a); 
  public String getName( ); 
  public String getTypeName( ); 
  public boolean isRequired( ); 
  public String toString( ); 
} 

Constructor 

public TagAttributeInfo(String name, boolean required, boolean rtexprvalue, String type, 
boolean reqTime)  

Creates a new instance with the specified information from the TLD. Instances of this class should be 
created only by the JSP container. 



JavaSercer Pages 

  page 298

Methods 

public boolean canBeRequestTime( )  

Returns true if a request time attribute value can be used for this attribute. 

public static TagAttributeInfo getIdAttribute(TagAttributeInfo[] a)  

Convenience method that returns the TagAttributeInfo instance in the specified array that 
represents an attribute named id, or null if not found. 

public String getName( )  

Returns the attribute name. 

public String getTypeName( )  

Returns the attribute's Java type (a fully qualified class or interface name). 

public boolean isRequired( )  

Returns true if this attribute is required, false otherwise. 

public String toString( )  

Returns a String representation of the attribute info. 

 

TagData   

 

  

Synopsis 

Class Name: javax.servlet.jsp.tagext. 
TagData 

Extends: None 

Implements: Cloneable 

Implemented 
by: 

Internal container-dependent class. Most containers use the reference 
implementation of the class (developed in the Apache Jakarta project). 

Description 

TagData instances are created by the JSP container during the translation phase, and provide information 
about the attribute values specified for a custom action to the TagExtraInfo subclass for the corresponding 
tag handler, if any. 

Class Summary 

public class TagData implements Cloneable { 
  // Constants 
  public static final Object REQUEST_TIME_VALUE; 
 
  // Constructor 
  public TagData(Object[][] atts); 
  public TagData(java.util.Hashtable attrs); 
 
  // Methods 
  public Object getAttribute(String attName); 
  public String getAttributeString(String attName); 
  public String getId( ); 



JavaSercer Pages 

  page 299

  public void setAttribute(String attName, Object value); 
} 

Constructors 

public TagData(Object[][] atts)  

Creates a new instance with the attribute name/value pairs specified by the Object[][]. Element of 
each Object[] contains the name, and Element 1 contains the value or REQUEST_TIME_VALUE, if the 
attribute value is defined as a request time value (a JSP expression). 

public TagData(java.util.Hashtable attrs)  

Creates a new instance with the attribute name/value pairs specified by the Hashtable. 

Methods 

public Object getAttribute(String attName)  

Returns the specified attribute value as a String or as the REQUEST_TIME_VALUE Object, if the 
attribute value is defined as a request time value (a JSP expression). 

public String getAttributeString(String attName)  

Returns the specified attribute value as a String. A ClassCastException is thrown if the attribute 
value is defined as a request time value (a JSP expression). 

public String getId( )  

Returns the attribute named id as a String, or null if not found. 

public void setAttribute(String attName, Object value)  

Sets the specified attribute to the specified value. 

 

TagExtraInfo   

 

  

Synopsis 

Class Name: javax.servlet.jsp.tagext. 
TagExtraInfo 

Extends: None 

Implements: None 

Implemented 
by: 

Internal container-dependent class. Most containers use the reference 
implementation of the class (developed in the Apache Jakarta project). 

Description 

For custom actions that create scripting variables or require additional translation time validation of the tag 
attributes, a subclass of the TagExtraInfo class must be developed for the custom action and declared in the 
Tag Library Descriptor. The JSP container creates an instance of the TagExtraInfo subclass during the 
translation phase. 



JavaSercer Pages 

  page 300

Class Summary 

public abstract class TagExtraInfo { 
  // Constructor 
  public TagExtraInfo( ); 
 
  // Methods 
  public TagInfo getTagInfo( ); 
  public VariableInfo[] getVariableInfo(TagData data); 
  public boolean isValid(TagData data); 
  public void setTagInfo(TagInfo tagInfo); 
} 

Constructor 

public TagExtraInfo( )  

Creates a new TagExtraInfo instance. 

Methods 

public TagInfo getTagInfo( )  

Returns the TagInfo instance for the custom action associated with this TagExtraInfo instance. The 
TagInfo instance is set by the setTagInfo( ) method (called by the container). 

public VariableInfo[] getVariableInfo(TagData data)  

Returns a VariableInfo[] with information about scripting variables created by the tag handler class 
associated with this TagExtraInfo instance. The default implementation returns an empty array. A 
subclass must override this method if the corresponding tag handler creates scripting variables. 

public boolean isValid(TagData data)  

Returns true if the set of attribute values specified for the custom action associated with this 
TagExtraInfo instance is valid, false otherwise. The default implementation returns true. A subclass 
can override this method if the validation performed by the JSP container based on the Tag Library 
Descriptor information is not enough. 

public void setTagInfo(TagInfo tagInfo)  

Sets the TagInfo for this instance. This method is called by the JSP container before any of the other 
methods are called. 

 

TagInfo   

 

  

Synopsis 

Class Name: javax.servlet.jsp.tagext. 
TagInfo 

Extends: None 

Implements: None 

Implemented 
by: 

Internal container-dependent class. Most containers use the reference 
implementation of the class (developed in the Apache Jakarta project). 

 



JavaSercer Pages 

  page 301

Description 

TagInfo instances are created by the JSP container to provide information found in the Tag Library Descriptor 
(TLD) about a custom action, as well as information about the attribute values used in a JSP page for an 
instance of the custom action. It's primarily intended to be used by the JSP container itself during the 
translation phase. 

Class Summary 

public class TagInfo { 
  // Constants 
  public static final String BODY_CONTENT_EMPTY; 
  public static final String BODY_CONTENT_JSP; 
  public static final String BODY_CONTENT_TAG_DEPENDENT; 
 
  // Constructor 
  public TagInfo(String tagName, String tagClassName,  
    String bodycontent, String infoString, TagLibraryInfo taglib, 
    TagExtraInfo tagExtraInfo, TagAttributeInfo[] attributeInfo); 
 
  // Methods 
  public TagAttributeInfo[] getAttributes( ); 
  public String getBodyContent( ); 
  public String getInfoString( ); 
  public String getTagClassName( ); 
  public TagExtraInfo getTagExtraInfo( ); 
  public TagLibraryInfo getTagLibrary( ); 
  public String getTagName( ); 
  public VariableInfo[] getVariableInfo(TagData data); 
  public boolean isValid(TagData data); 
  public String toString( ); 
} 

Constructor 

public TagInfo(String tagName, String tagClassName, String bodycontent, String infoString, 
TagLibraryInfo taglib, TagExtraInfo tagExtraInfo, TagAttributeInfo[] attributeInfo)  

Creates a new instance with the specified values. 

Methods 

public TagAttributeInfo[] getAttributes( )  

Returns information from the TLD about all attribute values, or null if no attributes are declared. 

public String getBodyContent( )  

Returns one of BODY_CONTENT_EMPTY, BODY_CONTENT_JSP, or BODY_CONTENT_TAG_DEPENDENT, based on 
the value in the TLD. 

public String getInfoString( )  

Returns the tag information string from the TLD, or null if there is no info. 

public String getTagClassName( )  

Returns the tag handler class name declared in the TLD. 

public TagExtraInfo getTagExtraInfo( )  

Returns an instance of the TagExtraInfo subclass for the tag, or null if no class is declared in the 
TLD. 

public TagLibraryInfo getTagLibrary( )  

Returns a TagLibraryInfo instance for the library the tag is part of. 



JavaSercer Pages 

  page 302

public String getTagName( )  

Returns the name for the tag declared in the TLD. 

public VariableInfo[] getVariableInfo(TagData data)  

Returns information about scripting variables created by the tag handler, or null if no variables are 
created. This information is obtained from the TagExtraInfo for the tag, if any. 

public boolean isValid(TagData data)  

Returns true if the set of attributes specified for the custom action associated with this TagExtraInfo 
instance is valid, false otherwise. This information is obtained from the TagExtraInfo for the tag, if 
any. 

public String toString( )  

Returns a String representation of all information held by the instance. 

 

TagLibraryInfo   

 

  

Synopsis 

Class Name: javax.servlet.jsp.tagext. 
TagLibraryInfo 

Extends: None 

Implements: None 

Implemented 
by: 

Internal container-dependent class. Most containers use the reference 
implementation of the class (developed in the Apache Jakarta project). 

Description 

TagLibraryInfo instances are created by the JSP container to provide information found in the Tag Library 
Descriptor (TLD) about a tag library, as well as information from the taglib directive used in a JSP page. It's 
primarily intended to be used by the JSP container itself during the translation phase. 

Class Summary 

public abstract class TagLibraryInfo { 
  // Constructor 
  protected TagLibraryInfo(String prefix, String uri); 
 
  // Methods 
  public String getInfoString( ); 
  public String getPrefixString( ); 
  public String getReliableURN( ); 
  public String getRequiredVersion( ); 
  public String getShortName( ); 
  public TagInfo getTag(String shortname); 
  public TagInfo[] getTags( ); 
  public String getURI( ); 
} 

Constructor 

protected TagLibraryInfo(String prefix, String uri)  

Creates a new instance with the specified prefix and URI (from the taglib directive in the JSP page). 



JavaSercer Pages 

  page 303

Methods 

public java.lang.String getInfoString( )  

Returns the information string from the TLD for the library. 

public String getPrefixString( )  

Returns the prefix assigned by the taglib directive for the library. 

public String getReliableURN( )  

Returns the URI value from the TLD for the library. 

public String getRequiredVersion( )  

Returns the required JSP version from the TLD for the library. 

public String getShortName( )  

Returns the short name from the TLD for the library. 

public TagInfo getTag(String shortname)  

Returns a TagInfo instance for the specified tag in the library. 

public TagInfo[] getTags( )  

Returns a TagInfo[] for all tags in the library. 

public String getURI( )  

Returns the URI assigned by the taglib directive for the library. 

 

TagSupport   

 

  

Synopsis 

Class Name: javax.servlet.jsp.tagext. 
TagSupport 

Extends: None 

Implements: Tag, java.io.Serializable 

Implemented 
by: 

Internal container-dependent class. Most containers use the reference 
implementation of the class (developed in the Apache Jakarta project). 

Description 

TagSupport is a support class that provides default implementations of all Tag interface methods. It's 
intended to be used as a superclass for tag handlers that do not need access to the body contents of the 
corresponding custom action element. 



JavaSercer Pages 

  page 304

Class Summary 

public class TagSupport implements Tag, java.io.Serializable { 
  // Constructor 
  public TagSupport( ); 
 
  // Methods 
  public int doEndTag( ) throws JspException; 
  public int doStartTag( ) throws JspException; 
  public static final Tag findAncestorWithClass(Tag from, Class klass); 
  public String getId( ); 
  public Tag getParent( ); 
  public Object getValue(String k); 
  public java.util.Enumeration getValues( ); 
  public void release( ); 
  public void removeValue(String k); 
  public void setPageContext(PageContext pageContext); 
  public void setId(String id); 
  public void setParent(Tag t); 
  public void setValue(String k, Object o); 
} 

Constructor 

public TagSupport( )  

Creates a new instance with the specified name and value. 

Methods 

public int doEndTag( ) throws JspException  

Returns EVAL_PAGE.  

public int doStartTag( ) throws JspException  

Returns SKIP_BODY. 

public static final Tag findAncestorWithClass(Tag from, Class klass)  

Returns the instance of the specified class, found by testing for a match of each parent in a tag 
handler nesting structure (corresponding to nested action elements) starting with the specified Tag 
instance, or null if not found. 

public String getId( )  

Returns the id attribute value, or null if not set. 

public Tag getParent( )  

Returns the parent of this Tag instance (representing the action element that contains the action 
element corresponding to this Tag instance), or null if the instance has no parent (at the top level in 
the JSP page). 

public Object getValue(String k)  

Returns the value for the specified attribute that has been set with the setValue( ) method, or null 
if not found. 

public java.util.Enumeration getValues( )  

Returns an Enumeration of all attribute names for values set with the setValue( ) method. 

public void release( )  

Removes the references to all objects held by this instance. 



JavaSercer Pages 

  page 305 

public void removeValue(String k)  

Removes a value set with the setValue( ) method. 

public void setPageContext(PageContext pageContext)  

Saves a reference to the current PageContext. 

public void setId(String id)  

Sets the id attribute value. 

public void setParent(Tag t)  

Saves a reference to the parent for this instance. 

public void setValue(String k, Object o)  

Saves the specified attribute with the specified value. Subclasses can use this method to save attribute 
values as an alternative to instance variables. 

 

VariableInfo   

 

  

Synopsis 

Class Name: javax.servlet.jsp.tagext. 
VariableInfo 

Extends: None 

Implements: None 

Implemented 
by: 

Internal container-dependent class. Most containers use the reference 
implementation of the class (developed in the Apache Jakarta project). 

Description 

VariableInfo instances are created by TagExtraInfo subclasses to describe each scripting variable that the 
corresponding tag handler class creates. 

Class Summary 

public class VariableInfo { 
  // Constants 
  public static final int AT_BEGIN; 
  public static final int AT_END; 
  public static final int NESTED; 
 
  // Constructor 
  public VariableInfo(String varName, String className,  
    boolean declare, int scope); 
 
  // Methods 
  public String getClassName( ); 
  public boolean getDeclare( ); 
  public int getScope( ); 
  public String getVarName( ); 
} 



JavaSercer Pages 

  page 306

Constructor 

public VariableInfo(String varName, String className, boolean declare, int scope)  

Creates a new instance with the specified values. 

Methods 

public String getClassName( )  

Returns the scripting variable Java type. 

public boolean getDeclare( )  

Returns true if the JSP container should create a declaration statement for a scripting variable, and 
otherwise returns false (used if the variable has already been declared by another tag handler, and is 
updated only by the tag handler corresponding to the TagExtraInfo subclass creating this 
VariableInfo instance). 

public int getScope( )  

Returns one of AT_BEGIN (make the scripting variable available from the start tag to the end of the JSP 
page), AT_END (make the variable available after the end tag to the end of the JSP page) or NESTED 
(make the variable available only between the start and stop tags). 

public String getVarName( )  

Returns the variable name. 

 

B.4 Other JSP Classes 

The JSP specification defines a number of other classes and interfaces that don't fit into the categories already 
covered. The exception classes, the interface for JSP page implementation classes, and the classes that let a 
JSP container vendor hide implementation details are described in this section. 

 

HttpJspPage   

 

  

Synopsis 

Interface Name: javax.servlet.jsp. 
 
 
HttpJspPage 

Extends: javax.servlet.jsp.JspPage 

Implemented by: JSP page implementation classes serving HTTP requests 

Description 

The HttpJspPage interface must be implemented by the generated JSP page implementation classes when 
HTTP is used. 



JavaSercer Pages 

  page 307 

Interface Declarations 

public interface HttpJspPage extends JspPage { 
  public void _jspService(javax.servlet.http.HttpServletRequest request, 
    javax.servlet.http.HttpServletResponse response) 
    throws javax.servlet.ServletException, java.io.IOException; 
} 

Methods 

public void _jspService(javax.servlet.http.HttpServletRequest request, 
javax.servlet.http.HttpServletResponse response) throws javax.servlet.ServletException, 
java.io.IOException  

This method corresponds to the body of the JSP page. It is defined automatically by the JSP processor 
and should never be defined by the JSP page author. 

 

JspEngineInfo   

 

  

Synopsis 

Class Name: javax.servlet.jsp. 
 
 
JspEngineInfo 

Extends: None 

Implements: None 

Implemented 
by: 

Internal container-dependent class. Most containers use the reference 
implementation of the class (developed in the Apache Jakarta project). 

Description 

JspEngineInfo is an abstract class that provides information about the JSP container. Each specific JSP 
container provides a concrete subclass. 

Class Summary 

public abstract class JspEngineInfo { 
  // Constructor 
  public JspEngineInfo( ); 
 
  // Methods 
  public abstract String getSpecificationVersion( ); 
} 

Constructor 

public JspEngineInfo( )  

Creates a new JspEngineInfo instance. 

Methods 

public abstract String getSpecificationVersion( )  

Returns the version of the JSP specification implemented by the container, for instance, "1.1" for a JSP 
1.1-compliant container. 



JavaSercer Pages 

  page 308

JspException   

 

  

Synopsis 

Class Name: javax.servlet.jsp. 
 
 
JspException 

Extends: java.lang.Exception 

Implements: None 

Implemented 
by: 

Internal container-dependent class. Most containers use the reference 
implementation of the class (developed in the Apache Jakarta project). 

Description 

The JspException class is the superclass for all JSP-related exceptions. 

Class Summary 

public class JspException extends Exception { 
  // Constructors 
  public JspException( ); 
  public JspException(String msg); 
} 

Constructors 

public JspException( )  

Creates a new JspException instance. 

public JspException(String msg)  

Creates a new JspException instance with the specified message. 

 

JspFactory   

 

  

Synopsis 

Class Name: javax.servlet.jsp. 
JspFactory 

Extends: None 

Implements: None 

Implemented 
by: 

Internal container-dependent class. Most containers use the reference 
implementation of the class (developed in the Apache Jakarta project). 

 



JavaSercer Pages 

  page 309

Description 

The JspFactory is an abstract class that defines a number of factory methods available to a JSP page at 
runtime, for the purpose of creating instances of various interfaces and classes used to support the JSP 
implementation. 

A JSP container creates an instance of a concrete subclass during its initialization phase and makes it globally 
available for use by JSP implementation classes by registering the instance created with this class via the 
static setDefaultFactory( ) method. 

Class Summary 

public abstract class JspFactory { 
  // Constructor 
  public JspFactory( ) 
 
  // Methods 
  public static JspFactory getDefaultFactory( ); 
  public abstract JspEngineInfo getEngineInfo( ); 
  public abstract PageContext  
    getPageContext(javax.servlet.Servlet servlet, 
      javax.servlet.ServletRequest request, 
      javax.servlet.ServletResponse response, 
      String errorPageURL, boolean needsSession, 
      int buffer, boolean autoflush); 
  public abstract void releasePageContext(PageContext pc); 
  public static void setDefaultFactory(JspFactory deflt); 
} 

Constructor 

public JspFactory( )  

Creates a new JspFactory instance. 

Methods 

public static JspFactory getDefaultFactory( )  

Returns the default JspFactory for the container. 

public abstract JspEngineInfo getEngineInfo( )  

Returns the JspEngineInfo for the container. 

public abstract PageContext getPageContext(javax.servlet.Servlet servlet, 
javax.servlet.ServletRequest request, javax.servlet.ServletResponse response, String 
errorPageURL, boolean needsSession, int buffer, boolean autoflush)  

Returns a properly initialized instance of an implementation-dependent PageContext subclass. This 
method is typically called early in the processing of the _jspService( ) method of a JSP 
implementation class to get a PageContext object for the request being processed. Calling this method 
results in the PageContext.initialize( ) method being invoked. 

public abstract void releasePageContext(PageContext pc)  

Releases a previously allocated PageContext object. Calling this method results in 
PageContext.release( ) being invoked. This method should be invoked prior to returning from the 
_jspService( ) method of a JSP implementation class. 

public static void setDefaultFactory(JspFactory deflt)  

Sets the default factory for this implementation. It is illegal for anything other than the JSP container 
to call this method. 

 

 



JavaSercer Pages 

  page 310

JspPage   

 

  

Synopsis 

Interface Name: javax.servlet.jsp. 
JspPage 

Extends: None 

Implemented by: JSP page implementation classes 

Description 

The JspPage interface must be implemented by the generated JSP page implementation classes. The 
interface defines a protocol with three methods; only two of them, jspInit( ) and jspDestroy( ), are part 
of this interface. The signature of the third method, _jspService( ), depends on the specific protocol used 
and cannot be expressed in a generic way in Java. See also HttpJspPage. 

A class implementing this interface is responsible for invoking these methods at the appropriate time, based 
on the corresponding servlet-based method invocations. 

The jspInit( ) and jspDestroy( ) methods can be defined by a JSP page author, but the _jspService( ) 
method is defined automatically by the JSP container, based on the contents of the JSP page. 

Interface Declarations 

public interface JspPage { 
  public void jspDestroy( ); 
  public void jspInit( ); 
} 

Methods 

public void jspDestroy( )  

This method is invoked when the JSP page implementation instance is about to be destroyed. It can be 
used to perform cleanup, such as saving the state kept in instance variables to permanent storage. 

public void jspInit( )  

This method is invoked when the JSP page implementation instance is initialized. It can be used to 
perform tasks such as restoring the state kept in instance variables from permanent storage. 

 

JspTagException   

 

  

Synopsis 

Class Name: javax.servlet.jsp. 
JspTagException 

Extends: javax.servlet.jsp.JspException 

Implements: None 

Implemented Internal container-dependent class. Most containers use the reference 



JavaSercer Pages 

  page 311

by: implementation of the class (developed in the Apache Jakarta project). 

Description 

The JspTagException is intended to be used by a tag handler to indicate some unrecoverable error. This 
exception is caught by the top level of the JSP page and results in an error page. 

Class Summary 

public class JspTagException extends JspException { 
  // Constructors 
  public JspTagException( ); 
  public JspTagException(String msg); 
} 

Constructors 

public JspTagException( )  

Creates a new JspTagException instance. 

public JspTagException(String msg)  

Creates a new JspTagException instance with the specified message. 



JavaSercer Pages 

  page 312

Appendix C. Book Example Custom Actions and Classes Reference 

This appendix contains reference material for all custom actions, utility classes, and beans described in this 
book that can be used as-is in other applications. 

Example code in this book that is not intended to be reused directly is not included in this appendix. All 
source code for the book can, however, be downloaded either from the O'Reilly web site at 
http://www.oreilly.com/catalog/jserverpages/ or from the web site dedicated to this book at 
http://www.TheJSPBook.com. 

C.1 Generic Custom Actions 

The following are generic custom actions defined in the ora custom tag library. 

C.1.1 <ora:addCookie> 

The <ora:addCookie> action sets response headers for creating or deleting a cookie. It must be used before 
the response is committed, for instance before a <jsp:include> action. The attributes supported by this 
action are described in Table C.1. 

Table C.1, <ora:addCookie> Attributes  

Attribute 
Name 

Java 
Type 

Request-
TimeValue 
Accepted 

Description 

maxAge String Yes 

Optional. The number of seconds before the cookie 
expires. Default is -1, meaning that the cookie expires 
when the browser is closed. Use to delete the cookie from 
the browser. 

name String Yes Mandatory. The cookie name. 

value String Yes Mandatory. The cookie value. 

Example: 

<%--  
  Add a cookie named "userName", using the value from a 
  request parameter with the same name, that expires in 
  30 days. 
--%> 
<ora:addCookie name="userName"  
  value='<%= request.getParameter("userName") %>' 
  maxAge="2592000"  
/> 
 
<%-- 
  Delete a cookie named "userName". 
--%> 
<ora:addCookie name="userName"  
  value="ignored" 
  maxAge="0"  
/> 

C.1.2 <ora:encodeHTML> 

The <ora:encodeHTML> action replaces all HTML special characters (', ", <, >, &) found in the body text with 
the corresponding HTML character entities (&#39;, &#34;, &lt;, &gt;, &amp;) and writes the result to the 
current JspWriter. This action doesn't have any attributes. 

Example: 

<%--  
  Encode special characters in a bean property value. 
--%> 
<ora:encodeHTML> 
  <jsp:getProperty name="someBean" property="someTextValue" /> 
</ora:encodeHTML> 

http://www.oreilly.com/catalog/jserverpages/
http://www.TheJSPBook.com


JavaSercer Pages 

  page 313

C.1.3 <ora:encodeURL> 

The <ora:encodeURL> action encodes the specified URL for session tracking using URL rewriting (which 
embeds the session ID if needed) and URL encoding (which replaces special characters with hex code) 
parameters specified by nested <ora:param> actions, and adds them to the URL. The resulting URL is written 
to the current JspWriter. The attribute supported by this action is described in Table C.2. 

Table C.2, <ora:encodeURL> Attribute  

Attribute Name Java Type Request-TimeValue Accepted Description 

url String Yes Mandatory. The URL to be encoded. 

Example: 

<%--  
  Encode a URL and add a parameter with a value from a 
  bean property. 
--%> 
<ora:encodeURL url="product.jsp"> 
  <ora:param name="id" value="<%= product.getId( ) %>" /> 
</ora:encodeURL> 

C.1.4 <ora:getCookieValue> 

The <ora:getCookieValue> action writes the value of the specified cookie to the current JspWriter, or 
writes a blank string ("") if the cookie is not found in the current request. The attribute supported by this 
action is described in Table C.3. 

Table C.3, <ora:getCookieValue>Attribute  

Attribute Name Java Type Request-TimeValue Accepted Description 

name String Yes Mandatory. The cookie name. 

Example: 

<%--  
  Add a cookie value to the response body. 
--%> 
Hello <ora:getCookieValue name="userName" /> 

C.1.5 <ora:loop> 

The <ora:loop> action iterates through the elements of the specified object or the elements represented by 
the specified property of the specified bean, and evaluates the body once for each element. The current 
element is made available as a scripting variable within the action element's body. The attributes supported 
by this action are described in Table C.4. 

Table C.4, <ora:loop> Attributes  

Attribute 
Name 

Java 
Type 

Request-
TimeValue 
Accepted 

Description 

Name String No 

Mandatory. The name of a data structure object or bean. The object 
must be of type Object[], Vector, Dictionary, or Enumeration, or 
be a bean with a property of one of these types. The object or bean 
can be located in any JSP scope. 

property String No Optional. The name of a bean property. The property type must be 
one of Object[], Vector, Dictionary, or Enumeration. 

loopId String No Mandatory. The name of the variable that holds a reference to the 
current element when the action's body is evaluated. 

className String No Mandatory. The class name for the elements of the bean or property. 



JavaSercer Pages 

  page 314

Example: 

<%--  
  Make a bean with an indexed property available in a page. 
--%> 
<jsp:useBean id="catalog" scope="application" 
  class="com.ora.jsp.beans.shopping.Catalog" /> 
<%-- 
  Loop over all elements of the index productList property. 
--%> 
<ora:loop name="catalog" property="productList" loopId="product" 
  className="com.ora.jsp.beans.shopping.ProductBean"> 
  <%-- Use the current element as a bean in an action. --%> 
  <jsp:getProperty name="product" property="name" /> 
  <%-- Use the current element as a scripting variable. --%> 
  <%= product.getId( ) %> 
</ora:loop> 

C.1.6 <ora:menuItem> 

The <ora:menuItem> action writes its body contents to the current JSPWriter. If the specified page is the 
currently requested page, the content is used as-is; otherwise, it's embedded in an HTML link element (<a>), 
using the specified page as the link target and the body contents as the link text. This action is intended to be 
used in navigation bars to generate links for all page menu items except the current page. The attribute 
supported by this action is described in Table C.5. 

Table C.5, <ora:menuItem> Attribute  

Attribute 
Name 

Java 
Type 

Request-TimeValue 
Accepted 

Description 

page String Yes Mandatory. The page name for the menu item as a 
page-relative or context-relative URI path. 

Example: 

<%--  
  Generate a navigation menu table with two page menu items. 
--%> 
<table bgcolor="lightblue"> 
  <tr> 
    <td> 
      <ora:menuItem page="page1.jsp"> 
        <b>Page 1</b> 
      </ora:menuItem> 
    </td> 
  </tr> 
  <tr> 
    <td> 
      <ora:menuItem page="page2.jsp"> 
        <b>Page 2</b> 
      </ora:menuItem> 
    </td> 
  </tr> 
</table> 

C.1.7 <ora:noCache> 

The <ora:noCache> action sets response headers that prevent the page from being cached by a browser or 
proxy server. It must be used before the response is committed, for instance before a <jsp:include> action. 
This action doesn't have any attributes. 

Example: 

<%--  
  Set headers to prevent caching. 
--%> 
<ora:noCache /> 



JavaSercer Pages 

  page 315 

C.1.8 <ora:param> 

The <ora:param> action can be used only in the body of the <ora:encodeURL> and <ora:redirect> actions 
to set parameter values. The specified parameter value is URL encoded; that is, all special characters are 
replaced with the corresponding URL code for the character (e.g., a plus sign for a space). The attributes 
supported by this action are described in Table C.6. 

Table C.6, <ora:param> Attributes  

Attribute Name Java Type Request-TimeValue Accepted Description 

name String Yes Mandatory. The parameter name. 

value String Yes Mandatory. The parameter value. 

Example: 

<%--  
  Encode a URL and add one parameter with a value from a 
  bean property and one parameter with a static string value. 
--%> 
<ora:encodeURL url="process.jsp"> 
  <ora:param name="id" value="<%= product.getId( ) %>" /> 
  <ora:param name="action" value="list" /> 
</ora:encodeURL> 

C.1.9 <ora:redirect> 

The <ora:redirect> action sets response headers to redirect the browser to the specified page and aborts 
the processing of the rest of the JSP page. It encodes the specified URL for session tracking using URL 
rewriting (embedding the session ID if needed) and URL encodes (replacing special characters with hex code) 
parameters specified by nested <ora:param> actions, and adds the parameters to the URL. This action must 
be used before the response is committed, for instance before a <jsp:include> action. The attribute 
supported by this action is described in Table C.7. 

Table C.7, <ora:redirect> Attribute  

Attribute 
Name 

Java 
Type 

Request-
TimeValue 
Accepted 

Description 

page String Yes 
Mandatory. The URL of the page to redirect to, relative 
to the current page, or if it starts with a slash (/), 
relative to the context path. 

Example: 

<%--  
  Redirect to a new page and include a parameter with a value  
  from a bean property. 
--%> 
<ora:redirect page="productdescr.jsp"> 
  <ora:param name="id" value="<%= product.getId( ) %>" /> 
</ora:encodeURL> 



JavaSercer Pages 

  page 316

C.1.10 <ora:useProperty> 

The <ora:useProperty> action associates a bean property value with a variable name. The property is 
retrieved from the specified bean in the specified scope by calling the corresponding property getter method. 
If an argument is specified by the arg attribute, a getter method that takes a String argument is used 
instead. The attributes supported by this action are described in Table C.8. 

Table C.8, <ora:useProperty> Attributes  

Attribute 
Name 

Java 
Type 

Request-
TimeValue 
Accepted 

Description 

arg String Yes 
Optional. The argument value used as the argument for 
the property getter method, typically to identify one 
specific property value. 

className String No Mandatory. The class name for the retrieved bean 
property. 

id String No Mandatory. The name of the variable to hold the 
retrieved bean. The bean is placed in the page scope. 

name String No 
Mandatory. The name of the object with the bean to 
retrieve. The object must be available in one of the 
standard scopes. 

property String No Mandatory. The name of the property holding the bean. 

Example: 

<%-- 
  Make a bean with the appropriate access methods available in 
  the application scope. 
--%> 
<jsp:useBean  
  id="catalog" 
  scope="application" 
  className="com.ora.jsp.beans.shopping.CatalogBean" 
/> 
 
<%--  
  Make one of the bean's properties available in the default scope 
  (page scope) using a request parameter value as the argument. 
--%> 
<ora:useProperty id="product" name="catalog" property="product"  
   arg='<%= request.getParameter("id") %>' 
   className="com.ora.jsp.beans.shopping.ProductBean" /> 

C.1.11 <ora:validateSession> 

The <ora:validateSession> action is used to protect JSP pages in an application that implements its own 
authentication and authorization. The action looks for a bean in the session scope that signifies proof of 
authentication. If the bean is not found, it forwards the request to the specified page (typically a login page), 
adding the request parameters origURL (containing the URL for the requested page) and errorMsg 
(containing the text specified by the attribute with the same name, URL encoded). The attributes supported 
by this action are described in Table C.9. 

Table C.9, <ora:validateSession> Attributes  

Attribute 
Name 

Java 
Type 

Request-TimeValue 
Accepted 

Description 

errorMsg String Yes Mandatory. The error message to pass to the 
login page. 

loginPage String Yes Mandatory. A page-relative or context-relative 
URI for the login page. 

name String No Mandatory. The name of the authentication proof 
bean in the session scope. 



JavaSercer Pages 

  page 317 

Example:  

<%--  
  Check if the page is requested by an authenticated user by 
  looking for the specified bean in the session scope. 
  Forward to the login page if not. 
--%> 
<ora:validateSession name="validUser" loginPage="login.jsp" 
  errorMsg="Please log in first" /> 

 

C.2 Internationalization Custom Actions 

C.2.1 <ora:getLocalDate> 

The <ora:getLocalDate> action writes the specified date, formatted according to the currently selected 
locale (see <ora:useLocaleBundle>), to the current JspWriter. The attributes supported by this particular 
action are described in Table C.10. 

Table C.10, <ora:getLocalDate> Attributes  

Attribute 
Name Java Type 

Request-
TimeValue 
Accepted 

Description 

date java.util.Date Yes Mandatory. The date to format. 

name String No 
Mandatory. The name of the LocaleBean 
created by <ora:useLocaleBean>. 

Example: 

<%--  
  Create a LocaleBean (see <ora:useLocaleBean> for details. 
--%> 
<ora:useLocaleBean id="locale" bundleName="poll" 
  supportedLangs="en, sv, de" /> 
 
<%-- 
  Add a localized date to the response body. 
--%> 
<ora:getLocalDate name="locale" date="<%= new java.util.Date( ) %>" /> 

C.2.2 <ora:getLocalNumber> 

The <ora:getLocalNumber> action writes the specified number, formatted according to the currently selected 
locale (see <ora:useLocaleBundle>), to the current JspWriter. The attributes supported by this action are 
described in Table C.11. 

Table C.11, <ora:getLocalNumber> Attributes  

Attribute 
Name 

Java 
Type 

Request-TimeValue 
Accepted 

Description 

name String No 
Mandatory. The name of the LocaleBean created 
by <ora:useLocaleBean>. 

value double Yes Mandatory. The number to format. 

Example: 

<%--  
  Create a LocaleBean (see <ora:useLocaleBean> for details). 
--%> 
<ora:useLocaleBean id="locale" bundleName="poll" 
  supportedLangs="en, sv, de" /> 
 
<%-- 
  Add a localized number to the response body. 
--%> 
<ora:getLocalDate name="locale" value="1000.67" /> 



JavaSercer Pages 

  page 318

C.2.3 <ora:getLocalPageName> 

The <ora:getLocalPageName> action writes the localized name of the specified page base name for the 
currently selected locale (see <ora:useLocaleBundle>) to the current JspWriter. The page base name is 
converted to the localized page name according to the same rules that the 
java.util.PropertyResourceBundle uses to find a localized .properties file, i.e., by appending country and 
language codes to the base name (excluding the extension). Unlike PropertyResourceBundle, this action 
does not verify that the file exists; it just creates a page name corresponding to the currently selected locale. 
The attributes supported by this action are described in Table C.12. 

Table C.12, <ora:getLocalPageName> Attributes  

Attribute 
Name 

Java 
Type 

Request-TimeValue 
Accepted 

Description 

name String No 
Mandatory. The name of the LocaleBean created 
by <ora:useLocaleBean>. 

pageName String Yes Mandatory. The page base name. 

Example: 

<%--  
  Create a LocaleBean (see <ora:useLocaleBean> for details). 
--%> 
<ora:useLocaleBean id="locale" bundleName="poll" 
  supportedLangs="en, sv, de" /> 
 
<%-- 
  Add a localized page name (as a link) to the response body. 
--%> 
<a href="<ora:getLocalPageName name="locale"  
  pageName="details.jsp" />">some link</a> 

C.2.4 <ora:getLocalText> 

The <ora:getLocalText> action writes the value of the specified key for the currently selected locale (see 
<ora:useLocaleBundle>), backed by localized properties files, to the current JspWriter. The attributes 
supported by this action are described in Table C.13. 

Table C.13, <ora:getLocalText> Attributes  

Attribute 
Name 

Java 
Type 

Request-TimeValue 
Accepted 

Description 

key String Yes Mandatory. The property key for the localized text. 

name String No 
Mandatory. The name of the LocaleBean created 
by <ora:useLocaleBean>. 

Example: 

<%--  
  Create a LocaleBean (see <ora:useLocaleBean> for details). 
--%> 
<ora:useLocaleBean id="locale" bundleName="poll" 
  supportedLangs="en, sv, de" /> 
 
<%-- 
  Add localized text to the response body. 
--%> 
<ora:getLocalText name="locale" key="poll.title" /> 



JavaSercer Pages 

  page 319

C.2.5 <ora:useLocaleBundle> 

The <ora:useLocaleBundle> action creates and initializes a com.ora.jsp.beans.locale.LocaleBean 
instance that can then be used with the <ora:getLocalDate>, <ora:getLocalNumber>, 
<ora:getLocalPageName>, and <ora:getLocalText> actions. The LocaleBean is created as a session scope 
bean the first time a page with the <ora:useLocaleBundle> action is requested within a user session. From 
then on, the properties of the bean are adjusted based on the current request information. The LocaleBean 
properties are described in Table C.14, and the attributes supported by the <ora:useLocaleBundle> action 
are described in Table C.15. 

Table C.14, com.ora.jsp.beans.locale.LocaleBean Properties  

Property 
Name 

Java Type Access Description 

bundleName String write The base name for the properties files used for 
localized text 

charset String write The charset used to decode request parameters 

language String read/write The language code for the selected locale 

locale java.util.Locale read The locale, selected based on other properties 

requestLocales java.util.Locale[] write The locales received with the request 

supportedLangs String write A comma-separated list of language codes 

 
 

Table C.15, <ora:useLocaleBean> Attributes  

Attribute 
Name 

Java 
Type 

Request-
TimeValue 
Accepted 

Description 

bundleName String Yes Mandatory. The base name for text resource 
properties files. 

id String No Mandatory. The name used to reference the 
LocaleBean instance. 

supportedLangs String Yes 
Mandatory. A comma-separated list of 
language/country codes. The first code is used as 
the default language. 

The <ora:useLocaleBean> action sets the bean's language and charset properties to the values of the 
request parameters with the same names, if present, and the requestLocales property to the locale 
information found in the Accept-Language request header. The supportedLangs and bundleName properties 
are set to the action attributes with the same names. The bean selects the most appropriate locale by 
comparing the language attribute value, if present, or the requestLocales in priority order with the 
languages specified by the supportedLangs property. See Chapter 11, for more details. 

Besides accessing the LocaleBean through action elements, the bean also provides these regular methods, 
which you can use with scripting code in a JSP page: 

public java.util.Date getDate(String date) throws java.text.ParseException  

Returns the specified date String converted to a Date, parsed as defined by the currently selected 
locale. 

public String getDateString(java.util.Date date)  

Returns the specified Date converted to a String, formatted as defined by the currently selected 
locale. 

public double getDouble(String number) throws java.text.ParseException  

Returns the specified number String converted to a double, parsed as defined by the currently 
selected locale. 



JavaSercer Pages 

  page 320

public float getFloat(String number) throws java.text.ParseException  

Returns the specified number String converted to a float, parsed as defined by the currently 
selected locale. 

public int getInt(String number) throws java.text.ParseException  

Returns the specified number String converted to an int, parsed as defined by the currently selected 
locale. 

public String getLanguage( )  

Returns the language code for the currently selected locale. 

public java.util.Locale getLocale( )  

Returns a Locale. The Locale is constructed based on the language property, if set. If not, the Locale 
is determined based on the Accept-Language header (the requestLocales property), if set. If the 
Locale found this way matches one of the supported languages, it's returned. Otherwise, the Locale 
for the first language in the list of supported languages is returned. 

public long getLong(String number) throws java.text.ParseException  

Returns the specified number String converted to a long, parsed as defined by the currently selected 
locale. 

public String getNumberString(double number)  

Returns the specified number converted to a String, formatted as defined by the currently selected 
locale. 

public String getPageName(String basePageName)  

Returns a version of the specified page name with a language/country suffix for the currently selected 
locale. 

public String getParameter(String parameter) throws java.io.UnsupportedEncodingException  

Returns the first all value for the specified parameter, parsed using the currently specified charset. 

public java.util.Enumeration getParameterNames( )  

Returns an Enumeration of all parameter names. 

public String[] getParameterValues(String parameter) throws 
java.io.UnsupportedEncodingException  

Returns an array of all values for the specified parameter, parsed using the currently specified charset. 

public java.lang.String getText(String resourceName)  

Returns the text resource for the specified key, with the best match for the currently selected locale. 

public void setBundleName(String bundleName)  

Sets the bundle name. Resets the current ResourceBundle so that a new one will be created with the 
new bundle name the next time the ResourceBundle is retrieved. 

public void setCharset(String charset)  

Sets the charset used to parse request parameters. 



JavaSercer Pages 

  page 321

public void setLanguage(String language)  

Sets the user-selected language/country code. Resets the currently selected locale if the new language 
is different from the current one. This is done so that all possible locale sources will be evaluated again 
the next time the locale property is retrieved. 

public void setParameters(java.util.Hashtable parameters)  

Sets the parameter list. 

public void setRequestLocales(java.util.Locale[] locales)  

Sets the set of locales received with the request, and resets the currently selected locale if the new set 
is different from the current set. This is done so that all possible locale sources will be evaluated again 
the next time the locale property is retrieved. 

public void setSupportedLangs(String supportedLangs)  

Sets the set of supported languages, provided as a comma-separated list of country/language codes. 
This is a mandatory property. Resets the currently selected locale if the new set is different from the 
current set. This is done so that all possible locale sources will be evaluated again the next time the 
locale property is retrieved. 

Example: 

<%--  
  Create and initialize a LocaleBean. 
--%> 
<ora:useLocaleBean id="locale" bundleName="poll" 
  supportedLangs="en, sv, de" /> 
 
<%-- 
  Add localized text to the response body using action element. 
--%> 
<ora:getLocalText name="locale" key="poll.title" /> 
<%-- 
  Add localized number to the response body using scripting elements 
--%> 
<% int aNumber = 10000; %> 
<%= locale.getNumberString(aNumber) %> 
 
 

C.3 Database Custom Actions 

C.3.1 <ora:sqlQuery> 

The <ora:sqlQuery> action executes a SQL SELECT statement and makes the result available as a 
java.util.Vector of com.ora.jsp.sql.Row objects. The SQL statement is specified in the body of the action 
element. Placeholder characters (question marks) can be used in the statement and given values dynamically 
by nested value action elements (see Section C.3.5 later in this appendix for details). The attributes 
supported by the <ora:sqlQuery> action are described in Table C.16. 

Table C.16, <ora:sqlQuery> Attributes  

Attribute 
Name 

Java 
Type 

Request-
TimeValue 
Accepted 

Description 

dataSource String No 
Mandatory, unless used with <ora:sqlTransaction>. 
The name of the data source. 

id String No Mandatory. The name of the vector to hold the result. 

scope String No 
Optional. The scope for the result, one of page, 
request, session, or application. Default is page. 

 



JavaSercer Pages 

  page 322

Example: 

<%--  
  Get all rows from a table where a column matches the value 
  of a request parameter. 
--%> 
<ora:sqlQuery id="empDbInfo" dataSource="example"> 
  SELECT * FROM Employee  
    WHERE UserName = ? 
  <ora:sqlStringValue param="userName" /> 
</ora:sqlQuery> 

C.3.2 <ora:sqlTransaction> 

The <ora:sqlTransaction> action is used to enclose other database action elements that together make up 
a database transaction: a set of database operations where all operations either fail or succeed. The attribute 
supported by this action is described in Table C.17. 

Table C.17, <ora:sqlTransaction>Attribute  

Attribute 
Name 

Java 
Type 

Request-TimeValue 
Accepted 

Description 

dataSource String No Mandatory. The name of the data source to use 
for all nested database access actions. 

Example: 

<%--  
  Execute two database operations as one database transaction. 
--%> 
<ora:sqlTransaction dataSource="example"> 
 
  <ora:sqlUpdate> 
    UPDATE Account SET Balance = Balance - 1000 
      WHERE AccountNumber = 1234 
  </ora:sqlUpdate> 
  <ora:sqlUpdate> 
    UPDATE Account SET Balance = Balance + 1000 
      WHERE AccountNumber = 5678 
  </ora:sqlUpdate> 
 
</ora:sqlTransaction> 

C.3.3 <ora:sqlUpdate> 

The <ora:sqlUpdate> action executes SQL INSERT, UPDATE, and DELETE statements, as well as so-called 
Data Definition Language (DDL) statements, such as the CREATE TABLE statement. This action optionally 
makes the number of affected rows available as an Integer object. The SQL statement is specified in the 
body of the action element. Placeholder characters (question marks) can be used in the statement and given 
values dynamically by nested value action elements (see the next section, Section C.3.5, for details). The 
attributes supported by the <ora:sqlUpdate> action are described in Table C.18. 

Table C.18, <ora:sqlUpdate> Attributes  

Attribute 
Name 

Java 
Type 

Request-
TimeValue 
Accepted 

Description 

dataSource String No 
Mandatory, unless used with <ora:sqlTransaction>. 
The name of the data source. 

id String No 
Optional. The name of the Integer to hold the 
number of rows affected by the statement. 

scope String No 
Optional. The scope for the result, one of page, 
request, session, or application. Default is page. 

 



JavaSercer Pages 

  page 323

Example: 

<%--  
  Insert a row in a table using the value of a request parameter. 
--%> 
<ora:sqlUpdate dataSource="example"> 
  INSERT INTO Employee (UserName) VALUES(?) 
  <ora:sqlStringValue param="userName" /> 
</ora:sqlQuery> 

C.3.4 <ora:useDataSource> 

The <ora:useDataSource> action creates a javax.sql.DataSource object in the application scope that 
supports connection pooling and can be used with the other database actions. Note that this action is 
intended only for prototyping and examples. A better approach is to use a servlet loaded at startup to make a 
DataSource available as an application scope object, as described in Chapter 17. The attributes supported by 
the <ora:sqlUpdate> action are described in Table C.19. 

Table C.19, <ora:useDataSource> Attributes  

Attribute 
Name 

Java 
Type 

Request-TimeValue 
Accepted 

Description 

className String No Mandatory. The name of the JDBC driver class 
used to access the database. 

id String No Mandatory. The name used to reference the data 
source from other actions. 

pw String No Optional. The password for the database user 
account name. 

url String No Mandatory. The JDBC URL for the database. 

user String No Optional. The database user account name. 

Example: 

<%--  
  Make a DataSource available for other database actions. 
--%> 
<ora:useDataSource id="example"  
  className="sun.jdbc.odbc.JdbcOdbcDriver" url="jdbc:odbc:example" /> 

C.3.5 Value Action Elements 

The SQL statements specified in the body of the <ora:sqlQuery> and <ora:sqlUpdate> elements may 
contain placeholder characters (question marks) that are given values dynamically by nested value action 
elements. Most of the Java datatypes supported by the JDBC are represented by specific action elements. 
They support the attributes described in Table C.20 according to the matrix in Table C.21. 

Table C.20, Value Action Attributes  

Attribute 
Name 

Java 
Type 

Request-
TimeValue 
Accepted 

Description 

name String No Optional. The name of a bean with a property holding the 
value. 

param String Yes Optional. The name of a request parameter holding the 
String value. 

pattern String Yes 
The pattern used to interpret a String specified by the 
stringValue, param, or name/property attributes. 

property String No 
Mandatory if name is specified. The name of the bean 
property holding the value. 

stringValue String Yes Optional. The String to use as the value. 

value See Table 
C.21 

Yes Optional. The value to use for a placeholder in the 
enclosing database action. 



JavaSercer Pages 

  page 324

 

Table C.21, Value Action Attribute Matrix  

Action Name name param pattern property stringValue value 

bigDecimal 
Value      

java.math. 
BigDecimal 

booleanValue       boolean 

bytesValue       byte[] 

byteValue       byte 

dateValue      
java.util. 
Date 

doubleValue      double 

floatValue      float 

intValue      int 

longValue      long 

objectValue       Object 

shortValue      short 

stringValue        String 

timestamp 
Value      

java.util. 
Date 

timeValue      
java.util. 
Date 

The patterns that can be used as values for the pattern attribute are the same as for 
java.text.SimpleDateFormat and java.text.NumberFormat. See the Java API documentation for details. 

The <ora:stringValue> action supports two additional attributes, described in Table C.22. 

Table C.22, Additional <ora:stringValue> Attributes  

Attribute 
Name 

Java 
Type 

Request-TimeValue 
Accepted 

Description 

prefix String Yes 
Optional. A String to be concatenated to the 
beginning of the value. 

suffix String Yes 
Optional. A String to be concatenated to the end 
of the value. 

Example: 

<%--  
  Use dynamic values in an UPDATE statment. 
--%> 
<ora:sqlUpdate dataSource="example"> 
  UPDATE Employee 
    SET Password = ?,  
        FirstName = ?,  
        LastName = ?,  
        Dept = ?, 
        EmpDate = ?, 
        EmailAddr = ?, 
        ModDate = ? 
        Salary = ? 
    WHERE UserName = ? 
  <ora:sqlStringValue param="password" /> 
  <ora:sqlStringValue param="firstName" /> 
  <ora:sqlStringValue param="lastName" /> 
  <ora:sqlStringValue param="dept" /> 
  <ora:sqlDateValue param="empDate" pattern="yyyy-MM-dd" /> 
  <ora:sqlStringValue param="emailAddr" /> 
  <ora:sqlTimestampValue value="<%= new java.util.Date( ) %>" /> 
  <ora:sqlIntValue stringValue="95000" /> 
  <ora:sqlStringValue param="userName" /> 
</ora:sqlUpdate> 



JavaSercer Pages 

  page 325 

C.4 Utility Classes 

ArraySupport   

 

  

Synopsis 

Class Name:  com.ora.jsp.util.ArraySupport 

Extends: None 

Implements: None 

Description 

The ArraySupport class contains static methods for working with arrays. 

Class Summary 

public class ArraySupport { 
  // Methods 
  public static boolean contains(String[] array, String value); 
} 

Methods 

public static boolean contains(String[] array, String value)  

Returns true if the specified value matches one of the elements in the specified array. 

CookieUtils   

 

  

Synopsis 

Class Name: com.ora.jsp.util.CookieUtils 

Extends: None 

Implements: None 

Description 

The CookieUtils class contains a number of static methods that can be used to work with 
javax.servlet.http.Cookie objects. 

Class Summary 

public class CookieUtils { 
  // Methods 
  public static String getCookieValue(String name,  
    javax.servlet.http.HttpServletRequest req); 
  public static boolean isCookieSet(String name, 
    javax.servlet.http.HttpServletRequest req); 
  public static void sendCookie(String name, String value, 
    int maxAge, javax.servlet.http.HttpServletResponse res); 
} 



JavaSercer Pages 

  page 326

Methods 

public static String getCookieValue(String name, javax.servlet.http.HttpServletRequest req)  

Returns the value of the cookie with the specified name, or null if not found. 

public static boolean isCookieSet(String name, javax.servlet.http.HttpServletRequest req)  

Returns true if a cookie with the specified name is present in the request. 

public static void sendCookie(String name, String value, int maxAge, 
javax.servlet.http.HttpServletResponse res)  

Creates a cookie with the specified name, value, and max age, and adds it to the response. 

DebugBean   

 

  

Synopsis 

Class Name: com.ora.jsp.util.DebugBean 

Extends: None 

Implements: None 

Description 

The DebugBean class is a bean that can be used to extract debug information from a JSP PageContext. The 
debug info is sent to the browser, System.out, and the servlet log file, depending on the value of the debug 
request parameter sent with the request for the JSP page: resp, stdout, and log, respectively. These 
parameter values can be combined to get the information directed to multiple targets. The bean properties 
are described in Table C.23. 

Table C.23, com.ora.jsp.util.DebugBean Properties  

Property Name Java Type Access Description 

applicationScop
e String read 

A string, formatted as a table, with the 
names and values of all application scope 
variables. 

cookies String read 
A string, formatted as a table, with the 
names and values of all cookies received 
with the request. 

elapsedTime String read 
A string with the number of milliseconds 
elapsed since the bean was created or this 
property was last read. 

headers String read 
A string, formatted as a table, with the 
names and values of all headers received 
with the request. 

pageContext javax.servlet.jsp
.PageContext write Mandatory. Must be set for the bean to 

find the value of its other properties. 

pageScope String read 
A string, formatted as a table, with the 
names and values of all page scope 
variables. 

parameters String read 
A string, formatted as a table, with the 
names and values of all parameters 
received with the request. 



JavaSercer Pages 

  page 327 

requestInfo String read 

A string, formatted as a table, with 
information about the request, such as 
authentication type, content length and 
encoding, path information, remote host 
and user, etc. 

requestScope String read 
A string, formatted as a table, with the 
names and values of all request scope 
variables. 

sessionScope String read 
A string, formatted as a table, with the 
names and values of all session scope 
variables. 

 
 
 

StringFormat   

 

  

  Synopsis 

Class Name: com.ora.jsp.util.StringFormat 

Extends: None 

Implements: None 

Description 

The StringFormat class contains a number of static methods that can be used to validate the format of 
strings, typically received as input from a user, and to format values as strings that can be used in HTML 
output without causing browser interpretation problems. 

Class Summary 

public class StringFormat { 
  // Methods 
  public static boolean isValidDate(String dateString, 
    String dateFormatPattern); 
  public static boolean isValidEmailAddr(String emailAddrString); 
  public static boolean isValidInteger(String numberString, 
    int min, int max); 
  public static boolean isValidString(String value, 
    String[] validStrings, boolean ignoreCase); 
  public static String replaceInString(String in, String from, 
    String to); 
  public static java.util.Date toDate(String dateString, 
    String dateFormatPattern) throws java.text.ParseException; 
  public static String toHTMLString(String in); 
  public static Number toNumber(String numString, 
    String numFormatPattern) throws java.text.ParseException; 
} 

Methods 

public static boolean isValidDate(String dateString, String dateFormatPattern)  

Returns true if the specified date string represents a valid date in the specified format. The 
dateFormatPattern is a String specifying the format to be used when parsing the dateString. The 
pattern is expressed with the pattern letters defined for the java.text.SimpleDateFormat class. 

public static boolean isValidEmailAddr(String emailAddrString)  

Returns true if the email string contains an @ sign and at least one dot; i.e., 
hans@gefionsoftware.com is accepted but hans@gefionsoftware is not. Note! This rule is not always 
correct (e.g., on an intranet it may be okay with just a name) and it does not guarantee a valid 
Internet email address, but it takes care of the most obvious Internet mail address format errors. 



JavaSercer Pages 

  page 328

public static boolean isValidInteger(String numberString, int min, int max)  

Returns true if the specified number string represents a valid integer in the specified range. 

public static boolean isValidString(String value, String[] validStrings, boolean ignoreCase)  

Returns true if the specified string matches a string in the set of provided valid strings, ignoring case 
if specified. 

public static String replaceInString(String in, String from, String to)  

Replaces one String with another throughout a source String. 

public static java.util.Date toDate(String dateString, String dateFormatPattern) throws 
java.text.ParseException  

Converts a String to a Date, using the specified pattern (see java.text.SimpleDateFormat for 
pattern description). 

public static String toHTMLString(String in)  

Returns the specified string converted to a format suitable for HTML. All single-quote, double-quote, 
greater-than, less-than, and ampersand characters are replaced with their corresponding HTML 
character entity code. 

public static Number toNumber(String numString, String numFormatPattern) throws 
java.text.ParseException  

Converts a String to a Number, using the specified pattern (see java.text.NumberFormat for pattern 
description). 

C.5 Database Access Classes 

ConnectionPool   

 

  

Synopsis 

Class Name:  com.ora.jsp.sql.ConnectionPool 

Extends: None 

Implements: None 

Description 

This class implements a connection pool. It's the same class as the ConnectionPool class described in Java 
Servlet Programming (O'Reilly), and is copied with permission from Jason Hunter. It's used by the 
DataSourceWrapper class to provide a JDBC 2.0 DataSource interface to the pool. 

Class Summary 

public class ConnectionPool { 
  // Constructor 
  public ConnectionPool(String dbURL, String user, String password, 
    String driverClassName, int initialConnections, int increment) 
    throws java.sql.SQLException, ClassNotFoundException; 
 
  // Methods 
  public java.sql.Connection getConnection( ) 
    throws java.sql.SQLException; 
  public void returnConnection(java.sql.Connection returned); 
} 



JavaSercer Pages 

  page 329

Constructor 

public ConnectionPool(String dbURL, String user, String password, String driverClassName, 
int initialConnections, int increment) throws java.sql.SQLException, ClassNotFoundException  

Creates a connection pool for the specified JDBC URL using the specified JDBC driver class and 
database user ID and password. The specified number of connections is created initially, and the pool 
is expanded in the specified increments if the pool is empty when a new request is received. 

Methods 

public java.sql.Connection getConnection( ) throws java.sql.SQLException  

Returns a Connection from the pool. 

public void returnConnection(java.sql.Connection returned)  

Used by the connection pool client to return a Connection to the pool. 

ConnectionWrapper   

 

  

Synopsis 

Class Name: com.ora.jsp.sql. 
ConnectionWrapper 

Extends: None 

Implements: java.sql.Connection 

Description 

This class is a wrapper around a Connection, with a close( ) method that informs its DataSourceWrapper 
that it's available for reuse again, and an isClosed( ) method to return the state of the wrapper instead of 
the wrapped Connection. All other methods just relay the call to the wrapped Connection. 

Class Summary 

public class ConnectionWrapper implements java.sql.Connection { 
  // Constructor 
  public ConnectionWrapper(Connection realConn,  
    DataSourceWrapper dsw); 
 
  // Methods 
  public void close( ) throws SQLException; 
  public boolean isClosed( ) throws SQLException; 
 
  // Wrapped methods 
  public void clearWarnings( ) throws SQLException; 
  public void commit( ) throws SQLException; 
  public Statement createStatement( ) throws SQLException; 
  public boolean getAutoCommit( ) throws SQLException; 
  public String getCatalog( ) throws SQLException; 
  public DatabaseMetaData getMetaData( ) throws SQLException; 
  public int getTransactionIsolation( ) throws SQLException; 
  public SQLWarning getWarnings( ) throws SQLException; 
  public boolean isReadOnly( ) throws SQLException; 
  public String nativeSQL(String sql) throws SQLException; 
  public CallableStatement prepareCall(String sql)  
    throws SQLException; 
  public PreparedStatement prepareStatement(String sql)  
    throws SQLException; 
  public void rollback( ) throws SQLException; 
  public void setAutoCommit(boolean autoCommit) throws SQLException; 
  public void setCatalog(String catalog) throws SQLException; 
  public void setReadOnly(boolean readOnly) throws SQLException; 
  public void setTransactionIsolation(int level) throws SQLException; 
} 



JavaSercer Pages 

  page 330

Constructor 

public ConnectionWrapper(Connection realConn, DataSourceWrapper dsw);  

Creates a new ConnectionWrapper around the specified Connection owned by the specified 
DataSourceWrapper. 

Methods 

public void close( ) throws SQLException;  

Informs the DataSourceWrapper that this ConnectionWrapper is closed by calling its 
returnConnection( ) method. 

public boolean isClosed( ) throws SQLException;  

Returns true if the close( ) method has been called, false otherwise. 

All wrapped methods simply call the corresponding method on the wrapped Connection. See the Java 
documentation at http://java.sun.com/docs/index.html for details about these methods. 

DataSourceWrapper   

 

  

Synopsis 

Class Name: com.ora.jsp.sql. 
DataSourceWrapper 

Extends: None 

Implements: javax.sql.DataSource 

Description 

This class is a wrapper implementing the JDBC 2.0 SE DataSource interface, used to make the 
ConnectionPool class look like a JDBC 2.0 DataSource. It can easily be modified to be used as a wrapper for 
any JDBC 1.0 connection pool implementation. 

Class Summary 

public class DataSourceWrapper implements javax.sql.DataSource { 
  // Constructor 
  public DataSourceWrapper(String driverClass, String url,  
    String user, String pw) 
    throws ClassNotFoundException, InstantiationException, 
    java.sql.SQLException, IllegalAccessException; 
 
  // Methods 
  public java.sql.Connection getConnection( ) 
    throws java.sql.SQLException; 
  public void returnConnection(java.sql.Connection conn); 
 
  // Methods with dummy implementations 
  public java.sql.Connection getConnection(String username, 
    String password) throws java.sql.SQLException; 
  public int getLoginTimeout( ) throws java.sql.SQLException; 
  public java.io.PrintWriter getLogWriter( ) 
    throws java.sql.SQLException; 
  public void setLoginTimeout(int seconds) 
    throws java.sql.SQLException; 
  public void setLogWriter(java.io.PrintWriter out) 
    throws java.sql.SQLException; 
} 

http://java.sun.com/docs/index.html


JavaSercer Pages 

  page 331

Constructor 

public DataSourceWrapper(String driverClass, String url, String user, String pw) throws 
ClassNotFoundException, InstantiationException, java.sql.SQLException, 
IllegalAccessException  

Creates a connection pool for the specified JDBC URL using the specified JDBC driver class and 
database user ID and password. One connection is created initially, and the pool is expanded in 
increments of one if the pool is empty when a new request is received. 

Methods 

public java.sql.Connection getConnection( ) throws java.sql.SQLException  

Returns a ConnectionWrapper from the pool. 

public void returnConnection(java.sql.Connection conn)  

Used by the ConnectionWrapper to return a Connection to the pool when the client calls close( ). 

Row   

 

  

Synopsis 

Class Name: com.ora.jsp.sql. 
Row 

Extends: None 

Implements: None 

Description 

The Row class represents a row in a database query result. It contains a collection of 
com.ora.jsp.sql.Column objects. 

Class Summary 

public class Row { 
  // Constructor 
  public Row(java.sql.ResultSet rs) 
    throws java.sql.SQLException, UnsupportedTypeException 
 
  // Methods 
  public java.math.BigDecimal getBigDecimal(int columnIndex) 
    throws NoSuchColumnException, UnsupportedConversionException; 
  public java.math.BigDecimal getBigDecimal(String columnName) 
    throws NoSuchColumnException, UnsupportedConversionException; 
  public boolean getBoolean(int columnIndex) 
    throws NoSuchColumnException, UnsupportedConversionException; 
  public boolean getBoolean(String columnName) 
    throws NoSuchColumnException, UnsupportedConversionException; 
  public byte getByte(int columnIndex) 
    throws NoSuchColumnException, UnsupportedConversionException; 
  public byte getByte(String columnName) 
    throws NoSuchColumnException, UnsupportedConversionException; 
  public byte[] getBytes(int columnIndex) 
    throws NoSuchColumnException, UnsupportedConversionException; 
  public byte[] getBytes(String columnName) 
    throws NoSuchColumnException, UnsupportedConversionException; 
  public int getColumnCount( ); 
  public Column[] getColumns( ); 
  public java.sql.Date getDate(int columnIndex) 
    throws NoSuchColumnException, UnsupportedConversionException; 
  public java.sql.Date getDate(String columnName) 
    throws NoSuchColumnException, UnsupportedConversionException; 
  public double getDouble(int columnIndex) 



JavaSercer Pages 

  page 332

    throws NoSuchColumnException, UnsupportedConversionException; 
  public double getDouble(String columnName) 
    throws NoSuchColumnException, UnsupportedConversionException; 
  public float getFloat(int columnIndex) 
    throws NoSuchColumnException, UnsupportedConversionException; 
  public float getFloat(String columnName) 
    throws NoSuchColumnException, UnsupportedConversionException; 
  public int getInt(int columnIndex) 
    throws NoSuchColumnException, UnsupportedConversionException; 
  public int getInt(java.lang.String columnName) 
    throws NoSuchColumnException, UnsupportedConversionException; 
  public long getLong(int columnIndex) 
    throws NoSuchColumnException, UnsupportedConversionException; 
  public long getLong(String columnName) 
    throws NoSuchColumnException, UnsupportedConversionException; 
  public Object getObject(int columnIndex) 
    throws NoSuchColumnException, UnsupportedConversionException; 
  public Object getObject(String columnName) 
    throws NoSuchColumnException, UnsupportedConversionException; 
  public short getShort(int columnIndex) 
    throws NoSuchColumnException, UnsupportedConversionException; 
  public short getShort(java.lang.String columnName) 
    throws NoSuchColumnException, UnsupportedConversionException; 
  public String getString(int columnIndex) 
    throws NoSuchColumnException; 
  public String getString(String columnName) 
    throws NoSuchColumnException; 
  public java.sql.Time getTime(int columnIndex) 
    throws NoSuchColumnException, UnsupportedConversionException; 
  public java.sql.Time getTime(String columnName) 
    throws NoSuchColumnException, UnsupportedConversionException; 
  public java.sql.Timestamp getTimestamp(int columnIndex) 
    throws NoSuchColumnException, UnsupportedConversionException; 
  public java.sql.Timestamp getTimestamp(String columnName) 
    throws NoSuchColumnException, UnsupportedConversionException; 
} 

Constructor 

public Row(java.sql.ResultSet rs) throws java.sql.SQLException, UnsupportedTypeException  

Reads the columns from the current row in the specified ResultSet, and creates the corresponding 
Column objects. 

Methods 

public java.math.BigDecimal getBigDecimal(int columnIndex) throws NoSuchColumnException, 
UnsupportedConversionException  
public java.math.BigDecimal getBigDecimal(String columnName) throws NoSuchColumnException, 
UnsupportedConversionException  

Returns the specified column value (by column name or index) as a BigDecimal. 

public boolean getBoolean(int columnIndex) throws NoSuchColumnException, 
UnsupportedConversionException  
public boolean getBoolean(String columnName) throws NoSuchColumnException, 
UnsupportedConversionException  

Returns the specified column value (by column name or index) as a boolean. 

public byte getByte(int columnIndex) throws NoSuchColumnException, 
UnsupportedConversionException  
public byte getByte(String columnName) throws NoSuchColumnException, 
UnsupportedConversionException  

Returns the specified column value (by column name or index) as a byte. 

public byte[] getBytes(int columnIndex) throws NoSuchColumnException, 
UnsupportedConversionException  
public byte[] getBytes(String columnName) throws NoSuchColumnException, 
UnsupportedConversionException  

Returns the specified column value (by column name or index) as a byte[]. 

public int getColumnCount( )  

Returns the number of columns in the row. 



JavaSercer Pages 

  page 333

public Column[] getColumns( )  

Returns all columns as a Column[]. 

public java.sql.Date getDate(int columnIndex) throws NoSuchColumnException, 
UnsupportedConversionException  
public java.sql.Date getDate(String columnName) throws NoSuchColumnException, 
UnsupportedConversionException  

Returns the specified column value (by column name or index) as a Date. 

public double getDouble(int columnIndex) throws NoSuchColumnException, 
UnsupportedConversionException  
public double getDouble(String columnName) throws NoSuchColumnException, 
UnsupportedConversionException  

Returns the specified column value (by column name or index) as a double. 

public float getFloat(int columnIndex) throws NoSuchColumnException, 
UnsupportedConversionException  
public float getFloat(String columnName) throws NoSuchColumnException, 
UnsupportedConversionException  

Returns the specified column value (by column name or index) as a float. 

public int getInt(int columnIndex) throws NoSuchColumnException, 
UnsupportedConversionException  
public int getInt(java.lang.String columnName) throws NoSuchColumnException, 
UnsupportedConversionException  

Returns the specified column value (by column name or index) as an int. 

public long getLong(int columnIndex) throws NoSuchColumnException, 
UnsupportedConversionException  
public long getLong(String columnName) throws NoSuchColumnException, 
UnsupportedConversionException  

Returns the specified column value (by column name or index) as a long. 

public Object getObject(int columnIndex) throws NoSuchColumnException, 
UnsupportedConversionException  
public Object getObject(String columnName) throws NoSuchColumnException, 
UnsupportedConversionException  

Returns the specified column value (by column name or index) as an Object. 

public short getShort(int columnIndex) throws NoSuchColumnException, 
UnsupportedConversionException  
public short getShort(java.lang.String columnName) throws NoSuchColumnException, 
UnsupportedConversionException  

Returns the specified column value (by column name or index) as a short. 

public String getString(int columnIndex) throws NoSuchColumnException  
public String getString(String columnName) throws NoSuchColumnException  

Returns the specified column value (by column name or index) as a String. 

public java.sql.Time getTime(int columnIndex) throws NoSuchColumnException, 
UnsupportedConversionException  
public java.sql.Time getTime(String columnName) throws NoSuchColumnException, 
UnsupportedConversionException  

Returns the specified column value (by column name or index) as a Time. 

public java.sql.Timestamp getTimestamp(int columnIndex) throws NoSuchColumnException, 
UnsupportedConversionException  
public java.sql.Timestamp getTimestamp(String columnName) throws NoSuchColumnException, 
UnsupportedConversionException  

Returns the specified column value (by column name or index) as a Timestamp. 



JavaSercer Pages 

  page 334

SQLCommandBean   

 

  

Synopsis 

Class Name:  com.ora.jsp.sql.SQLCommandBean 

Extends: None 

Implements: None 

Description 

The SQLCommandBean class is a bean for executing SQL statements, and is used by the database custom 
actions. It can also be used in a servlet to simplify the database access code. The bean has three properties 
that can be set: connection, sqlValue, and values. The connection and sqlValue properties must always 
be set before calling one of the execute methods. If the values property is set, the sqlValue property must 
be a SQL statement with question marks as placeholders for the value objects in the values property. The 
bean properties are described in Table C.24. 

Table C.24, com.ora.jsp.SQLCommandBean Properties  

Property 
Name 

Java Type Access Description 

connection java.sql.Connection write The database Connection to use. 

sqlValue String write The SQL statement to execute, optionally with 
question marks as placeholders for values. 

values java.util.Vector write 
A Vector with Value objects (see the next section, 
Section C.5.1). 

The SQLCommandBean class also provides the following regular methods for executing the SQL statement. 

public java.util.Vector executeQuery( ) throws java.sql.SQLException, 
UnsupportedTypeException  

Returns a Vector with Row objects as the result of executing a SELECT statement. 

public int executeUpdate( ) throws java.sql.SQLException, UnsupportedTypeException  

Returns the number of rows affected by a DELETE, INSERT, or UPDATE statement. 

C.5.1 Value Classes 

The SQLCommandBean class has a property named values, which is a java.util.Vector with 
com.ora.jsp.sql.Value subclass instances. The subclasses are defined in the com.ora.jsp.sql.value 
package, with subclasses corresponding to most of the JDBC column datatypes. 

All subclasses provide a constructor with an argument of the Java datatype that the class represents. The 
Value superclass contains access methods for all datatypes (that just throw an 
UnsupportedConversionException), and each subclass overrides the method for its datatype: 

com.ora.jsp.sql.value.BigDecimalValue: 
  public BigDecimalValue(java.math.BigDecimal value); 
  public java.math.BigDecimal getBigDecimal( ) 
    throws UnsupportedConversionException; 
 
com.ora.jsp.sql.value.BooleanValue: 
  public BooleanValue(boolean value); 
  public boolean getBooleanValue( ) 
    throws UnsupportedConversionException; 
 



JavaSercer Pages 

  page 335 

com.ora.jsp.sql.value.BytesValue: 
  public BytesValue(byte[] value); 
  public byte[] getBytesValue( ) throws UnsupportedConversionException; 
 
com.ora.jsp.sql.value.ByteValue: 
  public ByteValue(byte value); 
  public byte getByte( ) throws UnsupportedConversionException; 
 
com.ora.jsp.sql.value.DateValue: 
  public DateValue(java.sql.Date value); 
  public java.sql.Date getDate( ) 
    throws UnsupportedConversionException; 
 
com.ora.jsp.sql.value.DoubleValue: 
  public DoubleValue(double value); 
  public double getDouble( ) throws UnsupportedConversionException; 
 
com.ora.jsp.sql.value.FloatValue: 
  public FloatValue(float value); 
  public float getFloat( ) throws UnsupportedConversionException; 
 
com.ora.jsp.sql.value.IntValue: 
  public IntValue(int value); 
  public int getInt( ) throws UnsupportedConversionException; 
 
com.ora.jsp.sql.value.LongValue: 
  public LongValue(long value); 
  public long getLong( ) throws UnsupportedConversionException; 
 
com.ora.jsp.sql.value.ObjectValue: 
  public ObjectValue(Object value); 
  public Object getObject( ) throws UnsupportedConversionException; 
 
com.ora.jsp.sql.value.ShortValue: 
  public ShortValue(short value); 
  public short getShort( ) throws UnsupportedConversionException; 
 
com.ora.jsp.sql.value.StringValue: 
  public StringValue(String value); 
  public String getString( ); 
 
com.ora.jsp.sql.value.TimestampValue: 
  public TimestampValue(java.sql.Timestamp value); 
  public java.sql.Timestamp getTimestamp( ) 
    throws UnsupportedConversionException; 
 
com.ora.jsp.sql.value.TimeValue: 
  public TimeValue(java.sql.Time value); 
  public java.sql.Time getTime( )  
    throws UnsupportedConversionException; 

All subclasses also override the method that returns the value converted to a String: 

public String getString( ); 

C.5.2 Column Classes 

The Row class contains com.ora.jsp.sql.Column subclass instances. The subclasses are defined in the 
com.ora.jsp.sql.column package, with subclasses corresponding to most of the JDBC column datatypes. 

All subclasses provide a constructor with a String argument for the column name, and a value argument of 
the Java datatype the class represents. The Column superclass contains access methods for all datatypes 
(that just throws an UnsupportedConversionException), and each subclass overrides the method for its 
datatype: 

com.ora.jsp.sql.column.BigDecimalColumn: 
  public BigDecimalColumn(String name, BigDecimal value); 
  public java.math.BigDecimal getBigDecimal( ) 
    throws UnsupportedConversionException; 
 
com.ora.jsp.sql.column.BooleanColumn: 
  public BooleanColumn(String name, boolean value); 
  public boolean getBooleanValue( )  
    throws UnsupportedConversionException; 
 
com.ora.jsp.sql.column.ByteColumn: 
  public ByteColumn(String name, byte value); 
  public byte getByte( ) throws UnsupportedConversionException; 
 
com.ora.jsp.sql.column.BytesColumn: 
  public BytesColumn(String name, byte[] value); 
  public byte[] getBytesValue( ) throws UnsupportedConversionException; 
 



JavaSercer Pages 

  page 336

com.ora.jsp.sql.column.DateColumn: 
  public DateColumn(String name, java.sql.Date value); 
  public java.sql.Date getDate( )  
    throws UnsupportedConversionException; 
 
com.ora.jsp.sql.column.DoubleColumn: 
  public DoubleColumn(String name, double value); 
  public double getDouble( ) throws UnsupportedConversionException; 
 
com.ora.jsp.sql.column.FloatColumn: 
  public FloatColumn(String name, float value); 
  public float getFloat( ) throws UnsupportedConversionException; 
 
com.ora.jsp.sql.column.IntColumn: 
  public IntColumn(String name, int value); 
  public int getInt( ) throws UnsupportedConversionException; 
 
com.ora.jsp.sql.column.LongColumn: 
  public LongColumn(String name, long value); 
  public long getLong( ) throws UnsupportedConversionException; 
 
com.ora.jsp.sql.column.ObjectColumn: 
  public ObjectColumn(String name, Object value); 
  public Object getObject( ) throws UnsupportedConversionException; 
 
com.ora.jsp.sql.column.ShortColumn: 
  public ShortColumn(String name, short value); 
  public short getShort( ) throws UnsupportedConversionException; 
 
com.ora.jsp.sql.column.StringColumn: 
  public StringColumn(String name, String value); 
  public String getString( ); 
 
com.ora.jsp.sql.column.TimeColumn: 
  public TimeColumn(String name, java.sql.Time value); 
  public java.sql.Time getTime( ) 
    throws UnsupportedConversionException; 
 
com.ora.jsp.sql.column.TimestampColumn: 
  public TimestampColumn(String name, java.sql.Timestamp value); 
  public java.sql.Timestamp getTimestamp( ) 
    throws UnsupportedConversionException; 

All subclasses also override the method that returns the value converted to a String. A method for returning 
the column name is provided by the Value superclass: 

public String getString( ); 
public String toString( ); 
public String getName( ); 



JavaSercer Pages 

  page 337 

Appendix D. Web-Application Structure and Deployment Descriptor Reference 

A complete web application may consist of several different resources: JSP pages, servlets, applets, static 
HTML pages, custom tag libraries, and other Java class files. Version 2.2 of the servlet specification defines a 
portable way to package all these resources together with a deployment descriptor that contains configuration 
information, such as how all the resources fit together, security requirements, etc. This appendix describes 
the standard file structure for a web application, and how to use the deployment descriptor to configure the 
application. 

D.1 Web Application File Structure 

The portable distribution and deployment format for a web application defined by the servlet specification is 
the Web Archive (WAR). All Servlet 2.2-compliant servers provide tools for installing a WAR file and associate 
the application with a servlet context. 

A WAR file has a .war file extension and can be created with the Java jar command or a ZIP utility program, 
such as WinZip, as described at the end of this appendix. The internal structure of the WAR file is defined by 
the servlet specification: 

/index.html 
/company/index.html 
/company/contact.html 
/company/phonelist.jsp 
/products/searchform.html 
/products/list.jsp 
/images/banner.gif 
/WEB-INF/web.xml 
/WEB-INF/lib/bean.jar 
/WEB-INF/lib/actions.jar 
/WEB-INF/classes/com/mycorp/servlets/PurchaseServlet.class 
/WEB-INF/classes/com/mycorp/util/MyUtils.class 
/WEB-INF/tlds/actions.tld 

The top level in this structure is the document root for all application web page files. This is where you place 
all your HTML pages, JSP pages, and image files. All these files can be accessed with a URI starting with the 
context path. For instance, if the application has been assigned the context path /sales, the URI 
/sales/products/list.jsp is used to access the JSP page named list.jsp in the products directory in this 
example. 

D.1.1 Placing Java Class Files in the Right Directory 

The WEB-INF directory contains files and subdirectories for other types of resources. Two WEB-INF 
subdirectories have special meanings: lib and classes. The lib directory contains JAR files with Java class files, 
for instance JavaBeans classes, custom action handler classes, and utility classes. The classes directory 
contains class files that are not packaged in JAR files. The servlet container automatically has access to all 
class files in the lib and classes directories; in other words, you do not have to add them to the CLASSPATH 
environment variable. 

If you store class files in the classes directory, they must be stored in subdirectories mirroring the package 
structure. For instance, if you have a class named com.mycorp.util.MyUtils, you must store the class file in 
WEB-INF/classes/com/mycorp/util/MyUtils.class. Another type of file that can be stored in the classes 
directory is a resource properties file used by the PropertyResourceBundle class, as described in Chapter 
11. 

The WEB-INF directory can also contain other directories. For instance, a directory named tlds is by 
convention used for tag library Tag Library Descriptor (TLD) files. Files under the WEB-INF directory can't be 
accessed directly by a browser, so it's a good place for all types of configuration files. 

During development, it's more convenient to work with the web application files in a regular filesystem 
structure instead of creating a new WAR file every time something changes. Most containers therefore 
support the WAR structure in an open filesystem as well. The book example application is distributed as an 
open filesystem structure to make it easier for you to see all the files. 



JavaSercer Pages 

  page 338

D.2 Web Application Deployment Descriptor 

The WEB-INF/web.xml file is a very important file. It is the application deployment descriptor that contains all 
configuration information for the application. If your application consists only of JSP and HTML files, you 
typically do not need to worry about this file at all. But if the application also contains servlets, tag libraries, 
or uses the container-provided security mechanisms, you often need to define some configuration information 
in the web.xml file. 

The deployment descriptor is an XML file. A standard XML Document Type Definition (DTD) defines the 
elements it can contain and how they must be arranged. Example D.1 shows a version of the complete DTD9 
without the comments. All elements are instead described after the example. 

Example D.1. Java Web Application Descriptor DTD  

<!ELEMENT web-app (icon?, display-name?, description?, distributable?, 
context-param*, servlet*, servlet-mapping*, session-config?, 
mime-mapping*, welcome-file-list?, error-page*, taglib*, 
resource-ref*, security-constraint*, login-config?, security-role*, 
env-entry*, ejb-ref*)> 
 
<!ELEMENT icon (small-icon?, large-icon?)> 
<!ELEMENT small-icon (#PCDATA)> 
<!ELEMENT large-icon (#PCDATA)> 
<!ELEMENT display-name (#PCDATA)> 
<!ELEMENT description (#PCDATA)> 
 
<!ELEMENT distributable EMPTY> 
 
<!ELEMENT context-param (param-name, param-value, description?)> 
<!ELEMENT param-name (#PCDATA)> 
<!ELEMENT param-value (#PCDATA)> 
 
<!ELEMENT servlet (icon?, servlet-name, display-name?, description?, 
(servlet-class|jsp-file), init-param*, load-on-startup?,  
security-role-ref*)> 
<!ELEMENT servlet-name (#PCDATA)> 
<!ELEMENT servlet-class (#PCDATA)> 
<!ELEMENT jsp-file (#PCDATA)> 
<!ELEMENT init-param (param-name, param-value, description?)> 
<!ELEMENT load-on-startup (#PCDATA)> 
 
<!ELEMENT servlet-mapping (servlet-name, url-pattern)> 
<!ELEMENT url-pattern (#PCDATA)> 
 
<!ELEMENT session-config (session-timeout?)> 
<!ELEMENT session-timeout (#PCDATA)> 
 
<!ELEMENT mime-mapping (extension, mime-type)> 
<!ELEMENT extension (#PCDATA)> 
<!ELEMENT mime-type (#PCDATA)> 
 
<!ELEMENT welcome-file-list (welcome-file+)> 
<!ELEMENT welcome-file (#PCDATA)> 
 
<!ELEMENT taglib (taglib-uri, taglib-location)> 
<!ELEMENT taglib-uri (#PCDATA)> 
<!ELEMENT taglib-location (#PCDATA)> 
 
<!ELEMENT error-page ((error-code | exception-type), location)> 
<!ELEMENT error-code (#PCDATA)> 
<!ELEMENT exception-type (#PCDATA)> 
<!ELEMENT location (#PCDATA)> 
 
<!ELEMENT resource-ref (description?, res-ref-name, res-type,  
res-auth)> 
<!ELEMENT res-ref-name (#PCDATA)> 
<!ELEMENT res-type (#PCDATA)> 
<!ELEMENT res-auth (#PCDATA)> 
 
<!ELEMENT security-constraint (web-resource-collection+, 
auth-constraint?, user-data-constraint?)> 
<!ELEMENT web-resource-collection (web-resource-name, description?, 
url-pattern*, http-method*)> 
<!ELEMENT web-resource-name (#PCDATA)> 
<!ELEMENT http-method (#PCDATA)> 
<!ELEMENT user-data-constraint (description?, transport-guarantee)> 
<!ELEMENT transport-guarantee (#PCDATA)> 
<!ELEMENT auth-constraint (description?, role-name*)> 
<!ELEMENT role-name (#PCDATA)> 
 
<!ELEMENT login-config (auth-method?, realm-name?,  

                                                 
9 The ID attribute declarations are not included, since they are of interest only to tool developers who need to extend the DTD. 



JavaSercer Pages 

  page 339 

form-login-config?)> 
<!ELEMENT realm-name (#PCDATA)> 
<!ELEMENT form-login-config (form-login-page, form-error-page)> 
<!ELEMENT form-login-page (#PCDATA)> 
<!ELEMENT form-error-page (#PCDATA)> 
<!ELEMENT auth-method (#PCDATA)> 
 
<!ELEMENT security-role (description?, role-name)> 
<!ELEMENT security-role-ref (description?, role-name, role-link)> 
<!ELEMENT role-link (#PCDATA)> 
 
<!ELEMENT env-entry (description?, env-entry-name, env-entry-value?, 
env-entry-type)> 
<!ELEMENT env-entry-name (#PCDATA)> 
<!ELEMENT env-entry-value (#PCDATA)> 
<!ELEMENT env-entry-type (#PCDATA)> 
 
<!ELEMENT ejb-ref (description?, ejb-ref-name, ejb-ref-type, home,  
remote, ejb-link?)> 
<!ELEMENT ejb-ref-name (#PCDATA)> 
<!ELEMENT ejb-ref-type (#PCDATA)> 
<!ELEMENT home (#PCDATA)> 
<!ELEMENT remote (#PCDATA)> 
<!ELEMENT ejb-link (#PCDATA)> 

If you're not familiar with DTD syntax, don't worry. This DTD contains only element declarations, and the 
rules are simple. The <!ELEMENT ... > declaration contains two parts: the element name and the element 
syntax rules within parentheses. The rules in this DTD contain the following types: 

• A comma-separated list of elements. The named elements must appear in the same order as in the 
XML document. For example, the taglib declaration says that a <taglib> element must contain 
first a <taglib-uri> element, and then a <taglib-location> element: 

  <!ELEMENT taglib (taglib-uri, taglib-location)> 

• An element name followed by a question mark. This means that the named element is optional. For 
instance, an <init-param> element must contain a <param-name> and a <param-value> element, 
optionally followed by a <description> element: 

  <!ELEMENT init-param (param-name, param-value, description?)> 

• An element name followed by a plus sign. This means that the named element can be used one or 
more times. A <welcome-file-list> can contain one or more <welcome-file> elements; for 
instance: 

  <!ELEMENT welcome-file-list (welcome-file+)> 

• An element name followed by an asterisk. This means the element can be used zero or more times. 
That's the case for the <role-name> element in an <auth-constraint> element: 

  <!ELEMENT auth-constraint (description?, role-name*)> 

• Two element names separated by a vertical bar. This means that one, but not both, of the elements 
must be used. An example of this is found in the <servlet> element declaration, which says that it 
must contain either a <servlet-class> element or a <jsp-file> element: 

  <!ELEMENT servlet (icon?, servlet-name, display-name?, description?, 
  (servlet-class|jsp-file), init-param*, load-on-startup?,  
  security-role-ref*)> 

• The #PCDATA keyword. This means parsed character data, i.e., ordinary text as opposed to nested 
subelements. 

The first element declaration in the DTD shown in Example D.1 is the main element for the web.xml file, 
named the <web-app> element: 

 <!ELEMENT web-app (icon?, display-name?, description?, distributable?, 
 context-param*, servlet*, servlet-mapping*, session-config?, 
 mime-mapping*, welcome-file-list?, error-page*, taglib*, 
 resource-ref*, security-constraint*, login-config?, security-role*, 
 env-entry*, ejb-ref*)> 

It contains a comma-separated list of all the top-level elements that the <web-app> element can contain. All 
of them are optional (marked with question marks or asterisks). The rest of this section describes all these 
elements in more detail. 



JavaSercer Pages 

  page 340

D.2.1 <icon>, <display-name>, and <description> 

The first three elements are used to provide information a web container deployment tool can use to describe 
the application. The <icon> element can contain a <small-icon> and a <large-icon> element, each with a 
context-relative path to an image file (GIF and JPEG formats are supported). The <display-name> element 
can be used to specify a name for the application, and the <description> element for a longer description: 

 <icon> 
   <small-icon>/images/small.gif</small-icon> 
   <large-icon>/images/large.gif</large-icon> 
 </icon> 
 <display-name>The application name</display-name> 
 <description> 
   A longer description of 
   the application. 
 </description> 

D.2.2 <distributable> 

The <distributable> element is used to tell the web container that the application is designed to run in a 
distributed web container. This element does not contain a body: 

 <distributable/> 

A distributable application does not rely on servlet instance variables, static classes or variables, servlet 
context attributes, or any other mechanism for shared information that is restricted to one Java VM. It also 
means that all objects placed in the session scope are serializable, so that the container can move the session 
data from one JVM to another. For more information about distributed applications, see Chapter 13. 

D.2.3 <context-param> 

Using the <context-param> element, you can define initialization parameters that are available to all 
components of the application (both servlets and JSP pages). The <param-name> subelement is used to 
specify the name, and the <param-value> element the value. Optionally, the <description> element can be 
used for a description that can be displayed by a deployment tool: 

 <context-param> 
   <param-name>jdbcURL</param-name> 
   <param-value>jdbc:idb:/usr/local/db/mydb.prp</param-value> 
 </context-param> 

The value of a context initialization parameter can be retrieved with code like this in a servlet: 

 ServletContext context = getServletContext( ); 
 String jdbcURL = context.getInitParameter("jdbcURL"); 

In a JSP page, a reference to the context is always assigned to the application implicit variable, so scriptlet 
code like this can be used: 

 <% 
   String jdbcURL = application.getInitParameter("jdbcURL"); 
 %> 

D.2.4 <servlet> 

The <servlet> element can be used to describe a servlet class or a JSP page, giving it a short name and 
specifying initialization parameters: 

<servlet> 
  <servlet-name> 
    purchase 
  </servlet-name> 
  <servlet-class> 
    com.mycorp.servlets.PurchaseServlet 
  </servlet-class> 
  <init-param> 
    <param-name>maxAmount</param-name> 
    <param-value>500.00</param-value> 
  </init-param> 
</servlet> 
 



JavaSercer Pages 

  page 341

<servlet> 
  <servlet-name> 
    order-form 
  </servlet-name> 
  <jsp-file> 
    /po/orderform.jsp 
  </jsp-file> 
  <init-param> 
    <param-name>bgColor</param-name> 
    <param-value>blue</param-value> 
  </init-param> 
</servlet> 

The same servlet class (or JSP page) can be defined with multiple names, typically with different initialization 
parameters. The container creates one instance of the class for each name. 

An initialization parameter value is retrieved like this in a servlet: 

 ServletConfig config = getServletConfig( ); 
 String maxAmount = config.getInitParameter("maxAmount"); 

A reference to the servlet configuration object is assigned to the config implicit variable in a JSP page, so 
scriptlet code like this can be used: 

 <% 
   String bgColor = config.getInitParameter("bgColor"); 
 %> 

The <load-on-startup> subelement can be used to tell the container to load the servlet when the application 
is started. The value is a positive integer, indicating when the servlet is to be loaded relative to other servlets. 
A servlet with a low value is loaded before a servlet with a higher value: 

 <servlet> 
   <servlet-name> 
     controller 
   </servlet-name> 
   <servlet-class> 
     com.mycorp.servlets.ControllerServlet 
   </servlet-class> 
   <load-on-startup>1</load-on-startup> 
 </servlet> 

The <icon> , <display-name>, and <description> elements can be used to describe the servlet or JSP page, 
the same way as these elements can used to describe the application. 

Finally, <security-role-ref> elements, combined with <security-role> elements, can be used to link a 
security role name used in a servlet as the argument to the HttpServletRequest.isUserInRole( ) method 
to a role name known by the web container: 

 <servlet> 
   <servlet-name> 
     controller 
   </servlet-name> 
   <servlet-class> 
     com.mycorp.servlets.ControllerServlet 
   </servlet-class> 
   <security-role-ref> 
     <role-name>administrator</role-name> 
     <role-link>admin</role-link> 
   </security-role-ref> 
 </servlet> 
 ... 
 <security-role> 
   <role-name>admin</role-name> 
 </security-role> 

All role names defined by <security-role> elements must be mapped to users and/or groups known by the 
web container. How this is done is container-dependent. The <security-role-ref> element allows you to 
use a servlet that uses a role name in the isUserInRole( ) method that is not defined by a <security-
role> element. A typical scenario where this can be useful is when combining servlets from different sources 
into one application, where the servlets use different role names for the same logical role. 



JavaSercer Pages 

  page 342 

D.2.5 <servlet-mapping> 

Most containers support a special URI prefix (/servlet) that can be used to invoke any servlet class that the 
container has access to; for instance, the URI /servlet/com.mycompany.MyServlet can be used to invoke the 
servlet class com.mycompany.MyServlet. This is not mandated by the specification, however, so to ensure 
that the application is portable it's better to map a unique path to a servlet instead. Explicit mapping also 
simplifies references between servlets and JSP pages, as described in Chapter 14. The <servlet-mapping> 
element is used for this purpose. The <servlet-name> subelement contains a name defined by a <servlet> 
element, and the <url-pattern> contains the pattern that should be mapped to the servlet (or JSP page): 

 <servlet-mapping> 
   <servlet-name>purchase</servlet-name> 
   <url-pattern>/po/*</url-pattern> 
 </servlet-mapping> 
  
 <servlet-mapping> 
   <servlet-name>sales-report</servlet-name> 
   <url-pattern>/report</url-pattern> 
 </servlet-mapping> 
  
 <servlet-mapping> 
   <servlet-name>XMLProcessor</servlet-name> 
   <url-pattern>*.xml</url-pattern> 
 </servlet-mapping> 

A pattern can take one of four forms: 

• A path prefix pattern starts with a slash (/) and ends with /*, for instance /po/*. 

• An extension mapping pattern starts with *., for instance *.xml. 

• A default servlet pattern consists of just the / character. 

• All other patterns are exact match patterns. 

When the container receives a request, it strips off the context path and then tries to find a pattern that 
matches a servlet mapping. Exact match patterns are analyzed first, then the path prefix patterns starting 
with the longest one, and then the extension mapping patterns. If none of these patterns match, the default 
servlet pattern is used, if specified. As a last resort, the request is handled by the container's default request 
processor. 

With the mappings defined here, a URI such as /po/supplies invokes the purchase servlet, /report invokes 
the sales-report servlet (but note that /report/spring does not, since an exact match pattern is used), and 
/eastcoast/forecast.xml invokes the XMLProcessor servlet. 

D.2.6 <session-config> 

The <session-config> element contains just one subelement, the <session-timeout> element used to 
specify the default session timeout value in minutes: 

 <session-config> 
   <session-timout>30</session-timeout> 
 </session-config> 

D.2.7 <mime-mapping> 

A servlet may need to know which MIME type a file extension corresponds to. The <mime-mapping> element 
can be used to define the mappings an application requires: 

 <mime-mapping> 
   <extension>wml</extension> 
   <mime-type>text/vnd.wap.wml</mime-type> 
 </mime-mapping> 

Most containers provide default mappings for the most commonly used extensions, such as .html, .htm, .gif, 
.jpg, and so on, but if you need to be absolutely sure that a mapping is defined for your application, put it in 
the web.xml file. 



JavaSercer Pages 

  page 343

D.2.8 <welcome-file-list> 

A welcome file is a file that the container serves when it receives a request URI that identifies a directory as 
opposed to a web page or a servlet. The <welcome-file-list> element can be used to define an ordered list 
of files to look for in the directory and serve if present: 

 <welcome-file-list> 
   <welcome-file>index.html</welcome-file> 
   <welcome-file>index.htm</welcome-file> 
   <welcome-file>default.html</welcome-file> 
   <welcome-file>default.htm</welcome-file> 
 </welcome-file-list> 

When a request is received that does not match a servlet mapping, the container appends each welcome 
filename, in the order specified in the deployment descriptor, to the request URI, and checks whether a 
resource in the WAR is mapped to the new URI. If it is, the request is passed to the resource. If no matching 
resource is found, the behavior is container-dependent. The container may, for instance, return a directory 
listing or a 404 status code (Not Found). 

D.2.9 <error-page> 

The <error-page> element can be used to define pages that inform the user about various errors. A page can 
be specified for an HTTP error status code, such as 404 (Not Found), using the <error-code> sub-element. 
As an alternative, the <exception-type> subelement can be used to specify a Java exception class name, in 
order to use a special page to handle exceptions thrown by servlets and JSP pages. The <location> 
subelement contains the context-relative path for the error page: 

 <error-page> 
   <error-code>404</error-code> 
   <location>/errors/404.html</location> 
 </error-page> 
 <error-page> 
   <exception-type>javax.servlet.ServletException</exception-type> 
   <location>/errors/exception.jsp</location> 
 </error-page> 

D.2.10 <taglib> 

The <taglib> element maps the symbolic name for a tag library specified by the taglib directive in a JSP 
page to the location of the Tag Library Descriptor (TLD) file or JAR file. The <taglib-uri> element value 
must match the uri attribute value used in the JSP page, and the <taglib-location> subelement contains 
the context-relative path to the library file: 

 <taglib> 
   <taglib-uri>/orataglib</taglib-uri> 
   <taglib-location>/WEB-INF/lib/orataglib_1_0.jar</taglib-location> 
 </taglib> 

For more details, see Chapter 16. 

D.2.11 <security-constraint>, <security-role>, and <login-config> 

The <security-constraint> element contains a subelement called <web-resource-collection> that 
defines the resources to be protected, and an <auth-constraint> subelement that defines who has access to 
the protected resources. It can also contain a <user-data-constraint> subelement that describes security 
requirements for the connection used to access the resource: 

<security-constraint> 
  <web-resource-collection> 
    <web-resource-name>admin</web-resource-name> 
    <url-pattern>/admin/*</url-pattern> 
    <http-method>GET</http-method> 
  </web-resource-collection> 
  <auth-constraint> 
    <role-name>admin</role-name> 
  </auth-constraint> 
  <user-data-constraint> 
    <transport-guarantee>CONFIDENTIAL</ transport-guarantee> 
  </user-data-constraint> 
</security-constraint> 



JavaSercer Pages 

  page 344

Within the <web-resource-collection> element, the resource is given a name with the <web-resource-
name> subelement, and the URI patterns for the protected resources are specified with <url-pattern> 
elements. <http-method> subelements can also be used to restrict the types of accepted requests. This 
example protects all resources accessed with URIs that starts with /admin and indicates that only the GET 
method can be used to access these resources. 

The <role-name> subelements within the <auth-constraint> element specify the roles that the current user 
must have to get access to the resource. The value should be a role name defined by a <security-role> 
element, but some containers (like Tomcat) accept role names that are not defined by <security-role> 
elements as well. In this example, the user must belong to the admin role in order to access resources under 
/admin. How the role names are mapped to user and/or group names in the container's security system is 
container-dependent. 

A <transport-guarantee> element can contain one of three values: 

• NONE. No special requirements. This is the default. 

• INTEGRAL. Data must be sent between the client and server in such a way that it cannot be changed 
in transit. Typically this means that an SSL connection is required. 

• CONFIDENTIAL. Data must be sent in such a way that it cannot be observed by others. This is also 
typically satisfied by an SSL connection. 

<security-role> elements are used to define the role names that the application uses in isUserInRole( ) 
calls, in <security-role-ref> elements, and in <auth-constraint> elements: 

 <security-role>admin</security-role> 

Each role must be mapped to a user and/or group in the container's security domain in a container-dependent 
way. 

For an application that uses the <security-constraint> element to protect resources, you must also define 
how to authenticate users with a <login-config> element. It can contain three subelements: <auth-
method>, <realm-name>, and <form-login-config>: 

 <login-config> 
   <auth-method>BASIC</auth-method> 
   <realm-name>Protected pages</realm-name> 
 </login-config> 

The <auth-method> element can have one of the values BASIC, DIGEST, FORM, or CLIENT-CERT, corresponding 
to the four container-provided authentication methods described in Chapter 10. When the BASIC or DIGEST 
authentication is used, the <realm-name> element can be used to specify the name shown by the browser 
when it prompts for a password. 

If FORM authentication is used, the <form-login-config> element defines the login page and an error page 
(used for invalid login attempts): 

 <login-config> 
   <auth-method>FORM</auth-method> 
   <realm-name>Protected pages</realm-name> 
   <form-login-config> 
     <form-login-page>/login/login.html</form-login-page> 
     <form-error-page>/login/error.html</form-error-page> 
   </form-login-config> 
 </login-config> 

For more about authentication, see Chapter 10. 



JavaSercer Pages 

  page 345 

D.2.12 <resource-ref >, <env-entry>, and <ejb-ref > 

The <resource-ref> , <env-entry>, and <ejb-ref> elements are supported only by containers that provide 
a complete Java 2 Enterprise Edition ( J2EE) environment. They are all used to declare names that the web 
components (servlets and JSP pages) use to access external resources, such as Enterprise JavaBeans (EJB) 
and JDBC DataSource objects. The <resource-ref> element is used to declare the connection factories (such 
as a DataSource) used by the web application, the <env-entry> element is used to define simple objects, 
such as a String or Boolean, and the <ejb-ref> element is used to declare EJB objects. All resources must 
be set up by the deployer, and the container makes them available to the web application through JNDI. For 
more about these elements, please see the J2EE documentation at http://java.sun.com/j2ee/docs.html. 

D.2.13 Example Application Deployment Descriptor 

Example D.2 shows an example of a web.xml file. 

Example D.2. Example web.xml File  

<?xml version="1.0" encoding="ISO-8859-1"?> 
 
<!DOCTYPE web-app 
  PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN" 
  "http://java.sun.com/j2ee/dtds/web-app_2.2.dtd"> 
 
<web-app> 
  <servlet> 
    <servlet-name> 
      purchase 
    </servlet-name> 
    <servlet-class> 
      com.mycorp.servlets.PurchaseServlet 
    </servlet-class> 
  </servlet> 
 
  <servlet-mapping> 
    <servlet-name> 
      purchase 
    </servlet-name> 
    <url-pattern> 
      /po/* 
    </url-pattern> 
  </servlet-mapping> 
</web-app> 

At the top of the file, you find a standard XML declaration and a DOCTYPE declaration, specifying the 
Document Type Definition (DTD) for this file. Then follows the <web-app> element with a <servlet> element 
that defines a servlet named purchase, and a <servlet-mapping> element that maps the servlet to the 
/po/* path prefix pattern. 

 

D.3 Creating a WAR File 

A WAR file is an archive file, used to group all application files into a convenient package. A WAR file can be 
created with the jar command, included in the Java runtime environment, or a ZIP utility program such as 
WinZip. To create a WAR file, you first need to create the file structure as directories in the filesystem and 
place all files in the correct location as described earlier. 

With the file structure in place, cd to the top-level directory for the application in the filesystem. You can then 
use the jar command to create the WAR file: 

 C:\> cd myapp 
 C:\myapp> jar cvf myapp_1_0.war * 

This command creates a WAR file named myapp_1_0.war containing all files in the myapp directory. You can 
use any filename that makes sense for your application, but avoid spaces in the filename since they can 
cause problems on many platforms. Including the version number of the application in the filename is a good 
idea, since it is helpful for the users to know which version of the application the file contains. 

http://java.sun.com/j2ee/docs.html
http://java.sun.com/j2ee/dtds/web-app_2.2.dtd


JavaSercer Pages 

  page 346 

Appendix E. JSP Resource Reference 

This appendix contains references to JSP-related products, web hosting services, and sites where you can 
learn more about JSP and related technologies. 

E.1 JSP-Related Products 

E.1.1 Syntax-Aware Editors 

A syntax-aware editor is a text editor that color-codes programming language elements, provides automatic 
indentation and element completion, and more. Some examples are listed here. Most of them do not 
specifically support JSP syntax, but can be configured to handle JSP elements as well, and are frequently 
recommended on the jsp-interest mailing list: 

Emacs (GNU Project), http://www.gnu.org/software/emacs/emacs.html  

A powerful editor that can do almost anything and runs on pretty much any platform. Emacs can be 
configured for mixed HTML and Java mode using the html-helper-mode.el and multi-mode.el modules. 
The jsp-interest mailing list archive has more details about this: 
http://archives.java.sun.com/archives/jsp-interest.html 

HomeSite (Allaire), http://www.allaire.com/products/homesite/index.cfm  

An HTML editor with support for JSP, ASP, JavaScript, VBScript, and more. Available for Windows only. 

JPad Pro (Modelworks Software), http://www.modelworks.com  

A Java IDE with support for editing customized HTML, for Windows only. 

SlickEdit (MicroEdge, Inc.), http://www.slickedit.com  

Supports syntax for customized HTML and many programming languages, on Windows, OS/2, and 
most Unix flavors, including Linux. 

E.1.2 Web Page Authoring Tools 

Web page authoring tools are What-You-See-Is-What-You-Get (WYSIWYG) tools for web page development 
(or as close as is possible with HTML). They provide a graphic user interface that hides all HTML details and 
lets you drag-and-drop components such as HTML form elements, images, etc., to the location you want 
them to appear on the screen. The products listed here support JSP to varying degrees: 

GoLive (Adobe), http://www.adobe.com/products/golive/  

GoLive 5.0 supports only ASP elements, but JSP support has been announced and may be available 
when you read this. Available on Windows and Mac platforms. 

Dreamweaver UltraDev (Macromedia), http://www.macromedia.com  

Supports integration of JSP, ASP, and ColdFusion elements in the web pages. Available on Windows 
and Mac platforms. 

Unify eWave Studio (Unify), http://www.unify.com/products/ewave/studio.htm  

A web application development tool that helps you create JSP pages without extensive coding. 
Includes features such as DataForm Wizard to create web interfaces to databases, and Studio Asset 
Center for collaboration and centralized management of all web application resources. 

WebSphere Studio (IBM), http://www-4.ibm.com/software/  

Includes a page designer tool for visual development of HTML and JSP pages. Available only for 
Windows platforms. 

http://www.gnu.org/software/emacs/emacs.html
http://archives.java.sun.com/archives/jsp-interest.html
http://www.allaire.com/products/homesite/index.cfm
http://www.modelworks.com
http://www.slickedit.com
http://www.adobe.com/products/golive/
http://www.macromedia.com
http://www.unify.com/products/ewave/studio.htm
http://www-4.ibm.com/software/


JavaSercer Pages 

  page 347 

E.1.3 Java IDEs with JSP support 

A number of Java Interactive Development Environments (IDEs) include varying degrees of support for JSP 
development, such as syntax-aware editors and debugging capabilities. Here are some examples: 

Forte, Forte for Java (Sun), http://www.sun.com/forte/ffj/ce/  

A Java IDE that includes a JSP module providing a JSP page editor, templates, and execution of JSP 
pages. Forte is a Java application, so it runs on any platform with a Java runtime environment. 

JRun Studio (Allaire), http://www.allaire.com  

An IDE for server-side Java development, including a JSP page editor with color-coding and a custom 
action property sheet editor. 

Kawa (TEK-TOOLS), http://www.tek-tools.com  

An IDE with support for EJB, JSP, and servlet debugging. Kawa is a Java application, so it runs on any 
platform with a Java runtime environment. 

Oracle, JDeveloper http://www.oracle.com/java/  

A development environment for Java-based database applications with support for JSP-based user 
interfaces. 

VisualAge for Java (IBM), http://www-4.ibm.com/software/ad/vajava/  

An IDE with support for servlet and JSP debugging as well as a wizard for generation of template code. 
Available for Windows and Linux. 

E.1.4 JSP Component Suites 

More and more JSP components, such as tag libraries and server-side JavaBeans, are being offered by 
commercial companies as well as open source organizations. Here are a few examples: 

BEA WebLogic Portal JSP Tag Libraries (BEA), http://edocs.beasys.com/wlac/portals/docs/tagscontents.html  

A tag library for building web portals plus a set of utility actions. 

InstantOnline Basic (Gefion software[A]), http://www.gefionsoftware.com  

A tag library and JavaBeans for accessing databases, sending email, uploading files, validating input, 
conditional processing, and more. This library lets you use a simple variable syntax to access request 
information, JavaBeans properties, query results, etc., eliminating the need for Java code in the JSP 
pages. 

IN 16 JSP Tag Library (SourceForge), http://sourceforge.net/projects/jsptags/  

An open source project working on various tag libraries, currently in the areas of HTML generation, 
database access, EJB access, and XML. 

Jakarta taglibs (Apache Software Foundation), http://jakarta.apache.org  

Tag libraries for database access, processing XML data with an XSL stylesheet, using the Bean 
Scripting Framework (BSF) to embed scriptlets written in Rhino ( JavaScript), VBScript, Perl, Tcl, 
Python, NetRexx and Rexx, as well as an implementation of the example tags described in the JSP 
specification. 

JRun components (Allaire), http://www.allaire.com  

A tag library included with the JRun product, with support for database access, message services, 
email, XML transformations, and JNDI access. 

http://www.sun.com/forte/ffj/ce/
http://www.allaire.com
http://www.tek-tools.com
http://www.oracle.com/java/
http://www-4.ibm.com/software/ad/vajava/
http://edocs.beasys.com/wlac/portals/docs/tagscontents.html
http://www.gefionsoftware.com
http://sourceforge.net/projects/jsptags/
http://jakarta.apache.org
http://www.allaire.com


JavaSercer Pages 

  page 348

Orion Taglibs (Evermind), http://www.orionserver.com  

A tag library for accessing EJB resources and utility actions for conditional processing, localized 
number and date formatting, and sending email. 

Pager Tag Library (JSPtags.com), http://jsptags.com/tags/navigation/pager/  

A tag library for generation of Google- and AltaVista-style search result navigators. 

E.1.5 Web and Application Servers with JSP 1.1 Support 

Most of the major web and application servers support JSP 1.1 out of the box. For servers without native 
support, add-on containers can be used. This is just a short sample of the most popular servers and add-on 
containers: 

BEA WebLogic (BEA), http://www.bea.com  

A family of application servers with support for EJB, servlets, JSP, JDBC, and JNDI. 

iPlanet (iPlanet), http://www.iplanet.com  

A web server with support for servlets and JSP, and an application server with support for the full J2EE 
platform. 

JRun (Allaire), http://www.allaire.com/products/jrun/  

An application server with support for the complete J2EE specification. 

LiteWebServer (Gefion software), http://www.gefionsoftware.com  

A web server with a very small footprint and support for servlets and JSP, suitable as an embedded 
server and for development, demos, and small work groups. 

Oracle8i JServer (Oracle), http://www.oracle.com/java/  

A Java server integrated in the Oracle 8i database with support for servlets and JSP. 

Orion (Evermind), http://www.orionserver.com  

A high-performance application server with support for the complete J2EE platform. 

Resin (Caucho), http://www.caucho.com  

An open source, standalone servlet and JSP-enabled web server that can also be used as an add-on 
container for Apache, IIS, and iPlanet web servers. 

SilverStream (SilverStream), http://www.silverstream.com  

An application server with support for the J2EE specification. 

Tomcat (Apache Software Foundation), http://jakarta.apache.org  

Tomcat is the official reference implementation for the servlet and JSP specifications, developed as an 
open source product in the Apache Jakarta project. 

Unify eWave ServletExec (Unify), http://www.unify.com  

An add-on container for Apache, IIS, Netscape, and other web servers, with support for servlets and 
JSP. 

http://www.orionserver.com
http://jsptags.com/tags/navigation/pager/
http://www.bea.com
http://www.iplanet.com
http://www.allaire.com/products/jrun/
http://www.gefionsoftware.com
http://www.oracle.com/java/
http://www.orionserver.com
http://www.caucho.com
http://www.silverstream.com
http://jakarta.apache.org
http://www.unify.com


JavaSercer Pages 

  page 349 

WebSphere (IBM), http://www.software.ibm.com  

An application server with support for servlets and JSP. 

E.2 Web Hosting 

If you want to host your web site on an external site, a growing number of hosting companies offer servlet 
and JSP support. This information changes frequently, so instead of including references to companies here, I 
suggest that you look at an up-to-date list on one of these web sites: 

http://www.servlets.com/resources/urls/isps.html  

A list of web hosting companies with servlet support, on the web site of Jason Hunter's Java Servlet 
Programming book. 

http://www.TheJSPBook.com  

The web site for this book, where you can find a list of web hosting companies with JSP support, as 
well as a lot of other JSP-related information. 

E.3 Information and Specifications 

If you would like to find out more about JSP, servlets and related technologies such as the other parts of the 
J2EE platform and HTTP, here are some sites you can visit: 

• Sun's JSP site, http://java.sun.com/products/jsp/ 

• Sun's servlet site, http://java.sun.com/products/servlet/ 

• Sun's mailing list archives, http://archives.java.sun.com/archives/ 

• Developing Enterprise Applications With the Java 2 Platform, Enterprise Edition, 
http://java.sun.com/j2ee/blueprints/ 

• jGuru JSP FAQ, http://www.jguru.com/jguru/faq/faqpage.jsp?name=JSP 

• Esperanto JSP FAQ, http://www.esperanto.org.nz/jsp/jspfaq.html 

• JSPTags.com, http://jsptags.com 

• The JSP Resource Index, http://www.jspin.com 

• JSPInsider, http://www.jspinsider.com 

• ServerPages.com, http://www.serverpages.com/Java_Server_Pages/ 

• HTTP/1.1 specification, ftp://ftp.isi.edu/in-notes/rfc2616.txt 

• HTML 3.2 specification, http://www.w3.org/TR/REC-html32.html 

• HTML 4.0 specification, http://www.w3.org/TR/REC-html40/ 

As you know, things move extremely fast in this industry, so by the time you read this there may be many 
more products and sites available. For the latest news, I suggest that you take a look at Sun's JSP site at 
http://java.sun.com/products/jsp/. The web site for this book, http://www.TheJSPBook.com, also contains 
up-to-date references to a number of JSP resources, in addition to the source code for all examples, and 
other information about this book. 

http://www.software.ibm.com
http://www.servlets.com/resources/urls/isps.html
http://www.TheJSPBook.com
http://java.sun.com/products/jsp/
http://java.sun.com/products/servlet/
http://archives.java.sun.com/archives/
http://java.sun.com/j2ee/blueprints/
http://www.jguru.com/jguru/faq/faqpage.jsp?name=JSP
http://www.esperanto.org.nz/jsp/jspfaq.html
http://jsptags.com
http://www.jspin.com
http://www.jspinsider.com
http://www.serverpages.com/Java_Server_Pages/
ftp://ftp.isi.edu/in-notes/rfc2616.txt
http://www.w3.org/TR/REC-html32.html
http://www.w3.org/TR/REC-html40/
http://java.sun.com/products/jsp/
http://www.TheJSPBook.com


JavaSercer Pages 

  page 350

Colophon 

Our look is the result of reader comments, our own experimentation, and feedback from distribution channels. 
Distinctive covers complement our distinctive approach to technical topics, breathing personality and life into 
potentially dry subjects. 

The image on the cover of JavaServer Pages™ is a toaster. 

Nicole Arigo was the production editor, and Emily Quill was the copyeditor for JavaServer Pages™. Leanne 
Soylemez proofread the book, and Darren Kelly and Rachel Wheeler provided quality control. Ellen Troutman 
wrote the index. 

Hanna Dyer designed the cover of this book, based on a series design by Edie Freedman. The image was 
photographed by Kevin Thomas and manipulated in Adobe Photoshop by Michael Snow. Emma Colby 
produced the cover layout with QuarkXPress 4.1 using the Bodoni Black font from URW Software and the 
Bodoni Bold Italic font from Bitstream. 

David Futato designed the interior layout based on a series design by Nancy Priest. Mike Sierra implemented 
the design in FrameMaker 5.5.6. The heading font is Bodoni BT, the text font is New Baskerville, and the code 
font is Constant Willison. The illustrations that appear in the book were produced by Robert Romano using 
Macromedia FreeHand 9 and Adobe Photoshop 5.5. 

 

 

 


