Programmer to Programmer™

Professional

Java
JDK" 5 Edition

W. Clay Richardson, Donald Avondolio, Joe Vitale, Scot Schrager, Mark W. Mitchell, Jeff Scanlon

Updates, source code, and Wrox technical support at WWW.Wrox.com

Professional Java™, JDK™ 5 Edition

W. Clay Richardson
Donald Avondolio
Joe Vitale
Scot Schrager
Mark W. Mitchell
Jeff Scanlon

Wrox

Programmer to Programmer

Professional Java™, JDK™ 5 Edition

Professional Java™, JDK™ 5 Edition

W. Clay Richardson
Donald Avondolio
Joe Vitale
Scot Schrager
Mark W. Mitchell
Jeff Scanlon

Wrox

Programmer to Programmer

Professional Java™, JDK™ 5 Edition
Published by

Wiley Publishing, Inc.

10475 Crosspoint Boulevard

Indianapolis, IN 46256-5774

www.wiley.com

Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved.
Published simultaneously in Canada

ISBN: 0-7645-7486-8

Manufactured in the United States of America

10987654321

IMA/RR/QR/QV/IN

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)
646-8600. Requests to the Publisher for permission should be addressed to the Legal Department,

Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355,
e-mail: brandreview@wiley.com.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL,
ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED,
THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUB-
LISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT
AN ORGANIZATION OR WEB SITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTEN-
TIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUB-
LISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEB SITE MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEB
SITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK
WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Depart-
ment within the United States at (800) 762-2974, outside the United States at (317) 572-3993, or fax
(317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Professional Java, JDK 5 Edition / W. Clay Richardson . . . [et al.].—
.cm.
Includes bibliographical references and index.
ISBN 0-7645-7486-8 (paper/web site)
1. Java (Computer program language) 1. Richardson, W. Clay, 1976-
QA76.73.J38P7623 2004
005.13'3—dc22
2004022626

Trademarks: Wiley and the Wiley Publishing logo are trademarks or registered trademarks of John Wiley
& Sons, Inc. and/or its affiliates. Java is a trademark of Sun Microsystems, Inc. All other trademarks are
the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or ven-
dor mentioned in this book.

www.wiley.com

About the Authors

W. Clay Richardson is a software consultant concentrating on agile Java solutions for highly specialized
business processes. He has fielded many Java solutions, serving in roles including senior architect,
development lead, and program manager. He is a coauthor of More Java Pitfalls and Professional Portal
Development with Open Source Tools (Wiley). As an adjunct professor of computer science for Virginia
Tech, Richardson teaches graduate-level coursework in object-oriented development with Java. He holds
degrees from Virginia Tech and the Virginia Military Institute.

Donald Avondolio is a software consultant with over 19 years of experience developing and deploying
enterprise applications. He began his career in the aerospace industry developing programs for flight
simulators and later became an independent contractor, crafting health-care middleware and low-level
device drivers for an assortment of mechanical devices. Most recently, he has built e-commerce applica-
tions for numerous high-profile companies, including The Home Depot, Federal Computer Week, the
U.S. Postal Service, and General Electric. He is currently a technical architect and developer on several
portal deployments. Don serves as an adjunct professor at Virginia Tech, where he teaches progressive
object-oriented design and development methodologies, with an emphasis on patterns.

Joe Vitale has been working as a developer for the last ten years. He has worked significantly with the
latest Java technologies and also the most-popular open source technologies on the market. Besides
being a developer, Vitale is coauthor of Professional Portal Development with Open Source Tools (Wiley),
which had a strong focus on open source development and the Java Portlet API formally known as JSR
168. Joe currently works for McDonald Bradley as a development manager, where he manages more
than 50 developers.

Scot Schrager has consulted extensively in the domains of pharmaceuticals, supply chain management,
and the national security market. He has led and participated in various project teams using Java and
Object Oriented Analysis & Design techniques. Most recently, Schrager has been focused on distributed
application architecture using J2EE technology.

Mark W. Mitchell has extensive experience in enterprise application integration, particularly Web
Services integration between Java and the Microsoft platform. He has developed and deployed several
mission-critical Web applications. Mitchell holds a degree in computer science from the University of
Virginia.

Jeff Scanlon is a senior software engineer at McDonald Bradley in Herndon, Virginia. Scanlon holds
both the Sun Certified Java Developer and Microsoft Certified Solutions Developer certifications and has
been published in Software Development magazine.

Credits

Executive Editor
Robert Elliott

Development Editor
Eileen Bien Calabro

Technical Editor
Dreamtech

Production Editor
William A. Barton

Copy Editor
Luann Rouff

Editorial Manager
Kathryn A. Malm

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Executive Editorial Director
Mary Bednarek

Project Coordinator
Erin Smith

Graphics and Production Specialists

Beth Brooks
Amanda Carter
Sean Decker
Kelly Emkow
Lauren Goddard
Denny Hager
Joyce Haughey
Jennifer Heleine
Barry Offringa

Quality Control Technicians
John Greenough
Susan Moritz

Media Development Specialist
Angie Denny

Text Design and Composition
Wiley Composition Services

Proofreading and Indexing
TECHBOOKS Production Services

This book is dedicated to all those who make the daily sacrifices,
especially those who have made the ultimate sacrifice, to ensure our
freedom and security.

Acknowledgments

First, I could not have had any chance of actually getting this book done without the support of my
wonderful wife, Alicia. She and my daughter Jennifer, who has far less sophisticated expectations from
my literary skills, are the joy in my life, and I look forward to spending more time with them. I love both
of you more than words can describe. Stephanie, we love you and will never forget you. My fellow
authors—Donnie, Mark, Scot, Jeff, and Joe—have been terrific with their hard work on a demanding
project. I appreciate each of your contributions to this book. I would like to thank Bob Elliott and Eileen
Bien Calabro for all of their hard work and perseverance working with us on this project. I would like to
acknowledge my leadership, Joe Duffy, Jim Moorhead, Don Heginbotham, Tom Eger, Mark Cramer, Jon
Grasmeder, and Doug Dillingham, for their dedication to the simple concept of doing the right thing for
the right people. It is very refreshing to work at a company that exercises the inverse of the cynical “zero
sum game.” I would like to thank my parents, Bill and Kay, my in-laws, Stephen and Elaine Mellman,
my sister Kari, my brother Morgan, and my stepfather Dave for always being there. I would like to
acknowledge my grandmothers, Vivian and Sophie, for being what grandmothers should be.

I would also like to acknowledge my team members for the great things they do every day to make the
world a better place: Jon Simasek, Rob Brown, Keith Berman, Mauro Marcellino, Terry Trepel, Marshall
Sayen, Joe Sayen, Hanchol Do, Greg Scheyer, Scot Schrager, Don Avondolio, and Mark (Mojo) Mitchell.
To my duty crew at the Gainesville District VFD: Bob Nowlen, Gary Sprifke, Patrick Vaughn, Seth
Bowie, Matt Tyrrell, and Gerry Clemente—we have been through a lot together! To Kevin Smith, I think
you were smart to pass on writing to spend more time with Isabella—I think I will do the same with
Jennifer. Matt Tyrrell, I thought about giving you a hard time again this time around but decided not to
tempt fate too much, so I will just remark the obvious—you are still like a brother to me.—WCR

First, I'd like to thank all of my BV pals: Wendong Wang, Arun Singh, Shawn Sherman, Henry Zhang,
Bin Li, Feng Peng, Henry Chang., Sanath Shetty, Prabahkar Ramakrishnan, Yuanlin Shi, Andy Zhang,
and John Zhang. Additionally, I'd also like to thank these people for inspiring me in the workplace:
Swati Gupta, Chi Louong, Bill Hickey, and Chiming Huang. Thanks to all of the great professors at the
Virginia Tech Computer Science/Information Technology Departments: Shawn Bohner, Tarun Sen,
Stephen Edwards, and John Viega. I am indebted to all of my students who taught me so much with
their dedication, hard work, and insight, which has allowed me to incorporate their development wis-
dom for instruction in this book. Appreciation goes out to the sponsors and organizers of The Great Cow
Harbor Run (Northport, New York) and The Columbia Triathlon (Columbia, Maryland) for organizing
world-class events I like to participate in, but more importantly for inspiring me to be a more disciplined
and focused person.

Finally, I wish to thank all of the coauthors, who are fun guys to work with and be around: Joe, Jeff,
Mark, Scot, and Clay; and my co-workers: Mauro Marcellino, Joe and Marshall Sayen, Jon Simasek,
Terry Trepel, Hanchol Do, Keith Berman, and Rob Brown. To all of my family: Mom, Dad, Michael, John,
Patricia, Kiel, Jim, Sue, Reenie, Donna, Kelly, Stephen, Emily, Jack, and Gillian, Matt and Danielle, you
guys are great. To my wife Van, who I love more than anything for her continual support during the
writing of this book.—DJA

Acknowledgments

First, I'd like to thank my wife Jennifer Vitale and my son Andrew. They have been so supportive
throughout my book-writing adventures, and without their encouragement I would not have found the
time or energy to complete this task. I'd also like to thank my grandfather and grandmother Carlo and
Annette Vitale, as well as my father Joseph Vitale, my stepmother Linda Vitale, and my father- and
mother-in-law James and Marlaine Moore. Many thanks also go to John Carver, Brandon Vient, and
Aron Lee for their great supporting roles as friends. Finally, I'd like to thank all of my co-workers at
McDonald Bradley, including Kyle Rice, Danny Proko, Joe Broussard, Rebecca Smith, Joe Cook, Ken
Pratt, Adam Dean, Joon Lee, Adam Silver, John Johnson, Keith Bohnenberger, Bill Vitucci, Barry
Edmond, Arnold Voketaitis, Steven Brockman, Peter Len, Ken Bartee, Dave Shuping, John Sutton,
William Babilon, and many others who have been very supportive. And a special thanks goes to my
coauthors for all of their hard work and encouragement. Thank you all!l—JV

I'would like to dedicate my contribution of this book to the memory of my father. My biggest fan—I
know he would have put a copy of this book in the hand of everyone he knew. I appreciate the opportu-
nities I have had as the result of the hard work and sacrifice of both of my parents.

I would like to thank my colleagues for helping me be part of this book. I would especially like to thank
Clay and Donnie for their guidance. You make the very difficult seem easy.

This was my first participation in a technical book. I would like to thank my beautiful wife, Heather, for
helping me stay the course. I could not have done it without you.

I would also like to thank Don Schaefer. It has been a privilege to work with you. You have taught me
several lessons firsthand on leadership, professionalism, and conviction. I learned from you that the
quality of a person’s ideas should be judged independent of their position in a company.

One of my early mentors was my high school computer science teacher, Mr. John Nadig. I remember
specifically having some trouble with an assignment. Instead of just telling me the correct answer,
he handed me a thick reference book and said with confidence, “I'm sure you will find the answer in
here.” Thank you for getting me hooked on solving problems; I have been using that approach ever
since.—SRS

I'would like to thank my parents: my mother for teaching me how to write and showing me by her
example how to work diligently and persistently through any problem and my father for introducing
me to computer science and programming very early in my life. I would sit by his side and watch him
program and through his patience learned quite a bit—sparking my interest for what would later
become my career. I would like to thank the people I work with right now, and whom I have worked
with in the past. I have learned a lot simply through watching and listening. There is no greater work
atmosphere than the one where you are the least senior—there is something to be learned from every-
one, each and every day of the week. I would like to thank my friends for understanding why I was
always busy around book deadlines and for continuing to support me even as I became a hermit. Most
of all I would like to thank God, as writing this book has been an exercise in faith and trust. Last, but cer-
tainly not least, I would like to thank my ever-loving and supporting fiancée, without whose support I
certainly would not have been able to complete my chapters. Thank you for planning our wedding and
for being patient with me during my many hours of writing. I promise I will spend more time with the
wedding planning! —MWM

I'would like to thank the people who made this book possible: Dave Nelson for introducing me to the
world of software development and for being my long-standing friend; Joe Vitale for his friendship and

Acknowledgments

involving me with this book; and Eileen Bien Calabro for working with us as a developmental editor,
helping to ensure that this book succeeds. I would also like to thank those who offer their support and
belief in me—my parents, my family, Phil Bickel, Eric Anderton, John Tarcza, Joseph Kapp, Mark
Orletsky, Gwynne Sayres, Keith Obenschain, Robert Burtt, Myke Weiskopf, Randy Nguyen, Randy
Shine, James Kwon, David Hu, Sung Kwak, Tim Weber, Bobby Suh, Albert Young, Jacob Kim, and a few
others I am sure I am forgetting who stand by me.—JS

Xi

Acknowledgments
Introduction

Chapter 1: Key Java Language Features and Libraries

Contents

XXV

New Language Features
Generics
Generic Types and Defining Generic Classes
Using Generics
Enhanced for Loop
Additions to the Java Class Library
Variable Arguments
Boxing/Unboxing Conversions
Unboxing Conversions
Valid Contexts for Boxing/Unboxing Conversions
Static Imports
Enumerations
Meta data
AnnotationDesc
AnnotationDesc.ElementValuePair
AnnotationTypeDoc
AnnotationTypeElementDoc
AnnotationValue
Important Java Utility Libraries
Java Logging
The Log Manager
The Logger Class
The LogRecord Class
The Level Class
The Handler Class
The Formatter Class
Stock Formatters
The Filter Interface
The ErrorManager
Logging Examples
Regular Expressions
The Pattern Class

©o~NowNR (|

OO DDA OWWWNONNNOLUOYTOMOYMOMRPRRRERPR
00O WO WOOwOouNOWNDEOOMOOONRREL,REL,ONOOWNODNPR

Contents

The Matcher Class 59

The MatchResult Interface 61
Regular Expression Example 61

Java Preferences 63
The Preference Class 63
Exporting to XML 68
Using Preferences 69
Summary 71
Chapter 2: Tools and Techniques for Developing Java Solutions 73
Principles of Quality Software Development 74
Habits of Effective Software Development 75
Communicate 75
Model 75
Be Agile 75
Be Disciplined 76
Trace Your Actions to Need 76
Don’t Be Afraid to Write Code 77
Think of Code as a Design, not a Product 77
Read a LOT! 78
Build Your Process from the Ground Up 78
Manage Your Configuration 78
Unit Test Your Code 79
Continuously Integrate 79
Maintaining Short Iterations 79
Measure What You Accomplished — Indirectly 80
Track Your Issues 81
Development Methodology 82
Waterfall Methodology 82
Unified Process 83
eXtreme Programming 85
Observations on Methodology 86
Practical Development Scenarios 87
Ant 87
Scenario 1 88
Scenario 2 90
Scenario 3 94
Maven 95
JUnit 98
XDoclet 101
JMeter 107
Summary 109

Xiv

Contents

Chapter 3: Exploiting Patterns in Java 111
Why Patterns Are Important 112
Keys to Understanding the Java Programming Language 112
Keys to Understanding Tools Used in Java Development 113
ANT 113

JUnit 113
XDoclet 113

Keys to Developing Effective Java Solutions 113
Develop Common Design Vocabulary 114
Understand the Fundamentals of Design 114
Building Patterns with Design Principles 115
Designing a Single Class 115
Creating an Association between Classes 115
Creating an Interface 117
Creating an Inheritance Loop 117
Important Java Patterns 119
Adapter 119
The Adapter Pattern Is a Collaboration of Four Classes 120
Client 120
Adaptee 121
Adapter 121
Model-View-Controller 122
Scenario 1: Changing to the Model 123
Scenario 2: Refreshing When the Model Changes 123
Scenario 3: Initializing the Application 124
Model 124

View 125
Controller 128
Command 130
Command 130
CommandManager 131
Invoker 131
Strategy 134
Strategy 135
Context 137
Composite 138
Component 139

Leaf 139
Composite 140
Summary 142

XV

Contents

Chapter 4: Developing Effective User Interfaces with JFC 143
Layout Managers 144
BorderLayout 144
BoxLayout 151
FlowLayout 161
GridLayout 167
GridBaglLayout 177
SpringLayout 183
CardLayout 191
JFrame and JDialog Components 197
Managing Navigation Flows in Swing Applications 214
Summary 221
Chapter 5: Persisting Your Application Using Files 223
Application Data 224
Saving Application Data 225

A Configuration Data Model for the Imager Application 225
Java Serialization: Persisting Object Graphs 228
Key Classes 229
Serializing Your Objects 229
Configuration Example: Saving Your App’s Configuration to Disk 230
Giving Your Application a Time-based License Using Serialization 235
Implementing the License 236
Implementing the Timeserver 238
Tying Your Serialization Components into the Application 239
Extending and Customizing Serialization 243
The Transient Keyword 243
Customizing the Serialization Format 243
Versioning 245
When to Use Java Serialization 247
Java Beans Long-Term Serialization: XMLEncoder/Decoder 248
Design Differences 248
XML: The Serialization Format 249

Key Classes 250
Serializing Your Java Beans 251
Robustness Demonstrated: Changing Configuration’s Internal Data 252
Possible Customization 254
Persistence Delegates 255
When to Use XMLEncoder/Decoder 255

XVi

Contents

XML Schema-Based Serialization: Java API for XML Binding (JAXB)
Sample XML Document for Your Configuration Object
Defining Your XML Format with an XML Schema
Defining Your Data: Configuration.xsd

Generating JAXB Java Classes from Your Schema
Generated JAXB Object Graphs

JAXB API Key Classes

Marshalling and Unmarshalling XML Data
Creating New XML Content with JAXB-Generated Classes

Using JAXB-Generated Classes in Your Application
Implementing Your Save Action
Implementing Your Load Action

When to Use JAXB

Future Direction of JAXB 2.0

Summary

Chapter 6: Persisting Your Application Using Databases

256
257
259
260
263
265
269
269
270
271
273
275
278
279
279

281

JDBC API Overview
Setting Up Your Environment
JDBC API Usage in the Real World
Understanding the Two-Tier Model
Understanding the Three-Tier Model
Grasping JDBC API Concepts
Managing Connections
DriverManager Class
DataSource Interface
Understanding Statements
Investigating the Statement Interface
Exploring the PreparedStatement Interface
Exploring the CallableStatement Interface
Utilizing Batch Updates
Utilizing Result Sets
Investigating Types of Result Sets
Setting Concurrency of Result Sets
Setting Holdability of Result Sets
Using Result Sets
Examining JDBC Advanced Concepts
Managing Database Meta Data
Discovering Limitations of a Data Source
Determining Which Features a Data Source Supports
Retrieving General Information about a Data Source

281
283
283
283
284
285
286
286
286
287
288
289
292
294
298
298
298
299
299
302
302
303
303
304

XVii

Contents

Utilizing RowSets 308
Understanding RowSet Events 308
RowSet Standard Implementations 308
Using the New JdbcRowSetimpl 309

Connection Pooling 310

Managing Transactions 310
What Is a Transaction? 310
Standard Transactions 311
Distributed Transactions 311

Object to Relational Mapping with Hibernate 312

Exploring Hibernate’s Architecture 312
Supported Database Platforms 314
Plugging Hibernate In 314

Developing with Hibernate 315
Understanding Mappings 315
Setting Hibernate Properties 317
Using Hibernate’s APIs for Persistence 317
Putting It All Together: The Forum Example 320

Summary 327

Chapter 7: Developing Web Applications Using the Model 1 Architecture 329

What Is Model 1? Why Use It? 329
JSP 2.0 Overview 331
Servlet 2.4 Support 332
Expression Language Support 332

Code Reuse with *.tag and *.tagx Files 335

JSP Page Extensions (*.jspx) 336
Simple Invocation Protocol 337
Integrated Expression Language (EL) 339
JSTL 1.1 Overview 340
Function Tag Library 341

SQL Actions 342
Developing Your Web Application Visualizations with JSTL 344
Developing Your Web Application Visualizations with JSP 2.0 350
Summary 364

Chapter 8: Developing Web Applications Using the Model 2 Architecture 365

The Problem 365
What Is Model 2? 365
Why Use Model 2? 367

xviii

Contents

Developing an Application with WebWork
What Is Inversion of Control and Why Is It Useful?
Architecture

Interceptors
ValueStack
OGNL
Components
Extending the Framework to Support Hibernate
Preventing the Hanging Session
Defining Your Domain Model
Implementing Your Use Cases with Actions
Developing Your Views
Adding Contacts to the System
Browsing Contacts
Configuring Your Application
Adapting to Changes
Summary

Chapter 9: Interacting with C/C++ Using Java Native Interface

A First Look at Java Native Interface
Creating the Java Code
Creating the Native Code and Library
Executing the Code
Java Native Interface
Data Types
Strings in JNI
String Example
Arrays in JNI
Array Functions
Array Examples
Working with Java Objects in C/C++
Accessing Fields in JNI
Invoking Java Methods Using JNI
Handling Java Exceptions in Native Code
Working with Object References in Native Code
Local References
Global and Weak Global References
Comparing References
Advanced Programming Using JNI
Java Threading
Native NIO Support

368
369
371
372
373
373
374
374
375
378
384
387
389
391
394
397

399

401

401
402
403
405
406
406
406
408
410
411
413
416
416
419
423
425
425
427
429
429
429
430

Xix

Contents

Manually Registering Native Methods 430
Reflection 432
Developing an E-Mail Client 434
System Design 434
User Interface 435
Summary 444

Chapter 10: Communicating between Java Components with RMI and EJB 445

Remote Method Invocation 445
Exploring RMI’s Architecture 446
Developing RMI Applications 448

Using Threads in RMI 448
Using Dynamic Class Loading 449
Distributed Garbage Collection 449
Examining Remote Object Activations 449
TestRemotelnterface Interface 450
TestActivationImpl Class 450
TestClient Class 451
Register Class 452
Starting the Activation Tools 453
RMIChat Example 453
RMIChat Interface 454
RMIChatimpl Class 455
ChatUser Class 459
ChatApplet Class 460
Compiling the RMIChat Application 464

Enterprise JavaBeans 465
EJB Basics 465
Types of EJBs 466

Session Beans 466
Entity 466
Message Driven 466
Examining EJB Containers 467
EJB Loan Calculator Example 468
LoanObject Interface 468
LoanHome Interface 468
LoanBean Class 469
LoanClient Class 470
Examining the EJB-JAR.XML File 473
Summary 475

XX

Contents

Chapter 11: Communicating between Java Components and

Components of Other Platforms 477
Component Communication Scenarios 478
News Reader: Automated Web Browsing 478

A Bank Application: An EJB/J2EE Client 478

A Portal: Integrating Heterogeneous Data Sources and Services 478
Overview of Interprocess Communication and Basic Network Architecture 479
Sockets 480
The Java Socket API 481
Key Classes 481
Client Programming 481
Server Programming 482
Putting It All Together: An Echo Server 483
Implementing a Protocol 487
Protocol Specification 488
Proprietary Protocols and Reverse Engineering 498
Utilizing Existing Protocols and Implementations 499
Remote Method Invocation 500
Core RPC/RMI Principles 500
Marshalling and Unmarshalling 501
Protocols 503

RMI Registry 503
Distributed Objects 504
Middleware and J2EE 504
Common Object Request Broker Architecture 505
CORBA Basics 506
IDL: Interface Definition Language 507

ORB: Object Request Broker 509
Common Object Service (COS) Naming 509

IIOP: Internet InterORB Protocol 509
RMI-IIOP: Making RMI Compatible with CORBA 510
How to Turn an RMI Object into an RMI-IIOP Object 510
When to Use CORBA 512
Distributed File System Notifications: An Example CORBA System 513
The Implementation 516
Running the Example 521
Web Services 522
Evolution of the World Wide Web 523
Platform Independent RPC 526
Web Services Description Language (WSDL) 528
Simple Object Access Protocol (SOAP) 529

XXi

Contents

Weather Web Site Example 531

The Future 540
Summary 541
Chapter 12: Distributed Processing with JMS and JMX 543
Basic Concepts 544
JMS Fundamentals 544
Sending and Receiving a JMS Message 545

JMX Fundamentals 548
Using Standard MBeans 549
Deploying MBean for Management 550
Using Adaptors and Connectors 551
Building a Distributed Application 551
Deciding on the Message Type 552
Understanding the Three-Component Architecture 553
Creating a Component to Process JMS Messages 553
MessagelListener 555
MessageProcessorMBean 555
JndiHelper 556
MessageProcessor 558
Processable 562
OrderProcessor 562
JMXAgent 563
Creating a Component that Directs Messages through the Business Process 564
Routeable 565
MessageRouter 565
Creating a Component to Divide Large Tasks for Parallel Processing 566
Splitable 567
MessageSplitter 567
Aggregateable 570
MessageAggregator 570
OrderAggregator 572
Deploying the Application 573
Basic Deployment 573
Advanced Deployment 578
Deploy the M-Let Service 579
Configure the Deployment Descriptor 579

Add the M-Let Configuration File to the M-Let Service 581
Summary 581

xxii

Contents

Chapter 13: Java Security 583
Java Cryptography Architecture and Java Cryptography Extension (JCA/JCE) 583
JCA Design and Architecture 584
Engine Classes 584
Calculating and Verifying Message Digests 586
Digital Signing and Verification of Data 588
Digital Key Creation and Management 592
Storing and Managing Keys 596
Algorithm Management 597
Random Number Generation 599
Certificate Management 600

Java Cryptography Extension 602
The Cipher Engine Class 603
KeyGenerator 608
SecretKeyFactory 608
Protecting Objects through Sealing 609
Computing Message Authentication Codes 611
Program Security Using JAAS 612
User Identification 612
Executing Code with Security Checks 613
Principals 614
Credentials 615
Authenticating a Subject 615
Configuration 615
LoginContext 616
Authorization 617
Summary 618
Chapter 14: Packaging and Deploying Your Java Applications 619
Examining Java CLASSPATHs 619
Investigating the Endorsed Directory 624
Exploring Java Archives 625
Manipulating JAR files 625
Examining the Basic Manifest File 628
Examining Applets and JARs 629
Signing JAR Files 630
Examining the JAR Index Option 634
Creating an Executable JAR 635

XXiii

Contents

Analyzing Applets 636
Basic Anatomy of an Applet 636
Packaging an Applet for Execution 638
Examining Applet Security 639

Exploring Web Applications 639
Examining the WAR Directory Structure 640
Understanding the WAR Deployment Descriptor 640

Packaging Enterprise Java Beans 643

Inspecting Enterprise Archives 644
The EAR Descriptor File 644
Deployment Scenario 645

Jumping into Java Web Start 647
Examining the TicTacToe Example 647

Examing the TicTacToe.JNLP 648
TTTMain.java 650
TTTLogic.java 650
TTTGui.java 653
Summarizing Java Web Start 654

Using ANT with Web Archives 654
Installing ANT 654
Building Projects with ANT 655

Summary 659

References 661

Index 663

End-User License Agreement 701

XXiv

Introduction

Professional Java, JDK 5 Edition provides a bridge from the “how to” language books that dominate the
Java space (Teach Yourself Hello World in Java in 24 Hours) and the more detailed, but technologically
stovepiped books on topics such as EJB, J2EE, JMX, JMS, and so on. Most development solutions involve
using a mix of technologies, and the books for all of these technologies would stand several feet tall.
Furthermore, the reader needs but a fraction of the overall content in these books to solve any specific
problems. Professional Java, [DK 5 Edition provides background information on the technology, practical
examples of using the technology, and an explanation of where the reader could find more-detailed
information. It strives to be a professional reference for the Java developer.

Who This Book Is For

This book serves three types of readers:

Q The newly introduced reader who has graduated from Beginning Java, by covering more-
advanced Java solutions and language features.

Q The Java developer who needs a good all-purpose reference and a first source when tackling
new Java problems that may be outside their technological experience.

Q The developer who has already had experience with certain solutions, but may not, for exam-
ple, think it worthwhile to read 500 pages on JMS alone to see if JMS could fit into their solution
space. This book can provide reduced barriers to technological entry for these developers.

What This Book Covers

Professional Java, JDK 5 Edition builds upon Ivor Horton’s Beginning Java 2, JDK 5 Edition by Ivor Horton to
provide the reader with an understanding of how professionals use Java to develop software solutions.
It starts with a discussion of the tools and techniques of the Java developer, continues with a discussion
of the more sophisticated and nuanced parts of the Java SDK, and concludes with several examples of
building real Java solutions using Java APIs and open source tools. Professional Java, JDK 5 Edition leaves
the reader with a well-rounded survey of the professional Java development landscape, without losing
focus in exhaustive coverage of individual APIs. This book is the bridge between Java language texts,
methodology books, and specialized Java API books. For example, once you have mastered the basics of
the Java language, you will invariably encounter a problem, like building a database-driven Web site,
which requires you to use a collection of technologies like JSP, and tools like Hibernate; this book pro-
vides a concrete solution that integrates both of them. Figure Intro-1 provides a context to this book’s
coverage in relation to other Java books. As you start with the beginning Java books, you would use this
book as a solution primer to introduce you to more in-depth books on a particular subject, such as pat-
terns, Web services, or JDBC.

Introduction

! [
| Methodology, Patterns, ahd APl Books |
I

|
———

_____ |

Professional :
Java |
| Development :

Figure Intro-1

How This Book Is Structured

Working as an effective professional Java developer requires two major skills: thinking like a Java devel-
oper and having a broad understanding of Java APISs, tools, and techniques to solve a wide variety of
Java problems. Reviewing the structure of the book, you can see how the chapters help you realize the
goal of improving these skills.

Thinking Like a Java developer

Experienced Java developers recognize that there is a particular mindset among effective Java develop-
ers. The first three chapters provide you with strong coverage of these topics.

Chapter 1: Key Java Language Features and Libraries

Any introductory Java book will cover the features of the Java programming language. This chapter
picks up where those books leave off by focusing on a number of the key sophisticated Java language
features, such as assertions, regular expression, preferences, and Java logging. Most importantly, this
chapter covers a number of key features introduced in the Java 2 Standard Edition 5.0. These include
generics, meta data, autoboxing, and more.

Chapter 2: Tools and Techniques for Developing Java Solutions

Making the jump from someone who knows the Java language to a Java developer is an interesting tran-
sition. Typically, developers find books that teach the language and books that teach the methodologies.
Furthermore, methodology books are often written defensively, as if they are defending a dissertation or
prescribing a diet. These books often prescribe ritualistic adherence to their methodology, lest you risk

XXVi

Introduction

failure. New developers can find this approach quite exhausting, since rarely do you start in a position
where you can dictate a team’s process. In this book, you will find a developer’s focused view on
methodology and tools with practical insights into how to allow tools to make your work easier and
more productive.

Chapter 3: Exploiting Patterns in Java

Patterns provide an invaluable resource to developers in trying to communicate solutions to common
problems. However, as software problems are generally very abstract, understanding common solutions
to them—or even the value of the approach—can be a very overwhelming experience.

However, as you might imagine, there are some key problems that recur throughout the Java solution
space, and therefore, frameworks and APIs are built upon patterns. As such, having a utilitarian under-
standing of patterns is invaluable, and arguably unavoidable in becoming an effective Java developer.
This chapter will explain the critical importance of patterns, provide a practical understanding of pat-
terns, and demonstrate examples of common patterns found in the Java world.

A Broad Understanding of Java APIs, Tools, and Techniques

The Java platform has extended beyond being a simple applet development language at its inception to
three distinct editions targeted at three different platforms. Not only has the platform evolved into a
huge undertaking, but the open source movement and the Java community have also added features
and tools that provide even more options to the Java developer.

Therefore, you can find yourself easily overwhelmed. This part of the book provides a series of common
problems across the Java development space. In each area, you will be introduced to a problem and a
focused solution to that problem. These solutions do not attempt to provide comprehensive coverage of
all of the involved APIs but rather a primer needed to solve that problem. From there, you could bridge
into a book with more-specialized coverage. The primary intent is to not require a three-foot-tall stack of
books to address a simple end-to-end solution to a common development problem.

Chapter 4: Developing Effective User Interfaces with JFC

Commonly referred to simply as Swing, the Java Foundation Classes provide the functionality to build
user interfaces and desktop applications. As these classes frequently make up most of the logical exam-
ples within introductory Java books, it makes logical sense to start with a Swing example. However, this
chapter will cover the intricacies of Swing in more detail, including some advanced topics like Layout
Managers and Java 2D.

Chapter 5: Persisting Your Application Using Files

One of the more important things for any application to be able to do is persist its state—that is, save. In
this chapter, you will discover techniques to implement save and restore functionality, using two differ-
ent methods, Java object serialization and the Java API for XML Binding (JAXB).

Chapter 6: Persisting Your Application Using Databases

Files are traditionally used to share data in a single-threaded mode—one user at a time. When data must
be shared throughout the enterprise, you use a database. In this chapter, you will learn the more
advanced features of the Java Database Connectivity API (JDBC) 3.0, including the new Rowset inter-
face. Furthermore, this chapter will address one of the more popular object persistence frameworks (and
the foundation for the development of the new EJB 3.0 specification)—Hibernate.

XXvii

Introduction

Chapter 7: Developing Web Applications Using the Model 1 Architecture

Those who have been developing Web applications for a long time recognize that the page-centric
paradigm, also known as the Model 1 Architecture, has been used across many technology platforms
(ASP, Cold Fusion, Perl, and so on) to develop Web applications. Java supports this paradigm through
its Java Server Pages 2.0 and Java Standard Tag Library specifications. In this chapter, you will learn
about these frameworks as well as other best practices in developing Web applications within the Model
1 Architecture.

Chapter 8: Developing Web Applications Using the Model 2 Architecture

As Web applications have evolved, there has been recognition of some weaknesses in the page-centric
approach of the Model 1 Architecture. In this chapter, you will learn about these weaknesses and how
they gave rise to the Model 1 Architecture, which is component-centric. You will see how using a compo-
nent framework like WebWork allows for easy integration of other components like Hibernate.

Chapter 9: Interacting with C/C++ Using Java Native Interface

Frequently, you have application components that are regrettably not written in the Java programming
language. This often does not alleviate the need for those components to be accessible by your applica-
tion. The solution to this problem is the Java Native Interface. This chapter will explain the intricacies of
JNI, as well as a number of the potential pitfalls.

Chapter 10: Communicating between Java Components with RMI and EJB

The heart of distributed development is interprocess communication—that is, you have two applications
that wish to speak with each other. This is frequently also referred to as Client/Server, instilling the con-
cept of one application process initiating a request upon another application process. This chapter will
discuss Java’s mechanism for interprocess communication, Remote Method Invocation, or simply, RMI.
RMI is the foundation of commonly used technologies like JDBC, though the mechanics are hidden from
the developer, by layering a higher-level API (JDBC on top). The chapter builds upon this concept by
introducing the enterprise application component framework known as Enterprise JavaBeans (EJB),
which is Java’s preferred way of building server components.

Chapter 11: Communicating between Java Components and
Components of Other Platforms

While RMI has proven to be a good solution for Java to Java communication, there are still a tremendous
number of needs to access (or provide access) to components of other platforms. This is particularly true
of the Microsoft .NET platform. This chapter will explain the basics of interprocess communication, dis-
cuss several techniques for interprocess communication, and culminate in an example using Web services.

Chapter 12: Distributed Processing with JMS and JMX

When performing enterprise application integration of components distributed across many machines
and platforms, it is often necessary for you to be able to spread the workload out across many different
steps. There are two APIs that are particularly useful in this regard, the Java Message Service (JMS) and
the Java Management Extensions (JMX). In this chapter, you will see the core of these two APIs tied
together to provide a highly useful architecture.

XXViii

Introduction

Chapter 13: Java Security

Information security is tremendously important to Java development. In this chapter, you will see how
your application can be secured using the Java Authorization and Authentication Service (JAAS) and
how your data can be secured using the Java Cryptography Extensions (JCE).

Chapter 14: Packaging and Deploying Your Java Applications

One of the trickiest and most painful things about developing Java applications, whether they are enter-
prise or desktop applications, is packaging and deploying your application. There are a multitude of
deployment descriptors and packaging rules that exist in many of the Java APIs. There are JARs, WARs,
EARs, and more on the way. Often you get cursory understanding of these formats and specifications
within each of the stovepipe books. In this chapter, you will learn about a number of the packaging
mechanisms that exist in Java, as well as descriptions of the deployment descriptors for each of those
mechanisms.

What You Need to Use This Book

This book is based upon Java 2 Standard Edition version 5.0. You might find it helpful to have an
Integrated Development Environment (IDE) of your choice—Eclipse is a very good and popular one
(http://www.eclipse.org). Furthermore, depending on the chapter, you may need to use an applica-
tion server like JBoss (http: //www.jboss.org) or Tomcat (http://jakarta.apache.org/tomcat).
The need to download an application server, as well as any other downloads (of APIs and so on), is
addressed in each chapter.

Conventions

To help you get the most from the text and keep track of what’s happening, we’ve used a number of con-
ventions throughout the book.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.
As for styles in the text, the following are standard for the book:

Q Important words are highlighted when they are introduced.
Q Keyboard strokes are shown like this: Ctrl+A.

O File names, URLs, and code within the text are like so: persistence.properties.

XXiX

Introduction

Q Code is presented in two different ways:

In code examples, new and important code is highlighted with a gray background.

The gray highlighting is not used for code that's less important in the present
context, or has been shown before.

Source Code

As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is avail-
able for download at http: //www.wrox.com. Once at the site, simply locate the book’s title (either by
using the Search box or by using one of the title lists) and click the Download Code link on the book’s
detail page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; for this book the
ISBN is 0-7645-7486-8.

Once you download the code, just decompress it with your favorite compression tool. Alternatively, you
can go to the main Wrox code download page at http: //www.wrox.com/dynamic/books/download.
aspx to see the code available for this book and all other Wrox books.

Errata

We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration, and at the same time you will be helping us provide even higher quality
information.

To find the errata page for this book, go to http: //www.wrox.comand locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you can view
all errata that has been submitted for this book and posted by Wrox editors. A complete book list including

links to each book’s errata is also available at http: / /www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot the error you are experiencing on the Book Errata page, go to http://www.wrox.com/
contact/techsupport.shtml and complete the form there to send us the error you have found. We’ll
check the information and, if appropriate, post a message to the book’s errata page and fix the problem
in subsequent editions of the book.

XXX

Introduction

p2p.wrox.com

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

Athttp://p2p.wrox.com you will find a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow these
steps:

1. Goto p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the registration process.

You can read messages in the forums without joining P2P, but to post your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the Web. If you would like to have new messages from a particular forum e-mailed
to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-

tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

XXXi

Key Java Language Features
and Libraries

Java’s initial design opted to leave out many features that programmers knew from C++ and other
languages. This made programming and understanding Java a lot simpler since there are fewer
syntactic details. The less built into the language, the cleaner the code is. However, since some fea-
tures are useful and desired by programmers, the new JDK 5 release of Java introduced several
important features that were left out of the initial design of the language. Other changes make cer-
tain code constructs easier to code, removing the need for repeating common blocks of code.
Please note that this book was written while some of these features are in flex, before they enter
into their final form. Therefore, certain information may not be accurate by the time this book is
published.

The first half of this chapter will explore the new language. The features are new to the language
features built into the language, giving you everything you need to know to make full use of these
additions. The second half of this chapter details certain key utility packages in the java.util
branch of the class library.

New Language Features

Sun has added several new features to the Java language itself. All these features are supported by
an updated compiler, and all translate to already defined Java bytecode. This means that virtual
machines can execute these features with no need for an update.

O (Generics— A way to make classes type-safe that are written to work on any arbitrary
object type, such as narrowing an instance of a collection to hold a specific object type and
eliminating the need to cast objects when taking an object out of the collection.

0 (Enhanced £or loop—A cleaner and less error prone version of the for loop for use with
iterators.

James Wang
Highlight

James Wang
Highlight

Chapter 1

Q (Variable arguments — Support for passing an arbitrary number of parameters to a method.

0 (Boxing/Unboxing — Direct language support for automatic conversion between primitive types
and their reference types (such as int and Integer).

Q (Type-safe enumerations — Clean syntax for defining and using enumerations, supported at the
language level.

Q (Static import— Ability to access static members from a class without need to qualify them with
a class name.

Q (Meta data— Coupled with new tools developed by third-party companies, saves developers the
effort of writing boilerplate code by automatically generating the code.

These features update the Java language to include many constructs developers are used to in other lan-
guages. They make writing Java code easier, cleaner, and faster. Even if you choose not to take advan-
tage of these features, familiarity with them is vital to read and maintain code written by other
developers.

Generics

Generics enable compile-time type-safety with classes that work on arbitrary types. Take collections in
Java as an example of a good use of the generics mechanism. Collections hold objects of type Object, so
placing an object into a collection loses that object’s type. This means two things. First, any object can be
placed into the collection, and second, a cast is required when pulling an object out of the collection. This
can be a source of errors since the developer must track what type of object is in each position inside the
collection to ensure the correct cast is performed when accessing the collection.

You can design a generic collection such that at the source code level (and verifiable at compile time) the
collection will only hold a specific type of object. If a collection is told to only hold objects of type
Integer, and a String is placed into the collection, the compiler will display an error. This eliminates
any type ambiguity with the collection and also removes the need to cast the object when retrieving an
object from the collection. The class has to be designed to support genericity, and when an object of the
collection class is declared, the specific type that that instance of the collection will work on must be
specified. There are several syntax changes to the Java language to support generics, but here’s a quick
taste of what they look like before generics are discussed in detail.

To create an ArrayList that holds only Integer objects, the syntax for declaring, instantiating, and
using the ArrayList is the following:

ArraylList<Integer> listOfIntegers; // <TYPE NAME> is new to the syntax
Integer integerObject;

listOfIntegers = new ArrayList<Integer>(); // <TYPE_NAME> is new to the syntax
listOfIntegers.add(new Integer (10)); // Can only pass in Integer objects
integerObject = listOfIntegers.get(0); // no cast required

If you have a background in C++, the syntax is quite similar. If you don’t, you may have to get used to
the syntax, but it shouldn’t be too difficult. Let’s take a more rigorous look at how generics are sup-
ported in the Java language.

James Wang
Highlight

James Wang
Highlight

James Wang
Highlight

James Wang
Highlight

James Wang
Highlight

Key Java Language Features and Libraries

Generic Types and Defining Generic Classes

In the terminology of generics, there are parameterized types (the generic classes) and type variables.
The generic classes are the classes that are parameterized when the programmer declares and instanti-
ates the class. Type variables are these parameters that are used in the definition of a generic class, and
are replaced by specific types when an object of the generic class is created.

Parameterized Types (Classes and Interfaces)

A generic class is also known as a parameterized class. The class is defined with space for one or more
parameters, placed between the angle braces, where the type of the parameters is specified during the
declaration of a specific instance of the class. For the rest of this section, the term generic class will be
used to refer to a parameterized class. Also note that a class or an interface in Java can be made generic.
For the rest of this section, unless otherwise stated, the word class includes classes and interfaces. All
instances of a generic class, regardless of what type each instance has been parameterized with, are con-
sidered to be the same class.

A type variable is an unqualified identifier that is used in the definition of a generic class as a place-
holder. Type variables appear between the angle braces. This identifier will be replaced (automatically)
by whatever specific object type the user of the generic class “plugs into” the generic class. In the exam-
ple at the start of this section, Integer is the specific type that takes the place of the type variable for the
parameterized ArrayList.

The direct super-types of a generic class are the classes in the extends clause, if present (or
java.lang.Object if not present), and any interfaces, if any are present. Therefore, in the following
example, the direct super-type is ArrayList:

class CustomArrayList<ItemType> extends ArrayList {
// fields/methods here
}

The super-types of type variables are those listed in the bounds list for that type variable. If none are
specified, java.lang.Object is the super-type.

In hierarchies of generic classes, one important restriction exists. To support translation by type erasure
(see below for more on type erasure), a class or type variable cannot have two different parameteriza-
tions of the same class/interface at the same time. This is an example of an illegal hierarchy:

interface BaseInterface<A> ({
A getInfol();
}

class ParentClass implements BaseInterface<Integer> {
public Integer getInfo()
{
return(null) ;
}
}

class ChildClass extends ParentClass implements BaseInterface<String> { }

Chapter 1

The interface BaseInterface is first parameterized with Integer, and later parameterized with
String. These are in direct conflict, so the compiler will issue the following error:

c:\code\BadParents.java:14: BaseInterface cannot be inherited with different
arguments: <java.lang.String> and <java.lang.Integer>
class ChildClass extends ParentClass implements BaselInterface<String> { }

1 error

Raw Types and Type Erasure

A raw type is a parameterized type stripped of its parameters. The official term given to the stripping of
parameters is type erasure. Raw types are necessary to support legacy code that uses nongeneric versions
of classes such as collections. Because of type erasure, it is possible to assign a generic class reference to a
reference of its nongeneric (legacy) version. Therefore, the following code compiles without error:

Vector oldVector;
Vector<Integer> intVector;

oldVector = intVector; // valid

However, though not an error, assigning a reference to a nongeneric class to a reference to a generic class
will cause an unchecked compiler warning. This happens when an erasure changes the argument types
of a method or a field assignment to a raw type if the erasure changes the method/field type. As an
example, the following program causes the warnings shown after it. You must pass -X1int :unchecked
on the command line to javac to see the specific warnings:

import java.util.*;

public class UncheckedExample {
public void processIntVector (Vector<Integer> v)
{

// perform some processing on the vector

public static void main(String args[])

{
Vector<Integer> intVector = new Vector<Integer>();
Vector oldVector = new Vector();
UncheckedExample ue = new UncheckedExample() ;

// This is permitted

oldVector = intVector;

// This causes an unchecked warning
intVector = oldVector;

// This is permitted
ue.processIntVector (intVector) ;

// This causes an unchecked warning
ue.processIntVector (oldvector) ;

Key Java Language Features and Libraries

Attempting to compile the above code causes the following output:

UncheckedExample.java:16: warning: unchecked assignment: java.util.Vector to
java.util.Vector<java.lang.Integer>
intVector = oldVector; // This causes an unchecked warning

UncheckedExample.java:18: warning: unchecked method invocation:
processIntVector (java.util.Vector<java.lang.Integer>) in UncheckedExample is
applied to (java.util.Vector)

ue.processIntVector (oldVector); // This causes an unchecked warning

2 warnings

Defining Generic Classes

As mentioned earlier, both interfaces and classes can be parameterized. Since type variables have no
inherent type, all that matters is the number of type variables that act as parameters in a class. The list of
type variables appears between the angle braces (the less-than sign and greater-than sign). An example of
changing the existing ArrayList class from a nongeneric class to a generic class changes its signature to:

public class ArrayList<ItemType> { ... }

The type variable here is ItemType, and can be used throughout the class as a not-yet-specified type.
When an object of the class is defined, a specific type is specified and is “plugged into” the generic class
by the compiler. The scope of a type variable extends throughout the class, including the bounds of the
type parameter list, but not including static members/methods.

Each type variable can also have bounds that place a restriction on the type variable. The type variable
can be forced to extend from a class other than java.lang.0Object (which it does when no extends
clause is specified) or implement any number of specific interfaces. For example, if you define an inter-
face GraphicContext as part of a graphics library, you might write a specialization of a collection to
only hold objects that implement the GraphicContext interface. To place only an interface restriction
on the type variable, the extends clause must be specified, even if it is only java.lang.Object, how-
ever it is possible to only list interfaces after the extends clause. If you only list interfaces, it is implicitly
understood that java.lang.Object is the base class of the type variable. Note that interfaces are sepa-
rated by the ampersand (“&”). Any number of interfaces can be specified.

Using Generics

It is straightforward to create objects of a generic type. Any parameters must match the bounds speci-
fied. Although one might expect to create an array of a generic type, the early access release of generics
forbids it. It is also possible to create a method that works on generic types. This section describes these
usage scenarios.

Class Instances

Creating an object of a generic class consists of specifying types for each parameter and supplying any
necessary arguments to the constructor. The conditions for any bounds on type variables must be met.
Note that only reference types are valid as parameters when creating an instance of a generic class.
Trying to use a primitive data type causes the compiler to issue an unexpected type error.

Chapter 1

This is a simple creation of a HashMap that assigns Floats to Strings:

HashMap<String,Float> hm = new HashMap<String,Float>();

Here’s an example from above, involving bounds:
GCArrayList<MemoryDevice> gcal = new GCArrayList<MemoryDevice> () ;

If MonitorDevice was specified instead of MemoryDevice, the compiler issues the error type parame-
ter MonitorDevice is not within its bound.

Arrays

As of the time of this writing, arrays of generic types and arrays of type variables are not allowed.
Attempting to create an array of parameterized Vectors, for example, causes a compiler error:

import java.util.*;

public class GenericArrayExample {
public static void main(String argsl])
{

Vector<Integer> vectorList[] = new Vector<Integer>[10];

If you try to compile that code, the compiler issues the following two errors. This code is the simplest
approach to creating an array of a generic type and the compiler tells you explicitly that creating a
generic type array is forbidden:

GenericArrayExample.java:6: arrays of generic types are not allowed
Vector<Integer> vectorList[] = new Vector<Integer>[10];

~

GenericArrayExample.java:6: arrays of generic types are not allowed
Vector<Integer> vectorList[] = new Vector<Integer>[10];

S

2 errors

Generic Methods

In addition to the generic mechanism for classes, generic methods are introduced. The angle brackets for
the parameters appear after all method modifiers but before the return type of the method. Following is
an example of a declaration of a generic method:

static <Elem> void swap(Elem[] a, int i, int j)

{

Elem temp = al[il;
alil = aljl;
alj] = temp;

The syntax for the parameters in a generic method is the same as that for generic classes. Type variables
can have bounds just like they do in class declarations. Two methods cannot have the same name and

Key Java Language Features and Libraries

argument types. If two methods have the same name and argument types, and have the same number of
type variables with the same bounds, then these methods are the same and the compiler will generate an
error.

Generics and Exceptions

Type variables are not permitted in catch clauses, but can be used in throws lists of methods. An exam-
ple of using a type variable in the throws clause follows. The Executor interface is designed to execute
a section of code that may throw an exception specified as a parameter. In this example, the code that
fills in the execute method might throw an TI0Exception. The specific exception, IOException, is speci-
fied as a parameter when creating a concrete instance of the Executor interface:

import java.io.*;
interface Executor<E extends Exception> {
void execute() throws E;

}

public class GenericExceptionTest {

public static void main(String args[]) {
try {
Executor<IOException> e =
new Executor<IOException>() {

public void execute() throws IOException
{

// code here that may throw an

// IOException or a subtype of

// IOException

Iy

e.execute() ;

} catch(IOException ioe) {
System.out.println("IOException: " + ioe);
ioe.printStackTrace() ;

}

The specific type of exception is specified when an instance of the Executor class is created inside main.
The execute method throws an arbitrary exception that it is unaware of until a concrete instance of the
Executor interface is created.

Enhanced for Loop

The for loop has been modified to provide a cleaner way to process an iterator. Using a for loop with
an iterator is error prone because of the slight mangling of the usual form of the for loop since the
update clause is placed in the body of the loop. Some languages have a foreach keyword that cleans up
the syntax for processing iterators. Java opted not to introduce a new keyword, instead deciding to keep
it simple and introduce a new use of the colon. Traditionally, a developer will write the following code to
use an iterator:

Chapter 1

for (Iterator iter = intArray.iterator(); iter.hasNext();) {
Integer intObject = (Integer)iter.next();
// ... more statements to use intObject ...

}

The problem inherent in this code lies in the missing “update” clause of the for loop. The code that
advances the iterator is moved into the body of the for loop out of necessity, since it also returns the
next object. The new and improved syntax that does the same thing as the previous code snippet is:

for (Integer intObject : intArray) ({
// ... same statements as above go here ...
}

This code is much cleaner and easier to read. It eliminates all the potential from the previous construct to
introduce errors into the program. If this is coupled with a generic collection, the type of the object is
checked versus the type inside the collection at compile time.

Support for this new for loop requires a change only to the compiler. The code generated is no different
from the same code written in the traditional way. The compiler might translate the above code into the
following, for example:

for (Iterator<Integer> $iter = intArray.iterator(); Siter.hasNext();) {
Integer intObject = $iter.next();
// ... statements ...

The use of the dollar sign in the identifier in this example merely means the compiler generates a unique
identifier for the expansion of the new for loop syntax into the more traditional form before compiling.

The same syntax for using an iterator on a collection works for an array. Using the new for loop syntax
on an array is the same as using it on a collection:

for (String strObject : stringArray) {
// ... statements here using strObject ...

}

However, the compiler expands the array version to code slightly longer than the collection version:
String[] $strArray = stringArray;
for(int $i = 0; $i < S$strArray.length; $i++) {

String strObject = $strArrayl[$il;
// ... statements here ...

The compiler this time uses two temporary and unique variables during the expansion. The first is an
alias to the array, and the second is the loop counter.

Additions to the Java Class Library

To fully support the new for loop syntax, the object iterated over must be an array or inherit from a new
interface, java.lang.Iterable, directly or indirectly. The existing collection classes will be retrofitted
for the release of JDK 5. The new Iterable interface looks like:

Key Java Language Features and Libraries

public interface Iterable {

/**

* Returns an iterator over the elements in this collection. There are no
guarantees concerning the order in which the elements are returned
(unless this collection is an instance of some class that provides a

* guarantee) .
*

*
*

* @return an Iterator over the elements in this collection.
*/
SimpleIterator iterator();

Additionally, java.util.Iterator will be retrofitted to implement java.lang.ReadOnlyIterator,
as shown here:

public interface ReadOnlyIterator {
/**
* Returns true if the iteration has more elements. (In other
words, returns true if next would return an element

*
* rather than throwing an exception.)
*

* @return true if the iterator has more elements.
*/
boolean hasNext () ;

/**

* Returns the next element in the iteration.
*

* @return the next element in the iteration.
* @exception NoSuchElementException iteration has no more elements.
*/

Object next () ;

The introduction of this interface prevents dependency on the java.util interfaces. The change in the
for loop syntax is at the language level and it makes sense to ensure that any support needed in the
class library is located in the java. lang branch.

Variable Arguments

C and C++ are the most popular languages that support variable length argument lists for functions.
Java decided to introduce this aspect into the language. Only use variable argument parameter lists in
cases that make sense. If you abuse them, it’s easy to create source code that is confusing. The C lan-
guage uses the ellipsis (three periods) in the function declaration to stand for “an arbitrary number of
parameters, zero or more.” Java also uses the ellipsis but combines it with a type and identifier. The type
can be anything —any class, any primitive type, even array types. When using it in an array, however,
the ellipsis must come last in the type description, after the square brackets. Due to the nature of variable
arguments, each method can only have a single type as a variable argument and it must come last in the
parameter list.

Chapter 1

Following is an example of a method that takes an arbitrary number of primitive integers and returns
their sum:

public int sum(int... intList)
{

int i, sum;

sum=0;
for(i=0; i<intList.length; i++) {
sum += intList[i];

}

return (sum) ;

All arguments passed in from the position of the argument marked as variable and beyond are com-
bined into an array. This makes it simple to test how many arguments were passed in. All that is needed

is to reference the length property on the array, and the array also provides easy access to each argu-
ment.

Here’s a full sample program that adds up all the values in an arbitrary number of arrays:

public class VarArgsExample {
int sumArrays (int[]... intArrays)
{

int sum, i, Jj;

sum=0;
for (i=0; i<intArrays.length; i++) {
for(j=0; j<intArrays([i].length; j++) {
sum += intArrays([i]l[j];
}
}

return (sum) ;

}

public static void main(String argsl[])
{

VarArgsExample va = new VarArgsExample();
int sum=0;

sum = va.sumArrays (new int[]{1,2,3},

new int[]{4,5,6},

new int[]{10,16});
System.out.println("The sum of the numbers is: " + sum);

This code follows the established approach to defining and using a variable argument. The ellipsis
comes after the square brackets, that is, after the variable argument’s type. Inside the method the argu-
ment intArrays is simply an array of arrays.

10

Key Java Language Features and Libraries

Boxing/Unboxing Conversions

One tedious aspect of the Java language in the past is the manual operation of converting primitive
types (such as int and char) to their corresponding reference type (for example, Integer for int and
Character for char). The solution to getting rid of this constant wrapping and unwrapping are boxing
and unboxing conversions. A boxing conversion is an implicit operation that takes a primitive type, such
as int, and automatically places it inside an instance of its corresponding reference type (in this case,
Integer). Unboxing is the reverse operation, taking a reference type, such as Integer, and converting
it to its primitive type, int. Without boxing, you might add an int primitive to a collection (which
holds object types) by doing the following:

Integer intObject;
int intPrimitive;
ArrayList arrayList = new ArrayList();

intPrimitive = 11;
intObject = new Integer (intPrimitive);
arrayList.put (intObject); // cannot add intPrimitive directly

Although this code is straightforward, it is more verbose than necessary. With the introduction of boxing
conversions, the above code can be rewritten as follows:

int intPrimitive;
ArrayList arraylList = new ArrayList();

intPrimitive = 11;
// here intPrimitive is automatically wrapped in an Integer
arrayList.put (intPrimitive) ;

The need to create an Integer object to place an int into the collection is no longer needed. The boxing
conversion happens such that the resulting reference type’s value () method (such as intvalue () for
Integer) equals the original primitive type’s value. Consult the following table for all valid boxing con-
versions. If there is any other type, the boxing conversion becomes an identity conversion (converting
the type to its own type). Note that due to the introduction of boxing conversions, several forbidden con-
versions referring to primitive types are no longer forbidden since they now can be converted to certain
reference types.

Primitive Type Reference Type
boolean Boolean

byte Byte

char Character
short Short

int Integer

long Long

float Float

double Double

11

Chapter 1

Unboxing Conversions

Va

Java also introduces unboxing conversions, which convert a reference type (such as Integer or Float)
to its primitive type (such as int or £loat). Consult the following table for a list of all valid unboxing
conversions. The conversion happens such that the value method of the reference type equals the
resulting primitive value.

Reference Type Primitive Type
Boolean boolean

Byte byte
Character char

Short short
Integer int

Long long

Float float

Double double

lid Contexts for Boxing/Unboxing Conversions

Since the boxing and unboxing operations are conversions, they happen automatically with no specific
instruction by the programmer (unlike casting, which is an explicit operation). There are several contexts
in which boxing and unboxing conversions can happen.

Assignments

An assignment conversion happens when the value of an expression is assigned to a variable. When the
type of the expression does not match the type of the variable, and there is no risk of data loss, the con-
version happens automatically. The precedence of conversions that happen is the identity conversion, a
widening primitive conversion, a widening reference conversion, and then the new boxing (or unbox-
ing) conversion. If none of these conversions are valid, the compiler issues an error.

Method Invocations

12

When a method call is made, and the argument types don’t match precisely with those passed in, several
conversions are possible. Collectively, these conversions are known as method invocation conversions.
Each parameter that does not match precisely in type to the corresponding parameter in the method sig-
nature might be subject to a conversion. The possible conversions are the identity conversion, a widen-
ing primitive conversion, a widening reference conversion, and then the new boxing (or unboxing)
conversion.

The most specific method must be chosen anytime more than one method matches a particular method
call. The rules to match the most specific method change slightly with the addition of boxing conver-
sions. If all the standard checks for resolving method ambiguity fail, the boxing/unboxing conversion
won’t be used to resolve ambiguity. Therefore, by the time checks are performed for boxing conversions,
the method invocation is deemed ambiguous and fails.

Key Java Language Features and Libraries

Combining boxing with generics allows you to write the following code:
import java.util.*;

public class BoxingGenericsExample {
public static void main(String argsl])

{
HashMap<String, Integer> hm = new HashMap<String, Integer> () ;

hm.put ("speed", 20);

The primitive integer 20 is automatically converted to an Integer and then placed into the HashMap
under the specified key.

Static Imports

Importing static data is introduced into the language to simplify using static attributes and methods.
After importing static information, the methods/attributes can then be used without the need to qualify
the method or attribute with its class name. For example, by importing the static members of the Math
class, you can write abs or sqrt instead of Math.abs and Math. sqgrt.

This mechanism also prevents the dangerous coding practice of placing a set of static attributes into an
interface, and then in each class that needs to use the attributes, implementing that interface. The follow-
ing interface should not be implemented in order to use the attributes without qualification:

interface ShapeNumbers {
public static int CIRCLE =
public static int SQUARE =
public static int TRIANGLE

i

’

I = o

2;

Implementing this interface creates an unnecessary dependence on the ShapeNumbers interface. Even
worse, it becomes awkward to maintain as the class evolves, especially if other classes need access to
these constants also and implement this interface. It is easy for compiled classes to get out of synchro-
nization with each other if the interface containing these attributes changes and only some classes are
recompiled.

To make this cleaner, the static members are placed into a class (instead of an interface) and then
imported via a modified syntax of the import directive. ShapeNumbers is revised to the following:

package MyConstants;

class ShapeNumbers {
public static int CIRCLE = 0;
public static int SQUARE = 1;

public static int TRIANGLE 2;

A client class then imports the static information from the ShapeNumbers class and can then use the
attributes CIRCLE, SQUARE, and TRIANGLE without the need to prefix them with ShapeNumbers and the
member operator.

13

Chapter 1

14

To import the static members in your class, specify the following in the import section of your Java
source file (at the top):

import static MyConstants.ShapeNumbers.*; // imports all static data

This syntax is only slightly modified from the standard format of the import statement. The keyword
static is added after the import keyword, and instead of importing packages, you now always add on
the class name since the static information is being imported from a specific class. The chief reason the
keyword static is added to the import statement is to make it clear to those reading the source code
that the import is for the static information.

You can also import constants individually by using the following syntax:

import static MyConstants.ShapeNumbers.CIRCLE;
import static MyConstants.ShapeNumbers.SQUARE;

This syntax is also what you would expect. The keyword static is included since this is a static import,
and the pieces of static information to import are each specified explicitly.

You cannot statically import data from a class that is inside the default package. The class must be
located inside a named package. Also, static attributes and methods can conflict. For example, below are
two classes (located in Colors. java and Fruits. java) containing static constants:

package MyConstants;

public class Colors {
public static int white = 0;
public static int black = 1;
public static int red = 2;
public static int blue = 3;
public static int green = 4
public static int orange =
public static int grey = 6;

package MyConstants;

public class Fruits {
public static int apple = 500;
public static int pear = 501;
public static int orange = 502;
public static int banana = 503;
public static int strawberry = 504;

If you write a class that tries to statically import data on both these classes, everything is fine until you
try to use a static variable that is defined in both of them:

import static MyConstants.Colors.*;
import static MyConstants.Fruits.*;

public class StaticTest {

Key Java Language Features and Libraries

public static void main(String argsl])
{

System.out.println("orange = " + orange);
System.out.println("color orange = " + Colors.orange) ;
System.out.println("Fruity orange = " + Fruits.orange);

The seventh line of the program causes the compiler error listed below. The identifier orange is defined
in both Colors and Fruits, so the compiler cannot resolve this ambiguity:

StaticTest.java:7: reference to orange is ambiguous, both variable orange in
MyConstants.Colors and variable orange in MyConstants.Fruits match
System.out.println("orange = " + orange);

In this case, you should explicitly qualify the conflicting name with the class where it is defined. Instead
of writing orange, write Colors.orange or Fruits.orange.

Enumerations

Java introduces enumeration support at the language level in the JDK 5 release. An enumeration is an
ordered list of items wrapped into a single entity. An instance of an enumeration can take on the value of
any single item in the enumeration’s list of items. The simplest possible enumeration is the Colors enum
shown below:

public enum Colors { red, green, blue }

They present the ability to compare one arbitrary item to another, and to iterate over the list of defined
items. An enumeration (abbreviated enum in Java) is a special type of class. All enumerations implicitly
subclass a new class in Java, java. lang. Enum. This class cannot be subclassed manually.

There are many benefits to built-in support for enumerations in Java. Enumerations are type-safe and
the performance is competitive with constants. The constant names inside the enumeration don’t need to
be qualified with the enumeration’s name. Clients aren’t built with knowledge of the constants inside
the enumeration, so changing the enumeration is easy without having to change the client. If constants
are removed from the enumeration, the clients will fail and you’ll receive an error message. The names
of the constants in the enumeration can be printed, so you get more information than simply the ordinal
number of the item in the list. This also means that the constants can be used as names for collections
such as HashMap.

Since an enumeration is a class in Java, it can also have fields and methods, and implement interfaces.
Enumerations can be used inside switch statements in a straightforward manner, and are relatively
simple for programmers to understand /use.

Here’s a basic enum declaration and its usage inside a switch statement. If you want to track what oper-
ating system a certain user is using, you can use an enumeration of operating systems, which are
defined in the OperatingSystems enum. Note that since an enumeration is effectively a class, it cannot
be public if it is in the same file as another class that is public. Also note that in the switch statement,
the constant names cannot be qualified with the name of the enumeration they are in. The details are
automatically handled by the compiler based on the type of the enum used in the switch clause:

15

Chapter 1

16

import java.util.*;

enum OperatingSystems ({
windows, unix, linux, macintosh

public class EnumExamplel {
public static void main(String argsl[])
{
OperatingSystems os;

os = OperatingSystems.windows;
switch(os) {
case windows:
System.out.println("You chose Windows!") ;
break;
case unix:
System.out.println("You chose Unix!");
break;
case linux:
System.out.println("You chose Linux!");
break;
case macintosh:
System.out.println("You chose Macintosh!");
break;
default:
System.out.println("I don't know your 0S.");
break;

The java.lang.Enum class implements the Comparable and Serializable interfaces. The details of
comparing enumerations and serializing them to a data source are already handled inside the class. You
cannot mark an enum as abstract unless every constant has a class body, and these class bodies over-
ride the abstract methods in the enum. Also note that enumerations cannot be instantiated using new.
The compiler will let you know that enum types may not be instantiated.

Java introduces two new collections, EnumSet and EnumMap, which are only meant to optimize the per-
formance of sets and maps when using enums. Enumerations can be used with the existing collection
classes, or with the new collections when optimization tailored to enumerations is desired.

Methods can be declared inside an enum. There are restrictions placed on defining constructors, how-
ever. Constructors can’t chain to superclass constructors, unless the superclass is another enum. Each
constant inside the enum can have a class body, but since this is effectively an anonymous class, you can-
not define a constructor.

You can also add attributes to the enumeration and to the individual enum constants. An enum constant
can also be followed by arguments, which are passed to the constructor defined in the enum.

Key Java Language Features and Libraries

Here’s an example enumeration with fields and methods:

enum ProgramFlags {
showErrors (0x01) ,
includeFileOutput (0x02),
useAlternateProcessor (0x04) ;

private int bit;

ProgramFlags (int bitNumber)
{

bit = bitNumber;
}

public int getBitNumber ()
{
return(bit) ;
}
}

public class EnumBitmapExample {
public static void main(String argsl[])
{
ProgramFlags flag = ProgramFlags.showErrors;

System.out.println("Flag selected is: " +
flag.ordinal () +
" which is " +
flag.name()) ;

The ordinal () method returns the position of the constant in the list. The value of showErrors is 0
since it comes first in the list, and the ordinal values are 0-based. The name () method can be used to get
the name of the constant, which provides for getting more information about enumerations.

Meta data

Another feature that Sun has decided to include in the JDK 5 release of Java is a meta data facility. This
enables tagging classes with extra information that tools can analyze, and also applying certain blocks of
code to classes automatically. The meta data facility is introduced in the java.lang.annotation pack-
age. An annotation is the association of a tag to a construct in Java such as a class, known as a target in
annotation terminology. The types of constructs that can be annotated are listed in the java.lang.
annotation.ElementType enumeration, and are listed in the following table. Even annotations can be
annotated. TYPE covers classes, interfaces, and enum declarations.

17

Chapter 1

ElementType Constant

ANNOTATION_TYPE
CONSTRUCTOR
FIELD
LOCAL_VARIABLE
METHOD

PACKAGE
PARAMETER

TYPE

Another concept introduced is the life of an annotation, known as the retention. Certain annotations may
only be useful at the Java source code level, such as an annotation for the javadoc tool. Others might be
needed while the program is executing. The RetentionPolicy enumeration lists three type lifetimes
for an annotation. The SOURCE policy indicates the annotations should be discarded by the compiler, that
is, should only available at the source code level. The CLASS policy indicates that the annotation should
appear in the class file, but is possibly discarded at run time. The RUNTIME policy indicates the annota-
tions should make it through to the executing program, and these can then be viewed using reflection.

There are several types of annotations defined in this package. These are listed in the following table.
Each of these annotations inherits from the Annotation interface, which defines an equals method and
a toString method.

Annotation Class Name Description

Target Specifies to which program elements an annotation type is appli-
cable. Each program element can only appear once.

Documented Specifies annotations should be documented by javadoc or other
documentation tools. This can only be applied to annotations.

Inherited Inherits annotations from super-classes, but not interfaces. The
policy on this annotation is RUNTIME, and it can be applied only to
annotations.

Retention Indicates how long annotations on this program element should

be available. See RetentionPolicy discussed earlier. The policy
on this annotation is RUNTIME, and it can be applied only to
annotations.

Deprecated Marks a program element as deprecated, telling developers they
should no longer use it. Retention policy is SOURCE.

Overrides Indicates that a method is meant to override the method in a par-
ent class. If the override does not actually exist, the compiler will
generate an error message. This can only be applied to methods.

18

Key Java Language Features and Libraries

There are two useful source level annotations that come with JDK 5, @deprecated and @overrides.
The @deprecated annotation is used to mark a method as deprecated —that is, it shouldn’t be used by
client programmers. The compiler will issue a warning when encountering this annotation on a class
method that a programmer uses. The other annotation, @overrides, is used to mark a method as over-
riding a method in the parent class. The compiler will ensure that a method marked as @overrides
does indeed override a method in the parent class. If the method in the child class doesn’t override the
one in the parent class, the compiler will issue an error alerting the programmer to the fact that the
method signature does not match the method in the parent class.

Developing a custom annotation isn’t difficult. Let’s create a CodeTag annotation that stores basic author
and modification date information, and also stores any bug fixes applied to that piece of code. The anno-
tation will be limited to classes and methods:

import java.lang.annotation.*;

@QRetention (RetentionPolicy.SOURCE)
@Target ({ElementType.TYPE, ElementType.METHOD})
public @interface CodeTag {

String authorName () ;

String lastModificationDate() ;

String bugFixes() default "";

The Retention is set to SOURCE, which means this annotation is not available during compile time and
run time. The doclet API is used to access source level annotations. The Target is set to TYPE
(classes/interfaces/enums) and METHOD for methods. A compiler error is generated if the CodeTag anno-
tation is applied to any other source code element. The first two annotation elements are authorName
and lastModificationDate, both of which are mandatory. The bugFixes element defaults to the
empty string if not specified. Following is an example class that utilizes the CodeTag annotation:

import java.lang.annotation.*;

@CodeTag (authorName="Dilbert",
lastModificationDate="Mar 23, 2004")
public class ServerCommandProcessor {

@CodeTag (authorName="Dilbert",
lastModificationDate="Mar 24, 2004",
bugFixes="BUG0170")

public void setParams (String serverName)

{

//

}

public void executeCommand (String command, Object... params)
{

//
}

19

Chapter 1

Note how annotation is used to mark who modified the source and when. The method was last modi-
fied a day after the class because of the bug fix. This custom annotation can be used to track this infor-
mation as part of keeping up with source code modifications. To view or process these source code
annotations, the doclet API must be used.

The doclet API (aka Javadoc API) has been extended to support the processing of annotations in the
source code. You use the doclet API by writing a Java class that extends com. sun. javadoc.Doclet. The
start method must be implemented as this is the method that Javadoc invokes on a doclet to perform
custom processing. A simple doclet to print out all classes and methods in a Java source file follows:

import com.sun.javadoc.*;

public class ListClasses extends Doclet ({
public static boolean start (RootDoc root) {
ClassDoc[] classes = root.classes();
for (ClassDoc cd : classes) {

System.out.println("Class [" + cd + "] has the following methods") ;
for (MemberDoc md : cd.methods()) {
System.out.println(" " + md);

}
}

return true;

The start method takes a RootDoc as a parameter, which is automatically passed in by the javadoc
tool. The RootDoc provides the starting point to obtain access to all elements inside the source code, and
also information on the command line such as additional packages and classes.

The interfaces added to the doclet API for annotations are AnnotationDesc, AnnotationDesc.
ElementValuePair, AnnotationTypeDoc, AnnotationTypeElementDoc, and AnnotationvValue.

Any element of Java source that can have annotations has an annotations () method associated with
the doclet API’s counterpart to the source code element. These are AnnotationTypeDoc,
AnnotationTypeElementDoc, ClassDoc, ConstructorDoc, ExecutableMemberDoc, FieldDoc,
MethodDoc, and MemberDoc. The annotations () method returns an array of AnnotationDesc.

AnnotationDesc

This class represents an annotation, which is an annotation type (AnnotationTypeDoc), and an array of
annotation type elements paired with their values. AnnotationDesc defines the following methods.

20

Key Java Language Features and Libraries

Method

Description

AnnotationTypeDoc annotationType ()

AnnotationDesc.ElementValuePair|]
elementValues ()

Returns this annotation’s type.

Returns an array of an annotation’s elements
and their values. Only elements explicitly listed
are returned. The elements that aren’t listed
explicitly, which assume their default value, are
not returned since this method processes just
what is listed. If there are no elements, an empty
array is returned.

AnnotationDesc.ElementValuePair

This represents an association between an annotation type’s element and its value. The following meth-

ods are defined.

Method

Description

AnnotationTypeElementDoc element ()

AnnotationvValue value ()

Returns the annotation type element.

Returns the annotation type element’s value.

AnnotationTypeDoc

This interface represents an annotation in the source code, just like ClassDoc represents a Class. Only

one method is defined.

Method

Description

AnnotationTypeElementDoc[] elements ()

Returns an array of the elements of this
annotation type.

AnnotationTypeElementDoc

This interface represents an element of an annotation type.

Method

Description

AnnotationValue defaultValue()

Returns the default value associated with this
annotation type, or null if there is no default
value.

21

Chapter 1

AnnotationValue

This interface represents the value of an annotation type element.

Method Description
String toString() Returns a string representation of the value.
Object wvalue() Returns the value. The object behind this value

could be any of the following.

* A wrapper class for a primitive type (such as
Integer or Float)

*A String

* A Type (representing a class, a generic class,
a type variable, a wildcard type, or a primitive
data type)

* AFieldDoc (representing an enum constant)

* An AnnotationDesc

* An array of Annotationvalue

Here’s an example using the annotation support provided by the doclet API. This doclet echoes all anno-
tations and their values that it finds in a source file:

import com.sun.javadoc.*;
import java.lang.annotation.*;

public class AnnotationViewer {
public static boolean start (RootDoc root)

{
ClassDoc[] classes = root.classes();
for (ClassDoc cls : classes) {
showAnnotations (cls) ;
}
return(true) ;
}

static void showAnnotations (ClassDoc cls)

{
System.out.println("Annotations for class [" + cls + "]");
process (cls.annotations()) ;

System.out.println() ;
for (MethodDoc m : cls.methods()) {

22

Key Java Language Features and Libraries

System.out.println("Annotations for method [" + m + "]");
process (m.annotations()) ;
System.out.println();

static void process (AnnotationDesc[] anns)
{
for (AnnotationDesc ad : anns) {
AnnotationDesc.ElementValuePair evp[] = ad.elementValues() ;

for (AnnotationDesc.ElementValuePair e : evp) {
System.out.println(" NAME: " + e.element() +
", VALUE=" + e.value())

’

The start method iterates across all classes (and interfaces) found in the source file. Since all annota-
tions on source code elements are associated with the AnnotationDesc interface, a single method can
be written to process annotations regardless of which source code element the annotation is associated.
The showAnnotations method prints out annotations associated with the current class and then pro-
cesses all methods inside that class. The doclet API makes processing these source code elements easy.
To execute the doclet, pass the name of the doclet and name of the class to process on the command line
as follows:

javadoc -source 1.5 -doclet AnnotationViewer ServerCommandProcessor.java
The doclet echoes the following to the screen:

Loading source file ServerCommandProcessor.java.. .
Constructing Javadoc information...
Annotations for class [ServerCommandProcessor]

NAME: CodeTag.authorName (), VALUE="Dilbert"

NAME: CodeTag.lastModificationDate(), VALUE="Mar 23, 2004"

Annotations for method [ServerCommandProcessor.setParams(java.lang.String)]
NAME: CodeTag.authorName (), VALUE="Dilbert"
NAME: CodeTag.lastModificationDate(), VALUE="Mar 24, 2004"

Annotations for method [ServerCommandProcessor.executeCommand(java.lang.String,
java.lang.Object[])]

To access annotations at run time, the reflection API must be used. This support is built in through the
interface AnnotatedElement, which is implemented by the reflection classes AccessibleObject,
Class, Constructor, Field, Method, and Package. All these elements may have annotations. The
AnnotatedElement interface defines the following methods.

23

Chapter 1

Method Description

<T extends Annotation> Returns the annotation associated with the
T getAnnotation(Class<T> annotationType) specified type, or null if none exists.
Annotation[] getAnnotations () Returns an array of all annotations on the

current element, or a zero-length array if no
annotations are present.

Annotation[] getDeclaredAnnotations () Similar to getAnnotations but does not
return inherited annotations — only anno-
tations explicitly declared on this element
are returned. Returns a zero-length array if
no annotations are present.

boolean isAnnotationPresent (Class<? Returns true if the annotationType is
extends Annotation> annotationType) present on the current element, false
otherwise.

Let’s develop an annotation that might be useful in developing a testing framework. The framework
invokes test methods specified in the annotation and expects a boolean return value from these testing
methods. The reflection API is used to both process the annotation and execute the test methods.

The annotation is listed below:

import java.lang.annotation.*;

@Retention (RetentionPolicy.RUNTIME)
@Target ({ElementType.TYPE})
public @interface TestParameters ({
String testStage();
String testMethods() ;
String testOutputType(); // "db" or "file"
String testOutput(); // filename or data source/table name

An example application of this annotation is to a class of utility methods for strings. You might develop
your own utility class and develop testing methods to ensure the utility methods work:

@TestParameters (testStage="Unit",
testMethods="testConcat, testSubstring",
testOutputType="screen",
testOutput="")

public class StringUtility {

public String concat (String sl, String s2)
{

return(sl + s2);

public String substring(String str, int start, int end)
{
return (str.substring(start, end));

24

Key Java Language Features and Libraries

public boolean testConcat ()
{
String sl = "test";
String s2 " 123";

return(concat (sl,s2) .equals("test 123"));
}

public boolean testSubstring()
{

String str = "The cat landed on its feet";

return (substring(str, 4, 3).equals("cat"));

Following is an example implementation of the testing framework. It uses reflection to process the anno-
tation and then invoke the testing methods, writing the results to the screen (though other output desti-
nations can be built into the framework). As of the time of this writing, the reflection routines to retrieve
annotations on classes and methods were not implemented. In the interest of illustration, the source
code is provided here without output:

import java.lang.reflect.*;
import java.lang.annotation.*;
import java.util.*;

public class TestFramework {

static void executeTests (String className) {
try {
Object obj = Class.forName (className) .newInstance() ;

TestParameters tp = obj.getClass().getAnnotation (TestParameters.class);
if(tp !'= null) {
String methodList = tp.testMethods() ;
StringTokenizer st = new StringTokenizer (methodList, ",");
while (st.hasMoreTokens ()) {
String methodName = st.nextToken/() ;

Method m = obj.getClass () .getDeclaredMethod (methodName) ;
System.out.println (methodName) ;

System.out.println("---- - - - ————————- ") g
String result = invoke(m, obj);
System.out.println("Result: " + result);
}
} else {

System.out.println("No annotation found for " + obj.getClass());
}
} catch(Exception ex) {
ex.printStackTrace() ;
}
}

static String invoke (Method m, Object o) {

25

Chapter 1

String result = "PASSED";

try {
m.invoke (o) ;
} catch(Exception ex) {
result = "FAILED";
}

return (result) ;

}

public static void main(String [] args) {
executeTests (args[0]) ;
}
}

The executeTests method obtains a handle to the Test Parameters annotation from the class and
then invokes each method from the testMethods () element of the annotation. This is a simple imple-
mentation of the testing framework, and can be extended to support the other elements of the
TestParameters annotation, such as writing results to a database instead of the screen. This is a practi-
cal example of using meta data—adding declarative information to Java source that can then be utilized
by external programs and/or doclets for generating documentation.

Important Java Utility Libraries

This section describes several key utility libraries in Java. These libraries are as follows:

Q Javalogging — A powerful logging system that is vital for providing meaningful error messages
to end users, developers, and people working in the field.

0O Regular Expressions — A powerful “miniature language” used to process strings in a variety of
ways, such as searching for substrings that match a particular pattern.

Q Java preferences — A way to store and retrieve both system and user defined configuration

options.

Each library is designed for flexibility of usage. Familiarity with these libraries is vital when developing
solutions in Java. The more tools on your belt as a developer, the better equipped you are.

Java Logging

26

Java has a well-designed set of classes to control, format, and publish messages through the logging sys-
tem. It is important for a program to log error and status messages. There are many people who can ben-
efit from logging messages, including developers, testers, end users, and people working in the field that
have to troubleshoot programs without source code. It is vital to include a high number of quality log
messages in a program, from status updates to error conditions (such as when certain exceptions are
caught). By using the logging system, it is possible to see what the program is doing without consulting
the source code, and most importantly, track down error conditions to a specific part of the program.

The value of a logging system is obvious, especially in large systems where a casual error with minimal
or no log messages might take days or longer to track down.

Key Java Language Features and Libraries

The logging system in java.util.logging is sophisticated, including a way to prioritize log messages
such that only messages a particular logger is interested in get logged, and the messages can be output
to any source that a Handler object can handle. Examples of logging destinations are files, databases,
and output streams. Take a close look at Figure 1-1 to see an overview of the entire logging system.

Handler passes message

to next Handler in a chain
passes log message to

current Logger’s pareh of H;r{vlers
. log message . o
I@ i > Logger > Handler ——> |0gg|ng destination
has an associated
log level. Logger

each Handler knows how
to write a log message to a
particular destination

Filter Filter Formatter can

i localize/transform
Filters are used to (log message

determine whether to Formatter

process or skip a log
message only the last Handler in the
chain of Handlers can
apply a Formatter to the
message

skips messages
below a particular
level

Figure 1-1

The specific Logger objects are actually hierarchical, and though not mandatory, can mirror the class
hierarchy. When a Logger receives a log message, the message is also passed automatically to the
Logger’s parent. The root logger is named “ “ (the empty string) and has no parent. Each other Logger
is usually named something such as java.util or java.util.ArrayList to mirror the package/class
hierarchy. The names of the Logger objects, going down the tree, are dot-separated. Therefore,
java.util is the parent Logger of java.util.ArrayList. You can name the loggers any arbitrary
string, but keeping with the dot-separated convention helps to clarity.

The simplest use of the logging system creates a Logger and uses all system defaults (defined in a prop-
erties file) for the logging system. The following example outputs the log message using a formatting
class called the simpleFormatter that adds time/date/source information to the log message:

import java.util.logging.*;
public class BasicLoggingExample {
public static void main(String argsl[])
{
Logger logger = Logger.getLogger ("BasicLoggingExample") ;

logger.log (Level.INFO, "Test of logging system");

27

Chapter 1

The following is output from the BasicLoggingExample:

Feb 22, 2004 4:07:06 PM BasicLoggingExample main
INFO: Test of logging system

The Log Manager

The entire logging system for a particular application is controlled by a single instance of the
LogManager class. This instance is created during the initialization of the LogManager. The LogManager
contains the hierarchical namespace that has all the named Logger objects. The LogManager also con-
tains logging control properties that are used by Handlers and other objects in the logging system for
configuration. These configuration properties are stored in the file 1ib/logging.properties thatis
located in the JRE installation path.

There are two system properties that can be used to initialize the logging system with different proper-
ties. The first way is to override the property java.util.logging.config. file and specify the full
path to your own version of logging.properties. The other property, java.util.logging.config.
class, is used to point to your own LogManager. This custom LogManager is responsible for reading in
its configuration. If neither of these properties is set, Java will default to the logging.properties file
in the JRE directory. Consult the following table for properties that can be set on the LogManager in this
file. You can also specify properties for Loggers and Handlers in this file. These properties are
described later in this section.

Property Key Property Value

Handlers Comma separated list of Handler classes. Each handler must be
located somewhere in the system classpath.

.level Sets the minimum level for a specific Logger.

The level must be prefixed with the full path to a specific Logger.
A period by itself sets the level for the root logger.

The LogManager Class

The LogManager class contains methods to configure the current instance of the logging system through
a number of configuration methods, tracks loggers and provides access to these loggers, and handles
certain logging events. These methods are listed in the following tables.

Configuration

28

The methods listed in the following table relate to storage and retrieval of configuration information in
the LogManager.

Key Java Language Features and Libraries

Method

Description

String getProperty(String name)

void readConfiguration ()

Returns the value corresponding to a speci-
fied logging property.

Reloads the configuration using the same

process as startup. If the system properties
controlling initialization have not changed,
the same file that was read at startup will be
read here.

void readConfiguration(InputStream ins) Reads configuration information from an
InputStream thatis in the java.util.

Properties format.

void reset() Resets the logging system. All Handlers are
closed and removed and all logger levels
except on the root are set to null. The root

logger’s level is set to Level . INFO.

Logger Control

The methods listed in the following table relate to the storage, retrieval, and management of individual
Logger references. These are the most commonly used methods on the LogManager class.

Method Description

Returns the one and only instance of the
LogManager object.

static LogManager getLogManager ()

boolean addLogger (Logger logger) Returns true if the Logger passed in is not
already registered (its name isn’t already in

the list). The logger is registered.

Returns false if the name of the Logger
object already exists in the list of registered
loggers.

Logger getLogger (String name) Returns a reference to the Logger object that
is named “name,” or null if no logger is

found.

Enumeration getLoggerNames () Returns an Enumeration containing a list of

the names of all currently registered loggers.

Events

The methods listed in the following table provide a way to add and remove references to listeners that
should be notified when properties are changed on the LogManager.

29

Chapter 1

Method Description

void addPropertyChangeListener Adds a property change listener to the list of

(PropertyChangeListener 1) listeners that want notification of when a
property has changed. The same listener can
be added multiple times.

void removePropertyChangeListener Removes a single occurrence of a property

(PropertyChangelistener 1) change listener in the list of listeners.

The Logger Class

An instance of the Logger class is used by client code to log a message. Both the log message and each
logger have an associated level. If the level of the log message is equal to or greater than the level of the
logger, the message is then processed. Otherwise, the logger drops the log message. It is an inexpensive
operation to test whether to drop the log message or not, and this operation is done at the entry point to
the logging system —the Logger class. These levels are defined inside the Level class. Consult the fol-
lowing table for a full list of levels.

Logger Level Description

SEVERE Highest logging level. This has top priority.

WARNING One level below severe. Intended for warning messages that need atten-
tion, but aren’t serious.

INFO Two levels below severe. Intended for informational messages.

CONFIG Three levels below severe. Intended for configuration-related output.

FINE Four levels below severe. Intended for program tracing information.

FINER Five levels below severe. Intended for program tracing information.

FINEST Lowest logging level. This has lowest priority.

ALL Special level which makes the system log ALL messages.

OFF Special level which makes the system log NO messages (turns logging off
completely).

Logger Methods

The Logger is the main class that is used in code that utilizes the logging system. Methods are provided
to obtain a named or anonymous logger, configure and get information about the logger, and log mes-

sages.

Obtaining a Logger

The following methods allow you to retrieve a handle to a Logger. These are static methods and provide
an easy way to obtain a Logger without going through a LogManager.

30

Key Java Language Features and Libraries

Method Description

static Logger getAnonymousLogger ()static
Logger‘getAnonymousLogger(String
resourceBundleName)

Creates an anonymous logger that is
exempt from standard security checks, for
use in applets. The anonymous logger is
not registered in the LogManager name-
space, but has the root logger (“”) as a
parent, inheriting level and handlers from
the root logger. A resource bundle can
also be specified for localization of log
messages.

static Logger getLogger (String name)
static Logger getLogger(String name,
String resourceBundleName)

Returns a named logger from the
LogManager namespace, or if one is not
found, creates and returns a new named
logger. A resource bundle can also be
specified for localization of log messages.

Configuring a Logger Object

The following methods allow you to configure a Logger object. You can add and remove handlers, set
the logging level on this Logger object, set its parent, and choose whether log messages should be
passed up the logger hierarchy or not.

Method

Description

void addHandler (Handler handler)

void removeHandler (Handler handler)

void setLevel (Level newLevel)

void setParent (Logger parent)

void setUseParentHandlers (boolean
useParentHandlers)

Adds a Handler to the logger. Multiple
handlers can be added. Also note that the
root logger is configured with a set of
default Handlers.

Removes a specified handler from the list
of handlers on this logger. If the handler is
not found, this method returns silently.

Sets the log level that this logger will use.
Message levels lower than the logger’s
value will be automatically discarded. If
null is passed in, the level will be inher-
ited from this logger’s parent.

Sets the parent for this logger. This should
not be called by application code, as it is
intended for use only by the logging
system.

Specifies true if log messages should be
passed to their parent loggers, or false to
prevent the log messages from passing to
their parent.

Table continued on following page

31

Chapter 1

Method Description

Filter getFilter() Returns the filter for this logger, which
might be null if no filter is associated.

Handler[] getHandlers () Returns an array of all handlers associ-
ated with this logger.

Level getLevel () Returns the log level assigned to this log-

ger. If null is returned, it indicates the log-
ging level of the parent logger that will be
used.

String getName () Returns the name of this logger, or null if
this is an anonymous logger.

Logger getParent () The nearest parent to the current logger is
returned, or null if the current logger is
the root logger.

ResourceBundle getResourceBundle () Returns the ResourceBundle associated
with this logger. Resource bundles are
used for localization of log messages. If
null is returned, the resource bundle from
the logger’s parent will be used.

String getResourceBundleName () Returns the name of the resource bundle
this logger uses for localization, or null if
the resource bundle is inherited from the
logger’s parent.

boolean getUseParentHandlers () Returns true if log messages are passed to
the logger’s parent, or false if log mes-
sages are not passed up the hierarchy.

Logging Messages

The following methods are all used to actually log a message using a Logger. Convenience methods are
provided for logging messages at each logging level, and also for entering and exiting methods and
throwing exceptions. Additional methods are provided to localize log messages using a resource bundle.

32

Key Java Language Features and Libraries

Method

Description

void config(String msg)
void fine(String msg)
void finer (String msg)
void finest (String msg)
void info (String msg)
void severe (String msg)
void warning (String msg)

void entering(String sourceClass,
String sourceMethod)

void entering(String sourceClass,
String sourceMethod, Object paraml)

void entering(String sourceClass,
String sourceMethod, Object params[])

void exiting(String sourceClass,
String sourceMethod)

void exiting(String sourceClass,
String sourceMethod, Object result)

boolean isLoggable(Level level)

void log(Level level, String msg)

void log(Level level, String msg, Object paraml)

void log(Level level, String msg,
Object[] params)

void log(Level level, String msg,
Throwable thrown)

void log(LogRecord record)

The Logger class contains a
number of convenience methods
for logging messages. For
quickly logging a message of a
specified level, one method for
each logging level is defined.

Log a message when a method is
first entered. The variant forms
take a parameter to the method,
or an array of parameters, to
provide for more detailed
tracking of the method
invocation. The message of the
log is ENTRY in addition to the
other information about the
method call. The log level is
Level .FINER.

Log a message when a method is
about to return. The log message
contains RETURN and the log
level is Level . FINER. The
source class and source method
are also logged.

Checks if a certain level will be
logged. Returns true if it will be
logged, or false otherwise.

Standard general logging
convenience methods. Variants
include the ability to specify a
parameter or array of parameters
to log, or Throwable
information. The information is
placed into a LogRecord object
and sent into the logging system.
The last variant takes a
LogRecord object.

Table continued on following page

33

Chapter 1

Method Description

void logp(Level level, String sourceClass, These logging methods take

String sourceMethod, String msg) source class and source method
names in addition to the other

void logp(Level level, String sourceClass, information. All this is put into a

String sourceMethod, String msg, Object paraml) LogRecordobﬁmtandsenthﬂo
the system.

void logp(Level level, String sourceClass,
String sourceMethod, String msg,
Object[] params)

void logp (Level level, String sourceClass,
String sourceMethod, String msg,
Throwable thrown)

void logrb(Level level, String sourceClass, These methods allow you to
String sourceMethod, String bundleName, specify a resource bundle in
String msg) addition to the other

information. The resource
void logrb(Level level, String sourceClass, bundle will be used to localize
String sourceMethod, String bundleName, the log message.

String msg, Object paraml)

void logrb(Level level, String sourceClass,
String sourceMethod, String bundleName,
String msg, Object[] params)

void logrb(Level level, String sourceClass,
String sourceMethod, String bundleName,
String msg, Throwable thrown)

void throwing(String sourceClass, String This logs a throwing message.

sourceMethod, Throwable thrown) The log level is Level . FINER
The log record’s message is set to
THROW and the contents of
thrown are put into the log
record’s thrown property
instead of inside the log record’s
message.

The LogRecord Class

The LogRecord class encapsulates a log message, carrying the message through the logging system.
Handlers and Formatters use LogRecords to have more information about the message (such as the
time it was sent and the logging level) for processing. If a client to the logging system has a reference to a
LogRecord object, the object should no longer be used after it is passed into the logging system.

34

Key Java Language Features and Libraries

LogRecord Methods

The LogRecord contains a number of methods to examine and manipulate properties on a log record,
such as message origination, the log record’s level, when it was sent into the system, and any related

resource bundles.

Method

Description

Level getLevel ()

String getMessage ()

long getMillis()

Object[] getParameters()

long getSequenceNumber ()

Throwable getThrown ()

String getLoggerName ()

String getSourceClassName ()

String getSourceMethodName ()

int getThreadID

Returns the log record’s level.

Returns the unformatted version of the log message,
before formatting /localization.

Returns the time the log record was created in
milliseconds.

Returns an array of parameters of the log record, or null if
no parameters are set.

Returns the sequence number of the log record. The
sequence number is assigned in the log record’s construc-
tor to create a unique number for each log record.

Returns the Throwable associated with this log record,
such as the Exception if an exception is being logged.
Returns null if no Throwable is set.

Returns the name of the logger, which might be null if it is
the anonymous logger.

Gets the name of the class that might have logged the mes-
sage. This information may be specified explicitly, or
inferred from the stack trace and therefore might be inac-
curate.

Gets the name of the method that might have logged the
message. This information may be specified explicitly, or
inferred from the stack trace and therefore might be inac-
curate.

Returns the identifier for the thread that originated the log
message. This is an ID inside the Java VM.

Setting Information about Message Origination

The following methods allow you to set origination information on the log message such as an associ-
ated exception, class and method that logged the message, and the ID of the originating thread.

35

Chapter 1

Method

Description

void setSourceClassName
(String sourceClassName)

void setSourceMethodName
(String sourceMethodName)

void setThreadID (int threadID)

void setThrown (Throwable thrown)

Sets the name of the class where the log
message is originating.

Sets the name of the method where the log
message is originating.

Sets the identifier of the thread where the log
message is originating.

Sets a Throwable to associate with the log mes-
sage. Can be null.

Resource Bundle Methods

The following methods allow you to retrieve and configure a resource bundle for use with the log mes-
sage. Resource bundles are used for localizing log messages.

Method

Description

ResourceBundle getResourceBundle ()

String getResourceBundleName ()

void setResourceBundle
(ResourceBundle bundle)

void setResourceBundleName
(String name)

Returns the ResourceBundle associated with
the logger that is used to localize log messages.
Might be null if there is no associated
ResourceBundle.

Returns the name of the resource bundle used
to localize log messages. Returns null if log

messages are not localizable (no resource bun-
dle defined).

Sets a resource bundle to use to localize log
messages.

Sets the name of a resource bundle to use to
localize log messages.

Setting Information about the Message

The following methods configure the log message itself. Some of the information you can configure
related to the log message are its level, the contents of the message, and the time the message was sent.

Method

Description

void setLevel (Level level)

void setLoggerName (String name)

void setMessage (String message)

Sets the level of the logging message.

Sets the name of the logger issuing this mes-
sage. Can be null.

Sets the contents of the message before for-
matting/localization.

36

Key Java Language Features and Libraries

Method Description

void setMillis(long millis) Sets the time of the log message, in
milliseconds since 1970.

void setParameters (Object[] parameters) Sets parameters for the log message.

void setSequenceNumber (long seq) Sets the sequence number of the log mes-

sage. This method shouldn’t usually be
called, since the constructor assigns a unique
number to each log message.

The Level Class

The Level class defines the entire set of logging levels, and also objects of this class represent a specific
logging level that is then used by loggers, handlers, and so on. If you desire, you can subclass this class
and define your own custom levels, as long as they do not conflict with the existing logging levels.

Logging Levels

The following logging levels are defined in the Level class.

Log Level Description

OFF Special value that is initialized to Integer .MAX_VALUE. This turns logging off.
SEVERE Meant for serious failures. Initialized to 1,000.

WARNING Meant to indicate potential problems. Initialized to 900.

INFO General information. Initialized to 800.

CONFIG Meant for messages useful for debugging. Initialized to 700.

FINE Meant for least verbose tracing information. Initialized to 500.

FINER More detailed tracing information. Initialized to 400.

FINEST Most detailed level of tracing information. Initialized to 300.

ALL Special value. Logs ALL messages. Initialized to Integer .MIN_VALUE.

Level Methods

The Level class defines methods to set and retrieve a specific logging level. Both numeric and textual
versions of levels can be used.

37

Chapter 1

Method Description

static Level parse(String name) Returns a Level object representing the name of
the level that is passed in. The string name can be
one of the logging levels, such as SEVERE or CON-
FIG. An arbitrary number, between
Integer .MIN_VALUE and Integer.MAX_VALUE
can also be passed in (as a string). If the number
represents one of the existing level values, that
level is returned. Otherwise, a new Level is
returned corresponding to the passed in value.
Any invalid name or number causes an I1le-
galArgumentException to get thrown. If the
name is null, a NullPointerException is thrown.

boolean equals (Object ox) Returns true if the object passed in has the same
level as the current class.

String getLocalizedName () Returns the localized version of the current level’s
name, or the nonlocalized version if no localization
is available.

String getName () Returns the nonlocalized version of the current
level’s name.

String getResourceBundleName () Returns the name of the level’s localization
resource bundle, or null if no localization resource
bundle is defined.

int hashCode() Returns a hash code based on the level value.

int intvalue() Returns the integer value for the current level.

String toString() Returns the nonlocalized name of the current level.

The Handler Class

The Handler class is used to receive log messages and then publish them to an external destination. This
might be memory, a file, a database, a TCP/IP stream, or any number of places that can store log mes-
sages. Just like loggers, a handler has an associated level. Log messages that are less than the level on the
handler are discarded. Each specific instance of a Handler has its own properties and is usually config-
ured in the logging.properties file. The next section discusses the various handlers that are found in
the java.util.logging package. Creating a custom handler is straightforward, since implementations
of only close (), £lush(), and publish(LogRecord record) are needed.

Handler Methods

The Handler class defines three abstract methods that need specific behavior in inheriting classes. The
other methods available on the Handler class are for dealing with message encoding, filters, formatters,
and error handlers.

38

Key Java Language Features and Libraries

Key Abstract Methods

When developing a custom handler, there are three abstract methods that must be overridden. These are
listed in the following table.

Method Description

abstract void close() This method should perform a flush()
and then free any resources used by the
handler. After close () is called, the Han-

dler should no longer be used.

abstract void flush() Flushes any buffered output to ensure it is

saved to the associated resource.

abstract void publish(LogRecord record) Takes a log message forwarded by a log-
ger and then writes it to the associated
resource. The message should be format-

ted (using the Formatter) and localized.

Set and Retrieve Information about the Handler

The methods listed in the following table allow you to retrieve information about the handler, such as its
encoding, associated error manager, filter, formatter, and level, and also set this configuration information.

Method

Description

String getEncoding ()

ErrorManager getErrorManager ()

Filter getFilter ()

Formatter getFormatter ()

Level getLevel ()

boolean isLoggable (LogRecord record)

void setEncoding (String encoding)

Returns the name of the character encod-
ing. If the name is null, then the default
encoding should be used.

Returns the ErrorManager associated
with this Handler.

Returns the Filter associated with this
Handler, which might be null.

Returns the Formatter associated with
this Handler, which might be null.

Returns the level of this handler. Log mes-
sages lower than this level are discarded.

Returns true if the LogRecord passed in
will be logged by this handler. The checks
include comparing the record’s level to
the handler’s, testing against the filter (if
one is defined), and any other checks
defined in the handler.

Sets the encoding to a specified character
encoding. If null is passed in, the default
platform encoding is used.

Table continued on following page

39

Chapter 1

Method Description

void setErrorManager (ErrorManager em) Sets an ErrorManager for the handler. If
any errors occur while processing, the
Error Manager's error method is
invoked.

void setFilter (Filter newFilter) Sets a custom filter that decides whether
to discard or keep a log message when the
publish method is invoked.

void setFormatter (Formatter newFormatter) Sets a Formatter that performs custom
formatting on log messages passed to the
handler before the log message is written
to the destination.

void setLevel (Level newLevel) This method sets the level threshold for
the handler. Log messages below this
level are automatically discarded.

Stock Handlers

The java.util.logging package includes a number of predefined handlers to write log messages to
common destinations. These classes include the ConsoleHandler, FileHandler, MemoryHandler,
SocketHandler, and StreamHandler. These classes provide a specific implementation of the abstract
methods in the Handler class. All the property key names in the tables are prefixed with java.util.
logging in the actual properties file.

The streamHandler serves chiefly as a base class for all handlers that write log messages to some
outputStream. The subclasses of StreamHandler are ConsoleHandler, FileHandler, and
SocketHandler. A lot of the stream handling code is built into this class. See the following table for a
list of properties for the StreamHandler.

Property Name Description Default Value
StreamHandler.level Log level for the handler Level.INFO
StreamHandler.filter Filter to use Undefined
StreamHandler. formatter Formatter to use java.util.logging.
SimpleFormatter
StreamHandler.encoding Character set encoding to use Default platform encoding

40

Key Java Language Features and Libraries

The following methods are defined /implemented on the StreamHandler class.

Method

Description

voidclose()

void flush()

boolean isLoggable (LogRecord record)

void publish (LogRecord record)

void setEncoding (String encoding)

protected void setOutputStream
(OutputStream out)

The head string from the Formatter will be
written if it hasn’t been already, and the tail
string is written before the stream is closed.

Writes any buffered output to the stream
(flushes the stream).

Performs standard checks against 1evel
and filter, but also returns false if no out-
put stream is open or the record passed

in is null.

If the record passed in is loggable, the
Formatter is then invoked to format the log
message and then the message is written to
the output stream.

Sets the character encoding to use for log
messages. Pass in null to use the current plat-
form’s default character encoding.

Sets an OutputStream to use. If an
OutputStreamn is already open, it is flushed
and then closed. The new OutputStream is
then opened.

The ConsoleHandler writes log messages to System. err. It subclasses StreamHandler but overrides
close () to only perform a flush, so the System. err stream does not get closed. The default formatter

used is SimpleFormatter. See below for specific information about formatters. See the following table
for properties that can be defined in the 1ogging.properties file for the ConsoleHandler.

Property Name Description

Default Value

ConsoleHandler.level
ConsoleHandler.filter Filter to use

ConsoleHandler.formatter

ConsoleHandler.encoding

Log level for the handler

Formatter to use

Character set encoding to use

Level.INFO
Undefined

java.util.logging.
SimpleFormatter

Default platform encoding

The SocketHandler writes log messages to the network over a specified TCP port. The properties listed
in the following table are used by the SocketHandler. The default constructor uses the properties
defined, and a second constructor allows the specification of the host and port SocketHandler (String
host, int port).The close () method flushes and closes the output stream, and the publish ()

method flushes the stream after each record is written.

41

Chapter 1

Property Name Description Default Value
SocketHandler.level Log level for the handler Level.INFO
SocketHandler.filter Filter to use undefined
SocketHandler. formatter Formatter to use java.util.logging.
XMLFormatter
SocketHandler.encoding Character set encoding to use Default platform encoding
SocketHandler.host Target host name to connect to undefined
SocketHandler.port Target TCP port to use undefined

The FileHandler is able to write to a single file, or write to a rotating set of files as each file reaches a
specified maximum size. The next number in a sequence is added to the end of the name of each rotating
file, unless a generation (sequence) pattern is specified elsewhere. See below for a discussion of patterns
to form filenames. The properties for the FileHandler are listed in the following table.

Property Name

Description

Default Value

FileHandler.level
FileHandler.filter

FileHandler.formatter

FileHandler.encoding

FileHandler.limit

FileHandler.count

FileHandler.pattern

FileHandler.append

Log level for the handler
Filter to use

Formatter to use

Character set encoding to use

Specifies approximate
maximum number of bytes
to write to a file. 0 means
no limit.

Specifies how many output
iles to cycle through.

Pattern used to generate
output filenames. See below
for more information.

Boolean value specifying
whether to append to an
existing file or overwrite it.

Level.INFO
undefined

java.util.logging.
XMLFormatter

Default platform encoding

0

%h/java%u.log

false

42

The FileHandler class supports filename patterns, allowing the substitution of paths such as the user’s
home directory or the system’s temporary directory. The forward slash (/) is used as a directory separa-
tor, and this works for both Unix and Windows machines. Also supported is the ability to specify where
the generation number goes in the filename when log files are rotated. These patterns are each prefixed
with a percent sign (%).To include the percent sign in the filename, specify two percent signs (%%). The
following table contains all the valid percent-sign substitutions.

Key Java Language Features and Libraries

Pattern Description

3t Full path of the system temporary directory

$h Value of the user . home system property

%9 Generation number used to distinguish rotated logs
%u Unique number used to resolve process conflicts

For example, if you're executing this on Windows 95 and specify the filename pattern $t/app_log. txt,
the FileHandler class expands this to C: \TEMP\app_log. txt. Note that the $t and $h commands do
not include the trailing forward slash.

The %u is used to account for when multiple threads/processes will access the same log file. Only one
process can have the file open for writing, so to prevent the loss of logging information, the %u can be
used to output to a log file that has a similar name to the others. For example, the filename pattern
%t/logfile%u. txt can be specified, and if two processes open this same log file for output, the first
will open C:\TEMP\logfile0. txt and the second will open C: \TEMP\logfilel. txt.

The MemoryHandler is a circular buffer in memory. It is intended for use as a quick way to store messages,
so the messages have to be sent to another handler to write them to an external source. Since the buffer is
circular, older log records eventually are overwritten by newer records. Formatting can be delayed to
another Handler, which makes logging to a MemoryHandler quick. There are conditions that will cause
the MemoryHandler to send data (push data) to another Handler. These conditions are as follows:

Q Alog record passed in has a level greater than a specified pushLevel.

O Another class calls the push method on the MemoryHandler.

Q A subclass implements specialized behavior to push data depending on custom criteria.

The properties on the MemoryHandler are listed in the following table.

Property Name Description Default Value
MemoryHandler. level Log level for the handler Level.INFO
MemoryHandler.filter Filter to use undefined
MemoryHandler.size Size of the circular buffer (in bytes) 1,000
MemoryHandler .push Defines the push level —the minimum Level.SEVERE

level that will cause messages to be
sent to the target handler

MemoryHandler.target Specifies the name of the Undefined
target Handler class

43

Chapter 1

The constructors create a MemoryHandler with a default or specific configuration.

Constructor Description

MemoryHandler () Creates a MemoryHandler based on the configu-
ration properties.

MemoryHandler (Handler target, Creates a MemoryHandler with a specified target
int size, Level pushLevel) handler, size of the buffer, and push level.

The methods provided by the MemoryHandler create and configure the behavior of the memory han-
dler.

Method Description

voidpublish (LogRecord record) Stores the record in the internal buffer, if it is log-
gable (see isLoggable). If the level of the log
record is greater than or equal to the pushLevel,
all buffered records, including the current one,
are written to the target Handler.

void close() Closes the handler and frees the associated
resources. Also invokes close on the
target handler.

void flush() Causes a f1ush, which is different from a push.

To actually write the log records to a destination
other than memory, a push must be performed.

Level getPushLevel () Returns the current push level.

boolean isLoggable (LogRecord record) Compares the log level’s versus the handler’s log
level, and then runs the record through the filter
if one is defined. Whether the record will cause a
push or not is ignored by this method.

void push () Sends all records in the current buffer to the tar-
get handler, and clears the buffer.

void setPushLevel (Level newLevel) Sets a new push level.

The Formatter Class

The Formatter class is used to perform some custom processing on a log record. This formatting might
be localization, adding additional program information (such as adding the time and date to log
records), or any other processing needed. The Formatter returns a string that is the processed log
record. The Formatter class also has support for head and tail strings that come before and after all
log records. An example that will be implemented later in this section is a custom Formatter that writes
log records to an HTML table. For this formatter, the head string would be the <table> tag, and the tail
string is the </table> tag. The methods defined in the Formatter class are listed in the following table.

44

Key Java Language Features and Libraries

Method Description

abstract String format (LogRecord record) Performs specific formatting of the log
record and returns the formatted string.

String formatMessage (LogRecord record) The message string in the LogRecord is
localized using the record’s Resource-
Bundle, and formatted according to
java. text style formatting (replacing
strings such as {0}).

String getHead (Handler h) Returns the header string for a specified
handler, which can be null.

String getTail (Handler h) Returns the tail string for a specified han-
dler, which can be null.

Stock Formatters

The logging package comes already equipped with a couple of useful formatters. The
SimpleFormatter provides a basic implementation of a formatter. The XMLFormatter outputs log
records in a predefined XML format. These two stock formatters will cover a variety of basic logging sce-
narios, but if you need behavior not supplied by either of these formatters, you can write your own.

SimpleFormatter

The simpleFormatter does a minimal level of work to format log messages. The format method of the
SimpleFormatter returns a one- or two-line sum