

Pro Java ME MMAPI
Mobile Media API for
Java Micro Edition

Vikram Goyal

6390ch00FM.qxd 3/24/06 4:13 PM Page i

Pro Java ME MMAPI: Mobile Media API for Java Micro Edition

Copyright © 2006 by Vikram Goyal

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-59059-639-5

ISBN-10: 1-59059-639-0

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Steve Anglin
Technical Reviewer: Robert Virkus
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Project Manager: Sofia Marchant
Copy Edit Manager: Nicole LeClerc
Copy Editor: Julie McNamee
Assistant Production Director: Kari Brooks-Copony
Production Editor: Laura Esterman
Compositor and Artist: Kinetic Publishing Services, LLC
Proofreader: Nancy Riddiough
Indexer: Carol Burbo
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

6390ch00FM.qxd 3/24/06 4:13 PM Page ii

In loving memory of my Papa, who would go to the ends of the Earth
to find that one particular book. This one is for you.

6390ch00FM.qxd 3/24/06 4:13 PM Page iii

6390ch00FM.qxd 3/24/06 4:13 PM Page iv

Contents at a Glance

About the Author . xiii

About the Technical Reviewer. xv

Acknowledgments . xvii

■CHAPTER 1 Introducing Mobile Media API (MMAPI) . 1

■CHAPTER 2 MMAPI Architecture. 7

■CHAPTER 3 Getting Started with MMAPI . 19

■CHAPTER 4 Media Player Lifecycle and Events . 39

■CHAPTER 5 Accessing Media Over the Network . 59

■CHAPTER 6 Creating and Playing Tones Using ToneControl 73

■CHAPTER 7 Managing MIDI Using MIDIControl, TempoControl, and
PitchControl . 95

■CHAPTER 8 Working with Audio and Video . 127

■CHAPTER 9 Case Study: Device Blogging . 185

■APPENDIX A Mobile Media API (MMAPI) Reference . 239

■APPENDIX B URI Syntax for Media Locators . 249

■APPENDIX C Advanced Multimedia Supplements—JSR 234 251

■INDEX . 255

v

6390ch00FM.qxd 3/24/06 4:13 PM Page v

6390ch00FM.qxd 3/24/06 4:13 PM Page vi

Contents

About the Author . xiii

About the Technical Reviewer. xv

Acknowledgments . xvii

■CHAPTER 1 Introducing Mobile Media API (MMAPI) . 1

What Is Mobile Media API (MMAPI)? . 1

MMAPI Features and Requirements . 2

How Do I Get MMAPI?. 3

How Does MMAPI Fit with MIDP 2.0? . 3

Who Supports MMAPI?. 5

Summary . 6

■CHAPTER 2 MMAPI Architecture . 7

Understanding Players and DataSources . 7

DataSource Basics. 8

Player Basics . 9

Understanding the Manager Class . 9

Creating Player Instances. 10

Creating Player Instances for MIDI and Tone Sounds 11

Supported Protocols and Content Types . 11

Understanding Controls . 13

The MIDP 2.0 Subset . 14

Feature Set Implementations . 15

Security Architecture. 16

Summary . 17

■CHAPTER 3 Getting Started with MMAPI. 19

A Simple Multimedia Player. 19

Creating a Functional Player . 22

Writing the Code . 23

Improving AudioPlayerCanvas: Caching Player Instances. 29

Summary . 37

vii

6390ch00FM.qxd 3/24/06 4:13 PM Page vii

■CHAPTER 4 Media Player Lifecycle and Events. 39

Overview . 39

Exploring the Different Player States . 39

UNREALIZED . 40

REALIZED. 41

PREFETCHED . 43

STARTED . 44

CLOSED . 46

Responding to Player Events . 47

Understanding the Event Delivery Mechanism 50

Creating an Event Handling Class . 51

Handling a Custom Event . 55

Summary . 58

■CHAPTER 5 Accessing Media Over the Network . 59

Understanding Threads in Java ME . 59

Understanding Permissions for Network Access . 63

Putting It Together . 67

Summary . 71

■CHAPTER 6 Creating and Playing Tones Using ToneControl 73

Understanding Synthetic Tones. 73

Understanding Note, Pitch, and Frequency . 74

Using a MMAPI Formula to Calculate Note Values 76

Using the playTone() Method . 79

Using Tone Sequences with ToneControl. 81

Defining Tone Sequences . 82

Playing Sequences Using ToneControl and Player 88

Distributing Tone Sequences . 89

Summary . 93

■CHAPTER 7 Managing MIDI Using MIDIControl, TempoControl,
and PitchControl . 95

Understanding MIDI. 95

Understanding the MIDI Specification . 96

Storing and Distributing MIDI Messages . 101

■CONTENTSviii

6390ch00FM.qxd 3/24/06 4:13 PM Page viii

Using MIDI in MMAPI . 102

Playing MIDI Without MIDIControl . 102

Playing MIDI with MIDIControl . 113

Summary . 125

■CHAPTER 8 Working with Audio and Video . 127

Querying the Capabilities of Your Device. 127

Understanding Media Encodings. 132

A Brief Overview of Sampled Audio . 133

Storing Sampled Audio . 133

Controlling Sampled Audio. 134

Setting Preset Stop Times with StopTimeControl. 134

Gathering Information Using MetaDataControl 139

Mixing Sampled Audio, MIDI, and Tones . 142

Capturing Audio . 146

Timed Capture and Playback . 147

Controlled Capture and Playback . 151

Saving Captured Audio . 158

Capturing Audio from Existing Audio . 162

Working with Video . 163

Displaying Video. 163

Positioning Video and Controlling Volume . 169

Capturing Video and Images . 173

Seeking Video Frames with FramePositioningControl 181

Streaming Media . 181

Summary . 184

■CHAPTER 9 Case Study: Device Blogging . 185

About the Companion Web Site. 185

The Finished MIDlet in Action . 185

MIDlet Startup . 186

Registering with the Device Blog Web Site . 186

Logging in to Device Blog Web Site . 187

Creating and Posting Blog Entries. 188

Creating the MIDlet Design . 192

The Model . 192

The View . 194

The Control . 197

■CONTENTS ix

6390ch00FM.qxd 3/24/06 4:13 PM Page ix

Creating the MIDlet Code . 198

Creating the Model Classes . 198

Creating the Utility Classes . 205

Creating the View. 211

Creating the Control Classes . 227

On the Server Side . 232

Summary . 237

■APPENDIX A Mobile Media API (MMAPI) Reference . 239

Package javax.microedition.media. 239

Interface Control. 239

Interface Controllable . 239

Class Manager . 240

Class MediaException . 240

Interface Player . 240

Interface PlayerListener . 241

Interface TimeBase . 242

Package javax.microedition.media.control . 242

Interface FramePositioningControl . 242

Interface GUIControl . 242

Interface MetaDataControl . 242

Interface MIDIControl . 243

Interface PitchControl . 243

Interface RateControl . 243

Interface RecordControl . 244

Interface StopTimeControl . 244

Interface TempoControl. 244

Interface ToneControl . 245

Interface VideoControl . 245

Interface VolumeControl . 246

Package javax.microedition.media.protocol . 246

Class ContentDescriptor . 246

Class DataSource. 246

Interface SourceStream . 247

■CONTENTSx

6390ch00FM.qxd 3/24/06 4:13 PM Page x

■APPENDIX B URI Syntax for Media Locators . 249

■APPENDIX C Advanced Multimedia Supplements—JSR 234 251

Introduction to JSR 234 . 251

GlobalManager . 252

Spectator . 252

Module. 252

MediaProcessor . 252

Controls . 252

JSR 234 Implementations . 253

■INDEX . 255

■CONTENTS xi

6390ch00FM.qxd 3/24/06 4:13 PM Page xi

6390ch00FM.qxd 3/24/06 4:13 PM Page xii

About the Author

■VIKRAM GOYAL is a software developer living in Brisbane, Australia.
Vikram writes on Java development issues for the mobile environ-
ment at http://today.java.net/pub/au/179. You can contact him at
vikram@mmapibook.com.

xiii

6390ch00FM.qxd 3/24/06 4:13 PM Page xiii

6390ch00FM.qxd 3/24/06 4:13 PM Page xiv

About the Technical Reviewer

■ROBERT VIRKUS is the architect and lead programmer for the open
source project J2ME Polish. He is an internationally recognized J2ME
expert and is a member of Mobile Solution Group, Bremen, Germany.

After studying law and computer science in Bremen, Germany,
and Sheffield, England, Robert began working in the mobile industry
in 1999. He followed WAP and J2ME from their very beginnings and
developed large-scale mobile betting applications.

In 2004, he founded Enough Software, the company behind J2ME
Polish.

In his spare time, Robert enjoys the company of his friends and
his dog, Benny. Other spare-time favorites are going to concerts of soul,
ska, and punk-rock bands, and playing around with old computers
such as Atari 400, Commodore 8296, and MCS Alpha 1.

xv

6390ch00FM.qxd 3/24/06 4:13 PM Page xv

6390ch00FM.qxd 3/24/06 4:13 PM Page xvi

Acknowledgments

Even though you see my name at the front of this book, it’s the result of a collective effort on
the part of several individuals. All these individuals need to be honored and acknowledged
because without them, you would not be holding this book in your hands.

In order of my acquaintance with them, I would like to start with Gary Cornell, Apress
Publisher and Steve Anglin, Java Editor at Apress for having the vision to build a comprehensive
library of wireless Java books. Tina Nielsen as the Publisher’s Assistant was quick with the con-
tracts ensuring a speedy startup on the writing process. Sofia Marchant, the Project Manager
for this book, was like a conductor who ensured that the various harmonies blended together
perfectly to produce a book on time. Robert Virkus, the Technical Editor, was very forthcoming
with his analysis of the text and code, and the final book is a better copy because of his efforts.
Julie McNamee, who I hope reads and corrects this before it gets to you, worked tirelessly as the
Copy Editor ensuring that I meant what I wrote. Laura Esterman, as the Production Editor, had
an eagle eye that did not let even the tiniest of errors pass through via the production process.

There are, of course, other people involved in the production of this book, whom I never
met, and a big Thank You to all of them for a job well done.

Finally a note about the loved ones: My mum and dad worked very hard to bring me up,
and I can never thank them enough for their persistence and hard work.

My wife, Shellie, has suffered because of the hours I have spent in “the office” and deserves
a reward for her patience. More than that, she supports me to be all I can and even puts up with
my interference of her routine when I take away her mobile phone (to test the applications).
To miss all the holidays and breaks and not complain is a feat in itself. I look forward to spend-
ing more time with her and to the upcoming addition to our family.

xvii

6390ch00FM.qxd 3/24/06 4:13 PM Page xvii

6390ch00FM.qxd 3/24/06 4:13 PM Page xviii

1

C H A P T E R 1

■ ■ ■

Introducing Mobile Media API
(MMAPI)

Embedding multimedia capabilities in a MIDlet is the next step in the evolution of MIDlets.
Sun recognized early that audio and video are the future and introduced the Mobile Media API
(MMAPI) via Java Specification Requests (JSR) 135 (http://www.jcp.org/en/jsr/detail?id=135).

The biggest requirement of the MMAPI specification was to ensure compatibility with
small footprint devices while creating a specification that would be scalable for future—possibly
more capable—devices. To this end, MMAPI has succeeded tremendously.

This chapter introduces you to MMAPI and explains several factors that make it a successful
specification. You’ll learn how this API fits in the overall scheme for MIDlet creation with the
Mobile Information Device Profile (MIDP) 2.0. The chapter concludes with information on the
current list of devices that support this API.

What Is Mobile Media API (MMAPI)?
MMAPI is the optional API that developers use to embed advanced multimedia capabilities in
any Java-enabled device. If you’ve been using the audio capabilities in MIDP 2.0, you’ve already
been using a subset of MMAPI. This subset is a forward compatible version of MMAPI created
for limited-capability devices.

MMAPI allows you to create applications for Java-enabled devices that can discover and
use the multimedia capabilities of the device that they are running on. You can play different
formats of audio and video files from the network, a record store, or a Java Archive (JAR) file; have
advanced control over the playback of these files; capture audio and video and take snapshots;
play MIDI files; generate and play back tones; stream radio over the network; and do a whole
lot more.

To encourage device manufactures to use this API in their Java-enabled devices, MMAPI
was designed specifically to be protocol and format agnostic. In other words, this API does not
come with assumptions about the supported protocol for accessing multimedia content, nor
does it makes assumptions about the formats that it would be able to play. Thus, different device
manufactures implement this API in their own way and make it available with the protocols
and formats that their devices can support. This characteristic makes MMAPI a high-level
interface and allows it to be compatible with any Java configuration.

6390ch01.qxd 3/24/06 12:21 PM Page 1

CHAPTER 1 ■ INTRODUCING MOBILE MEDIA API (MMAPI)2

Most devices, however, support some basic protocols and formats; for example, most allow
you to access media over HTTP and play the WAV file format for audio and MP3 for video.

If a device supports a particular media format, MMAPI may mandate some control over
the functionality of that format to create control uniformity across different devices. Other
formats may require entirely different controls that may or may not be mandatory. Chapter 2
provides more information about mandatory controls for different formats in the “Feature
Sets Implementations” section.

MMAPI Features and Requirements
MMAPI was designed for Java-enabled mobile devices, but the design is intentionally general
enough that any Java-enabled device can benefit from it. This forced a set of rules on the API
designers that they had to adhere to:

• Low footprint API: Because the main target of this API is Java-enabled mobile phones,
which are severely constrained for available memory, the API must be able to support
media playback in the available memory. Typically, because the Java-enabled mobile
phones run on the Connected Limited Device Configuration (CLDC), the memory
available ranges between 128KB and 512KB. This is the memory available for the virtual
machine, the core libraries, your MIDlets, and MMAPI. MMAPI’s place with MIDP is
covered in the “How Does MMAPI Fit with MIDP 2.0?” section later in this chapter.

• Ability to support multiple media types: By defining the core API as a set of interfaces,
MMAPI is protocol and format agnostic. Device manufactures supply their own imple-
mentation of MMAPI and implement interfaces that support the multimedia capabilities
of their devices. This allows a wide range of protocols and formats to be supported
based on the device, without any hard wiring of protocols and formats built-in the API
itself. This makes MMAPI immensely scalable as new formats are discovered and sup-
ported by device manufacturers.

• Support for basic controls: Although the previous requirement states that MMAPI is
protocol and format agnostic, some support for basic controls is guaranteed to be pres-
ent. This creates uniform procedures for managing media, whatever format or protocol
it may take. For example, all media can be played, started, or stopped.

• Support for device capabilities discovery: Similar to the previous requirement, all devices
can be queried to discover their capabilities. This allows you to find out which protocols
or formats the device supports.

• Support for basic audio and tone generation: Because MMAPI uses CLDC as the base
minimum supported configuration, it requires some support for audio playback and tone
generation. Note that the API mandates support for audio playback but doesn’t restrict
it to any particular format or protocol, in keeping with the ability to support multiple
media types requirement. Device manufacturers are free to choose which format or
playback they will support. Tone generation is important in Java-enabled mobile phones,
and therefore, the API provides simple ways to play tones as well.

These requirements have led to an API interface that is truly extensible and capable of
supporting a range of multimedia formats and protocols on an array of devices.

6390ch01.qxd 3/24/06 12:21 PM Page 2

CHAPTER 1 ■ INTRODUCING MOBILE MEDIA API (MMAPI) 3

How Do I Get MMAPI?
If you have used the Java Wireless Toolkit (http://java.sun.com/products/sjwtoolkit/
download-2_3.html) to develop your MIDlets, you already have MMAPI installed. The Toolkit
comes with a reference implementation (RI) of this API installed as an optional package. Of
course, MIDP 2.0 contains a subset of this API, so if you are only going to use a limited subset
of MMAPI, you don’t need this RI.

Most development environments (such as Netbeans and Eclipse) that support mobile appli-
cation development include a version of this Toolkit, so MMAPI is included as an optional package.

Of course, the RI supplied with the Toolkit may not be your target platform (in all likelihood,
it won’t be your target platform because it contains only virtual devices). For example, you may
be developing applications for the mobile devices supplied by Nokia. In which case, you need
to download the implementation of MMAPI supplied by Nokia for its devices. This implemen-
tation will come bundled with the Toolkit supplied by Nokia (http://forum.nokia.com/main/
0,,034-2,00.html). Similarly, different device manufacturers, and not just mobile device manufac-
turers, will supply their own implementations bundled in with their overall Java Wireless Toolkit.

In short, to start developing multimedia applications for Java-enabled devices using
MMAPI, you need the Java Wireless Toolkit supplied by the device manufacturers. The last
section in this chapter points you to some popular Toolkits. In this book, I will develop mul-
timedia MIDlets using the Sun supplied Java Wireless Toolkit 2.3 and the Motorola SDK V5.2
(http://www.motocoder.com). In Chapters 8 and 9, I will also use the BenQ (formerly Siemens)
CX 75 emulator (http://www.benqmobile.com/developer). The Sun Wireless Toolkit will be inte-
grated in the Netbeans Integrated Development Environment (IDE) (http://www.netbeans.org),
which will be the main development environment for the examples in this book. The
Motorola device emulators will be used to test the MIDlets before deploying them on an
actual Motorola device (the Motorola C975), and Chapters 8 and 9 will use the BenQ CX 75 emu-
lator before testing them on the BenQ M75 device.

How Does MMAPI Fit with MIDP 2.0?
MMAPI is an optional package for the Java Micro Edition (ME) platform. MIDP 2.0 is a profile
for the development of MIDlets, or applications for Java-enabled mobile devices, such as mobile
phones and PDAs. MMAPI can be used with not just MIDP 2.0, but with any Java ME profile
and configuration, provided an implementation is available for the device you are developing
for. Refer to Beginning J2ME: From Novice to Professional, Third Edition, by Jonathan Knudsen
and Sing Li (Apress, 2005) for a review of configurations, profiles, and development of MIDlets.

As you may already know, MMAPI is not the only optional package available for developing
applications for the Java ME platform. Other prominent packages include the Web Services
API (JSR 172), the Mobile 3D Graphics API (JSR 184), and the Location API (JSR 179). All of these
optional packages, like the MMAPI package, are applicable to all available configurations, such
as CLDC and Connected Device Configuration (CDC). On the other hand, an optional package
such as the Wireless Messaging API (JSRs 120/205) is only relevant to the CLDC-based MID
profile (MIDP).

MMAPI differs from the other optional packages because a scaled down version of it is pres-
ent in MIDP 2.0 under the javax.microedition.media and javax.microedition.media.control

packages. No other optional package makes an appearance in MIDP 2.0. So if you are develop-
ing applications that only require basic audio control, you don’t need the full MMAPI installed
or available. You would still be using MMAPI, just not the optional and bigger part of it. Your

6390ch01.qxd 3/24/06 12:21 PM Page 3

CHAPTER 1 ■ INTRODUCING MOBILE MEDIA API (MMAPI)4

CDC CLDC

Fo
un

da
tio

n
Pr

of
ile

Pe
rs

on
al

 P
ro

fil
e

Pe
rs

on
al

 B
as

is
Pr

of
ile MIDP

W
ire

le
ss

M
es

sa
gi

ng
 A

PI

MMAPI

Mobile 3D Graphics
API

Web Services API

RMI Optional
Package

Other Optional Packages

CONFIGURATIONS

PROFILES

OPTIONAL
PACKAGES

Java ME Environment

Figure 1-1. Java ME development environment showing MMAPI as an optional package

application will run on all devices that support MIDP 2.0, as MIDP 1.0 does not have the scaled
version.

■Note Some devices support the MMAPI in MIDP 1.0 as an optional library, for example, Nokia 3650, Nokia
7650, and Sony Ericsson 610. Applications that use the features of the optional package will only run on devices
that have both MIDP 2.0 and the optional MMAPI package installed. The next section includes a comprehen-
sive list of all such devices at the time of the book going to print.

Figure 1-1 gives a bird’s eye view of how MMAPI, along with the other optional packages,
fits in the development of applications for Java-enabled devices. Because this book concen-
trates on applications developed using MIDP, which are called MIDlets, I’ll use that term when
talking about such applications.

6390ch01.qxd 3/24/06 12:21 PM Page 4

CHAPTER 1 ■ INTRODUCING MOBILE MEDIA API (MMAPI) 5

Who Supports MMAPI?
The specification for MMAPI was developed using the Java Community Process (JCP)
(http://www.jcp.org) by a consortium of organizations, including device manufacturers,
network operators, and multimedia companies, besides Sun Microsystems. This specification
is numbered 135 and can be accessed at http://www.jcp.org/en/jsr/detail?id=135. The initial
expert group for the development of this specification was composed of Sun, Nokia, and Beatnik.

Afterwards, several other organizations chipped in and lent their support for the development
of this specification. A final release with a version number of 1.0 occurred on June 27th, 2002.
A maintenance release (version 1.1) incorporating security enhancements and minor modifi-
cations was released a year later on June 26th, 2003, and is the version used for the examples
in this book. Recently, JSR 234 has been released that identifies advanced supplements for this
MMAPI.

As part of the development of this specification, Sun released a reference implementation
of this API and a technology compatibility kit (TCK) that can be used to certify that an imple-
mentation of this API is compatible with the specification. This is par for any specification
developed using the JCP. As stated earlier, this RI is bundled with the Java ME Wireless Toolkit
supplied by Sun. Different device manufacturers supply their own implementations compati-
ble with the TCK.

All devices that support MIDP 2.0 automatically support the scaled-down version of MMAPI.
Many devices support the full version as an optional package. Table 1-1 gives a comprehensive
list of devices that support MMAPI as an optional package.

Table 1-1. Devices That Support MMAPI As an Optional Package

Device
Manufacturer Supported Devices Wireless Toolkit

Alcatel One Touch 756 http://www.my-onetouch.com

BenQ AX75 (MIDP 1.0), C70, C75, http://www.benq.com/developer
CF75/76, CL75, CX70/EMOTY,
CX75, M75, S75, SL75, SXG75

Motorola C975, E1000, A1000, A630, A780, http://www.motocoder.com
A845, C380, C650, E398, E680, SLVR,
T725, V180, V220, V3, V300, V303,
V360, V400, V500, V525, V550, V551,
V600, V620, V635, V8, V80, V980, i730

Nokia All Series 40, Series 60, and Series 80 http://forum.nokia.com/main.html
based devices

Samsung E310, E380, E710, D400, P705, D410, http://uk.samsungmobile.com/club/
176X192 Series, E810, E310 developers_club/cl_de_sdk_01.jsp

Sony-Ericsson W900, Z600, T610, T616, T618, V600, http://developer.sonyericsson.com
W800, K608, W550, W600, z520, D750,
Z800, K600, K750, K300, K500, K700,
J300, V800, Z500, S700, Z1010

6390ch01.qxd 3/24/06 12:21 PM Page 5

CHAPTER 1 ■ INTRODUCING MOBILE MEDIA API (MMAPI)6

Summary
This chapter introduced MMAPI, an optional package for the development of MIDlets that
have embedded audio/video capabilities.

MMAPI provides these capabilities by defining a specification that is protocol and format
agnostic, thereby increasing general acceptance and uptake. This has made MMAPI very popular
and more and more devices support it.

With this introduction to MMAPI’s features and requirements complete, the next chapter
addresses the MMAPI architecture, which is key to understanding and using MMAPI.

6390ch01.qxd 3/24/06 12:21 PM Page 6

MMAPI Architecture

The MMAPI specification was created to cater to the widest range of multimedia options, and
this is reflected in its architecture. It supports the most basic audio functions in a constrained
device and at the same time provides ways to handle advanced multimedia data on more capable
devices. MMAPI supports data from various sources and in various formats. MMAPI’s protocol
and format agnostic characteristic is achieved by a well-designed, high-level interface.

This chapter explains how the MMAPI specification achieves this aim of platform and format
neutrality. You’ll become familiar with the details of its architecture and the high-level objects
that make it a successful specification. You’ll see how the subset of MMAPI present in MIDP 2.0
differs from the overall specification. Finally, the chapter covers several small details of the MMAPI
architecture, such as feature sets and security scenarios, to help you better understand and use
MMAPI.

Understanding Players and DataSources
MIDlets can receive multimedia data from a variety of sources: located in a MIDlet’s JAR file;
come over the network via several different protocols (HTTP, RTP); sourced from the device’s
record store on which the MIDlet is running; and even come from user input via an audio or
video capture device. In short, not only can this data be sourced from different locations, but
also these locations can be accessed using any number of present or future protocols. At
a conceptual level, MMAPI can handle all such locations and protocols without getting tied
down to a specific protocol or location.

After data has been sourced, MMAPI should be able to process this data and make it available
for rendering on the device. Processing multimedia data is inherently complex and requires the
API to not only understand the data but decode it as well. Rendering the data and providing
controls to manipulate it further complicates the process. Because MMAPI is a high-level inter-
face, it doesn’t mandate any specific data-processing functionality, besides a very low level of
audio handling.

To achieve this neutrality with regard to sources of multimedia data and processing, MMAPI
encapsulates these concepts into two high-level objects: Player and DataSource. Whereas Player
is an interface that deals with processing and playing multimedia data, DataSource is an abstract
class that encapsulates the task of data location and retrieval while maintaining protocol
independence. The Player interface is defined in the javax.microedition.media package, and
DataSource is defined in the javax.microedition.media.protocol package.

7

C H A P T E R 2

■ ■ ■

6390ch02.qxd 3/24/06 11:52 AM Page 7

CHAPTER 2 ■ MMAPI ARCHITECTURE8

Player and DataSource work together to provide multimedia capability in a device. A Player

instance parses data supplied to it from a DataSource instance. The Player may then render
this data on the device and provide controls to manipulate it. For example, an audio Player
can provide volume controls to increase or decrease the playback volume.

DataSource Basics
The DataSource class provides access to multimedia files by locating and opening a connection
to them. You may not need to use this class directly, unless you are going to create a DataSource

for a custom protocol or location. The MMAPI implementation provided by the device that
you are targeting your MIDlet to will provide enough DataSource instances to satisfy most
requirements.

Each DataSource is composed of one or more streams, known as a SourceStream (an interface
in the javax.microedition.media.protocol package). A SourceStream is used to abstract a sin-
gle stream of media data. Conceptually, multimedia data may be composed of several streams.
For example, video files may be broken down into separate streams, one for audio and one for
video. Thus, each individual stream can be acted on, independently of the other stream, thereby
giving greater control than is possible otherwise. Most DataSource instances are composed of
a single SourceStream.

A SourceStream also has the advantage of being randomly seekable, because it provides the
seek(long where) method. This is an important consideration for multimedia data because it
allows you to render this data from an arbitrary position. Of course, a particular stream may
not support random seek operations, and this is reflected by the getSeekType() method. This
method returns one of three integer constants, shown in Table 2-1.

Table 2-1. Constants to Test a SourceStream for Seekability

Constant Description

NOT_SEEKABLE The specified stream is not seekable.

SEEKABLE_TO_START The specified stream can only be sought to its beginning.

RANDOM_ACCESSIBLE A true seekable stream, this constant indicates that the specified stream
can be randomly accessed anywhere.

A SourceStream has one more advantage. For multimedia data that supports it, a SourceStream

can be used to read the logical transfer size of the data. For example, video data is normally
composed of individual frames, so the logical transfer size of the data would be the size of one
such frame. This allows you to create an in-memory buffer of the right size, equivalent to or
greater than the size of the frame, to read data, thereby creating an efficient data read process.
SourceStream instances that support this concept return a positive integer value for the method
getTransferSize() and return -1 if they don’t support it.

A DataSource instance is created by providing the location of the media to its constructor:
DataSource(String locator). The locator parameter is specified in a Uniform Resource Identifier
(URI) (http://www.ietf.org/rfc/rfc2396.txt) syntax—<scheme>:<scheme-specific-part>—which
delineates the delivery protocol, the location of the media file, and its name. You are already
familiar with HTTP for accessing files, which provides an easy example:

http://www.mmapibook.com/resources/media/audio/chapter2/siren.wav

6390ch02.qxd 3/24/06 11:52 AM Page 8

CHAPTER 2 ■ MMAPI ARCHITECTURE 9

where http refers to the protocol, http://www.mmapibook.com/resources/media/audio/chapter2
to the location, and siren.wav to the name of the file. Appendix B gives an overview of this syntax.

Player Basics
The Player interface is your handle to playing and managing your multimedia data. It provides
methods to render, control, and synchronize the data with other players, and listen to player
events such as starting, stopping, and pausing the data.

All media types, except for simple tones, require a Player instance for playback and control.
A media type is mapped to a Player instance that can handle its playback by evaluating the
extension of the file that contains the multimedia data and mapping it to a MIME type. For
example, if you wanted to play an audio file with the wav extension, a Player instance that can
handle the MIME type audio/x-wav is created. Similarly, a file with an mp4 extension results in
the creation of a Player instance that can play video/mp4. In the next section, you’ll learn
about the Manager class that does this mapping between MIME types and Player instances.

Player instances are independent of the media type that they are playing and only depend
on the implementation provided by the device manufacturer. This allows you to use generic
methods to manipulate this data. So to start the playback of any multimedia data, you use the
start() method, which starts playback as soon as possible. To pause, you use the stop() method,
which pauses the playback. To close the data and release any resources associated with it, you use
the close() method, and so on. Chapter 4 will introduce you to all the methods that you can
use to control media playback.

If you are creating a multimedia MIDlet that is responsible for simultaneously playing
multiple Player instances, you will run into synchronization issues, for example, making sure
that video playback starts simultaneously with a separate audio track. In such cases, synchro-
nizing different Player instances can be a problem without a timing reference. Each Player
instance has a way to measure time using the TimeBase interface. This interface provides a con-
stantly ticking source of time, and each Player instance has a default TimeBase instance built
in. You can access this default instance by using the method getTimeBase(); you can override
this default instance with your own implementation by using the setTimeBase(TimeBase base)
method. To synchronize two Player instances so that they use the same TimeBase, you can use
player2.setTimeBase(player1.getTimeBase()) code. To reset a Player instance’s TimeBase, you
can pass a null value to the setTimeBase(TimeBase base) method.

Player instances generate events during different stages of their working. By implementing
the PlayerListener interface, you can receive notifications of these asynchronous events. This
interface defines several common events, but you can create your own proprietary events as
well. Chapter 4 discusses the event management of Player instances in detail.

Understanding the Manager Class
The Manager class in the javax.microedition.media package provides developers access to
Player instances. These Player instances, as you already know, source their data from DataSource
instances. In a nutshell, a Manager class is a bridge between a DataSource and a corresponding
Player instance. Figure 2-1 shows this relationship.

6390ch02.qxd 3/24/06 11:52 AM Page 9

CHAPTER 2 ■ MMAPI ARCHITECTURE10

DATASOURCE

PLAYER

MANAGER

Figure 2-1. The Manager class is the bridge between a DataSource and a Player.

Creating Player Instances
Using methods of the Manager class is the only way to create Player instances in MMAPI. To
this end, this class provides three such methods. Not surprisingly, all the methods are called
createPlayer() and are static. The methods differ in the way the location of the multimedia
data is provided to them.

As expected, createPlayer(DataSource source) is one of these methods. You create an
instance of a DataSource using the DataSource(String locator) constructor and pass this to
the createPlayer() method. The other two methods eventually call this method internally to
create the Player instance.

You are more likely to use the createPlayer(String locator) method because it is more
convenient than the previous method. Instead of having to create a DataSource, you only
specify the location of the multimedia data using the locator parameter. The method internally
translates it into a DataSource and creates a Player that is suitable for handling the multimedia
content.

The third method, createPlayer(InputStream is, String type), provides a slightly differ-
ent way of creating players. It allows you to create an InputStream on the data and specify the
content type of the data yourself, because the MIME type of the data cannot be determined with
file extensions. This method has a further disadvantage because by using an InputStream instead
of a SourceStream, it disallows random seek operations within the multimedia data. Player
instances created with this method are not likely to support such operations.

6390ch02.qxd 3/24/06 11:52 AM Page 10

6e067a1cf200c3b6e021f18882237192

CHAPTER 2 ■ MMAPI ARCHITECTURE 11

Creating Player Instances for MIDI and Tone Sounds
Some Player instances do not require a physical file or location. For example, when you create
a MIDlet that will play tones or Musical Instrument Digital Interface (MIDI) sounds, you need
to tell the device to use its built-in MIDI synthesizer to play these sounds based on a supplied
MIDI or tone sequence. The Manager class provides constants for creating Player instances
based on these requirements. Table 2-2 gives details of these constants.

Table 2-2. MIDI and Tone Player Constants

Constant Name Constant Value Content Type Usage

MIDI_DEVICE_LOCATOR device://midi audio/midi Manager.createPlayer
(Manager.MIDI_DEVICE_LOCATOR)

TONE_DEVICE_LOCATOR device://tone audio/x-tone-seq Manager.createPlayer
(Manager.TONE_DEVICE_LOCATOR)

You can still create MIDI and tone Player instances by specifying physical locations for
them. For example, to create a MIDI Player based on a physical file, the extension of the file
should be either mid or kar. Similarly, for a tone Player instance the extension of the file should
be jts.

Because most simple devices support tone generation, the Manager class goes one step
further by providing a static method to play single tones: playTone(int note, int duration,
int volume). This provides a handy method that plays a single note for the specified duration
and at the specified volume. Chapter 6 covers tone playing in detail.

Supported Protocols and Content Types
With MMAPI development for disparate devices, it becomes imperative to know beforehand
what protocols are supported and what multimedia content can be rendered by the target
device. The Manager class provides two methods that can help you understand the capabilities
of a target MMAPI implementation.

The static getSupportedContentTypes(String protocol) method provides a list of all sup-
ported content types for a particular protocol. If you pass a null parameter to this method, it will
give you a list of all content types supported by this device’s MMAPI implementation. The static
getSupportedProtocols(String contentType) method does the opposite; given a content type,
it tells you all the protocols over which it can be accessed. If you pass a null parameter to this
method, it will give you a list of all protocols supported by the device’s MMAPI implementation.

Table 2-3 lists the output of running these methods on three different environments.

6390ch02.qxd 3/24/06 11:52 AM Page 11

CHAPTER 2 ■ MMAPI ARCHITECTURE12

Table 2-3. Supported Protocols and Content Types on Different MMAPI Implementations

Sun Java Motorola C975 Motorola C975
Method Wireless Toolkit 2.3 Emulator Actual Device

getSupported audio/x-tone-seq, audio/x-wav audio/amr, audio/x-amr,
ContentTypes audio/x-wav, audio/x-tone-seq audio/amr-wb
(null) audio/midi, audio/midi audio/x-amr-wb,

audio/sp-midi, video/mng audio/mp4, audio/x-mp4,
image/gif, video/x-rgb audio/3gp, audio/mp3,
video/mpeg, audio/x-mp3, audio/mpeg3,
video/vnd.sun.rgb565 audio/x-mpeg3, audio/mpeg,

audio/x-mpeg, audio/mpg,
audio/x-mpg, audio/wav,
audio/x-wav, audio/au,
audio/x-au, audio/basic,
audio/asf, audio/x-ms-wma,
audio/x-pn-realaudio,
audio/midi, audio/x-midi,
audio/mid, audio/x-mid,
audio/sp-midi,
audio/mobile-xmf,
audio/imelody, audio/
x-imelody, audio/imy,
audio/x-imy, text/
x-imelody, audio/
x-tone-seq, video/mp4,
video/x-mp4, video/3gp,
video/asf, video/x-ms-asf,
video/x-ms-wmv,
video/x-pn-realvideo,
video/vnd.rn-realvideo,
application/x-pn-realmedia,
application/
vnd.rn-realmedia,
image/gif, audio, video,
camera

getSupported device, http, file, http, https, device, file, rtsp, http, https,
Protocols(null) capture capture device, capture

getSupported audio/x-wav audio/x-wav audio, video, camera
ContentTypes video/vnd.sun.rgb565 video/x-rgb
("capture")

getSupported http, file, capture http, https, capture file, rtsp, http, https
Protocols
("audio/x-wav")

As you can see from Table 2-3, the supported protocols and content types vary greatly
depending on the target device or emulator. Even though the emulator for Motorola C975
should support the same protocols and content types as the actual device, the difference is
huge, especially for the supported content types. Actual device configurations vary greatly
from their supposed emulators, and this is a typical result. Your MIDlets should always be
tested on actual devices before bringing them into a production environment.

6390ch02.qxd 3/24/06 11:52 AM Page 12

CHAPTER 2 ■ MMAPI ARCHITECTURE 13

Understanding Controls
MMAPI defines Control objects that provide fine-grained control over the functionality of
a Player. For example, if you have created a Player object to play an audio file, you will want
to control its volume. Rather than provide volume control as a method in the Player interface,
the interface VolumeControl is used. Volume is a type of control that is applicable to audio files,
indeed to almost all multimedia files, but there may be several such individual controls that
are exposed by individual media types. For example, FramePositioningControl is a control
that is exposed by video players to control precise positioning of individual frames. The Control
interface in javax.microedition.media package is used to abstract this concept.

MMAPI defines some standard controls in the javax.microedition.media.control pack-
age, but you are free to create your own controls by implementing the Control interface. The
controls in the javax.microedition.media.control package are all defined as interfaces, and it
is left for actual MMAPI implementations to provide concrete classes for them. Table 2-4 lists
these controls and provides a brief explanation of each control.

Table 2-4. Standard MMAPI Controls

Control Interface Description

FramePositioningControl A control for video data that allows access to individual frames.

GUIControl A control for data that requires a display, such as video.

MetaDataControl Used to determine the metadata information stored within a media
stream, such as title, copyright, author, and so on.

MIDIControl A fully functional control that enables access to a device’s MIDI player.

PitchControl Used to control the pitch (frequency) of audio data.

RateControl Used to control the playback rate of a Player.

RecordControl Allows you to control the recording of data from a capture device,
such as video from a camera or audio from a sound recorder.

StopTimeControl A control that allows you to set a preset time when you want the
Player to stop playing.

TempoControl Similar to RateControl, this control allows you to change the tempo
(speed) of playback for an audio Player, typically, a MIDI Player.

ToneControl A fully functional control that allows you to play monotonic tone
sequences.

VideoControl Extends GUIControl and controls the display of video.

VolumeControl The simplest control that allows you to control the volume of audio
in a Player.

To get a list of controls that a Player instance exposes, use the method getControls() on
the Player instance. To get to an actual control, use the method getControl(String controlType)
and pass to it the name of the control interface. For example, to access the VolumeControl on
a Player, you can use the method getControl("VolumeControl"). These methods are not
defined in the Player interface, but the Controllable interface that the Player interface imple-
ments. As a point of interest, both SourceStream interface and the DataSource abstract class
implement the Controllable interface, which gives you access to type-specific controls, if
available.

6390ch02.qxd 3/24/06 11:52 AM Page 13

CHAPTER 2 ■ MMAPI ARCHITECTURE14

As you may expect, some Player instances may expose multiple controls. For example,
a Player created to handle video data will expose both a VideoControl and a VolumeControl at
the very least. An audio player may expose a VolumeControl, a RateControl, a PitchControl, and
a ToneControl. Some Player instances may support no controls, in which case, getControls()
returns a zero length array (and not a null value).

After you have access to a control, you have access to the behavior of that control (and
control of the underlying multimedia data). Each control is different in terms of its behavior
and exposes methods that manipulate this behavior. For example, FramePositioningControl
has a method called seek(int frameNumber) that when invoked on a video Player, renders the
specified frame in the video on to the display. The method skip(int framesToSkip) skips
the given number of frames from the current video position. Similarly, other controls define
their own methods that best allow you to manipulate the underlying multimedia data. Detailed
descriptions of the controls listed in Table 2-4 are scattered throughout this book.

The MIDP 2.0 Subset
MMAPI is an optional package, which means that device manufacturers may choose not to
include an implementation for it in their devices. However, if the profile on a device is MIDP 2.0,
then the device includes a subset of MMAPI. This subset was created to provide a base common
MMAPI implementation for the MID 2.0 profile.

This subset was created to solve two problems: (1) resource constrained devices do not
have enough processing power to display video-based multimedia data, and (2) even if these
devices were powerful enough, they would be constrained in terms of the size of a MMAPI
implementation. To support extensive processing and multiple multimedia data formats, the
size of a MMAPI implementation can be large.

To solve these problems, the MIDP 2.0 subset of MMAPI ignores some of the requirements
of the complete set. Although still a forward compatible version of MMAPI, it ignores some of
the controls and provides a scaled-down version of the Manager class. Table 2-5 lists how the
MIDP 2.0 subset differs from the complete MMAPI implementation

Table 2-5. MIDP 2.0 MMAPI Subset Features

Feature Description

Audio only The subset only supports audio-based data. Thus, no video-
based controls, such as VideoControl, GUIControl, or
FramePositioningControl, are present, and any content type
that is video-based is ignored.

No MIDI support Even in audio, only simple tones and sampled audio is
supported, ignoring MIDI. Thus MIDIControl is absent and only
ToneControl and VolumeControl is provided.

No support for synchronization The subset is missing the TimeBase interface, and the Player
interface is without the setTimeBase() and getTimeBase()
methods. Thus, multiple Player instances cannot be
synchronized to play back simultaneously.

No support for recording Even for audio data, recording and capturing are not enabled,
and thus RecordControl is absent.

No support for controlling the TempoControl and RateControl are absent.
rate of audio playback

6390ch02.qxd 3/24/06 11:52 AM Page 14

CHAPTER 2 ■ MMAPI ARCHITECTURE 15

Feature Description

Controlling audio frequency PitchControl is absent.
is not supported

Other missing controls StopTimeControl and MetaDataControl are also not supported.

No support for custom protocols The javax.microedition.media.protocol package is
excluded. The Manager class, therefore, does not include the
createPlayer(DataSource source) method.

These features make the subset a lightweight implementation that meets the design goals
of MIDP 2.0, including support for low footprint audio playback functionality in MIDlets, sup-
port for tone generation, and consistent media playback options. At the same time, the subset
maintains upward compatibility with the MMAPI specification and is a true subset.

Feature Set Implementations
With intrinsic support for such a diverse range of features, protocols, and file formats, MMAPI
is a truly flexible specification. It doesn’t mandate support for any formats but allows device
manufacturers to build in support for formats that they deem fit. However, with this flexibility,
application development becomes a bit more difficult. You can query for a device implemen-
tation to give you a list of supported protocols and formats, but are you guaranteed that it will
behave how you expect it to?

To alleviate this concern and to bring about some uniformity in the way multimedia data
is controlled, MMAPI specification defines feature sets. A feature set is a grouping of multime-
dia data that has some common features. The API defines required and expected behavior for
each feature set if the feature set is implemented by a device manufacturer’s implementation.
This way, if you are developing applications that target a particular feature set, you are guaran-
teed that it will behave by exposing controls that are similar across different manufacturers.

The simplest feature set is called sampled audio. As far as MMAPI is concerned, sampled
audio refers to any audio data that is digital in its format, ignoring its origin. If a device supports
sampled audio, it should implement the VolumeControl and StopTimeControl interfaces. Note
the emphasis on should, which implies that this is a recommended practice, which barring
any adverse circumstance, must be implemented. The MIDP 2.0 MMAPI subset is good example.
Because it supports sampled audio, it should implement both VolumeControl and StopTimeControl;
however, it only implements VolumeControl and ignores StopTimeControl.

MIDI is the next feature set. If a device’s MMAPI implementation declares that it supports
the MIDI feature set, which means that it allows you to play external audio files with extensions
of mid or kar, it should implement VolumeControl, MIDIControl, TempoControl, PitchControl,
and StopTimeControl. Again, notice the emphasis on should. Although there’s no guarantee
that the device will support all these controls, there’s a good chance that it will.

The Tone Sequence feature set is the first set that mandates a “must” requirement. If
a device allows you to play tone sequences, it must implement the ToneControl interface. If the
device doesn’t implement this interface, then it does not conform to the MMAPI specification.
The Tone Sequence feature set is applicable to Player instances that are created using the
Manager.createPlayer(Manager.TONE_DEVICE_LOCATOR) method.

Similar to the Tone Sequence set, the Interactive MIDI feature set is applicable to Player
instances that are created using the Manager.createPlayer(Manager.MIDI_DEVICE_LOCATOR)

6390ch02.qxd 3/24/06 11:52 AM Page 15

CHAPTER 2 ■ MMAPI ARCHITECTURE16

method, which allows you to create MIDlets that directly manipulate the device’s MIDI player.
This feature set must implement the MIDIControl interface.

Finally, the video feature set applies to all video data. If video is supported by a device’s
MMAPI implementation, it must allow you to control the video with the VideoControl interface.
The implementation should also support FramePositioningControl, the StopTimeControl, and
the VolumeControl, but it doesn’t have to. If it doesn’t support the last three controls, but supports
VideoControl, it is still an MMAPI-compliant implementation.

Security Architecture
As you now know, MMAPI does not work in isolation; it is an add-on or optional package that
works on top of a profile. In this book, we are concerned with exploring MMAPI for the profile
for small devices, MIDP 2.0; however, as explained in Chapter 1, MMAPI can be run on any
compatible profile and configuration.

The capability to acquire and render multimedia data on any profile or configuration, even
with an optional package such as MMAPI, creates a few problems with the security architecture
of the device in question. The device must be able to control certain aspects of the multimedia
process, such as recording using a camera and microphone for devices that have them. Similarly,
the network and device’s file system should be accessed only by a permission-based model.

Keeping these issues in mind, MMAPI allows control over the methods that are security
sensitive. However, the specification does not dictate a particular architecture, and leaves it to
specific implementations to work out the exact details, much like the interfaces that it describes
for Player and Control objects.

Methods that are security conscious throw a SecurityException if permission to run that
method has not been granted. Table 2-6 lists all these methods, the classes/interfaces they
reside in, and the permissions required to make them run.

Table 2-6. Security Conscious Methods

Method Class/
Method Name Interface Permission Required

setRecordLocation(String locator) RecordControl javax.microedition.media.control.
RecordControl

setRecordStream RecordControl javax.microedition.media.control.
(OutputStream stream) RecordControl

getSnapshot(String type) VideoControl javax.microedition.media.control.
VideoControl.getSnapshot

createPlayer(String locator) Manager

createPlayer(InputStream is, Manager
String type)

createPlayer(DataSource source) Manager

realize() Player

prefetch() Player

start() Player

start() DataSource

connect() DataSource

6390ch02.qxd 3/24/06 11:52 AM Page 16

CHAPTER 2 ■ MMAPI ARCHITECTURE 17

Permissions are granted by the profile that MMAPI is running in. This is, in turn, either
inherently built in the profile—for example, if recording is not supported at all then permissions
will be false irrespective of any other conditions—or requested from the user running an appli-
cation on the device to explicitly enable them.

As you may expect, the first three methods in Table 2-6 relate to privacy issues. An appli-
cation must not start recording, even if the underlying device can record, without an explicit
permission from the user of the application. The rest of the methods are related with general
security issues of network access for data retrieval and depend on the protection domain that
the MIDlet is running in. If data has to be retrieved over HTTP, then the user must be asked if
transmission over the network is permitted, as it may result in charges billed to the user.

For HTTP/HTTPS access, the required permissions are javax.microedition.io.Connector.
http and javax.microedition.io.Connector.https, respectively. Permissions are specified in
the descriptor file (the Java Application Descriptor or JAD file) for the MIDlet and can be granted
to a signed MIDlet. Refer to Beginning J2ME by Knudsen and Li (Apress, 2005) for an under-
standing of the process required for enabling permissions in Java ME. Chapter 5 also contains
a detailed example of this process.

Summary
The MMAPI architecture was purposefully built to be extensible and not cater to a particular
format or protocol. DataSources, Players, and Controls make the MMAPI a very flexible API
that gives freedom to its implementers to support any media types, and at the same time, be
true to the contract specified between the MMAPI interfaces.

This chapter explained this contract by specifying the MMAPI architecture. You saw the
way the interfaces interact with each other and how device manufacturers can implement them.
Using three different MMAPI implementations, you saw the different contents and protocols
that they supported and how they still provided support for the basic MMAPI/MIDP 2.0 subset.
Finally, you understood the security issues involved in using the libraries and classes of MMAPI.

The next chapter will leave the theory of MMAPI behind for a moment to introduce your
very first media player using MMAPI.

6390ch02.qxd 3/24/06 11:52 AM Page 17

6390ch02.qxd 3/24/06 11:52 AM Page 18

19

C H A P T E R 3

■ ■ ■

Getting Started with MMAPI

By now, you know that MMAPI is an optional API for building multimedia-enabled MIDlets.
You also know that creating a MMAPI application requires knowledge of not just the MMAPI
architecture, but also the MIDlet architecture, which you should be well conversant with.
MMAPI MIDlets don’t require any modifications to the way MIDlets are created, and basic
architectural knowledge of the API is enough to get you started creating the simplest of multi-
media MIDlets. You have already learned about the architecture in Chapter 2, and in this chapter,
you’ll use this knowledge to create two simple MMAPI MIDlets.

The first MIDlet is an example of the simplest MMAPI MIDlet that can be created. It plays
an audio file and shows basic interaction between the Manager class and the Player interface.
The second MIDlet is much more advanced and shows the interplay between the Manager class
and the Player and the Control interfaces.

Both MIDlets will give you grounding in MMAPI MIDlet creation. Consider them as the
Hello World MIDlets of the MMAPI world.

A Simple Multimedia Player
The simplest MMAPI MIDlet that can be built allows you to easily play a multimedia file from
within your MIDlet without worrying about controls, feature sets, or security architecture. If
all you’re doing is adding some sampled audio (or any other media) in a game, MMAPI allows
you to do so in two lines of code. Listing 3-1 shows this code within a complete MIDlet.

Listing 3-1. A Simple MMAPI MIDlet

package com.apress.chapter3;

import javax.microedition.midlet.MIDlet;

import javax.microedition.media.Manager;

import javax.microedition.media.Player;

public class SimplePlayer extends MIDlet {

public void startApp() {

6390ch03.qxd 3/24/06 11:53 AM Page 19

CHAPTER 3 ■ GETTING STARTED WITH MMAPI20

try {

Player player =

Manager.createPlayer(

getClass().getResourceAsStream("/media/audio/chapter3/baby.wav"),

"audio/x-wav");

player.start();

} catch(Exception e) {

e.printStackTrace();

}

}

public void pauseApp() {

}

public void destroyApp(boolean unconditional) {

}

}

To keep things simple at this stage, the media file is played by creating an InputStream
on a wav file, which is embedded in the MIDlet’s JAR. This media file is kept in the folder
media/audio/chapter3 and is called baby.wav (which is the sound of a baby crying).

Of course, you don’t need to play an audio file only. You can substitute the wav file with
a video file, provided the emulator supports the format of the video file. The video will not
show anywhere, because this listing doesn’t provide a mechanism to show the video. You can
substitute the wav file for a midi, tone, or any other supported audio format. The point is that
playing multimedia files using the MMAPI is as simple as creating a Player instance using the
Manager class and calling method start() on it.

Let’s analyze the two lines that make up the core of this MIDlet.

Player player = Manager.createPlayer(

getClass().getResourceAsStream("/media/audio/chapter3/baby.wav"), "audio/x-wav");

A Player instance is created here using the Manager class’s createPlayer(InputStream is,
String contentType) method. Simpler still would have been to use the createPlayer(String
locator) method, which would let the Manager class figure out the content type of the audio
file. However, using this method would have required specifying a protocol to access the file.
Because the file is stored in the MIDlet’s JAR file, there is no protocol to access it directly. If the
multimedia file had been stored on the Internet or the emulator/device’s local file system, you
could have used either http://<url-to-file> or file:///<file-location> (if the optional
FileConnection API [JSR 75] is supported by the device), respectively. However, to access files
over these protocols would require explicit permission from the user or a signed MIDlet request-
ing these permissions, and therefore, this example would not remain simple anymore.

6390ch03.qxd 3/24/06 11:53 AM Page 20

CHAPTER 3 ■ GETTING STARTED WITH MMAPI 21

■Note Some devices support the resource protocol for accessing files stored in a JAR file. In such
devices, you can use resource://media/audio/chapter3/baby.wav or similar to create a locator for
a media file. However, because this support is not universal, use it only if you are confident that the target
device(s) will understand it.

The second line of code,

player.start();

is where the Player instance gets to start playing the media file. A lot of things happen behind
the scenes when you call this method, but effectively, the media file will play back as soon as
possible when this method is called. The method returns as soon as the media has started
playing. The start() method is also used to resume playback of a media file that was previ-
ously paused (or had stopped because it had reached its end), with playback starting at the
point where the media was paused.

Both the lines of code described previously throw several exceptions. Although Listing 3-1
ignores the individual exceptions, you can catch them and deal with them individually.
Table 3-1 shows a list of these exceptions and information on which method throws what
exception.

Table 3-1. Exceptions Thrown Playing a Media File Using MMAPI

Exception Thrown By Description

IllegalArgumentException createPlayer(String Thrown if the InputStream,
InputStream, String type) locator, or DataSource is null.
createPlayer(String locator)
createPlayer(DataSource source)

MediaException createPlayer()—all three variants Thrown if a Player instance
cannot be created for the given
stream and type, DataSource,
or locator, possibly because
the protocol and/or the
format is not supported.

IOException createPlayer()—all three variants Thrown if connection to the
source of the media file
encounters a problem, such
as network congestion,
corrupt file, and so on.

SecurityException createPlayer()—all three variants Thrown if permission to
create a Player instance has
not been granted to the calling
MIDlet.

IllegalStateException start() Thrown if the Player instance
cannot be started because it
has been closed. More about
Player states appears in
Chapter 4.

Continued

6390ch03.qxd 3/24/06 11:53 AM Page 21

CHAPTER 3 ■ GETTING STARTED WITH MMAPI22

Figure 3-1. AudioMIDlet shows list of audio files on Sun’s DefaultColorPhone emulator,
Motorola C975 emulator, and Motorola C975 device.

Table 3-1. Continued

Exception Thrown By Description

MediaException start() A catchall exception that is
thrown if the Player instance
can’t be started because of
any number of reasons.

SecurityException start() The calling MIDlet may have
permission to create the
Player instance but not to
start it, in which case, it throws
this exception.

After a Player instance has been started, it can be paused, closed, restarted, played repeatedly,
and controlled by instances of the Control interface. A Player also fires information about various
events that can be listened to and appropriate activities performed based on these events. Chapter 4
will cover handling Player events and the lifecycle of a Player instance. For now, let’s create
a slightly advanced Player instance that can be paused, restarted, played in a loop, and closed.

Creating a Functional Player
Listing 3-1 created a very basic Player instance. In this section, you’ll learn to create a slightly
more advanced and functional Player that allows you to select a media file to play from a list
and gives you control over the volume.

Before we get into the actual code, let’s look at Figure 3-1, which shows the finished MIDlet,
called AudioPlayer, in operation using the Sun Java Wireless Toolkit 2.3 DefaultColorPhone
emulator, the Motorola C975 emulator, and the Motorola C975 actual device.

The MIDlet shows a list of three audio files that the user can select and play. Figure 3-2
shows the resulting screens when the user selects one of these files.

6390ch03.qxd 3/24/06 11:53 AM Page 22

CHAPTER 3 ■ GETTING STARTED WITH MMAPI 23

Figure 3-2. Playing baby.wav in Sun’s DefaultColorPhone emulator, applause.wav in Motorola
C975 emulator, and laughter.wav in Motorola C975 device

When a file is selected from the list, a new screen shows the actual file name and location,
plays this file, and allows the user to control the volume of the playback. This volume control
is rendered on the screen using a Gauge item. The user can use this gauge to increase or decrease
the volume, and the actual volume level is reflected on the screen. The user can also choose to
go back to the audio list or exit from the MIDlet. The audio file is played twice unless the user
exits or goes back to the list before that.

Writing the Code
The code for this MIDlet is divided into two files: AudioPlayer and AudioPlayerCanvas.
AudioPlayerCanvas is responsible for the canvas that the user sees when an audio file is being
played and allows the user to increase or decrease the volume. More importantly, it manages the
playing of the audio files and their lifecycle when they are paused or stopped. AudioPlayerCanvas
is shown in Listing 3-2.

Listing 3-2. AudioPlayerCanvas—an Interface for Playing Audio Files

package com.apress.chapter3;

import javax.microedition.lcdui.*;

import javax.microedition.media.*;

import javax.microedition.media.control.*;

public class AudioPlayerCanvas implements ItemStateListener {

// the parent MIDlet

private AudioPlayer parent;

6390ch03.qxd 3/24/06 11:53 AM Page 23

// form that contains canvas elements

private Form form;

// gauge to allow user to manipulate volume

private Gauge gauge;

// the volume control

private VolumeControl volume;

// the player used to play media

private Player player;

// is the player paused?

private boolean paused = false;

public AudioPlayerCanvas(AudioPlayer parent) {

this.parent = parent;

// create form and add elements and listeners

form = new Form("");

gauge = new Gauge("Volume: 50", true, 100, 50);

form.append(gauge);

form.addCommand(parent.exitCommand);

form.addCommand(parent.backCommand);

form.setCommandListener(parent);

// a change in volume gauge will be handled by this class

form.setItemStateListener(this);

}

public void playMedia(String locator) {

try {

// create the player for the specified string locator

player = Manager.createPlayer(

getClass().getResourceAsStream(locator), "audio/x-wav");

// realize it

player.realize();

// get the volume control

volume = (VolumeControl)player.getControl("VolumeControl");

// initialize it to 50

volume.setLevel(50);

CHAPTER 3 ■ GETTING STARTED WITH MMAPI24

6390ch03.qxd 3/24/06 11:53 AM Page 24

CHAPTER 3 ■ GETTING STARTED WITH MMAPI 25

// initialize the gauge

gauge.setValue(volume.getLevel());

gauge.setLabel("Volume: " + volume.getLevel());

// play it twice

player.setLoopCount(2);

// start the player

player.start();

// set the title of the form

form.setTitle("Playing " + locator);

} catch(Exception e) {

e.printStackTrace();

}

}

public void pauseMedia() {

// if the player needs to be paused, either due to an incoming call,

// or due to user actions

if(player != null) {

try {

player.stop();

paused = true;

} catch(Exception e) {}

}

}

public void restartMedia() {

// restarting after player was paused

if(player != null) {

try {

player.start();

paused = false;

} catch(Exception e) {}

}

}

public boolean isPlayerPaused() {

return paused;

}

public Form getForm() {

return this.form;

6390ch03.qxd 3/24/06 11:53 AM Page 25

}

public void itemStateChanged(Item item) {

// there is only one item on the form, the gauge, and any change in its

// value means the user wants to increase or decrease the playback volume

volume.setLevel(gauge.getValue());

gauge.setLabel("Volume: " + volume.getLevel());

}

public void cleanUp() {

// clean up, either due to user action or AMS call

if(player != null) {

player.close();

player = null;

}

}

}

AudioPlayerCanvas creates a Form that displays the volume control and allows the user to
interact with it. It attaches a Gauge to this Form for the volume control and adds the back and
exit commands to the Form. These commands are created in the parent, which is the main
MIDlet class AudioPlayer, shown in Listing 3-3. However, the canvas takes care of any changes
to the Gauge (and consequently to the volume of a Player instance) by implementing the
itemStateChanged(Item item) method.

A Player instance is created when the parent MIDlet calls the playMedia(String locator)
method on this canvas. This method attempts to create a Player instance by using the
createPlayer(InputStream is, String contentType) method, guessing the content to be of
type audio/x-wav. The next step after a successful player creation is the realization of the player,
which is done by calling player.realize(). You’ll learn more about realization in Chapter 4,
but suffice to say at this point that after a Player instance has been realized, it can expose any
controls that may be associated with it. Thus, you couldn’t have accessed the VolumeControl
associated with the player without actually realizing the player. This VolumeControl is used
to initialize the Gauge besides allowing the user to control the volume in the itemStateChanged
(Item item) method.

By calling player.setLoopCount(2), the player plays the audio file twice. By default, this
value is set to 1, and if you wanted to play the file indefinitely, you could set this value to -1.
Setting this value to 0 will result in an IllegalArgumentException. The loop count must be set
before the start() method is called or rather when the Player instance is in a paused state;
otherwise, an IllegalStateException will be thrown.

The Player instance is paused in the pauseMedia() method, which calls the stop() method
to pause the media at the current media time. The next time the player is started, or rather,
restarted, it will resume from the same media time. This occurs when the restartMedia() method
is called, where the audio file’s playback is restarted by a call to the start() method on the Player
instance. Although this example does not allow the user to pause or restart the playback explicitly
by way of commands, this behavior can be easily simulated by an incoming phone call when
this MIDlet is being run.

CHAPTER 3 ■ GETTING STARTED WITH MMAPI26

6390ch03.qxd 3/24/06 11:53 AM Page 26

CHAPTER 3 ■ GETTING STARTED WITH MMAPI 27

The final noteworthy method is the cleanUp() method that closes each Player instance
after it is no longer required. This method is called any time the user issues the exit or back
commands. Calling close() on a Player instance releases any resources held by the player
(including the audio file and the audio device, such as a speaker). After a Player instance has
been closed, it can no longer be used.

In a nutshell, the Player instance is created when the playMedia() method is called with
the location of the media file. This instance, if successfully created, is then realized, which allows
it to expose the VolumeControl. This control is initialized and shown on a canvas to the user to
interact with. Finally, the Player instance is started by calling the start() method. The Player
instance is paused and restarted in the pauseMedia() and restartMedia() methods, respectively.
The cleanUp() method closes the Player instance.

The actual MIDlet code is written in the AudioPlayer class. Listing 3-3 shows the code for
this class.

Listing 3-3. AudioPlayer MIDlet Creates AudioPlayerCanvas

package com.apress.chapter3;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class AudioPlayer extends MIDlet implements CommandListener {

// the list of media names

private String[] audioDisplayList =

{"Baby Crying", "Applause", "Laughter"};

// the list of media locations

private String[] audioList =

{"/media/audio/chapter3/baby.wav",

"/media/audio/chapter3/applause.wav",

"/media/audio/chapter3/laughter.wav"};

protected Display display;

private AudioPlayerCanvas canvas;

private List list;

protected Command exitCommand;

protected Command backCommand;

public AudioPlayer() {

// initialize the list and add the exit command

list = new List(

"Pick an Audio file", List.IMPLICIT, audioDisplayList, null);

exitCommand = new Command("Exit", Command.EXIT, 1);

list.addCommand(exitCommand);

list.setCommandListener(this);

6390ch03.qxd 3/24/06 11:53 AM Page 27

// the back command

backCommand = new Command("Back", Command.BACK, 1);

// create the canvas

canvas = new AudioPlayerCanvas(this);

// and initialize the display

display = Display.getDisplay(this);

}

public void startApp() {

// if startApp() is called after MIDlet has been paused

if(canvas.isPlayerPaused()) {

// restart the player

canvas.restartMedia();

display.setCurrent(canvas.getForm());

} else {

// else display the audio list

display.setCurrent(list);

}

}

public void pauseApp() {

// pauses the playing of the player, if any

canvas.pauseMedia();

}

public void destroyApp(boolean unconditional) {

// cleans up and closes player, if any

canvas.cleanUp();

}

public void commandAction(Command command, Displayable disp) {

// exiting the MIDlet

if(command == exitCommand) {

canvas.cleanUp(); // clean up, if any

notifyDestroyed(); // let AMS know clean up is done

return;

} else if(command == backCommand) { // back to the list

canvas.cleanUp();

display.setCurrent(list);

return;

}

CHAPTER 3 ■ GETTING STARTED WITH MMAPI28

6390ch03.qxd 3/24/06 11:53 AM Page 28

CHAPTER 3 ■ GETTING STARTED WITH MMAPI 29

// the implicit list handling

if(disp == list) {

// play the current selected file

canvas.playMedia(audioList[list.getSelectedIndex()]);

// display the canvas's form

display.setCurrent(canvas.getForm());

}

}

}

The AudioPlayer constructor creates a List of audio files, adds the exitCommand to it, and
initializes the current display for the MIDlet. It also creates the player canvas of Listing 3-2
(earlier in this chapter). When the MIDlet is started using the startApp() method, the method
checks whether the player canvas was playing any media. If the player canvas was startApp()
the method restarts the media. If nothing was being played, and presumably this would be the
case the first time the MIDlet is run, the list of audio files is displayed for the user to select from.

After the user selects a file from the list, the implicit list handling takes over and selects the
location of the actual audio file from the String array audioList. It then proceeds to call
the playMedia() method on this location and sets the Form instance created by the canvas as the
main display.

If the user issues either the back or exit commands, the canvas is told to clean up by calling
the cleanUp() method before acting appropriately. The same is true when the Application
Management Software (AMS) calls the destroyApp() method; cleanup is done before quitting
by calling the cleanUp() method. When the MIDlet needs to be paused by the AMS by invoking
the pauseApp() method, the pauseMedia() method is called.

Improving AudioPlayerCanvas: Caching Player Instances
One problem is obvious with the AudioPlayerCanvas class: It creates new instances of the Player
interface each time a request to play an audio file is received, even if the audio file has been
played before. This happens in the playMedia() method. Creating objects is an expensive task,
especially multimedia objects such as Player instances. Performance can be improved by
caching Player instances that do not need to change. For examples like this, where the media
file and its location do not change and especially media stored in the MIDlet’s JAR file, caching
Player instances is an obvious choice.

However, caching Player instances is not an easy task. In Chapter 4, you’ll learn about the
various states of a Player instance. If an instance is cached, it must be cached so that the next
time it is played, it starts in the right state. Also, when an instance is started, it acquires resources
on the device. For example, audio files acquire access to the audio device (speakers, in-memory
buffers, and so on) on a multimedia device. These resources must be released before the instance
is cached so that other instances can acquire exclusive access.

Let’s modify the commandAction() method from the AudioPlayer MIDlet in Listing 3-3 to
find out the time taken to play one of the audio files (baby.wav). The following snippet shows
the changes in bold.

6390ch03.qxd 3/24/06 11:53 AM Page 29

long t1 = System.currentTimeMillis();

// play the current selected file

canvas.playMedia(audioList[list.getSelectedIndex()]);

long t2 = System.currentTimeMillis();

canvas.getForm().setTitle("Time taken: " + (t2-t1) + " ms");

The title of the canvas’s form is changed to reflect the time taken to start playing a listing
in milliseconds. Table 3-2 now shows the time taken to play the file baby.wav three times over
the different devices: Sun’s DefaultColorPhone emulator, Motorola C975 emulator, and the
actual Motorola C975 device.

Table 3-2. Time Taken to Start Playback of baby.wav Across Three Devices

Device 1st Attempt 2nd Attempt 3rd Attempt

Sun’s DefaultColorPhone 180ms 40ms 40ms

Motorola C975 emulator 100ms 10ms 10ms

Motorola C975 device 236ms 218ms 207ms

The values shown are reflective only and will be different on different machines and environments.

The fact that the emulators take a long time for the first attempt and much less time for
the next two suggests that the emulators are performing some sort of caching themselves. The
actual device doesn’t seem to be doing any caching, and the times are pretty consistent for the
device. However, the emulators aren’t really performing any caching of Player instances, and
the long startup delay suggests latency in acquiring audio device on the emulator’s computer
platform.

Let’s now modify AudioPlayerCanvas to CachedAudioPlayerCanvas so that it caches Player
instances and plays the cached instances when called upon (and creates them when called for
the first time). Similarly, AudioPlayer will be modified to CachingAudioPlayer to use this new
canvas class. Listing 3-4 shows CachedAudioPlayerCanvas.

Listing 3-4. CachedAudioPlayerCanvas Caches Player Instances

package com.apress.chapter3;

import java.util.*;

import javax.microedition.lcdui.*;

import javax.microedition.media.*;

import javax.microedition.media.control.*;

public class CachedAudioPlayerCanvas implements ItemStateListener {

// the parent MIDlet

private CachingAudioPlayer parent;

CHAPTER 3 ■ GETTING STARTED WITH MMAPI30

6390ch03.qxd 3/24/06 11:53 AM Page 30

CHAPTER 3 ■ GETTING STARTED WITH MMAPI 31

// form that contains canvas elements

private Form form;

// gauge to allow user to manipulate volume

private Gauge gauge;

// the volume control

private VolumeControl volume;

// the player used to play media

private Player player;

// is the player paused?

private boolean paused = false;

private Hashtable players;

public CachedAudioPlayerCanvas (CachingAudioPlayer parent) {

this.parent = parent;

// create form and add elements and listeners

form = new Form("");

gauge = new Gauge("Volume: 50", true, 100, 50);

form.append(gauge);

form.addCommand(parent.exitCommand);

form.addCommand(parent.backCommand);

form.setCommandListener(parent);

// a change in volume gauge will be handled by this class

form.setItemStateListener(this);

players = new Hashtable();

}

public void playMedia(String locator) {

try {

// first look for an existing instance

player = (Player)players.get(locator);

if(player == null) {

// create the player for the specified string locator

player = Manager.createPlayer(

getClass().getResourceAsStream(locator), "audio/x-wav");

6390ch03.qxd 3/24/06 11:53 AM Page 31

// fetch it

player.prefetch();

// put this instance in the Hashtable

players.put(locator, player);

}

// get the volume control

volume = (VolumeControl)player.getControl("VolumeControl");

// initialize it to 50

volume.setLevel(50);

// initialize the gauge

gauge.setValue(volume.getLevel());

gauge.setLabel("Volume: " + volume.getLevel());

// play it twice

player.setLoopCount(2);

// start the player

player.start();

// set the title of the form

form.setTitle("Playing " + locator);

} catch(Exception e) {

e.printStackTrace();

}

}

public void pauseMedia() {

// if the player needs to be paused, either due to an incoming call,

// or due to user actions

if(player != null) {

try {

player.stop();

paused = true;

} catch(Exception e) {}

}

}

public void restartMedia() {

// restarting after player was paused

CHAPTER 3 ■ GETTING STARTED WITH MMAPI32

6390ch03.qxd 3/24/06 11:53 AM Page 32

CHAPTER 3 ■ GETTING STARTED WITH MMAPI 33

if(player != null) {

try {

player.start();

paused = false;

} catch(Exception e) {}

}

}

public boolean isPlayerPaused() {

return paused;

}

public Form getForm() {

return this.form;

}

public void itemStateChanged(Item item) {

// there is only one item on the form, the gauge, and any change in its

// value means the user wants to increase or decrease the playback volume

volume.setLevel(gauge.getValue());

gauge.setLabel("Volume: " + volume.getLevel());

}

public void cleanUp() {

// clean up, either due to user action or AMS call

if(player != null) {

try {

player.setMediaTime(0);

} catch(Exception e) {}

player.deallocate();

player = null;

}

}

public void closeAll() {

// iterate through the player instances and close all

for(Enumeration e = players.elements(); e.hasMoreElements();) {

Player p = (Player)e.nextElement();

p.close();

}

}

}

6390ch03.qxd 3/24/06 11:53 AM Page 33

The major changes between AudioPlayerCanvas and CachedAudioPlayerCanvas are shown
in bold. A Hashtable is used to cache Player instances, and the locator String is used as the
key. When a request to play a particular audio file is made, the Hashtable is searched and an
instance is used if found. Note that a VolumeControl is still constructed fresh for each instance.

Instead of using the realize() method, prefetch() is used when creating a Player instance
for the first time. The purpose of these methods and the distinction between them will be
explained in Chapter 4. Note that using prefetch() instead of realize() allows quicker startup
time for media playback.

Similarly, the cleanUp() method is modified to use deallocate() rather than close(). Further,
the media time is set to 0 to allow the media to be played back from the starting point of the file
each time it is started. This is done by using the method setMediaTime(), which is like a fast-
forward and rewind method for moving through the media. Player instances that don’t support
seek operations like this will throw a MediaException. In this case, calling this method is really
only necessary for the Sun emulator, which does not reset the media time on deallocation.

Finally, a new method called closeAll() is added to allow the CachingAudioPlayer MIDlet
to shut down all the Player instances before it is itself shut down.

Listing 3-5 shows the modified CachingAudioPlayer. Once again, the changes from
Listing 3-3 are highlighted in bold.

Listing 3-5. CachingAudioPlayer Uses the New CachedAudioPlayerCanvas

package com.apress.chapter3;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class CachingAudioPlayer extends MIDlet implements CommandListener {

// the list of media names

private String[] audioDisplayList =

{"Baby Crying", "Applause", "Laughter"};

// the list of media locations

private String[] audioList =

{"/media/audio/chapter3/baby.wav",

"/media/audio/chapter3/applause.wav",

"/media/audio/chapter3/laughter.wav"};

protected Display display;

private CachedAudioPlayerCanvas canvas;

private List list;

protected Command exitCommand;

protected Command backCommand;

public CachingAudioPlayer() {

CHAPTER 3 ■ GETTING STARTED WITH MMAPI34

6390ch03.qxd 3/24/06 11:53 AM Page 34

CHAPTER 3 ■ GETTING STARTED WITH MMAPI 35

// initialize the list and add the exit command

list = new List(

"Pick an Audio file", List.IMPLICIT, audioDisplayList, null);

exitCommand = new Command("Exit", Command.EXIT, 1);

list.addCommand(exitCommand);

list.setCommandListener(this);

// the back command

backCommand = new Command("Back", Command.BACK, 1);

// create the canvas

canvas = new CachedAudioPlayerCanvas(this);

// and initialize the display

display = Display.getDisplay(this);

}

public void startApp() {

// if startApp() is called after MIDlet has been paused

if(canvas.isPlayerPaused()) {

// restart the player

canvas.restartMedia();

display.setCurrent(canvas.getForm());

} else {

// else display the audio list

display.setCurrent(list);

}

}

public void pauseApp() {

// pauses the playing of the player, if any

canvas.pauseMedia();

}

public void destroyApp(boolean unconditional) {

// closes all players before shutdown

canvas.closeAll();

}

public void commandAction(Command command, Displayable disp) {

6390ch03.qxd 3/24/06 11:53 AM Page 35

CHAPTER 3 ■ GETTING STARTED WITH MMAPI36

// exiting the MIDlet

if(command == exitCommand) {

canvas.closeAll(); // close all players

notifyDestroyed(); // let AMS know clean up is done

return;

} else if(command == backCommand) { // back to the list

canvas.cleanUp();

display.setCurrent(list);

return;

}

// the implicit list handling

if(disp == list) {

long t1 = System.currentTimeMillis();

// play the current selected file

canvas.playMedia(audioList[list.getSelectedIndex()]);

long t2 = System.currentTimeMillis();

canvas.getForm().setTitle("Time taken: " + (t2-t1) + " ms");

// display the canvas's form

display.setCurrent(canvas.getForm());

}

}

}

Using the new version of these files, Table 3-3 shows the times taken to play baby.wav over
the three different emulators/devices.

Table 3-3. Time Taken to Play Back baby.wav with Caching of Player Instances

Device 1st Attempt 2nd Attempt 3rd Attempt

Sun’s DefaultColorPhone 180ms 30ms 30ms

Motorola C975 emulator 100ms 0ms 0ms

Motorola C975 device 202ms 14ms 14ms

Comparing Table 3-3 with Table 3-2 should show the obvious performance improvement
that caching has brought about. The real gain is on the actual device, which is where it matters
the most. The time to playback has been reduced to a consistent 14ms after an initial startup
time of 202ms. The performance on the emulators is encouraging as well with reduction in
playback time by about 10ms each over the noncached version.

6390ch03.qxd 3/24/06 11:53 AM Page 36

CHAPTER 3 ■ GETTING STARTED WITH MMAPI 37

Summary
Creating MMAPI-based multimedia MIDlets requires knowledge of not just MMAPI, but an
understanding of the MIDlet creation process as well. The understanding required is nominal,
as MMAPI MIDlets are no different from other MIDlets in terms of their architecture and process.

This chapter gave you a hands-on introduction to MMAPI by creating a simple media player.
You enhanced the media player MIDlet by caching, and saw how the enhancement improved
the performance of the original player.

The next chapter, on media player lifecycle and events, will explain what happens behind
the scenes when the media player is used to play media files. You’ll also see the various events
that occur during a media player’s lifecycle and how to respond and take advantage of this
knowledge.

6390ch03.qxd 3/24/06 11:53 AM Page 37

6390ch03.qxd 3/24/06 11:53 AM Page 38

39

C H A P T E R 4

■ ■ ■

Media Player Lifecycle
and Events

As a MIDlet transitions between different states during its lifecycle, so does a Player instance
that has a lifecycle of its own. A Player instance has many more states that it transitions between.
These states are well defined, and transitions between them raise events that interested parties
can listen to and respond accordingly.

In this chapter, you’ll learn about these different states, the lifecycle of a Player instance,
and how a Player instance transitions between these states. Finally, you’ll learn how events
generated during these transitions can be captured by interested listeners and acted upon.

Overview
A Player instance goes through five different states during its lifetime. The capability for an
instance to go through these many states gives developers greater control over the working of
an instance. These states are UNREALIZED, REALIZED, PREFETCHED, STARTED, and CLOSED.

A Player instance is guaranteed to go through all these states if started; that is, the instance
is not just created but playback (or recording as the case may be) is initiated. Moving between
states is not necessarily linear and can happen either due to programmatic control or some
external or internal events. Movement from the CLOSED state to any other state is not possible.

Movement between different states results in events being fired for any listeners to act on.
These events are delivered asynchronously and in the order that they are generated. The whole
event delivery mechanism is extensible, which allows you to define application-specific events.
Several system-level events are already defined that will satisfy most cases.

Exploring the Different Player States
MMAPI allows you to programmatically move between different states (except moving away
from the CLOSED state). This gives you greater control over the way you manage the lifecycle
of a Player instance, increases responsiveness, and allows manageability of these instances. This
section explores these different states and the methods that allow you to gain this control.

In a nutshell, a Player instance starts life in the UNREALIZED state. It moves from this
state to the REALIZED state when the user calls the realize() method. The REALIZED state

6390ch04.qxd 3/24/06 11:53 AM Page 39

CHAPTER 4 ■ MEDIA PLAYER L IFECYCLE AND EVENTS40

REALIZED PREFETCHED STARTED CLOSEDUNREALIZED prefetch() start() close()realize()

Figure 4-1. A simple linear transition path for a Player instance

gives way to the PREFETCHED state when the prefetch() method is called. Calling start()
moves the instance to the STARTED state, and calling close() leads to the CLOSED state. This
simple transition path is displayed in Figure 4-1.

Figure 4-1 shows the most likely transition path for a Player instance. Except for the CLOSED
state, transitions can occur between the other states by calling special methods. These methods
are covered shortly when the individual states are discussed.

Calling any of these methods to make a transition between different states is synchronous
in nature. The methods don’t return till the transition is complete. However, if any of these
methods cannot make the transition, a MediaException is thrown to indicate so.

You can determine the current state of a Player instance by using the method getState().
This returns one of five constants defined in the Player interface corresponding to the five
states shown in Figure 4-1. These constants are UNREALIZED, REALIZED, PREFETCHED, STARTED,
and CLOSED.

Let’s examine each of these states individually to see what they mean and how movement
between them is not always so linear.

■Note Most of these state transition methods are implemented in Java, as opposed to the code for parsing
and decoding multimedia data, which is implemented in the native language of the device on which the MIDlet
is running. Parsing and decoding are memory-intensive operations and implementing them in Java would
sacrifice performance. Media transition methods, on the other hand, are not CPU-intensive and can be safely
implemented in Java, as most of them are. Some parts of these methods may be implemented in native lan-
guage to take advantage of device-specific performance features.

UNREALIZED
A Player instance starts life in an UNREALIZED state. When you use the Manager class to create
a Player instance using any of the three createPlayer() methods, it creates a barely usable
instance in the UNREALIZED state. An UNREALIZED Player is of no use because it doesn’t
have enough information to start functioning. It needs to acquire resources, such as audio and
recording hardware on the device; set up in memory buffers for acquiring the media content;
and communicate with the location of the media data. All these processes are performed in
other states.

6390ch04.qxd 3/24/06 11:53 AM Page 40

CHAPTER 4 ■ MEDIA PLAYER L IFECYCLE AND EVENTS 41

close()

realize()createPlayer()

deallocate()

CLOSED

REALIZEDUNREALIZED

Figure 4-2. UNREALIZED state transitions

A Player instance moves away from the UNREALIZED state when the realize() method
is called, which if successful, moves it to the REALIZED state. If unsuccessful, a MediaException

is thrown, and the instance remains in the UNREALIZED state. If the realize() method blocks
for a long time because it is a synchronous method, you can attempt to call the deallocate()
method on the Player instance, which tries to keep the method in the UNREALIZED state.
You’ll learn more about this in the upcoming “REALIZED” section.

Not many actions can be performed on an UNREALIZED Player instance. For example, you
cannot retrieve any controls from this instance using the getControl() or the getControls()
methods, because the instance doesn’t have enough information to generate the controls. You
cannot change the playback time of the media, provided that it allows you to change the media
time in the first place, with the setMediaTime() method. You cannot even retrieve or change the
instance’s TimeBase for synchronization using the getTimeBase() or setTimeBase() methods.
A call to any of these methods in the UNREALIZED state results in an IllegalStateException.

The only useful operation that you can do with an UNREALIZED instance, besides realizing
or closing it, is to set the number of times the instance should loop using the setLoopCount()
method. You can also retrieve the likely duration of the media, which almost always returns –1,
indicating an unknown time (TIME_UKNOWN constant in the Player interface).

The Player interface has a static integer constant to represent this state, UNREALIZED.
Figure 4-2 summarizes the UNREALIZED state and its transitions.

REALIZED
A Player instance moves from the UNREALIZED to the REALIZED state when the realize()
method is called. The realize() method can be time consuming because it actually retrieves
the media data. If the UNREALIZED state represents that the instance has connected to its
media location, in a REALIZED state, it has in all probability retrieved this data (except for data
that is streaming in nature).

6390ch04.qxd 3/24/06 11:53 AM Page 41

CHAPTER 4 ■ MEDIA PLAYER L IFECYCLE AND EVENTS42

After it has been REALIZED, a Player instance cannot go back to the UNREALIZED state.
As you learned in the last section, a realize() method that is taking too long to return can be
preempted by calling the deallocate() method, which keeps the instance in the UNREALIZED
state. But from a REALIZED state itself, an instance can only go to the PREFETCHED or the
CLOSED states. Figure 4-3 shows the REALIZED state transitions.

What actually happens within the realize() method is dependent on individual MMAPI
implementations. However, after the method returns successfully, it is guaranteed that the
underlying media data has been examined, and any available controls are up for use. Any
resources required to play back the data that require exclusive use by your MIDlet on the device
that it is running are also guaranteed not to have been acquired.

The realize() method throws, besides IllegalStateException and MediaException,
a SecurityException as well. The IllegalStateException is thrown if the instance is in a CLOSED
state; the MediaException is thrown if a media-specific error occurs; and the SecurityException
is thrown if the MIDlet doesn’t have permission to access the media file. This is closely related
to Digital Rights Management (DRM) of digital data.

■Note DRM is an industry term that refers to a service or technology to control access to digital data.

Because MMAPI is used to access some of the most popular digital data, such as music
and video, it allows implementations to plug in a DRM technology to control this access. This
allows very simple control over the media data. For example, SecurityException is thrown by

clo
se

()

realize()

deallocate()

prefetch()

deallocate()

UNREALIZED REALIZED PREFETCHED

CLOSED

Figure 4-3. REALIZED state transitions

6390ch04.qxd 3/24/06 11:53 AM Page 42

CHAPTER 4 ■ MEDIA PLAYER L IFECYCLE AND EVENTS 43

the realize() method if the DRM indicates that the right of the user to use the media data has
expired (because it could only be used within a specific timeframe, it could only be played
once, or for any other DRM-based reason). The realize() method implementation calls the
DRM technology built in to the device to make this call.

Ideally, a call like this happens when the Player instance is created. DRM kicks in when
createPlayer() is called on a Manager class, and you’ll receive a SecurityException for trying to
create an instance on an expired or inaccessible content. (You’ll also receive a SecurityException

for protocol-specific restrictions built in to the user’s device, such as accessing the network when
no permission to access the network has been given.) However, you might want to replay con-
tent without needing to create another Player instance on the same media data (as you saw in
Chapter 3 when you cached Player instances). In those cases, realize() checks to make sure
that DRM rules haven’t been breached; if they have been, realize() throws a SecurityException.

The Player interface has a static integer constant that represents this state, REALIZED.

PREFETCHED
In the PREFETCHED state, a Player instance is in the best possible state to get started with the
playback (or recording in case of a player for capturing data) of media. The instance has decoded
the data and acquired access to any exclusive resources required for playback (or recording).
A Player instance that hasn’t been prefetched cannot be started.

Player instances move into the PREFETCHED state when the user calls the prefetch()
method on a REALIZED instance. Calling deallocate() does the reverse, that is, moves a PREFETCHED

instance to the REALIZED state, thereby releasing any exclusive resources acquired to move
into the PREFETCHED state.

Note that calling prefetch() doesn’t necessarily mean that all the media data would have
been decoded and ready for playback (or recording). It just means that most of the processing
has been done and the media can be played back (or recorded) with the minimum possible
latency. To accentuate this point, if an instance is already in the PREFETCHED state, and you
use the prefetch() method, the instance will try and minimize the latency even further. How-
ever, the reduction in startup times is not guaranteed, and different implementations of MMAPI
will differ in what they exactly do if prefetch() is called twice. If you do call prefetch() on an
already PREFETCHED instance, it is guaranteed not to throw any errors.

An IllegalStateException is thrown if you call this method on a CLOSED instance.
A MediaException is also thrown if an error occurs when processing or decoding the media
data. However, this same exception is thrown if an exclusive resource cannot be acquired. For
example, if a Player instance requires exclusive access to the audio hardware on a device, and
this is not available because it is being used by some other instance, a MediaException will be
thrown to indicate this. Although there’s no way to differentiate between the two reasons for
MediaException, in the case of the latter reason, you can call prefetch() again and if exclusive
access is now possible, the instance will move to the PREFETCHED state.

Similar to the realize() method, calling the prefetch() method may throw
a SecurityException if the Player instance has insufficient permissions to either decode
media data or acquire exclusive resources.

Figure 4-4 shows the possible state transitions in the PREFETCHED state.

6390ch04.qxd 3/24/06 11:53 AM Page 43

CHAPTER 4 ■ MEDIA PLAYER L IFECYCLE AND EVENTS44

As you can see, there is no direct transition path for an UNREALIZED instance to go to the
PREFETCHED state. This is why, if you call prefetch() on an UNREALIZED instance, it implies
a call to the realize() method first. However, a transition from the PREFETCHED state to the
REALIZED state can occur by using the deallocate() method. By doing so, you allow your
instance to give up the exclusive resources acquired by your instance for other instances (or
other MIDlets, applications, or AMS) to use.

An instance can arrive in the PREFETCHED state from the STARTED state as well. This
transition can occur in several ways as explained in detail in the next section.

The Player interface has a static integer constant that represents this state, PREFETCHED.

STARTED
A Player instance in the STARTED state is playing back (or recording, streaming, and so on)
actual media. This is the most useful state that an instance can be in. This state is achieved by
calling the start() method on a PREFETCHED instance. However, note that calling the start()
method doesn’t guarantee that the instance will actually move immediately into the STARTED
state. By calling the start() method, you are telling the instance to move into the STARTED state
as soon as possible. Only when the start() method returns successfully is the instance considered
to be in this state.

Of course, the instance may not be able to successfully move into the STARTED state when
this method is called. Besides a SecurityException, thrown if there is not enough permission to
start the media, a MediaException may be thrown if an error occurs when processing the media
for playback (or recording). When any of these exceptions is thrown, the instance remains in the
PREFETCHED state. As expected, an IllegalStateException is thrown if you try calling start()
on an instance that is in the CLOSED state.

clo
se

()

start()

deallocate()

prefetch()

stop()

REALIZED PREFETCHED

CLOSED

STARTED

Figure 4-4. PREFETCHED state transitions

6390ch04.qxd 3/24/06 11:53 AM Page 44

CHAPTER 4 ■ MEDIA PLAYER L IFECYCLE AND EVENTS 45

STARTED is the only state that has an automatic transition based on the state of the media
playback (or recording). If you call start() on a Player instance, it automatically moves to the
PREFETCHED state if the end of media playback is reached; that is, there is nothing left to play.
STARTED also automatically moves to the PREFETCHED state if a preset stop time is reached.
Preset stop times are set using the StopTimeControl.

Media that has a very short playback time moves to the PREFETCHED state almost imme-
diately. For example, consider that you are trying to play an audio file and want to initiate some
action when its Player instance is in the STARTED state. When you call the start() method,
the instance temporarily moves to this state, but before you can react to the STARTED event, the
playback would be over for a very short audio file, and the instance would have moved back to
the PREFETCHED state. Thus, there are no guarantees for successfully acting on a STARTED
instance because of this automatic transition.

Besides these automatic transitions, a Player instance also moves back to the PREFETCHED
state when the stop() method is called in the STARTED state and the method returns success-
fully. The effect of the stop() method is to pause the instance at the current media time. (Note that
there is no corresponding STOPPED state for the STARTED state. When stopped, an instance is in
the PREFETCHED state.) Similar to the start() method, the stop() method also throws the
IllegalStateException and MediaException. The first exception is thrown if this method is
called on a CLOSED instance, whereas the second is thrown if the instance cannot be stopped.

If you call the start() method again, after you have stopped a previously started instance,
it resumes at the media time that it was stopped at, effectively restarting paused media. This can,
of course, be overridden by using the method setMediaTime(), which allows you to restart the
playback from whenever you want it to. As expected, this will not work for media that is being
recorded, and may or may not be supported for streaming data. In cases where this is not sup-
ported, calling setMediaTime() will throw a MediaException.

After a Player instance is in the STARTED state, calling either setTimeBase() or
setLoopCount()throws an IllegalStateException. This makes sense. A Player’s TimeBase
allows it to synchronize itself with other instances via the internal clock. After the instance
has already started, this clock will be out of sync if changed midstream. Similarly, changing
the number of times the instance must play back in the STARTED state will cause confusion
over this count.

If you call the start() method on an UNREALIZED instance, it implies a call to the realize()
and prefetch() methods, in that order. If you call it on a REALIZED instance, it implies a call to
the prefetch() method first. In short, no direct transition occurs between the UNREALIZED
state and the STARTED state on the one hand, and the REALIZED and STARTED state on the
other, with the start() method taking care of these transitions for you. This is why listings in
Chapter 3 were able to get away with calling the start() method only. However, calling the start()
method on a PREFETCHED instance is always better than calling on UNREALIZED or REALIZED, because
it reduces the overall startup time. You should only call the start() method after you’ve brought
the instance to the PREFETCHED state, rather than letting the start() method bring it to
that state.

Figure 4-5 shows the state transitions for the STARTED state.

6390ch04.qxd 3/24/06 11:53 AM Page 45

CHAPTER 4 ■ MEDIA PLAYER L IFECYCLE AND EVENTS46

You can call the deallocate() method on a STARTED instance, which internally implies
a call to the stop() method first, and thus, the state of the instance transitions from STARTED
to PREFETCHED to REALIZED, if both methods return successfully.

The Player interface has a static integer constant that represents this state, STARTED.

CLOSED
A Player instance in the CLOSED state is no longer usable. No methods can be called on it in
this state with the exception of the getState() method. All other states transition to this state
when the close() method is called, but there are no automatic transitions. If you call close()
in the CLOSED state, no exception is thrown and the call is ignored. In fact, this method does
not throw any exceptions; if any errors occur, the method returns silently and moves the instance
to the CLOSED state anyway. All resources held by the instance are released, including any
connections, exclusive device resources, and internal buffers.

■Note Although the MMAPI specification does not say so, calling close() during different states causes
different actions to be performed. Because the specification is silent on this issue, different implementations
implement the actions in their own way. However, most implementations try to call the deallocate() method
before performing any closeup actions. Recall that the deallocate() method can be called in all states
(except, of course, the CLOSED state, whereas in the REALIZED state, the deallocate() call is ignored).
Calling the deallocate() method in the STARTED state causes the stop() method to be called first. Thus,
in all probability, if you call close() on a STARTED Player instance, it will go through the following cleanup
methods: close() ➤ stop() ➤ deallocate().

The Player interface has a static integer constant that represents this state, CLOSED.

clo
se

()

start()

deallocate()

stop()

REALIZED PREFETCHED

CLOSED

STARTED

Figure 4-5. STARTED state transitions

6390ch04.qxd 3/24/06 11:53 AM Page 46

CHAPTER 4 ■ MEDIA PLAYER L IFECYCLE AND EVENTS 47

Responding to Player Events
Each state transition and many other events generate a regular stream of notifications for any
listener objects interested in a Player instance. This event delivery mechanism is implemented
using an asynchronous model that is similar to most Java event delivery mechanisms.

The key class in this mechanism is the PlayerListener interface. Any class may implement
this interface, register this implementation with the target Player instance, and start receiving
notifications as the instance goes through its lifecycle. Several events are defined within this
interface that cover a comprehensive list of Player events. You can create your own events as
well and listen and react to them.

The PlayerListener interface defines only one method that implementations must imple-
ment. This method—playerUpdate(Player player, String event, Object eventData)—is
invoked when an event takes place. To register an implementation with a Player instance, you
use the method addPlayerListener(PlayerListener listener); to remove the instance,
you use removePlayerListener(PlayerListener listener). Multiple listeners can be attached
to a single instance, and multiple instances can send their events to the same listener. Because
the playerUpdate() method receives the instance as an argument, it knows how to differentiate
between the different instances.

As a simple example, let’s modify Listing 3-1 from Chapter 3 to receive notifications from
the simple Player instance that was created in that listing. The new code will display the events
on the device screen as they are received. Listing 4-1 shows this modified code in the MIDlet
called EchoEventsMIDlet.

Listing 4-1. EchoEventsMIDlet Echoes Player Events Onscreen

package com.apress.chapter4;

import javax.microedition.media.*;

import javax.microedition.lcdui.*;

import javax.microedition.midlet.*;

public class EchoEventsMIDlet extends MIDlet implements PlayerListener {

private StringItem stringItem;

public void startApp() {

try {

Form form = new Form("Player State");

stringItem = new StringItem("", null)

form.append(stringItem);

Display.getDisplay(this).setCurrent(form);

Player player = Manager.createPlayer(

getClass().getResourceAsStream(

"/media/audio/chapter4/baby.wav"), "audio/x-wav");

player.addPlayerListener(this);

6390ch04.qxd 3/24/06 11:53 AM Page 47

CHAPTER 4 ■ MEDIA PLAYER L IFECYCLE AND EVENTS48

player.start();

} catch(Exception e) {

e.printStackTrace();

}

}

public void pauseApp() {

}

public void destroyApp(boolean unconditional) {

}

public void playerUpdate(Player player, String event, Object eventData) {

stringItem.setText(event);

System.err.println(event);

}

}

The EchoEventsMIDlet acts as the listener for the Player instance that it creates by imple-
menting PlayerListener and adding the playerUpdate() method. When created, the Player
instance registers this MIDlet by using the method addPlayerListener(this). Any event that is
now generated by the corresponding event is delivered to the playerUpdate() method.

The other change in this MIDlet from Listing 3-1 is to create a Form object with a single
StringItem on it to promptly display onscreen and print the current event received by the
playerUpdate() method to the error output stream.

Running this MIDlet returns mostly consistent results because the Sun Java Wireless Toolkit’s
DefaultColorPhone emulator fires an extra volumeChanged event.

■Note You may not notice the volumeChanged event on the DefaultColorPhone emulator because it may
happen too fast depending on the time it takes for the media file to enter the STARTED state. Check the error
output stream. The volumeChanged event is fired when the Player instance enters the PREFETCHED state
(on the Sun MMAPI implementation).

The Motorola emulator and actual C975 device do not fire this volumeChanged event. The
events that are fired and received by all three environments are the started and the endofmedia
events. As you may guess, the started event represents when an instance has entered the
STARTED state. The endofmedia event is delivered when no more media is left to play (or
record/stream). This event is delivered each time an instance that is set to loop reaches the
end of the media for each loop.

6390ch04.qxd 3/24/06 11:53 AM Page 48

CHAPTER 4 ■ MEDIA PLAYER L IFECYCLE AND EVENTS 49

Of course, many more events than the two (or three if you consider the DefaultColorPhone)
are fired by this simple example. Table 4-1 lists all the events defined in the MMAPI specification
in the PlayerListener interface defined as constants.

Table 4-1. A Complete List of Player Events Defined in the PlayerListener Interface

Player Event Constant Constant Value When Fired

BUFFERING_STARTED bufferingStarted When an instance has started buffering media
data for processing or playback.

BUFFERING_STOPPED bufferingStopped When an instance has exited the buffering stage.

CLOSED closed When an instance is closed.

DEVICE_AVAILABLE deviceAvailable When a system resource required by a Player
instance becomes available for use.

DEVICE_UNAVAILABLE deviceUnavailable When a system resource required by a Player
instance becomes unavailable. This event must
precede the previous event.

DURATION_UPDATED durationUpdated When the duration of previously unknown
media data becomes available.

END_OF_MEDIA endOfMedia When an instance has reached the end of the
media during the current loop.

ERROR error When an error, which is usually fatal, occurs.

RECORD_ERROR recordError When an error occurs during recording
(audio or video).

RECORD_STARTED recordStarted When recording of media data has started.

RECORD_STOPPED recordStopped When recording of media data has stopped.

SIZE_CHANGED sizeChanged When the size of a video display has changed
for whatever reason.

STARTED started When the instance has entered the
STARTED state.

STOPPED stopped When the instance has paused due to the
stop() method being called.

STOPPED_AT_TIME stoppedAtTime When the instance has paused due to the
StopTimeControl’s setStopTime() method.

VOLUME_CHANGED volumeChanged When the volume of an audio device is changed.

If you look at the signature of the playerUpdate() method, you’ll see that it takes three
parameters. The first is the Player instance that has thrown the event, the second is the actual
event, and the third is the eventData as an Object. The eventData is interesting because it con-
tains specific information about each event that can help you do something when the particular
event is fired. For example, when the stopped event is received by this method, the eventData

6390ch04.qxd 3/24/06 11:53 AM Page 49

CHAPTER 4 ■ MEDIA PLAYER L IFECYCLE AND EVENTS50

is a Long object identifying the media time when the corresponding Player instance is stopped.
Similarly, the started event’s eventData contains the media time when the media is started.
Almost each event carries some useful information in the corresponding eventData; Table 4-2
shows the complete list.

Table 4-2. Events and Corresponding Event Data

Event Event Data

BUFFERING_STARTED A Long object designating the time when buffering has started.

BUFFERING_STOPPED A Long object designating the time when buffering has stopped.

CLOSED Event data is null when this event is fired.

DEVICE_AVAILABLE A String object that is the name of the device that is now available.

DEVICE_UNAVAILABLE A String object that is the name of the device that is not available.

DURATION_UPDATED A Long object designating the new duration of the media.

END_OF_MEDIA A Long object that contains the media time when the Player instance
reached the end of media and stopped.

ERROR A String that contains the error message.

RECORD_ERROR A String that contains the error message.

RECORD_STARTED A Long object that designates the media time when recording has started.

RECORD_STOPPED A Long object that designates the media time when recording has stopped.

SIZE_CHANGED A VideoControl control object that contains information about the
new size.

STARTED A Long object designating the media time when the Player instance is
started.

STOPPED A Long object designating the media time when the Player instance is
stopped (paused).

STOPPED_AT_TIME Similar to STOPPED, the eventData contains the media time when the
Player instance is stopped in the form of a Long object.

VOLUME_CHANGED A VolumeControl control object that contains information about the
new volume.

Note that in MMAPI all times are measured in microseconds, not milliseconds.

Understanding the Event Delivery Mechanism
The event delivery mechanism in MMAPI is based on an asynchronous model that allows you
to create multimedia applications that do not block the main application thread. This means
that events are fired using an event delivery thread separate from the main application thread.
This thread may or may not be in existence till an actual event is to be delivered. For example,
in the Sun’s MMAPI reference implementation, this thread is only created when the first event
is fired. Even then, this thread remains active only for another five seconds, after which, if no
more events are delivered, the thread exits. A new thread is created the next time an event
needs to be delivered. Most actual commercial implementations follow a similar model that
only differs in the time that they stay alive for; however, they are guaranteed to all follow this
asynchronous nature of event delivery.

6390ch04.qxd 3/24/06 11:53 AM Page 50

CHAPTER 4 ■ MEDIA PLAYER L IFECYCLE AND EVENTS 51

The MMAPI also guarantees that events will be delivered to their respective listeners in the
order they are generated. This way, events that occur very fast after one another are guaranteed
to be received by the registered listeners in order, without getting overwhelmed by newer events.
For example, suppose you start playing a media file, which would fire a STARTED event. However,
if the media file is short, it will end very quickly and generate an END_OF_MEDIA event almost
immediately after it sends the STARTED event. The listener is guaranteed to receive the STARTED
event before the END_OF_MEDIA event even if it occurs nearly simultaneously.

Of course, if an error occurs at any stage during a Player instance creation or usage so that
the instance cannot continue working, the event delivery mechanism sends an ERROR event.
The receipt of this event implies that the instance is unusable and is in a CLOSED state.

Creating an Event Handling Class
In Chapter 3, you created a MIDlet that allowed you to select a media audio file from a list to
play and control its volume. In this section, you’ll create an event handling class and attach it
to the functional Player instances created in that MIDlet. This event handling class is basic,
but it gives you an idea of how to listen for events, handle them accordingly, and use the event
and eventData parameters. Listing 4-2 shows this event handling class, called EventHandler.

Listing 4-2. EventHandler Is the Listener for Functional Player Instances Created in the Previous
Chapter

package com.apress.chapter4;

import javax.microedition.media.*;

import javax.microedition.media.control.*;

import javax.microedition.lcdui.StringItem;

public class EventHandler implements PlayerListener {

private StringItem item;

public EventHandler(StringItem item) {

this.item = item;

}

public void playerUpdate(Player player, String event, Object eventData) {

if(event.equals(PlayerListener.VOLUME_CHANGED)) {

// a player's volume has been changed

VolumeControl vc = (VolumeControl)eventData;

updateDisplay("Volume Changed to: " + vc.getLevel());

if(vc.getLevel() > 60) {

updateDisplay("Volume higher than 60 is too loud");

vc.setLevel(60);

}

} else if(event.equals(PlayerListener.STOPPED)) {

6390ch04.qxd 3/24/06 11:53 AM Page 51

CHAPTER 4 ■ MEDIA PLAYER L IFECYCLE AND EVENTS52

// player instance paused

updateDisplay("Player paused at: " + (Long)eventData);

} else if(event.equals(PlayerListener.STARTED)) {

// player instance started (or restarted)

updateDisplay("Player started at: " + (Long)eventData);

} else if(event.equals(PlayerListener.END_OF_MEDIA)) {

// player instace reached end of loop

updateDisplay("Player reached end of loop.");

} else if(event.equals(PlayerListener.CLOSED)) {

// player instance closed

updateDisplay("Player closed.");

} else if(event.equals(PlayerListener.ERROR)) {

// if an error occurs, eventData contains the error message

updateDisplay("Error Message: " + (String)eventData);

}

}

public void updateDisplay(String text) {

// update the item on the screen

item.setText(text);

// and write to error stream as well

System.err.println(text);

}

}

The EventHandler constructor accepts a StringItem screen item to which it can write
updates as it receives events. The playerUpdate() method is where the updates are written to
the screen based on the event that has occurred.

If you change the volume of a Player instance, the associated VolumeControl is retrieved
from the eventData after casting it appropriately. You can then query the new volume level
from this control.

■Note You can, of course, retrieve the same VolumeControl by querying the associated Player instance
with the getControl(" VolumeControl ") method call that returns a reference to the same instance as
referenced by the eventData parameter. The direct referencing eventData omits a method call, whereas
getControl() method omits the use of a cast.

6390ch04.qxd 3/24/06 11:53 AM Page 52

CHAPTER 4 ■ MEDIA PLAYER L IFECYCLE AND EVENTS 53

Here, the handler informs the user that volume over 60 is too loud and resets the volume
back to 60. Note that resetting the volume in turn generates another VOLUME_CHANGED event!

The rest of the events are handled accordingly, and you can use the associated event data
with appropriate casts. The updateDisplay() method updates the screen as well as writes message
to the error output stream because some of the messages on the screen will happen too quickly.

The event generating Player instances now need to be told to send the instances to this
handling class. This is done in the CachingAudioPlayerCanvas class where these instances are
first created. This class is now modified to add a StringItem to display the messages from the
event handler, create the EventHandler class, and set each Player instance up with this class as
the listener. These changes are shown in bold in Listing 4-3.

Listing 4-3. Enabling Event Handling in the CachingAudioPlayerCanvas Class

package com.apress.chapter4;

import java.util.*;

import javax.microedition.lcdui.*;

import javax.microedition.media.*;

import javax.microedition.media.control.*;

public class CachedAudioPlayerCanvas implements ItemStateListener {

// the parent MIDlet

private CachingAudioPlayer parent;

// form that contains canvas elements

private Form form;

// gauge to allow user to manipulate volume

private Gauge gauge;

// the volume control

private VolumeControl volume;

// the player used to play media

private Player player;

// is the player paused?

private boolean paused = false;

// to display event info

private StringItem eventInfo;

// the event handler

private EventHandler handler;

private Hashtable players;

6390ch04.qxd 3/24/06 11:53 AM Page 53

CHAPTER 4 ■ MEDIA PLAYER L IFECYCLE AND EVENTS54

public CachedAudioPlayerCanvas(CachingAudioPlayer parent) {

this.parent = parent;

// create form and add elements and listeners

form = new Form("");

gauge = new Gauge("Volume: 50", true, 100, 50);

eventInfo = new StringItem("", null);

form.append(gauge);

// add the event info string item

form.append(eventInfo);

// create the EventHandler

handler = new EventHandler(eventInfo);

form.addCommand(parent.exitCommand);

form.addCommand(parent.backCommand);

form.setCommandListener(parent);

// a change in volume gauge will be handled by this class

form.setItemStateListener(this);

players = new Hashtable();

}

public void playMedia(String locator) {

try {

// first look for an existing instance

player = (Player)players.get(locator);

if(player == null) {

// create the player for the specified string locator

player = Manager.createPlayer(

getClass().getResourceAsStream(locator), "audio/x-wav");

// add the EventHandler as a listener

player.addPlayerListener(handler);

// fetch it

player.prefetch();

// put this instance in the Hashtable

players.put(locator, player);

6390ch04.qxd 3/24/06 11:53 AM Page 54

CHAPTER 4 ■ MEDIA PLAYER L IFECYCLE AND EVENTS 55

}

// get the volume control

volume = (VolumeControl)player.getControl("VolumeControl");

// initialize it to 50

volume.setLevel(50);

// initialize the gauge

gauge.setValue(volume.getLevel());

gauge.setLabel("Volume: " + volume.getLevel());

// play it twice

player.setLoopCount(2);

// start the player

player.start();

// set the title of the form

form.setTitle("Playing " + locator);

} catch(Exception e) {

e.printStackTrace();

}

}

... rest of the code omitted as it doesn’t change from Listing 3-4 ...

A single EventHandler instance is used for all three Player instances that are created.
Because playerUpdate() receives the instance that generated the event, it’s easy to distinguish
between these instances, if necessary.

Handling a Custom Event
As you may realize by now, there is no special event class in the MMAPI. That is, events are
distinguished as String constants in the PlayerListener interface. To create, rather to handle,
a custom event, you do not need to extend any other class.

Custom event creation is primarily designed for MMAPI implementations. This means
that the MMAPI specification, having designed its own mandatory events, makes it open for
MMAPI implementations to create and broadcast their own events. The description of these
events would be made clear in the documentation for each implementation, and the events
are likely to be named in the reverse domain name convention. For example, the MMAPI ref-
erence implementation from Sun defines a custom event called com.sun.midi.lyrics, which
is a Sun-specific event for karaoke lyrics.

Although the PlayerListener interface provides for events that are most common, in
some special cases, you may want to define your own. For example, let’s say you wanted to do
something special that requires an event to be raised whenever an audio file has been played

6390ch04.qxd 3/24/06 11:53 AM Page 55

CHAPTER 4 ■ MEDIA PLAYER L IFECYCLE AND EVENTS56

halfway through. None of the predefined events will satisfy this requirement, so you’ll need to
raise and handle your own custom event. But how do you actually create and raise an event?

The short answer is that you can’t. Unless you are ready to implement your own version of
a Player instance that handles the type of media that you are after. This is not an easy task and
requires you to handle all the steps required in realizing, prefetching, and decoding, not to
mention interfacing with the controls that it exposes. Further, you have to use your own version
over the version supplied with the MMAPI implementation that you are working with. After
you have accomplished these difficult tasks, you may be able to plug in and raise your own
event.

Handling custom events is, as you may expect, much easier. You only need to know the name
of the event and the type of eventData that it exposes to be able to use it in the playerUpdate()
method. Thus, the following code fragment will catch the com.sun.midi.lyrics event, and the
event data exposed will be a byte array:

if(event.equals("com.sun.midi.lyrics")) {

byte[] data = (byte[])eventData;

}

Note that the MMAPI specification states that to catch standard events in the playerUpdate()
method, you should use the reference equality check, and for custom events, you should use
the object equality check. Thus, (event == PlayerListener.CLOSED) should be preferred over
event.equals(PlayerListener.CLOSED), and event.equals("com.sun.midi.lyrics") must be
used for custom events. Standard events are automatically interned because they are constants;
therefore, using the reference check will be faster than the object equality check. However, the
same cannot be guaranteed for custom events, so you must always use the object equality test.
The EventHandler in Listing 4-2 used the object equality test and is now converted to use the
reference check in Listing 4-4 to make it more responsive.

Listing 4-4. Converting EventHandler to Use Reference Checking Instead of Object Equality

package com.apress.chapter4;

import javax.microedition.media.*;

import javax.microedition.media.control.*;

import javax.microedition.lcdui.StringItem;

public class EventHandler implements PlayerListener {

private StringItem item;

public EventHandler(StringItem item) {

this.item = item;

}

public void playerUpdate(Player player, String event, Object eventData) {

6390ch04.qxd 3/24/06 11:53 AM Page 56

CHAPTER 4 ■ MEDIA PLAYER L IFECYCLE AND EVENTS 57

if(event == (PlayerListener.VOLUME_CHANGED)) {

// a player’s volume has been changed

VolumeControl vc = (VolumeControl)eventData;

updateDisplay("Volume Changed to: " + vc.getLevel());

if(vc.getLevel() > 60) {

updateDisplay("Volume higher than 60 is too loud");

vc.setLevel(60);

}

} else if(event == (PlayerListener.STOPPED)) {

// player instance paused

updateDisplay("Player paused at: " + (Long)eventData);

} else if(event == (PlayerListener.STARTED)) {

// player instance started (or restarted)

updateDisplay("Player started at: " + (Long)eventData);

} else if(event == (PlayerListener.END_OF_MEDIA)) {

// player instance reached end of loop

updateDisplay("Player reached end of loop.");

} else if(event == (PlayerListener.CLOSED)) {

// player instance closed

updateDisplay("Player closed.");

} else if(event == (PlayerListener.ERROR)) {

// if an error occurs, eventData contains the error message

updateDisplay("Error Message: " + (String)eventData);

}

}

public void updateDisplay(String text) {

// update the item on the screen

item.setText(text);

// and write to error stream as well

System.err.println(text);

}

6390ch04.qxd 3/24/06 11:53 AM Page 57

CHAPTER 4 ■ MEDIA PLAYER L IFECYCLE AND EVENTS58

}

Due to device fragmentation, not all MMAPI implementations support reference check
for events. Instead, you have to use equals() for comparison from Listing 4-2, instead of the
improved code from Listing 4-4. The trick is to test your target device(s) for what is supported
and optimize accordingly.

Summary
The several different states that a Player instance goes through in processing and playing media
data allows developers to gain control over these states, provide feedback, and process events
at these stages. These states are UNREALIZED, REALIZED, PREFETCHED, STARTED, and CLOSED,
and the transitions between them are well defined and accessible.

In this chapter, you learned the background behind these states, the how and why of the
transitions that take place between them, and how to respond to the various events generated
during these transitions. You learned to create an event handling class and also how to listen
to custom events.

The next chapter will introduce you to accessing media data over the network using MMAPI,
a task that must be handled efficiently and cleanly for responsive multimedia MIDlets.

6390ch04.qxd 3/24/06 11:53 AM Page 58

Accessing Media Over the
Network

The greatest advantage of applications built on mobile devices is that they can be run any-
where any time. These applications are truly mobile lifestyle choices because they allow us to
extend our lifestyles by bringing these applications wherever we go, whether for fun or business.
Applications that keep all data on mobile phones have the added advantage of being complete
without requiring network access to function or update. However, truly mobile applications
take advantage of available networks to provide an enhanced user experience.

Take the case of accessing multimedia files over a network. Although games and other
fun applications can work with small embedded sound and other audio files, for an even,
all-encompassing experience, the user requires network connectivity for his application to
stream media over the network. A good reason for streaming over storing media files locally is
the size of these files, video especially. Also streaming over stored media is used to provide
updated files and to maintain digital rights over the provided content.

Whatever the reasons, accessing multimedia data over a network reliably is an important
aspect of learning to use MMAPI. Although the issues involved are not unique to accessing
multimedia data per se, they do need to be taken care of.

In this chapter, you’ll learn about these common issues and how they affect multimedia
data access over the network using MMAPI. You’ll learn how to overcome these issues to cre-
ate MIDlets that can access the network reliably and consistently. Finally, you’ll see examples
of these issues and the solutions to them.

Understanding Threads in Java ME
The threading environment in Java ME is slightly different from the normal environment in
Java SE. The JVM in Java ME does not create a separate application thread for your MIDlet,
which is contrary to what happens in an application being run on Java SE, where an application
gets its own application thread separate from the system thread. All processing in a MIDlet
takes place inside the main system thread. Thus, methods that take a long time to complete
hog this single thread and create a bottleneck for a functional MIDlet.

Any threads that you create yourself within your MIDlet are, of course, separate from the
system thread and therefore not restrictive. These threads can do their own thing independent
of the main system thread. Of course, you have to strike a fine balance between the number of

59

C H A P T E R 5

■ ■ ■

6390ch05.qxd 3/24/06 11:57 AM Page 59

CHAPTER 5 ■ ACCESSING MEDIA OVER THE NETWORK60

threads required versus the number of threads that the limited resources operating system
can handle. Thread creation and management is a processor- and memory-hungry task and
should be carefully used, especially in the Java ME environment, which runs on constrained
devices.

To understand this better, take a look at Listing 5.1. When started, the MIDlet in this listing
displays the name of the current system thread, which is the main MIDlet thread. When the
user clicks the command for a new thread, the MIDlet creates a new thread, which displays an
alert momentarily with its own name. It then simulates a long activity by sleeping for 4 seconds.

Listing 5-1. Understanding Threads in MIDlets

package com.apress.chapter5;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class ThreadTest extends MIDlet implements CommandListener {

private Form form;

private StringItem text;

private Display display;

public ThreadTest() {

form = new Form("Thread Test");

// displays the name of the current system thread

text = new StringItem(

"Current Thread:",

Thread.currentThread().getName());

form.append(text);

// commands to exit and create new threads

Command exit = new Command("Exit", Command.EXIT, 1);

Command newThread = new Command("New Thread", Command.SCREEN, 1);

form.addCommand(exit);

form.addCommand(newThread);

form.setCommandListener(this);

display = Display.getDisplay(this);

}

public void startApp() {

display.setCurrent(form);

}

6390ch05.qxd 3/24/06 11:57 AM Page 60

CHAPTER 5 ■ ACCESSING MEDIA OVER THE NETWORK 61

public void pauseApp() {

}

public void destroyApp(boolean unconditional) {

}

public void commandAction(Command cmd, Displayable disp) {

if(cmd.getLabel().equals("Exit")) {

notifyDestroyed();

} else {

System.err.print("Starting new thread ... ");

// create a new thread

Thread runner = new Thread(new ThreadRunner(display));

// and start it

runner.start();

System.err.println("Done");

}

}

}

class ThreadRunner implements Runnable {

// the parent MIDlet's display

Display display;

ThreadRunner(Display display) {

this.display = display;

}

public void run() {

System.err.print(

"New thread (" + Thread.currentThread().getName() + ") running .. ");

display.setCurrent(

new Alert(Thread.currentThread().getName()));

try {

Thread. sleep(3000);

} catch(Exception e) {}

System.err.println("Done");

}

}

6390ch05.qxd 3/24/06 11:57 AM Page 61

CHAPTER 5 ■ ACCESSING MEDIA OVER THE NETWORK62

Figure 5-1. Screen and console output for the ThreadTest MIDlet on Motorola emulator

System Thread Activity

ThreadTest Activity ThreadRunner Activity

ThreadTest() startApp()

commandAction()
(New Thread)

Parallel Activity

Figure 5-2. System and new thread activity

■Caution The getName() used in this listing for the Thread class is a CLDC 1.1 method. This listing will
not work in CLDC 1.0 devices.

Figure 5-1 shows the MIDlet running in the Motorola emulator across a few actions, along
with the output.

The MIDlet identifies the way threads work in the Java ME environment. The simulation
of a long activity inside a new thread doesn’t lock up the main MIDlet thread waiting for this
activity to finish. The main MIDlet thread continues its processing after creating and starting
the new thread. This concept is further established in Figure 5-2, which shows the main system
thread and a new thread’s activity and actions.

6390ch05.qxd 3/24/06 11:57 AM Page 62

CHAPTER 5 ■ ACCESSING MEDIA OVER THE NETWORK 63

At this stage, you may be wondering if an understanding of thread activity in MIDlets has
anything to do with using the MMAPI over a network. It does because network access of multi-
media files (and all network activity) should only be done in a separate thread, distinct from the
system thread. This is to make sure that network access of these files doesn’t leave the main
application unresponsive to the user. This is discussed further later in this chapter.

Understanding Permissions for Network Access
Whereas creating responsive MMAPI MIDlets with separate threads is one aspect of accessing
network based media, another issue relates to permissions for media access over the network.
MIDlets don’t automatically have permissions to grab files over the network, so this must be
explicitly or implicitly configured.

MIDlets run in a protection domain, which provides access to individual permissions
based on whether or not the user grants (or denies) these permissions for the current MIDlet
session or for the life of the MIDlet. Individual permissions must be requested explicitly, but
not from within the MIDlet code. The permissions that are interesting for MMAPI development
are javax.microedition.io.Connector.http and javax.microedition.io.Connector.https. This
section focuses on these permissions, which allow retrieval of media files over the Web.

When any attempt is made to retrieve media files over the network, for example, by speci-
fying an HTTP locator for the createPlayer() method, the MIDlet’s protection domain kicks in.
Because javax.microedition.io.Connector.http is a restricted permission, the user of the MIDlet
must decide whether to grant access to the network.

As an example, consider the MIDlet in Listing 5-2, which wants to make a connection to
a remote server to retrieve and play an audio file.

Listing 5-2. Playing an Audio File Over the Network

package com.apress.chapter5;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import javax.microedition.media.*;

public class NetworkTest extends MIDlet implements CommandListener {

private List list;

private StringItem text;

private Display display;

public NetworkTest() {

list = new List("Press Play", List.IMPLICIT);

6390ch05.qxd 3/24/06 11:57 AM Page 63

// commands to exit and play

Command exit = new Command("Exit", Command.EXIT, 1);

Command play = new Command("Play", Command.SCREEN, 1);

list.addCommand(exit);

list.addCommand(play);

list.setCommandListener(this);

display = Display.getDisplay(this);

}

public void startApp() {

display.setCurrent(list);

}

public void pauseApp() {

}

public void destroyApp(boolean unconditional) {

}

public void commandAction(Command cmd, Displayable disp) {

if(cmd.getLabel().equals("Exit")) {

notifyDestroyed();

} else {

try {

Player player =

Manager.createPlayer(

"http://www.mmapibook.com/resources/media/audio/chapter5/siren.wav");

player.start();

} catch(Exception e) { System.err.println(e); }

}

}

}

The bold code is where a Player instance is created by making a network connection for
file retrieval. When you run this listing, the MIDlet needs to be granted permission by the user.
Figure 5-3 shows how this permission is granted in the three different environments (Sun Java ME
emulator, Motorola C975 emulator, and the Motorola C975 device, respectively).

CHAPTER 5 ■ ACCESSING MEDIA OVER THE NETWORK64

6390ch05.qxd 3/24/06 11:57 AM Page 64

Figure 5-3. Granting network access permission

CHAPTER 5 ■ ACCESSING MEDIA OVER THE NETWORK 65

Most users who trust your MIDlet will want to select the Yes, Ask Once choice (or similar),
so they won’t be bothered the next time they run your MIDlet. By default, all MIDlets are run
in an untrusted protection domain, where the user is always consulted for granting network
access permission rights. You’ll need to establish a level of trust for the device to run your net-
work accessing MIDlet without requiring interaction from the user.

Trust is established by signing your MIDlet and putting it in a trusted domain. The com-
plete details of how you do that is beyond the scope of this book, but this section outlines the
steps required to get the NetworkTest MIDlet working without needing to request permission
to access the network from the user.

To start with, you’ll need to modify the JAD manifest file for this MIDlet and add an entry
to request permission for HTTP access, as shown here:

MIDlet-Permissions: javax.microedition.io.Connector.http

If the connection to access the file will be over a secure connection, you need to request
HTTPS access. If you’re not sure, you can request both permissions.

MIDlet-Permissions:

javax.microedition.io.Connector.http, javax.microedition.io.Connector.https

■Note The preceding code lines should not be broken into two lines during coding; they are broken here
due to space concerns.

Now when this MIDlet is being installed on a device, the AMS will fail the installation if it’s
unable to provide these permissions to the MIDlet. This means that if AMS is unable to put this
MIDlet in a trusted domain, it halts the installation.

6390ch05.qxd 3/24/06 11:57 AM Page 65

Of course, simply requesting permissions in the JAD file is only half the story. Any rogue
MIDlet could request the permission this way and cause trouble. You still need to establish
some sort of trust principle between the MIDlet and the AMS; the AMS will then trust your
MIDlet enough to let it be installed in a trusted domain. This is done by signing the MIDlet
with a certificate that can be validated up to a root certificate installed on the device.

To complete this test, at least on the Sun Java ME emulator, sign the NetworkTest MIDlet
with the trustedkey key installed with the emulator. You access it by selecting Project ➤ Sign
in the emulator as shown in Figure 5-4. This trustedkey is shown in Figure 5-5.

CHAPTER 5 ■ ACCESSING MEDIA OVER THE NETWORK66

After the MIDlet is signed, you can test it by using the Run via OTA menu option shown in
Figure 5-6. You don’t use the Run menu option like you have been doing so far because when
you run the MIDlet locally (by selecting the Run menu option), it does not get installed into
a protection domain. Only when installed via the Run via OTA option does your MIDlet gets
a chance to be installed into a requested domain, which is the domain that you request by
specifying permission for it in the JAD file.

Figure 5-4. Signing the NetworkTest MIDlet in the Sun Java ME emulator

Figure 5-5. The trustedkey used to sign the NetworkTest MIDlet

6390ch05.qxd 3/24/06 11:57 AM Page 66

CHAPTER 5 ■ ACCESSING MEDIA OVER THE NETWORK 67

Of course, so far, you’ve only tested in the Sun Java ME emulator platform. Testing on
the Motorola C975 emulator and device is only possible if you have a certificate containing
a key-pair that can be trusted to a root certificate installed on the emulator and device, respec-
tively. Even then, the actual device may only keep your MIDlet in a third-party trust domain
that will never be fully trusted. To get it to a higher trust level, you need to sign it with a cer-
tificate supplied by either a manufacturer (Motorola) or an operator (for example, Vodafone).
An alternate mechanism is to use the Java Verified Program, which certifies your applica-
tion for deployment on devices that support this program. See more details of this program
at http://www.javaverified.com.

To summarize, using MMAPI across a network requires looking at two issues:

• Network operations can be time consuming and should be done in a separate thread
from the main application thread.

• Network access requires permission from the user. To gain this permission and then
acquire a level of trust, your MIDlet must request this permission implicitly and be
signed with a certificate that can be traced to a root certificate. Alternatively, explicit
permission from the user is required when network access is attempted, which the user
may not give.

You just learned about the second item in the preceding list; the next section covers the
first issue in the list in more detail, expanding on what you’ve learned so far.

Putting It Together
The MIDlets created in the previous chapters have accessed their media files through the JAR
file in which they are bundled. In this section, you’ll create a Player instance that will access
a media file over the network via HTTP. You’ll create a separate thread from the main MIDlet
thread to handle the task of creating and realizing the Player instance.

Listing 5-3 shows the code for the ThreadedMIDlet that initiates the playback. When requested
by the user, it creates a new thread using the NetworkPlayerManager class, shown in Listing 5-4.

Listing 5-3. ThreadedMIDlet Creates a New Thread to Play Back a Media File

package com.apress.chapter5;

import javax.microedition.midlet.*;

Figure 5-6. Running NetworkTest MIDlet via Over the Air provisioning

6390ch05.qxd 3/24/06 11:57 AM Page 67

CHAPTER 5 ■ ACCESSING MEDIA OVER THE NETWORK68

import javax.microedition.lcdui.*;

import javax.microedition.media.*;

public class ThreadedMIDlet extends MIDlet implements CommandListener {

private List list;

private StringItem text;

private Display display;

private NetworkPlayerManager mgr;

private Command cancel = new Command("Cancel", Command.CANCEL, 1);

public ThreadedMIDlet() {

list = new List("Press Play", List.IMPLICIT);

// commands to exit and play

Command exit = new Command("Exit", Command.EXIT, 1);

Command play = new Command("Play", Command.SCREEN, 1);

list.addCommand(exit);

list.addCommand(play);

list.setCommandListener(this);

display = Display.getDisplay(this);

}

public void startApp() {

display.setCurrent(list);

}

public void pauseApp() {

}

public void destroyApp(boolean unconditional) {

}

public void commandAction(Command cmd, Displayable disp) {

if(cmd.getLabel().equals("Exit")) {

notifyDestroyed();

} else if(cmd.getLabel().equals("Cancel")) {

mgr.cancel();

display.setCurrent(list);

} else {

try {

mgr = new NetworkPlayerManager(display, cancel, this);

Thread runner = new Thread(mgr);

runner.start();

6390ch05.qxd 3/24/06 11:57 AM Page 68

CHAPTER 5 ■ ACCESSING MEDIA OVER THE NETWORK 69

} catch(Exception e) { System.err.println(e); }

}

}

}

As you can see, Listing 5-3 is built on top of Listing 5-2. The changes are marked in bold.
A new command is added to allow users to cancel a request to play the media file, in case it
takes too long or the user changes his mind. The code to handle this command is added in the
commandAction() method. More importantly, the default handling of the play command is
now changed. A new class, NetworkPlayerManager, is created, and because it implements the
Runnable interface, it can be started as a thread. Before going forward, let’s take a look at this
class in Listing 5-4.

Listing 5-4. NetworkPlayerManager Class Implements the Runnable Interface and Makes Network
Connections for Media Playback

package com.apress.chapter5;

import javax.microedition.lcdui.*;

import javax.microedition.media.*;

public class NetworkPlayerManager implements Runnable {

private Display display;

private Form form;

private StringItem msg;

private boolean cancel = false;

private Player player = null;

public NetworkPlayerManager(

Display display, Command cancelCmd, ThreadedMIDlet parent) {

this.display = display;

form = new Form("Network Player Manager");

msg = new StringItem("Please Wait ... ", null);

form.append(msg);

form.addCommand(cancelCmd);

form.setCommandListener(parent);

}

public void run() {

display.setCurrent(form);

boolean connected = false;

6390ch05.qxd 3/24/06 11:57 AM Page 69

CHAPTER 5 ■ ACCESSING MEDIA OVER THE NETWORK70

try {

player =

Manager.createPlayer(

"http://www.mmapibook.com/resources/media/audio/chapter5/siren.wav");

player.realize();

connected = true;

} catch (Exception e) {

msg.setText("Failed: " + e.getMessage());

System.err.println(e);

return;

}

if(connected && !cancel)

msg.setText("Connected. Starting playback...");

else {

msg.setText("Unable to connect.");

return;

}

try {

player.start();

} catch(Exception pe) {

msg.setText(pe.getMessage());

System.err.println(pe);

}

}

public void cancel() {

cancel = true;

if(player!= null) player.deallocate();

}

}

When a new instance of the NetworkPlayerManager class is created, it creates a Form instance
and appends a StringItem for displaying messages. The cancel command is attached to this
form, but the command listener for this command is still the calling MIDlet.

When the thread is started, the run() method takes over. It makes the form instance as the
current display and tries to realize the Player instance for playback of the media file. If connec-
tion can be established, the message on the screen is updated and the playback is initiated. If,
for some reason, the connection cannot be established, an error message is displayed and the
display returns to the calling MIDlet.

Connection may not be established for a variety of reasons. The device may not allow your
MIDlet access to the network if it isn’t signed and in a correct domain, as you learned in the
previous section. A path to the remote server may not be available.

6390ch05.qxd 3/24/06 11:57 AM Page 70

CHAPTER 5 ■ ACCESSING MEDIA OVER THE NETWORK 71

While the MIDlet is trying to connect to the remote server, the user must be given a chance
to cancel the request. The user can do this by issuing the cancel command. When this happens,
the cancel() method is called, which deallocates the Player instance. Recall from Chapter 4 that
calling deallocate() on an instance that is blocked at the realize call results in the instance
being returned to the UNREALIZED state. Thus, if the network is intermittent or taking too
long, the user can cancel the request. If the Player instance has already reached the REALIZED
state, calling cancel will not affect anything.

If you sign this MIDlet and put it in the correct domain, you will not be asked permission
to access the network when you run it. Figure 5-7 shows running a MIDlet over the Sun Java ME
and the Motorola C975 emulators.

Summary
Accessing media data over the network requires careful consideration because it involves two
issues. First, network access should be done in a separate thread from the main thread, because
accessing the network may block the main thread for a long time, leading to an unresponsive
MIDlet. Second, network access requires permission from the user of the MIDlet as it may lead
to charges from the network operator.

This chapter showed you how to overcome these two issues by explaining threads in Java ME
and how they affect network access. The chapter also explained the concept of protection
domains and how to overcome them for requesting permissions for network access. The chap-
ter finished with an all-encompassing example that solved those two issues together.

The next chapter covers generating and playing tones using MMAPI with the help of the
ToneControl control.

Figure 5-7. Network access of a media file using a separate thread over Sun’s DefaultColorPhone
and Motorola C975 emulators

6390ch05.qxd 3/24/06 11:57 AM Page 71

6390ch05.qxd 3/24/06 11:57 AM Page 72

Creating and Playing Tones
Using ToneControl

The MMAPI is unique in providing a genuine capability to play synthetic tones on mobile devices.
We all recognize the sometimes annoying, but practical, ring tones on most mobile phones.
With MMAPI, you can program your own tones to build a ring tone that plays when an event
occurs, to embed in a game as a musical accompaniment to the main action, or just for plain fun.

In this chapter, you’ll learn how to use the built-in tone generator mechanism in MMAPI
to generate and distribute synthetic tones. You’ll start with the single note generator provided
by the Manager class. You’ll then learn about the ToneControl class, which provides mechanisms
to generate complex tones based on user-defined sequences. Finally, you’ll learn how to distrib-
ute these tone sequences using the JTS file structure.

First, however, you need to understand the basics of synthetic tones. Let’s start with some
background on this topic.

Understanding Synthetic Tones
Synthetic tones, as the name suggests, are tones generated synthetically, or more specifically, by
a computer system. A ring tone is a dominant example of synthetic tones, but computer sys-
tems have been capable of generating these tones for quite some time. The ring tone industry
has popularized the enormous push for this technology to enhance capabilities of mobile
phones, resulting in first, monophonic, and now, polyphonic ring tones.

A synthetic tone is a musical note that has a defined duration. Monophonic ring tones
only play one note of music at a time. Before the start of the next note, the previous note is cut
off. Older synthesizers and almost all mobile phones and devices can play monophonic tones.

■Note In music, a note is the unit of fixed pitch that has been given a name, or the graphic representation
of that pitch in a notation system. In English, notes are given seven names: A, B, C, D, E, F, and G (in order of
rising pitch).

73

C H A P T E R 6

■ ■ ■

6390ch06.qxd 3/24/06 11:57 AM Page 73

CHAPTER 6 ■ CREATING AND PLAYING TONES USING TONECONTROL74

Comparatively, polyphonic ring tones can play multiple tones at the same time, thereby
providing the effect of multiple instruments playing together. Not only does it resemble a more
convincing musical background, but also it’s pleasing to the ears. Most modern mobile devices
are capable of playing polyphonic tones.

As far as MMAPI is concerned, a single tone is specified using the note, duration, and
volume. These three must be specified for the underlying engine to be able to play the tone.
MMAPI provides the capability to play either a single tone using the static method Manager.
playTone(int note, int duration, int volume) or more complex tone sequences (ring tones
are nothing but sequences of tones) using the ToneControl interface. You’ll see examples of
both of these shortly.

Understanding Note, Pitch, and Frequency
To better understand how MMAPI plays tones, you must differentiate between different notes
of music by understanding how notes relate to pitches and how their representation is used in
MMAPI.

As stated earlier, in English seven notes are represented by the symbols A, B, C, D, E, F, and
G. Each of these represents an increasing frequency of music. However, frequency is a physical
term, as far as human understanding of music is concerned, and therefore, it is replaced with
the more generic term of pitch. Thus, musically, pitch is the perception of the frequency of a note,
and the symbols A to G represent notes in order of rising pitch. Symbol A represents a lower
pitched musical note than symbol B, which is lower than symbol C, and so on.

Mathematically, each symbol is related to a frequency value, because each symbol represents
a pitch. Table 6-1 shows the frequency value of each symbol.

Table 6-1. Frequency Values for the Basic Notes

Note Symbol Frequency (in Hertz (Hz))

A 440

B 493.92

C 523.28

D 587.36

E 659.28

F 698.48

G 784

Of course, things are not this simple. There are a large number of variations on the basic
symbols, so let’s clarify some of the more important ones.

Even though notes are represented using only these seven symbols, the symbols are repeti-
tive for frequencies that are an octave above or below them. This is better explained with an
example.

■Note An octave is the interval between one musical note and another with half or double the frequency.

6390ch06.qxd 3/24/06 11:57 AM Page 74

CHAPTER 6 ■ CREATING AND PLAYING TONES USING TONECONTROL 75

Consider the symbol A. Although it represents the frequency 440, it also represents the
frequencies 220 (= 440 / 2) and 880 (= 440 * 2). Further, it represents the frequencies 110 (= 220 / 2),
55 (= 110 / 2), and 27.5 (= 55 / 2) as well. All these frequencies are an octave interval apart because
they are double or half of the frequency before or after them, respectively. Thus, A is a musical
note that represents the frequencies 27.5, 55, 110, 220, 440, and 880. To distinguish between the
different octaves, a number is placed after the symbol. A4 represents the fourth octave for
the musical note A, which is 440 Hz. Table 6-2 summarizes some of these symbols.

Table 6-2. The Different Octaves for the Musical Note A

Symbol Frequency (Hz)

A0 27.5

A1 55

A2 110

A3 220

A4 440

A5 880

The other seven symbols are similarly modified to arrive at different corresponding
octaves. As an example, Table 6-3 shows some of the different octaves for the musical note C.

Table 6-3. The Different Octaves for the Musical Note C

Symbol Frequency (Hz)

C0 16.35

C1 32.70

C2 65.41

C3 130.82

C4 261.64

C5 523.28

When no number is placed after a musical symbol, it usually means the fourth octave.
Thus, A implies the frequency at 440 Hz (A4), and C implies the frequency at 261.64 (C4).

Besides octaves, the notes can differ by a semitone. If an octave difference in frequency is
double or half of each frequency, a semitone is a musical interval that is one-twelfth of an
octave. Alternatively, an octave contains 12 semitones.

■Note A semitone is one-twelfth of an octave and is also known as half step. It is the smallest musical
interval.

Thus, if a musical note differs from another by a semitone, it is modified into either a sharp
or a flat. A sharp raises the pitch of a note by a semitone interval, whereas a flat lowers the pitch

6390ch06.qxd 3/24/06 11:57 AM Page 75

CHAPTER 6 ■ CREATING AND PLAYING TONES USING TONECONTROL76

by a semitone interval. Using musical notation, a sharp is denoted by # while b is used to denote
a flat. Thus, C# (pronounced C-sharp) denotes the musical note that is a semitone above C4 and
equals 277.183 Hz. This symbol may also be written as C4

#, but C# is more common.
The figure of 277.183 for a pitch that is a semitone above C4 (261.64 Hz) comes from the

fact that a semitone is one-twelfth of an octave, and an octave above a frequency means dou-
bling over the previous frequency. This implies that a semitone above (or sharp as it is called)
a frequency means multiplying it by the twelfth root of 2. The twelfth root of 2 equals 1.059463.
Therefore, 261.64 * 1.059463 = 277.183.

Similarly, a flat pitch implies dividing the frequency by the twelfth root of 2. Therefore, C4
b

equals 261.64 / 1.059463 = 246.95.
Given any note, you can thus arrive at the note higher or lower than that by multiplying or

dividing it by the constant 1.059463.

Using a MMAPI Formula to Calculate Note Values
With this brief interlude into musical mathematics complete, let’s return to the tone support
in MMAPI. To play a single tone, you can use the Manager class static method playTone(int note,
int duration, int volume). The second and third parameters are self explanatory, but the first
one needs an explanation. With the background in mind from the previous section, the first param-
eter cannot be the frequency of a note because it is only an int value, whereas frequencies can
have a decimal part.

The Javadoc for this method defines that the note parameter can be a value between
0 and 127, both inclusive. It also provides a formula to arrive at these values as well, based on
the frequency of the desired note to be played as a tone by this method. This method is shown here:

note = ln(freq/8.176)*(17.31234049066755)

The value 17.31234049066755 is called the SEMITONE_CONST and is arrived at with the formula:

SEMITONE_CONST = 1/(ln(2^(1/12)))

Note that ln in both these formulas means log to the base ‘e,’ also called the natural logarithm
of a number (as opposed to the common logarithm, which is log to the base 10).

Using this formula, let’s calculate the corresponding int note parameter value for the note
represented by C#. As you learned in the last section, the frequency of C# is equal to 277.183.

note (C#) = ln(277.183/8.176) * (17.31234049066755) = 61 (after rounding)

To play C# using MMAPI, you use the value 61. Listing 6-1 shows a MIDlet that will play
this value when run.

Listing 6-1. Playing C# for 5 Seconds at Max Volume

package com.apress.chapter6;

import javax.microedition.midlet.MIDlet;

import javax.microedition.media.Manager;

import javax.microedition.media.MediaException;

public class CSharpMIDlet extends MIDlet {

public CSharpMIDlet() {

}

6390ch06.qxd 3/24/06 11:57 AM Page 76

CHAPTER 6 ■ CREATING AND PLAYING TONES USING TONECONTROL 77

public void startApp() {

try {

// plays C# (frequency of 277.183 for 5 seconds at max volume)

Manager.playTone(61, 5000, 100);

} catch(MediaException me) { System.err.println(me); }

}

public void pauseApp() {

}

public void destroyApp(boolean unconditional) {

}

}

The outcome on all three of our test environments will be the same sound being played
for a maximum of 5 seconds at the loudest permissible volume. Not terribly exciting, but it
demonstrates the basic way of using this method to play tones.

You don’t have to manually calculate the integer value of a note given its frequency. List-
ing 6-2 shows a simple Java class that does this for you using the formula provided earlier. The
class also contains a method for doing the reverse; that is, given the integer value of a note, it
will tell you the corresponding frequency of the note/tone. Finally, this Java class contains
a method that will print all the 128 notes along with their corresponding frequencies.

■Caution Listing 6-2 cannot be run in a Java ME environment because Java ME doesn’t contain the
methods ln(double val) and exp(double val) in the Math class. Therefore, this method must be run in
a Java SE environment.

Listing 6-2. A Simple Java Class to Calculate Note Frequencies and intValues

package com.apress.chapter6;

public class NoteCalculator {

public static final double SEMITONE_CONST = 17.31234049066755;

public static final double ARBIT_CONST = 8.176;

public static int getNoteAsInt(double freq) {

return (int)Math.round((Math.log(freq/ARBIT_CONST) * SEMITONE_CONST));

}

public static double getNoteFreq(int note) {

return (ARBIT_CONST * Math.exp(note/SEMITONE_CONST));

}

6390ch06.qxd 3/24/06 11:57 AM Page 77

CHAPTER 6 ■ CREATING AND PLAYING TONES USING TONECONTROL78

public static void printAllNoteFreq() {

for(int i = 0; i < 128; i++) {

System.err.println(i + " : " + getNoteFreq(i));

}

}

public static void main(String[] args) {

try {

if(args.length == 2) {

if(args[0].equals("1")) {

double freq = new Double(args[1]).doubleValue();

System.err.println(args[1] + " Hz : " + getNoteAsInt(freq));

} else {

int note = new Integer(args[1]).intValue();

System.err.println(args[1] + ": " + getNoteFreq(note));

}

} else {

System.err.println("Usage: NoteCalculator convType convVal \r\n" +

" where convType: 1 for freq in Hz and 2 for note value in int \r\n" +

" and convVal is the actual value");

}

} catch(Exception e) {

System.err.println(e);

}

// print all notes from 0 to 127

printAllNoteFreq();

}

}

Using the methods of this class, Table 6-4 lists the integer note values for the basic notes
defined in Table 6-1.

Table 6-4. Integer Note Values for the Basic Notes

Basic Note Integer Note Value

A 69

B 71

C 72

D 74

E 76

F 77

G 79

6390ch06.qxd 3/24/06 11:57 AM Page 78

CHAPTER 6 ■ CREATING AND PLAYING TONES USING TONECONTROL 79

Using the playTone() Method
playTone() is a nonblocking method, which means that after it is called, it returns immediately.
Your MIDlet continues to play the tone for the time you specify with the duration parameter.
Listing 6-3 shows an example MIDlet that will play all the notes from 0 to 127 sequentially.

Listing 6-3. Playing All Notes Sequentially

package com.apress.chapter6;

import javax.microedition.midlet.MIDlet;

import javax.microedition.media.*;

import javax.microedition.lcdui.*;

public class AllTonesPlayer extends MIDlet implements CommandListener {

Form displayForm = new Form("Playing all tones");

StringItem info = new StringItem("", "");

Command exit = new Command("Exit", Command.EXIT, 1);

Thread runner;

boolean stop = false;

public void startApp() {

displayForm.append(info);

Display.getDisplay(this).setCurrent(displayForm);

displayForm.addCommand(exit);

displayForm.setCommandListener(this);

// create and start a new thread to play all the notes

runner = new Thread(new TonePlayer(info));

runner.start();

}

public void pauseApp() {

}

public void destroyApp(boolean unconditional) {

if(runner != null) stop = true;

}

6390ch06.qxd 3/24/06 11:57 AM Page 79

CHAPTER 6 ■ CREATING AND PLAYING TONES USING TONECONTROL80

public void commandAction(Command cmd, Displayable disp) {

// only exit command defined in this MIDlet

destroyApp(true);

notifyDestroyed();

}

}

// Plays all notes sequentially

class TonePlayer implements Runnable {

StringItem info;

AllTonesPlayer midlet;

public TonePlayer(StringItem info, AllTonesPlayer midlet) {

this.info = info;

this.midlet = midlet;

}

public void run() {

try {

for(int i = 0; i < 128; i++) {

// wait a second before playing the next note

Thread.sleep(1000);

info.setText("Playing: " + i);

Manager.playTone(i, 500, 100); // play for 500 milliseconds at max vol

if(midlet.stop) break;

}

} catch(Exception me) { System.err.println(me); }

}

}

The MIDlet starts playing the tones as soon as it’s started. The playTone() method is called
sequentially after every 1 second to play the note for 500 milliseconds. The note generation
part is separated from the main MIDlet system thread into its own thread using the TonePlayer
class to allow easy termination of this thread, and consequently, the tone generation sequence
from the main system thread. Figure 6-1 shows the output on the Sun Java ME DefaultColorPhone
emulator.

6390ch06.qxd 3/24/06 11:57 AM Page 80

CHAPTER 6 ■ CREATING AND PLAYING TONES USING TONECONTROL 81

Figure 6-1. Playing all tones in the Sun Java ME DefaultColorPhone emulator

The playTone() method can throw a MediaException if the note can’t be played due to
a hardware problem with the underlying mobile device. This usually occurs if the device
doesn’t support the playback of tones or if the device is using the built-in tone generator (by
ringing to indicate an incoming call, for example). The method also throws the runtime
IllegalArgumentException if the duration parameter is set to a negative value. Setting the
volume parameter to a negative value results in the volume being set to 0 and 100 for any value
over 100.

Using Tone Sequences with ToneControl
Of course, playing single tones isn’t very useful in itself, except in games and applications where
you may want to emphasize a critical point by playing a note of high pitch to draw the user’s
attention. Of more interest to most developers is the ability to play tones in a sequence that
resembles popular songs so they can integrate them as ring tones on mobile devices or as
background tones in games.

In the last section, you saw an example of playing tones in a sequence using the playTone()
method. The underlying hardware was told to play single tones after a predefined interval,
which is hardly suitable for realistic and continuous music.

The MMAPI defines the ToneControl interface to play tones in a sequence. You specify the
notes that you want played in any sequence that you want, including repetitive blocks, along
with tempo, volume, and duration using a byte array. A Player instance for playing tones can
then be used like a normal Player instance, including using all control and lifecycle methods
that you have learned about so far.

Before you learn how to create a Player instance for tone playback, you need to learn how
to create tone sequences using the proprietary format defined by MMAPI.

6390ch06.qxd 3/24/06 11:57 AM Page 81

CHAPTER 6 ■ CREATING AND PLAYING TONES USING TONECONTROL82

Defining Tone Sequences
Tone sequences are defined using a slightly complicated format. Basically, a tone sequences is
a collection of notes and durations values as you have learned in the previous sections. Note
values range from 0 to 127 representing the various frequencies, but the value of the duration
for each note is defined differently than before.

For tone sequences, the duration of each note is specified using resolution, as opposed to
measuring it in milliseconds, which you’ve seen so far. To understand resolution, you need to
know about another standard measurement of music using the beats present in musical notes.

Understanding Time Signature
A beat, as you may know, is the pulse of music. A time signature is used to define how many
beats are in each bar (segment of time) of music along with how many note values constitute
one beat. Just remember that time signature is a way to quantify musical work using the beats
and the notes duration that constitute one beat.

Time signature is written as a fraction. The numerator indicates the number of beats in
a bar and the denominator specifies the notes/beat (that is, the fraction of note duration that
makes up one beat). The most common time signature is 4/4 (called common time), which
means that there are 4 beats in a bar and 1/4 of a note makes up a beat.

■Caution Make sure it is 1/4 of a note, not 4 notes.

In other words, common time written as 4/4 implies that there will be 4 beats per measure
(musical measure or bar), with each beat composed of a quarter note.

Calculating Duration Using Resolution and Tempo
Let’s say you want to play a tone for 1 second. To completely specify the duration, you also
need to specify the tempo of the tone of the note because tempo, which represents the beats
per minute of a note, varies the way the tone is heard. Let’s say the tone that you want to play
for 1 second should correspond to the common time you read about in the last section. That
is, there should be 4 beats (one whole note) in the tone. Then, the resolution (which is a mea-
sure of duration) is specified using the following formula:

duration (milliseconds) * default resolution * default tempo / 240000 = resolution

Now, the default resolution equals 64, and the default tempo is equal to 120 beats per
minute (bpm). Thus, playing a note for 1 second using the default resolution of 64 and the
default tempo of 120 bpm by using the preceding formula equals the duration of

1000 * 64 * 120 / 240000 = 32

You are, of course, allowed to change the values of the default resolution and tempo.
Thus, let’s say the default tempo is changed to a faster beat, with 240 bpm as the value. The
same tone will have the duration of

1000 * 64 * 240 / 240000 = 64

6390ch06.qxd 3/24/06 11:57 AM Page 82

CHAPTER 6 ■ CREATING AND PLAYING TONES USING TONECONTROL 83

and for a slower beat of say 60 bpm:

1000 * 64 * 60 / 240000 = 16

Similarly, changing the default resolution to say 32 will result in a duration of

1000 * 32 * 120 / 240000 = 16

If all this seems too complicated for simple tone generation, then just remember to use
the duration of a note in multiples of 8, with 8 being the lowest interval for which you want the
tone to play and 120 being the longest. (You can use values that are not multiples of 8 as well,
but they don’t produce accurate results. No duration value can be greater than 127, as the
duration is represented as a byte.)

Creating Sequences
Now that you know how to specify the note and calculate the duration for the note, you can
now actually create a tone sequence to play using the ToneControl interface. The simplest tone
sequence contains the ToneControl version number, which is always 1, followed by note-duration
pairs. Thus, the following is a single note tone sequence:

ToneControl.VERSION, 1

69, 32

The first two values in the sequence must always be ToneControl.VERSION and 1. This
identifies the version of this ToneControl (version of the ToneControl, not the sequence that
you are describing), and by default is equal to 1 and unlikely to change. Next, you will have
a note followed by its duration as described in the previous sections. Thus, the preceding
sequence consists of a single note 69 that must be played for duration of 32 resolution.

There is no specific value to end a sequence. The last note-duration pair ends the sequence.
Therefore, the preceding sequence is complete and valid. In code, it looks like the following:

byte[] sequence = new byte[] {

ToneControl.VERSION, 1,

69, 32,

};

VERSION is a constant in the ToneControl interface and is assigned a value of -2.
Let’s now add more notes to this sequence. Actually, let’s try to create the sequence for

a popular tune, “Happy Birthday to You.”
The tone sequence for the first stanza for this tune is shown here in note-duration pairs:

72, 4, 72, 2, 74, 8, 72, 8, 77, 8, 76, 16

In code, it looks like this:

byte[] sequence = new byte[] {

ToneControl.VERSION, 1,

72, 4, // Hap-

ToneControl.SILENCE, 2,

72, 2, // -py

ToneControl.SILENCE, 2,

74, 8, // Birth-

6390ch06.qxd 3/24/06 11:57 AM Page 83

CHAPTER 6 ■ CREATING AND PLAYING TONES USING TONECONTROL84

ToneControl.SILENCE, 2,

72, 8, // -day

ToneControl.SILENCE, 2,

77, 8, // to

ToneControl.SILENCE, 2,

76, 16 // you

};

To arrive at the note values and their durations for this sequence the trick is to use tone
values that are available freely on the Internet for various other formats. However, these for-
mats are different from the MMAPI format described so far, so you need to be able to convert
between these formats and the MMAPI format.

The most popular format is the Ringing Tone Text Transfer Language (RTTTL) format,
published by Nokia. Various Web sites on the Internet will provide you with the RTTTL format
for a song or tune (just search for the name of the song or tune along with the text “RTTTL”).
For example, the RTTTL format for the complete “Happy Birthday to You” tune is

Happy Birthday Song:d=4,o=5,b=125:16c, 32p, 32c, 32p, 8d, 32p, 8c, 32p, 8f, 32p, e,

16p, 16c, 32p, 32c, 32p, 8d, 32p, 8c, 32p, 8g, 32p, f, 8p, 16c, 32p, 32c, 32p,

8c6, 32p, 8a, 32p, 8f, 32p, 8e, 32p, 8d, 32p, 16a#, 32p, 32a#, 32p, 8a, 32p, 8f,

32p, 8g, 32p, f

After you get the format for your particular song/tune, you need to convert it to the MMAPI
format. You could try to understand the RTTTL format before you start to convert it to the
MMAPI format, or you could just use the RingToneConverter class provided by Sun to do this
for you.

Converting RTTTL to MMAPI Format Using RingToneConverter
The RingToneConverter class is provided with the examples in the Wireless Toolkit. This class is
present in the MMADemo application as a standalone Java ME class. It converts the RTTTL
format to the MMAPI format and is very handy. Listing 6-4 shows a MIDlet called ConverterMIDlet
that uses this class to load and parse the RTTTL format of the “Happy Birthday to You” tune
from a file. At this stage, it simply prints the equivalent MMAPI format.

Listing 6-4. Using the RingToneConverter Class to Parse RTTTL Formats to MMAPI Format

package com.apress.chapter6;

import javax.microedition.midlet.*;

import javax.microedition.media.*;

import javax.microedition.media.control.*;

public class ConverterMIDlet extends MIDlet {

6390ch06.qxd 3/24/06 11:57 AM Page 84

CHAPTER 6 ■ CREATING AND PLAYING TONES USING TONECONTROL 85

public void startApp() {

try {

// Load the RTTTL format of the file as an InputStream

RingToneConverter rtc =

new RingToneConverter(

getClass().getResourceAsStream(

"/media/misc/happybday.rtttl"), "Happy Birthday");

// get the equivalent sequence

byte[] seq = rtc.getSequence();

// print it

printSequence(seq);

} catch (Exception e) {

System.err.println(e);

}

}

private void printSequence(byte[] seq) {

// print the sequence in a user friendly format

byte bite = 0;

for(int i = 0; i < seq.length; i++) {

// the first control structure or the note value

bite = seq[i];

if(i % 2 == 0) {

if(bite == ToneControl.VERSION)

System.err.print("ToneControl.VERSION, ");

else if(bite == ToneControl.TEMPO)

System.err.print("ToneControl.TEMPO, ");

else if(bite == ToneControl.SILENCE)

System.err.print("ToneControl.SILENCE, ");

else if(bite == ToneControl.RESOLUTION)

System.err.print("ToneControl.RESOLUTION, ");

else if(bite == ToneControl.SET_VOLUME)

System.err.print("ToneControl.SET_VOLUME, ");

else

System.err.print(bite + ", ");

}

else {

// the value of a control structure or the note duration

if(i != (seq.length - 1))

System.err.println(bite + ", ");

6390ch06.qxd 3/24/06 11:57 AM Page 85

CHAPTER 6 ■ CREATING AND PLAYING TONES USING TONECONTROL86

else

System.err.println(bite);

}

}

}

public void pauseApp() {

}

public void destroyApp(boolean unconditional) {

}

}

Several constructors for the RingToneConverter class allow you to load the RTTTL format
from a variety of sources. In this case, the RTTTL format for the “Happy Birthday to You” tune
is stored in a text file called happybday.rtttl, and the RingToneConverter(InputStream is, String
tuneName) constructor is used to load it. You can also use the RingToneConverter(String url,
String name) constructor to load the file from a URL, or if you have the RTTTL format for
a tune in a byte[] array, you can use the RingToneConverter(byte[] data, String tuneName)
constructor directly. All constructors ultimately use the last constructor to parse the data.

Because the constructor also does the parsing of the RTTTL format, after it returns suc-
cessfully, the corresponding MMAPI sequence is easily available by calling the getSequence()
method. This method returns the MMAPI format in a byte array sequence, perfect for use with
the ToneControl. You can print this sequence out using the printSequence() method in a format
that makes it easy to copy and paste the resulting MMAPI sequence format in code.

Note the other constants from the ToneControl class that we’ve used besides the
ToneControl.VERSION constant as listed in Table 6-5.

Table 6-5. ToneControl Constants

ToneControl Constant ToneControl Value ToneControl Description

ToneControl.VERSION -2 The first control in a sequence and denotes
the ToneControl version. Always equal to 1.

ToneControl.TEMPO -3 The second control in a sequence and used
to set the tempo of the following sequence.
Default value is 30.

ToneControl.RESOLUTION -4 The third control in a sequence and used to
set the resolution of a sequence, as defined
earlier. Default equals 64.

ToneControl.SET_VOLUME -8 Can be used at any stage in a sequence to set
the volume of the notes following it.

ToneControl.SILENCE -1 Can be used at any stage in a sequence to
indicate a silent note value. It must, of
course, be followed by a duration value.

Other constants will be discussed in the coming sections.

6390ch06.qxd 3/24/06 11:57 AM Page 86

CHAPTER 6 ■ CREATING AND PLAYING TONES USING TONECONTROL 87

Creating, Defining, and Playing Blocks of Sequences
Ring tones that have repetitive stanzas don’t need to define these stanzas separately each time
they are required to be played. The MMAPI format allows you to define a repetitive block once
and then refer to it whenever and wherever you want it played.

Sticking with the “Happy Birthday to You” tune, let’s say you wanted the first stanza played
a couple of times before moving on to the rest of the tune. This first stanza is the “Happy Birthday
to You” part and is reproduced here:

72, 4, ToneControl.SILENCE, 2, 72, 2, ToneControl.SILENCE, 2, 74, 8,

ToneControl.SILENCE, 2, 72, 8, ToneControl.SILENCE, 2, 77, 8,

ToneControl.SILENCE, 2, 76, 16

To mark this as a block, start by putting the ToneControl control constant BLOCK_START
with a number to identify this block and end with BLOCK_END using the same number:

ToneControl.BLOCK_START, 0,

72, 4, ToneControl.SILENCE, 2, 72, 2,

ToneControl.SILENCE, 2, 74, 8, ToneControl.SILENCE, 2, 72, 8,

ToneControl.SILENCE, 2, 77, 8, ToneControl.SILENCE, 2, 76, 16,

ToneControl.BLOCK_END, 0

The sequence has been marked as block 0. This block can now be played anywhere in the
sequence by using the ToneControl control constant PLAY_BLOCK followed by the number iden-
tifying the block. Thus, the following placed anywhere in a sequence after the block definition
will play the block just defined:

ToneControl.PLAY_BLOCK, 0

Of course, you can’t play a block that hasn’t been defined. Therefore, all block definitions
must come before an attempt to play them is made. There is no limit to the number of blocks
that you can define.

The following byte array shows the sequence of playing the first two stanzas of “Happy
Birthday to You,” with the first stanza repeated once.

byte[] sequence = new byte[] {

ToneControl.VERSION, 1,

ToneControl.BLOCK_START, 0,

72, 4, ToneControl.SILENCE, 2, 72, 2, ToneControl.SILENCE, 2, 74, 8,

ToneControl.SILENCE, 2, 72, 8, ToneControl.SILENCE, 2, 77, 8,

ToneControl.SILENCE, 2, 76, 16,

ToneControl.BLOCK_END, 0,

ToneControl.PLAY_BLOCK, 0, // plays block 0

ToneControl.SILENCE, 4, 72, 4, ToneControl.SILENCE, 2, 72, 2,

ToneControl.SILENCE, 2, 74, 8, ToneControl.SILENCE, 2, 72, 8,

ToneControl.SILENCE, 2, 79, 8,

ToneControl.SILENCE, 2, 77, 16, // plays the second stanza

ToneControl.PLAY_BLOCK, 0 // plays block 0 again

}

BLOCK_START, BLOCK_END, and PLAY_BLOCK constants have a value of -5, -6, and -7, respectively.

6390ch06.qxd 3/24/06 11:57 AM Page 87

CHAPTER 6 ■ CREATING AND PLAYING TONES USING TONECONTROL88

Playing Sequences Using ToneControl and Player
Defining sequences is great, but it’s of no use if you can’t play them using MMAPI. So let’s see
how you can play the sequences you have learned to create in the previous sections using
a combination of the ToneControl and Player interfaces.

Listing 6-4 showed how to parse a tone file in RTTTL format to the MMAPI format. Let’s
now add a method (see Listing 6-5) to the ConverterMIDlet defined in this listing that will play
this converted tone.

Listing 6-5. Playing Tone Sequences

private void playSequence(byte[] seq) throws Exception {

// create a Tone Player

Player player = Manager.createPlayer(Manager.TONE_DEVICE_LOCATOR);

// must realize it before getting ToneControl

player.realize();

// now get the ToneControl

ToneControl toneControl = (ToneControl)player.getControl("ToneControl");

// set the sequence

toneControl.setSequence(seq);

// and start the player - this will play the sequence

player.start();

}

After creating or generating a sequence, playing it using MMAPI is relatively simple. You
need a Player instance that can play tones. The Manager class provides a constant for creating
a tone-based Player instance, which is supplied by the mobile device’s hardware. This constant
is the TONE_DEVICE_LOCATOR, and its value is equal to device://tone. So a tone-based Player
instance is created by supplying this constant as the locator to the createPlayer() method.

This tone-based Player instance will now behave like any other instance. You can start it,
stop it, realize it, prefetch it, and so on. To play tones, you need to access the ToneControl con-
trol provided by this instance. However, recall from Chapter 4 that an unrealized instance
cannot provide any controls. Therefore, in Listing 6-5, the Player instance is realized before
the ToneControl control is fetched using the getControl() method.

Finally, ToneControl is supplied the tone sequence by using the setSequence() method.
This sequence is the final MMAPI formatted sequence, either created manually or by parsing
the RTTTL format.

The Player instance is now ready and can be started when required. In Listing 6-5, the
instance is started immediately by using the normal start() method. This instance will behave
like any other Player instance; for example, you can pause it using the stop() method, make it
repeat using the setLoopCount() method, or listen to events by attaching a PlayerListener.

6390ch06.qxd 3/24/06 11:57 AM Page 88

CHAPTER 6 ■ CREATING AND PLAYING TONES USING TONECONTROL 89

Distributing Tone Sequences
The tone sequences that you create using the special MMAPI tone sequence format can be
distributed using the same file format in a binary mode. This means that the sequence of a tone
is dumped into a binary file with the extension of jts (Java Tone Sequence). This file can then
be downloaded or loaded into any MMAPI-compliant device, and the device will be able to
play the tone. To help with the recognition of these files by Web servers and Web browsers, the
JTS files have the MIME type of audio/x-tone-seq associated with them.

Creating JTS Files
To create these binary files, you’ll need to dump your tone sequence into a file. However, you
can’t do this within the MIDlet environment because there is no provision to write to a file easily.

The RingToneConverter comes to the rescue again by providing a method called
dumpSequence(), which provides the hexadecimal representation of the tone sequence for
you to take and create a binary file out of. To get this representation, simply use rtc.dumpSequence()
to print the sequence on the standard out. The hex dump sequence for the “Happy Birthday to
You” tone is shown here:

FE 01 FD 1F 48 04 FF 02

48 02 FF 02 4A 08 FF 02

48 08 FF 02 4D 08 FF 02

4C 10 FF 04 48 04 FF 02

48 02 FF 02 4A 08 FF 02

48 08 FF 02 4F 08 FF 02

4D 10 FF 08 48 04 FF 02

48 02 FF 02 54 08 FF 02

51 08 FF 02 4D 08 FF 02

4C 08 FF 02 4A 08 FF 02

52 04 FF 02 52 02 FF 02

51 08 FF 02 4D 08 FF 02

4F 08 FF 02 4D 10

Now, to convert this hexadecimal representation into a binary file, you need to create
a Java class that will read this representation from a file, convert it back into a byte array, and
write the byte array out to a binary file with the extension of jts. Listing 6-6 shows such a class
called CreateJTSFileFromHexString. Store the hexadecimal representation just shown in a file
called happybday_hex.txt and compile and run CreateJTSFileFromHexString with this file as
a parameter.

Listing 6-6. A Class to Create a Binary JTS File from a Hex Representation

package com.apress.chapter6;

import java.io.*;

public class CreateJTSFileFromHexString {

public static void main(String[] args) {

6390ch06.qxd 3/24/06 11:57 AM Page 89

CHAPTER 6 ■ CREATING AND PLAYING TONES USING TONECONTROL90

if(args[0] == null) System.err.println("Usage: java <filename>");

// initialize streams that we will need

FileReader fr = null;

BufferedReader br = null;

ByteArrayOutputStream bos = null;

FileOutputStream fos = null;

try {

// the argument must be the file containing tone format in hex string

File hexStringFile = new File(args[0]);

// create text-based readers on it

fr = new FileReader(hexStringFile);

br = new BufferedReader(fr);

String lineRead;

String hexString = "";

// read the file, a line at a time into the hexString variable

while((lineRead = br.readLine()) != null) {

hexString += lineRead;

}

// remove the spaces within this hexString

StringBuffer buf = new StringBuffer();

for(int i = 0; i < hexString.length(); i++) {

if(!Character.isWhitespace(hexString.charAt(i)))

buf.append(hexString.charAt(i));

}

// the final hexString with spaces removed

hexString = buf.toString();

// now write the hexString out to a file as a byte array making it a

// binary file

byte[] txtInByte = new byte[hexString.length()/2];

int j = 0;

for (int i = 0; i < hexString.length(); i += 2)

{

txtInByte[j++] =

(byte)Integer.parseInt(hexString.substring(i, i + 2), 16);

}

// the byte array created, write it to a ByteArrayOutputStream

6390ch06.qxd 3/24/06 11:57 AM Page 90

CHAPTER 6 ■ CREATING AND PLAYING TONES USING TONECONTROL 91

bos = new ByteArrayOutputStream();

bos.write(txtInByte, 0, txtInByte.length);

// and create a physical file with the extension jts containing this data

fos = new FileOutputStream(

new File(args[0].substring(0, args[0].indexOf(".")) + ".jts"));

bos.writeTo(fos);

} catch (Exception e) {

System.err.println(e);

} finally {

try {

if(fos != null) fos.close();

if(bos != null) bos.close();

if(br != null) br.close();

if(fr != null) fr.close();

} catch(Exception e) {

System.err.println(e);

}

}

}

}

Remember that this is a normal Java file and not a Java ME class. So this will need to be
run in its own Java SE environment, as was the case with Listing 6-2, NoteCalculator.

The output will be a file named happybday_hex.jts. This is a binary file that cannot be
viewed in a text editor. However, this file contains the tone sequence for “Happy Birthday to
You” in the MMAPI format and can now be distributed and played.

Playing Tone Sequences Stored in Files
Because MMAPI recognizes the jts extension files, you can now create Player instances that
can load these files using locator strings. So now it’s possible to create a Player instance that
loads a tone sequence as a jts extension file from a Web site, using the createPlayer(String
locator) method. First, let’s load a JTS file stored in a JAR file. Listing 6-7 shows the code for
the DistributedToneMIDlet that will load and play the happybday_hex.jts file, created in the
previous section, from its JAR file.

Listing 6-7. Loading and Playing JTS File from JAR File

package com.apress.chapter6;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import javax.microedition.media.*;

import javax.microedition.media.control.*;

public class DistributedToneMIDlet extends MIDlet {

6390ch06.qxd 3/24/06 11:57 AM Page 91

CHAPTER 6 ■ CREATING AND PLAYING TONES USING TONECONTROL92

private Player tonePlayer;

public DistributedToneMIDlet() {

try {

tonePlayer = Manager.createPlayer(getClass().getResourceAsStream(

"/media/misc/happybday_hex.jts"), "audio/x-tone-seq");

} catch(Exception e) {

System.err.println(e);

}

}

public void startApp() {

try {

if(tonePlayer != null)

tonePlayer.start();

} catch(Exception e) {

System.err.println(e);

}

}

public void pauseApp() {

}

public void destroyApp(boolean unconditional) {

}

}

As you can see, this code is not very special. In fact, it’s almost identical to the code in
Listing 3-1 in Chapter 3, where you learned to play a simple wav file, with changes made for
the different content types. Notice that you didn’t even need to get the ToneControl and set the
sequence on it. By creating a tone-playing instance like this, most of the other things that you
learned about earlier are abstracted nicely.

To play the same sequence on a Web site, all you need to do is replace it with the corre-
sponding createPlayer(String locator) method that takes the location of the Web site as
a parameter. An example is shown here:

tonePlayer = Manager.createPlayer(

"http://www.mmapibook.com/resources/media/tones/chapter6/happybday_hex.jts");

The extension of the file will let MMAPI’s Manager class know that it needs to create
a TonePlayer and set its sequence to the sequence specified in the JTS file. If there are any errors
in the JTS file, you will get an error similar to “bad jts file. Error no <no>.” Most of these
errors occur if the JTS file hasn’t been created correctly, so if you’ve followed the steps so far,
these errors will not occur.

6390ch06.qxd 3/24/06 11:57 AM Page 92

Summary
MMAPI identifies the fact that even the simplest of devices offer the developer and the user
some capability of tone generation. MMAPI provides the ability to generate simple tones in its
most simple form using the Manager class. Of course, if the device supports the full set of the
MMAPI implementation, it provides an even richer set of tone-generation, modification, and
playback capabilities.

This chapter showed you how to take advantage of this capability in MMAPI. You also
learned how to play simple, single tones and to create and distribute more complex tones and
tone sequences. You also learned a simple lesson in music theory, which was essential to under-
standing some of the concepts behind tone generation.

The next chapter covers the basics of MIDI and how MMAPI is capable of handling it.

CHAPTER 6 ■ CREATING AND PLAYING TONES USING TONECONTROL 93

6390ch06.qxd 3/24/06 11:57 AM Page 93

6390ch06.qxd 3/24/06 11:57 AM Page 94

Managing MIDI Using
MIDIControl, TempoControl,
and PitchControl

Contrary to popular belief, Musical Instrument Digital Interface (MIDI) is not a representa-
tion of music. Rather, it’s a communication protocol, designed to transmit information about
music digitally across disparate musical systems. Instead of describing audio data directly, MIDI
represents it by using events that take place when a sound from an electronic synthesizer is
made. This event information is what constitutes a MIDI data/file.

In this chapter, you’ll learn about the support MMAPI provides for playing and controlling
MIDI. You’ll also learn about the different MIDI specifications that are supported and how the
different aspects of the specification map to the actual implementation. Extensive examples
with MIDIControl allow you to use MIDIControl effectively. You’ll also learn how to play and
manipulate MIDI files, without using MIDIControl, by using just TempoControl and PitchControl.
You’ll understand soundbanks, programs, and other MIDI-related terminology and how to use
them.

But first, you need to get a working understanding of MIDI.

Understanding MIDI
Even though you may not realize it, these days MIDI is all around you. Seen a movie at a cin-
ema? The orchestra in the movie was most probably synthesized in MIDI using an electronic
keyboard. Been to a concert or a nightclub? The themed lights are in all probability controlled
using MIDI messages, synchronized with the music. Love a series on TV? The title music is done
using a MIDI synthesizer. How about your cell phone? Your polyphonic ring tone is gener-
ated using MIDI!

With such widespread use, it’s no wonder that there is a strong industry momentum behind
this technology. An audio engineer named Dave Smith proposed the original MIDI standard,
and the first specification was published in 1982. Although there have been several updates on
this original specification, the current specification is still called MIDI 1.0 with a smaller version
number of 96.1 Second Edition (released in November 2001).

95

C H A P T E R 7

■ ■ ■

6390ch07.qxd 3/24/06 11:57 AM Page 95

CHAPTER 7 ■ MANAGING MIDI USING MIDICONTROL, TEMPOCONTROL, AND PITCHCONTROL96

MIDI OUT
Port

MIDI IN
Port

MIDI Data
MIDI Transmitter MIDI Receiver

Figure 7-1. MIDI communication

Polyphonic ring tones that you have on your mobile phone are based on a variation of the
original MIDI specification, called Scalable Polyphony MIDI (SP-MIDI). This specification
allows a varying number of notes to define the same MIDI data and, therefore, caters to both
high-end and low-end phones with varying polyphonic capabilities.

The official and definitive Web site for keeping up to date with the various facets of the
MIDI specification is http://www.midi.org. Although it doesn’t contain a free copy of the MIDI
specification, it still contains a wealth of information. The MIDI specification is available for
purchase as a book, although it’s available on the Internet in snippets. You can also find useful
MIDI-related information at http://en.wikipedia.org/wiki/MIDI.

Understanding the MIDI Specification
The MIDI specification has two parts. One deals with the physical hardware interface standard
for transmitting MIDI; the other is a software protocol dealing with the communication, trans-
mission, and format of MIDI messages. The physical specification is elaborate and specifies the
serial transfer rate of messages (31.25 Kbaud), besides defining characteristics of ports and
connector cables for MIDI IN, MIDI OUT, and MIDI THRU. The physical side of the MIDI
specification doesn’t help much with applying it to MMAPI, so it isn’t covered further in this book.

The software specification specifies the MIDI message format, which is used for transmis-
sion of messages. Considering that the MIDI specification is a communication protocol, it helps
to think of a transmitter and a receiver. A transmitter can be any instrument that is capable of
producing synthesized music, such as a computer system or an electronic synthesizer. A receiver
can also be another computer system and/or an electronic synthesizer, as long as it contains
a MIDI IN port. A transmitter, as expected, should contain a MIDI OUT port. This simple con-
figuration is depicted in Figure 7-1.

6390ch07.qxd 3/24/06 11:57 AM Page 96

CHAPTER 7 ■ MANAGING MIDI USING MIDICONTROL, TEMPOCONTROL, AND PITCHCONTROL 97

Figure 7-2. Standard MIDI message format

As expected, a MIDI transmitter can act as a receiver and vice versa.
The MIDI data in Figure 7-1 is organized into messages. Each message can be thought of

as a multi-byte packet that contains information about a particular channel. Think of a channel
in MIDI as an exclusive transmission network for the transfer of note information for a partic-
ular musical instrument. Transmitters and receivers are primed to send and receive information
about 16 possible channels. If any of the channel information is missing, for example, if there
is no information about drums being played, then both parties ignore that channel.

The MIDI message format allows the depiction of all notes that can be played by a musical
instrument. The MIDI specification assigns notes to particular messages, and any electronic
instrument that follows this specification can interpret these messages.

MIDI Message Format
When a musician plays a note on, let’s say, a musical keyboard, three events take place:

• Musician presses the key to play the note with a particular volume.

• Musician keeps pressing the key, increasing or decreasing the force with which the note
is being played.

• Musician stops playing the note by taking his finger off the particular key.

All three events are transmitted via the MIDI OUT port serially, through a series of three
messages, one for each event. Each of these messages is a MIDI message and consists of
a multi-byte packet. The first byte in each message is a Status byte, and is followed by 0, 1, or 2 Data
bytes. Status bytes have their most significant bit set to 1, and Data bytes have their most
significant bit set to 0. This is the standard MIDI message format (see Figure 7-2).

These MIDI messages are then divided into two types, depending on whether they are
carrying information for a particular channel or whether they are system-wide messages that
are intended for all devices that may be interconnected in a MIDI network. These two types of
messages are called Channel messages and System messages. These types are further subclas-
sified, with the Channel messages divided into either the Voice or Mode Channel message
type, and the System messages divided into Common, Real-Time, or Exclusive System mes-
sage type. Figure 7-3 shows these classifications.

6390ch07.qxd 3/24/06 11:57 AM Page 97

CHAPTER 7 ■ MANAGING MIDI USING MIDICONTROL, TEMPOCONTROL, AND PITCHCONTROL98

System messages are differentiated from Channel messages by the presence of 1 in the first
4 bits of the Status byte. That is, if the Status byte is of the format 1111 XXXX, then the message
is a System message; otherwise, it is a Channel message, in which case, the last 4 bits in the Status
byte identify one of 16 channels that the message is intended for. For example, 1000 1111 as
Status byte in a message indicates that it is intended for Channel 16, 1000 0000 indicates the
message is for Channel 1, 1000 0001 is a message for Channel 2, and so on.

Further, a Channel message is classified as a Voice or a Mode Channel message by a spe-
cific set of bits in the first 4 bits of the Status byte. If the Status byte is of the format 1011 XXXX
and has a special character in the Data byte that follows it, it is a Mode Channel message; oth-
erwise, it is a Voice Channel message. A Voice Channel message controls a particular channel
by starting or stopping the playing of a note, among other things. The Data bytes following this
Status byte contain information about the note. The Mode Channel message is a response to
the Voice Channel message.

Table 7-1 shows how to spot the different messages discussed so far.

Table 7-1. Differentiating Between Different MIDI Messages

First 4 Bits of Last 4 Bits of
Status Byte Status Byte Message Type Comment

1111 XXXX System

1011 XXXX Mode Channel message Only if the Data bytes following
this Status byte contain a value
between 121 and 127

System Real-Time
Message

Channel Mode
Message

Channel Voice
Message System Exclusive

Message
System Common

Message

Channel Message System Message

MIDI Message

Figure 7-3. MIDI message classifications

6390ch07.qxd 3/24/06 11:57 AM Page 98

CHAPTER 7 ■ MANAGING MIDI USING MIDICONTROL, TEMPOCONTROL, AND PITCHCONTROL 99

First 4 Bits of Last 4 Bits of
Status Byte Status Byte Message Type Comment

1000

1001

1010

1011

1100

1101

1110 XXXX Voice Channel message Only if the Data bytes following
this Status byte contain a value
between 0 and 120

Continuing on to the three different System message types, their formats are shown in
Table 7-2 along with a brief description.

Table 7-2. The Three Different Types of System Messages in MIDI

Message Type Format Comment

System Real Time 1111 1XXX XXX is a value between 0 and 7 (000 = 0, 111 = 7). These
messages are used to synchronize the whole MIDI system
in real time and do not contain any Data bytes.

System Common 1111 0XXX XXX is a value between 1 and 7. These messages may contain
0 to 2 Data bytes and are intended for an interconnected
MIDI network.

System Exclusive 1111 0000 This tracing or debugging message may contain several
Data bytes following it with system information.

More About the Voice Channel Messages
The majority of the messages in a MIDI transmission are the Voice Channel messages. These
messages contain specific information about notes; how long to play them, what channel to
play them on, whether to turn them on or off, how much key pressure is to be applied, and so
on. As you have learned so far, these messages consist of a Status byte followed by one or two
Data bytes. Let’s examine the composition of these Data bytes now.

One of the primary functions of the Voice Channel message is to turn a particular note on
or off on a specific channel. This message must also include information about the velocity
(roughly equivalent to volume) at which the note was turned on or off. To turn a note on, the
message is of the format 1001 XXXX 0YYY YYYY 0ZZZ ZZZZ. As you can see, the first byte is a Status
byte followed by two Data bytes, which is indicated by the presence of 0 in the most significant
bit. To turn the note off, the format is 1000 XXXX 0YYY YYYY 0ZZZ ZZZZ. The value of the note
to turn on or off is indicated by the first Data byte (0YYY YYYY) and can be any value between
0 and 127. The velocity with which to turn the note on or off is indicated by the last Data byte
(0ZZZ ZZZZ), and it can be a value between 0 and 127.

6390ch07.qxd 3/24/06 11:57 AM Page 99

CHAPTER 7 ■ MANAGING MIDI USING MIDICONTROL, TEMPOCONTROL, AND PITCHCONTROL100

■Note See the “Using MMAPI Formula to Calculate Note Values” section in Chapter 6 for an explanation of
note values.

As an example, suppose you wanted to compose a MIDI message that would tell a MIDI
receiver to turn on the note Middle C (equal to 60) on MIDI Channel 12 at a high velocity
(remember velocity roughly means volume) of 100. Start with the Status byte:

1001 1011

The first 4 bits (from the left) are the Note ON command, and the last four bits represent
Channel 12 (Channel 1 is 0000 not 0001). Next, write the first Data byte representing the note
Middle C (equal to 60):

0011 1100

Finally, write the second Data byte, indicating the velocity as equal to 100:

0110 0100

Putting it all together,

1001 1011 0011 1100 0110 0100

will start playing the note Middle C at a velocity of 100 on the MIDI Channel indicated by the
number 12. This will not stop playing until a corresponding Note OFF message is received:

1000 1011 0011 1100 0110 0100

Of course, the velocity with which to turn the note off could be made different than the
original one in this Note OFF message, but in this example it has been left as is.

Turning notes on and off is not the only Voice Channel message, and Table 7-3 lists all
the possibilities along with a brief description.

Table 7-3. All Possible Voice Channel Messages

Status Byte First Data Byte Second Data Byte Message Comment

1000 XXXX 0YYY YYYY 0ZZZ ZZZZ Note OFF Turn a note off on
a channel with a given
velocity.

1001 XXXX 0YYY YYYY 0ZZZ ZZZZ Note ON Turn a note on with
a given velocity on
a particular channel.

1010 XXXX 0YYY YYYY 0AAA AAAA After-Touch Key pressure for
polyphony; second Data
byte indicates the
pressure value (0-127).

1011 XXXX 0BBB BBBB 0CCC CCCC Control First Data byte indicates
Change which control to change

(0-121); second Data byte
indicates control value
(0-127).

6390ch07.qxd 3/24/06 11:57 AM Page 100

CHAPTER 7 ■ MANAGING MIDI USING MIDICONTROL, TEMPOCONTROL, AND PITCHCONTROL 101

Status Byte First Data Byte Second Data Byte Message Comment

1100 XXXX 0DDD DDDD No second Data byte Program Used to change the
Change instrument of a channel

to another instrument,
so that more than 16
instruments can be used
at one time.

1101 XXXX 0EEE EEEE No second Data byte Channel Changes the pressure of
Pressure a whole instrument, not

just a single note (which
is done with After-Touch).

1110 XXXX 0GGG GGGG 0FFF FFFF Pitch Bend A shift in a note’s pitch in
a very small increment
or decrement.

The key Voice Channel messages are the first two for turning notes on or off on a channel,
and you’ll use these more often than the others. The fourth message (Control Change) is also
used extensively to effect changes to various controls within the MIDI environment, including
main volume (7), modulation wheel (1), and pan controller (10) controls, among others. Finally,
you’ll use the Program Change message to change instruments before sending the note to be
played on a particular channel.

Storing and Distributing MIDI Messages
The format of MIDI messages presented in the previous section is true for live streaming of
these messages, which essentially means that messages are played back as they are received in
real time. However, MIDI messages can be stored in a file, and distributed for playback later as
well. When these messages are stored in a file, they require timing information to be stored with
them as well to allow for synchronization of these messages.

The most common format for storing these files is in Standard MIDI file (SMF) format,
denoted by the extension .smf. These files are created (and read) using sequencer software on
computers/electronic instruments and contain a sequence of tracks. Each track contains informa-
tion about a particular channel and the note sequence to perform, including other meta-level
information.

SMF files are generally distributed on the Internet with the extension of .mid. Most files
with .mid (short for MIDI) extensions are compatible with .smf files, and you can interchange
the use of these files. The distinction lies in the fact that .mid extension files correspond to
a narrow interpretation of the MIDI file format specification, called the General MIDI specification.

General MIDI Specification
The General MIDI (GM) specification is a tighter, more focused interpretation of the overall MIDI
specification that is intended for greater interoperability between MIDI devices. It specifies
a general set of features that the GM devices must conform to. The core features of this specifi-
cation are

• Support for polyphony (GM devices must allow playback of simultaneous, multiple
notes on a single channel)

• Definite support for all 16 channels

• Defined and standard program numbers for various instruments

6390ch07.qxd 3/24/06 11:57 AM Page 101

CHAPTER 7 ■ MANAGING MIDI USING MIDICONTROL, TEMPOCONTROL, AND PITCHCONTROL102

The standard program numbers for various instruments was one of the main driving
forces for the adoption of the GM spec. These devices and their corresponding numbers are
listed here: http://en.wikipedia.org/wiki/General_MIDI.

Note that only 128 instruments can be supported, as per this specification. To support
more instruments, the concept of a bank was introduced. A soundbank, or bank, is a collec-
tion of the 128 instruments that are supported by a particular MIDI device. Soundbanks can
be added or removed, and custom soundbanks can be created to support the existing ones in
a device.

Using MIDI in MMAPI
Support for MIDI in MMAPI is provided in the form of the MIDIControl control and is aided by
the use of PitchControl and TempoControl controls. However, note that MIDIControl is an
optional control, and MMAPI implementations are not required to support it. Most instances,
however, do support this popular control in one form or another. On one hand, at the minimum,
if MIDIControl is implemented, you are guaranteed support for sending MIDI events to the
control, thereby creating your own set of sequences and messages, as you learned in the previous
section. If a full MIDIControl is implemented, you are allowed to query the installed soundbanks
and manipulate them extensively. You’ll learn shortly how to find out whether the MMAPI
implementation that you are working on supports a minimum or full MIDIControl control.

The MMAPI specification states that for basic usage, you don’t even need to access the
MIDIControl control. This is true, as long as you have a basic MIDI file that you want to play as
is, without any modifications. Let’s try and play such a basic MIDI file.

Playing MIDI Without MIDIControl
Even though you may not directly need to access the MIDIControl control to play MIDI files, it
doesn’t mean that MIDIControl is not implemented. Behind the scenes, MIDIControl is used to
access the synthesizer on the device that you are working on, but you won’t need to use it directly.
Instead, for simple changes, such as pitch and tempo, you can use the PitchControl and
TempoControl controls. For volume changes, simply use the VolumeControl control.

Playing a MIDI File
As you may realize by now, playing, controlling, and using MIDI files is similar to playing other
file types that you’ve learned about in previous chapters, thanks to a similar interface. Therefore,
playing MIDI files should not require extra effort on your part. Listing 7-1 shows you a simple
code listing that plays a local MIDI file.

Listing 7-1. Playing a Local MIDI File

package com.apress.chapter7;

import javax.microedition.midlet.*;

import javax.microedition.media.*;

public class PlayMIDIMIDlet extends MIDlet {

6390ch07.qxd 3/24/06 11:57 AM Page 102

CHAPTER 7 ■ MANAGING MIDI USING MIDICONTROL, TEMPOCONTROL, AND PITCHCONTROL 103

Player midiPlayer = null;

public PlayMIDIMIDlet() {

try {

midiPlayer = Manager.createPlayer(

getClass().getResourceAsStream(

"/media/midi/chapter7/cabeza.mid"), "audio/midi");

} catch(Exception e) {

System.err.println(e);

}

}

public void startApp() {

try {

if(midiPlayer != null) {

midiPlayer.start();

}

} catch(Exception e) {

System.err.println(e);

}

}

public void pauseApp() {

}

public void destroyApp(boolean unconditional) {

}

}

To play the MIDI file, you just need to create a Player instance, passing the location of the
file to the Manager class’s createPlayer() method, as you learned to do before. The MIME type
for the MIDI files is audio/midi or audio/x-midi, as the case may be. For network-based MIDI
files, you can simply point to these files by using the createPlayer(String locator) method;
the MIME type will be specified by the server that is retrieving the file. For example, if the
same file was placed at

http://www.mmapibook.com/resources/media/midi/chapter7/cabeza.mid

you would use the Manager.createPlayer("http://www.mmapibook.com/resources/media/midi/
chapter7/cabeza.mid") method to retrieve and play this MIDI file, taking care to make sure
that the access is done in a separate thread, as you learned in Chapter 5.

■Note The MIDI file (downloaded from the Internet) used here is cabeza.mid, which is a MIDI representa-
tion of the “Tango Por una cabeza” (the famous Tango, also used in the movie True Lies).

6390ch07.qxd 3/24/06 11:57 AM Page 103

CHAPTER 7 ■ MANAGING MIDI USING MIDICONTROL, TEMPOCONTROL, AND PITCHCONTROL104

Controlling the Pitch, Tempo, and Volume of MIDI Files
Let’s now add a few controls to control the pitch, tempo, and volume of a MIDI file. Figure 7-4
shows a MIDlet that allows you to do so (shown in Sun’s DefaultColorPhone and Motorola C975
emulators, respectively).

Figure 7-4. Running ControllableMIDIMIDlet to control pitch, tempo, and volume in Sun’s
DefaultColorPhone and Motorola C975 emulators, respectively

Listing 7-2 shows the code for this MIDlet. An explanation of the code follows this listing.

Listing 7-2. Controlling MIDI with Pitch, Tempo, and Volume Controls

package com.apress.chapter7;

import javax.microedition.lcdui.*;

import javax.microedition.midlet.*;

import javax.microedition.media.*;

import javax.microedition.media.control.*;

public class ControllableMIDIMIDlet extends MIDlet implements ItemStateListener {

// the midi player

Player midiPlayer = null;

// the controls

VolumeControl volControl = null;

PitchControl pitchControl = null;

TempoControl tempoControl = null;

// the visual elements

Form form = null;

6390ch07.qxd 3/24/06 11:57 AM Page 104

CHAPTER 7 ■ MANAGING MIDI USING MIDICONTROL, TEMPOCONTROL, AND PITCHCONTROL 105

Gauge volGauge = null;

Gauge pitchGauge = null;

Gauge tempoGauge = null;

public ControllableMIDIMIDlet() {

try {

// load the midi file

midiPlayer = Manager.createPlayer(

getClass().getResourceAsStream(

"/media/midi/chapter7/cabeza.mid"), "audio/midi");

// you must prefetch it to get the controls

midiPlayer.prefetch();

// extract the controls

volControl = (VolumeControl) midiPlayer.getControl(

"javax.microedition.media.control.VolumeControl");

pitchControl = (PitchControl) midiPlayer.getControl(

"javax.microedition.media.control.PitchControl");

tempoControl = (TempoControl) midiPlayer.getControl(

"javax.microedition.media.control.TempoControl");

// create the visual elements

form = new Form("MIDI Player", null);

// volume is set at a max of 100 with initial value of 50

volGauge = new Gauge("Volume: 50", true, 100, 50);

// tempo is set at a max of 30 with 12 (default) as initial value

tempoGauge = new Gauge("Tempo: 120", true, 30, 12);

// pitch is set at a max of 5 with initial value of 0, and a min of -5

// note that because pitch can be negative and positive, the starting value

// is at 5 (which is pitch 0), with +5 being 10 and -5 being 0.

pitchGauge = new Gauge("Pitch: 0", true, 10, 5);

// add the gauges to the form

form.append(volGauge);

form.append(tempoGauge);

form.append(pitchGauge);

// add the listener to listen to gauge changes

form.setItemStateListener(this);

// and set this form as the current display

Display.getDisplay(this).setCurrent(form);

6390ch07.qxd 3/24/06 11:57 AM Page 105

CHAPTER 7 ■ MANAGING MIDI USING MIDICONTROL, TEMPOCONTROL, AND PITCHCONTROL106

} catch(Exception e) {

System.err.println(e);

}

}

/**

* Listens to changes in control gauges and applies them to actual controls

*/

public void itemStateChanged(Item item) {

// we are only interested in item state changes of gauges

if(!(item instanceof Gauge)) return;

// get the new value of this gauge

Gauge gauge = (Gauge)item;

int val = gauge.getValue();

// and change the control and label accordingly

// changing volume?

if(item == volGauge) {

volControl.setLevel(val);

volGauge.setLabel("Volume: " + val);

}

// changing tempo? make sure that tempoControl is available

if(item == tempoGauge && tempoControl != null) {

tempoControl.setTempo((val) * 10 * 1000);

tempoGauge.setLabel("Tempo: " + (val * 10));

}

// changing pitch? make sure that pitchControl is available

// remember, actual pitch is (val - 5)

if(item == pitchGauge && pitchControl != null) {

pitchControl.setPitch((val - 5) * 12 * 1000);

pitchGauge.setLabel("Pitch: " + (val - 5));

}

}

public void startApp() {

try {

// start the MIDI player if it was created

if(midiPlayer != null) {

midiPlayer.start();

}

} catch(Exception e) {

System.err.println(e);

}

}

6390ch07.qxd 3/24/06 11:57 AM Page 106

CHAPTER 7 ■ MANAGING MIDI USING MIDICONTROL, TEMPOCONTROL, AND PITCHCONTROL 107

// standard pause and destroy methods

public void pauseApp() {

try {

if(midiPlayer != null) {

midiPlayer.stop();

}

} catch(Exception e) {

System.err.println(e);

}

}

public void destroyApp(boolean unconditional) {

try {

if(midiPlayer != null) {

midiPlayer.close();

}

} catch(Exception e) {

System.err.println(e);

}

}

}

After the Player instance is prefetched, TempoControl, PitchControl, and VolumeControl
are extracted using the getControl() method, casting them appropriately. A form is created
that contains three gauges, which allow you to control each of the controls individually. The
default values of each gauge are set as well. For volume, the default is set at 50 with a maxi-
mum value of 100.

For tempo, the default is set at 12, with 30 as the maximum value. These values seem
arbitrary, but they are used to show how the TempoControl control works.

How TempoControlWorks

TempoControl allows you to vary the tempo of the MIDI file that you are working with. Tempo,
which is measured in beats per minute (bpm), is a measure of how fast or slow a piece of
music is being played. Using TempoControl, you can vary this speed of playback of a MIDI
sequence by using the method setTempo(int milliTempo) and also retrieve the current speed
of a sequence by using the getTempo() method. However, setting the tempo doesn’t always
mean that the desired value will be kept, because a MIDI sequence may contain its own infor-
mation on the desired tempo. The tempo value in the sequence overrides any value for the
tempo that you set using the setTempo() method, if such a value is found in a sequence.

The default tempo of any musical piece (not just MIDI) is usually 120 bpm. With any imple-
mentation of TempoControl, you are guaranteed to be able to set the tempo ranging between
10 bpm and 300 bpm. Actual implementations may support more values, specifically over
the higher range, but no implementation will support 0 or negative values for the tempo. Instead,
most revert to the lowest possible value for the tempo, which in most cases is 10 bpm, but could
be as low as 1 bpm.

6390ch07.qxd 3/24/06 11:57 AM Page 107

CHAPTER 7 ■ MANAGING MIDI USING MIDICONTROL, TEMPOCONTROL, AND PITCHCONTROL108

You can set the tempo using the setTempo(int milliTempo) method. Notice that it accepts
the value in milliTempo. This means, to set the value at 200 bpm, you need to use the method
setTempo(200 * 1000). This method returns the actual tempo that was set, expressed as milli-
beats per minute.

Returning to Listing 7-2, you can now see that the default value of 12 for the TempoControl
gauge makes sense. The maximum value is set at 30. When a change in value of this gauge is
detected, the changed value is multiplied by 10 to get the effective value, and then by 1,000 to
arrive at the final milli-beats per minute value. This is done in the itemStateChanged(Item item)
method.

How PitchControlWorks

As you learned in Chapter 6, pitch is the perception of the frequency of a musical note. The
PitchControl control allows you to vary the pitch of not only a MIDI sequence, but a normal
audio file as well.

Pitch changes are always relative to the original value and can never be set to an
absolute value. The changes are specified in semitones; a semitone is one-twelfth of an
octave (refer to Chapter 6). Thus, to raise the pitch of a sequence by an octave, you need
to raise it by 12 semitones.

The PitchControl’s setPitch(int milliSemitones) method is used to set the actual value.
As you can see, the value is set in milli-semitones. Thus, to raise the pitch by an octave, you
need to use the method as setPitch(12 * 1000). To lower the pitch by an octave, you use a neg-
ative value: setPitch(-12 * 1000).

Of course, you don’t have to raise or lower the pitch by an octave. You can change the pitch
by any value, down to a single semitone. Just remember that the changes are relative to the
original value. To raise by a single semitone, use setPitch(1000); to lower it by a semitone, use
setPitch(-1000).

The current raised pitch value of a sequence can be queried by using the getPitch() method,
which returns the value in milli-semitones.

Again, returning to code Listing 7-2, you can see now see why the maximum value of the
PitchControl gauge is set at 10, with a default (initial) value of 5. Due to limitations in the Gauge
item, negative values can’t be set. Thus, the initial, default value of 5 represents 0, whereas a value
of 10 is 5 times the original value, and a value of 0 is –5 times. When you change the value from
the default value 5 to, let’s say 6, the code in itemStateChanged() method interprets it as raising
the pitch by a single octave. The corresponding code is shown here:

pitchControl.setPitch((val - 5) * 12 * 1000);

Raising the pitch any higher leads to higher octaves, whereas lowering the value below 5
means lowering the pitch by corresponding octaves, so the minimum pitch you can get is five
times lower than the original one.

Lowering or raising the pitch up to five octave times the original one is only an arbitrary
example that illustrates how to use this control. You can raise or lower the pitch to any values
that you desire, which is only limited by the maximum or minimum values that are supported

6390ch07.qxd 3/24/06 11:57 AM Page 108

CHAPTER 7 ■ MANAGING MIDI USING MIDICONTROL, TEMPOCONTROL, AND PITCHCONTROL 109

by the particular Player instance. You can get these values by using the methods getMaxPitch()
and getMinPitch() methods, respectively.

Differentiating Between TempoControl and RateControl
Figure 7-4 shows how Listing 7-2 plays out in two emulators: Sun’s DefaultColorPhone and
Motorola C975 emulator. Most MIDlets’ working has been shown in a Motorola C975 device as
well. However, because the TempoControl control doesn’t work on the actual device, it isn’t shown
here. If you run this listing in an actual C975 device, you won’t be able to control the tempo of
the MIDI playback.

■Tip You would think that the Motorola C975 emulator would exactly mimic the actual device, in terms of
functionality and MIDlet support; however, in MIDlet development, what is promised is not always delivered.
You should always confirm the working of your MIDlet on the actual device.

In the absence of TempoControl, to control the tempo on the actual device or on devices
that don’t support TempoControl, you use the superclass of TempoControl, called RateControl.

RateControl is analogous to the PitchControl control in terms of functionality. Like
PitchControl, you can use the RateControl as relative to original change medium. Thus,
RateControl changes the speed of playback relative to the original speed. Rates are specified
in milli-percentages and can be negative as well, thereby allowing you to reduce the playback
speed, compared to the original playback speed. This is something that you can’t do with
TempoControl (you can reduce the tempo from the default tempo, however).

It helps to think of TempoControl as a change medium for tempo, where you want an absolute
value for the speed of playback of your musical piece. Think of RateControl as a relative change
medium, where you change the speed of playback relative to the original value. Therefore, when
using TempoControl, you use the setTempo() method where an absolute value of the desired
tempo is required. When using RateControl, you can use the setRate() method where a relative
value in percentages is specified.

Using the setTempo() method may not actually result in the desired tempo being set, as
the musical sequence may override the tempo value. Using setRate() is guaranteed to succeed
as the playback is relative to the original value, which is set against the Player instance’s TimeBase
and results in media time of the playback passing faster or slower than the original rate.

Besides the setRate() method, the RateControl control provides the getRate() method,
which returns the current playback rate of a musical piece. You can also query for the minimum
rate by using getMinRate(), and you can query for the maximum rate by using getMaxRate().
All these methods return the actual rate in milli-percentages.

Listing 7-3 (a modified version of Listing 7-2) uses RateControl instead of TempoControl, so
that the new listing can be run on the Motorola C975 device, and you can modify the actual speed
of playback. A quirk concerning the RateControl implementation in this device is described
after the listing.

6390ch07.qxd 3/24/06 11:57 AM Page 109

CHAPTER 7 ■ MANAGING MIDI USING MIDICONTROL, TEMPOCONTROL, AND PITCHCONTROL110

Listing 7-3. RateControllableMIDIMIDlet Controls Playback Rate

package com.apress.chapter7;

import javax.microedition.lcdui.*;

import javax.microedition.midlet.*;

import javax.microedition.media.*;

import javax.microedition.media.control.*;

public class RateControllableMIDIMIDlet extends MIDlet

implements ItemStateListener {

// the midi player

Player midiPlayer = null;

// the controls

VolumeControl volControl = null;

PitchControl pitchControl = null;

RateControl rateControl = null;

// the visual elements

Form form = null;

Gauge volGauge = null;

Gauge pitchGauge = null;

Gauge rateGauge = null;

public RateControllableMIDIMIDlet() {

try {

// load the midi file

midiPlayer = Manager.createPlayer(

getClass().getResourceAsStream(

"/media/midi/chapter7/cabeza.mid"), "audio/midi");

// you must prefetch it to get the controls

midiPlayer.prefetch();

// extract the controls

volControl = (VolumeControl) midiPlayer.getControl(

"javax.microedition.media.control.VolumeControl");

pitchControl = (PitchControl) midiPlayer.getControl(

"javax.microedition.media.control.PitchControl");

rateControl = (RateControl) midiPlayer.getControl(

"javax.microedition.media.control.RateControl");

// create the visual elements

form = new Form("MIDI Player", null);

6390ch07.qxd 3/24/06 11:57 AM Page 110

CHAPTER 7 ■ MANAGING MIDI USING MIDICONTROL, TEMPOCONTROL, AND PITCHCONTROL 111

// volume is set at a max of 100 with initial value of 50

volGauge = new Gauge("Volume: 50", true, 100, 50);

// rate is set at a max of 10 with 5 (default) as initial value

rateGauge = new Gauge("Rate: 100%", true, 10, 5);

// pitch is set at a max of 5 with initial value of 0, and a min of -5

// note that because pitch can be negative and positive, the starting value

// is at 5 (which is pitch 0), with +5 being 10 and -5 being 0.

pitchGauge = new Gauge("Pitch: 0", true, 10, 5);

// add the gauges to the form

form.append(volGauge);

form.append(rateGauge);

form.append(pitchGauge);

// add the listener to listen to gauge changes

form.setItemStateListener(this);

// and set this form as the current display

Display.getDisplay(this).setCurrent(form);

} catch(Exception e) {

System.err.println(e);

}

}

/**

* Listens to changes in control gauges and applies them to actual controls

*/

public void itemStateChanged(Item item) {

// we are only interested in item state changes of gauges

if(!(item instanceof Gauge)) return;

// get the new value of this gauge

Gauge gauge = (Gauge)item;

int val = gauge.getValue();

// and change the control and label accordingly

// changing volume?

if(item == volGauge) {

volControl.setLevel(val);

volGauge.setLabel("Volume: " + val);

}

6390ch07.qxd 3/24/06 11:57 AM Page 111

CHAPTER 7 ■ MANAGING MIDI USING MIDICONTROL, TEMPOCONTROL, AND PITCHCONTROL112

// changing rate? Is rateControl available?

if(item == rateGauge && rateControl != null) {

val = (val == 5 ? 6 : val);

rateControl.setRate((val - 5) * 100 * 1000);

rateGauge.setLabel("Rate: " + ((val - 5) * 100) + "%");

}

// changing pitch? make sure that pitchControl is available

// remember, actual pitch is (val - 5)

if(item == pitchGauge && pitchControl != null) {

pitchControl.setPitch((val - 5) * 12 * 1000);

pitchGauge.setLabel("Pitch: " + (val - 5));

}

}

// the rest of the methods are unchanged from Listing 7-2 and are omitted from

// the book version for brevity

}

The changes from Listing 7-2 are highlighted in bold. For rateGauge values 5 and 6, the
rate is set at 100%; that is, the rate of playback is not changed. For values higher than that, the
rate is increased; for values lower, the playback rate is decreased.

If you run this MIDlet on the actual device, you can increase the rate, but decreasing the
rate even by a single value completely stops playing it. This is where the Motorola C975 emulator
differs from the actual device. You can confirm this by using the method getMinRate(), which
returns 100% on the actual device and 500% on the emulator (or negative 500%). A value of 100%
on the actual device confirms that the minimum rate will not be lower than the original rate of
play.

This quirkiness reemphasizes the need to test your MIDlets on actual devices before
distributing them.

Figure 7-5 shows this MIDlet running on the device.

Figure 7-5. RateControllableMIDIMIDlet running on a Motorola C975 device

■Tip RateControl, unlike TempoControl, can be used to control the rate of all media types, not just MIDI.

6390ch07.qxd 3/24/06 11:57 AM Page 112

CHAPTER 7 ■ MANAGING MIDI USING MIDICONTROL, TEMPOCONTROL, AND PITCHCONTROL 113

Playing MIDI with MIDIControl
MIDIControl allows advanced handling of a MIDI file. In fact, using MIDIControl doesn’t even
require a MIDI file, although you can use one if required. This control allows you to create
your own sequences from scratch. However, doing so requires expert knowledge of the MIDI
specification and knowing exactly what commands to call.

Creating a Standalone MIDI Player Instance
Recall from Chapter 6 that to play tones, the Manager class provides a constant that can be
used for creating Player instances that fetch a ToneControl, without requiring an actual tone
file. Similarly, the Manager class provides a MIDI locator constant that can be used to create
a standalone MIDI Player instance, from which you can retrieve a MIDIControl and create your
own sequences. This constant is called MIDI_DEVICE_LOCATOR and has a value of device://midi.
Using it is pretty straightforward and an example is shown here:

Player p = Manager.createPlayer(Manager.MIDI_DEVICE_LOCATOR);

p.prefetch();

MIDIControl mControl =

(MIDIControl)p.getControl("javax.microedition.media.control.MIDIControl");

Of course, because this Player instance doesn’t correspond to an actual file, it doesn’t
have any associated data. If you call the method getDuration() on this instance, it will return
a value of 0.

■Caution You can also retrieve the MIDIControl with the getControl("MIDIControl"); method.
However, this is not guaranteed to work on all implementations, even though the Javadoc for the
getControl(String controlName) method seems to suggest otherwise.

Querying for MIDIControl Capabilities
The “Using MIDI in MMAPI” section earlier in this chapter stated that MMAPI implementations
that provide support for MIDIControl may do so in a minimum or full form. At the minimum,
if MIDIControl is provided, you are guaranteed support for sending MIDI events to the under-
lying device. On the other hand, if a full MIDIControl is implemented, you are allowed to query
the installed soundbanks and manipulate them as well. Next you’ll see how to query the installed
MIDIControl for its capabilities.

Listing 7-4 shows a MIDlet that informs whether a full MIDIControl is installed.

Listing 7-4. MIDICapabilitiesMIDlet Provides Information About MIDIControl’s Capability

package com.apress.chapter7;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import javax.microedition.media.*;

import javax.microedition.media.control.MIDIControl;

6390ch07.qxd 3/24/06 11:57 AM Page 113

CHAPTER 7 ■ MANAGING MIDI USING MIDICONTROL, TEMPOCONTROL, AND PITCHCONTROL114

public class MIDICapabilitiesMIDlet extends MIDlet {

public void startApp() {

try {

// create Player using MIDI Device locator

Player p = Manager.createPlayer(Manager.MIDI_DEVICE_LOCATOR);

// must prefetch before extracting controls

p.prefetch();

// get the MIDIControl

MIDIControl mControl =

(MIDIControl)p.getControl(

"javax.microedition.media.control.MIDIControl");

// create a message based on whether advanced capabilities are supported

String msg =

mControl.isBankQuerySupported() ?

"MIDIControl is fully supported" : "Minimum MIDIControl is provided";

// and display message as alert

Display.getDisplay(this).setCurrent(

new Alert("Message", msg, null, AlertType.INFO));

} catch(Exception e) {

System.err.println(e);

}

}

public void pauseApp() {

}

public void destroyApp(boolean unconditional) {

}

}

As you can see, querying for advanced capabilities of a MIDIControl boils down to using
the method isBankQuerySupported(), which returns true if these advanced queries are indeed
supported and false otherwise. If this method returns true, then you can do the following with
your MIDIControl:

• Get a list of all the installed soundbanks on your device. This is done by using the method
getBankList(boolean custom), which returns an array of integers, where each int
corresponds to an installed soundbank. If the custom parameter is true, only custom
soundbanks that you may have installed are returned, otherwise all soundbanks, prein-
stalled or custom, are returned.

6390ch07.qxd 3/24/06 11:57 AM Page 114

CHAPTER 7 ■ MANAGING MIDI USING MIDICONTROL, TEMPOCONTROL, AND PITCHCONTROL 115

• Get a list of all instruments installed or associated with a given soundbank. Instruments
on a soundbank are also called programs. Thus, you can get all the program numbers
by using the method getProgramList(int bank), and you can get the name of the instru-
ment/program by using getProgramName(int bank, int prog).

• Get the current instrument/program assigned to a given channel using the method
getProgram(int channel). This returns an integer array with two values in it; the first
integer represents the soundbank and the second represents the program number on
that soundbank.

• Get the name of a key, given the soundbank, program, and key identifications. Thus,
using the method getKeyName(int bank, int program, int key), you can get the
device-assigned name of this key.

With all the methods, the valid value for the soundbank parameter is 0-16383, and the
value is 0-127 for the program and key parameters.

With the target devices/emulators that you have been using so far, the result of running
the MIDlet in Listing 7-4 is shown here:

• Sun’s DefaultColorPhone emulator: Minimum MIDIControl is provided.

• Motorola C975 emulator: MIDIControl is fully supported.

• Motorola C975 device: Minimum MIDIControl is provided.

As you can see, the functionality on the emulator differs from the actual device. You’ll use
the C975 emulator to perform some of the functions provided by a full MIDIControl.

All implemented MIDIControl controls, minimum or full, can do the functions described
in the following sections.

Send a Short MIDI Event to the Device

This means that you can send any MIDI message (refer to Figure 7-3), except System Exclusive
to the device, and the device will interpret and react to it accordingly. To send a short MIDI
event message, use the method shortMidiEvent(int type, int data1, int data2) where the
type of the message is specified using the first parameter and the actual data, if any, using the
last two parameters.

Refer to Tables 7-1, 7-2, and 7-3 for a list of the possible messages and their formats.

Send a Long MIDI Event to the Device

You can do this to send System Exclusive messages to the device using the longMidiEvent
(byte[] data, int offset, int length) method.

Change Program and Volume of a Channel

You can set the program/instrument to use on a particular channel and set the volume for the
channel as well.

The first is accomplished by the method setProgram(int channel, int bank, int program)
and the second by setChannelVolume(int channel, int volume). You can do the same using
the shortMidiEvent() method, as these are really high-level convenience methods that are
translated internally to use it. For a minimum MIDIControl, the setProgram() method uses
a value of -1 for the soundbank, which translates to the default soundbank on the device.

6390ch07.qxd 3/24/06 11:57 AM Page 115

CHAPTER 7 ■ MANAGING MIDI USING MIDICONTROL, TEMPOCONTROL, AND PITCHCONTROL116

Sending Simple MIDI Messages
By using the shortMidiEvent() method, and to a lesser degree, the longMidiEvent() method,
you can send all types of messages (as described at the beginning of this chapter) to the MIDI
player on your device. In effect, you can create sequences of MIDI or create your own user-
editable MIDI player.

Single MIDI Message

Let’s start with how to send a single MIDI message by expanding on the “More About the Voice
Channel Messages” section, where you learned to describe a MIDI message and created the
message to turn on the note Middle C on MIDI Channel 12 at the velocity of 100. This complete
Note ON command is repeated here:

1001 1011 0011 1100 0110 0100

The first byte from the left is the Status byte with the first 4 bits representing the Note ON
command and the last four bits representing Channel 12 (again, Channel 1 is 0000, not 0001).
The next Data byte represents Middle C (equal to 60) and the last Data byte is the velocity,
equal to 100.

The shortMidiEvent() method takes three parameters; first, an integer that is the type
of the message, and the next two are any data bytes associated with it. The type of the mes-
sage is essentially information about the status and the channel that it is intended for, both
of which are shown with the first byte. Thus, for the given message, 1001 1011 equals 155,
0011 1100 equals 60, and 0110 0100 equals 100. These are the three parameter values, and
shortMidiEvent(155, 60, 100) will send the Note ON command for the note Middle C on
MIDI Channel 12 at a velocity of 100.

Of course, you don’t need to calculate the binary values first to arrive back at the decimal
values, but this process illustrates the concept. Also, because it’s so frequently used, MIDIControl

provides a constant for the Note ON command, which you can use to create your Status bytes.
For example, if you know your channel, note value, and velocity, you can use the following to
send the command:

shortMidiEvent(MIDIControl.NOTE_ON | channel, note, velocity);

For the current case, this equates to:

shortMidiEvent(MIDIControl.NOTE_ON | 11, 60, 100); // 11 means Channel 12 not 11

The constant NOTE_ON has a value of 144, as you would expect for the binary upper nibble
value of 1001.

You can send other MIDI messages in a similar way. For example, to send a corresponding
Note OFF command, you can either use the actual value of 128 OR’ed with the channel number
or send a Note ON command with a velocity of 0. Both examples are shown here:

shortMidiEvent(128 | 11, 60, 100);

shortMidiEvent(MidiControl.NOTE_ON | 11, 60, 0);

Both examples are equivalent and will achieve the same result.

6390ch07.qxd 3/24/06 11:57 AM Page 116

CHAPTER 7 ■ MANAGING MIDI USING MIDICONTROL, TEMPOCONTROL, AND PITCHCONTROL 117

■Note Using the shortMidiEvent() method means that you don’t have to physically start the associated
Player instance for the event to be played. Sending the event acts on the MIDI device and not on any asso-
ciated MIDI files.

Control Change Messages

MIDIControl provides another constant, CONTROL_CHANGE, which can be used to send Control
Change messages. From Table 7-3, Control Change messages are used to change a particular
control on a particular channel. For example, volume is a control that can be set individually
for each channel. The format of Control Change messages is

1011 XXXX 0BBB BBBB 0CCC CCCC

The Status byte combines a static value with the channel information, while the first Data
byte indicates the control that needs to be changed. The last Data byte provides the new value
for this control. Thus, to change the volume of Channel 12 to 50, you can use the following
command:

shortMidiEvent(MIDIControl.CONTROL_CHANGE | 11, 7, 50);

The actual value for the control is taken from the table provided by the MIDI organization
at http://www.midi.org/about-midi/table3.shtml. Table 7-4 shows some of the more useful con-
trol numbers taken from this online table. As you can see, the Channel Volume control is given
a value of 7.

Table 7-4. Control Change Messages and Their Values

Control Function Control Number

Bank Select 0

Modulation Wheel or Lever 1

Foot Controller 4

Channel Volume 7

Balance 8

Pan 10

Instead of using the shortMidiEvent() method to change the volume of a channel, you
can use the convenience method setChannelVolume(int channel, int volume), which does
the same thing internally.

Program Change Message

If you want to change the current instrument/program that is assigned to a particular channel,
you can send one of the Program Change messages. This requires knowledge of the program
numbers that can be assigned to each channel, which you can look up at http://en.wikipedia.org/
wiki/General_MIDI.

6390ch07.qxd 3/24/06 11:57 AM Page 117

CHAPTER 7 ■ MANAGING MIDI USING MIDICONTROL, TEMPOCONTROL, AND PITCHCONTROL118

The format of the Program Change message as per Table 7-3 is

1100 XXXX 0DDD DDDD No second Data byte

The new program number is identified by the only Data byte, and the Status byte is
a combination of a static upper nibble and the channel number. Thus, as an example, to
change the program on Channel 12 to a Xylophone (value 14), you can use:

shortMidiEvent(192 | 11, 14, 0);

As a convenience, MIDIControl provides another method that does the same thing,
setProgram(int channel, int bank, int program).

Giving Events Time to Process

One practical issue with using the shortMidiEvent() method arises because the method returns
almost immediately. Now, this would be okay if the MIDIControl implementation was to form
a queue of all the event messages arising out of the use of this method. However, there are no
guarantees of this occurring. This doesn’t mean it won’t happen, but you’ll rarely find two
implementations that work the same way and queue the messages, thus ensuring that a mes-
sage is received and processed in the order it was sent.

To overcome this issue, you need to give the device’s MIDI receiver time to process the
event, before sending it another one. Hence, a simple Thread.sleep(100) after every event will
ensure that the events are received in order and processed in order as well.

Listing 7-5 combines the information from the previous three sections (and this section as
well) to create a MIDlet that first sends a Note ON event, followed by a Note OFF event.
A Program Change message is then sent to change the program to Xylophone. Finally, a Control
Change message to change the volume is followed by a Note ON (and OFF) Message to see the
effect of the changes.

Listing 7-5. The shortMidiEvent() Method in Action

package com.apress.chapter7;

import javax.microedition.midlet.*;

import javax.microedition.media.*;

import javax.microedition.lcdui.*;

import javax.microedition.media.control.MIDIControl;

public class MIDIEventsMIDlet extends MIDlet {

Display display = null;

Alert alert = null;

public MIDIEventsMIDlet() {

display = Display.getDisplay(this);

alert = new Alert("Message");

alert.setString("Working...");

alert.setTimeout(Alert.FOREVER);

}

6390ch07.qxd 3/24/06 11:57 AM Page 118

CHAPTER 7 ■ MANAGING MIDI USING MIDICONTROL, TEMPOCONTROL, AND PITCHCONTROL 119

public void startApp() {

// show the alert at startup

display.setCurrent(alert);

try {

// create a MIDI player

Player p = Manager.createPlayer(Manager.MIDI_DEVICE_LOCATOR);

// prefetch

p.prefetch();

// extract MIDI Control

MIDIControl mControl =

(MIDIControl)p.getControl(

"javax.microedition.media.control.MIDIControl");

if(mControl == null) throw new Exception("MIDIControl not available");

// send Note ON for Channel 12 for note MIDDLE C at 100 velocity

mControl.shortMidiEvent(MIDIControl.NOTE_ON | 11, 60, 100);

Thread.sleep(100);

// send Note OFF

mControl.shortMidiEvent(MIDIControl.NOTE_ON | 11, 60, 0);

Thread.sleep(100);

// send program change to Xylophone (14)

// alternatively, use setProgram(11, -1, 14);

mControl.shortMidiEvent(192 | 11, 14, 0);

// mControl.setProgram(11, -1, 14);

Thread.sleep(100);

// set volume change to 50

// alternatively, use setChannelVolume(11, 50);

mControl.shortMidiEvent(MIDIControl.CONTROL_CHANGE | 11, 7, 50);

Thread.sleep(100);

// send Note ON for Channel 12 for note MIDDLE C at 100 velocity

mControl.shortMidiEvent(MIDIControl.NOTE_ON | 11, 60, 100);

Thread.sleep(100);

6390ch07.qxd 3/24/06 11:57 AM Page 119

CHAPTER 7 ■ MANAGING MIDI USING MIDICONTROL, TEMPOCONTROL, AND PITCHCONTROL120

// send Note OFF

mControl.shortMidiEvent(MIDIControl.NOTE_ON | 11, 60, 0);

Thread.sleep(100);

} catch(Exception e) {

alert.setString(e.getMessage());

System.err.println(e);

}

}

public void pauseApp() {

}

public void destroyApp(boolean unconditional) {

}

}

In this code, the main MIDlet thread sleeps for 100 milliseconds each time an event is
sent, but you can use a lesser value (and send the events in a separate thread) for better per-
formance and responsiveness. When you run this MIDlet, you will hear a single beep followed
by a lesser audible beep made by the Xylophone.

■Caution On the Motorola C975 device, the Program Change message using shortMidiEvent(192
| 11, 14, 0); doesn’t work, so you’ll have to use the alternate method setProgram(11, -1, 14);.

Working with Soundbanks
A soundbank, as you learned earlier, is a collection of 128 programs (or instruments) that are
supported by a particular MIDI device, to overcome the limitation of only 128 programs. You
also learned that not all MIDI devices support the concept of soundbanks, and the subsequent
support for soundbank operations is limited, leading to either a full MIDIControl or minimum
MIDIControl implementation.

The method isBankQuerySupported() is used to find out whether a full or minimum
MIDIControl is available. Of the devices/emulators that you have used so far in this book, only
the Motorola C975 emulator supports a full MIDIControl. Let’s exercise this full MIDIControl to
query the installed soundbank(s).

Figure 7-6 shows a MIDlet running on the C975 emulator, taking advantage of its support
for a full MIDIControl. The MIDlet first queries the installed soundbanks and then lists the
available programs, along with their names. When the user selects a program from the list,
a note is played using that particular program.

6390ch07.qxd 3/24/06 11:57 AM Page 120

CHAPTER 7 ■ MANAGING MIDI USING MIDICONTROL, TEMPOCONTROL, AND PITCHCONTROL 121

As you can see, only one soundbank is installed, and it has 128 programs installed on it.
This list of programs and their names mimics the one mentioned earlier, which is found at
http://en.wikipedia.org/wiki/General_MIDI.

■Note The fact that you can’t query Sun’s DefaultColorPhone emulator or the actual Motorola C975 device
doesn’t mean that no soundbank is installed. There is a default soundbank installed, but querying it is not
permitted.

The full code for this MIDlet is shown in Listing 7-6. A brief explanation follows this listing,
which should be read along with the comments in the code.

Listing 7-6. ProgramNamesMIDlet Queries Installed Soundbanks/Programs and Plays Notes in
Different Programs

package com.apress.chapter7;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import javax.microedition.media.*;

import javax.microedition.media.control.MIDIControl;

public class ProgramNamesMIDlet extends MIDlet implements CommandListener {

Figure 7-6. Installed banks and programs on the C975 emulator

6390ch07.qxd 3/24/06 11:57 AM Page 121

CHAPTER 7 ■ MANAGING MIDI USING MIDICONTROL, TEMPOCONTROL, AND PITCHCONTROL122

// MIDlet's display

private Display display = null;

// the bank and program lists

private List bankList = null;

private List programList = null;

// the actual banks and programs (instruments)

private int[] banks = null;

private int[] programs = null;

// the player and MIDIControl

private Player player = null;

private MIDIControl mControl = null;

public ProgramNamesMIDlet() {

display = Display.getDisplay(this);

try {

// create a MIDI player

player = Manager.createPlayer(Manager.MIDI_DEVICE_LOCATOR);

// prefetch

player.prefetch();

// extract MIDI Control

mControl = (MIDIControl)player.getControl(

"javax.microedition.media.control.MIDIControl");

} catch (Exception e) {

error(e);

}

}

public void startApp() {

try {

// check if we can query the banks

if(mControl.isBankQuerySupported()) {

// get the list of banks

banks = mControl.getBankList(false);

// create a list to display the banks

bankList = new List("Installed Banks", Choice.IMPLICIT);

6390ch07.qxd 3/24/06 11:57 AM Page 122

CHAPTER 7 ■ MANAGING MIDI USING MIDICONTROL, TEMPOCONTROL, AND PITCHCONTROL 123

// and populate the list

for(int i = 0; i < banks.length; i++) {

bankList.append("Bank " + banks[i], null);

}

// add this MIDlet as the CommandListener

bankList.setCommandListener(this);

// and show the list

display.setCurrent(bankList);

} else { // Bank Query not supported

display.setCurrent(new Alert("Bank Query not supported"));

}

} catch(Exception e) {

error(e);

}

}

public void commandAction(Command cmd, Displayable disp) {

// only bankList and programList commands are being listened for

if(disp != bankList && disp != programList) return;

try {

// for bankList

if(disp == bankList) {

// the selected bank

int selectedBank = banks[bankList.getSelectedIndex()];

// get the programs for this selected bank

programs = mControl.getProgramList(selectedBank);

// and create a programList

programList =

new List("Programs for Bank: " + selectedBank, Choice.IMPLICIT);

// populate this list

for(int i = 0; i < programs.length; i++) {

programList.append("Program " + programs[i] + " - " +

mControl.getProgramName(selectedBank, programs[i]), null);

}

// add this MIDlet as the CommandListener

programList.setCommandListener(this);

6390ch07.qxd 3/24/06 11:57 AM Page 123

// and show this list

display.setCurrent(programList);

} else { // can be programList only

// send command to change program

mControl.setProgram(

11, // on channel 11

banks[bankList.getSelectedIndex()], // the selected bank

programs[programList.getSelectedIndex()]); // the selected program

// sleep

Thread.sleep(100);

// send a Note ON command

mControl.shortMidiEvent(MIDIControl.NOTE_ON | 11, 60, 100);

// sleep

Thread.sleep(100);

// send a Note OFF command

mControl.shortMidiEvent(MIDIControl.NOTE_ON | 11, 60, 0);

// shorter sleep

Thread.sleep(20);

}

} catch(Exception e) {

error(e);

}

}

// general purpose error method, displays on screen as well to output

private void error(Exception e) {

display.setCurrent(new Alert(e.getMessage()));

e.printStackTrace();

}

public void pauseApp() {

}

public void destroyApp(boolean unconditional) {

}

}

The MIDlet starts by finding out whether querying the soundbanks is permitted. If not,
a brief message is displayed. Otherwise, the getBankList(false) method is used to get a list
of all soundbanks. This list is then displayed, and the user can make a soundbank selection

CHAPTER 7 ■ MANAGING MIDI USING MIDICONTROL, TEMPOCONTROL, AND PITCHCONTROL124

6390ch07.qxd 3/24/06 11:57 AM Page 124

(in the case of the C975 emulator, there is only one soundbank). The programs installed on
this soundbank are then displayed, along with their names, using the methods getProgramList
(selectedBank) and getProgramName(selectedBank, programs[i]), null). Finally, when the
user selects any program from the list, a Note ON command with Middle C note and velocity
100 is sent after changing the program by using the setProgram(int channel, int bank, int
program) method.

Mapping key presses on a device to a program in a soundbank should now be fairly easy.
This can be used to create a user-controlled MIDI player if you want to do so.

Summary
MIDI is an extensive and diverse communication protocol for transmission of audio messages.
It is a widely used protocol for digital music, and MMAPI does well to support MIDI by provid-
ing MIDIControl as a separate control.

Of course, the exact level of support varies between MMAPI implementations, with the
most basic support being the capability to play MIDI files. This chapter introduced you to the
concepts of MIDI, including a guide on how MIDI works and an overview of its message structure.

MMAPI allows you to control MIDI files without actually needing to use a MIDIControl

control, and this chapter showed you how, using VolumeControl, PitchControl, and TempoControl
only.

Of course, greater control is provided by using MIDIControl, which was shown with the
help of various examples, including working with soundbanks, program and control change
messages, and the like.

The next chapter will show you how to work with audio and video in MMAPI, one of the
most exciting parts of this specification.

CHAPTER 7 ■ MANAGING MIDI USING MIDICONTROL, TEMPOCONTROL, AND PITCHCONTROL 125

6390ch07.qxd 3/24/06 11:57 AM Page 125

6390ch07.qxd 3/24/06 11:57 AM Page 126

Working with Audio and Video

Being able to embed audio and video in your MIDlets provides the biggest advantage that
MMAPI brings. The entertainment value provided by multimedia-based options like these is
a sure way to get your MIDlets noticed. These MIDlets provide a richer user experience than
those without any such visual stimuli.

By being an open-ended API, MMAPI provides a single, simple yet powerful medium to
embed audio and video in your MIDlets. Device manufacturers decide which part of the API
they want to and can support and consequently provide implementations that take full advantage
of the device’s features. For example, if the device contains a camera, the MMAPI implementa-
tion on it may provide means to capture snapshots or full videos. The point is that the device
manufacture is in full control of the capabilities that it wants enabled and can do so with a single
API interface.

Whether audio capture or live radio streaming, video capture to video playback, synchro-
nized audio and video, or simple snapshots, MMAPI provides the means using your device.
The trick is to find a device that supports all these options so you can create your magical MIDlet.
This chapter shows you all the capabilities provided by the MMAPI to support these features.

Querying the Capabilities of Your Device
Before you decide to make an audio/video-enabled MIDlet, you should find out the capabili-
ties of your target device(s). MMAPI provides a simple way of finding out these capabilities, by
using the System.getProperty(String key) method, which, technically, is a CLDC method.

MMAPI defines several unique properties that you can query for using this method. Table 8-1
gives a list of these properties, along with what they indicate. Almost all these properties relate
to the support of audio and video in a particular MMAPI implementation, which is why they
are introduced in this later chapter.

127

C H A P T E R 8

■ ■ ■

6390ch08.qxd 3/24/06 11:58 AM Page 127

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO128

Table 8-1. MMAPI System Properties

Property Key Description

microedition.media.version Returns the version of MMAPI that the implementation
implements. Currently it returns either 1.1 or 1.0, depending
on the implementation that you try it on.

supports.recording Returns true or false, depending on whether either audio and/or
video capture is supported by the implementation. Thus, if
neither audio nor video can be captured, it returns false;
otherwise, true is returned in all other cases.

streamable.contents Returns a list of supported media types, only if the MMAPI
implementation supports streaming of media data. In most
cases, this returns null, meaning that streaming content is not
supported.

supports.mixing Returns true if audio media data can be “mixed” or returns false
otherwise. If true, you can have more than one Player instance
playing audio and/or tones at the same time.

supports.audio.capture Returns true if audio can be captured; returns false otherwise. If
true, the following property must not return a null or empty value.

audio.encodings Returns the supported formats for recording audio; returns null
if audio capture is not supported.

supports.video.capture Similar to audio, returns true if video capture is supported;
returns false otherwise. If true, the following property must not
return a null or empty value.

video.encodings Returns the supported formats for recording video content;
returns null if video capture is not supported.

video.snapshot.encodings Returns the list of supported formats for taking snapshots with
the device camera; returns null if this is not supported.

Listing 8-1 shows a MIDlet that you can use to find out the value of these properties and
hence the capabilities of your MMAPI implementation.

Listing 8-1. CapabilitiesMIDlet Lists the Capabilities of a MMAPI Implementation

package com.apress.chapter8;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class CapabilitiesMIDlet extends MIDlet {

6390ch08.qxd 3/24/06 11:58 AM Page 128

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO 129

// all the possible capabilities

private String[] capabilitiesIdx = {

"microedition.media.version",

"supports.mixing",

"supports.audio.capture",

"supports.video.capture",

"supports.recording",

"audio.encodings",

"video.encodings",

"video.snapshot.encodings",

"streamable.contents"

};

public void startApp() {

// create a list

List list = new List("Audio/Video Capabilities", Choice.IMPLICIT);

// and query the device for each of the properties

for(int i = 0; i < capabilitiesIdx.length; ++i) {

list.append(

System.getProperty(capabilitiesIdx[i]) + " - " +

capabilitiesIdx[i], null);

}

// show this list

Display.getDisplay(this).setCurrent(list);

}

public void pauseApp() {

}

public void destroyApp(boolean unconditional) {

}

}

Finally, Figure 8-1 gives you the result of running this MIDlet in the three development
environments used so far in this book: Sun’s DefaultColorPhone, Motorola C975 emulator, and
Motorola C975 device.

6390ch08.qxd 3/24/06 11:58 AM Page 129

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO130

As you can see, the result of running this MIDlet in various environments is less than
encouraging. The Motorola C975 emulator gives a twisted result, returning null for every prop-
erty, whereas the actual device returns null for supports.video.capture, a disappointing result
for the continued use of this device for testing in this chapter on audio/video.

■Note A variance in the output between the Motorola C975 emulator and the actual device must come as
no surprise at this stage. Emulator and actual device implementations vary considerably and no MIDlet
should be released without testing on target devices.

You may also wonder why the actual device does not support capturing of video,
especially if you glance at Table 2-3 from Chapter 2, which shows the result of running
getSupportedContentTypes("capture"). This table suggests that the Motorola C975 device
should support capture of audio, video, and camera (meaning snapshots), yet Figure 8-1
shows that supports.video.capture for the actual device is false.

This is the bane of Java ME development. It’s one thing to worry about matching the behavior
of devices to their emulators, but even devices themselves don’t support the MMAPI implemen-
tation consistently. Worse, the implementations sometimes give contradictory results, as in this
case, which can confuse the developer to no end. All device manufacturers are guilty of this
lapse in consistency, lest you believe that it is a Motorola-specific problem.

One reason for this contradiction is that System.getProperty(String key) is a CLDC imple-
mentation method, whereas getSupportedContentTypes(String protocol) is a MMAPI
implementation method. Each API may be implemented by different teams, which may result
in the said inconsistency. A feeble excuse, but an excuse nonetheless.

Figure 8-1. MMAPI capabilities in Sun’s DefaultColorPhone emulator, Motorola C975 emulator,
and Motorola C975 device (last two figures)

6390ch08.qxd 3/24/06 11:58 AM Page 130

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO 131

Because the Motorola C975 device can’t be used to develop video capture MIDlets, the
BenQ (formerly Siemens) M75 (http://www.benqmobile.com/cds/frontdoor/
0,2241,hq_en_0_89745_rArNrNrNrN,00.html) is used in this chapter. The emulator for this
device can be downloaded from the BenQ developer site at http://developer.benqmobile.com/.
This device and the associated emulator are used interchangeably between the Motorola C975
emulator and device for the rest of the MIDlets in this chapter and the next.

Running the MIDlet from Listing 8-1 again in this new emulator and actual device gives
the results shown in Figure 8-2.

Because it may not be very easy to make out the properties completely in Figure 8-2, they
are tabulated in Table 8-2. Thankfully, both the emulator and the device support the same set
of properties.

Table 8-2. MMAPI Capabilities on BenQ M75 Emulator and Device

Property Name Value

microedition.media.version 1.1

supports.mixing false

supports.audio.capture true

supports.video.capture true

supports.recording true

audio.encodings encoding=audio/AMR

video.encodings encoding=video/3gpp

video.snapshot.encodings encoding=jpeg encoding=image/jpeg

streamable.contents null

With the support for audio and video capture, the device/emulator must specify the supported
format(s) of the captured media. This is done with the help of audio.encodings, video.encodings,
and video.snapshot.encodings properties.

Figure 8-2. BenQ M75 emulator and device MMAPI capabilities

6390ch08.qxd 3/24/06 11:58 AM Page 131

Understanding Media Encodings
Media encoding strings are used for specifying the format of media supported, or desired, for
a particular operation. It is explained with the help of a string that has the supported or desired
formats separated by a single space. The MMAPI specification states that there are four types
of intermixable strings, but in reality, not all are supported, and almost certainly, intermixing
of these strings is rare (but possible).

These four types of encoding strings are used to define the format of audio, video, inter-
mixed, and custom media data. The general format for each type is

encoding=contentType&encodingParams

which resembles the HTTP URL query format. As you saw in Table 8-2 and Figures 8-1 and 8-2,
the supported formats vary greatly with the specific device MMAPI implementation.

Audio encodings specify, or request, the correct audio formats. From Figure 8-1, you can
see that the Sun’s DefaultColorPhone emulator specifies the following encoding formats for
the property audio.encodings:

encoding=pcm encoding=pcm&rate=8000&bits=8&channels=1

encoding=pcm&rate=22050&bits=16&channels=2

Using this format, the emulator is informing you that it supports three encoding formats
for audio capture:

• PCM (Pulse Code Manipulation), which is a ubiquitous form of storing audio data

• PCM at a frequency rate of 8,000 and 8 bits per sample and a single channel (mono)

• PCM at a frequency rate of 22,050, 16 bits per sample, and dual channels (stereo)

All three formats are separated by a single space, and each starts with the text encoding=.
This is followed by the content type of the encoding and then the parameters (if any) of the
content type that qualifies it. Each parameter and its value are separated by the ampersand
sign (&), which also separates the content type from its parameters.

The first encoding is assumed to be the default encoding. That is, as you’ll see later, if you
don’t request a particular encoding, and there are multiple encodings that the device may sup-
port for a particular operation, the first returned encoding is the format of the resulting media.

Similarly, the video encodings specify the correct video formats, given by the video.encodings
property. Again, taking the example from Figure 8-1, Sun’s DefaultColorPhone emulator supports
the following formats for video capture:

encoding=rgb565&width=160&height=120 encoding=rgb565&width=320&height=240

encoding=rgb565&width=120&height=160

The content type is the same for all the encodings, and the formats only differ in the size
of the capture that is supported. This is only a theoretical possibility with this emulator, as it
only simulates video capture and doesn’t actually implement it.

Mixed encodings allow you to specify audio and video encodings together in one single
string for operations that require specific encodings for mixed formats. Each encoding is sepa-
rately specified, as if they were being specified for single encodings, and then combined using
the ampersand (&) operator. The following is an example of mixed encoding, where the first part
is the audio encoding, and the latter (in bold) part is the video encoding:

encoding=pcm&rate=8000&bits=8&channels=1&encoding=rgb565&width=320&height=240

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO132

6390ch08.qxd 3/24/06 11:58 AM Page 132

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO 133

Finally, custom encodings allow you to create your own encodings, albeit remaining true
to the audio, video, and mixed encodings formats. An example is shown here:

encoding=custom&key=value

A Brief Overview of Sampled Audio
Digitally recorded audio data is often referred to as sampled audio. This section gives you a
brief overview of the concepts behind sampled audio. You can skip this section if you have
a fair understanding of this concept.

Sampled audio represents successive samples of audio data. Audio data, in physical terms,
is represented as a signal (of a sound wave). By taking discrete samples of the amplitude of
a sound wave and representing it using bits and bytes, digital audio data is generated. In a sense,
sampled audio is only an approximation of the actual sound wave because you are taking sam-
ples of the original and not recreating the whole thing.

This implies that the quality of sampled audio depends on how many samples you take
per second. This is true; however, the quality of the finished samples also depends on how you
represent them digitally. The more bits used to represent each sample, the better it represents
the original audio data accurately.

These two measurements are then a representation of sampled audio. The first, which is
effectively a measurement of resolution in time, is called the sampling rate. The second, which
is the resolution in amplitude, is called quantization (or just resolution). For example, the music
on CDs has a sample rate of 44.1 Khz and a quantization of 16 bits per sample. So, sampled
audio on a CD has been sampled 44,100 times per second, and each sample is represented
using 16 bits. As a comparison, DVD is sampled at 48 Khz to 96 Khz, and professional record-
ing equipment boasts of sample rates of 192 Khz.

This process of producing sampled audio from analog signals is called Pulse Code
Manipulation (PCM). The format on its own is not very efficient, because it doesn’t deal with
redundancy of samples, thereby taking up a lot of space. By using compression algorithms
such as MP3, a PCM-encoded sample can be reduced to contain the same amount of data in
a smaller sample size. This has led to the tremendous popularity of using MP3, which produces
CD-quality (and better) sound in smaller files. In purely technical terms, MP3 is a compression
format of the PCM encoded signal and works by discarding samples not considered valuable
for hearing.

Storing Sampled Audio
Although sampled audio is mostly encoded using PCM, it can be saved in a variety of formats
for transmission, retrieval, and playback. You may be already familiar with the common storage
formats, such as WAV, AU, MP3, AIFF, and so on. These file formats contain information about
the sampled audio, but may also contain meta information about the file itself, including
information about the size, the format, size of frames, and so on. Typically, this information is
contained in the file header.

These files are differentiated by the compression offered in the stored data. As stated earlier,
MP3 is an example of a compressed file, where the quality of the file is degraded to conserve
space by getting rid of some samples. On the other hand, WAV, AIFF, and AU are uncompressed
formats and contain the closest representation of the original sampled data; however, the file

6390ch08.qxd 3/24/06 11:58 AM Page 133

size is an issue. There are other formats that guarantee not to lose any samples and yet com-
press the audio data, but these aren’t very popular. For one thing, the compression is nowhere
near that offered by MP3 compression. An example of such a format is True Audio (TTA).

Another popular format, especially as far as Java ME development is concerned, is the
Adaptive Multi-Rate (AMR) format, which is a standard adapted by the 3rd Generation
Participation Project (3GPP). This format is like MP3, in that it’s a compression algorithm that
loses quality of the original samples by dropping samples it considers unnecessary for trans-
mission or playback. It specifies a varying number of bit rates, which is simply the number of
bits of the sampled data that it can transmit per second. This format is extended to the AMR–Wide
Band (WB), which offers a higher speech quality because of its support for a wider speech
bandwidth than the AMR format. For this reason, the original AMR format is also referred to as
AMR–Narrow Band (AMR-NB).

One final thing to note here is that the WAV file format cannot be used for streaming audio
data, because the format requires the complete file data for calculating header information as
opposed to the MP3 or AMR formats, which support streaming seamlessly.

Controlling Sampled Audio
Unlike video, sampled audio doesn’t require anything extra, other than what you have already
learned, to play it. In fact, the way that MMAPI is designed, tones and MIDI, along with sam-
pled audio, can be played without distinguishing between them. If anything, they differ in the
controls that are provided for controlling them. MIDI provides MIDIControl, and tones provide
ToneControl, whereas sampled audio provides a variety of controls, most of which you have
already come across in some form or another.

For example, VolumeControl was covered in Chapters 4 and 7, and the basics of using it with
sampled audio remain the same. The same applies to RateControl and PitchControl, both of
which were covered in Chapter 7. Therefore, this section covers the two controls that haven’t
been covered yet, MetaDataControl and StopTimeControl.

■Note MetaDataControl and StopTimeControl are not exclusively for use with sampled audio, but like
VolumeControl, their use applies to all media data that supports sampled audio.

Setting Preset Stop Times with StopTimeControl
Being able to set a preset stop time for media data may not sound very useful, but it can come
in very handy when you want a precise action to happen at a particular instance. This is because
when the Player instance stops at the preset time, the STOPPED_AT_TIME event is fired, which
you can capture and act on.

Of course, not all media types, and for that matter, not all implementations, support
StopTimeControl. This is to say that some MMAPI implementations may support this control, but
only for certain media types. It’s hard to judge which media types support this control,
because unlike the getSupportedContentTypes(String protocol) and getSupportedProtocols
(String contentType) methods, there is no corresponding getSupportedControls
(String contentType) method. As you know, the getControls() and getControl() methods
only work after a Player instance has been prefetched.

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO134

6390ch08.qxd 3/24/06 11:58 AM Page 134

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO 135

Listing 8-2 provides an example of using StopTimeControl. The code creates a Player

instance that can be started with or without a StopTimeControl being used to preset a stop
time. However, the Player instance remains the same, whether you are using a StopTimeControl

or not, and you’ll notice varying results due to this. An explanation follows the code listing,
and Figure 8-3 shows the MIDlet in use in the Motorola C975 emulator.

Figure 8-3 shows the StopTimeControlMIDlet in action, with the two different scenarios
played out.

Listing 8-2. StopTimeControlMIDlet Allows You to Play with the StopTimeControl

package com.apress.chapter8;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import javax.microedition.media.*;

import javax.microedition.media.control.*;

public class StopTimeControlMIDlet extends MIDlet

implements CommandListener, PlayerListener {

// the display items

private Display display = null;

private Alert alert = null;

private List list = null;

// commands

private Command exitCommand = null;

private Command okCommand = null;

// player and controls

private Player player = null;

private StopTimeControl stControl = null;

public StopTimeControlMIDlet() {

Figure 8-3. Running StopTimeControlMIDlet in Motorola C975

6390ch08.qxd 3/24/06 11:58 AM Page 135

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO136

// create all the basic stuff

display = Display.getDisplay(this);

alert = new Alert("Message");

exitCommand = new Command("Exit", Command.EXIT, 1);

okCommand = new Command("Ok", Command.OK, 1);

alert.addCommand(exitCommand);

list = new List("Pick One", List.IMPLICIT);

list.append("Play full", null);

list.append("Use StopTimeControl", null);

list.addCommand(exitCommand);

alert.addCommand(okCommand);

alert.setCommandListener(this);

list.setCommandListener(this);

// create the player and the stoptimecontrol

try {

player = Manager.createPlayer(

getClass().getResourceAsStream(

"/media/audio/chapter8/printer.wav"), "audio/x-wav");

player.addPlayerListener(this);

player.prefetch();

stControl = (StopTimeControl)player.getControl(

"javax.microedition.media.control.StopTimeControl");

// no point continuing if stoptimecontrol is not supported

if(stControl == null)

throw new Exception("StopTimeControl is not supported");

} catch(Exception e) {

error(e);

}

}

public void startApp() {

// show the list of items

display.setCurrent(list);

}

public void pauseApp() {

}

6390ch08.qxd 3/24/06 11:58 AM Page 136

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO 137

public void destroyApp(boolean unconditional) {

}

public void commandAction(Command cmd, Displayable disp) {

// if exiting

if(cmd == exitCommand) {

notifyDestroyed();

return;

}

// if ok command

if(cmd == okCommand) {

try {

// pause the player, so that it can be reused

player.stop();

// and redisplay the list

display.setCurrent(list);

} catch(Exception e) {

error(e);

}

}

// implicit list handling

if(disp == list) {

// the selected idx

int selectedIdx = list.getSelectedIndex();

// show the message

display.setCurrent(alert);

try {

if(selectedIdx == 0) {

// start player without stoptimecontrol

if(player != null) player.start();

alert.setString("Started without StopTimeControl ...");

} else {

// start with stoptimecontrol

// set the stop time as half of the length

stControl.setStopTime(player.getDuration()/2);

// start the player

if(player != null) player.start();

6390ch08.qxd 3/24/06 11:58 AM Page 137

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO138

alert.setString("Started WITH StopTimeControl ...");

}

} catch(Exception e) {

error(e);

}

}

}

public void playerUpdate(Player player, String event, Object eventData) {

// only interested in the STOPPED_AT_TIME event

if(event == STOPPED_AT_TIME) {

// give the message

alert.setString("Stopped at: " + eventData + " microseconds" +

", actual duration: " + player.getDuration() + " microseconds");

// and show the alert

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

}

}

// general purpose error method, displays onscreen as well to output

private void error(Exception e) {

alert.setString(e.getMessage());

alert.setTitle("Error");

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

e.printStackTrace();

}

}

If you try this MIDlet in an emulator or a device and test it repeatedly, you’ll notice some
anomalous results. As per the code, when using the StopTimeControl, the Player instance is
preset to stop playing when exactly half the duration has been reached. Figure 8-4 shows one
such anomaly.

Figure 8-4. StopTimeControl seems to stop after the preset time.

6390ch08.qxd 3/24/06 11:58 AM Page 138

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO 139

Figure 8-4 seems to suggest that the Player instance was stopped after the preset time, which
being half of the total duration, should be roughly 373,800 microseconds. This happened because
in this particular case, the StopTimeControl’s setStopTime(long stopTime) method was called
after the media playback time of the Player instance had passed the preset time. In such cases,
that is, when the current media time has already passed the preset time, the Player instance
immediately stops at the current media time and generates a STOPPED_AT_TIME event.

You can remove a previously set preset time by using the constant RESET. Thus,
setStopTime(StopTimeControl.RESET) will clear any preset times. Calling the getStopTime()
method returns the preset time (remember, in microseconds, not milliseconds) and RESET if
no preset time has been set.

Finally, if you call setStopTime() method on a started Player instance, which already has
a preset time, an IllegalStateException is thrown. However, you can change the preset time
on a stopped Player instance, as is done in Listing 8-2.

Gathering Information Using MetaDataControl
MetaDataControl provides a simple way for Player instances to expose the meta information
about media data. This meta information can be exposed with a set of predefined keys, such
as Author, Title, Date, and Copyright, or the media may contain its own proprietary keys (with
associated values).

As with StopTimeControl, not all media exposes this control. WAV and MP3 in sampled
audio and MPEG in video are the most likely candidates that will provide meta information
such as this. This doesn’t mean that other media doesn’t contain this information, just that the
MMAPI implementation may not provide the MetaDataControl control for it.

Listing 8-3 shows you an example of using this control, where the information contained
in an MP3 is displayed on the screen.

Listing 8-3. Using MetaDataControl to Display Meta Information

package com.apress.chapter8;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import javax.microedition.media.*;

import javax.microedition.media.control.MetaDataControl;

public class MetaDataControlMIDlet extends MIDlet implements CommandListener {

// define the display items

private Display display = null;

private List list = null;

private Command exitCommand = null;

private Alert alert = null;

// the player instance

private Player player = null;

6390ch08.qxd 3/24/06 11:58 AM Page 139

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO140

public MetaDataControlMIDlet() {

// create the display items

display = Display.getDisplay(this);

alert = new Alert("Message");

exitCommand = new Command("Exit", Command.EXIT, 1);

alert.addCommand(exitCommand);

alert.setCommandListener(this);

list = new List("Message", List.IMPLICIT);

list.addCommand(exitCommand);

list.setCommandListener(this);

// create and prefetch the player instance

try {

player = Manager.createPlayer(

getClass().getResourceAsStream(

"/media/audio/chapter8/frogs.mp3"), "audio/mp3");

player.prefetch();

} catch(Exception e) {

error(e);

}

}

public void startApp() {

// if player was created, extract control

if(player != null) {

MetaDataControl mControl =

(MetaDataControl)player.getControl(

"javax.microedition.media.control.MetaDataControl");

// if control is provided, show information onscreen

if(mControl == null) {

// no info

alert.setString("No Meta Information");

display.setCurrent(alert);

} else {

// get all the keys of this control

String[] keys = mControl.getKeys();

// and append the key and its value to the list

for(int i = 0; i < keys.length; i++) {

6390ch08.qxd 3/24/06 11:58 AM Page 140

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO 141

list.append(keys[i] + " -- " + mControl.getKeyValue(keys[i]), null);

}

// show the list

display.setCurrent(list);

}

}

}

public void commandAction(Command cmd, Displayable disp) {

if(cmd == exitCommand) {

notifyDestroyed();

}

}

public void pauseApp() {

}

public void destroyApp(boolean unconditional) {

}

// general purpose error method, displays onscreen as well to output

private void error(Exception e) {

alert.setString(e.getMessage());

alert.setTitle("Error");

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

e.printStackTrace();

}

}

As you can see, to get a list of keys, you use the method getKeys(), which returns a String

array. There are four predefined keys in the MetaDataControl class: AUTHOR_KEY, TITLE_KEY,
COPYRIGHT_KEY, and DATE_KEY. After you have the keys, whether predefined or retrieved using the
getKeys() method, you can use the getKeyValue() method to get the value assigned to each key.

Figure 8-5 shows this MIDlet running in the Motorola C975 device, with only the title key
showing a value. The Motorola C975 emulator doesn’t support the playback of MP3 audio.

Figure 8-5. Using MetaDataControl to display meta information

6390ch08.qxd 3/24/06 11:58 AM Page 141

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO142

Mixing Sampled Audio, MIDI, and Tones
One of the properties listed in Table 8-1, supports.mixing, indicates whether a particular MMAPI
implementation supports the concept of multiple Player instances for sampled audio and tones.
If true, it indicates that mixing is supported; in short, you can have multiple Player instances for
audio, MIDI, and tone playback, playing simultaneously. Multiple Player instances mostly equals
to a maximum of two or three, although different implementations vary in their support of simul-
taneous instances. There is no sure way of knowing how many instances you can create for mixing,
and the Java ME documentation for your device may give an answer. Of course, you have to be
careful creating too many Player instances, as this will result in a memory hog, especially
prefetched and/or realized instances.

The concept of an implementation supporting mixing is slightly more advanced than just
being able to support multiple instances of Player objects in memory. When a Player instance,
created to play back sampled audio, MIDI, or tone, is in the PREFETCHED state, it has acquired
the resources required to immediately play back. This means that it has exclusive access to the
device’s resources, especially the audio output hardware. Thus, the MMAPI implementation
that supports mixing must switch intelligently and efficiently between Player instances to man-
age the flow of media data without any errors, using either a software or hardware mixer. This
is why most implementations eschew audio mixing, because it becomes too complicated to
implement, or provide a simplified version that only caters for specific possibilities.

The Motorola C975 device only implements MIDI mixing (that is, two or more MIDI Player
instances playing simultaneously) and doesn’t support the mixing of either audio or tones,
even though it returns a true value for the supports.mixing property. However, it does support
the mixing of a MIDI file with a WAV file, as long as the MIDI file is started first and the WAV file
is a PCM encoded, single channel (mono), 8,000 Khz, 8-bit file. Go figure! Siemens M75 doesn’t
support any mixing and indicates so with a value of false for the property.

■Note This is another case of device manufacturers not sticking with the intent of the MMAPI specification and
providing an arbitrary implementation. As per the specification, if supports.mixing returns true, the MMAPI
implementation must be able to support the playback of two sampled audio Player instances simultaneously. For
what it’s worth, Motorola is not the only device manufacturer guilty of providing an arbitrary implementation.

One of the most common requirements of mixing sampled audio, MIDI, and/or tones is
in Java ME games. Most games have a background score playing continuously, while short
audio events will accompany some action on the screen. In these cases, you’ll have one Player
instance playing the background score in a loop and other prefetched instances that start playing
a short sound such as firing, jumping, opening doors, and so on, depending on the user inter-
action with the action on the screen.

Listing 8-4 shows an example of mixing a MIDI file with a sampled audio WAV file (as per
the Motorola C975 specification!) and another MIDI event. The MIDI event is a fire sound,
implemented by issuing the program change (instrument change) of "Gunshot" (see Chapter 7,
Figure 7-6). The main MIDI sound is a background score that plays continuously, and the audio
WAV file is a short sound that mimics a character jumping onscreen. When the user presses
the Jump! command, the corresponding Player instance is started to play the sound. When the
user presses the Fire! command, a shortMidiEvent() command is issued. During all this, the back-
ground score continues to play.

6390ch08.qxd 3/24/06 11:58 AM Page 142

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO 143

Listing 8-4. Mixing MIDI and Sampled Audio

package com.apress.chapter8;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import javax.microedition.media.*;

import javax.microedition.media.control.MIDIControl;

public class MixingAudioMIDlet extends MIDlet implements CommandListener {

// define Players and Controls

private Player backgroundPlayer = null;

private Player firePlayer = null;

private Player jumpPlayer = null;

private MIDIControl mControl = null;

// define commands and display items

private Display display = null;

private Alert alert = null;

private Command exitCommand = null;

private Command fireCommand = null;

private Command jumpCommand = null;

public MixingAudioMIDlet() {

// create the display items

display = Display.getDisplay(this);

// this is the alert that will be displayed

alert = new Alert("Message");

alert.setString("Playing background score. " +

" Use menu to mix sampled audio and/or other midi");

alert.setTimeout(Alert.FOREVER);

// create the commands

exitCommand = new Command("Exit", Command.EXIT, 1);

fireCommand = new Command("Fire!", Command.SCREEN, 1);

jumpCommand = new Command("Jump!", Command.SCREEN, 1);

// attach the commands to the alerts

alert.addCommand(exitCommand);

alert.addCommand(fireCommand);

alert.addCommand(jumpCommand);

// and set the command listener

alert.setCommandListener(this);

6390ch08.qxd 3/24/06 11:58 AM Page 143

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO144

// finally create the Player instances

initPlayers();

}

private void initPlayers() {

try {

// the background player that will play a MIDI file throughout

backgroundPlayer =

Manager.createPlayer(getClass().getResourceAsStream(

"/media/midi/chapter8/cabeza.mid"), "audio/midi");

// prefetch it and make sure it repeats if it finishes

backgroundPlayer.prefetch();

backgroundPlayer.setLoopCount(-1);

// create another MIDI Player for the firing sound

firePlayer = Manager.createPlayer(Manager.MIDI_DEVICE_LOCATOR);

firePlayer.prefetch();

// extract its MIDIControl

mControl = (MIDIControl)firePlayer.getControl(

"javax.microedition.media.control.MIDIControl");

// set program to the Gunshot sound (See Figure 7-6 in Chapter 7)

mControl.setProgram(11, -1, 127);

// create another sampled audio player for jump sound

jumpPlayer = Manager.createPlayer(getClass().getResourceAsStream(

"/media/audio/chapter8/jump.wav"), "audio/x-wav");

// prefetch it as well

jumpPlayer.prefetch();

} catch (Exception e) {

error(e);

}

}

public void startApp() {

// start background player

try {

if(backgroundPlayer != null) {

backgroundPlayer.start();

}

6390ch08.qxd 3/24/06 11:58 AM Page 144

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO 145

} catch(Exception e) {

error(e);

}

// and show message

display.setCurrent(alert);

}

public void commandAction(Command cmd, Displayable disp) {

// if closing

if(cmd == exitCommand) {

destroyApp(true);

notifyDestroyed();

return;

}

try {

// if fire command is issued, send the NOTE_ON command

if(cmd == fireCommand) {

mControl.shortMidiEvent(MIDIControl.NOTE_ON | 11, 60, 100);

}

// if jump command is issued, start the jump player

if(cmd == jumpCommand) {

jumpPlayer.start();

}

} catch(Exception e) {

error(e);

}

}

public void pauseApp() {

// pause any players if MIDlet is paused

try {

if(backgroundPlayer != null) backgroundPlayer.stop();

if(firePlayer != null) firePlayer.stop();

if(jumpPlayer != null) jumpPlayer.stop();

} catch(Exception e) {

error(e);

}

}

public void destroyApp(boolean unconditional) {

6390ch08.qxd 3/24/06 11:58 AM Page 145

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO146

// close players once application is destroyed

try {

if(backgroundPlayer != null) {

backgroundPlayer.close();

backgroundPlayer = null;

}

if(firePlayer != null) { firePlayer.close(); firePlayer = null; }

if(jumpPlayer != null) { jumpPlayer.close(); jumpPlayer = null; }

} catch(Exception e) {

error(e);

}

}

// general purpose error method, displays onscreen as well to output

private void error(Exception e) {

alert.setString(e.getMessage());

alert.setTitle("Error");

display.setCurrent(alert);

e.printStackTrace();

}

}

Figure 8-6 shows this MIDlet playing in the C975 device. The Jump! command is accessed
by pressing the Menu button.

Figure 8-6. Mixing MIDI and audio in the Motorola C975 device

Capturing Audio
An implementation supports capture of audio via a MIDlet if it returns true for the supports.
audio.capture system property. If this property is true, then the audio.encodings system prop-
erty must not return null, but must provide the formats in which audio can be recorded. The
Motorola C975 device supports the audio/amr and audio/amr-wb (Wide band) formats.

To capture media, you use the RecordControl control, whether for audio or video. This
control doesn’t distinguish between the media types and is a simple mechanism to start, stop,
and control the data recording. It provides several methods to achieve these tasks.

A Player instance to capture audio is created by passing the special locator capture://
audio to the Manager.createPlayer(String locator) method, which will then, once realized,

6390ch08.qxd 3/24/06 11:58 AM Page 146

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO 147

give up a RecordControl object for you to use. While creating the locator, you can pass parame-
ters to it, which qualifies the format of the recorded data, as you learned in the “Understanding
Media Encodings” section. When no format is specified, the format (content-type) of the
recorded data is the default (the first value returned by audio.encodings) format. Thus, for
the C975 device, the default recording format for audio is audio/amr.

Of course, recorded data must be either stored somewhere or played back to the user
(and then discarded). RecordControl provides two methods for setting the location of recorded
data. The setRecordStream(OutputStream stream) directs data to an OutputStream, and
setRecordLocation(String locator) directs it to the location in the form of locators used to
create Player instances using the Manager.createPlayer(String locator) method. Of course,
you should be able to store data at the particular location identified by the locator String.

■Tip Recording formats impact the way the MMAPI implementation handles them internally. For formats
that can’t be streamed, such as WAV for sampled audio and Quicktime for video, the full media data is required
before it can be written to any location. This is because some portions in the header of these files require the
availability of the full data, and this header will be written to when the complete recorded data is available.
When you are recording data like this, the implementation needs to provide an internal buffer that will hold
this data till the recording is complete, calculate the missing header information, and then write it to your
desired location, either a stream (setRecordStream()) or location (setRecordLocation()). With data that
can be streamed, such as MP3 for audio and MPEG for video, this is not a problem, and the data can be writ-
ten to your desired location at the same time that it's read. This is why you are not likely to find too many
devices with MMAPI implementations that support recording in a nonstreamable format.

Recording data itself requires permission from the user. As you saw in Chapter 5, permis-
sions can be requested for in a JAD file (and put in a trusted domain). To record any media (audio
or video), the following permission must be available:

javax.microedition.media.control.RecordControl

Alternatively, the user will be queried to give the permission when the recording commences.
Let’s start by creating a MIDlet that will play back whatever you say to it, instead of storing

it somewhere.

Timed Capture and Playback
Simple capture and playback of audio can be accomplished easily by using the two
streams, ByteArrayOutputStream and ByteArrayInputStream. Because data doesn’t need to
be stored anywhere, one Player instance can be used to record the raw audio data into the
ByteArrayOutputStream’s byte array, and another instance created to retrieve data from this
buffer using the ByteArrayInputStream. Of course, you can’t expect the data to be recorded
continuously. For this example, the timed limit is 10 seconds.

Listing 8-5 shows the code for this timed audio capture and playback MIDlet.

6390ch08.qxd 3/24/06 11:58 AM Page 147

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO148

Listing 8-5. Timed Capture and Playback of Audio

package com.apress.chapter8;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import javax.microedition.media.*;

import java.io.ByteArrayOutputStream;

import java.io.ByteArrayInputStream;

import javax.microedition.media.control.RecordControl;

public class CapturePlaybackAudioMIDlet extends MIDlet

implements CommandListener {

// the display items

private Display display = null;

private Alert alert = null;

private Command exitCommand = null;

// players and controls

private Player capturePlayer = null;

private Player playbackPlayer = null;

private RecordControl recordControl = null;

// buffers

private ByteArrayOutputStream bos = new ByteArrayOutputStream();

private ByteArrayInputStream bis = null;

public CapturePlaybackAudioMIDlet() {

// create the display

display = Display.getDisplay(this);

alert = new Alert("Message");

alert.setTimeout(Alert.FOREVER);

alert.setString("Capturing for 10 seconds. Say something intelligent!");

exitCommand = new Command("Exit", Command.EXIT, 1);

alert.addCommand(exitCommand);

alert.setCommandListener(this);

try {

// create the capture player

capturePlayer = Manager.createPlayer("capture://audio");

if (capturePlayer != null) {

// if created, realize it

capturePlayer.realize();

6390ch08.qxd 3/24/06 11:58 AM Page 148

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO 149

// and grab the RecordControl

recordControl = (RecordControl)capturePlayer.getControl(

"javax.microedition.media.control.RecordControl");

// set the alert as the current item

display.setCurrent(alert);

// if it is null throw exception

if(recordControl == null)

throw new Exception("No RecordControl available");

// create the buffer in which recording will be done

bos = new ByteArrayOutputStream(1024);

// and set this buffer as the destination for recording

recordControl.setRecordStream(bos);

} else {

throw new Exception("Capture Audio Player is not available");

}

} catch(Exception e) {

error(e);

}

}

public void startApp() {

try {

// first start the corresponding player

capturePlayer.start();

// and then start the RecordControl

recordControl.startRecord();

// now wait 10 seconds

Thread.sleep(10000);

// stop recording after time is up

recordControl.stopRecord();

// commit the recording

recordControl.commit();

// and close the Player instance

capturePlayer.close();

6390ch08.qxd 3/24/06 11:58 AM Page 149

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO150

// finished, set the message

alert.setString("Well done! Now Processing...");

// flush the buffer

bos.flush();

// create an inputstream of this buffer

bis = new ByteArrayInputStream(bos.toByteArray());

// create the playback Player instance with this stream,

// using the specified content type, as given by the RecordControl

playbackPlayer =

Manager.createPlayer(bis, recordControl.getContentType());

// start the playback

playbackPlayer.start();

// and set the message

alert.setString("Playing back ... ");

} catch(Exception e) {

error(e);

} finally {

try {

if(bos != null) bos.close();

if(bis != null) bis.close();

} catch(Exception ex) {

error(ex);

}

}

}

public void pauseApp() {

}

public void destroyApp(boolean unconditional) {

}

public void commandAction(Command cmd, Displayable disp) {

if(cmd == exitCommand) {

notifyDestroyed();

}

}

// general purpose error method, displays onscreen as well to output

private void error(Exception e) {

alert.setString(e.getMessage());

6390ch08.qxd 3/24/06 11:58 AM Page 150

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO 151

alert.setTitle("Error");

display.setCurrent(alert);

e.printStackTrace();

}

}

After a Player instance is created and realized for capturing audio, the RecordControl
control is extracted. The setRecordStream(OutputStream os) method is used to set a
ByteArrayOutputStream with an initial buffer size of 1,024 bytes. When the MIDlet is started,
recording is started by using the startRecord() method of RecordControl. You first have to start
the underlying Player instance by using the start() method; otherwise, no recording will
actually take place. This is because the Player instance is created on the audio microphone on
the device, which then releases a RecordControl for you to use. If you call startRecord() first,
then the RecordControl will be ready to record, but won’t actually record anything till the cor-
responding Player instance is started. Thus, it's best to first start the Player instance, and then
start the recording by calling the startRecord() method.

The recording is done for 10 seconds by making the main application thread sleep. After
the 10 seconds are over, the recorded data is put into the ByteArrayInputStream after commit-
ting the recorded data by calling the commit() method and closing the Player instance. Note
that calling stopRecord() is not necessary, as commit() calls it internally. When stopRecord()
is called, the Player instance doesn’t actually stop, but continues in the STARTED state until it
is stopped or closed.

The data is now available in the ByteArrayInputStream and a new Player instance is
created to use this as the InputStream for playback. The getContentType() method of
RecordControl is used to specify the content type for this new instance. It's now a simple
matter of calling the start() method on this instance to play back the captured audio data.

Controlled Capture and Playback
Although timed capture as seen in the previous section shows you the basics of capturing
audio, it doesn’t show you how to provide controls to better manage the recording time. In this
section, you'll add some commands to a modified recording MIDlet created in the previous
section, giving you these controls. Listing 8-6 shows the code for this MIDlet, with an explana-
tion following the listing.

Listing 8-6. Controlling Audio Capture

package com.apress.chapter8;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import javax.microedition.media.*;

import java.io.ByteArrayOutputStream;

import java.io.ByteArrayInputStream;

import javax.microedition.media.control.RecordControl;

public class ControlledAudioCaptureMIDlet extends MIDlet

implements CommandListener, PlayerListener {

6390ch08.qxd 3/24/06 11:58 AM Page 151

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO152

// the display items

private Display display = null;

private Alert alert = null;

private Command exitCommand = null;

private Command startCommand = null;

private Command pauseCommand = null;

private Command doneCommand = null;

private Command playbackCommand = null;

// players and controls

private Player capturePlayer = null;

private Player playbackPlayer = null;

private RecordControl recordControl = null;

// buffers

private ByteArrayOutputStream bos = new ByteArrayOutputStream();

private ByteArrayInputStream bis = null;

// Boolean flag to indicate when recording is being done

private boolean recording = false;

public ControlledAudioCaptureMIDlet() {

// create the display

display = Display.getDisplay(this);

alert = new Alert("Message");

alert.setTimeout(Alert.FOREVER);

alert.setString("Press Start Recording to capture audio");

// create the various commands

exitCommand = new Command("Exit", Command.EXIT, 1);

startCommand = new Command("Start", Command.SCREEN, 1);

pauseCommand = new Command("Pause", Command.SCREEN, 1);

doneCommand = new Command("Done", Command.SCREEN, 1);

playbackCommand =

new Command("Playback", Command.SCREEN, 1);

// and initialize the commands with the alert

alert.addCommand(exitCommand);

alert.addCommand(startCommand);

// set this class as the PlayerListener for command actions

alert.setCommandListener(this);

// now set the alert as the current item

display.setCurrent(alert);

6390ch08.qxd 3/24/06 11:58 AM Page 152

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO 153

try {

// create the capture player

capturePlayer = Manager.createPlayer("capture://audio");

if (capturePlayer != null) {

// if created, realize it

capturePlayer.realize();

// and grab the RecordControl

recordControl = (RecordControl)capturePlayer.getControl(

"javax.microedition.media.control.RecordControl");

// if RecordControl is null throw exception

if(recordControl == null)

throw new Exception("No RecordControl available");

// create the buffer in which recording will be done

bos = new ByteArrayOutputStream(1024);

} else {

throw new Exception("Capture Audio Player is not available");

}

} catch(Exception e) {

error(e);

}

}

public void startApp() {

display.setCurrent(alert);

}

public void pauseApp() {

}

public void destroyApp(boolean unconditional) {

// close any open player instances, underlying controls will be

// closed by calling the close method

if(capturePlayer != null) {

capturePlayer.close(); // releases the microphone

capturePlayer = null;

}

if(playbackPlayer != null) {

playbackPlayer.close();

playbackPlayer = null;

}

}

6390ch08.qxd 3/24/06 11:58 AM Page 153

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO154

public void commandAction(Command cmd, Displayable disp) {

// if exit ..

if(cmd == exitCommand) {

destroyApp(true);

notifyDestroyed();

}

// now based on what command is called, take the right action

try {

// if starting or restarting recording

if(cmd == startCommand) {

// remove other commands

alert.removeCommand(startCommand);

alert.removeCommand(playbackCommand);

// add pause and done commands

alert.addCommand(pauseCommand);

alert.addCommand(doneCommand);

// now, if a playback was being done, close it to preserve

// system resources

if(playbackPlayer != null) {

playbackPlayer.close();

playbackPlayer = null;

}

// are we restarting an existing recording or a new one?

if(!recording) { // this means a new one

// set the ByteArrayInputStream to null

bis = null;

// initialilze the ByteArrayOutputStream

bos = new ByteArrayOutputStream(1024);

// set the output of recording

recordControl.setRecordStream(bos);

// and start the underlying player

capturePlayer.start();

}

// now start the recording

recordControl.startRecord();

6390ch08.qxd 3/24/06 11:58 AM Page 154

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO 155

// set the flag

recording = true;

// and show the message

alert.setString("Recording now. Say something nice" +

" and then press Pause or Done Recording");

} else if(cmd == pauseCommand) {

// pausing an existing recording

// so remove the pause command and add the start (or restart command)

alert.removeCommand(pauseCommand);

alert.addCommand(startCommand);

// stop the control, this only pauses the recording

recordControl.stopRecord();

// and show message

alert.setString("Recording paused. " +

" Press Start Recording to restart");

} else if(cmd == doneCommand) {

// done recording, so remove commands

alert.removeCommand(doneCommand);

alert.removeCommand(pauseCommand);

// add command to play back or start a new recording

alert.addCommand(startCommand);

alert.addCommand(playbackCommand);

// complete the recording

completeRecording();

// show message

alert.setString("Press Start Recording to capture new audio or " +

" Playback Recording to playback recorded audio");

} else if(cmd == playbackCommand) {

// remove the start recording command

alert.removeCommand(startCommand);

// start the playback

playbackPlayer.start();

6390ch08.qxd 3/24/06 11:58 AM Page 155

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO156

// and set the message

alert.setString("Playing back recorded audio");

}

} catch(Exception e) {

error(e);

}

}

private void completeRecording() throws Exception {

// flush the output buffer

bos.flush();

// commit the recording

recordControl.commit();

// create the input buffer from the output buffer

bis = new ByteArrayInputStream(bos.toByteArray());

// create the playback player

playbackPlayer =

Manager.createPlayer(bis, recordControl.getContentType());

// add a listener on it

playbackPlayer.addPlayerListener(this);

// and initialize the recording flag

recording = false;

}

public void playerUpdate(Player player, String event, Object data) {

// only listening on the playback player

if(event.equals(PlayerListener.END_OF_MEDIA)) {

// add the commands back

alert.addCommand(startCommand);

alert.addCommand(playbackCommand);

}

}

// general purpose error method, displays onscreen as well to output

private void error(Exception e) {

alert.setString(e.getMessage());

alert.setTitle("Error");

display.setCurrent(alert);

6390ch08.qxd 3/24/06 11:58 AM Page 156

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO 157

e.printStackTrace();

}

}

Although the listing is long, it shows you how to control the recording using menu commands.
Four commands are defined, startCommand, pauseCommand, doneCommand, and playbackCommand.
The first three control the recording, and the last controls the playback of the recorded data. If
you press the pauseCommand, it stops the recording for the moment, and when startCommand is
pressed again, the recording starts from the point that you left off.

The main action takes place in the commandAction() method, where the four commands
are handled. When the startCommand is handled, the recording is checked to see whether it's
new or previously paused using the recording flag. For new recordings, new buffers are created,
the location of the recording data is reinitialized, and the underlying recording Player instance
is started. For previously paused recordings, all this is ignored, and only startRecord() method
is called, which takes off from the previously paused recording location.

When the pauseCommand is called, the stopRecord() method of RecordControl is called, which,
as you may realize now, only pauses the recording of the media data, while the underlying
Player instance is still in the STARTED state.

The rest of the commands you should be familiar with, as they mimic the work you did in
the previous section. The only other noteworthy code is in the playerUpdate() method, where
a Player instance adds startCommand and playbackCommand back to the displayed alert, when
the END_OF_MEDIA event is received.

Figure 8-7 shows the MIDlet in action on the Motorola C975 device.

Figure 8-7. Controlled audio recording MIDlet in action on the Motorola C975

As you can see, when you press Start, the user must give permission for the recording to
be done. Make sure that you select the Yes, ask once option; otherwise, the MIDlet gives an
exception if you do multiple recordings (if you select Yes, always ask). The permission is not
requested when either the capturePlayer or recordControl instances are created or initialized,
but it is requested when the output stream is set using the setRecordStream() method.

■Note At this point, the Sun’s emulator throws a deadlock issue. Because the setRecordStream()
method may take a long time to return, it advises you to run this part of the code in a separate thread. This is
only an issue on the Sun emulator, however, and most devices don’t require separate threads. Creating new
threads for simple tasks like this can be counterproductive on small memory footprint devices.

6390ch08.qxd 3/24/06 11:58 AM Page 157

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO158

In the next section, you'll learn how to save the recorded data in a particular location, for
playback at a later time, and not just in the present MIDlet session.

Saving Captured Audio
Captured audio can be saved to a couple of locations, depending upon the capabilities of your
device. The easiest place to save the captured audio is the file system on the device itself, so
that you can switch the device (or the MIDlet) off and still come back later and retrieve the
recording from this persistent storage.

You can also save the data to another device (most likely a computer) using the serial port.
This can be achieved by using the CommConnection interface defined in the javax.microedition.
io package. This interface gives you an OutputStream (with the openOutputStream() method) to
which you can direct the recorded data bytes using the setRecordStream() method. Of course,
this means that on the other side, the receiving device must have a listener on this serial port
that can receive these data bytes and store them for later use. The two devices must also be
connected at all times via this port, for data to be stored and later retrieved as well. As you can
see, saving this data to another device via the serial port throws several issues and is not the
best option.

You can also store the data on the Internet using HTTP. Because the basics remain the same
for storing audio, image, or video data, this type of storage is covered in the next chapter. This
section shows you how to store the data on the device itself using the FileConnection API (JSR-75).

■Note Strictly speaking, you don’t need the FileConnection API for this to work, as you are not going to
use any of the FileConnection API classes. However, depending on your implementation, you may or may
not need to have this API in your CLASSPATH and available on your device. Further, access to the local file
system requires permissions from the user that are similar to network access and audio/video/image cap-
ture, so you may end up requesting two sets of permissions when you run this MIDlet, one to access the file
system, and one to capture audio.

Listing 8-7 shows how to store captured audio on the device’s file system and how to
retrieve it for playback. Although very similar to Listing 8-5, the difference is in the way the
location of the final captured audio is specified.

■Tip Listing 8-7 stores captured audio in the root folder of the device. The root folder can be found by
using the listRoots() method of the class FileSystemRegistry from the FileConnection API. As
stated before, however, you don’t need this API in the CLASSPATH to access the file system for Listing 8-7,
but you'll need it to find the root folder (unless you can get that information from the documentation for the
device).

6390ch08.qxd 3/24/06 11:58 AM Page 158

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO 159

Listing 8-7. Storing Captured Audio

package com.apress.chapter8;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import javax.microedition.media.*;

import javax.microedition.media.control.RecordControl;

public class SaveCapturedAudioMIDlet extends MIDlet

implements CommandListener {

// the display items

private Display display = null;

private Alert alert = null;

private Command exitCommand = null;

// players and controls

private Player capturePlayer = null;

private Player playbackPlayer = null;

private RecordControl rControl = null;

private boolean error = false;

public SaveCapturedAudioMIDlet() {

// create the display

display = Display.getDisplay(this);

alert = new Alert("Message");

alert.setTimeout(Alert.FOREVER);

alert.setString("Capturing for 10 seconds. Say something intelligent!");

exitCommand = new Command("Exit", Command.EXIT, 1);

alert.addCommand(exitCommand);

alert.setCommandListener(this);

try {

// create the capture player

capturePlayer = Manager.createPlayer("capture://audio");

if (capturePlayer != null) {

// if created, realize it

capturePlayer.realize();

// and grab the RecordControl

rControl = (RecordControl)capturePlayer.getControl(

"javax.microedition.media.control.RecordControl");

6390ch08.qxd 3/24/06 11:58 AM Page 159

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO160

// set the alert as the current item

display.setCurrent(alert);

// if it is null throw exception

if(rControl == null) throw new Exception("No RecordControl available");

// and set the destination for this captured data

// check your device documentation to find out the root.

// The following will work on devices that have the root

// specified as shown

rControl.setRecordLocation("file:///test.wav");

} else {

throw new Exception("Capture Audio Player is not available");

}

} catch(Exception e) {

error(e);

}

}

public void startApp() {

if(error) return;

try {

// first start the corresponding recording player

capturePlayer.start();

// and then start the RecordControl

rControl.startRecord();

// now record for 10 seconds

Thread.sleep(10000);

// stop recording after time is up

rControl.stopRecord();

// commit the recording

rControl.commit();

// stop the Player instance

capturePlayer.stop();

// and close it to release the microphone

capturePlayer.close();

6390ch08.qxd 3/24/06 11:58 AM Page 160

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO 161

// finally, create a Player instance to playback

playbackPlayer = Manager.createPlayer("file:///test.wav");

// and start it

playbackPlayer.start();

} catch(Exception e) {

error(e);

}

}

public void pauseApp() {

}

public void destroyApp(boolean unconditional) {

if(capturePlayer != null) capturePlayer.close();

if(playbackPlayer != null) playbackPlayer.close();

}

public void commandAction(Command cmd, Displayable disp) {

if(cmd == exitCommand) {

destroyApp(true);

notifyDestroyed();

}

}

// general purpose error method, displays onscreen as well to output

private void error(Exception e) {

alert.setString(e.getMessage());

alert.setTitle("Error");

display.setCurrent(alert);

e.printStackTrace();

error = true;

}

}

The major changes are highlighted in bold. The code sets the location of the captured
audio to a file called test.wav on the root folder of the underlying device file system. You'll get
an error if this access is not supported. You'll also get an error if the file already exists, as you
can see by running the listing twice (without changing the name of the file, see Figure 8-8).
The new flag error doesn’t run the startApp() method if there is a problem with either file
system access or audio capture.

The location is set using the setRecordLocation(String locator) method. This listing runs
perfectly on the BenQ M75 but fails on the Motorola C975 because it doesn’t support file system
access. However, note that the listing saves the file as a WAV file. If you refer to Table 8-2, you'll
see that the only supported encoding for audio capture on the BenQ M75 is audio/amr. This
seems like an anomaly, but is perfectly acceptable because the MMAPI specification allows
implementations to change the format of recorded data. When you set the record location

6390ch08.qxd 3/24/06 11:58 AM Page 161

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO162

with an extension of WAV, the format conversion is done by the implementation. You can save
the data as test.amr as well (at least on the M75), without needing to do any format changes.

Figure 8-8 shows this MIDlet running on the M75.

Capturing Audio from Existing Audio
Until now, you saw how audio is captured using the audio microphone on a device, by creating
a Player instance using the special locator: capture://audio. This is fairly standard practice.
The beauty of MMAPI is that you can use any Player instance to capture media data from,
provided the instance gives you a RecordControl instance to work with. This is a great flexibility
provided by MMAPI and allows you to, for example, create MIDlets that can read and record
data from an existing format and convert to another. Another example may be for a MIDlet to
capture media stored on the network and store it locally (with or without the change in formats).

Unfortunately, neither of the two actual devices supports provisioning RecordControl for
existing audio data, and you'll have to use Sun’s DefaultColorPhone emulator to test this in
action. This is a simple matter of replacing

capturePlayer = Manager.createPlayer("capture://audio");

with

capturePlayer = Manager.createPlayer("http://www.somesite.com/media/file.amr");

or

capturePlayer = Manager.createPlayer("file:///root1/file.wav");

or

capturePlayer =

Manager.createPlayer(getClass().getResourceAsStream("/test.amr"),"audio/amr");

or something similar, in any of the listings so far, and you can test the capture of existing media.

Figure 8-8. Storing captured audio on BenQ M75

6390ch08.qxd 3/24/06 11:58 AM Page 162

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO 163

Working with Video
A lot of the techniques discussed in the previous sections on audio apply to video as well
because of the way the MMAPI is defined. The interfaces remain the same; what you do with
the available data based on its type is the only thing that changes. For example, the methods
and procedures defined in the previous sections on capturing audio data can be applied to
video as well using the same RecordControl interface.

The major difference, of course, lies in the display of video. One special control,
VideoControl, is used for this purpose, and it's augmented by the precise control provided
by the FramePositioningControl control. VideoControl extends GUIControl, which is a generic
control provided in case MMAPI implementations wanted to provide other methods of con-
trolling and displaying GUI-based media data.

Displaying Video
VideoControl, which is the primary control for displaying video, is used to control how the video
looks when displayed in a MIDlet, including its positioning and screen focus. As you might
expect, the controls for playback, pause, rewind, and forward are provided by the underlying
Player instance methods, and are therefore, generic.

The video formats you can display depend on your MMAPI implementation. Most imple-
mentations support MPEG-4, but an increasing number support 3GPP as well. Some may support
proprietary formats. As you know, a full list of supported formats can be queried for by using
the getSupportedContentTypes(null) method of the Manager class, which returns not only the
supported formats for video, but the supported formats for all media types. With our target
devices, the BenQ M75 supports only the 3GPP and MP4 video formats, whereas the Motorola
C975 supports several formats, as you might recall from Chapter 2, Table 2-3, including 3GPP,
MP4, and RealVideo.

■Note MPEG-4 and MP4 mean the same thing. Similarly, video/mpeg4 and video/mp4 also define the
same content type, however, different implementations may or may not accept one content type over
another, so you have to test your videos to make sure the implementation accepts the content type. The
same applies to video/3gpp and video/3gp content types.

VideoControl provides several methods to control the display of your video. Most of these
methods provide control over the positioning of the video, but the main method that initializes
the display is the one inherited from GUIControl. This method, initDisplayMode(int mode,
Object arg) , provides the basis on which the video is displayed on the device screen. This
method must be called only once for each video display (otherwise an IllegalStateException
is thrown). Essentially, this method tells the implementation how you plan to display your video:
as an embedded item in a Form or an independent display in a Canvas.

With MIDlet development, this is a powerful choice, and you are given the option to display
your video in either a high-level, consistent environment (Form), or a low-level, precise display
(Canvas). When added to a Form, the video is just another item in the display, whereas in a Canvas,
you can work with the video and have more control over its positioning and display, including
access to the Graphics object.

6390ch08.qxd 3/24/06 11:58 AM Page 163

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO164

This choice is expressed using the mode argument. There are two valid constant values defined
in the current specification for this argument: USE_GUI_PRIMITIVE and USE_DIRECT_VIDEO. The
former is defined in the GUIControl interface, and you use this value when you want to embed
your video in a Form. The latter is defined in the VideoControl interface, and you use it when you
want to embed video in a Canvas. Because VideoControl extends GUIControl, it also gets to use
the USE_GUI_PRIMITIVE mode. By defining USE_GUI_PRIMITIVE in the GUIControl interface, the
option is left open for other GUI-based controls to use this mode.

The name USE_GUI_PRIMITIVE suggests that the video must be displayed on a primitive GUI.
This is true, and the actual GUI component on which the video will be displayed is returned by
the initDisplayMode() method. For Liquid Crystal Display User Interface (LCDUI), it returns
an Item object, which can be attached to a Form instance using the append() method. For other
environments (for example, CDC, which supports the Abstract Windows Toolkit), it returns
a java.awt.Component object. When the mode is USE_DIRECT_VIDEO, the method returns null,
because the object on which the video must be displayed is specified by the second parameter
to the initDisplayMode() method, and it must be of the Canvas type (or a subclass). For USE_GUI
_PRIMITIVE mode, this second parameter can either be null or the fully qualified class name of
a GUI primitive (such as java.awt.component if available).

Listing 8-8 creates a MIDlet that allows you to display video on either a Canvas or a Form.

Listing 8-8. Display Video in a Form or a Canvas

package com.apress.chapter8;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import javax.microedition.media.*;

import javax.microedition.media.control.*;

public class DisplayVideoMIDlet extends MIDlet implements CommandListener {

// the list to show the choice - form or canvas

private List list = null;

// the canvas to display the video on

private Canvas canvas = null;

// the form to add the video to

private Form form = null;

// a string item to add to form

private StringItem descriptionItem = null;

// the video player

Player player = null;

// commands

private Command backCommand = null;

private Command exitCommand = null;

6390ch08.qxd 3/24/06 11:58 AM Page 164

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO 165

// alert to show messages on

private Alert alert = null;

// and the display

private Display display = null;

// a flag to indicate error

private boolean error = false;

public DisplayVideoMIDlet() {

// create the visual elements

display = Display.getDisplay(this);

exitCommand = new Command("Exit", Command.EXIT, 1);

backCommand = new Command("Back", Command.ITEM, 1);

// VideoCanvas is a non public class in this file

canvas = new VideoCanvas();

canvas.addCommand(exitCommand);

canvas.addCommand(backCommand);

canvas.setCommandListener(this);

// create the form and add items and commands to it

form = new Form("Video Form", null);

descriptionItem = new StringItem("Desc: ", "Sydney Harbour - Bad audio");

form.append(descriptionItem);

form.addCommand(exitCommand);

form.addCommand(backCommand);

form.setCommandListener(this);

// create the list

list = new List("Pick One", List.IMPLICIT);

list.append("Play Video on Form", null);

list.append("Play Video on Canvas", null);

list.addCommand(exitCommand);

list.setCommandListener(this);

// and an alert for errors

alert = new Alert("Error");

}

public void startApp() {

if(error) return;

display.setCurrent(list); // show the list if no errors

}

public void pauseApp() {

}

6390ch08.qxd 3/24/06 11:58 AM Page 165

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO166

public void destroyApp(boolean unconditional) {

// close the player instance

try {

if(player != null) player.close();

} catch(Exception e) {

error(e);

}

}

public void commandAction(Command cmd, Displayable disp) {

// if exit

if(cmd == exitCommand) {

destroyApp(true);

notifyDestroyed();

} else if(cmd == backCommand) { // if the user clicks back

// close the player instance

try {

if(player != null) player.close();

} catch(Exception e) {

error(e);

}

// display the list

display.setCurrent(list);

// and return

return;

}

// implicit list handling

try {

// first load the Player instance

loadPlayer();

if(list.getSelectedIndex() == 0) { // form video

// extract the GUIControl

GUIControl guiControl = (GUIControl)player.getControl(

"javax.microedition.media.control.GUIControl");

// if not found, throw error

if(guiControl == null) throw new Exception("No GUIControl!!");

6390ch08.qxd 3/24/06 11:58 AM Page 166

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO 167

// add as a video item by initializing it to use GUI Primitive

Item videoItem =

(Item)guiControl.initDisplayMode(

GUIControl.USE_GUI_PRIMITIVE, null);

// insert at first place

form.insert(0, videoItem);

// show the form

display.setCurrent(form);

// finally start the player instance

player.start();

} else { // canvas video

// grab the videocontrol

VideoControl videoControl = (VideoControl)player.getControl(

"javax.microedition.media.control.VideoControl");

// if not found throw error

if(videoControl == null) throw new Exception("No VideoControl!!");

// initialize to use direct video and show on canvas

videoControl.initDisplayMode(VideoControl.USE_DIRECT_VIDEO, canvas);

// make sure it is displayed full screen

// not all devices support this, if your device is having trouble

// showing the video, comment this line

videoControl.setDisplayFullScreen(true);

// must make the control visible

videoControl.setVisible(true);

// now show the canvas

display.setCurrent(canvas);

// and start the player

player.start();

}

} catch(Exception e) {

error(e);

}

}

private void loadPlayer() throws Exception {

6390ch08.qxd 3/24/06 11:58 AM Page 167

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO168

// loads the Player on this MP4 file.

// IMPORTANT: Change content type here for C975 to video/mp4

// and M75 to video/mpeg4 or use Netbeans device fragmentation

// feature

player = Manager.createPlayer(

getClass().getResourceAsStream(

"/media/video/chapter8/sydharbour.mp4"), "video/mpeg4");

player.realize();

}

// general purpose error method, displays onscreen as well to output

private void error(Exception e) {

alert.setString(e.getMessage());

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert);

e.printStackTrace();

error = true;

}

}

// VideoCanvas that is the container for the video

class VideoCanvas extends Canvas {

public void paint(Graphics g) {

// does nothing..

}

}

■Tip If you have trouble running this video, comment out the line that sets the video to full screen mode.
Many devices don’t support full screen mode and throw a MediaException.

When the MIDlet is run, it gives you two choices: either run your video in a Form or run it
in a Canvas. The user's choice is handled in the commandAction() method, which realizes a Player

instance with the said video by calling the loadVideo() method. This is done each time the
choice is made, because once initialized with the display mode, the same Player instance
can't be reinitialized with the initDisplayMode() method. This is also the reason why each
Player instance is closed when the user presses the Back button.

You'll notice that for the Form video, the control extracted from the Player instance is
of the type GUIControl. Although correct, this is not necessary. Instead, you should extract
VideoControl each time a video Player instance is created. Recall that VideoControl extends
GUIControl, so if you wanted to add your video to a Form instance, you can still initialize it by
using the initDisplayMode() method and passing it the inherited constant USE_GUI_PRIMITIVE.
Further, by using VideoControl, you get access to the positioning methods of this control as
well (although how useable they may be considering that the video is embedded in a Form object
is another matter).

6390ch08.qxd 3/24/06 11:58 AM Page 168

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO 169

Finally, note that when displayed in a Canvas, the setVisible(true) method of the
VideoControl must be called for the video to be displayed. By calling the same method with
a value of false, you can make the video disappear.

Figure 8-9 shows this MIDlet running in the Motorola C975 device.

Positioning Video and Controlling Volume
When you're playing back video, you not only get access to the VideoControl, but because there
is likely to be an audio component in the video as well, you also get access to all the controls
that are accessible to sampled audio media data. Thus, you can easily set the volume or change
the pitch of the accompanying audio, provided these controls are exposed.

Changing the volume or the pitch is one thing, and positioning the video is another.
To position your video in a Canvas, you need to use the positioning methods provided by
VideoControl. These methods, setDisplayLocation(int x, int y), setDisplaySize(int width,
int height), and setDisplayFullScreen(boolean fullScreenMode) , are only applicable when
using direct video on a Canvas (with the USE_DIRECT_VIDEO mode). On a Form, you are restricted
by the amount of screen space that the underlying implementation allocates to Form items,
and these methods usually return without doing anything.

You can query the size and position of your video by using the size and positioning meth-
ods, such as getDisplayHeight(), getDisplayWidth(), getDisplayX(), and getDisplayY(). If
you change the position and size of your video to fit in any way on your canvas, you can use
the getSourceWidth() and getSourceHeight() methods to find out the actual width and height
of your video.

Note that all the size and positioning methods work relative to the component on which
the video is displayed, such as a Canvas, and not relative to the device screen.

Listing 8-9 shows the code for a MIDlet that allows you to move your video in the vertical
space after displaying it in the center of the display screen. It also allows you to mute the vol-
ume by using the exposed VolumeControl.

Listing 8-9. Moving Video in Vertical Space and Muting Volume

package com.apress.chapter8;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import javax.microedition.media.*;

import javax.microedition.lcdui.game.GameCanvas;

Figure 8-9. Video playback on a canvas on the Motorola C975

6390ch08.qxd 3/24/06 11:58 AM Page 169

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO170

import javax.microedition.media.control.VideoControl;

import javax.microedition.media.control.VolumeControl;

public class MoveableVideoMIDlet extends MIDlet implements CommandListener {

// all the controls and containers

private Player player = null;

private VideoControl videoControl = null;

private VolumeControl volControl = null;

private MovableVideoCanvas canvas = null;

private Command exitCommand = null;

private Command stopAudioCommand = null;

private Display display = null;

private Alert alert = null;

private boolean error = false;

public MoveableVideoMIDlet() {

// create the alerts, canvas and displays

display = Display.getDisplay(this);

alert = new Alert("Error");

exitCommand = new Command("Exit", Command.EXIT, 1);

alert.addCommand(exitCommand);

alert.setCommandListener(this);

// load the Player and then the Volume and VideoControl

try {

// change content type for different devices, mp4 for C975, mpeg4 for M75

player = Manager.createPlayer(getClass().getResourceAsStream(

"/media/video/chapter8/sydharbour.mp4"), "video/mp4");

player.realize();

// realize the two controls

videoControl = (VideoControl)player.getControl(

"javax.microedition.media.control.VideoControl");

volControl = (VolumeControl)player.getControl(

"javax.microedition.media.control.VolumeControl");

} catch (Exception e) {

error(e);

}

if(!error) {

6390ch08.qxd 3/24/06 11:58 AM Page 170

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO 171

// if no error, create the canvas and add commands to it

canvas = new MovableVideoCanvas();

canvas.setVideoControl(videoControl);

stopAudioCommand = new Command("Stop Audio", Command.SCREEN, 1);

canvas.addCommand(exitCommand);

canvas.addCommand(stopAudioCommand);

canvas.setCommandListener(this);

// initialize the VideoControl display

videoControl.initDisplayMode(VideoControl.USE_DIRECT_VIDEO, canvas);

// and position it in the center of the canvas

int halfCanvasWidth = canvas.getWidth()/2;

int halfCanvasHeight = canvas.getHeight()/2;

try {

videoControl.setDisplayFullScreen(false);

videoControl.setDisplaySize(halfCanvasWidth, halfCanvasHeight);

videoControl.setDisplayLocation(halfCanvasWidth/2, halfCanvasHeight/2);

videoControl.setVisible(true);

} catch(Exception e) {

error(e);

}

}

}

public void startApp() {

if(error) return;

try {

player.start();

} catch(Exception e) {

error(e);

}

display.setCurrent(canvas);

}

public void pauseApp() {

}

public void destroyApp(boolean unconditional) {

try {

if(player != null) player.close();

} catch(Exception e) { error(e); }

}

6390ch08.qxd 3/24/06 11:58 AM Page 171

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO172

public void commandAction(Command cmd, Displayable disp) {

if(cmd == exitCommand) {

destroyApp(true);

notifyDestroyed();

} else if(cmd == stopAudioCommand) { // if stop audio, mute VolumeControl

if(volControl != null) volControl.setMute(true);

}

}

// general purpose error method, displays onscreen as well to output

private void error(Exception e) {

alert.setString(e.getMessage());

alert.setTitle("Error");

display.setCurrent(alert);

e.printStackTrace();

error = true;

}

}

// MovableVideoCanvas that is the container for the video

class MovableVideoCanvas extends GameCanvas {

// VideoControl that will be managed

private VideoControl videoControl = null;

// distance to move

private int dx, dy = 2;

public MovableVideoCanvas() {

super(false); // do not supress key events

}

void setVideoControl(VideoControl videoControl) {

this.videoControl = videoControl;

}

public void paint(Graphics g) {

// clear the screen first

g.setColor(0xffffff);

g.fillRect(0, 0, getWidth(), getHeight());

// and flush off screen buffer to actual screen

flushGraphics();

}

public void keyPressed(int keyCode) {

6390ch08.qxd 3/24/06 11:58 AM Page 172

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO 173

// handles the user's interaction with the screen by capturing key press

int gameAction = getGameAction(keyCode);

int y = videoControl.getDisplayY();

// only move in vertical direction

if(gameAction == UP) {

y -= dy;

} else if(gameAction == DOWN) {

y += dy;

}

// set the new location of the video

videoControl.setDisplayLocation(videoControl.getDisplayX(), y);

// and repaint

repaint();

}

}

This listing uses a Canvas class that is extended from GameCanvas. This class has an offscreen
buffer that may help minimize flicker and is better for displaying video in a Canvas than the
generic Canvas class, especially when you are going to move the video around as is the case
here. When the user presses the Up or Down keys, the VideoControl is positioned and the screen
cleared and repainted to display the video in the new up or down location.

The stopAudioCommand is handled by using the exposed VolumeControl and setting it to mute
using the setMute() method of this control.

Figure 8-10 shows the resultant video in the Motorola C975 device.

Figure 8-10. Moving video around and muting audio

Capturing Video and Images
Capturing video is not terribly different from capturing audio, as you would expect, because
both use the same RecordControl control to achieve the result. However, with video, you can
also take a snapshot of a video. This is where capturing video differs from capturing audio: Tak-
ing a snapshot doesn’t require a RecordControl, but is accomplished using a method in
VideoControl.

6390ch08.qxd 3/24/06 11:58 AM Page 173

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO174

The getSnapshot() method in VideoControl allows you to take a snapshot of the image
that is playing on the device screen. Of course, because the getSnapshot() method is a method
of the VideoControl class, you can take an image of any video that is playing on a device screen,
not just captured video. The method returns the image data as a byte array, which you can then
manipulate in any way you want using the LCDUI Image class.

In this section, you'll apply the methods learned in the previous sections, including cap-
turing media data using RecordControl and displaying video using VideoControl. However, as
opposed to capturing audio, capturing and displaying video must be done simultaneously so
that the user can see what is actually being recorded.

So, can you just hook into the camera, without actually recording anything, to first show
the user the view through the video? Of course!

Looking Through the Viewfinder
As you may expect by now, the locator to hook into a device camera takes the form of capture://
video. This gives you a Player instance that returns video in the default format. The Motorola
C975 doesn’t support video capture, but the default (and the only) format supported by the
BenQ M75 device is video/3gpp.

■Note As you'll see shortly, even though the Motorola C975 device doesn’t support video capture, it allows
you to look through the viewfinder of the onboard camera (possibly because it supports camera snapshots).

After you have a Player instance hooked into a video camera, it’s a simple matter of extract-
ing a VideoControl from it to look through its viewfinder and display this video to the user. Note
that to look through a viewfinder, you need to use a VideoControl and not a RecordControl,
because you are not recording anything (yet).

As before, you can use a Canvas to display the video through the viewfinder to the user.
Because you are not going to move the video around, you can either use a GameCanvas or
a normal Canvas.

Listing 8-10 shows the code for plugging into the device’s viewfinder and displaying it on
a canvas. At this point, this is all the MIDlet does, but you'll extend it in the next sections to
take a snapshot and capture video.

Listing 8-10. Looking Through a Camera’s Viewfinder and Displaying Onscreen

package com.apress.chapter8;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import javax.microedition.media.*;

import javax.microedition.media.control.VideoControl;

public class CaptureVideoAndImageMIDlet extends MIDlet

implements CommandListener {

6390ch08.qxd 3/24/06 11:58 AM Page 174

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO 175

// initialize the player and the canvas

private CaptureVideoCanvas canvas = null;

Player capturePlayer = null;

// and the other variables

private Alert alert = null;

private Command exitCommand = null;

Display display = null;

private boolean error = false;

public CaptureVideoAndImageMIDlet() {

// create the display items

alert = new Alert("Message");

display = Display.getDisplay(this);

exitCommand = new Command("Exit", Command.EXIT, 1);

// create the video capture player

try {

capturePlayer = Manager.createPlayer("capture://video");

capturePlayer.realize();

// now create the canvas

canvas = new CaptureVideoCanvas(this);

canvas.addCommand(exitCommand);

canvas.setCommandListener(this);

} catch(Exception e) {

error(e);

}

}

public void startApp() {

// if error, return

if(error) return;

// start the player

try {

capturePlayer.start();

} catch(Exception e) { error(e); }

// and set the canvas as the current item on display

display.setCurrent(canvas);

}

6390ch08.qxd 3/24/06 11:58 AM Page 175

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO176

public void pauseApp() {

try {

if(capturePlayer != null) capturePlayer.stop();

} catch(Exception e) {}

}

public void destroyApp(boolean unconditional) {

if(capturePlayer != null) capturePlayer.close();

}

public void commandAction(Command cmd, Displayable disp) {

if(cmd == exitCommand) {

destroyApp(true);

notifyDestroyed();

}

}

// general purpose error method, displays onscreen as well to output

void error(Exception e) {

alert.setString(e.getMessage());

alert.setTitle("Error");

display.setCurrent(alert);

e.printStackTrace();

error = true;

}

}

// the canvas that holds the video

class CaptureVideoCanvas extends Canvas {

// the base midlet

CaptureVideoAndImageMIDlet midlet = null;

// the video control

private VideoControl videoControl = null;

public CaptureVideoCanvas(CaptureVideoAndImageMIDlet midlet)

throws Exception {

this.midlet = midlet;

// initialize the video control

videoControl =

(VideoControl)midlet.capturePlayer.getControl(

"javax.microedition.media.control.VideoControl");

6390ch08.qxd 3/24/06 11:58 AM Page 176

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO 177

// if not present, throw error

if(videoControl == null)

throw new Exception("No Video Control for capturing!");

// init display mode to use direct video and this canvas

videoControl.initDisplayMode(VideoControl.USE_DIRECT_VIDEO, this);

try { // try and set to full screen

videoControl.setDisplayFullScreen(true);

} catch(MediaException me) {

// but some devices may not support full screen mode

videoControl.setDisplayLocation(5, 5);

try {

videoControl.setDisplaySize(getWidth() - 10, getHeight() - 10);

} catch(Exception e) {}

repaint();

}

// and make the video control visible

videoControl.setVisible(true);

}

public void paint(Graphics g) {

// clear background

g.setColor(0xffffff);

g.fillRect(0, 0, getWidth(), getHeight());

// and draw a rectangle with a different color

g.setColor(0x44ff66);

g.drawRect(2, 2, getWidth() - 4, getHeight() - 4);

}

}

When the CaptureVideoCanvas is created, it uses the MIDlet’s capturePlayer to extract
the VideoControl. CaptureVideoCanvas then initializes this control and tries to set the control
to display full screen. If that fails, a display is created that is bounded by a rectangle through
the paint() method. As you can see, the listing doesn’t require RecordControl to plug in
to the camera’s viewfinder and just uses the VideoControl control exposed by the camera
Player instance.

If you run this listing in the Sun’s DefaultColorPhone emulator, you'll get a simulated
video capture as can be seen in Figure 8-11.

6390ch08.qxd 3/24/06 11:58 AM Page 177

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO178

Of course, the actual devices don’t give simulated but actual views, as can be seen in
Figure 8-12. Also note the difference in Figures 8-11 and 8-12 with regard to the screen size.
The emulator doesn’t support full-screen display (through the setDisplayFullScreen() method)
whereas the devices do.

Taking Snapshots
Taking a snapshot is now easy, given that you only need to use the getSnapshot(String
imageFormat) method of the VideoControl control. The format of the desired image can be
specified using the encoding strings that your device supports, but if you just want the default
format, then pass a null value. Both the Motorola C975 and BenQ M75 devices support jpeg
(or image/jpeg), and this is the only option supplied.

Let’s now modify Listing 8-10 and add code that will take a snapshot when the user
presses the Action key (also called the Fire key). To accomplish this, the listing needs to add the
keyPressed(int keyCode) method to the CaptureVideoCanvas class. This method is shown here:

Figure 8-11. Simulated video capture on Sun’s DefaultColorPhone emulator

Figure 8-12. Looking through the viewfinder in BenQ M75 and Motorola C975 devices

6390ch08.qxd 3/24/06 11:58 AM Page 178

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO 179

public void keyPressed(int keyCode) {

// see what game action key the user has pressed

int key = getGameAction(keyCode);

// if fire, take a snapshot

if(key == FIRE) {

try {

// use the control to take the picture, using the default encoding

byte[] imageArray = vControl.getSnapshot(null);

// create an image using the LCDUI Image class

Image image = Image.createImage(imageArray, 0, imageArray.length);

// make this image a part of an Alert

Alert imageAlert =

new Alert("Snapshot", "", image, AlertType.INFO);

// show this alert for 5 seconds

imageAlert.setTimeout(5000);

// and show this alert

midlet.display.setCurrent(imageAlert);

} catch(Exception e) {

midlet.error(e);

}

}

}

After taking the byte array that the getSnapshot() method creates, this method creates
an image using the createImage() method of the Image class (from LCDUI). After this, it really
depends on what you want to do with this image. You can save it to a local file system as you
saw in the saving audio section, send it to a remote server via HTTP, or as I've done here, sim-
ply attach it to an Alert object and show the user the captured image for five seconds.

Note that when the device executes the getSnapshot() method, it requires permission from
the user for taking the image. This permission is javax.microedition.media.control.VideoControl.
getSnapshot and can be requested in the MIDlet’s JAD file, as you saw in Chapter 5.

Capturing Video Clips
Video clips are captured by acquiring a RecordControl on the camera Player instance, and
then following the principles discussed in the “Capturing Audio” section. Of course, after the
video is captured, you may need to display it to the user, which requires either a video Canvas
or a Form, the same concepts discussed in displaying video. The following code snippet is added
to Listing 8-10 and allows the user to start and stop recording clips by pressing the Up and
Down keys on a device. Displaying the clip to the user is left as an exercise for you.

6390ch08.qxd 3/24/06 11:58 AM Page 179

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO180

■Note The listing adds some new variables that are not in the original listing. The source code contains
the full code in the Downloads section of the Apress Web site at http://www.apress.com.

} else if(key == UP) {

// start recording

try {

// grab a record control

rControl = (RecordControl)midlet.capturePlayer.getControl(

"javax.microedition.media.control.RecordControl");

// if not found, throw exception

if(rControl == null) throw new Exception("No RecordControl found!");

// create a ByteArrayOutputStream to store this recorded data in

bos = new ByteArrayOutputStream();

// set up the stream

rControl.setRecordStream(bos);

// and start recording - no need to start the underlying player

// as it is already started

rControl.startRecord();

// set flag

recording = true;

} catch(Exception e) {

midlet.error(e);

}

} else if(key == DOWN) {

try {

rControl.stopRecord();

rControl.commit();

// do what is required with the byte array now, save it, display to user

// or discard

// reset the recording flag

recording = false;

} catch(Exception e) {

midlet.error(e);

}

}

6390ch08.qxd 3/24/06 11:58 AM Page 180

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO 181

This code snippet is added to the keyPressed() method of the CaptureVideoCanvas, along
with the FIRE key event discussed in the previous section, to capture snapshots.

Seeking Video Frames with FramePositioningControl
Recall from Chapter 3 that you can fast forward or rewind through a Player instance by using
the setMediaTime() method. With video media data, there is another way to go forward or back
and that is by using the FramePositioningControl control, which allows you to seek individual
frames within this data. Both methods of seeking data inherently do the same thing, that is,
move the media time.

The FramePositioningControl control provides a simple way to seek frames by using the
method seek(int frameNumber). This method doesn’t throw any exceptions, which may be
surprising considering that you could pass it any arbitrary value. However, if you pass it a neg-
ative value, the video stops at the first frame (the 0th frame); if you give it a value larger than the
number of frames in the video, it stops at the last frame. Of course, if the video stops playing
because it has reached the last frame, the Player state transitions from STARTED to STOPPED,
and the right event is broadcast to registered listeners.

When the frame seek operation is done, you can query the current media time of the video
by using the getMediaTime() method of the Player instance, which is updated by the seek()
method to reflect time at the new frame. You can skip frames using the skip(int framesToSkip)
method, which works similar to the seek() method. The difference is that if skip() is called on
a Player instance that is in the STARTED state, then the number of frames that will be skipped
cannot be known to an exact degree because a STARTED Player instance is in the process of
changing frames when the method is called.

This control also provides methods to convert media time to frame numbers and vice
versa. This is useful when you don’t actually want to transition to a new frame, but just want to
calculate the media time between different frames. You can use the methods mapTimeToFrame
(long mediaTime) and mapFrameToTime(int frameNumber) as required. Both these methods will
return -1 if mapping is unsuccessful and use microseconds (not milliseconds) as the unit of
time measurement.

Streaming Media
Most of you are familiar with streaming media over the Internet. When you play video or audio
from a favorite multimedia site, you are streaming media, which in many cases is based on HTTP.
Streaming media occurs when the media data isn’t downloaded on the host computer, but
only sections of it are, leading to on-demand and live broadcast. Streaming media via HTTP is
inefficient and doesn’t allow seeking operations because it’s based on TCP. Most professional
streaming media solutions rely on the Real Time Transport Protocol (RTSP), which is User
Datagram Protocol (UDP) based. Many MMAPI implementations support RTSP for streaming
data, so in this section, you’ll learn how to use it.

Note that when you create a Player instance with an HTTP-based locator, depending on
the media type, it may resort to streaming as well, instead of downloading the entire contents.
HTTP-based streaming doesn’t preclude the idea of actually streaming the contents, it's just that
it is inefficient.

6390ch08.qxd 3/24/06 11:58 AM Page 181

To plug into streaming data, you need to work with a streaming server. Specialized
servers abound, including RealTime Server (http://www.realnetworks.com), Apple’s Darwin
streaming server (http://developer.apple.com/darwin/projects/streaming/), and Helix (http://www.
helixcommunity.org). For the example in this section, the streaming service provided by the
BBC’s live radio broadcast (http://www.bbc.co.uk/radio/) is used.

A streaming media Player instance is created by using the special locator string:
rtsp://<path-to-server>/<path-to-file-on-server>. Thus, RTSP is the protocol, but the rest
of the locator string resembles HTTP for accessing files.

Sadly, not many devices support RTSP, including the Motorola C975 (even though it says it
does) and BenQ M75. However, you can use Listing 8-11 to run in any device that does support it,
and tune into the BBC service.

Listing 8-11. Streaming Media over the Network

package com.apress.chapter8;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import javax.microedition.media.*;

public class StreamingMediaMIDlet extends MIDlet {

private Player player = null;

private Display display = null;

private Alert alert = null;

private boolean error = false;

public StreamingMediaMIDlet() {

display = Display.getDisplay(this);

alert = new Alert("Message");

// try and create a Player instance for RTSP

try {

player = Manager.createPlayer(

"rtsp://rmv8.bbc.net.uk/radio1/lockup.ra");

if(player == null)

throw new Exception("Could not create player for streaming");

player.realize();

} catch(Exception e) {

error(e);

}

}

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO182

6390ch08.qxd 3/24/06 11:58 AM Page 182

public void startApp() {

if(error) return;

try {

player.start();

} catch(Exception e) {

error(e);

}

alert.setString("Playing streaming radio from BBC");

display.setCurrent(alert);

}

public void pauseApp() {

}

public void destroyApp(boolean unconditional) {

if(player != null) player.close();

}

// general purpose error method, displays onscreen as well to output

private void error(Exception e) {

alert.setString(e.getMessage());

alert.setTitle("Error");

display.setCurrent(alert);

e.printStackTrace();

error = true;

}

}

As you can see, there is nothing of note in this code, and you have learned to create Player

instances like this several times over. This is the beauty of the MMAPI implementation because it
permits several protocols and formats to be played using similar coding techniques.

Finally, note that the radio streaming via the BBC service uses the Real Networks real audio
file for streaming. This means that the device you run this MIDlet on must not only support RTSP,
but be able to recognize and play the real audio content type as well. Of course, this media for-
mat doesn’t have to be real audio, and can be any other audio or even video format. For video
streaming data, you can easily create a VideoControl on the data and display it to the user, as
you have learned to do in the “Working with Video” section of this chapter. You can even create
a RecordControl on this data, and record it to the local file system, as discussed in the “Capturing
Audio” and “Capturing Video and Images” sections. It just depends on what options are avail-
able to your device.

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO 183

6390ch08.qxd 3/24/06 11:58 AM Page 183

CHAPTER 8 ■ WORKING WITH AUDIO AND VIDEO184

Summary
This chapter should have brought one point to the forefront about MMAPI: It truly is protocol
and format agnostic. Different devices support different formats and protocols, but the basics
of using these varied formats and protocols remain the same.

This chapter brought to a conclusion the discussion on the various media types that are
supported by MMAPI by focusing on the two main types: audio and video. You learned to query,
display, control, record, save, and stream these two types using a variety of examples. You also
saw the frailty of the MMAPI implementations currently present in the development world. In
fact, I had to change devices midstream because one of the chosen devices didn’t do what it
was supposed to do. This is an important lesson: Test all code in the chosen device!

The next and final chapter will show you a case study that covers some of the concepts
discussed so far to create an audio, image, and video blogging MIDlet.

6390ch08.qxd 3/24/06 11:58 AM Page 184

Case Study: Device Blogging

If you haven’t been bit by the blogging bug yet, then blogging from your mobile phone is sure
to make you give this exciting technology a try. Blogging allows you to post your ideas, experi-
ences, and thoughts in an online journal-like medium, allowing for instantaneous access to the
entire world. Couple this with integrated multimedia blogs and, in the case of mobile blogging,
anywhere, anytime access, and you provide a richer, more involved user experience.

This chapter is a case study that details how to bring together the knowledge that you
have gained in the rest of the book, especially concerned with audio/video/image capture and
playback using MMAPI, and put that knowledge to good use by building a mobile blogging MIDlet
called Device Blog. Device Blog will allow you to blog text-, audio-, image-, and video-based blog
entries directly from your mobile phone or device.

About the Companion Web Site
Creating a mobile blogging application without an actual live Web site against which you can
practice is not much fun. The issues that arise in posting blog entries to the server may not
impact much on your knowledge of MMAPI, but it’s nonetheless instructive to test your ideas
in a live environment. Therefore, the companion Device Blog site, which is a very simple blog
entries display site, lists the entries posted to it in a sequential order, along with any multimedia
components. You can test the Device Blog MIDlet that you will build in this chapter against this
site at http://www.mmapibook.com/deviceblog/index.jsp.

Besides the index page, the Device Blog site also contains other Java Server Page (JSP)
based files, which allow a user to register, log in, and post entries to it. These pages are meant
to be accessed from a mobile device, but to keep things simple, no checks are done if requests
are made from other direct sources as well.

The Finished MIDlet in Action
Before you learn to build the Device Blog MIDlet, take a look at the final views in some of the
devices as shown in the upcoming figures. This storyboard of sorts will also serve as a Use
Case for this MIDlet application.

185

C H A P T E R 9

■ ■ ■

6390ch09.qxd 3/24/06 11:58 AM Page 185

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING186

Figure 9-1. Starting the Device Blog MIDlet

Figure 9-2. Registering with the Device Blog Web site

MIDlet Startup
At startup, the MIDlet presents three choices to the user: Login, Register, and Create Blog
Entry. This is shown in Figure 9-1 across the Motorola C975 device, the BenQ M75 device, and
Sun’s DefaultColorPhone emulator.

Registering with the Device Blog Web Site
The user can choose to register with the Device Blog server by selecting the Register option. The
link to register is supplied in the MIDlet’s JAD file as a system property: http://www.mmapibook.
com/deviceblog/register.jsp. When the user selects the Register option, the screen shown in
Figure 9-2 appears.

The user enters the desired values, which are just the username and password (with a confirm
password field as well), to keep things simple and interaction fast.

Of course, because the mobile device interacts with the server, access over the Internet is
required and permission from the user is requested, as shown in Figure 9-3. This applies not
just for registration, but for logging in and posting blog entries as well.

6390ch09.qxd 3/24/06 11:58 AM Page 186

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING 187

Figure 9-3. Accessing the Internet requires user permission.

Figure 9-4. Logging on to the Device Blog Web site

The server sends back messages such as “Registered” for successful registration, “Username
exists” for duplicate usernames, and any other error messages for protocol or network issues.
Internet access is not attempted for nonmatching passwords and incomplete fields, which are
handled at MIDlet level.

Logging in to Device Blog Web Site
After a successful registration, the user can log in. Note that the user cannot create a blog entry
(the third option in Figure 9-1) until the user has registered and/or logged in first. The login
screens are shown in Figure 9-4.

As you may notice, the login and registration screens look remarkably similar; this common
interface keeps things simple.

The login URL is http://www.mmapibook.com/deviceblog/login.jsp and is read from the
MIDlet’s JAD file.

The server’s response will be either “Logged In”, “Username not found. Please register”, or
“Invalid Password!”, as the case may be. Figure 9-5 shows the screens for a successful login.

6390ch09.qxd 3/24/06 11:58 AM Page 187

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING188

Creating and Posting Blog Entries
By selecting the Create Blog Entry option, the user is presented with another screen where the
choices allow the user to create one of four types of entries: Text Only, Audio, Image, and Video
(see Figure 9-6).

Of course, not all phones support all the options, especially, video. The user is informed of
this when selecting this option, as shown in Figure 9-7 on the Motorola C975 device, which as
you may recall from Chapter 8, doesn’t support video recording.

As you may recall, the Sun DefaultColorPhone emulator doesn’t support video recording
either, and you’ll get the same message in that if you select the video option.

Figure 9-5. Successful login to the Device Blog Web site

Figure 9-6. Selecting the entry type for posting to the Device Blog Web site

Figure 9-7. Video recording is not supported on Motorola C975.

6390ch09.qxd 3/24/06 11:58 AM Page 188

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING 189

Text Only
The text only option is the simplest and allows the user to write a title and an associated message
as shown in Figure 9-8.

After the user selects the OK menu option, a preview of the entry appears as shown in
Figure 9-9.

At this point, the user can discard this entry, edit the text again, or post the entry to the
server. These choices are the same throughout and apply to all types of blog entries. These
choices are shown in Figure 9-10 in Sun’s DefaultColorPhone emulator.

Figure 9-8. Creating a text-only entry

Figure 9-9. Preview the text-only blog entry.

6390ch09.qxd 3/24/06 11:58 AM Page 189

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING190

Choosing Edit Text takes the user back to the screen shown earlier in Figure 9-8. Choosing
Discard Entry takes the user to the startup screen. Finally, Post Entry makes the connection to
the server and posts the entry.

The URL for posting entries is picked up from the JAD file: http://www.mmapibook.com/
deviceblog/postentry.jsp. The resultant message is shown to the user on the screen; for a suc-
cessful post, it reads “Posted”. At this point, the startup screen is shown to the user.

As expected, these choices and actions remain the same for any type of blog entry.

Audio
Recording audio requires permission from the user; therefore, before the record audio screen
is shown, the MIDlet shows the permissions screen (see Figure 9-11).

Figure 9-10. User presented with blog entry choices

Figure 9-11. Getting permission from the user for recording audio

6390ch09.qxd 3/24/06 11:58 AM Page 190

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING 191

Of course, all three media types require the user to grant these permissions. The user has
the choice of granting the permissions only once or for the session, in which case, he won’t be
prompted for them again.

After the permission is given, the recording canvas is shown, which automatically starts
recording audio and doesn’t finish until the user selects the Done menu item. These two stages
are shown in Figure 9-12 on the Motorola C975 device.

As you can see, when the user presses the Done menu item, the device previews the recorded
audio by playing it back. At this point, the user can discard the entry, add text to it by selecting edit
text, or post it to the server; the same choices that were discussed in the last section.

Image
For image recording and previewing, first the user is shown the viewfinder of the onboard
camera and then shown the associated snapshot that is taken when the user presses the Done
menu item. This process is shown in Figure 9-13 on the Motorola C975 device and in Figure 9-14
on the BenQ M75 device.

Figure 9-12. Recording and previewing audio on the Motorola C975 device

Figure 9-13. Capturing and previewing images on the Motorola C975 device

6390ch09.qxd 3/24/06 11:58 AM Page 191

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING192

The user choices at this point remain the same as described in the previous sections.

Video
Video capture via MMAPI is not supported on too many devices. Fortunately, the BenQ M75
does support it in a limited way. Figure 9-15 shows the video capture and preview process in
this device.

As expected, the options at this point remain the same: Discard Entry, Edit Text, or Post Entry.

Creating the MIDlet Design
To create the finished MIDlet’s client application using the storyboard ideas penned in the last
section, I’m using the Model-View-Controller (MVC) pattern, popularized by the Struts Web
framework. Generalizations and modifications to this pattern need to be made, however, to
keep the realities of development on small devices in check.

The Model
Based on what you know so far, a fair crack at building the model for the Device Blog can be
attempted. This model is shown in Figure 9-16 using Unified Modeling Language (UML).

Figure 9-15. Capturing and previewing video on the BenQ M75 device

Figure 9-14. Capturing and previewing images on the BenQ M75 device

6390ch09.qxd 3/24/06 11:58 AM Page 192

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING 193

A BlogEntry interface sits at the top of this model and defines the characteristics of any
entry created in this MIDlet. It mandates four self-explanatory methods that must be imple-
mented by its implementations.

The TextBlogEntry class is the only implementation for this interface in this model and
provides representation for blog entries that are only textual in nature, without any associated
media parts. MediaBlogEntry, which extends the TextBlogEntry class, adds the media part, but
is an abstract class. Concrete implementations include representation for each of the three
different types of blog entries: AudioBlogEntry, ImageBlogEntry, and VideoBlogEntry. Each of
the media blog entries gets a textual part and a media part.

These are not the only classes in the model. You need something to represent the user of
the MIDlet and a class to model the server. These two classes are shown in Figure 9-17.

<<interface>>
BlogEntry

+getUser()
+getDateTimePosted() : long
+getEntryTitle() : String
+getEntryMessage() : String

TextBlogEntry

-entryMessage : String
-entryTitle : String
-dateTimePosted : long

MediaBlogEntry

-mediaData : byte []

ImageBlogEntryAudioBlogEntry VideoBlogEntry

Figure 9-16. Model for the Device Blog MIDlet application

6390ch09.qxd 3/24/06 11:58 AM Page 193

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING194

The View
The view of this MIDlet consists of the various Form and Canvas instances that interact with the
user, along with a few List elements. These instances are generalized in this MIDlet to arrive
at a common set of functionalities.

The List instances are easy to conceptualize. Only two areas require lists: at MIDlet
startup (refer to Figure 9-1) and at the time of presenting the blog creation choice to the user
(refer to Figure 9-6). These lists follow the same theme of presenting a list, using implicit list
handling for commands, and providing a similar set of commands. Therefore, a GenericList is
created, and the actual lists derive from this class. The UML diagram for these lists is shown in
Figure 9-18.

BlogServerUser

-registerURL : String
-loginURL : String
-postEntryURL : string

-username : String
-password : String

+isLoggedIn()
+login()
+register()

Figure 9-17. User and BlogServer classes round up the Device Blog model.

GenericList

-backCommand
-exitCommand

List

StartupList ActionList

Figure 9-18. Bundling together common functionalities of a List

6390ch09.qxd 3/24/06 11:58 AM Page 194

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING 195

The same concept applies to the login and registration Form instances, common function-
ality of which can be put together in a GenericForm class. This class adds the commands OK,
Exit, and Back, and classes that derive from this class can add their own Form items and behav-
iors. The UML for this structure is shown in Figure 9-19.

Two sets of views remain to be created: one set for editing blog entries and one for preview-
ing them. For editing (as with preview), it’s useful to define a common set of functionalities
and behaviors for the view that work similarly across all implementations. With this in mind,
EditableDisplay is created as an interface that has only one method called showDisplay(). All
implementations are then free to create their own way of handling the editable parts of the
display by providing an implementation for the showDisplay() method. For textual entries, it’s
essential to provide a Form-based view, whereas others may provide Canvas-based views. The
UML for the editing set of classes is shown in Figure 9-20.

GenericForm

-backCommand
-exitCommand
-okCommand

Form

LogonForm RegisterForm

Figure 9-19. Bundling together common functionalities of a Form

6390ch09.qxd 3/24/06 11:58 AM Page 195

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING196

As you can see, two abstract classes implement the EditDisplay interface. These classes
are EditForm, which extends the Form class and provides the base class for editing textual blog
entries, and EditCanvas, which extends the Canvas class and provides the base class for editing
media blog entries.

Similarly, the set of view classes for previewing blog entries can be created. However, no
separate distinction needs to be made between text- and media-based entries because every-
thing is to be displayed on a Canvas. These set of classes are shown in Figure 9-21.

EditForm

-okCommand
-exitCommand

Form

TextEditForm

EditCanvas

-okCommand
-exitCommand

Canvas

ImageEditCanvas

VideoEditCanvas AudioEditCanvas

<<interface>>
Editable Display

+showDisplay()

Figure 9-20. Defining the blog editing set of classes in the Device Blog MIDlet

6390ch09.qxd 3/24/06 11:58 AM Page 196

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING 197

As you can see, the PreviewCanvas abstract class encapsulates the behavior by providing
the commands that are required at this stage of the view in this MIDlet. What remains is for the
subclasses to provide an implementation of the showCanvas() method to display to the user
a preview of the blog entry as the subclasses deem fit.

The Control
The control in this MVC pattern is made up of two classes: the BootstrapMIDlet and a special-
ized class called the Controller. The Controller class handles the interactions between the
view and the model and generally keeps things moving by providing resources, action and error
screens, and so on. The BootstrapMIDlet, as denoted by the name, is the class that starts this
MIDlet application initially. Figure 9-22 shows these two classes.

PreviewCanvas

-postEntryCommand
-discardEntryCommand
-editTextComand
-exitCommand

+showCanvas()

Canvas

AudioPreviewCanvas ImagePreviewCanvasTextPreviewCanvas VideoPreviewCanvas

Figure 9-21. Defining the blog preview set of classes

6390ch09.qxd 3/24/06 11:58 AM Page 197

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING198

Two other utility classes, NetworkRunner and URLEncoder, do not fit in any of the classifications
so far. NetworkRunner provides network connections that are run via a single thread, whereas
URLEncoder is used to encode the URL query strings.

Creating the MIDlet Code
The previous section provided an idea of what classes are required to create the Device Blog
MIDlet application. Let’s start by creating the classes of the model, which should be fairly easy
because they are essentially Plain Old Java Objects (POJOs).

Creating the Model Classes
The model classes include the BlogEntry interface and its sole implementation, TextBlogEntry,
which is then extended by the abstract class MediaBlogEntry. The AudioBlogEntry, ImageBlogEntry,
and VideoBlogEntry then provide implementations for this class to represent audio, image,
and video blog entries, respectively.

Listing 9-1 shows the code for the BlogEntry interface.

Controller

+start()

-creates1

1

MIDlet

BootstrapMIDlet

Runnable CommandListener

Figure 9-22. The control classes of the Device Blog MIDlet

6390ch09.qxd 3/24/06 11:58 AM Page 198

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING 199

Listing 9-1. BlogEntry Interface for All Types of Blog Entries

package com.apress.chapter9.model;

/**

* BlogEntry is the interface that represents the blog entries as a model

*/

public interface BlogEntry {

/**

* The user who is posting this entry

*/

public User getUser();

/**

* The DateTime when the entry was posted

*/

public long getDateTimePosted();

/**

* The title of this entry, if any

*/

public String getEntryTitle();

/**

* The message of this entry, if any

*/

public String getEntryMessage();

}

Listing 9-2 shows the code for TextBlogEntry.

Listing 9-2. TextBlogEntry Represents All Entries That Have a Textual Component

package com.apress.chapter9.model;

/**

* TextBlogEntry implements BlogEntry and represents a TextEntry for the Blog.

* It also acts as a base class for other media type entries.

*/

public class TextBlogEntry implements BlogEntry {

// the title of this entry, if any

private String entryTitle = null;

6390ch09.qxd 3/24/06 11:58 AM Page 199

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING200

// the message of this entry, if any

private String entryMessage = null;

// the time this entry was posted

private long dateTimePosted = 0;

// the user who is making this entry

private User user = null;

public TextBlogEntry(User user) {

this.user = user;

}

// getter and setters for entry title and message

public String getEntryTitle() { return this.entryTitle; }

public void setEntryTitle(String entryTitle) {

this.entryTitle = entryTitle;

}

public String getEntryMessage() { return this.entryMessage; }

public void setEntryMessage(String entryMessage) {

this.entryMessage = entryMessage;

}

// time posted is immutable

public long getDateTimePosted() {

return this.dateTimePosted;

}

// the user who is posting this entry

public User getUser() {

return this.user;

}

}

Notice that the getDateTimePosted() method has only a getter method and is therefore
immutable. This makes sense, because once posted, you wouldn’t want to change this value.
Also note that this value is stored as a long type.

Listing 9-3 shows the code for the MediaBlogEntry abstract class.

Listing 9-3. MediaBlogEntry Represents Blog Entries That Have a Media Component

package com.apress.chapter9.model;

/**

* This abstract class encapsulates all the blog entries that have a media

* component along with any text component. This is why it extends the

* TextBlogEntry class

*/

public abstract class MediaBlogEntry extends TextBlogEntry {

6390ch09.qxd 3/24/06 11:58 AM Page 200

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING 201

// the mediaData

protected byte[] mediaData = null;

// the contentType of the media

protected String contentType = null;

protected MediaBlogEntry(User user) {

super(user);

}

public byte[] getMediaData() { return this.mediaData; }

public void setMediaData(byte[] mediaData) { this.mediaData = mediaData; }

public String getContentType() { return this.contentType; }

public void setContentType(String contentType) {

this.contentType = contentType;

}

/**

* This method tries to guess the extension of the likely media data

* file that will be gauged from the content type of this data

*/

public String guessFileExtension() {

if(contentType == null || contentType.length() == 0) return "";

contentType = contentType.toLowerCase();

if(contentType.equals("audio/x-wav")) return "wav";

if(contentType.equals("audio/amr") ||

contentType.equals("audio/amr-nb") ||

contentType.equals("audio/amr-wb")) return "amr";

if(contentType.equals("jpeg") ||

contentType.equals("jpg") ||

contentType.equals("image/jpeg") ||

contentType.equals("image/jpg")) return "jpg";

if(contentType.equals("gif") ||

contentType.equals("image/gif")) return "gif";

if(contentType.equals("video/mpeg")) return "mpg";

if(contentType.equals("video/3gpp") ||

contentType.equals("video/3gp")) return "3gp";

return "unknown";

}

}

6390ch09.qxd 3/24/06 11:58 AM Page 201

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING202

This class contains an interesting method, guessFileExtension(). This method analyzes
the content type of the media data and returns an appropriate file extension, which is useful
when this data is being posted to the server to help the server make an educated guess about
the media type. Of course, this extension is guessed based on the content type of the media,
which has its own getter and setter methods. The guessFileExtension() method may need to
be changed to cater for different media types that may be available on your mobile device.

The class also contains getter and setter methods for the media data, which is stored in
this class in a byte array.

The concrete implementations of MediaBlogEntry, VideoBlogEntry, AudioBlogEntry, and
ImageBlogEntry are now easy to write and only contain a single constructor. Listing 9-4 shows
the code for the VideoBlogEntry class. The other implementations are similar and are provided
in the source code in the Downloads section of the Apress Web site at http://www.apress.com
(as is the rest of the code).

Listing 9-4. VideoBlogEntry Extends MediaBlogEntry and Represents Video Blog Entries

package com.apress.chapter9.model;

/**

* The VideoBlogEntry extends MediaBlogEntry and represents an entry that

* has a video component in addition to a text component

*/

public class VideoBlogEntry extends MediaBlogEntry {

public VideoBlogEntry(User user) {

super(user);

}

}

The only thing of note here is that while creating an entry, the user who is creating the
entry must be provided. A user for this system is created using the User class shown in
Listing 9-5 and forms part of the model.

Listing 9-5. User Class Represents the User of the Device Blog MIDlet

package com.apress.chapter9.model;

import com.apress.chapter9.control.Controller;

/**

* A simple user class to represent a user of this MIDlet. Contains only

* userName and password. Once created, these values cannot be

* changed

**/

public class User {

// parameters that define this user

private String userName = null;

private String password = null;

6390ch09.qxd 3/24/06 11:58 AM Page 202

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING 203

// flag to indicate if the user has been successfully logged in

private boolean loggedIn = false;

// the controller

private Controller controller = null;

public User(String userName, String password, Controller controller) {

// check for invalid values

if(userName == null || userName.length() == 0 ||

password == null || password.length() == 0)

throw new IllegalArgumentException("One of the arguments is invalid");

this.userName = userName;

this.password = password;

this.controller = controller;

}

// getters for the parameters

public String getUserName() { return this.userName; }

public String getPassword() { return this.password; }

/**

* Tries to log the user into the blog server.

*/

public void login(String loginURL) {

// use the Network Runner to make the connection

controller.getNetworkRunner().makeConnection(

loginURL + "?uName=" + getUserName() + "&pWord=" + getPassword());

}

/**

* @return true if the user is logged in, false otherwise

*/

public boolean isLoggedIn() {

if(controller.getNetworkRunner().isLoggedIn()) {

this.loggedIn = true;

}

return this.loggedIn;

}

/**

* Registers this user with the blog server.

* Successful registration doesn't log the user in, and login must be

6390ch09.qxd 3/24/06 11:58 AM Page 203

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING204

* done separately.

*/

public void register(String registerURL) {

// use the Network runner to make the connection

controller.getNetworkRunner().makeConnection(

registerURL + "?uName=" + getUserName() + "&pWord=" + getPassword());

}

}

The class provides getter and setter methods for the username and password properties
and also methods that log on and register the user. The class uses the NetworkRunner class to
make the connections; this class will be introduced in the next section.

Finally, the model also contains the BlogServer class, which acts as a container for the
server on which blogging will be done. This class is shown in Listing 9-6.

Listing 9-6. BlogServer Class Acts As a Container for the Blog Server

package com.apress.chapter9.model;

/**

* BlogServer represents the server on which the blog is hosted, and includes

* URLs for various actions, such as registration, logging in, and posting entries

*/

public class BlogServer {

// the URL for registration

private String registerURL = null;

// the URL for logging in

private String loginURL = null;

// the URL for posting a blog entry

private String postEntryURL = null;

public BlogServer(String registerURL, String loginURL, String postEntryURL) {

this.registerURL = registerURL;

this.loginURL = loginURL;

this.postEntryURL = postEntryURL;

}

public String getRegisterURL() { return this.registerURL; }

public String getLoginURL() { return this.loginURL; }

public String getPostEntryURL() { return this.postEntryURL; }

}

6390ch09.qxd 3/24/06 11:58 AM Page 204

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING 205

The BootstrapMIDlet or the Controller class are responsible for creating the BlogServer
class and provide values for the actual URLs. These are listed in the JAD file so that any change
in their value doesn’t require the MIDlet application to be recompiled.

Creating the Utility Classes
Before moving on to either the view or the control, let’s create the utility classes because they
are important for testing the MIDlet. Two utility classes are required: NetworkRunner and
URLEncoder.

NetworkRunner is required because it acts as a central class for making all connections to
the blog server. However, instead of creating a separate thread each time a network connection
is required; this class keeps a single thread running. Creating multiple threads is an issue on
mobile devices because of small memory footprints, especially in a situation where several
connections may be required. Listing 9-7 shows this class.

Listing 9-7. NetworkRunner Is a Single-Threaded HTTPConnection Class

package com.apress.chapter9.utils;

import java.io.IOException;

import java.io.InputStream;

import java.io.OutputStream;

import javax.microedition.io.Connector;

import javax.microedition.io.HttpConnection;

import com.apress.chapter9.model.BlogEntry;

import com.apress.chapter9.control.Controller;

import com.apress.chapter9.model.MediaBlogEntry;

import com.apress.chapter9.control.BootstrapMIDlet;

public class NetworkRunner extends Thread {

// the calling MIDlet

private BootstrapMIDlet midlet = null;

// the controller

private Controller controller = null;

// the reusable connection

private HttpConnection connection = null;

// flags

private boolean cancel = false;

private boolean running = false;

// the URL to connect to, this will change

private String url = null;

6390ch09.qxd 3/24/06 11:58 AM Page 205

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING206

// the BlogEntry that may be sent

private BlogEntry entry = null;

// flags that indicate the success or failure of logging in,

// registration and posting

private boolean logInSuccess = false;

private boolean registerSuccess = false;

private boolean postSuccess = false;

public NetworkRunner(BootstrapMIDlet midlet, Controller controller) {

this.midlet = midlet;

this.controller = controller;

running = true;

}

/**

* Waits till a request is made for making a connection

*/

public synchronized void run() {

while(running) {

try {

wait();

} catch(InterruptedException ie) {}

if(running) connect();

}

}

/**

* Calling threads must use this method to make a connection

* providing the URL to connect to

*/

public synchronized void makeConnection(String url) {

makeConnection(url, null);

}

public synchronized void makeConnection(String url, BlogEntry entry) {

this.url = url;

this.entry = entry;

notify();

}

/**

* Tries to make a connection with the network server, using the

* URL that is provided to the makeConnection method

*/

private void connect() {

6390ch09.qxd 3/24/06 11:58 AM Page 206

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING 207

InputStream in = null;

OutputStream out = null;

try {

// first encode the URL String

controller.activityMessage("Encoding URL ...");

String encodedURL = URLEncoder.encodeURL(this.url);

// next get an HttpConnection on this URL

controller.activityMessage("Opening connection ...");

connection =

(HttpConnection)Connector.open(encodedURL);

// now check if this connection contains a media object by way

// of an Entry object

// if yes, then make this connection via HTTP POST

if(this.entry != null) {

// get the media data from this entry

byte[] mediaData = ((MediaBlogEntry)entry).getMediaData();

// set connection type and content length

connection.setRequestMethod(HttpConnection.POST);

connection.setRequestProperty(

"Content-Length", (mediaData.length) + "");

// open the OutputStream over which the media data will be sent

out = connection.openOutputStream();

// write the media data over this stream

controller.activityMessage("Sending media data ...");

out.write(mediaData);

// to actually flush the stream check the response code

int responseCode = connection.getResponseCode();

if(responseCode != HttpConnection.HTTP_OK)

throw new IOException("Transmission failed as server " +

"responded with response code: " + responseCode);

}

// now irrespective of whether it was a POST or GET,

// simply display to the user the response from the server

// grab the input stream

controller.activityMessage("Reading response ...");

in = connection.openInputStream();

6390ch09.qxd 3/24/06 11:58 AM Page 207

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING208

// this can take a long time.. so check if the user has cancelled

// before this

if(cancel) return;

// see the response and make sure it is not more than

// 255 characters long

int contentLength = (int)connection.getLength();

if (contentLength == -1) contentLength = 255;

byte[] data = new byte[contentLength];

int length = in.read(data);

// create a response message

String message = new String(data, 0, length);

midlet.message(message, 3000);

// and process the type of the message

processMessage(message);

}

catch (IOException ioe) {

midlet.error(ioe); // show error

} finally {

// close connections

if (!cancel) {

try {

if (in != null) in.close();

if (out != null) out.close();

if (connection != null) connection.close();

}

catch (IOException ie) {}

}

this.cancel = false;

}

}

/**

* This method is a way for the NetworkRunner to inform the rest of the

* classes about the state of logging, registering and posting

*/

private void processMessage(String message) {

if(message == null) return;

message = message.trim();

if(message.equals("Logged In!")) { logInSuccess = true; }

else if(message.equals("Registered")) registerSuccess = true;

6390ch09.qxd 3/24/06 11:58 AM Page 208

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING 209

else if(message.equals("Posted")) postSuccess = true;

}

public boolean isLoggedIn() { return this.logInSuccess; }

public boolean isRegistered() { return this.registerSuccess; }

public boolean isPosted() { return this.postSuccess; }

/**

* Cancel the network attempt

*/

public void cancel() {

try {

cancel = true;

if (connection != null) connection.close();

} catch (IOException io) {} // ignore

}

}

This listing is complete code and makes use of the Controller, BootstrapMIDlet, and the
URLEncoder classes, which you’ll encounter soon.

When this class is created in a thread and started, the run() method kicks into an infinite
loop. However, this method lies in wait until notify() is called from the makeConnection()
method. Classes that need to make a connection call this method, providing the URL to con-
nect to. In case the connection needs to be done to post a BlogEntry to the server, an instance
of that object is provided as well.

The connect() method makes the actual connection. All URLs are invoked using the
HTTP GET method, except when an entry is being posted, in which case, the POST method is
used. Actual media data is posted by opening an OutputStream and sending data across to it
(the corresponding server process must accept the opening of such a connection).

The server sends simple strings back, which, in case of successful completion, will be one
of three values: “Logged In!”, “Registered”, or “Posted”. In this sense, this class is tied in with the
Device Blog MIDlet application. You can remove these values and simply return the message
returned by the server to make this class generic and useful in other applications.

In case of error, the BootstrapMIDlet is used to convey an error message, whereas the
Controller class is used to display messages representing system activity that may take a while
and that the user could possibly cancel. You’ll see these methods shortly.

Before making a connection, the connect() method encodes the URL using the URLEncoder
class. This is important to do because the user may type messages that contain characters that
are invalid for use over HTTP. Listing 9-8 shows this class, which contains a single method
encodeURL().

Listing 9-8. URLEncoder Class Contains a Single Method to Encode URLs

package com.apress.chapter9.utils;

public class URLEncoder {

6390ch09.qxd 3/24/06 11:58 AM Page 209

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING210

private static char getHex(int val) {

if (val < 10) return (char)('0' + val);

else return (char)('A' + (val - 10));

}

public static String encodeURL(String url) {

// the return encoded URL

StringBuffer returnURL = new StringBuffer();

// the length

int size = url.length();

for(int i = 0; i < size; i++) {

// iterate over each character

char ch = url.charAt(i);

// if alphnumeric, it remains as such

if ((ch >= '0' && ch <= '9') ||

(ch >= 'a' && ch <= 'z') ||

(ch >= 'A' && ch <= 'Z'))

returnURL.append(ch);

else {

// non alphanumeric

// see first if this is one of the special characters.

int spec = special.indexOf(ch);

if (spec >= 0) {

// this character is not in the special chars

// String defined later

returnURL.append(ch);

} else {

// use the hex converter for the rest of the characters

// first add the % character

returnURL.append('%');

// next convert the high bits

returnURL.append(getHex((ch & 0xF0) >> 4));

// and finally the low bits

returnURL.append(getHex(ch & 0x0F));

6390ch09.qxd 3/24/06 11:58 AM Page 210

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING 211

}

}

}

// the final encoded url

return returnURL.toString();

}

private static String special = "=&:/?\".-!~*_'()";

}

Creating the View
The view contains several classes, some of which are mundane, such as GenericList and
GenericForm, which serve no purpose by being listed here. (You can see these classes in the
Downloads section on the Apress Web site.) Instead, Listing 9-9 shows the code for the
EditableDisplay interface, which acts as the base from which all editable screens will be created.

Listing 9-9. EditableDisplay Is the Base Interface for All Editable Objects

package com.apress.chapter9.view;

/**

* An EditableDisplay interface specifies custom objects that can be shown on

* a screen

*/

public interface EditableDisplay {

/**

* The method that all these objects must implement

*/

public void showDisplay();

}

The first class created from this interface is the EditForm abstract class. This class is shown
in Listing 9-10.

Listing 9-10. EditForm Class Implements EditableDisplay

package com.apress.chapter9.view;

import javax.microedition.lcdui.Form;

import javax.microedition.lcdui.Command;

import javax.microedition.lcdui.CommandListener;

6390ch09.qxd 3/24/06 11:58 AM Page 211

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING212

import com.apress.chapter9.model.BlogEntry;

import com.apress.chapter9.control.Controller;

/**

* The EditForm is the super class for editing form based blog entries.

* Subclasses have the task of displaying the contents to the user

*/

public abstract class EditForm extends Form

implements EditableDisplay, CommandListener {

// the controller object

protected Controller controller = null;

// the commands

protected Command okCommand = null;

protected Command exitCommand = null;

// and the blog entry object

protected BlogEntry entry = null;

protected EditForm(Controller controller, BlogEntry entry) {

super("Edit Form");

// controller and entry are essential, and must not be null

if(controller == null || entry == null)

throw new IllegalArgumentException("Controller or entry cannot be null");

this.controller = controller;

this.entry = entry;

// create commands

okCommand = new Command("Ok", Command.OK, 1);

exitCommand = new Command("Exit", Command.EXIT, 1);

// add them to the Form

addCommand(okCommand);

addCommand(exitCommand);

// and set the controller as the listener for commamnds

setCommandListener(this);

}

/**

* Returns the associated blog entry

*/

6390ch09.qxd 3/24/06 11:58 AM Page 212

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING 213

public BlogEntry getBlogEntry() {

return this.entry;

}

}

The EditForm class is abstract but provides a concrete protected constructor, which cre-
ates items common to all subclasses. This class can now be used as a template for creating
editable forms that will have an OK and an EXIT command attached to them. Note that each
form will have a corresponding BlogEntry object attached with it, because a form must contain
an entry that is being edited. Each form will also have a corresponding handle to the controller
object. Listing 9-11 shows the code for the TextEditForm class that extends the EditForm class
and will be used to create the screen shown in Figure 9-8.

Listing 9-11. TextEditForm Used to Create Editable Form Screens for Text Blog Entries

package com.apress.chapter9.view.impl;

import javax.microedition.lcdui.Command;

import javax.microedition.lcdui.TextField;

import javax.microedition.lcdui.Displayable;

import com.apress.chapter9.view.EditForm;

import com.apress.chapter9.model.BlogEntry;

import com.apress.chapter9.control.Controller;

import com.apress.chapter9.view.PreviewCanvas;

import com.apress.chapter9.model.TextBlogEntry;

/**

* TextEditForm extends EditForm and is used for standalone text entries and

* for editing text of media-based entries

*/

public class TextEditForm extends EditForm {

// the title of this blog entry

private TextField title = null;

// the message of this blog entry

private TextField message = null;

public TextEditForm(Controller controller, BlogEntry entry) {

super(controller, entry);

// cast the entry to the right type

TextBlogEntry textEntry = (TextBlogEntry)entry;

6390ch09.qxd 3/24/06 11:58 AM Page 213

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING214

// create the TextFields

title =

new TextField("Title", textEntry.getEntryTitle(), 255, TextField.ANY);

message = new TextField(

"Message", textEntry.getEntryMessage(), 255, TextField.ANY);

// and append them to this Form

append(title);

append(message);

}

/**

* The showDisplay() method displays the text entry fields to the user

*/

public void showDisplay() {

controller.getDisplay().setCurrent(this);

}

public void commandAction(Command cmd, Displayable disp) {

int commandType = cmd.getCommandType();

if(commandType == Command.EXIT) {

controller.processExit();

return;

} else if(commandType == Command.OK) {

// to be added

}

}

}

The subclasses of the EditForm class are responsible for handling the commands, OK and
EXIT. In Listing 9-11, the EXIT command is handled by invoking a method in the controller object.
You’ll add code for the OK command later.

The constructor for TextEditForm creates two text fields and attaches them to the Form
using the append() method. The showDisplay() method, inherited from EditableDisplay, then
simply shows this form on the screen. As expected, the constructor also receives a BlogEntry

object, which can be cast to an appropriate TextBlogEntry. Notice that this class is in the
com.apress.chapter9.view.impl package, instead of the com.apress.chapter9.view package.

It shouldn’t be hard to see how to create the EditCanvas class, which will be used to create
editable canvas subclasses for image, audio, and video as shown earlier in Figure 9-20. Listing 9-12
shows the code for the EditCanvas class, which also implements the EditableDisplay interface
from Listing 9-9.

6390ch09.qxd 3/24/06 11:58 AM Page 214

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING 215

Listing 9-12. EditCanvas Class Used As the Base Class to Create Editable Canvases

package com.apress.chapter9.view;

import javax.microedition.lcdui.Canvas;

import javax.microedition.lcdui.Command;

import javax.microedition.lcdui.Graphics;

import javax.microedition.lcdui.CommandListener;

import com.apress.chapter9.model.BlogEntry;

import com.apress.chapter9.control.Controller;

/**

* The EditCanvas is the super class for editing blog entries. Subclasses

* have the task of displaying the contents to the user

*/

public abstract class EditCanvas extends Canvas

implements EditableDisplay, CommandListener {

// the controller object

protected Controller controller = null;

// the commands

protected Command doneCommand = null;

protected Command exitCommand = null;

// the blog entry

protected BlogEntry entry = null;

protected EditCanvas(Controller controller, BlogEntry entry) {

super();

// controller and entry are essential, and must not be null

if(controller == null || entry == null)

throw new IllegalArgumentException("Controller or entry cannot be null");

this.controller = controller;

this.entry = entry;

// create commands

doneCommand = new Command("Done", Command.OK, 1);

exitCommand = new Command("Exit", Command.EXIT, 1);

6390ch09.qxd 3/24/06 11:58 AM Page 215

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING216

// add them to the Canvas

addCommand(doneCommand);

addCommand(exitCommand);

// and set the controller as the listener for commands

setCommandListener(this);

}

public void paint(Graphics g) {

// first clear the screen

g.setColor(0xFF8040);

g.fillRect(0, 0, getWidth(), getHeight());

// and then make a canvas with a border

g.setColor(0x808040);

g.fillRect(5, 5, getWidth() - 10, getHeight() - 10);

// the rest of the work is left to subclasses

}

}

Of course, EditCanvas must override the paint() method inherited from the Canvas class.
However, it only clears the background, and subclasses are left to do the rest of the work. The
protected constructor does tasks similar to the EditForm class and provides the basic infrastruc-
ture for subclasses, which must also provide implementation for the showDisplay() method.
Listing 9-13 shows the code for the AudioEditCanvas, and the rest of the implementations are
in code in the Downloads sections of the Apress Web site.

Listing 9-13. AudioEditCanvas Used As the Editable Canvas for Audio Recordings

package com.apress.chapter9.view.impl;

import java.io.IOException;

import java.io.ByteArrayInputStream;

import java.io.ByteArrayOutputStream;

import javax.microedition.lcdui.Image;

import javax.microedition.lcdui.Command;

import javax.microedition.lcdui.Graphics;

import javax.microedition.lcdui.Displayable;

import javax.microedition.media.Player;

import javax.microedition.media.Manager;

import javax.microedition.media.control.RecordControl;

6390ch09.qxd 3/24/06 11:58 AM Page 216

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING 217

import com.apress.chapter9.BlogException;

import com.apress.chapter9.model.BlogEntry;

import com.apress.chapter9.model.AudioBlogEntry;

import com.apress.chapter9.view.EditCanvas;

import com.apress.chapter9.view.PreviewCanvas;

import com.apress.chapter9.control.Controller;

/**

* AudioEditCanvas is used to edit/record audio blog entry

*/

public class AudioEditCanvas extends EditCanvas implements Runnable {

private Player capturePlayer = null;

private RecordControl recordControl = null;

private ByteArrayOutputStream bos = null;

public AudioEditCanvas(Controller controller, BlogEntry entry) {

super(controller, entry);

}

public void showDisplay() {

// make this canvas the current display item

controller.getDisplay().setCurrent(this);

// repaint

repaint();

// and start the audio recording process

new Thread(this).start();

}

public void run() {

startAudioRecording();

}

public void paint(Graphics g) {

// first call the superclass method

super.paint(g);

// now draw the mic image in the foreground

try {

g.drawImage(Image.createImage(

getClass().getResourceAsStream("/media/images/chapter9/mic.gif")),

6390ch09.qxd 3/24/06 11:58 AM Page 217

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING218

getWidth()/2, getHeight()/2, Graphics.VCENTER | Graphics.HCENTER);

} catch(IOException ioex) {} // ignore exception

// also draw a message in white

g.setColor(0x000000);

g.drawString("Recording ",

(getWidth()/2), (getHeight()/2) + 30, Graphics.TOP | Graphics.HCENTER);

}

private void startAudioRecording() {

try {

// create the capture player

capturePlayer = Manager.createPlayer("capture://audio");

if (capturePlayer != null) {

// if created, realize it

capturePlayer.realize();

// and grab the RecordControl

recordControl = (RecordControl)capturePlayer.getControl(

"javax.microedition.media.control.RecordControl");

// if RecordControl is null throw exception

if(recordControl == null)

throw new BlogException("RecordControl not available for audio");

// create the buffer in which recording will be done

bos = new ByteArrayOutputStream();

// set the output of recording

recordControl.setRecordStream(bos);

// start the underlying player

capturePlayer.start();

// and the actual recorder

recordControl.startRecord();

} else {

throw new Exception("Capture Audio Player is not available");

}

6390ch09.qxd 3/24/06 11:58 AM Page 218

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING 219

} catch(Exception e) {

cleanUp(e);

}

}

public void commandAction(Command cmd, Displayable disp) {

int commandType = cmd.getCommandType();

if(commandType == Command.EXIT) {

controller.processExit();

return;

} else if(commandType == Command.OK) {

// complete the recording

try {

// flush the output buffer

bos.flush();

// commit the recording

recordControl.commit();

// close the player

capturePlayer.close();

capturePlayer = null;

} catch(Exception ex) {

cleanUp(ex);

return;

}

// set the media data on this entry

((AudioBlogEntry)entry).setMediaData(bos.toByteArray());

// set the media content type

((AudioBlogEntry)entry).setContentType(recordControl.getContentType());

// release the resources

bos = null;

recordControl = null;

// create a preview canvas and set this entry for it

AudioPreviewCanvas pCanvas = new AudioPreviewCanvas(controller, entry);

6390ch09.qxd 3/24/06 11:58 AM Page 219

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING220

// and show it

pCanvas.showCanvas();

}

}

/**

* This method is used to clean up and release resources on error

*/

private void cleanUp(Exception e) {

// release resources on error

if(recordControl != null) { recordControl = null; }

if(capturePlayer != null) {

capturePlayer.close();

capturePlayer = null;

}

// and show the user the message

controller.message(e.getMessage());

}

}

AudioEditCanvas does a lot of work because it handles the recording of audio as a blog
entry. When its showDisplay() method is called, it repaints the screen with a simple image and
a message and then starts a thread that actually tries to capture audio via the startRecording()
method. When the user is done recording, the OK command handler wraps up the data in the
associated AudioBlogEntry using the setMediaData(byte[] data) method. After this is done, it
tries to clean up resources such as the RecordControl and the associated Player instances by
closing them and then setting them to null, so that the Garbage Collector can reclaim them
and free up resources.

After the recording is created successfully, the user should be able to hear it and preview it
by creating the AudioPreviewCanvas with the controller and the AudioBlogEntry.

Listing 9-9 didn’t have any code for the OK command handler, so Listing 9-13 needs to set
the title and message on the associated TextBlogEntry and display the TextPreviewCanvas. This
is similar to what you’ve done with the OK command handler for the AudioEditCanvas. This is
shown here:

// get the values from the form, and set them in the entry

((TextBlogEntry)entry).setEntryTitle(title.getString());

((TextBlogEntry)entry).setEntryMessage(message.getString());

// create a preview canvas and set the entry for it

TextPreviewCanvas pCanvas = new TextPreviewCanvas(controller, entry);

// and show it

pCanvas.showCanvas();

Of course, you haven’t created any preview canvases yet. Let’s take a look at Listing 9-14,
which shows the abstract class, PreviewCanvas.

6390ch09.qxd 3/24/06 11:58 AM Page 220

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING 221

Listing 9-14. PreviewCanvas Is the Base Abstract Class for All Preview Canvases

package com.apress.chapter9.view;

import javax.microedition.lcdui.Canvas;

import javax.microedition.lcdui.Command;

import javax.microedition.lcdui.Graphics;

import javax.microedition.lcdui.Displayable;

import javax.microedition.lcdui.CommandListener;

import com.apress.chapter9.model.BlogEntry;

import com.apress.chapter9.control.Controller;

import com.apress.chapter9.view.impl.TextEditForm;

/**

* The PreviewCanvas is the superclass for previewing blog entries to the

* user. Subclasses have the task of displaying the contents to the user

*/

public abstract class PreviewCanvas extends Canvas

implements CommandListener {

// the controller object

protected Controller controller = null;

// the BlogEntry

protected BlogEntry entry = null;

// the commands

protected Command postEntryCommand = null;

protected Command discardEntryCommand = null;

protected Command editTextCommand = null;

protected Command exitCommand = null;

protected PreviewCanvas(Controller controller, BlogEntry entry) {

super();

// controller and entry are essential and must not be null

if(controller == null || entry == null)

throw new IllegalArgumentException("Controller or entry cannot be null");

this.controller = controller;

this.entry = entry;

// create commands

postEntryCommand = new Command("Post Entry", Command.OK, 2);

discardEntryCommand = new Command("Discard Entry", Command.CANCEL, 2);

editTextCommand = new Command("Edit Text", Command.SCREEN, 2);

exitCommand = new Command("Exit", Command.EXIT, 1);

6390ch09.qxd 3/24/06 11:58 AM Page 221

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING222

// add them to the Canvas

addCommand(postEntryCommand);

addCommand(discardEntryCommand);

addCommand(editTextCommand);

addCommand(exitCommand);

// and set the controller as the listener for commamnds

setCommandListener(this);

}

/**

* Partially done paint method, which only paints the background

*/

public void paint(Graphics g) {

// first clear the screen

g.setColor(0xFF8040);

g.fillRect(0, 0, getWidth(), getHeight());

// and then make a canvas with a border

g.setColor(0x808040);

g.fillRect(5, 5, getWidth() - 10, getHeight() - 10);

// the rest of the work is left to subclasses

}

public void commandAction(Command cmd, Displayable disp) {

// first grab the type of the command

int commandType = cmd.getCommandType();

if(commandType == Command.EXIT) {

// let the controller process the exit

controller.processExit();

} else if(commandType == Command.SCREEN) { // means editing text

// create a new text edit form with the BlogEntry

TextEditForm form = new TextEditForm(controller, entry);

// and show it

form.showDisplay();

} else if(commandType == Command.CANCEL) { // means discard entry

6390ch09.qxd 3/24/06 11:58 AM Page 222

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING 223

// simply show the startup list

controller.getDisplay().setCurrent(controller.getStartUpList());

} else if(commandType == Command.OK) { // means post entry to server

controller.postEntry(entry);

}

}

/**

* Subclasses must implement this method as they see fit to show the contents

* of this canvas

*/

public abstract void showCanvas();

}

This class is very similar to the EditCanvas, in that it creates a background but leaves the
full painting to subclasses. However, this class does offer implementations for handling the
various commands that are associated with it. These commands are Exit, Edit Text, Discard
Entry, and Post Entry commands, as shown earlier in Figure 9-10. Thus, subclasses only need
to worry about painting the partially done canvas as they see fit, leaving command handling
to this class.

Listing 9-15 shows the code for the ImagePreviewCanvas. With most of the work handled
by the superclass, this class only needs to work on its paint() method to display the image in
the associated ImageBlogEntry object.

Listing 9-15. ImagePreviewCanvas Shows the Associated Image to the User As a Preview

package com.apress.chapter9.view.impl;

import java.io.IOException;

import java.io.ByteArrayInputStream;

import javax.microedition.lcdui.Image;

import javax.microedition.lcdui.Graphics;

import javax.microedition.media.Player;

import javax.microedition.media.Manager;

import com.apress.chapter9.control.Controller;

import com.apress.chapter9.view.PreviewCanvas;

import com.apress.chapter9.model.BlogEntry;

import com.apress.chapter9.model.ImageBlogEntry;

public class ImagePreviewCanvas extends PreviewCanvas {

6390ch09.qxd 3/24/06 11:58 AM Page 223

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING224

public ImagePreviewCanvas(Controller controller, BlogEntry entry) {

super(controller, entry);

setTitle("Image Entry Preview");

}

public void showCanvas() {

// make this canvas as the current display item

controller.getDisplay().setCurrent(this);

// and then repaint it

repaint();

}

public void paint(Graphics g) {

// get the superclass to clear background and repaint it first

super.paint(g);

// now simply create an Image from the byte array, and show it on

// the canvas

Image snapshot = null;

try {

ImageBlogEntry imgEntry = ((ImageBlogEntry)entry);

byte[] imgData = imgEntry.getMediaData();

snapshot = Image.createImage(imgData, 0, imgData.length);

} catch(Exception e) {

// show the error message to the user

controller.message(e.getMessage());

// and return

return;

}

// now draw the image on this canvas

g.drawImage(snapshot, getWidth()/2, getHeight()/2,

Graphics.HCENTER | Graphics.VCENTER);

}

}

The showDisplay() method makes this canvas as the current display object and then
calls repaint(), where the image data contained in the associated ImageBlogEntry is displayed
on the screen using the Graphics object. Similarly, Listing 9-16 contains the code for the

6390ch09.qxd 3/24/06 11:58 AM Page 224

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING 225

VideoPreviewCanvas, which uses a video Player instance to preview the video to the user by
using roughly the same principles.

Listing 9-16. VideoPreviewCanvas Previews the Video to the User

package com.apress.chapter9.view.impl;

import java.io.IOException;

import java.io.ByteArrayInputStream;

import javax.microedition.lcdui.Image;

import javax.microedition.lcdui.Graphics;

import javax.microedition.media.Player;

import javax.microedition.media.Manager;

import javax.microedition.media.MediaException;

import javax.microedition.media.control.VideoControl;

import com.apress.chapter9.control.Controller;

import com.apress.chapter9.view.PreviewCanvas;

import com.apress.chapter9.model.BlogEntry;

import com.apress.chapter9.model.VideoBlogEntry;

public class VideoPreviewCanvas extends PreviewCanvas {

public VideoPreviewCanvas(Controller controller, BlogEntry entry) {

super(controller, entry);

setTitle("Video Entry Preview");

}

public void showCanvas() {

// make this canvas as the current display item

controller.getDisplay().setCurrent(this);

// and then repaint it

repaint();

// finally play back the recording

playbackVideoRecording();

}

public void paint(Graphics g) {

6390ch09.qxd 3/24/06 11:58 AM Page 225

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING226

// get the superclass to clear the background and repaint it first

super.paint(g);

}

private void playbackVideoRecording() {

VideoBlogEntry vEntry = (VideoBlogEntry)entry;

ByteArrayInputStream bis =

new ByteArrayInputStream(vEntry.getMediaData());

Player player = null;

VideoControl vControl = null;

try {

// create the Playback player

player = Manager.createPlayer(bis, vEntry.getContentType());

// realize it

player.realize();

// create the playback video control

vControl = (VideoControl)player.getControl(

"javax.microedition.media.control.VideoControl");

// initialize it

vControl.initDisplayMode(VideoControl.USE_DIRECT_VIDEO, this);

vControl.setDisplayLocation(5, 5);

try {

vControl.setDisplaySize(getWidth() - 10, getHeight() - 10);

} catch (MediaException me) {} // ignore

vControl.setVisible(true);

// start it

player.start();

} catch(Exception e) {

// release this player instance

if(player != null) { player.close(); player = null; }

// show the error message to the user

controller.message(e.getMessage());

6390ch09.qxd 3/24/06 11:58 AM Page 226

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING 227

// and return

return;

}

}

}

The AudioPreviewCanvas is similar and is provided in the Downloads section of the Apress
Web site.

This finishes the code listings for the view part. The only classes left are those of the control
part, which hold the model and the view together.

Creating the Control Classes
As you may recall, the control classes are the BootstrapMIDlet class, which starts the Device
Blog MIDlet, and the Controller class, which is the glue that holds this MIDlet together. The
BootstrapMIDlet is shown in Listing 9-17.

Listing 9-17. BootstrapMIDlet Is the Entry Point for the Device Blog MIDlet Application

package com.apress.chapter9.control;

import javax.microedition.lcdui.Alert;

import javax.microedition.lcdui.Display;

import javax.microedition.lcdui.Command;

import javax.microedition.midlet.MIDlet;

import com.apress.chapter9.BlogException;

import com.apress.chapter9.model.BlogServer;

import com.apress.chapter9.utils.NetworkRunner;

/**

* BootstrapMIDlet is the startup MIDlet that loads the initial data and

* starts the service. If any initial parameters are missing, it will abort.

* It requires the URLs for posting, logging, and registering defined in the

* MIDlet JAD and manifest file.

*/

public class BootstrapMIDlet extends MIDlet {

// the display

private Display display = null;

// the controller that will drive this MIDlet

private Controller controller = null;

// the thread in which this MIDlet will be run

private Thread runner = null;

// the thread used for creating network connections

private NetworkRunner networkThread = null;

6390ch09.qxd 3/24/06 11:58 AM Page 227

// the BlogServer contains the URL information

private BlogServer blogServer = null;

// flag to indicate if any error occurs

private boolean error = false;

public void startApp() {

if(display == null) {

// get the display

display = Display.getDisplay(this);

// load the initial URL parameters

try {

loadParameters();

} catch(BlogException be) {

error(be);

}

// create the new Controller passing this MIDlet as the reference

controller = new Controller(this);

// create the runner thread

runner = new Thread(controller);

// create the Network Runner thread

networkThread = new NetworkRunner(this, controller);

runner.start();

networkThread.start();

}

}

/**

* loads the URL parameters from the Manifest

*/

private void loadParameters() throws BlogException {

// the registration URL

String registerURL = getAppProperty("Blog-registerURL");

// the login URL

String loginURL = getAppProperty("Blog-loginURL");

// the URL for posting entries

String postEntryURL = getAppProperty("Blog-postURL");

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING228

6390ch09.qxd 3/24/06 11:58 AM Page 228

// if any of them is null or not defined, throw Exception

if(registerURL == null || registerURL.length() == 0 ||

loginURL == null || loginURL.length() == 0 ||

postEntryURL == null || postEntryURL.length() == 0)

throw new BlogException("One of the Blog server URL's is not defined.");

// otherwise create the BlogServer information object

blogServer = new BlogServer(registerURL, loginURL, postEntryURL);

}

// getter for BlogServer

public BlogServer getBlogServer() { return this.blogServer; }

// getter for Display

public Display getDisplay() { return this.display; }

// getter for NetworkThread

public NetworkRunner getNetworkRunner() { return this.networkThread; }

public void pauseApp() {

}

public void destroyApp(boolean unconditional) {

}

/**

* General purpose nonerror message display method

*/

public void message(String msg, int time) {

Alert alert = new Alert("Message");

alert.setString(msg);

alert.setTimeout(time);

display.setCurrent(alert, controller.getStartUpList());

}

/**

* General purpose error message display method

*/

public void error(Exception e) {

Alert alert = new Alert("Error");

alert.setString(e.getMessage());

alert.setTimeout(Alert.FOREVER);

display.setCurrent(alert, controller.getStartUpList());

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING 229

6390ch09.qxd 3/24/06 11:58 AM Page 229

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING230

error = true;

}

}

The BootstrapMIDlet class loads the parameters for the blog server from the JAD file,
initializes the Controller class and the NetworkRunner class, starts these threads (all in the
startApp() method), and provides utility methods for showing error and normal message to
the user.

The Controller actively controls the flow of the MIDlet application. It creates the GenericForm
and GenericList classes and handles the commands associated with them. It leaves most of
the command handling of the Preview and Edit canvases to these canvases themselves, but it
keeps the task of posting entries to the server to itself. In the interest of conserving space, the
complete code for this class is not listed here, but only a few code snippets. First, Listing 9-18
shows the code for the postEntry(BlogEntry entry) method.

Listing 9-18. postEntry(BlogEntry entry) Method of the Controller Class

/**

* Has the responsibility of posting an entry to the server

*/

public void postEntry(BlogEntry entry) {

// first show the message to the user

activityMessage("Connecting to server ... ");

// now get the post entry url

String postURL = midlet.getBlogServer().getPostEntryURL();

// construct the parameters in the URL

postURL += "?title=" + entry.getEntryTitle() +

"&message=" + entry.getEntryMessage() +

"&dateposted=" + System.currentTimeMillis() +

"&uName=" + entry.getUser().getUserName();

// and use the network runner to post the URL based on the

// type of the entry

if(entry instanceof MediaBlogEntry) {

MediaBlogEntry mediaEntry = ((MediaBlogEntry)entry);

String type =

((mediaEntry instanceof AudioBlogEntry) ? "audio" :

((mediaEntry instanceof ImageBlogEntry) ? "image" : "video"));

getNetworkRunner().makeConnection(

postURL +

"&media=" + mediaEntry.guessFileExtension() +

"&type=" + type +

"&mediasize=" + mediaEntry.getMediaData().length, entry);

6390ch09.qxd 3/24/06 11:58 AM Page 230

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING 231

} else {

getNetworkRunner().makeConnection(postURL);

}

}

This method makes a distinction between posting text entries and media entries. If a media
entry is being posted, it puts extra information about the entry, including the type of media,
the size of the media, and expected file extension in the URL, as a query string. If a text-based
entry is being sent, only the normal parameters, such as title, message, date posted, and user-
name, are provided.

Listing 9-19 provides the code snippet of the Controller class handling the user selection
for the type of blog entry to create, as shown earlier in Figure 9-6.

Listing 9-19. Handling User Selection of Type of BlogEntry

// if the user wants to create an entry

int selectedIdx = actionList.getSelectedIndex();

// initialize the display

EditableDisplay editDisplay = null;

// and the associated entry

BlogEntry blogEntry = null;

// now based on what type of entry it is, create the right

// editable display and entry

switch(selectedIdx) {

case 0: // text only

{

blogEntry = new TextBlogEntry(user);

editDisplay = new TextEditForm(this, blogEntry);

break;

}

case 1: // audio

{

blogEntry = new AudioBlogEntry(user);

editDisplay = new AudioEditCanvas(this, blogEntry);

break;

}

case 2: // image

{

blogEntry = new ImageBlogEntry(user);

editDisplay = new ImageEditCanvas(this, blogEntry);

break;

}

case 3: // only case left, video

{

blogEntry = new VideoBlogEntry(user);

editDisplay = new VideoEditCanvas(this, blogEntry);

6390ch09.qxd 3/24/06 11:58 AM Page 231

break;

}

}

editDisplay.showDisplay();

Based on the user selection, the code creates the appropriate type of BlogEntry and edit-
ing form. In the end, the code invokes the showDisplay() method of EditableDisplay interface
to display the right editing canvas/form created with the right BlogEntry type.

On the Server Side
The code for the server side contains four very simple JSP-based pages. To keep things simple,
this example is using a file-based blogging system instead of blogging entries to a database. The
postentry.jsp file receives the entries from the user and files them into user-based directories.
This file is shown in Listing 9-20.

Listing 9-20. postentry.jsp Accepts Blog Entries from the Device Blog and Files Them in the
File System

<%@ page contentType="text/plain;charset=UTF-8" language="java"

import="java.io.File, java.io.*" %>

<%--

Simple postentry.jsp tries to post an entry to the server

--%>

<%

String title = (String)request.getParameter("title");

String message = (String)request.getParameter("message");

String datePosted = (String)request.getParameter("dateposted");

String username = (String)request.getParameter("uName");

String media = (String)request.getParameter("media");

String type = (String)request.getParameter("type");

String mediaSize = (String)request.getParameter("mediasize");

// only username is a required value

if(username == null || username.length() == 0) {

out.println("Required parameter username is missing");

return;

}

// now find out the working dir

String workingDir = System.getProperty("user.dir");

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING232

6390ch09.qxd 3/24/06 11:58 AM Page 232

// try to get to the user directory with the given username

// this assumes a specific working directory, change if you put files in

// different places

File userDir = new File(

workingDir + "/webapps/MMAPI/deviceblog/users/" + username);

if(!userDir.exists()) {

out.println("Internal error: no user directory");

return;

}

// set the title if it is missing

if(title == null || title.equals("null") || title.length() == 0) {

title = "Untitled " + (type == null ? "Text" : type) + " entry";

}

// try and figure out the date posted value

long datePostedLong = 0L;

if(datePosted == null) datePostedLong = System.currentTimeMillis();

else {

try {

datePostedLong = Long.parseLong(datePosted, 10);

} catch (Exception e) {

datePostedLong = System.currentTimeMillis();

}

}

// now the file name for this entry will be based on the datePosted value

// but first create, if it doesn't exist, the entries directory for this user

// and also the media directories

File entriesDir = new File(userDir, "entries");

if(!entriesDir.exists()) {

if(!entriesDir.mkdir()) {

out.println("Internal error: could not create entries directory");

return;

} else {

// entries directory created, now create the individual media directories

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING 233

6390ch09.qxd 3/24/06 11:58 AM Page 233

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING234

new File(entriesDir, "audio").mkdir();

new File(entriesDir, "video").mkdir();

new File(entriesDir, "image").mkdir();

}

}

// now see if this is a media entry, before saving the actual text entry

if(media != null) {

// this is a media entry

InputStream in = null;

FileOutputStream fos = null;

try {

// open up an input stream for media data

in = request.getInputStream();

// create a byte array to receive this data in

byte[] rcdData = new byte[new Integer(mediaSize).intValue()];

// read from the input stream in this byte array

in.read(rcdData);

fos = new FileOutputStream(

new File(entriesDir, type + "/" + datePostedLong + "." + media));

fos.write(rcdData, 0, rcdData.length);

fos.flush();

} catch(IOException ioex) {

out.println("Internal error: " + ioex.getMessage());

return;

} finally {

try {

if(fos != null) fos.close();

if(in != null) in.close();

} catch(IOException ix) { return; }

}

}

6390ch09.qxd 3/24/06 11:58 AM Page 234

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING 235

// now save this entry

File entryFile = new File(entriesDir, datePostedLong + ".txt");

if(!entryFile.createNewFile()) {

out.println("Internal error: could not create the entry file");

}

// now open this file, and write the title and message to it

FileWriter fw = null;

try {

fw = new FileWriter(entryFile);

// first the title

fw.write(title, 0, title.length());

fw.write("\r\n");

// now the media file location, if any, if there is no media file,

// still write an empty line

if(media == null) fw.write("\r\n");

else {

fw.write(type + "/" + datePostedLong + "." + media);

fw.write("\r\n");

}

// see if there is a message, if yes, write it

if(message != null && !message.equals("null"))

fw.write(message, 0, message.length());

// flush the buffer

fw.flush();

} catch(IOException ioex) {

out.println("Internal error: " + ioex.getMessage());

return;

} finally {

if(fw != null) {

try {

fw.close();

} catch(IOException io) { return; }

}

}

out.println("Posted");

%>

6390ch09.qxd 3/24/06 11:58 AM Page 235

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING236

The listing starts with identifying all the parameters in the request and throwing an error
that says the required username is not found. It then proceeds to identify the users directory
and create any missing ones. Finally, it checks to determine whether the request contains any
media data and, if so, saves this in a specific media folder. The actual entry is saved in a date
posted file that is also the name for the media file, if any.

The Web site for the blog lists the entries in the order that they are received, and this is
done in the index.jsp file. This file, along with the login.jsp and register.jsp files, is in the
source code available in the Downloads section of the Apress Web site.

Figure 9-23 shows the Device Blog server (http://www.mmapibook.com/deviceblog/
index.jsp) as it looks at the moment!

Figure 9-23. The Device Blog in action!

6390ch09.qxd 3/24/06 11:58 AM Page 236

Summary
MMAPI is a terrific tool for building purposeful and multimedia-enabled rich applications.
However, to make full use of MMAPI, you must know how it works and how it relates to the
rest of the APIs in the MIDlet world.

This chapter has culminated the knowledge path that you started in Chapter 1. The Device
Blog MIDlet application is a useable and functional application that showcases a thorough
use of MMAPI. Device Blog shows that you can successfully integrate MMAPI with the rest of
the Java ME API and build business and entertainment applications.

The Device Blog MIDlet application is not complete, however. It can be extended to include
MIDI and Tone Blog entries, and the server side can be made more robust and scalable. How-
ever, that was not the aim of this case study. It has shown you the way, and you are invited to
experiment with it. I look forward to your entries on the Device Blog server!

CHAPTER 9 ■ CASE STUDY: DEVICE BLOGGING 237

6390ch09.qxd 3/24/06 11:58 AM Page 237

6390ch09.qxd 3/24/06 11:58 AM Page 238

Mobile Media API (MMAPI)
Reference

This appendix is a reference to the MMAPI. All classes, interfaces, and exceptions are listed
here so that you can find them in one easy-to-use place. The Javadocs, however, remain the
best place for getting detailed explanation about each method and class and is used in this
appendix to take the one-line explanation of each class, interface, and exception.

This API is listed alphabetically, grouped by package.

Package javax.microedition.media

Interface Control
A Control object is used to control some media processing functions.

public interface Control {

// no methods

}

Interface Controllable
Controllable provides an interface for obtaining the controls from an object such as a Player.

public interface Controllable {

// methods

public Control getControl(java.lang.String controlType);

public Control[] getControls();

}

239

A P P E N D I X A

■ ■ ■

6390chAppA.qxd 3/24/06 11:59 AM Page 239

Class Manager
Manager is the access point for obtaining system-dependent resources such as Player
instances for multimedia processing.

public final class Manager {

// Constructors

public static final java.lang.String MIDI_DEVICE_LOCATOR;

public static final java.lang.String TONE_DEVICE_LOCATOR;

// Methods

public static Player createPlayer(java.lang.String locator)

throws java.io.IOException, MediaException;

public static Player createPlayer(

java.io.InputStream stream, java.lang.String type)

throws java.io.IOException, MediaException;

public static Player createPlayer(DataSource source)

throws java.io.IOException, MediaException;

public static java.lang.String[] getSupportedContentTypes(

java.lang.String protocol);

public static java.lang.String[] getSupportedProtocols(

java.lang.String content_type);

public static TimeBase getSystemTimeBase();

public static void playTone(int note, int duration, int volume)

throws MediaException;

}

Class MediaException
A MediaException indicates an unexpected error condition in a method.

public class MediaException extends java.lang.Exception {

// Constructors

public MediaException();

public MediaException(java.lang.String reason);

}

Interface Player
Player controls the rendering of time-based media data.

public interface Player extends Controllable {

// Constants

public static final int CLOSED;

public static final int PREFETCHED;

public static final int REALIZED;

public static final int STARTED;

public static final long TIME_UNKNOWN;

public static final int UNREALIZED;

APPENDIX A ■ MOBILE MEDIA API (MMAPI) REFERENCE240

6390chAppA.qxd 3/24/06 11:59 AM Page 240

// Methods

public void addPlayerListener(PlayerListener playerListener);

public void close();

public void deallocate();

public java.lang.String getContentType();

public long getDuration();

public long getMediaTime();

public int getState();

public TimeBase getTimeBase();

public void prefetch() throws MediaException;

public void realize() throws MediaException;

public void removePlayerListener(PlayerListener playerListener);

public void setLoopCount(int count);

public long setMediaTime(long now) throws MediaException;

public void setTimeBase(TimeBase master) throws MediaException;

public void start() throws MediaException;

public void stop() throws MediaException;

}

Interface PlayerListener
PlayerListener is the interface for receiving asynchronous events generated by Player
instances.

public interface PlayerListener {

// Constants

public static final java.lang.String BUFFERING_STARTED;

public static final java.lang.String BUFFERING_STOPPED;

public static final java.lang.String CLOSED;

public static final java.lang.String DEVICE_AVAILABLE;

public static final java.lang.String DEVICE_UNAVAILABLE;

public static final java.lang.String DURATION_UPDATED;

public static final java.lang.String END_OF_MEDIA;

public static final java.lang.String ERROR;

public static final java.lang.String RECORD_ERROR;

public static final java.lang.String RECORD_STARTED;

public static final java.lang.String RECORD_STOPPED;

public static final java.lang.String SIZE_CHANGED;

public static final java.lang.String STARTED;

public static final java.lang.String STOPPED;

public static final java.lang.String STOPPED_AT_TIME;

public static final java.lang.String VOLUME_CHANGED;

// Methods

public void playerUpdate(Player player, java.lang.String event,

java.lang.Object eventData);

}

APPENDIX A ■ MOBILE MEDIA API (MMAPI) REFERENCE 241

6390chAppA.qxd 3/24/06 11:59 AM Page 241

Interface TimeBase
A TimeBase is a constantly ticking source of time.

public interface TimeBase {

// Methods

public long getTime();

}

Package javax.microedition.media.control

Interface FramePositioningControl
The FramePositioningControl is the interface to control precise positioning of a video frame
for Player instances.

public interface FramePositioningControl extends Control {

// Methods

public long mapFrameToTime(int frameNumber);

public int mapTimeToFrame(long mediaTime);

public int seek(int frameNumber);

public int skip(int framesToSkip);

}

Interface GUIControl
GUIControl extends Control and is defined for controls that provide GUI functionalities.

public interface GUIControl extends Control {

// Constants

public static final int USE_GUI_PRIMITIVE;

// Methods

public java.lang.Object initDisplayMode(int mode, java.lang.Object arg);

}

Interface MetaDataControl
MetaDataControl is used to retrieve metadata information included within the media streams.

public interface MetaDataControl extends Control {

// Constants

public static final java.lang.String AUTHOR_KEY;

public static final java.lang.String COPYRIGHT_KEY;

public static final java.lang.String DATE_KEY;

public static final java.lang.String TITLE_KEY;

APPENDIX A ■ MOBILE MEDIA API (MMAPI) REFERENCE242

6390chAppA.qxd 3/24/06 11:59 AM Page 242

// Methods

public java.lang.String[] getKeys();

public java.lang.String getKeyValue(java.lang.String key);

}

Interface MIDIControl
MIDIControl provides access to MIDI rendering and transmitting devices.

public interface MIDIControl extends Control {

// Constants

public static final int CONTROL_CHANGE;

public static final int NOTE_ON;

// Methods

public int[] getBankList(boolean custom) throws MediaException;

public int getChannelVolume(int channel);

public java.lang.String getKeyName(int bank, int prog, int key)

throws MediaException;

public int[] getProgram(int channel) throws MediaException;

public int[] getProgramList(int bank) throws MediaException;

public java.lang.String getProgramName(int bank, int prog) throws MediaException;

public boolean isBankQuerySupported();

public int longMidiEvent(byte[] data, int offset, int length);

public void setChannelVolume(int channel, int volume);

public void setProgram(int channel, int bank, int program);

public void shortMidiEvent(int type, int data1, int data2);

}

Interface PitchControl
PitchControl raises or lowers the playback pitch of audio without changing the playback speed.

public interface PitchControl extends Control {

// Methods

public int getMaxPitch();

public int getMinPitch();

public int getPitch();

public int setPitch(int millisemitones);

}

Interface RateControl
RateControl controls the playback rate of a Player instance.

public interface RateControl extends Control {

// Methods

public int getMaxRate();

public int getMinRate();

APPENDIX A ■ MOBILE MEDIA API (MMAPI) REFERENCE 243

6390chAppA.qxd 3/24/06 11:59 AM Page 243

public int getRate();

public int setRate(int millirate);

}

Interface RecordControl
RecordControl controls the recording of media from a Player instance.

public interface RecordControl extends Control {

// Methods

public void commit() throws java.io.IOException;

public java.lang.String getContentType();

public void reset() throws java.io.IOException;

public void setRecordLocation(java.lang.String locator)

throws java.io.IOException, MediaException;

public int setRecordSizeLimit(int size) throws MediaException;

public void setRecordStream(java.io.OutputStream stream);

public void startRecord();

public void stopRecord();

}

Interface StopTimeControl
StopTimeControl allows one to specify a preset stop time for a Player instance.

public interface StopTimeControl extends Control {

// Constants

public static final long RESET;

// Methods

public long getStopTime();

public void setStopTime(long stopTime);

}

Interface TempoControl
TempoControl controls the tempo, in musical terms, of a song.

public interface TempoControl extends RateControl {

// Methods

public int getTempo();

public int setTempo(int millitempo);

}

APPENDIX A ■ MOBILE MEDIA API (MMAPI) REFERENCE244

6390chAppA.qxd 3/24/06 11:59 AM Page 244

Interface ToneControl
ToneControl is the interface to enable playback of a user-defined monotonic tone sequence.

public interface ToneControl extends Control {

// Constants

public static final byte BLOCK_END;

public static final byte BLOCK_START;

public static final byte C4;

public static final byte PLAY_BLOCK;

public static final byte REPEAT;

public static final byte RESOLUTION;

public static final byte SET_VOLUME;

public static final byte SILENCE;

public static final byte TEMPO;

public static final byte VERSION;

// Methods

public void setSequence(byte[] sequence);

}

Interface VideoControl
VideoControl controls the display of video.

public interface VideoControl extends GUIControl {

// Constants

public static final int USE_DIRECT_VIDEO;

// Methods

public int getDisplayHeight();

public int getDisplayWidth();

public int getDisplayX();

public int getDisplayY();

public byte[] getSnapshot(java.lang.String imageType) throws MediaException;

public int getSourceHeight();

public int getSourceWidth();

public java.lang.Object initDisplayMode(int mode, java.lang.Object arg);

public void setDisplayFullScreen(boolean fullScreenMode) throws MediaException;

public void setDisplayLocation(int x, int y);

public void setDisplaySize(int width, int height) throws MediaException;

public void setVisible(boolean visible);

}

APPENDIX A ■ MOBILE MEDIA API (MMAPI) REFERENCE 245

6390chAppA.qxd 3/24/06 11:59 AM Page 245

Interface VolumeControl
VolumeControl is an interface for manipulating the audio volume of a Player instance.

public interface VolumeControl extends Control {

// Methods

public int getLevel();

public boolean isMuted();

public int setLevel(int level);

public void setMute(boolean mute);

}

Package javax.microedition.media.protocol

Class ContentDescriptor
A ContentDescriptor identifies media data containers.

public class ContentDescriptor {

// Constructors

public ContentDescriptor(java.lang.String contentType);

// Methods

public java.lang.String getContentType();

}

Class DataSource
A DataSource is an abstraction for media protocol handlers.

public abstract class DataSource implements Controllable {

// Constructors

public DataSource(java.lang.String locator);

// Methods

public abstract void connect() throws java.io.IOException;

public abstract void disconnect();

public abstract java.lang.String getContentType();

public java.lang.String getLocator();

public abstract SourceStream[] getStreams();

public abstract void start() throws java.io.IOException;

public abstract void stop() throws java.io.IOException;

}

APPENDIX A ■ MOBILE MEDIA API (MMAPI) REFERENCE246

6390chAppA.qxd 3/24/06 11:59 AM Page 246

Interface SourceStream
Abstracts a single stream of media data.

public interface SourceStream extends Controllable {

// Constants

public static final int NOT_SEEKABLE;

public static final int RANDOM_ACCESSIBLE;

public static final int SEEKABLE_TO_START;

// Methods

public ContentDescriptor getContentDescriptor();

public long getContentLength();

public int getSeekType();

public int getTransferSize();

public int read(byte[] b, int off, int len) throws java.io.IOException;

public long seek(long where) throws java.io.IOException;

public long tell();

}

APPENDIX A ■ MOBILE MEDIA API (MMAPI) REFERENCE 247

6390chAppA.qxd 3/24/06 11:59 AM Page 247

6390chAppA.qxd 3/24/06 11:59 AM Page 248

URI Syntax for Media Locators

The Uniform Resource Identifier (URI) syntax is described using a Request For Comment
(RFC) paper as a universal means of describing the location of different types and kinds of
resources. The RFC in question is 2396 and its full text can be accessed at
http://www.ietf.org/rfc/rfc2396.txt.

Essentially, this RFC defines a way for providing a uniform and consistent way of describing
the location of different types of resources, wherever they may be located. This is important to
us in MMAPI, because MMAPI, being protocol and format agnostic, requires consistent means
to access resources.

URI defines two parts to each identifier string: the scheme part and the scheme specific
part separated by a ':' as shown here:

<scheme>:<scheme-specific-part>

As it applies to MMAPI, the scheme part is the protocol over which the resource is being
referenced, whereas the scheme-specific part is a hierarchical, location-specific string, which
tells the system the exact physical location of the resource.

Not surprisingly, the most common example of this is when resources are accessed over
the Internet using HTTP. As an example, http://www.ietf.org/rfc/rfc2396.txt consists of the scheme
“http” and the scheme-specific part of “//www.ietf.org/rfc/rfc2396.txt”. The hierarchies in the
scheme-specific parts are separated by the “/” character. Thus, rfc2396.txt is a physical docu-
ment located in the rfc folder on the www.ietf.org server.

Of course, with MMAPI, the scheme part can be an entire range of options. As you have
seen in this book, the scheme part can be any one of capture, rtp, file, resource, and, of course,
http strings.

With each scheme part, different options for the scheme-specific part can be set. For
capture scheme, you have used the audio and video scheme-specific parts. These can be fur-
ther qualified to specify attributes, for example: capture://audio?encoding=pcm would give
you a specific URI for capturing WAV audio files.

249

A P P E N D I X B

■ ■ ■

6390chAppB.qxd 3/24/06 11:59 AM Page 249

6390chAppB.qxd 3/24/06 11:59 AM Page 250

Advanced Multimedia
Supplements—JSR 234

The Java Community Process (JCP) at http://www.jcp.org defines new technology for the Java
technology using a community process, whereby new specifications are released for public
overview and debated on. Once approved, the specs are introduced in the Java language. One
of the most prolific areas of technology development is Java ME, and new APIs are being con-
stantly created and released to target this area of Java development.

Specifications are released with a Java Specification Request (JSR) number. MMAPI was
released as JSR 135 (http://www.jcp.org/en/jsr/detail?id=135). However, this specification is now
more than two years old, and newer advances in technology have necessitated an update.
JSR 234 (http://www.jcp.org/en/jsr/detail?id=234), titled Advanced Multimedia Supplements, is
a step in updating the MMAPI for new technology devices. The final release of this specification
was in June 2005.

However, note that JSR 234 is a supplement to JSR 135. Thus, it doesn’t replace MMAPI
nor is it used on its own, but provides supplementary implementations for newer technology
devices. This appendix gives you an overview of the new JSR.

Introduction to JSR 234
JSR 234 was initiated by a Nokia request to create an API that could provide richer experiences
to users of mobile devices. Mobile devices are increasing in their processing power capacity,
so this enables sophisticated media processing functionalities available to MIDlet developers
and distributors. Specifically, better controls for camera, radio and audio, and sophisticated
MIDlets created based on them is the target aim of this specification.

The specification creates a new package, javax.microedition.amms, where amms stands for
Advanced Multimedia supplements. The specification mostly defines new controls that are
derived from the javax.microedition.media.control.Control interface, thus making these
controls compatible with MMAPI (as you would expect, as JSR 234 is a supplement to JSR 135).
It also defines four new concepts in the main javax.microedition.amms package, GlobalManager,
Spectator, Module, and MediaProcessor.

251

A P P E N D I X C

■ ■ ■

6390chAppC.qxd 3/24/06 12:00 PM Page 251

GlobalManager

GlobalManager is like a Manager class for JSR 234. It provides methods to retrieve the special-
ized objects present in this specification. However, it doesn’t replace or extend the Manager
class, and you still use the Manager class for creating and managing Player instances.

Spectator

The Spectator class represents a virtual listener. It provides acoustic controls that can help
create MIDlet applications that mimic sound coming from different locations and areas. You
can create a Spectator class by using the getSpectator() static method in the GlobalManager
class. This class implements the Controllable interface, which allows it to provide implemen-
tation of the getControl() and the getControls() methods.

Module

The Module interface is a logical grouping of multiple Player instances and/or MIDI channels.
This functionality was missing from MMAPI, where you can treat a group of such instances as
one entity. This interface is extended by two subinterfaces, EffectsModule and SoundsSource3D,
which represent different types of groupings. EffectsModule represents Player instances and/
or MIDI channels, to which a common effect can be applied, whereas SoundsSource3D repre-
sents this group in a virtual acoustical space.

Modules can be fetched from the GlobalManager class using the createEffectModule() or
the createSoundSource3D() methods. Note that the Module interface also implements the
Controllable interface.

MediaProcessor

MediaProcessor is an interface for postprocessing of media data. A MediaProcessor works very
much like a Player interface and defines various states that mimic it as well. A MediaProcessor

instance can be in one of UNREALIZED, REALIZED, STARTED, or STOPPED states.
You can retrieve an instance of MediaProcessor by using the GlobalManager class’s static

method createMediaProcessor(String type), passing to it the MIME type of target processor.
This interface also extends the Controllable interface.

Controls
The rest of the interfaces in this API are various controls and are divided in various packages
depending on the type of functionality that they provide.

Package javax.microedition.amms.control
There are two main control interfaces in this package that impact the rest of the packages as well.

FormatControl is used for specifying the format of the various media types. This inter-
face is implemented by four different types of media formats using their own interfaces:
AudioFormatControl, ContainerFormatControl, ImageFormatControl, and VideoFormatControl.

APPENDIX C ■ ADVANCED MULTIMEDIA SUPPLEMENTS—JSR 234252

6390chAppC.qxd 3/24/06 12:00 PM Page 252

EffectControl is used to preset a filter on some media data to provide different types of
effects. This interface provides a method, setEnabled(boolean enable), to turn the effects on
or off. This interface is supported with the EffectOrderControl interface, which controls the
order in which multiple effects are applied.

Finally, this package contains the interface PanControl, which controls the panning of
audio and video media data, and PriorityControl, which allows the manipulation of the pri-
ority given to various Player instances in a group situation.

Packages javax.microedition.amms.control.imageeffect and
javax.microedition.amms.control.audioeffect

All of the interfaces in these two packages extend the EffectControl interface and provide var-
ious effects that can be applied to audio and image media data.

Package javax.microedition.amms.control.audio3d
All of the interfaces in this package provide controls for manipulation of audio in a 3D envi-
ronment. The controls are retrieved from either the SoundSource3D or Spectator class, as the
case may be.

Package javax.microedition.amms.control.camera
The controls in this package are retrieved from a Player instance that is created by using the
Manager.createPlayer("capture://camera") method. These controls provide control over
the exposure, the flash, focus, zoom, and burst shooting of snapshots (as opposed to single
snapshots using the getSnapshot() method of the VideoControl interface provided in MMAPI).
A CameraControl control provides further control over the camera by providing methods for
shutter control, camera rotation, and so on.

Package javax.microedition.amms.control.tuner
This package contains two control interfaces for radio tuning. RDSControl is used for Radio Data
System (RDS) tuning and provides methods to manage that. TunerControl isn’t specifically tar-
geted for radio tuning, but it can be used to tune into any Player instance that supports tuning,
however unlikely.

JSR 234 Implementations
At this point, being a relatively new API, there are no known implementations on any devices,
and neither is there any known emulator support. However, Nokia provides a reference imple-
mentation with some examples, which can be downloaded at http://forum.nokia.com/java/jsr234.

APPENDIX C ■ ADVANCED MULTIMEDIA SUPPLEMENTS—JSR 234 253

6390chAppC.qxd 3/24/06 12:00 PM Page 253

6390chAppC.qxd 3/24/06 12:00 PM Page 254

■Numbers and symbols
sign, used to denote a sharp, 76
3rd Generation Participation Project (3GPP),

Adaptive Multi-Rate (AMR) format
standard adapted by, 134

■A
Adaptive Multi-Rate (AMR) format, standard

adapted by the 3rd Generation
Participation Project (3GPP), 134

addPlayerListener(PlayerListener listener)
method, using to register an
implementation with a Player
instance, 47

Advanced Multimedia supplements (JSR
234), 251–253

After-Touch message, function of, 100
AMR format. See Adaptive Multi-Rate (AMR)

format
AMR-Narrow Band (AMR-NB) format. See

Adaptive Multi-Rate (AMR) format
AMR-Wide Band (AMR-WB) format. See also

Adaptive Multi-Rate (AMR) format
for higher speech quality of sampled

audio, 134
AMS (Application Management Software).

See also Application Management
Software (AMS)

halts installation if unable to put MIDlet in
a trusted domain, 65–66

applause.wav, playing in Motorola C975
emulator, 23

Apple’s Darwin streaming server, Web site
address for, 182

Application Management Software (AMS), 29
Apress Web site, for source code downloads,

180, 202
audio

capturing, 146–162
getting user permission before recording

to the Device Blog, 190–191
saving captured, 158–162
timed capture and playback, 147–151

audio and tone generation, MMAPI support
for, 2

audio and video, working with, 127–184
AudioBlogEntry, in Device Blog MIDlet

application, 193

AudioEditCanvas class, used as the editable
canvas for audio recording, 216–220

AudioPlayer MIDlet
code for creating AudioPlayerCanvas,

27–29
examples in operation showing list of

audio files, 22–23
AudioPlayerCanvas

code for creating, 27–29
improving by caching Player instances,

29–36
interface for playing audio files, 23–26
modifying to CachedAudioPlayerCanvas,

30–33

■B
b, used to denote a flat, 76
baby.wav

playing in Sun’s DefaultColorPhone
emulator, 23

table showing time taken to play back with
caching of Player instances, 36

table showing time taken to start playback
of across three devices, 30

bank (or soundbank). See also soundbanks
used to support more instruments than

General MIDI specification allows,
102

bar (segment of time), using a time signature
to define beats in each, 82

basic controls, MMAPI support for, 2
BBC’s live radio broadcast, Web site address

for, 182
Beginning J2ME: From Novice to Professional,

Third Edition, by Jonathan Knudsen
and Sing Li (Apress, 2005), 3, 17

BenQ (formerly Siemens) CX 75 emulator,
Web site address for downloading, 3

BenQ M75 emulator and device
capturing and previewing images and

video on, 192
example of MMAPI capabilities in, 131
looking through the viewfinder in, 178
starting the Device Blog MIDlet on, 186
storing captured audio on, 162
table of properties supported by, 131

BLOCK_END constant, for marking the end
of a block, 87

Index

255

6390chIDX*.qxd 3/24/06 12:01 PM Page 255

BLOCK_START constant, for marking the
start of a block, 87

blog editing classes, defining in the Device
Blog MIDlet application, 196

blog entries, creating view for editing and
previewing, 195

BlogEntry interface
for all types of blog entries, 199
code for handling user selection of type of,

231–232
in Device Blog MIDlet application, 193

blogging. See also Case Study: Device
Blogging

building a mobile blogging MIDlet called
Device Blog, 185–237

BlogServer class
as a container for the blog server, 204
BootstrapMIDlet or Controller class

responsible for creating, 205
in Device Blog MIDlet application, 194

BootstrapMIDlet class
code for creating, 227–230
control class of the Device Blog MIDlet

application, 197–198
bpm (beats per minute), using

TempoControl to set, 107–108
byte array, specifying notes you want played

in any sequence you want in, 81

■C
CachingAudioPlayerCanvas class, enabling

event handling in, 53–55
camera viewfinder, looking through, 174–178
Canvas, code for displaying video in, 164–168
CapabilitiesMIDlet, code for listing

capabilities of a MMAPI
implementation, 128–129

captured audio, saving, 158–162
Case Study: Device Blogging, 185–237
channel, changing program and volume of, 115
Channel messages

how they are differentiated from System
messages, 98

Voice or Mode Channel subclasses of, 97
Channel Pressure message, function of, 101
CLDC. See Connected Limited Device

Configuration (CLDC)
cleanUp() method, for closing each Player

instance after it is no longer required,
27

close() method
actions to be performed when calling

during different states, 46
for releasing any resources held by the

player, 27
in a simple linear transition path for

a Player instance, 40

closeAll() method, to shut down all Player
instances, 34

CLOSED state
of Player instance, 39
Player instance in, 46

code example
for adding the keyPressed(int keyCode)

method to the CaptureVideoCanvas
class, 179

AudioEditCanvas used as the editable
canvas for audio recording, 216–220

AudioPlayer MIDlet creates
AudioPlayerCanvas, 27–29

for AudioPlayerCanvas—an interface for
playing audio files, 23–26

for BlogEntry interface for all types of blog
entries, 199

for BlogServer class acting as a container
for the blog server, 204

for the BootstrapMIDlet class for starting
the Device Blog MIDlet, 227–230

of a byte array for playing the first two
stanzas of “Happy Birthday to You”, 87

CachedAudioPlayerCanvas caches Player
instances, 30–33

CachingAudioPlayer uses the new
CachedAudioPlayerCanvas, 34–36

for CapabilitiesMIDlet for listing
capabilities of a MMAPI
implementation, 128–129

for changing volume of a channel, 117
for a class to create a binary JTS file from

a hex representation, 89–91
for controlling audio capture, 151–157
controlling MIDI with pitch, tempo, and

volume controls, 104–107
converting EventHandler to use reference

checking instead of object equality,
56–57

for creating a standalone MIDI Player
instance, 113

for creating EditableDisplay as base
interface for all editable objects, 211

for custom encodings that allow you to
create your own encodings, 133

for displaying video in a Form or a Canvas,
164–168

EchoEventsMIDlet echoes player events
onscreen, 47–48

EditCanvas class used as the base class to
create editable canvases, 215–216

for EditForm class to implement
EditableDisplay interface, 211–213

for enabling event handling in the
CachingAudioPlayerCanvas class,
53–55

EventHandler class, 51–52

■INDEX256

6390chIDX*.qxd 3/24/06 12:01 PM Page 256

for first stanza of “Happy Birthday to You”, 87
general format for each type of encoding

string, 132
for handling user selection of type of

BlogEntry, 231–232
of HTTP for accessing files, 8
for ImagePreviewCanvas showing

associated image to user as
a preview, 223–224

loading and playing JTS file from a JAR file,
91–92

looking through a camera’s viewfinder and
displaying onscreen, 174–177

MediaBlogEntry class representing blog
entries that have a media
component, 200–201

MIDICapabilitiesMIDlet for providing
information about MIDIControl’s
capabilities, 113–114

MIDlet for timed capture and playback of
audio, 148–151

of MIDlet that plays all notes from 0 to 127
sequentially, 79–80

for mixed encoding, 132
mixing MIDI and sampled audio, 143–146
modifying commandAction() method to

find time taken to play an audio file, 30
for modifying the JAD manifest file for the

NetworkTest MIDlet, 65
moving video in vertical space and muting

volume, 169–173
NetworkPlayerManager class

implementing the Runnable
interface, 69–70

NetworkRunner is a single-threaded
HTTPConnection class, 205–209

of permission needed to record any media
(audio or video), 147

for playing a local MIDI file, 102–103
for playing an audio file over the network,

63–64
for playing C# for 5 seconds at max

volume, 76–77
for playing tone sequences, 88
postEntry(BlogEntry entry) method of the

Controller class, 230–231
of postentry.jsp file, 232–235
for PreviewCanvas abstract class, 221–223
ProgramNamesMIDlet queries

soundbanks/programs and plays
notes, 121–124

RateControllableMIDIMIDlet controls
playback rate, 110–112

for sending MIDI message commands,
116

of the shortMidiEvent() method in action,
118–120

a simple Java class to calculate note
frequencies and int values, 77–78

for a simple MMAPI MIDlet, 19–20
specifying the encoding formats for

audio.encodings property, 132
StopTimeControlMIDlet allows you to

play with the StopTimeControl,
135–138

for storing and retrieving captured audio,
159–161

streaming media over the network,
182–183

TextBlogEntry class representing all
entries that have a textual
component, 199–200

TextEditForm used to create editable form
screens for text blog entries, 213–214

that allows the user to start and stop
recording video clips, 180

ThreadedMIDlet creates a new thread to
play back a media file, 67–69

understanding threads in MIDlets, 60–61
for the URLEncoder class, 209–211
User class represents the user of the

Device Blog MIDlet, 202–204
using MetaDataControl to display meta

information, 139–141
using RingToneConverter class to convert

RTTTL to MMAPI format, 84–86
using the BLOCK_END constant, 87
using the BLOCK_START constant, 87
using the PLAY_BLOCK constant, 87
using the ToneControl interface for

creating a tone sequence to play,
83–84

video capture formats supported by Sun’s
DefaultColorPhone emulator, 132

VideoBlogEntry extends MediaBlogEntry
and represents video blog entries,
202

for the VideoPreviewCanvas that previews
the video to the user, 225–227

commandAction() method
function of for displaying video, 168
modifying to find time taken to play one

of the audio files, 29–30
common time, defined, 82
Connected Limited Device Configuration

(CLDC), 2
ContentDescriptor class, in

javax.microedition.media.protocol
package, 246

Control Change message, function of,
100

Control Change messages, table of values,
117

control classes, creating, 227–232

■INDEX 257

Find it faster at http://superindex.apress.com
/

6390chIDX*.qxd 3/24/06 12:01 PM Page 257

Control object, in javax.microedition.media
package, 239

Control objects, that provide control over the
functionality of a Player, 13–14

Controllable interface, in
javax.microedition.media package,
239

ControllableMIDIMIDlet, running to control
pitch, tempo, and volume, 104

controlled capture and playback, of audio,
151–157

Controller class, of the Device Blog MIDlet
application, 197–198

CreateJTSFileFromHexString class, for
creating a binary JTS file, 89–91

createPlayer() methods, provided by
Manager class, 10

createPlayer(DataSource source) method, 10
createPlayer(InputStream is, String type)

method, 10
createPlayer(String locator) method, 10
custom encodings, code example for, 133
custom events, handling, 55–57

■D
DataSource class

basics, 8–9
function of, 7
in javax.microedition.media.protocol

package, 246
DataSource instance, creation of, 8
deallocate() method, attempting to call on

the Player instance, 41
Device Blog MIDlet application

building, 185–237
bundling together common

functionalities of a List in, 194
companion Web site, 185
control classes of, 198
creating a text-only entry for, 189
creating the code for, 198–235
creating the design for, 192–198
defining the blog editing set of classes in,

196
defining the blog preview set of classes,

197
the finished in action, 185–192
getting permission from the user for

recording audio, 190–191
image recording on, 191–192
preview of the text-only blog entry, 189
starting, 186
Unified Modeling Language (UML) model

for, 193
URL for posting entries to, 190
views in, 194–197

Device Blog server, in action, 236

Device Blog Web site
creating and posting entries to, 188–192
logging in to, 187–188
registering with, 186–187
selecting the entry type for posting to, 188
successful login to, 188

device capabilities, MMAPI support for
discovery of, 2

devices, querying the capabilities of, 127–133
Digital Rights Management (DRM), of digital

data, 42
digitally recorded audio data. See sampled

audio
DistributedToneMIDlet, code that will load

and play the happybday_hex.jts file,
91–92

DRM. See Digital Rights Management (DRM)
dumpSequence() method, provided by the

RingToneConverter, 89
duration

calculating using resolution and tempo,
82–83

using with playTone() method, 79–81

■E
EchoEventsMIDlet, example that echoes

player events onscreen, 47–48
EditableDisplay interface

code for creating, 195, 211–227
EditCanvas class

providing the base class for editing media
blog entries, 196

used as the base class to create editable
canvases, 215–216

EditForm class
for implementing the EditableDisplay

interface, 211–213
provides the base class for editing textual

blog entries, 196
EffectControl interface, function of in

javax.microedition.amms.control
package, 253

emulators, running ControllableMIDIMIDlet
to control pitch, tempo, and volume,
104

encoding formats, supported by Sun’s
DefaultColorPhone emulator, 132

encoding strings. See also media encoding
strings

types of, 132
endofmedia event, delivered when no more

media is left to play (or
record/stream), 48

event delivery mechanism, understanding in
MMAPI, 50–51

event handling class, creating,
51–55

■INDEX258

6390chIDX*.qxd 3/24/06 12:01 PM Page 258

event messages
giving them time to process, 118–120
sending short and long, 115

eventData
function of when a particular event is

fired, 49
table of events and corresponding event

data, 50
EventHandler class

code for, 51–52
converting to use reference checking

instead of object equality, 56–57
events, and corresponding event data,

50
exceptions thrown, when playing a media file

using MMAPI, 21–22

■F
feature set, defined, 15
FileConnection API (JSR-75), using to store

data on a device, 158
filename extensions

for Java Tone sequence files, 89
for MIDI Player based on a physical file,

11
for SMF files distributed on the Internet,

101
for Standard MIDI file format, 101
for a tone Player instance, 11

files
example of HTTP for accessing, 8
playing tone sequences stored in,

91–92
flat, defined, 75–76
Form

bundling together common
functionalities of, 195

code for displaying video in, 164–168
FormatControl interface, in

javax.microedition.amms.control
package, 252

formula
for calculating tone duration using

resolution and tempo, 82–83
for SEMITONE_CONST, 76
using a MMAPI to calculate note values,

76–78
FramePositioningControl

in javax.microedition.media.control
package, 242

methods to convert media time to frame
numbers, 181

seeking video frames with, 181
for video data that allows access to

individual frames, 13
frames. See video frames
frequency. See note, pitch, and frequency

■G
Gauge item, for controlling volume and

volume level reflected on screen, 23
General MIDI (GM) specification, core

features and function of, 101–102
GenericForm class, bundling together

common functionalities of a Form in,
194

GenericList class, in Device Blog MIDlet
application, 194

getBankList(boolean custom) method, for
getting a list of all installed
soundbanks, 114

getBankList(false) method, for getting a list of
all soundbanks, 124–125

getControl(" VolumeControl "), retrieving the
VolumeControl with, 52

getDateTimePosted() method, 200
getKeyName(int bank, int program, int key)

method, for getting the name of the
device-assigned name of a key, 115

getKeys() method, for getting a list of keys,
141

getKeyValue() method, for getting the value
assigned to each key, 141

getMaxRate() method, for querying for the
maximum playback rate, 109

getMinRate() method, for querying for the
minimum playback rate, 109

getName() method, must be a CLDC 1.1
method for the Thread class, 60–62

getPitch() method, using to query for the
pitch value in milli-semitones, 108

getProgramList(int channel) method, for
getting the current
instrument/program assigned to
a given channel, 115

getProgramList(selectedBank) method, using
to display the programs installed on
a soundbank, 125

getProgramName(int bank, int prog)
method, for getting the name of an
instrument/program, 115

getProgramName(selectedBank,
programs[i]), null) method, using to
display the programs installed on
a soundbank, 125

getRate() method, using to get the current
playback rate of a musical piece,
109

getSeekType() method, function of, 8
getSnapshot() method

taking a snapshot of an image that is
playing on a device screen with, 174

using to take snapshots, 178–179
getState() method, determining the current

state of a Player instance with, 40

■INDEX 259

Find it faster at http://superindex.apress.com
/

6390chIDX*.qxd 3/24/06 12:01 PM Page 259

getStopTime() method, returning the preset
time with, 139

getSupportedContentProtocols(String
contentType) method, for getting
protocols over which it can be
accessed, 11

getSupportedContentTypes(null) method,
for getting the supported formats for
all media types, 163–181

getSupportedContentTypes(String protocol)
method, for a list of all supported
content types for a particular
protocol, 11

getTimeBase() method, accessing built in
default TimeBase instance with, 9

getTransferSize() method, function of, 8
GlobalManager, function of, 252
guessFileExtension() method, 202
GUIControl

for data that requires a display, 13
in javax.microedition.media.control

package, 242

■H
half step. See semitone
Helix streaming server, Web site address for,

182
HTTP access, code for modifying the JAD

manifest file for, 65
HTTP/HTTPS access, required permissions

for, 17
HTTPS access, code for modifying the JAD

manifest file for, 65

■I
IllegalStateException

thrown by realize() method, 42
thrown if calling start() on an instance that

is in the CLOSED state, 44
thrown if prefetch() is called on a CLOSED

instance, 43
ImageBlogEntry, in Device Blog MIDlet

application, 193
ImagePreviewCanvas, showing the

associated image as a preview,
223–224

images, recording on Motorola C975 and
BenQ M75 devices, 191–192

initDisplayMode(int mode, Object arg)
method, providing basis on which
video is displayed, 163

Interactive MIDI feature set, function of,
15–16

isBankQuerySupported() method
for finding whether a full or minimum

MIDIControl is available, 120
function of, 114–115

itemStateChanged(Item item) method
using to raise the pitch value, 108

■J
Java Community Process (JCP), Web site

address for, 5, 251
Java ME

JVM in vs. JVM in Java SE, 59
understanding threads in, 59–63

Java ME development environment, showing
MMAPI as an optional package, 4

Java ME games, mixing sampled audio,
MIDI, and/or tones in, 142

Java Micro Edition (ME) platform, optional
packages for developing applications
for, 3–4

Java SE, JVM in vs. JVM in Java ME, 59
Java Specification Requests (JSR) 135,

introduction of Mobile Media API
(MMAPI) via, 1

Java Tone Sequence files, filename extension
for, 89

Java Verified Program, Web site address for
details about, 67

Java Wireless Toolkit
reference implementation of MMAPI

installed with, 3
Web site address for downloading, 3

Java-enabled devices, using MMAPI to create
applications for, 1–2

Java-enabled mobile phones, MMAPI
features and requirements for, 2

javax.microedition.amms package, new
concepts defined in, 251–253

javax.microedition.amms.control package,
control interfaces in, 252–253

audio3d package, 253
audioeffect package, 253
camera package, 253
imageeffect package, 253
tuner package, 253

javax.microedition.media package
alphabetical reference, 239–242
Player interface defined in, 7

javax.microedition.media.control package,
alphabetical reference,
242–246

javax.microedition.media.control.Control
interface, new controls derived from,
251–253

javax.microedition.media.protocol package
alphabetical reference,

246–247
DataSource class defined in, 7

JCP specification 135, development of by
Sun, Nokia, and Beatnik, 5

JSR 135, MMAPI released as, 251

■INDEX260

6390chIDX*.qxd 3/24/06 12:01 PM Page 260

JSR 234
implementations, Nokia Web site address

for reference implementation
samples, 253

introduction to for mobile devices, 251–253
.jts filename extension, for Java Tone

Sequence files, 11, 89
jts files, creating, 89–91

■K
.kar or .mid filename extension, for MIDI

Player based on a physical file, 11
keyPressed(int keyCode) method, adding to

the CaptureVideoCanvas Class, 179
Knudsen, Jonathan and Sing Li, Beginning

J2ME: From Novice to Professional,
Third Edition by, 3, 17

■L
laughter.wav, playing in Motorola C975

device, 23
LCDUI Image class, for manipulating image

data, 174
Li, Sing and Jonathan Knudsen, Beginning

J2ME: From Novice to Professional,
Third Edition by, 3, 17

listRoots() method, for finding the root folder
of a device, 158

loadVideo() method, for displaying video, 168
long MIDI event message, sending, 115
longMidiEvent(byte[] data, int offset, int

length) method, for sending System
Exclusive messages, 115

■M
Manager class

as bridge between a DataSource and
a Player, 10

in javax.microedition.media package, 240
scaled-down version of in the MIDP 2.0

subset of MMAPI, 14–15
static method to play single tones

provided by, 11
understanding, 9–12
using to create Player instances in MMAPI, 10

mapFrameToTime(int framenumber)
method, for converting frame
numbers to media time, 181

mapTimeToFrame(long mediaTime)
method, for converting media time
to frame numbers, 181

media, accessing over the network, 59–71
media encoding strings. See also encoding

strings
for specifying the format of media

supported/desired for operations,
132–133

media encodings
understanding, 132–133
using for mixed formats, 132

media locators, URI syntax for, 249
media player, lifecycle and events, 39–58
media types, MMAPI support for

multiple, 2
MediaBlogEntry class

in Device Blog MIDlet application, 193
representing blog entries that have

a media component, 200–201
MediaException

thrown by realize() method, 42
thrown if an error occurs when processing

media for playback, 44
thrown if an error occurs when processing

or decoding media data, 43
MediaException class, in

javax.microedition.media package,
240

MediaProcessor interface, function of,
252

MetaDataControl
gathering information using, 139–141
in javax.microedition.media.control

package, 242–243
predefined keys in, 141
used to determine metadata information

stored within a media stream, 13
using to display meta information on

Motorola C975 device, 141
.mid filename extension, for SMF files

distributed on the Internet, 101
.mid or .kar filename extension, for MIDI

Player based on a physical file, 11
Middle C (equal to 60), example for

composing, 100
MIDI (Musical Instrument Digital Interface)

managing using MIDIControl,
TempoControl and PitchControl,
95–125

playing without MIDIControl, 102–112
understanding, 95–102
using in MMAPI, 102–125

MIDI and tone Player constants, table of, 11
MIDI communication, illustration of, 96
MIDI feature set, function of, 15
MIDI files

controlling the pitch, tempo, and volume
of, 104–109

playing, 102–103
MIDI message format

function of, 97–99
illustration of standard, 97

MIDI messages
classifications of, 98
sending simple, 116–120

■INDEX 261

Find it faster at http://superindex.apress.com
/

6390chIDX*.qxd 3/24/06 12:01 PM Page 261

storing and distributing, 101–102
table showing how to spot the different

messages, 98–99
types of, 97

MIDI mixing, implemented by Motorola
C975 device, 142

MIDI Player instance, creating a standalone, 113
MIDI sequences, varying the speed of

playback of, 107–108
MIDI sounds, creating, 11
MIDI specification

first published in 1982, 95
understanding, 96–101

MIDICapabilitiesMIDlet, for providing
information about MIDIControl’s
capabilities, 113–114

MIDIControl
in javax.microedition.media.control

package, 243
Motorola C975 emulator support for a full,

120
playing MIDI with, 113–125
playing MIDI without, 102–112
querying for capabilities, 113–115
that enables access to a device’s MIDI

player, 13
MIDlets

embedding multimedia capabilities in, 1
MIDP 2.0 as profile for the development

of, 3–4
sources multimedia data can be received

from, 7
MIDP. See Mobile Information Device Profile

(MIDP)
MIDP 2.0, how MMAPI fits with, 3–4
MIDP 2.0 subset, table of MMAPI subset

features, 14–15
mixed encoding, code example for, 132
MMAPI. See also Mobile Media API (MMAPI)

example of BenQ M75 emulator and
device MMAPI capabilities, 131

feature set implementations, 15–16
getting started with, 19–37
how it fits with MIDP 2.0, 3–4
issues required to look at for using across

a network, 67
as an optional package for Java Micro

Edition (ME) platform, 3–4
specification 135, 5
table of devices that support as an

optional package, 5
table of exceptions thrown playing

a media file using, 21–22
table of system properties, 128
understanding the event delivery

mechanism in, 50–51
using MIDI in, 102–125

MMAPI architecture, how it achieves
platform and format neutrality, 7–17

MMAPI controls, table of standard, 13
MMAPI development, permissions that are

interesting for, 63
MMAPI format, converting RTTTL to, 84–86
MMAPI formula

based on the frequency of desired note to
be played as a tone, 76

for SEMITONE_CONST, 76
using to calculate note values, 76–78

MMAPI implementations, supported
protocols and content types, 11–12

MMAPI MIDlets, creating, 19–37
MMAPI system properties, table of, 128
mobile blogging. See also blogging; Case

Study: Device Blogging; Device Blog
Mobile Information Device Profile (MIDP)

2.0, 1
Mobile Media API (MMAPI). See also MMAPI

defined, 1–2
downloading implementation of supplied

by Nokia, 3
features and requirements, 2
getting, 3
introduction to, 1–6
reference, 239–247

Mode Channel messages, function of, 98
model classes, creating for the Device Blog

MIDlet application, 198–205
Model-View-Controller (MVC) pattern, using

to create the Device Blog MIDlet
design, 192–198

Module interface, function of, 252
monophonic ring tones, defined, 73
Motorola C975 device

audio/amr and audio/amr-wb formats
supported by, 146

controlled audio recording MIDlet in
action on, 157

example of MMAPI capabilities in, 130
image recording on, 191
lack of video recording support in, 188
looking through the viewfinder in, 178
MIDI mixing implemented by, 142
mixing MIDI and audio in, 146
moving video around and muting audio,

173
recording and previewing audio on, 191
starting the Device Blog MIDlet on, 186
video playback on a Canvas on, 169

Motorola C975 emulator
example of installed banks and programs

on, 121
example of MMAPI capabilities in, 130
example of RateControllableMIDIMIDlet

running on, 112

■INDEX262

6390chIDX*.qxd 3/24/06 12:01 PM Page 262

lack of TempoControl working in, 109
running ControllableMIDIMIDlet to

control pitch, tempo, and volume,
104

running StopTimeControlMIDlet in, 135
screen and console output for the

ThreadTest MIDlet on, 62
testing the NetworkTest MIDlet in, 67

Motorola SDK V5.2, Web site address for
downloading, 3

multimedia capability, provided by Player
and DataSource, 8

multimedia player, building a simple,
19–22

Musical Instrument Digital Interface (MIDI).
See MIDI (Musical Instrument Digital
Interface)

Musical Instrument Digital Interface (MIDI)
sounds, creating, 11

■N
Netbeans Integrated Development

Environment (IDE), Web site address
for, 3

network
accessing media over, 59–71
code for playing an audio file over,

63–64
network access

granting permissions for, 65
of a media file using a separate thread over

Sun and Motorola emulators, 71
understanding permissions for, 63–67

NetworkPlayerManager class, using to create
a new thread, 67–69

NetworkRunner class
code for, 205–209
function of, 198

NetworkTest MIDlet, 65
Note OFF message, function of, 100
Note ON message, function of, 100
note parameter, formula based on the

frequency of desired note to be
played as a tone, 76

note, pitch, and frequency
table of frequency values for the basic

notes, 74
understanding, 74–76

note values
table of integer for the basic notes, 78
using a MMAPI formula to calculate,

76–78
notes

defined, 73
specifying duration of using resolution, 82
table of frequency values for the basic, 74
table of integer values for the basic, 78

■O
object equality check, using to catch

standard events in playerUpdate()
method, 56

octaves, 74–75
OK command handler, for the

AudioEditCanvas, 220

■P
pauseMedia() method, for pausing the Player

instance, 26
PCM (Pulse Code Manipulation), supported

by Sun’s DefaultColorPhone
emulator, 132

permissions, understanding for media access
over the network, 63–67

pitch. See note, pitch, and frequency
Pitch Bend message, function of, 101
PitchControl

for controlling the pitch (frequency) of
audio data, 13

how it works, 108–109
in javax.microedition.media.control

package, 243
using for simple changes, 102

PLAY_BLOCK constant, using followed by the
number identifying the block, 87

player events, responding to, 47–57
Player instances

creating for MIDI and tone sounds, 11
creating functional, 22–36
creating to play a MIDI file, 102–103
EchoEventsMIDlet acting as a listener for, 48
exploring the different states, 39–46
lifecycle and events, 39–58
methods for making usable, 40–41
overview of states it goes through during

its lifetime, 39
resetting the TimeBase for, 9
to start playing the media file, 21
synchronizing two that use the same

TimeBase, 9
using methods of the Manager class to

create, 10
Player interface

basics for playing and managing
multimedia data, 9

function of, 7
in javax.microedition.media package,

240–241
PlayerListener interface

implementing to receive notification of
asynchronous events, 9

in javax.microedition.media package, 241
for responding to player events, 47–57
table of player events and when they are

fired defined in, 49

■INDEX 263

Find it faster at http://superindex.apress.com
/

6390chIDX*.qxd 3/24/06 12:01 PM Page 263

Players and DataSources, understanding, 7–9
playerUpdate() method

parameters taken by, 49
using object equality check for catching

standard events in, 56
playerUpdate(Player player, String event,

Object eventData) method, invoking,
47

playMedia(String locator) method, function
of, 26

playTone() method
exceptions that can be thrown by, 81
using, 79–81

playTone(int note, int duration, int volume)
method

provided by Manager class to play single
tones, 11

using to play a single note, 76
polyphonic ring tones, 73–74

MIDI specification based on, 96
postEntry(BlogEntry entry) method, code for,

230–231
postentry.jsp file, 232–235
prefetch() method

in a simple linear transition path for
a Player instance, 40

using instead of realize() method for
quicker media playback startup,
34

PREFETCHED state
function of, 43–44
of Player instance, 39
possible transitions, 44

PreviewCanvas abstract class
as base abstract class for all preview

canvases, 221–223
providing commands to view the Device

Blog MIDlet, 197
Program Change messages

for changing the current
instrument/program assigned to
a channel, 117–118

function of, 101

■Q
quantization (or resolution), as measurement

of sampled audio, 133

■R
RateControl

differentiating between it and
TempoControl, 109–112

in javax.microedition.media.control
package, 243–244

used to control the playback rate of
a Player, 13

using instead of TempoControl, 109

Real-time Transport Protocol (RTP), 181
realize() method

exceptions thrown by, 42
function of, 34
in a simple linear transition path for

a Player instance, 39–40
REALIZED state

of Player instance, 39
transitions, 41–42

RealTime Server, Web site address for, 182
RecordControl

for controlling the recording of data from
a capture device, 13

in javax.microedition.media.control
package, 244

methods for setting the location of
recorded data, 147

using to capture media, 146
reference equality check, using to catch

custom events in playerUpdate()
method, 56

reference implementation (RI), of MMAPI, 3
removePlayerListener(PlayerListener

listener) method, using to remove an
instance, 47

RESET constant, removing a previously set
preset time with, 139

resolution, using to specify duration of each
note, 82

resource protocol, for creating a locator for
a media file, 21

restartMedia() method, for restarting the
Player instance, 26

ring tone, as example of synthetic tones, 73
Ringing Tone Text Transfer Language

(RTTTL) format, converting to
MMAPI format, 84–86

RingToneConverter class, using to convert
RTTTL to MMAPI format, 84–86

rtc.dumpSequence() method, using to print
the sequence on the standard out, 89

RTTTL format. See Ringing Tone Text Transfer
Language (RTTTL) format

Run via OTA option, for testing the MIDlet
after it is signed in Sun Java ME
emulator, 66–67

Runnable interface, implemented by the
NetworkPlayerManager class, 69–70

■S
sampled audio

a brief overview of, 133–134
code for mixing MIDI and, 143–146
controlling, 134–141
mixing with MIDI and tones, 142–146
storing, 133–134

sampled audio feature set, function of, 15

■INDEX264

6390chIDX*.qxd 3/24/06 12:01 PM Page 264

sampling rate, as measurement of sampled
audio, 133

Scalable Polyphony MIDI (SP-MIDI), mobile
phone ring tones based on, 96

security architecture, of devices using
MMAPI, 16–17

security conscious methods, table of
classes/interfaces and permissions
required, 16

SecurityException
reason it is thrown by the realize()

method, 42–43
thrown by calling prefetch() method,

43
thrown if there is not enough permission

to start the media, 44
seek(int frameNumber) method, for seeking

video frames, 181
seek(long where) method, function of, 8
semitone, defined, 75, 108
SEMITONE_CONST, formula for, 76
sequences. See also tone sequences

creating, 83–84
creating, defining, and playing blocks of,

87
playing using ToneControl and Player, 88

server side, code for, 232–235
setChannelVolume(int channel, int volume)

method
for changing volume of a channel, 117
for setting the volume for a channel, 115

setMediaTime() method, setting media time
to play back from file starting point
with, 34

setPitch(int milliSemitones) method, setting
actual pitch value with, 108

setProgram(int channel, int bank, int
program) method

for setting the program/instrument to use
on a particular channel, 115

using to change a program, 125
setRate() method, using where a relative

value in percentages is specified, 109
setRecordLocation(String locator) method,

for directing recorded data to
a location, 147

setRecordStream(OutputStream stream)
method, directs data to an
OutputStream, 147

setStopTime() method, exception thrown
when calling on the started Player
instance, 139

setTempo(int milliTempo) method
using where an absolute value of the

desired tempo is required, 109
varying the speed of playback of MIDI

sequences using, 107–108

setTimeBase(TimeBase base) method,
overriding the default TimeBase
instance with, 9

setVisible(true) method, calling so the video
will be displayed in a Canvas, 169

sharp, defined, 75–76
short MIDI event message, sending, 115
shortMidiEvent(int type, int data1, int data2)

method
for sending a short MIDI event message,

115
sending simple MIDI messages with,

116–117
showCanvas() method, for displaying

a preview of the blog entry to the
user, 197

showDisplay() method, of EditableDisplay
interface, 195

skip(int framesToSkip) method, using to skip
video frames, 181

.smf filename extension, for Standard MIDI
file format, 101

Smith, David, original MIDI standard
proposed by, 95

snapshots, taking, 178–179
soundbanks. See also bank (or soundbanks)

getting a list of all installed on your device,
114

working with, 120–125
SourceStream

for abstracting a single stream of media
data, 8–9

in javax.microedition.media.protocol
package, 247

table of constants to test it for seekability,
8

Spectator class, function of, 252
SP-MIDI. See Scalable Polyphony MIDI (SP-

MIDI)
Standard MIDI file (SMF) format, common

format for storing MIDI messages,
101

start() method
effect of calling on an UNREALIZED

instance, 45
in a simple linear transition path for

a Player instance, 40
using to restart paused media file, 21

started event, representing when an instance
has entered the STARTED state,
48

STARTED state
function of, 44–46
of Player instance, 39
transitions, 46

Status byte, differentiating System from
Channel messages by, 98

■INDEX 265

Find it faster at http://superindex.apress.com
/

6390chIDX*.qxd 3/24/06 12:01 PM Page 265

stop() method, effect of, 45
StopTimeControl

illustration showing stopped after a preset
time, 138

in javax.microedition.media.control
package, 244

setting preset stop times for media data
with, 134–139

that allows setting of a preset time, 13
StopTimeControlMIDlet, code that allows

you to play with the
StopTimeControl, 135–138

streaming media, over the network, 181–183
streaming servers, Web site addresses for, 182
Sun Java ME DefaultColorPhone emulator,

example of output from playing all
tones in, 81

Sun Java ME emulator, signing the
NetworkTest MIDlet with trustedkey
key in, 66

Sun Wireless Toolkit, integrated in the
Netbeans IDE, 3

Sun’s DefaultColorPhone emulator
blog entry choices presented by, 190
example of MMAPI capabilities in,

130
lack of video recording support in,

188
running ControllableMIDIMIDlet to control

pitch, tempo, and volume, 104
simulated video capture on, 178
specification of the encoding formats for

property audio.encodings, 132
starting the Device Blog MIDlet on, 186
video capture formats supported by, 132

synthetic tones, understanding, 73–78
System Common messages, in MIDI, 99
System Exclusive messages, in MIDI, 99
System messages, 97

Common, Real-Time, or Exclusive System
message types, 97

how they are differentiated from Channel
messages, 98

table of formats for different types of in
MIDI, 99

System Real Time messages, in MIDI, 99
System.getProperty(String key) method, for

querying the capabilities of your
device, 127–133

■T
Technology compatibility kit (TCK), 5
TempoControl

for changing the tempo of playback for an
audio player, 13

differentiating between it and RateControl,
109–112

how it works, 107–108
in javax.microedition.media.control

package, 244
using for simple changes, 102

TextBlogEntry class
in Device Blog MIDlet application, 193
representing all entries that have a textual

component, 199–200
TextEditForm class, code for creating,

213–214
ThreadedMIDlet, code creating a new thread

to play back a media file, 67–69
ThreadTest MIDlet

example of system and new thread activity
and actions, 62

screen and console output for on
a Motorola emulator, 62

time signature, understanding, 82
TimeBase interface

in javax.microedition.media package, 242
resetting a Player instance’s, 9

timed capture and playback, of audio,
147–151

Tone Sequence feature set, function of, 15
tone sequences. See also sequences

creating, defining, and playing blocks of, 87
creating to play using the ToneControl

interface, 83–84
defining, 82–87
distributing, 89–92
playing those stored in files, 91–92
playing using ToneControl and Player, 88
using with ToneControl interface, 81–92

ToneControl interface
creating and playing tones with, 73–93
in javax.microedition.media.control

package, 245
table of constants, 86
that allows playing of montonic tone

sequences, 13
using to create a tone sequence to play,

83–84
using tone sequences with, 81–92

True Audio (TTA) format, 134
trust, establishment of, 65
trustedkey key, used to sign the NetworkTest

MIDlet, 66
TTA format. See True Audio (TTA) format

■U
Unified Modeling Language (UML)

diagram for common functionalities of
a Form, 195

diagram for common functionalities of
a List, 194

model for the Device Blog MIDlet
application, 193

■INDEX266

6390chIDX*.qxd 3/24/06 12:01 PM Page 266

UNREALIZED Player instance, making
usable, 40–41

UNREALIZED state
and its transitions, 41
of Player instance, 39

URI syntax, media locators, 249
URLEncoder class

code containing a single method to
encode URLs, 209–211

function of, 198
USE_DIRECT_VIDEO argument, using to

embed video in a Canvas, 164
USE_GUI_PRIMITIVE argument, using to

embed video in a Form, 164
User class

in Device Blog MIDlet application, 194
represents the user of the Device Blog

MIDlet, 202–204
utility classes, creating, 205–211

■V
video

positioning and controlling volume,
169–173

working with, 163–181
video and audio, working with,

127–184
video and images, capturing, 173–181
video capture

formats supported by Sun’s
DefaultColorPhone emulator,
132

on the BenQ M75 device, 192
video clips, capturing, 179–181
video feature set, function of, 16

video frames
seeking with FramePositioningControl, 181
skipping using the skip(int framesToSkip)

method, 181
VideoBlogEntry

in Device Blog MIDlet application, 193
that extends MediaBlogEntry, 202

VideoControl
extends GUIControl and controls the

display of video, 13
in javax.microedition.media.control

package, 245
as primary control for displaying video,

163–181
to take a snapshot of a video, 173–174

VideoPreviewCanvas, previews, 225–227
viewfinder, looking through, 174–178
views

creating, 209–211
in Device Blog MIDlet application, 194–197

Voice Channel messages
function of, 98
more information about, 99–101
table of all possibilities along with

a description, 100–101
volumeChanged event, 48
VolumeControl

in javax.microedition.media.control
package, 246

for providing volume control to audio
files, 13–14

using for simple volume changes, 102

■W
WAV file, mixing with a MIDI file, 142

■INDEX 267

Find it faster at http://superindex.apress.com
/

6390chIDX*.qxd 3/24/06 12:01 PM Page 267

	Pro Java ME MMAPI: Mobile Media API for Java Micro Edition
	Contents
	CHAPTER 1 Introducing Mobile Media API (MMAPI)
	CHAPTER 2 MMAPI Architecture.
	CHAPTER 3 Getting Started with MMAPI.
	CHAPTER 4 Media Player Lifecycle and Events
	CHAPTER 5 Accessing Media Over the Network
	CHAPTER 6 Creating and Playing Tones Using ToneControl
	CHAPTER 7 Managing MIDI Using MIDIControl, TempoControl, and PitchControl
	CHAPTER 8 Working with Audio and Video.
	CHAPTER 9 Case Study: Device Blogging
	APPENDIX A Mobile Media API (MMAPI) Reference
	APPENDIX B URI Syntax for Media Locators
	APPENDIX C Advanced Multimedia Supplements—JSR 234
	INDEX

