JAVASERVER
Pages.

O,REILLY' Hans Bergsten

JavaServer Pages

Hans Bergsten

First Edition, December 2000

ISBN: 1-56592-746-X, 572 pages

JavaServer Pages shows how to develop Java-based web applications without having to be a
hardcore programmer. The author provides an overview of JSP concepts and illuminates how JSP
fits into the larger picture of web applications.

There are chapters for web authors on generating dynamic content, handling session information,

and accessing databases, as well as material for Java programmers on creating Java components

and custom JSP tags for web authors to use in JSP pages.JavaServer Pages shows how to develop
Java-based web applications without having to be a hardcore programmer.

The author provides an overview of JSP concepts and illuminates how JSP fits into the larger
picture of web applications. There are chapters for web authors on generating dynamic content,
handling session information, and accessing databases, as well as material for Java programmers
on creating Java components and custom JSP tags for web authors to use in JSP pages.

Release Team[oR] 2001

Preface
What's in This Book
Audience
Organization
About the Examples
Conventions Used in This Book
How to Contact Us
Acknowledgments

JSP Application Basics

This part of the book describes the fundamentals of HTTP (the protocol used by all web applications),
how servlets and JSP are related, and how to set up a JSP development environment and install the

book examples.

Introducing JavaServer Pages

1.1 What Is JavaServer Pages?

1.2 Why Use JSP?

1.3 What You Need to Get Started
HTTP and Servlet Basics

2.1 The HTTP Request/Response Model
2.2 Servlets

2.3 Packaging Java Web Applications

JSP Overview

3.1 The Problem with Servlets

3.2 The Anatomy of a JSP Page

3.3 JSP Processing

3.4 JSP Application Design with MVC

Setting Up the JSP Environment

4.1 Installing the Java Software Development Kit

4.2 Installing the Tomcat Server

4.3 Testing Tomcat

4.4 Installing the Book Examples

4.5 Example Web Application Overview

JSP Application Development

13

25

34

The focus of this part of the book is on developing JSP-based web applications using both standard JSP
elements and custom components. Through the use of practical examples, you will learn how to handle common
tasks such as validating user input, accessing databases, authenticating users and protecting web pages,

localizing your web site, and more.

Generating Dynamic Content
5.1 What Time Is It?
5.2 Input and Output

Using Scripting Elements

6.1 Java Primer

Implicit JSP Objects

Conditional Processing

Displaying Values

Using an Expression to Set an Attribute
Declaring Variables and Methods

DA
- XU B NEARN

Error Handling and Debugging

7.1 Dealing with Syntax Errors

7.2 Debugging a JSP-Based Application
7.3 Dealing with Runtime Errors

Sharing Data Between JSP Pages, Requests, and Users

8.1 Passing Control and Data Between Pages
8.2 Sharing Session and Application Data
8.3 Using Custom Actions

8.4 Online Shopping

8.5 Memory Usage Considerations

42

55

74

87

10

11

12

III:

Database Access

Accessing a Database from a JSP Page
Input Validation Without a Bean

Using Transactions
Application-Specific Database Actions

Authentication and Personalization

10.1 Container-Provided Authentication

10.2 Application-Controlled Authentication

10.3 Other Security Concerns

Internationalization

11.1 How Java Supports Internationalization and Localization
11.2 Generating Localized Output

11.3 A Brief History of Bits

11.4 Handling Localized Input

Bits and Pieces

12.1
12.2
12.3
12.4
12.5
12.6
12.7

Buffering

Including Page Fragments

XML and JSP

Mixing Client-Side and Server-Side Code
Precompiling JSP Pages

Preventing Caching of JSP Pages

How URLs Are Interpreted

JSP in J2EE and JSP Component Development

If you're a programmer, this is the part of the book where the real action is . Here you will learn how to develop
your own custom actions and JavaBeans, and how to combine JSP with other Java server-side technologies,

such as servlets and Enterprise JavaBeans (EJB).

13 Web Application Models

14

15

16

17

13.1
13.2
13.3

The Java 2 Enterprise Edition Model
The MVC Model
Scalability

Combining Servlets and JSP

14.1
14.2
14.3
14.4

Using a Servlet as the Controller

A More Modular Design Using Action Objects
Sharing Data Between Servlets and JSP Pages
Using a JSP Error Page for All Runtime Errors

Developing JavaBeans for JSP

15.1
15.2
15.3

JavaBeans as JSP Components
JSP Bean Examples
Unexpected <jsp:setProperty> Behavior

Developing JSP Custom Actions

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9
16.10

Tag Extension Basics

Developing a Simple Action

Processing the Action Body

Letting Actions Cooperate

Creating New Variables Through Actions
Developing an Iterating Action

Creating the Tag Library Descriptor
Validating Syntax

How Tag Handlers May Be Reused
Packaging and Installing a Tag Library

Developing Database Access Components

17.1
17.2
17.3
17.4

Using Connections and Connection Pools

Using a Generic Database Bean

Developing Generic Database Custom Actions
Developing Application-Specific Database Components

109

130

148

165

182

190

200

213

235

Appendixes
In this part of the book, you find reference material, such as descriptions of JSP elements and classes, all book
example components, the web application deployment descriptor, and more.

JSP Elements Syntax Reference 260
Al Directive Elements

A.2 Scripting Elements

A3 Action Elements

A.4 Comments

A.5 Escape Characters

JSP API Reference 270
B.1 Implicit Variables

B.2 Servlet Classes Accessible Through Implicit Variables

B.3 Tag Extension Classes

B.4 Other JSP Classes

Book Example Custom Actions and Classes Reference 312
C.1 Generic Custom Actions

C.2 Internationalization Custom Actions

C.3 Database Custom Actions

4 Utility Classes

.5 Database Access Classes

Web-Application Structure and Deployment Descriptor Reference 337
D.1 Web Application File Structure

D.2 Web Application Deployment Descriptor

D.3 Creating a WAR File

JSP Resource Reference 346
E.1 JSP-Related Products

E.2 Web Hosting

E.3 Information and Specifications

Colophon 350

JavaServer Pages (JSP) technology provides an easy way to create dynamic web pages. JSP uses a component-
based approach that allows web developers to easily combine static HTML for look-and-feel with Java components
for dynamic features. The simplicity of this component-based model, combined with the cross-platform power of
Java, allows a web development environment with enormous potential.

JavaServer Pages shows how to develop Java-based web applications without having to be a hardcore
programmer. The author provides an overview of JSP concepts and discusses how JSP fits into the larger picture
of web applications. Web page authors will benefit from the chapters on generating dynamic content, handling
session information, accessing databases, authenticating users, and personalizing content. In the programming-
oriented chapters, Java programmers learn how to create Java components and custom JSP tags for web authors
to use in JSP pages.

JavaSercer Pages

Preface

JavaServer Pages™ (JSP) is a new technology for web application development that has received a great deal
of attention since it was first announced.

Why is JSP so exciting? One reason is that JSP is Java-based, and Java is well-suited for enterprise computing.
In fact, JSP is a key part of the Java™ 2 Enterprise Edition (J2EE) platform and can take advantage of the
many Java Enterprise libraries, such as JDBC, JNDI, and Enterprise JavaBeans™.

Another reason is that JSP supports a powerful model for developing web applications that separates
presentation from processing. Understanding why this is so important requires a bit of a history lesson. In the
early days of the Web, the only tool for developing dynamic web content was the Common Gateway Interface
(CGI). CGI outlined how a web server made user input available to a program, as well as how the program
provided the web server with dynamically generated content to send back. CGI scripts were typically written in
Perl. (In fact, CGI Perl scripts still drive numerous dynamic web sites.) However, CGI is not an efficient
solution. For every request, the web server has to create a new operating-system process, load a Perl
interpreter and the Perl script, execute the script, and then dispose of the entire process when it's done.

To provide a more efficient solution, various alternatives to CGI have been added to programmers' toolboxes
over the last few years: FastCGI, for example, runs each CGI program in an external permanent process (or a
pool of processes). In addition, mod_per1 for Apache, NSAPI for Netscape, and ISAPI for Microsoft's IIS all run
server-side programs in the same process as the web server itself. While these solutions offer better
performance and scalability, each one is supported by only a subset of the popular web servers.

The Java Servlet API, introduced in early 1997, provides a solution to the portability issue. However, all these
technologies suffer from a common problem: HTML code embedded inside programs. If you've ever looked at
the code for a servlet, you've probably seen endless calls to out.printin() that contain scores of HTML tags.
For the individual developer working on a simple web site this approach may work fine, but it makes it very
difficult for people with different skills to work together to develop a web application.

This is becoming a significant problem. As web sites become increasingly complex and are more and more
critical to the success of an organization, the appearance and usability of the web interface becomes
paramount. New client technologies, such as client-side scripts and DHTML, can develop more responsive and
interactive user interfaces, stylesheets can make it easier to globally change fonts and colors, and images can
make the interface more appealing. At the same time, server-side code is getting more complex, and demands
for reliability, performance, and fault tolerance are increasing. The growing complexity of web applications
requires a development model that allows people with different skills to cooperate efficiently.

JavaServer Pages provides just such a development model, allowing web page authors with skills in graphics,
layout, and usability to work in tandem with programmers who are experienced in server-side technologies
such as multithreading, resource pooling, databases, and caching. While there are other technologies, such as
ASP, PHP, and ColdFusion, that support similar development models, none of them offers all the advantages of
JSP.

What's in This Book
This book covers Version 1.1 of the JavaServer Pages specification, which was released in late 1999.

In this book, you will learn how to use all the standard JSP elements and features, including elements for
accessing JavaBeans components, separating the processing over multiple pages to increase reusability and
simplify maintenance, and sharing information between pages, requests, and users. You will also learn how to
use and develop custom components. A rich set of custom components, for tasks such as integration of
database data, internationalization, access control, and conditional processing, is described in detail. Many of
these components are generic enough that you can reuse them directly in your own applications.

The examples in this book guide you through solutions to common JSP design problems, from basic issues such
as retrieving and validating user input, to more advanced areas such as developing a database-driven site,
authenticating users, providing personalized content, and implementing internationalization. The last part of
the book describes how you can combine JSP with other Java technologies; in particular, I describe the
combination of JSP and servlets and provide an overview of how JSP fits into the larger scope of J2EE.

page 1

JavaSercer Pages

Audience

This book is for anyone interested in using JSP technology to develop web applications. In particular, it is
written to help the two types of people commonly involved in the development of a JSP-based application:

Page authors

Page authors primarily develop the web interface to an application. This group uses HTML, stylesheets,
and client-side code to develop a rich user interface, and wants to learn how to use JSP elements in
web pages to interact with the server components of the application, such as databases and Enterprise
JavaBeans (EJB).

Java programmers

Java programmers are comfortable with the Java programming language and Java servlets. This group
is interested in learning how to develop JSP components that page authors can use in web pages, such
as JSP custom actions and JavaBeans, and how to combine JSP with other Java server-side
technologies, such as servlets and EJB.

This book is structured into three parts, which I describe shortly, to make it easier to find the material you are
most interested in.

What You Need to Know

It's always hard to assume how much you, as the reader, already know. For this book, it was even harder,
since the material is intended for two audiences: page authors and programmers.

I have assumed that anyone reading this book has experience with HTML; consequently, I will not explain the
HTML elements used in the examples. But even if you're an HTML wiz, this may be your first exposure to
dynamic web content and web applications. A thorough introduction to the HTTP protocol that drives all web
applications, as well as to the concepts and features specific to servlet and JSP-based web applications, is
therefore included. If you want to learn more about HTML, I recommend HTML and XHTML: The Definitive
Guide, by Chuck Musciano and Bill Kennedy (O'Reilly & Associates).

If you're a page author, I have assumed that you don't know anything about programming, although it doesn't
hurt if you have played around with client-side scripting languages like VBScript or JavaScript (ECMAScript).
This book contains a brief Java primer with enough information to allow you to use a modest amount of Java
code in JSP pages. As you will see, I recommend that you use Java components developed by a Java
programmer instead of putting your own Java code in the pages, so you don't have to know all the intricate
details of the Java language to use JSP.

I have assumed that programmers reading this book are familiar with Java programming, object-oriented
concepts, and Java servlets. If you plan to develop JSP components for page authors and are not familiar with
Java programming, I recommend that you read an introductory Java book, such as Exploring Java by Patrick
Niemeyer and Joshua Peck (O'Reilly). If you need to learn about servlets, I recommend Java Servlet
Programming by Jason Hunter and William Crawford (O'Reilly) or another book that covers servlet technology.

The chapters dealing with database access require some knowledge of SQL and databases in general. I will
explain all that you need to know to run the examples, but if you're hoping to develop database-driven
applications, you will need to know more about databases than what's in this book.

page 2

JavaSercer Pages

Organization

This book is structured into three parts. The first part describes the fundamentals of HTTP (the protocol used
by all web applications), how servlets and JSP are related, and how to set up a JSP development environment.

The focus of the second part is on developing JSP-based web applications using both standard JSP elements
and custom components. Through practical examples, you will learn how to handle common tasks such as
validating user input, accessing databases, authenticating users and protecting web pages, localizing your web
site, and more. This portion of the book is geared more towards web content designers.

In the third part, you will learn how to develop your own custom actions and JavaBeans, and how to combine
JSP with other Java server-side technologies, such as servlets and Enterprise JavaBeans (EJB). This portion of
the book is targeted towards the programming community.

All in all, the book consists of 17 chapters and five appendixes as follows.

Part I, JSP Application Basics
Chapter 1

Explains how JSP fits into the big picture of web applications and how it compares to alternative
technologies.

Chapter 2
Describes the fundamental HTTP and servlet concepts you need to know to use JSP to its full potential.
Chapter 3

An overview of the JSP features, as well as the similarities and differences between JSP pages and
servlets. Also introduces the Model-View-Controller design model and how it applies to JSP.

Chapter 4

Describes where to get the JSP reference implementation, Apache Tomcat, and how to set it up on your
system. Also explains how to install the book examples.

Part II, JSP Application Development
Chapter 5

Explains how to use JSP to generate dynamic content and how to receive and validate user input.
Chapter 6

A brief introduction to Java programming, followed by descriptions of all the JSP elements that let you
embed Java code directly in your JSP pages.

Chapter 7

Describes the kinds of errors you may encounter during development of a JSP-based application, and
strategies and JSP features that help you deal with them.

Chapter 8

Explains the JSP features that let you separate different types of processing in different pages to
simplify maintenance and further development. Also describes how sessions can be used to build up
information over a sequence of requests from the same user, and how information that applies to all
users can be shared using the application scope.

page 3

JavaSercer Pages

Chapter 9

A quick overview of relational databases, JDBC, and SQL basics. Introduces a set of generic custom
actions for reading, updating, and deleting database data.

Chapter 10

Describes how authentication and access control can be implemented using container-provided and
application-controlled mechanisms, and how to use information about the current user to personalize
the web pages.

Chapter 11

Explains internationalization and localization, as well as the Java features available to implement an
internationalized application. Describes a set of custom actions used to implement a web site with
support for multiple languages.

Chapter 12

Covers various areas not discussed in previous chapters, such as using XML and XSL with JSP,
combining JSP with client-side code, reusing JSP fragments by including them in JSP pages,
precompiling JSP pages, and more.

Part III, JSP in J2EE and JSP Component Development
Chapter 13

An overview of J2EE and web application architectures using JSP in combination with other Java
technologies.

Chapter 14
Describes in detail how JSP can be combined with servlets.
Chapter 15

Provides details about JavaBeans as they relate to JSP, including threading and synchronization
concerns for session and application-scope JavaBeans, as well as how using JavaBeans can make it
easier to eventually migrate to an EJB architecture. The beans used in previous chapters are reused as
examples.

Chapter 16

Describes the JSP Tag Extension mechanism and how it is used to develop custom actions, reusing
many of the custom actions from previous chapters as examples.

Chapter 17

Describes the database-access custom actions used in the previous chapters and how to use them with
both connection pools developed in-house and those provided by a third-party vendor. Also explains
how you can reuse the database-access beans to develop your own application-specific database
custom actions.

page 4

JavaSercer Pages

Part IV, Appendixes
Appendix A

Contains descriptions of all the standard JSP 1.1 elements.
Appendix B

Contains descriptions of all implicit objects available in a JSP page as defined by the servlet and JSP
APIs, as well as the tag extension mechanism classes and interfaces.

Appendix C
Contains descriptions of the custom actions, beans, and utility classes used in the examples.
Appendix D

Contains descriptions of the standard web-application structure and all elements in the web-application
deployment descriptor.

Appendix E

Contains references to JSP-related products, web-hosting services, and sites where you can learn more
about JSP and related technologies.

If you're a page author, I recommend that you focus on the chapters in Part I and Part II. You may want to
browse through Part III to get a feel for how things work behind the scenes, but don't expect to understand
everything if you're not a Java programmer.

If you are a Java programmer, Part III is where the action is. If you're already familiar with HTTP and servlets,
you may want to move quickly through Part I. However, this part does include information about the web
application concept introduced in the Servlet 2.2 API that you may not be familiar with, even if you've worked
with servlets for some time. I recommend that you read Part II to learn how JSP works, but you may want to
skip ahead to the chapters in Part III from time to time to see how the components used in the examples are
actually implemented.

About the Examples

This book contains over 50 examples that demonstrate useful techniques for database access, application-
controlled authentication and access control, internationalization, XML processing, and more. The examples
include complete applications, such as an online shopping site, an employee directory, and a personalized
project billboard, as well as numerous smaller examples and page fragments. The included example tag library
contains more than 20 custom actions that you can use directly in your application or as a starting point for
your own development. The code for all the examples and most of the custom actions is contained within the
text; you can also download all code from the O'Reilly web site at
http://www.oreilly.com/catalog/jserverpages/. In addition, you can see all the examples in action at
http://www.ThelJSPBook.com.

All examples have been tested with the official JSP reference implementation, Apache Tomcat, on Windows (98
and NT 4.0) and Linux (Red Hat Linux 6.2) using Sun's Java 2 SDK (1.2.2 and 1.3). If you need more
information on downloading and installing the Apache Tomcat server for use with the examples, see Chapter 4.

page 5

http://www.oreilly.com/catalog/jserverpages/
http://www.TheJSPBook.com

JavaSercer Pages
Conventions Used in This Book

Italic is used for:

Pathnames, filenames, directories, and program names
New terms where they are defined
Internet addresses, such as domain names and URLs

Boldface is used for:

Particular keys on a computer keyboard
Names of user interface buttons and menus

Constant width is used for:

Anything that appears literally in a JSP page or a Java program, including keywords, datatypes,
constants, method names, variables, class names, and interface names

Command lines and options that should be typed verbatim on the screen
All JSP and Java code listings
HTML documents, tags, and attributes

Constant width Italic is used for:

General placeholders that indicate that an item should be replaced by some actual value in your own
program

Constant width purple is used for:

Text that is typed in code examples by the user

How to Contact Us

We have tested and verified all the information in this book to the best of our abilities, but you may find that
features have changed or that we have let errors slip through the production of the book. Please let us know of
any errors that you find, as well as suggestions for future editions, by writing to:

0'Reilly & Associates, Inc.

101 Morris St.

Sebastopol, CA 95472

1-800-998-9938 (in the U.S. or Canada)
1-707-829-0515 (international/local)
1-707-829-0104 (fax)

You can also send messages electronically. To be put on our mailing list or to request a catalog, send email to:
info@oreilly.com

To ask technical questions or to comment on the book, send email to:
bookquestions@oreilly.com

We have a web site for the book, where we'll list examples, errata, and any plans for future editions. You can
access this page at:

http://www.oreilly.com/catalog/jserverpages/
For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com

page 6

http://www.oreilly.com/catalog/jserverpages/
http://www.oreilly.com

JavaSercer Pages

Acknowledgments

I love to write and have always wanted to write a book someday. After getting a number of articles about Java
servlets and a couple of chapters for a server-side Java book published, my confidence was so high that I sent
an email to O'Reilly & Associates and asked if they wanted me to write a book about JSP. Much to my surprise
(I guess my confidence was not so high after all), they said, "Yes!" I knew that it would be more work than I
could imagine, and it turned out to be even more than that. But here I am, almost a year later, with 17
chapters and 5 appendixes in a nice stack on my desk, written and rewritten countless times. All that remains
is to give thanks to everyone who helped me fulfill this dream.

First, I'd like to thank my editors, Paula Ferguson and Bob Eckstein. Paula was the one who accepted my book
proposal in the first place, and then helped me through my stumbling steps of writing the first half of the book.
Bob came aboard for the second half, and I'm really grateful to him for thoroughly reading everything and
giving me helpful advice.

Thanks also to Rob Romano for doing the illustrations, to Christien Shangraw for helping out with the
coordination, and to all the production people behind the scenes at O'Reilly who made sure the book got
published.

Big thanks also go to the JSP and servlet specification leads, Eduardo Pelegri-Llopart and Danny Coward, for
providing feedback, answering all my questions, and clarifying the vague and ambiguous areas of the
specifications. You helped me more than I could ask for. I hope my contributions to the specifications repay my
debt to some extent.

Thanks also to all of you who helped me improve the book in other ways: Jason Hunter for letting me borrow
his connection pool code and Japanese examples; Craig McClanahan, Larry Riedel, Steve Jung (Steve dedicates
his effort to the memory of his father, Arthur H. Jung, who passed away March 17, 2000), Sean Rohead, Jerry
Croce, Steve Piccolo, and Vikram David for reviewing the book and giving me many suggestions for how to
make it better; all the Apache Tomcat developers for making a great JSP reference implementation; and the
members of the jsp-interest mailing list for all the ideas about what to cover in this book.

Finally, thanks to everyone who encouraged me and kept my spirits high: Mom, Dad, and my sister, for their
support and for teaching me to do what I believe in; all my old friends in Sweden, especially Janne Ek, Peter
Hellstrom (and his dad, who helped me with the translation of the German example), Janne Andersson, Roger
Bjarevall and Michael Rohdin; Anne Helgren, my writing teacher who convinced me I could do this; and all the
guys in and around Vesica Pisces (http://www.vesicapisces.com), Kelly, Brian, Adam, Bill, and James: I really
enjoyed getting away from the writing now and then to hang with you and listen to you play.

Hans Bergsten, September 2000

page 7

http://www.vesicapisces.com

JavaSercer Pages

Chapter 1. Introducing JavaServer Pages

The Java 2 Enterprise Edition (J2EE) has taken the once-chaotic task of building an Internet presence and
transformed it to the point where developers can use Java to efficiently create multitier, server-side
applications. Today, the Java Enterprise APIs have expanded to encompass a number of areas: RMI and
CORBA for remote object handling, JDBC for database interaction, JNDI for accessing naming and directory
services, Enterprise JavaBeans for creating reusable business components, JMS (Java Messaging Service) for
message-oriented middleware, and JTA (Java Transaction API) for performing atomic transactions. In addition,
J2EE supports servlets , an extremely popular Java substitute for CGI scripts. The combination of these
technologies allows programmers to create distributed business solutions for a variety of tasks.

In late 1999, Sun Microsystems added a new element to the collection of Enterprise Java tools: JavaServer
Pages (JSP). JavaServer Pages are built on top of Java servlets and are designed to increase the efficiency in
which programmers, and even nonprogrammers, can create web content. This book is all about JavaServer
Pages.

1.1 What Is JavaServer Pages?

Put succinctly, JavaServer Pages is a technology for developing web pages that include dynamic content.
Unlike a plain HTML page, which contains static content that always remains the same, a JSP page can change
its content based on any number of variable items, including the identity of the user, the user's browser type,
information provided by the user, and selections made by the user. As you'll see later in the book, functionality
such as this can be used to create web applications like shopping carts and employee directories.

A JSP page contains standard markup language elements, such as HTML tags, just like a regular web page.
However, a JSP page also contains special JSP elements that allow the server to insert dynamic content in the
page. JSP elements can be used for a wide variety of purposes, such as retrieving information from a database
or registering user preferences. When a user asks for a JSP page, the server executes the JSP elements,
merges the results with the static parts of the page, and sends the dynamically composed page back to the
browser, as illustrated in Figure 1.1.

Figure 1.1. Generating dynamic content with JSP elements

<hl=ml= ‘ “E i i [hbmls

<hodys= L <hodys
. Fxamie -::!ap:uaaﬁa.un - :
Dynomic Content | - <jsp:getProperty.../ >

=jepigetPropDeErtY .o />

- < Moy .q_EHL"L.. < /body=>

< /hEmls |= Fhtml=

JSP defines a number of standard elements useful for any web application, such as accessing JavaBeans
components, passing control between pages, and sharing information between requests, pages, and users.
Programmers can also extend the JSP syntax by implementing application-specific elements that perform tasks
such as accessing databases and Enterprise JavaBeans, sending email, and generating HTML to present
application-specific data. The combination of standard elements and custom elements allows for the creation of
powerful web applications.

1.2 Why Use JSP?

In the early days of the Web, the Common Gateway Interface (CGI) was the only tool for developing dynamic
web content. However, CGI is not an efficient solution. For every request that comes in, the web server has to
create a new operating system process, load an interpreter and a script, execute the script, and then tear it all
down again. This is very taxing for the server and doesn't scale well when the amount of traffic increases.

Numerous CGI alternatives and enhancements, such as FastCGI, mod_ perl from Apache, NSAPI from
Netscape, ISAPI from Microsoft, and Java Servlets from Sun Microsystems, have been created over the years.
While these solutions offer better performance and scalability, all of these technologies suffer from a common
problem: they generate web pages by embedding HTML directly in programming language code. This pushes
the creation of dynamic web pages exclusively into the realm of programmers. JavaServer Pages, however,
changes all that.

page 8

JavaSercer Pages

1.2.1 Embedding Elements in HTML Pages

JSP tackles the problem from the other direction. Instead of embedding HTML in programming code, JSP lets
you embed specialized code (sometimes called scripting code) into HTML pages. Java is the default scripting
language of JSP, but the JSP specification allows for other languages as well, such as JavaScript, Perl, and
VBScript. We will begin looking at all the JSP elements in detail later, but at this point let's introduce you to a
simple JSP page:

<html>
<body bgcolor="white">

<% java.util.Dpate clock = new java.util.Date(); %>

<% 1f (clock.getHours() < 12) { %>
<h1>Good morning!</hl>

<% } else if (clock.getHours() < 18) { %>
<h1l>Good day!</hl1>

<% } else { %>
<h1>Good evening!</hl>

<% } %>

welcome to our site, open 24 hours a day.

</body>

</html>

This page inserts a different message to the user based on the time of day: "Good morning!" if the local time is
before 12:00 P.M., "Good day!" if between 12:00 P.M. and 6:00 P.M., and "Good evening!" if after 6:00 P.M.
When a user asks for this page, the JSP-enabled web server executes all the highlighted Java code and creates
a static page that is sent back to the user's browser. For example, if the current time is 8:53 P.M., the
resulting page sent from the server to the browser looks like this:

<html>
<body bgcolor="white">

<h1l>Good evening!</hl>
welcome to our site, open 24 hours a day.
</body>

</html>

A screen shot of this result is shown in Figure 1.2. If you're not a programmer, don't worry if you didn't pick up
what happened here. Everything will become clear as you progress through this book.

Figure 1.2. The output of a simple JSP page

#5 Hetscape _ O] x]

File Edit ‘iew Go Communicatal Hela

d v A0 2 bl F D I -
Eockmaks 4 Localion [Wilp Yocahoet 808 aralgiesting jzo =] 7 What's Related

Binstant Meseage & Thedavalobby |5 JavaSoll S ONN latezciive 3] Techweh S Bank of Ameiica

Good evening!

Welcorme to our aite, open 24 hours & day

& == Document Done T O 2 1 [

Of course, embedding too much code in a web page is no better than programming too many HTML tags in
server-side code. Fortunately, JSP servers provide a number of reusable action elements that perform common
tasks, as we'll see starting in Chapter 3. These action elements look similar to HTML elements, but behind the
scenes they are componentized Java programs that the server executes when the page is requested by a user.
Action elements are a powerful feature of JSP, as they give web page authors the ability to perform complex
tasks without having to do any programming.

In addition to the standard action elements, in-house programmers and third parties can develop custom
action elements (known as custom actions or custom tags, and packaged in custom tag libraries) that web
page authors can use to handle even more complex and specialized tasks. This book includes a large set of
custom actions for conditional processing, database access, internationalization, and more. Custom tag
libraries are also available from various open source organizations and commercial companies.

page 9

JavaSercer Pages

1.2.2 Using the Right Person for Each Task

As I alluded to earlier, JSP allows you to separate the markup language code, such as HTML, from the
programming language code used to process user input, access databases, and perform other application
tasks. One way this separation takes place is through the use of the JSP standard and custom action elements:
the elements are implemented with programming code and used the same way as page markup elements in
regular web pages. Another way is to combine JSP with other Java Enterprise technologies. For example, Java
servlets can handle input processing, Enterprise JavaBeans (EJB) can take care of the application logic, and JSP
pages can provide the user interface.

This separation means that with JSP, a typical business can divide its efforts among two camps that excel in
their own areas of expertise, and comprise a JSP web development team with programmers who create the
actions for the logic needed by the application, and page authors who craft the specifics of the interface and
use the complex actions without having to do any programming. I'll talk more about this benefit as we move
through the book, although I should reiterate that the first half of the book is devoted more to those without
programming experience, while the second half is for programmers who wish to use the JSP libraries to create
their own actions.

1.2.3 Precompilation

Another benefit that is important to mention is that a JSP page is always compiled before it's processed by the
server. Remember that older technologies such as CGI/Perl require the server to load an interpreter and the
target script each time the page is requested. JSP gets around this problem by compiling each JSP page into
executable code the first time it is requested, and invoking the resulting code directly on all subsequent
requests. When coupled with a persistent Java virtual machine on a JSP-enabled web server, this allows the
server to handle JSP pages much faster.

1.2.4 Integration with Enterprise Java APIs

Finally, because JavaServer Pages is built on top of the Java Servlets API, JSP has access to all of the powerful
Enterprise Java APIs, including:

JDBC

Remote Method Invocation (RMI) and OMG CORBA support
JNDI (Java Naming and Directory Interface)

Enterprise JavaBeans (EJB)

JMS (Java Message Service)

JTA (Java Transaction API)

This means that you can easily integrate JavaServer Pages with your existing Java Enterprise solutions, or take
advantage of many aspects of enterprise computing if you're starting from scratch.

1.2.5 Other Solutions

At this point, let's digress and look at some other solutions for dynamic web content. Some of these solutions
are similar to JSP, while others are descendants of older technologies. Many do not have the unique
combination of features and portability offered by JavaServer Pages.

1.2.5.1 Active Server Pages (ASP)

Microsoft's Active Server Pages (ASP) is a popular technology for developing dynamic web sites. Just like JSP,
ASP lets a page author include scripting code, such as VBScript and JScript, in regular web pages to generate
the dynamic parts. For complex code, COM (ActiveX) components written in a programming language such as
C++ can be invoked by the scripting code. The standard distribution includes components for database access
and more, and other components are available from third parties. When an ASP page is requested, the code in
the page is executed by the server. The result is inserted into the page and the combination of the static and
dynamic content is sent to the browser.

ASP+, currently in beta, will add a number of new features to ASP. As an alternative to scripting, dynamic
content can be generated by HTML/XML-like elements similar to JSP action elements. For improved
performance, ASP+ pages will be compiled instead of interpreted, and compiled languages such as C++, C#,
and VisualBasic will be added to the current list of scripting languages that can be embedded in a page.

page 10

JavaSercer Pages

ASP is bundled with Microsoft's Internet Information Server (IIS). Due to its reliance on native COM code as its
component model, it's primarily a solution for the Windows platform. Limited support for other platforms, such
as the Apache web server on Unix, is available through third-party products such as Chili!Soft (Chili!Soft),
InstantASP (Halcyon Software), and OpenASP (ActiveScripting.org). You can read more about ASP and ASP+
on Microsoft's web site, http://www.microsoft.com.

1.2.5.2 PHP

PHP? is an open source web scripting language. Like JSP and ASP, PHP allows a page author to include scripting
code in regular web pages to generate dynamic content. PHP has a C-like syntax with some features borrowed
from Perl, C++, and Java. Complex code can be encapsulated in both functions and classes. A large number of
predefined functions are available as part of PHP, such as accessing databases, LDAP directories, and mail
servers, creating PDF documents and images, and encrypting and decrypting data. A PHP page is always
interpreted by the server when it's requested, merging the result of executing the scripts with the static text in
the page, before it's returned to the browser. The latest version is PHP 4, which uses compiled pages instead of
interpreted pages to improve performance.

PHP is supported on a wide range of platforms, including all major web servers, on operating systems like
Windows, Mac OS, and most Unix flavors, and with interfaces to a large number of database engines. More
information about PHP is available at http://www.php.net.

1.2.5.3 ColdFusion

Allaire's ColdFusion product is another popular alternative for generating dynamic web content. The dynamic
parts of a page are generated by inserting HTML/XML-like elements, known as the ColdFusion Markup
Language (CFML), into web pages. CFML includes a large set of elements for tasks like accessing databases,
files, mail servers, and other web servers, as well as conditional processing elements like loops. The latest
version of ColdFusion also includes elements for communication with Java servlets and Enterprise JavaBeans.
Custom elements can be developed in C++ or Java to encapsulate application-specific functions, and CFML
extensions are available from third parties. ColdFusion did not initially support scripting languages, but in
ColdFusion 4.5, JavaScript-like code can be embedded in the web pages in addition to the CFML tags.

The ColdFusion 4.5 Enterprise Edition is supported on Windows, Solaris, HP/UX, and Linux for all major web
servers and databases. For more information, visit Allaire's web site at http://www.allaire.com.

1.2.5.4 Java servlet template engines

A Java servlet template engine is another technology for separating presentation from processing. When
servlets became popular, it didn't take long before developers realized how hard it was to maintain the
presentation part when the HTML code was embedded directly in the servlet's Java code.

As a result, a number of so-called template engines have been developed as open source products to help get
HTML out of the servlets. These template engines are intended to be used together with pure code components
(servlets) and use only web pages with scripting code for the presentation part. Requests are sent to a servlet
that processes the request, creates objects that represent the result, and calls on a web page template to
generate the HTML to be sent to the browser. The template contains scripting code similar to the alternatives
described earlier. The scripting languages used by these engines are less powerful, however, because scripting
is intended only for reading data objects and generating HTML code to display their values. All the other
products and technologies support general-purpose languages, which can (for better or for worse) be used to
include business logic in the pages.

Two popular template engines are WebMacro (http://www.webmacro.org) and FreeMarker
(http://freemarker.sourceforge.net).

" The precursor to PHP was a tool called Personal Home Page. Today PHP is not an acronym for anything it's simply the name of the
product.

page 11

http://www.microsoft.com
http://www.php.net
http://www.allaire.com
http://www.webmacro.org
http://freemarker.sourceforge.net

JavaSercer Pages

1.2.6 The JSP Advantage

JSP 1.1 combines the most important features found in the alternatives:
JSP supports both scripting and element-based dynamic content, and allows programmers to develop
custom tag libraries to satisfy application-specific needs.
JSP pages are precompiled for efficient server processing.

JSP pages can be used in combination with servlets that handle the business logic, the model
supported by Java servlet template engines.

In addition, JSP has a couple of unique advantages that make it stand out from the crowd:

JSP is a specification, not a product. This means vendors can compete with different
implementations, leading to better performance and quality.

JSP is an integral part of J2EE, a complete platform for Enterprise class applications.
1.3 What You Need to Get Started

Before we begin, let's quickly look at what you need to run the examples and develop your own applications.
You really need only three things:

A PC or workstation with a connection to the Internet, so you can download the software you need
A Java 2-compatible Java Software Development Kit (Java 2 SDK)

A JSP 1.1-enabled web server, such as Apache Tomcat from the Jakarta Project

The Apache Tomcat server is the reference implementation for JSP 1.1. All the examples in this book were
tested on Tomcat. In Chapter 4, I'll show you how to download, install, and configure the Tomcat server, as
well as all the examples from this book.

In addition, there are a wide variety of other tools and servers that support JSP, from both open source
projects and commercial companies. Close to 30 different server products support JSP to date, and roughly 10
authoring tools with varying degrees of JSP support are listed on Sun's JSP web site
(http://java.sun.com/products/jsp/). Appendix E, also contains a collection of references to JSP-related
products, web hosting services, and sites where you can learn more about JSP and related technologies. You
may want to evaluate some of these products when you're ready to start developing your application, but all
you really need to work with the examples in this book are a regular text editor, such as Notepad, vi, or
Emacs, and of course the Tomcat server.

So let's get going and take a closer look at what JSP has to offer. We need a solid ground to stand on, though,
so in the next chapter we will start with the foundations upon which JSP is built: HTTP and Java servlets.

page 12

http://java.sun.com/products/jsp/

JavaSercer Pages

Chapter 2. HTTP and Servlet Basics

Let's start this chapter by defining the term web application . We've all seen regular client-side applications.
But what exactly is a web application? Loosely, we could define it as an application running on a server that a
user accesses through a thin, general-purpose client. Today, the most common client is a web browser on a PC
or workstation, but soon all kinds of clients will be used, such as wireless PDAs, cellular phones, and other
specialized devices.

The lofty goal here is to access all the information and services you need from any type of device you happen
to have in front of you. This means that the same simple client program must be able to talk to many different
server applications, and the applications must be able to work with many different types of clients. To satisfy
this need, the protocol of how a client and a server talk to each other must be defined in detail. That's exactly
what the HyperText Transport Protocol (HTTP) is for.

The communication model defined by HTTP forms the foundation for all web application design. You therefore
need a basic understanding of HTTP to develop applications that fit within the constraints of the protocol, no
matter which server-side technology you use. In this chapter, we look at the most important details of HTTP
that you need to be aware of as a web application developer.

One other item. This book is about using JSP as the server-side technology, so that's what we'll primarily focus
on. As we saw in Chapter 1, JSP is based on the Java servlet technology. Both technologies share a lot of
terminology and concepts, so knowing a bit about servlets will help you even when you develop pure JSP
applications. And to really understand and use the full power of JSP, you need to know a fair bit about servlets.
We will therefore take a quick look at servlet fundamentals in the last section of this chapter, including a
programmer's introduction for those of you familiar with Java.

2.1 The HTTP Request/Response Model

HTTP and all extended protocols based on HTTP are based on a very simple but powerful communications
model. Here's how it works: a client, typically a web browser, sends a request for a resource to a server, and
the server sends back a response corresponding to the requested resource (or a response with an error
message if it can't deliver the resource for some reason). A resource can be a simple HTML file, or it can be a
program that stores the information sent in a database and generates a dynamic response. This
request/response model is illustrated in Figure 2.1.

Figure 2.1. HTTP request/response with two resources
resoures
| <html=
<hodys
Client = hody =

< hitml =
mmmﬂ

PROGRAM

page 13

JavaSercer Pages

This simple model implies three things you need to be aware of:

1. HTTP is a stateless protocol. This means that the server does not keep any information about the
client after it sends its response, and therefore cannot recognize that multiple requests from the
same client may be related.

2. Web applications cannot easily provide the kind of immediate feedback typically found in standalone
GUI applications such as word processors or traditional client-server applications. Every interaction
between the client and the server requires a request/response exchange. Performing a
request/response exchange when a user selects an item in a list box or fills out a form element is
usually too taxing on the bandwidth available to most Internet users.

3. There's nothing in the protocol that tells the server how a request is made; consequently, the server
cannot distinguish between various methods of triggering the request on the client. For example, the
HTTP protocol does not allow a web server to differentiate between an explicit request caused by
clicking a link or submitting a form and an implicit request caused by resizing the browser window or
using the browser's Back button. In addition, HTTP does not allow the server to invoke client-specific
functions, such as going back in the browser history list or sending the response to a certain frame.

Over the years, people have come up with various tricks to overcome the first problem: HTTP's stateless
nature. We'll look at them in general terms later in this chapter. The other two problems are harder to deal
with, but some amount of interactivity can be achieved by generating a response that includes client-side code
(code executed by the browser), such as JavaScript or a Java applet. This approach is discussed briefly in
Chapter 12.

2.1.1 Requests in Detail

Let's take a closer look at requests. A user sends a request to the server by clicking a link on a web page,
submitting a form, or explicitly typing a web page address in the browser's address field. To send a request,
the browser needs to know which server to talk to and which resource to ask for. This information is specified
by the Uniform Resource Identifier (URI), also commonly referred to as a Uniform Resource Locator (URL). URI
is the general term, while a URL is the specific type of URI used to completely identify a web resource such as
an HTML page. Here is an example of a URL:

http://www.gefionsoftware.com/index.htm/

The first part of this URL specifies that the HTTP protocol is used to request the resource. This is followed by
the name of the server, www.gefionsoftware.com. The web server waits for requests to come in on a special
TCP/IP port. Port number 80 is the standard port for HTTP requests. If the web server uses another port, the
URL must specify the port number in addition to the server name. For example:

http://www.gefionsoftware.com:8080/index. html

This URL is sent to a server that uses port 8080 instead of 80. The last part of the URL, /index.html, identifies
the resource that the client is requesting. This is sometimes called the URI path.

The client browser always makes a request by sending a request message. An HTTP request message consists
of three things: a request line, request headers, and sometimes a request body.

The request line starts with the request method name, followed by a resource identifier and the protocol
version used by the browser:

GET /index.html HTTP/1.0

The most commonly used request method is named GET. As the name implies, a GET request is used to
retrieve a resource from the server. It's the default request method, so if you type a URL in the browser's
address field or click on a link, the request will be sent to the server as a GET request.

The request headers provide additional information the server may need to process the request. The message
body is included only in some types of requests, like the POST request discussed later.

page 14

http://www.gefionsoftware.com/index.html
http://www.gefionsoftware.com:8080/index.html

JavaSercer Pages

Here's an example of a valid HTTP request message:

GET /index.html HTTP/1.0

Host: www.gefionsoftware.com

User-Agent : Mozilla/4.5 [en] (WinNT; I)

Accept: image/gif, image/jpeg, image/pjpeg, image/png, */*
Accept-language : en

Accept-charset : iso-8859-1,*,utf-8

The request line specifies the GET method and asks for the resource /index.htm/ to be returned using the
HTTP/1.0 protocol version. The various headers provide additional information the server can use to fulfill the
request.

The Host header tells the server the hostname used in the URL. A server may have multiple names, so this
information is used to distinguish between multiple virtual web servers sharing the same web server process.

The User-Agent header contains information about the type of browser making the request. The server can
use this to send different types of responses to different types of browsers. For instance, if the server knows
whether the request is sent by Internet Explorer or Netscape Navigator, it can send a response that takes
advantage of each browser's unique features. It can also tell if a browser other than an HTML browser is used,
such as a Wireless Markup Language (WML) browser on a cell phone or a PDA device, and generate an
appropriate response.

The Accept headers provide information about the languages and file formats the browser accepts. These
headers can be used to determine the capabilities of the browser and the user's preferences, and adjust the
response to use a supported image format and the preferred language. These are just a few of the headers
that can be included in a request message. The HTTP specification describes all of them.

The resource identifier (URI) doesn't necessarily correspond to a static file on the server. It can identify an
executable program, a record in a database, or pretty much anything the web server knows about. That's why
the generic term resource is used. In fact, there's no way to tell if the /index.html URI corresponds to a file or
to something else; it's just a name that means something to the server. The web server is configured to map
these unique names to the real resources.

2.1.2 Responses in Detail

When the web server receives the request, it looks at the URI and decides, based on configuration information,
how to handle it. It may handle it internally by simply reading an HTML file from the filesystem, or it may
forward the request to some component that is responsible for the resource corresponding to the URI. This
might be a program that uses a database to dynamically generate an appropriate response. To the client, it
makes no difference how the request is handled; all it cares about is getting a response.

The response message looks similar to the request message. It consists of three things: a status line, response
headers, and possibly a response body. Here's an example:

HTTP/1.0 200 OK

Last-Modified: Mon, 20 Dec 1999 23:26:42 GMT
Date: Tue, 11 Jan 2000 20:52:40 GMT

Status: 200

content-Type: text/html

Servlet-Engine: Tomcat Web Server/3.2
Content-Length: 59

<html>
<body>
<hl>Hello world!</hl>
</body>
</html>

The status line starts with the name of the protocol, followed by a result code and a short description of the
result code. Here the result code is 200, meaning the request was executed successfully. The response
message has headers just like the request message. In this example, the Last-Modified header gives the
date and time that the resource was last modified. The client can use this information as a timestamp in a local
cache; the next time the user asks for this resource, the client can ask the server to send it only if it's been
updated since the last time it was requested. The Content-Type header tells the client what type of response
data the body contains, and the Content-Length header shows how large it is. You can likely figure out what
the other headers are for. A blank line separates the headers from the message body. Here, the body is a
simple HTML page:

page 15

JavaSercer Pages

<html>
<body>
<hl>Hello world!</hl>
</body>
</html>

Of course, the body can contain a more complex HTML page or any other type of content. For example, the
request may return a page with elements. When the browser reads the first response and finds the
 elements, it sends a new request for the resource identified by each element, often in parallel. The
server returns one response for each request, with a Content-Type header telling what type of image it is (for
instance, image/gif) and the body containing the bytes that make up the image. All responses are then
combined by the browser to render the complete page. This interaction is illustrated in Figure 2.2.

Figure 2.2. Interaction between a web client and a server

Server
ey g ||_?.1~_"1' Jindex . html H'l"['l-F‘,"J..Dl
=P .
Y u
HTTE/1.0 200 oK
-

<html=
<hl=Hellas World!=/hl=>
<img sro=/tomcal.gif=
< /html=

GET Jtomcat.gif HTTESL.0

HTTESL.Q 200 0K
Contentb-Type: image/gif

110011100110001010010100
01101000101 1L11010L0100

2.1.3 Request Parameters

Besides the URI and headers, a request message can contain additional information in the form of parameters.
If the URI identifies a server-side program for displaying weather information, for example, request
parameters can provide information about which city the user wants to see a forecast for. In an e-commerce
application, the URI may identify a program that processes orders, with the user's customer number and the
list of items to be purchased transferred as parameters.

Parameters can be sent in one of two ways: tacked on to the URI in the form of a query string , or sent as part
of the request message body. Here is an example of a URI with a query string:

http://www.weather.com/forecast?city=Hermosa+Beach&state=CA

The query string starts with a question mark (?) and consists of name/value pairs separated by ampersands
(&). These names and values must be URL encoded , meaning that special characters such as whitespace,
question marks, ampersands, and all other nonalphanumeric characters are encoded so that they don't get
confused with characters used to separate name/value pairs. In this example, the space between Hermosa and
Beach is encoded as a plus sign. Other special characters are encoded as their corresponding hexadecimal
ASCII value: for instance, a question mark is encoded as %3F. When parameters are sent as part of the request
body, they follow the same syntax: URL-encoded name/value pairs separated by ampersands.

page 16

http://www.weather.com/forecast?city=Hermosa+Beach&state=CA

JavaSercer Pages

2.1.4 Request Methods

As described earlier, GET is the most commonly used request method, intended to retrieve a resource without
causing anything else to happen on the server. The POST method is almost as common as GET. A POST request
is intended to request some kind of processing on the server, for instance, updating a database or processing a
purchase order.

The way parameters are transferred is one of the most obvious differences between the GET and POST request
methods. A GET request always uses a query string to send parameter values, while a POST request always
sends them as part of the body (additionally, it can send some parameters as a query string, just to make life
interesting). If you code a link to a URI in an HTML page using an <a> element, clicking on the link results in a
GET request being sent to the server. Since the GET request uses a query string to pass parameters, you can
include hardcoded parameter values in the link URI:

Hermosa Beach weather forecast

When you use a form to send user input to the server, you can specify whether to use the GET or POST method
with the method attribute, as shown below:

<form action="/forecast" method="POST">
City: <input name="city" type="text">
State: <input name="state" type="text">
<p>
<input type="SUBMIT">

</form>

If the user enters "Hermosa Beach" and "CA" in the form fields and clicks on the Submit button, the browser
sends a request message like this to the server:

POST /index.html HTTP/1.0

Host: www.gefionsoftware.com

User-Agent : Mozilla/4.5 [en] (WinNT; I)

Accept: image/gif, image/jpeg, image/pjpeg, image/png, */*
Accept-Tlanguage : en

Accept-charset : iso-8859-1,*,utf-8

city=Hermosa+Beach&state=CA

Due to the differences in how parameters are sent by GET and POST requests, as well as the differences in their
intended purposes, browsers handle the requests in different ways. A GET request, parameters and all, can
easily be saved as a bookmark, hardcoded as a link, and the response cached by the browser. Also, the
browser knows that no damage is done if it sends a GET request again automatically, for instance if the user
clicks the Reload or Back button.

A POST request, on the other hand, can not be bookmarked as easily; the browser would have to save both the
URI and the request message body. Since a POST request is intended to perform some possibly irreversible
action on the server, the browser must also ask the user if it's okay to send the request again. You have
probably seen this type of confirmation dialog, shown in Figure 2.3, numerous times with your browser.

Figure 2.3. Repost confirmation dialog

page 17

JavaSercer Pages

Besides GET and POST, HTTP specifies the following methods:
OPTIONS

The OPTIONS method is used to find out what options (e.g., methods) a server or resource offers.
HEAD

The HEAD method is used to get a response with all headers that would be generated by a GET request,
but without the body. It can be used to make sure a link is valid or to see when a resource was last
modified.

PUT

The PUT method is used to store the message body content on the server as a resource identified by
the URI.

DELETE
The DELETE method is used to delete the resource identified by the URI.
TRACE

The TRACE method is used for testing the communication between the client and the server. The server
sends back the request message, exactly as it was received, as the body of the response.

Note that these methods are not normally used in a web application.
2.1.5 State Management

As I touched on earlier, HTTP is a stateless protocol; when the server sends back the response corresponding
to the request, it forgets all about the transaction. If a user sends a new request, the server has no way of
knowing if it is related to the previous request.

This is fine for static content such as regular HTML files, but it's a problem for web applications where a
number of requests may be needed to complete a transaction. Consider a shopping cart application: the
server-side application needs to allow the user to select items in multiple steps, check the inventory when the
user is ready to make the purchase, and finally process the order. In this scenario, the application needs to
keep track of information provided by multiple requests from the same browser. In other words, it needs to
remember the client's transaction state.

There are two ways to solve this problem, and both have been used extensively for web applications with a
variety of server-side technologies. The server can either return the complete state with each response and let
the browser send it back as part of the next request; or, it can save the state somewhere on the server and
send back only an identifier that the browser returns with the next request. The identifier is then used to locate
the state information saved on the server.

In both cases, the information can be sent to the browser in one of three ways:

As a cookie
Embedded as hidden fields in an HTML form

Encoded in the URIs in the response body, typically as links to other application pages (this is known
as URL rewriting)

page 18

JavaSercer Pages

Figure 2.4 outlines these methods.

Figure 2.4. Client state information transportation methods

Server

HTTES1.0 200 0K
Set-cockie: sid=-xf23ad

request

(ookie GET /next.jsp HITESL.Q
method Cookie: eid=:f23ad

HTTE/1.0 200 OK

=html=

=form action=next.jsp method=POST=
<input type=hidden
nama=sid value=xf£23iad:>

< /html=

requesl

Hidder form POST /next.isp HTTES1.0

field method

sid=xf23ad

HTTE/1.0 200 O

=html >
<@ hrefl=next.jsp;sid=x£23ad>
Next page</ax>

< /html=

request

URL rewriting CET /next.isp;sid=x£23ad HTTE/1.0

method

A cookie is a name/value pair the server passes to the browser in a response header. The browser stores the
cookie for the time specified by the cookie's expiration time attribute. When the browser sends a request to a
server, it checks its "cookie jar" and includes all cookies it has received from the same server (that have not
yet expired) in the request headers. Cookies used for state management don't have an expiration time, and
expire as soon as the user closes the browser. Using cookies is the easiest way to deal with the state issue, but
cookies are not supported by all browsers. In addition, a user may disable cookies in a browser that does
support them because of privacy concerns. Hence, we cannot rely on cookies alone.

page 19

JavaSercer Pages

If hidden fields in an HTML form are used to send the state information to the browser, the browser returns the
information to the server as regular HTTP parameters when the form is submitted. When the state information
is encoded in URIs, it is returned to the server as part of the request URI, for instance when the user clicks on
an encoded link.

Sending all state information back and forth between the browser and server is not efficient, so most modern
server-side technologies employ the idea of keeping the information on the server and passing only an
identifier between the browser and the server. This is called session tracking : all requests from a browser that
contain the same identifier (session ID) belong to the same session, and the server keeps track of all
information associated with the session. As you will see in the next section, the servlet specification hides the
mechanisms used to implement session tracking to a large extent, making life easier for the application
developer. You will learn how the JSP specification makes it even easier to use session tracking in Chapter 8.

A session is valid until it's explicitly terminated (for instance, when the user logs out) or until it's automatically
timed out by the server after a period of user inactivity (typically 30 minutes). Note that there's no way for the
server to tell if the user closes the browser, since there's no permanent connection between the browser and
the server, and no message is sent to the server when the browser disappears. Still, closing the browser
usually means losing the session ID; the cookie expires or the encoded URIs are no longer available. So when
the user opens a browser again, the server is unable to associate the new request with the previous session,
and therefore creates a new session. However, all the session data associated with the previous session
remains on the server until the session times out.

2.2 Servlets

The ISP specification is based on the Java servlet specification. In fact, JSP pages are often combined with
servlets in the same application. So to use JSP effectively, it's important to understand the similarities and the
concepts that apply to both technologies. In this section, we first take a brief look at what a servlet is, and
then discuss the concepts shared by servlets and JSP pages. In Chapter 3, we'll take a closer look at how JSP
pages are actually turned into servlets automatically.

If you're already familiar with servlets, this is old news. You can safely skip the rest of this chapter. If you're
not familiar with programming, don't worry about the details. The important thing is that you get familiar with
the concepts described in the remainder of this chapter.

2.2.1 Advantages Over Other Server-Side Technologies

In simple terms, a servlet is a piece of code that adds new functionality to a server (typically a web server),
just like CGI and proprietary server extensions such as NSAPI and ISAPI. But compared to other technologies,
servlets have a number of advantages:

Platform and vendor independence

Servlets are supported by all the major web servers and application servers, so a servlet-based solution
doesn't tie you to one specific vendor. And because servlets are written in the Java programming
language, they can be used on any operating system with a Java runtime environment.

Integration

Servlets are developed in Java and can therefore take advantage of all the other Java technologies,
such as JDBC for database access, JNDI for directory access, RMI for remote resource access, etc.
Starting with Version 2.2, the servlet specification is part of the Java 2 Enterprise Edition (J2EE),
making servlets an important ingredient of any large-scale enterprise application, with formalized
relationships to other server-side technologies such as Enterprise JavaBeans (EJB).

Efficiency

Servlets execute in a process that runs until the servlet-based application is shut down. Each servlet
request is executed as a separate thread in this permanent process. This is far more efficient than the
CGI model, where a new process is created for each request. First of all (and most obviously), a servlet
doesn't have the overhead of creating the process and loading the CGI script and possibly its
interpreter. But another timesaver is that between requests, servlets can also access resources that
remain loaded in the process memory, such as database connections and client state.

page 20

JavaSercer Pages

Scalability

By virtue of being written in Java and the broad support for servlets, a servlet-based application is
extremely scalable. You can develop and test the application on a Windows 98 PC using the standalone
servlet reference implementation, and deploy it on anything from a more powerful server running Linux
and Apache to a cluster of high-end servers with an application server that supports loadbalancing and
failover.

Robustness and security

Java is a strongly typed programming language. This means that you catch a lot of mistakes in the
compilation phase that you would only catch during runtime if you used a scripting language like Perl.
Java's error handling is also much more robust than C/C++, where an error like division by zero
typically brings down the whole server.

In addition, servlets use specialized interfaces to server resources that are not vulnerable to the
traditional security attacks. For instance, a CGI Perl script typically uses shell command strings
composed of data received from the client to ask the server to do things like sending email. People with
nothing better to do love to find ways to send data that will cause the server to crash, remove all files
on the hard disk, or plant a virus or a backdoor when the server executes the command. A CGI script
programmer must be very careful to screen all input to avoid these threats, but these problems are
almost non-existent with a servlet since it doesn't communicate with the server in the same insecure
way.

As you will see in Chapter 3, JSP inherits all these advantages by being based on the servlet specification.
2.2.2 Servlet Life Cycle

If you're already a Java programmer, there are some fundamental points you should know about servlets. A
servlet is a Java class that uses the Servlet Application Programming Interface (API). The Servlet API consists
of a number of classes and interfaces that define the methods that make it possible to process HTTP requests
in a web server-independent manner.

When a web server receives a request that should be handled by a servlet, it first checks if an instance of the
specific servlet class exists. If it doesn't, it creates one. This is referred to as /oading the servlet. It then asks
the servlet to process the request. Once a servlet has been loaded, the same servlet instance (object) is called
to process succeeding requests. Eventually the web server needs to shut down the servlet, typically when the
web server itself is shut down. It first informs the servlet about the shutdown; this gives the objects a chance
to do necessary housekeeping, such as closing a database connection, before shutting down.

These three interactions between the web server and the servlet are defined by methods in the
javax.servlet.Servlet interface, and are referred to as the servlet's life-cycle methods. Here are their
formal definitions:

public void init(servletconfig config)

The init() method is called when the servlet is loaded so it can initialize its state: for instance, set
up references to external resources such as a database and read configuration information.

public void service(ServletRequest req, ServletResponse res)

The service() method is called to service a request. It's called zero or more times during the
servlet's lifetime, and passes objects representing the request and response messages to the servlet.

public void destroy()

The destroy() method is called just before the servlet is taken out of service. It allows the servlet to
release references to any external resources it has acquired during its lifetime.

page 21

JavaSercer Pages

Figure 2.5 illustrates how the web server uses the life-cycle methods.

Figure 2.5. Servlet life cycle

Server
Servlet closs
-
ance af first request, or af server starf init(ServletConfig config)
every request service(ServletRequest req,
ServletResponse res)
once when server shuts down destroy()

Most interesting to us is the service() method. It gives the servilet access to two objects, which are passed
as arguments to the method: a ServietRequest object and a ServietResponse object (when HTTP is used,
specialized objects of type HttpServiletRequest and HttpServietResponse are used instead). Through
methods implemented by the ServietRequest object, the servlet can access all information known about the
request message: parameter values, header values, authentication information, etc. The servlet uses methods
of the ServiletResponse object to generate the response message. It can set headers, the status code, and
the actual response body, which is typically a dynamically generated HTML page.

In Chapter 3, I discuss how a JSP page is turned into a servlet the first time it's requested, and then loaded,
called, and shut down in exactly the same way as a regular servlet.

2.2.3 Servlet Containers

A servlet container is the connection between a web server and the servlets. It provides the runtime
environment for all the servlets on the server as defined by the servlet specification, and is responsible for
loading and invoking those servlets when the time is right.

There are many different types of servlet containers. Some containers are called add-ons, or plug-ins, and are
used to add servlet support to web servers without native servlet support (such as Apache and IIS). They can
run in the same operating-system process as the web server or in a separate process. Other containers are
standalone servers. A standalone server includes web server functionality to provide full support for HTTP in
addition to the servlet runtime environment. Containers can also be embedded in other servers, such as a
climate-control system, to offer a web-based interface to the system. A container bundled as part of an
application server can distribute the execution of servlets over multiple hosts. The server can balance the load
evenly over all containers, and some servers can even provide failover capabilities in case a host crashes.

No matter what type it is, the servlet container is responsible for mapping incoming requests to a servlet
registered to handle the resource identified by the URI and passing the request message to that servlet. After
the request is processed, it is the container's responsibility to convert the response object created by the
servlet into a response message and send it back to the client. This is illustrated in Figure 2.6.

page 22

JavaSercer Pages
Figure 2.6. Request dispatching
Jsoles/repor I monlh=Jan
*
N |

! Servlet Container
: ® /reportmonth=lon

(onlex! Path: /et

; Context Posh; /hr
- == Contox! Pl /salles Servlet Context
E o monih=Jan

fruernnneespe MOpping: Srepart/*

Mopging: forecast,
Servlet

2.2.4 Servlet Contexts

A servlet container implementing the Servlet 2.1 API (or later) can group servlets and other resources such as
JSP pages, HTML pages, and image files into separate serviet contexts. Each servlet context represents a web
application, and is associated with a unique URI path prefix called the context path, as shown in Figure 2.6. For
instance, your human-resources application can be associated with the context path /hr and your sales-
tracking system with the context path /sales. This allows one servlet container to distinguish between
applications and dispatch requests like /sales/report?month=Jan to the sales tracking application and
/hr/emplist to the human-resources application.

The remaining URI path is then used within the selected context to decide how to process the request by
comparing it to path mapping rules. Such rules can be set up to send all requests starting with /report to one
servlet and with /forecast to another. Another type of rule can be set up to let one servlet handle all requests
with paths ending with a specific file extension, such as .jsp. Figure 2.6 shows how the different parts of the
URI paths are used to direct the request processing to the right resource through the container and context.

Each context is self-contained and doesn't know anything about other applications running in the same
container. All references between the servlets and JSP pages in the application are relative to the context path,
and therefore referred to as context-relative paths. By using context-relative paths within the application, a
web application can be deployed using any context path. The servlet specification defines a standard packaging
format for web applications that all compliant containers know how to install and associate with a context. This
is described in more detail in Section 2.3.

A web application can be more than just JSP pages, HTML pages, and images. Therefore, a context can hold on
to objects shared by all components of the application,? such as database connections and other shared
resources needed by multiple servlets and JSP pages. This is represented by the application scope in JSP, and
we'll take a closer look at how to use it in Chapter 8. Each context also has its own set of configuration data,
discussed in more detail in the last section of this chapter.

2.2.5 Sessions

Earlier, I mentioned that the Servlet API hides the mechanisms used to implement session tracking to a large
extent. A servlet-based application doesn't need to know if the session ID is passed between the server and
the browser as a cookie or encoded in the URIs. Instead, the servlet container looks at the information it
receives with each request and decides which mechanism to use. If it receives a session ID cookie, it uses
cookie-based tracking; if it receives an encoded URI, it uses URL rewriting. No matter which mechanism is
used, the container gives the servlet access to the state information associated with the browser through the
request object it passes to the servlet.

? There are special considerations for applications distributed over multiple servers. Chapter 13, describes this in more detail.

page 23

JavaSercer Pages

The state information is represented by a session object, which is an instance of a Servlet API class hamed
javax.servlet.http.HttpSession. The session object acts as a container for other objects that make up the
session state, with methods for adding, getting, and removing these objects. For instance, in an e-commerce
application, the user picks items to buy from an online catalog. When the servlet receives a request to put an
item in the shopping cart, it gets the session object from the request and places a Java object representing the
item in the session by calling its setAttribute() method. Later, when the user checks out, another servlet
picks up all items from the session using other methods, and processes the order.

Since a JSP page is turned into a servlet, it has access to the session in the same way, but JSP makes it even
easier to work with session data through the concept of a session scope. We look at all aspects of sessions
from a JSP perspective in Chapter 8.

2.3 Packaging Java Web Applications

A complete web application may consist of several different resources: JSP pages, servlets, applets, static
HTML pages, custom tag libraries and other Java class files. Until very recently, different servers required an
application with all these components to be installed and configured in different ways, making it very hard for
web application developers to provide easy-to-use installation instructions and tools.

Version 2.2 of the servlet specification defines a portable way to package all these resources together, along
with a deployment descriptor. A deployment descriptor is a file that outlines security requirements and
describes how all the resources fit together. All files for the web application are placed in an archive file, called
a Web Archive (WAR) file. A WAR file has a .war file extension and can be created with the Java jar command
or a ZIP utility program such as WinZip (the same compression scheme is used).

All Servlet 2.2-compliant servers can install a WAR file and associate the application with a servlet context.
During installation, a server is free to unpack the contents of the file and store it for runtime use in any way it
sees fit, but the application developer needs to deal with only one delivery format. This standardized
deployment format also enables server vendors to develop installation and configuration tools that make it
easy to install a new web application.

The internal structure for a WAR file is defined by the JSP specification. During development, however, it's
often more convenient to work with the web application files in an open filesystem instead of packaging and
repackaging them into a WAR file every time you make a change. As a result, most containers support the
WAR structure in an open filesystem as well.

The structure required for both is outlined here:

/index.html

/company/contact.html

/products/Tlist.jsp

/images/banner.gif

/WEB-INF/web.xml

/WEB-INF/1ib/bean. jar

/WEB-INF/1ib/actions.jar
/WEB-INF/classes/com/mycorp/serviets/PurchaseServilet.class
/WEB-INF/classes/com/mycorp/util/MyuUtils.class
/WEB-INF/...

The top-level in this structure is the document root for all web application files, such as HTML pages, ISP
pages, and image files - in other words, all the files requested directly by the browser.

You're probably wondering about the WEB-INF directory. This directory contains the application deployment
descriptor (web.xml) as well as subdirectories for other types of resources, such as Java class files and
configuration files. A browser does not have access to the files under this directory, so it's safe to place files
that you don't want public here.

The deployment descriptor file, web.xml, is a simple XML file. We will get much more familiar with the contents
of this file as we proceed through the book. (Appendix D, also contains a complete reference of this file.) In
addition, two WEB-INF subdirectories have special meaning if you're a programmer: /ib and classes. The lib
directory typically contains Java Archive (JAR) files (compressed archives of Java class files). As an
alternative, class files can be stored in the classes directory without being compressed, which can be
convenient during development. However, class files must be stored in subdirectories of the classes directory
that mirror their package structure, and must follow standard Java conventions for how class files are
organized in a directory tree.

page 24

JavaSercer Pages

Chapter 3. JSP Overview

JSP is the latest Java technology for web application development, and is based on the servlet technology
introduced in the previous chapter. While servlets are great in many ways, they are generally reserved for
programmers. In this chapter, we look at the problems that JSP technology solves, the anatomy of a JSP
page, the relationship between servlets and JSP, and how a JSP page is processed by the server.

In any web application, a program on the server processes requests and generates responses. In a simple
one-page application, such as an online bulletin board, you don't need to be overly concerned about the
design of this piece of code; all logic can be lumped together in a single program. But when the application
grows into something bigger (spanning multiple pages, with more options and support for more types of
clients) it's a different story. The way your site is designed is critical to how well it can be adapted to new
requirements and continue to evolve. The good news is that JSP technology can be used in all kinds of web
applications, from the simplest to the most complex. Therefore, this chapter also introduces the primary
concepts in the design model recommended for web applications, and the different roles played by JSP and
other Java technologies in this model.

3.1 The Problem with Servlets

In many Java servlet-based applications, processing the request and generating the response are both
handled by a single servlet class. A example servlet looks like this:

public class oOrderservlet extends HttpServlet {
public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

response.setContentType("text/html");
Printwriter out = response.getwriter();

if (isorderinfovalid(request)) {
saveorderInfo(request);
out.printin("<htm1>");
out.printin(" <head>");
out.printin(" <title>0Order Confirmation</title>");
out.printin(" </head>");
out.printin(" <body>");
out.printin(" <hl>0rder cConfirmation</h1>");
renderorderInfo(request);
out.printin(" </body>");
out.printin("</htm1>");

If you're not a programmer, don't worry about all the details in this code. The point is that the servlet
contains request processing and business logic (implemented by methods such as isorderinfovalid() and
saveorderinfo()) and also generates the response HTML code, embedded directly in the servlet code using
printIn() calls. A more structured servlet application isolates different pieces of the processing in various
reusable utility classes, and may also use a separate class library for generating the actual HTML elements in
the response. But even so, the pure servlet-based approach still has a few problems:

Detailed Java programming knowledge is heeded to develop and maintain all aspects of the
application, since the processing code and the HTML elements are lumped together.

Changing the look and feel of the application, or adding support for a new type of client (such as a
WML client), requires the servlet code to be updated and recompiled.

It's hard to take advantage of web page development tools when designing the application interface.
If such tools are used to develop the web page layout, the generated HTML must then be manually
embedded into the servlet code, a process that is time-consuming, error-prone, and extremely
boring.

Adding JSP to the puzzle lets you solve these problems by separating the request processing and business
logic code from the presentation, as illustrated in Figure 3.1. Instead of embedding HTML in the code, you
place all static HTML in JSP pages, just as in a regular web page, and add a few JSP elements to generate the
dynamic parts of the page. The request processing can remain the domain of servlet programmers, and the
business logic can be handled by JavaBeans and Enterprise JavaBeans (EJB) components.

page 25

JavaSercer Pages

Figure 3.1. Separation of request processing, business logic, and presentation

_ Serviet
public class OrderServlet...{
public void doGet{...)
reques! provessing if (bean.is0rdervalidi...)}{
R bean.savelrder(...};
forward(“conf.jsp"};
-, }
: 1
Pure Serviet i -
public class OrderServlet...| J5P
public woid doGet(...}{ i —
e o =html=
1f {1s0rderValidireg)) { 1 <hodys
savelrder (reg) ; ¢0T§_1 0op Names"ordar s
out.println{"<html=" JT-| Pfﬂmﬁ.ﬂ_-" =-eon o -
rintin® R e ‘e
out.println("<body="] Sfeme TErEe
ﬁ_fhad:!r:\-
private void isdOrderValidil...){ Prfeianic
} fre JavaBeans
private veold saveOrder(...)f
} i 0rderValid{)
} i I
H——
busiress logit savelrderl)

As I mentioned before, separating the request processing and business logic from presentation makes it
possible to divide the development tasks among people with different skills. Java programmers implement the
request processing and business logic pieces, web page authors implement the user interface, and both
groups can use best-of-breed development tools for the task at hand. The result is a much more productive
development process. It also makes it possible to change different aspects of the application independently,
such as changing the business rules without touching the user interface.

This model has clear benefits even for a web page author without programming skills who is working alone. A
page author can develop web applications with many dynamic features, using generic Java components
provided by open source projects or commercial companies.

3.2 The Anatomy of a JSP Page

A JSP page is simply a regular web page with JSP elements for generating the parts of the page that differ for
each request, as shown in Figure 3.2.

Everything in the page that is not a JSP element is called template text . Template text can really be any text:
HTML, WML, XML, or even plain text. Since HTML is by far the most common web page language in use
today, most of the descriptions and examples in this book are HTML-based, but keep in mind that JSP has no
dependency on HTML,; it can be used with any markup language. Template text is always passed straight
through to the browser.

page 26

JavaSercer Pages
Figure 3.2. Template text and JSP elements

<%@ page language="java" contentTypes='Lext /html" %= [~ 5P olement

<html = —H’.I'nﬁ'ﬂ.fﬂkﬂ

=body bgoolor="white"=

<jsp:useBean
id="usarInfo"
class="com.ora.jsp.beans . userinfo. UserinfoBean®> |~ J5P elemen
<jsp:setProperty name="userInfo" property="*"/>
=/jspruseBaans

The following information was sawved:
<ul=> — lamplate lox)

<li=User Hame:

<jsp:getProperty name="userInfa" I —
property="uzerMama" />
=li>Email Address:]—i'mpﬂuremf
<jsp:getProperty names"userInfo ___ i
propertys="emailadde" /> ISP element
<ful= o
< /body> — ety o
= /html=>

When a JSP page request is processed, the template text and the dynamic content generated by the JSP
elements are merged, and the result is sent as the response to the browser.

3.2.1 JSP Elements
There are three types of elements with JavaServer Pages: directive, action, and scripting elements.

The directive elements, shown in Table 3.1, are used to specify information about the page itself that remains
the same between page requests, for example, the scripting language used in the page, whether session
tracking is required, and the name of a page that should be used to report errors, if any.

Table 3.1, Directive Elements

Element Description
%@ page ... %> Defines page-dependent attributes_, such as scripting language, error
page, and buffering requirements
<%@ include ... %> Includes a file during the translation phase
<%@ taglib ... %> Declares a tag library, containing custom actions, used in the page

Action elements typically perform some action based on information that is required at the exact time the JSP
page is requested by a client. An action element can, for instance, access parameters sent with the request to
do a database lookup. It can also dynamically generate HTML, such as a table filled with information retrieved
from an external system.

The JSP specification defines a few standard action elements, listed in Table 3.2, and includes a framework for
developing custom action elements. A custom action element can be developed by a programmer to extend
the JSP language. The examples in this book use custom actions for database access, internationalization,
access control, and more.

page 27

JavaSercer Pages

Table 3.2, Standard Action Elements

Element Description

<jsp:useBean> Makes a JavaBeans component available in a page

Gets a property value from a JavaBeans component and adds it to the

<jsp:getProperty>
1sp:g perty response

<jsp:setProperty> Sets a JavaBeans property value

Includes the response from a servlet or JSP page during the request

jsp:include
<Jsp g processing phase

<jsp:forward> Forwards the processing of a request to a servlet or JSP page

Adds a parameter value to a request handed off to another servlet or JSP

jsp:param . ; -
<Jsp:p ” page using <jsp:include> or <jsp:forward>

]) Generates HTML that contains the appropriate client browser-dependent
<jsp:plugin> elements (OBJECT or EMBED) needed to execute an Applet with the Java
Plugin software

Scripting elements, shown in Table 3.3, allow you to add small pieces of code to a JSP page, such as an if
statement to generate different HTML depending on a certain condition. Like actions, they are also executed
when the page is requested. You should use scripting elements with extreme care: if you embed too much
code in your JSP pages, you will end up with the same kind of maintenance problems as with servlets
embedding HTML.

Table 3.3, Scripting Elements

Element Description
<k ... K> Scriptlet, used to embed scripting code.
e . %> Expression, used to embed Java expressions when the result shall be added

to the response. Also used as runtime action attribute values.

<41 ... 9 | Declaration, used to declare instance variables and methods in the JSP page
’ implementation class.

JSP elements, such as action and scripting elements, are often used to work with JavaBeans . Put succinctly,
a JavaBeans component is a Java class that complies with certain coding conventions. JavaBeans are typically
used as containers for information that describes application entities, such as a customer or an order. We'll
cover each of these element types, as well as JavaBeans, in the following chapters.

3.3 JSP Processing

A JSP page cannot be sent as-is to the browser; all JSP elements must first be processed by the server. This
is done by turning the JSP page into a servlet, and then executing the servlet.

Just as a web server needs a servlet container to provide an interface to servlets, the server needs a JSP
container to process JSP pages. The JSP container is often implemented as a servlet configured to handle all
requests for JSP pages. In fact, these two containers - a servlet container and a JSP container - are often
combined into one package under the name web container (as it is referred to in the J2EE documentation).

A JSP container is responsible for converting the JSP page into a servlet (known as the JSP page
implementation class) and compiling the servlet. These two steps form the trans/ation phase . The JSP
container automatically initiates the translation phase for a page when the first request for the page is
received. The translation phase takes a bit of time, of course, so a user notices a slight delay the first time a
JSP page is requested. The translation phase can also be initiated explicitly; this is referred to as
precompilation of a JSP page. Precompiling a JSP page avoids hitting the user with this delay, and is
discussed in more detail in Chapter 12.

page 28

JavaSercer Pages

The JSP container is also responsible for invoking the JSP page implementation class to process each request
and generate the response. This is called the request processing phase. The two phases are illustrated in
Figure 3.3.

Figure 3.3. JSP page translation and processing phases

I hE"lJ-.'rsp

Server with
JSP Container L M g .
_ R Translation
Clhont L L
helloSended jova |
0 GET /helo.jsp —| Generade
¢ L6] Comple
<himl»Hellol< bl i 'o
o © Foguesl
helloSardet. cless 5 .mssing

As long as the JSP page remains unchanged, any subsequent processing goes straight to the request
processing phase (i.e., it simply executes the class file). When the JSP page is modified, it goes through the
translation phase again before entering the request processing phase.

So in a way, a JSP page is really just another way to write a servlet without having to be a Java programming
wiz. And, except for the translation phase, a JSP page is handled exactly like a regular servlet: it's loaded
once and called repeatedly, until the server is shut down. By virtue of being an automatically generated
servlet, a JSP page inherits all of the advantages of servlets described in Chapter 2 : platform and vendor
independence, integration, efficiency, scalability, robustness, and security.

Let's look at a simple example of a servlet. In the tradition of programming books for as far back as anyone
cares to remember, we start with an application that just writes Hello World, but this time we will add a twist:
our application will also show the current time on the server. Example 3.1 shows a hand-coded servlet with
this functionality.

Example 3.1. Hello World Servlet

public class Helloworldservlet implements Servlet {
public void service(ServletRequest request,
ServletResponse response)
throws ServletException, IOException {

response.setContentType("text/html");
Printwriter out = response.getwriter();

out.printin("<htm1>");

out.printin(" <head>");

out.printin(" <title>Hello world</title>");

out.printin(" </head>");

out.printin(" <body>");

out.printin(" <h1>HelTlo world</h1>");

out.printin(" It's " + (new java.util.pate().toString()) +
" and all is well.");

out.printin(" </body>");

out.printin("</htm1>");

As before, don't worry about the details if you're not a Java programmer. What's important here is that the
service() method is the method called by the servlet container every time the servlet is requested, as
described in Chapter 2. The method generates all HTML code, using the println() method to send the
strings to the browser. Note that there's no way you could use a web development tool to develop this type of
embedded HTML, adjust the layout with immediate feedback, verify that links are intact, etc. This example is
so simple that it doesn't really matter, but imagine a complex page with tables, aligned images, forms, some
JavaScript code, etc., and you see the problem.

page 29

JavaSercer Pages

Also note the following lines, which add the current date and time to the response (shown in Figure 3.4):

out.printin(" "It's + (new java.util.Date().toString())

+ and all 1is well.");

Figure 3.4. The output from the Hello World serviet

F, Hello Wosld - Nelrcape

Fila Ect Miew Go Communicator Help

2 v 342 nl D H

¥ Bookmarkz & Gota [hiipocahodt S0 et HelowiorldSendel x| T hal's Aslated

T Hinstart Message M Thedavalobby S JaveScht 5 CNM Interachive S Techweb 4 Bank of Ameica

sl

Hello World

It'z Supy bolar 12 123303 PET 2000 and afl i2 well

=

o i Mestscape Gh Al O

]

\g.

Example 3.2 shows a JSP page that produces the same result as the Hello World servlet.

Example 3.2. Hello World JSP Page

<html>
<head>
<title>Hello world</title>
</head>
<body>
<h1>HelTo world</hl>
It's <%= new java.util.Date().tostring() %> and all is well.
</body>
</html>

This is as simple as it gets. A JSP page is a regular HTML page, except that it may also contain JSP elements
like the highlighted element in this example. This element inserts the same Java code in the page as was
used in the servlet to add the current date and time. If you compare this JSP page to the corresponding
servlet, you see that the JSP page can be developed using any web page editor that allows you to insert
extra, non-HTML elements. And the same tool can later be used to easily modify the layout. This is a great

advantage over a servlet with embedded HTML.

The JSP page is automatically turned into a servlet the first time it's requested, as described earlier. The

generated servlet looks something like in Example 3.3.

Example 3.3. Serviet Generated from JSP Page

import javax.servlet.*;

import javax.servlet.http.¥*;

import javax.servlet.jsp.¥*;

import javax.servlet.jsp.tagext.*;
import java.io.*;

import org.apache.jasper.¥*;

import org.apache.jasper.runtime.*;

public class _0005chello_0002ejsphello_jsp_1 extends HttplspBase {

public void _ jspService(HttpServletRequest request,
HttpServletResponse response))
throws IOException, ServletException {

JspFactory _ jspxFactory = null;
PageContext pageContext = null;
HttpSession session = null;
ServletContext application = null;
ServletConfig config = null;
Jspwriter out = null;

Object page = this;

String _value = null;

try {

_ jspxFactory = JspFactory.getDefaultFactory();
response.setContentType("text/htm1");

pageContext = _ jspxFactory.getPageContext(this, request,

response,"", true, 8192, true);

page 30

JavaSercer Pages

application = pageContext.getServletContext();
config = pageContext.getServiletConfig();
session = pageContext.getSession();
out = pageContext.getout();

out.write("<HTML>\r\n <HEAD>\r\n <TITLE>" +
"Hello world</TITLE>\r\n </HEAD>\r\n" +
" <BODY>\r}n <H1>Hello world</H1>\r\n" +
" It's ");

out.print(new java.util.Dpate().toString());

out.write(" and all is well.\r\n </BODY>\r\n" +
"</HTML>\r\n");

} catch (Exception ex) {
if (out.getBuffersize() != 0)
out.clear();
pageContext.handlePageException(ex);
} finally {
out.flush();
_ jspxFactory.releasePageContext(pageContext);

The generated servlet in Example 3.3 looks a lot more complex than the hand-coded version in Example 3.1.
That's because a number of objects you can use in a JSP page must always be initialized (the hand-coded
version doesn't need this generic initialization). These details are not important now; programming examples
later in the book will show you how to use all objects of interest.

Instead, you should note that the servlet generated from the JSP page is a regular servlet. The _jspService(
) method corresponds to the service() method in the hand-coded servlet; it's called every time the page is
requested. The request and response objects are passed as arguments to the method, so the JSP page has
access to all the same information as does a regular servlet. This means it can read user input passed as
request parameters, adjust the response based on header values (like the ones described in Chapter 2), get
access to the session state, etc. - just like a regular servlet.

The highlighted code section in Example 3.3 shows how the static HTML from the JSP page in Example 3.2
has been embedded in the resulting code. Also note that the Java code to retrieve the current date and time
has been inserted in the servlet as-is. By letting the JSP container convert the JSP page into a servlet that
combines code for adding HTML to the response with small pieces of Java code for dynamic content, you get
the best of both worlds. You can use familiar web page development tools to design the static parts of the
web page, drop in JSP elements that generate the dynamic parts, and still enjoy all the benefits of servlets.

page 31

JavaSercer Pages

Client-Side Versus Server-Side Code

Page authors who have some experience developing client-side scripts using JavaScript (ECMAScript)
or VBScript can sometimes get a bit confused when they start to use a server-side technology like
JSP.

Client-side scripts, embedded in <script> elements, execute in the browser. These types of scripts
are often linked to a form element such as a selection list. When the user selects an item in the list,
the associated script is executed, perhaps populating another selection list with appropriate choices.
Since all this code is executed by the browser, the client-side script provides immediate feedback to
the user.

Server-side code, like action and scripting elements in a JSP page, executes on the server. Recall
from Chapter 2 that the browser must make a request to the server to execute a JSP page. The
corresponding JSP code is then used to produce a dynamic response.

This brings up an important point: there's no way a client-side script can directly call an individual
Java code segment in the JSP page. A client-side script can ask the browser to make a request for the
complete page, but it can't process the response and use it to do something such as populate a
selection list with the data.

It is possible, although not very efficient, to link a user action to a client-side script, invoking an
applet that in turn makes a request to a servlet or JSP page. The applet can then read the response
and cause some dynamic action in the web browser. This approach may be reasonable on a fast
intranet, but you probably won't be happy with the response times if you tried it on the Internet
during peak hours. The reason is that the HTTP request/response model was never intended to be
used for this type of incremental user interface update. Consequently, there's a great deal of
overhead involved. If you still want to do this, be careful not to open up a security hole. For instance,
if you develop an applet that can send any SQL statement to a servlet and get the query result back,
you have made it possible for anyone to access all data in your database (that is accessible to the
servlet), not just the data that your applet asks for.

Client-side and server-side code can, however, be combined with good results. You can embed client-
side scripts as template text in your JSP pages, or generate it dynamically with actions or scripting
elements. But keep in mind that it's still client-side code; the fact that it's generated by a JSP page
doesn't change anything. A common use of client-side code is to validate user form input. Doing the
validation with client-side code gives the user faster feedback about invalid input and reduces the
load on the server. But don't forget that client-side scripting is not supported in all browsers, and
even if it is, the user may have disabled the execution of scripts. Therefore, you should always
perform input validation on the server as well.

Instead of using client-side scripts, you can of course use a Java applet to provide a more interactive
user interface. Ideally the applet is self-contained; in other words, it doesn't have to talk to the server
at all in order to present a user-friendly interface. If it needs to communicate with the server,
however, it can do so using a far more efficient protocol than HTTP. Java Servlet Programming by
Jason Hunter and William Crawford (O'Reilly) includes a chapter about different applet communication
options.

page 32

JavaSercer Pages

3.4 JSP Application Design with MVC

JSP technology can play a part in everything from the simplest web application, such as an online phone list
or an employee vacation planner, to full-fledged enterprise applications, such as a human resource application
or a sophisticated online shopping site. How large a part JSP plays differs in each case, of course. In this
section, we introduce a design model suitable for both simple and complex applications called Model-View-
Controller (MVC).

MVC was first described by Xerox in a number of papers published in the late 1980s. The key point of using
MVC is to separate components into three distinct units: the Model, the View, and the Controller. In a server
application, we commonly classify the parts of the application as: business logic, presentation, and request
processing. Business logic is the term used for the manipulation of an application's data, i.e., customer,
product, and order information. Presentation refers to how the application is displayed to the user, i.e., the
position, font, and size. And finally, request processing is what ties the business logic and presentation parts
together. In MVC terms, the Model corresponds to business logic and data, the View to the presentation logic,
and the Controller to the request processing.

Why use this design with JSP? The answer lies primarily in the first two elements. Remember that an
application data structure and logic (the Model) is typically the most stable part of an application, while the
presentation of that data (the View) changes fairly often. Just look at all the face-lifts that web sites have
gone through to keep up with the latest fashion in web design. Yet, the data they present remains the same.
Another common example of why presentation should be separated from the business logic is that you may
want to present the data in different languages or present different subsets of the data to internal and
external users. Access to the data through new types of devices, such as cell phones and Personal Digital
Assistants (PDASs), is the latest trend. Each client type requires its own presentation format. It should come as
no surprise, then, that separating business logic from presentation makes it easier to evolve an application as
the requirements change; new presentation interfaces can be developed without touching the business logic.

This MVC model is used for most of the examples in this book. In Part II, JSP pages are used as both the
Controller and the View, and JavaBeans components are used as the Model. The examples in Chapter 5
through Chapter 7 use a single JSP page that handles everything, while Chapter 8 through Chapter 11 show
how you can use separate pages for Control and View to make the application easier to maintain. Many types
of real-world applications can be developed this way, but what's more important is that this approach allows
us to examine all the JSP features without getting distracted by other technologies. In Part III, we look at
other possible role assignments when JSP is combined with servlets and Enterprise JavaBeans.

page 33

JavaSercer Pages

Chapter 4. Setting Up the JSP Environment

This book contains plenty of examples to illustrate all the JSP features. All examples were developed and
tested with the JSP reference implementation, known as the Apache Tomcat server, which is developed by the
Apache Jakarta project. In this chapter you will learn how to install the Tomcat server and add a web
application containing all the examples used in this book. You can, of course, use any web server that
supports JSP 1.1, but Tomcat is a good server for development and test purposes. You can learn more about
the Jakarta project and Tomcat, as well as how you can participate in the development, at the Jakarta web
site: http://jakarta.apache.org.

4.1 Installing the Java Software Development Kit

Tomcat is a pure Java web server with support for the Servlet 2.2 and JSP 1.1 specifications. To use it, you
must first install a Java runtime environment. If you don't already have one, you can download a Java SDK
for Windows, Linux, and Solaris at http://java.sun.com/j2se/.

I recommend that you install the Java 2 SDK as opposed to the slimmed-down Runtime Environment (JRE)
distribution. The reason is that JSP requires a Java compiler, which is included in the SDK but not in the JRE.
Sun Microsystems has made the javac compiler from the SDK available separately for redistribution by the
Apache Software Foundation. So technically, you could use the JRE and download the Java compiler as part of
the Tomcat package, but even as I write this chapter, the exact legal conditions for distributing the compiler
are changing.

Another alternative is to use the Jikes compiler from IBM
(http://www10.software.ibm.com/developerworks/opensource/jikes/). Tomcat can be configured to use Jikes
instead of the javac compiler from Sun; read the Tomcat documentation if you would like to try this. To make
things simple, though, I suggest installing the Java 2 SDK from Sun. The examples were developed and
tested with Java 2 SDK, Standard Edition, v1.2.2 and v1.3. I recommend that you use the latest version of
the SDK available for your platform.

If you need an SDK for a platform other than Windows, Linux, or Solaris, there's a partial list of ports made
by other companies at Sun's web site http://java.sun.com/cgi-bin/java-ports.cgi/

Also check your operating system vendor's web site. Most operating system vendors have their own SDK
implementation available for free.

Installation of the SDK varies depending on platform but is typically easy to do. Just follow the instructions on
the web site where you download the SDK.

Before you install and run Tomcat, make sure that the JAVA_HOME environment variable is set to the
installation directory of your Java environment, and that the Java bin directory is included in the PATH
environment variable. On a Windows system, you can see if an environment variable is set by typing the
following command in a Command Prompt window:

C:\> echo %JAVA_HOME%
C:\jdk1.1.2

If JAVA_HOME is not set, you can set it and include the bin directory in the PATH like this on a Windows system
(assuming Java is installed in C:\jdk1.2.2):

C:\> set JAVA_HOME=C:\jdkl.1.2
C:\> set PATH=%JAVA_HOME%\bin;%PATH%

On a Windows 95/98 system, you can add these commands to the C:\AUTOEXEC.BAT file to set them
permanently. Just use a text editor, such as Notepad, and add lines with the set commands. The next time
you boot the PC, the environment variables will be set automatically. For Windows NT and 2000, you can set
them permanently from the Environment tab in the System Properties tool.

If you use Linux or some other Unix platform, the exact commands depend on which shell you use. With
bash, which is commonly the default for Linux, use the following commands (assuming Java is installed in
/usr/local/jdk1.2.2):

[hans@gefion /] export JAVA_HOME=/usr/local/jdkl.2.2
[hans@gefion /] export PATH=$JAVA_HOME/bin:$PATH
[hans@gefion /] echo $PATH
/Jusr/local/jdkl.2.2/bin:/usr/local/bin:/bin:/usr/bin

page 34

http://jakarta.apache.org
http://java.sun.com/j2se/
http://www10.software.ibm.com/developerworks/opensource/jikes/
http://java.sun.com/cgi-bin/java-ports.cgi/

JavaSercer Pages

4.2 Installing the Tomcat Server

You can download the Tomcat Server either in binary format or as source code that you compile yourself. If
you're primarily interested in learning about JSP, I recommend that you use the binary download to run the
examples in this book and develop your own applications. If you're a Java programmer and interested in
seeing how Tomcat is implemented, feel free to download the source and take a look at the internals.

The binary distribution is available at http://jakarta.apache.org/downloads/binindex.html

On this page you find three types of builds:

Release builds
Milestone builds

Nightly builds

Release builds are stable releases that have been tested extensively and verified to comply with the servlet
and JSP specifications. Milestone builds are created as intermediary steps towards a release build. They often
contain new features that are not yet fully tested, but are generally known to work. A nightly build, however,
may be very unstable. It's actually a snapshot of the latest source code and may have been tested only by
the person who made the latest change. You should use a nightly build only if you're involved in the
development of Tomcat.

You should download the latest release build. All examples in this book were developed and tested using the
3.2 (Beta 3) version, but any release later than 3.2 should work fine as well. When you click on the link for
the latest release build and select the bin directory, you see a list of archive files in different formats, similar
to Figure 4.1.

Figure 4.1. Release build packages

W Index of Mhaildelomeal fieleazedsd 2hin - Helzcaps

e Edt Sew Go Comwarscsior Help
= = T Yo T
t v Aok R =
(F " Bockmarks B Go oI Viskatn spache cop ks homcatiiakase /v 3 2t =] " What's Rickied
T AlnetantMessnos B Thelsalobby S Javafolt S CHM Interactive [TecHish D) Bank of Ansica
-
Index of /builds/tomcat/release/v3.2/bin
|} L T
‘_# Farent lirectory Il=Aug=-Z000 DA:53 -
-,
"__r jmEAE Ta-ank, Car .3 F1-Aug-2000 08 :35 1.4M tar archivs
|
b_fF jakacta=ant.ter.ge Il=fug=I000 DB:34 SBlk GZIF rompres=ed documse:
Ty
B qaksrsa-ank,zin 31-Aug-2000 08:35 892k
KW jakorsa-servierapi ter.Z 31-Aug-2000 08:36 477k tar archive

[,
L Jakacca-sarvlesapi.tarc.gz Il=Aug=-2000 DB:36 225k GZIP compressed docums:

!
M Sakarta-serviecapi.zip 3l-Aug-Z000 0:36 434k
I-fog-Z000 OB 38 4.M tar archiwve

L 3l-Aug-Z000 DB:39 1.54 GZIF pompras=ed docume>
WH akarca-towear. s 31 =Aug=2000 08 : 40

2.2

"

H§ jakeacta-tools.tar.2 Il=Ang-Z000 DO:£1 1.2 tar mcchiwve

P

I':_J' Jakac ta-t 1, DAL, F1-Aug-2000 08 : 40 #88k GEZIP compressed docume>

"

Ll Jakacta-tools. iy dl-Aug-Z000 DE:41 B8Ak

2y

21 jakarta-watchdog. bar I1=Aug=Z000 0843 1.4 tar acchive

x"

l'_.l‘ |skarTa-watchdog. Car . g F1-Aug-Z000 00 : 49 L.6M GIIF compressed docume: b
5,

I'J' Jakar ta=uatchdog. 2ip Il=ang=Z000 DH:45 2. TM

I:I L4 it/ 31-Aug-2000 08 :£5 -

o c e .. =
ik Document: Dona 3ol 1 W Y

page 35

http://jakarta.apache.org/downloads/binindex.html

JavaSercer Pages

Pick a compression format that's appropriate for your platform. For Windows, select jakarta-tomcat.zip and
save it to your hard drive, for instance in a directory named C:\Jakarta. You can unpack the package either
with a ZIP utility program such as WinZip, or by using the jar command that's included in the Java
distribution. Using the Command Prompt window where you set the JAVA_HOME and PATH environment
variables earlier, change directory to the directory where you downloaded the ZIP file and unpack it:

C:\> cd Jakarta))
C:\Jakarta> jar xvf jakarta-tomcat.zip

For Unix platforms, download the jakarta-tomcat.tar.gz file, for instance to /usr/local, and use these
commands to unpack it (assuming you have GNU tar installed):

[hans@gefion /] cd_/usr/local)
[hans@gefion /usr/local] tar xzvf jakarta-tomcat.tar.gz

If you don't have GNU tar installed on your system, you can use this command:
[hans@gefion /usr/local] gunzip -c jakarta-tomcat.tar.gz | tar xvf -

This creates a directory structure with a top directory named jakarta-tomcat with a number of subdirectories.
Like most software packages, the doc subdirectory contains a file named Readme ; do exactly that. Software
distributions change and if, for instance, the instructions in this chapter no longer apply when you download
the software, the Readme file should contain information about how to get started.

You also need to set the TOMCAT_HOME environment variable. For Windows, use:

C:\Jakarta> set TOMCAT_HOME=C:\Jakarta\jakarta-tomcat

For Unix, use:

[hans@gefion /usr/local] export TOMCAT_HOME=/usr/local/jakarta-tomcat

The jakarta-tomcat directory contains a number of subdirectories:

bin
Scripts for starting the Tomcat server.
conf
Tomcat configuration files.
doc
Documents describing how to install and start Tomcat. Other documentation is available as web pages
once the server is started.
lib
Binary (platform-dependent) modules for connecting Tomcat to other web servers such as Apache.
src
The source code for all servlet and JSP specification classes and interfaces.
webapps

Default location for web applications served by Tomcat.

No matter what your platform, the bin directory contains both Windows batch files and Unix scripts for
starting and stopping the server.

page 36

JavaSercer Pages

4.2.1 Windows Platforms

The Windows files are named startup.bat, shutdown.bat, and tomcat.bat. The tomcat.bat file is the main
script for controlling the server; it's called by the two other scripts startup.bat and shutdown.bat. To start the
server in a separate window, change directory to the bin directory and run the startup.bat file:

C:\Jakarta> cd jakarta-tomcat\bin
C:\Jakarta\jakarta-tomcat\bin> startup

A new Command Prompt window pops up and you see startup messages like this:

2000-09-01 09:27:10 - ContextManager: Adding context Ctx(/examples)
2000-09-01 09:27:10 - ContextManager: Adding context Ctx(/admin)

Starting tomcat. Check logs/tomcat.log for error messages

2000-09-01 09:27:10 - ContextManager: Adding context Ctx()

2000-09-01 09:27:10 - ContextManager: Adding context Ctx(/test)

2000-09-01 09:27:13 - PoolTcpConnector: Starting HttpConnectionHandler on 8080
2000-09-01 09:27:13 - PoolTcpConnector: Starting Ajpl2ConnectionHandler on 8007

Just leave this window open; this is where the server process is running.

If you're running on a Windows 95 or 98 platform, you may see an error message about "Out of environment
space" when you try to start the server. That's because the default amount of space allocated for
environment variables is not enough. To change this default, run this command in the Command Prompt
window before you run the startup.bat file again:

C:\Jakarta\jakarta-tomcat\bin> COMMAND.COM /E:4096 /P

This command sets the environment space to 4096 bytes (4 KB). That should be enough for the server.
However, If you still get the same message, use a higher value.

For some installations, this command may not work. If it doesn't work, try this instead:

Close the Command Prompt window and open a new one.
Click on the MS-DOS icon at the top-left of the window.
Select the Properties option.

Click on the Memory tab.

Change the Initial Environment value from Auto to 4096.

A

Click on OK and try to start the server again.

At this point, the server may not start due to other problems. If so, the extra Command Prompt window may
pop up and then disappear before you have a chance to read the error messages. If this happens, you can let
the server run in the Command Prompt window with this command instead:

C:\Jakarta\jakarta-tomcat\bin> tomcat run

On Windows NT, first make sure that the Command Prompt window has a large enough screen buffer so that
you can scroll back in case the error messages don't fit on one screen. Open the Properties window for the
Command Prompt window (right mouse button in the upper-left corner), select Layout, and set the screen
buffer size height to a large value (for instance 999). Unfortunately, the Command Prompt screen buffer
cannot be enlarged for Windows 95/98, so scrolling back is not an option. If you run into problems on these
platforms, double-check that you have installed the Java SDK correctly and that you have set the JAVA_HOME
and PATH environment variables as described earlier.

page 37

JavaSercer Pages

4.2.2 Unix Platforms

For Unix, the corresponding scripts are named startup.sh, shutdown.sh, and tomcat.sh. Start the server with
this command:

[hans@gefion /usr/local/jakarta-tomcat/bin] ./startup.sh

If you want Tomcat to start each time you boot the system, you can add the following commands to your
/etc/rc.d/rc.local (or equivalent) startup script:

export JAVA_HOME=/usr/local/jdkl.2.2
export TOMCAT_HOME=/usr/local/jakarta-tomcat
$TOMCAT_HOME/bin/startup.sh &

Two more subdirectories under the Tomcat home directory are then created the first time you start the
server:

logs

Server log files. If something doesn't work as expected, look at the files in this directory for clues as to
what's wrong.

work

A directory for temporary files that are created by the JSP container and other files. This directory is
where the servlets generated from JSP pages are stored.

4.3 Testing Tomcat

To test the server - assuming you're running Tomcat on the same machine as the browser and that you're
using the default port for Tomcat (8080) - open a browser and enter the following URL in the
Location/Address field:

http://localhost:8080/

The Tomcat main page is shown in the browser (see Figure 4.2), and you can now run all servlet and JSP
examples bundled with Tomcat to make sure everything works.

page 38

http://localhost:8080/

JavaSercer Pages

Figure 4.2. The Tomcat main page

T!"_' Tomcal 3 F - Modecape

B Edt “ew Go Comerscsior Help
v = Db ook =
T LF Bodkmaks b Locstion: [Hip ocshos BRI bird =] {F#" Whats Rickied
T AlnatantMessnoe B Thelsealorby S Javafolt S CHM Interactive [TecHweh D) Bank of Aneica
Tomcat

Wersinn 32
{ Thes is the defsult Tomecat home paps This page serves a3 & quick seferece gaide 1o relatsd

reacurces and 2 located sl
+ o pakhS oS tomeal > web pages inde s, html
Inchared wathin this relsase are Amctional samples with associsted source cods, AP1 documentation for sendets and J5F, a
READBIE, 5 technical FAQ on this relmse and an assoriment of jar files whech are pre-requisiies for continued
derslopmient af veeh teckmalogss ncludng JSF and Serdsts
Examples:

+ ST Exnmples
* Sprwlet Examples

Drocurnentalon

« AP docs for Servied and JEP Packages

The READNE fite, which cen be found at </pathAotomcat=FEADME, contens a bst of knowm bugs, scompatibibies snd —
lrralations.

Yo can find moore information shout the Servlet and 15F technologies &t

* Sun’s Java Server Pages Site
+ San's Servied Site

and by subscrshing to oae or mare of the following Servlet and JSP ralated inderes) lista:

& - e e S L 0T ll

" =ik Document: Dons o o o LY

When you're done testing Tomcat, stop the server like this:

C:\Jakarta\jakarta-tomcat\bin> shutdown

You should always stop the server this way, as opposed to killing the Command Prompt window the server is
running in. Otherwise, the applications don't get a chance to close down gracefully, and when you start to
connect external resources, like a database, various problems may occur.

4.4 Installing the Book Examples

All JSP pages, HTML pages, Java source code, and class files for the book examples can be downloaded
directly from the O'Reilly web site:

http://www.oreilly.com/catalog/jserverpages/
They can also be downloaded from the book web site:
http://www.TheJSPBook.com

The file that contains all the examples is called jspbook.zip. Save the file on your hard drive, for instance in
C:\JSPBook on a Windows platform, and unpack it:

C:\JspPBook> jar xvf jspbook.zip

You can use the same command on a Unix platform.

page 39

http://www.oreilly.com/catalog/jserverpages/
http://www.TheJSPBook.com

JavaSercer Pages

Two new directories are created: ora and src. The first directory contains all examples described in this book,
and the second contains the Java source files for the JavaBeans, custom actions, and utility classes used in
the examples.

The examples' directory structure complies to the standard Java web application format described in Chapter
2. You can therefore configure any Servlet 2.2-compliant web container to run the examples. If you like to
use a container other than Tomcat, be sure to read the documentation for that container.

To install the example application for Tomcat, copy the web application directory structure to Tomcat's default
directory for applications, called webapps. Use this command on a Windows platform:

C:\JsPBook> xcopy /s /i ora %TOMCAT_HOME%\webapps\ora

On a Unix platform it looks like this:

[hans@gefion /usr/local/jspbook] cp -R ora $TOMCAT_HOME/webapps

Recall from Chapter 2 that each web application in a server is associated with a unique URI prefix. When you
install an application in Tomcat's webapps directory, the subdirectory name is automatically assigned as the
URI prefix for the application (/ora in this case).

At this point, you must shut down and restart the Tomcat server. After that, you can point your browser to
the ora application with the following URL:

http://localhost:8080/ora/
You should see a start page, as in Figure 4.3, that contains links for all examples in this book.

Figure 4.3. JSP book examples start page

]‘!‘[:J:{F' ik examples - Meiscape

Fle E ¥es Go Commmricaior Help

VPR oo 3 WL s o o B =
JF " Bogkmarks & Locston [ip ccaton B Vo’ =] (F3l" Whats Rilaled
St Mesane = Thelavaloby 5 Javafot = CMM nseractiee |5 Techwieb |5 Bank of Aneica

JAAS I-IIIII;; ER
o Welcome to JavaServer

—— Pages

Here you fnd all examples described i the book [hope you
il will bosve fun readmg he book and thal you'll Gnd the

| examiples usefal.
H Fans Bargstan
e -
Chapter & Chapter 6
Current Date Time smmple FTEEIng =l
Esmdveple source pages: Exarngile source page
bl pap g |y
eer Info | mmmpls orarser Dieterction sl
Example source pages: Exarapile source page
usermfo himl 1] gl] g
nserinfol iFp
._ 0 0f) E=Sneie
Ler lofo 2 campls

Excarnpile source page
Example smarce pages: o, J5E

ol = { [ecumest [ona R s | ‘-.-:t

page 40

http://localhost:8080/ora/

JavaSercer Pages

4.5 Example Web Application Overview

The examples for this book are packaged as a standard Java web application, as described in Chapter 2. This
file structure is supported by all Servlet 2.2-compliant servers, so you can use the example application as a
guide when you create your own web applications. How a web application is installed is not defined by the
specification, however, so it varies between servers. With Tomcat, you simply copy the file structure to the
special webapps directory and restart the server. To modify the configuration information for an application,
you need to edit the application's WEB-INF/web.xml file using a text editor. Other servers may offer special
deployment tools that copy the files to where they belong and let you configure the application using a special
tool, such as web-based forms.

If you look in the ora web application directory, you'll see that it contains an index.html/ file and a number of
directories corresponding to chapters in this book. These directories contain all the example JSP and HTML
pages.

There's also a WEB-INF directory with a web.xml file, a lib directory, a classes directory, and a t/ds directory:

The web.xml file contains configuration information for the example application in the format defined
by the Servlet 2.2 specification. It's too early to look at the contents of this file now; we will return
to parts of it when needed.

The /ib and classes directories are standard directories, also defined by the Servlet 2.2 specification.
A common question asked by people new to servlets and JSP (prior to the standard web application
format) was, "Where do I store my class files so that the server can find them?" The answer,
unfortunately, differed depending on which implementation was used. With the standard web
application format, however, it's easy to answer this question: if the classes are packaged in a JAR
file, store the JAR file in the /ib directory; otherwise, use the classes directory (with subdirectories
mirroring the classes' package structure). The server will always look for Java class files in these two
directories.

The lib directory for the example application contains five JAR files. The orataglib_1_0.jar file
contains all the Java class files for the custom actions and beans used in this book. The
jdbc20_stdext_classes.jar file contains classes that are part of the JDBC 2.0 Standard Extension and
are used in the database examples. The xalan.jar, xerces.jar, and xsl.jar contain XML parser classes
used for an example in Chapter 12.

The classes directory contains the class for a servlet used to display the raw source code for the
example JSP pages, so you can see what they look like before they are processed by the server. It
also contains .properties files containing localized text for the example in Chapter 11.

The tlds directory is not defined by the Servlet 2.2 specification, but is the name used by convention
for Tag Library Descriptor (TLD) files. Don't worry about what this means now. As you read through
this book, it will become clear.

If you want to try out some of your own JSP pages, beans, and custom actions while reading this book,
simply add the files to the example application structure: JSP pages in any directory except under WEB-INF,
and Java class files in either the classes or the lib directory, depending on if the classes are packaged in a JAR
file or not. If you want to use the book's custom actions and beans in another application, copy the files in
both the /ib and t/ds directories to the web application structure for the other application.

page 41

JavaSercer Pages

Chapter 5. Generating Dynamic Content

JSP is all about generating dynamic content: content that differs based on user input, time of day, the state
of an external system, or any other runtime conditions. JSP provides you with lots of tools for generating this
content. In this book, you will learn about all of them - standard actions, custom actions, JavaBeans, and
scripting elements. Before we do that, however, let's start with a few simple examples to get a feel for how
the basic JSP elements work.

In this chapter, we develop a page for displaying the current date and time, and look at the JSP directive
element and how to use JavaBeans in a JSP page along the way. Next, we look at how to process user input
in your JSP pages and make sure it has the appropriate format. We also look at how you can convert special
characters in the output, so they don't confuse the browser.

5.1 What Time Is It?

Recall from Chapter 3, that a JSP page is just a regular HTML page with a few special elements. JSP pages
should have the file extension .jsp , which tells the server that the page needs to be processed by the JSP
container. Without this clue, the server is unable to distinguish a JSP page from any other type of file and
sends it unprocessed to the browser.

When working with JSP pages, you really just need a regular text editor such as Notepad on Windows or
Emacs on Unix. Appendix E, however, lists a number of tools that may make it easier for you, such as syntax-
aware editors that color-code JSP and HTML elements. Some Interactive Development Environments (IDEs)
include a small web container that allows you to easily execute and debug the page during development.
There are also several web page authoring tools - the type of tools often used when developing regular HTML
pages - that support JSP. I don't recommend that you use them initially; it's easier to learn how JSP works if
you see the raw page elements before you use tools that hide them.

The first example JSP page, named date.jsp , is shown in Example 5.1.

Example 5.1. JSP Page Showing the Current Date and Time (date.jsp)

<%@ page language="java" contentType="text/html" %>
<html>
<body bgcolor="white">

<jsp:useBean id="clock" class="java.util.Date" />

The current time at the server is:

Date: <jsp:getProperty name="clock" property="date" />
Month: <jsp:getProperty name="clock" property="month" />
Year: <jsp:getProperty name="clock" property="year" />
Hours: <jsp:getProperty name="clock" property="hours" />
/<}1>M1nutes: <jsp:getProperty name="clock" property="minutes" />

</body>
</html>

The date.jsp page displays the current date and time. We'll look at all the different pieces soon, but first let's
run the example to see how it works. Assuming you have installed all book examples as described in Chapter
4, first start the Tomcat server and load the http://localhost:8080/ora/ URL in a browser. You can then run
Example 5.1 by clicking the "Current Date/Time example" link from the book examples main page, shown in
Figure 5.1. You should see a result like the one shown in Figure 5.2.

page 42

http://localhost:8080/ora/

JavaSercer Pages

Figure 5.1. JSP book examples main page

T JSP ook exomples - Netzcape
Fle Edt vew Go Covewrscsior Help

2 v Bt e bl DR Pl
F " Bockmarks % Locations NI/ catos BRIV orar =] " Whats Relsted
AlnstantMessage B Thelsalobby & favafoft S ONM Interactive |3 Teckwish D) Bank of Aneica
JAVASERVER
ﬁr,-_ms
Welcome to JavaServer
——— Pages
' ‘ Here you find all exsseples described i the boak [hope you
| 1 will bave [un readmg he book and thal you'll fnd the
| ezamiples ussfal.
H Hemr Eargrtan
[t i S ——
Chapter £ Chapter 6
Current Dale' Time smmple Sresting =x=mnle
Exmieple source pages: Exmmmgle source page
tale pag Teelmg |5y
ey Innfo | EmEnpls rovarser Diedecsion sx=mple
Example source pages: Exampile ouree page
usermfo himl broarser. s
neeinfal ifp
Lioop exsmnpie
Lleer Info 2 esEimple
Exsarnpile source page
Example smarce pages: O, J5E =]
i (== Docunert [ona TR Ll) R

Figure 5.2. Current Date/Time JSP page example

Notice that the month seems to be off by one and the year is displayed as 100. That's because the
java.util.Date class we use here numbers months from to 11, so January is 0, February is 1, and so on,
and it reports year as the current year minus 1900. That's just the way this example works. As you will see
later, there are much better ways to display dates.

The page shown in Example 5.1 contains both regular HTML elements and JSP elements. The HTML elements
are used as-is, defining the layout of the page. If you use the View Source function in your browser, you
notice that none of the JSP elements are visible in the page source. That's because the JSP elements are
processed by the server when the page is requested, and only the resulting output is sent to the browser. To
see the unprocessed JSP page in a separate window, click on the source link for the date.jsp file in the book
examples main page. The source link uses a special servlet to send the JSP page as-is to the browser instead
of letting the server process it. This makes it easier for you to compare the source page and the processed
result.

Let's look at each piece of Example 5.1 in detail.

page 43

JavaSercer Pages

5.1.1 Using JSP Directives

The first line in Example 5.1 is a JSP directive element. Directives are used to specify attributes of the page
itself, primarily those that affect how the page is converted into a Java servlet. There are three JSP directives:
page, include, and taglib. In this example, we're using only the page directive. We'll see the others later.

JSP pages typically start with a page directive that specifies the scripting language and the content type for
the page:

<%@ page language="java" contentType="text/html" %>

A JSP directive element starts with a directive-start identifier (<%@) followed by the directive name (e.g.,
page) and directive attributes, and ends with %>. A directive contains one or more attribute name/value pairs
(e.g., Tanguage="java"). Note that JSP element and attribute names are case-sensitive, and in most cases
the same is true for attribute values. For instance, the Tanguage attribute value must be java, not Java. All
attribute values must also be enclosed in single or double quotes.

The page directive has many possible attributes. In Example 5.1, two of them are used: Tanguage and
contentType.

The Tanguage attribute specifies the scripting language used in the page. The JSP reference implementation
(the Tomcat server) supports only Java as a scripting language.® java is also the default value for the
Tanguage attribute, but for clarity you may still want to specify it. Other JSP implementations support other
languages besides Java, and hence allow other values for the Tanguage attribute. For instance, both JRun
(http://www.allaire.com) and Resin (http://www.caucho.com) support JavaScript in addition to Java.

The contentType attribute specifies the type of content the page produces. The most common values are
text/html for HTML content and text/plain for preformatted, plain text. But you can also specify other
types, such as text/xml for browsers that support XML or text/vnd.wap.wml for devices like cellular phones
and PDAs that have built-in Wireless Markup Language (WML) browsers. If the content generated by the page
includes characters requiring a charset other than ISO-8859-1 (commonly known as Latin-1), you need to
specify that charset with the contentType attribute. We'll look at the details of charsets in Chapter 11.

5.1.2 Using Template Text

Besides JSP elements, notice that the page shown in Example 5.1 contains mostly regular HTML:

<html>
<body bgcolor="white">

The current time at the server is:

<1li>Date:

<1li>Month:

Year:

<1i>Hours:

Minutes:

</body>
</html>

In JSP parlance, this is called template text. Everything that's not a JSP element, such as a directive, action,
or scripting element, is template text. Template text is sent to the browser as-is. This means you can use JSP
to generate any type of text-based output, such as XML, WML, or even plain text. The JSP container doesn't
care what the template text is.

> In fact, Java is the only scripting language formally supported in the |SP specification, but the specification leaves room for other langnages
10 be supported.

page 44

http://www.allaire.com
http://www.caucho.com

JavaSercer Pages

5.1.3 Using JavaBeans

There is also some dynamic content in this example. Step back a moment and think about the type of
dynamic content you see on the Web every day. Common examples might be a list of web sites matching a
search criteria on a search engine site, the content of a shopping cart on an e-commerce site, a personalized
news page, or messages on a bulletin board. Dynamic content is content generated by some server process,
for instance the result of a database query. Before it is sent to the browser, the dynamic content needs to be
combined with regular HTML elements into a page with the right layout, navigation bars, the company logo,
and so forth. In a JSP page, the regular HTML is the template text described earlier. The result of the server
processing - the dynamic content - is commonly represented by a JavaBeans component.

A JavaBeans component, or just a bean for short, is a Java class that follows certain coding conventions, so it
can be used by tools as a component in a larger application. In this chapter, we discuss only how to use a
bean, not how to develop one. (If you're a programmer and not already familiar with JavaBeans, you may
want to skip ahead to Chapter 15, to learn about these coding conventions.) A bean is often used in JSP as
the container for the dynamic content to be displayed by a web page. Typically, a bean represents something
specific, such as a person, a product, or a shopping order. A bean is always created by a server process and
given to the JSP page. The page then uses JSP elements to insert the bean's data into the HTML template
text.

The type of element used to access a bean in a page is called a JSP action element. JSP action elements are
executed when a JSP page is requested (this is called the request processing phase, as you may recall from
Chapter 3). In other words, JSP actions represent dynamic actions that take place at runtime, as opposed to
JSP directives, which are used only during the translation phase (when the JSP page is turned into Java
servlet code). JSP defines a number of standard actions and also specifies how you can develop custom
actions. For both standard and custom action elements, use the following notation:

<action_name attrl="valuel" attr2="value2">
action_body
</action_name>

Action elements, or tags as they are sometimes called,* are grouped into libraries (known as tag libraries).
The action name is composed of two parts: a library prefix and the name of the action within the library,
separated by a colon (i.e., jsp:useBean). All actions in the JSP standard library use the prefix jsp, while
custom actions can use any prefix except jsp, jspx, java, javax, servlet, sun, or sunw. You specify input to
the action through attribute/value pairs in the opening tag. The attribute names are case-sensitive, and the
values must be enclosed in single or double quotes. For some actions, you can also enter data that the action
should process in the action's body. It can be any text value, such as a SQL statement, or even other nested
JSP action elements. You will see examples of action elements with a body later.

Before you use a bean in a page, you must tell the JSP container which type of bean it is and associate it with
a name. The first JSP action in Example 5.1, <jsp:useBean>, is used for this purpose:

<jsp:useBean id="clock"™ class="java.util.Date" />

The id attribute is used to give the bean a unique name. It must be a name that is a valid Java variable
name: it must start with a letter and cannot contain special characters such as dots, plus signs, etc. The
class attribute contains the fully qualified name of the bean's Java class. Here, the name clock is associated
with an instance of the class java.util.Date. Note that we don't specify a body for this action. When you
omit the body, you must end the opening tag with />, as in this example. In this case, when the JSP
container encounters this directive, there is no bean currently available with the name clock, so the
<jsp:useBean> action creates a bean as an instance of the specified class and makes it available to other
actions in the same page. In Chapter 8, you will see how <jsp:useBean> can also be used to locate a bean
that has already been created.

Incidentally, the <jsp:useBean> action supports three additional attributes: scope, type, and beanName. The
scope attribute is described in detail in Chapter 8, and the other two attributes are covered in Appendix A.
We don't need to worry about those attributes here.

* An element is actually represented by a start tag and an end tag, but the term "tag'" is often used to refer to what's formally known as an
element.

page 45

JavaSercer Pages

5.1.4 Accessing JavaBean Properties

The bean's data is represented by its properties . If you're a page author charged with developing a JSP page
to display the content represented by a bean, you first need to know the names of all the bean's properties.
This information should be available from the Java programmers on the team or from a third-party source. In
this example, we use a standard Java class named java.util.Date as a bean with properties representing
date and time information. Table 5.1 describes the properties used in this example. (If you're not a
programmer, don't worry about the Java Type and Access columns at this point.)

Table 5.1, Properties for java.util. Date

Property Name | Java Type | Access Description
date int read [The day of the month as a number between 1 and 31
hours int read The hour as a number between 0 (midnight) and 23

The number of minutes past the hour as a humber

inut int

minutes n read between 0 and 59
month int read The month as a number from 0 to 11
year int read The current year minus 1900

Once you have created a bean and given it a name, you can retrieve the values of the bean's properties in
the response page with another JSP standard action, <jsp:getProperty>. This action obtains the current
value of a bean property and inserts it directly into the response body.

To include the current date property value in the page, use the following tag:
<jsp:getProperty name="clock" property="date" />

The name attribute, set to clock, refers to the specific bean instance we defined with the <jsp:useBean>
action previously. This action locates the bean and asks it for the value of the property specified by the
property attribute. As documented in Table 5.1, the date property contains the day of the month as a
number between 1 and 31. In Example 5.1, multiple <jsp:getProperty> actions are used to generate a list
of all the clock bean's property values. The result is the page shown in Figure 5.2.

5.2 Input and Output

User input is a necessity in modern web pages. Most dynamic web sites generate pages based on user input.
Unfortunately, users seldom enter information in exactly the format you need, so before you can use such
input, you probably want to validate it.

And it's not only the input format that's important. Web browsers are also picky about the format of the HTML
you send them. For instance, when you generate an HTML form with values taken from a database, a name
such as O'Reilly can cause problems. The single quote character after the O can fool the browser into
believing that it's at the end of the string, so you end up with just an O in your form.

5.2.1 Using JavaBeans to Process Input

As we saw earlier, a bean is often used as a container for data, created by some server process, and used in
a JSP page that displays the data. But a bean can also be used to capture user input. The captured data can
then be processed by the bean itself or used as input to some other server component (e.g., a component
that stores the data in a database or picks an appropriate banner ad to display). The nice thing about using a
bean this way is that all information is in one bundle. Say you have a bean that can contain information about
a person, and it captures the name, birth date, and email address as entered by the person on a web form.
You can then pass this bean to another component, providing all the information about the user in one shot.
Now, if you want to add more information about the user, you just add properties to the bean, instead of
having to add parameters all over the place in your code. Another benefit of using a bean to capture user
input is that the bean can encapsulate all the rules about its properties. Thus, a bean representing a person
can make sure the birthbate property is set to a valid date.

page 46

JavaSercer Pages

Using a bean to capture and validate user input is one aspect of building a web application that's easy to
maintain and extend as requirements change. But it's not the only option. If you're a page author and intend
to use JSP to develop sites using components from third parties, you may wonder how you can capture and
validate input without access to a Java programmer who can develop the beans. Don't worry; we'll see
another alternative in Chapter 9.

Processing and validating input can also be performed by a servlet instead of a JSP page. If you're a
programmer, you'll find examples of this approach in Chapter 14. In this part of the book, however, we use
JSP pages for all aspects of the applications so we can focus on JSP features. And one JSP feature makes it
very easy to capture user input, so let's see how it's done.

5.2.1.1 Setting JavaBeans properties from user input

In this next example, we capture information about web site users. It could be the frontend to a newsletter
subscription site, for instance. In order to send the users information that might interest them, we register
the birth date, sex, and lucky number, along with the full name and email address, for each person that signs
up for the service.

To capture and validate the user input, the example uses a bean named
com.ora.jsp.beans.userinfo.UserInfoBean, with the properties described in Table 5.2. If you're a
programmer, you may want to skip ahead to peek at the source code for this bean class in Chapter 15.

Table 5.2, Properties for com.ora.jsp.beans.userinfo.UserInfoBean

Property Name Java Type Access Description
userName String read/write The user's full name
. . . The user's birth date in the format yyyy-mm-dd
birthbate Strin
! ng | read/write (e.g., 2000-07-07)
: : : The user's email address in the format
emailaddr string read/write name@company . com
sex String read/write The user's sex (male or female)
TuckyNumber String read/write The user's lucky number (between 1 and 100)
valid boolean read true if the current values of all properties are

valid, false otherwise

As shown in the Access column, all properties except valid are read/write properties. This means that, in
addition to using the bean's properties to generate output (like in Example 5.1), the property values can be
set based on user input.

The HTML form shown in Example 5.2 allows the user to enter information corresponding to the bean
properties.

page 47

JavaSercer Pages

Example 5.2. An HTML Form that Sends User Input to a JSP Page (userinfo.html)

<htmT>
<head>
<title>User Info Entry Form</title>
</head>
<body bgcolor="white">
<form action="userinfol.jsp" method="post">
<table>
<tr>
<td>Name:</td>
<td><input type="text" name="userName" >
</td>
</tr>
<tr>
<td>Birth Date:</td>
<td><input type="text" name="birthDate" >
</td>
<td>(Use format yyyy-mm-dd)</td>
</tr>
<tr>
<td>Email Address:</td>
<td><input type="text" name="emailAddr" >
</td>
<td>(Use format name@company.com)</td>
</tr>
<tr>
<td>Sex:</td>
<td><input type="text" name="sex" >
</td>
<td>(Male or female)</td>
</tr>
<tr>
<td>Lucky number:</td>
<td><input type="text" name="TuckyNumber" >
</td>
<td>(A number between 1 and 100)</td>
</tr>
<tr>
<td colspan=2><input type="submit"></td>
</tr>
</table>
</form>
</body>
</htm1>

This is a regular HTML page that presents a form with a number of fields, as shown in Figure 5.3. There are a
few things worth mentioning here. First, notice that each input field has a name attribute with a value that
corresponds to a UserInfoBean property name. Matching the names lets us take advantage of a nice JSP
feature that sets property values automatically, as you'll see shortly. Also note that the action attribute of
the form specifies that a JSP page, userinfol.jsp, is invoked when the user clicks the Submit button. Figure
5.3 shows what the form looks like in a browser.

Figure 5.3. User input form

£+ Usen Info Entiy Form - Nelscape
Eie Edt Wew Go Commoncalo Help

AR S o N i N e =
¥ Bodmats i Losaten: [Hip/iocaihos B080 /i’ useiio Hin =] 7 What's Relaled
A Irstart Message 4] Thedave lobby 9 JevaSclt S COM Intersctive S Techwiet S Bank of America
Famie: [
Birth Date: [(Usze format yyyy-gama-dd)
Errzil Address: | (Uze format sameilicomgpany. ¢ om)
Sex: [(Male ar femrale)
Lucky number: | (& mamber bevarsen | and 100)
Submit Query I
=il Droamant Done T L ol T Y 4

page 48

JavaSercer Pages

Example 5.3 shows the JSP page that is invoked when the user submits the form.

Example 5.3. A JSP Page that Validates User Input with a Bean (userinfol.jsp)

<%@ page Tanguage="java" contentType="text/html" %>
<html>
<body bgcolor="white">
<jsp:useBean
id="userInfo"
class="com.ora.jsp.beans.userinfo.UserInfoBean">
<jsp:setProperty name="userInfo" property="*" />
</jsp:useBean>

The following information was saved:

User Name: <jsp:getProperty
name="userInfo" property="userName" />
<1i>Birth Date: <jsp:getProperty
name="userInfo" property="birthDate" />
Email Address: <jsp:getProperty
name="userInfo" property="emailAddr" />
<1li>Sex: <jsp:getProperty
name="userInfo" property="sex" />
<Tli>Lucky number: <jsp:getProperty
name="userInfo" property="luckyNumber" />

The user input 1is valid: <jsp:getProperty
name="userInfo" property="valid" />
</body>

</html>

Almost at the top of Example 5.3, you see that a <jsp:useBean> action is used to associate a name with the
bean:

<jsp:useBean
id="userInfo"
class="com.ora.jsp.beans.userinfo.UserInfoBean">
<jsp:setProperty name="userInfo" property="*" />
</jsp:useBean>

The <jsp:useBean> action looks similar to the one in Example 5.1. The id attribute specifies the name for the
bean, and the class attribute specifies the full name of the bean class. But here we also use a
<jsp:setProperty> action as the body of the <jsp:useBean> action. You must therefore use the complete
closing tag (</jsp:useBean>) to tell the JSP container where the action ends, instead of the shorthand
notation used in Example 5.1. The body of the <jsp:useBean> action is executed only when a new bean is
created. In this example, that's always the case, but as you will learn in Chapter 8, there are cases in which
the bean already exists and the action is needed only to associate it with a name.

Now let's take a closer look at the <jsp:setProperty> action. As the name implies, this action is used to set
the bean's property values. Like the <jsp:getProperty> action, it has a name attribute that must match the
id attribute of a <jsp:useBean> action, and a property attribute that specifies which property to set.

When a form is submitted, the form field values are sent as request parameters with the same names as the
form field elements. In Example 5.3, note that an asterisk (*) is used as the property attribute value of the
<jsp:setProperty> action. This means that all bean properties with nhames that match request parameters
sent to the page are set automatically. That's why it's important that the form element names match the
bean property names, as they do here. Automatically setting all matching properties is a great feature; if you
define more properties for your bean, you can set them simply by adding new matching fields in the form that
invokes the JSP page.

Besides the property attribute, the <jsp:setProperty> action has two more optional attributes: param and
value. If for some reason you can't use the same name for the parameters and the property names, you can
use the param attribute to set a bean property to the value of any request parameter:

<jsp:setProperty
name="userInfo"
property="userName"
param="someOtherpParam"

/>

page 49

JavaSercer Pages

Here, the userName property is set to the value of a request parameter named someOtherpParam.

You can also explicitly set a bean property to a value that is not sent as a request parameter with the value
attribute:

<jsp:setProperty
name="userInfo"
property="luckyNumber"
value="13"

/>

Here, the TuckyNumber property is set to the value 13. You typically use the value attribute only when you
set the bean properties based on something other than user input, for instance values collected from a
database.

5.2.1.2 Validating user input

Never trust your users, at least not when it comes to entering information in the format you need. Often, you
need to make sure the input is valid before you continue to process a request. A date, for instance, can be
written in many different formats. If you don't live in the United States, you probably have had to fill out both
an I-94 and a customs declaration form to be admitted by an immigration officer. You may have noticed that
on one of the forms you need to write your birth date as yyyy/mm/dd and on the other you write it as
mmy/dd/yyyy. I always get it wrong.

Four of the UserinfoBean's properties require a special format: birthbate, emailAddr, sex, and
TuckyNumber. A good place to make sure the input is valid is in the bean itself, which is exactly what the
UserInfoBean does. With this bean, if you try to set any of the above properties to a value that isn't valid,
the bean will leave the property unset. In addition, the bean has a true/false (Boolean) property named
valid. This property has the value false unless all other properties have been set to valid values.

Let's see this in action. Example 5.3 displays the property values using the <jsp:getProperty> action:

<1li>User Name: <jsp:getProperty
name="userInfo" property="userName" />

Since a property is set only if the value is valid, no values are shown for improperly specified properties. Try
it. Click on the "User Info 1 example" link under the Chapter 5 header in the book examples main page shown
in Figure 5.1. Enter both valid and invalid values in the form and look at the result produced by the
userinfol.jsp page when you click Submit. A sample result is shown in Figure 5.4.

Figure 5.4. Output from userinfol.jsp

B Metscaps = E3
e [t Wew o [ommanicaior Help
W -~ I & 1% 3
.a At w3 =
¥ Bockmakz i G [Rip AAstshom BIAD/nis S Aasinkal jan e smeHans Bemmtenibit sertemadid =] & what's Relne

4 Tredavalobby 5 JavaSoll 3 CHM Intmactive 3 Teciwsh S| Bark of dmerica

The fiotlowing informalion was saved:

® Uans Hama: Hars Bragaten
= Birth Date

* Email Address: hana@gsficneafteears com
» Gex Mads

® Luky number 12

The user mpat is walid: fales

s =4[Dincument: Diore o I &

Note that the Birth Date information is missing (at my age, you're not so eager to reveal your birth date), so
the input is marked as invalid.

page 50

JavaSercer Pages

5.2.2 Keep On Doing It 'til You Get It Right

Okay, now you know how to set bean properties and you're aware that beans often validate their values. It
would be nice if this technique could be used to display the same form over and over until all required input is
correct. You can do that with just a few changes, as shown in Example 5.4, the userinfo2.jsp page.

Example 5.4. A JSP Page that Validates and Redisplays Until Correct (userinfo2.jsp)

<%@ page language="java" contentType="text/html" %>
<html>
<head>
<title>User Info Entry Form</title>
</head>
<body bgcolor="white">
<jsp:useBean
id="userInfo"
class="com.ora.jsp.beans.userinfo.UserinfoBean">
<jsp:setProperty name="userInfo" property="*" />
</jsp:useBean>

<%-- output list of values with invalid format, if any --%>

<jsp:getProperty name="userInfo" property="propertyStatusmMsg" />

<%-- output form with submitted valid values --%>
<form action="userinfo2.jsp" method="post">
<table>
<tr>
<td>Name:</td>
<td><input type="text" name="userName"
value="<jsp:getProperty
name="userInfo"
Rroperty:"userName"
> >

</td>
</tr>
<tr>
<td>Birth Date:</td>
<td><input type="text" name="birthDate"
value="<jsp:getProperty
name="userInfo"
property="birthDate"
/>">

</td>
<td>(Use format yyyy-mm-dd)</td>
</tr>
<tr>
<td>Email Address:</td>
<td><input type="text" name="emailAddr"
value="<jsp:getProperty
name="userInfo"
Rroperty:"emai1Addr"
> >

</td>
<td>(Use format name@company.com)</td>
</tr>
<tr>
<td>Sex:</td>
<td><input type="text" name="sex"
value="<jsp:getProperty
name="userIiInfo"
property="sex"
>'"'>

</td>
<td>(Male or female)</td>
</tr>
<tr>
<td>Lucky number:</td>
<td><input type="text" name="TuckyNumber"
value="<jsp:getProperty
name="userInfo"
Rroperty="1uckyNumber"
> >

</td>
<td>(A number between 1 and 100)</td>
</tr>
<tr>
<td colspan=2><input type="submit"></td>
</tr>
</table>
</form>
</body>
</html1>

page 51

JavaSercer Pages

Instead of using a static HTML page for the input form and a separate JSP page with the validation code, in
this example we have combined them into a single JSP page. This page generates the form and provides an
appropriate message based on whether or not the input is valid. The page also fills in the form with the valid
values that have already been specified (if any) so the user needs to enter values only for missing or incorrect
input.

Let's look at Example 5.4 from the top. The first thing to note is that the page generates a message using the
UserInfoBean property named propertyStatusMsg. Here is the corresponding snippet:

<%-- output list of values with invalid format, if any --%>

<jsp:getProperty name="userInfo" property="propertyStatusmMsg" />

The first line here is a JSP comment. Text between <%-- and --%> in a JSP page is treated as a comment and
never appears in the result sent to the browser. For complex pages, it's always a good idea to include
comments to explain things that are not obvious.

The propertystatusMsg property can have three different values. If none of the properties have been set,
the value is "Please enter values in all fields". If at least one value is missing or invalid, the message states
"The following values are missing or invalid" and provides a list of the relevant properties. Finally, if all the
values are valid, the propertystatusMsg is "Thanks for telling us about yourself!"

Next we generate the form, filled out with all valid values. Here's the beginning of the form and the code for
the userName property:

<%-- output form with submitted valid values --%>
<form action="userinfo2.jsp" method="post">
<table>
<tr>
<td>Name:</td>
<td><input type="text" name="userName"
value="<jsp:getProperty
name="userInfo"
property="userName"
/>">
</td>
</tr>

Most of this is plain HTML, which is treated as template text and passed on untouched to the browser. But
note the use of a <jsp:getProperty> action as the HTML <input> element's value attribute. This is how the
userName field in the form is filled in with the current value of the userName bean property. Also note how the
form's action attribute points back to the JSP page itself.

Try this out by clicking on the "User Info 2 example" link on the book examples page. Enter both valid and
invalid values in the form and look at the results. In Chapter 8, we'll expand on this example and look at how
you can move on to another page when all input is valid.

One item may look a bit strange to you: an element (<jsp:getProperty>) is used as the value of another
element's attribute (the <input> tag's value attribute). While this is not valid HTML syntax, it is valid JSP
syntax. Remember that everything not recognized as a JSP element is treated as template text. Whether the
template text is HTML, XML, WML, or just plain text doesn't matter. As far as the JSP container is concerned,
the previous code is as valid as:

any old template text <jsp:getProperty
name="userInfo"
property="userName" /> more text

When the JSP page is processed, the action element is replaced with the value of the bean's property. The
resulting HTML sent to the browser is therefore valid.

page 52

JavaSercer Pages

5.2.3 Formatting HTML Output

If you enter a value containing double quotes in the Name field of the userinfo2.jsp page, it doesn't work
right. For example, try "Prince, "the artist"" and you'll see what I mean. Only "Prince," appears in the Name
field, and the Birth Date field is not shown at all. What's going on here?

A look at the HTML code generated by the JSP page using your browser's View Source function reveals what's
wrong:

<table>
<tr>
<td>Name:</td>
<td><input type="text" name="userName"
value="Prince, "the artist"">
</td>
</tr>

In the JSP file, double quotes are used to enclose the value of the <input> element's value attribute, so
when the value itself includes a double quote, the browser gets confused. The first double quote in the value
is interpreted as the end of the value. That's why you see only "Prince," in the field. Even worse, the rest of
the value interferes with the interpretation of the rest of the form, causing the next input field to be ignored
in most browsers.

One solution to this problem would be to use single quotes around the values instead, since HTML accepts
either single quotes or double quotes. But then you would have the same problem if the user enters a value
that includes a single quote. Fortunately, there's a better way.

What's needed is special treatment of all characters that can cause HTML interpretation problems when we
generate HTML from dynamic strings. One way to handle this is to let the bean take care of the special
treatment. The UserInfoBean can do this through another set of properties: userNameFormatted,
birthDateFormatted, emailAddrFormatted, sexFormatted, and TuckyNumberFormatted.

These are read-only properties that simply represent formatted versions of the corresponding real property
values. The bean is designed so that when you use these property names, all troublesome characters in the
real property values - such as single quotes, double quotes, less-than symbols, greater-than symbols, and
ampersands - are converted to their corresponding HTML character entities (i.e., ', ", &1t;, >,
and &). The browser handles the converted values with no problem. If you're curious about the Java code
for the formatted properties, it's described in Chapter 15. Example 5.5 shows a JSP page that uses the new
properties.

It's not always a good idea to have a bean handle this type of formatting, though. A bean is easier to reuse if
it doesn't contain logic that is specific for one type of use, such as generating strings suitable for HTML. When
we look at scripting elements and custom actions, we will revisit the subject of HTML formatting and look at
other solutions to this problem.

Try the final version of this example by clicking on the "User Info 3 example" link. Now everything works fine,
even if you happen to be Prince, "the artist."

page 53

Example 5.5. A JSP Page with Validation and Formatting Using a Bean (userinfo3.jsp)

<%@ page language="java" contentType="text/html" %>
<html>
<head>
<title>User Info Entry Form</title>
</head>
<body bgcolor="white">
<jsp:useBean
id="userInfo"
class="com.ora.jsp.beans.userinfo.UserIinfoBean">
<jsp:setProperty name="userInfo" property="*" />
</jsp:useBean>

<%-- output list of values with invalid format, if any --%>

<jsp:getProperty name="userInfo" property="propertyStatusMmsg" />

<%-- output form with submitted valid values --%>
<form action="userinfo2.jsp" method="post">
<table>
<tr>
<td>Name:</td>
<td><input type="text" name="userName"
value="<jsp:getProperty
name="userInfo"
Eroperty="userNameFormatted"
>

</td>
</tr>
<tr>
<td>Birth Date:</td>
<td><input type="text" name="birthDate"
value="<jsp:getProperty
name="userInfo"
Eroperty:"birthDateFormatted"
>'"'>

</td>
<td>(Use format yyyy-mm-dd)</td>
</tr>
<tr>
<td>Email Address:</td>
<td><input type="text" name="emailAddr"
value="<jsp:getProperty
name="userIiInfo"
/ property="emailAddrFormatted"
> >

</td>
<td>(Use format name@company.com)</td>
</tr>
<tr>
<td>Sex:</td>
<td><input type="text" name="sex"
value="<jsp:getProperty
name="userInfo"
Eroperty:"sexFormatted"
> >

</td>
<td>(Male or female)</td>
</tr>
<tr>
<td>Lucky number:</td>
<td><input type="text" name="luckyNumber"
value="<jsp:getProperty
name="userInfo"
Eroperty="1uckyNumberFormatted"
>'"'>

</td>
<td>(A number between 1 and 100)</td>
</tr>
<tr>
<td colspan=2><input type="submit"></td>
</tr>
</table>
</form>
</body>
</html>

JavaSercer Pages

page 54

JavaSercer Pages

Chapter 6. Using Scripting Elements

When you develop a JSP-based application, I recommend that you try to place all Java code in JavaBeans, in
custom actions, or in regular Java classes. However, to tie all these components together, you sometimes
need additional code embedded in the JSP pages themselves. Recall from Chapter 3, that JSP lets you put
actual Java code in pages using a set of scripting elements. In this chapter we look at how you can use these
scripting elements and when it makes sense to do so.

We start with a brief introduction to the Java language constructs you're likely to use in a JSP page. If you
already know Java by heart you can safely skip the first section. But if you have never written a Java
program, or are still a "newbie," you should read it carefully. Don't expect to become a Java guru after
reading this introduction, of course. The Java language, combined with the standard libraries, provides many
powerful features not covered here. To learn more about Java, I recommend that you read one of the many
books dedicated to the language and its libraries, for instance Java in a Nutshell and Java Examples in a
Nutshell, both by David Flanagan (O'Reilly).

6.1 Java Primer

You don't have to be a Java expert to develop JSP pages, but it helps to have an understanding of the basic
concepts. This overview of the Java language and some of the standard classes should be enough to get you
started.

6.1.1 Classes and Objects

Java is an object-oriented language. This means that everything in Java is an object, except for a few
primitive types such as numbers, characters, and Boolean values. An object is an instance of a class, which
serves as a source code template describing how the object should behave. It's helpful to think of a class as a
blueprint from which identical copies (objects) are created. Example 6.1 shows a simple Java class.

Example 6.1. Simple Java Class

/:‘: %

* This is just a simple example of a Java class

* with two instance variables, a constructor, and
* some methods.

public class Rectangle {

// Data

private int width;

private int height;

// Constructor

public Rectangle(int w, int h) {
width = w;

) height = h;

// Methods

public int getwidth() {
return width;

}
public void setwidth(int w) {
width = w;

}
public int getHeight() {
return height;

public void setHeight(int h) {
height = h;

}
public double getArea() {
double area;

area = width * height;
return area;

It's important to remember that a class always defines two items:

data : a collection of information in an object

methods : a set of functions that act on that data

page 55

JavaSercer Pages

6.1.1.1 Data

Data, often called variables, can consist of primitive datatypes such as integers, Booleans, and floating-point
values (both the width and height in this example are integers, represented by the keyword int). In addition,
data can also be objects. The type value that a variable holds must always be declared. The following
example declares a variable of the object type string:

String title;

Until you give a variable a value, it contains a default value (0, false, or nu11). The name of the variable
must start with a letter followed by a combination of letters and digits. There are many special characters,
such as dots and plus signs, that are not allowed in a variable name. By convention, variable names often
start with lowercase letters and do not have spaces:

String titleofBook;
6.1.1.2 Methods

Methods are functions that take in zero or more primitive datatypes or objects, and perform some task on the
object that may or may not result in a return value. If it does, the return value is also a primitive datatype or
object. Here is an example of a method:

public void setHeight(int h) {
height = h;

This method, called setHeight(), takes in a single integer, uses it to set the object variable height, and
returns nothing (note the void keyword before the method name).

One special method that appears in Example 6.1 is the constructor. The constructor method always shares
the same name as the class, and its return type is never declared. The constructor allows the object to
initialize itself; it is invoked when the new keyword is used to create an instance of the class:

Rectangle rectl = new Rectangle(28,72);

Here we create an instance of the class Rectangle and keep a reference to it in a variable called rectl. The
new Rectangle object saves the value of the two integer constructor arguments, 28 and 72, in its internal
variables, width and height. Note that Java is a case-sensitive language: height and Height are not the
same. The standard naming convention for class names, unlike for variable names, is to capitalize the first
letter. For both class and variable names, the first letter in internal words is also capitalized; for instance:

averyLongNameForAvariable // VARIABLE
ANameForACTass // CLASS

6.1.1.3 Statements

A statement is simply an instruction to do something. For example, the following are statements in Java:

area = width * height;
return area;

The first statement takes the value of width and height, multiplies them together, and places the result in
the variable area. The second statement uses the variable area as the return value for the current method.
Statements almost always appear inside of methods. In addition, all statements and variable declarations
must end with a semicolon (;) in Java; this takes after other programming languages, such as C and C++.

page 56

JavaSercer Pages

6.1.1.4 Inheritance

Java includes a number of standard classes. For a specific application, you can create your own classes, often
based on the standard Java classes. Classes can be arranged in a hierarchy, where one class extends the
functionality of another class. This is one of the fundamental attributes of an object-oriented language, called
inheritance. A class that extends another class, usually called a subclass, inherits methods and variables from
the class it extends, usually called the superclass. A subclass can add its own methods, or override the
existing methods defined in the superclass by creating identical methods in its own class. A typical example is
a class vehicle with subclasses Car and Boat. The vehicle class has a method isLandBound(), returning
true. The Car class uses the method as-is, but the Boat class overrides it to return false. This is illustrated
in Figure 6.1.

Figure 6.1. Class inheritance

Yehick
IIIIIIIII - 1sLandBound () { i
return true;
}
exfends exfends
Cor Boot
getDoors (14 isLandBound () {
return 4; return false;
] }

Inheritance lets you write code that works with objects on different levels of abstraction. Let's say the car
class adds a method getboors(), returning the number of doors for a specific instance of the class. Code
that works with vehicle objects can call the isLandBound() method and be ignorant about if an object is a
Car or a Boat, while code dealing exclusively with Car objects can call both the isLandBound() and
getDoors() methods: it inherits the former method from vehicle.

6.1.2 Primitive Types

As we mentioned earlier, Java includes a number of primitive types for efficiency. These primitive types are
listed in the following chart:

Type Size Values
int 4 bytes -2,147,483,648 to 2,147,483,647
short 2 bytes -32,768 to 32,767
Tong 8 bytes -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
byte 1 byte -128 to 127
float 4 bytes 32-bit IEEE 754 floating-point numbers
double 8 bytes 64-bit IEEE 754 floating-point numbers
char 2 bytes Unicode characters
boolean 1 bit true or false

page 57

JavaSercer Pages

6.1.3 Comments
Java supports two types of comments (Example 6.1 includes both types).

A comment that spans multiple lines, known as a block comment , starts with the characters /* and ends
with the characters */:

* This is just a simple example of a Java class
* with two instance variables, a constructor, and
* some methods.

Another type of comment is called an end-of-line comment. 1t starts with two slashes (//) and ends, as the
name implies, at the end of the same line:

// Instance variable
6.1.4 Standard Classes Commonly Used in JSP Pages

The Java 2 libraries contain more than 1,500 classes. Don't worry, you don't have to learn about all of them
to use JSP. The most commonly used standard classes are introduced here. Other classes that you need on
occasion will be introduced when they are used in the examples in this book. If you would like more
information, the full documentation for the Java 2 Standard Edition classes is available online at
http://java.sun.com/j2se/1.3/docs.html.

6.1.4.1 String and StringBuffer

The string class represents an immutable string (a series of letters or numerical characters); its value can
never be changed. A stringBuffer , on the other hand, is intended to be used when you build a string
dynamically. Note that with the Java language, you can create a String object without using the new
keyword; instead, just place the contents of the String in quotation marks.

For example, the following are equivalent:

String strl

new String("The bright day");
String strl "

"The bright day";

String is the only object in Java where you can abbreviate its creation this way.

Some of the most commonly used String methods are:

public boolean equals(Object anObject)

Returns true if the target and the argument represent exactly the same sequence of characters. For
example:

String hello = new String("hello");
hello.equals("hello"™); // Returns true
hello.equals("Hello"); // Returns false

public boolean equalsIgnoreCase(String anotherString)

Returns true if the target and the argument represent exactly the same sequence of characters, ignoring
case. For example:

String hello = new String("hello");
hello.equals("hello"); // Returns true
hello.equals("Hell0"); // Returns true
public String trim()

Returns a new String with all whitespace from both ends of the target String removed. For example:

String hello = Hello ";
String trimmed = hello.trim();
trimmed.equals("Hello"); // Returns true

page 58

http://java.sun.com/j2se/1.3/docs.html

JavaSercer Pages

Some of the most commonly used StringBuffer methods are:

public synchronized StringBuffer append(String str)

Appends the argument to the target. For example:

stringBuffer buffer = new StringBuffer("Hello");
buffer.append(" JsP!"™); // New value 1is "Hello Jsp!"
public String tostring()

Returns a string representing the data in the target. For example:

stringBuffer buffer = new StringBuffer("Hello");
buffer.append(" JspP!™); // New value is "Hello Jsp!"
String hello = buffer.toString();
hello.equals("Hello JSP!"™); // Returns true

6.1.4.2 Arrays

An array is a bundling of a number of variables of the same type (a class or a primitive type). In Java, arrays
are also objects. You create a new array like this:

String[] myStrings = new String[4];
int[] myInts = new int[7];

The type of component in the array is the type specified before the empty brackets on the left side of the
equals sign (=). The size of an array is fixed and must be specified within the brackets of the type definition
following the new keyword.

You can access the individual components of an array by specifying the index of the component. The indexes
always begin from and count upward to the defined length minus one:

int i = myInts[0];

The number of components in an array is available in a variable of the array object named length. You can
access it like this:

int myIntsLength = myInts.length;
6.1.5 Flow Control Statements

Flow control statements are used for situations such as testing conditions and looping. Let's briefly look at
some examples.

To execute a piece of code only when a condition is true, use the if statement:

if (hello.equals("Hello")) {
// Do something

} else {
// Do something else

The code within parentheses following the if keyword is called an expression : it must be evaluated by the
Java interpreter to some value, in this case a Boolean true or false value. Here we test if the String
variable hello equals the string literal "Hello". If it evaluates to true, the block of code between the first
set of braces is executed. You can optionally use an else clause, like we do in this example, which is
executed if it evaluates to false.

In some situations, you can use the conditional operator (?) as an alternative to the if statement:

String greeting = (clock.getHours() < 12) ?
"Good morning" : "Good afternoon";

page 59

JavaSercer Pages

Here's how it works: first, the code before the ? operator is evaluated. If the result is true, the value
immediately after the ? is returned. If it's false, the value after the colon is returned. This type of expression
is more compact than an if statement when the only thing you want is to get one of two values depending
on a simple condition.

Other common flow control statements are while and for. They are used to execute a block of code
repeatedly. Let's look at the while statement first:

while (i < myArr.length) {
// Do something
i=1+1;

}

Here, the expression following the while keyword is evaluated. If it is true, the code block within the braces
is executed. After it completes, the expression is evaluated again. If it is still true, the code block is again
executed. This looping repeats until the expression evalutes to false.

Here is an example of a for statement:

for (int i = 0; i < myArr.length; i++) {
// Do something

The for statement has three expressions within the parentheses following the for keyword. The first
expression is executed before anything else; it is typically used to initialize a variable used as an index. The
expression in the middle must be a Boolean expression. If it evaluates to true, the block of code within
braces is executed. After each code block iteration, the final statement is executed and the middle expression
is evaluated again. If it's still true, the body is again executed and the third expression is tested, and so on.
Note that the final expression is typically used to increment an index variable until the expression in the
middle evaluates to false, at which point the loop will exit.

6.1.6 Operators

Operators are used to assign values to variables, perform numeric operations, and compare values, among
other things. Java uses the usual operators for numeric addition, subtraction, multiplication, and division: +, -
, *,and /. There are also shortcuts for some common expressions; for instance:

i += 3;
is the same as:
i=1+ 3;
and:
i++;
is the same as:
i=1+ 1;
The + operator can also be used to concatenate strings:

String hello = new String("Hello");
String helloworld = hello + " world!";

This is not the most efficient way of concatenating strings though, so don't overuse it. Where performance is
critical and you need to concatenate many strings together, it's more efficient to use a StringBuffer:

StringBuffer helloworld = new StringBuffer("Hello");
helloworld.append(" world!");

page 60

JavaSercer Pages

The operators for equal (==), not equal (!=), greater than (>), greater than or equal (>=), less than (<), and
less than or equal (<=) are the same as in many other languages.

if (anint > 2) {
/ Do something if an int variable value is greater than 2

Note that you cannot use the == operator to test if two String objects have the same value. That's because
the == operator, when used with objects, tests if the variables are referencing the same String object, not if
the values of two String objects are the same. (== works only when comparing the values of two primitive
datatypes.) To compare objects with one another you must instead use the equals() method described
earlier:

if (oneString.equals(anotherstring)) {
// Do something if the two String values are equal

Finally, you can combine comparative expressions using the Boolean operators && (and) and || (or):

if (G >=4) & (i <= 10)) {
// Do something if i is between 4 and 10

That's it for our brief introduction to programming in the Java language. You should now know enough Java
programming to follow the remaining examples in this part of the book.

6.2 Implicit JSP Objects

When you use scripting elements in a JSP page, you always have access to a humber of objects (listed in
Table 6.1) that the JSP container makes available. These are called implicit objects. These objects are
instances of classes defined by the servlet and JSP specifications. Appendix B, contains complete descriptions
of all methods for each class, and we will cover them in more detail as we move through the book. However, I
want to briefly introduce them here, as they are used in a number of examples throughout this book.

Table 6.1, Implicit JSP Objects
Variable Name Java Type
request javax.servlet.http.HttpServietRequest
response javax.servlet.http.HttpServletResponse
pagecContext javax.servlet.jsp.PageContext
session javax.servlet.http.HttpSession
application javax.servlet.ServletContext
out javax.servlet.jsp.Jspwriter
config javax.servlet.ServletConfig
page java.lang.0Object
exception java.lang.Throwable

page 61

JavaSercer Pages

Here is some more information about each of these implicit objects:

request

The request object is an instance of the class hamed javax.servlet.http.HttpServietRequest.
This object provides methods that let you access all the information that's available about the current
request, such as request parameters, attributes, headers, and cookies. We use the request object in a
couple of examples later in this chapter.

response

The response object represents the current response message. It's an instance of the
javax.servlet.http.HttpServletResponse class, with methods for setting headers and the status
code and for adding cookies. It also provides methods related to session tracking. These methods are
the response methods you're most likely to use. We'll look at them in detail in Chapter 8.

session

The session object allows you to access the client's session data, managed by the server. It's an
instance of the javax.servlet.http.HttpSession class. Typically you do not need to directly access
this object, since JSP also lets you access the session data through action elements, as you will see in
Chapter 8. One method you may use, however, is invalidate() , which explicitly terminates a
session. An example of this is shown in Chapter 10.

application

The application object is another object that you typically access indirectly through action elements.
It's an instance of the javax.servlet.ServletContext class. This object is used to hold references to
other objects that more than one user may require access to, such as a database connection shared by
all application users. It also contains Tog() methods that you can use to write messages to the
container's log file, as you will see in an example later in this chapter.

out
The out object is an instance of javax.servlet.jsp.Jspwriter. You can use the print() and
println() methods provided by this object to add text to the response message body. We look at an
example of this later in this chapter. In most cases, however, you will just use template text and JSP
action elements instead of explicitly printing to the out object.

exception

The exception object is available only in error pages and contains information about a runtime error.
Chapter 7, describes in more detail how you can use this object.

The remaining three implicit objects (pageContext, config, and page) are so rarely used in scripting
elements that we will not discuss them here. If you're interested, you can read about them in Appendix B.

All variable names listed in Table 6.1 are reserved for the implicit objects. If you declare your own variables in
a JSP page, as you will soon see how to do, you must not use these reserved names for other variables.

6.3 Conditional Processing

In most web applications, you produce different output based on runtime conditions, such as the state of a
bean or the value of a request header such as UserAgent (containing information about the type of client that
is accessing the page).

If the differences are not too great, you can use JSP scripting elements to control which parts of the JSP page
are sent to the browser, generating alternative outputs from the same JSP page. However, if the outputs are
completely different, I recommend using a separate JSP page for each alternative and passing control from
one page to another. This chapter contains a humber of examples in which one page is used. In the
remainder of this book you'll see plenty of examples where multiple pages are used instead.

page 62

JavaSercer Pages

6.3.1 Using JavaBeans Properties

In Chapter 5, you saw how to use the <jsp:getProperty> and the <jsp:setProperty> actions to access a
bean's properties. However, a bean is just a Java class that follows certain coding conventions, so you can
also call its methods directly.

Briefly, a bean is a class with a constructor that doesn't take an argument. This makes it possible for a tool,
such as the JSP container, to create an instance of the bean class simply by knowing the class name. The
other condition of a bean that we are concerned with is the naming of the methods used to access its
properties. The method names for reading and writing a property value, collectively known as the bean's
accessor methods, must be composed of the keywords get and set, respectively, plus the name of the
property. For instance, you can retrieve the value of a property named month in a bean with the method
getMonth() and set it with the method setMonth(). Individually, the accessor method for reading a
property value is known as the getter method, and the accessor method for writing a property value is the
setter method. A property can be read-only, write-only, or read/write depending on whether a getter method,
a setter method, or both methods are provided in the class. The Java type for a property, finally, is the type
returned by the getter method and the type of the setter methods argument.

To use a bean's property value in a scripting element, call the accessor method directly. To illustrate this, let's
use one of the properties of the java.util.Date class introduced in Chapter 5. Table 6.2 shows a bean
property sheet for the hours property. (These tables should be getting clearer now, by the way.) It's a read-
only property of the type int.

Table 6.2, java.util.Date hours Property

Property Name | Java Type | Access Description

hours int read The hour as a number between 0 (midnight) and 23

Example 6.2 revisits an example from the first chapter: this page uses the value of this property to greet the
user with an appropriate message depending on the time of day.

Example 6.2. Conditional Greeting Page (greeting.jsp)

<%@ page language="java" contentType="text/html" %>
<html>

<body bgcolor="white">

<jsp:useBean id="clock" class="java.util.Date" />

<% if (clock.getHours() < 12) { %>
Good morning!

<% } else if (clock.getHours() < 17) { %>
Good day!

<% } else { %>
Good evening!

<% } %>

</body>
</html>

As we discussed before, this page will show a different message depending on when you request it. What we

didn't elaborate on in the first chapter, however, is that this magic is accomplished using a set of JSP scriptlet
elements. A scriptlet is a block of code enclosed between a scriptlet-start identifier, <%, and an end identifier,

%>

Let's look in detail at Example 6.2. The <jsp:useBean> action is first used to create a bean. Besides making
the bean available to other actions, such as <jsp:getProperty> and <jsp:setProperty>, the
<jsp:useBean> action also creates a Java variable that holds a reference to the bean. The name of the
variable is the name specified by the id attribute, in this case clock.

The clock bean is then used in four scriptlets, together forming a complete Java 1if statement with template
text in the if and else blocks:

<% if (clock.getHours() < 12) { %>

An if statement, testing if it's before noon, with a block start brace.

<% } else if (clock.getHours() < 17) { %>

page 63

JavaSercer Pages

The if block end brace and an else-1if statement, testing if it's before 5:00 P.M., with its block start brace.

<% } else { %>

The else-if block end brace, and a final else block start brace, handling the case when it's after 5:00 P.M.
<% } %>

The final else block end brace.

The JSP container combines the code segment in the four scriptlets with code for writing the template text to
the response body. The end result is that when the first if statement is true, "Good morning!" is displayed;
when the second if statement is true, "Good day!" is displayed; and if none of the if statements is true, the
final else block is used, displaying, "Good evening!"

The tricky part when using scriptlets like this is making sure that all the start and end braces are in place. If
you miss even one brace, the code that the JSP container generates is not syntactically correct. And
unfortunately, the error message you get is not always easy to interpret.

6.3.2 Using Request Information

Let's look at another example, in which the implicit object request is used to display different messages
depending on whether the Internet Explorer or Netscape Navigator browser is used. Example 6.3 shows the
complete page.

Example 6.3. Browser-Dependent Page (browser.jsp)

<%@ page language="java" contentType="text/html" %>
<html>
<body bgcolor="white">

<% if (request.getHeader("User-Agent").indexof("MSIE") != -1) { %>
You're using Internet Explorer.
<%
} else . .
if (request.getHeader("User-Agent").indexof("Mozilla") != 1) {
%>

You're using Netscape.
<% } else { %>

You're using a browser I don't know about.
<% } %>

</body>
</html>

As in Example 6.2, four scriptlets are used to provide the code for the conditional message. The difference is
the actual if statements used to figure out which type of browser is requesting the page. Let's look at all the
objects and methods used here.

The request object is not a bean, since it doesn't follow all the JavaBeans conventions described above, but it
does provide a number of methods you can use to get information about the request. For instance, the
request object's getHeader() method is used to get the value of a specific request header. Recall that each
request contains a number of headers that provide detailed information the server may use to process the
request. In this case, the User-Agent header retrieved in Example 6.2 contains a description of the browser
making the request.

The getHeader() method returns a String object, so we can then use the index0of() method of the
String class to look for the piece of a string that identifies the browser. This method returns an integer offset
from the beginning of the string if the text is found, or -1 if the text is not found. Note that both Internet
Explorer and Netscape send a description that contains the text "Mozilla", but Internet Explorer also includes
the text "MSIE", so we must look for "MSIE" first. If we find it, we know it's an Internet Explorer browser. If
we don't find "MSIE" but find "Mozilla", it's most likely a Netscape browser. The final else block takes care of
other browsers, such as Lynx and Opera.

page 64

JavaSercer Pages

6.3.3 Working with Arrays

Another common use of scriptlets is to loop over an array. In Example 6.4, we let the user pick a number of
items from a group of checkboxes, and then use scriptlets to display all the choices.

Example 6.4. Looping Over Parameter Array (loop.jsp)

<%@ page language="java" contentType="text/html" %>
<html>
<body bgcolor="white">

<form action="Toop.jsp">
<input type="checkbox" name="fruits" value="Apple">Apple

<input type="checkbox" name="fruits" value="Banana'">Banana

<input type="checkbox" name="fruits" value="Orange">0Orange

<input type="submit" value="Enter">

</form>

<%
string[] picked = request.getParametervalues("fruits");
if (picked '= null && picked.length !'= 0) {

%>
You picked the following fruits:

<%
for (int i = 0; i < picked.length; i++) {
out.println("<Ti>" + picked[i]);
%>

<% } %>
</body>
</html>

Figure 6.2 shows an example of the resulting page.

Figure 6.2. Page showing values of multivalue parameter

!E":iﬂe!z:l:upl.-

Fie Edit Wew [Go Communcalor Help
. = — =
v A Id B F pu
7 Bockmaks f Locabon: [st BB fora/chEop. fin Mol s ppastinaes=B anana =] 4 whal's Relaled

% HirctatMersage 3] The Javelobby S JevsSolt 3] OMH Intersctive S0 Techiwisb S Bank of Americs

™ Apple

™ Banara

I Crange

¥ou pcked the fallwmg Sruls

* Apple
« Banana

' Document Done i b

S o Y

The first part of the page in Example 6.4 is a regular HTML form, with three checkboxes and a Submit button.
Again, note that the action of the form is to return to the same page, loop.jsp, but this time with parameter
values. Then follows three scriptlets. In the first, we use another request method, getParameter-values (
):

<%
string[] picked = request.getParametervalues("fruits");
if (picked !'= null && picked.length !'= 0) {

%>

This method returns a string[] containing all values for the parameter specified as the argument. Here, it's
the name used for all checkboxes in the form. If no checkbox is selected, this parameter has no value;
getParametervalues() returns null. So before we try to loop through the array, an if statement is used
to verify that we in fact received at least one value.

page 65

JavaSercer Pages

The next scriptlet contains the actual loop:

<%
for (int i = 0; i < picked.length; i++) {
out.printin("<1i>" + picked[1]);

}

%>

A for statement is used to process each array component. Here you can also see how the implicit out object
is used to add content to the response body.

Again, make sure the braces in the three scriptlets form complete code blocks when they are combined with
the template text by the JSP container. Note how the start brace for the i f block is included in the first
scriptlet, and the end brace is in the third scriptlet. These braces must balance, or the JSP server will return
an error.

6.4 Displaying Values

Besides using scriptlets for conditional output, one more way to employ scripting elements is by using a JSP
expression element to insert values into the response. A JSP expression element can be used instead of the
<jsp:getProperty> action in some places, but it is also useful to insert the value of any Java expression that
can be treated as a String.

An expression starts with <%= and ends with %>. Note that the only syntax difference compared to a scriptlet
is the equals sign (=) in the start identifier. An example is:

<%= useriInfo.getUserName() %>

The result of the expression is written to the response body. One thing is important to note: as opposed to
statements in a scriptlet, the code in an expression must not end with a semicolon. This is because the JSP
container combines the expression code with code for writing the result to the response body. If the
expression ends with a semicolon, the combined code will not be syntactically correct.

In the final example of Chapter 5, we used <jsp:getProperty> actions to fill out the form fields with
UserInfoBean values. To recap, it looked like this:

<tr>
<td>Name:</td>
<td><input type="text" name="userName"
value="<jsp:getProperty
name="userInfo"
property="userNameFormatted"
/>">

</td>
</tr>

In this case, the <jsp:getProperty> syntax is distracting, since it's used as the value of an HTML element.
You can use expressions to make the user input form page easier to read. The following example shows the
same part of the page with the <jsp:getProperty> action replaced with an expression:

<tr>
<td>Name:</td>
<td><input type="text" name="userName"
value="<%= userinfo.getUserNameFormatted() %>" >
</td>
</tr>

The result is exactly the same, but this is more compact.

Expressions help you write more compact code, but they can also help you with something even more
important. The UserInfoBean provides a set of properties with values formatted for HTML output; that's what
we used in Chapter 5 to avoid confusing the browser with special characters in the bean property values.
However, it's much easier to reuse a bean if it doesn't need to format its property values for a certain type of
output. With expressions, we can let the bean be ignorant of how its property values are used, and use a
utility class to do the formatting instead, as in Example 6.5.

page 66

JavaSercer Pages

Example 6.5. Formatting HTML Output (userinfo4.jsp)

<%@ page import="com.ora.jsp.util.*" %>

<tr>
<td>Name:</td>
<td><input type="text" name="userName"
value="<%= StringFormat.toHTMLString(userinfo.getUserName()) %" >
</td>
</tr>

This example shows yet another version of the form we first used in Chapter 5. Here a utility class called
com.ora.jsp.util.StringFormat is used to handle special characters in the property values. I use the term
utility class for a class that doesn't represent an entity such as a customer, order, or product. Instead, it's
just a collection of useful methods. In this case, the StringFormat class simply contains methods for
formatting strings. All of its methods are described in Appendix C.

The stringFormat class has a method called toHTMLString(). It formats its argument for HTML output the
same way as the UserInfoBean does, converting all HTML special characters to the corresponding HTML
character entities. Here we pass it the unformatted property value by calling the bean's regular property
getter method. Using this utility class, the ties between the UserinfoBean and HTML can be removed and the
formatting can be done where it belongs.

6.4.1 Packages

You may have noticed that the full name of the class in Example 6.5 is com.ora.jsp.util.StringFormat,
but in the expression it's simply referred to as StringFormat. This requires an explanation.

A large application may use many different classes, some of them part of the standard Java libraries, and
others developed in-house or by third parties. To organize all these classes, Java provides the notion of a
package. A package is a group of related classes. The fully qualified name of a class is the combination of the
package name and the class name. For instance, the fully qualified name of the class used in Example 6.5 is
com.ora.jsp.util.StringFormat. You can always use the fully qualified name in your Java code, but to
save you some typing, you can also import a package and then refer to the class with just the short class
name. If you look at the top of Example 6.5, you see a page directive with the import attribute set to the
name of the package the stringFormat class belongs to:

<%@ page import="com.ora.jsp.util.*" %>

Importing a package doesn't mean that it's physically included in the page. It only tells Java to look for
classes with short names in the named package. You can use multiple page directives with import attributes
in the same page, or use one with a comma-separated list of import declarations, if you need to import more
than one package. In other words, this directive:

<%@ page import="java.util.*, com.ora.jsp.util.*" %>
has the same effect as these two directives:

<%@ page import="java.util.* " %>
<%@ page import="com.ora.jsp.util.*" %>

6.4.2 Checking Off Checkboxes Dynamically

In Example 6.4, a for statement is used to loop through an array, but arrays can also be used in many other
ways. If the array represents choices the user can make at one time and change at a later time, a form for
changing the information can contain a set of checkboxes with the current choices checked off. An application
like this typically gets the current choices from a database, and you will see an example of this in Chapter 10.
To demonstrate a technique for dynamically checking off checkboxes in a form, however, we keep it simple
and use the string[] with fruit choices from Example 6.4.

Example 6.6 is a modified version of the loop example.

page 67

JavaSercer Pages

Example 6.6. Setting Checkbox Values Dynamically (checkbox.jsp)

<%@ page 1anguage- java" contentType—"text/htm " %>
<%@ page import="com.ora.jsp.util. %>

<html>

<body bgcolor="white">

<form action:"checkbox.jsp”>
<input type— 'checkbox™ name="fruits" value="Apple">Apple

<input type="checkbox" name:"fruits" value="Banana'">Banana

<input type="checkbox" name=' fru1ts value="0Orange">0range

<input type="submit" value="Enter">

</form>

<%
String[] picked = request.getParametervalues("fruits");
% if (picked !'= null && picked.length !'= 0) {
%>
You picked the following fruits:
<form>
<input type="checkbox" name="fruits" value="Apple"
<%= ArraySupport.contains(picked, "Apple") ?
"checked" : "" %> >Apple

<input type="checkbox" name="fruits" value="Banana"
<%= Arraysupport.contains(picked, "Banana") ?
"checked" : "" %> >Banana

<input type="checkbox" name="fruits" value="Orange"
<%= ArraySupport.contains(picked, "Orange") ?
"checked" : "" %> >Orange

</form>
<% } %>
</body>
</html>

Here, the loop is replaced with a second form with the same checkboxes as in the form at the top of the page.
A browser shows a checkbox as checked off if the HTML <input> element includes the checked keyword. The
trick, then, is to add that keyword for all checkboxes in the second form that the user had checked off in the
first form.

The result of this example is shown in Figure 6.3.

Figure 6.3. Setting checkboxes dynamically

- Mstecape

= Eck Wiew Go Communicslon Hel

E = B 5 ™ g —
v v 3 nldd D =
é'E-:dcma-h & im&‘ill'\lhll.l)".'udhuﬂm-"l.'ld-'l."ﬂf'dmﬂ‘-'.l'm|\U-:'ﬁbi'6'ﬁdllcl'ld=-|ll.ﬂ'.‘c|ld'l.l‘= jf.:'*'hij!ﬂdﬂlbﬂ

B Instart Meszage [ThedavaLobby & JavaSoit [CNMimeracive ' Techwiet Bl Bark of dmerica

™ &pple
™ Banens
™ Cramgs

Erbar I

Vou picked the falloanng frots

I Apple
W Banena
F Orange

o Documert: Dons TN o (= - R

Another utility class from the com.ora.jsp.util package, ArraySupport, has the method contains(). This
method takes two arguments: a String[] (string array) and the string that you want to test to see if it's a
component in that array. If the second argument is a component in the array, the method returns true.

The contains() method is used in JSP expressions in Example 6.6, inserted in the middle of each HTML
<input> element. The expressions use the conditional operator (?) described in the Java primer earlier in this
chapter. As you may recall, the expression before the operator is first evaluated. If the result is true, the
expression returns the value after the ?. If it's false, the value after the colon is returned. Here the result is
that if the array contains the choice represented by the checkbox, the checked attribute is inserted to render
the checkbox as checked. Otherwise, an empty string is inserted, leaving the checkbox unchecked.

page 68

JavaSercer Pages

6.4.3 Using More Request Methods

We have already used one of the methods of the implicit request object, but this object provides a wealth of
information you may be interested in. So let's use some more request methods.

Example 6.7 shows a page with a number of JSP expressions, each one displaying a piece of information
about the current request.

Example 6.7. Displaying Request Info (reqinfo.jsp)

<%@ page language="java" contentType="text/html" %>
<html>
<body bgcolor="white">

Th$ following information was received:

<1li>Request Method: <%= request.getMethod() %>
<1li>Request URI: <%= request.getRequestURI() %>
Request Protocol: <%= request.getProtocol() %>
Servlet Path: <%= request.getServletPath() %>
<1li>Query String: <%= request.getQueryString() %>
Server Name: <%= request.getServerName() %>
Server Port: <%= request.getServerPort() %>
<1i>Remote Address: <%= request.getRemoteAddr() %>
<1li>Remote Host: <%= request.getRemoteHost() %>
<1li>Browser Type: <%= request.getHeader("User-Agent") %>

</body>
</htm1>

If you don't remember what some of these things mean, look back at Chapter 2. (The methods are also
described in Appendix B.) Figure 6.4 shows an example of the output from this page.

Figure 6.4. Request information page

ﬁﬂ:t::ape _ =] x|
Eve Edl Wewe Go Comnoncalen Hel
4 A3 anasdsd FH ol
¥ Bockmaks i Locaton: [Hip:loc kst BOBD ovar chid=g e] =] T what's Relaled

A Iratart Message |2l TheJavaLobby S JaveSoit |4 OH Ineractive & Techwish & Bank of Ameiics

The fallowang information 'was recenned.

= Fequest Method: GET
= Request URD forachifreqmto jsp

Fuequest Protocol: HT TR

Serviet Pathe fchiiregnfa jep

ey Strmg: nudl

Zerver Maroe: locafost

Eerver Port: 20E0

Fermote Addregs; 137.0.001

Foermiote Host: Jocalhost

Browser Type MozZad. 7 [en] (WmT. [

R o8 @ & B B W

i =l [rosvameanit. Done o [

6.5 Using an Expression to Set an Attribute

In all our JSP action element examples so far, the attributes are set to literal string values. But in many
cases, the value of an attribute is not known when you write the JSP page; instead, the value must be
calculated when the JSP page is requested. For situations like this, you can use a JSP expression as an
attribute value. This is called a request-time attribute value. Here is an example of how this can be used to
set an attribute of a fictitious log entry bean:

<jsp:useBean id="TogEntry" class="com.foo.LogEntryBean" />
<jsp:setProperty name="1logEntry" property="entryTime"
value="<%= new java.util.Date() %" />

page 69

JavaSercer Pages

This bean has a property named entryTime that holds a timestamp for a log entry, while other properties
hold the information to be logged. To set the timestamp to the time when the JSP page is requested, a
<jsp:setProperty> action with a request-time attribute value is used.

The attribute value is represented by the same type of JSP expression as in the previous snippet, here an
expression that creates a new java.util.Date object (representing the current date and time). The request-
time attribute is evaluated when the page is requested, and the corresponding attribute is set to the result of
the expression. As you might have guessed, any property you set this way must have a Java type matching
the result of the expression. In this case, the entrybDate property must be of type java.util.Date.

Not all attributes support request-time values. One reason is that some attribute values must be known when
the page is converted into a servlet. For instance, the class attribute value in the <jsp:useBean> action
must be known in the translation phase so that the JSP container can generate valid Java code for the servlet.
Request-time attributes also require a bit more processing than static string values, so it's up to the custom
action developer to decide if request-time attribute values are supported or not. Appendix A, shows which
attributes for the standard actions accept request-time attributes, and Appendix C provides the same
information for the custom actions used in this book. If you're a programmer, you may also want to skip
ahead to Chapter 16, to see how to declare that an attribute in a custom action accepts request-time
attributes.

6.6 Declaring Variables and Methods

We have used two of the three JSP scripting elements in this chapter: scriptlets and expressions. There's one
more, called a declaration element, which is used to declare Java variables and methods in a JSP page. My
advice is this: don't use it. Let me explain why.

Java variables can be declared either within a method or outside the body of all methods, like this:

public class SsomeClass {
// Instance variable .
private String anInstancevariable;

// Method
pubTlic void doSomething() {
String aLocalvariable;

A variable declared outside the body of all methods is called an instance variable. Its value can be accessed
from any method in the class, and it keeps its value even when the method that sets it returns. A variable
declared within the body of a method is called a /ocal variable. A local variable can be accessed only from the
method where it's declared. When the method returns, the local variable disappears.

Recall from Chapter 3 that a JSP page is turned into a servlet class when it's first requested, and the JSP
container creates one instance of this class. If the same page is requested by more than one user at a time,
the same instance is used for each request. Each user is assigned what is called a thread in the server, and
each thread executes the main method in the JSP object. When more than one thread executes the same
code, you have to make sure the code is thread-safe. This means that the code must behave the same when
many threads are executing as when just one thread executes the code.

Multithreading and thread-safe code strategies are best left to programmers. However, you should know that
using a JSP declaration element to declare variables exposes your page to multithreading problems. That's
because a variable declared using a JSP declaration element ends up as an instance variable in the generated
servlet, not as a local variable in a method. Since an instance variable keeps its value when the method
executed by a thread returns, it is visible to all threads executing code in the same instance. If one thread
changes the value of the instance variable, the value is changed for all threads. To put this in JSP terms, if
the instance variable is changed because one user accesses the page, all users accessing the same page will
use the new value.

When you declare a variable within a scriptlet element instead of in a JSP declaration block, the variable ends
up as a local variable in the generated servlet's request processing method. Each thread has its own copy of a
local variable, so local variables can't cause any problems if more than one thread executes the same code. If
the value of a local variable is changed, it will not affect the other threads.

page 70

JavaSercer Pages

That being said, let's look at a simple example. We use two int variables: one declared as an instance
variable using a JSP expression, and the other declared as a local variable. We increment them both by one
and display the new values. Example 6.8 shows the test page.

Example 6.8. Using a Declaration Element (counter.jsp)

<%@ page language="java" contentType="text/html" %>
<%!
int globalCounter = 0;
%>
<html>
<head>
<title>A page with a counter</title>
</head>
<body bgcolor="white">
This page has been visited: <%= ++globalCounter %> times.
<p>
<%
int localCounter = 0;
%>
This counter never increases its value: <%= ++localCounter %>
</body>
</html>

The JSP declaration element is right at the beginning of the page, starting with <%! and ending with %>. Note
the exclamation point (!) in the start identifier; that's what makes it a declaration as opposed to a scriptlet.
The declaration element declares an instance variable named globalcCounter, shared by all requests for the
page. In the body section of the page, a JSP expression increments the variable's value. Next comes a
scriptlet, enclosed by <% and %>, that declares a local variable named TocalcCounter. The last scriptlet
increments the value of the local variable.

When you run this example, the globalcCounter value increases every time you load the page, but
TlocalcCounter stays the same. Again, this is because globalCounter is an instance variable (its value is
available to all requests and remains between requests) while TocalcCounter is a local variable (its value is
available only to the current request and is dropped when the request ends).

In this example, nothing terribly bad happens if more than one user hits the page at the same time. The
worst that could happen is that you skip a number or show the same globalcCounter value twice. This can
happen if two requests come in at the same time, and both requests increment the value before it's inserted
in the response. You can imagine the consequences, however, if you use an instance variable to save
something more important, such as a customer's credit card number or other sensitive information. So even
though it may be tempting to create an instance variable (using a JSP expression) to keep a value such as a
counter between requests, I recommend that you stay away from this technique. We'll look at better ways to
share information between requests in Chapter 8.

A JSP declaration element can also be used to declare a method that can then be used in scriptlets in the
same page. The only harm this could cause is that your JSP pages end up containing too much code, making
it hard to maintain the application. A far better approach is to use JavaBeans and custom actions. But to be
complete, Example 6.9 shows an example of how it can be done.

Example 6.9. Method Declaration and Use (color.jsp)

<%@ page language="java" contentType="text/html" %>
<html>
<body bgcolor="white">

<%!
String randomcColor() {

java.util.Random random = new java.util.Random();

int red = (int) (random.nextFloat() * 255);

int green = (int) (random.nextFloat() * 255);

int blue = (int) (random.nextFloat() * 255);

return "#" +
Integer.toString(red, 16) +
Integer.toString(green, 16) +
Integer.toString(blue, 16);

%>
<h1l>Random Color</hl>

<table bgcolor="<%= randomColor() %>" >
<tr><td width="100" height="100"> </td></tr>
</table>

</body>
</html>

page 71

JavaSercer Pages

The method named randomColor(), declared between <%! and %>, returns a randomly generated String in
a format that can be used as an HTML color value. This method is then called from an expression element to
set the background color for a table. Every time you reload this page, you see a single table cell with a
randomly selected color.

6.6.1 jspInit() and jspDestroy()

You may remember from Chapter 2 that a servlet has two methods that the container calls when the servlet
is loaded and shut down. These methods are called init() and destroy(), and they allow the servlet to
initialize instance variables when it's loaded and clean up when it's shut down, respectively. As you already
know, a JSP page is turned into a servlet, so it has the same capability. However, with JSP, the methods are
called jspInit() and jspbestroy() instead.

Again, I recommend that you do not declare any instance variables for your JSP pages. If you follow this
advice, there's also no reason to declare the jspInit() and jspbestroy() methods. But I know you're
curious, so here's an example of how they can be used.

Expanding on Example 6.8, the jspInit() method can be used to set an instance variable to a
java.util.pate() object, which represents the date and time when the page is loaded. This variable can
then be used in the page to show when the counter was started:

<%@ page language="java" contentType="text/html" %>
<%@ page import="java.util.Date" %>
<%

int globalCounter = 0;

Date startDate;

pubTlic void jspInit() {
startDate = new Date();

public void jspbDestroy() {
ServletContext context = getServletConfig().getServietContext();
context.1og("test.jsp was visited " + globalCounter +
" times between " + startDate + and " + (new Date()));

%>
<html>
<head>
<title>A page with a counter</title>
</head>
<body bgcolor="white">
This page has been visited: <%= ++globalCounter %> times
since <%= startDate %>.
</body>
</html>

The jspbestroy() method retrieves a reference to the ServietContext for the page and writes a message
to the container's log file. If you recall that the implicit appTication variable contains a reference to the
ServletContext, you may be wondering why it's not used here. The reason is that the implicit variables are
available only in the method that the JSP container generates to process the page requests, not in the
methods that you declare yourself.

page 72

JavaSercer Pages

Why Two Notations?

You may have noticed that two different notations are used for the different JSP elements: XML-style
notation, like <jsp:useBean>, for action elements, and <% %> notation for directives and scripting
elements. If you're a purist, you may be wondering why the authors of the JSP specification mixed
styles like this. Given that XML seems to be the future for all markup languages, why not use XML
notation for all JSP elements?

There are two good reasons for not using the XML notation for directives and scripting elements:

Scripting elements contain scripting code, and many characters used in code are not valid in
an XML document. If XML notation were used for the scripting elements, you would have to
manually encode characters like < and > so they wouldn't be mistaken for XML control
characters. That would be messy and a source of pernicious errors.

The <%@ directive %>, <% code %>, <%= expression %>, and <%! declaration %> notations

are familiar for many developers since they are also used in Microsoft's Active Server Pages
(ASP).

JSP actually defines XML-style equivalents for directives and scripting elements. But the XML notation
for these elements is intended to be used only by tools that generate complete JSP pages. The tools
can handle encoding of special characters automatically, as well as a number of other details needed
to make a JSP page a well-formed XML document. The XML style is also not completely defined in JSP
1.1; therefore, a JSP 1.1 container is not required to support it.

page 73

JavaSercer Pages

Chapter 7. Error Handling and Debugging

When you develop any application that's more than a trivial example, errors are inevitable. A JSP-based
application is no exception. There are many types of errors you will deal with. Simple syntax errors in the JSP
pages are almost a given during the development phase. And even after you have fixed all the syntax errors,
you may still have to figure out why the application doesn't work as you intended due to design mistakes. The
application must also be designed to deal with problems that can occur when it's deployed for production use.
Users can enter invalid values and try to use the application in ways you never imagined. External systems,
such as databases, can fail or become unavailable due to network problems.

Since a web application is the face of a company, making sure it behaves well, even when the users
misbehave and the world around it falls apart, is extremely important for a positive customer perception.
Proper design and testing is the only way to accomplish this goal. Unfortunately, many developers seem to
forget the hard-learned lessons from traditional application development when designing web applications.
For instance, a survey of 100 e-commerce managers, conducted by InternetWeek magazine (April 3, 2000
issue), shows that 50% of all web site problems were caused by application coding errors. That's the highest
ranking reason in the survey, ahead of poor server performance (38%), poor service provider performance
(35%), and poor network performance (22%).

In this chapter, we look at the types of problems you can expect during development, as well as those
common in a production system. We see how you can track down JSP syntax and design errors, and how to
deal with runtime problems in a graceful manner.

7.1 Dealing with Syntax Errors

The first type of error you will encounter is the one you, or your co-workers, create by simple typos: in other
words, syntax error. The JSP container needs every JSP element to be written exactly as it's defined in the
specification in order to turn the JSP page into a valid servlet class. When it finds something that's not right,
it will tell you. But how easy it is to understand what it tells you depends on the type of error, the JSP
container implementation, and sometimes, on how fluent you are in computer gibberish.

7.1.1 Element Syntax Errors

Let's first look at how Tomcat reports some typical syntax errors in JSP directives and action elements.
Example 7.1 shows a version of the date.jsp page from Chapter 5, with a syntax error.

Example 7.1. Improperly Terminated Directive (errorl.jsp)

<%@ page language="java" contentType="text/html" >
<html>

<body bgcolor="white">

<jsp:useBean id="clock" class="java.util.Date" />

The current time at the server is:

Date: <jsp:getProperty name="clock" property="date" />
Month: <jsp:getProperty name="clock" property="month" />
Year: <jsp:getProperty name="clock" property="year" />
Hours: <jsp:getProperty name="clock" property="hours" />
<}1?M1nutes: <jsp:getProperty name="clock" property="minutes" />

</body>
</html>

The syntax error here is that the page directive on the first line is not closed properly with %>; the percent
sign is missing. Figure 7.1 shows what Tomcat has to say about it.

page 74

JavaSercer Pages

Figure 7.1. Error message about an unterminated JSP directive

Fde Edi Wew Go Cowmuricsion Help
= re T
¢ v A% el adD P =
§ " Booknaks B Locations [hitor Vocalhoat BB orachi fevor g =] A ihars Relded
ﬁlns:ﬂﬂ::u:& Y TheJavalobby 5 JavaSolt 5 CMMinmrscive '3 Techwieh (4 Bank of Americs

Error: 500

Location: /ora/ch?/errorl.jsp

Intermal Seavlet B

org.apache . jasper .compiler . Par=seBxcepbion: Dbi\chThyercozl.j=ap(0,49) Unterminated <38 tag
At org,apache.jaaper.compiler . Parserfbicestive, accepl (Pacser . javas: L06)
at arg.epeche. jeaper.compller . Faraer ., pares (Foraes . jave: 10T4)
&t org.apache.jssper.compliler.Parser. parss |Pacssr.jawar 10309
mt org.apache.jasper.compiler.farser. pacs= |Facser. java: 1035
at org.apache. jaaper .. conpiler . Compilec . compile [Compiler ., jevas 173)
at arg.aphche . jaaper. Tertise . TapServlet. Load TSP (Tapdsevlet. Javaz 414}
mt org.apache.jasper.runtime. TapServiet§IspServietrapper. load IfNecessary |TapServiet
mt org.apache.jasper. Tuntime . Ispiervletidspiervletrapper. secvioe [Tapiervliet . javai 16
At arg.apache.jasper.runbine, Taplarvlet, sstvicelapPile (Teplepvlat. javaiZ6l)
At arg.apache.jasper. rentises TapServlst. sscvice (Fapdscvlst,. Jawa: 369
at javax.serviet.http. EttpServlet. saecvice (BtbpServlet. Jorar 53]
st org.apache.bomoat.core, Servletiirapper . hand leRequest {(S=cvletWrapper., Jara: 206]
at org.apsche.bomoat.core, ConbextManager service [ContextManager . fava: 353)
AT Org.apache.comcat.service. http. HttplonbectionHandler . proceaaConnect Lon (AT Connes
at org.apache . tomcat.ssrvice. ToplonnectionThread. cuni{Sisple TopEndpodnt Jeve: 33E]
at java.lang. Ihread. run(Unkoown Sourocep

| | il

- Document: Dons SR OIS ohEL)

Tomcat reports the error by sending an error message to the browser. This is the default behavior for
Tomcat, but it's not mandated by the JSP specification. The specification requires only that a response with
the HTTP status code for a severe error (500) is returned, but how a JSP container reports the details is
vendor-specific. For instance, the error message can be written to a file instead of to the browser. If you use
a container other than Tomcat, check the container documentation to see how it reports these types of errors.

The actual error message in Figure 7.1 is what is called an exception stack trace. When something goes really
wrong in a Java method, it typically throws an exception. An exception is a special Java object, and throwing
an exception is the method's way of saying it doesn't know how to handle a problem. Sometimes another part
of the program can take care of the problem in a graceful manner, but in many cases the best that can be
done is to tell the user about it and move on. That's what the Tomcat container does when it finds a problem
with a JSP page during the translation phase: it sends the exception stack trace to the browser. The stack
trace contains a message about what went wrong and where the problem occurred. The message is intended
to be informative enough for a user to understand, but the actual trace information is of value only to a
programmer. As you can see in Figure 7.1, the message is:

D:\ch7\errorl.jsp(0,49) uUnterminated <%@ tag

The first part of the message is the name of the JSP page. The numbers within parentheses indicate on which
line and character position in the file the error was found (both the line and the position are numbered from
0), and then the message states what the problem is. So this message tells us that a directive on the first line
(a tag starting with <@) is not terminated as expected at position 49. And in this case it's both the correct
diagnosis and the right location.

It's not always this easy to interpret the error message, though. Example 7.2 shows another version of
date.jsp with a different syntax error.

page 75

JavaSercer Pages

Example 7.2. Improperly Terminated Action (error2.jsp)

<%@ page language="java" contentType="text/html" %>
<html>

<body bgcolor="white">

<jsp:useBean id="clock" class="java.util.Date" >

The current time at the server is:

Date: <jsp:getProperty name=' c1ock property="date" />
Month: <jsp:getProperty name="clock" property="month" />
Year: <jsp:getProperty name=' c1ock property=" year” />
Hours: <jsp:getProperty name=' c1ock property= "hours" />
<}1?M1nutes <jsp:getProperty name="clock" property="minutes" />

</body>
</html>

The syntax error here is almost the same as the "unterminated tag" in Example 7.1, but now it's the
<jsp:useBean> action element that's not terminated properly (it's missing the closing slash). The message
reported by Tomcat in this case is:

D:\ch7\error2.jsp(16,0) useBean tag must begin and end in the same physical file

This is not as easy to relate to the actual location of the error. The line and position information points to the
last character in the file. The reason for this is that since the action element doesn't have a body, the opening
tag must end with />, as you may remember from Chapter 5. But in Example 7.2, it's terminated with just >.
Since that's valid syntax for a JSP action that contains a body, the JSP container can't tell that it's a syntax
error at this point. Instead it treats it as the opening tag for an element with a body, and complains that it
can't find the closing tag before the file ends. In this case, it's still not too hard to figure out what the real
problem is, but if you have multiple <jsp:useBean> elements in the same file, it can be more complicated.

Another common error is a typo in an attribute name, as shown in Example 7.3. In the first
<jsp:getProperty> action, the name attribute is missing the e.

Example 7.3. Mistyped Attribute Name (error3.jsp)

<%@ page language="java" contentType="text/html" %>
<html>

<body bgcolor="white">

<jsp:useBean id="clock" class="java.util.Date" />

The current time at the server is:

Date: <jsp:getProperty nam=' c1ock property-"date“ />
Month: <jsp:getProperty name_ 'clock™ property- 'month" />
Year: <jsp:getProperty name="clock" property="year" />
Hours: <jsp:getProperty name="clock" property="hours" />
<}1?M1nutes: <jsp:getProperty name="clock" property="minutes" />

</body>
</html>

Tomcat reports the problem like this:
D:\ch7\error3.jsp(7,10) getProperty: Mandatory attribute name missing

In this case, the typo is in the name of a mandatory attribute, so Tomcat reports it as missing. If the typo is
in the name of an optional attribute, Tomcat reports it as an invalid attribute name.

The examples here are the most common ones for JSP actions, and as you can see, Tomcat can give you
pretty good information about what's wrong in these cases. But this is still an area where I expect many
improvements to be implemented in later versions of Tomcat as well as other JSP containers. The JSP
authoring tools that are emerging now also help. By providing GUI-based interfaces that generate the action
elements automatically, they can eliminate this type of syntax problem.

page 76

JavaSercer Pages
7.1.2 Scripting Syntax Errors

So far, so good, right? Not quite. Unfortunately, syntax errors in scripting elements result in error messages
that are much harder to interpret. This is because of the way the JSP container deals with scripting code when
it converts a JSP page into a servlet. The container reads the JSP page and generates servlet code by
replacing all JSP directives and actions with code that produces the appropriate result. To do this, it needs to
analyze these types of elements in detail. If there's a syntax error in a directive or action element, it can
easily tell which element is incorrect (as you saw in the previous section).

Scripting elements, on the other hand, are more or less used as-is in the generated servlet code. A syntax
error in scripting code is not discovered when the JSP page is read, but instead when the generated servlet is
compiled. The compiler reports an error in terms of its location in the generated servlet code (as opposed to
the location in the JSP page), with messages that don't always make sense to a JSP page author. Let's look at
some examples to illustrate this.

Example 7.4 shows a modified version of the greeting.jsp page from Chapter 6. The last scriptlet, with a
brace closing the last else block, is missing.

Example 7.4. Missing End Brace (error4.jsp)

<%@ page language="java" contentType="text/html" %>
<html>

<body bgcolor="white">

<jsp:useBean id="clock" class="java.util.Date" />

<% if (clock.getHours() < 12) { %>
Good morning!

<% } else if (clock.getHours() < 17) { %>
Good day!

<% } else { %>
Good evening!

</body>
</html>

This is the error description Tomcat sends to the browser (with some line breaks added to make it fit the
page):

org.apache.jasper.Jasperexception: Unable to compile class for ISP
D:\tmp\Tomcat\jakarta-tomcat\work\Tocalhost_8080%2Fora\
_0002fch_00037_0002ferror_00034_0002ejsperror4_jsp_0.java:105:
'catch' without 'try'.
} catch (Exception ex) {
A

D:\tmp\Tomcat\jakarta-tomcat\work\Tocalhost_8080%2Fora\
_0002fch_00037_0002ferror_00034_0002ejsperror4_jsp_0.java:114:
'try' without 'catch' or 'finally'.

>

D:\tmp\Tomcat\jakarta-tomcat\work\Tocalhost_8080%2Fora\
_0002fch_00037_0002ferror_00034_0002ejsperror4_jsp_0.java:114:
'}' expected.
}

A

3 errors

This message probably doesn't make much sense to you. First of all, the filename is not the name of the JSP
page, it's the name of the generated servlet, which contains sequence numbers and special encodings to
make it a unique filename. Part of the name corresponds to the JSP page name, but a different JSP container
than Tomcat may not use the same kind of naming convention, so there's no guarantee that this is true for all
containers. Secondly, the line numbers listed are line numbers in the generated servlet source code file, not
the line numbers in the JSP file. And lastly, the error message refers to 'catch' without "try', which doesn't
seem to match any code in the JSP page scriptlets. That's because the code with the missing brace is inserted
into the block of code that outputs template text, invokes actions, and so forth - so the compiler gets
confused about what the real problem is.

How can you find the real problem when you get this type of message? If you know how to program Java,
you can look at the generated servlet source file and try to figure out what's really wrong. Most JSP
containers can be configured to save the generated source code for you to look at. For Tomcat, it's the default
behavior, and the complete name of the file is shown in the error message.

page 77

JavaSercer Pages

But if you're not a programmer, the only thing you can do is to study all scriptlets in your JSP page carefully
and try to figure out what's wrong. That's not always easy, and it's yet another reason to avoid scripting in
your JSP pages in the first place. When you have to use scripting, use only extremely simple code and be
very careful with the syntax.

Let's look at couple of other common syntax errors so you at least know the types of messages to expect.
Example 7.5 shows a version of the browser.jsp file from Chapter 6 in which a closing parenthesis for the first
if statement is missing.

Example 7.5. Missing Closing Parenthesis (error5.jsp)

<%@ page language="java" contentType="text/html" %>
<html>
<body bgcolor="white">

<% if (request.getHeader("User-Agent").indexO0f("MSIE") != -1 { %>
You're using Internet Explorer.
<%
} else
if (request.getHeader("User-Agent").indexof("mMozilla") != 1) {

%>

You're using Netscape.
<% } else { %>

You're using a browser I don't know about.
<% } %>

</body>
</html>

The error message for this type of error is a bit easier to understand:

org.apache.jasper.JaspereException: Unable to compile class for ISP
D:\tmp\Tomcat\jakarta-tomcat\work\Tocalhost_8080%2Fora\
_0002fch_00037_0002ferror_00035_0002ejsperror5_jsp_0.java:61:
')' expected.
if (request.getHeader("User-Agent").indexof("MSIE") != -1 {
A

D:\tmp\Tomcat\jakarta-tomcat\work\Tocalhost_8080%2Fora\
_0002fch_00037_0002ferror_00035_0002ejsperror5_jsp_0.java:68:
'else' without 'if'.
} else
A

2 errors

Here the syntax error doesn't cause any strange side effect errors when the scripting code is combined with
other generated code, as the error in Example 7.4 did. Instead, the message shows the code fragment where
the real error is located.

Another typical mistake is shown in Example 7.6. It's a part of the reginfo.jsp page from Chapter 6.

Example 7.6. Scriptlet Instead of Expression (error6.jsp)

<%@ page language="java" contentType="text/html" %>
<html>
<body bgcolor="white">

Th$ following information was received:

<1i>Request Method: <%= request.getMethod() %>
Request URI: <% request.getRequestURI() %>
<1li>Request Protocol: <%= request.getProtocol() %>

</body>
</html>

page 78

JavaSercer Pages

This is simply a case where the opening tag for a JSP expression (<%=) has been mistakenly written as the
opening tag for a JSP scriptlet (<%). It looks like an innocent error, but the error message does not give you
much help to find it:

org.apache.jasper.JaspereException: Unable to compile class for ISP
D:\tmp\Tomcat\jakarta-tomcat\work\Tocalhost_8080%2Fora\
_0002fch_00037_0002ferror_00036_0002ejsperror6_jsp_0.java:67:
Invalid type expression.
request.getRequestURI()
A

D:\tmp\Tomcat\jakarta-tomcat\work\Tocalhost_8080%2Fora\
_0002fch_00037_0002ferror_00036_0002ejsperror6_jsp_0.java:70:
Invalid declaration.
out.write("\r\n
Request Protocol: ");

2 errors

Again, the scripting code and the generated code clash, resulting in a message that's hard to understand; but
at least you can recognize the code from the JSP page and try to see what's really wrong.

The misleading and confusing error messages reported for scripting syntax errors are, in my opinion, a big
problem, and one that's hard to solve completely, even with better JSP container implementations and tools.
It can be minimized, for instance by providing information about where in the JSP page the error is
introduced, but it's always hard for a container to pinpoint the real problem when scripting code is mixed with
other generated code. My only advice at this point is (again) to avoid scripting code as much as possible.

7.2 Debugging a JSP-Based Application

After you have fixed all syntax errors, pat yourself on the back and enjoy the moment. If the application is
more than a trivial example, however, this moment will probably be short-lived: you will likely find that one
or more things still don't work as you expected. Logic errors, such as not taking care of all possible input
combinations, can easily slip into an application during development. Finding and correcting this type of
problem is called debugging.

For applications developed in compiled languages such as Java, C, or C++, a tool called a debugger is often
used in this phase. A debugger steps through the program line by line or runs until it reaches a break point
that you have defined, and lets you inspect the values of all variables in the program. With careful analysis of
the program flow in runtime, you can discover why it works the way it does, and not the way you want it to.
There are debuggers for JSP as well, such as IBM's Visual Age for Java. This product lets you debug a JSP
page exactly the same way as you would a program written in a more traditional programming language.

But a real debugger is often overkill for JSP pages. If your pages are so complex that you feel you need a
debugger, you may want to move code from the pages into JavaBeans or custom actions instead. These
components can then be debugged with a standard Java debugger, which can be found in most Java
Interactive Development Environments (IDEs). To debug JSP pages, another time-tested debugging approach
is usually sufficient: simply add code to print variable values to the screen.

Example 7.7 shows how you can use this approach to find an error in a modified version of the browser.jsp
page from Chapter 6.

Example 7.7. Testing Header Values in the Wrong Order (browser.jsp)

<%@ page language="java" contentType="text/html" %>
<html>
<body bgcolor="white">

<% if (request.getHeader("User-Agent").indexof("mMozilla") != -1) { %>
You're using Netscape.
<%
} else
if (request.getHeader("User-Agent").indexof("MSIE") != 1) {

%>

You're using Internet Explorer.
<% } else { %>

You're using a browser I don't know about.
<% } %>

</body>
</html>

page 79

JavaSercer Pages

If you run this example in a Netscape browser, it responds with "You're using Netscape," as expected. The
problem is that if you run it with Internet Explorer, you get the same response. Clearly there's something
wrong with the way the User-Agent header value is tested.

To find out why it doesn't work with Internet Explorer, you can add a one-line JSP expression that includes
the value of the User-Agent header in the response:

<%@ page language="java" contentType="text/html" %>
<html>
<body bgcolor="white">

User-Agent header value: <%= request.getHeader("User-Agent") %>
<p>

The result is shown in Figure 7.2.

Figure 7.2. Response with debug output

-'E hitpc/ Mlocalhos b BIB0 orafchT Muowser. sp - Micoosolt Inbeimet Esploses

Fle Ecdt e Go Fgvolle: Help E
: = D - L e =T |
Saop Rehesh Homs Semch Fawodes Hisloy Channels Fullsoeen Mal Frink Eck
ﬁ.ﬂclm:l#_‘lrnr.-.'.-'b-LaI:.'-rS‘l’.HJ..‘uu:..-'m."‘.u'bur.mmr.p ;] Linkiz
=]
Wzer- Agent header value: MomllaM 0 (compatible, MSIE 4. 01, Wmndows HT)
You're using Metscape
=
£1 Lol rhisrml 2008

Now it's clear why it doesn't work: the User-Agent header value set by Internet Explorer also contains the
string "Mozilla". So the test in the JSP page must be reversed, first looking for the string "MSIE" (to identify
Internet Explorer) and looking for "Mozilla" only if it's not found.

Adding a couple of JSP expressions to see variable values as part of the response in the browser is the easiest
way to debug a JSP page. But sometimes multiple pages are involved in the processing of a single request, as
you will see in Chapter 8. In this case, it may be better to write the debug output to a file or the command
window where you started the server instead. To write to the standard log file for the server, replace the JSP
expression with this scriptlet:

<% application.log("User-Agent header value: +
request.getHeader("User-Agent")); %>

The application variable is one of the implicit JSP objects described in Chapter 6, containing a reference to
the javax.servlet.ServletContext object for the application. It provides a Tog() method that writes
messages to the application log file. The name and location of the file are server-dependent. With a default
configuration of Tomcat, it's named logs/serviet.log.

Most servers, including Tomcat, also let you write messages to the window where the server was started,
represented by the System.out object:

<% System.out.printin("User-Agent header value: +
request.getHeader("User-Agent'")); %>

This approach works fine during development, when you run your own web server started in a command
window, but you need to remember to remove these lines in your production code. Writing to the log file is
useful when you debug an application that is running in a web server you don't have control over, or if you
need to record the debug messages in a file for further analysis later.

To make it easier to generate the most common types of debug output, you can use the DebugBean class that
I developed for this book. Its properties represent information that's available in a JSP page, as shown in
Table 7.1.

page 80

JavaSercer Pages

Table 7.1, Properties of com.ora.jsp.util. DebugBean

Property Name Java Type Access Description

Must be set in order for the
pageContext javax.servlet.jsp.PageContext | write bean to find the value of
its other properties

A string with the number
of milliseconds elapsed
elapsedTime String read | since the bean was created
or this property was last
read

A string, formatted as a
table, with information
about the request, such as
authentication type,
content length and
encoding, path
information, remote host
and user, etc.

requestinfo String read

A string, formatted as a
table, with the names and
values of all headers
received with the request

headers String read

A string, formatted as a
table, with the names and
values of all cookies
received with the request

cookies String read

A string, formatted as a
table, with the names and
values of all parameters
received with the request

parameters String read

A string, formatted as a
table, with the names and
values of all page scope
variables

pageScope String read

A string, formatted as a
table, with the names and
values of all request scope

variables

requestscope String read

A string, formatted as a
table, with the names and
values of all session scope

variables

sessionScope String read

A string, formatted as a
table, with the names and
values of all application
scope variables

applicationScope String read

The DebugBean has one write-only property, pageContext, that must be set to the corresponding implicit
object to provide the bean access to all the information it can report on. All the other properties are read-
only, providing access to different subsets of information of interest when debugging a JSP application.

page 81

JavaSercer Pages

To control where the information is written, pass a debug parameter with the request for the page with the
bean. This parameter must have one or more of the following values (separated by plus signs):

resp

Include the debug information in the response as an HTML table
stdout

Write the debug information to System.out
Tog

Write the debug information to the application log file

Let's look at an example. The JSP page shown in Example 7.8 creates an instance of the DebugBean using a
<jsp:useBean> action. It also sets the mandatory pageContext property using a nested <jsp:setProperty>
action. The <jsp:setProperty> uses a request-time attribute value to assign the pageContext property a
reference to the implicit pageContext variable.

Example 7.8. Page with the DebugBean (debug.jsp)

<%@ page language="java" contentType="text/html" %>
<%@ page import="java.util.*" %>

<html>

<body bgcolor="white">

<jsp:useBean id="debug" class="com.ora.jsp.util.DebugBean" >
<jsp:setProperty name:"debug" property="pageContext"
value="<%= pageContext %>"

>
</jsp:useBean>
<p>

<%-- Add test variables to the request scope --%>
<%
string[] arr = {"a", "b", "c"};
request.setAttribute("arr", arr);
java.util.Date date = new Date();
y request.setAttribute("now", date);
%>
<jsp:getProperty name="debug" property="headers" />
<jsp:getProperty name="debug" property="cookies" />
<jsp:getProperty name="debug" property="parameters" />
<jsp:getProperty name="debug" property="requestScope" />
<jsp:getProperty name="debug" property="elapsedTime" />

</body>
</html>

A scriptlet is used to set two request attributes, referred to in JSP as placing objects in the request scope .
Objects placed in the request scope can be accessed by all JSP pages used to process the same request.
Don't worry about how this works now; you'll learn more about all the JSP scopes in Chapter 8. Here, it's only
used to show you how the DebugBean displays scope information. Next, five <jsp:getProperty> actions are
used to display the headers, cookies, parameters, requestScope, and elapsedTime properties.

The DebugBean returns its property values only if the request contains a debug parameter with a valid value.
Therefore, you can keep the bean in your pages all the time and activate it only when you need the debug
info. If you request the page with the URL:

http://localhost:8080/ora/ch7/debug.jsp?debug=resp+stdout&a=b

page 82

http://localhost:8080/ora/ch7/debug.jsp?debug=resp+stdout&a=b

JavaSercer Pages

you get the response shown in Figure 7.3.

Figure 7.3. Debug output

HE Metzcape
Fiz Edt Vew Go Communcsior Help
e v+ A N2l I3d3 =

¢ Bookmaks & Lmlm'|le's'-'1:-tdh-:~¢lBZB[I-"-:-IG:'-:r?a'cu:trlg P debug=reapestdoutamh j U7 what's Rielated
ﬁlmlatklaasa:s | Thadavalobby B/ JaveSoh 2 CHM Inlerasiive = Techiwah | @ Bark of Ameiica

hesibers
User-hagent Mozillaid. 7 [en] (WintdT, [}
Accopt irpage’af, mageix-ghitnap, megeipeg, megeppeg, tnagefong, ="
Coalag JEESZIOHD=Tal 0l (mCS002R000 3015045800
Huaz locathost 3080
focept-Encoding mup
Accept-Language en-US en sv
Accept-Charset 1so-BE50-1.% uif-8
Catiriestion Faep-Alive
cimikies
JEESEIOHID TolM0mc309250909361 5045541
parameters
a h
debmg resp sbdo
requesticope
arr java lang Stnng(]: {3, b, ¢}
noner jasa bl Dater Tue Tud 11 14:07:47 FDT 2000
elapsed Time; 10 ms

i =l Droczument: Diore i L o (B S

Since the debug parameter specifies both resp and stdout, you also get all the debug information in the
window where you started Tomcat.

7.3 Dealing with Runtime Errors

Eventually, your application will work as you like. But things can still go wrong due to problems with external
systems that your application depends on, such as a database. And even though you have tested and
debugged your application, there may be runtime conditions that you didn't anticipate.

Well-behaved components such as JavaBeans or JSP actions (standard and custom) deal with expected error
conditions in a graceful manner. For instance, the UserInfo bean used in Chapter 5 has a valid attribute
that is false unless all properties are set to valid values. Your JSP page can then test the property value and
present the user with an appropriate message.

But if something happens that makes it impossible for the component to do its job, it needs to tell the user
about the problem. The standard way Java does this is to throw an exception. That's what the JSP container
does when it finds a problem with a JSP page during the translation phase, as I described in the first section
of this chapter. Components, such as JavaBeans and JSP actions, and the code in JSP scripting elements, can
also throw exceptions when something goes really wrong. By default, the JSP container catches the exception
and displays its message and stack trace in the browser, similar to what's shown in Figure 7.1. But that's
hardly the type of error message you want the application users to see. It's better to tell the JSP container to
use a customized error page instead.

page 83

JavaSercer Pages

Example 7.9 shows a JSP page with a page directive that defines an error page.

Example 7.9. Page with an Error Page Definition (calc.jsp)

<%@ page Tanguage="java" contentType="text/html" %>

<%@ page errorPage="errorpage.jsp?debug=Tog" %>

<% request.setAttribute("sourcePage"”, request.getRequestURI()); %>
<html>

<body bgcolor="white">

<jsp:useBean id="calc" c1ass- com.ora.jsp. beans calc.calcBean">
<jsp:setProperty name="calc" property="*"
</jsp:useBean>

<%-- Calculate the new numbers and state info --%>
<% String currentNumber = calc.getCurrentNumber(); %>
<form action="calc.jsp" method="post">
<table border=1>
<tr>
<td colspan="4" align="right">
<%= currentNumber.equals("") ? " "
currentNumber %>
<input type="hidden" name="currentNumber"
value="<%= currentNumber %>">
<input type="hidden" name="previousNumber"
value="<%= calc.getPreviousNumber() %>">
<input type="hidden" name="currentOperation"
value="<%= calc.getCurrentoperation() %>">
<input type="hidden" name="previousOperation"
value="<%= calc.getPreviousoOperation() %>">
<input type="hidden" name="reset"
value="<%= calc.getReset() %>">
</td>
</tr>
<tr>
<td><input type="submit" name="digit" value=" 7 "></td>
<td><input type="submit" name="digit" value=" 8 "></td>
<td><input type="submit" name="digit" value=" 9 "></td>
<td><input type="submit" name="oper" value=" / "></td>
</tr>
<tr>
<td><input type="submit" name="digit" value=" 4 "></td>
<td><input type="submit" name="digit" value=" 5 "></td>
<td><input type="submit" name="digit" value=" 6 "></td>
<td><input type="submit" name="oper" value=" * "></td>
</tr>
<tr>
<td><input type="submit" name—"d1g1t value=" 1 "></td>
<td><input type="submit" name="digit" value=" 2 "></td>
<td><input type="submit" name="digit" value=" 3 "></td>
<td><input type="submit" name="oper" value=" - "></td>
</tr>
<tr>
<td><input type="submit" name="digit" value=" 0 "></td>
<td> </td>

<td><input type="submit" name="dot" value=" . "></td>
<td><input type="submit" name="oper" value=" + "></td>
</tr>
<tr>

<td> </td>
<td> </td>
<td><input type="submit" name="clear" value=" C "></td>
<td><input type="submit" name="oper" value=" = "></td>
</table>
</form>

</body>
</html>

The errorpPage attribute in the page directive specifies the URL path for the page displayed if an exception is
thrown by any component or scripting code. In JSP 1.1, you cannot specify a regular HTML page as the error
page; it must be another JSP page. When the path is specified as in Example 7.9, the error page must be
located in the same directory as the page that references it. However, if it starts with a slash (/), it's
interpreted as relative to the application's context path. The context path is simply the root for all HTML,
image, and JSP pages in an application, such as C:\Jakarta\jakarta-tomcat\webapps\ora for the application
containing all book examples (if you installed it in the directory specified in Chapter 4). This means you can
define a common error page for all the JSP pages in an application, even if you place them in multiple
subdirectories, by using a path like /errorpage. jsp.

page 84

JavaSercer Pages

Also note that the error page URL in Example 7.9 includes the debug request parameter, and that a scriptlet
is used to set a request attribute:

<%@ page errorPage="errorpage.jsp?debug=log" %>
<% request.setAttribute("sourcePage", request.getRequestURI()); %>

The debug parameter lets you use the DebugBean to log information about what went wrong in the error
page. The sourcepPage attribute, set to the URL for the current page, is also used in the error page, as you
will see shortly.

The rest of the page in Example 7.9 implements a simple calculator, shown in Figure 7.4. It's intended only to
illustrate how the error page handling works, so I will not describe it in detail. When you're done reading this
book, it might be a good exercise to figure it out yourself by looking at the source code.

Figure 7.4. Calculator page

Fie Edit View Go Communicator Help

e BN RN et o=

¥ "Boskmaks 4 Lecston [hip/ focdhe st S0E0V o/ chT cak jap =] 57 wihat's Aedated
S instart Mestage 5| Thadavallobby (5 JavaSan 3 CMMintersotive S Techiweh (S Bank of Ameiics

416
7l =]
] 5] e] =]
(1 A
ol B
B8

" i Documere: Dons T U T B

L

If a user tries to divide a number by zero, the CalcBean used in this page to implement the calculator throws
an exception. This triggers the error page shown in Example 7.10 to be invoked.

Example 7.10. Error Page (errorpage.jsp)

<%@ page language="java" contentType="text/html" %>

<%@ page isErrorpPage="true" %>

<html>

<body bgcolor="white">
we're sorry but the request could not be processed. The processing
error message is:
<blockquote>
<%= exception.getMessage() %>
</blockquote>
The message has been logged together with more detailed information
about the error so we can analyze it further. Please try again, and
let us know if the
problem persists.

<%
application.Tog((String) request.getAttribute("sourcerPage"),
exception);
%>
<jsp:useBean id="debug" class="com.ora.jsp.util.DebugBean">
<jsp:setProperty name:"debug" property="pageContext"
value="<%= pageContext %>" />
</jsp:useBean>
<jsp:getProperty name="debug" property="parameters" />

</body>
</html>

page 85

mailto:webmaster@mycompany.com">let

JavaSercer Pages

At the top of the page is a page directive with the attribute isErrorpage set to true. This tells the JSP
container that a special implicit JSP object named exception should be initialized with a reference to the
exception that caused the page to be invoked. The type of the exception object is java.lang.Throwable .
This class provides a method named getMessage() that returns a string with a message about what went
wrong. A JSP expression is used to display this message to the user, as shown in Figure 7.5.

Figure 7.5. Customized error page

ﬂ':—jHH::.:pe !Em
Fi= Edit View Qo Communisa Hep
e + At Sl 3 =
§ 7 Blockeeads 43 Locabor |IJI|:| Hocabast BE walchif cske po j &7 wWhat's Relabed

B lnstart Massage |2 Thedavalobby & JavaSot S CHM Ineactive & Techiwiet |3 Bark of America

We're sorry b the request could ot be processed, The processmg error message is
Biglnteger divide by ze0

The message bas been logged logether wath moce detaded nformsalion aboed the srror so we can analyee ib further
Fleaze try again, and 1t s know f the problem perasts

e = Documeerit Dlors R

Next follows a scriptlet and a couple of actions to create and use the DebugBean introduced in the previous
section. The scriptlet writes the value of the sourcePage request attribute plus the exception itself to the
application log file, and the DebugBean writes all parameters received with the request to the same file. In
this way, information about which page caused the problem, the exception that was thrown, and all
parameter values that were received with the request causing the problem is logged in the application log file
when something unexpected happens. You can therefore look at the log file from time to time and see what
kinds of problems occur frequently, and hopefully fine-tune the application to avoid them or at least provide
more specific error messages.

Dealing with syntax errors and bugs is part of the application development process. In this chapter, we have
looked at some of the ways you can ease the pain. To minimize syntax errors, you can use the types of JSP
development tools listed in Appendix E, that provide JSP syntax highlighting. You can also minimize the
scripting code you put in your JSP pages by using beans and custom actions instead. The DebugBean
presented in this chapter helps you to see what's going on at runtime, and you can use it in a customized
error page to log information about unexpected errors.

page 86

JavaSercer Pages

Chapter 8. Sharing Data Between JSP Pages, Requests, and Users

So far we've covered the JSP basics: how to generate dynamic content and capture user input using JSP
standard action elements for working with beans, how to do conditional processing and embed Java code in
pages using JSP scripting elements, and how to locate and fix different types of errors in a JSP page. With
that out of the way, we can turn our attention to the JSP features and techniques needed to develop real
applications.

Any real application consists of more than a single page, and multiple pages often need access to the same
information and server-side resources. When multiple pages are used to process the same request, for
instance one page that retrieves the data the user asked for and another that displays it, there must be a way
to pass data from one page to another. In an application in which the user is asked to provide information in
multiple steps, such as an online shopping application, there must be a way to collect the information
received with each request and get access to the complete set when the user is ready. Other information and
resources need to be shared among multiple pages, requests, and all users. Examples are information about
currently logged-in users, database connection pool objects, and cache objects to avoid frequent database
lookups.

In this chapter you will learn how scopes in JSP provide access to this type of shared data. You will also see
how using multiple pages to process a request leads to an application that's easier to maintain and expand,
and learn about a JSP action that lets you pass control between the different pages.

8.1 Passing Control and Data Between Pages

As discussed in Chapter 3, one of the most fundamental features of JSP technology is that it allows for
separation of request processing, business logic, and presentation, using what's known as the Model-View-
Controller (MVC) model. As you may recall, the roles of Model, View, and Controller can be assigned to
different types of server-side components. In this part of the book, JSP pages are used for both the Controller
and View roles, and the Model role is played by either a bean or a JSP page. This is not necessarily the best
approach, but it lets us focus on JSP features instead of getting into Java programming. If you're a
programmer and interested in other role assignments, you may want to take a peek at Chapter 13, and
Chapter 14. These chapters describe other alternatives and focus on using a servlet as the Controller.

Using different JSP pages as Controller and View means that more than one page is used to process a
request. To make this happen, you need to be able to do two things:

1. Pass control from one page to another.

2. Pass data from one page to another.

In this section, we look at a concrete example of how to separate the different aspects of an application and
how JSP supports the two requirements above.

Let's revisit the User Info example developed in Chapter 5, to describe how the different aspects of an
application can be separated. In this example, the business logic piece is trivial. However, it sets the stage for
more advanced application examples in the next section and the remaining chapters in this part of the book,
all using the model introduced here.

We can categorize the different aspects of the User Info example like this:

Display the form for user input (presentation).
Validate the input (request processing and business logic).

Display the result of the validation (presentation).

page 87

JavaSercer Pages

Let's use a separate JSP page for each aspect. The restructured application contains three JSP pages, as
shown in Figure 8.1.

Figure 8.1. User Info application pages

Clieat

2
y request

userinfoinpul jsp forward wsarinfovalidale s forward | wserinfovalid jip
oot (o] } anap

[serinfoBecn
A NEw poge
£ prvvess poge

Here's how it works. The userinfoinput.jsp page displays an input form. The user submits this form to
userinputvalidate.jsp to validate the input. This page processes the request using the UserinfoBean and
passes control (forwards) to either the userinfoinput.jsp page (if the input is invalid) or the userinfovalid.jsp
page (if the input is valid). If valid, the userinfovalid.jsp page displays a "thank you" message. In this
example, the UserInfoBean represents the Model, the userinputvalidate.jsp page the Controller, and
userinfoinput.jsp and userinfovalid.jsp represent the Views.

This gives you the flexibility and maintainability discussed in Chapter 3. If the validation rules change, a Java
programmer can change the UserinfoBean implementation without touching any other part of the
application. If the customer wants a different look, a page author can modify the View JSP pages without
touching the request processing or business logic code.

8.1.1 Passing Control from One Page to Another

Before digging into the modified example pages, let's go through the basic mechanisms. As shown in Figure
8.1, the userinfovalidate.jsp page passes control to one of two other pages based on the result of the input
validation. JSP supports this through the <jsp:forward> action:

<jsp:forward page="userinfovalid.jsp" />

This action stops processing one page and starts processing the page specified by the page attribute instead,
called the target page. The control never returns to the original page.

The target page has access to all information about the request, including all request parameters. You can
also add additional request parameters when you pass control to another page by using one or more nested
<jsp:param> action elements:

<jsp:forward page="userinfovalid.jsp" >
<jsp:param name="msg" value="Invalid email address" />
</jsp:forward>

Parameters specified with <jsp:param> elements are added to the parameters received with the original
request. The target page, therefore, has access to both the original parameters and the new ones, and can
access both types in the same way. If a parameter is added to the request using the name of a parameter
that already exists, the new value is added to the list of values for the existing parameter.

page 88

JavaSercer Pages

The page attribute is interpreted relative to the location of the current page if it doesn't start with /. This is
called a page-relative path. If the source and target page are located in the same directory, just use the
name of the target page as the page attribute value, as in the previous example. You can also refer to a file in
a different directory using notation like ../foo/bar.jsp or /foo/bar.jsp. When the page reference starts with /,
it's interpreted relative to the top directory for the application's web page files. This is called a context-
relative path.

Let's look at some concrete examples to make this clear. If the application's top directory is
C:\Tomcat\webapps\myapp, page references in a JSP page located in
C:\Tomcat\webapps\myapp\registration\userinfo are interpreted like this:

page="bar.jsp"
C:\Tomcat\webapps\myapp\registration\userinfo\ bar.jsp
page="../foo/bar.jsp"
C:\Tomcat\webapps\myapp\registration\foo\ bar.jsp
page="/foo/bar.jsp"
C:\Tomcat\webapps\myapp\foo\ bar.jsp
8.1.2 Passing Data from One Page to Another

JSP provides different scopes for sharing data objects between pages, requests, and users. The scope defines
for how long the object is available and whether it's available only to one user or to all application users. The
following scopes are defined:

Page

Request

Session

Application

Figure 8.2. Lifetime of objects in different scopes
Llient
%
&
Page 1 Lo Page 2 Page 3 e Page 4

page 89

JavaSercer Pages

Objects placed in the default scope, the page scope , are available only to actions and scriptlets within one
page. That's the scope used in all examples you have seen so far. The request scope is for objects that need
to be available to all pages processing the same request. The session scope is for objects shared by multiple
requests by the same user, and the application scope is for objects shared by all users of the application. See
Figure 8.2.

The <jsp:useBean> action has a scope attribute that you use to specify in what scope the bean should be
placed. Here is an example:

<jsp:useBean id="userInfo" scope="request"
class="com.ora.jsp.beans.userinfo.UserinfoBean" />

The <jsp:useBean> action looks for a bean with the name specified by the id attribute in the specified scope.
If one already exists, it uses that one. If it cannot find one, it creates a new instance of the class specified by
the class attribute and makes it available with the specified name within the specified scope. If you would
like to perform an action only when the bean is created, place the elements in the body of the <jsp:useBean>
action:

<jsp:useBean id="userInfo" scope="request"
class="com.ora.jsp.beans.userinfo.UserInfoBean" >
<jsp:setProperty name="userInfo" property="*" />
</jsp:useBean>

In this example, the nested <jsp:setProperty> action sets all properties when the bean is created. If the
bean already exists, the <jsp:useBean> action associates it with the name specified by the id attribute so it
can be accessed by other actions and scripting code. In this case, the <jsp:setProperty> action is not
executed.

8.1.3 All Together Now

At this point, you have seen the two mechanisms needed to let multiple pages process the same request:
passing control and passing data. These mechanisms allow you to employ the MVC design, using one page for
request processing and business logic, and another for presentation. The <jsp: forward> action can be used
to pass control between the pages, and information placed in the request scope is available to all pages
processing the same request.

Let's apply this to the User Info example. In Chapter 5, different output was produced depending on whether
or not the user input was valid. This was done by using a UserInfoBean property called propertyStatusMsg
to display either a success or failure message. Yet the input form was always shown, even when the input
was valid.

No more of that. When we split up the different aspects of the application into separate JSP pages as shown
in Figure 8.1, we will also change the example so that the form is shown only when something needs to be
corrected. When all input is valid a confirmation page is shown instead.

Example 8.1 shows the top part of the userinfoinput.jsp page.

Example 8.1. Page for Displaying Entry Form (userinfoinput.jsp)

<%@ page language="java" contentType="text/html" %>
<html><head>
<title>User Info Entry Form</title>
</head><body bgcolor="white">
<jsp:useBean
id="userInfo"
scope="request"
class="com.ora.jsp.beans.userinfo.UserinfoBean" />

<%-- output list of values with invalid format, if any --%>

<jsp:getProperty name="userInfo" property="propertyStatusmMsg" />

<%-- output form with submitted valid values --%>
<form action="userinfovalidate.jsp" method="post">
<table>
<tr>
<td>Name:</td>
<td><input type="text" name="userName"
value="<%= StringFormat.toHTMLString(userInfo.getUserName()) %>" >
</td>
</tr>

page 90

JavaSercer Pages

The rest of the example is the same as before. If you compare Example 8.1 with the JSP page used in
Chapter 5, the only differences are that the userinfo bean is placed in the request scope (the scope attribute

is set to request) and the form's action attribute is set to the URL for the validation page instead of pointing
back to the same page.

The validation page, userinfovalidate.jsp , is given in Example 8.2.

Example 8.2. Input Validation Page (userinfovalidate.jsp)

<%@ page language="java" %>
<jsp:useBean
id="userInfo"
scope="request"
class="com.ora.jsp.beans.userinfo.UserinfoBean" >
<jsp:setProperty name="userInfo" property="*" />
</jsp:useBean>
<% if (userinfo.isvalid()) { %>
<jsp:forward page="userinfovalid.jsp" />
<% } else { %>
<jsp:forward page="userinfoinput.jsp" />
<% } %>

This is the request processing page, using the bean to perform the business logic. Note that there's no HTML
at all in this page, only a page directive specifying the scripting language, action elements, and scriptlets.
This is typical of a request processing page: it doesn't produce a visible response message, it simply takes
care of business and passes control to the appropriate presentation page.

This example is relatively simple. We first create a new userInfo Bean named userInfo in the request scope
and set its properties from the request parameters of the previous form. (Note that we don't obtain the data
from an already existing userInfo Bean in that scope; we'll see why shortly.) A scriptlet calls the bean's
isvalid() method to validate the properties and uses the <jsp:forward> action to pass control to the
appropriate View page.

If the input is invalid, the userinfoinput.jsp page is used again. This time the <jsp:useBean> action finds the
existing userInfo bean in the request scope, and its properties are used to show an error message and fill
out the fields that were entered correctly, if any. If all input is valid, the control is passed to the
userinfovalid.jsp page shown in Example 8.3 to present the "thank you" message.

Example 8.3. Valid Input Message Page (userinfovalid.jsp)

<html>
<head>
<title>User Info validated</title>
</head>
<body bgcolor="white">

Thanks for entering valid information!

</body>
</htm1>

This page tells the user all input was correct. It consists only of template text, so this could have been a
regular HTML file. Making it a JSP page allows you to add dynamic content later without changing the
referring page, however. The results are shown in Figure 8.3.

Figure 8.3. The valid input message page

2 Uses Info Validated - Nelscape

File Edit Vew Go Communicabor Help

= TR = = e
d v AN e w3 @D H =
¢ " Bookmarks 4 Location: [ntip/Aocahast: 8080/ ora/chil/useinéovaidate s =])7 Whats Related

ﬁlnmrﬂ Meszage L-‘-l, The J&ws Lobby E] JayaGoll S CNM Interackive ‘j] Techiweb 5 Bark of Ametica

-

anks tor enterine valid intormation!

2 b= Dacwurmrenl: Done

B R e Y R

page 91

JavaSercer Pages

Let's review how placing the bean in the request scope lets you access the same bean in all pages. The user
first requests the userinfoinput.jsp page (Example 8.1). A new instance of the userInfo bean is created in
the request scope and used to generate the "enter all fields" status message. The user fills out the form and
submits it as a new request to the userinfovalidate.jsp page (Example 8.2). The previous bean is then out of
scope, so this page creates a new userInfo bean in the request scope and sets all bean properties based on
the form field values. If the input is invalid, the <jsp:forward> action passes the control back to the
userinfoinput.jsp page. Note that we're still processing the same request that initially created the bean and
set all the property values. Since the bean is saved in the request scope, the <jsp:useBean> action finds it
and uses it to generate an appropriate error message and fill out the form with any valid values already
entered.

8.2 Sharing Session and Application Data

As described in Chapter 2, HTTP is a stateless, request-response protocol. This means that the browser sends
a request for a web resource, and the web server processes the request and returns a response. The server
then forgets this transaction ever happened. So when the same browser sends a new request, the web server
has no idea that this request is related to the previous one. This is fine if you're dealing with static files, but
it's a problem in an interactive web application. In a travel agency application, for instance, it's important to
remember the dates and destination entered to book the flight so the customer doesn't have to enter the
same information again when it's time to make hotel and rental car reservations.

The way to solve this problem is to let the server send a piece of information to the browser that the browser
then includes in all subsequent requests. This piece of information, called a session ID, is used by the server
to recognize a set of requests from the same browser as related: in other words, as part of the same session.
A session starts when the browser makes the first request for a JSP page in a particular application. The
session can be ended explicitly by the application, or the JSP container can end it after a period of user
inactivity (the default value is typically 30 minutes after the last request).

Thanks to the session ID, the server knows that all requests from the same browser are related. Information
can therefore be saved on the server while processing one request and accessed later when another request
is processed. The server uses the session ID to associate the requests with a session object, a temporary in-
memory storage area where servlets and JSP pages can store information.

The session ID can be transferred between the server and browser in a few different ways. The Servlet 2.2
API, which is the foundation for the JSP 1.1 specification, identifies three methods: using cookies, using
encoded URLs, and using the session mechanism built into the Secure Socket Layer (SSL), the encryption
technology used by HTTPS. SSL-based session tracking is currently not supported by any of the major serviet
containers, but all of them support the cookie and URL rewriting techniques. JSP hides most of the details
about how the session ID is transferred and how the session object is created and accessed, providing you
with the session scope to handle session data at a convenient level of abstraction. Information saved in the
session scope is available to all pages requested by the same browser during the lifetime of the session.

However, some information is needed by multiple pages independent of who the current user is. JSP supports
access to this type of shared information through another scope, the application scope. Information saved in
the application scope by one page can later be accessed by another page, even if the two pages were
requested by different users. Examples of information typically shared through the application scope are
database connection pool objects, information about currently logged-in users, and cache objects to avoid
frequent database lookups.

page 92

JavaSercer Pages

Figure 8.4 shows how the server provides access to the two scopes for different clients.

Figure 8.4. Session and application scopes

CHent 1
Server e Session 1
. (. I i
....... - | . I - ER——
[|l
Chient 2 .| —
| - i
%@ f?fﬂlEE. S W = Segsion 2
.
Chient
% _____ Server
G %
........ -]i
!q ---------------------- ™ Application
|
|
- |

The upcoming examples in this chapter will help you see how the session and application scopes can be used.

8.2.1 Counting Page Hits

A simple page counter bean can be used to illustrate how the scope affects the lifetime and reach of shared
information. The difference between the two scopes becomes apparent when you place the bean in both the
session and application scopes. Consider the page shown in Example 8.4.

Example 8.4. Page with Counter Beans (counterl.jsp)

<%@ page language="java" contentType="text/html" %>
<html>
<head>
<title>Counter page</title>
</head>
<body bgcolor="white">
<jsp:useBean
id="sessionCounter"
scope="session"
/ class="com.ora.jsp.beans.counter.CounterBean"
>
<jsp:useBean
id="applCounter"
scope="application"
/ class="com.ora.jsp.beans.counter.CounterBean"
>
<% String uri = request.getRequestURI(); %>
<hl>Counter page</hl>
This page has been visited
<%= sessionCounter.getNextvalue(uri) %>
 times by the current user in the current session, and
<%= applcCounter.getNextvalue(uri) %>
 times by all users since the application was started.
</body>
</html1>

page 93

JavaSercer Pages

The bean used in this example, the com.ora.jsp.beans.counter.CounterBean, keeps a separate counter for
each page where it's used. It's a class with just one method:

public int getNextvalue(String uri);
The method increments the counter for the page identified by the uri argument and returns the new value.

In Example 8.4, two <jsp:useBean> actions are used to create one bean each for the session and application
scopes. The bean placed in the session scope is found every time the same browser requests this page, and
therefore counts hits per browser. The bean in the application scope, on the other hand, is shared by all
users, so it counts the total number of hits for this page.

A scriptlet is used to ask the request object for the URI of the current page. The URI is then passed as an
argument to the bean's getNextvalue() method. A page is uniquely identified by its URI, so the bean uses
the URI as a unique identifier to represent the counter it manages for each page. If you run this example, you
should see a page similar to Figure 8.5.

Figure 8.5. A page with session and application page hit counters

T Counter page - Hetacape [[E]=]
Fie Edt Wiew Go Covrerical: Hel
i v Ak 2wl S @) R =
" Bookmekz i Lovation: (b focaihoat: BOB0 cradchElioounter o | W47 Wit Flalaisd

dﬁl'c.'m Mezage: = Thedavalobby 50 daeadolt) crm intmactive & Techweh S Bark of Anesca

Counter page

This papes has been wsited 10 imes by the cument uses in the cwrent pession, and 1§ times by all nesrs mce the apphestion
wras starled

o A . 3 ESE

As long as you use the same browser, the session and application counters stay in sync. But if you exit your
browser and restart it, a new session is created when you access the first page. The session counter starts
from 1 again but the application counter takes off from where it was at the end of the first session.

Note that the bean described here keeps the counter values in memory only, so if you restart the server, both
will start from 0 again.

page 94

JavaSercer Pages

Sessions and Multiple Windows

Even though session tracking lets an application recognize related requests, there's still one problem.
This problem is related to the server's lack of knowledge of the client, and does not become obvious
until you start testing an application that depends on session information. Consider what happens if
you open two browser windows and start accessing the same web application. Will each window be
associated with its own session, or will they share the same session? Unfortunately, the answer is not
well-defined. And it doesn't matter if the server-side logic is implemented as servlets, JSP, ASP, CGI,
or any other server-side technology.

The most commonly used browsers, Netscape Navigator and Microsoft Internet Explorer, both let you
open multiple windows that are actually controlled by the same operating system process. Internet
Explorer can be configured so that each window is instead controlled by a separate process. In the
latter case, it's easy to answer the question: each window is associated with its own session. It's only
when one process controls multiple windows that it gets a bit tricky; in this case, the answer depends
on whether URL rewriting or cookies are used for session tracking.

When URL rewriting is used, the first request to the application from one window doesn't include a
session ID, since no response with the session ID has been received yet. The server sends back the
new session ID encoded in all URLs in the page. If a request is then submitted from the other
window, the same thing happens: the server sends back a response with a new session ID. Hence, in
this scenario each window is associated with a separate session.

If cookies are used to pass the session ID, the reverse is true. The first request submitted from one
window doesn't contain a session ID, so the server generates a new ID and sends it back as a cookie.
Cookies are shared by all windows controlled by the same process. When a request is then made
from the other window, it contains the session ID cookie received as a result of the first request. The
server recognizes the session ID and therefore assumes that the request belongs to the same session
as the first request; both windows share the same session.

There's not much you can do about this. If you want each window to have its own session, most
servers can be configured to always use the URL rewriting method for session tracking. But this is not
foolproof. The user can open a new window by using the mouse pop-up menu for a link (with the
session ID encoded in the URI) and ask to see the linked page in a new window. Now there are two
windows with the same session ID anyway. The only way to handle this, unfortunately, is to educate
your users.

page 95

JavaSercer Pages

8.2.1.1 Thread-safe beans

You probably noticed that the CounterBean doesn't have the type of property getter method used in the
examples in previous chapters. Instead, it has a method named getNextvalue() that takes the URI for the
page as an argument. The <jsp:getProperty> action can be used only to display properties when the bean
implements the standard no-arguments getter methods, so in Example 8.4, JSP expressions are used to
display the counter values instead.

The use of a method with an argument instead of a typical no-argument JavaBeans getter method is by
design, and highlights a very important consideration for beans used in the session and application scopes. In
Chapter 6, we discussed how multiple requests are handled by the server in parallel by separate threads. The
server assigns one execution thread to each request, and all threads have access to the same variable values
for variables declared with JSP declaration elements. The result is that if such a variable is changed while
processing one page request, the new values are used by all other requests as well. Beans in the session and
application scopes are open to the same kind of problem, since they are also shared by multiple threads.

To illustrate this, let's look at what could happen if we used a bean with the traditional setter and getter
methods to implement the counter instead. Such a bean could have the properties shown in Table 8.1.

Table 8.1, Traditional Counter Bean Properties

Property Name | Java Type | Access | Description

The unique URI used to identify the

uri String write
page counter

The counter's value incremented by

nextvalue int read
one read-only property

Part of the JSP page would then look like this:

<jsp:useBean
id="applCounter"
scope="application"
y class="com.ora.jsp.beans.counter.CounterBean"
>
<jsp:setProperty
name="applCounter"
property="uri"
/ value="<%= request.getRequestURI() %>"
>

<hl>Counter page</hl>

This page has been visited

<jsp:getProperty
name="applCounter"
property="nextvalue"

>

 times by all users since the application was started.

The first time you access this page, the <jsp:useBean> action creates the bean and saves it in the
application scope. The <jsp:setProperty> action sets the uri property to the unique URI for this page.
Then the <jsp:getProperty> action calls the nextvalue property getter method. This method uses the uri
property value to locate the counter for the page and increments it.

As long as you use this bean in only one page, this works fine. But if you want to keep track of all hits for two
pages, each with its unique URI, and the two pages are requested at almost the same time, you're in trouble.
Say one user requests the first page, called /ora/pageOne. This page sets the uri property to /ora/pageOne.
But before it gets to the <jsp:getProperty> action, another user requests the second page, say
/ora/pageTwo. Now the second page finds the same bean (applCounter) and sets the uri property to its URI
(/ora/pageTwo). So when the first page eventually executes the <jsp:getProperty> action, it increments
and displays the counter for the second page instead of its own counter.

Here I used a bean in the application scope as an example, because it's easy to understand that beans shared
by all users can be accessed by more than one request at a time. But session scope beans can also be
accessed at roughly the same time, by the same user. A good example of when two requests are made at
nearly the same time by the same user is when an HTML frame set is used and each frame contains a JSP

page.

page 96

JavaSercer Pages

You can solve this problem by using a bean with a regular method that takes the URI as an argument, instead
of setting the URI with one setter method and incrementing the corresponding counter value with another
method that depends on the URI value set by the first. This way, the method gets all the information it needs
in one shot, and there's no risk of interference by other threads.

8.2.2 URL Rewriting

As I mentioned earlier, the session ID needed to keep track of requests within the same session can be
transferred between the server and the browser in a number of different ways. One way is to encode it in the
URLs created by the JSP pages, called URL rewriting . This approach works even if the browser doesn't
support cookies (perhaps because the user has disabled them). A URL with a session ID looks like this:

counter3.jsp;jsessionid=be8d691ddb4128be093fdbde4d5be54e00

When the user clicks on a link with an encoded URL, the server extracts the session ID from the request URI
and associates the request with the correct session. The JSP page can then access the session data in the
same fashion as when cookies are used to keep track of the session ID, so you don't have to worry about how
it's handled. What you do need to do, however, is to call a method that lets the JSP container encode the URL
when needed. To see how it's done, let's create two pages that reference each other using a regular HTML
link. A CounterBean in the session scope is used to increment a counter for each page. Example 8.5 shows
one of the pages. The other page is identical, except for the title and the link at the bottom.

Example 8.5. Page with an Encoded Reference to Another Page (counter2.jsp)

<%@ page language="java" contentType="text/html" %>
<html>
<head>
<title>Counter page 1l</title>
</head>
<body bgcolor="white">
<jsp:useBean
id="sessionCounter"
scope="session"
y class="com.ora.jsp.beans.counter.CounterBean"
>
<% String uri = request.getRequestURI(); %>

<hl>Counter page 1</hl>

This page has been visited

<%= sessionCounter.getNextvalue(uri) %>

 times by the current user in the current session.

<p>

Click here to get to

<a href="<%= response.encodeURL("counter3.jsp") %>'">
Counter page 2.

</body>
</html>

The only differences compared to Example 8.4 are that only the session counter is used, and the link to the
other page has been added.

The <a> element's href attribute value is converted using the encodeURL() method of the implicit ISP
response object, described in Chapter 6. If a cookie is used to transfer the session ID between the browser
and server, the encodeURL() method just returns the URL untouched. But if the browser doesn't support
cookies, or cookie support is disabled, this method returns the URL with the session ID encoded as a part of
the URL, as shown earlier.

If you want to provide session tracking for browsers that don't support cookies, you must use the encodeURL (
) method to rewrite all URL references in your application: in <a> tags, <form> tags, and <frameset> tags.
This means all pages in your application (or at least all pages with references to other pages) must be JSP
pages, so that all references can be dynamically encoded. If you miss one single URL, the server will lose
track of the session.

I recommend that you take the time to add encodeURL() calls for all references up front, even if you know
that all your current users have browsers that support cookies. One day you may want to extend the user
base and lose control over the browsers they use. It's also common that users disable cookies in fear of Big
Brother watching. Yet another reason to prepare for URL rewriting from the beginning is to support new types
of clients that are becoming more and more common, such as PDAs and cell phones. Cookie support in these
small devices is not a given.

page 97

JavaSercer Pages

8.3 Using Custom Actions

You might be wondering if we are stretching the bean model too far in the previous example. Perhaps. The
CounterBean does more than hold information; it also has a non-conforming method for incrementing the
counter. If we stray away from the purely bean model and use methods with arguments, this may force us to
use scriptlets instead of the standard actions. That's not necessarily bad, but in this case we can do better
using a custom action instead of a bean and the standard actions.

A custom action is just like the standard actions we've used so far. It has a start tag, which may contain
attributes, and an end tag. It can also have a body. Here's what a custom action looks like:

<ora:incrementCounter scope="session"/>

The JSP specification defines how the standard set of actions can be extended with custom actions developed
by Java programmers in the team or by a third party. A custom action is used in a JSP page in exactly the
same way as the standard JSP actions you have seen in previous examples, such as <jsp:getProperty>.
This makes them easier to use than beans with methods that must be invoked with scripting code, since you
don't have to worry about missing braces and semicolons and other syntax details. A custom action can do
pretty much anything: it has access to all information about the request and can add content to the response
body as well as set response headers.

If you're a programmer, you should know that a custom action is basically a JavaBeans class, with property
setter methods corresponding to the action's attributes, plus a few extra methods used by the JSP container
to invoke the action. You can read all about how to develop your own custom actions in Chapter 16.

As is often the case in software development, it's hard to say exactly whether a bean or a custom action is
the preferred component type. My rule of thumb is that a bean is a great carrier of information, and a custom
action is great for processing information. Custom actions can use beans as input and output. For instance, an
action can be used to save the properties of a bean in a database, or to get information from a database and
make it available to the page as a bean.

If you're a page author, you don't have to worry about the implementation details. All you need to know right
now is how to use the custom actions you have available. You'll find many custom actions in this book that
you can use, and more are available from open source projects and commercial companies listed in Appendix
E.

Custom actions are grouped together in a tag library. Consequently, you often see custom actions referred to
as custom tags, even though that is not strictly correct. A tag library consists of a Tag Library Descriptor
(TLD) and the Java classes used to implement the custom actions. The TLD contains information about the
action names and attributes. It's used by the JSP container during the translation phase to verify that all
actions are used correctly in the page, for instance that all mandatory attributes are specified. Typically, the
TLD and all classes are packaged in a Java Archive (JAR) file. You install such a library by placing the JAR file
in the WEB-INF/Iib subdirectory for the application in which it's used. If you look at the files in your Tomcat
installation for the ora application (containing all the book examples), you see the JAR file in WEB-
INF/lib/orataglib_1_0.jar and the TLD in WEB-INF/tlds/orataglib_1_0.tld.

When you use custom actions in a JSP page, you must identify the library using the taglib directive:
<%@ taglib uri="/orataglib" prefix="ora" %>

The uri attribute value identifies the library. Depending on how the library is installed, different types of
values are used: a symbolic name, the path to the JAR file, or the path to the TLD file. My recommendation is
to use a symbolic name, as shown in the example. The symbolic name must then be mapped to the location
of the library in the WEB-INF/web.xml file for the application:

<web-app>
<taglib>
<taglib-uri>
/orataglib
</taglib-uri>
<taglib-location>
/WEB-INF/tlds/orataglib_1_0.t1d
</taglib-Tocation>
</taglib>

</Wé5—app>

page 98

JavaSercer Pages

The <taglib-uri> element contains the symbolic name, and the <taglib-Tocation> element contains the
path to either the JAR file or the TLD file. The path typically starts with a slash (/) and is then interpreted as
a context-relative path, in other words, relative to the top directory for the application. This indirection -
using a symbolic name that's mapped to the real location - is especially helpful as it allows you to change the
name of the tag library file for all JSP pages in one place, for instance when you upgrade to a later version of
the library.

For a simple application, you may feel that the indirection is overkill. If so, you can use the path to the JAR
file explicitly as the uri attribute value:

<%@ taglib uri="/wWEB-INF/1ib/orataglib_1_0.jar" prefix="ora" %>

All JSP 1.1-compliant containers should be able to find the TLD file in the JAR file, but this is a recent
clarification of the specification. If the container you use doesn't support this yet (such as Tomcat 3.1), you
must use the path to the TLD file instead of the path to the JAR file:

<%@ taglib uri="/WEB-INF/tlds/orataglib_1_0.t1d" prefix="ora" %>

In both cases, the path may start with a slash and is then interpreted as a context-relative path. Without a
starting slash, the path is interpreted as relative to the JSP page.

The prefix attribute defines a prefix used for the actions in this library. This prefix is used as part of the
custom action names, as you will soon see. If you use more than one library in a page, each must have a
unique prefix. You can use any prefix you like except jsp, jspx, java, javax, servlet, sun, and sunw,
which are reserved. The ora prefix is used for all custom actions in the examples in this book.

As I mentioned earlier, a custom action is used in a JSP page just like the standard actions we've used so far.
In other words, it has a start tag, which may contain attributes, and an end tag. It can also have a body. Let's
revisit our example from earlier:

<ora:incrementCounter scope="session"/>

The name consists of the prefix you specified with the taglib directive, and a unique name within the library,
separated by a colon (:). As with standard actions, all attribute names are case-sensitive, and the value must
be enclosed in single or double quotes.

Now let's see how we can use two custom tags to improve the counter example. The attributes for the custom
actions are described in Table 8.2 and Table 8.3.

Table 8.2, Attributes for <ora:incrementCounter>

Attribute | Java Request-Time Value

Name Type | Accepted Description

) Specifies the scope for the counter. Valid
scope String | No values are page, request, session, and
application. Default is page.

The <ora:incrementCounter> action increments a unique counter for the page where it's used. The counter
can be placed in any of the standard JSP scopes. For instance, it can be placed in the session scope to count
hits by different clients, or the application scope to count hits by all clients. The first time the action is used
for a specific scope, the counter is created and set to 1.

Table 8.3, Attributes for <ora:showCounter>

Attribute | Java Request-Time Value

Name Type | Accepted Description

] Specifies the scope for the counter. Valid
scope String | No values are page, request, session, and
application. Default is page.

page 99

JavaSercer Pages

The <ora:showCounters> action inserts the value of the page counter for the specified scope in the response.
If a counter has not been created using the <ora:incrementCounter> action, the value -1 is displayed.

These two actions are generic, so you can use them in your own pages if you want to keep track of the
number of hits. The type of information shown in Tables 8-2 and 8-3 is what you should expect (or even
demand!) from the custom action developer, whether it's developed in-house or by a third party.

Example 8.6 shows how our custom actions are used.

Example 8.6. Page with Counter Custom Actions (counter4.jsp)

<%@ page 1anguage=“java" contentType="text/html" %>
<%@ taglib uri="/orataglib" prefix="ora" %>
<html>
<head>
<title>Counter page 1l</title>
</head>
<body bgcolor="white">
<ora:incrementCounter scope="session"/>
<ora:incrementCounter scope="application"/>

<hl>Counter page 1</hl>

This page has been visited

<ora:showCounter scope="session"/>

 times by the current user in the current session, and
<ora:showCounter scope="application"/>

 times by all users since the counter was reset.

<p>

To see that a unique counter is maintained per page,

take a look at

<a href="<ora:encodeURL url="counter5.jsp" />">Counter page 2.

</body>
</html>

As described in Tables 8-2 and 8-3, both actions have a scope attribute, supporting the same scopes as the
JSP standard actions: page, request, session, and application. The <ora:incrementCounter> action finds
or creates a counter for the current page in the specified scope and increments it by one, while
<ora:showCounter> displays the current value of the counter. Notice that you don't have to tell the actions
about the URI as you did with the beans in Example 8.5. That's because the JSP container makes all the
implicit objects, such as the request object, available to a custom action automatically. The action can
therefore figure out the current URI all by itself.

Another custom action, <ora:encodeURL>, is used to take care of the URL encoding of the link to the next
page. It's described in Table 8.4.

Table 8.4, Attributes for <ora:encodeURL>

Attribute Java Request-Time Value ..

Name Type Accepted Description

url String Yes Mandatory. Specifies the URL to
encode.

You can use this action element as an alternative to the scripting code used for URL encoding in Example 8.5.
This action performs the same session ID encoding as the scripting code. Also, it encodes the parameters
defined by nested <ora:param> actions (see Table 8.5) according to the syntax rules for HTTP parameters:

<ora:encodeURL url="product.jsp">
<ora:param name="1id" value="<%= product.getid()%>" />
<ora:param name="customer" value="Hans Bergsten" />
</ora:encodeURL>

Recall that all special characters, such as whitespace, quotes, etc., in a parameter value must be encoded.
For instance, all spaces in a parameter value must be replaced with plus signs. When you use the
<ora:encodeURL> action, it takes care of all this encoding. The encoded URL created by the action for this
example looks something like this:

product.jsp;jsessionid=be8d691ddb4128be0?id=3&customer=Hans+Bergsten

page 100

JavaSercer Pages

Here, the session ID and the request parameters are added, and encoded if needed (the space between
"Hans" and "Bergsten" is replaced with a plus sign).

Table 8.5, Attributes for <ora:param>

Attribute Name | Java Type :52::::;T|me Value Description
hame string Yes m:nr:iatory. The parameter
value string Yes \I\//Iaalggatory. The parameter

As illustrated by the counter example, custom actions allow you to write cleaner pages, avoiding most (if not
all) scripting code. Since pages without code are easier to develop and maintain, plenty of custom actions are
used in the remainder of the examples in this book. Many are generic, so you can use them in your own
applications as well. How to implement most of them is described in Chapter 16 and Chapter 17, and you'll
find the source code for all actions included in the example code package for this book.

You may be wondering why it's necessary to develop custom actions for generic things such as looping and
URL encoding, as well as for common functions such as accessing a database. The reason is that the
specification writers only defined a small set of standard actions in JSP 1.1. This was primarily motivated by
time constraints; it was important to get the JSP 1.1 specification released as soon as possible. But perhaps
more importantly, before specifying a larger set of actions, the specification group wanted feedback on the
type of actions users needed. At the time this book is being written, a specification of more standard actions
is being prepared. It will likely contain many actions similar to the custom actions you find in this book to be
rolled into a future version of the JSP specification.

8.4 Online Shopping

Now let's look at a more useful example: an online shopping site. Besides showing you how the session and
application scopes can be used effectively in a larger application, this example also introduces many other
useful tools. You'll see a number of generic custom actions you can use in your own applications, and learn
how to use the java.text.NumberFormat class to format numbers.

The application consists of three pages. The main page lists all available products. Each product is linked to a
product description page, where the product can be added to the shopping cart. A product is added to the
shopping cart by a request processing page. The main page with the product list is then displayed again, but
now with the current contents of the shopping cart as well, as shown in Figure 8.6.

Figure 8.6. The product list and the contents of the shopping cart

Hl‘llﬂunt Catalog - Netscape [10] =]
Fs E® “ew Lo Dommenicas Help
e LR o
¥ Bookmaie 5 Locahon |r.-|.-. Hincakost 0BV o feEiealakgl pp il '._'" i 7 Wihal's Feleted
S Thedava Lobly < JavaSoll 9 DHM plwachee S Techinfel S Bark of Arica

Product Catalog

Flegin palect wbook om our ealalog Lo read mine w0l 3t end decde of vois Gke bo pigchaes a copy
i

Your chopping ot aontaing the following dems

Hovalereer P uges $a204
Jova In a Hutshell f1205
Twialz $h500
ar =i Dincument Dons b 2 &

page 101

JavaSercer Pages

Two beans are used to keep track of the products: the com.ora.jsp.beans.shopping.CatalogBean contains
all available products, and the com.ora.jsp.beans.shopping.CartBean represents one user's shopping cart.
Each product in the catalog is represented by a ProductBean .

Tables Table 8.6, Table 8.7, and Table 8.8 show all the properties for the beans.

Table 8.6, Properties for com.ora.jsp.beans.shopping.CatalogBean

Property Name Java Type Access | Description
. com.ora.jsp.beans. A list of all products in the
productList shopping. ProductBean(] read catalog

Table 8.7, Properties for com.ora.jsp.beans.shopping.CartBean

Property Name | Java Type Access | Description

empty boolean read true if_the cart is empty, false
otherwise

. com.ora.jsp.beans. . .
productList shopping.ProductBean[] | read A list of all products in the cart
com.ora.jsp.beans. .

product shopping. ProductBean write Adds a product to the cart

total float read The total price for all products in
the cart

Table 8.8, Properties for com.ora.jsp.beans.shopping.ProductBean

Property Name Java Type Access Description

name String read The product name

price float read The product price

id String read The unique product ID
descr String read A description of the product

The ProductBean objects are created by the CatalogBean when it's created. Figure 8.7 shows how the beans
are related.

Figure 8.7. Application and session scope beans

CartBeans

(atalogBean

page 102

JavaSercer Pages

The catalogBean and the ProductBean objects are placed in the application scope, since all users have

access to the same product catalog. A unique CartBean is needed for each user to keep track of individual
purchases, so each user has an instance of this bean in the session scope. When a user picks a product from

the catalog, a reference to the corresponding ProductBean is added to the user's CartBean.
The main page for this application is shown in Example 8.7.

Example 8.7. Page with a List of Products (catalog.jsp)

<%@ page language="java" contentType="text/html" %>

<%@ page import="java.text.*" %>
<%@ taglib uri="/orataglib" prefix="ora" %>
<html>
<head>
<title>Product Catalog</title>
</head>

<body bgcolor="white">
<h1l>Product catalog</hl>

Please select a book from our catalog to read more about it and
decide if you would Tike to purchase a copy:

<jsp:useBean

id="cata1o?"

scope="application"
/ class="com.ora.jsp.beans.shopping.CatalogBean"
>

<%--
Generate a list of all products with Tinks to the product page.
--%>

<ora:loop name="catalog"
roperty:"productL1st"

oopId="product") .
className="com.ora.jsp.beans.shopping.ProductBean">
<1i>

<a href="<ora:encodeURL url="product.jsp">
<ora:param name="1id"
value="<%= product.getid()%>"/>
</ora:encodeURL>"><%= product.getName() %>
</ora:loop>

<jsp:useBean

id="cart"

scope="session"
) class="com.ora.jsp.beans.shopping.CartBean"
>

<%-- Show the contents of the shopping cart, if any --%>
<%
if (lcart.isempty()) {
NumberFormat numFormat = NumberFormat.getCurrencyInstance();
%>

Your shopping cart contains the following items:

<p>
<table border=0>
<ora:loop name="cart"
property="productList"
ToopId="product"
className="com.ora.jsp.beans.shopping.ProductBean">
<tr>
<td><%= product.getName() %></td>
<td><%= numFormat.format(product.getPrice()) %></td>
</tr>
</ora:Toop>

<tr><td colspan=2><hr></td></tr>
<tr>
<td>Total:</td>
<td><%= numFormat.format(cart.getTotal()) %></td></tr>
</table>
<% } %>

</body>
</html1>

page 103

JavaSercer Pages

The <jsp:useBean> action near the top of Example 8.7 creates an instance of the CatalogBean the first time
a user requests the page. Since the bean is placed in the application scope, all users will then share this
single instance.

The catalogBean has a property that contains a list of all the products in the catalog, named productList.
Its value is an array of ProductBean objects. A custom action called <ora:1oop> , described in Table 8.9, is
used to loop through the list and generate an HTML list item element for each product.

Table 8.9, Attributes for <ora:loop>

. Request-
Attribute Java Time Value | Description
Name Type Accepted

Mandatory. The name of a data structure object or
bean. The object must be of type object[], vector,
name string | No Dictionary, or Enumeration, or be a bean with a
property of one of these types. The object or bean
can be located in any JSP scope.

. Optional. The name of a bean property. The property
property String | No must be of type object[], vector, Dictionary, or
Enumeration.

_ Mandatory. The name of the variable that holds a
loopId String | No reference to the current element when the action's
body is evaluated.

Mandatory. The class name for the elements of the

className String | No bean or property

The <ora:loop> action iterates through the elements of an object, or the elements represented by a
property, and evaluates the body once for each element, making the element available to other actions and
scripting elements in the body through the variable name specified by ToopId. The implementation of the
loop action is described in Chapter 16.

In Example 8.7, the name attribute specifies the cart bean. The cart bean has an indexed (multivalue)
property named productList. That's the one we ask the <ora:Toop> action to loop over, by naming it in the
property attribute. Finally, we set the ToopId attribute to product, so we can use product as a variable
name in the action element body, and specify the class name for the ProductBean with the className
attribute.

The body of the <ora: Toop> action is evaluated once per element. The action body can contain a mixture of
template text, scripting elements, and other actions. Here the body contains the HTML for a list item with a
reference to another page, using the product name as the link text. Let's look at how the link is generated:

<a href="<ora:encodeURL url="productl.jsp">
<ora:param name="1id"
value="<%= product.getId()%>"/>
</ora:encodeURL>"><%= product.getName() %>

Within the body, the <ora:encodeURL> custom action described earlier is used to generate the <a> element's
href attribute value. A nested <ora:param> action adds a parameter named id with the value set to the
product ID for the current product. It's done by using a JSP expression (a request-time attribute value,
described in Chapter 6) that calls the ProductBean property getter method getID(). A similar expression is
used to set the link text to the name of the current product.

After the code for generating the product list in Example 8.7, you see almost identical code for generating a
list of the current contents of the shopping cart. First, the <jsp:useBean> action places the cart bean in the
session scope, as opposed to the catalog bean, which is placed in the application scope. This means that
each user gets a unique shopping cart that remains on the server for the duration of the session, while all
users share the same catalog.

page 104

JavaSercer Pages

8.4.1 Number Formatting

Unless the shopping cart is empty, the second <ora:loop> action generates a list of the contents as an HTML
table with the name and price of each product. Note the java.text.NumberFormat object created in the same
scriptlet as the if statement:

<%. .
if (lcart.isempty()) {
NumberFormat numFormat = NumberFormat.getCurrencyInstance();
%>

The NumberFormat class is a Java standard class used to format numbers. You can set up rules for the
number of decimals to show, where to put number grouping characters, prefix and suffix, etc. Even more
important, the number is formatted according to the nhumber format rules for the specific geographical,
political, or cultural region where the server is located (by default). A collection of rules for a region is called a
locale. It defines things such as which characters to use as a decimal separator, thousand grouping, and
currency symbol. You can read more about the NumberFormat class in the standard Java API documentation.
We will discuss locales in detail in Chapter 11, but to give you an idea of how formatting varies between
regions, here's an example of the number 10,000.00 formatted as currency for USA, Sweden, and Italy:

USA: $10,000.00
Sweden: 10 000,00 kr
Italy: L. 10 000

We get a reference to the default formatter for currency information, using the getCurrencyInstance()
method, and assign it to a variable named numFormat It's then used in the <ora:Toop> body to format the
price information for each product and for everything in the cart.

8.4.2 Using Request Parameters

As discussed earlier, a link to a description page for each product is generated using the <ora:loop> action in
the main page, shown in Example 8.7. The link includes the request parameter id, specifying the product to
display information about. When the user clicks on one of the links, the page shown in Example 8.8 is
invoked.

Example 8.8. Product Description Page (product.jsp)

<%@ page language="java" contentType="text/html" %>
<%@ taglib uri="/orataglib" prefix="ora" %>
<html>
<head>
<title>Product Description</title>
</head>
<body bgcolor="white">

<jsp:useBean

jd="catalog"

scope="application”
y className="com.ora.jsp.beans.shopping.CatalogBean"
>

<%-- Get the ProductBean from the cata1o? --%>

<ora:useProperty id="product" name="catalog" property="product"
arg="<%= request.getParameter(\"id\") %"
className="com.ora.jsp.beans.shopping.ProductBean" />

<hl>
<jsp:getProperty name="product" property="name" />
</hl>

<jsp:getProperty name="product" property="descr" />
<p>
<a href="<ora:encodeURL url="addtocart.jsp">
<ora:param name="1id" value="<%= product.getId() %>"/>
</ora:encodeURL>">Add this book to the shopping cart

</body>
</htm1>

page 105

JavaSercer Pages

The value of a request parameter can be retrieved from the implicit request object using the getParameter(
) method. As described in Chapter 6, the request object is an instance of the class HttpServletRequest,
and provides methods to find out everything the server knows about the request. The results are shown in
Figure 8.8.

Figure 8.8. The product description page

7 Product Description - Netzcape

Fle Edit “iew Go Commuricator Help

B = = : rm o a5

d v A5t bl el D =
F " Bockmarks 4 Location: [t /localost BI80/ora/chB/product f5p id=1 =] (" What's Related

z .ﬁlnalmlh‘lauage '-i] The Java Laboy ﬂ‘ﬂ JawaSall '-’{ CHM Irreractive '-’{ Techw'sb '-’{ Barik of Amernca

JavaServer Pages

Learn how to desrelop a JEP based web apphcation
add thos book to the shoppng carl

e =l Document: Dore VSRR W T ARRe, (o B oy W

In Example 8.8, the getParameter() method is used as a request-time attribute value to set the arg
attribute for the <ora:useProperty> custom action, described in Table 8.10.

Table 8.10, Attributes for <ora:useProperty>

Attribute | Java Request-Time Value

Name Type | Accepted Description

)) Mandatory. The name of the variable to
id string | No hold the retrieved bean. The bean is
placed in the page scope.

) Mandatory. The name of the object with
name String | No the bean to retrieve. The object must be
available in one of the standard scopes.

Mandatory. The name of the property

ropert Strin
property g |Neo holding the bean.

Optional. The argument value used to

stri
arg ring | Yes identify one specific bean.

Mandatory. The class name for the

className | Strin N ;
9 ° retrieved bean.

The <ora:useProperty> action is similar to the <jsp:useBean> action in that it associates a bean with a
variable name. But instead of trying to locate the bean in a specified scope and create it if it isn't found, the
<ora:useProperty> action gets the bean from another object (available in any of the standard scopes). It
does this by calling the getter method for the specified property with the argument specified by the arg
attribute if present. In Example 8.8, the <ora:useP