Pro

Java EE 5

Performance Maragemest
a~d Ootirmizabon

Pro Java EE 5
Performance
Management and
Optimization

Steven Haines

Apress’

Pro Java EE 5 Performance Management and Optimization
Copyright © 2006 by Steven Haines

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 1-59059-610-2
ISBN-10: 978-1-59059-610-4
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Steve Anglin

Technical Reviewers: Mark Gowdy, Dilip Thomas

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,
Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Project Manager: Beth Christmas

Copy Edit Manager: Nicole LeClerc

Copy Editors: Heather Lang, Nicole LeClerc

Assistant Production Director: Kari Brooks-Copony

Production Editor: Laura Cheu

Compositor: Susan Glinert

Proofreader: Liz Welch

Indexer: Broccoli Information Management

Artist: Kinetic Publishing Services, LLC

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,

New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or

visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book s distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Source Code section.

This book is dedicated to my wife, Linda, and my son, Michael.
Your love has been my inspiration and the purpose of life.
Thank you for loving me the way that you do!

Contents at a Glance

AboUL the AUTNOTo XV
About the Technical ReVIEWETot e e e it Xvii
ACKNOWIBAgMEBNES .. et i Xix
INErOdUCTHION ..o e e XXi
PART 1 Fundamentals
CHAPTER 1 An Introduction to Application Performance Management 3
CHAPTER 2 Quantifying Performancet 25
CHAPTER 3 Performance Measurements 47
CHAPTER 4 Implementing Performance Measurements 73

PART 2 Application Life Cycle
Performance Management

CHAPTER 5 Performance Through the Application Development

LifeCycle ... 125
CHAPTER 6 Performance Tuning Methodology 155
CHAPTER 7 Tuning an Application Servercooviiiiiin... 177
CHAPTER 8 High-Performance Deployments 207

CHAPTER 9 Performance and Scalability Testing 223

Vi

PART 3

CHAPTER 10
CHAPTER 11
CHAPTER 12
CHAPTER 13

PART 4

CHAPTER 14
CHAPTER 15

Performance Management
in Production

Java EE Performance Assessment
Production Troubleshooting Methodologys
Trending, Forecasting, and Capacity Planning
Assembling a Performance ManagementPlan

Tips and Tricks

Solving Common Java EE Performance Problems
Next Steps ...

Contents

AboUL the AUTNOTo XV
About the Technical ReVIEWETot e e e it Xvii
ACKNOWIBAgMEBNES .. et i Xix
INErOdUCTHION ..o e e XXi

PART 1 Fundamentals

CHAPTER 1 An Introduction to Application

Performance Management 3
Impact of Poor Performancecciiiiiiiiiiiiiiii. 4
Complications in Achieving Application Performance 6
Evolution of Java Applications. ...t 6
Layered ExecutionModel. ... 7
Prebuilt Frameworks ...t 9
JavaEEEXpertise 10
Development ToOIS.ccove i 10
Service-Oriented Architecture and Web Services............... 11
Application Performance ... 13
Java EE Performance Problemso..e 14
Application Performance Management 15
APM in Architecture ..o 15
APMin Development ... 16
APMIN QA . 17
APM in Preproduction. ... 18
APMin Production ..ot 19

vii

viii

CONTENTS

CHAPTER 2

CHAPTER 3

The Role of the Java EE System Administrator 19
Application Server Topology Configuration 20
Application Server Tuningcoviiiii i 20
Application Deployment. ... 21
Application Production Integrationt 21
Capacity and Scalability Assessment......................... 22
Trending, Forecasting, and Capacity Planning 22
Application Production Troubleshooting and Triaging 23

SUMMANY .t e e e e e 24

Quantifying Performance 25

Defining Performance ... e 25
End-User Response Timeccoviiiiiiiiininannnns 26
Request Throughput. ... e 26
Resource Utilizationccviiiiiiiii i 27
Application Availabilitycoo i 29

Before Quantifying Performance Requirements 29
SLAStakeholderscoooiiiii e i 29
SLA Properties.ooev i e e 29

Measuring Performancecoviiiii it 30
Acquiring Data. ...t e 31
Interpreting Data. ... 32

Costs of Measuring Performancecccvivvvnennnnnn.. 35

Mitigating the Cost of Performance Monitoring 37

Improving Performancec.coiiiiir i 37

Building a Performance TestPlancciie.. 38
Know Your USers. ...oe i i i ee i 38
Performance TestingPhases.................ccoiiiiin.. 40

SUMIMIANY i i e et e e 45

Performance Measurements 47

Performance Measurement Prerequisites 47

Performance Monitoring and Management

Using Java Management Extensions (JMX) 50
JMX Architecture ...t 51
JSR77 Architecture e 53

Obtaining Application Server Metricsccoovviviinnn.. 56

CHAPTER 4

PART 2

CHAPTER 5

CONTENTS
Obtaining Application Metricsccoviiiiiiiiian... 58
Custom Instrumentation.l 59
Automatic Instrumentationo 62
Obtaining JUMMetricscovieei i 64
AggregatingDatacci i e 66
CorrelatingDataccoiiiiiiii i e 67
VisualizingData ... e 70
SUMIMIANY i e e e e e 7
Implementing Performance Measurements 73
Reading Application Server Metricsccoviiiiiiinann.. 74
Implementing Code Instrumentation 94
Instrumentation Engine il 97
Test Application ... i 109
Instrumentation Command Interface 114
SUMMANY .. i i e i e i 121

Application Life Cycle
Performance Management

Performance Through the Application Development

LifeCycleccoiiiiii i 125
Performance OVEIVIEWcvvriiii i 125
Performance in Architecture o il 126
SLAS . . e e 127
Object Life Cycle Management..............ccovvvvieenn... 129
Application Session Management........................... 130
Performance in Development ...t 132
UnitTestingooeri i e e 133
Unit Performance Testing ...t 140
Performance in Quality Assuranceccoeiiieeinnn.. 149
Balanced Representative Load Testing 150
Production Staging Testingt 151
Identifying Performance Issues.ccoovieinn... 151

SUMIMIANY ottt i i e e i e 154

CONTENTS

CHAPTER 6

CHAPTER 7

CHAPTER 8

Performance Tuning Methodology 155
Performance Tuning OVerviewc.ccviiiiieiviennnnnn. 155
Load Testing Methodologyccvvieniiii et 156
Load Testing Design.oovviriiii it ieeaaans 157
Load Testing Process..........cooiviiiiiii i 158
Wait-Based TUNINGovi i e e e 159
TUNINg ThEOrY . ..o i e 160
TuningBackward ... 162
JYMHEAD. ... e e 163
Wait-Based Tuning Conclusions..............ccovvviinnn.n. 164
Tuning Example ... 164
Application Bottlenecks i 172
SUMMIANY .. i i et i et 176
Tuning an Application Server 177
Application Server Requirementsl 178
Biggest Bang: Quickly Grabbing the 80 Percent 180
Tuningthe JUMHeap...........cooviiiiii i 180
Tuning Thread Pools.t 197
Tuning Connection PooIScviiiii i 198
TuningCaches ... 198
Fine-tuning: Realizing the Remaining 20 Percent 199
Tuning EJBPOOIS ... 199
Precompiling JSPS 200
Tuningthe JMS. 202
Understanding Servlet Pooling and the Impact of
Non-Thread-safe Servlets............... ...t 202
Tuning Prepared Statement Caches......................... 203
Configuring Advanced JDBC Optionscovvvvvnn.. 204
SUMMIANY .. i i e i e 205
High-Performance Deployments 207
Deployment OVEIVIEWc.eiiiiii it i eens 207

Formal Deployment Topologyccoiiiiiieniinnninn... 209

CHAPTER 9

CONTENTS
Software Clustersccoiiiiiii i it 211
Technical Requirements ..., 212
Architecting Clusterable Applications. 213
Horizontal and Vertical Clusters 214
Disaster RECOVEIY. ..o i i 215
Realizing the Logical Configurationccvve.t. 217
Hardware Infrastructure 219
Load Testing Strategy ... 221
SUMMANY .t e e e e e 222
Performance and Scalability Testing 223
Performance vs. Scalabilityo il 224
Capacity ASSESSMENtvvt it i e e e 227
Graduated Load Tester. ..., 227
Capacity Assessment Usage Mappings...................... 229
Measurementsooiiiiiii i e i 230
Building a Capacity AssessmentReportccovvvint. 234
Executive Summaryco i 234
TestProfile. ... 235
Capacity ANalysiSvvve i i i 236
Degradation Modelc.cooviiiii 237
Impact Analysis.over i e 238
Analysis and Recommendations............................ 239
Sample Capacity AssessmentReportccviinatL. 240
Executive SUMmMary ...t 240
TestProfile. ..o 241
Capacity Analysiscovierii e e 243
DegradationModelc i 245
Impact Analysis.ovi i e 248
Final Analysis and Recommendations 250

SUMIMIANY ottt i i e e i e 251

Xi

Xii CONTENTS

PART 3

Performance Management
in Production

CHAPTER 10 Java EE Performance Assessment 255
Performance Assessment Benefits 256
Performance Assessment Overviewccovvieennnn.. 257

Prerequisitesoovii i e 257
PrOCESS .\ttt e e 258
ANalYSIS ..o e e 258
Mitigating Performance Overheadccoviunts. 258
Platform Recording.coieiiii i 259
ApplicationRecording ... 261
Preproduction Strategy 262
Preparing the Production Environment 263
AssessingUsage Patternst 264
Evaluating Critical Mass.c.cvvi i 265
DeterminingUserLoadccoiiiiiiiiiiiin.t, 265
Recording Metrics.oovviiei i 265
Production Strategy ..o e 266
Recording at the Right Intervals 267
Environmental Subsetsl 268
StagedRecordingcoviviiiii i e 269
Metric Recording.coviii e 270
Metric Analysisciiiii i e e 271
Environment ... 271
Application Server. ... 279
Application. ... e 287
SALREPOMt ...t e 295
SUMMANY .. i i e i e i 297

CHAPTER 11 Production Troubleshooting Methodology 299

Performance Issues in Production 300

Prerequisites ..o e 301

CHAPTER 12

CHAPTER 13

CONTENTS
Production Support Methodologyccoviiiiiia. .. 302
Roles of Support Personnel..........ccovviiiiiiiinnnn... 302
The Production Support Workflowccovvitt. 304
LI £ 305
Level 1 Support. ... 306
Level 2 SUpport. ..o e 308
Level 3Support. ... 309
Level 4 SUpport. ... e 311
Benefits of a Formal Production Support Methodology 313
SUMMIANY .. i i et i et 315
Trending, Forecasting, and Capacity Planning 317
TrENAS .t e 318
Usage Patterns ... i 319
Heap Usage Patternso, 321
Resource Utilization Patterns.cootl. 323
Response Time Patterns ...t 326
Forecastingc.covrriiiii i e e 327
Capacity Planningooviiiii e e 330
Forecast Risk Analysis............cciiiiiiiiii ... 331
Capacity Assessment.........c.oveiit it 332
Capacity Plan. e 333
SUMIMIANY it i i et i e 335
Assembling a Performance ManagementPlan 337
Evolution of the Performance ManagementPlan 338
Performance Management Infrastructure 3
Performance Management Process Document 342
Application Performance Management Document............. 343
Performance Test Infrastructuret 345
Performance Deployment Infrastructure 345
Production Support Infrastructure ool 346
Capacity Planning Infrastructure ool 347
PMP Life CyCle ...oee i i it 347

SUMMIANY .. i i e et i et 348

Xiii

Xiv

CONTENTS

PART 4

CHAPTER 14

CHAPTER 15

Tips and Tricks

Solving Common Java EE Performance Problems 351
Out-of-Memory Errors ..ot i 352
Causes of Out-of-Memory Errorsccooviiein.., 352
Resolving Memory Leaksccoviiiiiiiinennn.. 358
Artificial Memory Leakscoi i 359
Thread PoolScoiiiii e e e 364
Thread Pools That Are TooSmall 364
Thread Pools That Are TooLargeccovvviinvnnn..t. 366
JDBC Connection PooIScccoviiii i 366
JDBC Prepared Statementsccoi i 367
Entity Bean and Stateful Session Bean Caches 368
Stateless Session Bean and Message-Driven Bean Pools 370
Transactionsc.vieii i e 370
SUMMIANY .. i i e i et 37
NextSteps i 373
ToolsoftheTradecvviiiii i e i 373
Load Tester.....oovit i e e 373
Performance Profilers...........ccooii i 374
Performance Analysis TOOIScccoviiiiiiniinnnnnn, 376
24x7 Unattended Monitoringcoviiina..L. 376
End-User Experience Monitorsccvievinn... 377
Online ComMmMUNItIESovviiri e i 378
Developing a Performance ManagementPlan 379
SUMIMIANY ottt i i e e i e 379
... 381

About the Author

STEVEN HAINES is the author of three Java books: The Java Reference Guide (InformIT/Pearson,
2005), Java 2 Primer Plus (SAMS, 2002), and Java 2 From Scratch (QUE, 1999). In addition to
coauthoring and contributing chapters to other books, as well as providing technical editing
for countless software publications, he is also the Java Host on InformIT.com. As an educator,
Haines has taught all aspects of Java at Learning Tree University and at the University of
California, Irvine. By day, he works as a Java EE 5 performance architect at Quest Software,
defining performance tuning and monitoring software, as well as managing and executing
Java EE 5 performance tuning engagements for large-scale Java EE 5 deployments, including
those of several Fortune 500 companies.

Xv

About the Technical Reviewer

MARK GOWDY is the manager of the systems consultants for Java Solutions at Quest Software.
He has been consulting and working in Java performance for four years and has been active in
the Java industry for over eight years. As a consultant, he has assisted Fortune 500 organizations
in finding and resolving performance issues in their Java applications.

xvii

Acknowledgments

First off, I would like to thank my personal Lord and Savior, Jesus Christ, through whom all of
this has been possible. I would like to thank my mother for her support and for helping me stay
focused on writing this book. I would like to thank my technical reviewer, Mark Gowdy, for
going the extra mile to ensure the quality of this book on an accelerated schedule. I would like
to thank John Newsom and Rini Gahir for their internal book reviews and great ideas, and I would
like to especially thank Emerald Pinkerton for her hard work and dedication in promoting this
book within Quest Software.
I want to thank the top-quality staff at Apress who have helped make all of this possible:

Steve Anglin, Beth Christmas, Stephanie Parker, Heather Lang, Nicole LeClerc, and Laura Cheu.

Many thanks to Dr. Bradstreet and the staff at ICDRC for taking care of my son and giving
us hope. God’s hands are upon all of you and the great work you are performing.

Finally, I would like to thank you, the reader, for giving this book your serious consideration.
Performance management is a new and much needed practice in Java EE, and I hope that this
book equips you to take control of the performance of your complex enterprise environments.

Xix

Introduction

This book is divided into four parts:
e Part 1: Fundamentals
e Part 2: Application Life Cycle Performance Management
e Part 3: Performance Management in Production
¢ Part 4: Tips and Tricks

In the first part, we explore the nature of application performance and define what is meant
by “performance management.” Specifically, Chapter 1 sets the stage by reflecting on the state
of the Java EE market, provides insight into why performance management is so difficult in a
Java EE application, and defines the role of the Java EE administrator. Chapter 2 defines how we
quantify and measure performance and explores the costs of measuring application performance.
Chapter 3 is dedicated to the details you need to gather to assess the health of your applications’
performance and the mechanisms used to gather them. Chapter 4 concludes the part by diving
deep into the underlying technologies used in gathering performance information.

The second part, Application Life Cycle Performance Management, addresses every
performance-related task that you perform prior to deploying your application into a
production environment. Specifically, Chapter 5 addresses how to ensure the performance of
your applications during the architecture phase and the performance testing steps required
in application development, QA, and production staging to manage performance as applica-
tions are developed. Chapter 6 provides an overview of the wait-based tuning approach for
applications and application servers. Chapter 7 looks deep under the hood of an application
server, at the important metrics to consider when tuning your application server, showing
you how to realize 80 percent of your tuning impact with 20 percent of your tuning efforts.
Chapter 8 discusses high-performance deployments and deployment strategies that can be
employed to maximize performance while considering high-availability and failover require-
ments. Chapter 9 concludes this section by discussing performance and scalability testing,
specifically how to assess the capacity of your environment.

Once your applications are running in a production environment, you have a new set of
challenges to address. Part 3, Performance Management in Production, discusses performance
from a production standpoint. Chapter 10 proposes using a performance assessment periodically
performed against your production environment to assess its health and identify tuning points
in both your applications and environment to improve performance. Chapter 11 presents the
theory behind a formal production support workflow to help you efficiently resolve production
issues when they occur. Chapter 12 looks to the future of your application by providing strate-
gies to trend analysis, forecasting, and capacity planning. Chapter 13 concludes this part by
helping you assemble a full life cycle performance management plan.

XXi

XXii

INTRODUCTION

The book concludes with Part 4, Tips and Tricks, which includes a chapter on common
performance problems and next steps. Chapter 14 presents common performance issues that
I have encountered in Java EE environments over the past two years troubleshooting produc-
tion performance issues for companies ranging from government organizations to Fortune 500
companies, as well as strategies to resolve these issues. Chapter 15 closes the book by providing
references to additional resources, an action plan, and a guide to your next steps in implementing
performance management in your organization.

Although this book builds on itself, chapter by chapter, you can read any chapter individ-
ually to address your needs. Where appropriate, the chapters cross-reference other areas in the
book for additional information. For example, if your role is production support, then you might
start directly in Part 3 and refer back to Parts 1 and 2 as needed for additional information.

Performance management is a serious practice that has been greatly neglected in the Java
EE space, and we are counting the costs in lost revenue, credibility, and productivity. My hope
is that this book will empower you to take control of the performance of your applications and
enable you to focus on more important things than troubleshooting performance issues—namely,
providing your customers with the high-quality applications that they deserve.

PART 1

Fundamentals

CHAPTER 1

An Introduction to Application
Performance Management

John was driving home from work on Saturday night; it was late by most people’s reckoning,
but not by his these days. He’s the director of development at Acme Financial Services, and his
team has been laboring for two years to migrate the company’s legacy mainframe business-to-
business transaction processor to a Java EE environment. Acme facilitates the transfer of funds
from one bank to another. One bank stops earning interest the second the funds are transferred,
while the other starts earning interest as soon as it receives them. Working in business banking,
Acme’s transferring millions of dollars from point to point: they have no room for failure, because
missing funds can add up to hundreds of thousands of dollars in only a couple hours.

Over the past four months, John and his team have worked nights and weekends revali-
dating the architecture, testing the thousands of use cases that it must support, and ensuring
that not one cent is lost in a transaction.

“Honey, you're home!” his wife exclaimed at seeing him arrive bleary-eyed at the early
hour of 11:00 pMm.

“It’s been a hard few months, but it’s finally over. I'll have more time for you and the kids,
I promise. The guys really put in extra effort to make our deadline. Everything is installed and
tested, so when the Eastern European market opens in a few hours, we’ll be ready for them.”
He spoke with the confidence derived from months of building architecture, careful design,
detailed implementation, and testing. “We did everything right and have nothing to worry
about. Let’s just get some sleep; we can celebrate in the morning.”

At 4:18 aM, his wife was shaking him awake.

“John, it’s Paul on the phone for you, and it sounds important!”

“Hi Paul, what’s up?” he said with as much clarity as he could.

“John, you have to come in. We’re having problems, and I mean big problems! Japan, uh,
you've got to come in!”

“Slow down. Tell me what’s going on, one thing at a time.” Whenever Paul got excited John
could make neither heads nor tails of what he was saying.

“John, the servers are crashing. The market opened about fifteen minutes ago, and ten
minutes ago the first server crashed. We brought it back up, and then the next two went down.
We’re bringing servers up just to watch them fall down. What'’s going to happen when Western
Europe opens in a couple hours and our load triples?”

“Okay, hold on, I'm on my way. I'll be there in twenty minutes. . ..”

CHAPTER 1 AN INTRODUCTION TO APPLICATION PERFORMANCE MANAGEMENT

What happened at Acme Financial? Are they facing a unique issue? Did they simply fail to
test their application well enough, or is the problem larger?

Unfortunately Acme’s case is more the rule than the exception. In my line of work, I trouble-
shoot and diagnose production problems in the enterprise environments of companies like
Acme all over the world, ranging from small shops with a handful of developers to Fortune 500
companies employing hundreds, even thousands, of developers. The same situation comes up
ateach company: developers built and tested an application that is either under duress and not
meeting its service level agreements or crashing on a weekly, daily, or even hourly basis.

This chapter will consider the definition and implications of quantifiable performance in
aJava Platform, Enterprise Edition 5 (Java EE) environment, some hazards to and pitfalls in
ensuring quality, and the role of the Java EE systems administrator in this process. The chapter
will also briefly outline numerous details within these topics, to be explored in further detail
later in the book, such as particular functions of a skilled Java EE systems administrator.

Forrester reported that among companies with revenue of more than $1 billion, nearly 85
percent reported experiencing incidents of significant application performance degradation.!
Furthermore, in the Network World and Packeteer survey that Forrester references, respon-
dents identified the application architecture and deployment as being of primary importance
to the root cause of application performance problems.? This means that nearly 85 percent of
applications are failing to meet and sustain their performance requirements over time and
under increasing load. Formal performance requirements are detailed in service level agree-
ments. A service level agreement, or SLA, is a contract that explicitly defines the terms of service
that a vendor will provide to an end user. For an application provider, an SLA prescribes the
amount of time in which a unit of work must be completed. For example, logging in on a Web
site must be completed in less than five seconds.

SLAs can be defined internally by a business to ensure the satisfaction of its end-user expe-
rience, such as the speed of at which a Web search engine retrieves results, or it can be a legally
binding contract, such as a business-to-business e-commerce application. In the former case,
users have been occasionally tolerant of a sluggish application in the past, but increasingly,
users now demand better performance, and daily raise the bar on acceptable speeds. A few
years ago, a Web request serviced within seven seconds was considered acceptable, and a user
would continue to utilize that service. Today however, when a simple request does not respond
within three seconds, the user frequently reinitiates the request (thinking there is a problem)
or leaves the site for a quicker responding competitor. Even seven seconds is not an option
anymore.

In the case of an SLA serving as a legally binding contract, a company uses a provider’s
services under the promise that those services will, in fact, satisfy the SLA as defined in the
contract. The penalty for violating that can be severe, including financial restitution for
damages incurred because of the violation or the dissolving of the contract altogether.

Impact of Poor Performance

The impact of poor performance can be quantified in three areas:

1. Jean-Pierre Garbani, "Best Practices in Problem Management," Forrester, June 23, 2004.
2. Denise Dubie, "New apps can be a real pain in the net," Network World, July 21, 2003, http://
www . networkworld.com/news/2003/0721appmgmt . html.

CHAPTER 1 AN INTRODUCTION TO APPLICATION PERFORMANCE MANAGEMENT

* Lost productivity
¢ Lost customer confidence and credibility
¢ Lostrevenue

Poorly performing applications can impact productivity in two ways. First, when internal
applications (for example, an intranet application) perform poorly, companies are paying their
employees to wait for applications to respond. I once worked for a computer hardware manu-
facturer deciding on the hardware components that would go into the machines and building
software bundles to install on them. We used a manufacturing plant to assemble and verify
their quality. When a problem was discovered, the line lead would shout, “Stop the line!” All
assembly workers would cease building the computers, and we were then called in to trouble-
shoot and fix problems. Meanwhile the assembly workers sat idle, being paid an hourly wage
to watch us troubleshoot problems, and at the end of the day, the number of computers
produced was reduced. The loss of productivity for idle workers had to be applied to the manu-
facturing cost of our computers (our overhead), which cut into our profitability. Similarly,
when your employees accomplish less work in the day because of poorly performing applications,
it directly impacts your financial overhead and profitability.

Second, when an issue arises in an internal application, those responsible for trouble-
shooting the problem, who in many cases are developers, must divert their attention from
other tasks. This diversion may mean that new features targeted for the next release of a product
may be dropped or the delivery schedule may be impacted. Either way, the internal performance
issue affects your competitiveness.

Also, poorly performing applications that service other corporate entities directly impact
the confidence that they have in both your corporate and personal reputations. When you
claim that you can perform a service in a specified amount of time and fail to do so, then losing
your credibility is only natural. Consider an employee who commits to delivering a report to
you every Friday, but he consistently delivers it Monday afternoon. You grow accustomed to
his tardiness, but you know that if you have a task that must be completed by a specific time
that he is not the one to give it to. Similarly, a corporation that relies on your services will
undoubtedly seek out your competition if your services are not reliable. And as the individual
who guarantees and promises these services to your customer, you lose their respect.

Finally, applications that perform poorly can directly affect your revenue by causing you
to lose customers. Take one of my own recent purchases for example. Because I travel exten-
sively for my company, I am writing this book, and airplane seats are shrinking on a daily basis,
Iresearched personal digital assistants (PDAs) to which I can connect an external keyboard.
Being a technical geek, I did all of my research online, found a couple of models that I was inter-
ested in, and then started comparing vendors. My success criteria for selecting a PDA vendor
were customer feedback, reputation, availability, and finally price. My search returned 14 vendors,
and I connected to their sites to gather information. Two of these vendors did not respond
within an acceptable period of time. (My tolerance for something like this is about ten seconds.)
Isimply skipped those vendors and moved on to the next one on my list. Regardless of how you
define performance criteria, your users’ perception of your application is really all that matters—
and there are ways to mitigate the poor perception of performance, such as a progress bar or a
running countdown. I may very well have missed the vendor with the best reputation, price,
and delivery schedule, because its application did not perform acceptably or appropriately use
mitigating features. This needlessly lost sale is a reality facing businesses at present.

CHAPTER 1 AN INTRODUCTION TO APPLICATION PERFORMANCE MANAGEMENT

Regardless of whether you are developing business-to-business, business-to-consumer,
or internal applications, you need to address the performance and reliability of these applications.
The impact of a poorly performing application can vary from mild to severe, but it can always
be measured if you take the time to analyze it. Only a proactive approach of implementing a
formal, performance-based methodology will maximize your chances of success.

Complications in Achieving Application
Performance

If 80 percent of all production Java EE applications are failing to meet their performance
requirements, then achieving Java EE application performance must be complicated, but why?
This section explores some of the reasons Java EE application performance considerations can
be overwhelming.

Evolution of Java Applications

As technology evolves so does the way that we use that technology. Consider the evolution of
computer hardware. Today’s desktop computers are exceedingly faster and have more memory
and storage capacities than they did a decade ago, but how much faster is Microsoft Windows
XP than Windows 3.1? The speed difference is minimal, but its capabilities and appearance are
far superior. Instead of allowing faster hardware to run existing operating systems faster, the
extra processing capabilities have been used to develop more robust operating systems and, as
aresult, have greatly improved productivity.

The evolution of Web applications has followed a similar progression. The first Web sites
served static content: when a vendor added new products to his catalog, he was required to
update the physical HTML files that rendered it. This requirement quickly became a manage-
ment nightmare, so databases were incorporated with scripts built to generate HTML pages
from database content. Tools and frameworks evolved to accomplish dynamic Web content
generation more efficiently and soon standards emerged.

In 1997, Sun released the servlet specification which enabled developers to build Java
programs that used existing code and a robust set of classes to generate HTML pages. But diffi-
culties arose in implementing presentation details inside a Java servlet (for example, changing
afont size meant changingJava code, recompiling it, and redeploying it to a servlet container),
so Sun released the JavaServer Pages (JSP) specification in 1999. JavaServer Pages enable us to
build HTML-looking documents that contain embedded Java code to generate dynamic content.
At run time, JSPs are translated into servlet source code, compiled, and loaded into memory.
Therefore simple changes to presentation details could be accomplished on the fly without
requiring a real person to recompile and redeploy the servlet.

Shortly after, it became apparent that complicated business logic hindered the readability
and maintainability of JSPs. Understanding that servlets were very good at implementing
application business logic and JavaServer Pages were equally good at generating HTML pages,
we, as an industry, began implementing a variation of the Model-View-Controller (MVC)
design pattern. In MVC architecture, JavaBeans represent data (Model), JSPs performed the
presentation (View), and servlets represent application business logic (Controller). This delega-
tion of programmatic responsibility resulted in more vigorous and maintainable applications.

CHAPTER 1 AN INTRODUCTION TO APPLICATION PERFORMANCE MANAGEMENT

As business requirements utilized new technological capabilities, Sun introduced the
concept of Enterprise JavaBeans (EJB) to provide transactional integrity and a strong delegation
of responsibilities within the business tier. Servlets are now only responsible for application
flow and logic, while Enterprise JavaBeans are responsible for business logic and object persis-
tence. UsingJava to build enterprise applications presented both positive and negative effects,
and by analyzing those effects we discovered best practices that led to a collection of design
patterns. These patterns are equipped to solve more complicated problems, which allowed
business requirements to evolve.

Web applications evolved into portals with user-customizable content subscription, a
single sign-on, and an advanced user-security model. The next wave of evolution came with
the advent of Service-Oriented Architecture (SOA) built on top of Web services. SOA facilitated the
integration of disparate systems, including interoperability between applications written in
different programming languages and running on different operating systems.

The more that Java EE developers increase what we can do, the more users require of us.
This brief historical overview of Java’s dynamic Web-content generation evolution demonstrates
that as our technology improves, our business requirements evolve to use that technology. Java
Web-based applications written in 1997 were infinitely simpler than today’s. As the complexity
of the code increases, our capability to easily identify performance problems decreases.

Layered Execution Model

The first complication in Java EE application performance is the inherent architecture of the
Java EE platform, which necessitates a layered execution model. The benefit gained by embracing
Java EE as a deployment platform is hardware and operating system independence. To utilize
these benefits, we write our applications to adhere to formal specifications and deploy them to
an application server running in a Java Virtual Machine (JVM) on an operating system on a
physical computer (hardware). In its simplest form, a Java EE application requires all of these
components running on a single machine, shown in Figure 1-1. We refer to this complexity of
a single application server instance as vertical complexity.

Java EE Application Server

Java Runtime Environment

Operating System

Hardware

Figure 1-1. A Java EE application requires a layered execution model.

CHAPTER 1 AN INTRODUCTION TO APPLICATION PERFORMANCE MANAGEMENT

Because of this layered model, the location of a performance problem can be in the appli-
cation code, in the application server configuration, in the JVM configuration, in the operating
system configuration, or in the hardware itself. To ensure proper performance of your application
and diagnose performance problems, you need to master of each of these layers and understand
how to attain their ideal configurations. To further complicate matters, most significant Java
EE applications do not run inside of a single application server instance but, rather, run in a
distributed environment. In a distributed environment, the same layered execution model is
spread across multiple machines. Then too, for your application to accomplish anything beyond
simple dynamic-content Web page generation, it will need to interact with other systems such
as databases and legacy systems. Figure 1-2 puts all of these components together.

4 Business Tier R 4 Data Tier R
App 0
Java EE Application Server
Ve - ~ > Database
Web Tier Java Runtime Environment
Operating System
App 0
Hardware
Java EE Application Server
> < X p <
: : Business Tier Data Tier
Java Runtime Environment
Operating System
App 0
Hardware
Java EE Application Server
_) - R Legacy
” System
Java Runtime Environment
Operating System
Hardware

- J - J

Figure 1-2. Significant Java EE applications require multiple application server nodes and
interactions with other external systems such as databases and legacy systems.

When your users complain that your application is running slow, identifying the root cause
is a daunting task, because the problem can be in any layer in any tier on any application server
instance or in an external dependency. We refer to this distributed complexity as horizontal
complexity. Horizontal complexity issues can manifest themselves when your application is
subjected to a significant load: the nature of certain performance problems is to arise only outside
the context of a single JVM. Large loads cause seemingly small issues to become large issues.

CHAPTER 1 AN INTRODUCTION TO APPLICATION PERFORMANCE MANAGEMENT

The combination of horizontal and vertical complexities equates to more moving parts in
your application environment than a typical Java EE developer can be expected to handle.
Because the proper deployment of a Java EE application requires mastery not only of an appli-
cation server environment, but of the application server topology as well as detailed skills in
the configuration of each external dependency, the best operational model is not a single
individual, but a team of skilled individuals specializing in each respective arena.

Prebuilt Frameworks

As you may surmise from the previous discussion, the generation of a robust MVC enterprise
application is not a trivial task. As a result, several organizations built application frameworks
that simplify the demands on the application: the application integrates its business logic into
the framework, and the framework manages the application flow and logic. Most of these
frameworks have open source licenses, with the more popular ones being Apache Software
Foundation’s Jakarta Struts and Velocity, and the Spring Framework.

Prebuilt frameworks offer a number of benefits:

¢ Productivity increases because most of the mundane work of building infrastructure
is removed.

¢ Large open source development communities offer rapid development.

¢ Wide adoption means that many developers have tested the framework before you, and
those who wrote the code have already handled initial troubleshooting.

¢ Implementation of application enhancement requests is quick. Because prebuilt frame-
works are targeted at solving generic problems, changes to your application
requirements will most likely already be supported.

While these benefits should persuade you to adopt an existing application framework,
incorporating someone else’s code into your application has dangers. Unless you spend the
time to become an expert on the internal workings of the prebuilt framework, troubleshooting
subsequent problems is difficult because using that framework introduces a black box into
your application. A black boxis a component or piece of functionality that you understand how
to use but not necessarily how it works: you provide the inputs to the black box, it performs its
functions, and it returns its results to you. Therefore when a problem arises you have another
layer in your layered execution model to analyze to discover the root of your problem.

Furthermore, if the framework does, in fact, have a performance issue that impacts your
business, then you either must fix it yourself or request that the framework provider fix it. In the
former case, if your changes are not committed back to the formal framework repository, then
you could have problems upgrading to future releases of the framework. In the latter case, your
issue might take weeks or months to reach an acceptable resolution.

I fully support implementing prebuilt frameworks in new development efforts, but I also
recommend that you spend the time up front to understand the architecture of the framework
that you choose. This way, if a performance problem does occur, you will be better equipped to
troubleshoot it. Furthermore, I suggest you research the existing frameworks and choose a
popular one that best fits your business requirements. The popularity of the framework will
help you when it comes time for acquiring bug fixes and obtaining troubleshooting guidance.

10

CHAPTER 1 AN INTRODUCTION TO APPLICATION PERFORMANCE MANAGEMENT

Java EE Expertise

Understanding how to use a technology is a far cry from being an expert at using it. In this
respect, Java EE is especially dangerous as its specifications define recommended approaches
to application design, but they do not force any particular implementation. This was done by
design, because although a full MVC Web architecture is more scalable and robust than a
stand-alone servlet, it may not be the best tool to solve a problem. The flexibility of Java EE
empowers you with all of the capabilities to develop a small, lightweight application or a large
enterprise-scale application; the choice is yours.

However, a Java EE developer can develop a functional application that performs adequately
in unit tests, but falls apart under heavy loads. Having the knowledge to build the application
does not necessarily mean having the experience to build it to meet your business require-
ments. Because Java EE has been gaining in popularity over the years, particularly as a platform
for enterprise applications, more and more developers are moving over to Java EE and becoming
acclimated as quickly as possible. Many of these developers may bring bad habits from other
programming languages, and some learn enough to build an application, but not enough to
comprehend the impact of their implementation decisions.

Java EE is a relatively new technology, so it is not as easy to find a seasoned Java EE architect as
itis to find a seasoned C or C++ architect. This shortage in Java EE experts can directly impact
the performance of your applications if you do not take precautions to ensure that someone
with rock-solid experience leads your team. A competent developer can become competent in
any language and environment given proper time to acclimate; just be sure that your architects
and team leads are already well acclimated before your project begins.

Development Tools

Development tools are evolving in two ways that may negatively impact the performance of
Java EE applications. I emphasize the word “may,” because, while a good tool can work miracles, a
good tool in the hands of an unknowledgeable person can wreak havoc on your environment.

First, tools are being developed to relieve many of the mundane activities performed by
Java EE developers. This will undoubtedly improve productivity as long as the developer
understands the impact of decisions made inside the tool. During the days of early Windows
programming there was a debate between Visual Basic and C. C and C++ programmers argued
that Visual Basic programmers did not know how to program, while Visual Basic programmers
flaunted their productivity; they could build a robust application in a quarter of the time that a
seasoned C++ expert could. The underlying problem was that Visual Basic covered up many
details about how the resultant application worked, so that someone who was not familiar with
the fundamental structure of a Windows application (for example, the message pump, window
messages, or threading models) could develop an application that satisfied the functionality
of the business requirements, but performed atrociously. On the other hand, empowering a
knowledgeable person with such a tool would increase his productivity. Likewise, many of the
underlying details involved in building a Java EE application can be automated and as long as
the developer understands the implications of his inputs into that automation process, then he
will be more productive and still retain high-performance.

A second evolution to consider is the new breed of Java EE tools coming to the market to
facilitate application assembly. The idea is that an application architect will be able to assemble an
application from existing components using a graphical tool without writing a single line of
Java code. The concept is fascinating, and if these vendors deliver on their promises, then

CHAPTER 1 AN INTRODUCTION TO APPLICATION PERFORMANCE MANAGEMENT

productivity will certainly improve. One of the biggest tools in this market is BEA Aqualogic,
arelatively new tool with unknown industry acceptance that could revolutionize enterprise
application development if it delivers on its promises. But again, this technology heightens the
risk of allowing tools to do our work for us without requiring us to understand what they are doing.

Service-Oriented Architecture and Web Services

Every time new technology enters the software industry, it is met with a combination of skepticism,
in wondering if the technology will deliver on its promises, and enthusiasm for its potential
impact on the way we develop software. In my experience, no technology has ever met all
promises and only time can tell how much impact it has on our lives. One thingis for sure: CIOs
like buzzwords and eagerly adopt best-of-breed technologies, even if they are not ready for
prime time.

Service-Oriented Architecture (SOA) is an example of a technology that has crossed over
from fad into widespread adoption, and is only now beginning to deliver on its promises. SOA
promotes the concept that software components should be written as services and expose
their functionality openly: any component needing the functionality provided by a service
simply calls the service rather than reimplementing the functionality itself. The current practical
application of SOA is in the integration of disparate systems. SOA and its implementation on
top of Web services make connecting the functionality of a .NET server with a Java EE server
and a legacy application incredibly simple. Simply drop a service in front of your functionality
and voila—instant integration.

Please note that SOA and Web services are not the same thing. SOA is a design method-
ology or architectural concept, while Web services are a collection of technologies that enables
SOA. Web services itself is a platform- and technology-agnostic collection of specifications by
which services can be published, be discovered, and communicate with one another. SOA is
the software engineering concept through which you build applications.

From a technology standpoint, Web services are incredible. But from a management and
performance standpoint, they can be tricky if you are not prepared. You now have server plat-
forms with different operating systems running multiple applications and application servers
to comprise a single application. Figure 1-3 shows this graphically.

Your Application
(Your Own Business Logic)

I
A2 2 4

Application / Service Application / Service Application / Service
Application Environment Application Environment Application Environment
(e.g., Application Server) (e.g., Application Server) (e.g., Application Server)

Operating System Operating System Operating System

Figure 1-3. Developing an application from a collection of Web services integrates different
application environments, operating systems, and hardware.

1

12

CHAPTER 1 AN INTRODUCTION TO APPLICATION PERFORMANCE MANAGEMENT

In order to effectively manage this type of environment, you need visibility at all technology
points, including

Each operating system upon which each service is running

Each technology component in each layer of the distributed layered execution model
that supports the service in Java EE environments

The performance of the enabling technologies as well as the application components
that are supporting the service in non-Java EE environments

Other external dependencies such as database and external servers that may be
hosted offsite

The network communication behavior between your application and its services

The benefits of using Web services outweigh many of these concerns, but the inherent
complexity and verboseness of a Web services implementation are prohibitive to optimal
performance. Consider the steps that must be performed for a single Web service call:

. The caller creates a complex XML file.

The caller then transmits that XML file to the service.

The service infrastructure translates the XML file into an instruction set that the
service understands.

The service implements its business logic.

The service infrastructure constructs a complex XML document containing the results
of the business logic implementation.

That resultant XML file is then transmitted back to the caller.

Then the results of the service call must be translated back to application-specific values.

If these are the steps involved in using a single Web service, consider the steps for an appli-
cation built by an application assembler that may access half a dozen Web services to service a
single Web request. If one Web service call translates to the construction, transmission, and
disassembly of two complex XML documents, then doing this six times requires the construction,
transmission, and disassembly of twelve complex XML documents. Regardless of how well-
written the code and fast the network, performance is going to be abysmal. So while the tech-
nology enables many sought-after capabilities, the inherent complexity of implementing that
technology necessitates careful planning and analysis in order to benefit your organization.

With all of these pitfalls, should we simply avoid using Web services? Can we count on their
adoption being minimal? Or should we take a proactive yet cautious approach to embracing the
technology?

The industry analysts have voiced their approval of the technology:

CHAPTER 1 AN INTRODUCTION TO APPLICATION PERFORMANCE MANAGEMENT 13

IDC Researcher Sandra Rogers in a 2005 study predicted that the worldwide Web services
market will hit $15 billion by 2009, driven by major vendors such as IBM, Microsoft, BEA
Systems, and Sun Microsystems.3

“Gartner’s Positions on the Five Hottest IT Topics and Trends in 2005” includes a review of
Service-Oriented Architecture and predicts that by 2006 more than 60 percent of the $527
billion market for IT professional services will be based on Web services standards and

technology.* By 2008, 80 percent of software development projects will be based on SOA.

SOA s not a fad but, rather, a technology that has the potential to greatly increase productivity
and save companies millions of dollars if implemented intelligently.

Application Performance

When someone asks you about the performance of your enterprise applications, what do you
think they mean? What does performance means to you?

Performance means different things to different people, usually based on their role in
measuring and ensuring the performance of their area of responsibility. When we break down
the development organization into groups, we call each group a stakeholder. And each stake-
holder has an area of responsibility that dictates what that person considers to be the definition of
performance.

From the perspective of an application support engineer, whose panicked life is framed by
user complaints, the primary criterion for performance measurement is application response
time. If the application responds in a reasonable amount of time, then users do not complain,
and the engineer’s efforts can be spent on more interesting tasks.

AJava EE administrator is more concerned with the supporting environment and hence
measures performance through resource utilization and availability. The Java EE administrator
determines when to add application server instances, when to change configurations, when to
add hardware, and so on. The worst time to make major architectural changes to an environ-
ment is when users are complaining; when users complain, then it is already too late. Rather it
is best to perform a capacity assessment of the environment and correlate current usage patterns
with resource utilizations to determine if the application is approaching its saturation point.
Recognizing the environment’s saturation point and being able to discern how soon it will
reach it empowers the Java EE administrator to plan application server architectural changes.
Another significant consideration in his job role is the availability of the application servers.
If the application servers are not available, then the code execution, database, and network
traffic performance levels are meaningless. For the Java EE administrator, then, good perfor-
mance implies effective resources that are readily available.

A database application programmer’s perspective is primarily concerned with the response
time of the Structured Query Language (SQL) and how quickly it services database requests as
well as different query execution plans. Creating or removing indices, and optimizing SQL
queries to meet the demand of the application against the volume of data in the database are
also of concern, particularly considering that the most optimal query for small database is not

3. IDC, “Worldwide Web Services Software 2005-2009 Forecast: Let the Races Begin,” May 2005,
http://www.idc.com/getdoc.jsp?containerld=33418.

4. Gartner, Inc., “Gartner’s Positions on the Five Hottest IT Topics and Trends in 2005,” May 12, 2005,
http://gartner.com/DisplayDocument?id=480912.

14

CHAPTER 1 AN INTRODUCTION TO APPLICATION PERFORMANCE MANAGEMENT

necessarily the most optimal for a large one. If the database is servicing application requests
according to the required service level agreement, then it is performing well.

A database administrator is primarily concerned with the utilization of the database
resources. The relationship between the database administrator and database application
programmer is analogous to the relationship between the Java EE administrator and the appli-
cation developer: the database application programmer is concerned about the code (SQL)
while the database administrator is concerned about the environment (utilization of database
resources). The database administrator can create indices, move physical storage around, and
configure caches to enhance the performance of the underlying database code.

A network administrator’s perspective focuses on how much network traffic passes between
the physical machines and how much bandwidth is available. He needs to know when to change
the network topology to optimize communications to maximize performance.

Finally, the CIO is concerned with the results of all the aforementioned. This company
officer wants to know the bottom line, including how long the environment will run given the
current configuration, how long before changes must be made, and what changes offer the
best benefits. CIOs apply analyzed trends to a budget to ensure the stability of the company
itself, so for them, performance is a much more global concept.

Because application performance means different things to different people, what you
consider of vital importance, someone in another role may discount. Application performance
encompasses the perspectives of many different stakeholders with the goal of ensuring the
long-term stability and responsiveness of all applications running in the environment.

Java EE Performance Problems

Enterprise Java environments are complex and difficult to implement and configure properly,
if for no other reason than the sheer number of moving parts. Throughout this book we will
look at specific problems that can impede performance, but to provide you with a general
introduction to the symptoms of these problems, consider the following:

* Slow-running applications

* Applications that degrade over time

* Slow memory leaks that gradually degrade performance
* Huge memory leaks that crash the application server

* Periodic CPU spikes and application freezes

* Applications that behave significantly differently under a heavyload than under normal
usage patterns

* Problems or anomalies that occur in production but cannot be reproduced in a test
environment

Unfortunately, no simple one-to-one solution exists for each of these symptoms, but once
equipped with the tools and methodologies presented in this book, you will be prepared to
build a plan of attack when one of these problems occurs.

CHAPTER 1 AN INTRODUCTION TO APPLICATION PERFORMANCE MANAGEMENT 15

Application Performance Management

When you see the phrase “Application Performance Management,” you probably think of
“Application Performance Tuning.” While Application Performance Management includes
performance tuning, it is far broader in scope. Application Performance Management (APM) is
a systematic methodology for ensuring performance throughout the application development
and deployment life cycles. APM is sometimes called a full life cycle approach, because it begins
during the architecture of an application, is applied during development, is practiced during
the quality assurance (QA) and testing processes, and remains a lifestyle in production.

Application Performance Management should start early in the development life cycle,
because we have learned that earlier is cheaper. The earlier in the development life cycle you
find a performance problem, the less the cost to fix it (in terms of both dollars and time spent).

As Figure 1-4 shows, the rate in which the cost to fix a problem grows is exponentially
proportionate to the stage in the development life cycle it is discovered. For example, an incorrect
choice to use entity beans to represent data can be changed in architecture documents in a
couple hours, but if the problem goes undiscovered into development, then code has to be
changed. If it is found in QA, then the solution has to be designed again, redeveloped, and
retested. But in production, not only does the cost affect architecture, development, and QA,
but also it affects end users. And we have already established that poorly performing applica-
tions accessible to end users cost you in terms of productivity, reputation, and revenue.

Dollars/Time Spent

Development QA Production

Figure 1-4. The cost to fix a performance problem, measured in dollars and in time spent,
increases exponentially the later in the development life cycle that it is discovered.

APM in Architecture

The architecture of any application must at least include (if not be based upon) performance
considerations. The architecture of an enterprise application must consider object life cycles
as well as how objects will be used. In the entity bean example, the best choice for data persis-
tence management must be heavily based on how the objects will be used, how long they will
exist, and what operations can be performed on them. For instance, a read-only object is not a
good candidate for an entity bean, because entity beans force transactional participation that
is not required if the data is truly read-only. However, if an object will be accessed frequently,
then caching it in memory is a good idea, and if the data requires transactional integrity then

16

CHAPTER 1 AN INTRODUCTION TO APPLICATION PERFORMANCE MANAGEMENT

an entity bean is a good choice. As with all performance considerations, the final decision depends
on the specific circumstances.

Too often architects neglect to address performance concerns in their artifacts. To remedy
this, I promote the practice of integrating SLAs into use cases. This integration requires addi-
tional effort by the architect to initiate communications with the application business owner,
but by working together to define these SLAs they provide realistic success criteria to evaluate
the use case. Note here that SLAs must be decided upon by both the application business owner,
to ensure that the business case is satisfied, and the application technical owner to ensure that
the SLA is reasonably attainable. For example, the application business owner may want a
particular request to respond in less than one second, while the technical application owner
understands that the complexity of the functionality cannot complete in less than three seconds.

Performance success criteria can be measured throughout the development of the application
and quantified during QA cycles. Furthermore, mutually-decided-on SLAs add the awareness
of acceptable performance as a success criterion to QA testing in addition to functional testing.

APM in Development

The development of large-scale applications involves the subdivision of an application into
components, which are then developed by different teams. For example, one team might be
responsible for the application and framework logic, another team manages the persistence
and business logic, and a third team develops the presentation logic. Each team is composed
of one or more developers who build their respective subcomponents.

When applying APM to development teams the emphasis is on educating individual
developers to properly unit test their subcomponents. Typical unit tests focus on functionality
but neglect two key problematic performance areas: memory usage and algorithm efficiency.
To mitigate these potential performance obstacles, developers need to test the following:

* Memory. Perform deep analysis into heap usage, looking specifically for lingering objects
as well as object cycling.

* Code profiling. To assess the efficiency of algorithms, breaking down processing time in
a line-by-line analysis to allow the developer to better identify potential bottlenecks in
the code.

* Coverage: Use a coverage tool to display each area of code that was, and was not, executed
during a performance test, because, as unit tests are running, it is important to under-
stand which portions of code are being executed.

Integrating these performance measures into the development life cycle creates confidence
in integrating code from disparate development teams. For example, consider building a car.
If you gather parts from the junkyard, assemble the car, turn the key, and it does not start, then
where is the problem? Because you did not test the individual components, you do not know
whether you have a bad part (for example, alternator or carburetor) or have integrated the parts
incorrectly. On the other hand, if you thoroughly test each component independently, then
when the components are integrated, you have the foreknowledge that each part works properly in
isolation. In the second scenario, if your car does not start then you can look to the integration
of the parts (for example, did you connect all of the wires and hoses properly?).

CHAPTER 1 AN INTRODUCTION TO APPLICATION PERFORMANCE MANAGEMENT

Understanding that we would not want to build a car from untested parts seems obvious,
but all too often we do not apply the same principle to software. By implementing performance-
focused unit tests, integration phases will be quicker and more successful.

APM in QA

After application components have been tested and successfully integrated, then the QA team
ensures that the application functions properly. In the context of APM, QA testing extends beyond
simple functional testing to include testing to verify satisfaction of performance criteria. As
previously mentioned, architects must define SLAs in their use cases to give QA personnel the
performance success criteria for each use case. As a result, if a use case functions properly but
does not meet its SLA, then it will fail the QA test and be returned to the development team
for revision. Failure to meet an SLA should be viewed in the same light as an application bug:
it either needs to be addressed in development through refactoring code or through rearchitecting
the solution. By holding fast to such strict guidelines, you can feel more confident that the final
version of your software will meet SLAs and be delivered on time.

Ilearned the lesson of delaying performance testing until the last iteration of a software
project painfully. My company only employed QA to test a large-scale application project for
functionality. After working through all of the bugs found during one iteration, we pressed on,
adding features to the next iteration. Only when the application was complete did we turn our
attention to performance testing. As you might guess, the performance was horrible. In the
end, the proper resolution to the performance problems was to refactor the data model, which
meant refactoring the entire persistence layer, as well as many of the components that interacted
with it. This failure demonstrates a case in which spending additional time in performance
testing early in the development life cycle would have reduced our cost to fix the problem
substantially, because, as you recall from Figure 1-4 the cost to fix a performance problem,
measured in dollars and in time, increases exponentially the later in the development life cycle
that it is discovered.

Depending on the organization, performance load testing might be performed by QA or by
a performance team; in this case we will group the task into the QA role. After each use case has
been verified for adequate performance against its SLA, the next step is to implement performance
load testing, which measures the performance of the application under the projected usage. In
order to successfully pass this stage of QA, the application’s use cases need to maintain their
SLAs under that projected usage load. Performance load testing reveals many things about an
application, including algorithm inefficiencies and memory usage. The development team
tests algorithm efficiencies and memory usage in isolation, but seemingly insignificant problems
can become large-scale problems when subjected to the usage load. For example, consider an
application that stores 1MB of information in each user’s session. During both unit testing and
integration testing, this 1IMB would most likely be ignored, but with 1,000 users in the applica-
tion, 1GB of memory is lost, and the problem becomes painfully apparent. By implementing
performance load testing during each appropriate iteration (recognizing that some early itera-
tions may not lend themselves to load testing), performance problems such as the one just
mentioned can be tamed before they become insurmountable.

17

18

CHAPTER 1 AN INTRODUCTION TO APPLICATION PERFORMANCE MANAGEMENT

APM in Preproduction

Prior to moving an application into production, a capacity assessment must be performed. The
QA team would already have verified that the application meets its SLAs under the projected
load, but a capacity assessment answers the following additional questions:

* How well does each use case perform at the expected usage?
* At what usage point does each use case fail to meet its SLA?

* As usage increases to the point where use cases miss their SLAs, what is the pattern of
degradation?

* What is the application’s saturation point?

Even if QA confirms that your use cases perform within their service level agreements for
the projected 1,000 users, how can you know how to expect the application to behave as usage
patterns increase? If the application continues to successfully meet its service level agreements
at 2,000 users, then you can feel confident that performance will be acceptable when the appli-
cation meets the real world. On the other hand, if the use cases are barely meeting their SLAs at
1,000 users and 10 additional users forces the environment into its saturation point, then you
should be afraid; you should be very afraid! Without the information that a capacity assessment
provides, you could not foresee an inevitable crash.

Figure 1-5 shows the interrelationships between resource utilization, application server
throughput, and end user response time as the user load increases. As the user load increases,
resource utilization and throughput increase similarly until the resource utilization becomes
saturated. At this point throughput decreases, and the response time increase becomes notice-
able to the end user. The application then enters the buckle zone, a state where application
performance “buckles” and response time increases exponentially, and all hope is lost for
your users.

1. Resource saturated

2. Throughput falling
A / /

Light Load
Heavy Load

Utilization (U)

-

3. End users affected

—— Throughput (X)
— Response Time (R)

Buckle Zone

A
>
Number of Concurrent Users (Load)

Figure 1-5. Resource utilization, application server throughput, and end-user response time as
user load increases

CHAPTER 1 AN INTRODUCTION TO APPLICATION PERFORMANCE MANAGEMENT

You need to use a capacity assessment to understand how the application will react to
changing usage patterns in the current deployment topology, how much buffer you have
before you miss SLAs, and when your application will completely fail. With this information
you can make decisions about the application server topology, and if need be, add additional
hardware to put yourself into a comfort zone.

APM in Production

After an application is deployed to production, the real fun begins. You need to monitor your
environment to ensure that end users are following projected usage patterns: performance
tuning is only valuable if it was performed against load that reflects real-world usage patterns.
If users are not using your application as expected, then you need to mimic their behavior in a
preproduction environment, perform a new performance tuning exercise, and execute a new
capacity assessment. Predicting exactly what your users will do and how they will use your
application before you present it to them is impossible, but detailed analysis of use cases can
increase your predictions’ accuracy.

For example, a large automotive company once experienced memory leaks in production
that could not be reproduced in preproduction. They thought that the load tests accurately
reflected user behavior, but mistakenly expected their users to log out of their application when
they were finished. In actuality, most users closed their Web browsers, which left the application in
a waiting state. The application was forced to maintain user session information for several
hours before discarding it, whereas if the users had logged out appropriately, then sessions
would have been discarded and memory would have been immediately reclaimed. The company’s
presuppositions were reasonable, but end user behavior caused the company to reboot their
servers every two days. Knowing your users is vital to the success of all projects.

In addition to monitoring user behavior, you need keep an eye on all aspects of application
resource utilization, as well as capture accurate end-user response times. You need to determine
whether users are in fact receiving the end-user experience that you projected in preproduction or
not. Application server resource utilization assessments help warn of impending performance
issues and can offer time to take proactive steps to avoid them.

Finally, historical data recorded from application usage and user behavior can aid in trend
analysis and forecasting application server topology and configuration changes. Trend analysis
and forecasting with identified trends is an art in and of itself, therefore Chapter 12 is dedicated
to guidelines you can apply to such efforts.

The Role of the Java EE System Administrator

Because databases are complex pieces of software the role of the database administrator (DBA)
emerged to manage them. Java EE environments are similarly complex, and the Java EE system
administrator role is slowly evolving to manage them. In large corporations, we already see
specific jobs serving this responsibility, with titles such as WebLogic administrator and
WebSphere administrator, and in small corporations we see people serving this role in addition
to other responsibilities (usually either application architecture and development or system
administration). In the coming years, though, expect to see this role become more and more
prevalent as applications become more complex and less manageable.

DBAs have a distinct set of job responsibilities, and so should Java EE system administra-
tors, but few have taken the opportunity to formally list those responsibilities. The following

19

20

CHAPTER 1 AN INTRODUCTION TO APPLICATION PERFORMANCE MANAGEMENT

section describes the basic set of job responsibilities that should be expected of a formal Java
EE system administrator.

Application Server Topology Configuration

Before installing and configuring an application server instance, the Java EE system adminis-
trator needs to work with various stakeholders to plan the application server topology. The
topology considerations include the decision to implement clustering, the number of physical
servers to configure, and the number of logical servers to install per physical server.

Application servers can be clustered together to enable multiple servers to behave as one
large server. The user load is distributed across the servers within a cluster, so the application
can service more users. Clustering can come in one of two forms: horizontal clustering and
vertical clustering. Horizontal clusteringrefers to using multiple physical machinesin a cluster
to service user requests, while vertical clustering refers to using multiple application server
instances on a single machine to service user requests. Most clusters can benefit from both
types of clustering, because horizontal clustering ensures hardware failover, and vertical clus-
tering enables JVMs to better use operating system resources.

Then too, multiple application server instances can function as a group outside the context of
a cluster. The choice to implement a cluster must follow a logical argument, because although
clusters offer benefits such as failover, they incur additional overhead above using individual
application server instances. Specific business requirements help you make the determination
of whether or not to implement clustering. Chapter 8 looks deeply into the issues surrounding
clustering and presents guidelines to help you implement the optimal configuration.

Application Server Tuning

In order to service high volumes of user requests in disparate applications, application servers
maintain a large number of moving parts to configure their behavior. For example, user requests
are sent to an application server through a listening socket and placed in a queue awaiting
processing. Each queue is assigned a thread pool that removes the request from the queue and
assigns it to a thread for processing. During its processing it may access a stateless session bean
(thatis maintained in a pool) that references an entity bean (that is maintained in a cache) that
reads a database (through a JDBC connection pool). Each of the aforementioned infrastructure
components is configurable: the size of the thread pool, the size of the bean pool, the size of the
cache, and the number of connections in the JDBC connection pool.

The optimal configuration for an application server is dependent on its applications and
associated usage patterns. Only by tuning an application server with a load tester generating
balanced and representative user requests can you have any confidence that the application
will perform adequately. Tuning to representative user requests means that the simulated user
requests must reflect actual user behavior and tuning to balanced user requests means that the
simulated user requests are executed in the appropriate percentages in relation to one another.

Application server tuning is not limited to application server resource configuration, but
also includes the JVM. The dynamic nature of the JVM and its memory management support,
which utilizes different garbage collection algorithms, means that the JVM must be tuned
specifically to the applications running in the application server. Chapter 7 extensively discusses
tuning memory, one of the biggest causes of performance problems in Java EE applications.
Many times performance problems caused by application architectural deficiencies can be

CHAPTER 1 AN INTRODUCTION TO APPLICATION PERFORMANCE MANAGEMENT 21

masked by tuning the JVM; the architectural issues continue to exist, but the JVM heap config-
uration can hide them long enough for the application architecture to be refactored.

Application server tuning is difficult in a single application server instance and the intro-
duction of additional vertical instances (clustered or not) further complicates the issue. The
Java EE system administrator needs expert knowledge of the internal behavior of the application
server and JVM in order to be successful; a superficial knowledge will inevitably lead to problems.
Chapter 7 provides a conceptual overview of the various moving parts in a Java EE 5—compliant
application server that you need to apply to your specific application server.

Application Deployment

Application deployment can be as simple as deploying a Web archive (WAR) file or Enterprise
archive (EAR) file to an application server, but in large-scale environments it usually involves
configuring application resources and potentially altering the application server environment
to support the new components. From a resource perspective, new application components
may require any of the following:

¢ A database connection pool and associated data source
* AJava Message Service (JMS) server and associated topics and/or queues
¢ An external Java Connector Architecture (JCA) connection pool

And to support increased load and application footprint, the Java EE system administrator
may need to modify the application server configuration settings. For example, the heap may
need additional memory capacity or repartitioning and thread pools sizes may need to be
increased to manage the additional application overhead.

Most people view application deployment as simply walking through a set of wizard pages
to deploy an application, but the formal responsibilities of the Java EE system administrator
are to configure the environment to support the components and to assess and mitigate the
impact of deploying the new component to the environment. In some cases these responsibilities
may require the creation of new application server instances, additional hardware, or a combi-
nation of the two.

Application Production Integration

In addition to configuring an application to run in your environment and ensuring that it is
given the required resources, you must assess the impact of integrating that application into
the environment. I have seen successful customer environments where the integration of a
new component followed a formal procedure that required automated performance testing
to measure this impact, and I have seen unfortunate customer environments where essentially
untested code was pushed out to a live production environment. In one case, a multi-billion-
dollar company’s complete business-to-consumer Web site was brought to its knees by a faulty
outsourced Flash game.

Asyou embrace a full APM methodology in your organization by integrating SLAs into use
cases, requiring developers to implement performance-based unit tests, and requiring QA
to uphold performance success criteria and execute performance load tests, why would you
choose to deploy a piece of code that has not been held to similar standards? As the Java EE
system administrator, you own this environment and you make the rules (within reason,

22

CHAPTER 1 AN INTRODUCTION TO APPLICATION PERFORMANCE MANAGEMENT

of course). Would a DBA let you add unauthorized tables, indexes, and stored procedures to
the databases without evaluating them? Not a chance, so why should your standards be any
lower?

The cost in adopting this firm stance is a longer release time for new code, but it is
balanced against a greater assurance of success. Earlier in this chapter when we identified the
cost of failure for a poorly performing application, we saw very clearly that whether the appli-
cation is internal, business-to-consumer, or business-to-business, the cost can be quantified
and in some cases can cost a company its livelihood. As a professional in your position, you do
not want to be responsible for this loss and must take every precaution to avoid it.

Capacity and Scalability Assessment

Recall our brief discussion of capacity assessment, and its representation in Figure 1-5 earlier
in the chapter. The Java EE system administrator must understand and interpret the results
of the capacity assessment. QA assurance teams may facilitate the load test, but the Java EE
system administrator assigns the results business values.

Performance is not the same as scalability, and this distinction will be explored in great
depth in Chapter 9. In brief, consider the key differentiator between performance and scalability
to be that while performance describes the speed with which a single request can be executed,
scalability describes the ability of a request to be executed quickly under an increasing load.
More specifically, performance is a measure of the capabilities of your system; scalability is of
the capacity of your application. In the development life cycle, we work hard to ensure perfor-
mance and build our solution so that we can then enable and test for scalability. In a scalability
test, we execute performance-based load tests against a sample deployment environment
using balanced and user-representative use cases. The goal is to assess the capacity of a single
application server instance and then measure the capacity of the environment to tell us how
thatapplication scales as new application server instances are added into the environment. We will
use this information later when we delve into trend analysis, forecasting, and capacity planning.

If for any reason an application cannot be deployed to multiple application server instances
or to a cluster, then the application has serious architectural issues that need to be resolved or
the application cannot ensure high availability, nor can it service significant load. A developer
once asked me if he should use stateless session beans to implement his business logic or stan-
dard Java classes. He questioned the need for stateless session beans, which offer transactional
support and an EJB container-managed pooling mechanism to help ensure reliability and
scalability. He did not require the transactional support, and he could easily attain the pooling
mechanism from a third party (such as the Apache Jakarta Commons Pool). Although he did
not need the transactional support, I advised him to implement his solution using stateless
session beans and configure them to ignore transactions because it would make his solution
more scalable. At some point in the future, he may need to support transactions and ensure
transactional integrity across a multitude of Java EE objects and services running on multiple
application server instances, and his standard Java objects would be no help.

Trending, Forecasting, and Capacity Planning

Trending, forecasting, and capacity planning are often confused. Trending, or trend analysis,
involves analyzing historical data looking for predictive patterns. Forecastingtakes these trends

CHAPTER 1 AN INTRODUCTION TO APPLICATION PERFORMANCE MANAGEMENT

and projects futures with them. Finally, capacity planning reads forecasts and builds an infra-
structure that can support what they report. Chapter 12 delves deeply into these topics, but this
section provides a 10,000-foot overview of the roles.

Trend analysis can be applied to a wide variety of enterprise application facets, but it is
applied most commonly to usage patterns, end-user response times, and various resources to
be utilized, such as CPU, memory, thread pools, JDBC connection pools, caches, and pools.
Regardless of the metric being analyzed, we are interested in the following:

¢ Achange in usage, either increasing or decreasing

¢ The rate of that change, such as the slope of linear change or the degree of an
exponential one

¢ Trend correlation—that is, whether different trends are changing in a similar pattern

Once trends have been identified, the next step is to interpret them, in light of current user
and resource behavior, using capacity assessments to establish forecasts projecting when
resources will become saturated and cause end-user response times to exceed SLAs. The
presupposition is that trends will continue to follow their identified patterns, so care must be
taken to ensure that forecasts are valid.

Another core component to creating accurate forecasts is routinely interviewing the appli-
cation’s business owners to uncover any auxiliary factors that may disrupt current trends. For
example, the marketing team may run a promotion that puts a link to your application on
America Online’s (AOL) login screen. They are thinking about increased corporate awareness
and might neglect to think about the impact it could have on the application itself. If you have
not had the pleasure of watching usage patterns when receiving AOL login page traffic, let me
assure you that it is not for the squeamish. Previously I experienced this while watching at
ten-second samples as the user load increased at literally a near-exponential rate: 10 users,
20 users, 50 users, 200 users, 500 users, and so on. Without being aware of this change in usage
pattern and preparing for it, your entire Java EE environment may be compromised.

Finally, these forecasts directly feed into capacity planning, because forecasts reveal when
resources will become saturated and SLAs will be missed, and your job is to plan your environ-
ment to maintain your SLAs. Capacity planning utilizes capacity and scalability assessments to
estimate the hardware and application server deployment and configuration requirements
necessary to meet your SLAs. To satisfy the AOL scenario, we might increase both the vertical
and horizontal scaling of the application to ensure we are maximizing hardware use and have
enough hardware to support the load.

Application Production Troubleshooting and Triaging

Chapter 11 explores a formal production support methodology, but, at this point, simply know
that the role of the Java EE system administrator is vital to troubleshooting production issues.
When a production issue occurs, the first step is to triage the problem to identify the subgroups
within an organization that own the problem. Triagingis the process of identifying the compo-
nent within an enterprise application (such as the application code, application server, database,
Web server, or legacy system) responsible for the issue. Competent triaging is essential to efficiently
resolving production issues.

23

24

CHAPTER 1 AN INTRODUCTION TO APPLICATION PERFORMANCE MANAGEMENT

In your organization today, how do you resolve production issues? For example, if your
application were suddenly not meeting its SLAs, what would you do? For many corporations,
the problem diagnosis phase involves all parties sitting in a room pointing fingers at one another.
This company’s process would be to bring together the application technical owners, the DBAs,
the lead QA representative, the customer support team members who received notification
of the problem, the development managers, and sometimes the CTO or CIO to brainstorm theories
about the problem’s location. This meeting recurs until the issue is resolved.

The proper way to diagnose the problem is to have a set of robust tools monitoring your
entire application stack (Web server, application server, application code, database, legacy
system) that identifies the offending component(s) for you. This way, if the problem is in the
application server, the DBAs do not need to be involved, or if the problem is in the database,
then the development team does not need to be involved. Implementing such as solution
results in a faster resolution cycle and increased productivity throughout your organization,
because only necessary parties are required to troubleshoot the problem.

Ifthe problem lies inside the application server or the application itself, the Java EE system
administrator becomes engaged to troubleshoot the problem. With a command of the Java EE
environment and tools that lend insight into the environment, the Java EE system administrator
can quickly identify whether the issue is an application server resource issue, a load issue, or an
application performance issue. In other words, the Java EE system administrator is responsible
for triaging issues within the Java EE tier.

Summary

Most Java EE applications fail to meet their performance requirements. Regardless of the type
of application (internal, business-to-consumer, or business-to-business), the impact of poor
performance is quantifiable in the areas of corporate productivity, credibility, and revenue.
Java EE environments are difficult to tune because of both inherent architectural complexity,
such as the distributed layered execution model of application servers, and a lack of true Java
EE expertise.

In order to mitigate production performance issues, you need to first understand the
meaning of performance and how to measure it and then adopt an Application Performance
Management (APM) methodology that spans the entire development life cycle. Only through
extensive planning and forethought do you have any chance of being part of the 20 percent of
Java EE applications that meet their performance requirements.

Looking back to our friend John at Acme Financial Services, we can see that he and his
team performed diligent functional testing but neglected performance testing until it was too
late. Furthermore, the performance testing that they did perform did not represent real-world
usage patterns and thus was performed in vain. Had John embraced APM, he would be
enjoying the weekend with his family but, rather, he needed to call in someone skilled in Java
EE performance tuning and troubleshooting to analyze and refactor his architecture. John and
Acme Financial Services are fictional, but unfortunately the problems they experienced are
real and representative of what happens in development organizations across the country.

CHAPTER 2

Quantifying Performance

John got out of his car in the Acme Financial Services parking lot and rubbed his forehead.

“Tjust don’t know how this could have happened,” he said to himself in disgust. At 5:05 on
a Sunday morning he was at work. The morning fog hadn’t cleared yet, and he could still see his
breath. What a start to the day!

Paul met John at the door and took him back to the war room, where he found every DBA,
architect, network operations specialist, and QA person who could be mustered out of bed at
this early hour.

“Okay, we need to get to the bottom of this problem fast. Take a look at each of your
components, and let’s meet back here in fifteen minutes. I want to know what’s happening in
the database, in the application server, and on the network. I want answers, and I want them
now!” John walked out of the room with Paul at his heels and headed straight for his office.

“The best place to start looking is the application server,” Paul said uncomfortably as he
saw John'’s forehead wrinkle. “We can turn on monitoring and see what it tells us.”

“Do it,” John said, his mind preoccupied with the call he was going to have to make to the
CEO. The CEO was going to have to do some damage control while the team brought the systems
back up; he would not be happy about this.

When John hung up the phone, his ears still ringing from one of the most unpleasant
conversations of his career, he saw Paul standing at the door, sweat starting to run down his
forehead.

“John, I turned on the monitoring and now the servers are crashing before I can get to the
monitoring screens to see anything! What should I do? I can’t even turn it off!”

Defining Performance

In Chapter 1, we discovered that performance means different things to different stakeholders.
However, to cultivate a discussion about the subject, we need to narrow our focus and outline
definitive metrics that we will collectively refer to as performance. Focusing specifically on Java
EE, including applications and application servers, the most common and relevant performance
metrics are end-user response time, request throughput, resource utilization, and application
availability. This section explores the rationale behind why we include each metric into our
overall picture of application performance.

25

26

CHAPTER 2 QUANTIFYING PERFORMANCE

End-User Response Time

End-user response time defines the core of the end-user experience, so although other perfor-
mance metrics are important, this one is the most evident. A slow response time can cause
losses to your customer base in a business-to-consumer application, losses to productivity in
an internal application, and losses to your credibility and potentially your entire relationship in
a business-to-business application. Even a relatively small number of long response times
makes a bigger impression on your users than many shorter ones. According to Arnold Allen,
“The perceived value of the average response time is not the average, but the ninetieth percen-
tile value: the value that is greater than 90 percent of all observed response times.”! The other
performance criteria that we will discuss are measured and balanced to ensure that our end-
user response times remain acceptable under changing conditions.

We can measure end-user response time in a two ways: active monitoring through synthetic
transactions and passive monitoring.

A synthetic transaction consists of a series of service requests representing a unit of busi-
ness functionality that is executed against your environment over a regular time interval. The
response times of synthetic transactions are recorded for two purposes: trending and alerting.

Synthetic transaction trend analysis provides insight into the impact on end users as a
result of other performance trends, hopefully before those users are impacted. You may see
thread pool usage and memory usage trending upward, and while those trends need to be
addressed, the paramount concern is whether your end users are being affected by the upward
trend. Synthetic transactions also act as the perfect catalyst for triggering alerts. Monitoring
systems analyze the response time of a synthetic transaction against a predefined service level
agreement (SLA) and alert the system administrator if it is exceeded. Alerts can be simple noti-
fications, such as an e-mail or a page, or they can trigger a deeper diagnostic component to
gather additional and more expensive diagnostic information.

In large-scale applications, synthetic transactions are played from multiple geographical
locations throughout the world. The purpose is to gain an understanding of the end-user response
time along various Internet pathways. In some cases, when a corporation has applications
hosted at multiple physical sites, traffic can be redirected as a result of a slow pathway.

Synthetic transactions are referred to as active monitoring, because they actively engage
the application; another valuable mechanism to measure end-user response time is passive
monitoring. Passive monitoring watches or samples real-time requests as they occur in the
enterprise environment. As a result, they provide a much better overall picture of the end-user
response time, and we can compute metrics to give us even better data. For example, from a
pool of 20 requests that occur within a minute we can compute the mean, minimum,
maximum, standard deviation, and variance. While small changes that may pass by unnoticed
may not necessarily affect the mean, they can drastically affect the standard deviation—this
could result in awful end-user response time for a percentage of users that we would otherwise
never know about.

Request Throughput

Throughput defines the number of things we can accomplish in a time period. In Java EE
terms, we typically define request throughput as the number of requests we can service in a

1. Arnold O. Allen, Introduction to Computer Performance Analysis with Mathematica (San Diego, CA:
Academic Press, 1994).

CHAPTER 2 QUANTIFYING PERFORMANCE

second. Our goal is to maximize our request throughput and measure it against the number of
simultaneous requests we receive. A high request throughput means that we are quickly and
efficiently servicing requests, and it reflects a quick response time. A high request throughput
also highlights the overall efficiency of the application itself.

Resource Utilization

In addition to the health of our application response times and the measure of work our appli-
cation can accomplish, another important aspect of our application server performance is the
utilization of its resources. Resources are services that support or facilitate applications and
include the following:

¢ The heap

¢ Thread pools

* JDBC connection pools
* Caches

* Pools

¢ JMS servers

¢ JCA connection pools

This list is ordered by relative importance, according to my observations in my tuning
efforts, considering both impact and problematic frequency.

The first resource to analyze is the heap. We are interested in the heap usage as well as the
rate, duration, and pause time of garbage collections. Considering that your entire application
runs inside the heap, a misconfigured heap can result in degraded performance regardless of
how well the application code is written and the application server is configured. One of the
most compelling features that draws developers to Java is its automatic memory management.
Java memory management is facilitated by a garbage collection process that tracks down deref-
erenced objects and frees them on your behalf. This feature is both a blessing and a curse—a
blessing because C++-style memory leaks are eliminated, and a curse because manual memory
management is not an option. The garbage collector is the only mechanism through which
memory is reclaimed. As a result, a considerable amount of time has been spent by JVM
vendors optimizing garbage collection algorithms, and at present, a host of differing imple-
mentations are available. Each different implementation, vendor, and algorithm requires its
own set of fine-tuning configuration parameters that you need to be familiar with. Unfortunately,
when the heap manages long-lived objects, the only way to clean up their memory is through
a stop-the-world garbage collection. During a stop-the-world garbage collection, all execution
threads in the JVM are frozen until the garbage collection completes. Chapter 7 takes an in-
depth look at heap tuning, but it suffices to say that anytime the JVM is frozen, the impact is
severe and all other tuning options are not effective at that point.

When an application server receives a user request, it places it into a request queue. That
request queue is serviced by a thread pool, which removes the request from the queue and
processes it. The utilization and performance of that thread pool can have a significant impact
on the performance of the application. If the utilization is consistently low, then the thread pool
is taking system resources away from the application server that could be better used elsewhere.

27

28

CHAPTER 2 QUANTIFYING PERFORMANCE

On the other hand, if the thread pool is overused, meaning that its utilization is above 85
percent with pending requests possibly waiting in the queue, the application throughput is
compromised. In order for your application to accomplish a unit of work, it needs a thread, so
effective thread pool utilization is very important to your application. No available threads
equates to no work.

Another key resource to consider is the JDBC connection pool. Most applications are
backed by a database, or at some point interact with one. All database interactions are funneled
through a database connection pool. A request that resolves in a database query must first
obtain a connection from the connection pool before it can execute its query. If the connection
pool does not have any available connections, then the request must wait for a connection to
be returned to the pool before proceeding. This wait time can have a significant impact on the
overall response time of the service request.

A strategy to reduce the number of calls, and hence network trips, to a database is to serve
requested data from a memory-resident cache. Serving content from memory will always be
faster than a network call to a database, but the infrastructure required to manage the cache
must be carefully configured. Consider that caches, by nature, must be of a finite size; an unre-
stricted cache could quickly deplete the heap of memory and crash the application server.
Because the number of entries is finite, a request for a noncached entry made against a full cache
requires the removal of an existing object from the cache to make room for the newly requested
object. In Java EE terms, objects are removed from a cache and persisted to a database through
aprocess called passivation. New objects are loaded from the database and placed into a cache
through a process called activation. Excess occurrences of activations and passivations result
in a condition called thrashing. When a cache is thrashing, it spends more time managing
cached data than serving data and hence loses all of its benefit. Therefore, cache utilization,
activation, and passivation rates greatly impact performance.

Stateless resources are stored in pools. When a process needs a pooled resource, it obtains
aresource instance from the pool, uses it, and then returns it back to the pool. Subsequent utili-
zation of a pooled resource does not necessitate the same instance but, rather, any instance from
the pool. Stateless resources naturally lend themselves to pooling and high-performance utili-
zation. Stateless resources become application bottlenecks only when the pool is sized too
small. Pooling resources well involves balancing the amount of memory required to maintain
the resource instances against maintaining enough resource instances to satisfy application
requests. Therefore, pool overutilizations can introduce wait points into request processing
and dramatically affect the performance of your applications.

Applications that make use of messaging, either to support communication with legacy
systems such as mainframes or to provide asynchronous processing, typically interact with
JMS servers. JMS servers define various destinations in the form of topics and queues that
applications interact through, and depending on the implementation, they can define constraints
about the maximum number of messages and/or bytes allowed in the server at any given time.
If the JMS server is full, then attempts to add new messages to the server will fail. This failure
results in either a total service request failure or a performance bottleneck, as the application
retries until it is successful or finds another JMS server. Regardless, the utilization of JMS servers
is an important performance metric to monitor for applications that use these servers.

Java Connection Architecture (JCA) connection pools are similar to database connection
pools, with the difference being the destination that the connection interacts with: database
connections interact with a database, while JCA connections interact with any system that
supports the JCA specification. Most practical applications of JCA connections are to communicate

CHAPTER 2 QUANTIFYING PERFORMANCE

with legacy systems that have exposed their functionality using the Java Connection Architec-
ture. For applications that use JCA connections, the utilization of JCA connection pools
becomes another potential application bottleneck.

Application Availability

The final measure of application performance that I'll discuss is application availability.
Availability refers to the running and accessible states of an application in the wake of compo-
nent failures in the system. High availability refers to an application that is available when it is
supposed to be available a high percentage of the time. Obviously if an application is not available,
then its performance is compromised. In order to satisfy performance requirements, an SLA
usually states the percentage of time that an application must be available. And depending on
the nature of your business, violating this SLA may have financial repercussions.

Before Quantifying Performance Requirements

Performance requirements are quantified through service level agreements. SLAs are not defined
arbitrarily but, rather, systematically after a deep problem analysis by key stakeholders.

SLA Stakeholders

The stakeholders required to define an SLA are the application business owner and the appli-
cation technical owner. The application business owner, who is sometimes the application
product manager, analyzes the business cases and brings customer requirements to the SLA.
The application business owner therefore ensures that, aslong as the SLA is satisfied, customer
needs will also be satisfied. The application technical owner, who is sometimes the application
architect, analyzes the technical requirements necessary to solve the use case and ensures the
feasibility of the SLA. The technical business owner therefore ensures that the service level is
attainable.

Not involving both parties when defining an SLA is dangerous. If the SLA isleft solely in the
hands of the application technical owner, then the end users’ needs may not be satisfied. On
the other hand, if the SLA is left in the hands of only the application business owner, the SLA
might not be attainable. Consider the SLA for a database search against a projected 100 million
rows. The application business owner may try to define a subsecond SLA to satisfy his end
users, but the application technical owner realizes the complexity of the query and may propose
aseven-second response time to give his team some breathing room. In the end, they will likely
compromise on a five-second SLA. End users who want this functionality as defined must
accept a five-second response time, and the development team must spend additional time
optimizing the query, all in the spirit of enhancing the end-user experience.

SLA Properties
An effective SLA exhibits three key properties:

* Specificity
¢ Flexibility

29

30

CHAPTER 2 QUANTIFYING PERFORMANCE

¢ Realism

An effective SLA must include specific values. Stating that a use case must complete in
about 5 seconds is not definitive and hence is difficult to verify; 5.25 seconds is about 5 seconds.
The use case analyses performed by the application business owner and the application tech-
nical owner yield a specific value for a reason—the application business owner preserves the
requirements of the end user, while the application technical owner ensures that the SLA is
attainable. When these two application representatives arrive at a specific value, it should be
used, because it is a definitive value that QA teams can test before moving the application to
production. Then, when the application is in production, a definitive SLA value provides alert
criteria for both active and passive monitoring. Furthermore, the use case documents the envi-
ronmental profiles for which the SLA should be valid, including expected user load, the nature
of data that changes hands during the use case, the number of objects and their sizes, and
acceptable degradation for extreme deviations from the expected profile.

An effective SLA must also be flexible in the context of its distributed variance. The use
case must adhere to the specific SLA value for a predefined percentage of time, allowing for a
measurable degree of flexibility in anticipation of unexpected conditions. For example, consider
the popular search engine that you use on a daily basis. When you execute a search, would you
consider it acceptable if your results were presented in less than two seconds 95 percent of the
time? Are you willing to accept a seven-second response time on 1 out of every 20 searches you
perform? Most users find this level of variance acceptable. Now, if 10 out of 20 searches returned
your results in seven seconds, then there is a good chance that you would change search engines.
But the level of flexibility must be restrained, because no matter how much you love your
search engine, after ten seconds of unresponsiveness you will leave.

Not only must an SLA be specific, yet flexible, but it must also be realistic. Requiring the
SLA to be defined by both the application business owner and the application technical owner
ensures that it will be realistic. I mention realism specifically as a key property of an effective
use case, because frequently SLAs are defined solely by the application business owner without
the opinion of the application technical owner. When the technical team receives the perfor-
mance requirements, they simply ignore them. Having an unrealistic SLA is probably worse
than not having one in the first place.

Measuring Performance

Performance is measured by first acquiring performance data and then interpreting the data.
Acquiring data is the technical aspect that can be learned by reading through application server
documentation. Interpreting data is more of an art than a science that can be learned only
through detailed instruction, experience, or a combination of both.

But before we dive into how to acquire data, you first need to know what data you want to
acquire. In order to form a complete picture of the application’s health, you need to capture
the following metrics:

* Application performance
* Application server performance
* Platform

» External dependency

CHAPTER 2 QUANTIFYING PERFORMANCE

You need to gather information not only about the application itself, but also about the
infrastructure that supports it, the platform that it runs on, and any external dependencies that
it interacts with. This is a result of Java EE applications running inside a layered execution
model, as discussed in Chapter 1.

Acquiring Data
Performance data can be acquired in several ways:
e Public APIs
e Proprietary APIs
¢ Code instrumentation
* System APIs and tools

In the past, obtaining performance data was considered something of a black art, but the
monitoring and management industry has evolved to the point where the task is primarily
mechanical today. Most application server vendors have embraced the Java Management
Extensions JMX) interface to expose programmatic monitoring and management functionality.
Chapter 3 delves into the specifics of interacting with an application server using JMX, but for
the purposes of this discussion, the benefit to using this standard is that monitoring applications
are able to extract performance information using the same code across application servers.

You may be using an older version of an application server or one that is late to adopt JMX.
In that case, a proprietary interface most likely obtains performance data. For example, IBM
WebSphere has always built its monitoring and management capabilities on top of its Perfor-
mance Monitoring Infrastructure (PMI). In version 4.x, IBM provided a set of tools and APIs
that allowed access to this data, but in version 5.x and later, a JMX interface into the PMI data
is provided.

To discover information that is not available through a public or proprietary API, such as
method-level response times or detailed SQL tracing, the solution is to use code instrumentation.
Code instrumentation comes in two forms: custom and automatic.

Custom code instrumentation is performance monitoring code inserted by the developer.
The benefit to using custom code instrumentation is that you can extract the exact data that
you are interested in and present it in the format of your choice.

Automatic instrumentation is performance monitoring code inserted by a tool. The bene-
fits to using a tool to instrument your applications are as follows:

¢ Source code files are not convoluted by monitoring code.

¢ The tool can instrument the entire application; doing so by hand is a tedious task (and
computers are good for performing tedious tasks).

¢ The code is scalable up and down. You can change the amount of the data you are
gathering at run time.

¢ Bytecode instrumentation is better optimized than Java code. Java code compares to
bytecode somewhat analogously to the way high-level languages like C/C++ compare to
assembly language code: if the assembly code is written in assembly and not as C code
compiled to assembly, then the code is better optimized.

31

32

CHAPTER 2 QUANTIFYING PERFORMANCE

* Information is maintained and collated in a central repository.

* Most tools provide an intuitive user interface to present performance data and allow for
deeper analysis than homegrown solutions.

¢ Advanced tools can rebuild an entire request that spans multiple JVMs and provide
method-level call stacklike information.

My know-how derives from both backgrounds: prior to designing performance monitoring
software, I implemented my own custom instrumentation. At that time, my custom instrumen-
tation solution, which may be similar to something that you have done in the past, was self-limiting
in scope—I recorded the response times and invocation counts of major business events. If
something slowed down, then diagnosing the problem was my responsibility, but at least I could
isolate a call path. Though I could have used a more robust solution, creating monitoring tools
was not my job responsibility; developing code was. When I moved into the monitoring industry,
I'was elated, because then I was able to spend all of my time analyzing performance metrics
and designing performance monitoring software. And to make the dream job complete, I was
not responsible for implementing the solution but, rather, analyzing the problem domain
while very skilled teams of software developers reaped the fruit of my analysis for me.

The final domain from which we acquire data is the set of metrics outside the context of
the Java EE application and application server. This includes operating system metrics such as
CPU usage, physical memory usage, network traffic, and disk I/0, and external dependencies
such as databases and legacy systems. The distributed layered execution model buys us significant
scalability, but as our environment scales, the complexity increases exponentially. Operating
systems provide their own set of tools and system APIs that can be tapped to gather this perfor-
mance information. Providing information about databases and legacy systems is beyond the
scope of this book, but be aware that most databases and legacy systems provide a mechanism
or API from which to obtain this data.

Interpreting Data

Data is not knowledge; rather, data applied to a model yields knowledge. Consider what a
meteorologist must understand to interpret weather conditions. Taken independently, current
temperature, barometric pressure, and humidity data reveal very little about weather conditions,
but understanding that a temperature of 82°F, a barometric pressure of 101.5 kPa, and 100 percent
humidity mean that we can expect a thunderstorm is knowledge. The meteorologist applies
each of these metrics to a model that has been developed to represent weather conditions.
When the metrics fall into specific ranges at the same time, they can be interpreted to provide
knowledge.

Note Data is not knowledge, and knowledge is not wisdom. Specific temperature, barometric pressure,
and humidity values give you the knowledge that a thunderstorm is coming, but wisdom tells you not to go
out and play golf. Interpreting data against a model will give you knowledge, but only experience of how to
apply that knowledge to benefit your environment will give you wisdom.

CHAPTER 2 QUANTIFYING PERFORMANCE 33

In order to properly interpret the data that we have acquired, in the context of a Java EE
application, we need to define a model that represents our Java EE environment. We measure
three basic metric categories at various stages in Java EE request processing:

* Response time

e Throughput

¢ Resource utilization

Figure 2-1 displays the interrelationships between resource utilization, request throughput,

and request response time as user load increases.

1. Resource saturated

2. Throughput falling
A / /

Light Load
Heavy Load

Utilization (U)

-

3. End users affected

— Throughput (X)
— Response Time (R)

Buckle Zone

N
7

Number of Concurrent Users (Load)

Figure 2-1. The relationships between response time, throughput, and resource utilization

The behavior of each of the relationships depicted in Figure 2-1 can be characterized
as follows:

¢ The resource utilization increases with user load, because the system is being asked to
do more. More users require more memory and more CPU power. This increase follows
anatural and healthy progression, but the system eventually reaches a point where
resources become saturated. For example, if the system is trying to process more requests
than it is capable of handling, then the CPU will spend more time switching between
thread contexts than actually processing the request.

* Throughput also increases as user load increases, because more users are asking the
system to do more, and as a natural result it does more. But when the load causes
resources to become saturated, then the system spends more time managing itself (such
as in the CPU context switching example) than processing requests. When this saturation
point is reached, the throughput beings to decline.

34

CHAPTER 2 QUANTIFYING PERFORMANCE

* Response time gradually increases with user load, too, because of the additional resource
strain that the increased user load adds to the system. As resources become saturated,
the throughput decreases (the system actually accomplishes less than it did with a lesser
load). When that system is subjected to an even greater load, then the additional load
backs up, and response time starts increasing at an exponential rate.

The model displayed in Figure 2-2 traces a request from the external request handling
services through each application and application server component. When a request is received,
itis added to a request queue. Each request queue has an associated thread pool from which a
thread is assigned to process the request. The request passes through the application compo-
nents, including servlets, JSPs, and E]JBs, and interacts with application server resources. All of
these components are running inside a JVM that runs in an operating system on hardware.

At each point in this call path, we want to measure and record specific information:

* Request handling: The external user response time and the request throughput

Execution management: The utilization of thread pools and number of requests that
back up in request queues

* Applications: The response times of each component and, when necessary, of each method

¢ Services: The response times and utilization of services to know both how well the JDBC
connection pool is being used and how long database requests take to execute

e Operating system/hardware: The utilizations of operating system resources

Request Execution Applications Services
N Handling Management o o ' ’U\)
P
=1 |(Requests * @ »
0)

JUM
Memory Network
U >

Figure 2-2. This Java EE model groups functionality into logical categories. At each point in the
model we record the measurement criteria as Response Time (R), Throughput (X), or Resource
Utilization (U).

We employ various mechanisms to gather data and each piece of data that we then interpret
in light of our Java EE application model. Finally, we correlate related metrics and define rules
that expose knowledge. Chapter 3 devotes an entire section to analyzing metrics.

CHAPTER 2 QUANTIFYING PERFORMANCE

Costs of Measuring Performance

Performance monitoring is rarely free. The more you want to know, the more expensive the
knowledge is to obtain. Spending time identifying the exact data that we are interested in can
minimize the cost impact of our monitoring. Most application servers can report more or less
data, depending on your requirements; this is typically configured through the application
server’s administration console. Many of your decisions about how to configure the reporting
level of your application server should be based on the volatility of your application. For example,
if your application is relatively new and prone to change, then you want to capture more infor-
mation, so you have enough data to diagnose problems. More mature and stable applications
can be less prone to problems and require less monitoring.

But before you make any decisions about how to configure the monitoring level of your
production applications, you need to quantify the cost in your preproduction environment.
Monitoring overhead is variable, because each application is different, with different applica-
tion server resources, and a different number of classes and methods. Therefore, a blanket
statement that a particular level of monitoring incurs too much overhead is unfounded until a
formal measurement has been made. I have seen environments where enabling all possible
monitoring options has had virtually no observable effect on the application and others where
enabling even minimal monitoring options has pushed the application over the top.

Luckily, you can quantify the impact of monitoring your environment using the aforemen-
tioned measurements of response time, throughput, and resource utilization. Most monitoring
vendors take a very unscientific approach to calculating the impact of their monitoring solu-
tions and do not account for real-world applications in their estimations. I hold to the statistics
dictum: if you torture the data long enough, it will confess to anything. I like numbers that I
can verify.

Note Observing a system without affecting it is impossible, because the very act of observing the system
introduces some level of overhead. The best solution is to observe the system at the least expensive level that
offers enough data from which to assess a baseline. Then adjust monitoring parameters and calculate the
difference between the baseline and the new settings—this is your measurable impact. This need to monitor
the system before you can assess the impact of your monitoring is something of a paradox—it’s not quite as
dramatic a paradox as Schrodinger’s cat, but it's worthy of mention nonetheless.

The biggest mistake individuals make when computing overhead is not accounting for
changes in application server usage. For example, consider assessing the CPU overhead for
enabling high-level monitoring across the entire application server. If no users are running
through the application, then there is no overhead; with 10 users, the overhead is minimal; but
with 1,000 users, the overhead may be substantial. The point is that we need a mechanism to
normalize the utilization for changes in user patterns. The best metric to compute this normal-
ized utilization is the service demand. The service demand (D) is defined in relationship to
resource utilization (U) and throughput (X) as follows:

D=U/X

35

36

CHAPTER 2 QUANTIFYING PERFORMANCE

The service demand measures the utilization of various resources and then divides that
utilization by the application throughput. As the number of users increases and the application
becomes more efficient (higher throughput), the service remains relatively stable. You want to
compute the service demand for at least CPU and memory usage, and potentially other appli-
cation server resources such as threads and connection pools.

In addition to measuring the service demand of memory usage, observing the memory
allocation rate, memory level, garbage collection frequency, and garbage collection size is also
important. Figure 2-3 demonstrates that performance monitoring can increase the rate at
which memory is allocated and freed, which results in more frequent garbage collection; this
increase is a distinct possibility if the monitoring overhead creates a multitude of temporary
objects during each service request.

Impact of Memory Usage Rate Increase

235
230 7, Q)

w
215 AN YA s
' \

w [AT
200 v/ e Vo
195

190
185 T T T T T T T T T T

—— Baseline

- - - Memory Rate

Memory (MB)

Time

Figure 2-3. Performance monitoring can increase the rate at which memory is allocated and the
[frequency of garbage collection.

Figure 2-4 demonstrates that performance monitoring can increase the base level of memory
usage as well, by introducing its own objects into the heap. As the memory level increases, the
frequency of garbage collections increases, simply because less memory is available to work
with. The memory level problem can be mitigated by adjusting the size of the heap to account
for performance monitoring overhead, but adjustments to the heap require a lot of careful
analysis and trials.

Also note that any impact that increases the duration of a garbage collection also negatively
affects the response time of all service requests running during that garbage collection.

A simpler measurement of performance monitoring impact that still yields good informa-
tion is the response time of your key service requests with one standard deviation. Most monitoring
options have minimal impact on the mean response time, but the standard deviation (the
distribution of requests) can be affected greatly, which can dramatically affect a subset of
your users.

CHAPTER 2 QUANTIFYING PERFORMANCE

Impact of Memory Level Increase

235
230 = ~ v 7

225 S o 7 v ;
220 LA N N S ,,\ . -
215 ," N\ A VL
210 42 / W\ A \ Yol ——Baseline

205 / \ / \ / = = = Memory Level
200 \/ \/

195
190
185 . . . , : : : : : :

Heap (MB)

Time

Figure 2-4. When performance monitoring raises the base level of memory usage, available
application memory decreases and the frequency of garbage collection increases.

Mitigating the Cost of Performance Monitoring

The most effective way to address and mitigate the overhead associated with performance
monitoring is to implement performance monitoring in a scaled approach. Advanced monitoring
solutions refer to this scaled approach as smart monitoring. The process is to gather a minimal
amount of statistics from which to evaluate rules that trigger deeper monitoring on a subset of
the environment. The best example of this process is gathering method-level invocation and
response time information in a production environment—rvery valuable information that is
also very expensive to gather. The solution therefore is to passively observe key service requests,
which is a relatively inexpensive operation, and evaluate their response times against specific
SLAs. When the service request exceeds the SLA, it triggers method-level monitoring for that
specific service request.

In such a capacity, a performance monitoring tool throttles its overhead to minimize its
impact on your environment. It requires time and effort to determine the base set of performance
statistics to monitor as well as to configure intelligent and composite rules to trigger deeper
diagnostics, but the benefit to your environment offsets the effort.

Improving Performance

Acquiring and analyzing performance data is an interesting exercise, but the real question that
we derive from this is, “How do we improve performance?” We take a two-phased approach:

1. Implement proven performance methodologies into our application life cycle.

2. Perform systematic tuning of our application, application server, and external
dependencies.

37

38

CHAPTER 2 QUANTIFYING PERFORMANCE

Responding to performance issues is important to maintaining SLAs, but the goal is to
address performance proactively rather than reactively. Reactive tuning is stressful and largely
ineffectual, because its purpose is to extinguish fires rather than adopt best practice coding
and configuration techniques to prevent those fires in the first place. Chapter 5 presents a
detailed discussion about integrating performance throughout the application life cycle, and
Chapter 6 offers a formalized performance tuning methodology.

Performance issues can arise anywhere in the Java EE layered execution model (including
the application, application server, and external dependencies), so a smart approach to moni-
toring is required to minimize the monitoring overhead. The best approach to guaranteeing
the performance of your applications in production is to implement proactive steps throughout
the development and QA life cycles to avoid problems before they occur.

Building a Performance Test Plan

Just as you need to build a business plan to run a successful business and formalize a budget to
manage your finances, developing a performance test plan is essential to the success of your
application. A performance test plan satisfies two purposes:

e It formalizes your understanding of your user behavior.

e Itdocuments each phase of performance testing that must be performed and tracked for
each iteration of your application development cycle.

User behavior serves as the input to performance tests, and by consistently testing at the
specific milestones we discuss later in this chapter, you can track the performance of your
application as it develops and ensure that it never gets out of your control.

Know Your Users

The most important thing you can do to ensure the success of your tuning efforts is to take time
to get to know your users. I do not mean calling them on the phone or going out for a round of
golf with them (but feel free to do so, especially if you can expense the green fees). I mean that
you need to understand their behavior inside your applications. You will seldom tune applica-
tion servers in a production environment; rather, you will generate test scripts representing
virtual users and execute load tests against a preproduction environment and tune it. After your
preproduction environment is properly tuned, then you can safely move the configuration
information to production.

If you are part of the majority of corporations that cannot adequately reproduce produc-
tion load on a preproduction environment, do not lose hope. Most of the larger companies I
visit do not have a firm understanding of their users’ behavior and cannot generate represen-
tative load on their test environments. I commonly hear two excuses: “Production load is too
large for preproduction” and “I do not have any way of knowing what my end users are really
doing.” To address the first point, you can build a scaled-down version of production in
preproduction and scale up the configuration of your production deployment. This method is
not as effective as mirroring production in preproduction, but sometimes mirroring produc-
tion is not affordable. To address the second point, I will show how you can gather end user
behavior in this section.

CHAPTER 2 QUANTIFYING PERFORMANCE

Because we try to tune our environment in preproduction to validate settings before
moving them to production, it naturally follows that we are tuning our environment to support
the load test scripts that are executed against the environment. To tune an enterprise applica-
tion, firstimplement some best practice settings, and then load test the application, observe its
behavior, and adjust the configuration parameters appropriately. Tuning is an iterative process,
where we try to hone in on the optimal configuration settings—some changes will yield improve-
ments, and some will actually degrade performance. Because performance tuning is an iterative
process, it should not be left until the end of a development life cycle; it takes a long time to
do properly.

Given that we tune our application servers to our load scripts, what does that tell you
about the load scripts? They need to represent real-world user behavior. Consider tuning a
Web search engine. I can write test scripts that search for apples and bananas all day, but is that
what end users do? I can tune my environment to be the best “apples and bananas” search
engine in the world, but what happens when someone searches for BEA or IBM? In my application,
I could have grouped technical companies in a separate database from fruits and vegetables; if so,
that piece of code would never be executed in preproduction, and my tuning efforts would be
in vain. The better solution is to discover the top 1,000 or 10,000 search phrases and their
frequencies. Then compute the percentage of time that each is requested and build test scripts
that request those phrases in that percentage. For the remaining percentage balance, you might
connect the load test generator to a dictionary that queries for a random word.

The difficult part of writing user-representative load scripts is the process of discovering
how users are using your applications. Though discovering user patterns is not an exact science, for
reasonably reliable results, look at your access logs first. I would not recommend doing this by
hand, because the task is insurmountable even for a Web application of medium size. Plenty of
commercial and free tools will analyze your access logs for you. They will perform the following
analysis on your service requests:

¢ Sort service requests by percentage of time requested and display that percentage

¢ Zoom in and out of your analysis time period to present finer or less granular results
¢ Identify peak usage times of the day, week, month, and year

» Track bytes transferred and the mean time for requests

¢ Identify and categorize the originators of requests against your application (internal,
external, geographic location)

¢ Summarize the percentage of successful requests

e Summarize HTTP errors that occurred

e Summarize customer loyalty, such as return visitors and average session lengths
» Track page referrals from other sites

Regardless of the software that you choose to analyze your access logs, the important thing
is thatyou do perform the analysis and use this information as a starting point for building your
test scripts. Access logs are somewhat limited in what they report, and they may not suffice in
certain instances, such as if you use a single URL as the front controller for your application
and differentiate between business functions by embedded request parameters. In this case,

39

40

CHAPTER 2 QUANTIFYING PERFORMANCE

you need a more advanced tool that can monitor your usage and partition business functions
by request parameters.

Access logs give you part of your solution; the next step requires a deeper understanding
of the application itself. For example, when a particular service request is made, you need to
know the various options that control the behavior of that service request. The best sources of
that information are application use cases and the architect responsible for that functionality.
Remember that the goal is to identify real-world user behavior, so your research needs to be
thorough and complete. Errors at this stage will lead to the aforementioned “apples and bananas”
search engine anomaly.

Before leaving this subject, you should know about the biggest mistake that I have seen in
defining load test scripts: users do not log out of the system. No matter how big you make your
logout button, at most 20 percent of your users are going to use it. Mostly I believe that this
behavior is a result of the late adoption of the Web as a business deployment platform. Commercial
Web sites dominated the Internet throughout its emergence and mass growth, and as such,
users became accustomed to exiting a Web site in one of two ways: by leaving the current site
and traversing to another, or by closing the browser window. Because these exit patterns are
ingrained in users’ Web usage patterns, you cannot depend on them to properly log out of your
Web site. Therefore when you develop test scripts, you need to determine the percentage of users
that log out properly, and the percentage that do not, to develop your test scripts accordingly.

One large-scale automotive manufacturer that I worked with struggled with this problem
for over a year. Its application servers crashed every few days, so the staff became accustomed
to simply rebooting their application servers nightly to reset the memory. After interviewing
them and looking at their HTTP session usage patterns, we discovered an inordinate number
of lingering sessions. We reviewed their load test scripts and, sure enough, each test scenario
included the user properly logging off. They tuned their environment with this supposition and
when it proved incorrect, their tuning efforts could not account for the amount of lingering
session memory. They adjusted their test scripts, retuned their environment, and have not
been forced to restart their application servers because of lack of memory since.

Performance Testing Phases

Performance testing must be performed at several specific points in the development life cycle.
Specifically, performance testing must be integrated at the following points:

e Unit test

e Application integration test

* Application integration load test
* Production staging test

* Production staging load test

» Capacity assessment

Current software engineering methodologies break the development effort into iterations.
Each iteration specifies the set of use cases that must be implemented. According to the typical
pattern, the first iteration implements the framework of the application and ensures that the
communication pathways between components are functional. Subsequent iterations add

CHAPTER 2 QUANTIFYING PERFORMANCE 4

functionality to the application and build upon the framework established during the first iteration.
Because iterations are defined by the use cases (or sections of use cases) that they imple-
ment, each iteration offers specific criteria for performance testing. The use cases define the
test steps and test variations, in addition to the SLAs that quality assurance should test against.
Therefore, all of the following performance test phase discussions should be applied to each
iteration; the controlling factor that differentiates the work performed during the iteration is
the set of use cases.

Unit Tests

Performance unit testing must be performed by each developer against his components prior
to submitting the components for integration. Traditional unit tests only exercise functionality
but neglect performance, even though the cost of resolving performance issues in development
is drastically less than resolving them in production. Performance unit testing means that the
component needs to be analyzed during its unit test by the following tools: memory profiler,
code profiler, and coverage profiler.

The memory profiler runs a garbage collection and records a snapshot of the heap before
the use case begins and after it completes, and from this you can see the memory impact of the
use case and the list of specific objects that it leaves in memory. The developer needs to review
those objects to ensure that they are intended to stay in memory after the use case terminates.
Objects inadvertently left in the heap after the use case completes are referred to as lingering
objects, and their presence represents a Java memory leak.

The next memory issue to look for is referred to as object cycling. Object cyclingis caused
by the rapid creation and destruction of objects, typically occurring in request-based applica-
tions (such as Web applications) when creating temporary objects to satisfy a request. Fine-grained
heap samples recorded during the use case combined with creation and deletion counts show
you the number of times an object was created and deleted. An object being created and deleted
rapidly could be placing too much demand on the JVM. Each object that is created and deleted
can only be reclaimed by a garbage collection; object cycling dramatically increases the frequency
of garbage collection. Typically object cycling happens with the creation of an object inside of
aloop or nested loop. Consider the following:

for(int i=0; i<object.size(); i++) {
for(int j=0; j<object2.size(); j++) {
Integer threshold = system.getThreshold();
if(object.getThing() - object2.getOtherThing() > threshold.intValue()) {
// Do something

}

In this case, the outer loop iterates over all of the items in object, and for each item it iter-
ates over the collection of object2’s items. If object contains 1,000 items and object2 contains
1,000 items, then the code defined in the inner loop will be executed 1,000 x 1,000 (1 million)
times. The way that the code is written, the threshold variable is allocated and destroyed every
time the inner loop runs. (Itis destroyed as its reference goes out of scope.) Looking at this code
inside a memory profiler, you will see 1 million threshold instances created and destroyed. The
code could be refactored to remove this condition by writing it as follows:

42

CHAPTER 2 QUANTIFYING PERFORMANCE

int threshold = system.getThreshold().intValue();
for(int i=0; i<object.size(); i++) {
for(int j=0; j<object2.size(); j++) {
if(object.getThing() - object2.getOtherThing() > threshold) {
// Do something

Now the threshold variable is allocated once for all 1 million iterations. The impact of the
threshold variable went from being significant to being negligible.

One other common scenario where we see object cycling in Web-based applications is in
the creation of objects inside the context of a request. On an individual basis, creating these
objects is not problematic, but as soon as the user load increases substantially, the problem
becomes quickly apparent. You must decide whether the object needs to be created on a per-
request basis or if it can be created once and cached for reuse in subsequent requests. If the
object can be cached, then you can stop it from cycling. Figure 2-5 shows an image of a heap
when object cycling occurs.

&4 Runtime Heap Summary: JBoss 3.0 (Tomcat) E =10 x|
Wiew Edit Display Window Help

Refresh: everysecond ¥ | Show History: All ~| |adfstr || Finish | |ﬁ_>(_[n||@||@|

Memory (KB)
16000

12000

8000

4000

1]
00:00 00:20 00:40

01:00

Time

|[Instance Summary | Garbage Monitor | Asserts |

[Clear Table | Identify Based On: |/

Filter Classes: com.sitraka." :] Filter Allocating Methods: |7|
Package | Class [GCed |Memory Released | Object Size Alive | Allocated At
«mework.session HtpGameSession 3 552 24 20 HHDGameSessinlr:*
sack mi Wt Scow 20 160 8 0 MineSweeperGans| |
sack minesweeper MineSweeperMove 16 384 4 0 MineSweeperGan
sackmi M Snap 16 640 40 0 MineSweeperMode
smepackejb.game GameHandlerBea 3 48 16 0 Class.newlnstan

+epack framework GameHandler 3 48 16 0 GameHandlerBea
sackminesweeper MineSweeperMods 3 144 48 0 GameModel newls
samepack.ejb.user EJBUserBean§Pre 1 16 16 1 Constructornewin «

Hotspots found in last 24 garbage collections

Figure 2-5. The circled region of the heap points to a time when memory was rapidly created and
freed, indicating potential object cycling.

Application Integration Test

After components have been through unit tests and found acceptable to be added to the appli-
cation, the next step is to integrate them into a single application. The integration phase occurs
at the conclusion of each iteration, and its primary focus is determining if disparate components

CHAPTER 2 QUANTIFYING PERFORMANCE

can function together to satisfy the iteration use cases. After functional integration testing is
complete, and the application satisfies the functional aspects of the use cases, then you can
run performance tests against the integrated whole.

The application integration test is not a load test, but one of a small-scale set of virtual
users. The virtual users should perform the functionality defined earlier: attempting to simulate
end users through balanced and representative service requests. The user load for the test is
defined and documented in the performance test plan by a joint decision between the applica-
tion technical owner and the application business owner. The purpose of this test is not to
break the application, but to identify application issues such as contention, excessive lingering
objects, object cycling, and poor algorithms, which can occur in any application when it is first
exposed to multiple users. In addition to identifying application functional issues resulting
from load and obvious performance issues, this test is the first one that holds the use case to its
SLAs. If the application cannot satisfy its use case under light load, then subjecting it to a full
load test would be pointless.

Application Integration Load Test

Now that the application is properly integrated, has passed all of its functional requirements,
and has been able to satisfy its SLAs under a small load, the time has come to execute a perfor-
mance load test against it. This test is a full load test replicating the number of projected users
that the application is expected to eventually support in production. This test should be executed
in two stages:

1. With minimal monitoring

2. With detailed monitoring

In the first test, the goal is to see if the code upholds its SLAs while under real levels of load.
An application deployed to production will have a minimal amount of monitoring enabled, so
in this first test you give the application every chance to succeed.

In the second test, you enable detailed monitoring, either for the entire application or in a
staged approach (with filters to capture only a subset of service requests), so that you can iden-
tify performance bottlenecks. Even applications that meet their SLAs can have bottlenecks. If we
identify and fix them at this stage, then they do not have the opportunity to grow larger in
subsequent iterations.

This phase of the performance test plan represents your first chance at performance tuning
the application, which is quite a change from the traditional approach of waiting to perform
performance tuning until after the application is finished. You are already trying to tune your
application when its functionality is simplistic. If you build your application from a good foun-
dation, you ensure its success.

Production Staging Test

Your performance tuning and management tasks would be greatly simplified if your applica-
tions could always run in isolation, where you had full use of application server, operating
system, and hardware resources. Unfortunately, adding hardware and software licenses for
each new application that you develop is expensive, so you are forced to deploy your applica-
tions to a shared environment. Utilizing a shared environment means that while your integration

43

44

CHAPTER 2 QUANTIFYING PERFORMANCE

load tests helped you tune your applications, you need a real-world testing environment that
will mimic a production deployment.

This need imposes quite a task on QA teams, because they need to manage test scripts not
only for our applications, but also for all applications running in the shared environment. QA
must implement an automated solution that produces repeatable and measurable results.

Just as with the application integration test, this is not a full load test, but one to identify
resources that applications may be competing for. The load is minimal and defined in the
performance test plan. If contention issues arise, then deep analysis is required to identify the
problem. But this requirement is the very reason that the test is automated and performed by
adding one component at a time. When your new application arrives into this test bed, the test
bed has already successfully performed this test in the past, so the problem can be isolated to
something in your application or something in your application in conjunction with another
application. Either way, your application is the only change between a working test bed and a
failing test bed, which presents a good starting point for problem diagnosis.

Production Staging Load Test

When it finally appears that your application has successfully integrated into the shared envi-
ronment, turn up the user load to reflect production traffic. If your application holds up through
this test and meets its SLAs, then you can have confidence that you are headed in the right
direction. If it fails to meet its SLAs in this test, then you need to enable deeper monitoring,
filtered on your application’s service requests, and identify more bottlenecks.

Note Simply dropping your new application into an existing tuned environment is not sufficient. Rather,
you need to retune the environment with the new application to continue supporting the existing applications
and load and to support your new application load. This may mean resizing shared resources such as the
heap, thread pools, JDBC connection pools, and so forth.

Capacity Assessment

When you've finally made it to the capacity assessment stage, you have a very competent appli-
cation iteration in your hands. This final stage of performance testing captures the capacity of
your application. In this assessment, you generate a load test on the entire environment,
combining the expected usage of your application with the observed production behavior of
the existing environment. In other words, you start with the production staging load test for
existing applications and then add the additional load for your new application. All the while,
you are testing for compliance with all SLAs.

You continue to increase the load slowly until the system resources saturate, throughput
begins to degrade, and response time increases dramatically. During this test, you record the
load at which each use case exceeds its SLA and then pay close attention to the response time
of each use case. Knowing the rate at which performance degrades for each use case is impor-
tant; it will feed back later into capacity planning.

CHAPTER 2 QUANTIFYING PERFORMANCE

The capacity assessment gives you the total picture of your application (and environment)
so that you can assess new architectural considerations. Furthermore, recording capacity
assessments on a per-iteration basis and correlating them provides insight into application
code added at any specific iteration and measures the capabilities and growth of your develop-
ment team.

Summary

This chapter was all about performance. We considered the definition of performance, ways to
quantify it, and the costs of doing so. We also looked at improving performance and managing
performance throughout the development life cycle.

We determined that performance means different things to different stakeholders, but we
can generalize our performance measurements into three categories: response time, throughput,
and resource utilization. We can measure each of these at various points in the Java EE appli-
cation model to draw conclusions about our environment.

We saw that, in order to obtain a complete picture of our application, we need to obtain
information from a breadth of components, including the application code, application server,
platform, and external dependencies. Unfortunately, obtaining this information can be expen-
sive, but that expense can be mitigated through intelligent monitoring—gathering perimeter
data and gathering deeper data for only the troubled component when we observe a problem.

Finally, we saw that formal management of performance throughout the development life
cycle requires a significant investment in performance testing time. But remember that 80 percent
of all Java EE applications fail to meet their performance requirements and that we can measure
the cost of failure in terms of loss of productivity, credibility, and revenue, so the cost of allocating
time to performance testing up front can only help us on the back end.

Performance management can be burdensome and tedious, so some might consider
throwing it out, because they do not want to absorb that upfront cost, but the heroes in the IT
industry are not the ones who can solve production problems quickly but, rather, those who
build the systems that do not have the production problems to begin with.

Had John and the Acme Financial Services folks built and followed a performance test
plan, they could have avoided their problems altogether. But to add insult to injury, they did
not understand the impact of enabling full monitoring on an application server that already
could not handle the load. Trying to solve production problems quickly made things a lot
worse for them.

At this point, their best option is to roll back to the previous version of their code. The new
code needs weeks of performance testing and refactoring before it is ready to re-emerge into
production. John’s CEO is upset, but luckily John had proven himself in the past, so he gets one
more chance. Let’s see what he does with it.

45

CHAPTER 3

Performance Measurements

John was able to roll back his environment to the previous working version and calm his
CEO. Then he called me.

“Steve, I need your help, man. We were able to pull our application out of production and
roll back to the previous version. I bought myself a few weeks with the CEO, but right now my
name is still mud. If I can turn this into a success, then my team will get the credit they deserve,
but if not, I don’t think anyone is safe from the chopping block!”

“I'm glad you called; it’s time to do things right. Before we dive in and start troubleshooting
your problems, let me give you a little background about enterprise Java applications and how
they work inside an application server. As a foundation, you need to understand specifically
what information you want to gather, where you need to gather it from, and how to interpret it.
With this information, we’ll find out where your application was crashing and that will show us
how to fix it. Following a strict methodical approach to analyzing your environment takes time,
but it is not nearly as complicated as you might imagine.”

“Thanks. You're a lifesaver.” John put his phone down and sighed with hesitant relief. He
and his team were supposed to be basking in glory right now, enjoying well-deserved bonuses,
but if they can pull this off, then there’s still hope.

Performance Measurement Prerequisites

The distributed layered execution model that hosts enterprise Java applications greatly compli-
cates our performance measurement task. Figure 3-1, which you may recall from Chapter 1,
reproduces this visually. Enterprise Java applications run inside a layered execution model.
The application runs in an application server that runs inside a Java Runtime Environment that
runs in an operating system on a hardware platform. When applications grow, then they require
multiple application server nodes and interactions with other external systems such as data-
bases and legacy systems.

47

48 CHAPTER 3 PERFORMANCE MEASUREMENTS

4 Business Tier R (Data Tier R
App 0
Java EE Application Server
s : ~ >, Database
Web Tier Java Runtime Environment
Operating System
APDP 0
Hardware
Java EE Application Server
- S Ay <
_ Business Tier Data Tier
Java Runtime Environment
Operating System
App 0
Hardware
Java EE Application Server
_) N Legacy
” System
Java Runtime Environment
Operating System
Hardware
- J \ J

Figure 3-1. Enterprise Java applications run inside a layered execution model.

Because we want a representative picture of an enterprise Java application, we need visibility
into the different layers in the model. Specifically looking at a Java EE node, we need to obtain
the following information for the following components:

* Application: Service request response times (cross-JVM), service request call counts,
class-level and method-level response times, class and method call counts, object allo-
cations and deallocations, and so on

e Application server. Thread pool metrics, database connection pool metrics, JCA connection
pool metrics, entity bean and stateful session bean cache metrics, stateless session bean
and message-driven bean pool metrics, JMS server metrics, and transaction metrics

e JVM: Memory usage and garbage collection metrics

* Operating system/platform: CPU usage, physical memory usage, disk input/output
metrics, and network connectivity metrics

CHAPTER 3 PERFORMANCE MEASUREMENTS

Application metrics present the application’s specific performance characteristics, which
can be used to identify performance bottlenecks in both the application as well as in external
resources. By recording the response times of method invocations that leave the JVM, such as
calls to JDBC that execute SQL queries against a database, we can triage and isolate performance
problems between application code and external dependencies. Furthermore, application metrics
provide us with a strong passive monitoring mechanism. By monitoring the response times
and call counts of service requests, we can better understand users’ behavior and response
times. Looking deeper, we can take this raw data and derive other metrics that provide addi-
tional insight; for example, instead of looking at only the mean value for the response time of a
60-second summary point, we can compute the minimum, maximum, mean, standard deviation,
and variance. The response time distribution model reveals the true behavior experienced by
the end user, so after reviewing the mean value, your next step is to understand the response
time distribution model, as it can reveal performance problems that tracking only the mean
may mask.

The application server provides the general infrastructure to support distributed applica-
tions as well as the infrastructure to support a specific application and its components. In a
general sense, the application server provides a socket listener that accepts incoming requests
and a request queue that prepares those requests for processing. It defines one or more thread
pools that provide threads that can extract a request from the request queue and process it. On
the back end, the application server provides connection pools that hold connections, which
can be used to access external resources as well as messaging services. In the middle tier, it
provides a transaction service that allows you to ensure the reliability of your applications, and
it provides the infrastructure to manage and replicate session information across application
server instances. We are interested in the behavior of each of these moving parts.

From an application-specific perspective, the application server provides all of the caches
and pools for application components. For example, it provides caches for entity beans and
stateful sessions beans, and pools for servlets, stateless session beans, and message-driven
beans. A monitoring and measurement perspective typically separates this caching and pooling
functionality from general application server functionality, because general application server
infrastructure is relatively constant while application infrastructure is present for each applica-
tion deployed to the application server. In the end, you need both categories of information in
order to paint a valid picture of the performance of your application.

Obtaining information on the operations of the JVM is essential as well, because while
enterprise Java applications run inside an application server, the application runs on top of a
JVM. This layering means that any performance problems that the JVM experiences impact the
performance of the application server and hence the application itself. Fortunately, developers
have been working out JVM issues even longer than enterprise Java issues, so with a little educa-
tion, tuning a JVM is not an insurmountable task. The principal issues with JVMs are memory
management and garbage collection. When a major garbage collection runs, all processes
running in the JVM pause until the collection completes. During this time, nothing can be
processed; the application server freezes, which in turn freezes the application. So clearly,
monitoring the JVM is of paramount importance.

49

50

CHAPTER 3 PERFORMANCE MEASUREMENTS

Finally, you need to gather information from the operating system, specifically about the
CPU utilization (sorted by process), physical memory utilization (sorted by process), disk
input/output rates, and network traffic. CPU utilization is important because it is reflective of
the amount of work your application server is performing. Physical memory usage can reveal
information about nonheap JVM memory that can indicate a number of potential configuration
issues that can adversely affect the performance of your application server. Measuring network
traffic can shed light on the effectiveness of both your load-balancing and replication imple-
mentations. For example, in some instances utilizing clustering is inefficient because of the
overhead of replicating session information across application server instances, but you can
follow proactive steps when designing your application architecture to minimize that over-
head. Each component of the layered execution model provides insight that can improve the
way you configure your application servers.

Performance Monitoring and Management Using
Java Management Extensions (JMX)

In the early days of enterprise Java performance monitoring, each application server vendor
provided its own mechanism for exposing performance information. Some early adopters
integrated performance information into the Java Management Extensions (JMX), including
BEA and JBoss, while other industry leaders such as IBM and Oracle continued to maintain
proprietary interfaces. Monitoring and management vendors went through considerable effort
to extract and present all relevant performance information about an application server and
worked together with application server vendors to compose standards. The largest vendor-
neutral undertaking in performance management is known as the J2EE Management Specifi-
cation, or Java Specification Request (JSR) 77.

JSR 77 proposes a standard management model for exposing and accessing management
information, operations, and parameters of J2EE or Java EE components. The purpose of this
management model is to

¢ Allow rapid development of management solutions for J2EE
e Provide J2EE integration with existing management systems

¢ Enable a single management tool to manage multiple-vendor implementations of the
platform

* Enable a specific implementation of a platform to use any compliant management tool

CHAPTER 3 PERFORMANCE MEASUREMENTS

Although not explicitly required, the most robust and standard technology upon which
JSR 77 information can be exposed is JMX. JMX is not new; it was defined as JSR 3 in 1998 through
the Java Community Process (JCP), an online community primarily charged with developing
and approving the JSRs. JMX can be likened to a platform or API upon which JSR 77 is built;
JMX is the enabler of the JSR 77 management model.

Note Internet standards such as HTTP, FTP, and SMTP are defined through Request for Comment docu-
ments (RFCs), and similarly, Java specifications such as JMX and the J2EE Management Specification are
defined as Java Specification Requests (JSRs). JSRs are hosted by the Java Community Process (JCP) and are
available for browsing at www. jcp.org. Whenever you encounter a standard and want to understand it
better, the JCP Web site is the best source for further information.

Fast forward to today and you'll find all major application server vendors support JSR 77
exposed through JMX: BEA, IBM, Oracle, Sun, JBoss, and Apache. In some cases the road was
long, but we finally arrived. Because each application server vendor has embraced these tech-
nologies, it is in your best interest to understand them as well. In this section, we will explore
the architectures of both JMX and JSR 77 to equip you to work with live data that will be collected
in the next chapter.

JMX Architecture

The JMX specification can be found at www. jcp.org/en/jsr/detail?id=3. It defines itself
as follows:

The Java Management extensions (also called the JMX specification) define an archi-
tecture, the design patterns, the APIs, and the services for application and network
management and monitoring in the Java programming language . . . The JMX speci-
fication provides Java developers across all industries with the means to instrument
Java code, create smart Java agents, implement distributed management middleware
and managers, and smoothly integrate these solutions into existing management and
monitoring systems.!

JMX architecture is divided into four major areas: the instrumentation level, agent level,
distributed services level, and additional management protocol APIs. Figure 3-2 presents the
architecture of JMX graphically and was taken from the JMX 1.2 specification.

1. Sun Microsystems, Inc., Java Management Extentions Instrumentation and Agent Specification, v1.2
(October 2002), p. 17. Also available online at http://jcp.org/aboutJava/communityprocess/final/
jsroo3/index3.html.

51

52 CHAPTER 3 PERFORMANCE MEASUREMENTS

. Proprietary
J'\:\X (if’mt‘?"a"t Web Browser Management
pplication Application
JMX
Manager
Connectors and Protocol Adapters Additional Protocol
Management APIs
SNMP
Agent Level Manager API
MBean Server
Agent Agent Agent
Services [| Services [| Services CIM/WEBM
MBean MBean MBean API
Instrumentation Level
TMN
Resource Resource Resource Manager API
MBean MBean MBean

Figure 3-2. JMX management architecture

The JMX instrumentation level, at the lowest level, defines a specification for implementing
manageable resources; a manageable resource can be an application, a service, or any user-
defined type such as an application component or service. Manageable resource instrumenta-
tion is accomplished through the creation of one or more managed beans, called MBeans. An
MBean can be standard or dynamic. Standard MBeans are Java objects that adhere to specified
criteria, while dynamic MBeans implement a specific interface that allows for more flexible
behavior at run time.

MBeans are designed to be flexible, simple, and easy to implement, and they can be developed
by application server vendors as well as by application developers to make their products manage-
able in a standardized way, without developing a complex management system. Furthermore,
MBeans can be developed in front of existing resources to make them manageable according
to those same standards. For example, you can develop an MBean that exposes the manage-
ment of a proprietary resource and, inside the bean, translate MBean calls to proprietary calls.

The agent level, the next in the JMX architecture, provides a specification for developing
agents that directly interact with and control managed resources; the MBeans that are registered
with an MBean server constitute the agent level. The JMX agent consists of an MBean server
and a set of services for handling MBeans. When a managed resource is deployed to an application
server, the application server registers each MBean with its MBean server. Then the MBean server
facilitates MBean queries and interactions. From a monitoring perspective, the MBean server is of
utmost importance acting as the gateway to the rich information you so desperately seek. J]MX
does not specify the distributed services level, or how the managing clients access an MBean,
so you also need a connector or protocol adapter that exposes MBeans.

CHAPTER 3 PERFORMANCE MEASUREMENTS

The distributed services level, the third tier, provides interfaces for implementing JMX
managers. JMX managers can present a connector layer on top of JMX agents; expose manage-
ment information through standard mechanisms such as HTTP, RMI, and SNMP; consolidate
information from disparate JMX agents; and implement security measures on top of JMX agents.
The distributed services level exists to complete the architecture by empowering monitoring
and management vendors to develop complete management applications.

For more information about the Java Management Extensions, I strongly encourage you
to read through the JMX specification. Although it is nearly 200 pages long, if one of your job
responsibilities is to ensure the performance of your enterprise applications, I would consider
it required reading.

JSR 77 Architecture

In order for an application server to be JSR 77 compliant, it must supply a specific set of managed
objects, an event notification model, a state management model, and a statistics provider model
that exposes performance monitoring information, as illustrated in Figure 3-3.

Managed Objects

Events State Performance

Figure 3-3. The Java EE management model

The set of managed objects includes the following application components as well as
application server resources:

* Servlets

¢ EJBs, especially entity beans, session beans, and message-driven beans

¢ Deployed modules, such as application, EJB, and Web modules

¢ Java EE resources, like JCA, JTA, JDBC, JMS, JNDI, RMI, JavaMail, and URLs

¢ JDBC drivers and data sources

¢ Connection factories

* Resource adapters

e The JVM

JSR 77 describes specifically what you can expect to extract from each of these components,
and later in this chapter we will look at sample data taken from a running application server.
The Java EE ManagedObject class defines the base of the managed object inheritance hierarchy;
managed objects extend from this base and touch all management and performance monitoring

53

54

CHAPTER 3 PERFORMANCE MEASUREMENTS

aspects of the application server and application. Figure 3-4 shows the complete managed
object hierarchy graphically.

StatelessSessionBean
SessionBean

EntityBean |

EJB

ResourceAdapter

1 1

Servlet

JDBCDataSource

EJBModule
WebModule
AppClientModule

ResourceAdapter
Module

JDBCDriver
J2EEModule

J2EEDeployedObject

[

J2EEManagedObject |_ J2EEServer

J2EEResource JCAResource

J2EEDomain JTAResource

JCAManaged

JDBCResource
ConnectionFactory

JCAConnection

JMSResource
Factory

e

L r I [
L T T 1

JUM JNDIResource

RMIIOPResource

JavaMailResource

URLResource

Figure 3-4. The J2EEManagedObject hierarchy

Not only does JSR 77 define the types of objects that each application server is required to
support, but it also defines the specific format used to present each object’s data metrics. Each
managed object is required to provide a Stats attribute of the type

javax.management.j2ee.statistics.Stats

This Stats attribute contains a collection of Statistic elements and a mechanism to
obtain their values. The Statistic interface is fully qualified as

Jjavax.management.j2ee.statistics.Statistic

Each metric is defined by a class that implements a subinterface of the Statistic interface.
These Statistic derivative interfaces, TimeStatistic, RangeStatistic, BoundaryStatistic,
BoundedRangeStatistic, and CountStatistic, are shown in Figure 3-5 along with their methods.

CHAPTER 3 PERFORMANCE MEASUREMENTS

interface
Statistic

getName:String
getUnit:String
getDescription:String
getSartTime:long
getLastSampleTime:long

interface interface interface interface
TimeStatistic RangeStatistic BoundaryStatistic CountStatistic

getCount:long
getMaxTime:long
getMinTime:long
getTotalTime:long

getHighWaterMark:long
getLowWaterMark:long
getCurrent:long

getUpperBound:long
getLowerBound:long

getCount:long

interface
BoundedRangeStatistic

Figure 3-5. Statistic derivative interfaces

These statistics are defined as follows:

e CountStatistic provides a count of the number of occurrences of something, such as
the total number of transactions committed or rolled back.

RangeStatistic provides a current value, as well as high and low watermarks, such as the
number of execute threads waiting for a database connection or the number of beans in
apool.

BoundaryStatistic provides an upper and lower boundary for a statistic. This type of
statistic works well for configuration information, but not so well for runtime information.

BoundedRangeStatistic provides the current value, high and low watermarks, and range
of possible values for a statistic, such as the size of a JVM heap. The heap may have a
minimum size of 256MB and a maximum size of 1024MB, but currently be at 512MB,
never having dropped below 384MB or risen above 768MB.

TimeStatistic provides the execute count, execution time, minimum execution time,
maximum execution time, and total execution time for an operation such as the response
time of a servlet’s service method.

55

56

CHAPTER 3 PERFORMANCE MEASUREMENTS

Knowing the type of information application servers provide, and the specific format of
that information, you should feel empowered to start using it. The rest of this chapter focuses
on obtaining, aggregating, correlating, and presenting performance information.

Obtaining Application Server Metrics

The first step in obtaining performance information from an application server is accessing the
MBean server in the JMX agent. You can access the MBean server through application server
proprietary mechanisms as well as through standard ones; your eventual decision will be based
on your application server and your particular intentions. You might opt to use the application
server’s proprietary mechanism to ease security restrictions. The application server may provide
a mechanism to simply provide a username and password in a method call and return the
MBean server, whereas following standard mechanisms may require additional policy modifi-
cations to permit the operation. Regardless, first get an MBean server.

Note A couple of decades ago on the U.S. television show Saturday Night Live, Steve Martin performed a
skit that taught us how to obtain a million dollars without paying taxes on it. His advice went something like
this: First, get a million dollars. And then don’t pay taxes on it. When the government asks, “Why didn’t you
pay taxes on it?” tell them, “I forgot.” So in this spirit | tell you, “First get an MBean server.”

MBean servers are classes that implement the javax.management.MBeanServer interface.
This interface defines methods to create managed beans, query for managed beans, obtain
managed bean attributes, obtain additional information about a managed bean, invoke a
managed bean’s methods, and modify a managed bean’s attributes. The following code snippet
shows the standard enterprise Java mechanism for obtaining all MBeanServer instances and
returning the first one, which should be the only one, most of the time:

public MBeanServer getMBeanServer()
{
try
{
Arraylist mbeanServers = MBeanServerFactory.findMBeanServer(null);
for(Iterator itr=mbeanServers.iterator(); itr.hasNext();)
{
MBeanServer mbs = (MBeanServer)itr.next();
System.out.println("Default Domain: " + mbs.getDefaultDomain() +
", mbeans: " + mbs.getMBeanCount());

// Return the first MBeanServer

CHAPTER 3 PERFORMANCE MEASUREMENTS

return (MBeanServer)mbeanServers.get(0);

}

catch(Exception e)

{
e.printStackTrace();
return null;

}

}

The current specification supports more than one MBeanServer per JVM instance, but in
practice most application servers provide only a single MBeanServer instance. The MBeanServer
interface provides several interesting methods, shown in Table 3-1.

Table 3-1. MBeanServer Methods

57

Method

Description

void addNotificationListener(. . .)

Object getAttribute(ObjectName name,
String attribute)

Attributelist getAttributes(ObjectName name,
String[] attributes)

String getDefaultDomain()
String[] getDomains()

Integer getMBeanCount()
MBeanInfo getMBeanInfo(ObjectName name)

Object invoke(. . .)

Set queryMBeans(ObjectName name,
QueryExp query)

Set queryNames(ObjectName name,
QueryExp query)

Adds a listener to a register MBean for MBean specific

notification messages

Gets the value of a specific attribute of a named MBean

Gets the values of several attributes of a named MBean

Returns the default domain used for naming the MBean

Returns the list of domains in which any MBean is

currently registered

Returns the number of MBeans registered in the
MBean server

Discovers the attributes and operations that an MBean

exposes for management
Invokes an operation on an MBean

Gets MBeans controlled by the MBean server

Gets the names of MBeans controlled by the
MBean server

For the purposes of this discussion, the most interesting method is queryNames (). This
method allows you to search for specific managed beans or to pass null arguments to return all
managed beans. Whenever I am analyzing the performance of a new application server, I first
find all managed beans, group them by domain and type, and review their attributes. From
these attributes you can not only discover the type of information available, but also infer quite

58

CHAPTER 3 PERFORMANCE MEASUREMENTS

abit about the internal architecture of the application server. The first step therefore is to inter-
rogate the MBeanServer class for its managed beans:

Set mbeans = server.queryNames(null, null);

This query returns a java.util.Set of ObjectName instances. An ObjectName uniquely iden-
tifies a managed bean and follows a loose naming convention; I say “loose” because while
application servers are mostly consistent with the naming of their own managed beans, when
you cross application server vendor boundaries subtle differences emerge. The format of an
ObjectName is defined as follows:

Domain:Name=<bean-name>,paraml=valuel, param2=value2,..,paramN=valueN

The following is an example of an ObjectName extracted from BEA WebLogic’s examples
domain:

examples:Location=examplesServer,Name=weblogic.kernel.Default,
ServerRuntime=examplesServer, Type=ExecuteQueueRuntime

In this case, the name of the domain is examples and it exposes the following parameters:
e Location: The server hosting the MBean.
* Name: The name of the resource.

e ServerRuntime: The WebLogic proprietary value representing the server instance in
which this managed bean runs.

* Type: The type of this bean. Most application servers have a type, although variations
include “type” (lowercase “t”) and “j2eeType”.

The bean can be interpreted as a runtime managed bean exposing information about
WebLogic’s Default execute queue (denoted by the name weblogic.kernel.Default) running
on the examplesServer. I chose this managed bean for this example because it is a key metric
that will be analyzed later.

The following are some common facets of an object in the class ObjectName:

e Domain: A broad categorization of managed beans. Each application server organizes its
managed bean differently, but as we look at more examples the organizational schemes
will make more sense.

¢ Name: The name of the managed bean that uniquely identifies it within a domain.
* Type: The type of the managed bean that describes, for example, its behavior and function.

Most of the additional information regarding ObjectName objects is application server—
vendor dependent.

Obtaining Application Metrics

Obtaining application metrics is another beast altogether. Some application servers expose
more information about method and request call counts and response times than others,
but the most useful information comes through code instrumentation. Code instrumentation

CHAPTER 3 PERFORMANCE MEASUREMENTS

is the process of inserting code snippets into the application methods to record information
such as

¢ Method invocation counts.

¢ Method response times (the differences between method start and stop times). This can
include both exclusive time (the time spent only in that method) and cumulative time
(the time spent in the method and all methods that it calls).

¢ Obiject creations and deletions.

More advanced instrumentation implementations not only capture this information for
individual methods, but also tag requests as they arrive at the application server and trace
request method calls. Because of this tagging, they are able to reassemble the call path thata
specific request followed during its execution. The response time and call count information
can be used to identify the hot path(s) through the service request as well as the hot point(s)
in the request that are most affecting response time. When presented with a claim that a
specific request is not performing acceptably, this information empowers you with the means
to discover why.

Smart instrumentation dives deeper to include arguments passed to key methods. For
example, methods arguments passed to JDBC calls such as preparation and execution methods
can provide valuable insight to database administrators troubleshooting a performance issue
identified by such instrumentation. Telling a database administrator that a service request is
not performing acceptably because of the database is almost useless; telling the database
administrator that the database is not responding acceptably for a specific SQL call executed at
a specific time, however, empowers that administrator to isolate the problem.

Code instrumentation comes in two flavors: custom and automatic. Custom instrumentation
is implemented manually by programmers as they write code, whereas automatic instrumen-
tation is implemented by an automated process either before an application is deployed or,
more optimally, as classes are loaded into the JVM.

Custom Instrumentation

Custom instrumentation is performed by application developers. The mechanism to imple-
ment code instrumentation is tedious, but it is also easily understood. Once you understand
how to instrument an application manually, writing code to instrument it for you is much easier.

At the simplest level, code instrumentation records the response time of a method. For
example, consider recording the response time of a servlet's service() method, shown in
Listing 3-1.

Listing 3-1. Simple Servlet Instrumentation
package com.javasrc.web;

import javax.servlet.*;
import javax.servlet.http.*;

public class MyServlet extends HttpServlet {

59

60 CHAPTER 3 PERFORMANCE MEASUREMENTS

private long servletTotalTime;
private long callCount;

private long minTime
private long maxTime

_1;
_1;

public void service(HttpServletRequest req, HttpServletResponse res)
throws ServletException {
long startTime = System.currentTimeMillis();
// Insert application logic here

long endTime = System.currentTimeMillis();
long totalTime = endTime - startTime;

// Compute response time metrics
this.servletTotalTime += totalTime;
this.callCount++;

if(totalTime < this.minTime || this.minTime == -1) {
this.minTime = totalTime;

}

if(totalTime > this.maxTime || this.maxTime == -1) {
this.maxTime = totalTime;

}

}

public long getAveResponseTime() {
return this.servletTotalTime / this.callCount;

}

public long getCallCount() {
return this.callCount;

}

public long getMinTime() {
return this.minTime;

}

public long getMaxTime() {
return this.maxTime;
}
}

Listing 3-1 demonstrates how to instrument a single service() method. The service()
method calculates the response time of its application logic by calling the method System.
currentTimeMillis(). System.currentTimeMillis() returns the current time in milliseconds
from the operating system; the returned value is the number of milliseconds that have occurred
since the epoch, specifically January 1, 1970. With this information, we can define a performance
monitoring interface to the servlet to report this information and present it in a format that we
can analyze (either graphically or in a format from which it can be imported into a graphical

CHAPTER 3 PERFORMANCE MEASUREMENTS

environment such as Microsoft Excel). By computing the derived values for the average response
time, minimum and maximum response times, and call count, we keep the memory overhead
low and still provide rich information. We can add additional computations to reveal the stan-
dard deviation and variance for a time period (or to date).

Note with the advent of Java 5, the System class has added another method with a finer granularity than
currentTimeMillis(). nanoTime(), the new class, returns the most precise available system timer in
nanoseconds, but it can only be used for measuring elapsed time (by capturing two values and comparing
them), not for recording an absolute time.

Another common metric in code instrumentation is the partitioning of method invocation
information into two categories: successful method invocations and exceptional invocations.
This categorization is accomplished by wrapping the method call with your own exception
handling code and maintaining two categories of response time and execution count informa-
tion. This basic idea is shown in Listing 3-2.

Listing 3-2. Servlet Custom Instrumentation with Exception Counts

package com.javasrc.web;

import javax.servlet.*;
import javax.servlet.http.*;

public class MyServlet extends HttpServlet {

public void service(HttpServletRequest req, HttpServletResponse res)
throws ServletException {
long startTime = System.currentTimeMillis();

try {
// Application code

long endTime = System.currentTimeMillis();
long totalTime = endTime - startTime;

// Compute response time metrics
this.servletTotalTime += totalTime;
this.callCount++;

if(totalTime < this.minTime || this.minTime == -1) {
this.minTime = totalTime;

}

if(totalTime > this.maxTime || this.maxTime == -1) {
this.maxTime = totalTime;

}

}

61

62 CHAPTER 3 PERFORMANCE MEASUREMENTS

catch(Exception e) {
// Calculate monitoring values
long endTime = System.currentTimeMillis();
long totalTime = endTime - startTime;
this.exceptionTotalTime += totalTime;
this.exceptionCount++;

// Rethrow the exception
throw e;

Recall that we have done all of this work for a single method; if we want to partition addi-
tional methods into successful and exceptional categories, then we have to implement similar
logic. When we do this for all of our application methods, we can derive a complete view of our
application performance. In order to obtain real value from that view, we need to assemble
these disparate method calls into alogical call tree. To assemble the call tree, we need to create
aunique key at the start of the request and pass it to each method involved in the request. We
also need a central server or process that correlates this information and builds a model of the
behavior of a single request. Each method, as it is executed, registers itself with the correlation
server, passing the unique key along with context information. The correlation engine then
keeps track of the order of method calls and the parent/child relationships (who called whom).

In Chapter 4, we build a fully functional custom code instrumentation engine that you can
use to manually instrument your own applications.

Automatic Instrumentation

Automatic instrumentation is the most technically complex subject when discussing code
instrumentation. Automatic instrumentation allows you to perform all that we did in the last
section without requiring you to incorporate instrumentation code into your application.
You can implement it either prior to application deployment or at run time in the following
two ways:

¢ Source code instrumentation
* Bytecode instrumentation

Source code instrumentation is simpler for an individual developer to implement than
bytecode instrumentation, because it only requires source code parsing and not bytecode
processing. Source code instrumentation can be run as an Apache Ant task or as a stand-alone
process on your source code files prior to compilation and deployment.

Bytecode instrumentation, which is sometimes called bytecode insertion, follows the
same logic, but rather than parsing your source code files, a bytecode instrumentor opens the
class Byte code file and inserts the instrumentation into your code at the bytecode level. This
can be thought of loosely as the difference between C/C++ and assembly: the Java source code
is similar to the C/C++ code while the bytecode is similar to the assembly code. The benefit in

CHAPTER 3 PERFORMANCE MEASUREMENTS

performing bytecode instrumentation is that the overhead of the instrumentation can be less

than that of source code instrumentation if it is written efficiently, because rather than requiring

the Java compiler to generate the bytecode, smart programmers can write the bytecode them-

selves to perform the functionality optimally. This requires in-depth knowledge of the JVM and

its internal machine code. For simple instrumentation implementations, bytecode instrumen-

tation requires far too much work, but for production applications it is often the best solution.
Bytecode instrumentation can be performed at the following two points:

¢ Prior to application deployment
¢ During class instantiation

In the first case, your compiled class files can be instrumented through an Ant task or by
a separate process before your application is deployed to your application server to create an
instrumented Java Archive (JAR), Web Application Archive (WAR), or Enterprise Application
Archive (EAR) file. In the second case, a custom classloader can be interjected into the JVM and
instrument classes on the fly. Most commercial offerings provide classloader-based bytecode
instrumentation.

Classloading works as follows. When a Java process creates an instance of a class, that
creation call is delegated to the classloader to open the class file (bytecode). The classloader
opens the class and creates what you might think of as a template (not like a C++ template, but
more like a rubber stamp from which to create class instances) and stores that in the heap’s
permanent space. The object instance is then created, stored in the heap, and a reference is
returned to the process that created the class instance.

When employing classloader-based bytecode instrumentation, a custom classloader is
responsible for loading the class into memory, but as it loads the class, it interjects instrumen-
tation code directly into the bytecode. Figure 3-6 shows this process graphically.

Load Class Create Class Instance
Class Class Loader Java Process

Send Class to

Instrumentor
T oD Return Class to Caller
Instrument Class
Instrumentor Class
Instrumentation

Figure 3-6. Classloader-based bytecode instrumentation

Most application servers, or rather most JREs, permit the user to define the classloader to
use at runtime. By telling the JRE to use a specific classloader, you can control the creation and
instantiation of each class. And as such you can easily facilitate automatic code instrumentation.

63

64

CHAPTER 3 PERFORMANCE MEASUREMENTS

Obtaining JVM Metrics

Each JVM presents performance information differently and offers different Application
Programming Interfaces (APIs) into their performance metrics; for example, IBM, BEA, and
JBoss provide information through JMX. Although the specific implementations vary between
JVM vendors, to appease the specifications common things exist across them.

But before gathering data, you need to understand what information is of interest to the
performance of your application. The following list summarizes the metrics we are interested
in gathering from the JVM:

* Heap usage: What is its current size and maximum size, and what generational information
is available?

* Garbage collection rate: How often does garbage collection run?

* Garbage collection duration: When garbage collection runs, how long does it take
to complete?

* Garbage collection effectiveness: When it runs, is garbage collection able to reclaim
significant amounts of memory or is all of the work in vain?

» Loitering objects: As business processes run, what are they leaving in memory, and
should it be there?

* Object cycling: Are objects being created and destroyed frequently incurring extra effort
on the garbage collection process?

Some information is very inexpensive to capture, such as the heap size and heap usage,
and other information is extremely expensive, such as identifying loitering objects and object
cycling. Garbage collection information comes at a medium expense; Sun states that recording
verbose garbage collection information at its lightest form incurs about 5 percent overhead.
You can enable verbose garbage collection logging to allow you to analyze garbage collection
types, rates, durations, and, after considerable computation, the collection’s effectiveness.

A lingering object is an object that your application creates during a service request and
does not dereference before the service request completes; this behavior may or may not be
expected. For example, a user login request may validate a user and then store the user’s identity
as an HTTPSession object. Creating this object is expected and satisfies a business requirement.
However, a request may query the database and retrieve 1,000 rows of data and cache it as an
HTTPSession object for the user to peruse at a later date. If the user never looks at the data, but
the application continues to maintain it, that data occupies memory and drains the system of
resources. This condition is referred to as maintaining lingering objects. Java garbage collec-
tion eliminates C++-style memory leaks, but it cannot eliminate memory mismanagement that
derives from poor object life cycle definition.

Obiject cycling, on the other hand, takes the reverse approach: rather than cache a value,
re-create it on every request. Objects are thus created at the beginning of a request and then
cleaned up at the end of the request. On subsequent requests, the process repeats even for the
same objects. Object cycling causes the JVM to run out of memory quickly and hence increases

CHAPTER 3 PERFORMANCE MEASUREMENTS

the frequency of garbage collection. In extreme cases, object cycling can occur inside program-
matic loops. For example, the following causes object cycling inside the for loop:

public double computeSD(Set values, int callCount, long totalTime)
{
double diffs = 0.0d;
for(Iterator i=values.iterator(); i.hasNext();)
{
double value = ((Double)i.next()).doublevalue();
Double average = new Double(totalTime / callCount);
diffs += (value - average.doubleValue()) * (value - average.doubleValue());
}
double variance = diffs / callCount;
return Math.sqrt(variance);

}

This method computes the standard deviation for a set of Double values, given the number
of executions and the total execution time. It may appear clean, but consider a set of 2,000 values
from which we want to compute the standard deviation; the average is computed 2,000 times.
Not only is this inefficient, but it wreaks havoc on garbage collection. The average is a double
that occupies 8 bytes, and we are creating 2,000 instances, each occupying 8 bytes, so that’s
16 kilobytes. Not a huge problem, but if this is done 20 times a second in a Web application,
then we are inadvertently creating thousands of objects that we do not need. The method
could be rewritten as follows to eliminate this problem:

public double computeSD(Set values, int callCount, long totalTime)
{
double diffs = 0.0d;
Double average = new Double(totalTime / callCount);
for(Iterator i=values.iterator(); i.hasNext();)
{
double value = ((Double)i.next()).doubleValue();
diffs += (value - average.doubleValue()) * (value - average.doubleValue());
}
double variance = diffs / callCount;
return Math.sqrt(variance);

}

Moving the computation of the average outside of the for loop improves performance by
performing the computation once, but it also means that, when computing the standard devi-
ation for a set of 2,000 objects, we only need one instance of the average in memory rather than
2,000 instances.

Lingering objects drain memory and reduce the effectiveness of garbage collections, while
object cycling increases the frequency of garbage collection. More frequent garbage collections
mean that short-lived objects may not have time to be created and destroyed between garbage
collections causing two problems:

65

CHAPTER 3 PERFORMANCE MEASUREMENTS

* Short-lived objects need to be analyzed to see if they are still alive even though they will
be cleaned up in milliseconds; this increases the duration of garbage collection.

 If garbage collection runs too frequently, depending on the garbage collection algorithm,
objects may move into a condition where they require a major garbage collection to free
them rather than a minor garbage collection. Major garbage collections are significantly
more expensive than minor collections and can hurt the performance of your application.

Figure 3-7 shows excessive object creation and destruction within a 30-second to 50-second
time period, visually representing a pattern that signifies object cycling. With this background
in obtaining JVM metrics, in the next chapter we will explore techniques for acquiring some of
this information.

ENtuntime Ieap tummary: 1nss 2L CLamcary =10 x|
Mew Edit Display Window Help
Refresh: every second * | Show History:|All * | ||| start Use Cass||
Memory (KB)
16000
12000
BOOD
4000 |
0
o0:00 oo:20 o0:40 01400

Time

[Instance Summary | Garbape Wonitor [~ Azserts |

Cloar Table Ideatry Allocation HotEpoLE Basod On: | Humber of Instances Relsased by GO
Fiiter Classes: corm.shraka.” [=] Firer Allacating Methods: [=]
| Prckege [Class GCed [Memary Released | OhjectSke Allve Allacated At
~armewark.zession HipGar i 3 553 24 20 HitpCarmeSeasiom
#3ackmineswasper MineSwaesperScor 20 160 8 0 MineSwespen&am
sackmineswaeper MineSweeperove 16 ap4 24 O WlineBywe eREnsarm
Aackimir B B 16 Ba0 a0 O MineSweepemiod
smepack.gjb.game GameHandlerBaze 3 13 16 0 Clase.newlnstan
Mepackiramesnrk GamaHandlar 2 44 16 0 GamaHandlarEa
sackmineswaeper MineSweepe i ode 3 144 48 0 GamemModel newis

1

wrmepeckejb.user EJBUzerBeanPre 16 16 1 Conatructornewln <

Hntspl:ls found in last 24 garhage collections

Figure 3-7. Object cycling—excess object creation and destruction

Aggregating Data

Raw data is powerful in many circumstances, but usually aggregate values provide deeper insight
into the behavior of a metric. For example, consider the response time of a service request over
a 30-minute interval. If it was executed close to 2,000 times in that 30-minute session, then
observing its behavior for each individual request is unreasonable; requests may be concurrent
or within a few milliseconds of each other. Instead we divide the 30-minute sample into intervals
and then aggregate the data for that interval. For example, we might want the granularity of
10-second sample intervals. For a 30-minute sample, that means there will be 30 minutes
multiplied by 6 samples per minute, equating to 500 data points. For each sample interval, we
compute the following aggregate values: the execution count; the minimum, maximum, total,
and average response times; the variance; and the standard deviation of response times. In this
scenario, we would have a table with 500 rows that resembled the following:

CHAPTER 3 PERFORMANCE MEASUREMENTS

Request Call Count Ave Min Max Total v SD
/dosomething 15 1.2 0.5 7.2 18.0 0.25 0.5

From this table we can see that the service request /dosomething was executed 15 times at
an average of 1.2 seconds per request, with a minimum response time of 0.5 seconds, a maximum
response time of 7.2 seconds, and a total time of 18.0 seconds. This presentation is far more
interesting that 15 individual rows that only report the response time for a single invocation.
Now further aggregate all of this information for all 500 rows:

Request Call Count Ave Min Max Total v SD
/dosomething 1526 1.25 0.07 17.2 19075 9.0 3.0

You cannot possibly read anything meaningful from over 1,500 values, but you can identify
suspect service requests with values such as the average, maximum, and total times and the
standard deviation. If I see a request that accounts for 1,907 seconds of a 30-minute sample,
then I know that it is a significant method. I am probably not too worried about the average
response time, but the maximum response time does concern me. Furthermore, this method
has alarge standard deviation relative to the average (a 3-second standard deviation rather
than the 1.25-second average), so I know that, although the average is low, it is not conclusive
enough to be representative of the end-user experience. If, however, the standard deviation
were small, like 0.2 seconds, then I could trust the average. So, one line that aggregates 500 samples
accounting for over 1,500 calls tells me far more than looking at the 1,500 requests individually.

Finally, with samples having a granularity of 10 seconds, we can zoom in on a small portion of
the observed session to find troublesome time periods. In my experience, troublesome service
requests tend to fall into one of two categories: overall poor performers (high average) or sporadic
performers (good on average but with periodic spikes in the response time). In the former category,
code instrumentation can reveal the cause of general slowdowns. In the latter, the analyzed
segment needs to be narrowed to the specific time period when the response time was poor
before code instrumentation can identify the cause of the discrepancy; analysis of the entire

session can mask periodic problems, which is why the maximum response time is so important.

Correlating Data

As previously mentioned, knowledge differs from data: data applied to a model equates to
knowledge. With that said, individual metrics do not represent business values outside the
context of a model, and most metrics need to be analyzed in conjunction with other metrics.
As an example, consider thread pool usage. Given an 80 percent thread pool usage, here are
questions that you need to consider:

67

68 CHAPTER 3 PERFORMANCE MEASUREMENTS

What is the size of the pool? If we have 5 total threads and 4 of them are in use, then we
need to increase the thread pool, but if we have 200 threads with 160 in use, then we have
some breathing room.

Why are the threads in use?Is it user load, or is a surplus of threads waiting for a database
connection? Is there contention?

Are users being affected by the high usage of threads? Are their response times meeting
SLAs?

For true understanding, we need to evaluate a metric against the environment model and
correlate it to its business impact. In the end, we need to have a complete collection of valuable
metrics from which to derive meaningful values. The obviously difficult part is identifying
which metrics are important. Two things can help you make this determination:

A strong understanding of the Java EE model

A visualization of all metrics

Knowledge of the enterprise Java model provides a core set of observations to aid in metric
interpretation; specifically these observations are as follows:

The layered execution model dictates that enterprise Java applications run inside a JVM,
so we are very interested in memory-related metrics such as memory usage, garbage
collection behavior (rate, duration, and effectiveness), lingering objects, and object cycling.

Looking deeper into the layered execution model, we are also interested in hardware
performance such as CPU usage, disk I/ O rates, physical memory usage, network traffic,
and operating system threads and processes.

Allrequests are placed in an execution queue that is serviced by a thread pool; therefore,
we are interested in the performance of the thread pools, specifically their usage, their
throughput, and the number of pending requests in the queue.

If an application has a back-end database, then it must do so through a JDBC connection
pool, so we are interested in metrics such as pool usage, peak usage, and pending requests
waiting for a connection.

If an application uses any caching structure, such as entity beans, then we are interested
in the performance of that cache; specifically we want to observe cache usage, activation
rate, passivation rate, hit percentage, miss percentage, and the amount of thrashing.

If an application makes use of messaging, then its messaging will be facilitated through
the JMS. Therefore, we are interested in the performance of the JMS destinations (queues
and topics). For example, for any upper limit in bytes or messages, we want to observe
the usage percentage, queue depth, rate of queue growth, rate of message consumption,
and assigned thread pool utilization.

CHAPTER 3 PERFORMANCE MEASUREMENTS

* Most enterprise applications are transactional by nature, so we are interested in the
performance of the TransactionManager, including the commit rate and percentage,
rollback rate and percentage, and ratio of application to nonapplication rollbacks.

¢ From an application-level perspective, we are interested in overall response times of
service requests, hot spots in requests, the impact of external dependencies, the top ten
methods being executed (slowest as well as most popular), and the top ten SQL statements
being executed.

This outline of considerations loosely fits each application server vendor’s implementa-
tion, because each of the aforementioned categories of metrics is required to support the
enterprise Java specifications. On top of these core services, application server vendors build
their own optimizations and services to enhance the performance of enterprise applications.
For example, BEA provides customizable thread pools and allows you to reserve threads for
specific subsets of application functionality, and IBM provides an additional caching mechanism
that holds dynamically generated content from servlets and JSPs. After observing the core
enterprise Java services, you need to learn the intricacies of your vendor-specific offerings.

Finally, you need to ask the question, “What do these metrics mean to my business process?”
Most of the time, you need to correlate the performance of your application server behavior
with the performance of your enterprise applications. For example, consider a JDBC connection
pool that always ranges between 90 and 100 percent usage, with occasional pending threads
waiting for a connection. Should the size of this pool be increased? Yes, most likely, but first
consider what business process is waiting on this connection pool. If it is a user request, then
most definitely increase the pool size. On the other hand, if it is a background batch process
that you want to allow to run, but you do not want to permit it to consume too many resources,
then restricting its runtime threads and database connections can minimize its impact on the
overall environment. Without an understanding of the underlying business process and require-
ments, you cannot assume that general recommendations are always applicable.

Note | have shared the following story with all of my customers and students, and in most of my Webinars,
so forgive me if you have heard this before. Whenever | talk about performance, | cannot help reflecting back
to the sorting lectures of the Data Structures and Algorithm Analysis class that | taught. Sorting algorithms
vary in performance from horrible to great (or in terms of algorithm orders from 0(n~2) to O(nlogn)). On the
final exam, | asked my students which algorithm is better to use: Bubblesort (0(n~2)) or Quicksort (O(nlogn))?
Most of my students knew it was a trick question; | did not want an absolute answer, but rather | wanted the
students to turn the question back around at me and ask, “For what size N?” The point is that Quicksort is
faster than Bubblesort, but only for large numbers of objects. When sorting fewer than 100 objects, the overhead
for using Quicksort is prohibitive to its viability. But with 1,000 objects, Quicksort will return results over 50 times
faster than Bubblesort. The point is that you need to understand general principles, but you need to be flexible
enough to adapt your thinking to serve the business processes.

69

70

CHAPTER 3 PERFORMANCE MEASUREMENTS

After applying general principles derived from the enterprise Java model to the metrics
that I am analyzing and then reflecting on the business values of those metrics, I next extract
performance metrics into a visualization tool to try to identify trends between metrics that can
lead to new correlations. For example, under load I might observe that the response time of a
service request increases as the thread pool usage reaches capacity and then the rate of time-
out rollbacks increases. Those three metrics—the response time of a specific service request,
the usage of a specific thread pool, and the rate of time-out rollbacks for a handful of specific
classes—empower me to write powerful rules specific to my environment. Furthermore, observing
the behavior of the environment just prior to this condition may provide information that can
be used to detect this problem before it greatly impacts the end-user experience. And the purpose
of our tuning efforts is to satisfy our customers.

Chapter 7 provides guidance in interpreting performance metrics and how they interrelate.

Visualizing Data

While writing code to detect and provide alerts based on metric thresholds is reasonable, writing
code to analyze and correlate data is a difficult task. It’s not difficult programmatically, but
rather the difficulty lies in identifying related metrics and interpreting their interrelationships.
To identify trends in metric behaviors and correlate them, present metric data sets in a visual-
ization tool. A visualization tool should allow you to overlay the metrics’ historical performance
(even if the history is only 30 minutes) to allow you to visually identify relationships. Good tools
present you with performance metrics and allow you to drag and drop metrics on top of one
another and then display your metrics on a single graph or on a set of them. With these graphs
you should be able to interpret metric meanings specific to the context of your application.
Using a spreadsheet provides another very effective and less expensive approach, though
itisjusta little slower. A spreadsheet allows you to generate graphs from various table rows and
columns, and thus it can be configured to plot multiple data sets. The manual component to
this process is that you are required to choose the data sets either by highlighting the columns
and walking through a wizard or manually choosing the data set row and column IDs (for example,
A7 to C14). In the early days, before I had access to more advanced tools, I used a spreadsheet
to architect both the threshold and advanced rules for our monitoring products. Many times a
metric looks interesting on paper, but the observed behavior is far from spectacular. Believe it
or not, many metrics that application server vendors provide do not behave as advertised or
are simply of little value. The only way to be sure of the utility of a metric is to plot the metric
over some time period and see if any valuable information can be gleaned from the graph.

CHAPTER 3 PERFORMANCE MEASUREMENTS

Summary

In order to effectively measure performance, we need to first understand what to measure. The
enterprise Java application model provides the framework from which we derive the type of
information to measure and the components from which to measure the information. Looking
specifically at the enterprise Java stack, we gather metrics from the following sources:

e Application server: We gather metrics through the JMX API.
e JVM: We gather information through exposed APIs and log files.
¢ Application: We gather metrics through code instrumentation.

Once we have these metrics, we aggregate them to transform raw values into meaningful
values that help in our interpretation. We correlate these aggregate values to derive business
values specific to our applications, and we visualize these business values to assess their impact on
our end users. In the next chapter, we will implement performance measurement on a sample
enterprise Java environment and extract meaningful values from what, at first, may appear to
be a disparate set of 15s and 32s.

n

CHAPTER 4

Implementing Performance
Measurements

(1

Okay, I understand the whole JMX thing and the depth of monitoring that we need to
identify problems in our environment, but do we really need to go out and purchase a tool to
do it for us, or can we build it ourselves?” John asked. “I have some very smart people in my
organization that should be able to do it.”

I could tell that John was looking for a quick and inexpensive solution that would solve all
of his problems. This was a good opportunity to explain the technology to him at the level of
detail he was looking for.

“Smart people can build anything,” I replied. “But the real question is this: are you in the
performance monitoring business or are you in the financial business?”

“Well, obviously, I'm in the financial business, but I could spare a couple people to work
on this for a couple months if I needed to.” John’s confidence in his team was admirable.

“How about this? Let me show you the details of the technology and you can decide for
yourself,” I responded. “I have code that can read application server metrics and implement
basic code instrumentation that I would love to explain to you. In my opinion, this problem is
complex enough that you are better finding a prebuilt solution, but the technology is interesting
and this exercise can get you through some of your initial troubleshooting.”

“Great, let me get my architect on the line!”

This chapter presents an overview of the technologies that gather performance measure-
ment metrics. Specifically, it presents code to obtain application server—specific metrics from
aJMX registry and a basic implementation of a custom instrumentation engine. Because all of
my previous books have been about Java programming, I had to add a “geek”-oriented
chapter. If you skip this chapter, it will not hurt your understanding of the material later in the
book, but reading this chapter will give you an appreciation for the technologies and a starting
point if you do not currently have a commercial product that you can use to start tuning your
Java EE environments today.

73

74

CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS

Reading Application Server Metrics

In Chapter 3, you learned that application server vendors publish much of their internal config-
uration and run-time behavior through a managed bean (MBean) registry that is accessible
through the Java Management Extensions JMX) API. In this section, we implement a statistics
servlet that accesses an application server’s MBean registry, iterates over all of its MBeans, and
returns MBean information as XML. The servlet itself displays MBean information in a raw
format; I use this servlet when determining the metrics to analyze when developing perfor-
mance monitoring software. It has the capability to present derived metrics, or metrics with
associated business value, and it is also capable of running in debug mode, where it returns a
large XML file displaying all MBeans, all MBean attributes, and all attribute values that can be
easily converted to a String.

One of the challenges that we face when obtaining MBean information is gaining access to
an MBean server, so to address this, we implement an extension to the servlet that delegates
obtaining the MBean server to a subclass of the servlet. Furthermore, the delegate is the entry
point to building application server—specific derived metrics.

Figure 4-1 illustrates the workflow of the statistics servlet as well as the relationship
between the statistics servlet and its application server-specific delegate. As shown in Figure 4-1,
when the statistics servlet AbstractStatsServlet receives a request from a Web browser or other
HTTP client, it first queries the delegate servlet for its MBeanServer and then asks it to build its
derived metrics. Afterward, if the servlet is running in debug mode (passed a debug=true servlet
parameter), it then iterates over the MBeans in the MBean registry and optionally captures
MBean attributes.

CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS

Browser

1 GET /stats

AbstractStatsServlet Debug
4 Mode
N\
extends 5
2 3

Iterator

AppServerStatsServiet Over
MBeans

getMBeanServer()) getPerformanceRoot()

Show
Attributes

Get
Bean
Attributes

Return
XML

Figure 4-1. Workflow of the statistics servlet and the relationship between the statistics servlet and

its application server-specific delegate

75

76

CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS

Listing 4-1 shows the source code for the AbstractStatsServlet class, which implements

the majority of the MBean interactions.

Listing 4-1. AbstractStatsServlet.java

package com.javasrc.tuning.web;

// Import servlet classes
import javax.servlet.*;
import javax.servlet.http.*;

// Import INDI classes
import javax.naming.*;

// Import JDOM classes
import org.jdom.*;
import org.jdom.output.*;

// Import Java classes
import java.util.*;

import javax.management.*;

import javax.management.j2ee.statistics.*;

Vak

* Abstract base class for building statistic servlets.

*

* Provides the following base functionality:

* - Queries MBean names, sorts, and caches

* - Debug mode to display all MBeans (with or without attributes)
* - Ability to refresh object names

* - XML output to the caller

*/

public abstract class AbstractStatsServlet extends HttpServlet
{

protected InitialContext ic;

protected ServletContext ctx = null;

// Computation parameters

protected long now = 01;

protected long lastSampleTime = 01;
protected Element lastRequest = null;

/

P
{

}

/

p
{

CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS

*k
* Obtains an MBeanServer to communicate with and uses it to build an initial
* map of object names.
*
* The map of object names is stored in the ServletContext with the name
* "object-names" The MBeanServer is stored in the ServletContext with the
* name "mbean-server"
*/
ublic void init()
try
{
// Load our contexts
this.ctx = getServletContext();
this.ic = new InitialContext();
// See if we already have the ObjectName Map defined in the
// application object
Map objectNames = (Map)ctx.getAttribute("object-names");
if(objectNames == null)
{
// Get the MBeanServer from the servlet instance
MBeanServer server = getMBeanServer();
// Save our MBeanServer and preload and save our object names
objectNames = this.preloadObjectNames(server);
ctx.setAttribute("object-names", objectNames);
ctx.setAttribute("mbean-server", server);
}
}
catch(Exception ex)
{
ex.printStackTrace();
}
*k

* Converts a String to a boolean
*/

rivate boolean getBoolean(String str)
if(str != null 88 str.equalsIgnoreCase("true"))
{
return true;
}

return false;

77

78 CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS

Ve
* Converts a boolean to a String

*/

private String getBooleanString(boolean b)

{
if(b)
{

return "true";

}

return "false";

Vak
* Returns an XML document to the caller containing MBean information.

* The following are request options:
*

* refresh Refresh the object-names map to pick up any newly
* added MBeans

* debug Dump the object-names map of MBeans inside the

* returned XML document

* showAttributes When dumping the object-names map of MBeans,

* include as many attribute values as we can extract
* showAttributeInfo When showing attributes, display extended

* information about the attribute

*/

public void service(HttpServletRequest req, HttpServletResponse res)
throws ServletException {
try {
// Load our MBeanServer from the ServletContext
MBeanServer server =
(MBeanServer)this.ctx.getAttribute("mbean-server");

// Get our request objects
boolean refresh = getBoolean(req.getParameter("refresh"));
boolean debug = getBoolean(req.getParameter("debug"));
boolean showAttributes = getBoolean(

req.getParameter("showAttributes"));
boolean showAttributeInfo = getBoolean(

req.getParameter("showAttributeInfo"));
Map objectNames = null;
if(refresh)

{

objectNames = this.preloadObjectNames(server);
System.out.println("Refresh object map...");

CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS

else
{

objectNames = (Map)this.ctx.getAttribute("object-names");
}

this.now = System.currentTimeMillis();

// Ask the servlet instance for the root of the document
Element root = this.getPerformanceRoot(server, objectNames);

// Dump the MBean info
if(debug)
{
Element mbeans = new Element("mbeans");
for(Iterator i=objectNames.keySet().iterator(); i.hasNext();)
{
String key = (String)i.next();
Element domain = new Element("domain");
domain.setAttribute("name", key);
Map typeNames = (Map)objectNames.get(key);
for(Iterator j=typeNames.keySet().iterator(); j.hasNext();)
{
String typeName = (String)j.next();
Element typeElement = new Element("type");
typeElement.setAttribute("name", typeName);
List beans = (List)typeNames.get(typeName);
for(Iterator k=beans.iterator(); k.hasNext();)
{
ObjectName on = (ObjectName)k.next();
Element bean = new Element("mbean");
bean.setAttribute("name", on.getCanonicalName());

// List the attributes
if(showAttributes)
{
try
{
MBeanInfo info = server.getMBeanInfo(on);
Element attributesElement =
new Element("attributes");
MBeanAttributeInfo[] attributeArray =
info.getAttributes();
for(int x=0; x<attributeArray.length; x++)
{
String attributeName =
attributeArray[x].getName();
Element attributeElement =
new Element("attribute");

79

80

CHAPTER 4

IMPLEMENTING PERFORMANCE MEASUREMENTS

attributeElement.setAttribute(
"name", attributeName);
if(showAttributeInfo)
{
String attributeClass =
attributeArray[x].getType();
attributeElement.setAttribute(
"class", attributeClass);
attributeElement.setAttribute(
"description”,
attributeArray[x].getDescription());
attributeElement.setAttribute(
"is-getter",
getBooleanString(
attributeArray[x].isIs()));
attributeElement.setAttribute(
"readable",
getBooleanString(
attributeArray[x].isReadable()));
attributeElement.setAttribute(
"writable",
getBooleanString(
attributeArray[x].isWritable()));

// Handle special cases
if(attributeClass.equalsIgnoreCase(
"javax.management.j2ee.statistics.Stats"))

{
Element statsElement =
getStatsElement(
(Stats)(server.getAttribute(on,
attributeName)));
attributeElement.addContent(
statsElement);
}
}
try
{

Object objectValue = server.getAttribute(
on, attributeName);
if(objectValue != null)
{
attributeElement.addContent(
objectValue.toString());

}

CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS

catch(Exception exx)
{
attributeElement.addContent(
"Error obtaining value");
}
attributesElement.addContent(
attributeElement);

}

bean.addContent(attributesElement);
}
catch(Exception noAttributesException)
{
}

}

typeElement.addContent(bean);

}
domain.addContent(typeElement);

}

mbeans.addContent(domain);

}

root.addContent(mbeans);

}

// Save our last sample time
this.lastSampleTime = this.now;

// Save the last request
this.lastRequest = root;

// Output the XML document to the caller
XMLOutputter out = new XMLOutputter(" ", true);
out.output(root, res.getOutputStream());

catch(Exception e)

{

e.printStackTrace();
throw new ServletException(e);

81

82 CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS

Vi
* This method extracts a JSR-77 stats metric from the specified ObjectName

* with the specified attribute name
*

* @param stats The JSR 77 Stats object
*
* @return A JDOM XML node containing the statistics
*/
protected Element getStatsElement(Stats stats)
{
Element statsElement = new Element("stats");
try
{

Statistic[] statistics = stats.getStatistics();
for(int i=0; i<statistics.length; i++)

{
Element statElement = getStatElement(statistics[1]);
statsElement.addContent(statElement);
}
}
catch(Exception e)
{
Element exceptionElement = new Element("exception");
exceptionElement.addContent(e.toString());
statsElement.addContent(exceptionElement);
}
return statsElement;
}
protected Element getStatElement(Statistic statistic)
{
Element statElement = new Element("stat");
try
{

statElement.setAttribute("name", statistic.getName());
statElement.setAttribute("description", statistic.getDescription());
statElement.setAttribute("unit", statistic.getUnit());
statElement.setAttribute("start-time", Long.toString(
statistic.getStartTime()));
statElement.setAttribute("last-sample-time",
Long.toString(statistic.getlastSampleTime()));

CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS

// Get the specific statistic type information
if(statistic instanceof BoundedRangeStatistic)

{
statElement.setAttribute("type", "bounded-range-statistic");

BoundedRangeStatistic brs = (BoundedRangeStatistic)statistic;

statElement.setAttribute("current",
Long.toString(brs.getCurrent()));

statElement.setAttribute("low-water-mark",
Long.toString(brs.getLowWaterMark()));

statElement.setAttribute("high-water-mark",
Long.toString(brs.getHighWaterMark()));

statElement.setAttribute("lower-bound",
Long.toString(brs.getLowerBound()));

statElement.setAttribute("upper-bound",
Long.toString(brs.getUpperBound()));

}

else if(statistic instanceof BoundaryStatistic)

{
statElement.setAttribute("type", "boundary-statistic");

BoundaryStatistic bs = (BoundaryStatistic)statistic;
statElement.setAttribute("lower-bound",
Long.toString(bs.getLowerBound()));
statElement.setAttribute("upper-bound",
Long.toString(bs.getUpperBound()));
}

else if(statistic instanceof RangeStatistic)

{
statElement.setAttribute("type", "range-statistic");

RangeStatistic rs = (RangeStatistic)statistic;
statElement.setAttribute("current",
Long.toString(rs.getCurrent()));
statElement.setAttribute("low-water-mark",
Long.toString(rs.getLowhWaterMark()));
statElement.setAttribute("high-water-mark",
Long.toString(rs.getHighWaterMark()));
}

else if(statistic instanceof CountStatistic)

{
statElement.setAttribute("type", "count-statistic");

CountStatistic c¢s = (CountStatistic)statistic;
statElement.setAttribute("count", Long.toString(cs.getCount()));

83

84

CHAPTER 4

}

IMPLEMENTING PERFORMANCE MEASUREMENTS

else if(statistic instanceof StringStatistic)

{
statElement.setAttribute("type", "string-statistic");
StringStatistic ss = (CountStatistic)statistic;
statElement.setAttribute("current", ss.getCurrent());
}
*/
else if(statistic instanceof TimeStatistic)
{
statElement.setAttribute("type", "time-statistic");
TimeStatistic ts = (TimeStatistic)statistic;
statElement.setAttribute("count", Long.toString(ts.getCount()));
statElement.setAttribute("max-time",
Long.toString(ts.getMaxTime()));
statElement.setAttribute("min-time",
Long.toString(ts.getMinTime()));
statElement.setAttribute("total-time",
Long.toString(ts.getTotalTime()));
}
/*
else if(statistic instanceof MapStatistic)
{
statElement.setAttribute("type", "map-statistic");
MapStatistic ms = (MapStatistic)statistic;
Map m = ms.asMap();
for(Iterator i=m.keySet().iterator(); i.hasNext();)
{
String name = (String)i.next();
Statistic s = (Statistic)m.get(name);
Element subElement = getStatElement(s);
statElement.addContent(subElement);
}
}
*/

catch(Exception e)

{

}

Element exceptionElement = new Element("exception");
exceptionElement.addContent(e.toString());
statElement.addContent(exceptionElement);

return statElement;

CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS

/¥*

* Classes extending this servlet are responsible for locating and returning
* an MBeanServer instance. This instance is used to preload object names and
* for managing state access.

*/

public abstract MBeanServer getMBeanServer();

Vioio

* This is the main focus point of the application server-specific servlet

* classes; through the getPerformanceRoot() method you will build an XML

* document that you want to return to the caller

*/

public abstract Element getPerformanceRoot(MBeanServer server, Map objectNames);

Vioio
* Returns a specific ObjectName with the MBean name for the specified MBean
* type in the specified domain
*/
protected ObjectName getObjectName(Map objectNames, String domain,
String type, String name)

{
// Get the List of domain names
List ons = getObjectNames(objectNames,domain,type);
// Find the requested bean
for(Iterator i=ons.iterator(); i.hasNext();)
{
ObjectName on = (ObjectName)i.next();
String objectName = on.getKeyProperty("name");
if(objectName != null && objectName.equalsIgnoreCase(name))
{
// Found it
return on;
}
}
// Didn't find it
return null;
}
Vi

* Returns a List of ObjectNames in the specified domain for the specified
* type of MBeans
*/
protected List getObjectNames(Map objectNames, String domain, String type)
{

85

86 CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS

// Get the domain map

Map domainMap = getDomainMap(objectNames,domain);
if(domainMap == null)

{

return null;

}

// Get the List of ObjectNames
List 1 = (List)domainMap.get(type);
return 1;

}

Viokd
* Returns the domain map for the specified doamin name from the map of
* object names; map of object names must be passed instead of stored as a
* member variable to support multithreading
*/
protected Map getDomainMap(Map objectNames, String domain)
{
// Get the domain Map
Map domainMap = (Map)objectNames.get(domain);
return domainMap;

/x*

* Returns all of the domain names found in the MBeanServer
*/

protected Set getDomainNames(Map objectNames)

{
}

return objectNames.keySet();

Preloads the ObjectName instances and sorts them into a Map indexed by
domain; e.g., jboss.web is a domain and Jetty=0,SocketListener=0 is the
ObjectName.

For WebSphere, further categorizes by "type":

Map of domain names to a vector of maps of type names to object names
*/

protected Map preloadObjectNames(MBeanServer server)

{

Map objectNames = new TreeMap();

try

{

Set ons = server.queryNames(null, null);

CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS 87

for(Iterator i=ons.iterator(); i.hasNext();)

{
ObjectName name = (ObjectName)i.next();
String domain = name.getDomain();
Map typeNames = null;
if(objectNames.containsKey(domain))
{
// Load this domain's List from our map and
// add this ObjectName to it
typeNames = (Map)objectNames.get(domain);
}
else
{
// This is a domain that we don't have yet, add it
// to our map
typeNames = new TreeMap();
objectNames.put(domain, typeNames);
}
// Search the typeNames map to match the type of this object
String typeName = name.getKeyProperty("type");
if(typeName == null) typeName = name.getKeyProperty("Type");
if(typeName == null) typeName = "none";
if(typeNames.containsKey(typeName))
{
List 1 = (List)typeNames.get(typeName);
1.add(name);
}
else
{
List 1 = new ArraylList();
1.add(name);
typeNames.put(typeName, 1);
}
}
}
catch(Exception e)
{
e.printStackTrace();
}

return objectNames;

The AbstractStatsServlet class delegates to its subclass to obtain an MBeanServer and then
it stores that MBeanServer in the ServletContext. The ServletContext is referred to in Java Web
technologies as the application scope, meaning that any servlet or JSP file in the Web application

88

CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS

can access it through its attribute name, which in this case is mbean-server. We do this to obtain
the MBeanServer the first time the servlet is invoked and then cache it for later use. The
AbstractStatsServlet iterates over all of the MBeans in the MBean registry and captures each
MBean’s ObjectName. The MBean server uses each MBean'’s ObjectName to discover its attributes
and attribute values.

When the servlet is invoked, it first calls the subclass’s getPerformanceRoot () method, passing
it the MBeanServer and the collection of ObjectNames so that it can build its derived metrics.

If the servlet is run in debug mode, when we pass it the servlet request parameter debug with
avalue of true, it iterates over all MBeans and reports each MBean name. If it is configured to
show attributes, when we pass the request attribute showAttributes with a value of true, it extracts
and displays each MBean'’s attributes. Finally, if the servlet is configured to show attribute values,
when we pass the request attribute showAttributeValues with a value of true, it attempts to
obtain attribute values. A special type of attribute value that reports JSR-77 statistics is signified
by the class name javax.management.j2ee.statistics.Stats. In this case, the servlet extracts
those values.

You can read through the rest of the code details yourself. The majority of the code is
structured around working with the MBean attribute interfaces, which can be verbose, but
straightforward.

The AbstractStatsServlet class does not have much value without an application server—
specific subclass, so Listing 4-2 presents a sample subclass that communicates with BEA
WebLogic. You can download sample code for communicating with IBM WebSphere and JBoss
from the Source Code area of the Apress Web site at www.apress.comand from www. javasrc.com.

Listing 4-2. WeblogicStatsServlet.java

package com.javasrc.tuning.weblogic.web;

// Import INDI classes
import javax.naming.*;

// Import JDOM classes
import org.jdom.*;

import org.jdom.input.*;
import org.jdom.output.*;

// Import Java classes
import java.util.*;
import javax.management.*;

// Import WeblLogic IMX classes

import weblogic.jndi.Environment;

import weblogic.management.*;

import weblogic.management.runtime.*;

import weblogic.management.configuration.*;

import weblogic.management.descriptors.*;

import weblogic.management.descriptors.toplevel.*;
import weblogic.management.descriptors.weblogic.*;

CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS 89

// Import our base class
import com.javasrc.tuning.web.*;

public class WeblLogicStatsServlet extends AbstractStatsServlet
{

Voo
* Classes extending this servlet are responsible for locating and returning
* an MBeanServer instance. This instance is used to preload object names and
* for managing state access.
*/
public MBeanServer getMBeanServer()
{
// Load our initialization information
String url = null;
String username = null;
String password = null;
try
{
String config = getServletContext().getResource(
"/WEB-INF/xml/stats.xml").toString();
SAXBuilder builder = new SAXBuilder();
Document doc = builder.build(config);
Element root = doc.getRootElement();
Element adminServer = root.getChild("admin-server");
String port = adminServer.getAttributeValue("port");
url = "t3://localhost:" + port;
username = adminServer.getAttributevValue("username");
password = adminServer.getAttributevValue("password");
}

catch(Exception e)

{
}

e.printStackTrace();

// Retrieve a reference to the MBeanServer

MBeanHome localHome = (MBeanHome)Helper.getAdminMBeanHome (
username, password, url);

return localHome.getMBeanServer();

}

/x%
* This is the main focus point of the application server-specific servlet
* classes; through the getPerformanceRoot() method you will build an XML
* document that you want to return to the caller
*/

90

CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS

public Element getPerformanceRoot(MBeanServer server, Map objectNames)

{

Element root = new Element("weblogic-tuning-stats");
// Build the document: construct derived metrics

// Return the document
return root;

The WebLogicStatsServlet is driven by the XML file located in the Web Archive’s (WAR)
/WEB-INF/xml/stats.xml, as shown in Listing 4-3.

Listing 4-3. stats.xml

<weblogic-stats>
<admin-server port="7001" username="weblogic" password="weblogic" />
</weblogic-stats>

This XML file tells the WebLogicStatsServlet what port WebLogic is listing on and provides
an administrator’s username and password. The WebLogicStatsServlet returns an MBeanServer
by using WebLogic’s Helper class:

MBeanHome localHome = (MBeanHome)Helper.getAdminMBeanHome (
username, password, url);
return localHome.getMBeanServer();

The getPerformanceRoot () method is not currently configured to build derived metrics,
but it provides a mechanism for you to build these metrics.
To compile these classes, you are going to need a few dependencies:

e JDOM: This XML parsing API is built on top of a Simple API for XML (SAX) engine. It
constructs a very Java-centric representation of an XML document, built around Collections
classes. You can download JDOM from www. jdom. org. You need to add the jdom.jar and
xerces. jar files to your CLASSPATH.

e JSR-77:This API exposes a standardized representation of performance metrics. You can
download it from Sun’s Web site: http://java.sun.com. You need to add the java77.jar
file to your CLASSPATH.

e WebLogic classes: To use the WebLogic interfaces to gain access to its MBeanServer, you
need to include the weblogic. jar file in your CLASSPATH. This file is packaged with your
WebLogic installation—for example, WebLogic 8.1 ships this file in the {weblogic home
directory}/server/1ib folder.

Finally, in order to package these classes into a WAR file, you need to add two deployment
descriptors, weblogic.xml and web.xml, shown in Listing 4-4 and Listing 4-5, respectively.

CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS

Listing 4-4. weblogic.xml

<?xml version="1.0" encoding="UTF-8"?>

<IDOCTYPE weblogic-web-app PUBLIC
"-//BEA Systems, Inc.//DTD Web Application 6.0//EN"
"http://www.bea.com/servers/wls610/dtd/weblogic-web-jar.dtd">

<weblogic-web-app>
<description>Statistics Web Application</description>
</weblogic-web-app>

Listing 4-5. web.xml

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE web-app PUBLIC '-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN'
"http://java.sun.com/j2ee/dtds/web-app_2 2.dtd"'>
<web-app>
<servlet>
<servlet-name>StatsServlet</servlet-name>
<servlet-class>com. javasrc.tuning.weblogic.web.WeblogicStatsServlet. =
</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>StatsServlet</servlet-name>
<url-pattern>/*</url-pattern>
</servlet-mapping>

<servlet-mapping>
<servlet-name>StatsServlet</servlet-name>
<url-pattern>/stats</url-pattern>
</servlet-mapping>
</web-app>

When you build your WAR file, you need to include the following files in the following folders:

WEB-INF/classes/com/javasrc/tuning/web/AbstractStatsServlet.class
WEB-INF/classes/com/javasrc/tuning/weblogic/web/WeblogicStatsServlet.class
WEB-INF/1ib/jdom.jar

WEB-INF/1ib/xerces.jar

WEB-INF/web.xml

WEB-INF/weblogic.xml

WEB-INF/xml/stats.xml

Then follow the standard WebLogic mechanism to deploy this WAR file to your environment.
In production mode, you need to use the administration console, and in development, you
need to copy this file to your live application directory.

91

CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS

This servlet can be accessed through the following URL:

http://localhost:7001/stats/stats?debug=truedshowAttributes=trued _
showAttributeValues=true

To give you a flavor for the type of output (my XML file running against WebLogic 8.1 is
over 2MB, so I will save you from reading through 40 pages of uninteresting information), the
following is an excerpt that displays the WebLogic Default execute queue for the examples server:

<weblogic-tuning-stats>
<mbeans>
<domain name="examples">
<type name="ExecuteQueue">
<mbean name="examples:Name=weblogic.kernel.Default,
Server=examplesServer, Type=ExecuteQueue">
<attributes>
<attribute name="MBeanInfo">weblogic.management.tools.Info@1ddcb
</attribute>
<attribute name="Queuelength">65536</attribute>
<attribute name="ObjectName">
examples:Name=weblogic.kernel.Default,
Server=examplesServer,
Type=ExecuteQueue</attribute>
<attribute name="Notes" />
<attribute name="Name">weblogic.kernel.Default</attribute>
<attribute name="Parent">examples:Name=examplesServer,
Type=Server</attribute>
<attribute name="ThreadPriority">5</attribute>
<attribute name="PersistenceEnabled">true</attribute>
<attribute name="ThreadCount">15¢</attribute>
<attribute name="SetFields">[Name]</attribute>
<attribute name="CachingDisabled">true</attribute>
<attribute name="Registered">false</attribute>
<attribute name="Type">ExecuteQueue</attribute>
<attribute name="QueuelengthThresholdPercent">90</attribute>
<attribute name="ThreadsIncrease">0</attribute>
<attribute name="ThreadsMaximum">400</attribute>
<attribute name="ThreadsMinimum">5</attribute>
<attribute name="Comments" />
<attribute name="DefaultedMBean">true</attribute>
</attributes>
</mbean>
</type>
<type name="ExecuteQueueConfig">
<mbean name="examples:Location=examplesServer, _
Name=weblogic.kernel.Default, _
ServerConfig=examplesServer, Type=ExecuteQueueConfig">

<attributes>
<attribute

CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS

name="MBeanInfo">weblogic.management.tools.Info@1ddcb

</attribute>

<attribute
<attribute

<attribute
<attribute
<attribute

<attribute
<attribute
<attribute
<attribute
<attribute
<attribute
<attribute
<attribute
<attribute
<attribute
<attribute
<attribute
<attribute
</attributes>
</mbean>
</type>

name="Queuelength">65536</attribute>
name="0ObjectName">examples:Location=examplesServer,
Name=weblogic.kernel.Default,
ServerConfig=examplesServer,
Type=ExecuteQueueConfig</attribute>
name="Notes" />
name="Name">weblogic.kernel.Default</attribute>
name="Parent">examples:Location=examplesServer,
Name=examplesServer,
Type=ServerConfig</attribute>
name="ThreadPriority">5</attribute>
name="PersistenceEnabled">true</attribute>
name="ThreadCount">15</attribute>
name="SetFields">[Name]</attribute>
name="CachingDisabled">true</attribute>
name="Registered">false</attribute>
name="Type">ExecuteQueueConfig</attribute>
name="QueuelLengthThresholdPercent">90</attribute>
name="ThreadsIncrease">0</attribute>
name="ThreadsMaximum">400</attribute>
name="ThreadsMinimum">5</attribute>
name="Comments" />
name="DefaultedMBean">true</attribute>

<type name="ExecuteQueueRuntime">
<mbean name="examples:Location=examplesServer,

<attributes>
<attribute
<attribute

Name=weblogic.kernel.Default,
ServerRuntime=examplesServer,
Type=ExecuteQueueRuntime">

name="Name">weblogic.kernel.Default</attribute>

name="Parent">examples:Location=examplesServer,
Name=examplesServer,
Type=ServerRuntime

</attribute>

<attribute
<attribute
<attribute

name="PendingRequestCurrentCount">0</attribute>
name="ServicedRequestTotalCount">56</attribute>
name="MBeanInfo">weblogic.management.tools.Info@b846c6

</attribute>

<attribute
<attribute
<attribute

name="CachingDisabled">true</attribute>
name="Registered">false</attribute>
name="ExecuteThreads">.</attribute>

93

94 CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS

<attribute
<attribute

<attribute

<attribute
<attribute
<attribute
</attributes>
</mbean>
</domain>
</mbeans>
</weblogic-tuning-stats>

name="ExecuteThreadCurrentIdleCount"”>14</attribute>
name="PendingRequestOldestTime">
1116563936093</attribute>
name="0bjectName">examples:Location=examplesServer,
Name=weblogic.kernel.Default,
ServerRuntime=examplesServer,
Type=ExecuteQueueRuntime</attribute>
name="Type">ExecuteQueueRuntime</attribute>
name="ExecuteThreadTotalCount">15</attribute>
name="StuckExecuteThreads" />

We look at how to analyze this data in Chapter 7, but for now, please note the following

about these metrics:

* The thread pool length is 15 (Name=ExecuteQueueConfig, Attribute=ThreadCount).

¢ Fourteen threads are idle (Name=ExecuteQueueRuntime,
Attribute=ExecuteThreadCurrentIdleCount).

¢ No requests are waiting in the queue for a thread (Name=ExecuteQueueRuntime,
Attribute=PendingRequestCurrentCount).

* The thread pool cannot increase its size if it needs more threads
(Name=ExecuteQueueConfig, Attribute=ThreadsIncrease = 0).

Therefore, if we were building a derived metric to represent this data, we would obtain the
ExecuteQueueConfig and ExecuteQueueRuntime MBeans from the “examples” domain and build
a friendly representation of the aforementioned metrics.

As Iwarned at the beginning of this chapter, this information I present here is very geeky, but
it offers a relatively straightforward way of programmatically accessing performance information.
The tough part—the interpretation of these metrics against business processes—is covered in

Chapter 7.

Implementing Code Instrumentation

Code instrumentation comes in two flavors:

* Bytecode instrumentation

e Custom instrumentation

CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS

Bytecode instrumentation involves building a custom class loader, prepending it to the list
of class loaders, and then inserting bytecode that tracks method response times, exceptions,
and method time-outs into classes as they are loaded. It requires a command of bytecode oper-
ations, which is analogous in the C++ world to writing assembly code rather than C++ code.
Bytecode instrumentation does not require you to make any modifications to your code and
results in highly optimized instrumentation. As illustrated in Figure 4-2, when a Java process
creates a class, it loads it through a class loader. That class loader loads the class, passes it to
an instrumentor that instruments all of its methods by adding bytecode operations, and then
returns it to the calling process.

Load Class Create Class Instance
Class Class Loader Java Process

Send Class to

Instrumentor
- Return Class to Caller
Instrumentation
Instrument Class
Instrumentor Class
Instrumentation

Figure 4-2. Bytecode instrumentation process

Custom instrumentation, on the other hand, requires you to hand-code the instrumentation
code into your Java classes. It is not as efficient as bytecode instrumentation, and it’s burden-
some for the programmer, but conceptually it is much easier to understand and implement.
Commercial offerings provide bytecode instrumentation, but it takes many months of dedicated
programming effort to realize an effective implementation.

In this section, we will build a custom instrumentation engine and a simple Web interface
that you can use to control the instrumentation engine. The core requirement for classes that
you want to instrument is that all instrumented methods must register themselves with the
instrumentor, as illustrated in Figure 4-3, and inform it when methods start and stop.

95

96 CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS

Class 1 Class 2 Class 3
\/
Method 1 Method 4
Instrumentor
Java Virtual Machine

Figure 4-3. Custom instrumentation process

Internally, the instrumentor generates a unique identifier when a request starts. That
unique identifier is then passed to each instrumented method. In this way, the instrumentor
can track the order of method calls and later reconstruct the request, by implementing method
tracking using a programmatic stack as illustrated in Figure 4-4.

Figure 4-4 shows the state of the internal stack as method calls are made. Because method
1is the parent of the tree, it stays on the stack the entire time. Method 2 is pushed on the stack
and then popped off when it completes. Method 3 is then pushed on the stack, and because it
calls method 4, method 4 is pushed on top of method 3. When method 4 completes, then the
call tree unwinds and all methods are popped off in the reverse order that they were pushed on.

CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS

Method 1 End Pop Method 1
Method 3 End Pop Method 3
Method 4 End Pop Method 4

Method 2
Method 4 Start Push Method 4

Method 1

Method 3 Start Push Method 3

Method3 — Method 4
Method 2 End Pop Method 2
Method 2 Start Push Method 2
Method 1 Start Push Method 1

Method 4
Method 2 Method 3 Method 3 Method 3

Method 1 Method 1 Method 1 Method 1 Method 1 Method 1 Method 1

| Stack || Stack || Stack || Stack || Stack || Stack || Stack || Stack || Stack |

Figure 4-4. In this scenario, method 1 calls method 2 and method 3, and method 3 makes a call to
method 4. Internally, the instrumentor pushes each method onto its stack when it starts and then
pops off the method when it ends.

Instrumentation Engine

The instrumentation engine is implemented through three classes:
¢ Instrumentor
* RequestInfo
* MethodInfo

The code for the Instrumentor class is shown in Listing 4-6.

97

98

CHAPTER 4

IMPLEMENTING PERFORMANCE MEASUREMENTS

Listing 4-6. Instrumentor.java

package com.

Jjavasrc.instrument;

// Import Java classes

import java.

util.*;

// Import JDOM classes
import org.jdom.*;

J%k

* Singleton class that records transactions

*/

public class Instrumentor

{

/%%
* Maps
*/

private

Vi
* Maps
*/

private

Vi
* Maps
*/

private

private
private
private

request IDs to a stack (LinkedlList) of method calls

static Map requestStacks = new HashMap(100);

request IDs to request names

static Map requestToIdMap = new HashMap(100);

request names to RequestInfos
static Map requests = new TreeMap();
static long startTime;

static long endTime;
static boolean instrumenting = false;

public static void start()

{

startTime = System.currentTimeMillis();
requestStacks.clear();
requestToIdMap.clear();
requests.clear();

instrumenting = true;

}

public static void stop()

{

endTime = System.currentTimeMillis();
instrumenting = false;

CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS

public static boolean isInstrumenting()

{
return instrumenting;
}
Vil
* Returns an ID for the specified request name
*/
public static String getId(String req)
{
return req + "-" + System.currentTimeMillis();
}
ik

* Marks the start of a request
*/
public static void startRequest(String id, String requestName)
{
// Only work if we are instrumenting
if(!instrumenting)

{
}

System.out.println("Starting request: " + id + ", " + requestName);
if(!requests.containsKey(requestName))

{

return;

RequestInfo request = new RequestInfo(requestName);
requests.put(requestName, request);

}

requestToIdMap.put(id, requestName);

}

/**
* Marks the end of a request
*/
public static void endRequest(String id)
{
// Only work if we are instrumenting
if(!instrumenting)
{
return;
}
System.out.println("Ending request: " + id);
// Get the root element for this request
LinkedList requestStack = (LinkedlList)requestStacks.get(id);
MethodInfo root = (MethodInfo)requestStack.removelast();

99

100 CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS

System.out.printIn("ROOT:" + root);

// See if we already have the request

String requestName = (String)requestToIdMap.get(id);
System.out.printIn("\tRequest Name: " + requestName);
RequestInfo request = null;

if(requests.containsKey(requestName))

{
// Found the request
System.out.println("Found the request...");
request = (RequestInfo)requests.get(requestName);
request.addRequest(root);
}
else
{
System.out.println("Could not find request: " + requestName);
}
}
Vi
* Marks the start of a method
*/
public static void startMethod(String id, String qualifiedName)
{

// Only work if we are instrumenting
if(!instrumenting)

{
}

return;

n " "

System.out.println("Starting method: " + id + ", " + qualifiedName);
// Get the Stack for this ID
LinkedlList stack = null;

if(requestStacks.containsKey(id))

{
stack = (LinkedList)requestStacks.get(id);
}
else
{
stack = new LinkedlList();
requestStacks.put(id, stack);
}

// Build the method info and add it to our stack
MethodInfo method = new MethodInfo(qualifiedName);
method.start();

stack.add(method);

/x%
* Marks the end of a method

CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS

public static void endMethod(String id)

{

}

// Only work if we are instrumenting
if(!instrumenting)
{

return;

}

System.out.println("Ending method: " + id);
// Get the stack for this method
LinkedList stack = (LinkedlList)requestStacks.get(id);

// Get the last method executed
MethodInfo method = (MethodInfo)stack.removelast();

// Tell the method that it has completed
method.end();

// Add this method's info to its parent method
if(stack.size() == 0)

{
// Top of the stack; push it back on for endRequest to handle
stack.addLast(method);

}

else

{
MethodInfo parent = (MethodInfo)stack.getlast();
parent.addSubMethod(method);

}

public static Element toXML()

{

Element report = new Element("instrumentation-report");
report.setAttribute("request-count", Integer.toString(requests.size()));
if(requests.size() == 0)

{
}

return report;

report.setAttribute("start-time", Long.toString(startTime));
report.setAttribute("end-time", Long.toString(endTime));
report.setAttribute("session-length",

Long.toString(endTime - startTime));

101

102 CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS

Element requestsElement = new Element("requests");
for(Iterator i = requests.keySet().iterator(); i.hasNext();)

{
String requestName = (String)i.next();
RequestInfo requestInfo = (RequestInfo)requests.get(requestName);
requestsElement.addContent(requestInfo.toXML());

}

report.addContent(requestsElement);
return report;

The Instrumentor class operates by exposing the following commands:
¢ start(): This method tells the instrumentor to start recording call traces.
¢ stop(): This method tells the instrumentor to stop recording call traces.

e getId(): This method returns a unique identifier for a request. In this case, it takes the
request name and appends the current time in milliseconds to the end of it.

e startRequest(): This method starts tracing a request.

* endRequest(): This method stops tracing a request.

¢ startMethod(): This method starts a method inside a request.
¢ endMethod(): This method ends a method inside a request.

Requests are maintained in a RequestInfo object, which serves to maintain a collection of
MethodInfo objects and provide request-level aggregate data. A MethodInfo object represents a
method and maintains a record of all of the submethods that it calls. It calculates the method
timings and relevant metrics, such as call counts, minimum time, maximum time, cumulative
time, and exclusive time. This relationship is illustrated in Figure 4-5.

When a request starts, startRequest() creates a RequestInfo for the request and stores it
in the request map. As methods are invoked, startMethod() creates MethodInfo instances and
pushes them onto the method stack, and endMethod() pops them off, rolling their performance
metrics into the next node on the stack (the parent method). When the request completes,
endRequest() pops the root method off the method stack and adds it to the RequestInfo in the
request map.

Instrumentor

CHAPTER 4

IMPLEMENTING PERFORMANCE MEASUREMENTS

startRequest()

startMethod()

endMethod()

Method
Stack

Request Map
Requestinfo Methodinfo
Requestinfo Performance) | Submethod
Metrics Map
Requestinfo
Requestinfo
Requestinfo Methodinfo
Requestinfo | | |
Requestinfo Methodinfo Methodinfo
Methodinfo
Methodinfo

Figure 4-5. The Instrumentor class exposes an interface to manage requests and track the methods

it calls.

The source code for the RequestInfo and MethodInfo classes is shown in Listing 4-7 and
Listing 4-8, respectively.

Listing 4-7. RequestInfo.java

package com.javasrc.instrument;

import java.util.*;

// Import JDOM classes

import org.jdom.*;

public class RequestInfo

{

private String request;
private MethodInfo root;

public RequestInfo(String request)

{

this.request = request;

103

104 CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS

public void addRequest(MethodInfo newRequest)

{
if(this.root == null)
{
// This is the first instance of this request; save it
this.root = newRequest;
}
else
{
// Add this call to the request
this.root.addCall(newRequest);
}
}
public Element toXML()
{
Element requestElement = new Element("request");
requestElement.setAttribute("name", request);
requestElement.setAttribute("ave-time",

Long.toString(root.getAverage()));
requestElement.setAttribute("min-time", Long.toString(root.getMin()));
requestElement.setAttribute("max-time", Long.toString(root.getMax()));
requestElement.setAttribute("call-count",

Integer.toString(root.getCallCount()));
requestElement.addContent(root.toXML());
return requestElement;

}

Listing 4-8. MethodInfo.java

package com.javasrc.instrument;

import org.jdom.*;
import java.util.*;

ik
* Stores information about a method and its submethods
*/

public class MethodInfo

{

Vi
* This method's class name
*/

private String className;

CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS

/x%
* This method's name

*/

private String methodName;

Vak
* The total time spent in this method
*/

private long totalTime;

/x%
* The number of times this method was called
*/

private int callCount;

Vak
* The minimum amount of time that this method was executed
*/

private long minTime = -1;

ik
* The maximum amount of time that the method was executed
*/

private long maxTime = -1;

/x%
* Contains a list of all submethods that this method calls
*/

private Map submethods = new TreeMap();

ik

* The start time of this method, used to compute method response time
*/

private transient long startTime;

Vs

* Creates a new MethodInfo

*

* @param qualifiedName The fully qualified name of the method

*/

public MethodInfo(String qualifiedName)

{
int lastPeriod = qualifiedName.lastIndexOf('.');
this.className = qualifiedName.substring(0, lastPeriod);
this.methodName = qualifiedName.substring(lastPeriod + 1);

105

106 CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS

Vi
* The start of the method
*/
public void start()
{
this.startTime = System.currentTimeMillis();
}
Vi
* The end of the method
*/
public void end()
{
long endTime = System.currentTimeMillis();
long methodTime = endTime - this.startTime;
System.out.println("Start time: " + startTime + ", end time: " +
endTime + ", method time: " + methodTime);
this.totalTime += methodTime;
this.callCount++;
if(this.minTime == -1 || methodTime < this.minTime)
{
this.minTime = methodTime;
}
if(this.maxTime == -1 || methodTime > this.maxTime)
{
this.maxTime = methodTime;
}
}
Vak
* Returns the fully qualified method name
*/
public String getMethodName()
{
return this.className + "." + this.methodName;
}
Vi
* Returns the call count of this method
*/
public int getCallCount()
{

return this.callCount;

}

CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS

Vass
* Returns the average time that this method took to execute (in ms)
*/

public long getAverage()

{
return (long)((double)this.totalTime / (double)this.callCount);

}

Vass

* Returns the minimum amount of time that this method took to execute (in ms)
*/

public long getMin()

{

return (long)this.minTime;

}

/x%

* Returns the maximum amount of time that this method took to execute (in ms)
*/

public long getMax()

{
return (long)this.maxTime;
}
Vass
* Returns the total time spent in this method
*/
public long getTotalTime()
{
return this.totalTime;
}
Vs
* Returns all submethods
*/
public Collection getSubMethods()
{
return this.submethods.values();
}
Vs
* Adds a submethod to this method
*/
public void addSubMethod(MethodInfo method)
{

this.submethods.put(method.getMethodName(), method);
//this.submethods.add(method);

107

108 CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS

/

p
{

}

/

Kk

* This method was called again, so add its information
*/
ublic void addCall(MethodInfo newMethodCall)

// Add this method's info
this.totalTime += newMethodCall.getTotalTime();
this.callCount++;

// Add the new method's submethods
Collection newMethodCalls = newMethodCall.getSubMethods();
for(Iterator i=newMethodCalls.iterator(); i.hasNext();)

{
MethodInfo newMethod = (MethodInfo)i.next();

// Find this submethod
if(this.submethods.containsKey(newMethod.getMethodName()))

{
// Add a new call to an existing method
MethodInfo methodInfo = (MethodInfo)this.submethods.get(

newMethod. getMethodName());

methodInfo.addCall(newMethod);

}

else

{
// Add this method to our call tree
this.addSubMethod(newMethod);

}

}
*k

* Returns this method info as an XML node
*/

public Element toXML()

{

// Build a method node
long aveTime = this.getAverage();
Element methodElement = new Element("method");
methodElement.setAttribute("name", this.methodName);
methodElement.setAttribute("class", this.className);
methodElement.setAttribute("ave-cumulative-time",

Long.toString(aveTime));
methodElement.setAttribute("min-time", Long.toString(this.minTime));
methodElement.setAttribute("max-time", Long.toString(this.maxTime));

CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS

methodElement.setAttribute("total-time",

Long.toString(this.totalTime));
methodElement.setAttribute("call-count"”,

Integer.toString(this.callCount));

// Add the submethods

long submethodTotalTime = 0;

for(Iterator i=this.submethods.keySet().iterator(); i.hasNext();)

{
String methodName = (String)i.next();
MethodInfo submethod = (MethodInfo)this.submethods.get(methodName);
methodElement.addContent(submethod.toXML());
submethodTotalTime += submethod.getTotalTime();

}

long totalExclusiveTime = this.totalTime - submethodTotalTime;

long aveExclusiveTime = totalExclusiveTime / this.callCount;

methodElement.setAttribute("exclusive-ave-time",
Long.toString(aveExclusiveTime));

// Return the fully constructed method node
return methodElement;

Test Application

In order to use the custom instrumentation, you need to invoke the aforementioned
Instrumentor’s methods in the following order:

1.

Obtain a unique identifier for your request by calling getId(). This involves obtaining
the name of the request, which can be accomplished in a servlet by calling the
HttpServletRequest’s getRequestURL() method.

Start the request by calling startRequest().
Start the method by calling startMethod().

Call submethods, passing the unique key, and iterate over steps 3 to 5 for each
submethod.

End the method by calling endMethod().

End the request by calling endRequest ().

Listings 4-9, 4-10, 4-11, and 4-12 show a test application that demonstrates how to use the
instrumentor. I apologize for the number of classes, but in order to see anything of consequence
we need more than a single class—four classes illustrates the mechanics of the instrumentor
architecture.

109

110

CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS

Listing 4-9. TestServlet.java

package com.javasrc.instrument.test;

// Import servlet classes
import javax.servlet.*;
import javax.servlet.http.*;

// Import Java classes
import java.io.*;

// Import instrument class
import com.javasrc.instrument.Instrumentor;

public class TestServlet extends HttpServlet
{
private boolean bool = false;
public void service(HttpServletRequest req, HttpServletResponse res)
{
// Start the request
String requestName = req.getRequestURL().toString();
String iid = Instrumentor.getId(requestName);
Instrumentor.startRequest(iid, requestName);
Instrumentor.startMethod(iid,
"com.javasrc.instrument.test.TestServlet.service(_
HttpServletRequest, HttpServletResponse)");

// Business logic

try
{
Thread.sleep(100);
if(bool)
{
doNothing(iid);
}
else
{
doLessThanNothing(iid);
}

Controller ¢ = new Controller();
c.handle(iid, "something");

bool = !bool;

PrintWriter out = res.getWriter();

out.println("<html><head><title>Test Servlet</head>
<body>test, test, test...</body></html>");

out.flush();

CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS

catch(Exception e)

{
e.printStackTrace();

}

// End the request
Instrumentor.endMethod(iid);
Instrumentor.endRequest(iid);

}

private void doNothing(String iid)
{

Instrumentor.startMethod(iid,
"com.javasrc.instrument.test.TestServlet.doNothing()");

// Business logic
try

{
Thread.sleep(1000);

}

catch(Exception e)

{
}

e.printStackTrace();

Instrumentor.endMethod(iid);

}

private void doLessThanNothing(String iid)
{
Instrumentor.startMethod(iid,
"com.javasrc.instrument.test. _
TestServlet.doLessThanNothing()");

// Business logic

try
{

Thread.sleep(1000);
}
catch(Exception e)
{

e.printStackTrace();
}

Instrumentor.endMethod(iid);

111

112

CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS

Listing 4-10. Controller.java

package com.javasrc.instrument.test;
import com.javasrc.instrument.Instrumentor;
import com.javasrc.instrument.test.handlers.*;

import com.javasrc.instrument.test.authentication.*;

public class Controller

{
private BusinessProcess bp = new BusinessProcess();
private Authentication auth = new Authentication();
public void handle(String iid, String command)
{
Instrumentor.startMethod(iid,
"com.javasrc.instrument.test.Controller.handle(String)");
try
{
// Business logic
try
{
Thread.sleep(100);
}
catch(Exception e)
{
}
if(auth.isValidUser(iid, "me"))
{
bp.execute(iid);
}
}
finally
{
Instrumentor.endMethod(iid);
}
}
}

Listing 4-11. Authentication.java

package com.javasrc.instrument.test.authentication;
import com.javasrc.instrument.Instrumentor;

public class Authentication

{

CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS

public boolean isValidUser(String iid, String username)

authentication.Authentication.isValidUser()");

{
Instrumentor.startMethod(iid, "com.javasrc.instrument.test.
try
{
// Business logic
try
{
Thread.sleep(200);
}
catch(Exception e)
{
}
return true;
}
finally
{
Instrumentor.endMethod(iid);
}
}

Listing 4-12. BusinessProcess.java

package com.javasrc.instrument.test.handlers;
import com.javasrc.instrument.Instrumentor;

public class BusinessProcess

{

public void execute(String iid)

{

Instrumentor.startMethod(iid, "com.javasrc.instrument.test.ws

// Business logic
try
{

}

catch(Exception e)

{
}

Thread.sleep(300);

Instrumentor.endMethod(iid);

handlers.BusinessProcess.execute()");

113

114 CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS

Figure 4-6 illustrates the architecture of this simple Web application.

doNothing

doLessThanNothing

request
Browser TestServlet

handle

isValidUser
Authentication

Controller

BusinessProcess
handle

Figure 4-6. The browser sends a request to the TestServlet that calls internal methods and
forwards them to the Controller for processing.

This test application is simple, but it demonstrates how the instrumentation engine works.
Observe the sequence of events in the TestServlet: it generates a unique identifier, starts the
request, and starts the service() method. And note how each instrumented method must
provide an additional attribute to support the unique identifier and invoke startMethod() and
endMethod() at the beginning and end of the method, respectively. It is intrusive to the devel-
opment process, but it is capable of tracing requests within a single JVM. As soon as you leave
a single JVM, you need to define a central repository for the instrumentor and re-create the
request across the network, which presents an additional level of complexity to the instrumen-
tation task.

Instrumentation Command Interface

The final task we need to perform to complete this example is build a command interface
to start and stop instrumentation and generate a report. In this implementation, we build
an instrumentation servlet and a JSP to present the command interface. The code for the
InstrumentorServlet is shown in Listing 4-13.

CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS

Listing 4-13. InstrumentorServlet.java

package com.javasrc.instrument.web;

// Import servlet classes
import javax.servlet.*;
import javax.servlet.http.*;

// Import Java classes
import java.util.*;
import java.io.*;

// Import JDOM classes
import org.jdom.*;
import org.jdom.output.*;

// Import instrument class
import com.javasrc.instrument.Instrumentor;

public class InstrumentorServlet extends HttpServlet

{

public void service(HttpServletRequest req, HttpServletResponse res)

throws ServletException

{
try

{

// The command controls the action of this servlet
String command = req.getParameter("cmd");

if(command == null) command = "none";

// The format controls the return format: HTML or XML
String format = req.getParameter("format");

if(format == null) format = "html";

boolean xml = format.equalsIgnoreCase("xml");
String status = "Please make a selection";

if(command.equalsIgnoreCase("report"))

{

if(Instrumentor.isInstrumenting())

{

status = "Instrumentation is running, cannot generate a reportw
until you stop instrumentation";

115

116

CHAPTER 4

IMPLEMENTING PERFORMANCE MEASUREMENTS

else

// Convert the output of the report to an XML string
XMLOutputter outputter = new XMLOutputter("\t", true);
status = outputter.outputString(Instrumentor.toXML());

if(!xml)
{
status = xmlToHtml(status);
}
}
}
else if(command.equalsIgnoreCase("start"))
{
Instrumentor.start();
status = "Instrumentor started";
if(xml)
{
status = "<status>" + status + "</status>";
}
}
else if(command.equalsIgnoreCase("stop"))
{
Instrumentor.stop();
status = "Instrumentor stopped";
if(xml)
{
status = "<status>" + status + "</status>";
}
}

// Update the instrumentation status
String instrumentationStatus = "Not Running";
if(Instrumentor.isInstrumenting())

{
instrumentationStatus = "Running”;
}
if(xml)
{

PrintWriter out = res.getWriter();
out.println(status);
out.flush();

CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS

else

req.setAttribute("instrumentation-status", instrumentationStatus);
req.setAttribute("status", status);

RequestDispatcher rd = req.getRequestDispatcher("instrument.jsp");
rd.forward(req, res);

}
}
catch(Exception e)
{
e.printStackTrace();
throw new ServletException(e);
}
}
private String xmlToHtml(String xml)
{
StringBuffer sb = new StringBuffer(xml);
int index = sb.indexO0f("<");
while(index != -1)
{
sb.replace(index, index+1, "&1t;");
index = sb.indexOf("<", index + 3);
}
index = sb.indexOf(">");
while(index != -1)
{
sb.replace(index, index+1, ">");
index = sb.indexOf(">", index + 3);
}
return sb.toString();
}

The code for the instrument.jsp file is shown in Listing 4-14.

Listing 4-14. instrument.jsp

<k@page import="java.io.*" %>

<html>

<head>

<title>Instrumentation Management Interface</title>
</head>

<body>

<h2>Instrumentation Management Interface</h2>

117

118

CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS

<table width="90%" align="center">

<tr><td><i>This interface allows you to control the embedded instrumentation engine
</ix</td></tr>

<tr><td>Options:

<table width="90%" align="center">

<tr><td>Start Instrumentation</td></tr>
<tr><td>Stop Instrumentation</td></tr>
<tr><td>Get Report</td></tr>

</table>

</td></tr>
</table>

<%String instrumentationStatus =
(String)request.getAttribute("instrumentation-status");%>
<h3>Instrumentation: <%=instrumentationStatus%>

<h3>Status</h3>

<pre>

<%String status = (String)request.getAttribute("status");%>
<kh=statusk>

</pre>

</body>
The InstrumentorServlet presents three commands:
e start: Start instrumentation.
¢ stop: Stop instrumentation.
» report: Generate areportin XML that shows all requests, response times, and call traces.

The start command calls the Instrumentor’s start() method, the stop command calls the
Instrumentor’s stop() method, and the report command calls the Instrumentor’s toXML() method.
The Instrumentor’s toXML() method extracts all RequestInfo instances from its request map
and asks them to generate an XML report containing all method traces.

To enable these servlets, you need to build a Web deployment descriptor, as shown in
Listing 4-15.

CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS

Listing 4-15. web.xml

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE web-app PUBLIC '-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN'
"http://java.sun.com/j2ee/dtds/web-app 2 2.dtd"'>

<web-app>
<servlet>
<servlet-name>InstrumentorServlet</servlet-name>
<servlet-class>com.javasrc.instrument.web.InstrumentorServlet</servlet-class>
</servlet>

<servlet>

<servlet-name>TestServlet</servlet-name>

<servlet-class>com. javasrc.instrument.test.TestServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>InstrumentorServlet</servlet-name>
<url-pattern>/instrument/*</url-pattern>
</servlet-mapping>

<servlet-mapping>
<servlet-name>TestServlet</servlet-name>
<url-pattern>/test/*</url-pattern>
</servlet-mapping>

</web-app>

And finally, to deploy the instrumentor application to your application server, you need to
construct a WAR file with the following files:

instrument.jsp

WEB-INF/classes/com/javasrc/instrument/Instrumentor.class
WEB-INF/classes/com/javasrc/instrument/MethodInfo.class
WEB-INF/classes/com/javasrc/instrument/RequestInfo.class
WEB-INF/classes/com/javasrc/instrument/test/Controller.class
WEB-INF/classes/com/javasrc/instrument/test/authentication/Authentication.class
WEB-INF/classes/com/javasrc/instrument/test/handlers/
WEB-INF/classes/com/javasrc/instrument/test/handlers/BusinessProcess.class
WEB-INF/classes/com/javasrc/instrument/test/TestServlet.class
WEB-INF/classes/com/javasrc/instrument/web/InstrumentorServlet.class
WEB-INF/1ib/jdom.jar

WEB-INF/1ib/xerces.jar

WEB-INF/web.xml

119

120 CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS

Recall from the previous example that the XML library employed to build XML documents
is JDOM, which is available at www. jdom.org. The jdom. jar and xerces. jar files need to be
packaged in the WAR file in the WEB-INF/1ib folder.

You can access the instrumentation command interface through the following URL:

http://localhost:8080/instrument/instrument

Note The URL http://localhost:8080/instrument/instrument is valid for Apache Tomcat and
JBoss. If you are using another application server or if you changed the listening ports, then you will need to
adjust that accordingly. WebLogic listens by default on port 7001, and WebSphere listens by default on port 9080.

Start the instrumentation by clicking the “Start Instrumentation” link. Then you can exer-
cise the test application through the following URL:

http://localhost:8080/instrument/test

When you are finished, click the “Stop Instrumentation” link and then select Get Report.
In my example, doing so yielded the following output:

<instrumentation-report request-count="1" start-time="1141940605562"
end-time="1141940633640" session-length="28078">
<requests>
<request name="http://localhost:8080/instrument/test" ave-time="1841"
min-time="1765" max-time="1841" call-count="12">
<method name="service(HttpServletRequest, HttpServletResponse)"
class="com.javasrc.instrument.test.TestServlet"
ave-cumulative-time="1841" min-time="1765" max-time="1765"
total-time="22092" call-count="12" exclusive-ave-time="110">
<method name="handle(String)"
class="com.javasrc.instrument.test.Controller"
ave-cumulative-time="692" min-time="609" max-time="609"
total-time="8313" call-count="12" exclusive-ave-time="131">
<method name="isValidUser()"
class="com.javasrc.instrument.test.authentication.Authentication"
ave-cumulative-time="225" min-time="204" max-time="204"
total-time="2704" call-count="12" exclusive-ave-time="225" />
<method name="execute()"
class="com.javasrc.instrument.test.handlers.BusinessProcess"
ave-cumulative-time="335" min-time="296" max-time="296"
total-time="4030" call-count="12" exclusive-ave-time="335" />
</method>
<method name="doLessThanNothing()"
class="com.javasrc.instrument.test.TestServlet"
ave-cumulative-time="1000" min-time="1000" max-time="1000"
total-time="1000" call-count="1" exclusive-ave-time="1000" />

CHAPTER 4 IMPLEMENTING PERFORMANCE MEASUREMENTS

<method name="doNothing()" class="com.javasrc.instrument.test.TestServlet"
ave-cumulative-time="1041" min-time="1047" max-time="1047"
total-time="11453" call-count="11" exclusive-ave-time="1041" />
</method>
</request>
</requests>
</instrumentation-report>

In this example, I invoked the test request 12 times in rapid succession, which was fast
enough to skew the balance between the doNothing() and doLessThanNothing() calls. The XML
output presents a hierarchical representation of the call traces, with each node aggregating its
subnodes. The next step would be to take this XML file to a visualization tool and present it in
some logical fashion.

Summary

This chapter presented an overview of the technologies required to implement performance
measurements in two core areas:

¢ Application server metrics
¢ Code instrumentation

Application server metrics provide insight into the performance of the application’s container,
including its thread pools and connection pools. Most modern application servers present this
information through JMX; so it is a simple matter of obtaining this information and locating
the metrics you are interested in.

Code instrumentation provides insight into the performance of your application. Through
code instrumentation, you can identify slow-running methods as well as the path that a request
followed to arrive at slow-running methods. It identifies tuning opportunities.

This chapter is by far the “geekiest” chapter in the book, but I hope it gave you an appreci-
ation for the amount of work that goes into the tools that you purchase to monitor the health
of your enterprise Java environment. In closing, realize that this chapter presented only two
layers of Java’s layered execution model. For a complete picture, you also need information
about the JVM, the operating system, the hardware, the network that facilitates communications
between servers, and all external dependencies such as databases, legacy systems, and the
technology stacks underlying any services that you access.

In the next chapter, we’ll turn our attention to the proactive steps that you can employ at
every stage of your application development life cycle to manage performance. Specifically,
we’ll look at performance-related activities that you should perform while architecting your
application, the additional performance testing that you should perform in development, the
performance criteria that QA should gauge your application by and, finally, the steps that
you should perform in production staging before deploying your application to a production
environment.

121

PART 2

..L\T)plication Life Cycle

Performance
Management

CHAPTER 5

Performance Through
the Application Development
Life Cycle

1]

Okay, I understand how to gather metrics, but now what do I do with them?” John asked,
looking confounded. “If T have application response time, instrumentation, and application
server metrics, what should I have my developers do to ensure that the next deployment will be
successful?”

“That is a very good question. At its core, it involves a change of mind-set by your entire
development organization, geared toward performance. You'll most likely feel resistance from
your developers, but if they follow these steps and embrace performance testing from the outset,
then you'll better your chances of success more than a hundredfold,” I said.

“I can deal with upset developers,” John responded. “The important thing is that the appli-
cation meets performance criteria when it goes live. I'll make sure that they follow the proper
testing procedures; they have to understand the importance of application performance. I just
can’t face the idea of calling the CEO and telling him that we failed again!”

“Don’t worry, I've helped several customers implement this methodology into their devel-
opment life cycle, and each one has been successful. It is a discipline that, once adopted, becomes
second nature. The key is to get started now!”

“Tell me more,” John stated calmly, in contrast with his stressed demeanor. I knew that
John had seen the light and was destined for success in the future.

Performance QOverview

All too often in application development, performance is an afterthought. I once worked for a
company that fully embraced the Rational Unified Process (RUP) but took it to an extreme. The
application the company built spent years in architecture, and the first of ten iterations took
nearly nine months to complete. The company learned much through its efforts and became
increasingly efficient in subsequent iterations, but one thing that the organization did not
learn until very late in the game was the importance of application performance. In the last
couple of iterations, it started implementing performance testing and learned that part of the
core architecture was flawed—specifically, the data model needed to be rearchitected. Because
object models are built on top of data models, the object model also had to change. In addition,

125

126

CHAPTER 5 PERFORMANCE THROUGH THE APPLICATION DEVELOPMENT LIFE CYCLE

all components that interact with the object model had to change, and so on. Finally, the appli-
cation had to go through another lengthy QA cycle that uncovered new bugs as well as the
reemergence of former bugs.

That company learned the hard way that the later in the development life cycle performance
issues are identified, the more expensive they are to fix. Figure 5-1, which you may recall from
Chapter 1, illustrates this idea graphically. You can see that a performance issue identified
during the application’s development is inexpensive to fix, but one found later can cause the
cost to balloon. Thus, you must ensure the performance of your application from the early
stages of its architecture and test it at each milestone to preserve your efforts.

Dollars/Time Spent

Development QA Production

Figure 5-1. The relationship between the time taken to identify performance issues and the
repair costs

A common theme has emerged from those customer sites I visit in which few or no perfor-
mance issues are identified: these customers kept in mind the performance of the application
when designing the application architecture. At these engagements, the root causes of most of
the application problems were related to load or application server configuration—the appli-
cations had very few problems.

This chapter formalizes the methodology you should implement to ensure the performance
of your application at each stage of the application development, QA, and deployment stages.
I'have helped customers implement this methodology into their organizations and roll out
their applications to production successfully.

Performance in Architecture

The first step in developing any application of consequence is to perform an architectural anal-
ysis of a business problem domain. To review, application business owners work with application
technical owners to define the requirements of the system. Application business owners are
responsible for ensuring that when the application is complete it meets the needs of the end
users, while application technical owners are responsible for determining the feasibility of
options and defining the best architecture to solve the business needs. Together, these two
groups design the functionality of the application.

CHAPTER 5 PERFORMANCE THROUGH THE APPLICATION DEVELOPMENT LIFE CYCLE

In most organizations, the architecture discussions end at this analysis stage; the next step
is usually the design of the actual solution. And this stage is where the architectural process
needs to be revolutionized. Specifically, these groups need to define intelligent SLAs for each
use case, they need to define the life cycles of major objects, and they need to address require-
ments for sessions.

SLAs

As you may recall from earlier in this book, an intelligent SLA maintains three core traits. It is
* Reasonable
* Specific
* Flexible

An SLA must satisfy end-user expectations but still be reasonable enough to be implemented.
An unreasonable SLA will be ignored by all parties until end users complain. This is why SLAs
need to be defined by both the application business owner and the application technical owner:
the business owner pushes for the best SLAs for his users, while the application technical owner
impresses upon the business owner the reality of what the business requirement presents. If the
business requirement cannot be satisfied in a way acceptable to the application business owner,
then the application technical owner needs to present all options and the cost of each (in terms
of effort). The business requirement may need to be changed or divided into subprocesses that
can be satisfied reasonably.

An intelligent SLA needs to be specific and measurable. In this requirement, you are looking
for a hard and fast number, not a statement such as “The search functionality will respond
within a reasonable user tolerance threshold.” How do you test “reasonable”? You need to
remove all subjectivity from this exercise. After all, what is the point in defining an SLA if you
cannot verify it?

Finally, an intelligent SLA needs to be flexible. It needs to account for variations in behavior
as a result of unforeseen factors, but define a hard threshold for how flexible it is allowed to be.
For example, an SLA may read “The search functionality will respond within three seconds
(specific) for 95 percent of requests (flexible).” The occasional seven-second response time is
acceptable, as long as the integrity of the application is preserved—it responds well most of the
time. By defining concrete values for the specific value as well as the limitations of the flexible
value, you can quantify what “most of the time” means to the performance of the application,
and you have a definite value with which to evaluate and verify the SLA.

Note Although you define specific performance criteria and a measure of flexibility, defining either a hard
upper limit of tolerance or a relative upper limit is also a good idea. | prefer to specify a relative upper limit,
measured in the number of standard deviations from the mean. The purpose of defining an SLA in this way is
that on paper a 3-second response time for 95 percent of requests is tolerable, but how do you address dras-
tically divergent response time, such as a 30-second response time? Statistically, this should not be grossly
applicable, but it is a good safeguard to be aware of.

127

128

CHAPTER 5 PERFORMANCE THROUGH THE APPLICATION DEVELOPMENT LIFE CYCLE

An important aspect of defining intelligent SLAs is tracking them. The best way to do this
is to integrate them into your application use cases. A use case is built from a general thought,
such as “The application must provide search functionality for its patient medical records,”
but then the use case is divided into scenarios. Each scenario defines a path that the use case
may follow given varying user actions. For example, what does the application do when the
patient exists? What does it do when the patient does not exist? What if the search criterion
returns more than one patient record? Each of these business processes needs to be explicitly
called out in the use case, and each needs to have an SLA associated with it.

The following exercise demonstrates the format that a proper use case containing intelligent
SLAs should follow.

USE CASE: PATIENT HISTORY SEARCH FUNCTIONALITY

Use Case

The Patient Management System must provide functionality to search for specific patient medical history
information.

Scenarios

Scenario 1: The Patient Management System returns one distinct record.

Scenario 2: The Patient Management System returns more than one match.

Scenario 3: The Patient Management System does not find any users meeting the specified criteria.
Preconditions

The user has successfully logged in to the application.

Triggers

The user enters search criteria and submits data using the Web interface.

Descriptions

Scenario T

1. The Patient Management
2. ...

Scenario 2.
3. ...

Postconditions

The Patient Management System displays the results to the user.

SLAs

Scenario 7: The Patient Management System will return a specific patient matching the specified criteria in
less than three seconds for 95 percent of requests. The response time will at no point stray more than two
standard deviations from the mean.

Scenario 2: The Patient Management System will return a collection of patients matching the specified criteria
in less than five seconds for 95 percent of requests. The response time will at no point stray more than two
standard deviations from the mean.

Scenario 3: When the Patient Management System cannot find a user matching the specified criteria, it will
inform the user in less than two seconds for 95 percent of requests. The response time will at no point stray
more than two standard deviations from the mean.

CHAPTER 5 PERFORMANCE THROUGH THE APPLICATION DEVELOPMENT LIFE CYCLE

The format of this use case varies from traditional use cases with the addition of the SLA
component. In the SLA component, you explicitly call out the performance requirements for
each scenario. The performance criteria include the following:

¢ The expected tolerance level: Respond in less than three seconds.
* The measure of flexibility: Meet the tolerance level for 95 percent of requests.

* The upper threshold: Do not stray more than three standard deviations from the
observed mean.

With each of these performance facets explicitly defined, the developers implementing code to
satisfy the use case understand their expectations and can structure unit tests accordingly. The QA
team has a specific value to test and measure the quality of the application against. Next, when the
QA team, or a delegated performance capacity assessor, performs a formal capacity assessment, an
extremely accurate assessment can be built and a proper degradation model constructed.
Finally, when the application reaches production, enterprise Java system administrators have
values from which to determine if the application is meeting its requirements.

All of this specific assessment is possible, because the application business owner and
application technical owner took time to carefully determine these values in the architecture
phase. My aim here is to impress upon you the importance of up-front research and a solid
communication channel between the business and technical representatives.

Object Life Cycle Management

The most significant problem plaguing production enterprise Java applications is memory
management. The root cause of 90 percent of my customers’ problems is memory related and
can manifest in one of two ways:

* Object cycling
¢ Loitering objects (lingering object references)

Recall that object cycling is the rapid creation and deletion of objects in a short period of
time that causes the frequency of garbage collection to increase and may result in tenuring
short-lived objects prematurely. The cause ofloitering objects is poor object management; the
application developer does not explicitly know when an object should be released from memory,
so the reference is maintained. Loitering objects are the result of an application developer
failing to release object references at the correct time. This is a failure to understand the impact
of reference management on application performance. This condition results in an overabun-
dance of objects residing in memory, which can have the following effects:

¢ Garbage collection may run slower, because more live objects must be examined.
¢ Garbage collection can become less effective at reclaiming objects.

¢ Swapping on the physical machine can result, because less physical memory is available
for other processes to use.

Neglecting object life cycle management can result in memory leaks and eventually appli-
cation server crashes. I discuss techniques for detecting and avoiding object cycling later in

129

130

CHAPTER 5 PERFORMANCE THROUGH THE APPLICATION DEVELOPMENT LIFE CYCLE

this chapter, because it is a development or design issue, but object life cycle management is
an architectural issue.

To avoid loitering objects, take control of the management of object life cycles by defining
object life cycles inside use cases. I am not advocating that each use case should define every
int, boolean, and float that will be created in the code to satisfy the use case; rather, each use
case needs to define the major application-level components upon which it depends. For
example, in the Patient Management System, daily summary reports may be generated every
evening that detail patient metrics such as the number of cases of heart disease identified this
year and the common patient profile attributes for each. This report would be costly to build
on a per-request basis, so the architects of the system may dictate that the report needs to be
cached at the application level (or in the application scope so that all requests can access it).

Defining use case dependencies and application-level object life cycles provides a deeper
understanding of what should and should not be in the heap at any given time. Here are some
guidelines to help you identify application-level objects that need to be explicitly called out
and mapped to use cases in a dependency matrix:

* Expensive objects, in terms of both allocated size as well as allocation time, that will be
accessed by multiple users

¢ Commonly accessed data

* Nontemporal user session objects

¢ Global counters and statistics management objects
* Global configuration options

The most common examples of application-level object candidates are frequently accessed
business objects, such as those stored in a cache. If your application uses entity beans, then
you need to carefully determine the size of the entity bean cache by examining use cases; this
can be extrapolated to apply to any caching infrastructure. The point is that if you are caching
data in the heap to satisfy specific use cases, then you need to determine how much data is
required to satisfy the use cases. And if anyone questions the memory footprint, then you can
trace it directly back to the use cases.

The other half of the practice of object life cycle management is defining when objects
should be removed from memory. In the previous example, the medical summary report is
updated every evening, so at that point the old report should be removed from memory to
make room for the new report. Knowing when to remove objects is probably more important
than knowing when to create objects. If an object is not already in memory, then you can create
it, but if it is in memory and no one needs it anymore, then that memory is lost forever.

Application Session Management

Just as memory mismanagement is the most prevalent issue impacting the performance of
enterprise Java applications, HTTP sessions are by far the biggest culprit in memory abuse.
HTTP is a stateless protocol, and as such the conversation between the Web client and Web
server terminates at the conclusion of a single request: the Web client submits a request to the
Web server (most commonly GET or POST), and then the Web server performs its business logic,
constructs a response, and returns the response to the Web client. This ends the Web conver-
sation and terminates the relationship between client and server.

CHAPTER 5 PERFORMANCE THROUGH THE APPLICATION DEVELOPMENT LIFE CYCLE

In order to sustain a long-term conversation between a Web client and Web server, the Web
server constructs a unique identifier for the client and includes it with its response to the request;
internally the Web server maintains all user data and associates it with that identifier. On
subsequent requests, the client submits this unique identifier to identify itself to the Web server.

This sounds like a good idea, but it creates the following problem: if the HTTP protocol is
truly stateless and the conversation between Web client and Web server can only be renewed
by a client interaction, then what does the Web server do with the client’s information if that
client never returns? Obviously, the Web server throws the information away, but the real
question relates to how long the Web server should keep the information.

All application servers provide a session time-out value that constrains the amount of time
user data is maintained. When the user makes any request from the server, the user’s time-out
isreset, and once the time-out has been exceeded, the user’s stateful information is discarded.
A practical example of this is logging in to your online banking application. You can view your
account balances, transfer funds, and pay bills, but if you sit idle for too long, you are forced to
log in again. The session time-out period for a banking application is usually quite short for
security reasons (for example, if you log in to your bank account and then leave your computer
unattended to go to a meeting, you do not want someone else who wanders by your desk to be
able to access your account). On the other hand, when you shop at Amazon.com, you can add
items to your shopping cart and return six months later to see that old book on DNA synthesis
and methylation that you still do not have time to read sitting there. Amazon.com uses a more
advanced infrastructure to support this feature (and a heck of a lot of hardware and memory),
but the question remains: how long should you hold on to data between user requests before
discarding it?

The definitive time-out value must come from the application business owner. He or she
may have specific, legally binding commitments with end users and business partners. But an
application technical owner can control the quantity of data that is held resident in memory for
each user. In the aforementioned example, do you think that Amazon.com maintains everyone’s
shopping cart in memory for all time? I suspect that shopping cart data is maintained in memory
for a fixed session length, and afterward persisted to a database for later retrieval.

As a general guideline, sessions should be as small as possible while still realizing the benefits
of being resident in memory. I usually maintain temporal data describing what the user does in
aparticular session, such as the page the user came from, the options the user has enabled, and
so on. More significant data, such as objects stored in a shopping cart, opened reports, or partial
result sets, are best stored in stateful session beans, because rather than being maintained in
a hash map that can conceivably grow indefinitely like HTTP session objects, stateful session
beans are stored in predefined caches. The size of stateful session bean caches can be defined
upon deployment, on a per-bean basis, and hence assert an upper limit on memory consump-
tion. When the cache is full, to add a new bean to it, an existing bean must be selected and
written out to persistent storage. The danger is that if the cache is sized too small, the maintenance
of the cache can outweigh the benefits of having the cache in the first place. If your sessions are
heavy and your user load is large, then this upper limit can prevent your application servers
from crashing.

131

132

CHAPTER 5 PERFORMANCE THROUGH THE APPLICATION DEVELOPMENT LIFE CYCLE

Performance in Development

Have you ever heard anyone ask the following question: “When developers are building their
individual components before a single use case is implemented, isn’t it premature to start
performance testing?”

Let me ask a similar question: When building a car, is it premature to test the performance
of your alternator before the car is assembled and you try to start it? The answer to this question is
obviously “No, it’s not premature. I want to make sure that the alternator works before building my
car!” If you would never assemble a car from untested parts, why would you assemble an enter-
prise application from untested components? Furthermore, because you integrate performance
criteria into use cases, use cases will fail testing if they do not meet their performance criteria.
In short, performance matters!

In development, components are tested in unit tests. A unit test is designed to test the
functionality and performance of an individual component, independently from other compo-
nents that it will eventually interact with. The most common unit testing framework is an open
source initiative called JUnit. JUnit’s underlying premise is that alongside the development
of your components, you should write tests to validate each piece of functionality of your compo-
nents. A relatively new development paradigm, Extreme Programming (www.xprogramming.com),
promotes building test cases prior to building the components themselves, which forces you to
better understand how your components will be used prior to writing them.

JUnit focuses on functional testing, but side projects spawned from JUnit include perfor-
mance and scalability testing. Performance tests measure expected response time, and scalability
tests measure functional integrity under load. Formal performance unit test criteria should do
the following:

* Identify memory issues
¢ Identify poorly performing methods and algorithms
* Measure the coverage of unit tests to ensure that the majority of code is being tested

Memory leaks are the most dangerous and difficult to diagnose problems in enterprise
Java applications. The best way to avoid memory leaks at a code level is to run your compo-
nents through a memory profiler. A memory profiler takes a snapshot of your heap (after first
running garbage collection), allows you to run your tests, takes another snapshot of your heap
(after garbage collection again), and shows you all of the objects that remain in the heap. The
analysis of the heap differences identifies objects abandoned in memory. Your task is then to
look at these objects and decide if they should remain in the heap or if they were left there by
mistake. Another danger of memory misusage is object cycling, which, again, is the rapid creation
and destruction of objects. Because it increases the frequency of garbage collection, excessive
object cycling may result in the premature tenuring of short-lived objects, necessitating a
major garbage collection to reclaim these objects.

After considering memory issues, you need to quantify the performance of methods and
algorithms. Because SLAs are defined at the use case level, but not at the component level,
measuring response times may be premature in the development phase. Rather, the strategy is
to run your components through a code profiler. A code profiler reveals the most frequently

CHAPTER 5 PERFORMANCE THROUGH THE APPLICATION DEVELOPMENT LIFE CYCLE

executed sections of your code and those that account for the majority of the components’
execution times. The resulting relative weighting of hot spots in the code allows for intelligent
tuning and code refactoring. You should run code profiling on your components while executing
your unit tests, because your unit tests attempt to mimic end-user actions and alternate user
scenarios. Code profiling your unit tests should give you a good idea about how your compo-
nent will react to real user interactions.

Coverage profiling reports the percentage of classes, methods, and lines of code that were
executed during a test or use case. Coverage profiling is important in assessing the efficacy of
unit tests. If both the code and memory profiling of your code are good, but you are exercising
only 20 percent of your code, then your confidence in your tests should be minimal. Not only
do you need to receive favorable results from your functional unit tests and your code and
memory performance unit tests, but you also need to ensure that you are effectively testing
your components.

This level of testing can be further extended to any code that you outsource. You should
require your outsourcing company to provide you with unit tests for all components it develops,
and then execute a performance test against those unit tests to measure the quality of the
components you are receiving. By combining code and memory profiling with coverage profiling,
you can quickly determine whether the unit tests are written properly and have acceptable results.

Once the criteria for tests are met, the final key step to effectively implementing this level
of testing is automation. You need to integrate functional and performance unit testing into
your build process—only by doing so can you establish a repeatable and trackable procedure.
Because running performance unit tests can burden memory resources, you might try executing
functional tests during nightly builds and executing performance unit tests on Friday-night
builds, so that you can come in on Monday to test result reports without impacting developer
productivity. This suggestion’s success depends a great deal on the size and complexity of your
environment, so, as always, adapt this plan to serve your application’s needs.

When performance unit tests are written prior to, or at least concurrently with, component
development, then component performance can be assessed at each build. If such extensive
assessment is not realistic, then the reports need to be evaluated at each major development
milestone. For the developer, milestones are probably at the completion of the component or
a major piece of functionality for the component. But at minimum, performance unit tests
need to be performed prior to the integration of components. Again, building a high-performance
car from tested and proven high-performance parts is far more effective than from scraps gathered
from the junkyard.

Unit Testing

I thought this section would be a good opportunity to talk a little about unit testing tools and
methods, though this discussion is not meant to be exhaustive. JUnit is, again, the tool of
choice for unit testing. JUnit is a simple regression-testing framework that enables you to write
repeatable tests. Originally written by Erich Gamma and Kent Beck, JUnit has been embraced
by thousands of developers and has grown into a collection of unit testing frameworks for a
plethora of technologies. The JUnit Web site (www. junit.org) hosts support information and
links to the other JUnit derivations.

133

134

CHAPTER 5 PERFORMANCE THROUGH THE APPLICATION DEVELOPMENT LIFE CYCLE

JUnit offers the following benefits to your unit testing:

* Faster coding How many times have you written debug code inside your classes to verify
values or test functionality? JUnit eliminates this by allowing you to write test cases in
closely related, but centralized and external, classes.

» Simplicity. If you have to spend too much time implementing your test cases, then you
won’t do it. Therefore, the creators of JUnit made it as simple as possible.

 Single result reports: Rather than generating loads of reports, JUnit will give you a single
pass/fail result, and, for any failure, show you the exact point where the application failed.

* Hierarchical testing structure: Test cases exercise specific functionality, and test suites
execute multiple test cases. JUnit supports test suites of test suites, so when developers
build test cases for their classes, they can easily assemble them into a test suite at the
package level, and then incorporate that into parent packages and so forth. The result is
that a single, top-level test execution can exercise hundreds of unit test cases.

* Developer-written tests: These tests are written by the same person who wrote the code,
so the tests accurately target the intricacies of the code that the developer knows can be
problematic. This test differs from a QA-written one, which exercises the external function-
ality of the component or use case—instead, this test exercises the internal functionality.

e Seamless integration: Tests are written in Java, which makes the integration of test cases
and code seamless.

* Free: JUnit is open source and licensed under the Common Public License Version 1.0,
so you are free to use it in your applications.

From an architectural perspective, JUnit can be described by looking at two primary compo-
nents: TestCase and TestSuite. All code that tests the functionality of your class or classes must
extend junit.framework.TestCase. The test class can implement one or more tests by defining
public void methods that start with test and accept no parameters, for example:

public void testMyFunctionality() { ... }

For multiple tests, you have the option of initializing and cleaning up the environment
before and between tests by implementing the following two methods: setUp() and tearDown().
In setUp() you initialize the environment, and in teardown() you clean up the environment.
Note that these methods are called between each test to eliminate side effects between test
cases; this makes each test case truly independent.

Inside each TestCase “test” method, you can create objects, execute functionality, and
then test the return values of those functional elements against expected results. If the return
values are not as expected, then the test fails; otherwise, it passes. The mechanism that JUnit
provides to validate actual values against expected values is a set of assert methods:

e assertEquals() methods test primitive types.
e assertTrue() and assertFalse() test Boolean values.
e assertNull() and assertNotNull() test whether or not an object is null.

e assertSame() and assertNotSame() test object equality.

CHAPTER 5 PERFORMANCE THROUGH THE APPLICATION DEVELOPMENT LIFE CYCLE

In addition, JUnit offers a fail() method that you can call anywhere in your test case to
immediately mark a test as failing.

JUnit tests are executed by one of the TestRunner instances (there is one for command-line
execution and one for a GUI execution), and each version implements the following steps:

1. It opens your TestCase class instance.
2. It uses reflection to discover all methods that start with “test”.

3. Itrepeatedly calls setUp(), executes the test method, and calls teardown().

As an example, I have a set of classes that model data metrics. A metric contains a set of
data points, where each data point represents an individual sample, such as the size of the
heap at a given time. I purposely do notlist the code for the metric or data point classes; rather,
Ilist the JUnit tests. Recall that according to one of the tenets of Extreme Programming, we
write test cases before writing code. Listing 5-1 shows the test case for the Metric class, and
Listing 5-2 shows the test case for the DataPoint class.

Listing 5-1. DataPointTest.java

package com.javasrc.metric;

import junit.framework.TestCase;
import java.util.*;

Voo

* Tests the core functionality of a DataPoint
*/

public class DataPointTest extends TestCase

{

Vak

* Maintains our reference DataPoint
*/

private DataPoint dp;

Vak
* Create a DataPoint for use in this test
*/

protected void setUp()

{

dp = new DataPoint(new Date(), 5.0, 1.0, 10.0);

}

135

136 CHAPTER 5 PERFORMANCE THROUGH THE APPLICATION DEVELOPMENT LIFE CYCLE

Jx*
* Clean up: do nothing for now
*/

protected void tearDown()

{

}

Jx*
* Test the range of the DataPoint

*/
public void testRange()
{

assertEquals(9.0, dp.getRange(), 0.001);
}

/**

* See if the DataPoint scales properly

*/

public void testScale()

{
dp.scale(10.0);
assertEquals(50.0, dp.getValue(), 0.001);
assertEquals(10.0, dp.getMin(), 0.001);
assertEquals(100.0, dp.getMax(), 0.001);

}

/**
* Try to add a new DataPoint to our existing one
*/
public void testAdd()
{
DataPoint other = new DataPoint(new Date(), 4.0, 0.5, 20.0);
dp.add(other);
assertEquals(9.0, dp.getValue(), 0.001);
assertEquals(0.5, dp.getMin(), 0.001);
assertEquals(20.0, dp.getMax(), 0.001);

}

Jx*
* Test the compare functionality of our DataPoint to ensure that
* when we construct Sets of DataPoints they are properly ordered
*/

public void testCompareTo()

{
try

{

CHAPTER 5 PERFORMANCE THROUGH THE APPLICATION DEVELOPMENT LIFE CYCLE

// Sleep for 100ms so we can be sure that the time of
// the new data point is later than the first
Thread.sleep(100);

}

catch(Exception e)

{

}

// Construct a new DataPoint
DataPoint other = new DataPoint(new Date(), 4.0, 0.5, 20.0);

// Should return -1 because other occurs after dp
int result = dp.compareTo(other);
assertEquals(-1, result);

// Should return 1 because dp occurs before other
result = other.compareTo(dp);
assertEquals(1, result);

// Should return 0 because dp == dp
result = dp.compareTo(dp);
assertkEquals(0, result);

Listing 5-2. MetricTest.java

package com.javasrc.metric;

import junit.framework.TestCase;
import java.util.*;

public class MetricTest extends TestCase

{

private Metric sampleHeap;

protected void setUp()
{
this.sampleHeap = new Metric("Test Metric",
"Value/Min/Max",
"megabytes");
double heapValue = 100.0;
double heapMin = 50.0;
double heapMax = 150.0;

137

138 CHAPTER 5 PERFORMANCE THROUGH THE APPLICATION DEVELOPMENT LIFE CYCLE

for(int i=0; i<10; i++)

{
DataPoint dp = new DataPoint(new Date(),
heapValue,
heapMin,
heapMax);
this.sampleHeap.addDataPoint(dp);
try
{
Thread.sleep(50);
}
catch(Exception e)
{
}
// Update the heap values
heapMin -= 1.0;
heapMax += 1.0;
heapValue += 1.0;
}
}
public void testMin()
{
assertEquals(41.0, this.sampleHeap.getMin(), 0.001);
}
public void testMax()
{
assertEquals(159.0, this.sampleHeap.getMax(), 0.001);
}
public void testAve()
{
assertEquals(104.5, this.sampleHeap.getAve(), 0.001);
}
public void testMaxRange()
{
assertEquals(118.0, this.sampleHeap.getMaxRange(), 0.001);
}

public void testRange()
{

assertEquals(118.0, this.sampleHeap.getRange(), 0.001);
}

CHAPTER 5 PERFORMANCE THROUGH THE APPLICATION DEVELOPMENT LIFE CYCLE

public void testSD()
{

assertEquals(3.03, this.sampleHeap.getStandardDeviation(), 0.01);

}

public void testVariance()

{

assertEquals(9.17, this.sampleHeap.getVariance(), 0.01);
}
public void testDataPointCount()
{

assertkEquals(10, this.sampleHeap.getDataPoints().size());
}

}

In Listing 5-1, you can see that the DataPoint class, in addition to maintaining the observed
value for a point in time, supports minimum and maximum values for the time period, computes
the range, and supports scaling and adding data points. The sample test case creates a DataPoint
object in the setUp() method and then exercises each piece of functionality.

Listing 5-2 shows the test case for the Metric class. The Metric class aggregates the
DataPoint objects and provides access to the collective minimum, maximum, average, range,
standard deviation, and variance. In the setUp() method, the test creates a set of data points
and builds the metric to contain them. Each subsequent test case uses this metric and validates
values computed by hand to those computed by the Metric class.

Listing 5-3 rolls both of these test cases into a test suite that can be executed as one test.

Listing 5-3. MetricTestSuite.java

package com.javasrc.metric;

import junit.framework.Test;
import junit.framework.TestSuite;

public class MetricTestSuite
{
public static Test suite()
{
TestSuite suite = new TestSuite();
suite.addTestSuite(DataPointTest.class);
suite.addTestSuite(MetricTest.class);
return suite;

A TestSuite exercises all tests in all classes added to it by calling the addTestSuite()
method. A TestSuite can contain TestCases or TestSuites, so once you build a suite of test
cases for your classes, a master test suite can include your suite and inherit all of your test cases.

139

140

CHAPTER 5 PERFORMANCE THROUGH THE APPLICATION DEVELOPMENT LIFE CYCLE

The final step in this example is to execute either an individual test case or a test suite. After
downloading JUnit from www. junit.org, add the junit. jar file to your CLASSPATH and then invoke
either its command-line interface or GUI interface. The three classes that execute these tests
are as follows:

* junit.textui.TestRunner
* junit.swingui.TestRunner
* junit.awtui.TestRunner

And as these package names imply, textui is the command-line interface and swingui is
the graphical interface. awtui provides a batch interface to executing unit tests. You can pass an
individual test case or an entire test suite as an argument to the TestRunner class. For example,
to execute the test suite that we created earlier, you would use this:

java junit.swingui.TestRunner com.javasrc.metric.MetricTestSuite

Unit Performance Testing
Unit performance testing has three aspects:
e Memory profiling
* Code profiling
» Coverage profiling
This section explores each facet of performance profiling. I provide examples of what to

look for and the step-by-step process to implement each type of testing.

Memory Profiling

Let’s first look at memory profiling. To illustrate how to determine if you do, in fact, have a

memory leak, I modified the BEA MedRec application to capture the state of the environment

every time an administrator logs in and to store that information in memory. My intent is to

demonstrate how a simple tracking change left to its own devices can introduce a memory leak.
The steps you need to perform on your code for each use are as follows:

1. Request a garbage collection and take a snapshot of your heap.
2. Perform your use case.
3. Request a garbage collection and take another snapshot of your heap.

4. Compare the two snapshots (the difference between them includes all objects
remaining in the heap) and identify any unexpected loitering objects.

5. For each suspect object, open the heap snapshot and track down where the object
was created.

CHAPTER 5 PERFORMANCE THROUGH THE APPLICATION DEVELOPMENT LIFE CYCLE 141

Note A memory leak can be detected with a single execution of a use case or through a plethora of executions
of a use case. In the latter case, the memory leak will scream out at you. So, while analyzing individual use
cases is worthwhile, when searching for subtle memory leaks, executing your use case multiple times makes
finding them easier.

In this scenario, I performed steps 1 through 3 with aload tester that executed the MedRec
administration login use case almost 500 times. Figure 5-2 shows the difference between the
two heap snapshots.

&4 NewSettings.jpl - JProbe Memory Debugger
Session View Ed@ Program Snapshol Tools Window Help

FErEIDRBEFEECRC < (vl [B5]8]|@[=]le

I? BEAWenLDmIc &1 L]
eun, 200550219 Fw |H sapshol_2_1 - snopshol_1_2 (hasuline]

& B

jun 7, 2005 10:47:30 M | | Fitter Classes: [=] 148 11061
U ot 13| | Moy sagechangeaty 5701
) 21 | Packaga | Class | Gount — | Mamory
t 8,619 1,551,737
java.ulil Hashiabia$Entry 1,843 (205%) 44,232 (20.5%) |~
ava.ulil LinkedListsEnty 598 {1 26.0%) 23952 (126.0%) &
Java.ulil HashMap3Enty 944 [£.0%) 21656 (4.0%)
java.ulil HashMap$Entr] 590 (10.6%) 51,368 (B1%)
intf} 434 {170,3%) 396,638 (huge)
langl] 4BE [huge) 98,208 (huge)
foal[] 488 (+) 105,408 (=)
corm.beamedrec.acions SystemSnapShot 11,712
daublal} 438 04 e 3
Jawalang Object] 432 (10.5%) 26,328 (10.5%)
java.util HashizbiaSEntry|] 408 (57.5%) I2EAT (254%)
Javalang Slring 5 (5.3%) 5160 (5 3%)
|ava.util HashMap 206 (12.3%) 8,240 (12.3%)
char(] 185 (25.2%) 11,776 (23.4%)
baalean]| 109 {129.2%) 2,431 (BO.4%)
Javalang Integer TIE1T%) TAGE {H11.1%)
java ulil HashMapkeySet 34 (17.0%) 544 (17.0%)
com bes medrac beans AdmnBean L 1,240 =)
com bes medrec beans PatientSean (2)] FALLI]
com bea medrac beans AddressBean 30w 1,680 =)
java.ulil Collactions§SmchronizedList 28 (25.5%) B72 (25.5%)
java.ulil WeakHashMap§Erin 5 (16%) 1,000 (1.6%)
|ava.util HashMapSEnySet 18 (2.5%) 288 (25%)
e el jar AlfribidesSHanme B (06%) 128 (06%)
|ava.ulil HashMap§values B (2.3%) 128 (Z3%)
shor]] 4 (2.3%) 144 01.9%)
Eyief] 3 (2.0%) 638 (1.8%)
javainaming InifialCarnted 3o 29
Jaealang Class 2 (2.0%) 112 (20%)
Javautil jar Attributes 1 [0.2%) 32 (02%) |+

EaE

Figure 5-2. The snapshot difference between the heaps before and after executing the use case

Figure 5-2 shows that my use case yielded 8,679 new objects added to the heap. Most of
these objects are collection classes, and I suspect they are part of BEA’s infrastructure. I scanned
this list looking for my code, which in this case consists of any class in the com.bea.medrec package.
Filtering on those classes, I was interested to see a large number of com.bea.medrec.actions.
SystemSnapShot instances, as shown in Figure 5-3.

142 CHAPTER 5 ©° PERFORMANCE THROUGH THE APPLICATION DEVELOPMENT LIFE CYCLE

["Note The screen shots in this chapter are from Quest Software’s JProbe and PerformaSure products.

E
[# eEawenLopic £.1
Eun 6, 2005 0119w |HEE
©4un 7, 2005 10:47:30 AW
§Jun 7, 2005 110712 4M
I &

com bea medrac beans AddressBean
com.bea.medrac beans PatientSean (2}
combes E

actary
corm geamadrec ubls ServiceLacator
cor b medrec ulils JWBFatlon

|
i
§
|
2
|
|
2
§
;
2
§
i

Figure 5-3. The snapshot difference between the heaps, filtered on my application packages

Realize that rarely is a loitering object a single simple object; rather, it is typically a subgraph
that maintains its own references. In this case, the SystemSnapShot class is a dummy class that
holds a set of primitive type arrays with the names timestamp, memoryInfo, jdbcInfo, and
threadDumps, but in a real-world scenario these arrays would be objects that reference other objects
and so forth. By opening the second heap snapshot and looking at one of the SystemSnapShot
instances, you can see all objects that it references. As shown in Figure 5-4, the SystemSnapShot
class references four objects: timestamp, memoryInfo, jdbcInfo, and threadDumps. A loitering
object, then, has a far greater impact than the object itself.

Next, let’s look at the referrer tree. We repeatedly ask the following questions: What class
is referencing the SystemSnapShot? What class is referencing that class? Eventually, we finally find
one of our classes. Figure 5-5 shows that the SystemSnapShot class is referenced by an Object array
that is referenced by an Arraylist that s finally referenced by the AdninLoginAction.

CHAPTER 5 PERFORMANCE THROUGH THE APPLICATION DEVELOPMENT LIFE CYCLE

Tools Display Window Help

ErCDonESECIC L =B
% BEAWaDLogic 81 |4
¢Jug,:£l:-5nﬁl.-l:l.

¥ B

Fl
¥

v e e

¢ SystemSnapShat 0x 2301 2E0]
W (timestamp) float[50) 0x12301C88
H (memaoryinio) long[100] 0x12301358
W (jobcinio) INBZ00] 0xd 2301623
W (ihreadDumps) doubleli 00] Ox123012F3

S¥SRmSnapshot M1 230
SystemSnapShot 0231, 24
SystemSnapShot Ol 231 24
SysternSnapShot 0wl 231.. 24
SyslemSnapshol w1231, 24
SystemSnapshot Dxl 231, 24
SystemSnapShot 0wl 232 24
SystemSnapShot 0w1232.. 24
SystemSnapShot 0x1232.. 24
EystemSnapShot Dxl232.. 24
SwstemSnapShot 01232 . 24
SystemSnapShot Ol 232, 24
SystemSnapShot w1233 24
EysternSnapShol 0x1233.. 24
EvstemSnapshot Dxl233.. 24
SystemSnapShot 01233, 24
System3napShot (1233, 24
SysternSnapShot 0x1233.. 24
EvetermSnapShol Oxl233.. 24
SystemSnapShot Ow1233., 24
SystemSnapShot Ox1 233,

Marmory Usaxt: - Calculate

K7

Figure 5-4. The SystemSnapShot class references four objects: timestamp, memorylnfo, jdbcInfo, and
threadDumps.

&% NewSettings.jpl -

Session View Fr Snapshot Tools Display Window Help
(e{f@] (o= Ta 2o [
BEAWBBLogic 8.1 (4
9¢Jun&20l?59: : g
£ Admin Lo :|IIBETW Referrer Tree ™
@ SystemSnapShat O 2301 260
9 M Object|679) 0t 2840348 ([0])
SyslemSnapshot Tx1 230... & M Arrsylist 0n1 2300F 98 (alerneniData)
SystemSnapShot G231 ., 24 &M Adminlogindction 0l Z300FS0 (cache)|
SysternSnapShot 0231, u
SystemSnapShot 0x1231... 24
SyslemSnapBhol Dx1231... 24
SystemSnapshot Dx1 231 24
SystemSnapShot 01232, 24
SysternSnapShot 01232 u
SystemSnapShol 0x1232.. 24
SystemSnapBhot Dx1232... 24
SystemSnapShot D232 24
SystemSnapShot 0x1232., 24
SystemSnapShot Ox1233.. 24
SystemSnapShol 0x1233.. 24
SystemSnapBhot Dx1233... 24
SystemSnapShot 0w1233. b1
SystemSnapShot 0x1233.. 24
SyslemSnapShot 0x1233... 24
SystemSnapShol Dn2323.. 24
S¥sIemSnapshor 0x233.. 24
SystemSnapShot 0xl 23
|

Figure 5-5. Here we can see that the AdminLoginAction class created the SystemSnapShot, and that it
stored it in an ArrayList.

143

144 CHAPTER 5 PERFORMANCE THROUGH THE APPLICATION DEVELOPMENT LIFE CYCLE

Finally, we can look into the AdminLoginAction code to see that it creates the new
SystemSnapShot instance we are looking at and adds it to its cache in line 66, as shown in
Figure 5-6.

You need to perform this type of memory profiling test on your components during your
performance unit testing. For each object that is left in the heap, you need to ask yourself
whether or not you intended to leave it there. It’s OK to leave things on the heap as long as you
know that they are there and you want them to be there. The purpose of this test is to identify
and document potentially troublesome objects and objects that you forgot to clean up.

&% NewSettings.jpl - JProbe Memory Debugger

Session View Edit Program Snapshol Tools Display Help
(itael [][= [a [E]os] 1 [[S5]E
§ BEAWEbLogic 3.1 |4

9Jun s, 2005 9.02:1}
£ Adein Loglr| |

2 Source: AdminLogi i b drec.actions.Admin

| ®l[=llel

Lina # Sourca |

49 HetpiervietRequest tequest,

50 HempServlietReaponse response]

51 thtows Exceprion

52| ¢

52

54 SYSCER. QUC. PEINTIN "------m--—mmm-mm-—e————— ADMIN LOGIN DEEUG cache aize = " + cache.siz...
58

56 44 Cache nll of the parameters that the user logged in with

57 i

58 Arraylise al = new Arraylise():
59 for(int is=0: i<10000: i++)
60 t

&1 Double d = new Deuble{ 10.0)
62 al.add{ d |:

62]

&4 cache, addi al 3

65 =}

cache.add(new SystemSnapShotil):

3 J/Msp n = request.getPacenetesMap();
69 Sicache.add| = |2

Bl A4 Bet uzer's locale.

72 setuplocale [tequest] 2

Tz

T #¢ Declare and inicial lecal wariablea.

UserBean user = (UserBean)form:

rstemSnapShot 0x123012E0

Figure 5-6. The AdminLoginAction source code

Code Profiling

The purpose of code profiling is to identify sections of your code that are running slowly and
then determine why. The perfect example I have to demonstrate the effectiveness of code profiling
isa project that I gave to my Data Structures and Algorithm Analysis class—compare and quan-
tify the differences among the following sorting algorithms for various values of n (where n
represents the sample size of the data being sorted):

¢ Bubble sort
¢ Selection sort
¢ Insertion sort

¢ Shell sort

CHAPTER 5 PERFORMANCE THROUGH THE APPLICATION DEVELOPMENT LIFE CYCLE 145

e Heap sort
* Merge sort
¢ Quick sort

As a quick primer on sorting algorithms, each of the aforementioned algorithms has its
strengths and weaknesses. The first four algorithms run in O(N?) time, meaning that the run
time increases exponentially as the number of items to sort, NN, increases; specifically, as N
increases, the amount of time required for the sorting algorithm to complete increases by N2.
The last three algorithms run in O(Nlog N) time, meaning that the run time grows logarithmi-
cally: as Nincreases, the amount of time required for the sorting algorithm to complete
increases by Nlog N. Achieving O(Nlog N) performance requires additional overhead that
may cause the last three algorithms to actually run slower than the first four for a small number
of items. My recommendation is to always examine both the nature of the data you want to sort
today and the projected nature of the data throughout the life cycle of the product prior to
selecting your sorting algorithm.

With that foundation in place, I provided my students with a class that implements the
aforementioned sorting algorithms. I really wanted to drive home the dramatic difference
between executing these sorting algorithms on 10 items as opposed to 10,000 items, or even
1,000,000 items. For this exercise, I think it would be useful to profile this application against
5,000 randomly generated integers, which is enough to show the differences between the
algorithms, but not so excessive that I have to leave my computer running overnight.

Figure 5-7 shows the results of this execution, sorting each method by its cumulative
run time.

®, *New Session - JProbe Profiler

Session Edit View MNavigate Program Snapshot Tools Display Help

@S][> [2 [@]o¥o" o] ©| <] =] F [[2) D]

© cormn javaste Util SoringLtils [ad Heap Usage |, Call Graph | o= Method Detail | [[] SortingUtils java |

§0ctB,2005 112213 AM (VM
Show Top:|_50=]|cumutative Time [] Color By [cumulatve Tme [~] ‘!” "EHQHQH ‘ | u “}‘-‘a‘ [I[I

& snapshot_4_2
 Oct B, 30051126:43 A (VM
snapshot_4_3

=W =
1 r 1 1 [] 1] |
iFAaihods | Shown | Fitor Methas: Bl
Number Cumnulative Method
Hackats((lae) of Calls Tirme Time
com javasrc.util SortingUtils main(String[) 168,556 (100.0%) a0 (0.1%)

com javasre.util SortingUtils. bubibleSor(Comparable([

com javasre.util SortingUtils. selectionSort(ComparablelJ)

com javasre.util SortingUtils. insertionSor(C omparable(3

com javasre.util SortingUtils heapSortiGomparable(])

com javasre.util SortingUtils. sitDown(Comparablel], int, inf)

som javastc.util Sortingltils.mergeSon(Comparablel)

com javasre.util SortingUtls. m_son(Comparakle(], Comparable(], int, ints
somjavasre.util Sortingltils. merge(Camparablel], Comparablel], int int, iny
com javasrc.ulil Sortinglils. shellSeri(Comparahle(])

com javasre.util SortingUtils. quickSor(Comparable(J)

com javasre.util SortingUtils.q_sor(Comparable(], int, ing

7,499

9,999
4,099

5,000

80,455
56414
28,601
1,008
936
922
922
241
57
496
486

(47.79%)
(33.5%)
(17.0%)

(06%)
(06%)
(0.5%)
(0.5%)
0.5%)
0.3%)
0.3%)
0.3%)

70,048 (41 6%)
46,068 (27 3%)
23,433 (13.9%)

72
835
0

81
7o
189
0
435

[23 nodes in model, 23 visible in graph, 12 visible in list

Figure 5-7. The profiled methods used to sort 5,000 random integers using the seven sorting algorithms

146 CHAPTER 5 PERFORMANCE THROUGH THE APPLICATION DEVELOPMENT LIFE CYCLE

We view the method response times sorted by cumulative time, because some of the algo-
rithms make repeated calls to other methods to perform their sorting (for example, the
quickSort() method makes 5,000 calls to q_sort()). We have to ignore the main() method,
because it calls all seven sorting methods. (Its cumulative time is almost 169 seconds, but its
exclusive method time is only 90 milliseconds, demonstrating that most of its time is spent in
other method calls—namely, all of the sorting method calls.) The slowest method by far is the
bubbleSort() method, accounting for 80 seconds in total time and 47.7 percent of total run
time for the program.

The next question is, why did it take so long? Two pieces of information can give us insight
into the length of time: the number of external calls the method makes and the amount of time

spent on each line of code. Figure 5-8 shows the number of external calls that the bubbleSort()
method makes.

. *New Session - JProbe Profiler

Session Edit Miew Mavinate Program Snapshot Tools Display Help

Ew8l» e [@es L VXEEREVE @

@ com javastc.uti SortingUtils ["laaHean Usage | < CallGraph | 3= Method Detail | [EI java
