

Building Web Services with Java™: Making Sense of XML,
SOAP, WSDL, and UDDI
By Steve Graham, Simeon Simeonov, Toufic Boubez,
Doug Davis, Glen Daniels, Yuichi Nakamura, Ryo Neyama

Publisher : Sams Publishing
Pub Date : December 12, 2001
ISBN : 0-672-32181-5
Pages : 600

Slots :
1

The Web services approach is the next step in the evolution of distributed computing.
Based on open industry standards, Web services enable your software to integrate with
partners and clients in a fashion that is loosely coupled, simple, and platform-
independent. Building Web Services with Java: Making Sense of XML, SOAP, WSDL, and
UDDI presents the concept of Web services and explains how to incorporate Web services
into your business. The book addresses emerging standards associated with Web
services, such as Simple Object Access Protocol (SOAP), Web Services Description
Language (WSDL), and Universal Description Discovery and Integration (UDDI).

Copyright

Copyright © 2002 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or
otherwise, without written permission from the publisher. No patent liability is assumed
with respect to the use of the information contained herein. Although every precaution
has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions. Nor is any liability assumed for damages resulting
from the use of the information contained herein.

Library of Congress Catalog Card Number: 2001090920

Printed in the United States of America

First Printing: December 2001

04 03 02 01 4 3 2 1

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this
information. Use of a term in this book should not be regarded as affecting the validity of
any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an "as is" basis. The
authors and the publisher shall have neither liability nor responsibility to any person or
entity with respect to any loss or damages arising from the information contained in this
book.

Executive Editor

Michael Stephens

Acquisitions Editor

Michael Stephens

Development Editor

Tiffany Taylor

Managing Editor

Matt Purcell

Project Editor

Christina Smith

Copy Editor

Tiffany Taylor

Indexer

Eric Schroeder

Proofreader

Plan-It Publishing

Technical Editor

Chad Fowler

Craig Pfiefer

Team Coordinator

Pamalee Nelson

Media Developer

Dan Scherf

Interior Designer

Anne Jones

Cover Designer

Aren Howell

Page Layout

Heather Stephenson

About the Authors

Steve Graham is an architect in the Emerging Technologies division of IBM Software
Group. He has spent the last several years working on service-oriented architectures,
most recently as part of the IBM Web Services Initiative. Prior to this, Steve worked as a
technologist and consultant on various emerging technologies such as Java and XML, and
before that he was an architect and consultant with the IBM Smalltalk consulting
organization.

Before joining IBM, Steve was a developer with Sybase, a consultant, and a faculty
member in the Department of Computer Science at the University of Waterloo. Steve
holds a BMath and MMAth in computer science from the University of Waterloo. You can
reach him at sggraham@us.ibm.com.

Simeon (Sim) Simeonov has been developing software for more than 15 years. Sim's
areas of expertise encompass object-oriented technology, compiler theory, Internet
tools, enterprise computing, and the broad spectrum of XML technologies. As chief
architect at Macromedia Inc., Sim provides direction for the evolution of the company's
technology and product strategy as well as the architecture of its server-side platform
products. Previously, Sim was chief architect at Allaire Corporation, where his initiatives
brought about numerous innovations to the core product lines.

Sim is currently working on service-oriented architectures for the next generation of
distributed XInternet applications. He is actively involved with the Java Community

Process in the areas of Internet applications, XML, and Web Services. Sim also
represents Macromedia on the W3C working group on XML Protocol. He is a regular
speaker at conferences and a monthly columnist for XML Journal. Sim holds a B.A. in
Computer Science, Economics, and Mathematics and a MSc in Computer Science.

Toufic Boubez is the chief technology officer of Saffron Technology. Prior to joining
Saffron, he was a senior technologist in IBM's Emerging Technologies group, and lead
architect of IBM's Web services initiative. He was IBM's technical representative to the
UDDI Web Services Consortium with Microsoft and Ariba and co-authored the UDDI API
specification. He was also the IBM technical lead on the UN/CEFACT/OASIS ebXML
initiative and helped drive IBM's early XML and Web services strategies.

Dr. Boubez has more than 15 years of experience in IT and has published and presented
on Web services, XML, object technology, distributed computing, intelligent agents, B2B,
business modeling, simulation, neural networks, and wavelet analysis. He holds a
doctorate in Biomedical Engineering from Rutgers University.

Doug Davis works in the Emerging Technology organization of IBM, working on IBM's
Web Services Toolkit, and he is one of IBM's representatives in the W3C XML Protocol
working group. Previous projects include WebSphere's Machine Translation project,
TeamConnection, and IBM's FORTRAN 90 compiler. Doug has a Bachelor of Science
degree from the University of California at Davis and a Master's degree in Computer
Science from Michigan State University.

Glen Daniels, in his 13 years in the software industry, has run the gamut from device
drivers and network stacks up through user interface and Web site work, in everything
from assembly language to C++ to Lisp. Distributed computing has always been a
passion, and as such he is currently technical lead for the JRun Web Services team at
Macromedia. Glen is an active member of the W3C XML Protocol group as well as one of
the lead developers of Axis. When not coding, he can often be found playing bass or
harmonica, hanging out with his many crazy friends in the Boston area, or relaxing with
his cats.

Yuichi Nakamura is an advisory researcher at the IBM Tokyo Research Laboratory. His
research interests are Web services including SOAP and XML security, object-oriented
systems, J2EE, multiagent systems, B2B e-commerce, and knowledge engineering. He
received an MSc and a PhD in Applied Physics from Osaka University in 1987 and 1990,
respectively.

Ryo Neyama is a researcher at the IBM Tokyo Research Laboratory. His research
interests are distributed object systems including Web services, object request brokers,
and security. He received an MSc in Information and Computer Science from Waseda
University in 1999.

Acknowledgments

To Karen, Erin and Jessie, my family, my inspiration. For all the moments sacrificed to
create this book, my most heartfelt thanks for your understanding.

My thanks to my coworkers at IBM, and in particular the WSTK team for doing such an
outstanding job. My thanks also to Rod Smith for fostering an excellent environment for
creative work.

My thanks also to the staff at Sams, particularly Tiffany Taylor and Michael Stephens, for
the hard work that went into making this project a reality.

Romans 12:2.

—Steve Graham

It is much easier to write a book when others believe you can. My deepest thanks to
Pyrra: my true love and a constant source of inspiration. Thanks also to all my friends
and co-workers who never stopped being interested in Web services and the progress of
the book. See? It's done.

—Sim Simeonov

To Lucy and Yasmine: Thank you for your patience, love, and understanding. This was a
major undertaking for a new dad with another full-time job. To my old IBM team, Sam
Adams, Steve Burbeck, Jay Casler, Steve Graham, Maryann Hondo, and Rod Smith,
thank you for the great, challenging, and receptive work environment. I seriously don't
think the concept of Web services would have evolved to where it is today in a different
environment. To my new team at Saffron, thank you for replicating that environment!

—Toufic Boubez

Lin—I owe so many things to your patience, support, and most of all your sense of
humor. I can never say it enough, but thank you.

—Doug Davis

For all my friends and family who so patiently continue to be there for me through even
the busiest times—love and thanks to all of you.

—Glen Daniels

To Michiyo: Thank you for your understanding and patience during this work. Thanks to
my kids, Arisa and Ryotaro: You always made me happy with your lovely smiles.

My thanks to all XML and Security team members at IBM Tokyo Research Laboratory.

—Yuichi Nakamura

My thanks to my parents, Jun and Sachie, for bringing me up and always supporting me.
My thanks also to Takako and my friends for their encouragement and understanding.

My thanks to my coworkers at IBM Tokyo Research Laboratory for their deep insights on
Web services and related technologies.

—Ryo Neyama

Tell Us What You Think!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we're doing right, what we could do better, what
areas you'd like to see us publish in, and any other words of wisdom you're willing to
pass our way.

As an Executive Editor for Sams Publishing, I welcome your comments. You can fax, e-
mail, or write me directly to let me know what you did or didn't like about this book—as
well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail I receive, I might not be able to reply to
every message.

When you write, please be sure to include this book's title and authors' names as well as
your name and phone or fax number. I will carefully review your comments and share
them with the authors and editors who worked on the book.

Fax: 317-581-4770

E-mail: feedback@samspublishing.com
Mail: Michael Stephens

Executive Editor
Sams Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

Introduction

Welcome to the world of Web services! This is a rapidly evolving set of standards and
implementation technologies that have great promise for the world of application
integration and distributed computing.

Before we get going, we need to clarify some things about the purpose and structure of
the book. Let's talk about them now.

Goals of this Book

The overall goal of this book is to familiarize you with the concept of Web services and
what it will take to incorporate Web services as part of your business.

We will introduce the concept of Web services and give you a framework that describes
how you can position the various emerging standards that are associated with Web
services, such as Simple Object Access Protocol (SOAP), Web Services Description
Language (WSDL), and Universal Description Discovery and Integration (UDDI).

We will help position Web services from a business and technical perspective, explaining
and demonstrating how Web services can be used to address various business problems,
particularly related to application integration.

Another goal of this book is to help developers understand the issues and details related
to building Web services using the techniques covered by this book. What pieces are
required when you're planning a Web services strategy? What things do you need to take
care of when developing Web services? We provide lots of examples and running code to
demonstrate these approaches. We also review in detail the Apache Axis Web services
infrastructure with our running examples. Other tools and Web services infrastructures
are discussed as well, but not in the same detail as Axis.

Assumed Background

This book is meant for computing technical professionals with some experience building
Web applications and distributed computing systems. You don't need to be a seasoned
veteran of the distributed object wars to appreciate this book, but some familiarity with
Web-based architectures and techniques such as HTTP and HTML is assumed. If you do
not have any experience with these techniques, some of the material could be a little
confusing—particularly some of the code examples—but you should still be able to get a
lot out of this book.

We assume you are familiar with Java, and in particular the Java Server Pages (JSP) and
Java servlet technologies. We also briefly discuss the relationship between Enterprise
Java Beans (EJBs) and Web services, so some familiarity with EJBs is helpful as well. If
you need to supplement your understanding of these techniques, many, many good
books on programming with Java, JSP, servlets, and EJB are available on the market.

You will also discover that the Extensible Markup Language (XML) is at the core of all
things dealing with Web service. Although we devote an entire chapter to explaining the
core pieces of XML needed to build Web services, the more understanding of XML you
have, the more successful you will be in building Web services.

Philosophy

It is difficult to structure a book on Web services. The concepts and standards are very
much interdependent. It is hard to cover each topic in isolation, because it is the
combination of these concepts and standards that make Web services important to
distributed computing.

The philosophy of this book can be summarized by four points: pragmatics, progressive
disclosure, a running example, and a service-oriented architecture framework.

Pragmatics

In this book, we try to get to programming examples and running code as quickly as
possible. In particular, we focus on building and consuming SOAP-based Web services
using the Apache Axis Web services infrastructure. This is a Java-centric approach to
building Web services. Whereas we emphasize that Web services are fundamentally
programming language neutral, ultimately, any given Web service is implemented in
some programming language technology. In the case of this book, we have chosen Java.
Where issues of interoperability with Web services written in other programming
languages might appear, we note them. Detailed coverage of other Web services
implementation approaches, such as Microsoft's .NET, is beyond the scope of this book,
although we do give some basic examples of .NET and other environments in Chapter 8,
"Interoperability, Tools, and Middleware Products."

Progressive Disclosure

After the overview of Web services, we start with the fundamentals of XML, and then
layer on new concepts, motivated by a business computing problem. These layers
produce a series of Web services technology "stacks." For each of the technologies and
standards in the Web services arena, we focus on understanding the technology from the
perspective of what problems it solves, balancing the explanation of the technology itself.

Running Example

The technologies and standards that make up the Web services concept are each
examined in the context of a running example (which we discuss later in this
introduction). The use of the running example adds insight to the explanation of the
concept in the text of the book and supports the progressive disclosure approach as we
follow the example, adding the layers of Web services technology to the solution. This
approach helps position various best-practices approaches to Web service development
and deployment. You can download the source code for these running examples from
www.samspublishing.com. When you reach that page, enter this book's ISBN number
(0672321815) in the search box to access information about the book and a Source Code
link.

Service-Oriented Architecture

The examples and Web services concepts are discussed in the context of a service-
oriented architecture (SOA) that we introduce in Chapter 1, "Web Services Overview."
We use the SOA framework to help position the various Web services concepts back into
a bigger picture.

Overview of the Book's Composition

Chapter 1 begins the book with an explanation of what the Web services approach is all
about. We describe what a Web service is, what standards and technologies are
associated with Web services, and what problems can be solved using Web services. We
use this chapter to introduce the SOA conceptual framework and begin to explain how
the various Web services standards such as SOAP, WSDL, and UDDI fit together. This
chapter will give you a solid conceptual basis for the rest of the book.

Before we can get into the core Web services standards, we take a brief side trip to
explain XML in Chapter 2, "XML Primer." Because XML is at the heart of all the Web
services standards and techniques, it is important you understand it well. XML is a huge
topic, but we focus our examination of XML on what you will need to know in order to
understand the rest of the Web services topics.

After the review of XML, Chapter 3, "Simple Object Access Protocol (SOAP)," dives in to
the core problem of invoking a Web service. We review the topic of XML messaging in a
distributed computing environment, focusing on the SOAP message enveloping standard.
SOAP forms the core basis of communication between a service requestor and a service
provider in a Web services environment.

Chapter 4, "Creating Web Services," refines your understanding of SOAP in the context of
a particular SOAP infrastructure: the Apache Axis project. Chapter 4 dives into the details
of how Axis works and how you can use it to make it easy to deploy Web services and
have your applications consume Web services.

At this point, you will have a great background understanding of SOAP and at least one
way to make SOAP real: Axis. But SOAP alone is not enough to do more than very simple
Web services. Chapter 5, "Using SOAP for e-Business," adds detail to the concepts
introduced in Chapters 3 and 4 by explaining how you can build Web services for
complete business computing problems. Chapter 5 discusses how Web services
addresses many distributed computing problems including security, performance, quality
of service, reliability, and so on.

Chapter 6, "Describing Web Services," introduces the important notion of service
description, which is key to making Web services the great application integration
technology for building loosely coupled systems. Chapter 6 discusses how Web services
uses service description to address the problem of communicating what details the
service requestor needs to know about the Web service in order to properly understand
how (and why) to invoke it.

Now, you need to understand how the service requestor got the service description in the
first place. Chapter 7, "Discovering Web Services," picks up where Chapter 6 left off,
discussing the various techniques for Web service discovery. This chapter examines the
standards related to finding what Web services are provided by businesses with which a
company might want to collaborate.

Chapter 8, "Interoperability, Tools, and Middleware Products," fills out your
understanding of best practices in the Web services arena by examining various other
Web services infrastructure and tooling environments.

The book concludes with a forward-looking Chapter 9, "Future Concepts," which
speculates on some possible future uses of Web services technologies to address other
problems in distributed computing.

Note

This book introduces quite a few terms with which you might not be familiar. We have
included a glossary at the back of this book that acts as a great reference guide to the
terminology used in the book. We will annotate the first use of each term appearing in

the glossary using the symbol.

So, before we get started, let's introduce the fictional company we'll use for our
examples throughout this book: SkatesTown. We will follow SkatesTown as the company
exploits Web services to improve its business.

Introducing SkatesTown

SkatesTown is a small but growing business in New York founded by three mechanically
inclined friends with a passion for cars and skateboards. They started by designing and
selling custom pre-built boards out of Dean Carroll's garage, and word soon spread about
the quality of their work. They came up with some innovative new construction
techniques, and within months they had orders piling up. Now SkatesTown has a small
manufacturing operation in Brooklyn, and the company is selling boards, clothing, and
equipment to stores around the city. Dean, Frank Stemkowski, and Chad Washington
couldn't be happier about how their business has grown.

Of the three, Chad is the real gearhead, and he has been responsible for most of the
daring construction and design choices that have helped SkatesTown get where it is
today. He's the president and head of the team. Frank, gregarious and a smooth talker
ever since childhood, now handles marketing and sales. Dean has tightly tracked the
computer revolution over the years, and is chief technical officer for the company.

A few years back, Dean realized that networking technology was going to be big, and he
wanted to make sure that SkatesTown could catch the wave and utilize distributed
computing to leverage its business. This focus turned out to be a great move.

Dean set up a Web presence so SkatesTown could help its customers stay up-to-date
without requiring a large staff to answer phones and questions. He also built an online
order-processing system to help streamline the actual flow of the business with network-
enabled clients. In recent months, more and more stores who carry SkatesTown products
have been using the system to great effect.

Our Story Begins⋯

At present, Dean is pretty happy with the way things are working with SkatesTown's
electronic commerce systems. But there have been a few problems, and Dean is sure
that things could be even better. He realizes that as the business grows, the manual
tasks associated with order gathering and inventory resupply will limit the company's
success. Always one to watch the horizon, Dean has heard the buzz about Web services,
and wants to know more. At the urging of a friend, he got in touch with Al Rosen, a
contractor for Silver Bullet Consulting. Silver Bullet specializes in Web services solutions,
and after a couple of meetings with Al, Dean was convinced—he hired SBC to come in,
evaluate SkatesTown's systems, and help the company grow into a Web service–enabled
business.

As we move through the rest of the book, we'll keep an eye on how SkatesTown uses
technologies like XML and, later, SOAP, WSDL, and UDDI to increase efficiency,
productivity, and establish new and valuable relationships with its customers and
business partners. Silver Bullet, as we'll see, usually lives up to its name.

Chapter 1. Web Services Overview

IN THIS CHAPTER

• What Is a Web Service?

• The Web Service Opportunity

• Trends in e-business

• Why Do We Need a Web Services Approach?

• Service-Oriented Architectures

• Web Services Interoperability Stacks

In this chapter, we will provide the basic terminology and set of concepts that put the

remainder of the book into context. We will define what we mean by a Web service
and describe situations in which Web services will play an important role. We will

describe a simple framework, called service-oriented architecture , that helps
structure the application of Web services technologies. We will also provide a framework,
in the form of three "interoperability" stacks that position how the various Web services

technologies such as Simple Object Access Protocol (SOAP) , Web Services

Description Language (WSDL) , and Universal Description Discovery and

Integration (UDDI) relate.

The rest of the book, then, is an elaboration of the basic concepts presented here.

What Is a Web Service?

This is a book about building Web services. We cannot describe how to build a Web
service without first clarifying what we mean by a Web service.

The term Web services has gained a lot of momentum in the last year. Many software
vendors (large and small) are announcing Web services initiatives and adoption (see the
sidebar "Web Services Market Dynamics"). Many organizations are involved in the
refinement of Web services standards. Although there seems to be a slow convergence
towards a common understanding of what the term means, there is no single, universally
adopted definition of what is meant by the term Web service. This situation is
reminiscent of the early days of object-oriented programming: Not until the concepts of
inheritance, encapsulation, and polymorphism were well defined did object-oriented
programming become accepted into the mainstream of development methodologies.

Several major Web services infrastructure providers have published their definitions for a
Web service:

IBM offers this definition at
http://www4.ibm.com/software/solutions/Webservices/pdf/WSCA.pdf:

A Web service is an interface that describes a collection of operations that
are network accessible through standardized XML messaging. Web services
fulfill a specific task or a set of tasks. A Web service is described using a
standard, formal XML notion, called its service description, that provides all
of the details necessary to interact with the service, including message
formats (that detail the operations), transport protocols, and location.

The nature of the interface hides the implementation details of the service
so that it can be used independently of the hardware or software platform
on which it is implemented and independently of the programming
language in which it is written. This allows and encourages Web services
based applications to be loosely coupled, component-oriented, cross-

technology implementations. Web services can be used alone or in
conjunction with other Web services to carry out a complex aggregation or
a business transaction.

Microsoft has a couple of definitions for Web service. The first is at http://
msdn.microsoft.com/library/default.asp?url=/nhp/Default.asp?contentid=28000442:

A Web service is a unit of application logic providing data and services to
other applications. Applications access Web services via ubiquitous Web
protocols and data formats such as HTTP, XML, and SOAP, with no need to
worry about how each Web service is implemented. Web services combine
the best aspects of component-based development and the Web, and are a
cornerstone of the Microsoft .NET programming model.

The other Microsoft definition is at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnWebsrv/html/Websvcs_platform.asp:

A Web service is programmable application logic accessible using standard
Internet protocols. Web services combine the best aspects of component-
based development and the Web. Like components, Web services
represent black-box functionality that can be reused without worrying
about how the service is implemented. Unlike current component
technologies, Web services are not accessed via object-model-specific
protocols, such as the distributed Component Object Model (DCOM),
Remote Method Invocation (RMI), or Internet Inter-ORB Protocol (IIOP).
Instead, Web services are accessed via ubiquitous Web protocols and data
formats, such as Hypertext Transfer Protocol (HTTP) and Extensible
Markup Language (XML). Furthermore, a Web service interface is defined
strictly in terms of the messages the Web service accepts and generates.
Consumers of the Web service can be implemented on any platform in any
programming language, as long as they can create and consume the
messages defined for the Web service interface.

Sun provides the following definition at
http://www.sun.com/software/sunone/faq.html#2:

Web services are software components that can be spontaneously
discovered, combined, and recombined to provide a solution to the user's
problem/request. The Java™ language and XML are the prominent
technologies for Web services.

As you can see, there is broad agreement on what a Web service might be, but no single
agreed-upon definition. Many developers will claim they cannot define what a Web
service is, but they know one when they see one.

From the perspective of this book, a Web service is a platform and implementation
independent software component that can be:

• Described using a service description language

• Published to a registry of services

• Discovered through a standard mechanism (at runtime or design time)

• Invoked through a declared API, usually over a network

• Composed with other services

One important point is that a Web service need not necessarily exist on the World Wide
Web. This is an unfortunate historical naming issue. A Web service can live anywhere on
the network, Inter- or intranet; some Web services can be invoked by a simple method
invocation in the same operating system process, or perhaps using shared memory
between tightly coupled processes running on the same machine. In fact, Web services
have little to do with the browser-centric, HTML-focused World Wide Web. Sometimes,
the names we choose in the information technology (IT) industry don't make a lot of
sense; they simply take on a life of their own.

Another important point is that a Web service's implementation and deployment platform
details are not relevant to a program that is invoking the service. A Web service is
available through its declared API and invocation mechanism (network protocol, data
encoding schemes, and so on). This is analogous to the relationship between a Web
browser and a Web application server: Very little shared understanding exists between
the two components. The Web browser doesn't particularly care if the Web application
server is Apache Tomcat, Microsoft IIS, or IBM Websphere. The shared understanding is
that they both speak HTTP and converse in HTML or a very limited set of MIME types.
Similarly, the Web application server really doesn't care what kind of client is using it—
various brands of Web browsers or even non-browser clients. This minimal shared
understanding between components allows Web services to form a system of loosely
coupled components.

Business Perspective

To a business person, the Web services approach is all about integration: integrating
application functionality within an organization or integrating applications between
business partners (in a supply chain, for example). The scenario in this book illustrates
this approach, particularly in Chapter 7, "Discovering Web Services." This application
integration allows time and cost efficiencies for receiving purchase orders, answering
status inquiries, processing shipment requests, and so on. The important point is that
application integration is enabled without tight lock-in to any particular business partner.
If another supplier has a better price, shipping terms, or quality assurance, then a
company's reorder systems can be easily repositioned to use that supplier; doing so is as
easy as pointing a Web browser at a different Web site. With a broader adoption of Web
services and XML document format standards, this style of dynamic business partner
integration will become more broadly used.

When systems are this easy to integrate, an organization's reach to suppliers, customers,
and other business partners is extended, yielding cost savings, flexible business models,
better customer service, higher customer retention, and so on. Just as IT is fundamental
to the efficient operations of an organization, Web services-based systems integration
will be fundamental to flexible, lightweight systems integration—for internal application
integration within an organization over an intranet and external partner integration over
the Intranet or extended virtual private network.

So, from a business perspective, a Web service is a business process or step within a
business process that is made available over a network to internal and/or external
business partners to achieve some business goal.

Technical Perspective

From a technical perspective, a Web service is nothing more than a collection of one or
more related operations that are accessible over a network and are described by a
service description. At this level, the Web services concept is not new. With Web
services, the IT industry is trying to address the fundamental challenge of distributed
computing that has been around for decades—locating and accessing remote systems.
The big difference is that now the industry is approaching this problem using open
technology (XML and Internet protocols) and open standards managed by broad

consortia such as the World Wide Web Consortium (W3C, which manages the

evolution of the SOAP and WSDL specifications). Further, the approach often taken with

Web services uses capabilities-based lookup , where the kind of service is searched
for, as opposed to a service of a particular name or object identifier.

The Web Service Opportunity

The Web services approach is an application integration concept; it is a set of
technologies that provides access to business functionality, such as purchase order
processing. Often, the business functionality already exists in the form of legacy
transaction processing systems, existing Web applications, Enterprise Java Beans, and so
on. Web services technology is about access and application integration; it is not an
implementation technology.

Organizations use Web services technology in two broad categories: Enterprise

Application Integration (EAI) and business-to-business (B2B) partner integration
over the Internet. In either of these categories, Web services can range in sophistication
from simple request response functions such as a credit card check to very complicated
multi-party, multi-stage long-running business transactions such as a supply
configuration and order system. Web services can be invoked by PC-based programs,
mainframe systems, Web browsers, or even small mobile devices such as cell phones or
personal digital assistants (PDAs).

Regardless of the application, Web services will be used for systems integration: flexible,
loosely-coupled systems integration yielding systems that can be decomposed and
recomposed to reflect changes in the business.

Enterprise Application Integration

Enterprise Application Integration is still a field where large consulting companies
command multimillion dollar contracts to help their clients deal with a mess of
applications that were never meant to interoperate.

The state of the art within many enterprise systems remains that of large, monolithic
application "silos." These systems are often extremely difficult to change, let alone
integrate with other systems. These applications often define unique data formats, and
sometimes (for historical, often performance-related reasons) even define their own
communications protocols. Furthermore, many systems, particularly in large
organizations, can exist on multiple different platform technologies. Interoperability
between systems is a significant challenge. In many organizations, particularly
organizations that result from a merger of two previously independent companies, IT
integration costs can seriously impact the financial health of the company.

The Web services approach offers an attractive set of technologies by which existing
legacy systems can be wrappered as Web services and made available for integration
with other systems within the organization. Applications exposed as Web services are
accessible by other applications running on different hardware platforms and written in
different programming languages. Using this approach, the complexity of these systems
can be encapsulated behind industry-standard XML protocols. Pair-wise system
integration projects can be replaced with one-to-many systems interactions based on
Web services. The promise of higher-level interoperability initiatives is that over time we
will be able to develop the set of standards, technologies, and tools that will enable small
and large businesses all over the world to easily integrate systems internally, and then
mix and match the implementation of various activities within a business process,
maintaining the option to, at any time, choose to outsource any or all of these activities if
doing so makes business sense.

For many organizations, their first implementations using Web services technology will be
internal application integration, because that is the biggest problem for them to address

with IT. Flexible systems will yield flexible business models. Flexible business models will
yield organizations better able to adapt to changes in the business environment.

B2B

Another key driver behind the rise of Web services is the continuing evolution of B2B
computing. B2B computing is about integrating the business systems of two or more
companies to support cross-enterprise business processes such as supply chain
management. Some industry pundits claim that supply chain integration will be the killer
application of Web services, particularly as a result of the standardization of common
industry formats for XML and Web services related to supply chain business processes.
B2B applications can be as simple as automated credit card validation or as complex as
the full automation of the multi-billion- dollar supply chain of a Fortune 100 company.
The challenges of building B2B applications combined with their huge market potential
drove rapid innovation that has taken the industry from simple business-to-consumer

(B2C) applications to SOAP-enabled Web services in a matter of five years.

B2C, B2B, and Web services

Online HTML-based applications are consumer-oriented. The classic example of a B2C
Web application is the Amazon book search. To access this functionality, a human being
needs to use a Web browser to navigate the company's site through multiple page
transitions, input information using Web forms, submit them, and get the results back in
human-readable form. The only way to automate this process is to simulate how a
human uses the system. Doing so involves reverse-engineering the Web application to
see how it moves data between pages, passing the data automatically from page to
page, and, finally, parsing any data contained in the response HTML of pages. This
screen-scraping approach was popular in the early years of the Web (1995–97). It is very
error prone. Any changes in the Web application—even changes that are completely UI-
centric and do not change the data being passed back and forth—can break screen-
scraping applications. These problems are compounded because most of these
applications do not properly separate presentation from application processing logic. The
only true way to integrate applications on the Web is to use a B2B-focused solution.

Because B2B applications are designed to have other applications as their clients, they
are fundamentally different from B2C applications. Table 1.1 summarizes some of these
differences for Java applications. Both types of application are unrestricted as to the type
of backend they can use—typically, Java classes or Enterprise Java Beans (EJBs). (We
discuss how Web services work with EJBs in more detail in Chapter 5, "Using SOAP for e-
Business.") This is where the similarities end, however. To customize backend logic, B2C
applications use servlets or Java Server Pages (JSPs) that are hosted in a servlet engine.
B2B applications customize their backends using straight Java code (often EJBs) that is
hosted inside a Web service engine. B2C applications communicate with a browser over
HTTP. B2B applications can use any of the open Internet protocols such as HTTP, SMTP,
or FTP, or proprietary networks such as EDI. B2C applications handle data over the
straight HTTP protocol. Input comes as GET parameters (on the URL/query string) or as
POST parameters from Web forms. Only strings can be exchanged. Any other datatypes,
even numbers, need to be encoded as strings. For output, data is mixed together with
formatting rules inside HTML pages. This is in marked contrast with B2B applications that
use XML for both data input and output. XML is perfect for B2B computing because it is
programming language- and platform-neutral, it can represent arbitrary data structures,
it is easy to process, and it can be validated independently of its processing. B2C
applications need to have some UI (typically HTML, although some have used Java
applets) because their clients are humans. B2B applications have no UI because their
clients are other applications.

Table 1.1. Comparing B2C and B2B Java Applications

Area B2C application B2B application
Backend logic Java classes and EJBs Java classes and EJBs
Custom logic Servlets and JSPs Web service engine
Communication
protocol

HTTP HTTP, SMTP, FTP, TCP/IP, EDI,
JMS, RMI/IIOP…

Data input HTTP GET/POST
parameters

XML

Data output HTML XML
UI HTML + script N/A
Client Human behind a

browser
Software application

Trends in e-business

It is clear that the network economy is currently driving the evolution of business.
Businesses must respond to increasingly dynamic marketplaces. Within corporate
departments, application integration has been a major issue in the last few years.
Traditional architectures are brittle, and this brittleness is being exposed as the scale,
demand level, transaction volume, and rate of change of transaction volume increases.

Interoperability, particularly between heterogeneous distributed systems components,
has been one of the major themes in software engineering in general, and EAI in
particular, for the last decade. It's unfortunate that the seamless interoperability vision is
still a dream. Brittleness in all current architectures is preventing software from achieving
this vision. Brittleness comes from tightly coupled systems that generate dependencies at
every level in the system. One of the most important lessons we learned as developers
and architects is that systems need to be able to find resources (software or otherwise)
automatically, when and as needed, without human intervention. This ability frees
business people to concentrate on their business and customers rather than worry about
IT complexities. At the same time, it frees system developers to concentrate on enabling
their business and their customers rather than deal with interoperability headaches by
writing glue code and patching systems together. More than any technical consideration,
this concept of implicit, seamless integration as a major business benefit is one of the
main drivers for service orientation. In other words, the time has come for "just in time"
integration!

Trends in application design are moving from rigid structures to flexible architectures.
Trends in business partner interactions are moving from static agreements to more
dynamic agreements. Trends in B2B integration are moving from technology-based
integration to business process-based integration. There is a corresponding shift in
programming and architecture models to enable these trends: from tightly coupled
applications to loosely coupled services.

On the technical side, major shifts have occurred toward flexibility and interoperability,
through open and widely accepted standards. The first major shift happened two decades
ago with the advent of TCP/IP as an open platform for networking. This step enabled
such important and pervasive architectures as client-server computing. It took the
advent of the World Wide Web for the next major shift, with HTML and HTTP providing
the first truly universal open and portable user interface. Next, Java gave us truly open
portable programming, and finally XML brought with it open portable data exchange. The
next step in this evolution of open standards is the integration step. How do all these
ingredients come together to facilitate the next evolution of e-business? Web services.

One aspect of more loosely coupled systems is reflected in the move from Remote

Procedure Call (RPC) interfaces towards a messaging or document-centric model of
distributed computing interface. With a document-centric approach, the interface to the
Web service becomes much more simple and flexible. An RPC interface presenting a fixed
set of parameters in a fixed order is quite brittle. Small changes to information required—
for example, a new requirement for an expiration date on a credit card—require a new
interface to be created, published, and understood by the service requestor. With a
document-centric approach, the new information can be added to the document schema
defined in the Web service interface. Programs that use the older schema don't
necessarily break when the new XML element is added (this is a property of XML
namespaces that you will see in Chapter 2, "XML Primer"). This approach yields Web
services interfaces that are much more flexible, resulting in systems that are much more
adaptive.

Web Services Market Dynamics

Most major software companies and many smaller software vendors have
embraced the concept of Web services in one form or another. Some might just
be giving it lip service, hedging on whether it's just another fad, or using it as a
buzzword to generate marketing fodder. Others have staked their future on it.
Here is a brief examination of the Web services initiatives from a few major
players:

• IBM: Dynamic e-business—IBM provides a broad collection of

Web services technology, including a SOAP stack as part of

WebSphere (derived from Apache SOAP 2.2), WSDL tooling in the

Web Services Toolkit, and a UDDI implementation. Many major

products within IBM are incorporating the Web services

approach in some fashion.

• Microsoft: .NET—It can be argued that Microsoft is "betting

the business" on the success of .NET. Although .NET is based

on Web services technologies, the .NET initiative is much

broader than Web services, including a new programming

language, C#, and a common runtime layer upon which

implementations of multiple programming languages can be

built. We will look at .NET in more detail in Chapter 8,

"Interoperability, Tools, and Middleware Products."

• Sun: SunOne (Open Net Environment)— Sun declared the notion of
smart Web services that can somehow understand the context in which
they were deployed or invoked (such as user identity, type of client
device and privacy policy, and so on). Smart Web services includes a
standard for sharing this notion of "context" and an infrastructure
SunONE upon which to deploy it.

Sun's approach to Web services is fairly similar to the

approach taken by the other major IT vendors, in that Sun

bases its Web services technology on the core XML, SOAP,

WSDL, UDDI technology set. Sun also augments these

technologies with technologies derived from ebXML. The

details are not clear as to how these technologies merge

together.

Sun's sponsorship of the Java Community Process and its

definition of Java specifications related to Web services is

also a major component of the company's Web services

initiative.

• Oracle: Oracle 9i Web Services Broker— The Oracle approach to Web
services also follows the traditional SOAP, WSDL, UDDI perspective.
Oracle emphasizes the role of its database technology as a service
registry (broker) providing security and other value added services as an
intermediary between service requestor and service provider.

• Macromedia: Macromedia platform— Macromedia has embraced Web
services throughout its mass-enterprise platform. Its rich clients can
display information retrieved through Web services, its application
servers make building Web services possible for developers at all skill
levels, and its tools provide high-level support for building applications
that leverage Web services.

It is exciting to see so many software vendors active in Web services. With
multiple vendors, there is a risk of incompatibility of implementations. Unless
Web services from different vendors can interoperate, Web services will fail to
attain critical mass of adoption. Happily, there is significant focus among the
various Web services implementations to develop and maintain interoperability.

Chapter 8 will look at a collection of Web services implementations in the
industry, from large software vendors to smaller boutique Web services
infrastructure providers.

Why Do We Need a Web Services Approach?

The beginning of this chapter explained the motivation for application-to-application
communication over the Internet to address the current challenges of distributed
computing and B2B integration in particular. Since 1999, the software industry has been
rapidly evolving XML-based Web services technologies as the approach to these
problems. In the maelstrom of press hype, product releases, and standards
announcements, many people have been left wondering whether this is a good in which
direction to go. After all, we already have many different mechanisms for distributed
computing. Surely, some of them would be able to rise to meet the challenges of e-
business. Why build a completely new distributed computing stack based on Web
services?

This is a very good question and one that is hard to give a short answer to. "Because
Web services use XML" is not the right answer. It is a correct observation, but it doesn't
answer the crucial question as to why using XML makes such a big difference. At a basic
level, there are three key reasons why existing distributed computing approaches are
inferior to Web services for solving the problems of e-business:

• The scope of problems they try to address

• The choice of available technology

• Industry dynamics around standards control and innovation

Scoping the Problem

Traditional distributed computing mechanisms have typically evolved around technical
architectures rather than broader problems of application integration. For example,
CORBA evolved as a solution to the problem of implementing rich distributed object
architectures. At the time, it was implicitly assumed that this was the right approach to
getting applications to communicate with one another. As we discussed earlier,
experience has shown that RPCs are not always the best architecture for this
requirement. The need for loosely coupled applications and business process automation
has clearly shown the benefits of simply exchanging messages containing data (typically
a business document) between the participants of e-business interactions, a so-called
document-centric approach. Distributed computing specifications address messaging as a
computing architecture; however, there has been no unifying approach that brings RPCs
and messaging to the same level of importance—until Web services, that is.

Web services have evolved not around pre-defined architectures but around the problem
of application integration. This is a very important distinction. The choice of problem
scope defines the focus of a technology initiative. Web services technologies have been
designed from the ground up to focus on the problems of application integration. As a
result, we are able to do things outside the scope of traditional distributed computing
approaches:

• Support both document-centric messaging and RPCs

• Transport encoded data from both applications and business documents

• Work over open Internet protocols such as HTTP and SMTP

In other words, Web services are better suited for the task than what we have so far
because we have specifically built them with this in mind. COM/CORBA/RMI are still great
technologies for tying together distributed objects on the corporate network. However,
the e-business application integration problem is best tackled by Web services.

Core Technologies

Because Web services address a much more broadly scoped problem, they use much
more flexible technologies than traditional distributed computing approaches. Further,
with Web services we can leverage all that we have learned about connecting and
integrating applications since we first started doing distributed computing. These two
factors put Web services on a better technology foundation for solving the problems of e-
business than traditional distributed computing approaches.

Later, in the "Web Services Interoperability Stacks" section, we introduce the notion of
Web services interoperability stacks. These interoperability stacks organize a layering of
technologies that define the capabilities of Web services. It is possible to compare the
Web services approach to traditional distributed computing approaches level-by-level to
see why the technical foundation of Web services is more appropriate for the problems it
needs to solve. Rather than going through this lengthy process, let's focus on two key
capabilities: the ability to represent data structures and the ability to describe these data
structures.

Data encoding is a key weakness for traditional distributed computing approaches,
particularly those that are programming language independent. Sure, they typically have
a mechanism to represent simple data (numbers, strings, booleans, date-time values,
and so on), basic arrays, and structures with properties. However, mapping existing
complex datatypes in applications to the underlying data encoding mechanisms was very
difficult. Adding new native datatypes was practically impossible (doing so required a
complete update of specifications). The fact that data was encoded in binary formats
further complicated matters. For example, processing code had to worry about little- vs.
big-endian issues when reading and writing numbers.

Web services address these issues by using XML to represent information. XML's text-
based form eliminates byte ordering concerns. The wide availability of XML processing
tools makes participation in the world of Web services relatively easy. XML's hierarchical
structure (achieved by the nesting of XML elements) allows changes at some level of
nesting in an XML document to be made with ease without worrying about the effect on
other parts of the document. Also, the expressive nature of attributes and nested
elements makes it considerably easier to represent complex data structures in XML than
in the pure binary formats traditionally used by COM and CORBA, for example. In short,
XML makes working with arbitrary data easier.

The choice of XML brought another advantage to Web services—the ability to describe
datatypes and validate whether data coming on the wire complies with its specification.
This happens through the use of XML meta-languages such as XML Schema. Binary data
encodings typically used for distributed computing offered no such mechanism and thus
pushed data validation into application logic, considerably complicating applications
dealing with non-trivial data.

Industry Dynamics

Momentum is a very important aspect of the dynamics of software innovation. Great
problems gate great opportunities. The desire to capitalize on the opportunities
generates momentum around a set of initiatives targeted at solving the problem. This
momentum is the binding force of our industry. This is how major innovation takes place
on a broad scale. The challenge of e-business application integration is great; this is why
all the key players in the industry are focused on it (see the sidebar "Web Services
Market Dynamics"). Customer need, market pressure, and the desire to be part of the
frontier-defining elite have pushed many companies to become deeply engaged with Web
services. Good things are bound to happen. Consider this: The last time every one of the
key infrastructure vendors was focused on the same set of issues was during the early
days of e-business when the industry was trying to address the challenges of building
Web applications. The net result was a new model for application development that
leveraged the Web browser as a universal client and the Web application server as a
universal backend. In short, trust that some of the very best minds in the industry
working together under the aegis of organizations such as the W3C and OASIS will be
able to come up with a good solution to the problems of e-business integration.

To the veterans of the software industry, momentum sometimes equals hype. So, are we
trying to say that Web services will succeed because there is so much hype around
them? Absolutely not! The momentum around Web services is real and different from
what we have experienced so far with other distributed computing fads. The fundamental
difference is around the ability of many industry players to engage in complementary
standardization in parallel.

Parallelism is key to building real momentum and increasing the bandwidth of innovation.
Traditional distributed computing efforts could not achieve this kind of parallelism
because they were either driven by a single vendor—Microsoft promoting COM, for
example—or they were driven by a large, slow organization such as the Object
Management Group (OMG), which owns the CORBA standards. In both cases, the key
barrier to fast progress was the centralized management of standards. Any change had
to be approved by the body owning the standard. And Microsoft and OMG owned all of
COM and CORBA, respectively. This is no way to gain real momentum, regardless of the
size of the marketing budgets to promote any given technology. Vendors that feel they
have very little control over the evolution of a technology will likely spend very little time
investing in its evolution. In other words, you might use COM, but if you think you have
no chance of influencing Microsoft's direction on COM you will probably not spend much
time thinking about and prototyping ways to improve COM. Open-source efforts such as
the Linux operating system and projects of the Apache Software Foundation
fundamentally generate momentum because people working on them can have a direct
influence on the end product. The momentum of Web services is real because

standardization work is going on in parallel at the W3C, OASIS, UDDI, and many other
horizontal and vertical industry standards organizations. Further, the major players so far
have shown a commitment to do a lot of innovation out in the open.

The interesting thing from a technical perspective is that XML actually has something to
do with the ability of Web service standardization to be parallelized. XML has facilities
(namespaces and schema) that enable the decentralized evolution of XML-based
standards without preventing the later composition of these standards in the context of a
single solution. For example, if group A owns some standard and group B is trying to
build an extension to the standard, then with some careful use of XML, group B can
design the extensions such that:

• Its extension can be published independently of the standard.

• Its extension can be present in cases where the standard is used.

• Applications that do not understand the extension will not break if

the extension is present.

• Applications that need the extension will only work if the extension

is present.

The industry's focus on Web services combines the right scope (e-business application
integration) with the right technologies (XML-based standards) with the potential for
significant parallelism and high-bandwidth innovation. This is why Web services will be
successful.

Distributed Computing History

Historically, distributed computing has been focused on the problem of
distributing computation between several systems that are jointly working on a
problem. The most often used distributed computing abstraction is the RPC.
RPCs allow a remote function to be invoked as if it were a local one. Distributed
object-oriented systems require object-based RPCs (ORPCs). ORPCs need some
additional context to be able to invoke methods on specific object instances. The
history of RPC-style distributed computing and distributed objects is fairly
complicated. The following timeline illustrates some of the key events:

• 1987

o Sun Microsystems developed the Open Network Computing

(ONC) RPC system as the basic communication mechanism

for its Network File System (NFS).

o Apollo Computer developed the Network Computing System

(NCS) RPC system for its Domain operating system.

• 1989

o The Open Software Foundation (OSF, now The Open Group)

issued a Request for Technology (RFT) for an RPC

system. OSF received two key submissions. The first

submission came from HP/DEC based on NCS (HP had

acquired Apollo). The other submission came from Sun

based on ONC. OSF selected NCS as the RPC mechanism for

its Distributed Computing Environment (DCE).

o The Object Management Group (OMG) was formed to deliver

language- and platform-neutral specifications for

distributed computing. (The consortium includes about

650 members as of the time of this writing.) The OMG

began development of specifications for Common Object

Request Broker Architecture (CORBA), a distributed

objects platform.

• 1990

o Microsoft based its RPC initiatives on a modified

version of DCE/RPC.

• 1991

o DCE 1.0 was released by OSF.

o CORBA 1.0 shipped with a single language mapping for

the C language. The term Object Request Broker (ORB)

gained popularity to denote the infrastructure software

that enables distributed objects.

• 1996

o Microsoft shipped the Distributed Component Object

Model (DCOM), which was closely tied to previous

Microsoft component efforts such as Object Linking and

Embedding (OLE), non-distributed COM (a.k.a. OLE2), and

ActiveX (lightweight components for Web applications).

The core DCOM capabilities are based on Microsoft's RPC

technologies. DCOM is an ORPC protocol.

o CORBA 2.0 shipped with major enhancements in the core

distributed computing model as well as higher-level

services that distributed objects could use. The

Internet Inter-ORB Protocol (IIOP) was part of the

specification. IIOP allows multiple ORBs to

interoperate in a vendor-agnostic manner. IIOP is an

ORPC protocol.

• 1997

o Sun shipped JDK 1.1, which included Remote Method

Invocation (RMI). RMI defines a model for distributed

computing using Java objects. RMI is similar to CORBA

and DCOM but works only with Java objects. RMI has an

ORPC protocol called Java Remote Method Protocol

(JRMP).

o Microsoft announced the first iteration of COM+, the

successor of DCOM. The capabilities of COM+ brought it

much closer to the CORBA model for distributed

computing.

• 1999

o Sun shipped J2EE (Java 2 Platform Enterprise Edition).

The Java 2 platform integrated RMI with IIOP, making it

easy to interoperate between Java and CORBA systems.

o Simple Object Access Protocol (SOAP) appeared for the

first time. The era of Web services was born.

Although RPCs and distributed objects have been the traditional approaches for
building distributed systems, they are by no means the only ones. Another very
important approach is that of data-oriented or document-centric messaging.
Rather than being focused on distributing computation by specifically invoking
remote code, messaging takes a different approach. Applications that
communicate via messaging run their own independent computations and
communicate via messages that contain pure data. Messaging was popularized
via the efforts of system integrators who were trying to get highly
heterogeneous systems to interoperate. In most cases, the systems were so
different that the requirement to perform fine-grain integration via RPCs was
impossible to satisfy. Instead, system integrators were happy to be able to
reliably move pure data between the systems. Commercially, the importance of
messaging applications has been steadily growing since IBM released its
messaging product MQSeries in 1993. Microsoft's messaging product is the
Microsoft Message Queuing Server (MSMQ). J2EE defines a set of APIs for
messaging through the Java Messaging Service (JMS). There has been no
attempt to define a standard interoperability protocol for messaging servers.

One of the key benefits of Web services is that the core Web service protocols
can support RPCs and messaging with equal ease. Chapter 3, "Simple Object
Access Protocol (SOAP)," has a section that addresses this topic in detail.

Service-Oriented Architectures

Early on in the Web services technology evolution, we noticed a pattern. Each time we
applied Web services technologies to an application integration problem, a pattern
emerged. We called this pattern service-oriented architecture (SOA). SOA is a simple
concept, which makes it applicable to a wide variety of Web services situations. Figure
1.1 depicts the main roles and operations in an SOA.

Figure 1.1. Service-oriented architecture.

Any service-oriented architecture contains three roles: a service requestor , a service

provider , and a service registry :

• A service provider is responsible for creating a service description

, publishing that service description to one or more service

registries, and receiving Web service invocation messages from one or

more service requestors. A service provider, then, can be any company

that hosts a Web service made available on some network. You can

think of a service provider as the "server side" of a client-server

relationship between the service requestor and the service provider.

• A service requestor is responsible for finding a service description

published to one or more service registries and is responsible for

using service descriptions to bind to or invoke Web services hosted

by service providers. Any consumer of a Web service can be considered

a service requestor. You can think of a service requestor as the

"client side" of a client-server relationship between the service

requestor and the service provider.

• The service registry is responsible for advertising Web service

descriptions published to it by service providers and for allowing

service requestors to search the collection of service descriptions

contained within the service registry. The service registry role is

simple: be a match-maker between service requestor and service

provider. Once the service registry makes the match, it is no longer

needed in the picture; the rest of the interaction is directly

between the service requestor and the service provider for the Web

service invocation.

Each of these roles can be played by any program or network node. In some
circumstances, a single program might fulfill multiple roles; for example, a program can
be a service provider, providing a Web service to downstream consumers as well as a
service requestor, itself consuming Web services provided by others.

An SOA also includes three operations: publish , find , and bind . These
operations define the contracts between the SOA roles:

• The publish operation is an act of service registration or service

advertisement. It acts as the contract between the service registry

and the service provider. When a service provider publishes its Web

service description to a service registry, it is advertising the

details of that Web service to a community of service requestors. The

actual details of the publish API depend on how the service registry

is implemented. In certain simple or "direct publish" scenarios, the

service registry role is played by the network itself, with publish

being simply an act of moving the service description into a Web

application server's directory structure. Other services registry

implementations, such as UDDI, define a very sophisticated

implementation of the publish operation.

• The find operation is the logical dual of the publish operation. The

find operation is the contract between a service requestor and a

service registry. With the find operation, the service requestor

states a search criteria, such as type of service, various other

aspects of the service such as quality of service guarantees, and so

on. The service registry matches the find criteria against its

collection of published Web service descriptions. The result of the

find operation is a list of service descriptions that match the find

criteria. Of course, the sophistication of the find operation varies

with the implementation of the service registry role. Simple service

registries can provide a find operation with nothing more

sophisticated than an unparameterized HTTP GET. This means the find

operation always returns all Web services published to the service

registry and it is the service requestor's job to figure out which

Web service description matches its needs. UDDI, of course, provides

extremely powerful find capabilities.

• The bind operation embodies the client-server relationship between

the service requestor and the service provider. The bind operation

can be quite sophisticated and dynamic, such as on-the-fly generation

of a client-side proxy based on the service description used to

invoke the Web service; or it can be a very static model, where a

developer hand-codes the way a client application invokes a Web

service.

The key to SOA is the service description. It is the service description that is published by
the service provider to the service registry. It is the service description that is retrieved
by the service requestor as a result of the find operation. It is a service description that
tells the service requestor everything it needs to know in order to bind to or invoke the
Web service provided by the service provider. The service description also indicates what
information (if any) is returned to the service requestor as a result of the Web service
invocation.

Each time a service-oriented architecture is deployed, there might be different
technologies to fulfill each role. Chapter 7, "Discovering Web Services," discusses various
options for implementing a service registry and goes into great detail on the UDDI
service registry technology. Chapter 6, "Describing Web Services," discusses service
description and how a service description can be used to automate the task of building a
client-side proxy to the Web service and a server-side skeleton to dispatch the Web
service invocation to the target Web service implementation. Chapters 3 and 4, "Simple
Object Access Protocol (SOAP)" and "Creating Web Services," focus on the use of SOAP
to fulfill the bind operation; Chapter 5, "Using SOAP for e-Business," details how the bind
can be made ready for e-business.

Web Services Interoperability Stacks

An alphabet soup of technologies is swimming around the Web services space. We have
XML, SOAP, WSDL, UDDI, WSEL, WSFL, and more. How can anyone make sense of what
these technologies are and how they fit together? Well, that is one of the purposes of this
book.

To help put a framework around these technologies, we refer to a trio of Web services
interoperability stacks, first proposed to the W3C by IBM and Microsoft in March 2001
(http://www.w3.org/2001/03/WSWS-popa/paper51). This proposal factored Web
services technologies into three stacks:

• The wire stack

• The description stack

• The discovery stack

The contents of the stacks presented in this book reflect a different factoring than
originally proposed to the W3C, due in part to the additional standards efforts that have
come into play since March 2001.

The Wire Stack

Figure 1.2 shows the wire stack as we define it.

Figure 1.2. The wire stack.

The wire stack represents the technologies that determine how a message is sent from
the service requestor to the service provider. The base of the wire stack is a network
protocol. Web services can be based on a variety of standard, Internet wire protocols
such as HTTP or HTTPS, SMTP, FTP, and so on, as well as sophisticated enterprise-level
protocols such as RMI/IIOP and MQSeries.

For data encoding, Web services use XML. In addition, non-XML content can be
referenced from a Web service invocation message, allowing full flexibility in the kinds of
data used in the message. For data specification, Web services use XML Schema. This
includes both custom schemas in the case of XML messaging or schemas conforming to a
set of pre-defined rules, such as the SOAP encoding rules discussed in Chapter 3.

Built on top of the networking protocol and data-encoding layers are the XML messaging
layers. For XML messaging, Web services use SOAP in all its data encoding, interaction
style, and protocol binding variations. SOAP is used as a simple approach to wrapper an
XML message in an envelope. The result is a solid, standards-based foundation for Web
services.

Conceptually layered on top of the SOAP enveloping mechanism is a mechanism for

envelope extensions called SOAP headers . With SOAP headers, orthogonal
extensions such as a digital signature can be associated with the body of the message
contained within the SOAP envelope. Chapter 3 will give details on the SOAP enveloping
mechanism and the SOAP header facility.

The layers of this stack are well defined, either as standard networking protocols or as
the SOAP specification itself. This stack is the most accepted and most widely deployed
set of technologies for Web services.

At right in Figure 1.2 are three vertical columns representing associated technologies that
impact multiple levels of the wire stack. Security, for example, can appear at each level—
SSL at the network protocol level and digital signatures at the envelope extensions level,
for instance. It is doubtful there will ever be a single standard that fits all aspects of Web
services security needs. Chapter 5 goes into more detail on the current Web services–
related security technologies like XML digital signatures and XML cryptography. Other
vertical towers listed include Quality of Service and Manageability. These are just a

handful of facets of Web services that can appear at several levels of the wire stack.
There is no well-accepted standard for these facets, but work is underway in these areas.

The Description Stack

The wire stack is only where the capabilities of Web services begin. Even the simplest
example of Web service use shows the need for a higher level of interoperability.

Consider the following situation (we'll see this example in greater detail in Chapter 3). A
company has provided an inventory checking service, allowing customers to determine
whether a particular number of items are in stock for a given product code (as
represented as a stock keeping unit [SKU]). The Web service takes as parameters a
string representing the SKU and an integer representing the number of units needed. If
the company has on hand the requested number of units, the Web service responds with
a Boolean true value; otherwise, the response is a Boolean false.

From a pure SOAP perspective, the interaction with this Web service is trivial. However,
things get much more complicated when we consider how much common understanding
must exist between the service requestor and the service provider. For the interaction to
succeed, at a minimum, the service requestor needs to know the following:

• The address of the Web service.

• It should make requests and receive responses over HTTP.

• It should use SOAP 1.1.

• Requests and responses should use the SOAP data encoding.

• Requests will be RPC requests containing as parameters a string SKU

and an integer indicating the desired quantity.

• Responses will be RPC responses containing a Boolean indicating the

inventory check outcome.

Throw in security, payments, error handling, and other capabilities required to build
enterprise-grade Web services, and the need for shared knowledge expands even
further…. How can the service requestor acquire this information? Well, traditionally Web
services have advertised their capabilities in some human readable form. Developers
have read the description of these capabilities and configured user applications to be able
to communicate with particular Web services.

While this approach works in principle, it is not scalable for many reasons:

• It requires costly (in terms of both time and money) manual

configuration by highly skilled, and therefore scarce, personnel.

• It is error prone because it does not utilize formalized service

specifications.

• It precludes automatic discovery and engagement of Web services; a

priori knowledge is required for configuration of the user

application.

• No built-in mechanism exists for change notifications and/or failure

recovery; every time a Web service evolves, there is a risk that

existing user applications will fail.

These are some of the reasons why industry leaders are developing the standards
described in a service description stack. Figure 1.3 shows the service description stack.

Figure 1.3. The service description stack.

Key to the entire service-oriented architecture approach is the service description itself.
Many aspects of a Web service need to be communicated, and therefore the description
stack has multiple levels. The focus on service description is to communicate those
aspects of a service that might be important to the service requestor. Chapter 6 goes
into detail on each of the technologies used for service description.

In Web services, XML is the basis of service description. XML schema is the base data
type mechanism in the service description and all of the service description technologies
in the stack are expressed using XML. Much of the power of Web services is derived from
the power of XML.

The next two levels of the stack, service implementation and service interface, are
described using the Web Services Description Language (WSDL). WSDL is a note to the
W3C, and there is active work to refine this language into a standard. WSDL is the
interface definition language for Web services; it is the key to understanding Web
services. With WSDL, a developer describes the set of operations supported by a Web
service, including the kinds of objects that are expected as input and output of the
operations, the various bindings to concrete network and data encoding schemes. This
level constitutes the core definition of the service's interface. The service implementation
defines the network address where the service itself can be invoked. WSDL allows for
automatic code-generation of Web service clients based on this information.

But IDL is not enough for Web services. Other aspects of the Web service could affect
whether a service requestor would choose to bind to a Web service. For example, if two
different service providers host implementations of the same service interface, perhaps a
stock quote service, then from the IDL perspective, the services are almost
indistinguishable: The network address is the only difference. However, the service
providers might differ widely in their privacy policy, cost to use, timeliness of response,
and so on. These non-operational characteristics might be critical to the service
requestor. The role of the endpoint definition is to layer on top of the WSDL description
information about characteristics of the Web service that are impacted by its
implementation environment. Work in this area is at its very beginnings. The notion of a

Web Services Endpoint Language (WSEL) has only been hinted at publicly. Other
examples of this sort of description include the ebXML Collaboration-Protocol Profile and
Agreement Specification (CPP).

At the top of the service description stack is the elusive promise of seamless, automatic

service integration: the service orchestration layer. With service orchestration , the
developer describes how a collection of Web services is combined to produce a more
sophisticated Web service. For example, you would use service orchestration to model
how a purchase order submission Web service could be combined with a notification
service and a returns-processing service to produce a richer overall purchasing Web
service. At this level, several alternative approaches exist. IBM has proposed the Web
Services Flow Language, and Microsoft has Xlang. A single standard has not emerged in
this space.

The orchestration of Web services poses significant challenges from both a technical and
a business perspective. On the technical side, seamless service integration requires a
significant technological foundation. Most important is the description of service behavior,
defined by the rules for sequencing operation invocations and for sending and receiving
messages. Next is the problem of composing services into process-based interactions.
The problem is made harder by the requirement that some composition bindings must
happen at runtime. Without this capability, it is difficult to map the technology to well-
established business processes such as representation, referral, and brokering. On the
business side, the problems are no less significant. From a business perspective, service
integration is a workflow problem and as such could introduce dependencies on aspects
of companies' core business models. Particularly difficult in this perspective is potentially
the most valuable type of service integration—the one that spans enterprise boundaries.

The Discovery Stack

Given the ability to describe Web services, we are better off than we were, but we still
have solved only part of the Web service integration problem. Service descriptions tell us
how to bind to Web services, but how did the service requestor get the service
description in the first place? Clearly, we need some form of a Web service discovery
mechanism. The requirement here is for a directory or search engine for Web services.
Service providers will need a publication mechanism so that they can provide information
about the Web services they offer and make changes as their Web services evolve.

Service requestors will need well-defined find APIs. This is the SOA service registry role
we described earlier.

Figure 1.4 shows the third interoperability stack, the discovery stack. The discovery stack
organizes technologies associated with Web service discovery.

Figure 1.4. The discovery stack.

The first level of the stack represents a simple inspection level. Inspection is a
technique of discovering the service description given that the details about the service
(a service identifier or URL, for example) are already known. Once again, no single

standard exists in this space. IBM has ADS and Microsoft has DISCO .

The directory level represents the capability of discovering Web services and business
partners using a capabilities-based lookup. Unlike previous distributed computing
techniques that relied on well known names as the basis for remote discovery of services,
Web services can use find techniques based on the kind of service or service capabilities.
The UDDI standard is the proposed technology for Web services directory.

Chapter 7 is dedicated to explaining service discovery in much more detail, and in
particular reviewing the UDDI standard.

Putting the Interoperability Stacks Together

Does any given Web service require all of these technologies in order to be considered a
Web service? Certainly not.

Looking at the wire stack, no single network protocol—not even HTTP—is a required part
of a Web service; any number of networking protocols can be used. Some Web services
don't even need to use a network protocol. Techniques such as the Web Services
Invocation Framework (WSIF) (http://www.alphaworks.ibm.com/tech/wsif) discuss the
possibility of a Web service being a simple Java method invocation, where the service
requestor and service provider are in the same Java Virtual Machine. Moving up the
stack, we can discover that even SOAP is not a necessary technology for Web services. It
is possible that a component accessed through a simple HTTP POST can be considered a
Web service. In these cases, the commonality that makes these components Web
services is the use of WSDL to describe the service.

So, is a service description required in order for a component to be considered a Web
service? Again, not necessarily. Many Web services, particularly older Web services
developed when SOAP was first introduced, do not have a corresponding service
description. These components are considered Web services, but it is worth noting that
without a service description, the Web service cannot be a part of the publish, find, bind
operations in a service-oriented architecture. As the WSDL standard is adopted, you will
see fewer Web services provided that do not have a corresponding WSDL description.

Many developers have concluded that a Web service is simply "anything that can be
described using WSDL."

Does a Web service have to appear in a UDDI registry in order to be considered a Web
service? Clearly not. Many Web services advertised on the Web do not appear in UDDI
and do not support the ADS or DISCO simple service discovery conventions.

So you will agree that any given Web service doesn't need all of these technologies to be
considered a Web service. But are any of these technologies found in each and every
Web service? If you follow the arguments above, clearly not. Is SOAP required in all Web
services? No. Is WSDL? No. UDDI? No. There is no single Web services technology whose
use determines that a component is a Web service. For this reason, defining what is a
Web service remains difficult.

In addition to writing great specifications, the Web services industry has been busy
building software that makes the standards come to life and solve meaningful business
problems. This book uses Apache Axis at the heart of our Web services examples. Axis is
an advanced Web services engine with a highly scalable and extensible architecture. We
will examine Axis in great depth in Chapter 4.

There are, however, other great Web services implementations from multiple vendors.
Chapter 8 looks at the currently available best-of-breed Web services tooling, its
capabilities and its interoperability record.

Interoperability is key for Web services. In the World Wide Web, does my browser care
about which Web server you are running? No. The same thing is true in Web services.
Any service requestor should be able to consume any standard (no custom extensions)
Web service provided via any Web services engine. We might be some distance from this
holy grail, but the industry is working hard at it because everyone knows this is the only
way to make Web services (and dynamic application integration) successful.

Summary

In this chapter, we provided you with a definition for Web services and helped position
where these technologies will benefit businesses. We also provided a conceptual
framework—service-oriented architecture—you can use to think about problems related
to Web services. We introduced the alphabet soup of Web services technologies and
illustrated an organizational framework around three related interoperability stacks.

The rest of this book builds upon what we introduced here. Chapter 2 explores the root of
all Web services technologies: XML. Chapter 3 builds upon that discussion by examining
the wire stack and, in particular, the SOAP technology as the access mechanism of choice
for many Web services. Chapter 4 shows how SOAP is implemented in the Apache Axis
project. Chapter 5 expands upon SOAP and Axis, describing how other e-business
aspects such as security can be layered into a Web service. Chapter 6 explores the
service description stack, focusing on how the service requestor knows what kind of
message to send and where to send it. Chapter 7 examines the discovery stack and in
particular the UDDI standard. Chapter 8 explores other Web services infrastructures. We
close with Chapter 9, "Future Concepts," which discusses some future trends for Web
services.

Chapter 2. XML Primer

IN THIS CHAPTER

• Origins of XML

• Document- Versus Data-Centric XML

• XML Instances

• XML Namespaces

• Document Type Definitions

• XML Schemas

• Processing XML

Since its introduction in 1998, Extensible Markup Language (XML) has revolutionized the
way in which we think about structuring, describing, and exchanging information. The
ways in which XML is used in the software industry are many and growing. Certainly for
Web services the importance of XML is paramount; all key Web service technologies are
based on it.

One great thing about XML is that it is constantly changing and evolving. However, this
can also be its downside. New problems require new approaches and uses of XML that
drive aggressive technological innovation. The net result is a maelstrom of invention—a
pace of change so rapid that it leaves most people confused. To say that you are using
XML is meaningless. Are you using DTDs or XML Schema and, if so, then whose? How
about XML Namespaces, XPointer, XLink, XPath, XSLT, XQuery, RDF, SOAP, WSDL,
UDDI, XAML, WSFL, WSCL, or WS-I? Does your software use SAX, DOM, JAXB, JAXP,
JAXM, JAXR, or JAX-RPC? It is easy to get lost, to drown in the acronym soup. You are
interested in Web services (you bought this book, remember?). How much do you really
need to know about XML?

The truth is pleasantly surprising. First, many XML technologies you might have heard
about are not relevant to Web services. You can safely forget half the acronyms you wish
you knew more about. Second, even with relevant technologies, you need to know only a
few core concepts. (The 80/20 rule does not disappoint.) Third, this chapter is all you
need to read and understand to be able to handle the rest of the book and make the
most of it. This chapter will cover, in sufficient detail:

• The origins of XML and the fundamental difference between document-

and data-centric XML applications

• The syntax and rules governing XML documents

• XML Namespaces, the key specification enabling the distributed

evolution of XML technologies

• XML Schema, the de facto standard for describing document structure

and XML datatypes for data-oriented applications

• The key mechanisms for creating and processing XML with Java software

This chapter will develop a set of examples around SkatesTown's purchase order
submission and invoice generation process. The examples will cover all the technologies
we've listed here.

If you are an old hand at XML who understands the XML namespace mechanism and
feels at home with schema extensibility and the use of xsi:type, you should go straight
to Chapter 3, "Simple Object Access Protocol (SOAP)" and dive into Web services. If you
can parse and process a significant portion of the previous sentence, you should skim

this chapter to get a quick refresher of some core XML technologies. If you are someone
with more limited XML experience, do not worry—by the end of this chapter, you will be
able to hold your own.

Origins of XML

World Wide Web Consortium (W3C) began work on Extensible Markup Language (XML) in
the middle of 1996. XML 1.0, released on February 10, 1998, resulted from the computer
industry's need to develop a simple yet extensible mechanism for the textual
representation of structured and semi-structured information. The design inspiration for
XML came from two main sources: Standard Generalized Markup Language (SGML) and
HTML.

The concept of generalized markup (GM) has been around for decades. It involves using

tags to identify pieces of information. Simply put, tags are names surrounded by
pointy brackets (< and >). For example, <title> is a tag. The innovative thing about GM
is that it requires information to be surrounded by both start and end tags. End tags look
like start tags with the addition of a forward slash (/) before the tag name, as in
</title>. The notion of start and end tags allows for nesting, which, in turn, lets you
structure information in a hierarchical manner.

Consider the following example, which uses markup to indicate that a book has a title
and several authors:

<book>

 <title>Building Web Services with Java</title>

 <authors>

 <author>Steve Graham</author>

 <author>Simeon Simeonov</author>

 <author>Toufic Boubez</author>

 <author>Doug Davis</author>

 <author>Glen Daniels</author>

 <author>Yuichi Nakamura</author>

 <author>Ryo Neyama</author>

 </authors>

</book>

Using markup to represent information about books has many benefits. The information
is readily readable by humans. It is also quite easy to process with software because
start and end tags clearly delineate where certain pieces of information start and where
they end. Further, this way to represent information is inherently extensible. For
example, you can easily imagine how to add more authors or other information (such as
the book's ISBN) to the book description. Markup is appealing because of its simplicity
combined with the potential for extensibility. Not all markup is simple, though. In fact,
our industry's first attempt to formally define generalized markup yielded a very complex
specification. SGML was ratified by ISO in 1986. It defined everything you could ever
want to know about markup and more. SGML-enabled software was expensive; typically,
only large companies could afford it. The software also tended to be full of defects. Over
time, a growing community of SGML experts began to voice opinions that, perhaps, the
core ideas of SGML could be organized in a much simpler fashion. All that was needed
was a catalyst to force the change and an organization that could lead the
standardization effort. The catalyst was the combination of HTML and the Web. The
organization was the W3C.

By its nature, SGML is a meta-language . It does not prescribe any particular
markup; instead, it defines how any given markup language can be formally specified.

For better or worse, the term for these markup languages is SGML applications .

Because the term is confusing (a markup language specification is not a piece of
software), it is rarely used nowadays, but you still might encounter it in some of the
reference materials pointed out at the end of the chapter.

The most popular SGML application is HTML, the markup language that rules the Web.
HTML combines markup from several different categories to provide a rich hypertext
experience:

• Text structuring tags: <H1>, <H2>, <P>,

• Formatting tags: , <I>

• Linking and embedding tags: , <A>

• Data input tags: <FORM>, <INPUT>, <SELECT>

The HTML specification is owned by W3C. Unfortunately, due to the rapid growth of the
Internet and the market pressure caused by the browser wars, the leading browser
vendors introduced a number of incompatible tags to HTML completely outside the scope
of the HTML specification. These tags created problems for Internet software vendors and
HTML document authors—they had to be careful what markup they used, based on the
type of browser that would display the HTML document. Yet at the same time, they
themselves were not able to extend HTML with markup that could have been useful to
them.

The need to simplify SGML coincided with the need to control the evolution of HTML and
create a simple generalized markup language for use on the Web. SGML was too heavy
for this purpose—it simply took too much effort to support and process. XML became that
lightweight language. After about one-and-a-half-years of work, the XML working group
at the W3C produced a final specification. XML is similar to SGML in that it preserves the
notion of GM. However, the specification is much simpler. There are very few optional
features, and most SGML features that were deemed difficult to implement were
abandoned.

XML is here to stay. The XML industry is experiencing a boom. XML has become the de
facto standard for representing structured and semi-structured information in textual
form. Many specifications are built on top of XML to extend its capabilities and enable its
use in a broader range of scenarios. One of the most exciting areas of use for XML is Web
services. The rest of this chapter will introduce the set of XML technologies and standards
that are the foundation of Web services:

• XML instances— The rules for creating syntactically correct XML documents

• XML Schema— A recent standard that enables detailed validation of XML
documents as well as the specification of XML datatypes

• XML Namespaces— Definitions of the mechanisms for combining XML from
multiple sources in a single document

• XML processing— The core architecture and mechanisms for creating, parsing,
and manipulating XML documents from programming languages

Document- Versus Data-Centric XML

Generally speaking, there are two broad application areas of XML technologies. The first
relates to document-centric applications, and the second to data-centric applications.
Because XML can be used in so many different ways, it is important to understand the
difference between these two categories.

Document-Centric XML

Because of its SGML origins, in the early days of its existence XML gained rapid adoption
within publishing systems as a mechanism for representing semi-structured documents
such as technical manuals, legal documents, and product catalogs. The content in these
documents is typically meant for human consumption, although it could be processed by
any number of applications before it is presented to humans. The key element of these
documents is semi-structured marked-up text.

The following markup is a perfect example of XML used in a document-centric manner.
The content is directed towards human consumption—it's part of the FastGlide
skateboard user guide. The content is semi-structured. The usage rules for tags such as
, <I> and <LINK> are very loosely defined; they could appear pretty much anywhere
in the document:

<H1>Skateboard Usage Requirements</H1>

<P>In order to use the FastGlide skateboard you have to

have:</P>

<LIST>

<ITEM>A strong pair of legs.</ITEM>

<ITEM>A reasonably long stretch of smooth road surface.</ITEM>

<ITEM>The impulse to impress others.</ITEM>

</LIST>

<P>If you have all of the above, you can proceed to <LINK

HREF="Chapter2.xml">Getting on the Board</LINK>.</P>

Data-Centric XML

By contrast, data-centric XML is used to mark up highly structured information such as
the textual representation of relational data from databases, financial transaction
information, and programming language data structures. Data-centric XML is typically
generated by machines and is meant for machine consumption. It is XML's natural ability
to nest and repeat markup that makes it the perfect choice for representing these types
of data.

Consider the purchase order example in Listing 2.1. It is a purchase order from the
Skateboard Warehouse, retailer of skateboards to SkatesTown. The order is for 5
backpacks, 12 skateboards, and 1,000 SkatesTown promotional stickers (this is what the
stock keeping unit [SKU] of 008-PR stands for).

Listing 2.1 Purchase Order in XML

<po id="43871" submitted="2001-10-05">

 <billTo>

 <company>The Skateboard Warehouse</company>

 <street>One Warehouse Park</street>

 <street>Building 17</street>

 <city>Boston</city>

 <state>MA</state>

 <postalCode>01775</postalCode>

 </billTo>

 <shipTo>

 <company>The Skateboard Warehouse</company>

 <street>One Warehouse Park</street>

 <street>Building 17</street>

 <city>Boston</city>

 <state>MA</state>

 <postalCode>01775</postalCode>

 </shipTo>

 <order>

 <item sku="318-BP" quantity="5">

 <description>Skateboard backpack; five pockets</description>

 </item>

 <item sku="947-TI" quantity="12">

 <description>Street-style titanium skateboard.</description>

 </item>

 <item sku="008-PR" quantity="1000">

 </item>

 </order>

</po>

The use of XML is very different from the previous user guide example:

• The ratio of markup to content is high. The XML includes many

different types of tags. There is no long-running text.

• The XML includes machine-generated information; for example, the

submission date of the purchase order uses a date-time format of

year-month-day. A human authoring an XML document is unlikely to

enter a date-time value in this format.

• The tags are organized in a highly structured manner. Order and

positioning matter, relative to other tags. For example,

<description> must be under <item>, which must be under <order>,

which must be under <po>. The <order> tag can be used only once in

the document.

• Markup is used to describe what a piece of information means rather

than how it should be presented to a human.

In short, if you can easily imagine the XML as a data structure in your favorite
programming language, you are probably looking at a data-centric use of XML. An
example Java class that could, with a bit more work, be used to represent the purchase
order data is shown here:

class PO

{

 int id;

 Date submitted;

 Address billTo;

 Address shipTo;

 Item order[];

}

Document Lifetime

Document- and data-centric uses of XML can differ in one other very significant aspect—
the lifetime of the XML document. Typically, XML documents for human consumption
(such as technical manuals and research papers) live a long time because the

information contained in them can be used for a long time. On the other hand, some
data-centric XML could live for only a few milliseconds. Consider the example of a
database that is returning the results of a query in XML format. The whole operation
takes several milliseconds. After the query is used, the data is discarded. Further, no real
XML document exists. The XML is just bits on a wire or bits in an application's data
structure. Still, for convenience purposes, we will use the term XML document to refer to
any particular whole piece of XML being used. As a general identification of parts of a
whole XML document, this book uses the highly technical term chunk.

Web services are about data-centric uses of XML. Through the rest of this chapter and
the rest of this book, we will purposefully ignore discussing document-centric XML.

XML Instances

The structure and formatting of XML in an XML document must follow the rules of the

XML instance syntax. The term instance is used to explicitly distinguish the
difference between the use of some particular type of XML and its specification. This
usage parallels the difference in object-oriented terminology between an object instance
and an object type.

Document Prolog

XML documents contain an optional prolog followed by a root element that
contains the contents of the document.

Typically the prolog serves up to three roles:

• Identifies the document as an XML document

• Includes any comments about the document

• Includes any meta-information about the content of the document

A document can be identified as an XML document through the use of a processing

instruction . Processing instructions (PIs) are special directives to the application that
will process the XML document. They have the following syntax:

<?PITarget ...?>

PIs are enclosed in <? ... ?>. The PI target is a keyword meaningful to the processing
application. Everything between the PI target and the ?> marker is considered the
contents of the PI.

In general, data-oriented XML applications do not use application-specific processing
instructions. Instead, they tend to put all information in elements and attributes.
However, you should use one standard processing instruction—the XML declaration

—in the XML document prolog to determine two very important pieces of
information: the version of XML in the document and the character encoding:

<?xml version="1.0" encoding="UTF-8"?>

The version parameter of the xml PI tells the processing application the version of the
XML specification to which the document conforms. Currently, there is only one version:
"1.0". The encoding parameter is optional. It identifies the character set of the
document. The default value is "UTF-8".

Note

UTF-8 is a variable-length character encoding standard that generates 7-bit safe output.
This type of output makes it easy to move XML on the Internet using standard
communication protocols such as HTTP, SMTP, and FTP. Keep in mind that XML is
internationalized by design and can support other character encodings such as Unicode
and ISO/IEC 10646. However, for simplicity and readability purposes, this book will use
UTF-8 encoding for all samples.

If you omit the XML declaration, the XML version is assumed to be 1.0, and the
processing application will try to guess the encoding of the document based on clues
such as the raw byte order of the data stream. This approach has problems, and
whenever interoperability is of high importance—such as for Web services—applications
should always provide an explicit XML declaration and use UTF-8 encoding.

XML document prologs can also include comments that pertain to the whole document.
Comments use the following syntax:

<!-- Sample comment and more ... -->

Comments can span multiple lines but cannot be nested (comments cannot enclose other
comments). Everything inside the comment markers will be ignored by the processing
application. Some of the XML samples in this book will use comments to provide you with
useful context about the examples in question.

With what you have learned so far, you can extend the purchase order example from
Listing 2.1 to include an XML declaration and a comment about the document (see Listing
2.2).

Listing 2.2 XML Declaration and Comment for the Purchase Order

<?xml version="1.0" encoding="UTF-8"?>

<!-- Created by Bob Dister, approved by Mary Jones -->

<po id="43871" submitted="2001-10-05">

 <!-- The rest of the purchase order will be the same as before -->

 ...

</po>

In this case, po is the root element of the XML document.

Elements

The term element is a technical name for the pairing of a start and end tag in an
XML document. In the previous example, the po element has the start tag <po> and the
end tag </po>. Every start tag must have a matching end tag and vice versa. Everything
between these two tags is the content of the element. This includes any nested elements,
text, comments, and so on.

Element names can include all standard programming language identifier characters ([0-
9A-Za-z]) as well as underscore (_), hyphen (-), and colon (:), but they must start with
a letter. customer-name is a valid XML element name. However, because XML is case-
sensitive, customer-name is not the same element as Customer-Name.

According to the XML Specification, elements can have three different content types.
They can have element-only content, mixed content, or empty content. Element-only
content consists entirely of nested elements. Any whitespace separating elements is not
considered significant in this case. Mixed content refers to any combination of nested
elements and text. All elements in the purchase order example, with the exception of
description, have element content. Most elements in the skateboard user guide
example earlier in the chapter had mixed content.

Note that the XML Specification does not define a text-only content model. Outside the
letter of the specification, an element that contains only text is often referred to as
having data content; but, technically speaking, it has mixed content. This awkwardness
comes as a result of XML's roots in SGML and document-oriented applications. However,
in most data-oriented applications, you will never see elements whose contents are both
nested elements and text. It will typically be one or the other, because limiting the
content to be either elements or text makes processing XML much easier.

The syntax for elements with empty content is a start tag immediately followed by an
end tag, as in <emptyElement></emptyElement>. Because this is simply too much text,
the XML Specification also allows the shorthand form <emptyElement/>. For example,
because the last item in our purchase order does not have a nested description
element, it has empty content. Therefore, we could have written it as follows:

<item sku="008-PR" quantity="1000"/>

XML elements must be strictly nested. They cannot overlap, as shown here:

<!-- This is correct nesting -->

<P><I>Bold, italicized text in a paragraph</I></P>

<!--Bad syntax: overlapping I and B tags -->

<P><I>Bold, italicized text in a paragraph</I></P>

<!-- Bad syntax: overlapping P and B tags -->

<P><I>Bold, italicized text in a paragraph</I></P>

The notion of an XML document root implies that there can be only one element at the
very top level of a document. For example, the following would not be a valid XML
document:

<first>I am the first element</first>

<second>I am the second element</second>

It is easy to think of nested XML elements as a hierarchy. For example, Figure 2.1 shows
a hierarchical tree representation of the XML elements in the purchase order example
together with the data (text) associated with them.

Figure 2.1. Tree representation of XML elements in a purchase order.

Unfortunately, it is often difficult to identify XML elements precisely in the hierarchy. To
aid this task, the XML community has taken to using genealogy terms such as parent,
child, sibling, ancestor, and descendant. Figure 2.2 illustrates the terminology as it
applies to the order element of the purchase order:

• Its parent is po.

• Its ancestor is po.

• Its siblings are billTo and shipTo.

• Its children are three item elements.

• Its descendants are three item elements and two description elements.

Figure 2.2. Common terminology for XML element relationships.

Attributes

The start tags for XML elements can have zero or more attributes. An attribute is a
name-value pair. The syntax for an attribute is a name (which uses the same character
set as an XML element name) followed by an equal sign (=), followed by a quoted value.
The XML Specification requires the quoting of values; both single and double quotes can
be used, provided they are correctly matched. For example, the po element of our
purchase order has two attributes, id and submitted:

<po id="43871" submitted="2001-10-05"> ... </po>

A family of attributes whose names begin with xml: is reserved for use by the XML
Specification. Probably the best example is xml:lang, which is used to identify the
language of the text that is the content of the element with that attribute. For example,
we could have written the description elements in our purchase order example to
identify the description text as English:

<description xml:lang="en">Skateboard backpack; five pockets</description>

Note that applications processing XML are not required to recognize, process, and act
based on the values of these attributes. The key reason why the XML Specification
identified these attributes is that they address common use-cases; standardizing them
would aid interoperability between applications.

Without any meta-information about an XML document, attribute values are considered
to be pieces of text. In the previous example, the id might look like a number and the
submission date might look like a date, but to an XML processor they will both be just
strings. This obviously causes some headaches when processing data-oriented XML, and
it is one of the primary reasons most data-oriented XML documents have associated
meta-information described in XML Schema (introduced later in this chapter).

At the same time, XML applications are free to attach any semantics they choose to XML
markup. A common use-case is leveraging attributes to create a basic linking mechanism
within an XML document. The typical scenario involves a document having duplicate
information in multiple locations. The goal is to eliminate information duplication. The
process has three steps:

1. Put the information in the document only once.

2. Mark the information with a unique identifier.

3. Refer to this identifier every time you need to refer to the

information.

The purchase order example offers the opportunity to try this out (see Listing 2.3). As
shown in the example, in most cases, the bill-to and ship-to addresses will be the same.

Listing 2.3 Duplicate Address Information in a Purchase Order

<po id="43871" submitted="2001-10-05">

 <billTo>

 <company>The Skateboard Warehouse</company>

 <street>One Warehouse Park</street>

 <street>Building 17</street>

 <city>Boston</city>

 <state>MA</state>

 <postalCode>01775</postalCode>

 </billTo>

 <shipTo>

 <company>The Skateboard Warehouse</company>

 <street>One Warehouse Park</street>

 <street>Building 17</street>

 <city>Boston</city>

 <state>MA</state>

 <postalCode>01775</postalCode>

 </shipTo>

 ...

</po>

There is no reason to duplicate this information. Instead, we can use the markup shown
in Listing 2.4.

Listing 2.4 Using ID/IDREF Attributes to Eliminate Redundancy

<po id="43871" submitted="2001-10-05">

 <billTo id="addr-1">

 <company>The Skateboard Warehouse</company>

 <street>One Warehouse Park</street>

 <street>Building 17</street>

 <city>Boston</city>

 <state>MA</state>

 <postalCode>01775</postalCode>

 </billTo>

 <shipTo href="addr-1"/>

 ...

</po>

We followed the three steps described previously:

1. We put the address information in the document only once, under the

billTo element.

2. We uniquely identified the address as "addr-1" and stored that

information in the id attribute of the billTo element. We only need

to worry about the uniqueness of the identifier within the XML

document.

3. To refer to the address from the shipTo element we use another

attribute, href, whose value is the unique address identifier "addr-

1".

The attribute names id and href are not required but nevertheless are commonly used
by convention.

You might have noticed that now both the po and billTo elements have an attribute
called id. This is fine, because attributes are always associated with an element.

Elements Versus Attributes

Given that information can be stored in both element content and attribute
values, sooner or later the question of whether to use an element or an
attribute arises. This debate has erupted a few times in the XML community and
has claimed many casualties.

One common rule is to represent structured information using markup. For
example, you should use an address element with nested company, street,
city, state, postalCode, and country elements instead of including a whole
address as a chunk of text.

Even this simple rule is subject to interpretation and the choice of application
domain. For example, the choice between

<work number="617.219.2000">

and

<work>

 <area>617</area>

 <number>219.2000</number>

 <ext/>

</work>

really depends on whether your application needs to have phone number
information in granular form (for example, to perform searches based on the
area code only).

In other cases, only personal preference and stylistic choice apply. We might
ask if SkatesTown should have used

<po>

 <id>43871</id>

 <submitted>2001-10-05</submitted>

 ...

</po>

instead of

<po id="43871" submitted="2001-10-05">

 ...

</pol>

There really isn't a good way to answer this question without adding all sorts of
stretchy assumptions about extensibility needs, and so on.

In general, whenever humans design XML documents, you will see more
frequent use of attributes. This is true even in data-oriented applications. On
the other hand, when XML documents are automatically "designed" and
generated by applications, you might see a more prevalent use of elements. The
reasons are somewhat complex; Chapter 3 will address some of them.

Character Data

Attribute values as well as the text and whitespace between tags must follow precisely a
small but strict set of rules. Most XML developers tend to think of these as mapping to
the string data type in their programming language of choice. Unfortunately, things are
not that simple.

Encoding

First, and most important, all character data in an XML document must comply with the
document's encoding. Any characters outside the range of characters that can be

included in the document must be escaped and identified as character references .
The escape sequence used throughout XML uses the ampersand (&) as its start and the
semi-colon (;) as its end. The syntax for character references is an ampersand, followed
by a pound/hash sign (#), followed by either a decimal character code or lowercase x
followed by a hexadecimal character code, followed by the semicolon. Therefore, the 8-
bit character code 128 will be encoded in a UTF-8 XML document as €.

Unfortunately, for obscure document-oriented reasons, there is no way to include
character codes 0 through 7, 9, 11, 12, or 14 through 31 (typically known as non-

whitespace control characters in ASCII) in XML documents. Even a correctly escaped
character reference will not do. This situation can cause unexpected problems for
programmers whose string data types can sometimes end up with these values.

Whitespace

Another legacy from the document-centric world that XML came from is the rules for
whitespace handling. It is not important to completely define these rules here, but a
couple of them are worth mentioning:

• An XML processor is required to convert any carriage return (CR)

character, as well as the sequence of a carriage return and a line

feed (LF) character, it sees in the XML document into a single line

feed character.

• Whitespace can be treated as either significant or insignificant. The

set of rules for how applications are notified about either of these

has erupted more than one debate in the XML community.

Luckily, most data-oriented XML applications care little about whitespace.

Entities

In addition to character references, XML documents can define entities as well as

references to them (entity references). Entities are typically not important for data-
oriented applications and we will not discuss them in detail here. However, all XML
processors must recognize several pre-defined entities that map to characters that can
be confused with markup delimiters. These characters are less than (<); greater than

(>); ampersand (&); apostrophe, a.k.a. single quote ('); and quote, a.k.a. double quote
("). Table 2.1 shows the syntax for escaping these characters.

Table 2.1. Pre-defined XML Character Escape Sequences

Character Escape sequence
< <
> >
& &
' '
" "
For example, to include a chunk of XML as text, not markup, inside an XML document, all
special characters should be escaped:

<example-to-show>

 <?xml version="1.0"?>

 <rootElement>

 <childElement id="1">

 The man said: "Hello, there!".

 </childElement>

 </rootElement>

</example-to-show>

The result is not only reduced readability but also a significant increase in the size of the
document, because single characters are mapped to character escape sequences whose
length is at least four characters.

To address this problem, the XML Specification has a special multi-character escape

construct. The name of the construct, CDATA section , refers to the section holding
character data. The syntax is <![CDATA[, followed by any sequences of characters
allowed by the document encoding that does not include]]>, followed by]]>. Therefore,
you can write the previous example much more simply as follows:

<example-to-show><![CDATA[

 <?xml version="1.0"?>

 <rootElement>

 <childElement id="1">

 The man said: "Hello, there!".

 </childElement>

 </rootElement>

]]></example-to-show>

A Simpler Purchase Order

Based on the information in this section, we can re-write the purchase order document as
shown in Listing 2.4.

Listing 2.4 Improved Purchase Order Document

<?xml version="1.0" encoding="UTF-8"?>

<!-- Created by Bob Dister, approved by Mary Jones -->

<po id="43871" submitted="2001-10-05">

 <billTo id="addr-1">

 <company>The Skateboard Warehouse</company>

 <street>One Warehouse Park</street>

 <street>Building 17</street>

 <city>Boston</city>

 <state>MA</state>

 <postalCode>01775</postalCode>

 </billTo>

 <shipTo href="addr-1"/>

 <order>

 <item sku="318-BP" quantity="5">

 <description>Skateboard backpack; five pockets</description>

 </item>

 <item sku="947-TI" quantity="12">

 <description>Street-style titanium skateboard.</description>

 </item>

 <item sku="008-PR" quantity="1000"/>

 </order>

</po>

XML Namespaces

An important property of XML documents is that they can be composed to create new
documents. This is the most basic mechanism for reusing XML. Unfortunately, simple
composition creates the problems of recognition and collision.

To illustrate these problems, consider a scenario where SkatesTown wants to receive its
purchase orders via the XML messaging system of XCommerce Messaging, Inc. The
format of the messages is simple:

<message from="..." to="..." sent="...">

 <text>

 This is the text of the message.

 </text>

 <!-- A message can have attachments -->

 <attachment>

 <description>Brief description of the attachment.</description>

 <item>

 <!-- XML of attachment goes here -->

 </item>

 </attachment>

</message>

Listing 2.5 shows a complete message with a purchase order attachment.

Listing 2.5 Message with Purchase Order Attachment

<message from="bj@bjskates.com" to="orders@skatestown.com"

 sent="2001-10-05">

 <text>

 Hi, here is what I need this time. Thx, BJ.

 </text>

 <attachment>

 <description>The PO</description>

 <item>

 <po id="43871" submitted="2001-10-05">

 <billTo id="addr-1">

 <company>The Skateboard Warehouse</company>

 <street>One Warehouse Park</street>

 <street>Building 17</street>

 <city>Boston</city>

 <state>MA</state>

 <postalCode>01775</postalCode>

 </billTo>

 <shipTo href="addr-1"/>

 <order>

 <item sku="318-BP" quantity="5">

 <description>

 Skateboard backpack; five pockets

 </description>

 </item>

 <item sku="947-TI" quantity="12">

 <description>

 Street-style titanium skateboard.

 </description>

 </item>

 <item sku="008-PR" quantity="1000"/>

 </order>

 </po>

 </item>

 </attachment>

</message>

It is relatively easy to identify the two problems mentioned earlier in the composed
document:

• Recognition— How does an XML processing application distinguish between the
XML elements that describe the message and the XML elements that are part of
the purchase order?

• Collision— Does the element description refer to attachment descriptions in
messages or order item descriptions? Does the item element refer to an item of
attachment or an order item?

Very simple applications might not be bothered by these problems. After all, the
knowledge of what an element means can reside in the application logic. However, as
application complexity increases and the number of applications that need to work with
some particular composed document type grows, the need to clearly distinguish between
the XML elements becomes paramount. The XML Namespaces specification brings order
to the chaos.

Namespace Mechanism

The problem of collision in composed XML documents arises because of the likelihood of
elements with common names (description, item, and so on) to be reused in different
document types. This problem can be addressed by qualifying an XML element name with
an additional identifier that is much more likely to be unique within the composed
document. In other words:

Qualified name (a.k.a. QName) = Namespace identifier + Local

name

This approach is similar to how namespaces are used in languages such as C++ and C#
and to how package names are used in the Java programming language.

The problem of recognition in composed XML documents arises because no good
mechanism exists to identify all elements belonging to the same document type. Given
namespace qualifiers, the problem is addressed in a simple way—all elements that have
the same namespace identifier are considered together.

For identifiers, XML Namespaces uses Uniform Resource Identifiers (URIs). URIs are
described in RFC 2396. URIs are nothing fancy, but they are very useful. They can be

locators, names, or both. URI locators are known as Uniform Resource Locators
(URLs), a term familiar to all using the Web. URLs are strings such as
http://www.skatestown.com/services/POSubmission and
mailto:orders@skatestown.com.

Uniform Resource Names (URNs) are URIs that are globally unique and

persistent. Universally Unique Identifiers (UUIDs) are perfect for use as URNs. UUIDs
are 128-bit identifiers that are designed to be globally unique. Typically, they combine
network card (Ethernet) addresses with a high-precision timestamp and an increment
counter. An example URN using a UUID is urn:uuid:2FAC1234-31F8-11B4-A222-
08002B34C003. UUIDs are used as unique identifiers in Universal Description Discovery
and Integration (UDDI) as detailed in Chapter 7, "Discovering Web Services."

Namespace Syntax

Because URIs can be rather long and typically contain characters that are not allowed in
XML element names, the syntax of including namespaces in XML documents involves two
steps:

1. A namespace identifier is associated with a prefix, a name that

contains only legal XML element name characters with the exception of

the colon (:).

2. Qualified names are obtained as a combination of the prefix, the

colon character, and the local element name, as in

myPrefix:myElementName.

Listing 2.6 shows an example of the composed XML document using namespaces.

Listing 2.6 Message with Namespaces

<msg:message from="bj@bjskates.com" to="orders@skatestown.com"

 sent="2001-10-05" xmlns:msg="http://www.xcommercemsg.com/ns/message"

 xmlns:po="http://www.skatestown.com/ns/po">

 <msg:text>

 Hi, here is what I need this time. Thx, BJ.

 </msg:text>

 <msg:attachment>

 <msg:description>The PO</msg:description>

 <msg:item>

 <po:po id="43871" submitted="2001-10-05">

 <po:billTo id="addr-1">

 <po:company>The Skateboard Warehouse</po:company>

 <po:street>One Warehouse Park</po:street>

 <po:street>Building 17</po:street>

 <po:city>Boston</po:city>

 <po:state>MA</po:state>

 <po:postalCode>01775</po:postalCode>

 </po:billTo>

 <po:shipTo href="addr-1"/>

 <po:order>

 <po:item sku="318-BP" quantity="5">

 <po:description>

 Skateboard backpack; five pockets

 </po:description>

 </po:item>

 <po:item sku="947-TI" quantity="12">

 <po:description>

 Street-style titanium skateboard.

 </po:description>

 </po:item>

 <po:item sku="008-PR" quantity="1000"/>

 </po:order>

 </po:po>

 </msg:item>

 </msg:attachment>

</msg:message>

In this example, the elements prefixed with msg are associated with a namespace whose
identifier is http://www.xcommercemsg.com/ns/message, and those prefixed with po are
associated with a namespace whose identifier is http://www.skatestown.com/ns/po.
The prefixes are linked to the complete namespace identifiers by the attributes on the
top message element beginning with xmlns: (xmlns:msg and xmlns:po). XML processing
software will have access to both the prefixed name and to the mapping of prefixes to
complete namespace identifiers.

Adding a prefix to every single element in the document somewhat decreases readability
and increases document size. Therefore, XML Namespaces let you use a default
namespace in a document. Elements belonging to the default namespace do not require
prefixes. Listing 2.7 makes the msg namespace the default.

Listing 2.7 Using Default Namespaces

<message from="bj@bjskates.com" to="orders@skatestown.com"

 sent="2001-10-05" xmlns ="http://www.xcommercemsg.com/ns/message"

 xmlns:po="http://www.skatestown.com/ns/po">

 <text>

 Hi, here is what I need this time. Thx, BJ.

 </text>

 <attachment>

 <description>The PO</description>

 <item>

 <po:po id="43871" submitted="2001-10-05">

 ...

 </po:po>

 </item>

 </attachment>

</message>

Default namespaces work because the content of any namespace-prefixed element is
considered to belong to the namespace of its parent element unless, of course, the
element is explicitly defined to be in another namespace with its own xmlns-type
attribute. We can use this to further clean up the composed XML document by moving
the PO namespace declaration to the po element (see Listing 2.8).

Listing 2.8 Using Nested Namespace Defaulting

<message from="bj@bjskates.com" to="orders@skatestown.com"

 sent="2001-10-05" xmlns="http://www.xcommercemsg.com/ns/message">

 <text>

 Hi, here is what I need this time. Thx, BJ.

 </text>

 <attachment>

 <description>The PO</description>

 <item>

 <po:po id="43871" submitted="2001-10-05"

 xmlns:po="http://www.skatestown.com/ns/po">

 <billTo id="addr-1">

 ...

 </billTo>

 <shipTo href="addr-1"/>

 <order>

 ...

 </order>

 </po:po>

 </item>

 </attachment>

</message>

This example shows an efficient, readable syntax that completely eliminates the
recognition and collision problems. XML processors can identify the namespace of any
element in the document.

Namespace-Prefixed Attributes

Attributes can also have namespaces associated with them. Initially, it might be hard to
imagine why a capability like this would be useful for XML applications. The common use-
case scenario is the desire to extend the information provided by an XML element without
having to make changes directly to its document type.

A concrete example might involve SkatesTown wanting to have an indication of the
priority of certain items in purchase orders. High-priority items could be shipped
immediately, without waiting for any back-ordered items to become available and
complete the whole order. Item priorities are not something that SkatesTown's automatic
order processing software understands. They are just a hint for the fulfillment system on
how it should react in case of back-ordered items.

A simple implementation could involve extending the item element with an optional
priority attribute. However, this could cause a problem for the order processing
software that does not expect to see such an attribute. A better solution is to attach
priority information to items using a namespace-prefixed priority attribute. Because
the attribute will be in a namespace different from that of the item element, the order
processing software will simply ignore it.

The example in Listing 2.9 uses this mechanism to make the backpacks high priority and
the promotional materials low priority. By default, any items without a priority
attribute, such as the skateboards, are presumed to be of medium priority.

Listing 2.9 Adding Priority to Order Items

<message from="bj@bjskates.com" to="orders@skatestown.com"

 sent="2001-10-05" xmlns="http://www.xcommercemsg.com/ns/message">

 <text>

 Hi, here is what I need this time. Thx, BJ.

 </text>

 <attachment>

 <description>The PO</description>

 <item>

 <po:po id="43871" submitted="2001-10-05"

 xmlns:po="http://www.skatestown.com/ns/po">

 xmlns:p="http://www.skatestown.com/ns/priority">

 ...

 <po:order>

 <po:item sku="318-BP" quantity="5" p:priority="high">

 <po:description>

 Skateboard backpack; five pockets

 </po:description>

 </po:item>

 <po:item sku="947-TI" quantity="12">

 <po:description>

 Street-style titanium skateboard.

 </po:description>

 </po:item>

 <po:item sku="008-PR" quantity="1000" p:priority="low"/>

 </po:order>

 </po:po>

 </item>

 </attachment>

</message>

Dereferencing URIs

All the examples in this section have used namespace URIs that are URLs. A
natural question arises: What is the resource at that URL? The answer is that it
doesn't matter. XML Namespaces does not require that a resource be there. The
URI is used entirely for identification purposes.

This could cause problems for applications that see an unknown namespace in
an XML document and have no way to obtain more information about the
elements and attributes that belong to that namespace. Later in this chapter, in
the section on XML Schemas, you will see a mechanism that addresses this
issue.

Document Type Definitions

Document Type Definitions (DTDs) are an optional feature of XML documents. A
document associated with a DTD has a set of rules regarding what elements and

attributes can be part of the document and where can they appear. DTDs originate from
SGML, although XML's DTDs are greatly simplified. The presence of DTDs in XML

documents allows us to distinguish the concepts of well-formedness and validity

Well-Formedness and Validity

If a document subscribes to the rules of XML syntax (as described in the section "XML
Instances") it is considered well-formed. Well-formedness implies that XML processing
software can read the document without any basic errors associated with parsing such as
invalid character data, mismatched start and end tags, multiple attributes with the same
name, and so on. The XML Specification mandates that if any well-formedness constraint
is not met, the XML parser must immediately generate a non-recoverable error. This rigid
mandate makes it easy to separate the doings of the software focused on the logical

structure of an XML document (what the markup means) from the mundane details

of the physical structure of the document (the markup syntax).

However, well-formedness is not sufficient for most applications. Consider, for example,
the SkatesTown order processing application. When an XML document is submitted to it,
it cares not that it is well-formed XML but that it is indeed a purchase order in the
specific XML format it requires. The notion of format applies to the set of rules describing
SkatesTown's purchase orders: "The document must begin with a po element that has
two attributes (id and submitted) which will be followed by a billTo element…" and so
on. In other words, before a submitted document is processed, it must be identified as a
valid purchase order.

This is how the notion of validity comes in. DTDs offer an automated, declarative
mechanism for validating the contents of XML documents as they are parsed. Therefore,
XML applications can limit the amount of validation they need to perform. If the
SkatesTown purchase order processing application could not delegate validation to the
XML processor, it would have had to express all validation rules directly in code. Code is
procedural in nature and much harder to maintain than DTDs, which are declarative and
have a reasonably readable syntax.

To handle validity checks, DTDs must enable the following:

• Identification of the elements that can be in a document

• Identification of the order and relation between elements

• Identification of the attributes of every element and whether they

are optional or required

Last but not least, there needs to be a mechanism to associate DTDs with XML
documents.

Document Structure

DTDs are a mechanism to express the valid structure of a document. One way to
visualize the structure of a document is as a tree of possible element and attribute
combinations. For example, Figure 2.3 shows the document structure for purchase orders
as expressed by a popular XML processing tool. The image uses some syntax from
regular expressions to visualize the multiplicity of elements: question mark (?) stands for
optional (zero or one), asterisk (*) stands for any (zero or more) , and plus (+) stands
for at least some (one or more).

Figure 2.3. Document structure defined by the purchase order DTD.

Every element in the document structure tree has an associated model group. Model
groups identify the sequencing and multiplicity of element content. There are two types
of sequences: sequence and choice. Sequence defines the exact order in which child
elements must appear. In DTDs, the sequence operator in model groups is the comma
(,). The model group (A, B, C) defines a content model where the first child element will
be A, followed by B, followed by C. Choice defines the possible elements that can appear
at any given position in the content model. The choice operator in model groups is the
pipe character (|). The model group (A | B | C) defines a content model where there will
be only one child element that can be A or B or C. Sequences and choices can be nested,
as in ((A | (X, Y, Z)), B, (C | D)). This content model defines the following possible
combinations of child elements:

• A, B, C

• A, B, D

• X, Y, Z, B, C

• X, Y, Z, B, D

The multiplicity of elements is defined using the same regular expression syntax used in
document structure trees. The absence of a suffix stands for exactly one, question mark
(?) stands for optional (zero or one), asterisk (*) stands for any (zero or more), and plus

(+) stands for at least some (one or more). For example, the model group (A, B?, C*,
D+) allows for the following combinations of child elements (… stands for "potentially
many more of the same element"):

• A, D⋯

• A, B, D⋯

• A, B, C⋯, D⋯

• A, C⋯, D⋯

Are DTDs Enough?

Documents associated with DTDs are a huge step forward from basic XML markup. DTDs
allow for validating document structure (element content, allowed attributes, and their
value types), which significantly reduces the amount of custom validation code that
needs to be written in XML applications. However, DTDs have some notable deficiencies:

• Although they express structured information, they do not use XML

markup. DTD syntax is not as easy to process and manipulate as XML.

• DTDs were designed before namespaces came into existence and don't

have good facilities for dealing with them. This is a problem for

data-oriented applications that rely heavily on namespaces.

• DTDs do not offer sufficient reusability and extensibility

capabilities. No mechanism exists for associating more than one DTD

with an XML document. It is easy to reach the limit of what DTDs

allow for even basic applications.

• DTDs model groups are sometimes too restrictive, in particular with

respect to the order of child elements. No convenient DTD mechanism

exists for declaring, for example, that the content of some element

could include two child elements A and five child elements B,

regardless of the order in which they appear.

• DTDs have no notion of data types. This hurts data-oriented

applications where XML is eventually bound to some application-level

data structure in a programming language. For example, DTDs offer no

mechanism to enforce the simple rule that the values of the quantity

attribute of the item element should be positive integers.

• For these reasons and others, one of the main Web service protocols—

Simple Object Access Protocol (SOAP), which we'll discuss in Chapter

3—explicitly forbids the use of DTDs for defining document

structure.

For these reasons, this chapter will not discuss DTDs in any further detail. We won't even
introduce the basic DTD syntax here because data-oriented XML applications have moved
away from DTDs; these applications use another mechanism to validate XML documents
and to enforce document structure and datatype rules. To address the problems inherent

in DTDs, the XML community developed XML Schema, a much richer meta-language for
XML documents expressed natively in XML.

XML Schemas

XML provides a flexible set of structures that can represent many different types of
document- and data-oriented information. As part of XML 1.0, DTDs offered the basic
mechanism for defining a vocabulary specifying the structure of XML documents in an
attempt to establish a contract (how an XML document will be structured) between
multiple parties working with the same type of XML. DTDs came into existence because
people and applications wanted to be able to treat XML at a higher level than a collection
of elements and attributes. Well-designed DTDs attach semantics (meaning) to the XML
syntax in documents.

At the same time, DTDs fail to address the common needs of namespace integration,
modular vocabulary design, flexible content models, and tight integration with data-
oriented applications. This failure comes as a direct result of XML's SGML origins and the
predominantly document-centric nature of SGML applications. To address these issues,
the XML community, under the leadership of the W3C, took up the task of creating a
meta-language for describing both the structure of XML document and the mapping of
XML syntax to data types. After long deliberation, the effort produced the final version of
the XML Schema specification in March, 2001. In a nutshell, XML Schema can be
described as powerful but complex. It is powerful because it allows for much more
expressive and precise specification of the content of XML documents. It is complex for
the same reason. The specification is broken into three parts:

• XML Schema Part 0: Primer is a non-normative document that tries to make sense
of XML Schema by parceling complexity into small chunks and using many
examples.

• XML Schema Part 1: Structures focuses primarily on serving the needs of
document-oriented applications by laying out the rules for defining the structure
of XML documents.

• XML Schema Part 2: Datatypes builds upon the structures specification with
additional capabilities that address the needs of data-oriented applications such as
defining reusable datatypes, associating XML syntax with schema datatypes, and
mapping these to application-level data.

Part 0 is meant for general consumption, whereas Parts 1 and 2 are deeply technical and
require a skilled and determined reader. The rest of this section will attempt to provide
an introduction to XML Schema that is very much biased towards schema usage in data-
oriented applications. You should be able to gain sufficient understanding of structure
and datatype specifications to comprehend and use common Web service schemas. Still,
because XML Schema is fundamental to Web services, we highly recommend that you go
through the primer document of the XML Schema specification.

XML Schema Basics

Listing 2.10 shows the basic structure of the SkatesTown purchase order schema.

Listing 2.10 Basic XML Schema Structure

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns="http://www.skatestown.com/ns/po"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://www.skatestown.com/ns/po">

 <xsd:annotation>

 <xsd:documentation xml:lang="en">

 Purchase order schema for SkatesTown.

 </xsd:documentation>

 </xsd:annotation>

 ...

</xsd:schema>

The most striking difference between schemas (that is how the book will informally refer
to XML Schemas) and DTDs is that schemas are expressed in XML. This was done to
eliminate the need for XML parsers to know another syntax (that of DTDs) and also to
gain the power of expressive XML syntax. Of course, the XML Schema vocabulary is itself
defined using schema as an ultimate proof of the power of the schema meta-language.

The second very important feature of schema is that they are designed with namespaces
in mind from the ground up. In this particular schema document, all elements belonging
to the schema specification are prefixed with xsd:. The prefix's name is not important,
but xsd: (which comes from XML Schema Definition) is the convention. The prefix is
associated with the http://www.w3.org/2001/XMLSchema namespace that identifies the
W3C Recommendation of the XML Schema specification. The default namespace of the
document is set to be http://www.skatestown.com/ns/po, the namespace of the
SkatesTown purchase order. The schema document needs both namespaces to
distinguish between XML elements that belong to the schema specification versus XML
elements that belong to purchase orders. Finally, the targetNamespace attribute of the
schema element identifies the namespace of the documents that will conform to this
schema. This is set to the purchase order schema namespace.

The schema is enclosed by the xsd:schema element. The content of this element will be
other schema elements that are used for element, attribute, and datatype definitions.
The annotation and documentation elements can be used liberally to attach auxiliary
information to the schema.

Associating Schemas with Documents

Schemas do not have to be associated with XML documents. For example, applications
can be pre-configured to use a particular schema when processing documents.
Alternatively, there is a powerful mechanism for associating schemas with documents.
Listing 2.11 shows how to associate the previous schema with a purchase order
document.

Listing 2.11 Associating Schema with Documents

<?xml version="1.0" encoding="UTF-8"?>

<po:po xmlns:po="http://www.skatestown.com/ns/po"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.skatestown.com/ns/po

 http://www.skatestown.com/schema/po.xsd"

 id="43871" submitted="2001-10-05">

 ...

</po:po>

First, because the purchase order schema identified a target namespace, purchase order
documents are required to use namespaces to identify their elements. The purchase
order document uses the po prefix for this task.

Next, the document uses another namespace—http://www.w3.org/2001/XMLSchema-
instance—that has a special meaning. It defines a number of attributes that are part of
the schema specification. These attributes can be applied to elements in instance
documents to provide additional information to a schema-aware XML processor. By
convention, most documents use the namespace prefix xsi: (for XML Schema:
Instance).

The binding between the purchase order document and its schema is established via the
xsi:schemaLocation attribute. This attribute contains a pair of values. The first value is
the namespace identifier whose schema's location is identified by the second value.
Typically, the second value will be a URL, but specialized applications can use other types
of values, such as an identifier in a schema repository or a well-known schema name. If
the document used more than one namespace, the xsi:schemaLocation attribute would
contain multiple pairs of values.

Simple Types

One of the biggest problems of DTDs is that they have no notion of datatypes, even for
simple values such as the character data content of an element or an attribute value.
Because of this, prior to the arrival of XML schema, XML applications included a large
amount of validation code. For example, even a simple purchase order requires the
following validation rules that are outside the scope of DTDs:

• Attribute id of the po element must be a positive integer.

• Attribute submitted of the po element must be a date in the format

yyyy-mm-dd.

• Attribute quantity of the item element must be a positive integer.

• Attribute sku (stock keeping unit) of the item element must be a

string with the format three digits followed by a dash followed by

two uppercase letters.

XML schemas address these issues in two ways. First, the specification comes with a
large set of pre-defined basic datatypes such as string, positive integer, and date. These
can be used directly. For custom data types, such as the values of the sku attribute, the
specification defines a powerful mechanism for defining new types. Table 2.2 shows some
of the commonly used pre-defined schema types with some examples of their use.

Table 2.2. Pre-defined XML Schema Simple Types

Simple Type Examples (delimited by commas) Notes
string Confirm this is electric
base64Binary GpM7
hexBinary 0FB7
integer -126789, -1, 0, 1, 126789
positiveInteger 1, 126789
negativeInteger -126789, -1
nonNegativeInteger 0, 1, 126789

nonPositiveInteger -126789, -1, 0
decimal -1.23, 0, 123.4, 1000.00
boolean true, false
 1, 0
time 13:20:00.000,
 13:20:00.000-05:00
dateTime 1999-05-31T13:20:00.000-05:00 May 31st 1999 at

1.20pm Eastern
Standard Time, which
is 5 hours behind
Coordinated Universal
Time

duration P1Y2M3DT10H30M12.3S 1 year, 2 months, 3
days, 10 hours, 30
minutes, and12.3
seconds

date 1999-05-31
Name shipTo XML 1.0 Name type
QName po:USAddress XML Namespace

QName
anyURI http://www.example.com/,

http://www.example.com/doc.html#ID5

ID XML 1.0 ID attribute
type

IDREF XML 1.0 IDREF
attribute type

The information in this table comes from the XML Schema Primer.
A note on ID/IDREF attributes: An XML processor is required to generate an error if a
document contains two ID attributes with the same value or an IDREF with a value that
has no matching ID value. This makes ID/IDREF attributes perfect for handling attributes
such as the id/href ones in SkatesTown's purchase order address element.

The process for creating new simple datatypes is straightforward. The new type must be
derived from a base type: a pre-defined schema type or another already defined simple
type. The base type is restricted along a number of facets to obtain the new type. The
facets identify various characteristics of the types such as:

• length, minLength and maxLength— the exact, minimum and maximum
character length of the value

• pattern— a regular expression pattern for the value

• enumeration— a list of all possible values

• whiteSpace— the rules for handling whitespace in the value

• minExclusive, minInclusive, maxInclusive and maxExclusive— the range of
numeric values that are allowed

• totalDigits— the number of decimal digits in numeric values

• fractionDigits— the number of decimal digits after the decimal point

Of course, not all facets apply to all types. For example, the notion of fraction digits
makes no sense for a date or a name. Tables 2.3 and 2.4 cross-link the pre-defined types
and the facets that are applicable for them.

Table 2.3. XML Schema Facets for Simple Types

Simple Types Facets
 length minLength maxLength pattern enumeration whiteSpace
string

base64Binary

hexBinary

integer
positiveInteger
negativeInteger
nonNegativeInteger
nonPositiveInteger
decimal
boolean
time
dateTime
duration
date
Name

QName

anyURI

ID

IDREF

The information in this table comes from the XML Schema Primer.
The facets listed in Table 2.4 apply only to simple types that have an implicit order.

Table 2.4. XML Schema Facets for Ordered Simple Types

Simple Types Facets
 Max

Inclusive
Max
Exclusive

Min
Inclusive

Min
Exclusive

Total
Digits

Fraction
Digits

integer

positiveInteger

negativeInteger

nonNegativeInteger

nonPositiveInteger

decimal

time

dateTime

duration

date

The information in this table comes from the XML Schema Primer.
The syntax for creating new types is simple. For example, the schema snippet in Listing
2.12 defines a simple type for purchase order SKUs. The name of the type is skuType. It
is based on a string and it restricts it to have the pattern of three digits followed by dash
followed by two uppercase letters.

Listing 2.12 Using Patterns to Define String Format

<xsd:simpleType name="skuType">

 <xsd:restriction base="xsd:string">

 <xsd:pattern value="\d{ 3} -[A-Z]{ 2} "/>

 </xsd:restriction>

</xsd:simpleType>

Listing 2.13 shows how to force purchase order ids to be greater than 10,000 but less
than 100,000 and define an enumeration of all U.S. states.

Listing 2.13 Using Ranges and Enumerations

<xsd:simpleType name="poIdType">

 <xsd:restriction base="xsd:integer">

 <xsd:minExclusive value="10000"/>

 <xsd:maxExclusive value="100000"/>

 </xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="stateType">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="AK"/>

 <xsd:enumeration value="AL"/>

 <xsd:enumeration value="AR"/>

 ...

 </xsd:restriction>

</xsd:simpleType>

Complex types

In XML Schema, simple types define the valid choices for character-based content such
as attribute values and elements with character content. Complex types, on the other
hand, define complex content models, such as those of elements that can have attributes
and nested children. Complex type definitions do address both the sequencing and
multiplicity of child elements as well as the names of associated attributes and whether
they are required or optional. The main difference with respect to DTDs is that the
schema syntax is much more expressive and the schema capabilities are much more
powerful.

The syntax for defining complex types is straightforward:

<xsd:complexType name="typeName">

 <xsd:someTopLevelModelGroup>

 <!-- Sequencing and multiplicity constraints for

 child elements defined using xsd:element -->

 </xsd:someTopLevelModelGroup>

 <!-- Attribute declarations using xsd:attribute -->

</xsd:complexType>

The element xsd:complexType identifies the type definition. There are many different
ways to specify the model group of the complex type. The most commonly used top-level
model group elements you will see are:

• xsd:sequence— A sequence of elements

• xsd:choice— Allows one out of a number of elements

• xsd:all— Allows a certain set of elements to appear once or not at all but in any
order

• xsd:group— References a model group that is defined someplace else

These could be further nested to create more complex model groups. The xsd:group
model group element is covered later in this chapter in the section "Content Model
Groups."

Inside the model group specification, child elements are defined using xsd:element. The
model group specification is followed by any number of attribute definitions using
xsd:attribute.

For example, one possible way to define the content model of the purchase order address
used in the billTo and shipTo elements is shown in Listing 2.14. The name of the
complex type is addressType. Using xsd:sequence and xsd:element, it defines a
sequence of the elements name, company, street, city, state, postalCode, and
country.

Listing 2.14 Schema Fragment for the Address Complex Type

<xsd:complexType name="addressType">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string" minOccurs="0"/>

 <xsd:element name="company" type="xsd:string" minOccurs="0"/>

 <xsd:element name="street" type="xsd:string"

 maxOccurs="unbounded"/>

 <xsd:element name="city" type="xsd:string"/>

 <xsd:element name="state" type="xsd:string" minOccurs="0"/>

 <xsd:element name="postalCode" type="xsd:string"

 minOccurs="0"/>

 <xsd:element name="country" type="xsd:string" minOccurs="0"/>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 <xsd:attribute name="href" type="xsd:IDREF"/>

</xsd:complexType>

The multiplicities of these elements' occurrences are defined using the minOccurs and
maxOccurs attributes of xsd:element. The value of zero for minOccurs renders an
element's presence optional ("?" in the document structure diagrams). The default value
for minOccurs is 1. The special value for maxOccurs of "unbounded" is used for the street
element to indicate that there must be at least one present ("+" in the document
structure diagrams).

Every element is associated with a type using the type attribute xsd:element. In this
example, all elements have simple character content of type string, identified by the

xsd:string type. It might seem unusual to you that the namespace prefix is used inside
an attribute value. It is true, the XML Namespaces specification does not explicitly
address this use of namespace prefixes. However, the idea is simple. A schema can
define any number of types. Some of them are built into the specification, and others are
user-defined. The only way to know for sure which type is being referred to is to
associate the type name with the namespace from which it is coming. What better way to
do this than to prefix all references to the type with a namespace prefix?

After the model group definition come the attribute definitions. In this example,
xsd:attribute is used to define attributes id and href of types ID and IDREF,
respectively. Both attributes are optional by default.

Now, consider a slightly more complex example of a complex type definition—the po
element's type (see Listing 2.15).

Listing 2.15 Schema Fragment for the Purchase Order Complex Type

<xsd:complexType name="poType">

 <xsd:sequence>

 <xsd:element name="billTo" type="addressType"/>

 <xsd:element name="shipTo" type="addressType"/>

 <xsd:element name="order">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="item" type="itemType"

 maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" use="required"

 type="xsd:positiveInteger"/>

 <xsd:attribute name="submitted" use="required"

 type="xsd:date"/>

</xsd:complexType>

The poType introduces three interesting aspects of schema:

• It shows how easy it is to achieve basic reusability of types. Both

the billTo and shipTo elements refer to the addressType defined

previously. Note that because this is a user defined complex type, a

namespace prefix is not necessary in this case.

• It shows that the association between elements and their types can be

implicit. The order element's type is defined inline as a sequence of

one or more item elements of type itemType. This is convenient

because it keeps the schema more readable and it prevents the need to

define a global type that is used in only one place.

• It shows that the presence of attributes can be required through the

use="required" attribute-value pair of the xsd:attribute element. To

give default and fixed values to attributes, you can also use the

aptly named default and fixed attributes of xsd:attribute.

The Purchase Order Schema

With the information gathered so far, we can completely define the SkatesTown purchase
order schema. The document structure tree in Figure 2.4 looks very similar to that from
the section on DTDs. The main difference is the presence of more detailed datatype
information. Listing 2.16 shows the complete schema.

Figure 2.4. Document structure defined by purchase order schema.

Listing 2.16 The Complete SkatesTown Purchase Order Schema (po.xsd)

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns="http://www.skatestown.com/ns/po"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://www.skatestown.com/ns/po">

 <xsd:annotation>

 <xsd:documentation xml:lang="en">

 Purchase order schema for SkatesTown.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:element name="po" type="poType"/>

 <xsd:complexType name="poType">

 <xsd:sequence>

 <xsd:element name="billTo" type="addressType"/>

 <xsd:element name="shipTo" type="addressType"/>

 <xsd:element name="order">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="item" type="itemType"

 maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" use="required"

 type="xsd:positiveInteger"/>

 <xsd:attribute name="submitted" use="required"

 type="xsd:date"/>

 </xsd:complexType>

 <xsd:complexType name="addressType">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string" minOccurs="0"/>

 <xsd:element name="company" type="xsd:string" minOccurs="0"/>

 <xsd:element name="street" type="xsd:string"

 maxOccurs="unbounded"/>

 <xsd:element name="city" type="xsd:string"/>

 <xsd:element name="state" type="xsd:string" minOccurs="0"/>

 <xsd:element name="postalCode" type="xsd:string"

 minOccurs="0"/>

 <xsd:element name="country" type="xsd:string" minOccurs="0"/>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 <xsd:attribute name="href" type="xsd:IDREF"/>

 </xsd:complexType>

 <xsd:complexType name="itemType">

 <xsd:sequence>

 <xsd:element name="description" type="xsd:string"

 minOccurs="0"/>

 </xsd:sequence>

 <xsd:attribute name="sku" use="required">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:pattern value="\d{ 3} -[A-Z]{ 2} "/>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:attribute>

 <xsd:attribute name="quantity" use="required"

 type="xsd:positiveInteger"/>

 </xsd:complexType>

</xsd:schema>

Everything should look familiar except perhaps for the standalone definition of the po
element right after the schema annotation. This brings us to the important topic of local
versus global elements and attributes. Any element or attribute defined inside a complex
type definition is considered local to that definition. Conversely, any element or attribute
defined at the top level (as a child of xsd:schema) is considered global.

All global elements can be document roots. That is the main reason why most schemas
define a single global element. In the case of the SkatesTown purchase order, the po
element must be the root of the purchase order document and is hence defined as a
global element.

The notion of global attributes might not make much sense at first, but they are very
convenient. You can use global attributes (in namespace-prefixed form) on any element
in a document that allows them. The item priority attribute discussed in the section "XML
Namespaces" can be defined with the short schema in Listing 2.17.

Listing 2.17 Defining the Priority Global Attribute Using Schema

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns="http://www.skatestown.com/ns/priority"

 targetNamespace="http://www.skatestown.com/ns/priority"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:attribute name="priority" use="optional" default="medium">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="low"/>

 <xsd:enumeration value="medium"/>

 <xsd:enumeration value="high"/>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:attribute>

</xsd:schema>

Basic Schema Reusability

The concept of reusability is important for XML Schema. Reusability deals with the
question of how to best leverage any already created assets in new projects. In schema,
the assets include element and attribute definitions, content model definitions, simple
and complex datatypes, and whole schemas. We can roughly break down reusability
mechanisms into two kinds: basic and advanced. The basic reusability mechanisms
address the problems of using existing assets in multiple places. Advanced reusability
mechanisms address the problems of modifying existing assets to serve needs that are
perhaps different from what they were originally designed for.

This section will address the following basic reusability mechanisms:

• Element references

• Content model groups

• Attribute groups

• Schema includes

• Schema imports

Element References

In XML Schema, you can define elements using a name and a type. Alternatively,
element declarations can refer to pre-existing elements using the ref attribute of
xsd:element as follows, where a globally defined comment element is being reused for
both a person and a task complex type:

<xsd:element name="comment" type="xsd:string"/>

<xsd:complexType name="personType">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element ref="comment" minOccurs="0"/>

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name="taskType">

 <xsd:sequence>

 <xsd:element name="toDo" type="xsd:string"/>

 <xsd:element ref="comment" minOccurs="0"/>

 </xsd:sequence>

</xsd:complexType>

Content Model Groups

Element references are perfect for reusing the definition of a single element. However, if
your goal is to reuse whole or part of a content model, then element groups are the way
to go. Element groups are defined using xsd:group and are referred to using the same
mechanism used for elements. The following schema fragment illustrates the concept. It
extends the previous example so that instead of a single comment element, public and
private comment elements are reused as a group:

<xsd:group name="comments">

 <xsd:sequence>

 <xsd:element name="publicComment" type="xsd:string"

 minOccurs="0"/>

 <xsd:element name="privateComment" type="xsd:string"

 minOccurs="0"/>

 </xsd:sequence>

</xsd:group>

<xsd:complexType name="personType">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string"/>

 <xsd:group ref="comments"/>

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name="taskType">

 <xsd:sequence>

 <xsd:element name="toDo" type="xsd:string"/>

 <xsd:group ref="comments"/>

 </xsd:sequence>

</xsd:complexType>

Attribute Groups

The same reusability mechanism can be applied to commonly used attribute groups. The
following example defines the ID/IDREF combination of an id and href attribute as a
referenceable attribute group. It is then applied to both the person and the task type:

<xsd:attributeGroup name="referenceable">

 <xsd:attribute name="id" type="xsd:ID"/>

 <xsd:attribute name="href" type="xsd:IDREF"/>

</xsd:attributeGroup>

<xsd:complexType name="personType">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string"/>

 </xsd:sequence>

 <xsd:attributeGroup ref="referenceable"/>

</xsd:complexType>

<xsd:complexType name="taskType">

 <xsd:sequence>

 <xsd:element name="toDo" type="xsd:string"/>

 </xsd:sequence>

 <xsd:attributeGroup ref="referenceable"/>

</xsd:complexType>

Schema Includes and Imports

Element references and groups as well as attribute groups provide reusability within the
same schema document. However, when you're dealing with very complex schema or
trying to achieve maximum reusability, you'll often need to split a schema into several
documents. The schema include and import mechanisms allow these documents to
reference one another.

Consider the scenario where SkatesTown is intent on reusing the schema definition for its
address type for a mailing list schema. SkatesTown must solve three small problems:

• Put the address type definition in its own schema document

• Reference this schema document from the purchase order schema

document

• Reference this schema document from the mailing list schema document

Pulling the address definition into its own schema is as easy as a simple cut-and-paste
operation (see Listing 2.18). Even though this is a different document than the main
purchase order schema, they both define portions of the SkatesTown purchase order
namespace. The binding between schema documents and the namespaces they define is
not one-to-one. It is explicitly identified by the targetNamespace attribute of the
xsd:schema element.

Listing 2.18 Standalone Address Type Schema

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns="http://www.skatestown.com/ns/po"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://www.skatestown.com/ns/po">

 <xsd:annotation>

 <xsd:documentation xml:lang="en">

 Address type schema for SkatesTown.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:complexType name="addressType">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string" minOccurs="0"/>

 <xsd:element name="company" type="xsd:string" minOccurs="0"/>

 <xsd:element name="street" type="xsd:string"

 maxOccurs="unbounded"/>

 <xsd:element name="city" type="xsd:string"/>

 <xsd:element name="state" type="xsd:string" minOccurs="0"/>

 <xsd:element name="postalCode" type="xsd:string"

 minOccurs="0"/>

 <xsd:element name="country" type="xsd:string" minOccurs="0"/>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 <xsd:attribute name="href" type="xsd:IDREF"/>

 </xsd:complexType>

</xsd:schema>

Referring to this schema is also very easy. Instead of having the address type definition
inline, the purchase order schema needs to include the address schema using the
xsd:include element. During the processing of the purchase order schema, the address
schema will be retrieved and the address type definition will become available (see
Listing 2.19).

Listing 2.19 Referring to the Address Type Schema

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns="http://www.skatestown.com/ns/po"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://www.skatestown.com/ns/po">

 <xsd:include

 schemaLocation="http://www.skatestown.com/schema/address.xsd"/>

 ...

</xsd:schema>

The mailing list schema is very simple. It defines a single mailingList element that
contains any number of contact elements whose type is address. Being an altogether
different schema than purchase orders, the mailing list schema uses a new namespace,
http://www.skatestown.com/ns/mailingList. Listing 2.20 shows one possible way to
define this schema.

Listing 2.20 Mailing List Schema

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns="http://www.skatestown.com/ns/po"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://www.skatestown.com/ns/mailingList">

 <xsd:include

 schemaLocation="http://www.skatestown.com/schema/address.xsd"/>

 <xsd:annotation>

 <xsd:documentation xml:lang="en">

 Mailing list schema for SkatesTown.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:element name="mailingList">

 <xsd:sequence>

 <xsd:element name="contact" type="addressType"

 minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:element>

</xsd:schema>

This example uses xsd:include to bring in the schema fragment defining the address
type. There is no problem with that approach. However, there might be a problem with
authoring mailing list documents. The root of the problem is that the mailingList and
contact elements are defined in one namespace
(http://www.skatestown.com/ns/mailingList), whereas the elements belonging to the
address type—name, company, street, city, state, postalCode, country—are defined
in another (http://www.skatestown.com/ns/po). Therefore, the mailing list document
must reference both namespaces (see Listing 2.21).

Listing 2.21 Mailing List that References Two Namespaces

<?xml version="1.0" encoding="UTF-8"?>

<list:mailingList xmlns:list="http://www.skatestown.com/ns/mailingList"

 xmlns:addr="http://www.skatestown.com/ns/po"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.skatestown.com/ns/mailingList

 http://www.skatestown.com/schema/mailingList.xsd

 http://www.skatestown.com/ns/po

 http://www.skatestown.com/schema/address.xsd">

 <contact>

 <addr:company>The Skateboard Warehouse</addr:company>

 <addr:street>One Warehouse Park</addr:street>

 <addr:street>Building 17</addr:street>

 <addr:city>Boston</addr:city>

 <addr:state>MA</addr:state>

 <addr:postalCode>01775</addr:postalCode>

 </contact>

</list:mailingList>

Ideally, when reusing the address type definition in the mailing list schema, we want to
hide the fact that it originates from a different namespace and treat it as a true part of
the mailing list schema. Therefore, the xsd:include mechanism is not the right one to
use, because it makes no namespace changes. The reuse mechanism that will allow the
merging of schema fragments from multiple namespaces into a single schema is the
import mechanism. Listing 2.22 shows the new mailing list schema.

Listing 2.22 Importing Rather Than Including the Address Type Schema

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns="http://www.skatestown.com/ns/po"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:addr="http://www.skatestown.com/ns/po"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.skatestown.com/ns/po

 http://www.skatestown.com/schema/address.xsd"

 targetNamespace="http://www.skatestown.com/ns/mailingList">

 <xsd:import namespace="http://www.skatestown.com/ns/po"/>

 <xsd:annotation>

 <xsd:documentation xml:lang="en">

 Mailing list schema for SkatesTown.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:element name="mailingList">

 <xsd:sequence>

 <xsd:element name="contact" type="addr:addressType"

 minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:element>

</xsd:schema>

Although the mechanism is simple to describe, it takes several steps to execute:

1. We declare the namespace of the address type definition and assign it

the prefix addr.

2. We use the standard xsi:schemaLocation mechanism to point to the

location of the address schema.

3. We use xsd:import instead of xsd:include. We import just the

namespace; we already know the schema location.

4. When referring to the address type, we use its fully qualified name

addr:addressType.

The net result is that the mailing list instance document has been simplified (see Listing
2.23).

Listing 2.23 Simplified Instance Document that Requires a Single Namespace

<?xml version="1.0" encoding="UTF-8"?>

<list:mailingList xmlns:list="http://www.skatestown.com/ns/mailingList"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.skatestown.com/ns/mailingList

 http://www.skatestown.com/schema/mailingList.xsd">

 <contact>

 <company>The Skateboard Warehouse</company>

 <street>One Warehouse Park</street>

 <street>Building 17</street>

 <city>Boston</city>

 <state>MA</state>

 <postalCode>01775</postalCode>

 </contact>

</list:mailingList>

Advanced Schema Reusability

The previous section demonstrated how you can reuse types and elements "as is" from
the same or a different namespace. This capability can go a long way in some cases, but
many real-world scenarios require more sophisticated reuse capabilities. Consider, for
example, the format of the invoice that SkatesTown will send to The Skateboard
Warehouse based on its purchase order (see Listing 2.24).

Listing 2.24 SkatesTown Invoice Document

<?xml version="1.0" encoding="UTF-8"?>

<invoice:invoice xmlns:invoice="http://www.skatestown.com/ns/invoice"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.skatestown.com/ns/invoice

 http://www.skatestown.com/schema/invoice.xsd"

 id="43871" submitted="2001-10-05">

 <billTo id="addr-1">

 <company>The Skateboard Warehouse</company>

 <street>One Warehouse Park</street>

 <street>Building 17</street>

 <city>Boston</city>

 <state>MA</state>

 <postalCode>01775</postalCode>

 </billTo>

 <shipTo href="addr-1"/>

 <order>

 <item sku="318-BP" quantity="5" unitPrice="49.95">

 <description>Skateboard backpack; five pockets</description>

 </item>

 <item sku="947-TI" quantity="12" unitPrice="129.00">

 <description>Street-style titanium skateboard.</description>

 </item>

 <item sku="008-PR" quantity="1000" unitPrice="0.00">

 <description>Promotional: SkatesTown stickers</description>

 </item>

 </order>

 <tax>89.89</tax>

 <shippingAndHandling>200</shippingAndHandling>

 <totalCost>2087.64</totalCost>

</invoice:invoice>

The invoice document has many of the features of a purchase order document, with a
few important changes:

• Invoices use a different namespace,

http://www.skatestown.com/ns/invoice.

• The root element of the document is invoice and not po.

• The invoice element has three additional children: tax,

shippingAndHandling, and totalCost.

• The item element has an additional attribute, unitPrice.

How can we leverage the work done to define the purchase order schema in defining the
invoice schema? This section will introduce the advanced schema reusability mechanisms
that make this possible.

Design Principles

Imagine that purchase orders, addresses, and items were represented as classes in an
object-oriented programming language such as Java. We could create an invoice object
by sub-classing item to invoiceItem (which adds unitPrice) and po to invoice (which
adds tax, shippingAndHandling, and totalCost). The benefit of this approach is that
any changes to related classes such as address will be automatically picked up by both
purchase orders and invoices. Further, any changes in base types such as item will be
automatically picked up by derived types such as invoiceItem.

The following pseudo-code shows how this approach might work:

class Address { ... }

class Item

{

 String sku;

 int quantity;

}

class InvoiceItem extends Item

{

 float unitPrice;

}

class PO

{

 int id;

 Date submitted;

 Address billTo;

 Address shipTo;

 Item order[];

}

class Invoice extends PO

{

 float tax;

 float shippingAndHandling;

 float totalCost;

}

Everything looks good except for one important detail. You might have noticed that
Invoice probably shouldn't subclass PO. The reason is that the order array inside an
invoice object must hold InvoiceItems and not just Item. The subclassing relationship
will force you to work with Items instead of InvoiceItems. Doing so will weaken static
type-checking and will require constant downcasting, which is generally a bad thing in
well-designed object-oriented systems. A better design for the Invoice class,
unfortunately, requires some duplication of PO's data members:

class Invoice

{

 int id;

 Date submitted;

 Address billTo;

 Address shipTo;

 InvoiceItem order[];

 float tax;

 float shippingAndHandling;

 float totalCost;

}

Note that subclassing Item to get InvoiceItem is a good decision because InvoiceItem
is a pure extension of Item. It adds new data members; it does not in any way require
modifications to Item's data members, nor does it change the way they are used.

Extensions and Restrictions

The analysis from object-oriented systems can be directly applied to the design of
SkatesTown's invoice schema. The schema will define the invoice element in terms of
pre-existing types such as addressType, and the invoice's item type will reuse the
already defined purchase order item type via extension (see Listing 2.25).

Listing 2.25 SkatesTown Invoice Schema

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns="http://www.skatestown.com/ns/invoice"

 targetNamespace="http://www.skatestown.com/ns/invoice"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:po="http://www.skatestown.com/ns/po">

 <xsd:import namespace="http://www.skatestown.com/ns/po"

 schemaLocation="http://www.skatestown.cm/schema/po.xsd"/>

 <xsd:annotation>

 <xsd:documentation xml:lang="en">

 Invoice schema for SkatesTown.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:element name="invoice" type="invoiceType"/>

 <xsd:complexType name="invoiceType">

 <xsd:sequence>

 <xsd:element name="billTo" type="po:addressType"/>

 <xsd:element name="shipTo" type="po:addressType"/>

 <xsd:element name="order">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="item" type="itemType"

 maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="tax" type="priceType"/>

 <xsd:element name="shippingAndHandling" type="priceType"/>

 <xsd:element name="totalCost" type="priceType"/>

 </xsd:sequence>

 <xsd:attribute name="id" use="required"

 type="xsd:positiveInteger"/>

 <xsd:attribute name="submitted" use="required" type="xsd:date"/>

 </xsd:complexType>

 <xsd:complexType name="itemType">

 <xsd:complexContent>

 <xsd:extension base="po:itemType">

 <xsd:attribute name="unitPrice" use="required"

 type="priceType"/>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <xsd:simpleType name="priceType">

 <xsd:restriction base="xsd:decimal">

 <xsd:minInclusive value="0"/>

 </xsd:restriction>

 </xsd:simpleType>

</xsd:schema>

By now the schema mechanics should be familiar. The beginning of the schema declares
the purchase order and invoice namespaces. The purchase order schema has to be
imported because it does not reside in the same namespace as the invoice schema.

The invoiceType schema address type is defined in terms of po:addressType, but the
order element's content is of type itemType and not po:itemType. That's because the
invoice's itemType needs to extend po:itemType and add the unitPrice attribute. This
happens at the next complex type definition. In general, the schema extension syntax,
although somewhat verbose, is easy to use:

<xsd:complexType name="...">

 <xsd:complexContent>

 <xsd:extension base="...">

 <!-- Optional extension content model -->

 <!-- Optional extension attributes -->

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

The content model of extended types contains all the child elements of the base type plus
any additional elements added by the extension. Any attributes in the extension are
added to the attribute set of the base type.

Last but not least, the invoice schema defines a simple price type as a non-negative
decimal number. The definition happens via restriction of the lower bound of the decimal
type using the same mechanism introduced in the section on simple types.

The restriction mechanism in schema applies not only to simple types but also to
complex types. The syntax is similar to that of extension:

<xsd:complexType name="...">

 <xsd:complexContent>

 <xsd:restriction base="...">

 <!-- Content model and attributes -->

 </xsd:restriction>

 </xsd:complexContent>

</xsd:complexType>

The concept of restriction has a very precise meaning in XML Schema. The declarations
of the type derived by restriction are very close to those of the base type but more
limited. There are several possible types of restrictions:

• Multiplicity restrictions

• Deletion of optional element

• Tighter limits on occurrence constraints

• Providing default values

• Providing types where there were none, or narrowing types

For example, you can extend the address type by restriction to create a corporate
address that does not include a name:

<xsd:complexType name="corporateAddressType">

 <xsd:complexContent>

 <xsd:restriction base="addressType">

 <xsd:sequence>

 <!-- Add maxOccurs="0" to delete optional name element -->

 <xsd:element name="name" type="xsd:string"

 minOccurs="0" maxOccurs="0"/>

 <!-- The rest is the same as in addressType -->

 <xsd:element name="company" type="xsd:string"

 minOccurs="0"/>

 <xsd:element name="street" type="xsd:string"

 maxOccurs="unbounded"/>

 <xsd:element name="city" type="xsd:string"/>

 <xsd:element name="state" type="xsd:string"

 minOccurs="0"/>

 <xsd:element name="postalCode" type="xsd:string"

 minOccurs="0"/>

 <xsd:element name="country" type="xsd:string"

 minOccurs="0"/>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 <xsd:attribute name="href" type="xsd:IDREF"/>

 </xsd:restriction>

 </xsd:complexContent>

</xsd:complexType>

The Importance of xsi:type

The nature of restriction is such that an application that is prepared to deal with the base
type can certainly accept the derived type. In other words, you can use a corporate
address type directly inside the billTo and shipTo elements of purchase orders and
invoices without a problem. There are times, however, when it might be convenient to
identify the actual schema type that is used in an instance document. XML Schema
allows this through the use of the global xsi:type attribute. This attribute can be applied
to any element to signal its actual schema type, as Listing 2.26 shows.

Listing 2.26 Using xsi:type

<?xml version="1.0" encoding="UTF-8"?>

<po:po xmlns:po="http://www.skatestown.com/ns/po"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.skatestown.com/ns/po

 http://www.skatestown.com/schema/po.xsd"

 id="43871" submitted="2001-10-05">

 <billTo xsi:type="po:corporateAddressType">

 <company>The Skateboard Warehouse</company>

 <street>One Warehouse Park</street>

 <street>Building 17</street>

 <city>Boston</city>

 <state>MA</state>

 <postalCode>01775</postalCode>

 </billTo>

 ...

</po:po>

Although derivation by restriction does not require the use of xsi:type, derivation by
extension often does. The reason is that an application prepared for the base schema
type is unlikely to be able to process the derived type (it adds information) without a
hint. But, why would such a scenario ever occur? Why would an instance document
contain data from a type derived by extension in a place where a base type is expected
by the schema?

One reason is that XML Schema allows derivation by extension to be used in cases where
it really should not be used, as in the case of the invoice and purchase order datatypes.
In these cases, xsi:type must be used in the instance document to ensure successful
validation. Consider a scenario where the invoice type was derived by extension from the
purchase order type:

<xsd:complexType name="invoiceType">

 <xsd:complexContent>

 <xsd:extension base="po:poType">

 <xsd:element name="tax" type="priceType"/>

 <xsd:element name="shippingAndHandling" type="priceType"/>

 <xsd:element name="totalCost" type="priceType"/>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

Remember, extension does not change the content model of the base type; it can only
add to it. Therefore, this definition will make the item element inside invoices of type
po:itemType, not invoice:itemType. The use of xsi:type (see Listing 2.27) is the only
way to add unit prices to items without violating the validity constraints of the document
imposed by the schema. An imperfect analogy from programming languages is that
xsi:type provides the true type to downcast to when you are holding a reference to a
base type.

Listing 2.27 Using xsi:type to Correctly Identify Invoice Item Elements

<order>

 <item sku="318-BP" quantity="5" unitPrice="49.95"

 xsi:type="invoice:itemType">

 <description>Skateboard backpack; five pockets</description>

 </item>

 <item sku="947-TI" quantity="12" unitPrice="129.00"

 xsi:type="invoice:itemType">

 <description>Street-style titanium skateboard.</description>

 </item>

 <item sku="008-PR" quantity="1000" unitPrice="0.00"

 xsi:type="invoice:itemType">

 <description>Promotional: SkatesTown stickers</description>

 </item>

</order>

This example shows a use of xsi:type that comes as a result of poor schema design. If,
instead of extending purchase order, the invoice type is defined on its own, the need for
xsi:type disappears. However, sometimes even good schema design does not prevent
the need to identify actual types in instance documents.

Imagine that, due to constant typos in shipping and billing address postal codes,
SkatesTown decides to become more restrictive in its document validation. The company
defines three types of addresses that can be used in purchase orders and schema. The
types have the following constraints:

• Address— Same as always

• USAddress— Country is not allowed, and the Zip code pattern "\d{ 5} (-\d{ 4}
)?" is enforced

• UKAddress— Country is fixed to UK and the postal code pattern "[0-9A-Z]{ 3}
[0-9A-Z]{ 3}" is enforced

To get the best possible validation, SkatesTown's applications need to know the exact
type of address that is being used in a document. Without using xsi:type, the purchase
order and invoice schema will each have to define nine (three squared) possible
combinations of billTo and shipTo elements: billTo/shipTo, billTo/shipToUS,
billTo/shipToUK, billToUS/shipTo, and so on. It is better to stick with billTo and
shipTo and use xsi:type to get exact schema type information.

There's More

This completes the whirlwind tour of XML Schema. Fortunately or unfortunately, much
material useful for data-oriented applications falls outside the scope of what can be
addressed in this chapter. Some further material will be introduced throughout the rest of
the book as needed.

Processing XML

So far, this chapter has introduced the key XML standards and explained how they are
expressed in XML documents. The final section of the chapter focuses on processing XML
with a quick tour of the specifications and APIs you need to know to be able to generate,
parse, and process XML documents in your Java applications.

Basic Operations

The basic XML processing architecture shown in Figure 2.5 consists of three key layers.
At far left are the XML documents an application needs to work with. At far right is the
application. In the middle is the infrastructure layer for working with XML documents,
which is the topic of this section.

Figure 2.5. Basic XML processing architecture.

For an application to be able to work with an XML document, it must first be able to
parse it. Parsing is a process that involves breaking up the text of an XML document into
small identifiable pieces (nodes). Parsers will break documents into pieces such as start
tags, end tags, attribute value pairs, chunks of text content, processing instructions,
comments, and so on. These pieces are fed into the application using a well-defined API
implementing a particular parsing model. Four parsing models are commonly in use:

• Pull parsing involves the application always having to ask the

parser to give it the next piece of information about the document.

It is as if the application has to "pull" the information out of the

parser and hence the name of the model. The XML community has not yet

defined standard APIs for pull parsing. However, because pull parsing

is becoming popular, this could happen soon.

• Push parsing — The parser sends notifications to the application

about the types of XML document pieces it encounters during the

parsing process. The notifications are sent in "reading" order, as

they appear in the text of the document. Notifications are typically

implemented as event callbacks in the application code, and thus push

parsing is also commonly known as event-based parsing. The XML

community created a de facto standard for push parsing called Simple

API for XML (SAX) . SAX is currently released in version 2.0.

• One-step parsing — The parser reads the whole XML document and

generates a data structure (a parse tree) describing its entire

contents (elements, attributes, PIs, comments, and so on). The data

structure is typically deeply nested; its hierarchy mimics the

nesting of elements in the parsed XML document. The W3C has defined a

Document Object Model (DOM) for XML. The XML DOM specifies the

types of objects that will be included in the parse tree, their

properties, and their operations. The DOM is so popular that one-step

parsing is typically referred to as DOM parsing. The DOM is a

language- and platform-independent API. It offers many obvious

benefits but also some hidden costs. The biggest problem with the DOM

APIs is that they often do not map well to the native data structures

of particular programming languages. To address this issue for Java,

the Java community has started working on a Java DOM (JDOM)

specification whose goal is to simplify the manipulation of document

trees in Java by using object APIs tuned to the common patterns of

Java programming.

• Hybrid parsing — This approach tries to combine different

characteristics of the other two parsing models to create efficient

parsers for special scenarios. For example, one common pattern

combines pull parsing with one-step parsing. In this model, the

application thinks it is working with a one-step parser that has

processed the whole XML document from start to end. In reality, the

parsing process has just begun. As the application keeps accessing

more objects on the DOM (or JDOM) tree, the parsing continues

incrementally so that just enough of the document is parsed at any

given point to give the application the objects it wants to see.

The reasons there are so many different models for parsing XML have to do with trade-
offs between memory efficiency, computational efficiency, and ease of programming.
Table 2.6 identifies some of the characteristics of the different parsing models. Control of
parsing refers to who has to manage the step-by-step parsing process. Pull parsing
requires that the application does that. In all other models, the parser will take care of
this process. Control of context refers to who has to manage context information such as
the level of nesting of elements and their location relative to one another. Both push and
pull parsing delegate this control to the application. All other models build a tree of nodes
that makes maintaining context much easier. This approach makes programming with
DOM or JDOM generally easier than working with SAX. The price is memory and
computational efficiency, because instantiating all these objects takes up both time and
memory. Hybrid parsers attempt to offer the best of both worlds by presenting a tree
view of the document but doing incremental parsing behind the scenes.

Table 2.6. XML Parsing Models and Their Trade-offs

Model Control of
Parsing

Control of
context

Memory
efficiency

Computational
efficiency

Ease of
programming

Pull Application Application High Highest Low

Push
(SAX)

Parser Application High High Low

One-step
(DOM)

Parser Parser Lowest Lowest High

One-step
(JDOM)

Parser Parser Low Low Highest

Hybrid
(DOM)

Parser Parser Medium Medium High

Hybrid
(JDOM)

Parser Parser Medium Medium Highest

In the Java world, a standardized API—Java API for XML Processing (JAXP) —exists
for instantiating XML parsers and parsing documents using either SAX or DOM. Without
JAXP, Java applications were not completely portable across XML parsers because
different parsers, despite following SAX and DOM, had different APIs for creation,
configuration, and parsing of documents. JAXP is currently released in version 1.1. It
does not support JDOM yet because the JDOM specification is not complete at this point.

Although XML parsing addresses the problem of feeding data from XML documents into
applications, XML output addresses the reverse problem—applications generating XML
documents. At the most basic level, an application can directly output XML markup. In
Figure 2.5, this is indicated by the application working with a character stream. This is
not very difficult to do, but handling all the basic syntax rules (attributes quoting, special
character escaping, and so on) can become cumbersome. In many cases, it might be
easier for the application to construct a data structure (DOM or JDOM tree) describing the
XML document that should be generated. Then, the application can use a serialization

process to traverse the document tree and emit XML markup corresponding to its
elements. This capability is not directly defined in the DOM and JDOM APIs, but most XML
toolkits make it very easy to do just that.

Data-Oriented XML Processing

When you're thinking about applications working with XML, it is important to note that all
the mechanisms for parsing and generating XML described so far are syntax-oriented.
They force the application to work with concepts such as elements, attributes, and pieces
of text. This is similar to applications that use text files for storage being forced to work
with characters, lines, carriage returns (CR), and line feeds (LF). Typically, applications
want a higher-level view of their data. They are not concerned with the physical structure
of the data, be it characters and lines in the case of text files or elements and attributes
in the case of XML documents. They want to abstract this away and expose the meaning
or semantics of the data. In other words, applications do not want to work with syntax-
oriented APIs, they want to work with data-oriented APIs. Therefore, typical data-
oriented XML applications introduce a data abstraction layer between the syntax-oriented
parsing and output APIs and application logic (see Figure 2.6).

Figure 2.6. Data abstraction layer in XML applications.

When working with XML in a data-oriented manner, you'll typically use one of two
approaches: operation-centric and data-centric. The operation-centric approach works in
terms of custom-built APIs for certain operations on the XML document. The
implementation of these APIs hides the details of XML processing. Only non-XML types
are passed through the APIs.

Consider for example, the task of SkatesTown trying to independently check the total
amount on the invoices it is sending to its customers. From a Java application
perspective, a good way to implement an operation like this would be through the
interface shown in Listing 2.28.

Listing 2.28 InvoiceChecker Interface

package com.skatestown.invoice;

import java.io.InputStream;

/**

 * SkatesTown invoice checker

 */

public interface InvoiceChecker {

 /**

 * Check invoice totals.

 *

 * @param invoiceXML Invoice XML document

 * @exception Exception Any exception returned during checking

 */

 void checkInvoice(InputStream invoiceXML) throws Exception;

}

The actual implementation of checkInvoice will have to do the following:

1. Obtain an XML parser.

2. Parse the XML from the input stream.

3. Initialize a running total to zero.

4. Find all order items and calculate item subtotals by multiplying

quantities and unit prices. Add item subtotals to the running total.

5. Add tax to the running total.

6. Add shipping and handling to the running total.

7. Compare the running total to the total on invoice.

8. If there is a difference, throw an exception.

9. Otherwise, return.

The most important aspect to this approach is that any XML processing details will be
hidden from the application. It can happily work with the InvoiceChecker interface,
never knowing or caring about how checkInvoice does its work.

An alternative is the data-centric approach. Data-centric XML computing reduces the
problem of working with XML documents to that of mapping the XML to and from
application data and then working with the data entirely independent of its XML origins.
Application data covers the common datatypes developers work with every day: boolean
values, numbers, strings, date-time values, arrays, associative arrays (dictionaries,
maps, hash tables), database recordsets, and complex object types. Note that in this
context, DOM tree objects will not be considered "true" application data because they are
tied to XML syntax. The process of converting application data to XML is called
serialization. The XML is a serialized representation of the application data. The process

of generating application data from XML is called deserialization .

For example, the XML invoice markup could be mapped to the set of Java classes
introduced in the schema section (see Listing 2.29).

Listing 2.29 Java Classes Representing Invoice Data

class Address { ... }

class Item { ... }

class InvoiceItem extends Item { ... }

class Invoice

{

 int id;

 Date submitted;

 Address billTo;

 Address shipTo;

 InvoiceItem order[];

 float tax;

 float shippingAndHandling;

 float totalCost;

}

The traditional approach for generating XML from application data has been to sit down
and custom-code how data values become elements, attributes, and element content.
The traditional approach of working with XML to produce application data has been to
parse it using a SAX or a DOM parser. Data structures are built from the SAX events or
the DOM tree using custom code. There are, however, better ways to map data to and
from XML using technologies specifically built for serializing and deserializing data to and
from XML. Enter schema compilation tools. Schema compilers are tools that analyze XML
schema and code-generate serialization and deserialization modules specific to the
schema. These modules will work with data structures tuned to the schema. Figure 2.7
shows the basic process for working with schema compilers. The schema compiler needs
to be invoked only once. Then the application can use the code-generated modules just
like any other API. For example, a schema compiler working on the SkatesTown invoice
schema could have generated the helper class shown in Listing 2.30 to wrap serialization
and deserialization.

Figure 2.7. Using a schema compiler.

Listing 2.30 Serialization/Deserialization Helper

class InvoiceXMLHelper

{

 // All exception signatures removed for readability

 public static InvoiceXMLHelper create();

 public serialize(Invoice inv, OutputStream xml);

 public Invoice deserialize(InputStream xml);

}

Chapters 3 ("Simple Object Access Protocol (SOAP)") and 4 ("Creating Web Services")
will introduce some advanced data mapping concepts specific to Web services as well as
some more sophisticated mechanisms for working with XML. The rest of this section will
offer a taste of XML processing by implementing the checkInvoice() API described
earlier using both a SAX and a DOM parser.

SAX-based checkInvoice

The basic architecture of the JAXP SAX parsing APIs is shown in Figure 2.8. It uses the
common abstract factory design pattern. First, you must create an instance of
SAXParserFactory that is used to create an instance of SAXParser. Internally, the parser
wraps a SAXReader object that is defined by the SAX API. JAXP developers typically do
not have to work directly with SAXReader. When the parser's parse() method is invoked,
the reader starts firing events to the application by invoking certain registered callbacks.

Figure 2.8. SAX parsing architecture.

Working with JAXP and SAX involves four important Java packages:

Package Description
org.xml.sax Defines the SAX interfaces
org.xml.sax.ext Defines advanced SAX extensions for DTD processing and

detailed syntax information
org.xml.sax.helpers Defines helper classes such as DefaultHandler
javax.xml.parsers Defines the SAXParserFactory and SAXParser classes
Here is a summary of the key SAX-related objects:

SAXParserFactory A SAXParserFactory object creates an instance of the parser
determined by the system property,
javax.xml.parsers.SAXParserFactory.

SAXParser The SAXParser interface defines several kinds of parse() methods.
In general, you pass an XML data source and a DefaultHandler
object to the parser, which processes the XML and invokes the
appropriate methods in the handler object.

DefaultHandler Not shown in Figure 2.8, DefaultHandler implements all SAX
callback interfaces with null methods. Custom handlers subclass
DefaultHandler and override the methods they are interested in
receiving.

The following list contains the callback interfaces and some of their important methods:

• ContentHandler— Contains methods for all basic XML parsing events:

• Void startDocument()

Receive notification of the beginning of a document.

Void endDocument()

Receive notification of the end of a document.

Void startElement(String namespaceURI, String localName, String qName,

Attributes atts)

Receive notification of the beginning of an element.

Void characters(char[] ch, int start, int length)

Receive notification of character data.

• ErrorHandler— Contains methods for receiving error notification. The default
implementation in DefaultHandler throws errors for fatal errors but does nothing
for non-fatal errors, including validation errors:

• Void error(SAXParseException exception)

Receive notification of a recoverable error. An example of a

recoverable error is a validation error.

Void fatalError(SAXParseException exception)

Receive notification of a non-recoverable error. An example of a non-

recoverable error is a well-formedness error.

• DTDHandler— Contains methods for dealing with XML entities.

• EntityResolver— Contains methods for resolving the location of external
entities.

SAX defines an event-based parsing model. A SAX parser will invoke the callbacks from
these interfaces as it is working through the document. Consider the following sample
document:

<?xml version="1.0" encoding="UTF-8"?>

<sampleDoc>

 <greeting>Hello, world!</greeting>

</sampleDoc>

An event-based parser will make the series of callbacks to the application as follows:

start document

start element: sampleDoc

start element: greeting

characters: Hello, world!

end element: greeting

end element: sampleDoc

end document

Because of the simplicity of the parsing model, the parser does not need to keep much
state information in memory. This is why SAX-based parsers are very fast and highly
efficient. The flip side to this benefit is that the application has to manage any context
associated with the parsing process. For example, for the application to know that the
string "Hello, world!" is associated with the greeting element, it needs to maintain a flag
that is raised in the start element event for greeting and lowered in the end element
event. More complex applications typically maintain a stack of elements that are in the
process of being parsed. Here are the SAX events with an added context stack:

start document ()

start element: sampleDoc (sampleDoc)

start element: greeting (sampleDoc, greeting)

characters: Hello, world! (sampleDoc, greeting)

end element: greeting (sampleDoc, greeting)

end element: sampleDoc (sampleDoc)

end document ()

With this information in mind, building a class to check invoice totals becomes relatively
simple (see Listing 2.31).

Listing 2.31 SAX-based Invoice Checker (InvoiceCheckerSAX.java)

package com.skatestown.invoice;

import java.io.InputStream;

import org.xml.sax.Attributes;

import org.xml.sax.SAXException;

import javax.xml.parsers.SAXParser;

import javax.xml.parsers.SAXParserFactory;

import org.xml.sax.helpers.DefaultHandler;

/**

 * Check SkatesTown invoice totals using a SAX parser.

 */

public class InvoiceCheckerSAX

 extends DefaultHandler

 implements InvoiceChecker

{

 // Class-level data

 // invoice running total

 double runningTotal = 0.0;

 // invoice total

 double total = 0.0;

 // Utility data for extracting money amounts from content

 boolean isMoneyContent = false;

 double amount = 0.0;

 /**

 * Check invoice totals.

 * @param invoiceXML Invoice XML document

 * @exception Exception Any exception returned during checking

 */

 public void checkInvoice(InputStream invoiceXML) throws Exception {

 // Use the default (non-validating) parser

 SAXParserFactory factory = SAXParserFactory.newInstance();

 SAXParser saxParser = factory.newSAXParser();

 // Parse the input; we are the handler of SAX events

 saxParser.parse(invoiceXML, this);

 }

 // SAX DocumentHandler methods

 public void startDocument() throws SAXException {

 runningTotal = 0.0;

 total = 0.0;

 isMoneyContent = false;

 }

 public void endDocument() throws SAXException {

 // Use delta equality check to prevent cumulative

 // binary arithmetic errors. In this case, the delta

 // is one half of one cent

 if (Math.abs(runningTotal - total) >= 0.005) {

 throw new SAXException(

 "Invoice error: total is " + Double.toString(total) +

 " while our calculation shows a total of " +

 Double.toString(Math.round(runningTotal * 100) / 100.0));

 }

 }

 public void startElement(String namespaceURI,

 String localName,

 String qualifiedName,

 Attributes attrs) throws SAXException {

 if (localName.equals("item")) {

 // Find item subtotal; add it to running total

 runningTotal +=

 Integer.valueOf(attrs.getValue(namespaceURI,

 "quantity")).intValue() *

 Double.valueOf(attrs.getValue(namespaceURI,

 "unitPrice")).doubleValue();

 } else if (localName.equals("tax") ||

 localName.equals("shippingAndHandling") ||

 localName.equals("totalCost")) {

 // Prepare to extract money amount

 isMoneyContent = true;

 }

 }

 public void endElement(String namespaceURI,

 String localName,

 String qualifiedName) throws SAXException {

 if (isMoneyContent) {

 if (localName.equals("totalCost")) {

 total = amount;

 } else {

 // It must be tax or shippingAndHandling

 runningTotal += amount;

 }

 isMoneyContent = false;

 }

 }

 public void characters(char buf[], int offset, int len)

 throws SAXException {

 if (isMoneyContent) {

 String value = new String(buf, offset, len);

 amount = Double.valueOf(value).doubleValue();

 }

 }

}

InvoiceCheckerSAX must implement the InvoiceChecker interface in order to provide
the checkInvoice functionality. It also subclasses DefaultHandler to obtain default
implementations for all SAX callbacks. In this way the implementation can focus on
overriding only the relevant callbacks.

The class members runningTotal and total maintain state information about the
invoice during the parsing process. The class members isMoneyContent and amount are
necessary in order to maintain parsing context. Because events about character data are
independent of events about elements, we need a flag to indicate whether we should
attempt to parse character data as a dollar amount for the tax, shippingAndHandling,
and totalCost elements. This is what isMoneyContent does. After we parse the text into
a dollar figure, we save it into the amount member variable and wait until the
endElement() callback to determine what to do with it.

The checkInvoice() method implementation shows how easy it is to use JAXP for XML
parsing. Parsing an XML document with SAX only takes three lines of code.

At the beginning of the document, we have to initialize all member variables. At the end
of the document, we check whether there is a difference between the running total and
the total cost listed on the invoice. If there is a problem, we throw an exception with a
descriptive message. Note that we cannot use an equality check because no exact
mapping exists between decimal numbers and their binary representation. During the
many additions to runningTotal, a very tiny error will be introduced in the calculation.
So, instead of checking for equality, we need to check whether the difference between
the listed and the calculated totals is significant. Significant in this case would be any
amount greater than half a cent, because a half-cent difference can affect the rounding
of a final value to a cent.

The parser pushes events about the new elements to the startElement() method. If the
element we get a notification about is an item element, we can immediately extract the
values of the quantity and unitPrice attributes from its attributes collection.
Multiplying them together creates an item subtotal, which we add to the running total.
Alternatively, if the element is one of tax, shippingAndHandling, or totalCost, we
prepare to extract a money amount from its text content. All other elements are simply
ignored.

We only care to process end element notifications if we were expecting to extract a
money amount from their content. Based on the name of the element, we decide
whether to save the amount as the total cost of the invoice or whether to add it to the
running total.

When we process character data and we are expecting a dollar value, we extract the
element content, convert it to a double value, and save it in the amount class member for
use by the endElement() callback.

Note that we could have skipped implementing endElement() altogether if we had also
stored the element name as a string member of the class or used an enumerated value.
Then, we would have decided how to use the dollar amount right inside characters().

That's all there is to it. Of course, this is a very simple example. A real application would
have done at least two things differently:

• It would have used namespace information and prefixed element names

instead of simply using local names.

• It would have defined its own exception type to communicate invoice

validation information. It would have also overridden the default

callbacks for error() and fatalError() and used these to collect

better exception information.

Unfortunately, these extensions fall outside the scope of this chapter. The rest of the
book has several examples of building robust XML processing software.

DOM-based checkInvoice

The basic architecture of the JAXP DOM parsing APIs is shown in Figure 2.9. It uses the
same factory design pattern as the SAX API. An application will use the
javax.xml.parsers.DocumentBuilderFactory class to get a DocumentBuilder object
instance, and use that to produce a document that conforms to the DOM specification.
The value of the system property javax.xml.parsers.DocumentBuilderFactory
determines which factory implementation will produce the builder. This is how JAXP
enables applications to work with different DOM parsers.

Figure 2.9. DOM parsing architecture.

The important packages for working with JAXP and DOM are as follows:

Package Description
org.w3c.dom Defines the DOM programming interfaces for XML (and,

optionally, HTML) documents, as specified by the W3C
javax.xml.parsers Defines DocumentBuilder and DocumentBuilderFactory classes
The DOM defines APIs that allow applications to navigate XML documents and to
manipulate their content and structure. The DOM defines interfaces, not a particular
implementation. These interfaces are specified using the Interface Description Language
(IDL) so that any language can define bindings for them. Separate Java bindings are
provided to make working with the DOM in Java very easy.

The DOM has several levels and various facets within a level. In the fall of 1998, DOM
Level 1 was released. It provided the basic functionality to navigate and manipulate XML

and HTML documents. DOM Level 2 builds upon Level 1 with more and better-segmented
functionality:

• The DOM Level 2 Core API builds upon Level 1, fixes some problem

spots, and defines additional ways to navigate and manipulate the

content and structure of documents. These APIs also provide full

support for namespaces.

• The DOM Level 2 Views API specifies interfaces that provide

programmers with the ability to view alternate presentations of the

XML or HTML document.

• The DOM Level 2 Style API specifies interfaces that provide

programmers with the ability to dynamically access and manipulate

style sheets.

• The DOM Level 2 Events API specifies interfaces that provide

programmers with a generic event system.

• The DOM Level 2 Traversal-Range API specifies interfaces that provide

programmers with the ability to traverse a representation of the XML

document.

• The DOM Level 2 HTML API specifies interfaces that provide

programmers with the ability to work with HTML documents.

All interfaces apart from the core ones are optional. This is the main reason why most
applications choose to rely entirely on the DOM Core. You can expect more of the DOM to
be supported by parsers soon. In fact, the W3C is currently working on DOM Level 3.

The DOM originated as an API for XML processing at a time when the majority of XML
applications were document-centric. As a result, the interfaces in the DOM describe fairly
low-level syntax constructs in XML documents. This makes working with the DOM for
data-oriented applications somewhat cumbersome, and is one of the reasons the Java
community is working on the JDOM APIs.

To better understand the XML DOM, you need to understand the core interfaces and the
most significant methods in them. Figure 2.10 shows a Universal Modeling Language
(UML) diagram describing some of these.

Figure 2.10. Key DOM interfaces and operations.

The root interface is Node. It contains methods for working with the node name
(getNodeName()), type (getNodeType()), and attributes (getNodeAttributes()). Node
types cover various possible XML syntax elements: document, element, attributes,
character data, text node, comment, processing instruction, and so on. All of these are
shown in subclass Node but not all are shown in Figure 2.10. To traverse the document
hierarchy, nodes can access their parent (getParentNode()) as well as their children
(getChildNodes()). Node also has several convenience methods for retrieving the first
and last child as well as the previous and following sibling.

The most important operations in Document involve creating nodes (at least one for every
node type), assembling these nodes into the tree (not shown), and locating elements by
name, regardless of their location in the DOM (getElementsByTagName()). This last API
is very convenient because it can save you from having to traverse the tree to get to a
particular node.

The rest of the interfaces on the figure are very simple. Elements, attributes, and
character data offer a few methods each for getting and setting their data members.
NodeList and NamedNodeMap are convenience interfaces for dealing with collections of
nodes and attributes, respectively. What Figure 2.10 does not show is that DOM Level 2
is fully namespace aware and all DOM APIs have versions that take in namespace URIs.
Typically, their name is the same as the name of the original API with NS appended, such
as Element's getAttributeNS(String nsURI, String localName).

With this information in mind, building a class to check invoice totals becomes relatively
simple. The DOM implementation of InvoiceChecker is shown in Listing 2.32.

Listing 2.32 DOM-based Invoice Checker (InvoiceCheckerDOM.java)

package com.skatestown.invoice;

import java.io.InputStream;

import org.w3c.dom.Node;

import org.w3c.dom.NodeList;

import org.w3c.dom.Document;

import org.w3c.dom.Element;

import org.w3c.dom.CharacterData;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;

/**

 * Check SkatesTown invoice totals using a DOM parser.

 */

public class InvoiceCheckerDOM implements InvoiceChecker {

 /**

 * Check invoice totals.

 *

 * @param invoiceXML Invoice XML document

 * @exception Exception Any exception returned during checking

 */

 public void checkInvoice(InputStream invoiceXML)

 throws Exception

 {

 // Invoice running total

 double runningTotal = 0.0;

 // Obtain parser instance and parse the document

 DocumentBuilderFactory factory =

 DocumentBuilderFactory.newInstance();

 DocumentBuilder builder = factory.newDocumentBuilder();

 Document doc = builder.parse(invoiceXML);

 // Calculate order subtotal

 NodeList itemList = doc.getElementsByTagName("item");

 for (int i = 0; i < itemList.getLength(); i++) {

 // Extract quantity and price

 Element item = (Element)itemList.item(i);

 Integer qty = Integer.valueOf(

 item.getAttribute("quantity"));

 Double price = Double.valueOf(

 item.getAttribute("unitPrice"));

 // Add subtotal to running total

 runningTotal += qty.intValue() * price.doubleValue();

 }

 // Add tax

 Node nodeTax = doc.getElementsByTagName("tax").item(0);

 runningTotal += doubleValue(nodeTax);

 // Add shipping and handling

 Node nodeShippingAndHandling =

 doc.getElementsByTagName("shippingAndHandling").item(0);

 runningTotal += doubleValue(nodeShippingAndHandling);

 // Get invoice total

 Node nodeTotalCost =

 doc.getElementsByTagName("totalCost").item(0);

 double total = doubleValue(nodeTotalCost);

 // Use delta equality check to prevent cumulative

 // binary arithmetic errors. In this case, the delta

 // is one half of one cent

 if (Math.abs(runningTotal - total) >= 0.005)

 {

 throw new Exception(

 "Invoice error: total is " + Double.toString(total) +

 " while our calculation shows a total of " +

 Double.toString(Math.round(runningTotal * 100) / 100.0));

 }

 }

 /**

 * Extract a double from the text content of a DOM node.

 *

 * @param node A DOM node with character content.

 * @return The double representation of the node's content.

 * @exception Exception Could be the result of either a node

 * that does not have text content being passed in

 * or a node whose text content is not a number.

 */

 private double doubleValue(Node node) throws Exception {

 // Get the character data from the node and parse it

 String value = ((CharacterData)node.getFirstChild()).getData();

 return Double.valueOf(value).doubleValue();

 }

}

InvoiceCheckerDOM must implement the InvoiceChecker interface in order to provide
the checkInvoice functionality. Apart from this, it is a standalone class. Also, note that
the class has no member data, because there is no need to maintain parsing context. The
context is implicit in the hierarchy of the DOM tree that will be the result of the parsing
process.

The factory pattern used here to parse the invoice is the same as the one from the SAX
implementation; it just uses DocumentBuilderFactory and DocumentBuilder instead.
Although the SAX parse method returns no data (it starts firing events instead), the DOM
parse() method returns a Document object that holds the complete parse tree of the
invoice document.

Within the parse tree, the call to getElementsByTagName("item") retrieves a node list of
all order items. The loop iterates over the list, extracting the quantity and unitPrice
attributes for every item, obtaining an item subtotal, and adding this to the running total.

The same getElementsByTagName() API combined with the utility function
doubleValue() extracts the amounts of tax, the shipping and handling, and the invoice
total cost.

Just as in the SAX example, the code has to use a difference check instead of a direct
equality check to guard against inexact decimal-to-binary conversions.

The class also defines a convenient utility function that takes in a DOM node that should
have only character content and returns the numeric representation of that content as a
double. Any non-trivial DOM processing will typically require these types of utility

functions. It goes to prove that the DOM is very syntax-oriented and not at all concerned
about data.

That's all there is to it. Of course, this is a very simple example and, just as in the SAX
example, a real application would have done at least three things differently:

• It would have used namespace information and prefixed element names

instead of simply using local names.

• It would have defined its own exception type to communicate invoice

validation information. It would have implemented try-catch logic

inside the checkInvoice method in order to report more meaningful

errors.

• It would have either explicitly turned on validation of the incoming

XML document or traversed the DOM tree step-by-step from the document

root to all the elements of interest. Using getElementsByTagName()

presumes that the structure of the document (relative positions of

elements) has already been validated. If this is the case, it is OK

to ask for all item elements regardless of where they are in the

document. The example implementation took this approach for code

readability purposes.

These changes are not complex, but they would have increased the size and complexity
of the example beyond its goals as a basic introduction to DOM processing.

Testing the Code

Rather than forcing you to set up the Java Runtime Environment (JRE), modify
CLASSPATH environment variables, and run examples from the command line, this book
has taken a novel, Web-centric approach. All examples are accessible from the book's
example Web site.

The actual example code is written using Java Server Pages (JSP). JSP allows Java code
to be mixed in with HTML for building Web applications. JSP builds on top of the Java
servlet standard for building Web components. Java application servers compile JSPs
down to servlets.

The example code that drives InvoiceCheckerSAX and InvoiceCheckerDOM appears in
Listing 2.33.

Listing 2.33 JSP Page for Checking Invoices (/ch2/ex1/index.jsp)

<%@ page import="java.io.*,bws.BookUtil,com.skatestown.invoice.*" %>

<HTML>

<HEAD><TITLE>Invoice Checker</TITLE></HEAD>

<h1>Invoice Checker</h1>

<p>This example implements a web form driver for SkatesTowns's invoice

checker. You can modify the invoice on the form if you wish (the

default one is from Chapter 2), select a DOM or SAX parser and perform

 a check on the invoice total.</p>

<FORM action="index.jsp" method="POST">

<%

 String xml = request.getParameter("xml");

 if (xml == null) {

 xml = BookUtil.readResource(application,

 "/resources/sampleInvoice.xml");

 }

%>

 <TEXTAREA NAME="xml" ROWS="20" COLS="90"><%= xml%></TEXTAREA>

 <P></P>

 Select parser type:

 <INPUT type="RADIO" name="parserType" value="SAX" CHECKED> SAX

 <INPUT type="RADIO" name="parserType" value="DOM"> DOM

 <P></P>

 <INPUT type="SUBMIT" value=" Check Invoice">

</FORM>

<%

 // Check for form submission

 if (request.getParameter("xml") != null) {

 out.println("<HR>");

 // Instantiate appropriate parser type

 InvoiceChecker ic;

 if (request.getParameter("parserType").equals("SAX")) {

 out.print("Using SAX parser...
");

 ic = new InvoiceCheckerSAX();

 } else {

 out.print("Using DOM parser...
");

 ic = new InvoiceCheckerDOM();

 }

 // Check the invoice

 try {

 ic.checkInvoice(new StringBufferInputStream(xml));

 out.print("Invoice checks OK.");

 } catch(Exception e) {

 out.print(e.getMessage());

 }

 }

%>

</BODY>

</HTML>

JSP uses the <%@ ... %> syntax for compile-time directives. The page import="..."
directive accomplishes the equivalent of a Java import statement.

The HTML code sets up a simple Web form that will post back to the same page. The
form contains a text area with the name xml that will contain the XML of the invoice to
be validated.

In JSP, you can use the construct <% ... %> to surround arbitrary Java code embedded
in the JSP page. The request object is an implicit object on the page associated with the
Web request. Implicit objects in JSP are set up by the JSP compiler. They can be used
without requiring any type of declaration or setup. One of the most useful methods of the
request object is getParameter(), which retrieves the value of a parameter passed from
the Web such as a form field or returns null if this parameter did not come with the
request. The code uses getParameter("xml") to check whether the form is being
displayed (return is null) versus submitted (return is non-null). If the form is displayed
for the first time, the page loads the invoice XML from a sample file in
/resources/sampleInvoice.xml.

The rest of the Java code runs only if the form has been submitted. It uses the implicit
out object to send output to the resulting Web page. It uses the value of the parserType
field in the Web page to determine whether to instantiate a SAX or a DOM parser. It then
checks the invoice by passing the value of the xml text area on the page to the
checkInvoice() method. If the call is successful, the invoice checks OK, and an
appropriate message is displayed. If an exception is thrown by checkInvoice(), an
invoice total discrepancy (or an XML processing error) has been detected, which will be
output to the browser.

That's all there is to creating a Web test client for the invoice checker. Figure 2.11 shows
the Web page ready for submission.

Figure 2.11. Invoice checker Web page.

Summary

This chapter has focused on explaining some of the core features of XML and related
technologies. The goal was to prepare you for the Web service–related material in the
rest of the book, which relies heavily on the concepts presented here. To this end, we
covered, in some detail:

• The origins of XML and the fundamental difference between document-

and data-centric XML applications. Web services are an extreme

example of data-centric XML use. The material in this chapter

purposefully ignored some aspects of XML that are more document-

oriented.

• The syntax and rules governing the physical structure of XML

documents: document prologs, elements, attributes, character content,

CDATA sections, and so on. We omitted document-oriented features of

XML such as entities and notations due to their infrequent use in the

context of Web services. The SkatesTown purchase order document

format made its initial appearance.

• XML Namespaces, the key tool for resolving the problems of name

recognition and name collision in XML applications. Namespaces are

fundamental to mixing information from multiple schemas into a single

document, something that all core Web service technologies rely upon.

SkatesTown's purchase order inside an XML message wrapper is an

example of a common pattern for XML use that will be explored in

depth in the next chapter. The namespace mechanism is simple and

beautiful; however, people often try to read more into it than is

really there, as demonstrated by the debate over whether namespace

URIs should point to meaningful resources. One of the slightly more

complex aspects of the specification is the multiple namespace

defaulting mechanisms that simplify document markup while preserving

namespace information.

• The concepts of well-formedness and validity and Document Type

Definitions (DTDs) as a mechanism to validate XML document structure.

DTDs are powerful, but they also have great limitations such as non-

XML syntax, no ties to namespaces, and poor support for even basic

data types such as numbers and dates.

• XML Schema, the de facto standard for describing document structure

and XML datatypes for data-oriented applications. Although XML Schema

is a recent standard, the XML community had defined specifications

based on draft versions of the standard for nearly two years. The

flexible content models, the large number of pre-defined datatypes

and the powerful extensibility and reuse features make this one of

the most important developments in the XML space since XML 1.0. All

Web service specifications are described using schema. Through the

definition of SkatesTown's purchase order and invoice schemas, this

chapter introduced enough of the key capabilities of the technology

to prepare you for what is to come in the rest of the book.

• The key mechanisms for creating and processing XML with software.

Starting with the basic syntax-oriented XML processing architecture,

the chapter progressed to define a data-oriented XML processing

architecture together with the key concepts of XML data mapping and

XML parsing. In the context of SkatesTown's desire to independently

validate invoice totals sent to its customers, we used the Java APIs

for XML Processing (JAXP), the Simple APIs for XML (SAX), and the XML

Document Object Model (DOM) to build two separate implementations of

an invoice checker. A simple Web-based front end served as the test

bed for the code.

This chapter explicitly did not focus on other important but not very relevant XML
technologies such as XPointer/XLink, Resource Definition Framework (RDF), XPath,
Extensible Stylesheet Language Transformations (XSLT), or XQuery. They are important
in their own domains and useful to be familiar with in general but are not commonly used
in the context of Web services. Other more technical XML specification such as XML
Digital Signatures will be introduced later in the book as part of meaningful Web service
usage scenarios.

Right now, you know enough about XML to go deep into the exciting world of Web
services. Chapter 3 introduces the core Web service messaging technologies: Simple
Object Access Protocol (SOAP) and XML Protocol (XMLP).

Resources

• DOM Level 1—DOM Level 1 Specification (W3C, October 1998). Available at
http://www.w3.org/TR/REC-DOM-Level-1.

• DOM Level 2 Core—W3C (World Wide Web Consortium) Document Object Model Level 2
Core (W3C, November 2000). Available at http://www.w3.org/TR/2000/REC-DOM-Level-
2-Core-20001113.

• JAXP—Java API for XML Processing 1.1 (Sun Microsystems, Inc., February 2001).
Available at http://java.sun.com/xml/xml_jaxp.html.

• JDOM—Java Document Object Model. Available at http://www.jdom.org/docs/apidocs.

• JSP—Java Server Pages 1.2 (Sun Microsystems, Inc., April 2001). Available at
http://java.sun.com/products/jsp.

• RFC2396—RFC 2396, "Uniform Resource Identifiers (URI): Generic Syntax" (IETF,
August 1998). Available at http://www.ietf.org/rfc/rfc2396.txt.

• SAX—Simple API for XML (SAX) 2.0 (May 2000). Available at
http://www.megginson.com/SAX/Java/index.html.

• XML—Extensible Markup Language (XML) 1.0, 2nd ed. (W3C, August 2000). Available
at http://www.w3.org/TR/2000/WD-xml-2e-20000814.

• XML Namespaces—"Namespaces in XML" (W3C, January 1999). Available at
http://www.w3.org/TR/1999/REC-xml-names-19990114.

• XML Schema Part 0: Primer—"XML Schema Part 0: Primer" (W3C, May 2001). Available
at http://www.w3.org/TR/2001/REC-xmlschema-0-20010502.

• XML Schema Part 1: Structures—"XML Schema Part 1: Structures" (W3C, May 2001).
Available at http://www.w3.org/TR/2001/REC-xmlschema-1-20010502.

• XML Schema Part 2: Datatypes—"XML Schema Part 2: Datatypes" (W3C, May 2001).
Available at http://www.w3.org/TR/2001/REC-xmlschema-2-20010502.

Chapter 3. Simple Object Access Protocol (SOAP)

IN THIS CHAPTER

• Evolution of XML Protocols

• Simple Object Access Protocol (SOAP)

• Doing Business with SkatesTown

• Inventory Check Web Service

• SOAP Envelope Framework

• Taking Advantage of SOAP Extensibility

• SOAP Intermediaries

• Error Handling in SOAP

• SOAP Data Encoding

• Architecting Distributed Systems with Web Services

• Purchase Order Submission Web Service

• SOAP Protocol Bindings

There is a lot more to Web services than Simple Object Access Protocol (SOAP). Chapter
1, "Web Services Overview," introduced the Web services interoperability stack that went
several levels higher than SOAP. SOAP is synonymous with Web services, however,
because since its introduction in late 1999, it has become the de facto standard for Web
services messaging and invocation. With competitive and market pressures driving the
Web services industry in a hard race to provide meaningful solutions to cross-enterprise
integration problems, SOAP is the go-to-market technology of choice.

What is SOAP all about, you ask? Will it save you from failure (and keep you clean) while
you toil 80-hour work weeks on a business-to-business (B2B) integration project from
hell? Will it support your extensibility needs as requirements change, and provide you
with interoperability across multi-vendor offerings? Will it be the keyword on your
resume that will guarantee you a big raise as you switch jobs? In short, is it the new new
thing? Well, maybe.

SOAP is so simple and so flexible that it can be used in many different ways to fit the
needs of different Web service scenarios. This is both a blessing and a curse. It is a
blessing because chances are that SOAP can fit your needs. It is a curse because you
probably won't know how to make it do that. This is where this chapter comes in. When
you are through with it, you will know not only how to use SOAP straight out of the box,
but also how to extend SOAP in multiple ways to support your diverse and changing
needs. You will also have applied design best practices to build several meaningful e-
commerce Web services for our favorite company, SkatesTown. Last but not least, you
will be ready to handle the rest of the book and climb still higher toward the top of the
Web services interoperability stack. To this end, the chapter will discuss the following
topics:

• The evolution of XML protocols and the history and motivation behind

SOAP's creation

• The SOAP envelope framework, complete with discussions of versioning,

header-based vertical extensibility, intermediary-based horizontal

extensibility, error handling, and bindings to multiple transport

protocols

• The various mechanisms for packaging information in SOAP messages,

including SOAP's own data-encoding rules and a number of heuristics

for putting just about any kind of data in SOAP messages

• The use of SOAP within multiple distributed system architectures such

as RPC-and messaging-based systems in all their flavors

• Building and consuming Web services using the Java-based Apache Axis

Web services engine

One final note before we begin. The SOAP 1.1 specification is slightly over 40 pages long.
This chapter is noticeably longer, because the purpose of this book is to be something
more than an annotated spec or a tutorial for building Web services. We've tried hard to
create a thorough treatment of Web services for people who want answers to questions
that begin not only with "what" and "how" but also with "why." To become an expert at
Web services, you need to be comfortable dealing with the latter type of questions. We
are here to help.

So, why SOAP? As this chapter will show, SOAP is simple, flexible, and highly extensible.
Because it is XML based, SOAP is programming language, platform, and hardware
neutral. What better choice for the XML protocol that is the foundation of Web services?
To prove this point, let's start the chapter by looking at some of the earlier work that
inspired SOAP.

Evolution of XML Protocols

The enabling technology behind Web services is built around XML protocols XML
protocols govern how communication happens and how data is represented in XML
format on the wire. XML protocols can be broadly classified into two generations. First-
generation protocols are based purely on XML 1.0. Second-generation protocols take
advantage of both XML Namespaces and XML Schema. SOAP is a second-generation XML
protocol.

First-Generation XML Protocols

There were many interesting first-generation XML protocol efforts. They informed the
community of important protocol requirements and particular approaches to satisfying
these requirements. Unfortunately, very few of the first-generation XML protocols
achieved multi-vendor support and broad adoption. Two are worth mentioning: Web
Distributed Data Exchange (WDDX) and XML-RPC.

WDDX

WDDX provides a language-and platform-neutral mechanism for data exchange
between applications. WDDX is perfect for data syndication and remote B2B integration
APIs because it is all about representing data as XML. For example, Moreover

Technologies, the Web feed company, exposes all its content through a WDDX-based
remote API. Access http://moreover.com/cgi-local/page?index+wddx with an XML-aware
browser such as Internet Explorer and you will get a WDDX packet with current headline
news. A simplified version of the packet is shown in the following example. You can see
from it that the data format is a recordset (tabular data) with three fields containing the
URL to the full article, its headline text, and the publishing source:

<wddxPacket version="1.0">

 <header/>

 <data>

 <recordset rowCount="2" fieldNames="url,headline_text,source">

 <field name="url">

 <string>http://c.moreover.com/click/here.pl?x22535276</string>

 <string>http://c.moreover.com/click/here.pl?x22532205</string>

 </field>

 <field name="headline_text">

 <string>Firefighters hold line in Wyoming</string>

 <string>US upbeat as China tensions ease</string>

 </field>

 <field name="source">

 <string>CNN</string>

 <string>BBC</string>

 </field>

 </recordset>

 </data>

</wddxPacket>

Allaire Corporation (now Macromedia, Inc.) created WDDX in 1998. WDDX is currently
supported in many environments and is flexible enough to handle most useful datatypes
(strings, numbers, booleans, date/time, binary, arrays, structures, and recordsets), but it
cannot represent arbitrary data in XML. It is an epitome of the 80/20 rule: flexible
enough to be useful yet simple enough to be broadly supported. Because WDDX is not
bound to any particular transport, applications can exchange WDDX packets via HTTP,
over e-mail, or by any other means. Many applications persist data as XML in a relational
database using WDDX.

XML-RPC

XML-RPC is an RPC protocol introduced in the market in 1998 by Userland. XML-RPC
supports a set of datatypes similar to that supported by WDDX and uses HTTP as the
underlying transport protocol. Because of its simplicity, XML-RPC enjoyed good multi-
vendor support. Here's an example XML-RPC method call and response:

<methodCall>

 <methodName>NumberToText</methodName>

 <params>

 <param>

 <value><i4>28</i4></value>

 </param>

 </params>

</methodCall>

...

<methodResponse>

 <params>

 <param>

 <value><string>twenty-eight</string></value>

 </param>

 </params>

</methodResponse>

First-Generation Problems

Although first-generation XML protocols have been and still are very useful, their
simplicity and reliance on XML 1.0 alone causes some problems.

First-generation protocols are not very extensible. The protocol architects had to reach
agreement before any changes were implemented, and the protocol version had to be
revved up in order to let tools distinguish new protocol versions from old ones and handle
the XML appropriately. For example, when XML-RPC and WDDX added support for binary
data, both protocols had to update their specifications, and the protocol implementations
on all different languages and platforms supporting the protocols had to be updated. The
overhead of constantly revising specifications and deploying updated tools for handling
the latest versions of the protocols imposed limits on the speed and scope of adoption of
first-generation protocols. Second-generation protocols address the issue of extensibility
with XML namespaces.

The second problem with first-generation protocols had to do with datatyping. First-
generation XML protocols stuck to a single Document Type Definition (DTD) to describe
the representation of serialized data in XML. In general, they used just a few XML
elements. This approach made building tools supporting these protocols relatively easy.
The trouble with such an approach is that the XML describing the data in protocol
messages expressed datatype information and not semantic information. In other words,
to gain the ability to represent data in XML, first-generation XML protocols went without
the ability to preserve information about the meaning of the data. Second-generation
XML protocols use XML schema as a mechanism to combine descriptive syntax with
datatype information.

To sum things up, the need to provide broad extensibility without centralized
standardization and the need to combine datatype information with semantic information
were the driving forces behind the effort to improve upon first-generation efforts and to
create SOAP, the de facto standard XML protocol for modern Web services and B2B
applications.

Simple Object Access Protocol (SOAP)

This section looks at the history, design center, and core capabilities of SOAP as a means
for establishing the base on which to build our understanding of Web services.

The Making of SOAP

Microsoft started thinking about XML-based distributed computing in 1997. The goal was
to enable applications to communicate via Remote Procedure Calls (RPCs) on top of
HTTP. DevelopMentor and Userland joined the discussions. The name SOAP was coined in
early 1998. Things moved forward, but as the group tried to involve wider circles at
Microsoft, politics stepped in and the process was stalled. The DCOM camp at the
company disliked the idea of SOAP and believed that Microsoft should use its dominant
position in the market to push the DCOM wire protocol via some form of HTTP tunneling
instead of pursuing XML. Some XML-focused folks at Microsoft believed that the SOAP
idea was good but that it had come too early. Perhaps they were looking for some of the
advanced facilities that could be provided by XML Schema and Namespaces. Frustrated
by the deadlock, Userland went public with a cut of the spec published as XML-RPC in the
summer of 1998.

In 1999, as Microsoft was working on its version of XML Schema (XML Data) and adding
support for namespaces in its XML products, the idea of SOAP gained additional
momentum. It was still an XML-based RPC mechanism, however. That's why it met with
resistance from the BizTalk (http://www.biztalk.org) team. The BizTalk model was based
more on messaging than RPCs. It took people a few months to resolve their differences.
SOAP 0.9 appeared for public review on September 13, 1999. It was submitted to the
IETF as an Internet public draft. With few changes, in December 1999, SOAP 1.0 came to
life.

On May 8, 2000 SOAP 1.1 was submitted as a Note to the World Wide Web Consortium
(W3C) with IBM as a co-author—an unexpected and refreshing change. In addition, the
SOAP 1.1 spec was much more extensible, eliminating concerns that backing SOAP
implied backing some Microsoft proprietary technology. This change, and the fact that
IBM immediately released a Java SOAP implementation that was subsequently donated to
the Apache XML Project (http://xml.apache.org) for open-source development, convinced
even the greatest skeptics that SOAP is something to pay attention to. Sun voiced
support for SOAP and started work on integrating Web services into the J2EE platform.
Not long after, many vendors and open-source projects were working on Web service
implementations.

Right before the XTech 2000 Conference, the W3C made an announcement that it was
looking into starting an activity in the area of XML protocols: "We've been under pressure
from many sources, including the advisory board, to address the threat of fragmentation
of and investigate the exciting opportunities in the area of XML protocols. It makes sense
to address this now because the technology is still early in its evolution…"
(http://lists.w3.org/Archives/Public/xml-dist-app/2000Feb/0006.html). On September
13, 2000 the XML Protocol working group at the W3C was formed to design the XML
protocol that was to become the core of XML-based distributed computing in the years to
come. The group started with SOAP 1.1 as a foundation and produced the first working
draft of SOAP 1.2 on July 9, 2001.

What Should SOAP Do?

SOAP claims to be a specification for a ubiquitous XML distributed computing
infrastructure. It's a nice buzzword-compliant phrase, but what does it mean? Let's parse
it bit by bit to find out what SOAP should do.

XML means that, as a second-generation XML protocol, SOAP is based on XML 1.0, XML
Schema, and XML Namespaces.

Distributed computing implies that SOAP can be used to enable the interoperability of
remote applications (in a very broad sense of the phrase). Distributed computing is a
fuzzy term and it means different things to different people and in different situations.
Here are some "facets" you can use to think about a particular distributed computing
scenario: the protocol stack used for communication, connection management, security,
transaction support, marshalling and unmarshalling of data, protocol evolution and
version management, error handling, audit trails, and so on. The requirements for
different facets will vary between scenarios. For example, a stock ticker service that
continuously distributes stock prices to a number of subscribers will have different needs
than an e-commerce payment-processing service. The stock ticker service will probably
need no support for transactions and only minimal, if any, security or audit trails (it
distributes publicly available data). The e-commerce payment-processing service will
require Cerberean security, heavy-duty transaction support, and full audit trails.

Infrastructure implies that SOAP is aimed at low-level distributed systems developers,
not developers of application/business logic or business users. Infrastructure products
such as application servers become "SOAP enabled" by including a Web service engine
that understands SOAP. SOAP works behind the scenes making sure your applications
can interoperate without your having to worry too much about it.

Ubiquitous means omnipresent, universal. On first look, it seems to be a meaningless
term, thrown into the phrase to make it sound grander. It turns out, however, that this is
the most important part. The ubiquity goal of SOAP is a blessing because, if SOAP-
enabled systems are everywhere on the Internet, it should be easier to do distributed
computing. After all, that's what SOAP is all about. However, the ubiquity of SOAP is also
a curse, because one technology specification should be able to support many different
types of distributed computing scenarios, from the stock ticker service to the e-
commerce payment-processing service. To meet this goal, SOAP needs to be a highly
abstract and flexible technology. However, the more abstract SOAP becomes, the less
support it will provide for specific distributed computing scenarios. Furthermore, greater
abstraction means more risk that different SOAP implementations will fail to interoperate.
This is the eternal tug-of-war between generality and specificity.

What Is SOAP, Really?

Like most new technologies that change the rules of how applications are being
developed, Web services and SOAP have sometimes been over-hyped. Despite the hype,
however, SOAP is still of great importance because it is the industry's best effort to date
to standardize on the infrastructure technology for cross-platform XML distributed
computing.

Above all, SOAP is relatively simple. Historically, simplicity is a key feature of most
successful architectures that have achieved mass adoption. The Web with HTTP and
HTML at its core is a prime example. Simple systems are easier to describe, understand,
implement, test, maintain, and evolve. At its heart, SOAP is a specification for a simple
yet flexible second-generation XML protocol. SOAP 1.0 printed at about 40 pages. The
text of the specification has grown since then (the authors have to make sure the
specification is clear and has no holes), but the core concepts remain simple.

Because SOAP is focused on the common aspects of all distributed computing scenarios,
it provides the following:

• A mechanism for defining the unit of communication. In SOAP, all

information is packaged in a clearly identifiable SOAP message. This

is done via a SOAP envelope that encloses all other information. A

message can have a body in which potentially arbitrary XML can be

used. It can also have any number of headers that encapsulate

information outside the body of the message.

• A mechanism for error handling that can identify the source and cause

of the error and allows for error-diagnostic information to be

exchanged between participants in an interaction. This is done via

the notion of a SOAP fault.

• An extensibility mechanism so that evolution is not hindered and

there is no lock-in. XML, schemas, and namespaces really shine here.

The two key requirements on extensions are that they can be

orthogonal to other extensions and they can be introduced and used

without the need for centralized registration or coordination.

Typically, extensions are introduced via SOAP headers. They can be

used to build more complex protocols on top of SOAP.

• A flexible mechanism for data representation that allows for the

exchange of data already serialized in some format (text, XML, and so

on) as well as a convention for representing abstract data structures

such as programming language datatypes in an XML format.

• A convention for representing Remote Procedure Calls (RPCs) and

responses as SOAP messages, because RPCs are the most common type of

distributed computing interaction and because they map so well to

procedural programming language constructs.

• A document-centric approach to reflect more natural document exchange

models for business interactions. This is needed to support the cases

in which RPCs result in interfaces that are too fine grained and,

therefore, brittle.

• A binding mechanism for SOAP messages to HTTP, because HTTP is the

most common communication protocol on the Internet.

Although solid consensus exists in the industry about the core capabilities of SOAP, there
is considerably less agreement on how higher-level issues such as security and
transaction-management should be addressed. Nearly everyone agrees that to tackle the
broad spectrum of interesting problems we are faced with, we need to work in parallel on
a set of layered specifications for XML distributed computing. Indeed, many loosely
coupled industry initiatives are developing standards and technologies around SOAP.
Tracking these efforts is like trying to shoot at many moving targets. The authors of this
book have tried our best to address the relevant efforts in this space and to provide you
with up-to-date information. Chapter 1 showed how many of these efforts layered around
the notion of the Web services interoperability stack. Chapter 5, "Using SOAP for e-
Business," goes into more detail about the set of standards surrounding SOAP that
enable secure, robust, and scalable enterprise-grade Web services.

Now, let's take a look at how SkatesTown is planning to use SOAP and Web services.

Doing Business with SkatesTown

When Al Rosen of Silver Bullet Consulting first began his engagement with SkatesTown,
he focused on understanding the e-commerce practices of the company and its
customers. After a series of conversations with SkatesTown's CTO Dean Caroll, he
concluded the following:

• SkatesTown's manufacturing, inventory management, and supply chain

automation systems are in good order. These systems are easily

accessible by SkatesTown's Web-centric applications.

• SkatesTown has solid consumer-oriented online presence. Product and

inventory information is fed into the online catalog that is

accessible to both direct consumers and SkatesTown's reseller

partners via two different sites.

• Although SkatesTown's order processing system is sophisticated, it is

poorly connected to online applications. This is a pain point for the

company because SkatesTown's partners are demanding better

integration with their supply chain automation systems.

• SkatesTown's purchase order system is solid. It accepts purchase

orders in XML format and uses XML Schema-based validation to

guarantee their correctness. Purchase order item stock keeping units

(SKUs) and quantities are checked against the inventory management

system. If all items are available, an invoice is created. SkatesTown

charges a uniform 5% tax on purchases and the highest of 5% of the

total purchase or $20 for shipping and handling.

Digging deeper into the order processing part of the business, Al discovered that it uses a
low-tech approach that has a high labor cost and is not suitable for automation. He
noticed one area that badly needed automation: the process of purchase order
submission. Purchase orders are sent to SkatesTown by e-mail. All e-mails arrive in a
single manager's account in operations. The manager manually distributes the orders to
several subordinates. They have to open the e-mail, copy only the XML over to the
purchase order system, and enter the order there. The system writes an invoice file in
XML format. This file must be opened, and the XML must be copied and pasted into a
reply e-mail message. Simple misspellings of e-mail addresses and cut-and-paste errors
are common. They cost SkatesTown and its partners both money and time.

Another area that needs automation is the inventory checking process. SkatesTown's
partners used to submit purchase orders without having a clear idea whether all the
items were in stock. This often caused delayed order processing. Further, purchasing
personnel from the partner companies would engage in long e-mail dialogs with
operations people at SkatesTown. This situation was not very efficient. To improve it,
SkatesTown built a simple online application that communicates with the company's
inventory management system. Partners could log in, browse SkatesTown's products,
and check whether certain items were in stock. The application interface is shown in
Figure 3.1. (You can access this application as Example 1 under Chapter 3 in the example
application on this book's Web site.) This application was a good start, but now
SkatesTown's partners are demanding the ability to have their purchasing applications
directly inquire about order availability.

Figure 3.1. SkatesTown's online inventory check application.

Looking at the two areas that most needed to be improved, Al Rosen chose to focus on
the inventory checking process because the business logic was already present. He just
had to enable better automation. To do this, he had to better understand how the
application worked.

Interacting with the Inventory System

The logic for interacting with the inventory system is very simple. Looking through the
Java Server Pages (JSPs) that made up the online application, Al easily extracted the key
business logic operations from /ch3/ex1/inventoryCheck.jsp. Here is the process for
checking SkatesTown's inventory:

import bws.BookUtil;

import com.skatestown.data.Product;

import com.skatestown.backend.ProductDB;

String sku = ...;

int quantity = ...;

ProductDB db = BookUtil.getProductDB(...);

Product p = db.getBySKU(sku);

boolean isInStock = (p != null && p.getNumInStock() >= quantity);

Given a SKU and a desired product quantity, an application needs to get an instance of
the SkatesTown product database and locate a product with a matching SKU. If such a
product is available and if the number of items in stock is greater than or equal to the
desired quantity, the inventory check succeeds. Because most of the examples in this
chapter talk to the inventory system, it is good to take a deeper look at its
implementation.

Note

A note of caution: this book's sample applications demonstrate realistic uses of Java
technology and Web services to solve real business problems while, at the same time,
remaining simple enough to fit in the book's scope and size limitations. Further, all the
examples are directly accessible in many environments and on all platforms that have a
JSP and servlet engine without any sophisticated installation. To meet these somewhat
conflicting criteria, something has to give. For example:

• To keep the code simple, we do as little data validation and error

checking as possible without allowing applications to break. You

won't find us defining custom exception types or producing long,

readable error messages.

• To get away from the complexities of external system access, we use

simple XML files to store data.

• To make deployment easier, we use the BookUtil class as a place to go

for all operations that depend on file locations or URLs. You can

tune the deployment options for the example applications by modifying

some of the constants defined in BookUtil.

• All file paths are relative to the installation directory of the

example application.

SkatesTown's inventory is represented by a simple XML file stored in /resources/
products.xml (see Listing 3.1). By modifying this file, you can change the behavior of
many examples. The Java representation of products in SkatesTown's systems is the
com.skatestown.data.Product class. It is a simple bean that has one property for every
element under product.

Listing 3.1 SkatesTown Inventory Database

<?xml version="1.0" encoding="UTF-8"?>

<products>

 <product>

 <sku>947-TI</sku>

 <name>Titanium Glider</name>

 <type>skateboard</type>

 <desc>Street-style titanium skateboard.</desc>

 <price>129.00</price>

 <inStock>36</inStock>

 </product>

 ...

</products>

SkatesTown's inventory system is accessible via the ProductDB (for product database)
class in package com.skatestown.backend. Listing 3.2 shows the key operations it
supports. To construct an instance of the class, you pass an XML DOM Document object
representation of products.xml. (BookUtil.getProductDB() does this automatically.)
After that, you can get a listing of all products or you can search for a product by its
SKU.

Listing 3.2 SkatesTown's Product Database Class

public class ProductDB

{

 private Product[] products;

 public ProductDB(Document doc) throws Exception

 {

 // Load product information

 }

 public Product getBySKU(String sku)

 {

 Product[] list = getProducts();

 for (int i = 0 ; i < list.length ; i++)

 if (sku.equals(list[i].getSKU())) return(list[i]);

 return(null);

 }

 public Product[] getProducts()

 {

 return products;

 }

}

This was all Al Rosen needed to know to move forward with the task of automating the
inventory checking process.

Inventory Check Web Service

SkatesTown's inventory check Web service is very simple. The interaction model is that
of an RPC. There are two input parameters: the product SKU (a string) and the quantity
desired (an integer). The result is a simple boolean value—true if more than the desired
quantity of the product are in stock and false otherwise.

Choosing a Web Service Engine

Al Rosen decided to host all of SkatesTown's Web services on the Apache Axis Web
service engine for a number of reasons:

• The open-source implementation guaranteed that SkatesTown will not

experience vendor lock-in in the future. Further, if any serious

problems were discovered, you could always look at the code to see

what is going on.

• Axis is one of the best Java-based Web services engines. It is better

architected and much faster than its Apache SOAP predecessor. The

core Axis team includes some of the great Web service gurus from

companies such as HP, IBM, and Macromedia.

• Axis is also probably the most extensible Web service engine. It can

be tuned to support new versions of SOAP as well as the many types of

extensions current versions of SOAP allow.

• Axis can run on top of a simple servlet engine or a full-blown J2EE

application server. SkatesTown could keep its current J2EE

application server without having to switch.

This combination of factors leads to an easy sell. SkatesTown's CTO agreed to have all
Web services developed on top of Axis. Al spent some time on
http://xml.apache.org/axis learning more about the technology and its capabilities. He
learned how to install Axis on top of SkatesTown's J2EE server by reading the Axis
installation instructions.

Service Provider View

To expose the Web service, Al Rosen had to do two things: implement the service
backend and deploy it into the Web service engine.

Building the backend for the inventory check Web service was simple because the logic
was already available in SkatesTown's JSP pages (see Listing 3.3).

Listing 3.3 Inventory Check Web Service Implementation

import org.apache.axis.MessageContext;

import bws.BookUtil;

import com.skatestown.data.Product;

import com.skatestown.backend.ProductDB;

/**

 * Inventory check Web service

 */

public class InventoryCheck

{

 /**

 * Checks inventory availability given a product SKU and

 * a desired product quantity.

 *

 * @param msgContext This is the Axis message processing context

 * BookUtil needs this to extract deployment

 * information to load the product database.

 * @param sku product SKU

 * @param quantity quantity desired

 * @return true|false based on product availability

 * @exception Exception most likely a problem accessing the DB

 */

 public static boolean doCheck(MessageContext msgContext,

 String sku, int quantity)

 throws Exception

 {

 ProductDB db = BookUtil.getProductDB(msgContext);

 Product prod = db.getBySKU(sku);

 return (prod != null && prod.getNumInStock() >= quantity);

 }

}

One Axis-specific feature of the implementation is that the first argument to the
doCheck() method is an Axis message context object. You need the Axis context so that
you can get to the product database using the BookUtil class. From inside the Axis
message context, you can get access to the servlet context of the example Web
application. (Axis details such as message context are covered in Chapter 4, "Creating
Web Services.") Then you can use this context to load the product database from
resources/products.xml. Note that this parameter will not be "visible" to the requestor
of a Web service. It is something Axis will provide you with if it notices it (using Java
reflection) to be the first parameter in your method. The message context parameter
would not be necessary in a real-world situation where the product database would most
likely be obtained via JNDI.

Deploying the Web service into Axis is trivial because Axis has the concept of a Java Web
Service (JWS) file. A JWS file is a Java file stored with the .jws extension somewhere in
the externally accessible Web applications directory structure (anywhere other than
under /WEB-INF). JWSs are to Web services somewhat as JSPs are to servlets. When a
request is made to a JWS file, Axis will automatically compile the file and invoke the Web
service it provides. This is a great convenience for development and maintenance.

In this case, the code from Listing 3.3 is stored as /ch3/ex2/InventoryCheck.jws. This
automatically makes the Web service available at the application URL
appRoot/ch3/ex2/InventoryCheck.jws. For the example application deployed on top of
Tomcat, this URL is http://localhost:8080/bws/ch3/ex2/InventoryCheck.jws.

Service Requestor View

Because SOAP is language and platform neutral, the inventory check Web service can be
accessed from any programming environment that is Web services enabled. There are
two different ways to access Web services, depending on whether service descriptions

are available. Service descriptions use the Web Services Description Language (WSDL) to
specify in detail information about Web services such as the type of data they require,
the type of data they produce, where they are located, and so on. WSDL is to Web
services what IDL is to COM and CORBA and what Java reflection is to Java classes. Web
services that have WSDL descriptions can be accessed in the simplest possible manner.
Chapter 6, "Describing Web Services," introduces WSDL, its capabilities, and the tools
that use WSDL to make Web service development and usage simpler and easier. In this
chapter, we will have to do without WSDL.

Listing 3.4 shows the prototypical model for building Web service clients in the absence
of a formal service description. The basic class structure is simple:

• A private member stores the URL where the service can be accessed. Of

course, this property can have optional getter/setter methods.

• A simple constructor sets the target URL for the service. If the URL

is well known, it can be set in a default constructor.

• There is one method for every operation exposed by the Web service.

The method signature is exactly the same as the signature of the Web

service operation.

Listing 3.4 Inventory Check Web Service Client

package ch3.ex2;

import org.apache.axis.client.ServiceClient;

/*

 * Inventory check web service client

 */

public class InventoryCheckClient

{

 /**

 * Service URL

 */

 private String url;

 /**

 * Point a client at a given service URL

 */

 public InventoryCheckClient(String targetUrl)

 {

 url = targetUrl;

 }

 /**

 * Invoke the inventory check web service

 */

 public boolean doCheck(String sku, int quantity) throws Exception

 {

 ServiceClient call = new ServiceClient(url);

 Boolean result = (Boolean) call.invoke(

 "",

 "doCheck",

 new Object[] { sku, new Integer(quantity) });

 return result.booleanValue();

 }

}

This approach for building Web service clients by hand insulates developers from the
details of XML, the SOAP message format and protocol, and the APIs for invoking Web
services using some particular client library. For example, users of
InventoryCheckClient will never know that you have implemented the class using Axis.
This is a good thing.

Chapter 4 will go into the details of the Axis API. Here we'll briefly look at what needs to
happen to access the Web service. First, you need to create a ServiceClient object
using the service URL. The service client is the abstraction used to make a Web service
call. Then, you call the invoke() method of the ServiceClient, passing in the name of
the operation you are trying to invoke and an object array of the two operation
parameters: a String for the SKU and an Integer for the quantity. The result will be a
Boolean object.

That's all there is to invoking a Web service using Axis.

Putting the Service to the Test

Figure 3.2 shows a simple JSP page (/ch3/ex2/index.jsp) that uses
InventoryCheckClient to access SkatesTown's Web service. You can experiment with
different SKU and quantity combinations and see how SkatesTown's SW responds. You
can check the responses against the contents of the product database in
/resources/products.xml.

Figure 3.2. Putting the SkatesTown inventory check Web service to the test.

The inventory check example demonstrates one of the promises of Web services—you
don't have to know XML to build them or to consume them. This finding validates SOAP's

claim as an infrastructure technology. The mechanism that allows this to happen involves
multiple abstraction layers (see Figure 3.3). Providers and requestors view services as
Java APIs. Invoking a Web service requires one or more Java method invocations.
Implementing a Web service requires implementing a Java backend (a class or an EJB,
for example). The Web service view is one of SOAP messages being exchanged between
the requestor and the provider.

Figure 3.3. Layering of views in Web service invocation.

These are both logical views in that this is not how the requestor and provider
communicate. The only "real" view is the wire-level view where HTTP packets containing
SOAP messages are exchanged between the requestor's application and the provider's
Web server. The miracle of software abstraction has come to our aid once again.

SOAP on the Wire

The powers of abstraction aside, really understanding Web services does require some
knowledge of XML. Just as a highly skilled Java developer has an idea about what the
JVM is doing and can use this knowledge to write higher performance applications, so
must a Web service guru understand the SOAP specification and how SOAP messages are
moved around between requestors and providers. This does not mean that to build or
consume sophisticated or high-performance Web services you have to work with raw
XML—layers can be applied to abstract your application from SOAP. However, knowledge
of SOAP and the way in which a Web service engine translates Java API calls into SOAP
messages and vice versa allows you to make educated decisions about how to define and
implement Web services.

TCPMon

Luckily, the Apache Axis distribution comes with an awesome tool that can monitor the

exchange of SOAP messages on the wire. The aptly named TCPMon tool will monitor
all traffic on a given port. You can learn how to use TCPMon by looking at the examples
installation section in /readme.html.

TCPMon will redirect all traffic to another host and port. This ability makes TCPMon great
not only for monitoring SOAP traffic but also for testing the book's examples with a
backend other than Tomcat. Figure 3.4 shows TCPMon in action on the inventory check
Web service. In this case, the backend is running on the Macromedia JRun J2EE
application server. By default, JRun's servlet engine listens on port 8100, not on 8080 as
Tomcat does. In the figure, TCPMon is set up to listen on 8080 but to redirect all traffic to
8100. Essentially, with TCPMon you can make JRun (or IBM WebSphere or BEA Weblogic)
appear to listen on the same port as Tomcat and run the book's examples without any
changes.

Figure 3.4. TCPMon in action.

The SOAP Request

Here is the information that passed on the wire as a result of the inventory check Web
service request. Some irrelevant HTTP headers have been removed and the XML has
been formatted for better readability but, apart from that, no substantial changes have
been made:

POST /bws/inventory/InventoryCheck.jws HTTP/1.0

Host: localhost

Content-Type: text/xml; charset=utf-8

Content-Length: 426

SOAPAction: ""

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope

 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <SOAP-ENV:Body>

 <doCheck>

 <arg0 xsi:type="xsd:string">947-TI</arg0>

 <arg1 xsi:type="xsd:int">1</arg1>

 </doCheck>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Later in the chapter, we will look in detail at all parts of SOAP. For now, a quick
introduction will suffice.

The HTTP packet begins with the operation, a POST, and the target URL of the Web
service (/bws/inventory/InventoryCheck.jws). This is how the requestor identifies the

service to be invoked. The host is localhost (127.0.0.1) because you are accessing the
example Web service that comes with the book from your local machine. The content
MIME type of the request is text/xml. This is how SOAP must be invoked over HTTP. The
content length header is automatically calculated based on the SOAP message that is
part of the HTTP packet's body. The SOAPAction header pertains to the binding of SOAP
to the HTTP protocol. In some cases it might contain meaningful information. JWS-based
Web service providers don't require it, however, and that's why it is empty.

The body of the HTTP packet contains the SOAP message describing the inventory check
Web service request. The message is identified by the SOAP-ENV:Envelope element. The
element has three xmlns: attributes that define three different namespaces and their
associated prefixes: SOAP-ENV for the SOAP envelope namespace, xsd for XML Schema,
and xsi for XML Schema instances. One other attribute, encodingStyle, specifies how
data in the SOAP message will be encoded.

Inside the SOAP-ENV:Envelope element is a SOAP-ENV:Body element. The body of the
SOAP message contains the real information about the Web service request. In this case,
this element has the same name as the method on the Web service that you want to
invoke—doCheck(). You can see that the Axis ServiceClient object auto-generated
element names—arg0 and arg1—to hold the parameters passed to the method. This is
fine, because no external schema or service description specifies how requests to the
inventory check service should be made. In lieu of anything like that, Axis has to do its
best in an attempt to make the call. Both parameter elements contain self-describing
data. Axis introspected the Java types for the parameters and emitted xsi:type
attributes, mapping these to XML Schema types. The SKU is a java.lang.String and is
therefore mapped to xsd:string, and the quantity is a java.lang.Integer and is
therefore mapped to xsd:int. The net result is that, even without a detailed schema or
service description, the SOAP message contains enough information to guarantee
successful invocation.

The SOAP Response

Here is the HTTP response that came back from Axis:

HTTP/1.0 200 OK

Content-Type: text/xml; charset=utf-8

Content-Length: 426

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope

 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <SOAP-ENV:Body>

 <doCheckResponse>

 <doCheckResult xsi:type="xsd:boolean">true</doCheckResult>

 </doCheckResponse>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The HTTP response code is 200 OK because the service invocation completed
successfully. The content type is also text/xml. The SOAP message for the response is
structured in an identical manner to the one for the request. Inside the SOAP body is the
element doCheckResponse. Axis has taken the element name of the operation to invoke
and added Response to it. The element contained within uses the same pattern but with
Result appended to indicate that the content of the element is the result of the operation.

Again, Axis uses xsi:type to make the message's data self-describing. This is how the
service client knows that the result is a boolean. Otherwise, you couldn't have cast the
result of call.invoke() to a java.lang.Boolean in Listing 3.4.

If the messages seem relatively simple, it is because SOAP is designed with simplicity in
mind. Of course, as always, some complexity lurks in the details. The next several
sections will take an in-depth look at SOAP in an attempt to uncover and explain all that
you need to know about SOAP to become a skilled and successful Web service developer
and user.

SOAP Envelope Framework

The most important part that SOAP specifies is the envelope framework. Although it
consists of just a few XML elements, it provides the structure and extensibility
mechanisms that make SOAP so well suited as the foundation for all XML-based
distributed computing. The SOAP envelope framework defines a mechanism for
identifying what information is in a message, who should deal with the information, and
whether this is optional or mandatory. A SOAP message consists of a mandatory

envelope wrapping any number of optional headers and a mandatory body .
These concepts are discussed in turn in the following sections.

SOAP Envelope

SOAP messages are XML documents that define a unit of communication in a distributed
environment. The root element of the SOAP message is the Envelope element. In SOAP
1.1, this element falls under the http://schemas.xmlsoap.org/soap/envelope/
namespace. Because the Envelope element is uniquely identified by its namespace, it
allows processing tools to immediately determine whether a given XML document is a
SOAP message.

This certainly is convenient, but what do you trade off for this capability? The biggest
thing you have to sacrifice is the ability to send arbitrary XML documents and perform
simple schema validation on them. True, you can embed arbitrary XML inside the SOAP
Body element, but naïve validation will fail when it encounters the Envelope element at
the top of the document instead of the top document element of your schema. The
lesson is that for seamless validation of arbitrary XML inside SOAP messages, you must
integrate XML validation with the Web services engine. In most cases, the Web services
engine will have to separate SOAP-specific from application-specific XML before validation
can take place.

The SOAP envelope can contain an optional Header element and a mandatory Body
element. Any number of other XML elements can follow the Body element. This
extensibility feature helps with the encoding of data in SOAP messages. We'll discuss it
later in this chapter in the section "SOAP Data Encoding Rules."

SOAP Versioning

One interesting note about SOAP is that the Envelope element does not expose any
explicit protocol version, in the style of other protocols such as HTTP (HTTP/1.0 vs.
HTTP/1.1) or WDDX (<wddxPacket version="1.0"> ... </wddxPacket>). The
designers of SOAP explicitly made this choice because experience had shown simple
number-based versioning to be fragile. Further, across protocols, there were no
consistent rules for determining what changes in major versus minor version numbers
truly mean. Instead of going this way, SOAP leverages the capabilities of XML
namespaces and defines the protocol version to be the URI of the SOAP envelope
namespace. As a result, the only meaningful statement that you can make about SOAP

versions is that they are the same or different. It is no longer possible to talk about
compatible versus incompatible changes to the protocol.

What does this mean for Web service engines? It gives them a choice of how to treat
SOAP messages that have a version other than the one the engine is best suited for
processing. Because an engine supporting a later version of SOAP will know about all
previous versions of the specification, it has a range of options based on the namespace
of the incoming SOAP message:

• If the message version is the same as any version the engine knows

how to process, the engine can just process the message.

• If the message version is older than any version the engine knows how

to process, the engine can do one of two things: generate a version

mismatch error and/or attempt to negotiate the protocol version with

the client by sending some information regarding the versions that it

can accept.

• If the message version is newer than any version the engine knows how

to process, the engine can choose to attempt processing the message

anyway (typically not a good choice) or it can go the way of a

version mismatch error combined with some information about the

versions it understands.

All in all, the simple versioning based on the namespace URI results in the fairly flexible
and accommodating behavior of Web service engines.

SOAP Headers

Headers are the primary extensibility mechanism in SOAP. They provide the means by
which additional facets can be added to SOAP-based protocols. Headers define a very
elegant yet simple mechanism to extend SOAP messages in a decentralized manner.
Typical areas where headers get involved are authentication and authorization,
transaction management, payment processing, tracing and auditing, and so on. Another
way to think about this is that you would pass via headers any information orthogonal to
the specific information needed to execute a request.

For example, a transfer payment service only really needs from and to account numbers
and a transfer amount to execute. In real-world scenarios, however, a service request is
likely to contain much more information, such as the identity of the person making the
request, account/payment information, and so on. This additional information is usually
handled by infrastructure services (login and security, transaction coordination, billing)
outside the main transfer payment service. Encoding this information as part of the body
of a SOAP message will only complicate matters. That is why it will be passed in as
headers.

A SOAP message can include any number of header entries (simply referred to as
headers). If any headers are present, they will all be children of the SOAP Header
element, which, if present, must appear as the first child of the SOAP Envelope element.
The following example shows a SOAP message with two headers, Transaction and
Priority. Both headers are uniquely identified by the combination of their element name
and their namespace URI:

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 <SOAP-ENV:Header>

 <t:Transaction xmlns:t="some-URI" SOAP-ENV:mustUnderstand="1">

 12345

 </t:Transaction>

 <p:Priority xmlns:p="some-Other-URI">

 <ReallyVeryHigh/>

 </p:Priority>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>

 ...

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The contents of a header (sometimes referred to as the header value) are determined by
the schema of the header element. This allows headers to contain arbitrary XML, another
example of the benefits of SOAP being an XML-based protocol. Compare it to protocols
such as HTTP where header values must be simple strings, thus forcing any structured
information to be somehow encoded to become a string. For example, cookie values
come in a semicolon delimited format, such as cookie1=value1;cookie2=value2. It is
easy to reach the limits of these simple encodings. XML is a much better way to
represent this type of structured information.

Also, notice the SOAP mustUnderstand attribute with value 1 that decorates the
Transaction element. This attribute indicates that the recipient of the SOAP message
must process the Transaction header entry. If a recipient does not know how to process
a header tagged with mustUnderstand="1", it must abort processing with a well-defined
error. This rule allows for robust evolution of SOAP-based protocols. It ensures that a
recipient that might be unaware of certain important protocol extensions does not ignore
them.

Note that because the Priority header is not tagged with mustUnderstand="1", it can
be ignored during processing. Presumably, this will be OK because a server that does not
know how to process message priorities will assume normal priority.

You might have noticed that the SOAP body can be treated as a well-specified SOAP
header flagged with mustUnderstand="1". Although this is certainly true, the SOAP
designers thought that having a separation between the headers and body of a message
does not complicate the protocol and is convenient for readability.

Before leaving the topic of headers, it is important to point out that, despite the obvious
need for header extensions to support such basic distributed computing concepts such as
authentication credentials or transaction information, there hasn't been a broad
standardization effort in this area, with the exception of some security extensions that
we'll review in Chapter 5. Some of the leading Web service vendors are doing interesting
work, but the industry as a whole is some way away from agreeing on core extensions to
SOAP. Two primary forces maintain this unsatisfactory status quo:

• Most current Web service engines do not have a solid extensibility

architecture. Therefore, header processing is relatively difficult

right now. At the time of this writing, Apache Axis is a notable

exception to this rule.

• Market pressure is pushing Web service vendors to innovate in

isolation and to prefer shipping software over coordinating

extensions with partners and competitors.

Wider Web service adoption will undoubtedly put pressure on the Web services
community to think more about interoperability and begin broad standardization in some
of these key areas.

SOAP Body

The SOAP Body element immediately surrounds the information that is core to the SOAP
message. All immediate children of the Body element are body entries (typically referred
to simply as bodies). Bodies can contain arbitrary XML. Sometimes, based on the intent
of the SOAP message, certain conventions will govern the format of the SOAP body. The
conventions for representing RPCs are discussed later in the section "SOAP-based RPCs."
The conventions for communicating error information are discussed in the section "Error
Handling in SOAP."

Taking Advantage of SOAP Extensibility

Let's take a look at how SkatesTown can use SOAP extensibility to its benefit. It turns out
that SkatesTown's partners are demanding some type of proof that certain items are in
SkatesTown's inventory. In particular, partners would like to have an e-mail record of
any inventory checks they have performed.

Al Rosen got the idea to use SOAP extensibility in a way that allows the existing
inventory check service implementation to be reused with no changes. SOAP inventory
check requests will include a header whose element name is EMail belonging to the
http://www.skatestown.com/ns/email namespace. The value of the header will be a
simple string containing the e-mail address to which the inventory check confirmation
should be sent.

Service Requestor View

Service requestors will have to modify their clients to build a custom SOAP envelope that
includes the EMail header. Listing 3.5 shows the necessary changes. The e-mail to send
confirmations to is provided in the constructor.

Listing 3.5 Updated Inventory Check Client

package ch3.ex3;

import org.apache.axis.client.ServiceClient;

import org.apache.axis.message.SOAPEnvelope;

import org.apache.axis.message.SOAPHeader;

import org.apache.axis.message.RPCElement;

import org.apache.axis.message.RPCParam;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;

import org.w3c.dom.Document;

import org.w3c.dom.Element;

/*

* Inventory check web service client

 */

public class InventoryCheckClient {

 /**

 * Service URL

 */

 String url;

 /**

 * Email address to send confirmations to

 */

 String email;

 /**

 * Point a client at a given service URL

 */

 public InventoryCheckClient(String url, String email) {

 this.url = url;

 this.email = email;

 }

 /**

 * Invoke the inventory check web service

 */

 public boolean doCheck(String sku, int quantity) throws Exception {

 // Build the email header DOM element

 DocumentBuilderFactory factory =

 DocumentBuilderFactory.newInstance();

 DocumentBuilder builder = factory.newDocumentBuilder();

 Document doc = builder.newDocument();

 Element emailElem = doc.createElementNS(

 "http://www.skatestown.com/", "EMail");

 emailElem.appendChild(doc.createTextNode(email));

 // Build the RPC request SOAP message

 SOAPEnvelope reqEnv = new SOAPEnvelope();

 reqEnv.addHeader(new SOAPHeader(emailElem));

 Object[] params = new Object[]{ sku, new Integer(quantity), } ;

 reqEnv.addBodyElement(new RPCElement("", "doCheck", params));

 // Invoke the inventory check web service

 ServiceClient call = new ServiceClient(url);

 SOAPEnvelope respEnv = call.invoke(reqEnv);

 // Retrieve the response

 RPCElement respRPC = (RPCElement)respEnv.getFirstBody();

 RPCParam result = (RPCParam)respRPC.getParams().get(0);

 return ((Boolean)result.getValue()).booleanValue();

 }

}

To set a header in Axis, you first need to build the DOM representation for the header.
The code in the beginning of doCheck() does this. Then you need to manually construct
the SOAP message that will be sent. This involves starting with a new SOAPEnvelope
object, adding a SOAPHeader with the DOM element constructed earlier, and, finally,
adding an RPCElement as the body of the message. At this point, you can use
ServiceClient.invoke() to send the message.

When the call is made with a custom-built SOAP envelope, the return value of invoke()
is also a SOAPEnvelope object. You need to pull the relevant data out of that envelope by
getting the body of the response, which will be an RPCElement. The result of the
operation will be the first RPCParam inside the RPC response. Knowing that doCheck()
returns a boolean, you can get the value of the parameter and safely cast it to Boolean.

As you can see, the code is not trivial, but Axis does provide a number of convenience
objects that make working with custom-built SOAP messages straightforward. Figure 3.5
shows a UML diagram with some of the key Axis objects related to SOAP messages.

Figure 3.5. Axis SOAP message objects.

Service Provider View

The situation on the side of the Axis-based service provider is a little more complicated
because we can no longer use a simple JWS file for the service. JWS files are best used
for simple and straightforward service implementations. Currently, it is not possible to
indicate from a JWS file that a certain header (in this case the e-mail header) should be
processed. Al Rosen implements three changes to enable this more sophisticated type of
service:

• He moves the service implementation from the JWS file to a simple

Java class.

• He writes a handler for the EMail header.

• He extends the Axis service deployment descriptor with information

about the service implementation and the header handler.

Moving the service implementation is as simple as saving InventoryCheck.jws as
InventoryCheck.java in /WEB-INF/classes/com/skatestown/services. No further
changes to the service implementation are necessary.

Building a handler for the EMail header is relatively simple, as Listing 3.6 shows. When
the handler is invoked by Axis, it needs to find the SOAP message and lookup the EMail
header using its namespace and name. If the header is present in the request message,

the handler sends a confirmation e-mail of the inventory check. The implementation is
complex because to produce a meaningful e-mail confirmation, the handler needs to see
both the request data (SKU and quantity) and the result of the inventory check. The
basic process involves the following steps:

1. Get the request or the response message using getRequestMessage() or

getResponseMessage() on the Axis MessageContext object.

2. Get the SOAP envelope by calling getAsSOAPEnvelope().

3. Retrieve the first body of the envelope and cast it to an RPCElement

because the body represents either an RPC request or an RPC response.

4. Get the parameters of the RPC element using getParams().

5. Extract parameters by their position and cast them to their

appropriate type. As seen earlier in Listing 3.5, the response of an

RPC is the first parameter in the response message body.

Listing 3.6 E-mail Header Handler

package com.skatestown.services;

import java.util.Vector;

import org.apache.axis.* ;

import org.apache.axis.message.*;

import org.apache.axis.handlers.BasicHandler;

import org.apache.axis.encoding.SOAPTypeMappingRegistry;

import bws.BookUtil;

import com.skatestown.backend.EmailConfirmation;

/**

 * EMail header handler

 */

public class EMailHandler extends BasicHandler

{

 /**

 * Utility method to retrieve RPC parameters

 * from a SOAP message.

 */

 private Object getParam(Vector params, int index)

 {

 return ((RPCParam)params.get(index)).getValue();

 }

 /**

 * Looks for the EMail header and sends an email

 * confirmation message based on the inventory check

 * request and the result of the inventory check

 */

 public void invoke(MessageContext msgContext) throws AxisFault

 {

 try

 {

 // Attempt to retrieve EMail header

 Message reqMsg = msgContext.getRequestMessage();

 SOAPEnvelope reqEnv = reqMsg.getAsSOAPEnvelope();

 SOAPHeader header = reqEnv.getHeaderByName(

 "http://www.skatestown.com/",

 "EMail");

 if (header != null)

 {

 // Mark the header as having been processed

 header.setProcessed(true);

 // Get email address in header

 String email = (String)header.getValueAsType(

 SOAPTypeMappingRegistry.XSD_STRING);

 // Retrieve request parameters: SKU & quantity

 RPCElement reqRPC = (RPCElement)reqEnv.getFirstBody();

 Vector params = reqRPC.getParams();

 String sku = (String)getParam(params, 0);

 Integer quantity = (Integer)getParam(params, 0);

 // Retrieve inventory check result

 Message respMsg = msgContext.getResponseMessage();

 SOAPEnvelope respEnv = respMsg.getAsSOAPEnvelope();

 RPCElement respRPC = (RPCElement)respEnv.getFirstBody();

 Boolean result = (Boolean)getParam(

 respRPC.getParams(), 0);

 // Send confirmation email

 EmailConfirmation ec = new EmailConfirmation(

 BookUtil.getResourcePath(msgContext,

 "/resources/email.log"));

 ec.send(email, sku,

 quantity.intValue(), result.booleanValue());

 }

 }

 catch(Exception e)

 {

 throw new AxisFault(e);

 }

 }

 /**

 * Required method of handlers. No-op in this case

 */

 public void undo(MessageContext msgContext)

 {

 }

}

It's simple code, but it does take a few lines because several layers need to be
unwrapped to get to the RPC parameters. When all data has been retrieved, the handler
calls the e-mail confirmation backend, which, in this example, logs e-mails "sent" to
/resources/email.log.

Finally, adding deployment information about the new header handler and the inventory
check service involves making a small change to the Axis Web services deployment
descriptor. The book example deployment descriptor is in /resources/deploy.xml.
Working with Axis deployment descriptors will be described in detail in Chapter 4.

Listing 3.7 shows the five lines of XML that need to be added. First, the e-mail handler is
registered by associating a handler name with its Java class name. Following that is the
description of the inventory check service. The service options identify the Java class
name for the service and the method that implements the service functionality. The
service element has two attributes. Pivot is an Axis term that specifies the type of
service. In this case, the value is RPCDispatcher, which implies that InventoryCheck is
an RPC service. The response attribute specifies the name of a handler that will be called
after the service is invoked. Because the book examples don't rely on an e-mail server
being present, instead of sending confirmation this class writes messages to a log file in
/resources/email.log.

Listing 3.7 Deployment Descriptor for Inventory Check Service

<!-- Chapter 3 example 3 services -->

<handler name="Email" class="com.skatestown.services.EMailHandler"/>

<service name="InventoryCheck" pivot="RPCDispatcher" response="Email">

 <option name="className" value="com.skatestown.services.InventoryCheck"/>

 <option name="methodName" value="doCheck"/>

</service>

Putting the Service to the Test

With all these changes in place, we are ready to test the improved inventory check
service. There is a simple JSP test harness in ch3/ex3/index.jsp that is modeled after
the JSP test harness we used for the JWS-based inventory check service (see Figure 3.6).

Figure 3.6. Putting the enhanced inventory check Web service to the test.

SOAP on the Wire

With the help of TCPMon, we can see what SOAP messages are passing between the
client and the Axis engine. We are only interested in seeing the request message because
the response message will be identical to the one before the EMail header was added.

Here is the SOAP request message with the EMail header present:

POST /bws/services/InventoryCheck HTTP/1.0

Content-Length: 482

Host: localhost

Content-Type: text/xml; charset=utf-8

SOAPAction: "/doCheck"

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope

 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <SOAP-ENV:Header>

 <e:EMail xmlns:e="http://www.skatestown.com/ns/email">

 confirm@partners.com

 </e:EMail>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>

 <ns1:doCheck xmlns:ns1="AvailabilityCheck">

 <arg0 xsi:type="xsd:string">947-TI</arg0>

 <arg1 xsi:type="xsd:int">1</arg1>

 </ns1:doCheck>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

There are no surprises in the SOAP message. However, a couple of things have changed
in the HTTP message. First, the target URL is /bws/services/InventoryCheck. This is a
combination of two parts: the URL of the Axis servlet that listens for SOAP requests over
HTTP (/bws/services) and the name of the service we want to invoke
(InventoryCheck). Also, the SOAPAction header, which was previously empty, now
contains the name of the method we want to invoke. The service name on the URL and
the method name in SOAPAction are both hints to Axis about the service we want to
invoke.

That's all there is to taking advantage of SOAP custom headers. The key message is one
of simple yet flexible extensibility. Remember, the inventory check service
implementation did not change at all!

SOAP Intermediaries

So far, we have addressed SOAP headers as a means for vertical extensibility within

SOAP messages. There is another related notion, however: horizontal extensibility .
Vertical extensibility is about the ability to introduce new pieces of information within a
SOAP message, and horizontal extensibility is about targeting different parts of the same
SOAP message to different recipients. Horizontal extensibility is provided by SOAP

intermediaries .

The Need for Intermediaries

SOAP intermediaries are applications that can process parts of a SOAP message as it
travels from its origination point to its final destination point (see Figure 3.7).
Intermediaries can both accept and forward SOAP messages. Three key use-cases define
the need for SOAP intermediaries: crossing trust domains, ensuring scalability, and
providing value-added services along the SOAP message path.

Figure 3.7. Intermediaries on the SOAP message path.

Crossing trust domains is a common issue faced while implementing security in
distributed systems. Consider the relation between a corporate or departmental network
and the Internet. For small organizations, it is likely that the IT department has put most
computers on the network within a single trusted security domain. Employees can see
their co-workers computers as well as the IT servers and they can freely exchange
information between them without the need for separate logons. On the other hand, the
corporate network probably treats all computers on the Internet as part of a separate
security domain that is not trusted. Before an Internet request reaches the network, it
needs to cross from its untrustworthy domain to the trusted domain of the network.
Corporate firewalls and virtual private network (VPN) gateways are the Cerberean guards
of the gates to the network's riches. Their job is to let some requests cross the trust
domain boundary and deny access to others.

Another important need for intermediaries arises because of the scalability requirements
of distributed systems. A simplistic view of distributed systems could identify two types
of entities: those that request some work to be done (clients) and those that do the work
(servers). Clients send messages directly to the servers with which they want to
communicate. Servers, in turn, get some work done and respond. In this naïve universe,

there is little need for distributed computing infrastructure. Alas, you cannot use this
model to build highly scalable distributed systems.

Take basic e-mail as an example—the service we've grown to depend on so much in the
Net era. When someone@company.com sends an e-mail message to
myfriend@london.co.uk, it is definitely not the case that their e-mail client locates the
mail server london.co.uk and sends the message to it. Instead, the client sends the
message to its e-mail server at company.com. Based on the priority of the message and
how busy the mail server is, the message will leave either by itself or in a batch of other
messages. Messages are often batched to improve performance. It is likely that the
message will make a few hops through different nodes on the Internet before it gets to
the mail server in London.

The lesson from this example is that highly scalable distributed systems (such as e-mail)
require flexible buffering of messages and routing based not only on message
parameters such as origin, destination, and priority but also on the state of the system
measured by parameters such as the availability and load of its nodes as well as network
traffic information. Intermediaries hidden from the eyes of the originators and final
recipients of messages perform all this work behind the scenes.

Last but not least, you need intermediaries so that you can provide value-added services
in a distributed system. The type of services can vary significantly. Here are a couple of
common examples:

• Securing message exchanges, particularly when transmitting messages

through untrustworthy domains, such as using HTTP/SMTP on the

Internet. You could secure SOAP messages by passing them through an

intermediary that first encrypts them and then digitally signs them.

On the receiving side, an intermediary will perform the inverse

operations—checking the digital signature and, if it is valid,

decrypting the message.

• Providing message-tracing facilities. Tracing allows the recipient of

messages to find out the exact path that the message went through

complete with detailed timings of arrivals and departures to and from

intermediaries along the way. This information is indispensable for

tasks such as measuring quality of service (QoS), auditing systems,

and identifying scalability bottlenecks.

Intermediaries in SOAP

As the previous section has shown, intermediaries are an extremely important concept in
distributed systems. SOAP is specifically designed with intermediaries in mind. It has
simple yet flexible facilities that address the three key aspects of an intermediary-
enabled architecture:

• How do you pass information to intermediaries?

• How do you identify who should process what?

• What happens to information that is processed by intermediaries?

From the discussion of intermediaries, you can see that most of the information that
intermediaries require is completely orthogonal to the information contained in SOAP
message bodies. For example, whether logging of inventory check requests is enabled or

not is irrelevant to the inventory check service. Therefore, only information in SOAP
headers can be explicitly targeted at intermediaries. The question then becomes one of
deciding how to target the recipient of a particular header. This does not mean that an
intermediary cannot look at, process, or change the SOAP message body; it certainly can
do that. However, SOAP itself defines no mechanism to instruct an intermediary to do
that. Contrast this to a SOAP message explicitly targeting a piece of information
contained in a SOAP header at an intermediary with the understanding that it must at
least attempt to process it.

All header elements can optionally have the SOAP-ENV:actor attribute. The value of the
attribute is a URI that identifies who should handle the header entry. Essentially, that
URI is the "name" of the intermediary. The special value
http://schemas.xmlsoap.org/soap/actor/next indicates that the header entry's recipient
is the next SOAP application that processes the message. This is useful for hop-by-hop
processing required, for example, by message tracing. Of course, omitting the actor
attribute implies that the final recipient of the SOAP message should process the header
entry. The message body is intended for the final recipient of the SOAP message.

The issue of what happens to a header that is processed by an intermediary is a little
trickier. The SOAP specification states, "the role of a recipient of a header element is
similar to that of accepting a contract in that it cannot be extended beyond the
recipient." This means that the intermediary should remove any header targeted for it
that it has processed. The intermediary is free to introduce a new header in the message
that looks the same but then this constitutes a contract between the intermediary and
the next application. The goal here is to reduce system complexity by requiring that
contracts about the presence, absence, and content of information in SOAP messages be
very narrow in scope—from the originator of that information to the first SOAP
application that handles it and not beyond.

Putting It All Together

To get a better sense of how you might use intermediaries in the real world, let's
consider the potentially realistic albeit contrived example of SkatesTown's overall B2B
integration architecture. Please keep in mind that all XML in the example is purely
fictional—currently there isn't a standardized way to handle security and routing of SOAP
messages.

SkatesTown needs to integrate various applications in several of its departments with
some of its partners' applications (see Figure 3.8). Silver Bullet Consulting started
working with the purchasing department building Web services to automate business
functions such as checking inventory. Following the success of this engagement, Silver
Bullet Consulting has been asked to use Web services to automate processes in other
departments such as customer service. SkatesTown's corporate IT department is
demanding centralized control over the entry point of all Web service requests to the
company. They also require that all SOAP messages be transmitted over HTTPS for
security reasons.

Figure 3.8. SkatesTown's system integration architecture.

At the same time, individual departments demand that their own IT units control the
servers that run their own Web services. These servers have their own trust domains and
are sitting deep inside the corporate network, invisible to the outside world. To address
this issue, Silver Bullet Consulting develops a partner interface gateway SOAP application
that acts as an intermediary between the partner applications sending SOAP messages
and the department-level applications that are handling them. The gateway application is
hosted on an application server that is visible to the partner applications. This server is
managed by the corporate IT department. A firewall is configured to allow access to the
gateway application from the partner networks only.

The gateway application has the responsibility to validate partners' security credentials
and to route messages to the appropriate departmental SOAP applications. Security
information and department server locations are available from SkatesTown's enterprise
directory.

Here is an example message the gateway application might receive:

POST /bws/inventory/InventoryCheck HTTP/1.0

Host: partnergateway.skatestown.com

Content-Type: text/xml; charset="utf-8"

Content-Length: nnnn

SOAPAction: "/doCheck"

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope

 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <SOAP-ENV:Header>

 <td:TargetDepartment

 xmlns:td="http://www.skatestown.com/ns/partnergateway"

 SOAP-ENV:actor="urn:X-SkatesTown:PartnerGateway"

 SOAP-ENV:mustUnderstand="1">

 Purchasing

 </td:TargetDepartment>

 <ai:AuthenticationInformation

 xmlns:ai="http://www.skatestown.com/ns/security"

 SOAP-ENV:actor="urn:X-SkatesTown:PartnerGateway"

 SOAP-ENV:mustUnderstand="1">

 <username>PartnerA</username>

 <password>LongLiveSOAP</password>

 </ai:AuthenticationInformation>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>

 <doCheck>

 <arg0 xsi:type="xsd:string">947-TI</arg0>

 <arg1 xsi:type="xsd:int">1</arg1>

 </doCheck>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

There are two header entries. The first identifies the target department as purchasing,
and the second passes the authentication information of the message originator, partner
A in this case. Both header entries are marked with mustUnderstand="1" because they
are critical to the successful processing of the message. The partner gateway application
is identified by the actor attribute as the place to process these.

After processing the message, the partner gateway application might forward the
following message:

POST /bws/services/InventoryCheck HTTP/1.0

Host: purchasing.skatestown.com

Content-Type: text/xml; charset="utf-8"

Content-Length: nnnn

SOAPAction: "/doCheck"

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope

 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <SOAP-ENV:Header>

 <cc:ClientCredentials

 xmlns:cc="http://schemas.security.org/soap/security"

 SOAP-ENV:mustUnderstand="1">

 <ClientID>/External/Partners/PartnerA</ClientID>

 </cc:ClientCredentials>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>

 <doCheck>

 <arg0 xsi:type="xsd:string">947-TI</arg0>

 <arg1 xsi:type="xsd:int">1</arg1>

 </doCheck>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Note how the previous two header entries have disappeared. They were meant for the
gateway application only. Having extracted the purchasing department's location from
the enterprise directory, the gateway application forwards the message to
purchasing.skatestown.com. A new header entry is meant for the final recipient of the
message. The entry specifies the security identity of the message originator as
/External/Partners/PartnerA. This identity was presumably obtained from
SkatesTown's security system following the successful authentication of partner A. The
applications in the purchasing department will use this identity to check whether partner
A is authorized to perform the operation requested in the SOAP message body.

This example scenario shows that intermediaries bring significant capabilities to SOAP-
enabled applications and can be introduced and implemented at a fairly low cost. The
inventory check service implementation does not need to change. The partner gateway
does not need to know anything about inventory checking; it only understands the target
department and authentication headers. Inventory check clients only need to add a
couple of headers to the messages they are sending to fit in the new architecture.

Error Handling in SOAP

So far in our examples everything has gone according to plan. Murphy's Law guarantees
that this is not how things work out in the real world. What would happen, for example, if
partner A failed to authenticate with the partner gateway application? How will this
exceptional condition be communicated via SOAP? The answer lies in the semantics of
the SOAP Fault element.

Consider the following possible reply message caused by the authentication failure:

HTTP/1.0 500 Internal Server Error

Content-Type: text/xml; charset="utf-8"

Content-Length: nnnn

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <SOAP-ENV:Body>

 <SOAP-ENV:Fault>

 <faultcode>Client.AuthenticationFailure</faultcode>

 <faultstring>Failed to authenticate client</faultstring>

 <faultactor>urn:X-SkatesTown:PartnerGateway</faultactor>

 </SOAP-ENV:Fault>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Before we look at the XML, note that the HTTP response code is 500 Internal Server
Error. This is a required response in the case of any SOAP-related error by the HTTP
transport binding as presented in the SOAP specification. Other protocols will have their
own way to report errors. The HTTP SOAP binding is discussed in detail in the section
"SOAP Protocol Bindings."

The body of the response contains a single Fault element in the SOAP envelope
namespace. SOAP uses this mechanism to indicate that an error has occurred and to
provide some diagnostic information. There are three child elements.

The faultcode element must be present in all cases. It provides information that can be
used to identify the specific error that occurred. It is not meant for human consumption.
The content of the element is a string prefixed by one of the four faultcode values
specified by SOAP:

• VersionMismatch indicates that the namespace of the Envelope element

is invalid.

• MustUnderstand indicates that a required header entry was not

understood.

• Client indicates that likely cause of the error lies in the content

or formatting of the SOAP message. In other words, the client should

probably not re-send the message without making some changes to it.

• Server indicates that the message failed due to reasons other than

its content or its format. This leaves the door open for the same

message to perhaps succeed at a later time.

A hierarchical namespace of values can be obtained by separating fault values with the
dot (.) character. In our example, Client.AuthenticationFailure is a more specific
fault code than Client.

The faultstring element contains a human-readable message identifying the cause of
the fault. It must always be present. Here we simply state that the client has failed to
authenticate.

The faultactor element provides information about where in the message path the fault
occurred. It must be present if the failure occurred somewhere other than at the final
destination of the SOAP message. The content of the element is the URI of the actor
where the error occurred. In our example, we identify the partner gateway application as
the failure point.

What is not shown in this example is how application-specific error diagnostic information
can be exchanged. SOAP provides a simple mechanism for this, as well. If the fault
occurred during the processing of the message body, an optional detail element can be
added after faultactor. There are no restrictions on its contents. This rule has one
important exception: If the fault occurred during the processing of a header entry, a
detail element cannot be returned. Instead, the header entry should be returned with
detailed error information contained therein. This is the mechanism SOAP uses to
determine whether a fault was the result of header versus body processing.

SOAP Message Processing

Now that we have covered headers with mustUnderstand behavior, intermediaries, and
error handling, we can completely define the rules for SOAP message processing. Upon
receiving a message, a SOAP application must:

1. Determine whether it understands the version of SOAP that the message

uses by inspecting the namespace value of the SOAP Envelope element.

If the version is unknown, it must discard the message with a

VersionMismatch error. Otherwise, it has to move to the next step.

2. Identify all parts of the message intended for the application.

Typically this is done considering the application's role in the

message path (intermediary or final recipient) and the values of the

actor global attribute, but other information can be taken into

account as well.

3. Verify that all mandatory parts of the message identified in Step 2

are supported by the application. These include mustUnderstand

headers and, in the case of a final recipient, the body. If any

mandatory part cannot be supported, the message is discarded with a

MustUnderstand error in the case of headers and an application-

specific error in the case of bodies. Otherwise, the application will

move to Step 4.

4. Process all mandatory parts identified in Step 2 plus any optional

parts that it knows about.

5. If the application is not the final recipient of the message, it must

remove all headers that it has processed before passing the message

forward along its path.

Having covered the SOAP envelope framework, intermediaries, and error handling, it is
now time to move to other areas of the SOAP specification.

SOAP Data Encoding

Another important area of SOAP has to do with the rules and mechanisms for encoding
data in SOAP messages. So far, our Web service example, the inventory check, has dealt
only with very simple datatypes: strings, integers, and booleans. All these types have
direct representation in XML Schema so it was easy, through the use of the xsi:type
attribute, to describe the type of data being passed in a message. What would happen if
our Web services needed to exchange more complex types, such as arrays and arbitrary
objects? What algorithm should be used to determine their representation in XML format?
In addition, given SOAP's extensibility requirements, how can a SOAP message specify
different encoding algorithms? This section addresses such questions.

Specifying Different Encodings

SOAP provides an elegant mechanism for specifying the encoding rules that apply to the
message as a whole or any portion of it. This is done via the encodingStyle attribute in
the SOAP envelope namespace. The attribute is defined as global in the SOAP schema; it
can appear with any element, allowing different encoding styles to be mixed and
matched in a SOAP message. An encodingStyle attribute applies to the element it
decorates and its content, excluding any children that might have their own
encodingStyle attribute. Therefore, any element in a SOAP message can have either no
encoding style specified or exactly one encoding style. The rules for determining the
encoding style of an element are simple:

1. If an element has the encodingStyle attribute, then its encoding

style is equal to the value of that attribute.

2. Otherwise, the encoding style is equal to the encoding style of the

closest ancestor element that has the encodingStyle attribute⋯

3. ⋯Unless there is no such ancestor, which implies that the element

has no specified encoding style.

SOAP defines one particular set of data encoding rules. They are identified by SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding" in SOAP
messages. You will often see this attribute applied directly to the Envelope element in a
SOAP message. There is no notion of default encoding in a SOAP message. Encoding
style must be explicitly specified.

Despite the fact that the SOAP specification defines these encoding rules, it does not
mandate them. SOAP implementations are free to choose their own encoding styles.
There are costs and benefits to making this choice. A benefit could be that the
implementations can choose a more optimized data encoding mechanism than the one
defined by the SOAP specification. For example, some SOAP engines already on the
market detect whether they are exchanging SOAP messages with the same type of
engine and, if so, switch to a highly optimized binary data encoding format. Because this
switch happens only when both ends of a communication channel agree to it,
interoperability is not hindered. At the same time, however, supporting these different
encodings does have an associated maintenance cost, and it is difficult for other vendors
to take advantage of the benefits of an optimized data encoding.

SOAP Data Encoding Rules

The SOAP data encoding rules exist to provide a well-defined mapping between abstract
data models (ADMs) and XML syntax. ADMs can be mapped to directed labeled graphs
(DLGs)—collections of named nodes and named directed edges connecting two nodes.
For Web services, ADMs typically represent programming language and database data
structures. The SOAP encoding rules define algorithms for executing the following three
tasks:

• Given meta-data about an ADM, construct an XML schema from it.

• Given an instance graph of the data model, we can generate XML that

conforms to the schema. This is the serialization operation.

• Given XML that conforms to the schema, we can create an instance

graph that conforms to the abstract data model's schema. This is the

deserialization operation. Further, if we follow serialization by

deserialization, we should obtain an identical instance graph to the

one we started with.

Although the purpose of the SOAP data encoding is so simple to describe, the actual rules
can be somewhat complicated. This section is only meant to provide an overview of topic.
Interested readers should pursue the data encoding section of the SOAP Specification.

Basic Rules

The SOAP encoding uses a type system based on XML Schema. Types are schema types.

Simple types (often known as scalar types in programming languages) map to the
built-in types in XML Schema. Examples include float, positiveInteger, string, date,
and any restrictions of these, such as an enumeration of RGB colors derived by

restricting xsd:string to only "red", "green", and "blue". Compound types are
composed of several parts, each of which has an associated type. The parts of a

compound type are distinguished by an accessor . An accessor can use the name of
a part or its position relative to other parts in the XML representation of values. Structs

are compound types whose parts are distinguished only by their name. Arrays

are compound types whose parts are distinguished only by their ordinal position.

Values are instances of types, much in the same way that a string object in Java is an
instance of the java.lang.String class. Values are represented as XML elements whose
type is the value type. Simple values are encoded as the content of elements that have a
simple type. In other words, the elements that represent simple values have no child
elements. Compound values are encoded as the content of elements that have a
compound type. The parts of the compound value are encoded as child elements whose
names and/or positions are those of the part accessors. Note that values can never be
encoded as attributes. The use of attributes is reserved for the SOAP encoding itself, as
you will see a bit later.

Values whose elements appear at the top level of the serialization are considered

independent , whereas all other values are embedded (their parent is a
value element).

The following snippet shows an example XML schema fragment describing a person with
a name and an address. It also shows the associated XML encoding of that schema
according to the SOAP encoding rules:

<!-- This is an example schema fragment -->

<xsd:element name="Person" type="Person"/>

<xsd:complexType name="Person">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element name="address" type="Address"/>

 </xsd:sequence>

 <!-- This is needed for SOAP encoding use; there may be a need

 to specify some encoding parameters, e.g., encodingStyle,

 through the use of attributes -->

 <xsd:anyAttribute namespace="##other" processContents="strict"/>

</xsd:complexType>

<xsd:element name="Address" type="Address"/>

<xsd:complexType name="Address">

 <xsd:sequence>

 <xsd:element name="street" type="xsd:string"/>

 <xsd:element name="city" type="xsd:string"/>

 <xsd:element name="state" type="USState"/>

 </xsd:sequence>

 <!-- Same as above in Person -->

 <xsd:anyAttribute namespace="##other" processContents="strict"/>

</xsd:complexType>

<xsd:simpleType name="USState">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="AK"/>

 <xsd:enumeration value="AL"/>

 <xsd:enumeration value="AR"/>

 <!-- ... -->

 </xsd:restriction>

</xsd:simpleType>

<!-- This is an example encoding fragment using this schema -->

<!-- This value is of compound type Person (a struct) -->

<p:Person>

 <!-- Simple value with accessor "name" is of type xsd:string -->

 <name>Bob Smith</name>

 <!-- Nested compound value address -->

 <address>

 <street>1200 Rolling Lane</street>

 <city>Boston</city>

 <!-- Actual state type is a restriction of xsd:string -->

 <state>MA</state>

 </address>

</p:Person>

One thing should be apparent: The SOAP encoding rules are designed to fit well with
traditional uses of XML for data-oriented applications. The example encoding has no
mention of any SOAP-specific markup. This is a good thing.

Identifying Value Types

When full schema information is available, it is easy to associate values with their types.
In some cases, however, this is hard to do. Sometimes, a schema will not be available.
In these cases, Web service interaction participants should do their best to make
messages as self-describing as possible by using xsi:type attributes to tag the type of
at least all simple values. Further, they can do some guessing by inspecting the markup
to determine how to deserialize the XML. Of course, this is difficult. The only other
alternative is to establish agreement in the Web services industry about the encoding of
certain generic abstract data types. The SOAP encoding does this for arrays.

Other times, schema information might be available, but the content model of the
schema element will not allow you to sufficiently narrow the type of contained values. For
example, if the schema content type is "any", it again makes sense to use xsi:type as
much as possible to specify the exact type of value that is being transferred.

The same considerations apply when you're dealing with type inheritance, which is
allowed by both XML Schema and all object-oriented programming languages. The SOAP
encoding allows a sub-type to appear in any place where a super-type can appear.
Without the use of xsi:type, it will be impossible to perform good deserialization of the
data in a SOAP message.

Sometimes you won't know the names of the value accessors in advance. Remember
how Axis auto-generates element names for the parameters of RPC calls? Another
example would be the names of values in an array—the names really don't matter; only
their position does. For these cases, xsi:type could be used together with auto-
generated element names. Alternatively, the SOAP encoding defines elements with
names that match the basic XML Schema types, such as SOAP-ENC:int or SOAP-
ENC:string. These elements could be used directly as a way to combine name and type
information in one. Of course, this pattern cannot be used for compound types.

SOAP Arrays

Arrays are one of the fundamental data structures in programming languages. (Can you
think of a useful application that does not use arrays?) Therefore, it is no surprise that
the SOAP data encoding has detailed rules for representing arrays. The key requirement
is that array types must be represented by a SOAP-ENC:Array or a type derived from it.
These types have the SOAP-ENC:arrayType attribute, which contains information about
the type of the contained items as well as the size and number of dimensions of the

array. This is one example where the SOAP encoding introduces an attribute and another
reason why values in SOAP are encoded using only element content or child elements.

Table 3.1 shows several examples of possible arrayType values. The format of the
attribute is simple. The first portion specifies the contained element type. This is
expressed as a fully qualified XML type name (QName). Compound types can be freely
used as array elements. If the contained elements are themselves arrays, the QName is
followed by an indication of the array dimensions, such as [] and [,] for one-and two-
dimensional arrays, respectively. The second portion of arrayType specifies the size and
dimensions of the array, such as [5] or [2,3]. There is no limit to the number of array
dimensions and their size. All position indexes are zero-based, and multidimensional
arrays are encoded such that the rightmost position index changes the quickest.

Table 3.1. Example SOAP-ENC:arrayType Values

arrayType Value Description
xsd:int[5] An array of five integers
xsd:int[][5] An array of five integer arrays
xsd:int[,][5] An array of five two-dimensional arrays of integers
p:Person[5] An array of five people
xsd:string[2,3] A 2x3, two-dimensional array of strings
If schema information is present, arrays will typically be represented as XML elements
whose type is or derives from SOAP-ENC:Array. Further, the array elements will have
meaningful XML element names and associated schema types. Otherwise, the array
representation would most likely use the pre-defined element names associated with
schema types from the SOAP encoding namespace. Here is an example:

<!-- Schema fragment for array of numbers -->

<element name="arrayOfNumbers">

 <complexType base="SOAP-ENC:Array">

 <element name="number" type="xsd:int" maxOccurs="unbounded"/>

 </complexType>

 <xsd:anyAttribute namespace="##other" processContents="strict"/>

</element>

<!-- Encoding example using the array of numbers -->

<arrayOfNumbers SOAP-ENC:arrayType="xsd:int[2]">

 <number>11</number>

 <number>22</number>

</arrayOfNumbers>

<!-- Array encoding w/o schema information -->

<SOAP-ENC:Array SOAP-ENC:arrayType="xsd:int[2]">

 <SOAP-ENC:int>11</SOAP-ENC:int>

 <SOAP-ENC:int>22</SOAP-ENC:int>

</SOAP-ENC:Array>

Referencing Data

Abstract data models allow a single value to be referred to from multiple locations. Given
any particular data structure, a value that is referred to by only one accessor is

considered single-reference , whereas a value that has more than one accessor

referring to it is considered multi-reference . The examples shown so far have
assumed single-reference values. The rules for encoding multi-reference values are
relatively simple, however:

• Multi-reference values are represented as independent elements at the

top of the serialization. This makes them easy to locate in the SOAP

message.

• They all have an unqualified attribute named id of type ID per the

XML Schema specification. The ID value provides a unique name for the

value within the SOAP message.

• Each accessor to the value is an unqualified href attribute of type

uri-reference per the XML Schema specification. The href values

contain URI fragments pointing to the multi-reference value.

Here is an example that brings together simple and compound types, and single-and
multi-reference values and arrays:

<!-- Person type w/ multi-ref attributes added -->

<xsd:complexType name="Person">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element name="address" type="Address"/>

 </xsd:sequence>

 <xsd:attribute name="href" type="uriReference"/>

 <xsd:attribute name="id" type="ID"/>

 <xsd:anyAttribute namespace="##other" processContents="strict"/>

</xsd:complexType>

<!-- Address type w/ multi-ref attributes added -->

<xsd:complexType name="Address">

 <xsd:sequence>

 <xsd:element name="street" type="xsd:string"/>

 <xsd:element name="city" type="xsd:string"/>

 <xsd:element name="state" type="USState"/>

 </xsd:sequence>

 <xsd:attribute name="href" type="uriReference"/>

 <xsd:attribute name="id" type="ID"/>

 <xsd:anyAttribute namespace="##other" processContents="strict"/>

</xsd:complexType>

<!-- Example array of two people sharing an address -->

<SOAP-ENC:Array SOAP-ENC:arrayType="p:Person[2]">

 <p:Person>

 <name>Bob Smith</name>

 <address href="#addr-1"/>

 </p:Person>

 <p:Person>

 <name>Joan Smith</name>

 <address href="#addr-1"/>

 </p:Person>

</SOAP-ENC:Array>

<p:address id="addr-1">

 <street>1200 Rolling Lane</street>

 <city>Boston</city>

 <state>MA</state>

</p:address>

The schema fragments for the compound types had to be extended to support the id and
href attributes required for multi-reference access.

Odds and Ends

The SOAP encoding rules offer many more details that we have glossed over in the
interest of keeping this chapter focused on the core uses of SOAP. Three data encoding
mechanisms are worth a brief mention:

• Null values of a specific type are represented in the traditional XML

Schema manner, by tagging the value element with xsi:null="1".

• The notion of "any" type is also represented in the traditional XML

Schema manner via the xsd:ur-type type. This type is the base for all

schema datatypes and therefore any schema type can appear in its

place.

• The SOAP encoding allows for the transmission of partial arrays by

specifying the starting offset for elements using the SOAP-ENC:offset

attribute. Sparse arrays are also supported by tagging array elements

with the SOAP-ENC:position attribute. Both of these mechanisms are

provided to minimize the size of the SOAP message required to

transmit a certain array-based data structure.

Having covered the SOAP data encoding rules, it is now time to look at the more general
problem of encoding different types of data in SOAP messages.

Choosing a Data Encoding

Because data encoding needs vary a lot, there are many different ways to approach the
problem of representing data for Web services. To add some structure to the discussion,
think of the decision space as a choice tree. A choice tree has yes/no questions at its
nodes and outcomes at its leaves (see Figure 3.9).

Figure 3.9. Possible choice tree for data encoding.

XML Data

Probably the most common choice has to do with whether the data already is in (or can
easily be converted to) an XML format. If you can represent the data as XML, you only
need to decide how to include it in the XML instance document that will represent a
message in the protocol. Ideally, you could just mix it in amidst the protocol-specific XML
but under a different namespace. This approach offers several benefits. The message is
easy to construct and easy to process using standard XML tools. However, there is a
catch.

The problem has to do with a little-considered but very important aspect of XML: the
uniqueness rule for ID attributes. The values of attributes of type ID must be unique in
an XML instance so that the elements with these attributes can be conveniently referred
to using attributes of type IDREF, as shown here:

<Target id="mainTarget"/>

<Reference href="#mainTarget"/>

The problem with including a chunk of XML inline (textually) within an XML document is
that the uniqueness of IDs can be violated. For example, in the following code both
message elements have the same ID. This makes the document invalid XML:

<message id="msg-1">

 A message with an attached message.

 <attachment id="attachment-1">

 <!-- ID conflict right here -->

 <message id="msg-1">

 This is a textually included message.

 </message>

 </attachment>

</message>

And no, namespaces do not address the issue. In fact, the problems are so serious that
nothing short of a change in the core XML specification and in most XML processing tools
can change the status quo. Don't wait for this to happen.

You can work around the problem two ways. If no one will ever externally reference
specific IDs within the protocol message data, then your XML protocol toolset can
automatically re-write the IDs and references to them as you include the XML inside the
message, as follows:

<message id="msg-1">

 A message with an attached message.

 <attachment id="attachment-1">

 <!-- ID has been changed -->

 <message id="id-9137">

 This is a textually included message.

 </message>

 </attachment>

</message>

This approach will give you the benefits described earlier at the cost of some extra
processing and a slight deterioration in readability due to the machine-generated IDs.

If you cannot do this, however, you will have to include the XML as an opaque chunk of
text inside your protocol message:

<message id="msg-1">

 A message with an attached message that

 we can no longer refer to directly.

 <attachment id="attachment-1">

 <!-- Message included as text -->

 <message id="id-9137">

 This is a textually included message.

 </message>

 </attachment>

</message>

In this case, we have escaped all pointy brackets, but we also could have included the
whole message in a CDATA section. The benefit of this approach is that it is easy and it
works for any XML content. However, you don't get any of the benefits of XML. You
cannot validate, query, or transform the data directly, and you cannot reference pieces of
it from other parts of the message.

Binary Data

So far, we have discussed encoding options for pre-existing XML data. However, what if
you are not dealing with XML data? What if you want to transport binary data as part of
your message, instead? The commonly used solution is good old base64 encoding:

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <SOAP-ENV:Body>

 <x:StorePicture xmlns:x="Some URI">

 <Picture xsi:type="SOAP-ENC:base64">

 aG93IG5vDyBicm73biBjb3cNCg==

 </Picture>

 </x:StorePicture>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

On the positive side, base64 data is easy to encode and decode, and the character set of
base64-encoded data is valid XML element content. On the negative side, base64
encoding takes up nearly 33% more memory than pure binary representation. If you
need to move much binary data and space/time efficiency is a concern, you might have
to look for alternatives. (More on this in a bit.)

You mignt want to consider using base64 encoding even when you want to move some
plain text as part of a message, because XML's document-centric SGML origin led to
several awkward restrictions on the textual content of XML instances. For example, an
XML document cannot include any control characters (ASCII codes 0 through 31) except
tabs, carriage returns, and line feeds. This limitation includes both the straight
occurrences of the characters and their encoded form as character references, such as
. Further, carriage returns are always converted to line feeds by XML processors.
It is important to keep in mind that not all characters you can put in a string variable in a
programming language can be represented in XML documents. If you are not careful, this
situation can lead to unexpected runtime errors.

Abstract Data Models

If you are not dealing with plain text, XML, or binary data, you probably have some form
of structured data represented via an abstract data model.

The key question when dealing with abstract data models and XML is whether the output
XML format matters. For example, if you have to generate SkatesTown purchase orders,
then the output format is clearly important. If, on the other hand, you just want to make
an RPC call over SOAP to pass some data to a Web service, then the exact format of the
XML representing your RPC parameters does not matter. All that matters is that the Web
service engine can decode the XML and reconstruct a similar data structure with which to
invoke the backend.

In the latter case, it is safe to use pre-built automatic "data to XML and back" encoding
systems (see Figure 3.10). For example, Web service engines have data
serialization/deserialization modules that support the rules of SOAP encoding. These rules
are flexible enough to represent most application-level data types. Suffice to say, in
many cases you will never have to worry about the mechanics of the
serialization/deserialization processes.

Figure 3.10. Generic XML serialization/deserialization.

The SOAP encoding is a flexible schema model for representing data—element names in
the instance document often depend on the type and format of data that is being
encoded. This model allows for a link between the data and its type, which enables
validation. It is one of the core reasons why XML protocols such as SOAP moved to this
encoding model, as discussed earlier in the chapter when we considered the evolution of
XML protocols.

In the cases where the XML output format does not matter (typically RPC scenarios), you
can rely on the default rules provided by various XML data encoding systems. In many
cases, however, the XML format is fixed based on the specification of a service. A
SkatesTown purchase order submission service is a perfect example. From a requestor's
perspective, the input format must be a PO document and the output format must be an
invoice document. Requestors are responsible for mapping whatever data structures they
might be using to represent POs in their order systems to the SkatesTown PO format.
Also, SkatesTown is responsible for always outputting responses in its invoice XML
format.

There are two typical approaches to handling this scenario. The simplest one is to
completely delegate XML processing to the application. In other words, the Web service
engine is responsible only for delivering a chunk of XML to the Web service
implementation. Another approach involves building and registering custom
serializers/deserializers (datatype mappers) with the Web service engine. The serializers
manipulate application data to produce XML. The deserializers manipulate the XML to
generate application data. You can build these serializer/deserializer modules two ways:
by hand, using the APIs of the Web service engine; or using a tool for mapping data to
and from XML given a pre-existing schema. These tools are known as schema compilers

(see Figure 3.11).

Figure 3.11. Serialization/deserialization process with a schema compiler.

Schema compilers are tools that analyze XML schema and code-generate serialization
and deserialization modules specific to the schema. These modules will work with data
structures tuned to the schema.

Schema compilation is a difficult problem, and this is one reason there aren't many
excellent tools in this space. The Java Architecture for XML Binding (JAXB) is one of the
projects that is trying to address this problem in the context of the Java programming
language (http://java.sun.com/xml/jaxb/). Unfortunately, at the time of this writing,
JAXB only supports DTDs and does not support XML Schema. Chapter 8,
"Interoperability, Tools, and Middleware Products," focuses on the current Web service

tooling for the Java platform. It provides more details on these and other important
implementation efforts in the space.

Linking Data

So far, we have only considered scenarios where the encoded data is part of the XML
document describing a protocol message. This can create some problems for including
pre-existing XML content and can waste space in the case of base64-encoded binary
objects. The alternative would be keeping the data outside of the message and somehow
bringing it in at the right time. For example, an auto insurance claim might carry along
several accident pictures that come into play only when the insurance claim needs to be
displayed in a browser or printed.

You can use two general mechanisms in such cases. The first comes straight out of XML
1.0. It involves external entity references, which allow content external to an XML
document to be brought in during processing. Many people in the industry prefer pure
markup and therefore favor a second approach that uses explicit link elements that
comply with the XLink specification. Both methods could work. Both require extensions to
the core Web services toolsets that are available now. In addition, purely application-
based methods are available for linking; you could just pass a URI known to mean "get
the actual content here." However, this approach does not scale to generic data encoding
mechanisms because it requires application-level knowledge.

External content can be kept on a separate server to be delivered on demand. It can also
be packaged together with the protocol message in a MIME envelope. The SOAP
Messages with Attachments Note to the W3C (http://www.w3.org/TR/2000/NOTE-SOAP-
attachments-20001211) defines a mechanism for doing this. An example SOAP message
with an attachment is shown later in the chapter in the section "SOAP Protocol Bindings."

There are many, many ways to encode data in XML, and well-designed XML protocols will
let you plug any encoding style you choose. How should you make this important
decision? First, of course, keep it simple. If possible, choose standards-based and well-
deployed technology. Then, consider your needs and match them against some of the
important facets of XML data encoding described here.

Architecting Distributed Systems with Web Services

Although SOAP is typically demoed with simple RPC-based Web services, such as
SkatesTown's inventory check service, the SOAP specification does not mandate any
particular communication mechanism or interaction pattern between the participants of a
Web-service– enabled distributed system. System designers basically have complete
control over the system architecture, choice of communication protocols, message
routing, intermediary configuration, and so on. The hard part about having so much
flexibility is that without solid experience with distributed systems and good judgment, it
is easy to make sub-optimal choices.

The most commonly asked questions about distributed systems based on Web services
center around a long-running debate in distributed computing circles regarding the rules
and regulations for using RPC and messaging (often identified as Message Oriented
Middleware—MOM) to solve problems. Typically, the debate takes the unnecessarily
polarized form of "MOM vs. RPC." The fact of the matter is that both messaging and RPC
play significant, albeit different, roles in distributed computing. Both approaches continue
to be very relevant in the era of Web services.

Unfortunately, a lot of confusion exists about the meaning of the terms, the capabilities
of messaging and RPC systems, and the scenarios in which they are best applied.
Service-oriented architectures fundamentally can support both models. Therefore, to best
take advantage of Web services, it helps to have a good understanding of both. What

follows is a brief analysis of the two approaches and their relation to SOAP and Web
services. Given that people are generally more familiar with RPCs, we start with a
discussion of messaging in its many forms.

Messaging

As a model for distributed computing, messaging refers to a mechanism for getting
systems to interact via the passing of messages. A message is a single unit of
communication encapsulating some information. (A SOAP message is a great example.)
This is where the differences begin. Messaging models can vary significantly based on the
following criteria:

• Number of participants and their organization

• Interaction patterns

• Synchronicity of message exchanges

• Direct versus queued messaging

• Quality of service (QoS)

• Message format

Message Participants

There are three different ways to organize messaging participants (see Figure 3.12). The
simplest case is 1-to-1 (point-to-point) messaging, which involves only two systems. An
example could be an e-commerce scenario where the client application submits a
purchase order to a digital marketplace. In this case, the sender needs to know where to
send the message.

Figure 3.12. Messaging patterns.

A slightly more complicated organization is 1-to-many messaging, where the sender
sends a single message but copies of it go to multiple recipients. This is often referred to

as publish/subscribe or topic--based messaging . The idea is that the sender is a
publisher that sends a message to a "topic" and that the recipients are all the systems
that have subscribed to receive notifications on this topic. E-mail distribution lists are a
good example of this type of messaging. The name of the distribution list is the topic,
and the subscribers are all the e-mail addresses on the list.

Finally, many-to-many messaging involves a pattern of message exchange among any
number of participants. Clearly, in this case, some system in the middle (typically some
type of a workflow engine supporting business processes) needs to direct message
traffic. This is described by the cloud in Figure 3.12.

Interaction Patterns

There are four common messaging interaction patterns (see Figure 3.13). One-way (fire-
and-forget) messaging involves the simple sending of a message from one system to
another. No response is generated at the application level. Of course, depending on the
transport (such as HTTP), a response might be generated at the network level. In the

case of request-response messaging, a response message is generated for every request
message. The response message is sent from the target of the request message to its
source. Chapter 6 describes how requests and responses can be correlated and how
multiple request-response pairs can be organized into logical "conversations."

Figure 3.13. Interaction patterns.

The other two interaction patterns, notification and notification-response, are mirror
images of one-way and request-response. They are callback patterns. Rather than a
client system pushing messages to a server system, the server system is pushing
messages to the client. The stock ticker application you might have on your desktop is a
perfect example of notification combined with publish-subscribe messaging. Chapter 6
gets into more detail about Web service interaction patterns.

Synchronicity

Messaging can be either synchronous or asynchronous. In synchronous messaging, a
send operation does not complete until the target of the message has finished processing
the message. Asynchronous messaging is harder to define. Typically, the send operation
will return immediately (or very quickly), before the target has processed the message.
Response messages, if any, typically arrive via callbacks.

Direct vs. Queued Messaging

The synchronicity of messaging is controlled by the presence of messaging middleware,

particularly queuing systems. Direct messaging works without any middleware
present. For messages to be exchanged, a direct connection between the source and the
target(s) must be available. This is why it is sometimes referred to as connection-

oriented messaging You can get some amount of asynchronicity in direct
messaging by using threads to manage the sending and receiving of messages.

Indirect messaging involves some type of message queuing. Queues provide message
buffering and dispatch capabilities. Consider the e-mail server example from earlier in

the chapter. An e-mail server is a perfect example of a message queuing system. When
you send an e-mail message, your e-mail client does not contact the e-mail client of the
person you are trying to reach. Instead, your e-mail client sends the message to a local
e-mail server. The server saves the message in some safe place and waits for a good
moment to send it out. Typically, many messages are sent at once. This is the buffering
function. The dispatch function has to do with the e-mail server inspecting the target e-
mail addresses and deciding where to forward the e-mail message. In some cases, an e-
mail message will make several hops between e-mail servers before it arrives at the
destination e-mail server where your mail client can read it. This configuration is so
powerful because it works even in the cases where mail clients and even some mail
servers are offline for long periods of time. A mail server will keep trying to send e-mail
for several days and will store received messages potentially indefinitely.

Figure 3.14 contrasts direct messaging (the topmost configuration) with a number of
possible queuing configurations. In the second and third configurations, the queuing
system acts primarily as a message buffer. For example, if the receiver is not on the
network, the message will still be safely stored in the queue. The last configuration is the
most interesting, in that the message can be moved from the local to the remote system
without either the sender or the receiver being online—the message queuing systems can
do the job by themselves. In addition, the presence of more than one queuing system
allows for flexible message dispatch.

Figure 3.14. Variations of queuing configurations.

Quality of Service

Another important aspect of messaging is quality of service (QoS). Direct
messaging exhibits the QoS parameters with which we are most familiar, such as
security and transaction management. When queuing is in use, other types of QoS
become available. For example, messages can be stored in the queuing server in various
ways: in memory (the fastest queuing mechanism but one that does not guarantee
against system failure) or in some persistent store, such as a DBMS.

Further, transactions can guarantee that the message is sent to the receiver once and
only once or not at all. In the case of message delivery failure, QoS policy might dictate
that a failure notification is sent to the message sender. In addition, it is common QoS
policy to send acknowledgement notifications that the message has been successfully

delivered to the receiver. These types of QoS considerations are very relevant to Web
services. Chapter 5 looks in more detail at some QoS aspects.

Message Format

The last but not least important aspect of messaging is the format of message data. Most
messaging systems allow the transfer of text and binary data, which enables the easy
transfer of XML. Some newer messaging systems treat XML messages specially and try to
use an optimized XML encoding format. There is also the notion of queues that can
automatically allow only XML messages that comply with certain schema. Some platform-
focused messaging systems, such as Java Messaging Service (JMS) middleware and
Microsoft's .NET messaging server, also allow for the automatic serialization of
application data (Java objects in the case of JMS and Common Language Runtime [CLR]
data structures in the case of Microsoft).

Messaging Versus RPC

If messaging is all about possibilities and variations, RPCs are much more constrained. As
the name suggests, the goal of RPCs is to make the invocation of remote code seem like
a local procedure call (LPC). To make an RPC call, you need the following information:

• A target to invoke

• An operation name

• Optionally, parameters to pass to the operation

Therefore, whereas messaging is primarily about data (which can be in any conceivable
format), RPCs are about combining specific application-level data with remote code. This
is the one fundamental difference between messaging and RPC. A nice side-effect is that
programmers using RPC do not have to worry about manually performing data encoding
and decoding—something that typically has to happen when using messaging systems,
especially across programming languages and platforms.

Another way to state the main difference between messaging and RPC is to note that
messaging deals with generic APIs such as sendMessage(), getMessage(), and
registerMessageResponseCallback(), whereas RPCs deal with special-purpose APIs
that vary based on the interface of the target that is being invoked. For example, if you
are trying to invoke a remote EJB that has a processOrder() method, you will most
likely call the processOrder() method of a local object that acts like a proxy to the
remote EJB. Chapter 6 discusses this topic in much more detail.

Another key difference between RPCs and messaging is that RPCs are direct invocations.
There is no queuing mechanism; the backend must be running and it must be directly
accessible at a well-known location. This limits the dispatch capabilities of RPC
middleware. MOM message dispatch can be much more flexible.

Finally, extensive use of RPCs tends to result in somewhat brittle distributed systems.
Because the APIs are fine-grained, even small changes in the data being passed around
can break the system. Messaging uses much rougher-grain data exchanges and is
therefore more likely to sustain small changes in the data being exchanged without
failure.

Apart from these key differences, RPCs and messaging have many similarities:

• RPCs can be implemented on top of a request-response messaging

pattern.

• Contrary to popular belief, however, RPCs do not have to have a

request-response messaging pattern. Some systems support one-way

RPCs.

• In addition, RPCs do not have to be synchronous. Some systems

automatically spawn threads to wait in the background for RPC

responses.

• RPCs and messaging share many of the same QoS requirements such as

security and transaction management.

• Direct, synchronous, 1-to-1 messaging can be simulated via a simple

RPC, e.g., void sendMessage(data).

It should become clear by now that the real issue isn't which of the two approaches to
distributed computing is better (the simple interpretation of "messaging vs. RPC") but
when each approach should be used in the world of Web services. To answer this
question, after we have mentioned so many possible variations of both messaging and
RPC, it helps to establish some stereotypes. When working with Web services, it will
generally be the case that:

• RPCs will be direct, synchronous, request-response invocations that

pass encoded application-level data structures from a client to a

target backend that implements the RPC functionality.

• Messages will carry XML data. The interaction pattern is most likely

to be one-way or request-response. Simple architectures will use

direct messaging. The organization of participants will likely be 1-

to-1. More advanced architectures will be queued and therefore

asynchronous.

In both cases, messages will be represented on the wire using SOAP. QoS-related
information that is part of the message will be represented as message headers. A good
example would be an authentication header that carries a username and password;
Chapter 5 shows an example.

Table 3.2 presents a number of benefits and concerns about using messaging and RPC.
Based on these and the current state-of-the-art in Web service middleware and tooling,
we would recommend that you go with a simple RPC-based solution or a direct
messaging solution unless disconnected operation will be of benefit, the system requires
1-to-many interactions, or synchronous operation is causing performance problems.

Table 3.2. Pros and Cons of Messaging and RPC for Web Services

 Pros Cons
Direct
messaging

• The basic messaging APIs

are very simple.

• Any data can be passed.

• Separates data from the

code that operates on it.

• Applications must perform

manual data

encoding/decoding.

Queued
messaging

• Same as above, plus⋯

• Asynchronicity spreads

the load and improves

performance.

• Allows for disconnected

operation.

• Allows for 1-to-many and

many-to-many

interactions.

• Same as above plus⋯

• Most useful forms of

messaging require a

queuing infrastructure.

• Current message queuing

products do not

interoperate well.

• Asynchronicity makes

programming more

difficult.

RPC • Local APIs match backend

APIs.

• Synchronicity makes

programming easy.

• Application data is

automatically

encoded/decoded.

• Exceptions provide a good

error-handling mechanism.

• RPC products interoperate

reasonably well.

• Synchronicity can cause

bottlenecks.

• Backend must be running

for RPCs to succeed.

• Only 1-to-1 interactions

are supported.

We would expect that as messaging middleware vendors embrace Web services to a
greater extent and as more Web services become increasingly used in the context of
complex business process workflows, the importance of Web service messaging will
grow. Broad standardization efforts such as ebXML (http://www.ebxml.org) and Java API
for XML Messaging (JAXM, http://java.sun.com/xml/jaxm/index.html) will help speed up
the process.

SOAP-based RPCs

So far in this chapter we have presented several examples of SOAP-based RPC without
ever mentioning the details of representing RPCs in SOAP messages as described by the
SOAP specification. The rules are very simple.

Recall that to invoke an RPC, you need a target URI, an operation name, some
parameters, and any amount of context information (such as security context). Any such
context information is modeled as SOAP headers.

SOAP's RPC binding does not specify how the target URI is going to be provided. In other
words, it leaves it up to the SOAP processor to determine how to dispatch a SOAP RPC
request to a target backend. There are three common ways to do this dispatch. Two of
these are HTTP-specific, and the other is based on the contents of the SOAP message:

• In the case of HTTP, the SOAP processor can dispatch based on the

target URL (as in the inventory check example).

• Alternatively, it may dispatch based on the value of the SOAPAction

HTTP header that comes as part of the HTTP request.

• Alternatively, it can use the value of the namespace URI for the

first element inside the SOAP body.

Most Web services engines do not support any combination of these dispatch
mechanisms. Axis can be configured to work with any combination.

In the language of the SOAP encoding, the actual RPC invocation is modeled as a struct.
The name of the struct (that is, the name of the first element inside the SOAP body) is
identical to the name of the method/procedure. This is not a problem, because the
character set of XML elements is a superset of the character set of valid identifier names
in programming languages. Every in and in-out parameter of the RPC is modeled as an
accessor with a name identical to the name of the RPC parameter and type identical to
the type of the RPC parameter mapped to XML according to the rules of the active
encoding style. The accessors appear in the same order, as do the parameters in the
operation signature.

The RPC response is also modeled as a struct. By convention, the name of the struct is
the same as the name of the operation, with Response appended to it. There are
accessors for the operation result and all in-out and out parameters. The result is the
first accessor, followed by the parameters in the order they appear in the operation
signature. By convention, the result element's name is the same as the name of the
operation, with Result appended to it.

Java developers are not used to the concept of in-out or out parameters because,
typically, in Java all objects are automatically passed by reference. When using RMI,
simple objects can be passed by value, but other objects are still passed by reference. In
this sense, any mutable objects (ones whose state can be modified) are automatically
treated as in-out parameters.

In Web services, the situation is different. All parameters are passed by value. SOAP has
no notion of passing values by reference. This design decision was made in order to keep
SOAP and its data encoding simple. Passing values by reference in a distributed system
requires distributed garbage collection. This not only complicates the design of the
system but also imposes restrictions on some possible system architectures and
interaction patterns. For example, how can you do distributed garbage collection in a
queued messaging architecture when the requestor and the provider of a service can
both be offline at the same time?

Therefore, for Web services, the notion of in-out and out parameters does not involve
passing objects by reference and letting the target backend modify their state. Instead,
copies of the data are exchanged. It is then up to the service client code to create the
perception that the actual state of the object that has been passed in to the client
method has been modified. Different Web service clients might have different ways to do
this.

Consider the following operation signature:

boolean doCheck(in String sku, in int quantity, out int numInStock)

Some possible SOAP RPC request and response bodies are:

<!-- RPC request body -->

<SOAP-ENV:Body>

 <doCheck>

 <sku xsi:type="xsd:string">947-TI</sku>

 <quantity xsi:type="xsd:int">1</quantity>

 </doCheck>

</SOAP-ENV:Body>

<!-- RPC response body -->

<SOAP-ENV:Body>

 <doCheckResponse>

 <doCheckResult xsi:type="xsd:boolean">true</doCheckResult>

 <numInStock xsi:type="xsd:int">150</numInStock>

 </doCheckResponse>

</SOAP-ENV:Body>

Of course, if a description of the operation is available, you can generate a schema for all
the elements in the SOAP body. Doing so would eliminate the need to use xsi:type
everywhere in the SOAP message. Chapter 6 looks in more detail at the mechanisms for
doing this.

SOAP-based Messaging

The technical term for non-RPC SOAP messaging is document-centric messaging.
The name comes from the fact that the data sent over SOAP is represented as an XML
document embedded inside the SOAP envelope. Although the RPC binding for SOAP has a
number of rules governing the representation and encoding of operation names and
parameters, simple SOAP messages have absolutely no restrictions as to the information
that can be stored in their bodies. In short, any XML can be included in the SOAP
message. The next section of this chapter shows an example of SOAP-based messaging.

Purchase Order Submission Web Service

Recall that when Al Rosen of Silver Bullet Consulting was investigating SkatesTown's e-
business processes, he noticed that one area that badly needed automation was
purchase order submission. Purchase orders and invoices were being exchanged over e-
mail, and they were manually input into the company's purchase order system.

Because SkatesTown already has defined an XML schema for its purchase orders and
invoices, Al thinks it makes sense to build a purchase order Web service that accepts a
purchase order as an XML document and returns an XML invoice. This service would be
an example of 1-to-1 direct messaging using a request-response interaction pattern.

Purchase Order and Invoice Schemas

The schemas for SkatesTown's purchase orders and invoices are explained in detail in
Chapter 2. Listings 3.8 and 3.9 show example XML document instances for both.

Listing 3.8 Example SkatesTown Purchase Order

<po xmlns="http://www.skatestown.com/ns/po"

 id="50383" submitted="2001-12-06">

 <billTo>

 <company>The Skateboard Warehouse</company>

 <street>One Warehouse Park</street>

 <street>Building 17</street>

 <city>Boston</city>

 <state>MA</state>

 <postalCode>01775</postalCode>

 </billTo>

 <shipTo>

 <company>The Skateboard Warehouse</company>

 <street>One Warehouse Park</street>

 <street>Building 17</street>

 <city>Boston</city>

 <state>MA</state>

 <postalCode>01775</postalCode>

 </shipTo>

 <order>

 <item sku="318-BP" quantity="5">

 <description>Skateboard backpack; five pockets</description>

 </item>

 <item sku="947-TI" quantity="12">

 <description>Street-style titanium skateboard.</description>

 </item>

 <item sku="008-PR" quantity="1000"/>

 </order>

</po>

Listing 3.9 Example SkatesTown Invoice

<invoice inv="http://www.skatestown.com/ns/invoice"

 id="50383" submitted="2001-12-06">

 <billTo>

 <company>The Skateboard Warehouse</company>

 <street>One Warehouse Park</street>

 <street>Building 17</street>

 <city>Boston</city>

 <state>MA</state>

 <postalCode>01775</postalCode>

 </billTo>

 <shipTo>

 <company>The Skateboard Warehouse</company>

 <street>One Warehouse Park</street>

 <street>Building 17</street>

 <city>Boston</city>

 <state>MA</state>

 <postalCode>01775</postalCode>

 </shipTo>

 <order>

 <item sku="318-BP" quantity="5" unitPrice="49.95">

 <description>Skateboard backpack; five pockets</description>

 </item>

 <item sku="947-TI" quantity="12" unitPrice="129.00">

 <description>Street-style titanium skateboard.</description>

 </item>

 <item sku="008-PR" quantity="1000" unitPrice="0.00">

 <description>Promotional: SkatesTown stickers</description>

 </item>

 </order>

 <tax>89.89</tax>

 <shippingAndHandling>89.89</shippingAndHandling>

 <totalCost>1977.52</totalCost>

</invoice>

XML-Java Data Mapping

Unfortunately, Al Rosen finds out that the actual SkatesTown purchase order system
does not know how to deal with XML. The XML capabilities were added as an extension to
the system by a developer who has since left the company. To make matters worse,
much of the source code pertaining to XML processing seems to have been lost during an
upgrade of the source control management (SCM) system at the company.

The PO system's APIs work in terms of a set of Java beans representing concepts such as
product, purchase order, invoice, address, and so on. Figure 3.15 shows a UML diagram.

Figure 3.15. UML model for the PO system's data objects.

Al knows that because he is using SOAP-based messaging, the task of mapping the
purchase order XML to Java objects and the invoice Java objects back to XML is left
entirely up to him. Therefore, he implements a serializer and a deserializer that know
how to encode and decode objects from the com.skatestown.data package to and from
XML. Because the schemas for purchase orders and invoices are relatively simple, he
decides to do this by hand rather than to rely on available schema compiler tools; he has
had no experience with these. The two classes that he builds are Serializer and
Deserializer in the com.skatestown.xml package. The combined code size is slightly
over 300 lines of Java code.

Listing 3.10 shows the key purchase order deserialization methods. They use a number
of simple utility methods such as getValue() and getElements() to traverse the DOM
representation of a purchase order and construct a purchase order and all its contained
objects. Reusable functionality, such as reading the common properties of POItem and

InvoiceItem or creating addresses, is put in separate methods (readItem() and
createAddress(), respectively). This pattern for XML to Java data mapping is very
simple and readable yet flexible to handle a large variety of input XML formats.

Listing 3.10 Core Purchase Deserialization Methods

protected void readDocument(BusinessDocument doc, Element elem)

{

 doc.setId(Integer.parseInt(elem.getAttribute("id")));

 doc.setDate(elem.getAttribute("submitted"));

 doc.setBillTo(createAddress(getElement(elem, "billTo")));

 doc.setShipTo(createAddress(getElement(elem, "shipTo")));

}

protected void readItem(POItem item, Element elem)

{

 item.setSKU(elem.getAttribute("sku"));

 item.setQuantity(Integer.parseInt(elem.getAttribute("quantity")));

 item.setDescription(getValue(elem, "description"));

}

protected Address createAddress(Element elem)

{

 Address addr = new Address();

 addr.setName(getValue(elem, "name"));

 addr.setCompany(getValue(elem, "company"));

 addr.setStreet(getValues(elem, "street"));

 addr.setCity(getValue(elem, "city"));

 addr.setState(getValue(elem, "state"));

 addr.setPostalCode(getValue(elem, "postalCode"));

 addr.setCountry(getValue(elem, "country"));

 return addr;

}

protected PO _createPO(Element elem)

{

 PO po = new PO();

 readDocument(po, elem);

 Element[] orderItems = getElements(elem, "item");

 POItem[] items = new POItem[orderItems.length];

 for (int i = 0 ; i < items.length; ++i)

 {

 POItem item = new POItem();

 readItem(item, elem);

 items[i] = item;

 }

 po.setItems(items);

 return po;

}

Listing 3.11 shows the key invoice serialization methods. In this case, they traverse the
Java data structures describing an invoice and use utility methods such as addChild() to
construct a DOM tree representing an invoice document. Again, shared functionality such
as serializing an address is separated in methods that are called from multiple locations.

Listing 3.11 Core Invoice Serialization Methods

protected void writeDocument(BusinessDocument bdoc, Element elem)

{

 elem.setAttribute("id", ""+bdoc.getId());

 elem.setAttribute("submitted", bdoc.getDate());

 writeAddress(bdoc.getBillTo(), addChild(elem, "billTo"));

 writeAddress(bdoc.getShipTo(), addChild(elem, "shipTo"));

}

protected void writeAddress(Address addr, Element elem)

{

 addChild(elem, "name", addr.getName());

 addChild(elem, "company", addr.getCompany());

 addChildren(elem, "street", addr.getStreet());

 addChild(elem, "city", addr.getCity());

 addChild(elem, "state", addr.getState());

 addChild(elem, "postalCode", addr.getPostalCode());

 addChild(elem, "country", addr.getCountry());

}

protected void writePOItem(POItem item, Element elem)

{

 elem.setAttribute("sku", item.getSKU());

 elem.setAttribute("quantity", ""+item.getQuantity());

 addChild(elem, "description", item.getDescription());

}

protected void writeInvoiceItem(InvoiceItem item, Element elem)

{

 writePOItem(item, elem);

 elem.setAttribute("unitPrice", nf.format(item.getUnitPrice()));

}

protected void writeInvoice(Invoice invoice, Element elem)

{

 writeDocument(invoice, elem);

 Element order = addChild(elem, "order");

 InvoiceItem[] items = invoice.getItems();

 for (int i = 0; i < items.length; ++i)

 {

 writeInvoiceItem(items[i], addChild(order, "item"));

 }

 addChild(elem, "tax", nf.format(invoice.getTax()));

 addChild(elem, "shippingAndHandling",

 nf.format(invoice.getShippingAndHandling()));

 addChild(elem, "totalCost", nf.format(invoice.getTotalCost()));

}

Service Requestor View

The PO Web service client implementation follows the same pattern as the invoice
checker clients (see Listing 3.12). The goal of its API is to hide the details of Axis-specific
APIs from the service requestor. Therefore, the invoke() method takes an InputStream
for the purchase order XML and returns the generated invoice as a string. Alternatively,
the invoke() method might have been written to take in and return DOM documents.

Listing 3.12 PO Submission Web Service Client

package ch3.ex4;

import java.io.*;

import org.apache.axis.encoding.SerializationContext;

import org.apache.axis.message.SOAPEnvelope;

import org.apache.axis.message.SOAPBodyElement;

import org.apache.axis.client.ServiceClient;

import org.apache.axis.Message;

import org.apache.axis.MessageContext;

/**

 * Purchase order submission client

 */

public class POSubmissionClient

{

 /**

 * Target service URL

 */

 private String url;

 /**

 * Create a client with a target URL

 */

 public POSubmissionClient(String targetUrl)

 {

 url = targetUrl;

 }

 /**

 * Invoke the PO submission web service

 *

 * @param po Purchase order document

 * @return Invoice document

 * @exception Exception I/O error or Axis error

 */

 public String invoke(InputStream po) throws Exception

 {

 // Send the message

 ServiceClient client = new ServiceClient(url);

 client.setRequestMessage(new Message(po, true));

 client.invoke();

 // Retrieve the response body

 MessageContext ctx = client.getMessageContext();

 Message outMsg = ctx.getResponseMessage();

 SOAPEnvelope envelope = outMsg.getAsSOAPEnvelope();

 SOAPBodyElement body = envelope.getFirstBody();

 // Get the XML from the body

 StringWriter w = new StringWriter();

 SerializationContext sc = new SerializationContext(w, ctx);

 body.output(sc);

 return w.toString();

 }

}

Sending the request message is simple. We have to create a ServiceClient from the
target URL and set its request message to a message constructed from the purchase
order input stream. The second parameter to the Message constructor, the boolean true,
is an indication that the input stream represents the message body as opposed to the
whole message. Calling invoke() sends the message to the Web service.

The second part of the method has to do with retrieving the body of the response
message. This code should be familiar from the implementation of the E-mail header
handler.

Finally, we use an Axis serialization context to write the XML in the response body into a
StringWriter. We could have easily gotten the body as a DOM element by calling is
getAsDOM() method. The trouble is, there is no standard way in DOM Level 2 to convert
a DOM element into a string! Java API for XML Processing (JAXP) defines such a
mechanism in its transformation API (javax.xml.transform package), but the method is
fairly cumbersome. It is easiest to use an Axis SerializationContext object.

Service Provider View

The implementation of the purchase order submission service is very simple (see Listing
3.13). Because this is not an RPC-based service, the input and output are both XML
documents (represented via DOM Document objects). The input document is deserialized
to produce a purchase order object. It is passed to the actual PO processing backend. Its
implementation is not shown here because it has nothing to do with Web services. It
looks up item prices by their SKU, calculates totals based on item quantities, and adds
tax and shipping and handling. The resulting invoice object is serialized to produce the
result of the purchase order submission service.

Listing 3.13 Purchase Order Submission Web Service

package com.skatestown.services;

import javax.xml.parsers.*;

import org.w3c.dom.*;

import org.apache.axis.MessageContext;

import com.skatestown.backend.*;

import com.skatestown.data.*;

import com.skatestown.xml.*;

import bws.BookUtil;

/**

 * Purchase order submission service

 */

public class POSubmission

{

 /**

 * Submit a purchase order and generate an invoice

 */

 public Document submitPO(MessageContext msgContext, Document inDoc)

 throws Exception

 {

 // Create a PO from the XML document

 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

 DocumentBuilder builder = factory.newDocumentBuilder();

 PO po = Deserializer.createPO(inDoc.getDocumentElement());

 // Get the product database

 ProductDB db = BookUtil.getProductDB(msgContext);

 // Create an invoice from the PO

 POProcessor processor = new POProcessor(db);

 Invoice invoice = processor.processPO(po);

 // Serialize the invoice to XML

 Document newDoc = Serializer.writeInvoice(builder, invoice);

 return newDoc;

 }

}

Finally, adding deployment information about the new service involves making a small
change to the Axis Web services deployment descriptor (see Listing 3.14). Again,
Chapter 4 will go into the details of Axis deployment descriptors.

Listing 3.14 Deployment Descriptor for Purchase Order Submission Service

<!-- Chapter 3 example 4 services -->

<service name="POSubmission" pivot="MsgDispatcher">

 <option name="className" value="com.skatestown.services.POSubmission"/>

 <option name="methodName" value="doSubmission"/>

</service>

Putting the Service to the Test

A simple JSP test harness in ch3/ex4/index.jsp (see Figure 3.16) tests the purchase
order submission service. By default, it loads /resources/samplePO.xml, but you can
modify the purchase order on the page and see how the invoice you get back changes.

Figure 3.16. Putting the PO submission Web service to the test.

SOAP on the Wire

With the help of TCPMon, we can see what SOAP messages are passing between the
client and the Axis engine:

POST /bws/services/POSubmission HTTP/1.0

Host: localhost

Content-Length: 1169

Content-Type: text/xml; charset=utf-8

SOAPAction: ""

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope

 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <SOAP-ENV:Body>

 <po xmlns="http://www.skatestown.com/ns/po"

 id="50383" submitted="2001-12-06">

 ...

 </po>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The target URL is /bws/services/POSubmission. The response message simply carries
an invoice inside it, much in the same way that the request message carries a purchase
order. As a result, there is no need to show it here.

That's all there is to taking advantage of SOAP-based messaging. Axis makes it very easy
to define and invoke services that consume and produce arbitrary XML messages.

Figure 3.17 shows one way to think about the interaction of abstraction layers in SOAP
messaging. It is modeled after Figure 3.3 earlier in the chapter but includes the
additional role of a service developer. As before, the only "real" on-the-wire
communication happens between the HTTP client and the Web server that dispatches a
service request to Axis.

Figure 3.17. Layering of abstraction for SOAP messaging.

The abstractions at this level are HTTP packets. At the Axis level, the abstractions are
SOAP messages with some additional context. For example, on the provider side, the
target service is determined by the target URL of the HTTP packet. This piece of context
information is "attached" to the actual SOAP message by the Axis servlet that listens for
HTTP-based Web service requests. The job of a service-level developer is to create an
abstraction layer that maps Java APIs to and from SOAP messages. During SOAP
messaging, a little more work needs to happen at this level than when doing RPCs. The
reason is that data must be manually encoded and decoded by both the Web service
client and the Web service backend. Finally, at the top of the stack on both the requestor
and provider sides sits the application developer who is happily insulated from the fact
that Web services are being used and that Axis is the Web service engine. The
application developer needs only to understand the concepts pertaining to his application
domain—in this case, purchase orders and invoices.

SOAP Protocol Bindings

So far in this chapter, we have only shown SOAP being transmitted over HTTP. SOAP,
however, is transport-independent and can be bound to any protocol type. This section
looks at some of the issues involved in building Web services and transporting SOAP
messages over various protocols.

General Considerations

The key issue in deciding how to bind SOAP to a particular protocol has to do with
identifying how the requirements for a Web service (RPC or not, interaction pattern,
synchronicity, and so on) map to the capabilities of the underlying transport protocol. In
particular, the task at hand is to determine how much of the total information needed to
successfully execute the Web service needs to go in the SOAP message versus
somewhere else.

As Figure 3.18 shows with an HTTP example, many protocols have a packaging notion. If
SOAP is to be transmitted over such protocols, a distinction needs to be made between
physical (transport-level) and logical (SOAP) messages. Context information can be
passed in both. In the case of HTTP, context information is passed via the target URI and
the SOAPAction header. Security information might come as HTTP username and
password headers. In the case of SOAP, context information is passed as SOAP headers.

Figure 3.18. Logical versus physical messages.

Sometimes, SOAP messages have to be passed over protocols whose physical messages
do not have any mechanism for storing context. Consider pure sockets-based exchanges.
By default, in these cases the physical and the logical message are one and the same. In
these cases, you have four options for passing context information:

• By convention, as in, "When listening on port 12345, I know that I

have to invoke service X."

• By entirely using SOAP's header-based extensibility mechanism to pass

all context information.

• By custom-building a very light physical protocol under SOAP

messages, as in, "The first CRLF delimited line of message will be

the target URI; the rest will be the SOAP message."

• By using a lightweight protocol that can be layered on top of the

physical protocol and can be used to move SOAP messages. Examples of

such protocols are Simple MIME Exchange Protocol (SMXP) or Blocks

Extensible Exchange Protocol (BEEP).

As in most cases in the software industry, reinventing the wheel is a bad idea. Therefore,
the second and fourth approaches listed here typically make the most sense. The first
approach is not extensible and can leave you in a tight spot if requirements change. The
third approach smells of reinventing the wheel. The cost of going with the second

approach is that you have to make sure that all clients interacting with your Web service
will be able to support the necessary extensions. The cost of going with the fourth
approach is that it might require additional infrastructure for both requestors and
providers.

Another consideration that comes into play is the interaction pattern supported by the
transport protocol. For example, HTTP is a request-response protocol. It makes RPCs and
request-response messaging interactions very simple. For other protocols, you might
have to explicitly manage the association of requests and responses. As we mentioned in
the previous section, Chapter 6 discusses this topic in more detail.

Contrary to popular belief, Web services do not have to involve stateless interactions. For
example, Web services could be designed in a session-oriented manner. This is probably
not the best design for a high-volume Web service, but it could work fine in many cases.
HTTP sessions can be leveraged to provide context information related to the session.
Otherwise, you will have to use a session ID of some kind, much in the same way a
message conversation ID is used.

Finally, when choosing transport protocols for Web services, think carefully about
external requirements. You may discover important factors entirely outside the needs of
the Web service engine. For example, when considering Web services over sockets as a
higher-performance alternative to Web services over HTTP (requests and responses don't
have to go through the Web server), you might want to consider the following factors:

• If services have to be available over a public unsecured network, is

it an acceptable risk to open a hole through the firewall for Web

service traffic?

• Can clients support SSL to ensure the privacy of messages?

Surprisingly, some clients can speak HTTPS but not straight SSL.

• What are the back-end load balancing and failover requirements?

Straight sockets-based communication requires sticky load balancing.

You establish a session with one server and you have to keep using

this server. This approach potentially compromises scalability and

failover, unless steps are taken to build request redirection and

session persistence and failover capabilities into the system.

As with most things in the software industry, there is no single correct approach and no
single right answer. Investigate your requirements carefully and do not be easily tempted
by seemingly exciting, out-of-the-ordinary solutions. The rest of this section provides
some more details about how certain protocols can be used with SOAP.

HTTP/S

This chapter has shown many examples of SOAP over HTTP. The SOAP specification
defines a binding of SOAP over HTTP with the following set of rules:

• The MIME media type of both HTTP requests and responses (defined in

the Content-Type HTTP header) must be text/xml.

• Requests must come as HTTP POST operations.

• The SOAPAction header is reserved as a hint to the SOAP processor as

to which Web service is being invoked. The value of the header can be

any URI; it is implementation-specific.

• Successful SOAP message processing must return an HTTP error code in

the 200 range. Typically, this is 200 OK.

• In the case of an error generated while processing the SOAP message,

the HTTP response code must be 500 Internal Server Error and it must

include a SOAP message with a Fault element describing the error.

In addition to these simple rules, the SOAP specification defines how SOAP messages can
be exchanged over HTTP using the HTTP Extension Framework (RFC 2774,
http://www.normos.org/ietf/rfc/rfc2774.txt), but this information is not very relevant to
us.

In short, HTTP is the most commonly used mechanism for exchanging SOAP messages. It
is aided by the industry's experience building relatively secure, scalable, reliable
networks to handle HTTP traffic and by the fact that traditional Web applications and
application servers primarily use HTTP. HTTP is not perfect, but we are very good at
working around its limitations.

For secure message exchanges, you can use HTTPS instead of HTTP. The most common
extension on top of what the SOAP specification describes is the use of HTTP usernames
and passwords to authenticate Web service clients. Combined with HTTPS, this approach
offers a good-enough level of security for most e-commerce scenarios. Chapter 5
discusses the role of HTTPS in Web services.

SOAP Messages with Attachments

SOAP messages will often have attachments of various types. The prototypical example
is an insurance claim form in XML format that has an accident picture associated with it
and/or a scanned copy of the signed accident report form. The SOAP Messages with
Attachments specification defines a simple mechanism for encoding a SOAP message in a
MIME multipart structure and associating this message with any number of parts
(attachments) in that structure. These attachments can be in their native format, which
is typically binary.

Without going into too many details, the SOAP message becomes the root of the
multipart/related MIME structure. The message refers to attachments using a URI with
the cid: prefix, which stands for "content ID" and uniquely identifies the parts of the
MIME structure. Here is how this is done. Note that some long lines (such as the
Content-Type header) have been broken in two for better readability:

MIME-Version: 1.0

Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml;

 start="<claim061400a.xml@claiming-it.com>"

Content-Description: This is the optional message description.

--MIME_boundary

Content-Type: text/xml; charset=UTF-8

Content-Transfer-Encoding: 8bit

Content-ID: <claim061400a.xml@claiming-it.com>

<?xml version='1.0' ?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body>

..

<theSignedForm href="cid:claim061400a.tiff@claiming-it.com"/>

..

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

--MIME_boundary

Content-Type: image/tiff

Content-Transfer-Encoding: binary

Content-ID: <claim061400a.tiff@claiming-it.com>

...binary TIFF image...

--MIME_boundary--

One excellent thing about encapsulating SOAP messages in a MIME structure is that the
packaging is independent of an actual transport protocol. In a sense, the MIME package
is another logical message on top of the SOAP message. This type of MIME structure can
then be bound to any number of other protocols. The specification defines a binding to
HTTP, an example of which is shown here:

POST /insuranceClaims HTTP/1.1

Host: www.risky-stuff.com

Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml;

 start="<claim061400a.xml@claiming-it.com>"

Content-Length: XXXX

SOAPAction: http://schemas.risky-stuff.com/Auto-Claim

...

SOAP over SMTP

E-mail is pervasive on the Internet. The important e-mail-related protocols are Simple
Mail Transfer Protocol (SMTP), Post Office Protocol (POP), and Internet Message Access
Protocol (IMAP). E-mail is a great way to exchange SOAP messages when synchronicity is
not required because:

• E-mail messages can easily carry SOAP messages.

• E-mail messages have extensible headers that can be used to transmit

context information outside the SOAP message body.

• Both sending and receiving of e-mail messages can be configured to

require authentication. Further, using S/MIME with e-mail provides

additional security for a range of applications.

• E-mail can support one-to-one and one-to-many participant

configurations.

• E-mail messaging is buffered and queued with reliable dispatch that

automatically includes multiple retries and failed delivery

notification.

• The Internet e-mail server infrastructure is highly scalable.

Together, these factors make e-mail a very suitable alternative to HTTP for asynchronous
Web service messaging applications.

Other Protocols

Despite its low-tech nature, FTP can be very useful for simple one-way messaging using
Web services. Access to FTP servers can be authenticated. Further, roles-based
restrictions can be applied to particular directories on the FTP server. When using FTP,
SOAP messages are mapped onto the files that are being transferred. Typically, the file
names indicate the target of the SOAP message.

In addition, with companies such as Microsoft backing SMXP for their Hailstorm
initiatives, the protocol is emerging as a potential candidate to layer on top of straight
socket-based communications for transmission of SOAP messages.

Finally, sophisticated messaging infrastructures such as IBM's MQSeries, Microsoft's
Message Queue (MSMQ), and the Java Messaging Service (JMS) are well-suited for the
transport of SOAP messages. Chapter 5 shows an example of SOAP messaging using
JMS.

The key constraint limiting the wide deployment of SOAP bindings to protocols other than
HTTP and e-mail is the requirement of Web service interoperability. HTTP and e-mail are
so pervasive that they are likely to remain the preferred choices for SOAP message
transport for the foreseeable future.

Summary

This chapter addressed the fourth level of the Web services interoperability stack—XML
messaging. It focused on explaining some of the core features of XML protocols and
SOAP 1.1 as the de facto standard for Web service messaging and invocation. The goal
was to give you a solid understanding of SOAP and a first-hand experience building and
consuming Web services using the Apache Axis engine. To this end, we covered, in some
detail:

• The evolution of XML protocols from first-generation technologies

based on pure XML 1.0 (WDDX and XML-RPC) to XML Schema-and Namespace-

powered second-generation protocols, of which SOAP is a prime

example. The chapter also discussed the motivation and history behind

SOAP's creation.

• The simple yet flexible design of the SOAP envelope framework,

including versioning and vertical extensibility using SOAP headers.

In SOAP, all context information orthogonal to what is in the SOAP

body is carried via headers. SOAP's envelope framework allows you to

design higher-level protocols on top of SOAP in a decentralized

manner.

• SOAP intermediaries as the key innovation enabling horizontal

extensibility. Because of intermediaries, Web services can be

organized into very flexible system and network architectures and

value-added services can be provided on top of basic Web service

messaging.

• SOAP error handling using SOAP faults. Any robust messaging protocol

needs a well-designed exception-handling model. With their ability to

communicate error information targeted at both software and humans,

as well as clearly identifying the source of the error condition,

SOAP faults make it possible to integrate SOAP as part of robust,

mission-critical systems.

• Encoding data using SOAP. The chapter covered both SOAP's abstract

data model encoding and a number of other heuristics for determining

an appropriate data representation model for SOAP messages.

• Using SOAP for both messaging and RPC applications. By design, SOAP

is independent of all traditional aspects of messaging: participant

organization, interaction pattern, synchronicity, and so on. As a

result, SOAP can be used for just about any distributed system. This

chapter provided some guidelines that help narrow the space of what

is possible to the space of what makes sense in the real-world

solutions.

• Using SOAP over multiple protocols. The SOAP specification mentions

an HTTP binding for SOAP, but Web services can be meaningfully bound

to many other packaging and protocol schemes: MIME packages to

support attachments, SMTP for scalable asynchronous messaging without

the need for special middleware, and many others.

During the course of the chapter, we developed two meaningful e-commerce Web
services for SkatesTown: an inventory check RPC service (with or without e-mail
confirmations) and a purchase order submission messaging service. Our implementation
on both the server and the client used design best practices for separating data and
business logic from the details of SOAP and XML processing.

The Road Ahead

This chapter focused on the de facto standard protocol for Web service invocation as of
the time of this writing—SOAP 1.1. (SOAP 1.2 is still in early draft stage.) However,
many more pieces to the puzzle are required to bring meaningful Web services-enabled
business solutions online. The rest of the book will complete the Web services puzzle.
Chapter 5 focuses on building secure, robust, scalable enterprise-grade Web services.
Chapter 6 introduces the concept of service descriptions and the Web Services
Description Language (WSDL). Chapter 7 discusses service registries and the Universal
Description, Discovery and Integration (UDDI) effort. Chapter 8 reviews the state of the
currently available Web services tooling. Chapter 9 looks at the exciting world of Web
service futures. This said, the next chapter offers a short detour for those who are truly
excited about building and consuming extensible, high-performance Web services—it is
about building Web services using the advanced features of Apache Axis.

Resources

• BEEP—RFC 3080: "The Blocks Extensible Exchange Protocol Core" (IETF, March 2001).
Available at http://www.ietf.org/rfc/rfc3080.txt.

• DOM Level 2 Core—W3C (World Wide Web Consortium) Document Object Model Level 2
Core (W3C, November 2000). Available at http://www.w3.org/TR/2000/REC-DOM-Level-
2-Core-20001113.

• HTTP extensions—RFC 2774: "An HTTP Extension Framework" (IETF, February 2000).
Available at http://www.ietf.org/rfc/rfc2774.txt.

• HTTP/1.1—RFC 2616: "Hypertext Transfer Protocol—HTTP/1.1" (IETF, January 1997).
Available at http://www.ietf.org/rfc/rfc2616.txt.

• JAXP—Java API for XML Processing 1.1 (Sun Microsystems, Inc., February 2001).
Available at http://java.sun.com/xml/xml_jaxp.html.

• MIME—RFC 2045: "Multipurpose Internet Mail Extensions (MIME) Part One: Format of
Internet Message Bodies" (IETF, November 1996). Available at
http://www.ietf.org/rfc/rfc2045.txt.

• SMXP—Simple MIME eXchange Protocol (SMXP) (First Virtual, May 1995). Available at
http://wuarchive.wustl.edu/packages/first-virtual/docs/smxp-spec.txt.

• XML—Extensible Markup Language (XML) 1.0, Second Edition (W3C, August 2000).
Available at http://www.w3.org/TR/2000/WD-xml-2e-20000814.

• XML Namespaces—"Namespaces in XML" (W3C, January 1999). Available at
http://www.w3.org/TR/1999/REC-xml-names-19990114.

• XML Schema Part 1: Structures—"XML Schema Part 1: Structures" (W3C, May 2001).
Available at http://www.w3.org/TR/2001/REC-xmlschema-1-20010502.

• XML Schema Part 2: Datatypes—"XML Schema Part 2: Datatypes" (W3C, May 2001).
Available at http://www.w3.org/TR/2001/REC-xmlschema-1-20010502.

Why and What Is Axis?

Axis is the latest version of the Apache SOAP project. The acronym Axis means Apache
Extensible Interaction System, a fancy way of saying it's a SOAP processor that allows
for an assortment of pluggable components to be configured in a variety of ways. We
chose this SOAP processor for a few reasons. First, most of the authors of this book are
(or have been) involved in the development of Axis from its inception. Second, we
believe that Axis's flexibility and overall design will allow it to become one of the leading
SOAP processors very quickly. And third, because it is an Apache open source project, we
believe it will gain the benefits of having contributors from a wide range of backgrounds
and companies, giving it a technological edge over other SOAP implementations. But,
only time will tell.

Apache SOAP v2 (http://xml.apache.org/soap), the predecessor to Axis, is a fairly good
implementation of the SOAP specification, but it has its limitations. Although it can be
used for deploying Web services, the performance and pluggability of SOAP v2 leave a lot
to be desired. At the time of this writing, Axis is already quite a bit faster than SOAP v2;
and although SOAP v2 provides some level of pluggability for components like different

kinds of Web services or for different transports , these features were added as an
afterthought—the design deficiencies of these features shows through in their usability
(or lack thereof). SOAP v2 also isn't fully compliant with the SOAP 1.1 specification.

It is important to note that at the time of this writing Axis has not yet released its first
version. It has, however, released an alpha version. This alpha version is not complete
(or fully SOAP 1.1 spec compliant), but it is functional enough for people to start kicking
the tires and getting a feel for whether the architecture is good. By the time the first
release does come out (before the end of 2001, we hope) it will be fully spec compliant.
As with any project, customer feedback is an important step in the development process,

so releasing an alpha version is a key milestone in Axis' development cycle. This chapter
will focus mainly on the current functionality of Axis—when appropriate, however, it will
give insight into the possible future features of Axis (the design could change).

The Axis Architecture

From the start, Axis was designed with a completely open and pluggable architecture. In
its simplest form, Axis can be viewed as a thin layer that sits between the business logic
and the network transport carrying your data.

As depicted in Figure 4.1, Axis is simply the means by which the SOAP message is taken
from a transport (such as HTTP) and handed to the Web service and the means by which
any response is formatted as a SOAP message to then be sent back to the requestor.
Although this might seem like an oversimplification, Axis is designed to be used in a wide
range of environments and by deployment engineers with varying skill levels. When
you're first experimenting with Web services, or if you don't need complex
configurations, Axis by default will make the deployment of Web services very easy. The
"Simple Web Services" section will describe this further by showing you how to quickly
take Java code and deploy it as a Web service in Axis. However, if you need a more
complex processing model, Axis can be configured to support that, too.

Figure 4.1. Basic overview of Axis.

Axis Components

Next, we're going to focus on the various components of Axis. Each item in the following
list will be discussed in more detail, but here's brief summary of the key components:

• Axis Engine — The main entry point into the SOAP processor

• Handlers — The basic building blocks inside Axis that link Axis

to existing back-end systems

• Chain — An ordered collection of handlers (and a handler

itself)

• Transports— Mechanisms by which SOAP messages flow into and out of

Axis

• Deployment/Configuration— Means through which Web services are made

available through Axis

• Serializers/Deserializers— Code that will convert native (for

example, Java) datatypes into XML and back

Axis Engine

As you could probably guess, the Axis engine is the focal point of the Axis SOAP
processor. The engine's job is to act as the main entry point into Axis' message
processing model as well as to coordinate the SOAP message's flow through the various

components. The engine is also responsible for ensuring that the SOAP semantics are
followed—for example, it will verify that the mustUnderstand checks are properly
performed. In the following sections, we'll discuss the other components that make up
the processing model, but it is important to know that the engine is the piece responsible
for coordinating the order in which those other components are invoked. As we discuss
each of these components, we'll describe their interaction with the engine in more detail.

During the design process of Axis, it was realized that it would be impossible to design a
SOAP message processor in such a way that it could work for the wide-ranging uses we
wanted for Axis unless it was flexible enough to allow deployment engineers
(configuration administrations) to control the message flow itself. Allowing people to tell
Axis which message processing logic to perform, in what order, and when, became a
clear requirement. It also became apparent that there would be no way of knowing how
people would want to process the SOAP messages. For example, many people see SOAP
as simply another Remote Procedure Call (RPC) mechanism—which is a valid use.
However, there is no reason the exact same SOAP message that might be treated as an
RPC message by one SOAP processor could not be treated as an XML document and
simply run through an XSLT processor by another. As long they both adhere to the SOAP
specification, and of course follow the semantic rules defined by the Web service
definition, exactly how the SOAP message is processed is wide open. So, how does Axis
handle these challenges? Handlers and chains.

Handlers and Chains

At its most basic level, Axis is all about chaining together pieces of message processing
logic. Figure 4.1 shows just one piece: the Web service itself. Often, you'll need to
perform additional processing on the message either before or after the Web service
itself is invoked. For example, some logging might need to take place, or SOAP headers
might need to be processed. You can accomplish this two ways: Place this additional logic
in the Web service itself or allow for additional pieces of code to be executed outside of,
but before and after, the Web service. For this purpose, Axis has the notion of chains.
Chains are simply ordered collections of components (code) that Axis will invoke
sequentially and in the order specified.

The components that are used to build these chains are called handlers. Each handler
has the opportunity to examine or modify the SOAP message in order to complete its job.
For example, it is possible to have a handler in the chain that will look for any encrypted
data in the message and decrypt it before the Web service itself is invoked (SOAP
encryption is explained in more detail in Chapter 5, "Using SOAP for e-Business"). By
modularizing the work in this way, each handler is free to focus on its core job and not
worry about any possible auxiliary work that might need to be done, thereby eliminating
code duplication. Also, if new pre- or post-processing is needed in the future, it becomes
a simple matter of plugging new handlers into the chain through configuration changes to
Axis rather than having to make code changes to the Web service. This also allows third-
party vendors to produce Axis handlers that can be snapped into any configuration
without prior knowledge of the exact environment, configuration, or Web service being
invoked.

Handlers are the basic building blocks inside Axis. Everything, even the Axis engine and
the chains themselves, is a handler. As a result, the deployment engineer is free to
configure Axis in an unlimited number of ways. It is possible for a preprocessing handler
shown in Figure 4.2 to be a chain that itself contains a collection of handlers (or even
more chains). Aside from each handler having access to the SOAP message, each handler
can also be involved in the production of any possible SOAP response message. We'll give
more details in the "Building Handlers" section, but it is worth reiterating that each

handler does have access to (and can change) the request message and any possible

response message that might exist during the processing flow through the Axis
processor.

Figure 4.2. Pre- and post-processing is done by defining a chain.

Chains are the mechanisms by which handlers are grouped together. The concept is
simple; a chain is an ordered collection of handlers that together can be viewed as a
single unit of processing. As with any good rule, there is a slight complication—certain

types of chains have the notion of a pivot point handler, which is the point at which
the chain notes that it has switched from processing the request SOAP message (request
processing) and is now processing the response SOAP message (response processing).
The need for this logical split between request, pivot point, and response handlers in a
chain will be made clearer later. This pivot point handler also serves as the one handler
in these types of chains that is the real reason the chain exists—to dispatch the message
to the target Web service (the other handlers are there for request and response
processing of the message). The most common use of this type of chain (also called

targeted-chain because it is viewed as pointing to the pivot point handler) is the
Web service–specific chain. In Figure 4.2, a Web service chain has request and response
processing handlers defined, but the pivot point handler invokes the Web service. Even
though Axis has, for programmer convenience, defined a particular kind of chain
encapsulating these three pieces, when a chain is defined there is no reason that all
three pieces need to be used. For example, it is possible to define a chain that is just a
collection of handlers without a specific pivot point—it is there merely as a configuration
option.

Figure 4.2 shows that it is possible to define a chain of handlers that are invoked for a
particular Web service. However, what if chains need to be invoked for all Web service
invocations flowing through Axis? Or, what if certain chains need to be invoked only if the
message came in on HTTP, whereas if the message was delivered via SMTP those chains
should not be invoked? To support these configurations, Axis has the notion of transport

specific chains and global chains .

As shown in Figure 4.3, Axis allows the definition of chains that are invoked based on the
type of transport used in the delivery of the SOAP message (transport specific chains)
and chains that should be invoked for all Web services (global chains).

Figure 4.3. Axis includes three different levels of chaining.

Transport-specific chains might be defined to process such things as transport-specific
compression, or authentication. The "Configuration Methods" section will discuss the way
to deploy chains, but it is important to note that transport specific chains are targeted-
chains. The request and response sides are clearly separated so that the Axis engine
knows exactly which subset of handlers to invoke at the start of the message flow and
which set to invoke at the end of the message flow. Although it was possible to design
Axis so that there were two completely separate chains defined (rather than one with a
request and a response side), it was decided that because they would always be used in
conjunction with each other, and because it is expected that there will be a large number
of transport specific chains, it would be easier from a usability point of view to define
them as one chain with two sides.

Global chains come in handy in cases when all Web services require the same processing
regardless of how the message was delivered or what the specific Web service itself is—
for example, SkatesTown might want to keep a log of all Web service requests, and
placing a logging handler in the global chain becomes a cleaner way of deploying it than
placing it in each Web service–specific chain. Unlike transport chains that use targeted-
chains, the global chain is split into two separate chains. Because, conceptually, there is
only one global chain, it was decided that it would be easier for deployment engineers to
define two separately named chains (global.request and global.response) rather
than one chain with two sides. We'll discuss the details of how to name chains in the
"Configuring Axis" section.

Within the Axis server-side engine, the order of chain processing is as follows:

1. If a transport-specific chain is defined, then the handlers labeled

as the request handlers defined for that chain are invoked.

2. If a chain named global.request is defined, then it is invoked.

3. The Web service–specific chain is invoked. Exactly how the Web

service–specific chain is identified is discussed later. As noted

before, this chain is a targeted-chain and has three groupings of

handlers: the request handlers, the Web service itself (at the pivot

point), and the response handlers. They are invoked in that order.

4. If a chain named global.response is defined, it is invoked.

5. If a transport specific chain is defined, then the handlers labeled

as the response handlers defined for that chain are invoked.

This processing model should allow a deployment engineer to have the complete
flexibility of placing any handler at any point in the flow of messages through the server
Axis engine.

In Figure 4.3, the Web service is shown as a handler at the pivot point in the Web

service– specific chain. One layer of code is not shown: the dispatcher .

Figure 4.4 shows a dispatcher as the pivot point handler in the Web service–specific
chain. Like all handlers, this dispatcher is responsible for acting as the bridge between
Axis and your business logic. It is the job of the dispatcher to locate and invoke the
appropriate piece of code associated with the desired Web service. For example, Axis

comes with an RPCDispatcher whose job is to convert the SOAP message from
XML into Java objects, locate the appropriate Java method to invoke, invoke it, and
convert any possible response data back into XML and place it in the response SOAP
message. By having a dispatch handler do this work, it can be used for any Java Web
service invoked. Likewise, the Web service itself does not need to be concerned with the
details of how the data was delivered or how to convert XML into Java objects; it can
concentrate on doing its real job.

Figure 4.4. Handlers, acting as dispatchers, are the bridges between Axis and application

logic.

Although dispatchers have been presented in the context of invoking the Web service,
any of the handlers in any of the chains could be dispatchers. In other words, there is no
reason why any of the request/response processing handlers need to have the business
logic directly inside them. Those handlers could be dispatchers that extract the necessary
data from the SOAP message and pass it along to external code in the proper format.

Transports

In order to complete the overall picture of the Axis architecture, one more piece of the
puzzle needs to be brought in: transports. All the figures show a single Axis engine with a
single transport delivering the SOAP message; however, this need not be the case.

Figure 4.5 shows that Axis can support a variety of transports, not just HTTP. Actually,
Axis itself doesn't support multiple transports. Axis is designed such that the Axis engine
can be viewed simply as a chunk of code that is called with an incoming message and

returns an outgoing message. Transport listeners (such as servlets that wait for a
SOAP message), although key in the overall picture of how Axis is used, are themselves

not part of the Axis engine. It is assumed that the mechanism by which the Axis engine
is created (a new one on each request or shared instance) will be managed by the
transport listeners. Axis comes with a set of transport listeners (such as the
AxisServlet) that you can use, but if you require special processing, it is assumed that
you will modify the shipped transport listener to suit your needs or write a new one.

Figure 4.5. Multiple transports.

The role of the transport listener is to deliver the SOAP message to the Axis engine. This
could mean listening on port 80 for an HTTP request or waiting for a file to be FTPed to a
certain directory and then handing that message to the Axis engine. Aside from invoking
the Axis engine, the transport listener must also tell the Axis engine which transport was
used—this allows Axis to invoke any transport-specific chain that might have been
configured.

The delineation between whether certain processing should be in the transport listener or
in the transport specific chain is an issue left up to the deployment engineer. For
example, in the HTTP case, the servlet waiting for SOAP requests can also perform any
basic HTTP authentication checks before invoking the Axis engine. It is also perfectly
acceptable for the servlet to not perform that check and leave it up to a handler on the
transport specific chain to do it. The choice is left open.

Listing 4.1 shows a sample transport listener that does nothing more than look for a file
called inMsg in the current directory. If the file is found, the transport listener uses it as
the requesting SOAP message, calls Axis on it, and then places any response back into a
file called outMsg.

Listing 4.1 FileListener.java

import java.io.File;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.FileNotFoundException;

import org.apache.axis.AxisFault;

import org.apache.axis.AxisEngine;

import org.apache.axis.server.AxisServer;

import org.apache.axis.Message;

import org.apache.axis.MessageContext;

import org.apache.axis.message.SOAPEnvelope;

import org.apache.axis.message.SOAPFaultElement;

public class FileListener {

 public void run() {

 while (true) {

 try {

 // Look for an incoming msg, create a new Message object

 FileInputStream input = new FileInputStream("inMsg");

 AxisEngine engine = AxisServer.getSingleton();

 MessageContext msgContext = new MessageContext(engine);

 Message msg = new Message(input);

 try {

 //Set it as the "request" message

 msgContext.setRequestMessage(msg);

 // Set the Transport

 msgContext.setTransportName("file");

 // Invoke the Axis engine

 engine.invoke(msgContext);

 }

 catch(Exception e) {

 // Catch any error and stick it in the response

 if (!(e instanceof AxisFault))

 e = new AxisFault(e);

 AxisFault af = (AxisFault)e;

 msg = msgContext.getResponseMessage();

 if (msg == null) {

 msgContext.setResponseMessage(new Message(af));

 } else {

 SOAPEnvelope env = msg.getAsSOAPEnvelope();

 env.clearBody();

 env.addBodyElement(new SOAPFaultElement(af));

 }

 }

 // Close and delete the incoming message

 input.close();

 (new File("inMsg")).delete();

 // Place the response message in a file called "outMsg"

 msg = msgContext.getResponseMessage();

 FileOutputStream output = new FileOutputStream("outMsg");

 String result = (String)msg.getAsString();

 output.write(result.getBytes());

 output.close();

 System.out.println("Processed a request");

 } catch(Exception exp) {

 if (!(exp instanceof FileNotFoundException))

 exp.printStackTrace();

 }

 // Sleep for a sec and then loop

 try {

 Thread.sleep(1000);

 } catch(Exception e) {

 }

 }

 }

 static public void main(String[] args) {

 (new FileListener()).run();

 }

}

Let's walk through this example. The FileListener's run() method will loop forever
while waiting for a new message to arrive. Once there, an InputStream is created for it.
The listener will then ask Axis for an instance of an AxisServer—the getSingleton()

method will return the same instance each time. Next we create a MessageContext
object. This will be discussed more in the "Building Handlers" section, but for now it is
simply an object that will contain all the data (request and response messages, meta-
data, and so on) about this current SOAP message flow; it is passed to each handler as it
is invoked. Inside this object we place a new Message object that is created by passing in
the file's InputStream. This will be the request message. There's only one more thing to
do before we invoke the engine, and that's to tell Axis the name of the transport that was
used to retrieve the message—in this case, file. When the engine wants to invoke the
transport-specific chain, it will look for one named file and, if found, invoke it.

The rest of the code processes any result from the engine. We must, of course, handle

any error conditions. The Axis engine can throw an AxisFault (see the "Fault"
section) that must be caught and used to create a response message. The catch block
will also check to see if a response message already exists and clear any XML from the
Body section if there is one.

In either the successful case or the faulting case, the code will then get the response
message as a String, write it out to a file called outMsg, and then go look for more
messages.

Completing the overall picture of what the Axis engine's architecture looks like, we have
Figure 4.6.

Figure 4.6. Complete Axis architecture.

Although the final picture of the Axis engine's processing model might seem a bit
complex, it really is nothing more than defining handlers and chains. Of course, we've
overlooked one very important issue; up to this point, the focus has been on what an
Axis engine does when it is on the receiving side of the SOAP message path (the server).
Axis can be used on the client side, as well. With just a few slight changes, all the
concepts we've mentioned up to now apply on the client as shown in Figure 4.7.

Figure 4.7. Axis client architecture.

It should be clear that almost all the same components that appeared on the server are
on the client as well; they are just invoked in a slightly different order:

1. The request handlers of the Web service–specific request chain are

invoked.

2. The global.request chain is invoked.

3. The transport chain is invoked. Notice that here the entire chain is

invoked, not just the request side. There is no need to split the

request and response invocations because they would be called one

right after the other anyway. Also note that at the pivot point of

the transport specific chain is a transport sender ; more on this

later.

4. The global.response chain is invoked.

5. The response handlers of the Web service–specific response chain are

invoked.

As mentioned in Step 3, there is something new here: a transport sender. A transport
sender is a handler that is responsible for taking the request SOAP message and sending
it to a SOAP server. For example, one of the transport senders that is shipped with Axis
is an HTTP transport sender that will take the request SOAP message, open an HTTP
socket connection to the specified HTTP server, do a POST of the SOAP message, and
wait for a response. The response is then placed in the response message portion of the
MessageContext object.

Because transport senders are just handlers, they can be placed in any chain in any
configuration. So, it is technically possible that the transport chain shown in Figure 4.7
could have multiple transport senders if you desire a multicast scenario. It is also
possible that a transport sender could be placed in one of the chains on the server such
that the response message could be sent over a different transport than it was received
on (for example, the transport listener could be an HTTP servlet, but the SOAP response
message could be sent back via SMTP).

Locating the Service Chain

We've talked about how there are service-specific chains, but we haven't yet touched on
how the service chain is selected by the Axis engine. An interesting aspect of SOAP is
that it doesn't mandate how to determine the exact Web service to invoke. This might
seem odd—but it is accurate. Many different common practices have been established,
and each one is valid. Here are just three of the more common ones:

• SOAPAction— The value of the SOAPAction HTTP header is used to match the
service name.

• URL— The URL of the incoming HTTP request is used to match the service name.
For example, if the URL used to access Axis was
http://localhost:8080/axis/servlet/AxisServlet/MyService, then the SOAP
engine would look for a service chain called myService.

• Namespace— Perhaps the most used method. It takes the namespace of the first
XML element in the SOAP Body block and tries to find a service chain that
matches.

Axis could have chosen one method, most likely the namespace approach, but doing so
would have limited the options available to its users. Instead, Axis lets you choose how
services are determined. A handler can be written and placed in the transport chain or

global chain that can determine which service chain to choose. This handler is free to use
any algorithm it wants to make this determination. However, if a service chain has not
been selected by the time the Axis engine gets to the point in its processing that it wants
to invoke the service specific chain, it will default to the namespace selection method.

XML Parsing

Axis has been designed and coded with a watchful eye towards performance. For this
reason, when tackling the problem of how to parse an XML stream efficiently, a SAX-
based approach was chosen over a DOM-based one. As we discussed in Chapter 2, "XML
Primer," SAX XML parsing does not read the entire XML stream into memory; rather, it
triggers callbacks based on the types of XML tokens that are encountered. It then
becomes the responsibility of those callback routines to do any buffering of data or
saving of state that is needed so that subsequent callbacks still have access to any
previously seen data. Even though SAX is used for parsing, a DOM-based representation
of XML sometimes is used when passing around XML blocks—as will be seen in the
"Document-Centric Services" section. In various discussions and examples in this
chapter, we'll need to talk about concepts and features in terms of using a SAX parser or
writing SAX callback routines. We assume that you are familiar with these concepts, and
we will not explain the specific details of how to write code utilizing a SAX parser in great
detail.

With that overview of what Axis is and how it works, now we can move on to actually
using it.

Installing Axis

Installing an Axis server is relatively simple. In the servlet engine's directory structure is
a webapps directory. This directory contains the various Web applications that are
deployed. The Axis distribution includes a webapps directory as well, and contains a
directory named axis. Copy the axis directory into the servlet engine's webapps
directory. In this new axis directory should be a WEB-INF/lib directory. There, you
should place all the JAR files Axis will need to run. You should already see axis.jar.
Currently, Axis will need one only additional JAR file: xerces.jar (available from the
Apache Xerces distribution at http://xml.apache.org) or any other JAXP-compliant parser.
Copy the parser's JAR file into the WEB-INF/lib directory.

When services are deployed, the Java class files should be placed in the axis/WEB-INF/
classes directory; or if there are JAR files, they should be placed in the axis/WEB-

INF/lib directory. If you plan to use the JWS feature of Axis (see the "Simple Web
Services" section), you will also need to make sure that the Java tools.jar file is either
in the axis/ WEB-INF/lib directory or in your servlet engine's classpath.

Installing the client is simply a matter of making sure the axis.jar and xerces.jar files
are in your classpath.

Configuring Axis

There are four different types of configuration files. Each will contain the same type of
data, but the outermost XML element will vary:

• client-config.xml — This is the configuration information for the Axis
engine when it is invoked on the client. This file needs to be in the current
working directory of the client application. This file has the format

• <engineConfig>
• …configuration XML…
• </engineConfig>

• server-config.xml — This is the configuration information for the Axis
engine when it is invoked on the server. This file needs to be in the servlet
engine's axis/WEB-INF directory in the HTTP case, or in the current working
directory for other transports. This file has the format

• <engineConfig>
• …configuration XML…
• </engineConfig>

• deploy.xml — This is the file used by the AdminClient to deploy new
handlers, chains, and services. The AdminClient is an administrative tool used for
deploying and undeploying Axis resources (such as handlers and chains). The
AdminClient uses a document-centric Web service—it takes the XML file passed
to it and sends it to the Axis server for processing (more later). Unlike the first
two configuration files, the name of this file can be anything. This file has the
format

• <m:deploy xmlns:m="AdminService">
• …configuration XML…
• </m:deploy>

• undeploy.xml — This is the file used by the AdminClient to undeploy
resources. The AdminClient will remove any named resources listed as
immediate child elements of the undeploy XML element. Unlike the first two
configuration files, the name of this file can be anything. This file has the format

• <m:undeploy xmlns:m="AdminService">
• …resources to be removed…
• </m:undeploy>

In the first three cases, ...configuration XML... section will contain one of the
following XML elements:

• handler
• <handler name="handler_name" class="class_name">
• [<option name="option_name" value="option_value"/>]…
• </handler>
•
• Example:
• <!-- Define an EMail handler -->
• <handler name="EMail" class="com.skatestown.services.EMailHandler" />

• Defines a single handler named handler_name whose class is given by

class_name.The optional name/value pairs are defined by each specific

handler and will be available to the handler at runtime.

• chain
• <chain name="chain_name" { flow="list_of_handlers" |
• request="list_of_handlers" pivot="handler_name"
• response="list_of_handlers"} >
• [<option name="option_name" value="option_value"/>]…
• </chain>
•
• Example:
• <!--Define a chain consisting of 2 handlers, a Java RPC Dispatcher

• and the Email handler from chapter 3 -->
• <chain name="myChain" flow="RPCDispatcher, Email" />

• Defines a chain called chain_name that consists of either the list of

handlers specified in the flow attribute or the handlers specified by

the request pivot and response attributes combined. The optional

name/value pairs will be available to the chain at runtime. There are

two reserved chain names: global.request and global.response. These

names should be used when defining the global chains.

• service
• <service name="service_name" [request="list_of_handlers"]
• [pivot="handler_name"]
• [response="list_of_handlers"]>
• [<option name="option_name" value="option_value"/>]…
• </service>

• Example:

• <!-- Define a service chain with the "RPCDispatcher" at the pivot-point
• and Email handler to mail the response. The class and method name
• that the RPCDispatcher will use are passed in as options -->
• <service name="InventoryCheck" pivot="RPCDispatcher" response="Email">
• <option name="className"
• value="com.skatestown.services.InventoryCheck"/>
• <option name="methodName" value="doCheck"/>
• </service>

Defines a service chain consisting of the list of handlers specified

in the request, pivot, and response attributes combined. The optional

name/value pairs will be available to the service at runtime. The

name specified here should match the namespace URI of the first body

entry of the incoming SOAP request message.

• transport
• <transport name="transport_name" [request="list_of_handlers"]
• [pivot="handler_name"]
• [response="list_of_handlers"]>
• [<option name="option_name" value="option_value"/>]…
• </transport>

• Example:

• <!-- Define a transport specific chain that will invoke a "uudecode"
• handler on the request message and the "uuencode" handler on the
• response message – these will only be invoked for those messages
• that come in using the "file" transport -->
• <transport name="file" request="uudecode" response="uuencode"/>

Defines a transport chain consisting of the list of handlers

specified in the request, pivot, and response attributes combined.

The optional name/value pairs will be available to the transport

chain at runtime. The name specified on this definition must match

the name of the transport specified by the transport listener on the

setTransportName() method.

• beanMappings
• <beanMappings>
• <x:name xmlns:x="namespace_uri" classname="class_name" />
• </beanMappings>

• Example:

• <beanMappings>
• <x:po xmlns:x="http://www.skatestown.com/ns/po"
• classname="www.skatestown.com.data.PO" />
• </beanMappings>

Defines the bean serializer/deserializer class (class_name) to be

used for the bean named name in the namespace namespace_uri. This is

a convenient way of using the default Java bean serializer and

deserializer for your Java beans. We'll give more details about

serializers and deserializers in the "Data Encoding/Decoding"

section.

• typeMappings
• <typeMappings>
• <x:name xmlns:x="namespace_uri" type="soap_type" serializer="class_name"
• deserializerFactory="class_name" />
• </typeMappings>
•
• Example:
• <typeMappings>
• <x:PO xmlns:x="http://www.skatestown.com/ns/po" type="po"
• serializer="serializePO"
• deserializerFactory="deserializePOFactory" />
• </typeMappings>

• Defines a mapping between the type found in the SOAP message

(soap_type) in the specified snamespace namespace_uri with the

specified serializer and deserializer. We'll give more details about

serializers and deserializers in the "Data Encoding/Decoding"

section.

The fourth configuration file, undeploy.xml, has a slightly different format. In this file,
you just list the types of resources to be undeployed and their names. For example:

<m:undeploy xmlns:m="AdminService">

 <handler name="logger" />

 <service name="DoCheck" />

 <transport name="file" />

</m:undeploy>

In this example, three resources will be undeployed: a handler named logger, a service
chain named DoCheck, and a transport chain named file.

Configuration Methods

You can configure the Axis server two ways: You can modify the server-config.xml file
directly by adding or removing the XML configuration data, or you can use the
AdminClient tool. This tool lets you remotely modify the server's configuration. By
default, Axis will only allow the AdminClient to be run from the same machine as the
server (for security reasons), but this is easily changed (see the "Security" section).

To run the AdminClient, you must first create an XML file with the list of changes to be
made. Inside this XML file should be just the list of resources (handlers, chains, services,
and so on) that should be deployed or undeployed. As previously shown, the XML's root
element should be named deploy in the case where new resources are being added and
undeploy when they are being removed. Once all the deployment information is placed in
an XML file, you can invoke AdminClient:

> java org.apache.axis.client.AdminClient

 -l http://localhost:8080/axis/servlet/AxisServlet deploy.xml

Note that this assumes an HTTP transport and that the Axis servlet is available and
waiting for requests on the specified URL
(http://localhost:8080/axis/servlet/AxisServlet). This invocation will work for deploying
new resources to an Axis engine running as a server. To add new resources to an Axis
client engine, you'll need to modify the client-config.xml file used by the client Axis
engine. This file will reside in the current working directory. Following is one of the
sample XML files from Chapter 3 that is used as input to the AdminClient:

<m:deploy xmlns:m="AdminService">

 <handler name="URLMapper" class="org.apache.axis.handlers.http.URLMapper"/>

 <handler name="ActionHandler"

 class="org.apache.axis.handlers.http.HTTPActionHandler"/>

 <transport name="http" request="URLMapper"/>

 <!-- Chapter 3 example 3 services -->

 <handler name="EMail" class="com.skatestown.services.EMailHandler"/>

 <service name="InventoryCheck" pivot="RPCDispatcher" response="EMail">

 <option name="className" value="com.skatestown.services.InventoryCheck"/>

 <option name="methodName" value="doCheck"/>

 </service>

 <!-- Chapter 3 example 4 services -->

 <service name="POSubmission" pivot="MsgDispatcher">

 <option name="className" value="com.skatestown.services.POSubmission"/>

 <option name="methodName" value="doSubmission"/>

 </service>

</m:deploy>

Although it is possible to run the AdminClient tool to change the configuration
information of the Axis client engine, it is easier to simply modify the client-
config.xml file that resides in the current working directory.

Once a Web resource is deployed, either to the client or the server, it will be available
until it is undeployed—even across servlet engine restarts.

At the time of publication, Axis' deployment XML files use a very simple XML definition
format. Although this format works for now, it doesn't quite support the full features that
Axis is planning to have. Eventually, Axis will switch to a new XML format called Web

Services Deployment Descriptor (WSDD) . Although WSDD is still under

development, it should be more robust than the current XML deployment file. One other
advantage is that WSDD will have a WSDL flavor that should allow for Web services that
are defined in WSDL to be deployed by having the WSDD point to their WSDL file. But all
of this is still being designed.

By default, Axis will have several handlers, chains, and services automatically deployed.
If a server-config.xml file is not found in the appRoot/WEB-INF directory by the Axis
server, Axis will default to have the following pre-deployed:

• JWSProcessor service— Looks for and processes JWS files (JWS was briefly
discussed in Chapter 3, and will be discussed in more detail later in this chapter).

• RPCProvider handler— Locates and invokes a Java class method.

• AdminService service— Takes as input an XML document that will be interpreted
as a deployment data XML file containing the list of new handlers, chains, and
services to deploy (or undeploy).

• HTTPSender handler— Is used by an Axis client to send a SOAP request to a SOAP
server. It can also be used on the server side when a message should be sent to
another SOAP server using HTTP (for example, an intermediary).

If a client-config.xml file is not found, then Axis will default to having just one handler
pre-deployed: the HTTPSender, for use in sending a SOAP request over HTTP.

Security

Currently, Axis includes only one minor security feature. By default, the AdminService
will only allow deployment of new resources from the same machine running the Axis
server. By using the enableRemoteAdmin option on the AdminService, resources can be
deployed from any other machine as well. The server-config.xml file should be
changed as follows:

<service name="AdminService" pivot="RPCDispatcher">

 <option name="className" value="org.apache.axis.util.Admin"/>

 <option name="methodName" value="AdminService"/>

 <option name="enableRemoteAdmin" value="true"/>

</service>

Note, however, that security can be added to Axis through the development of handlers
that perform the desired security checks. This addition is being planned for development
in time for Axis' first release.

Simple Web Services

By far the easiest and quickest way to deploy a Java Web service is through Axis' Java
Web Service (JWS) facility. JWS lets you place a Java file in your Web application
directory structure, and Axis will automatically find it, compile it, and deploy the methods
automatically. Using the example from Chapter 3, we have the JWS (or Java) file shown
in Listing 4.2.

Listing 4.2 InventoryCheck.jws

import org.apache.axis.MessageContext;

import bws.BookUtil;

import com.skatestown.data.Product;

import com.skatestown.backend.ProductDB;

/**

 * Inventory check Web service

 */

public class InventoryCheck

{

 /**

 * Checks inventory availability given a product SKU and

 * a desired product quantity.

 *

 * @param msgContext This is the Axis message processing context

 * BookUtil needs this to extract deployment

 * information to load the product database.

 * @param sku product SKU

 * @param quantity quantity desired

 * @return true|false based on product availability

 * @exception Exception most likely a problem accessing the DB

 */

 public static boolean doCheck(MessageContext msgContext,

 String sku, int quantity)

 throws Exception

 {

 ProductDB db = BookUtil.getProductDB(msgContext);

 Product prod = db.getBySKU(sku);

 return (prod != null && prod.getNumInStock() >= quantity);

 }

}

All you need to do is place this file in the Axis webapps directory structure with a .jws
extension instead of .java. So, to access this example on the CD, because it is in the
ch3/ex2 directory, the URL for this Web service would be
http://localhost:8080/bws/ch3/ex2/InventoryCheck.jws. It's as easy as that.

One important thing to remember is that all public methods will be available as Web
services. So, use JWS files with care.

Client-Side Programming

Accessing a Web service from the client can be (almost) as easy. In the simplest case of
wanting to access an RPC SOAP service, let's take a closer look at the example from
Chapter 3, shown in Listing 4.3.

Listing 4.3 InventoryCheckClient.java

package ch3.ex2;

import org.apache.axis.client.ServiceClient;

/*

 * Inventory check web service client

 */

public class InventoryCheckClient {

 /**

 * Service URL

 */

 String url;

 /**

 * Point a client at a given service URL

 */

 public InventoryCheckClient(String url) {

 this.url = url;

 }

 /**

 * Invoke the inventory check web service

 */

 public boolean doCheck(String sku, int quantity) throws Exception {

 ServiceClient call = new ServiceClient(url);

 Object[] params = new Object[]{ sku, new Integer(quantity), } ;

 Boolean result = (Boolean)call.invoke("", "doCheck", params);

 return result.booleanValue();

 }

}

As shown here, a ServiceClient object is needed. This object is used as the portal
through which the client application connects with the Web service. The constructor takes
the URL of the target SOAP server. Once the ServiceClient object knows where to find
the service, all that is left is to invoke the Web service itself. Notice that the
client.invoke() method call takes three parameters: the value of the HTTP
SOAPAction header, which in this call is just an empty string; the name of the Web
service's method to invoke (doCheck); and an array containing the Java objects
representing the parameters for the method. The return value of the invoke() method is
a Java object of type Object, so it will need to be cast to the proper return type before it
is used.

Sometimes each parameter passed to the method needs to have a specific name
associated with it. For example, some SOAP servers will use the parameter names in the
method-matching algorithm. In these cases, a slight change to the way invoke() is
called is required:

Boolean result = (Boolean) call.invoke(

 "",

 "doCheck",

 new Object[] { new RPCParam("skuName", sku),

 new RPCParam("quantity", new Integer(quantity))});

Notice that now instead of passing in an array of Java objects, an array of RPCParams is
passed in, where each RPCParam consists of the name of the parameter (skuName and
quantity in this example) and the value of the parameter (sku and quantity).

When talking with an Axis server or any other SOAP server that does explicit typing of
the XML stream (this means the datatype of the parameters and return value of the RPC
call is placed in the SOAP message), the Axis client can use that typing information to
know how to deserialize the return value. However, some SOAP servers do not do this; in
this instance, they are expecting the client to know the datatype through some other
means (perhaps WSDL). When this occurs, it becomes the responsibility of the client

application to tell the Axis client what type the return value is—which just requires a
couple lines of code. The complete client application looks like Listing 4.4

Listing 4.4 InventoryCheckClient.java

package ch3.ex2;

import org.apache.axis.client.ServiceClient;

/*

 * Inventory check web service client

 */

public class InventoryCheckClient

{

 /**

 * Service URL

 */

 private String url;

 /**

 * Point a client at a given service URL

 */

 public InventoryCheckClient(String targetUrl)

 {

 url = targetUrl;

 }

 /**

 * Invoke the inventory check web service

 */

 public boolean doCheck(String sku, int quantity) throws Exception

 {

 ServiceClient call = new ServiceClient(url);

 ServiceDecription sd = new ServiceDescription("return", true);

 sd.setOutputType(new QName(Constants.URI_2001_SCHEMA_XSD, "boolean"));

 call.setServiceDescription(sd);

 Boolean result = (Boolean) call.invoke(

 "",

 "doCheck",

 new Object[] { sku, new Integer(quantity) });

 return result.booleanValue();

 }

}

In this example we've added the definition of a ServiceDescription object. This
object is used by the client to notify the Axis client of various pieces of metadata about
the Web service being invoked. In this instance we're defining the OutputType (return
type) of the method as a boolean using the 2001 W3C XML Schema definition. The
ServiceDescription constructor takes two parameters: a name assigned to this object
(return parameter names aren't used very much as they are basically ignored) and an
indication of whether this service is an RPC service (true indicates that it is). The only

other code change associates this ServiceDescription object with the ServiceClient,
and this is done through the setServiceDescription() method call.

Advanced Web Service Deployment

Although JWS files are convenient, sometimes you'll need more complex Web service
configurations. For example, some pre- or post-processing might be needed for a
particular Web service, or perhaps the Web service isn't a Java program and a special
dispatcher is needed (more on these later). In these cases, you can't use JWS files, and
you need a more robust deployment mechanism. This is when you'll use the server-
config.xml file and the AdminClient (mentioned previously).

For example, let's say we want to deploy the same InventoryCheck service in the JWS
scenario, but this time we also want to have a handler email a copy of each response
message. To do this, we must first create a deployment XML file for the AdminClient:

<m:deploy xmlns:m="AdminService">

 <handler name="email" class="com.skatestown.services.EMailHandler" />

 <service name="InvetoryCheck" pivot="RPCDispatcher" response="email">

 <option name="className" value="com.skatestown.services.InventoryCheck" />

 <option name="methodName" value="doCheck" />

 </service>

</m:deploy>

Notice that we added a handler called email, whose class name is
com.skatestown.services. EMailHandler. In addition, a new service chain is defined
that invokes the RPCDispatcher and this new email handler. The RPCDispatcher is the
handler that will locate and invoke the Java method for the Web service. Notice that in
the definition of the service, we provide some options—className and methodName.
These options will be used in the RPCDispatchhandler—it will create a new instance of
com.skatestown.service.InventoryCheck class and then invoke the doCheck method
(of course passing in the parameters from the SOAP request message). To deploy these
new resources, the AdminClient is used:

> java org.apache.axis.client.AdminClient deploy.xml

Once deployed, we need to copy the InventoryCheck.class file into the axis/WEB-INF/
classes directory. We should then be set to run the client.

Document-Centric Services

Up to this point, our focus has been on the simple RPC case where the Web service being
invoked is a Java method. This is just one way to use SOAP and Axis. As discussed in
previous chapters, there is also document-centric SOAP processing. In this scenario,
rather than the SOAP processor converting the XML into Java objects and then calling a
method, the XML is left untouched and is simply handed to a method for processing. This
method is then free to do whatever it wants with the XML. Supporting this approach in
Axis is a simple matter of changing the dispatcher that is used. In the RPC case, an
RPCDispatcher handler was used; now a MsgDispatcher handler must be used. This
handler will locate the appropriate method (as specified by the deployment information)
and then call it, passing in the request XML SOAP message as a parameter. The
deployment of a document-centric service will look like this:

<service name="POSubmission" pivot="MsgDispatcher">

 <option name="className" value="POSubmission"/>

 <option name="methodName" value="doSubmission"/>

</service>

This code shows the deployment information for a service chain called POSubmission.
Notice that it uses MsgDispatcher at the pivot point, and as options it passes in the

className and the actual method that should be located and invoked. Unlike the RPC
case, where the parameters to the method can be determined by the needs of the
service, MsgDipatcher assumes that all document-centric methods have the same
method signature, as follows:

public Document doSubmission(MessageContext msgContext, Document xml)

 throws AxisFault;

Notice that the service takes two parameters, a MessageContext and a Document (more
on MessageContext later in the "Building Handlers" section; for now, just know that it is
Axis-specific data that is made available to the service if it needs it). The service also
returns a Document object, which is used as the body of the response SOAP message.
Notice that the input and output messages are W3C Document objects, and not SAX
events—this is done as a matter of convenience for the handler writer. However, by the
time Axis is released, the handler might have the option of processing the SAX events
directly. If an error occurs during processing, the service should throw an AxisFault
(see the "Faults" section). Listing 4.5 shows a sample service (from Chapter 3).

Listing 4.5 POSubmission.java

package com.skatestown.services;

import org.w3c.dom.Document;

import org.apache.axis.MessageContext;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;

import com.skatestown.data.PO;

import com.skatestown.data.Invoice;

import com.skatestown.backend.ProductDB;

import com.skatestown.backend.POProcessor;

import com.skatestown.xml.Serializer;

import com.skatestown.xml.Deserializer;

import bws.BookUtil;

/**

 * Purchase order submission service

 */

public class POSubmission {

 /**

 * Submit a purchase order and generate an invoice

 */

 public Document doSubmission(MessageContext msgContext, Document inDoc)

 throws Exception

 {

 // Create a PO from the XML document

 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

 DocumentBuilder builder = factory.newDocumentBuilder();

 PO po = Deserializer.createPO(inDoc.getDocumentElement());

 // Get the product database

 ProductDB db = BookUtil.getProductDB(msgContext);

 // Create an invoice from the PO

 POProcessor processor = new POProcessor(db);

 Invoice invoice = processor.processPO(po);

 // Serialize the invoice to XML

 Document newDoc = Serializer.writeInvoice(builder, invoice);

 return newDoc;

 }

}

To deploy it, we use the AdminClient:

java org.apache.axis.client.AdminClient po_deploy.xml

The po_deploy.xml file looks like this:

<m:deploy xmlns:m="AdminService">

 <service name="http://www.skatestown.com/ns/po" pivot="MsgDispatcher">

 <option name="className" value="com.skatestown.services.POSubmission"/>

 <option name="methodName" value="doSubmission"/>

 </service>

</m:deploy>

Although invoking an RPC Web service is relative easy, invoking a document-centric Web
service requires a little more work, but not much. A corresponding client would look like
Listing 4.6.

Listing 4.6 POSubmissionClient.java

package ch3.ex4;

import java.io.InputStream;

import java.io.StringWriter;

import org.apache.axis.encoding.SerializationContext;

import org.apache.axis.message.SOAPEnvelope;

import org.apache.axis.message.SOAPBodyElement;

import org.apache.axis.client.ServiceClient;

import org.apache.axis.Message;

import org.apache.axis.MessageContext;

/**

 * Purchase order submission client

 */

public class POSubmissionClient {

 /**

 * Target service URL

 */

 String url;

 /**

 * Create a client with a target URL

 */

 public POSubmissionClient(String url) {

 this.url = url;

 }

 /**

 * Invoke the PO submission web service

 *

 * @param po Purchase order document

 * @return Invoice document

 * @exception Exception I/O error or Axis error

 */

 public String invoke(InputStream po) throws Exception {

 // Send the message

 ServiceClient client = new ServiceClient(url);

 client.setRequestMessage(new Message(po, true));

 client.getMessageContext().

 setTargetService("http://www.skatestown.com/ns/po");

 client.invoke();

 // Retrieve the response body

 MessageContext ctx = client.getMessageContext();

 Message outMsg = ctx.getResponseMessage();

 SOAPEnvelope envelope = outMsg.getAsSOAPEnvelope();

 SOAPBodyElement body = envelope.getFirstBody();

 // Get the XML from the body

 StringWriter w = new StringWriter();

 SerializationContext sc = new SerializationContext(w, ctx);

 body.output(sc);

 return w.toString();

 }

}

The example starts by creating a ServiceClient object and gives it the location of the
SOAP server. Next, it creates an Axis Message object. This object will contain the actual
XML of the SOAP message. As input to the constructor, it takes an input stream (the XML
for the body of the SOAP envelope) and a boolean indicating whether this XML input
stream is the entire SOAP envelope or just the body—true indicates that it is just the
body. The ServiceClient object is then told of the request message through the
setRequestMessage() method call, and then the Web service itself is invoked. Once the
service is invoked, the response message is obtained. This allows for the client to access
any part of the response and not just the body. However, in this case, we ask for the first
body element to convert it to a String and return it.

Data Encoding/Decoding

Switching back to RPC, so far we've deferred the entire notion of how the data is
converted between Java objects and the XML. This section will go into the steps involved
in creating customized serializers and deserializers that can be used in Axis. Although the
concept of what serializers and deserializers do is not terribly complex, writing one for
Axis requires a good working knowledge of how to use a SAX parser. Chapter 2 had a
good, but brief, discussion of how SAX parsers work and how to use them—this section
will assume that you are well versed enough with SAX that usage of SAX terms, without
the details behind them, will be appropriate.

As we discussed in Chapter 2, the concepts of serializers and deserializers are really quite
simple—they are just pieces of code that will convert data (in its native state, such as a
Java object) into XML in the serializing case, and from XML back into the data's native
state in the deserializing case. If your classes are Java beans, then you can use the Bean
serializer and deserializer that comes with Axis. To do this, all you have to do is tell Axis
to use the Bean serializer/deserializer when it encounters your class. For example, on the
client side the code might look like the following:

// register the PurchaseOrder class

String URL = "http://localhost:8080/axis/servlet/AxisServlet";

ServiceClient client = new ServiceClient(URL);

QName qn = new QName("http://www.skatestown.com/ns/po", "po");

Class cls = com.skatestown.data.PO.class;

client.addSerializer(cls, qn, new BeanSerializer(cls));

client.addDeserializerFactory(qn, cls, BeanSerializer.getFactory());

In this code, the addSerializer() method will create a serializer association between
the class PO and its namespace, http://www.skatestown.com/ns/po, and the
BeanSerializer. Then we do the same thing for the deserializing side.

While on the server, a beanMapping would need to be deployed (for example, in the XML
file passed to the AdminClient):

<beanMappings xmlns:bid=" http://www.skatestown.com/ns/po">

 <bid:po classname="com.skatestown.data.PO"/>

</beanMappings>

However, sometimes the BeanSerializer isn't enough, and you'll need an even more
customized serializer/deserializer and specialized code that manually examines or creates
the XML. In this case, it is just a matter of writing a few Java classes.

You need a serializing class that should implement the Serializer interface. This
interface has just one method:

public interface Serializer extends java.io.Serializable {

 public void serialize(QName name, Attributes attributes,

 Object value, SerializationContext context)

 throws IOException;

}

This method should, construct a block of XML with a root element with the given name
and attributes, and the body should be the serialized version of value. This method
assumes that SAX events will be generated against the SerializationContext passed to
it. The SerializationContext object is a utility class that provides functions necessary
for writing XML to a Writer, including maintaining namespace mappings, serialization of
data objects, and automatic handling of multi-ref encoding of object graphs.

Next, you need a class that implements the DeserializationFactory interface. This
interface has just one method, as well:

public interface DeserializerFactory extends java.io.Serializable

{

 public Deserializer getDeserializer(Class cls);

}

This method should return an instance of the Deserializer class. Whether it returns the
same instance or a new instance each time is an implementation choice—you use a
factory because the deserializers are processing SAX events, so they will need to
maintain some state information between each SAX event callback. If a single

deserializer existed and multiple threads were deserializing objects at the same time,
they would override each other's work.

The final class you need to write is the deserializer class (the class the deserializer
factory returns). This class should extend the Deserializer class. Inside this class
should be any of the SAX callback methods needed to deserialize the incoming SAX event
stream. The exact implementation of these methods is left completely up to you. The
only requirement is that when it is done, the methods set a field in the base
Deserializer class called value to the Java object represented by the XML. As a quick
example, Axis comes with a Base64 serializer and deserializer. The deserializer is very
small, and simply implements the SAX characters() method:

static class Base64Deser extends Deserializer {

 public void characters(char[] chars, int start, int end) throws

 SAXException {

 setValue(Base64.decode(chars, start, end));

 }

}

The Base64.decode, method does the actual decoding and just returns a Java object.

Building Handlers

Handlers are the key building blocks of Axis. As previously described, configuring Axis
simply requires defining the types of handlers deployed and the order in which handlers
are placed in the chains. A handler is nothing more than a piece of code that examines
some (or all) of a SOAP message and then acts on it. Axis makes no assumptions about
what each handler does; each one is free to do as little or as much work as needed. The
specific details of how to write a handler are outside the scope of this book; however,
we'll give a brief overview here. If you want to write a handler, you should consult the
Axis documentation.

As each handler is invoked, it is passed a MessageContext object that contains all the
information about the current state of the processing of the SOAP message. In particular,
some of the key pieces of data in the MessageContext are as follows:

• requestMessage— The SOAP message that is the incoming or requesting
message. Typically this is the message that handlers before the pivot point use as
input.

• responseMessage— The SOAP message that is the outgoing or response message.
Typically this is the message into which handlers after the pivot point will place
their response message (if any).

• targetService— The name of the service-specific chain that will be invoked by
the Axis engine. If a handler's job is to determine which Web service is being
called, it needs to set this field by calling the setTargetService() method,
passing it the name of the service-specific chain.

• bag— A Hashtable that can be used to store any metadata about the processing of
the current message. Handlers can use this Hashtable to share information. For
example, one handler can place in it information that another handler, later in the
chain, can then retrieve and use in its own processing. This process requires some
out-of-band knowledge between handlers so they know what key to use to store
and retrieve the data.

The logic inside a handler is relatively straightforward. Each handler, whether it is on the
request chain, on the response chain, or the pivot point handler, can access any of the
data in the MessageContext. As a result, both the request and any possible response
message that might exist are available and can be modified. Sometimes a handler can be

placed on the request or the response side of a chain—in this case, requesting the
request or response message explicitly could result in the wrong message being
returned. For this reason, a getCurrentMessage() method on the MessageContext
object will return either the request or response message, depending on whether the
handler appears before or after the pivot point.

Once a message has been obtained, the handler is free to examine or process any part of
the message. The handler can ask for the entire message, the body of the message, or
any specific header. Because the SOAP specification has very specific rules for the
processing of mustUnderstand headers, it is important than any handler that does
process a header set the processed flag on that header by calling setProcessed(true)
on that SOAPHeader object. Axis will use this information to determine whether to throw
a mustUnderstand fault if all the mustUnderstand headers have not been processed.

Specialized Pivot Point Handlers, a.k.a. Providers

New technology like Web services can be viewed as simply a new means of accessing
existing IT assets. When you're looking at the wide variety of ways in which data can be
accessed (servlets, Web services, Java RMI, and so on), you can see that each of them
uses a different mechanism for transferring the data from one source to another;
however, the business logic that is executed should not change based on the means of
data transport. In keeping with this separation of roles, Axis' handlers will typically be
written in such a way that they are simply the bridge between Axis and your existing
business logic. Of course, it is possible to write handlers such that all of the code is
contained within the handler itself, but when the next big thing comes along, chances are
it would require more work than if a clean delineation had been kept between the means
of transporting the data and the business logic. This concept is very similar to how many
people write their servlets or JSPs; the HTML presentation logic is in the JSP, whereas the
real work is done through accessing beans or some external Java code.

In keeping with this separation, the pivot point handlers should be written such that their
job is to interpret the incoming SOAP message, locate the business resources needed to
perform the desired task, execute the task, and then place any response data into the
response SOAP message. Although we discuss this subject in terms of a pivot point
handler, this same design pattern can (and should) be used for any of the handlers
written no matter where in the chains they appear.

There is no limit to the types of resources that handlers can access. By the time Axis
ships its first release, it should contain handlers that will enable access to resources such
as:

• Enterprise Java Beans

• Scripting languages through the Bean Scripting Framework

• COM objects

• J2EE connectors

• Code fragments in non-Java languages

However, currently, Axis is only at an alpha state, and only two types of handlers come
with it: a Java RPC handler and a Java Message handler. The Java RPC handler will
examine the body of the request message and convert it into a procedure call. In other
words, it will deserialize the XML elements in the body into individual Java objects (the
method parameters) and, based on the method name (also in the body element), call
that specified method with those Java objects as parameters. If there is a return value

from the procedure call, it will be serialized and placed into the body of the response
SOAP message. (It might be useful to examine the code for this handler—you can find it
in the Axis source in a file called
org/apache/axis/providers/java/RPCProvider.java.)

The other handler that comes with Axis is the Java Message handler. This handler is
similar to the Java RPC handler in that it will examine the body of the request SOAP
message to determine which Java method to call. However, unlike the RPC handler,
which will deserialize the XML into Java objects, the Message handler will take the XML as
is and simply pass it along to the desired method untouched. This approach is useful in a
document-centric processing model—one in which the business logic wishes to receive
the data in raw XML rather than to have Axis try to do any conversions.

As long as it is possible to write Java code to access the desired resource, there is no
reason why a handler cannot be written to access it—thus making Axis an incredibly
flexible and powerful SOAP processor. Of course, sometimes a handler's role is to
perform a task that is SOAP specific, and in that case placing the logic inside the handler
itself might make sense. For example, a handler that determines which Web service to
invoke would probably not need to access any back-end systems, but instead would use
just the data in the SOAP message.

Ultimately, the choice of how to design and write a handler is not mandated by Axis, but
rather is left up to the handler writer. Axis does not place any restrictions on your design
choices in hopes that the system remains flexible and pluggable enough that it can be
used in a limitless number of configurations.

Faults

Currently, Axis has a very simple mechanism for dealing with error conditions. The code
(whether it is the Web service or some pluggable component such as a handler) can
throw an exception, which will then be caught by the Axis engine and propagated back to
the transport listener. The transport listener will then typically return it to the client (in
the HTTP case)—but that is an implementation choice. If the exception that is thrown is a
Java exception, it will be converted into a specialized Axis class, AxisFault. This class is
defined to contain all the information that would go into a SOAP fault response message.
The faultcode is set to Server.generalException, and the detail part of the fault will
contain the stack trace.

If you require more specialized detail, the code that throws the exception can throw an
AxisFault directly. The AxisFault class has two constructors:

public AxisFault(String code, String str, String actor, Element[] details);

public AxisFault(QFault code, String str, String actor, Element[] details);

Like the SOAP fault definition, AxisFaults contain faultcode, faultstring,
faultactor, and faultdetails fields. The QFault class is a utility class that contains
the fully qualified name of the fault code (namespace and local name). The
faultdetails field is an array of DOM elements so that the specific XML that is
contained in the fault can be tailored to any specific needs.

When Axis is completed, it is expected to include a more robust system for handling
faults. In particular, some of the ideas being discussed include:

• The ability to define a mapping between Java exceptions and

AxisFaults

• The ability to define fault chains where specific chains will be

invoked based on the type of AxisFault thrown

• The ability for handlers to have an undo mechanism so that some type

of rollback can be performed in the event of an error

These ideas are not guaranteed to be implemented in the first release of Axis; they are
just the current list of ideas being considered.

Message Patterns

It should be obvious that Axis is nicely designed to handle a request/response message
processing pattern. However, it is not limited to this single message-flow pattern. As we
stated earlier, each handler and service has available to it a MessageContext object that
will contain both the request and response message; however, you don't have to use
both of these messages. It is possible to configure chains of handlers that process the
request message but produce no response message. In the HTTP transport environment,
doing so might seem strange; but in a non-request/response transport (such as SMTP),
this is a much more likely scenario. In this one-way message pattern, the Axis engine
can be configured to use only handlers that examine the request message and do not use
the response message at all. Note that if a handler is invoked that does generate a
response SOAP message, but the transport listener chooses not to do anything with the
response SOAP message inside the MessageContext object, then the response will be
ignored. Axis assumes that the transport listener knows how to deal with the response
message, and if it ignores any response, then that must be the correct behavior.

At the time of this writing, Axis does not yet support the notion of asynchronous message
processing, but it should by the time of its first release. In this model, Axis will allow the
client to asynchronously invoke a Web service and at some later point in time request the
response, thus allowing the client to perform other actions while the Web service is doing
its job.

Building and Deploying an Intermediary

Although Axis can support the notion of a SOAP intermediary, Axis itself needs to do very
little to support it. An intermediary is a SOAP processing node that does some work
based on the requesting SOAP message, but is not the final destination of the message;
so, it is responsible for forwarding the message to the next SOAP processing node in the
message path. From an Axis configuration point of view, this is a simple matter of
defining a chain that has as its pivot point a Transport Sender handler. This handler will
determine the next SOAP processing node in the message path and send the SOAP
message to it. In this way, the handler is acting like a SOAP client, so the same client
APIs normally used in writing an Axis client application can (and should) be used in this
handler in conjunction with any server-side APIs needed to process or interpret the
incoming SOAP message.

The SOAP specification requires that two things must take place in a SOAP intermediary:
All message headers targeted for this intermediary (for example, the actor attribute on
the header pointing to a certain URI) are removed before the message is sent to the next
SOAP processing node, and if any of those message headers are marked with the
mustUnderstand=1 attribute, they must be understood by this SOAP node or a fault must
be thrown. In order to locate all the SOAP headers targeted for this actor, a handler can
use the following method on the SOAPEnvelope object:

public Enumeration getHeadersByName(String namespace, String localPart);

This method will return an enumeration of SOAPHeader objects. Once each header is
processed, it is very important that the handler notify the Axis engine that this header
has been processed by calling the setProcessed() method:

Enumeration enum = soapEnv.getHeadersByName(http://www.skatestown.com/, "foo");

while (enum.hasMoreElements()) {

 SOAPHeader header = (SOAPHeader) enum.nextElement();

 // process header here

 header.setProcessed(true);

}

Setting the Processed flag on this header indicates to Axis that the header has been
successfully processed. The Axis engine will then use this information to determine if any
headers in the message marked with a mustUnderstand=1 attribute are unprocessed,
and if so throw a mustUnderstand fault.

Currently, in the alpha release of Axis, intermediary support is not complete. In
particular, support is not yet included for indicating which headers should be removed
before the message should be sent to the next SOAP processing node.

SOAP V1.2

Axis is written to support the SOAP 1.1 specification. In the alpha release, it
supports/implements almost all of the specification, and by the time the first release is
done, the entire specification will be supported. The W3C XML Protocol working group is
currently working on the next version of the SOAP specification (v1.2), and members of
the Axis development team are constantly watching the group's activity to ensure that
they will fully support that version of the specification.

As of now, the changes proposed to the SOAP specification are not so sweeping that they
will dramatically change the definition of SOAP. The group's main focus is fixing any
ambiguities or bugs in the v1.1 specification. However, a few changes will make a SOAP
v1.2 message incompatible with a SOAP 1.1 message, so those interested in watching
(or being involved in) the working group's activities should join its mailing list. The
group's Web site is at http://www.w3.org/2000/xp/Group/.

Monitoring

Axis comes with a tool that can be useful in monitoring the TCP/IP traffic between your

SOAP client and SOAP server. The tool is called tcpmon and can be executed by
running

java org.apache.axis.utils.tcpmon

or

java org.apache.axis.utils.tcpmon 81 localhost 8080

The first command will bring up the tool and take you to an Admin page that allows you
to enter a port number on which tcpmon will listen, a target host, and a target port
number to which the incoming request should be routed. By simply routing your SOAP
client's requests through tcpmon, you will be able to see the request and response SOAP
messages. The second command will let you start tcpmon by specifying the listening port
number (81 in the previous example), the target host name, and the port number
(localhost and 8080 in this case) on the command line—thus bypassing the Admin page.
Figure 4.8 shows what tcpmon looks like.

Figure 4.8. TCPMonitor can be used to examine the request and response messages.

You'll notice that each request/response pair is given its own entry table at the top of the
window, allowing you to select which specific flow to examine. Below the table is the
request and response data. You can save the data to a file, ask tcpmon to try to make
the XML look nice (add linefeeds and spaces), switch between a side-by-side layout and a
top-bottom layout, or even ask it to resend the request data. When resending the data,
you are free to modify the data in the request side of the window before resending; thus,
you can make a change to test a server with new XML without having to change any
client code.

Summary

Because Axis is still under development and only at an alpha stage, you should consult
the Axis Web site and documentation for the latest features and APIs. We hope this
chapter has provided you with a basic understanding of what Axis is, how it works, and
how you can use it for new Web services as well as leverage it to access existing IT
assets and resources with minimal work. In Chapter 5, we'll focus on how to use SOAP
(and in particular Axis) in some scenarios that go beyond simply invoking a Web service;
these scenarios are more like the real world and deal with the issues that companies face
every day.

Chapter 5. Using SOAP for e-Business

IN THIS CHAPTER

• Web Services Security

• Enterprise Application Integration

• Quality of Service

In Chapter 3, "Simple Object Access Protocol (SOAP)," you saw how SOAP enables
applications to interact with each other, and in Chapter 4, "Creating Web Services," you
saw that Axis is an example SOAP infrastructure. With SOAP, applications can be coupled

loosely—more importantly, in a decentralized manner. On the basis of such an
advantage, in this chapter we review a collection of topics that are required for starting a
serious e-Business with Web services.

First, we consider security, assuming that business-to-business (B2B) collaboration is
performed in terms of SOAP messaging. We will begin by discussing familiar technologies

such as HTTP Basic Authentication (BASIC-AUTH) and Secure Socket Layer (SSL)

, then move to SOAP-specific security, such as SOAP Digital Signature and

encryption. We'll also discuss Public Key Infrastructure(PKI) as a basis for many
security technologies.

Then, we shift our focus to intranet applications that are configured to process incoming
SOAP messages, which might potentially produce response messages. This approach is

called Enterprise Application Integration (EAI) because typical enterprises have a
portfolio of existing applications that should be integrated properly to achieve additional

business goals. We will take Enterprise JavaBeans (EJBs) , Java Message Service

(JMS) and Java 2 Platform Enterprise Edition (J2EE) as a basis for integrating
applications.

Finally, we discuss technologies required for high-volume SOAP servers in terms of

Quality of Service (QoS) . Performance, scalability, and availability are important
issues whenever you're developing real applications. We will consider how existing
technologies in that area are adopted for developing scalable SOAP servers.

Web Services Security

e-Business relies on information exchange between trading partners over networks, often
the Internet. Therefore, there are always security risks, because messages could be
stolen, lost, or modified. Four security requirements must be addressed to ensure the
safety of information exchange among trading partners:

• Confidentiality guarantees that exchanged information is protected

against eavesdroppers.

• Authentication guarantees that access to e-Business applications and

data is restricted to only those who can provide the appropriate

proof of identity.

• Integrity refers to assurance that the message was not modified

accidentally or deliberately in transit.

• Non-repudiation guarantees that the sender of the message cannot deny

that he/she sent it.

Note that these requirements are related to cryptography because they concern how to
protect communicated data. Apart from cryptography, we must also consider protection
of resources such as data and applications in such a way that only appropriate entities
are allowed to access the particular resources. A fifth requirement is summarized as
follows:

• Authorization is a process to decide whether the identity can access

the particular resource.

In this section, we review a collection of security technologies that specifically address
information exchange among trading partners via SOAP messaging. Figure 5.1 depicts a
security architecture that you should keep in mind throughout this section.

Figure 5.1. Security architecture for SOAP messaging.

We begin by reviewing well-known security technologies: BASIC-AUTH and SSL. They are
considered to be transport security, as shown in the figure.

Transport security is useful to some extent, but it fails to ensure non-repudiation and is
not enough when you have to include third-party intermediaries. SOAP security provides
transport-agnostic security measures. We will discuss digital signatures and encryption
for SOAP messages.

We will introduce a non-repudiation service that ensures the delivery of the message with
a timestamp. This notary third party is a good practical example of a SOAP intermediary

.

Focusing on the internal process within our example company, we will describe
authorization to protect resources by giving appropriate permissions to the accessing

entity. We will mainly discuss role-based access control and briefly show how it
can be implemented.

Finally, we will discuss Public Key Infrastructure (PKI), which provides a foundation to a
solution for the four risks: confidentiality, authentication, integrity, and non-repudiation.
Although PKI is a solid technology basis, it is fairly difficult to implement and use through
Public Key Cryptography Standards (PKCS). We will see an emerging standard, called

XML Key Management Services (XKMS) , which enables key management via XML.
Let's begin by establishing the example scenario we'll use in our code samples
throughout the chapter.

Example Scenario

In our discussion of security, we'll continue our SkatesTown example. SkatesTown's CTO,
Dean Caroll, is beginning to become concerned with security now that the business is
expanding. SkatesTown is doing business with a large number of companies, and most of
them are not Fortune-500 companies. Currently, SkatesTown's Web services are secured
only with SSL and BASIC-AUTH. Although Dean notices that the combination of the two is
not enough, he cannot think of a better mechanism in terms of security.

To ease Dean's concern, Al Rosen of Silver Bullet Consulting was asked to advise Dean
about what kind of security features to address in the next development phase. This was
not an easy task for Al either, because there are numerous security technologies and
specifications. It is not possible and not meaningful to cover all of them. Therefore, he
selected a fairly small number of security features and applied them to SkatesTown's
SOAP-based transactions, as we'll present throughout this chapter.

SSL and HTTP Basic Authentication

The most popular security method on the Internet is a combination of BASIC-AUTH and
SSL. This method is widely adopted in many B2C shopping sites such as Amazon.com
(http://www.amazon.com) because its configuration is fairly simple, but it still provides a
necessary security level for a small amount of transactions. Here, we review BASIC-AUTH
and SSL with examples of how to use them with Axis.

HTTP Basic Authentication

You probably have experienced being required to enter a user ID and password while
visiting a Web site. BASIC-AUTH is often called password authentication; its specification
is defined in RFC 2617 (BASIC-AUTH). The typical BASIC-AUTH interaction between a
Web browser and a Web server is illustrated in Figure 5.2.

Figure 5.2. Interaction protocol for basic authentication.

When the Web browser sends an HTTP request to access a protected Web resource, the
Web server returns an HTTP response, which includes the error code "401 Unauthorized"
and the following HTTP header:

WWW-Authenticate: Basic realm="Realm Name"

Realm is a name given to a set of Web resources, and it is a unit to be protected.
Basic in front of realm indicates a type of authentication—in this case, BASIC-AUTH.
Based on this information, the Web browser shows a login dialog to the user. Then, the
Web browser sends an HTTP request again including the following HTTP header:

Authorization: Basic credential

Although the credential looks like encrypted text, it is logically plain text because its

format is simply UserName:Password encoded with Base64 —for example,
U2thdGVib… in Figure 5.2 can be decoded to SkateboardWarehouse:wsbookexample.

The Web server authenticates the user with the user ID and password included in the
credential. If the given user ID and password are wsrong, "401 Unauthorized" is

returned. Moreover, the Web server has an access control list (ACL) that
specifies who can access what and checks whether the authenticated user can access the
Web resource. If the check succeeds, then "200 OK" is returned; otherwise, "401
Unauthorized" is returned.

BASIC-AUTH in Axis

In this section, we review how to use BASIC-AUTH in Axis. On the server side, BASIC-
AUTH is performed by middleware such as a Web server or servlet container. We do not

have to modify the server programs at all, but change the server configuration. For
Tomcat, we only modify its web.xml configuration file, as shown in Listing 5.1.

Listing 5.1 Configuration for Basic Authentication in Tomcat

<web-app>

 <display-name>Basic Authentication Sample</display-name>

 <servlet>

 <servlet-name>AxisServletProtected</servlet-name>

 <display-name>Apache-Axis Servlet</display-name>

 <servlet-class>org.apache.axis.transport.http.AxisServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>AxisServletProtected</servlet-name>

 <url-pattern>services/protected</url-pattern>

 </servlet-mapping>

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>Protected Area</web-resource-name>

 <!-- Define the context-relative URL(s) to be protected -->

 <url-pattern>/services/protected</url-pattern>

 <!-- If you list http methods, only those methods are protected -->

 <http-method>GET</http-method>

 <http-method>POST</http-method>

 </web-resource-collection>

 <auth-constraint>

 <!-- Anyone with one of the listed roles may access this area -->

 <role-name>MyCustomer</role-name>

 </auth-constraint>

 </security-constraint>

 <login-config>

 <auth-method>BASIC</auth-method>

 <realm-name>Protected Area</realm-name>

 </login-config>

 </web-app>

The security-constraint element defines a realm and ACL. web-resource-collection
specifies a collection of Web resources, each located at url-pattern, accessed by an
HTTP method like POST. auth-constraint specifies who can access the realm. login-
config specifies authentication method on the realm—for example, BASIC-AUTH
(indicated by BASIC).

On the client side, we have to make sure that the user ID and password are properly
embedded in the HTTP request. Axis provides a basic function for performing BASIC-
AUTH, so the development of the client is fairly easy. Listing 5.2 shows a POSubmission
program that can access servers via BASIC-AUTH.

Listing 5.2 POSubmission that Performs Basic Authentication

package ch5.ex1;

import java.io.*;

import org.apache.axis.encoding.SerializationContext;

import org.apache.axis.message.SOAPEnvelope;

import org.apache.axis.message.SOAPBodyElement;

import org.apache.axis.client.ServiceClient;

import org.apache.axis.Message;

import org.apache.axis.MessageContext;

/**

 * Purchase order submission client

 */

public class POSubmission

{

 /**

 * Target service URL

 */

 private String url;

 private String userid;

 private String password;

 /**

 * Create a client with a target URL

 */

 public POSubmission(String targetUrl, String userid, String password)

 {

 this.url = targetUrl;

 this.userid = userid;

 this.password = password;

 }

 /**

 * Invoke the PO submission web service

 *

 * @param po Purchase order document

 * @return Invoice document

 * @exception Exception I/O error or Axis error

 */

 public String invoke(InputStream po) throws Exception

 {

 // Send the message

 ServiceClient client = new ServiceClient(url);

 client.setRequestMessage(new Message(po, true));

 call.set(Transport.USER, userid);

 call.set(Transport.PASSWORD, password);

 client.invoke();

 // Retrieve the response body

 MessageContext ctx = client.getMessageContext();

 Message outMsg = ctx.getResponseMessage();

 SOAPEnvelope envelope = outMsg.getAsSOAPEnvelope();

 SOAPBodyElement body = envelope.getFirstBody();

 // Get the XML from the body

 StringWriter w = new StringWriter();

 SerializationContext sc = new SerializationContext(w, ctx);

 body.output(sc);

 return w.toString();

 }

}

The difference from the original POSubmission (Listing 3.12) is shown in bold. Member
variables userid and password are added, and they are set to the ServiceClient object
in the invoke() method. As you can imagine, these values are used to create an
Authorization header, with the base64 encoding of
SkateboardWarehouse:wsbookexample, which is included in HTTP request. Unlike the
challenge-response protocol in Figure 5.2, the HTTP request here is accepted directly
because the Authorization header is included.

The new POSubmission sample can be executed with our example navigator shipped with
this book. Go to /ch5/ex1/basicauth.jsp, specify a user ID and password, and click the
Submit PO button (see Figure 5.3). By entering the values SkateboardWarehouse and
wsbookexample, you can successfully submit the purchase order. Otherwise, you will
receive an error message.

Figure 5.3. Example navigator GUI for basic authentication.

Secure Socket Layer (SSL)

BASIC-AUTH is useful, but on its own, it is not secure enough because the user ID and
password are virtually unprotected. That is, an attacker can easily eavesdrop on the wire
and either take the password to impersonate the user or tamper with the transmitted
data.

SSL is a protocol for transmitting data in a secure way using encryption methods. With
SSL, you can fulfill three of the five security requirements mentioned earlier:

confidentiality, authentication, and integrity. You are probably familiar which HTTPS ,

which is HTTP over SSL. However, other application layer protocols such as TELNET

and FTP can be performed over SSL because SSL is located between the application
layer and the transport layer (TCP).

In order to establish a secure communication channel, the server and client have to
authenticate each other. With SSL, the client can authenticate the server (server
authentication) and vice versa (client authentication). Currently, client authentication is

not common because it requires the client to have a certificate issued by a certificate

authority (CA) such as VeriSign. Instead, client authentication is often performed
with BASIC-AUTH for client convenience. However, in Web services of the future, not
only human clients but also business applications will also make requests, so mutual
authentication by SSL will become common.

Using SSL with Axis

In this section, we review how to use SSL with Axis and address the combination of SSL
server authentication and BASIC-AUTH. SSL is based on a public key cryptography
system, also called an asymmetrical key cryptography system, in which separate keys
are used for encryption and decryption. In the case of server authentication, the server

has a private key to decrypt messages from the client, and the client has the

server's public key for encrypting messages it sends after the session is established.

In the case of secret key encryption, more effort is required: Storage of the secret key by
each communications partner, as well as the (initial) distribution of the secret key to
those partners, must be secured. This can be a daunting and error-prone task.

You can create private and public keys using the keytool program provided with the
JDK. If you add the -genkey option, the keytool command generates a private key and
its public key (the command is broken here because of printing constraints, but it
actually appears on a single line):

keytool -genkey -keyalg RSA –sigalg MD5withRSA -keysize 1024 -alias SkatesTown -
dname

"CN=Purchase Order Service, OU=Purchase Order Department, O=SkatesTown, L=...,

S=NY,

C=US" -keypass wsbookexample -storepass wsbookexample –keystore SkatesTown.ks -
storetype

JKS

The options are summarized in Table 5.1. The generated private key and related

information are stored in a keystore file, and keystore file information can also
be specified in the command (for example, -keystore and -storetype).

The -keyalg and -keysize options specify the specification of the private key. -dname

specifies an identification (X.500 Distinguished Name) for the key, and -alias
indicates an alias for the key (unique within the keystore). In addition, a password for
accessing the key can be specified with -keypass (by default, it is the same as the
keystore password).

A public key corresponding to the private key is also generated with this command, and
is included in a certificate, which will be published to the client. Note that the certificate
itself is described in more detail in PKI section. The certificate must be signed in order to
demonstrate integrity. The signature algorithm is specified by the -sigalg option.
Although we would like to specify who signed (or will sign) the certificate, that

information cannot be specified with keytool. In this case, the certificate is signed by the
private key that is generated, making it a self-signed certificate. A self-signed certificate
is not practical for real use, but is sufficiently useful for the purpose of experimenting
with SSL.

Table 5.1. Options for the keytool Command

Option Value Meaning
-keyalg RSA Format of the private key is RSA

-keysize 1024 Key size is 1024 bits
-alias SkatesTown Key alias is SkatesTown
-dname CN=Purchase Order

Service,…
Identification of the key is CN=Purchase
Order Service, …

-keypass wsbookexample Password for the private key is
wsbookexample

-sigalg MD5withRSA Method for signing certificate is MD5
with RSA

-storepass wsbookexample Password for the keystore file is
wsbookexample

-keystore SkatesTown.ks Keystore file name is SkatesTown.ks
-
keystoretype

JKS Keystore file type is Java Key Store (JKS)

The generated certificate can be extracted with the following keytool command:

keytool -export -alias SkatesTown -file SkatesTown.cer -keystore SkatesTown.ks -

storepass

wsbookexample

The extracted certificate is stored in SkatesTown.cer. Next, we import the server
certificate to a client keystore using the following command:

keytool -import -trustcacerts -alias SkatesTown -file SkatesTown.cer -keystore

SkateboardWarehouse.ks -storepass wsbookexample -storetype JKS

The client uses the imported certificate to trust the server that owns that certificate.
When a client establishes a session, the server sends a server certificate to the client. If
the certificate is a member of the certificates included in the client keystore, the client
trusts the server and so proceeds to the session.

We provide a browser interface for keytool within our example navigator. Visit
/ch5/ex2/index.jsp. If you specify some parameters, keytool commands are
automatically generated and executed (see Figure 5.4). You can create keystore files,
export certificates, and import them to other keystore files.

Figure 5.4. Example navigator GUI for keytool.

Let's examine the SSL configuration for a Web server (Tomcat in this case). In the
<tomcat-home>/conf/server.xml file, you need to add the Connector section shown in
Listing 5.3.

Listing 5.3 Tomcat Configuration for SSL

<Connector className="org.apache.tomcat.service.PoolTcpConnector">

 <Parameter name="handler"

 value="org.apache.tomcat.service.http.HttpConnectionHandler"/>

 <Parameter name="port" value="8443"/>

 <Parameter name="socketFactory"

 value="org.apache.tomcat.net.SSLSocketFactory"/>

 <Parameter name="keystore"

 value="c:\ws-book\SkatesTown.ks" />

 <Parameter name="keypass" value="wsbookexample"/>

 <Parameter name="clientAuth" value="false"/>

</Connector>

HTTPS settings are specified in the Parameter elements. The port parameter indicates a
port number for SSL connections. socketFactory specifies the Java factory class that will
create SSL socket objects. With keystore and keypass, Tomcat can get a private key for
SSL session. Note that Tomcat assumes (and hence requires) that the server's keystore
password is identical to the private key password. Finally, clientAuth specifies whether
client authentication is performed. Note that you have to modify
<java_home>/jre/security/java.security to run Tomcat with SSL. Refer to the
section "Java Secure Socket Extension" later in this chapter to learn how to modify this
file and then execute Tomcat.

For the client, you must set up Java system properties that are required when invoking
SSL. Listing 5.4 shows a modified POSubmission program. As you can see, the keystore
type (storetype), keystore file name (keystore), and keystore password (storepass)
are fed to the constructor, and the parameters are set for system properties. We will
review these properties in the section "Java Secure Socket Extension." Although we
specify the system parameters programmatically, you can specify them with the -D

option of the java command. In that case, you do not have to change the Listing 5.2
program at all. The section "Java Secure Socket Extension" will show such an alternative
example.

Listing 5.4 POSubmission that Performs Basic Authentication and SSL

package ch5.ex3;

import java.io.StringBufferInputStream;

import java.io.StringWriter;

import org.apache.axis.encoding.SerializationContext;

import org.apache.axis.message.SOAPEnvelope;

import org.apache.axis.message.SOAPBodyElement;

import org.apache.axis.client.ServiceClient;

import org.apache.axis.client.Transport;

import org.apache.axis.transport.http.HTTPTransport;

import org.apache.axis.Message;

import org.apache.axis.MessageContext;

import org.apache.axis.encoding.ServiceDescription;

final public class DoOrder {

 final String url;

 final Strint storetype;

 final Strint keystore;

 final String storepass;

 final String uid;

 final String password;

 public DoOrder(String url,

 Strint storetype,

 Strint keystore,

 String storepass,

 String uid,

 String password)

 {

 this.url = url;

 this.storetype = storetype;

 this.keystore = keystore;

 this.storepass = storepass;

 this.uid = uid;

 this.password = password;

 }

 public synchronized static String invoke(String xml) throws Exception {

 String[][] props = {

 { "javax.net.ssl.trustStore", keystore, },

 { "javax.net.ssl.keyStore", keystore, },

 { "javax.net.ssl.keyStorePassword", storepass, },

 { "javax.net.ssl.keyStoreType", storetype, },

 };

 for (int i = 0; i < props.length; i++)

 System.getProperties().setProperty(props[i][0], props[i][1]);

 ServiceClient client = new ServiceClient(new HTTPTransport(url,

"PO"));

 client.set(MessageContext.USERID, uid);

 client.set(MessageContext.PASSWORD, password);

 client.setRequestMessage(new Message(new

StringBufferInputStream(xml),

true));

 client.invoke();

 Message outMsg = client.getMessageContext().getResponseMessage();

 ServiceDescription svc = new ServiceDescription("doOrder",

false);

 client.getMessageContext().setServiceDescription(svc);

 SOAPEnvelope envelope = outMsg.getAsSOAPEnvelope();

 SOAPBodyElement body = envelope.getFirstBody();

 StringWriter writer = new StringWriter();

 SerializationContext ctx = new SerializationContext(writer,

client.getMessageContext());

 body.output(ctx);

 return writer.toString();

 }

}

You can execute POSubmission with BASIC-AUTH and SSL via /ch5/ex3/index.jsp in
the example navigator. Specify some values in the page, such as the keystore file,
keystore password, and so on, if you want, and then click the Submit PO button (see
Figure 5.5).

Figure 5.5. Example navigator GUI for basic authentication and SSL.

Java Secure Socket Extension

There is a standard API for SSL, called the Java Secure Socket Extension (JSSE) .
Tomcat also uses Sun JSSE in its SSL implementation, but no additional Tomcat
configuration is required. However, you do have to configure any Java Runtime
Environment (JRE) that will run programs using JSSE, including Tomcat with SSL
enabled. So, in the case of a Tomcat Web server, the following JSSE setup applies to the
server- and client-side.

In order to use JSSE, you must first set up a security provider . The concept of a

security provider is defined in the Java Cryptographic Architecture (JCA) . Because we
describe JCA later, this section only explains how to configure it.

The easiest way to set up a security provider is to modify <java-
home>\jre\lib\security\java.security. The file contains a list of at least one
provider in the form security.provider.<n>. Add the JSSE security provider as follows:

security.provider.1=sun.security.provider.Sun

security.provider.2=com.sun.rsajca.Provider

security.provider.3=com.sun.net.ssl.internal.ssl.Provider

Next, add the three JSSE JAR files to the classpath: jsse.jar, jnet.jar, and
jcert.jar. Alternatively, the files might be directly copied to the <java-
home>\jre\lib\ext directory.

After JSSE configuration is finished, the client program can be executed using the
following command:

java -Djava.protocol.handler.pkgs=com.sun.net.ssl.internal.www.protocol

-Djavax.net.ssl.trustStore=SkateboardWarehouse.ks

-Djavax.net.ssl.keyStore=SkateboardWarehouse.ks

-Djavax.net.ssl.keyStorePassword=wsbookexample -Djavax.net.ssl.keyStoreType=jks

ExamplePOClient -l https://localhost:8443/axis/servlet/AxisServlet

You might notice that the target protocol is changed from HTTP to HTTPS. The system
property java.protocol.handler.pkgs enables programs to handle HTTPS in the URL
class. Other system properties specify information to access a client keystore. Trusted
certificates in the client keystore are examined when a server sends its certificate to
determine whether the server is trusted.

The SSL Protocol

SSL was proposed by Netscape Communications and has been widely used since the
explosion of the World Wide Web, because it is supported by Netscape Navigator and
Microsoft Internet Explorer. The latest version of SSL, 3.0, has been presented to the

Internet Engineering Task Force (IETF) for standardization. Another closely related

protocol called Transport Layer Security protocol (TLS) is currently on version 1.0,
published as RFC 2246. There are no major differences between SSL and TLS. TLS has
not yet become widely used, so SSL 3.0 is still dominant.

Let's review the SSL protocol in more detail. Figure 5.6 illustrates how a security
handshake establishes a secure connection between the client and server. Once the
handshake completes, the server and client have a common secret key with which data is
encrypted and decrypted. In other words, SSL uses the public key(s) to encrypt
exchanges for the sole purpose of generating the shared secret key.

Figure 5.6. SSL security handshake protocol.

Despite the advantages of using public key encryption alone, SSL combines them. It does
so because the public key encryption system takes more time to encrypt and decrypt
messages than the secret key encryption system. Thus, the combination used by SSL
takes advantage of both the easy maintenance of public key encryption and the quicker
operating speed of secret key encryption.

Let's take a closer look at the SSL handshake protocol, again referring to Figure 5.6. At
phase I, the client starts the handshake, and then sends a random number, a list of
supported ciphers, and compression algorithms. At phase II, the server selects a cipher
and a compression algorithm and notifies the client. Then it sends another random
number and a server certificate (which includes a public key). At phase III, the client
sends a pre-master secret to the server, encrypting it with the server public key. Finally,
the client might send a client certificate. Now the handshake is completed.

The server and the client each generate a master secret by combining the random
number that the server sent, the random number that the client sent, and the pre-
master secret. Several secret keys are created from the master secret. For example, one
is used for encrypting transmitted data, and another is used for calculating digest value
of the date for integrity.

SSL ensures authentication (by verifying the certificates), confidentiality (by encrypting
the data with a secret key), and integrity (by digesting the data). However, non-

repudiation is not ensured with SSL because the Message Authentication Code (MAC)

value of transmitted data is calculated with a common secret key.

Digital Signature

Returning to our example scenario, Dean Caroll now understands that the combination of
BASIC-AUTH and SSL is a good starting point to secure SOAP-based communication with
trading partner. He also understands an immediate problem with non-repudiation.
Without non-repudiation, a company can repudiate its purchase order even if the
company actually sent the order request, or the company can claim that the number of
products is wrong. With respect to exchange of XML messages between two parties, a
digital signature provides a means to prove that the sending party created the message.
Al Rosen emphasized that there is already a stable version of the XML Digital Signature

specification, which will become a W3C /IETF standard. Furthermore, Digital

Signature for SOAP, based on the XML Digital Signature, is published as a W3C Note
.

SOAP Signature Example

Currently, the Axis platform does not include signature functions, but the IBM Web
Services Toolkit (WSTK) 2.4 includes signature and verification handlers for Axis. These
handlers can be embedded in Axis handler chains, as shown in Figure 5.7.

Figure 5.7. Signature and verifier handlers for purchase order processing service.

In our purchase order example, the client sends a purchase order document and receives
an invoice document. In practice, these two documents should be signed; otherwise, one
of the parties can repudiate that it sent the document.

Figure 5.7 illustrates a handler configuration that causes both documents to be signed
and verified. The signature handler at the service requestor's side signs the purchase
order. On the service provider's side, the verifier handler verifies the signature of the
purchase order document. The invoice is signed by the service provider and verified by
the service requestor.

Listing 5.5 shows a digitally signed purchase order document. SOAP-SEC:Signature
includes a signature on the purchase order and specifies a collection of parameters to
create the signature. The details of this digitally signed SOAP message are described in
the following section.

Listing 5.5 Purchase Order with a SOAP Digital Signature

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header>

 <SOAP-SEC:Signature

 SOAP-ENV:actor=""

 SOAP-ENV:mustUnderstand="1"

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:SOAP-SEC="http://schemas.xmlsoap.org/soap/security/2000-12">

 <dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">

 <dsig:SignedInfo>

 <dsig:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/

REC-xml-c14n-20010315"/> <dsig:SignatureMethod

Algorithm="http://www.w3.org/2000/09/

xmldsig#rsa-sha1"/>

 <dsig:Reference URI="#43871">

 <dsig:Transforms>

 <dsig:Transform Algorithm="http://www.w3.org/TR/2000/

CR-xml-c14n-20001026"/>

 </dsig:Transforms>

 <dsig:DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

<dsig:DigestValue>... Base64-encoded Digest Value... </dsig:DigestValue>

 </dsig:Reference>

 </dsig:SignedInfo>

 <dsig:SignatureValue>

 ... Base64-encoded Signature Value

 </dsig:SignatureValue>

 <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">

 <KeyValue>

 <RSAKeyValue>

 <Modulus>... Base64-encoded Modulus...</Modulus>

 <Exponent>AQAB</Exponent>

 </RSAKeyValue>

 </KeyValue>

 <X509Data>

 <X509IssuerSerial>

 <X509IssuerName> CN=Purchase Order Service OU=Purchase Order

Department, O=SkatesTown, L=..., S=NY, C=USFormatted for printing

</X509IssuerName>

 <X509SerialNumber>993353832</X509SerialNumber>

 </X509IssuerSerial>

 <X509SubjectName> CN=Purchase Order Service, OU=Purchase Order

Department, O=SkatesTown, L=..., S=NY, C=USFormatted for printing

</X509SubjectName>

 <X509Certificate>

 ... Base64-encoded X.509 Certificate

 </X509Certificate>

 </X509Data>

 </KeyInfo>

 </dsig:Signature>

 </SOAP-SEC:Signature>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>

 <po xmlns="http://www.skatestown.com/ns/po"

 id="43871" submitted="2001-12-06">

 ...

 </po>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The digital signature scenario can be executed with the example navigator. Go to
/ch5/ex4/index.jsp, specify parameters if you want, and click the Submit PO button
(see Figure 5.8).

Figure 5.8. Example navigator GUI for a digital signature.

Deployment descriptors for the example are shown in Listings 5.6 and 5.7. At the client
side, request messages are signed via the sign handler, response messages are verified
and logged via verify and log handlers (see Listing 5.6). At the server side, request
messages are verified and logged, and response messages are signed (see Listing 5.7).
As you can see in the listings, you need to specify some parameters for sign handlers,
such as a keystore file, key alias, store password, and key password. On the other hand,
the verify handler does not require as much information.

Listing 5.6 Deployment Descriptor for a Digital Signature at the Client

<deploy>

 <handler name="log" class="org.apache.axis.handlers.LogHandler"/>

 <handler name="sign" class="com.ibm.wstk.axis.handlers.Signer">

 <option name="alias" value="SkateboardWarehouse"/>

 <option name="keyPassword" value="wsbookexample"/>

 <option name="keyStore"

value="C:\home\ryo\wsbook\examples\SkateboardWarehouse.ks" /

>

 <option name="keyStorePassword" value="wsbookexample"/>

 </handler>

 <handler name="verify" class="com.ibm.wstk.axis.handlers.Verifier"/>

 <service name="http://www.skatestown.com/ns/po" request="sign,log"

response="log,

verify"/>

</deploy>

Listing 5.7 Deployment Descriptor for a Digital Signature at the Server

<deploy>

 <handler name="log" class="org.apache.axis.handlers.LogHandler"/>

 <handler name="verify" class="com.ibm.wstk.axis.handlers.Verifier"/>

 <handler name="sign" class="com.ibm.wstk.axis.handlers.Signer">

 <option name="alias" value="SkatesTown"/>

 <option name="keyPassword" value="wsbookexample"/>

 <option name="keyStore" value="C:\home\ryo\wsbook\examples\SkatesTown.ks" />

 <option name="keyStorePassword" value="wsbookexample"/>

 </handler>

 <service name="http://www.skatestown.com/ns/po" request="log,verify"

pivot="MsgDispatcher" response="sign,log">

 <option name="className" value="com.skatestown.services.POSubmission"/>

 <option name="methodName" value="doSubmission"/>

 </service>

</deploy>

SOAP Signature Details

In the XML Digital Signature specification (XML Signature), an element Signature is

defined with its descendants under the namespace
http://www.w3.org/2000/09/xmldsig#. The SOAP Signature specification defines how to
embed the Signature element in SOAP messages as a header entry. You can sign all or
part of the message. Furthermore, if a message has attachments, these too can be
signed. In our example, the body entry for the purchase order is signed. Let's take a
closer look at our signed PO example. In the example, the target element of the
signature is po:po. Briefly, the digest value of the po:po sub-tree is calculated, and the
value is signed and included in the Signature element.

Let's first review how to get the digest value of the target. The target is specified by
Reference under the SignedInfo element. Its URI attribute indicates the target in such a
way that the id attribute of the po element is referenced. The target is transformed by

XML-C14N—that is, a canonicalization method for XML. (XML Canonicalization is a
W3C Recommendation to generate a canonical form for physically different but logically
equivalent XML documents.) With XML-C14N, we can check whether XML documents are
semantically equivalent using a standardized code set, the order of attributes, tab
processing, and so on. The following two documents are quite different at a glance:

<?xml version="1.0" encoding="us-ascii"?>

<foo

 b="b"

 a="a"

></foo>

<?xml version="1.0" encoding="us-ascii"?>

<foo a="a" b="b"/>

However, with XML-C14N, they are translated into the following identical document:

<?xml version="1.0" encoding="us-ascii"?>

<foo a="a" b="b"></foo>

After translation, a digest value is calculated with an algorithm specified by the

DigestMethod element. Here SHA1 is used. The calculated value is inserted in
DigestValue element, represented in Base64 format.

The value of the target is not signed directly. Rather, the SignedInfo element is actually
signed. An algorithm specified by the CanonicalizationMethod element—that is, XML-
C14N—canonicalizes SignedInfo. The canonicalized SignedInfo is signed with an
algorithm specified by SignatureMethod: RSA-SHA1. This algorithm calculates a digest
value of the SignedInfo subtree, and then signs it with a RSA private key. The
calculated value is inserted into the SignatureValue element, represented in Base64
format.

Optionally, the signer can include a KeyInfo element to attach key information. More
specifically, the example includes an X.509 certificate, which contains a public key
corresponding to the private key that signed the digest value. Because the certificate is

Abstract Syntax Notation One (ASN.1) binary data, its Base64 representation is
there.

So far, we have reviewed the XML Signature syntax in the signature processing process.
Verification is carried out in the same manner. First, we check the value of the
DigestValue element according to XML-C14N and SHA1. Next, we calculate a digest
value for the SignedInfo subtree to compare it with the value in the SignatureValue
element. More precisely, the signature value is decrypted with the public key, and then
compared to the calculated value.

XML Encryption

SSL is useful for ensuring confidentiality. However, at least two problems exist in the
context of SOAP messaging. By definition, SOAP messaging can include intermediaries,
and any of them could be owned by organizations other than the service requestor or the
service provider. The first problem is that any of these third parties might need to read
the message. Inherently, transport-level security solutions like SSL assume that
communication occurs only directly between two parties. The second problem is that SSL
encrypts the whole message. In some cases, you might want to encrypt only parts of the
message. SOAP Encryption can resolve these problems.

We now update our purchase order document to include card information, as shown in
Listing 5.8. Instead of a BillTo element, we insert CardInfo so that the service
requestor can pay with the card. When SkatesTown receives the document from the
Skateboard Warehouse, it does not have to know the card information. Instead, it could
just forward it to a credit company to determine if the Skateboard Warehouse is reliable
in terms of the payment. SSL is not sufficient for this purpose, because SkatesTown can
read the card information.

Listing 5.8 Purchase Order that Includes Card Information

<po xmlns="http://www.skatestown.com/ns/po-with-card" id="43871" submitted="2001-

10-05">

. <cardInfo>

 <name>Purchase Order Client</name>

 <company>VISA</company>

 <expiration>02/2005</expiration>

 <number>1234123412341234</number>

 </cardInfo>

 <shipTo>

 <company>The Skateboard Warehouse</company>

 <street>One Warehouse Park</street>

 <street>Building 17</street>

 <city>Boston</city>

 <state>MA</state>

 <postalCode>01775</postalCode>

 </shipTo>

 <order>

 <item sku="318-BP" quantity="5">

 <description>Skateboard backpack; five pockets</description>

 </item>

 <item sku="947-TI" quantity="12">

 <description>Street-style titanium skateboard.</description>

 </item>

 <item sku="008-PR" quantity="1000"/>

 </order>

</po>

At present, there is no standard specification for SOAP Encryption. Even the XML

Encryption specification was published only very recently as a W3C Working Draft

, and so is subject to change. The discussion here is based on the preliminary draft
of SOAP Encryption included in WSTK 2.4. After our SOAP Encryption review, we will
review the Java Cryptographic Architecture (JCA), which provides a basis for
implementing SOAP Encryption and SOAP Signature.

SOAP Encryption: Syntax and Processing

Let's look at an XML Encryption example first. Listing 5.9 is an encrypted version of the
purchase order document.

Listing 5.9 Encrypted Purchase Order Document

<po xmlns="http://www.skatestown.com/ns/po-with-card" id="43871" submitted="2001-

10-05">

 <enc:EncryptedData

 Type="http://www.w3.org/2001/04/xmlenc#Element">

 <enc:EncryptionMethod

 Algorithm="urn:nist-gov:aes-128-cbc"/>

 <ds:KeyInfo>

 <ds:KeyName>Shared key</ds:KeyName>

 </ds:KeyInfo>

 <enc:CipherData>abCdeF...</enc:CipherData>

 </enc:EncryptedData>

 ...

</po>

This shows the simplest case, where two parties share a common secret key. Note that
namespace ds is a prefix for the XML Digital Signature namespace. The XML Encryption
specification reuses elements from the XML Digital Signature namespace as much as
possible.

The EncryptedData element is a root element for the encrypted part, and its Type
attribute indicates that the encrypted data is an XML element. The EncryptionMethod
element specifies an encryption algorithm, and KeyInfo specifies a secret key. Based on
the secret key and the algorithm, the card information is encrypted and stored in the
CipherData element.

Listing 5.10 shows encryption with a public key.

Listing 5.10 Encryption with a Public Key

<po xmlns="http://www.skatestown.com/ns/po-with-card" id="43871" submitted="2001-

10-05">

 <enc:EncryptedData

 Type="http://www.w3.org/2001/04/xmlenc#Element">

 <enc:EncryptionMethod

 Algorithm="urn:nist-gov:aes-128-cbc"/>

 <ds:KeyInfo>

 <enc:EncryptedKey>

 <enc:EncryptionMethod

 Algorithm="urn:rsadsi-com:rsa-v2.0"/>

 <ds:KeyInfo>

 <ds:KeyName>Receiver's key</ds:KeyName>

 </ds:KeyInfo>

 <enc:CipherData>ghIjkL...</enc:CipherData>

 </enc:EncryptedKey>

 </ds:KeyInfo>

 <enc:CipherData>abCdeF...</enc:CipherData>

 </enc:EncryptedData>

 ...

</po>

The idea here is that the sender generates a random secret key, encrypts the key with
the receiver's public key, and encrypts the data with the secret key. Let's look at
EncryptedKey first. EncryptionMethod specifies the encryption algorithm, and KeyInfo
specifies the receiver's public key. Based on these elements, a secret key is encrypted to
store in CipherData. Outer CipherData comes from an encryption based on the secret
key and an encryption algorithm specified by the outer EncryptionAlgorithm.

Let's move on to SOAP Encryption. SOAP Encryption defines a SOAP-SEC:Encryption
element, which includes a reference to the location of the encrypted data. Listing 5.11 is
a sample that includes SOAP Encryption.

Listing 5.11 SOAP Encryption Example

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header>

 <SOAP-SEC:Encryption

 xmlns:SOAP-SEC="http://schemas.xmlsoap.org/soap/security/2000-12">

 <SOAP-SEC:Manifest>

 <SOAP-SEC:Reference URI="#id-0"/>

 </SOAP-SEC:Manifest>

 </SOAP-SEC:Encryption>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>

 <po xmlns="http://www.skatestown.com/ns/po-with-card" id="43871"

submitted="2001-10-05">

 <enc:EncryptedData xmlns:enc="http://www.w3.org/2000/11/temp-xmlenc"

 Id="id-0" Type="http://www.w3.org/2001/04/xmlenc#Element">

 ...

 </enc:EncryptedData>

 ...

 </po>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The encrypted po is included in the SOAP body, adding an Id attribute to the
EncryptedData element. The Id attribute is referred to by SOAP-SEC:Reference within
the SOAP-SEC:Encryption header entry.

The encryption header is intended to be a directive to SOAP intermediaries. With
actorURI, you can specify a particular SOAP intermediary. Therefore, you can tell the
intermediary to decrypt the data, specifying where the encrypted data is located. Thus,
you can embed encryption and decryption methods into the SOAP messaging path in a
flexible manner.

Java Cryptography Architecture and Java Cryptography Extension

In order to implement SOAP Signature and SOAP Encryption with Java, you need to
understand Java Cryptography Architecture (JCA) and Java Cryptography Extension (JCE)

. JSSE is also developed on top of JCA/JCE. In this section, we review JCA/JCE in
more detail to help you understand the cryptography architecture of Java.

JCA and JCE incorporate public key technologies. JCA provides a framework for accessing
and developing core cryptographic functions. Implementation and algorithm
independence is addressed so that applications are insulated from cryptographic details.
In other words, cryptographic implementation and algorithms can be changed without
modifying any application programs.

JCA provides an API for digital signature, message digest, key management, certificate
management, and access control, as well as a basic security framework. The JCE API
provides encryption and key exchange. The separation of the JCA and JCE APIs stems
from export regulations by the United States Commerce Department.

In the section on SSL, we discussed how to configure the <java-
home>\jre\lib\security\java.security file to use SSL. As we mentioned, each
security provider is specified in the following format:

security.provider.<n>=<Security Provider Class>

The number indicates a priority, and the right side specifies a security provider class.
Each provider class is a subclass of java.security.Provider and supports some or all
parts of Java security algorithms, such as DSA, RSA, MD5, or SHA-1. For SSL, we added
the third line, as follows:

security.provider.1=sun.security.provider.Sun

security.provider.2=com.sun.rsajca.Provider

security.provider.3=com.sun.net.ssl.internal.ssl.Provider

When a security algorithm is required, providers are asked whether they support the
particular algorithm according to the priority. For example, if SHA1withRSA is required,
the second provider is chosen. Although the second and third providers both support it,
the second one has higher priority. If SSL is required, the third provider is chosen
because only it supports SSL.

Combining SOAP and Transport Security

So far, we have reviewed transport-layer security (BASIC-AUTH and SSL) and SOAP-level
security (SOAP Signature and SOAP Encryption). You might ask: Why do we need SOAP-
level security in addition to transport-level security like SSL? The reason is related to the
SOAP intermediary concept. As we reviewed in Chapter 3, SOAP messages can travel to
multiple hosts, potentially relying on different transports such as HTTP and SMTP

. This indirect and transport-agnostic nature of SOAP implies that transport-layer
security alone is insufficient.

On the other hand, you might ask: Is transport-layer security unnecessary? In theory,
we could provide a complete set of SOAP security features with which transport-layer
security would no longer be needed. However, this approach will discard existing security
infrastructure to some extent, and is therefore not acceptable.

SOAP-level security should be considered complementary to transport-layer security. For
example, suppose that you want to send a signed message to a destination, ensuring
confidentiality. No intermediary exists, and no element-wise encryption is required. In
this case, why not simply use a combination of SOAP Signature and SSL? We should
combine SOAP-level and transport-layer security properly considering the environment
and application requirements.

Notary Service

BASIC-AUTH/SSL, SOAP Signature, and SOAP Encryption are a proper set of technologies
with which you can generally fulfill the four basic security requirements: confidentiality,
authentication, integrity, and non-repudiation. However, there is a further requirement:
non-repudiation of message receipt. At the client side, for example, if SkatesTown
receives a purchase order document from Skateboard Warehouse, it should return an
invoice document. Then, it starts processing the order—that is, shipping products in the
order. However, Skateboard Warehouse might not receive the invoice because of
network trouble, or it might claim that the invoice was not delivered. Or, if the invoice
delivery takes more than 10 days, Skateboard Warehouse can, by policy, consider the
order unplaced or misplaced.

We want to ensure that the message has been received at the destination, and to know
when it was received. In the context of SOAP, it might be a good idea to include a notary
service as a SOAP intermediary between the trading parties, as shown in Figure 5.9. The
notary service provider is trusted by both SkatesTown and their customers. When there
is a disagreement on message delivery between two parties, the notary service can
arbitrate the problem on the basis of its log database.

Figure 5.9. Notary service as SOAP intermediary.

From a business perspective, this structure is beneficial for three parties. Trading parties
can perform business transactions safely simply by contracting with the notary service.
The notary service can earn money according to the transaction volume. The only
problem here is whether the notary service is a real trusted party. A number of notary
services have emerged already, such as VeriSign. Most of them aim solely at trusted
storage of data such as medical records. However, once they are trusted widely, they
could play the role of a notary in our business structure.

What is the benefit of SOAP in Figure 5.9? We could develop the same business structure
without SOAP. Flexibility is the main benefit. The Axis architecture allows trading
partners to focus completely on building business-level service requestor and service
provider applications, with the caveat that they must respectively produce and consume
XML documents. At configuration time, handlers, potentially including handlers to invoke
intermediaries, can be deployed at the requestor and/or provider side to enhance
functionality or security of the message send and receipt. When these extra handlers are
added, the requestor and provider applications do not have to change at all. This shows
the flexibility of SOAP-based development using Axis.

Authorization

So far, we have examined security technologies with which Web services can
authenticate users and protect transmitted data from eavesdropping or alteration by
inappropriate parties. From a technology point of view, network security relies on
cryptographic methods, such as message digests, digital signatures, and message
encryption. Authorization, the security aspect covered in this section, is different from
the others because it is not based on cryptography.

Authorization denotes granting authority, including granting access to resources based
upon access rights. The purpose is to control access over resources, such as Web
resources, databases, and so on. Perhaps the most basic implementation of this idea is
the access control list (ACL), which defines a mapping from entities to resources that can
be accessed by each entity. A slightly more sophisticated model is role-based access
control (RBAC), which maps entities to roles and then roles to resources. This model
simply adds one extra layer of abstraction to the ACL model.

Three types of authorization methods are relevant for our SOAP architecture. URL
authorization controls access to Web resources such as HTML pages and servlets. Java
class authorization can be implemented using the Java Authentication and Authorization

Services (JAAS) package. Finally, an authenticated entity might be issued a
standardized set of security assertions that describe access rights for that entity and can
be shared among trading partners. These three methods are examined in detail in the
remainder of this section.

URL Authorization

We have already reviewed some aspects of URL authorization in BASIC-AUTH in the Axis
section. Tomcat provides a means to define user identities, user-role mapping, and role-
resource mapping. The file <TOMCAT>/conf/tomcat-user.xml contains these mappings
as shown in Listing 5.12.

Listing 5.12 Tomcat User File Configuration

<tomcat-users>

 <user name="SkateboardWarehouse" password="wsbookexample" roles="MyCustomer" />

 <user name="WeMakeIt" password="wsbookexample" roles="MySupplier" />

 <user name="Both" password="wsbookexample" roles="MyCustomer,MySupplier" />

The tomcat-users element includes a collection of users, and user defines a user
identity, password, and any roles assigned to it. Listing 5.13 illustrates access control for
servlets.

Listing 5.13 Configuration of Access Control over Servlets

<web-app>

 <display-name>Basic Authentication Sample</display-name>

 <servlet>

 <servlet-name>PriceCheckServlet</servlet-name>

 <servlet-class>com.sams.xxxx.PriceCheckServlet</servlet-class>

 </servlet>

 <servlet>

 <servlet-name>POServlet</servlet-name>

 <servlet-class>com.sams.xxxx.POServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>POServlet</servlet-name>

 <url-pattern>/servlet/justsample/POServlet</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>PriceCheckServlet</servlet-name>

 <url-pattern>/servlet/justsample/PriceCheckServlet</url-pattern>

 </servlet-mapping>

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>Protected Area</web-resource-name>

 <url-pattern>/servlet/justsample/POServlet</url-pattern>

 <http-method>POST</http-method>

 </web-resource-collection>

 <auth-constraint>

 <role-name>MyCustomer</role-name >

 </auth-constraint>

 </security-constraint>

 <login-config>

 <auth-method>BASIC</auth-method>

 <realm-name>Protected Area</realm-name>

 </login-config>

</web-app>

The sample here is quite different from the one in the section "SSL and Basic
Authentication" because we have different servlets for price checking and purchase order
processing. Because Axis has a router servlet, all application classes are accessed
through the router. However, if we prepare a servlet for each application class,
controlling access to each of them is fairly simple, as the example demonstrates.

Access Control for Java Classes

How can we perform authorization of individual Web services within the router servlet in
Axis? We have to control access to Java classes this time. Let's examine JAAS
authorization over Java classes.

JAAS is an extension of the Java 2 Security Architecture (J2SA). Historically, Java
security has focused on security for mobile code such as Applets. In J2SA terms,
permissions are granted to a codebase, the origin of the code that is being executed.
Listing 5.14 is an excerpt from <TOMCAT>/conf/tomcat.policy.

Listing 5.14 Permission Declaration in a Tomcat Policy File

// Tomcat gets all permissions

grant codeBase "file:${ tomcat.home} /lib/-" {

 permission java.security.AllPermission;

};

grant codeBase "file:${ tomcat.home} /classes/-" {

 permission java.security.AllPermission;

};

// Example webapp policy

// By default we grant read access on webapp dir and

// write in workdir

grant codeBase "file:${ tomcat.home} /webapps/examples" {

 permission java.net.SocketPermission "localhost:1024-", "listen";

 permission java.util.PropertyPermission "*", "read";

};

The first and second declarations show that Tomcat system classes are given all
permissions. On the other hand, the third grant statement shows that the Tomcat
example Web applications can only listen to localhost:1024 and read properties. In other
words, they cannot listen to other hosts or ports, read or write files, or do any action
other than those specified.

Code-based authorization is useful. But in the case of SOAP Messaging using Axis, we
need authorization based on the entity that is the origin of the request, also called the
(authenticated) requestor. Figure 5.10 illustrates how a JAAS-based authorization
mechanism can be added to Apache Axis. Entities including bold lines are JAAS objects.

Figure 5.10. Authorization for Axis with JAAS.

The central data structure in JAAS is the subject. A subject is any entity (such as a
person or company), and it is represented by a collection of security-related properties
such as user ID, group, roles, employee number, and so on. These properties are called

principals in J2SA. JAAS performs two major tasks: authentication and
authorization. The subject is discovered and a subject with associated principals is
produced at the authentication phase, and then the subject is retrieved and examined, or
consumed, at the authorization phase to decide whether the subject can perform the
requested action.

Let's review Figure 5.10 more closely. In Axis Engine, we first create a LoginContext
and perform login to start authentication. It starts processing the order—that is,
shipping products in the order. The following is a sample code:

 LoginContext lc = null;

 try {

 Subject subject = new Subject();

 Hashtable hash = new Hashtable();

 hash.put("http.username", userid); //this value should be taken from

the Axis

MessageContext hash.put("http.password", password); // this value is also from the

message context

 subject.getPublicCredentials().add(hash);

 lc = new LoginContext("AxisLogin", subject);

 lc.login();

 } catch (Exception le) {}

The idea here is that an initial subject is created including BASIC-AUTH information. The
user ID might be mapped to another ID for the preceding steps. When you invoke
LoginContext.login(), a LoginModule is created and invoked, at which time it creates
and attaches principals to the subject (in the case of the AxisLogin login module, these
are Axis-specific principals). But these login modules are pluggable, so we can assume
that, given our previous scenario, the MyCustomer role will be added to the subject if the
HTTP username was Skateboard Warehouse.

When invoking the service, we call Subject.doAs() so that only authorized subjects will
be able to perform the operation. The actual invocation looks like this:

Subject.doAs(subject,

 new AxisPrivilegedAction(uri,method));

This invocation leads us to the invocation of the run() method in
AxisPrivilegedAction. Within the run() method, access permission on the associated
resource (specified by a URI and method in the previous program) is checked, and the
target method is invoked only if no AccessControlException is thrown. You can
implement PrivilegedAction classes in any way. For example, we could have a role-
action mapping database containing triples like <role, uri, method>, and our action
class could check the database to authorize the given request. If the database has a
triple of the form <MyCustomers,supplier:po,processpo>, a request to perform a
purchase order by Skateboard Warehouse should be allowed.

We have now explored how to create an Axis authorization mechanism using JAAS. As we
address enterprise application integration, we also need to consider authorization in the
EJB security model. This topic will be covered in the section, "J2EE Security Model".

Security Assertions

So far, we have reviewed how to perform authorization on a single party. However, in an
open e-Business world, many unfamiliar business entities might need to access our Web
services. In this case, it is not desirable to set up usernames and passwords in the Web
server configuration for every possible entity. In order to address authorization in this
case, the idea of a security assertion is being discussed and standardized. In this section,
we review the concept of a security assertion, referring to the architecture mode of the

Security Assertion Markup Language (SAML) . We won't review SAML syntax
because the current syntax is subject to change.

SAML defines an XML document layout specifying the following security assertions:

• Authentication assertion

• Attribute assertion

• Decision assertion

These assertions are produced by their respective authorities. In some cases, the
authorities are located within the same company that hosts the Web service, but they
could be located anywhere on the Internet. Especially in the latter case, interoperability
is important, and thus SAML is defined in the XML format.

Figure 5.11 illustrates how two parties can interact with each other via a security
assertion authority. First, POClient sends a request to the authority with a user ID and
password. The authority authenticates the requestor, and issues a document that
contains authentication and attribute assertions. For example, the document says the
requestor is the Skateboard Warehouse, and the company is ranked AA (very good).
POClient sends a purchase order attaching the security assertion to POService as a
SOAP header. Then, POService performs authorization, completely relying on the
received assertion.

Figure 5.11. Interaction with security assertion authority.

A security assertion document is a kind of ticket. The identity of the carrier is not

authenticated by the receiver. This implies the possibility of a single sign-on for
distributed, multiparty Internet services. Furthermore, the ticket idea also ensures the
anonymity of the requestor, because the requestor does not have to show its identity to
the target service.

We can expect that standardized security assertions will have a big impact on business
because with them, companies no longer have to manage authentication information on
all companies they trade information with. The current world of e-Business consists solely
of transactions among familiar companies. Given trusted third parties to play the role of
assertion authorities, an open-ended, more flexible, and more scaleable e-Business
infrastructure is possible. Standardized security assertions via conventions like SAML
provides a technology basis to accomplish such a business structure.

Public Key Infrastructure and Key Management

To complete the security discussion, this section covers Public Key Infrastructure (PKI).
So far, we have assumed that we can obtain the public key representing a given entity
for purposes of encryption and digital signature. However, how can we know the public
key is authentic and really represents the entity whose name is on it? PKI provides a
basis to ensure the authenticity of all retrieved public keys.

The process that ensures key authenticity is key management, which breaks down into
registration and retrieval. Recently, the XML Key Management Specification (XKMS) has
been published. Directly accessing PKI requires users to do secure key generation and
exchange on their own, but key management is much simpler with XKMS.

In the rest of this section, we give an overview of PKI, reviewing its key constructs, and
present the XKMS standard for key management.

Public Key Infrastructure

PKI seems complicated because it combines a large number of technologies and
concepts. But you only need to know that its main goal is to provide a mechanism to
ensure proof of identity. The thing used to prove an identity is called a certificate. In

order to manage certificates, there needs to be an issuer(s) of certificates, called a
certificate authority, and a stored collection of certificates, called a certificate repository.
These three constructs are central in PKI.

A certificate is a proof of identity. With a certificate, you can relate an entity to its public
key. Because the certificate itself is digitally signed, you can trust its contents as long as
you can trust the issuer. The X509 Certificate, which is the most popular certificate
format, will be described in more detail later.

A certificate authority (CA) is an entity that issues certificates. If you can trust the CA,
you can trust certificates issued by the CA. PKI assumes a fairly small number of CAs
(such as VeriSign) and allows a CA to issue certificates for other CAs. As a result,
certificates are organized into a hierarchy, as shown in Figure 5.12. The root is called a
root CA, intermediary nodes are called subordinate CAs, and terminal nodes are called

end entities. The path for an end entity to a root CA is called a certificate path . If
two end entities have a common CA, they can establish trust with each other.

Figure 5.12. PKI trust model.

A certificate repository (CR) is a public database from which end entities can get
certificates. Although CRs are often developed on top of a Lightweight Directory Access

Protocol (LDAP) server, they can be developed in any way (for example, based
on an HTTP server). Furthermore, it is still very common to omit the CR in real cases,
such as when certificates are exchanged via floppy disks.

In addition, certificates can be revoked for various reasons. For example, private keys

can be stolen or lost. A CA must distribute a Certificate Revocation List (CRL) to

warn everyone not to accept the associated certificate as proof of identity in such cases.
End entities must check the CRL as well as the certificate path.

Let's take a closer look at X.509 Certificate Version 3. Its main constructs are
summarized as follows:

• Version— Version of X.509 Certificate, such as version 3.

• Serial Number— A unique identifier for the issuer.

• Signature— Algorithm for digital signature, such as Sha1WithRSAEncryption.

• Issuer— ID of the issuer specified by Distinguished Name (DN), such as "C=JP,
ST=Kanagawa, L=Yamato, O=IBM, OU=TRL, CN=CA
Admin/Email=caadmin@jp.ibm.com"

• Validity— Duration of validity, specified by start and end dates.

• Subject— ID of the owner, specified by DN.

• Subject Public Key Info— Public key and its algorithm. A typical example of an
algorithm is RSAEncryption.

You might notice that an X.509 Certificate defines only the technical details of the
certificate concept—for example, that the owner (subject) and the public key are related,
and the relationship is digitally signed.

XML Key Management Specification (XKMS)

From an application point of view, our immediate concern should be how to manage
certificates and public keys. PKI defines a collection of operations on certificates, such as
retrieval, registration, backup, revocation, recovery, and so on. With XKMS, applications
can interact using PKI without focusing on the myriad of fine details in PKI such as
ASN.1.

XKMS was published as a W3C Note in March 2001 by VeriSign, Microsoft, and
WebMethods. XKMS has two major components: XML Key Information Service
Specification (X-KISS), and XML Key Registration Service Specification (X-KRSS). One of
the main goals of XKMS is to complement the emerging W3C standards, such as XML
Digital Signature and XML Encryption. Actually, key information is represented by the
ds:KeyInfo element defined by XML Digital Signature.

Let's examine X-KISS with a digital signature example. Listing 5.15 is a modified SOAP
message including a digital signature.

Listing 5.15 SOAP Digital Signature with a Distinguished Name

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header>

 <SOAP-SEC:Signature

 SOAP-ENV:actor=""

 SOAP-ENV:mustUnderstand="1"

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:SOAP-SEC="http://schemas.xmlsoap.org/soap/security/2000-12">

 <dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">

 <dsig:SignedInfo>

 ...

 </dsig:SignedInfo>

 <dsig:SignatureValue>

 ... Base64-encoded Signature Value...

 </dsig:SignatureValue>

 <dsig:KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">

 <dsig:KeyName>CN=Purchase Order Client, OU=Purchase Department,

O=SkateboardWarehouse, L=..., S=NY, C=US </dsig:KeyName>

 </dsig:KeyInfo>

 </dsig:Signature>

 </SOAP-SEC:Signature>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>

 <t:po id="43871" submitted="2001-10-05">

 <t:nonce>2001-10-05T12:13:14Z</t:nonce>

. ...

 </t:po>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The KeyName element under KeyInfo specifies only the DN of the certificate owner, and
there is no longer any detailed certificate information. For signature verification, we need
the public key. The key value of the public key can be retrieved via X-KISS, as in Listing
5.16.

Listing 5.16 Query for Retrieving a Key Value

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlso ap.org/soap/envelope/">

 <SOAP-ENV:Body>

 <Locate xmlns="http://www.xkms.org/schema/xkms-2001-01-20">

 <Query>

 <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">

 <KeyName>CN=Purchase Order Client, OU=Purchase Department,

O=SkateboardWarehouse, L=..., S=NY, C=US</KeyName>

 </KeyInfo>

 </Query>

 <Respond>

 <string>KeyValue</string>

 </Respond>

 </Locate>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The Locate element includes a query on KeyInfo, and a format of the response. This
message requests a public key for the DN specified by the KeyName element. Listing 5.17
shows its response.

Listing 5.17 Response for the Key Value Query

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" >

 <SOAP-ENV:Body>

 <LocateResult xmlns="http://www.xkms.org/schema/xkms-2001-01-20">

 <Result>Success</Result>

 <Answer>

 <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">

 <KeyValue>

 <DSAKeyValue>

 <P>

/X9TgR11EilS30qcLuzk5/YRt1I870QAwx4/gLZRJmlFXUAiUftZPY1Y+r/

F9bow9sbVWzXgTuAHTRv8mZgt2uZUKWkn5/oBHsQIsJPu6nX/rfGG/g7V+fGqKYVDwT7g/

bTxR7DAjVUE1oWkTL2dfOuK2HXKu/yIgMZndFIAcc=

 </P>

 <Q>l2BQjxUjC8yykrmCouuEC/BYHPU=</Q>

 <G>

9+GghdabPd7LvKtcNrhXuXmUr7v6OuqC+VdMCz0HgmdRWVeOutRZT+ZxBxCBgLRJFn

Ej6EwoFhO3zwkyjMim4TwWeotUfI0o4KOuHiuzpnWRbqN/C/ohNWLx+2J6ASQ7zKTx

 vqhRkImog9/hWuWfBpKLZl6Ae1UlZAFMO/7PSSo=

 </G>

 <Y>

Q9N/x1cj2LSaV9ZdKPl0Sl9HhqbBdloc/AvxvY41sQREau9s/HmPwFdTgn6iRCdXrg

Y2HaiQYOlBdt09UW+q2XjvY1vdrWhXlxy8VdSFEdMCla926o38igZjFqXF0LOlBKTK

 LQTsCzWWxDB6sK8LkvaUikUFpudYa/rWP562GUI=

 </Y>

 </DSAKeyValue>

 </KeyValue>

 </KeyInfo>

 </Answer>

 </LocateResult>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The value of the public key is included in KeyValue element. With this value, we can
verify the signature of the initial SOAP message.

As shown in the example, X-KISS helps applications obtain cryptographic key
information. In addition to key value retrieval, it can be used to validate a binding
between a key name and key value. It is also useful for getting key information from an
X.509 certificate. In a complementary way, X-KRSS provides key registration, revocation,
and recovery services.

Although we reviewed interactions between applications and XKMS servers, how do
XKMS servers interact with PKI entities such as CAs and CRs? Unfortunately, XKMS is just
an interface, and therefore it does not prescribe how XKMS servers should behave. XKMS
could be used to support certificate-less keys when full-featured PKI is not required.
However, XKMS is most valuable if XKMS servers provide a lightweight interface to PKI.
In that case, a XKMS server could cache the certificate path and CRL when it receives a
key registration or retrieval request, and then periodically check the CRL to keep its
database up-to-date.

One of the important aspects of XKMS is that key management functions are provided in
terms of Web services. In this way, complex certificate processing logic is abstracted
away from applications and into server-side components. Furthermore, key management
could be administered at a single point within an entire enterprise. This is advantageous
for simplifying enterprise management.

How to Get Started with Security

So far, Dean Caroll of SkatesTown has a pretty good understanding of the security
architecture for SOAP and the technologies available in this area. The acceptance and
maturation of each technology is quite different, however. For example, BASIC-AUTH and
SSL are widely accepted, and adopting them is not a problem. On the other hand, the
new SAML proposal does not even have an initial specification.

Al Rosen suggests that SkatesTown should begin with digital signatures in addition to
BASIC-AUTH and SSL. A signature is immediately required for non-repudiation, and XML
Signature is now a proposed recommendation. Al also recommends adding encryption
and authorization once digital signatures are in place.

A working group has just been formed for XML Encryption, so its specification can still
change drastically. As for authorization, we are not sure whether JAAS will be broadly
accepted. We need to see how it converges with the EJB authorization model, as we
described in the "EJB Security" section. SAML and non-repudiation services are under
discussion, and they are worth keeping an eye on. Finally, although there are few XKMS
products, you should try one of them; WSTK 2.4 includes a demonstration. XKMS can
drastically decrease the workload to integrate your systems with PKI.

Enterprise Application Integration

In real business situations, it is not sufficient to develop Web applications with servlets
alone. Integration of existing applications and business processes is more important.
SkatesTown has a number of legacy applications such as order management, inventory
management, and delivery systems, and is eager to integrate them. This process is
called Enterprise Application Integration (EAI).

A basis for EAI must be interaction models that support synchronous and/or
asynchronous interactions among applications. The interaction models should include
coordination of transactions over applications and a secure execution environment.
Robustness, flexibility, and scalability are also required to implement the models.

In this section, we describe Java 2 Enterprise Edition (J2EE) as a vehicle to perform EAI.
Enterprise Java Beans (EJBs) provide a message-oriented and object-oriented component
interaction model that supports both synchronous and asynchronous interactions. J2EE is
a framework to integrate EJBs and other Web application components such as the servlet
container. With J2EE, a request to a servlet can be performed within a transaction
context in a secure manner.

The rest of this section is structured as follows: First, we review a typical SOAP server
architecture for EAI on the basis of J2EE. Transactions and reliable messaging are
respectively described in the context of the SOAP server architecture. Finally, we review
the J2EE security model, referring to the previous section.

SOAP Server Based on J2EE

The J2EE specification addresses the development of new business services that combine
many of the new, best-of-breed applications while leveraging previous investments in
legacy systems. Because these services are architected as multitier applications including
Web clients, Web servers, servlet containers, application servers, and databases, the
main goal of J2EE is to reduce the cost and complexity of developing these multitier
services, resulting in services that can be rapidly deployed and easily enhanced.
Accordingly, J2EE is a meta-specification over a collection of existing Java standards as
follows:

• Servlet— The HTTP server-side API to process HTTP requests and to return HTTP
responses.

• Java Server Page (JSP)— A text-based solution to process a request to create a
response. More specifically, you can include Java programs in HTML documents.

• Enterprise Java Beans (EJB)— A standard component architecture for building
distributed object-oriented applications, especially strongly combined with
database systems.

• Java Database Connectivity (JDBC)— The API for connectivity with database
systems.

• Java Message Service (JMS)— A standard API for messaging that supports reliable
point-to-point messaging, as well as the publish-subscribe model.

• Java Naming and Directory Interface (JNDI)— The standard API for naming and
directory access.

• JavaMail— The standard API to send e-mail notifications.

• JavaBeans Activation Framework (JAF)— A framework to handle an arbitrary piece
of data, such as MIME byte streams. The JavaMail API uses the JAF API, so it must
be included as well.

We will not examine all these specifications. Rather, we'll consider how to architect a
SOAP server on top of J2EE. Figure 5.13 shows an initial cut of the SOAP server
architecture that takes into account EAI. In this architecture, the front-end is an HTTP
server, and a servlet container sits next to it. The server hosts a SOAP engine (for
example, Axis), which is the heart of a SOAP server. At the back end, we might have an
application server—that is, an EJB container, database, or collection of business
applications.

Figure 5.13. SOAP server on J2EE architecture.

In the simplest case, we only have a Java program within a servlet container as in most
examples mentioned so far. The Java program can access a database via JDBC, or invoke
a business application via JMS. An application can be provided as an EJB (hosted by the
application server). The EJB can invoke a database, a business application, or even
another EJB object hosted by another application server.

One of key features of J2EE is transaction support. The next section describes
transactions in terms of the path of SOAP engines, EJB objects, and databases. In
addition, reliable messaging is discussed, especially taking JMS into account. J2EE
provides a security model that includes authorization to EJB. The J2EE security model is
also discussed, clarifying further requirements for the SOAP server.

Transaction Processing

So far, our purchase order example had been simplified so that we could focus on
addressing SOAP features. However, in reality, the process is much more complicated
because we might have to integrate multiple applications, data, and even business
processes. In this section, we extend the purchase order example to include a

transaction , which is a widely used computational model for constructing reliable
and available distributed applications.

We include two databases in our purchase order example: Product and Order. The
Product database stores product information, such as name, type, and description.
Furthermore, inventory management is performed with this database so that only
products in stock are sold. The Order database records purchase orders that are
accepted.

We have to extend our purchase order program to integrate the Product and Order
databases. There are two operations in this new context:

1. Update the Product database to reduce the amount of inventory on hand

based on how many of each product the customer orders.

2. Update the Order database to add a record of the purchase order.

However, simply executing these operations sequentially is not sufficient because the
application might fail just after completing the first operation. In this case, the stock
number in the Product database is decreased, but the order is not recorded. The result
of the application should be all or nothing—that is, all of the operations must complete,
or none of the operations should be allowed to complete. Such a requirement is called
atomicity and is one of key properties of transaction processing. In addition to atomicity,
transactions should have three other properties: consistency, isolation, and durability.
These properties will be described more in detail after we review how our program can be
implemented with EJB.

With EJB, data resources are represented as Java objects, and transaction processing
over the objects is ensured. Figure 5.14 illustrates an overview of the purchase order
program, which incorporates databases with EJB. A Product object in the EJB container
corresponds to a record in the product table. In the same manner, an Order object

corresponds to a record in the order table. These EJB objects are called Entity Beans
because they represent entities in data resources.

Figure 5.14. Purchase order processing with EJB.

On the other hand, the POProcess object reads and updates data in a database on behalf

of the client. A Session Bean is an EJB object that performs business logic on behalf
of a client in a distributed, transactional context. When the POProcess object receives a
client request, it reads and updates databases via Product and Order objects. Although
it is complicated to update the date on multiple resources during transaction processing,
the EJB container provides a simple way to perform transactions.

Let's review our EJB objects. When providing EJB objects, we must implement a home

interface , remote interface, and component implementation. As a result, nine Java

classes should be provided, as listed in Table 5.2. Note that Container Managed

Persistence (CMP) will be described in more detail in the examples.

Table 5.2. EJB Classes for Purchase Order Program

EJB Type Home Interface Remote Interface Component Implementation
CMP Entity Bean ProductHome Product ProductBean
CMP Entity Bean OrderHome Order OrderBean
Session Bean POProcessHome POProcess POProcessBean

Let's take a closer look at some of these EJBs. Listing 5.18 is the definition of the
Product EJB. Product is an interface for a product, so it defines a collection of methods
to get and set data fields, such as SKU, Name, Type, and so on. POProcess uses this
interface to look up and update the fields.

Listing 5.18 Definition of the Product Interface

public interface Product extends javax.ejb.EJBObject {

 String getSKU() throws java.rmi.RemoteException;

 void setSKU(String newValue) throws java.rmi.RemoteException;

 String getName() throws java.rmi.RemoteException;

 void setName(String newValue) throws java.rmi.RemoteException;

 String getType() throws java.rmi.RemoteException;

 void setType(String newValue) throws java.rmi.RemoteException;

 String getDesc() throws java.rmi.RemoteException;

 void setDesc(String newValue) throws java.rmi.RemoteException;

 int getPrice() throws java.rmi.RemoteException;

 void setPrice(int newValue) throws java.rmi.RemoteException;

 int getInStock() throws java.rmi.RemoteException;

 void setInStock(int newValue) throws java.rmi.RemoteException;

}

ProductBean is the implementation of Product; therefore, it defines the set/get methods
and data fields for them. In addition, it implements a collection of methods defined by
the EntityBean interface, such as ejbCreate, ebjLoad, ejbActivate, and so on (see
Listing 5.19). These methods are derived from an EJB object lifecycle model. The lifecycle
model is beyond the scope of this book, so interested readers should refer to the EJB
specification.

Listing 5.19 ProductBean Class

public class ProductBean implements EntityBean {

 private javax.ejb.EntityContext entityContext = null;

 public String sku;

 public int price;

 public String name;

 public String type;

 public String desc;

 public int inStock;

 public void ejbActivate() throws java.rmi.RemoteException {}

 public String ejbCreate(java.lang.String sku)

 throws javax.ejb.CreateException, java.rmi.RemoteException

 {

 this.sku = sku;

 return sku;

 }

 public void ejbLoad() throws java.rmi.RemoteException { }

 public void ejbPassivate() throws java.rmi.RemoteException { }

 public void ejbPostCreate(java.lang.String argProductId)

 throws java.rmi.RemoteException { }

 public void ejbRemove()

 throws java.rmi.RemoteException,

 javax.ejb.RemoveException { }

 public void ejbStore() throws java.rmi.RemoteException { }

 public javax.ejb.EntityContext getEntityContext() {

 return entityContext;

 }

 public void setEntityContext(javax.ejb.EntityContext ctx)

 throws java.rmi.RemoteException

 {

 entityContext = ctx;

 }

 public void unsetEntityContext() throws java.rmi.RemoteException {

 entityContext = null;

 }

 public String getSKU() {

 return sku;

 }

 public void setSKU(String newValue) {

 this.sku = newValue;

 }

 public String getName() {

 return name;

 }

 public void setName(String newValue) {

 this.name = newValue;

 }

 public String getType() {

 return type;

 }

 public void setType(String newValue) {

 this.type = newValue;

 }

 public String getDesc() {

 return this.desc;

 }

 public void setDesc(String newValue) {

 this.desc = newValue;

 }

 public int getPrice() {

 return price;

 }

 public void setPrice(int newValue) {

 this.price = newValue;

 }

 public int getInStock() {

 return inStock;

 }

 public void setInStock(int newValue) {

 this.inStock = newValue;

 }

}

As you can see, defining Product and ProductBean is pretty easy, because doing so is
almost the same as creating ordinary Java programs. Now, how do you relate Product to
the database? You do not have to change the program at all; rather, you can define the
mapping to database at deployment time. It is worthwhile to mention that EJB programs
are deployed with deployment descriptors, each of which declares all the EJB's external
dependencies (such as the names of resources that the EJB uses).

Listing 5.20 is a definition for Product excerpted from the deployment descriptor of our
application. As you can see, it defines that Product is a CMP bean (see persisence-type
element), specifying which fields of the CMP bean are managed by the EJB container.
Note that how these fields are persisted is left to each vendor. It also must be noted that
Listing 5.20 is an EJB 1.1 style deployment descriptor that is different from the format
defined for EJB 2.0.

Listing 5.20 Deployment Descriptor for the Product EJB

<entity>

 <display-name>Product</display-name>

 <ejb-name>Product</ejb-name>

 <home>ProductHome</home>

 <remote>Product</remote>

 <ejb-class>ProductBean</ejb-class>

 <persistence-type>Container</persistence-type>

 <prim-key-class>java.lang.String</prim-key-class>

 <reentrant>False</reentrant>

 <cmp-version>1.x</cmp-version>

 <cmp-field>

 <description>no description</description>

 <field-name>name</field-name>

 </cmp-field>

 <cmp-field>

 <description>no description</description>

 <field-name>type</field-name>

 </cmp-field>

 <cmp-field>

 <description>no description</description>

 <field-name>inStock</field-name>

 </cmp-field>

 <cmp-field>

 <description>no description</description>

 <field-name>price</field-name>

 </cmp-field>

 <cmp-field>

 <description>no description</description>

 <field-name>desc</field-name>

 </cmp-field>

 <cmp-field>

 <description>no description</description>

 <field-name>sku</field-name>

 </cmp-field>

 <primkey-field>sku</primkey-field>

 <security-identity>

 <description></description>

 <use-caller-identity></use-caller-identity>

 </security-identity>

</entity>

Product, ProductHome, and ProductBeans are specified with home, remote, and ejb-
class elements. persistence-type specifies a Container to indicate that this entity
bean is CMP. The field-name element under cmp-field indicates a data field that is
included in ProductBean and will appear as a column name in a database table.

Because the definition of Order is inherently the same as Product, we move on to the
POProcess session bean. Its core portion can be found in POProcessBean.order().
Listing 5.21 is a portion of POProcessBean.

Listing 5.21 POProcessBean Class

public class POProcessBean implements SessionBean {

 public Order order(String shipId, String billId, String sku, int quantity)

 throws POProcessException

 {

 try {

 Product product = productHome.findByPrimaryKey(sku);

 if (quantity>product.getInStock()) {

 throw(new POProcessException("Stock is not enough"));

 }

 product.setInStock(product.getInStock()-quantity);

 Order order = orderHome.create(""+System.currentTimeMillis());

 System.out.println("order class: " + order.getClass());

 order.setBillTo(billId);

 order.setShipTo(shipId);

 order.setSKU(sku);

 order.setProductName(product.getName());

 order.setQuantity(quantity);

 int total=quantity*product.getPrice();

 order.setTotalPrice(total);

 if (total>MAX_TOTAL) {

 throw(new POProcessException("Exceed the max charge

 ("+MAX_TOTAL+")"));

 }

 return order;

 } catch(POProcessException e) {

 mySessionContext.setRollbackOnly();

 throw e;

 } catch(RemoteException e) {

 throw new EJBException("Fail in Order.order: " +e.getMessage());

 } catch(CreateException e) {

 throw new EJBException("Fail in Order.order: " +e.getMessage());

 } catch(FinderException e) {

 throw new EJBException("Fail in Order.order: " +e.getMessage());

 }

 }

}

In plain terms, the processes here are as follows:

1. Find a product based on a given SKU ID.

2. Update the inStock data field if the order quantity exceeds the

stocked products.

3. Create an order based on the given request and the product

information.

4. Place the order only if the total charge is less than a value

(MAX_TOTAL).

The sequence of operations is performed within a transaction context although you see
very few instructions related to transactions. If you use UserTransaction class, you
invoke the begin() method to start a transaction, the commit() method to complete it,
and the rollback() method to abort it. However, explicitly comitting and rolling back
transactions is not a good practice. Rather, you are strongly advised to use container-
managed transactions instead. If you take this approach, operations are performed
automatically in a transactional context. Only if you want to allow rollback should you
invoke setRolebackOnly() method of the SessionContext class as shown in the listing.
For example, if the total charge is more than MAX_TOTAL, the update on Product and the
creation of the Order object is undone.

ACID and Two-Phase Commit

So far, we have only mentioned atomicity. Now, we will review the four transaction

properties known as ACID (Atomicity, Consistency, Isolation, and Durability) , and
we will discuss the popular two-phase commit transaction protocol.

Atomicity ensures that a computation will either terminate normally, updating the
involved data resources in the intended way, or abort, updating nothing. In other words,
no intermediate situation can exist where data resources are partially updated. This
property should be ensured even if there is a system failure. In our example without
atomicity, if we encountered a system failure, we would have a situation in which the
product database is updated, but the order database is not updated.

Consistency ensures that only consistent-state changes to data resources occur despite
concurrent access and system failures. In our case, we have the following constraint over
the product and order databases:

([initial stock]-[current stock])*price == [total charge in

orders]

The consistency property relies on application programs to some extent, unlike other
properties, because constraints on data are not explicitly represented. More specifically,
such constraints are embedded in application logic; therefore, a transaction management
system cannot monitor them.

Isolation ensures that concurrent computations do not interfere with each other. In other
words, the result of concurrent execution of transactions should be equivalent to the case
of sequential execution. In our example, the inStock field of Product is critical data, so
it requires isolation. Assume that the stock is 10, and two transactions are executed,
each of which requires 8 products. Without proper isolation, or a locking mechanism,
both transactions would successfully terminate as long as they both satisfy the atomicity
constraint.

Durability ensures that once the transaction terminates normally, its result is stored
permanently. Generally speaking, termination of a transaction does not mean the
completion of a database update; rather, it means that necessary information for
updating is recorded. Therefore, this property is related to recovery from failure.

The two-phase commit (TPC)[gl] protocol is a broadly accepted solution for ensuring the
ACID properties over distributed data resources. The TPC protocol defines two types of
messages: "prepare" and "commit". To complete a transaction, these messages are sent
to all data resources. However, the prepare and commit messages are never mixed;
therefore, the completion phase is comprised of two phases: the prepare and commit
phases. This simple principle is the basis for various transaction theories.

EJB wraps TPC protocols carefully so that application programmers can develop
transaction processing easily and safely. Container-managed transaction is a typical
example to simplify development. In summary, EJB lets you develop transaction
processing properly without worrying about the details of transaction theories.

Executing EJB from Axis

In this section, we execute the EJB version of the purchase order with Axis. Go to
/ch5/ex5/index.jsp in the example navigator. Through the page, you can specify the
shipping ID, billing ID, SKU, and quantity, and issue a purchase order (see Figure 5.15).
As long as the database indicates that sufficient quantity exists to fill the order, you
receive an invoice. Otherwise, you receive an error message.

Figure 5.15. Example navigator GUI to invoke EJB purchase order.

Listing 5.22 shows a SOAP client program for the purchase order.

Listing 5.22 Client Code for Invoking an EJB Service

public class POProcessClient {

 private String url;

 private String urn;

 public POProcessClient(String targetUrl, String serviceUrn)

 {

 url = targetUrl;

 urn = serviceUrn;

 }

 public OrderData order(String shipid, String billid,

 String sku, int quantity)

 throws Exception

 {

 ServiceClient client = new ServiceClient(endpointURL);

 OrderData order =

 (OrderData)client.invoke(urn, "order",

 new Object[] { shipid, billid, sku, new Integer(quantity)});

 return order;

 }

}

As you can see, there is no difference from ordinary Remote Procedure Call (RPC)

invocations at the client side. At the server side, some Universal Resource Name
(URN) such as urn:X-SkatesTown:EJBPOService is bound to an EJB object of the
POProcess class instead of a Java object. If the member variable urn in POProcessClient
is urn:X-SkatesTown:EJBPOService, the RPC request from the client is dispatched to the
EJB object as in an ordinary RPC invocation.

Using EJB with SOAP Engines

Let's examine how we can use EJB with SOAP engines. Our motivation for introducing
EJB was to carry out EAI. EJB objects can be published externally through a SOAP
engine. The example in this section has demonstrated that you can integrate multiple
databases even when they are distributed in a complicated configuration. However, you
might also want to integrate other kinds of applications. For example, you might have an
inventory management application instead of the product database in our example. In

some cases, you can use a Bean-Managed Persistence (BMP) Entity Bean instead of
a CMP Entity Bean.

Furthermore, the J2EE Connector Architecture Specification has been released and is
much more sophisticated than the BMP Entity Bean for improving EAI. Although the J2EE
Connector Architecture can be viewed as a generalization of JDBC connection pooling, it
provides a good framework to integrate legacy applications, addressing connection
pooling, transactions, and security. If you're going to perform EAI, you should check out
J2EE Connector Architecture.

Once you understand EJB transaction processing capability, a question arises: Can the
SOAP engine be improved with EJB? Axis currently provides a SOAP engine that works on
top of the servlet container. Let's examine how to move the SOAP engine to an EJB
container.

Figure 5.16 illustrates an architecture where a SOAP engine is located within an EJB
container. Because requests are sent via various transports, there might be different
types of listeners, such as SMTP Listeners, FTP Listeners, and HTTP Listeners. An HTTP
Listener is developed as a servlet. Each listener delegates the incoming request to the
EJB container via the Remote Method Invocation over Internet Inter-ORB (RMI-IIOP)

protocol . Once a request is received, the SOAP engine does not consult the
transport listener again in the processing of that request.

Figure 5.16. SOAP Engine within EJB Container

Within the SOAP engine, there are five handlers to process the request. First, the digital
signature of the message is verified, then the message is logged, and the POProcess EJB
is invoked to process the purchase order in the message. The response from POProcess,
an invoice, is digitally signed and logged before being returned to the requestor.

In practice, the SOAP engine would be implemented as a Stateless Session Bean and
would invoke the handler chain from the EJB. If you use container managed transactions,
a transaction starts automatically when the SOAP engine is invoked. So, atomicity over
the update of three databases is ensured within the transaction context. This architecture
is especially useful in the case of a system failure. The system might fail during execution
of the signature handler in Figure 5.16. In that case, we cannot return an invoice to the
requestor, and we might want to roll back the previous operations. This architecture
allows us to roll back the transaction automatically so that we do not have to worry about
complicated recovery sequences.

A SOAP engine within a servlet can handle normal errors that are typically recognized by
Java exceptions. However, it cannot handle system failures properly because such an
engine does not record enough information for recovery. On the other hand, the EJB-
based architecture is robust against system failure in the sense that a recovery sequence
is automatically and properly carried out by the EJB container.

Transactions over the Internet

Dean Caroll of SkatesTown now realizes the advantages of using transactions to integrate
legacy applications. Transactions ensure that application data is consistently updated and
simplify error handling tremendously. However, he has one lingering concern: Can we
use the transaction processing model for B2B collaboration over Internet?

There are some standardization efforts for modeling transaction processing onto B2B.

Transaction Internet Protocol (TIP) provides a simplified two-phase commit protocol.
TIP does not require a very large infrastructure, but it has not garnered broader support

because of its complexity. XML Transaction Authority Markup Language (XAML) is
another effort for representing transaction protocol in XML. It was announced in October
2000, but so far no specification has been published.

What is the key difficulty in managing transactions over the Internet? We need to keep
the two-phase commitment (TPC) protocol in mind. According to the TPC protocol, a
transaction manager sends prepare messages to resource managers, and eventually
receives OK messages from them. Once a resource manager sends the OK message, it
has to wait for a commit or abort message from the transaction manager. This suggests
that the resource manager might have to wait a while for the message. Within an
intranet, we can expect each system to be stable, and thus the network to be stable.
However, we cannot expect the same level of stability when relying on other companies'
systems using the Internet.

A more practical approach is to instead use compensation transactions, which have
proper transaction models for the Internet. In our purchase order example, we can
reconstruct the architecture to use compensation transactions by including two
transactions (product and order databases updated with different transactions). Assume
that the product database is successfully updated, but some problem occurs during the
order creation. In that case, we issue a compensation transaction to cancel the update on
the product database. Although ACID properties are not ensured here, many real cases
can be covered with this protocol.

Reliable Messaging

The EJB architecture integrates object-oriented programming with transaction processing
in an elegant way. Its distributed object architecture relies on a client-server model
where the client sends a request and waits for a response from a server synchronously.
This synchronous invocation model fits into transaction processing model we have
thoroughly reviewed. However, the synchronous model has several limitations that are
crucial for EAI.

Mainly, the problems are related to communication between the client and server. With a
synchronous model, when a communication failure occurs, the client receives an error
message. Accordingly, the client must send the identical request to the server later. In
some cases, the client might not want to retry, but would prefer to have someone send
the request when communication is restored.

This problem can be resolved by message queuing , where the client puts a
message on a queue, and the server gets a message from the queue. The message in
the queue is often recorded in persistent storage; therefore, the message is sure to be

sent to the server. Thus, message queuing is often called reliable messaging or

guaranteed message delivery . Furthermore, message queuing is closely related to
transaction processing because the queue can be considered a transaction resource.

Let's examine Java Message Service (JMS), which is a standard API for message queuing
systems. First, we will update our purchase order example to include JMS. Then, we will

examine the EJB 2.0 Message-driven Bean , which is asynchronously invoked to
handle the processing of incoming JMS messages as in JMS applications. Finally, we
consider how to adopt JMS as a SOAP transport.

Message Queuing with JMS

We could make our purchase order program more functional by assuming that there is an
order management system instead of an order database. Figure 5.17 illustrates this
extension including a message queue front-ending the order management system.
POProcess puts order information in the queue, and proceeds to the next operation
without blocking. On the other hand, the order management system asynchronously gets
the information from the queue to record the order information.

Figure 5.17. Application integration with message queue.

Let's rewrite our purchase order example using JMS. Listing 5.23 is a modification of
POProcessBean, namely, POProcessBeanJMS.

Listing 5.23 POProcessBeanJMS Class

public class POProcessBeanJMS implements SessionBean {

 public OrderData order(String shipId, String billId, String sku, int

 quantity)

 throws POProcessException

 {

 try {

 Product product = productHome.findByPrimaryKey(sku);

 if (quantity > product.getInStock()) {

 throw new POProcessException("Stock is not enough");

 }

 product.setInStock(product.getInStock() - quantity);

 OrderData order = new OrderData("" + System.currentTimeMillis());

 order.setBillTo(billId);

 order.setShipTo(shipId);

 order.setSKU(sku);

 order.setProductName(product.getName());

 order.setQuantity(quantity);

 int total = quantity * product.getPrice();

 order.setTotalPrice(total);

 queueConnectionFactory = (QueueConnectionFactory)

 jndiContext.lookup("QueueConnectionFactory");

 queue = (Queue)jndiContext.lookup(queueName);

 queueConnection =

 queueConnectionFactory.createQueueConnection();

 queueSession =

 queueConnection.createQueueSession(false,

 Session.AUTO_ACKNOWLEDGE);

 queueSender = queueSession.createSender(queue);

 ObjectMessage message = queueSession.createObjectMessage();

 message.setObject(order);

 queueSender.send(message);

 if (total > MAX_TOTAL) {

 throw new POProcessException("Exceed the max charge (" +

 MAX_TOTAL + ")");

 }

 return order;

 } catch(POProcessException e) {

 mySessionContext.setRollbackOnly();

 throw e;

 } catch(RemoteException e) {

 throw new EJBException("Fail in Order.order: " +e.getMessage());

 } catch(Exception e) {

 throw new EJBException("Fail in Order.order: " +e.getMessage());

 }

 }

}

Note that the entity bean Order is replaced by a Java class OrderData. The typical way
of using JMS, as shown in bold in the program, is as follows:

1. Look up QueueConnectionFactory and a queue via JNDI.

2. Create a connection and a session object to access a queue manager.

3. Create a queue sender object.

4. Create a message object and send it.

Because queues can be transaction resources, they adhere to transaction management.
More specifically, when the order() method is invoked in Listing 5.23, a transaction
starts automatically. Then, only when the method successfully exits is a commit message
sent to the queue manager. The message is then placed into the queue where the server
can get it.

Let's look at the server side, namely OrderManagementListener, which is the front end
of the order management system. Listing 5.24 is an OrderManagementListener class
that gets order messages from the queue.

Listing 5.24 OrderManagementListener Class

public class OrderManagementListener implements MessageListener {

 public static void main(String[] args) {

 try {

 jndiContext = new InitialContext();

 queueConnectionFactory = (QueueConnectionFactory)

 jndiContext.lookup("QueueConnectionFactory");

 queue = (Queue) jndiContext.lookup(queueName);

 queueConnection =

 queueConnectionFactory.createQueueConnection();

 queueSession =

 queueConnection.createQueueSession(false,

 Session.AUTO_ACKNOWLEDGE);

 queueReceiver = queueSession.createReceiver(queue);

 queueConnection.start();

 queueReceiver.setMessageListener(this);

 } catch (Exception e) {

 } finally {

 if (queueConnection != null) {

 try {

 queueConnection.close();

 } catch (JMSException e) {}

 }

 }

 }

 public void onMessage(javax.jms.Message msg) {

 if(msg instanceof ObjectMessage) {

 ObjectMessage message = (ObjectMessage)msg;

 OrderData order = (OrderData)message.getObject();

 // invoke order management system

 } else {

 // do something

 }

 }}

Unlike on the client side, a queue receiver object is created to get messages from the
queue. We extract an OrderData object from a JMS message, then invoke the order
management system with the order data. Again, the message is received only when a
transaction is committed at the client side.

You can integrate applications in a loosely coupled and extensible manner with message
queuing. First, the client does not have to know who receives the message. Second, even
if the server is not available because of a server failure or communication problem, the
client can still continue to send requests as long as the queue is available. In addition,
load balancing is also possible by simply adding replications of the server.

Message-driven Bean

One of main improvements in EJB 2.0 is the introduction of the Message-driven Bean
(MDB). MDB improves the programming of the server side although it does not affect the
client side at all.

Let's look at OrderManagementListener again. It is a standalone Java program;
therefore, transaction management is not provided at all. You might want to invoke your
order management system within a transaction context. MDBs meet such a requirement.

Listing 5.25 is OrderManagementMDB. The functionality is the same as
OrderManagementListener, but there is no code to set up a queue connection and
session. In other words, basic operations for getting a message from the queue are
performed by an EJB platform; accordingly, MDB just receives the dispatched messages.
More importantly, the onMessage() method is executed in a transactional context. Note
that if transaction rolls back, the message receipt is also rolled back (in other words, the
message is put back on the queue).

Listing 5.25 OrderManagementMDB Class

public class OrderManagementMDB implements MessageDrivenBean {

 public void onMessage(Message inMessage) {

 ObjectMessage msg = null;

 try {

 if (inMessage instanceof ObjectMessage) {

 msg = (ObjectMessage)inMessage;

 OrderData order = (OrderData)msg.getObject();

 // Invoke order management system

 } else {

 }

 } catch (Exception e) { }

 }

}

Although OrderManagementMDB defines four methods, only onMessage() is shown here.
In contrast to OrderManagementListener, a procedure for receiving messages from the
queue is not necessary. So, this class can focus on extracting the OrderData object and
invoking the order management system.

MDB is convenient; however, we need an EJB container for performing it. On the other
hand, the JMS client can be a standalone Java program like OrderManagementListener.
In some cases, you might use JMS directly (you might not have a proper EJB container in
your platform).

JMS As a SOAP Transport

Because SOAP is transport-agnostic, you can use JMS for its transport instead of HTTP.
Furthermore, the concept of an intermediary suggests that SOAP messages can be
routed to multiple nodes via different transports. Figure 5.18 illustrates a possible
configuration that contains both concepts. Inter-company communication is performed
via HTTP(S). The receiver company has a SOAP intermediary that receives SOAP
messages via HTTP and forwards them to backend applications via JMS. The key idea
here is that the external firewall allows HTTP to pass, whereas the internal firewall allows
only JMS.

Figure 5.18. SOAP messaging that includes both HTTP and JMS.

This configuration is typical for several reasons. First, you can augment message
processing by adding functions to an intermediary without changing the backend
applications. For example, you might add digital signature verification and logging
functions there. Even in that case, you do not have to change the backend applications.
In addition, some companies do not want to accept HTTP through their internal firewall
for security reasons. However, strictly speaking, simply eliminating HTTP does not
necessarily improve the security level. The intermediary also plays a role of security
domain boundary; for example, credential mapping from external IDs to internal IDs is
performed.

SOAP JMS transport is necessary especially for enterprise customers. Although Axis does
not currently support JMS transport, a prototype implementation is provided in our
examples. Listing 5.26 is an excerpt from the JMSSender class for the requestor side.

Listing 5.26 JMSSender Class

public class JMSSender extends BasicHandler {

 private void sendMessage(MessageContext msgContext, String messageTxt)

 throws AxisFault {

 BytesMessage msg;

 try {

 queueConnection = queueFactory.createQueueConnection();

 queueSession = queueConnection.createQueueSession(false,

Session.AUTO_ACKNOWLEDGE);

 queueSender = queueSession.createSender(queue);

 msg = queueSession.createBytesMessage();

 msg.writeUTF(messageTxt);

 TemporaryQueue replyTo = queueSession.createTemporaryQueue();

 msg.setJMSReplyTo(replyTo);

 queueSender.send(msg);

 queueConnection.start();

 QueueReceiver receiver = queueSession.createReceiver(replyTo);

 javax.jms.Message replyMsg = receiver.receive();

 if (replyMsg instanceof BytesMessage) {

 String replyTxt = ((BytesMessage)replyMsg).readUTF();

 org.apache.axis.Message respMsg = new

org.apache.axis.Message(replyTxt);

 msgContext.setResponseMessage(respMsg);

 }

 closeConnection();

 } catch (JMSException e) {

 throw new AxisFault("JMSSender.sendMessage", "JMSException: " + e,

null,

null);

 }

 }

}

The sendMessage() method in the class implements a synchronous request/response by
combining two JMS messages. It creates a temporary queue for a response, sets it as the
reply-to queue in the request message, and sends the message to a request queue.
Then, it waits until a response message is delivered to the temporary queue.

Listing 5.27 is a portion of the JMSListener class for the service provider side.

Listing 5.27 JMSListener Class

public class JMSListener implements MessageListener {

 public void onMessage(javax.jms.Message msg) {

 BytesMessage bytesMsg = null;

 org.apache.axis.Message respMessage = null;

 MessageContext msgContext = null;

 String msgTxt = null;

 AxisEngine engine = AxisServer.getSingleton();

 msgContext = new MessageContext(engine);

 try {

 if (!msg instanceof BytesMessage) {

 // do error handling

 }

 bytesMsg = (BytesMessage) msg;

 replyQueue = (Queue)(bytesMsg.getJMSReplyTo());

 sender = session.createSender(replyQueue);

 msgTxt = bytesMsg.readUTF();

 org.apache.axis.Message soapMessage = new

org.apache.axis.Message(msgTxt);

 msgContext.setRequestMessage(soapMessage);

 msgContext.setTransportName(transportName);

 engine.invoke(msgContext);

 respMessage = msgContext.getResponseMessage();

 String respString = respMessage.getAsString();

 BytesMessage reply = session.createBytesMessage();

 reply.writeUTF(respString);

 sender.send(reply);

 } catch (Exception e) {

 // do error handling

 }

 }

}

The central method in this class is onMessage(). Here, we get the reply queue from the
incoming message and create a queue sender for returning the response. Main
processing is invoked with engine.invoke(). Finally, we respond via the temporary
queue created by the sender.

To execute SOAP over JMS, visit /ch5/ex6/index.jsp in the example navigator (see
Figure 5.19). Like other pages, specify some parameters and click the Submit PO button.

Figure 5.19. Example navigator GUI for SOAP over JMS.

Reliable Messaging on the Internet

In addition to transactions, SkatesTown's Dean Caroll wants to use other means to
reliably transmit messages over the Internet. Unfortunately, despite some ongoing
efforts, there is still no broadly accepted standard in reliable messaging. As in our

previous analysis of security technologies, we can approach this issue at the two levels:
messaging and transport.

An example of a messaging-level approach can be found in the ebXML Transport,
Routing and Packaging (ebXML TRP) specification. It defines the MessageHeader element,
which is present as a child of the SOAP header element; this element can contain a
collection of parameters to perform reliable messaging in a transport-agnostic manner.
Although this specification is well described, it is unfortunately not broadly accepted at
this moment.

JMS, as described in this section, is an approach for reliable messaging. However, it
requires transport products other than HTTP, such as IBM MQ Series. Recently, IBM

announced HTTPR to provide HTTP with reliability and asynchronicity features. There
is some commonality between TRP and HTTPR models; for example, they both assume
message handlers are present at the sender and receiver sides. Accordingly, their
protocols are similar. The big difference is whether their parameters are defined as a
SOAP header entry or HTTP headers. HTTPR is IBM proprietary, so whether it will be
widely accepted is not certain.

J2EE Security Model

So far, we have reviewed transaction processing aspects of J2EE, focusing particularly on
EJB and JMS. In addition to transaction processing, J2EE especially addresses security.
We have already reviewed security technologies such as SSL, digital signatures, and
encryption. In this section, we review an end-to-end security model provided in J2EE.

Figure 5.20 depicts J2EE security architecture, which is based on a role-based access
control (RBAC). The HTTP server or servlet container authenticates a requestor,
assigning roles to it. Within the servlet container, access to Web resources is authorized
based on a URL permission list (not shown in the figure). Within the EJB container,
access to EJB objects is authorized based on a method permission list. Permission lists
are mappings between roles and target objects: Web resources and EJB objects.

Figure 5.20. J2EE security architecture.

RBAC is flexible because role assignment rules and permission lists can be independently
defined. There is a trick here: A credential containing a user ID travels along the method
invocation path, which can span multiple EJB containers, and roles are assigned to the

requestor at each container for authorization. This concept is especially useful when the
system configuration is extremely complex.

J2EE requires compliant platforms to support the following three authentication methods:

• HTTP basic authentication

• SSL client authentication

• Form-based authentication

Note that we will not discuss the third method because the client is not a browser, but a
standalone application.

Authorization in J2EE

Using BASIC-AUTH, let's review how user IDs and roles are defined in J2EE. The following
is an excerpt from application.xml, which is a deployment descriptor for the overall
J2EE application:

<application>

 ...

 <security-role>

 <role-name>GoodCustomer</role-name>

 </security-role>

</application>

The GoodCustomer role is used in the J2EE application. J2EE does not prescribe any
particular means for user definition and user-role mapping. The following is a platform-
dependent format extracted from Sun's J2EE Reference Implementation:

<j2ee-ri-specific-information>

 <server-name></server-name>

 <rolemapping>

 <role name="GoodCustomer">

 <principals>

 <principal>

 <name>ABCRetailer</name>

 </principal>

 </principals>

 </role>

 </rolemapping>

</j2ee-ri-specific-information>

With this format, you can enumerate user IDs within the role element. A principal
indicates a user or a user group. In this example, user ABCRetailer can have a role
GoodCustomer.

Let's take a look at method permission definition for EJB objects. The following is an
excerpt from ejb.xml, which is a deployment descriptor for EJBs:

<ejb-jar>

 <display-name>OrderEjb</display-name>

 <enterprise-beans>

 </enterprise-beans>

 <assembly-descriptor>

 <security-role>

 <role-name>GoodCustomer</role-name>

 </security-role>

 <method-permission>

 <role-name>GoodCustomer</role-name>

 <method>

 <ejb-name>POProcess</ejb-name>

 <method-intf>Remote</method-intf>

 <method-name>order</method-name>

 <method-params>

 <method-param>java.lang.String</method-param>

 <method-param>java.lang.String</method-param>

 <method-param>java.lang.String</method-param>

 <method-param>int</method-param>

 </method-params>

 </method>

 </method-permission>

 </assembly-descriptor>

</ejb-jar>

The security-role element includes a collection of roles that are referenced somewhere
in this file. method-permission indicates who can access the target method with role.
role-name specifies the role name for this method permission, in this case,
GoodCustomer.

Relation to JAAS

You might notice that there is some commonality between J2EE RBAC and JAAS, which
we reviewed in Section "Access Control for Java Classes." A J2EE credential contains a
user ID and roles. On the other hand, a JAAS subject contains a user ID and principals.
So, we can provide a mapping between roles in J2EE credential and principals in a JAAS
subject. Thus, the J2EE credential and the JAAS subject converge in theory.

A potential scenario for using JAAS in J2EE is described as follows
(http://www.research.ibm.com/journal/sj/401/koved.html):

"The EJB container issues a Subject.doAs() call to establish

the credentials before invoking the EJB object. Through the EJB

object's internal actions (e.g., through the ORB),

AccessController.checkPermission() is called to determine

whether the caller is authorized for the method."

This indicates that EJB authorization could be implemented with JAAS. Although there is
no standard for this purpose, JSR 115 might resolve this J2EE and JAAS migration issue.

Once the issue is resolved, we could provide a security framework that accepts
credentials (such as BASIC-AUTH, SSL client authentication, or digital signatures) and
authorizes access to Web resources, Java classes, and EJB.

Quality of Service

Sophisticated e-Business Web services should be able to provide various levels of quality
according to customer requirements and choices. The Quality of Service (QoS) concept
originated in the communications industry, based on the portion of sent packets that is
received at the target without corruption. There is a similar concept in e-Business,

although applications involving banking or air ticket reservation are still not allowed to
perform erroneous operations or stop operations. This section describes an architecture
for enterprise SOAP servers, paying special attention to QoS for e-Business applications.
We provide an overview of the architecture for the enterprise SOAP server, followed by a
detailed treatment of the various aspects of QoS.

Enterprise SOAP Server

In the section "Enterprise Application Integration," we reviewed how to integrate existing
applications with the J2EE architecture. The typical configuration is comprised of a Web
server, a servlet container, some EJB Containers, Databases, and backend applications.
The Web server, Servlet container and EJB Containers portion of this configuration is
related to integration. This portion is termed Web Service Container (WSC) for the sake
of discussion in this section.

What happens if a WSC receives a large number of requests, beyond its capacity to
process them? It is likely that the WSC will take itself offline or, worse yet, one
component (such as the Web server) will crash the computer that it is running on. A
known technique to avoid such a situation is to prepare clones of the original WSC for
load-balancing. Once you introduce clones, the configuration becomes fairly complicated.
Therefore, you need a solid architecture to manage various aspects of the whole system,
such as the status of each component and security.

Figure 5.21 illustrates an architectural overview of an enterprise SOAP server. At the
heart of this architecture is a collection of Web Services Containers (WSCs). Each WSC
invokes backend systems, such as the order management system, and databases. For
the sake of simplification, assume that the backend systems and databases are at least
as scalable as the WSCs. For example, databases are configured into a Data Area
Network in which data replication is automatically performed in preparation for a possible
fail-over.

Figure 5.21. An architecture for an enterprise SOAP server.

Load-balancing, for instance, would be performed by a Round-Robin Domain Name

Service (RR-DNS) and a TCP Router , which dispatches an incoming SOAP
message to one of the WSCs. A system monitor checks the status of each component in
each WSC and might start up another WSC clone when the load becomes too high, for
example. In this complex configuration, managing end-to-end security is a difficult task.
In the enterprise SOAP server architecture, there is a single secure domain where all
security information is managed; this information is the basis for all security decisions.

Note that the architecture for the enterprise SOAP server shown in Figure 5.21 is not
necessarily the best architecture. To come up with the best architecture, the business
and system requirements must be considered. However, the architecture in Figure 5.21
does clearly show what aspects should be considered for the purpose of developing an e-
Business QoS. Each aspect is discussed in detail in the following sections.

High Availability

Availability is an obvious QoS requirement because users generally expect that services
are always, or very nearly always, available. If a service is frequently unavailable, users
stop relying on its service provider. An airline ticket reservation system, for example,
requires 99% availability; the service can be unavailable for only two hours per week.

Load-balancing is a means to achieving high availability, especially in terms of increasing
the scalability of the system. As shown in Figure 5.21, it combines two techniques: RR-
DNS and the TCP Router. A Domain Name Service (DNS) maps domain names
(hostnames) to IP addresses, and the round-robin variety of DNS allows a hostname to
be mapped to one of several IP addresses. An IP address is chosen in round-robin

manner, meaning that consecutive requests are assigned to the available IP addresses in
a pre-determined sequence, repeating itself at the end of the sequence. HTTP redirect is
often used instead of RR-DNS for the same purpose. When a client accesses a server, the
server responds with a redirect instruction to one of the available hosts. One
disadvantage of this approach is that URLs of the target hosts are visible and then are
potentially stored on the client side (such as in a browser's recent URL list or a
bookmark), and the client might directly access this URL in subsequent requests. Thus,
the purpose of load-balancing might be defeated.

Using TCP routers, you can configure clusters to scale up processing power. A TCP router
forwards incoming requests to WSCs. Although the router's name and IP address are
public, the addresses of WSCs are hidden from the client. The TCP router could use a
load-based algorithm to select a target WSC, or simply adopt the round-robin process.
There are many commercially available TCP routers, such as IBM Network Dispatcher
(ND). ND can run on several operating systems, such as Windows, AIX, and Solaris, and
can forward up to 10,000 messages per second when it runs on an embedded OS. In
addition to the TCP router approach, you can use a technique called Network Address

Translation (NAT) . NAT dynamically edits a particular IP packet header to change
the destination address, and edits the return packet in the same manner. Cisco Local
Director is an example of a commercial product for NAT.

Scaling up the system with load-balancing techniques might decrease the risk of system
failure, but system failure can still occur. But WSC clones, in addition to being used to
increase scalability, can also serve as a backup of the original WSC, taking over the
processing when the WSC fails. This introduces the system properties of redundancy
(using clones for possible backup) and fault tolerance (performing an automated
procedure in case of fail-over).

Another issue related to system failure is recovery. Generally speaking, recovery requires
the system to perform a complicated recovery sequence. For example, some kind of
status indicator might be recorded at certain checkpoints, and the recovery process
might rely on the status history. However, because the SOAP server uses transaction
processing, there need not be such a complicated recovery sequence in the enterprise
server architecture. By definition, operations within a transaction context are committed
or aborted. Therefore, in the event of a system failure, the EJB containers will perform
most of the recovery sequence on behalf of applications.

System Management

In order to completely fulfill the requirement for high availability, system management
must also be considered. Because the configuration of real e-Business systems is fairly
complex, as shown in Figure 5.21, there needs to be a systematic means to manage the
whole system. Ideally, there would be a single point of management, from which even
system resources at other sites can be managed. System management might include the
following tasks:

• Monitoring the status of system resources

• Sending alert information to system administrators

• Remotely configuring, deploying, and controlling system resources

• Automatically resolving system resource issues if possible

Typically, system management requires agents, each of which monitors one or more
system resources and continuously sends information to the system monitor. Because
sending too much information unduly consumes network bandwidth, a proper filtering
mechanism is also required.

The system monitor in Figure 5.21 is a central controller to perform system
management. On the basis of the information sent by agents, the system monitor
controls system resources: It starts/stops a resource, adds a resource, or changes the
configuration of a resource. Generally, system administrators interact with the system
monitor to remotely control system resources. Optionally, the system monitor could
adjust automatically without consulting the system administrator when certain known
problems are detected. Of course, this is possible only when you provide the system
monitor with a remedy procedure in advance.

Several types of system resources need to be monitored: network devices, operating
systems, databases, application servers, applications, and so on. Network device
management is easy to implement in the sense that there is a standard specification of

network management, called Simple Network Management Protocol (SNMP) ,
and a large number of devices support SNMP.

On the other hand, system software and middleware packages each have their own
management tools. For example, operating systems might collect values of key system
parameters, such as application statuses, number of users logged in, jobs in a print
queue, system load, free disk space, and other properties. In this case, total system
management vendors should provide an agent to retrieve these OS parameters and
report them to their system monitor.

The application monitor is the hardest task because application-specific agents have to
be developed. In the case of the enterprise SOAP server, a system monitor agent must
be placed in the Axis engine. WSTK 2.4 provides a beta implementation of system
management for Apache SOAP. It can collect the following information:

• Total number of SOAP services deployed

• Total number of RPC calls to all services combined

• Total number of successful invocations of each service

• Average response/transaction time for successful requests

The implementation of this SOAP system management is based on the Java Management

Extension (JMX) . With JMX, you can construct and maintain resource objects that
contain key parameters, and embed agents to monitor the values of those parameters.
WSTK 2.4 will be extended to include additional features, such as operations to change
the behavior of a service and system administrator notification when certain criteria are
met.

In summary, system management is a complex task because different types of system
resources, located at potentially many different sites, need to be monitored and
controlled from one point. Although some aspects, such as network management,
already have well-developed solutions, emerging areas have not been organized for
system management. One immediate problem is that there is no standard way to
manage J2EE platforms. However, there is ongoing discussion toward the goal of
standardizing J2EE Management in JSR 77.

Enterprise Security

A complex system configuration requires an integrated security architecture. Middleware
applications, such as Web servers, application servers, and databases, provide their own
respective security functions. However, the security functions should be integrated in a
centralized manner, as shown in the previous section. In addition, highly confidential

information, such as private keys, must be protected. This centralized approach also
contributes to the protection of the single secure domain.

The security server in Figure 5.21 is an aggregation of commercial security products. It
has a user registry in an LDAP server that manages user IDs, passwords, certificates,
security attributes, roles, and so on. In this architecture, the Web server neither stores
nor checks user IDs and passwords, but rather delegates user authentication to the
security server. In addition to the user registry, the security server can manage access
control rules for authorization and a table for mapping user IDs between different
security domains. For example, when users need to access a backend legacy system,
their Internet IDs might be mapped to IDs for the legacy system.

On the other hand, the security Web services shown in Figure 5.21 address XML- and
SOAP-level security issues. As described earlier, SOAP digital signature and encryption
handlers are provided in the form of Java classes and embedded in the Axis engine.
However, this configuration requires private keys to be distributed to the original and all
clone nodes.

XKMS suggests managing public and private keys in a single repository and accessing
that repository via SOAP messages. You can apply this Web services approach to the
signature and encryption handlers. First, manageability of security handlers is improved
because they are simply invoked from various Axis nodes. Second, manageability of
security information is improved because it is protected in a secure domain. In future
development, a more comprehensive collection of security services, such as timer and
authorization handlers, might be specified and provided in addition to signature and
encryption. Thus, some of the functions in the security server could become security Web
services.

Summary

This chapter discussed how you can perform serious e-Business functions with Web
services. After reading this chapter, you know that there are many emerging standards
in this area, with which you can bring Web services to the real world. Of course, it's

important to keep your eyes on standardization activities in W3C, OASIS , and the

Java Community Processes known as Java Specification Requests (JSR). However, it
is extremely hard to follow all the activities. One reasonable approach is to clarify first
what you want in your business and systems in order to narrow down the activities and
standards you must monitor.

You should now have a fairly solid picture of security standards. Although some
technologies are under development, you can make your Web services secure to some
extent with SSL, BASIC-AUTH, and digital signatures. Other technologies should be
chosen after paying particular attention to how they have matured and how much you
need them in your business.

Standards in Enterprise Application Integration (EAI) are in some sense mature because
they are based on a long history of system integration evolution including transactions,
reliable messaging, distributed objects, security, and so on. However, you must also
know that important concepts like transactions and reliable messaging cannot be applied
to B2B easily on the Internet. We are eagerly awaiting standardization efforts in this
area.

Another issue addressed here was how to fit Web services technologies and standards
into EAI environments. For example, BASIC-AUTH has been integrated into the J2EE
architecture, so authorization on EJB objects can be performed based on it. However,
how do we perform authorization on ordinary Java objects? Can we perform authorization
if we authenticate a requestor with a digital signature? When adopting a Web services

technology, you also have to consider how it can be integrated into your existing EAI
environment.

We also reviewed examples of core Web services. XKMS is the best example here.
Because it is difficult to access PKI, Web services for PKI must be appreciated. As we
envisioned in Figure 5.21, other security functions would be provided as Web services,
such as signature and encryption services. In the same manner, work is underway on
publishing system management functions as Web services. Once such Web services are
provided, customers can understand the system status of the service provider. This could
be a good basis for QoS improvement in a decentralized manner.

Resources

• ASN.1—"Information Technology—Abstract Syntax Notation One (ASN.1): Specification
of Basic Notation" (ITU-T Recommendation X.680, 1997). ISO/IEC 8824-1:1998.

• Base64—"Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies" (IETF, November 1996). Available at
http://www.ietf.org/rfc/rfc2045.txt.

• BASIC-AUTH—RFC 2617: "HTTP Authentication: Basic and Digest Access
Authentication" (IETF, June 1999). Available at http://www.ietf.org/rfc/rfc2617.txt.

Canonical XML—"Canonical XML Version 1.0" (W3C, March 2001). Available at
http://www.w3.org/TR/2001/REC-xml-c14n-20010315.

• CRL—"Internet X.509 Public Key Infrastructure Certificate and CRL Profile" (IETF,
January 1999). Available at http://www.ietf.org/rfc/rfc2459.txt.

• ebXML TRP—Message Service Specification ebXML Transport, Routing & Packaging
Version 1.0 (UN/CEFACT and OASIS, May 2001). Available at
http://www.ebxml.org/specs/.

• EJB—Enterprise JavaBeans Specification, Version 2.0 (Sun Microsystems, August
2001). Available at http://java.sun.com/products/ejb/.

• HTTPR—"A Primer for HTTPR: An overview of the Reliable HTTP Protocol" (IBM, July
2001). Available at http://www-106.ibm.com/developerworks/webservices/library/ws-
phtt/.

• IETF—The Internet Engineering Task Force. Available at http://www.ietf.org/.

• J2EE—Java 2 Platform Enterprise Edition Specification, v1.3 (Sun Microsystems, August
2001). Available at http://java.sun.com/j2ee/.

• J2EE Connector—J2EE Connector Architecture Specification, Version 1.0. (Sun
Microsystems, August 2001). J2EE Connector Specification (Sun Microsystems). Available
at http://java.sun.com/j2ee/.

• J2EE MGMT—"JSR 77: J2EE Management" (JCP, September 2001). Available at
http://jcp.org/jsr/detail/77.jsp.

• JAAS—Java Authentication and Authorization Service (Sun Microsystems). Available at
http://java.sun.com/products/jaas/.

• JAF—JavaBeans Activation Framework Specification, Version 1.0a (Sun Microsystems,
May 1999). Available at http://java.sun.com/products/javabeans/glasgow/jaf.html.

• JASPCFC—JSR 115: Java Authorization Service Provider Contract for Containers (JCP,
April 2001). Available at http://jcp.org/jsr/detail/115.jsp.

• JavaMail—JavaMail 1.2 (Sun Microsystems, December 2000). Available at
http://java.sun.com/products/javamail/.

• JCE—Java Cryptography Extension (JCE) (Sun Microsystems). Available at
http://java.sun.com/products/jce/.

• JMX—Java Management Extensions Instrumentation and Agent Specification, v1.0 (Sun
Microsystems, July 2000). Available at http://java.sun.com/products/JavaManagement/.

• JNDI—Java Naming and Directory Interface 1.2 (Sun Microsystems). Available at
http://java.sun.com/products/jndi/.

• JSP—JavaServer Pages Specification Version 1.2 (Sun Microsystems, September 2001).
Available at http://java.sun.com/products/jsp/.

• JSSE—Java Secure Socket Extension (Sun Microsystems). Available at
http://java.sun.com/products/jsse/.

• OASIS—Organization for the Advancement of Structured Information Standards.
Available at http://www.oasis-open.org/.

• PKCS—"Public-Key Cryptography Standards" (RSA Laboratories). Available at
http://www.rsalabs.com/pkcs/.

• PKI—Internet X.509 Public Key Infrastructure Certificate Management Protocols (IETF,
March 1999). Available at http://www.ietf.org/rfc/rfc2510.txt.

• RMI-IIOP—"Remote Method Invocation (RMI) over Internet Inter-Orb Protocol (IIOP)"
(Sun Microsystems). Available at http://java.sun.com/products/rmi-iiop/.

• SAML—"Security Assertion Markup Language" (OASIS). Available at http://www.oasis-
open.org/committees/security/.

• Servlet—Java Servlet Specification Version 2.3 (Sun Microsystems, September 2001).
Available at http://java.sun.com/products/servlet/.

• SNMP—"Introduction to Version 3 of the Internet-standard Network Management
Framework" (IETF, April 1999). Available at http://www.ietf.org/rfc/rfc2570.txt.

• SOAP Signature—"SOAP Security Extensions: Digital Signature" (W3C, February 2001).
Available at http://www.w3.org/TR/SOAP-dsig/.

• SSL—The SSL Protocol Version 3.0 (Netscape Communications, November 1996).
Available at http://home.netscape.com/eng/ssl3/draft302.txt.

• TIP—Transaction Internet Protocol Version 3.0 (W3C, July 1998). Available at
http://www.ietf.org/rfc/rfc2371.txt.

• TLS—RFC 2246: "The TLS Protocol Version 1.0" (IETF, January 1999). Available at
http://www.ietf.org/rfc/rfc2246.txt.

• VeriSign—VeriSign, Inc. Available at http://www.verisign.com/.

• WSTK—IBM Web Services Toolkit 2.4 (IBM, September 2001). Available at
http://www.alphaworks.ibm.com/tech/webservicestoolkit.

• X.500 Distinguished Name—"Information technology—Open Systems Interconnection—
The Directory: Overview of Concepts, Models and Services" (ITU-T Recommendation
X.500, 1997). ISO/IEC 9594-1:1998.

• XAML—Transaction Authority Markup Language. Available at http://www.xaml.org/.

• XKMS—XML Key Management Specification (W3C, March 2001). Available at
http://www.w3.org/TR/xkms/.

• XML Encryption—"XML Encryption Syntax and Processing WG Working Draft" (W3C,
June 2001). Available at http://www.w3.org/TR/2001/WD-xmlenc-core-20010626/.

• XML Signature—"XML-Signature Syntax and Processing" (W3C, August 2001). Available
at http://www.w3.org/TR/2001/PR-xmldsig-core-20010820/.

Chapter 6. Describing Web Services

IN THIS CHAPTER

• Why Service Descriptions?

• Role of Service Description in a Service-Oriented Architecture

• Well Defined Service

• History of IDLs

• Web Services Definition Language (WSDL)

• WSDL and Java

• Future Service Description Efforts

To this point, we have described XML and positioned it as the underpinnings of the SOAP
messaging protocol. Given that XML is a self-describing, human-readable representation
of data, isn't that enough to make a SOAP message also self-describing? If so, then why
do we need an approach for service descriptions? We'll answer this question in this
chapter.

Why Service Descriptions?

Let's look at this problem from the service requestor's perspective. A customer of
SkatesTown wants to invoke the POSubmission service. How does the customer know
what kind of message to send? Sure, they know to use SOAP, but SOAP is the format of
the envelope; SOAP itself does not clarify what message to actually put into the
envelope. The customer needs to understand what XML to put into the body of the SOAP
envelope, what format the response message might come in, and whether a response is
to be expected. The customer also needs to know what messaging protocol to use to
send the message and what network address to send the message to.

One way for the customer to determine what XML to send is to examine a textual
description of the service published on the SkatesTown Web site. Although doing so is
simple, it does allow some potential problems. The textual description might not be
terribly precise and can allow the customer's developers to misinterpret the specification.
This results in too much trial and error on the customer's part to get the message format
right.

Another approach is to include sample message formats in the documentation. The
developer can then observe the samples and modify them to suit his/her company's
needs. This approach is slightly better in that the developer can get the message format
correct with fewer iterations, but the customer still must do too much hand-crafted code

development. If each Web service required analysis, design, and coding to invoke, the
Web services approach would quickly pass into the dustbin of technology history.

To make the job of invoking Web services easier for the service requestor, we need a
formal mechanism to describe the service. This formal approach provides unambiguous
specification of what the service requestor needs to do in order to invoke the Web
service. As a result of the formality of the service description, software tool developers
can provide tooling to automate the development of code to invoke Web services.

Role of Service Description in a Service-Oriented Architecture

Service description is key within a service-oriented architecture (SOA). A service
description is involved in each of the three operations of SOA: publish, find, and bind.

Recall the SOA approach, depicted in Figure 6.1. The service provider publishes a service
description to one or more service registries. The description of the service is published
in service registries, not the actual code for the Web service itself. The service provider
uses a service description to tell the service requestor everything it needs to know in
order to properly understand how to invoke the Web service.

Figure 6.1. Service-oriented architecture.

Similarly, the service description is central to the find operation. The service requestor
uses aspects of the service description; for example, you might be looking for a Web
service that implements a particular purchase order standard, as the basis for the find
query to a service registry. (In Chapter 7, "Discovering Web Services," we discuss
service registries at length and describe the find and publish operations in more detail.)
The result of the find operation is ultimately a service description made available to the
service requestor.

Why does the service provider publish a service description? To communicate to service
requestors how to invoke a Web service. Why does a service requestor want to get hold
of a service description? Because it describes exactly what needs to happen at the bind
operation. Service description is key to the bind operation, describing exactly what

message format needs to be delivered to what network address in order to invoke a Web
service.

Well Defined Service

What makes a good service description? What aspects of the Web service must be
described in order for the Web service to be considered sufficiently defined?

Submissions to the W3C (http://www.w3.org/2001/03/WSWS-popa/paper51) have
described a stack of Web services description standards that describe various aspects of
a Web service. Details based on this stack are depicted in Figure 6.2.

Figure 6.2. The service description stack.

The layers of the service description stack can be divided into two broad groups:
functional layers and non-functional layers. The bottom three layers are functional in
nature, in that they describe details of how the Web service is invoked, where it is
invoked, and so on. The upper layers are non-functional, or non-operational in nature, in

that they do not directly inform the mechanisms of invocation, but rather provide other
details that influence whether a service requestor would choose to invoke the Web
service.

Functional Description

The bottom, functional layers of the service description stack define the interface

definition language (IDL) equivalent of the service description. The interface
description language layers for Web service description serve the same function as IDLs
in other distributed computing approaches (see the section "History of IDLs"). Let's
examine the relationships between these layers. Fundamentally, it is the functional
description of the Web service that determines what the service requestor needs to do in
order to invoke a Web service.

Like most things in Web services, XML is at the basis of service description. XML is the
type definition that is exploited, by default, in the service implementation and service
interface definition layers of the stack. As we saw in Chapter 3, "Simple Object Access
Protocol (SOAP)," XML describes the datatypes for the elements that flow within the
SOAP message, and in particular, within the SOAP payload, which need to be formatted
by the service requestor and interpreted by the service provider. Much of the effort
within a Web services infrastructure goes into properly encoding and decoding XML
elements to/from native programming language objects.

The service implementation definition and the service interface definition both
use the Web Services Description Language (WSDL) standard. We will describe the WSDL
language in more detail later in this chapter in the "Web Services Definition Language
(WSDL)" section.

The service implementation definition describes where the service is located, or more
precisely, to which network address the message must be sent in order to invoke the
Web service.

The service interface definition describes exactly what message needs to be sent and
how to use the various Internet standard messaging protocols and encoding schemes in
order to format the message in a manner acceptable to the service provider.

Non-Functional Description

The IDL level description embodied by the functional description layers of the service
description stack is very important, but there is more that should be described about a
Web service.

What do we mean by the term non-functional description? Basically, these layers can be
characterized in contrast to the functional layers. Whereas the functional layers describe
where to send the message, what the message syntax needs to look like, and how to use
the protocols and encoding schemes, the non-functional description addresses why a
service requestor should invoke the Web service—for example, what business function
the Web service addresses and how it fits into a broader business process. A non-
functional description also gives more details about who the service provider is. For
example, does the service provider provide auditing and ensure privacy?

You can use the Web Services Endpoint Language (WSEL) to describe the environment or
endpoint which hosts the Web service. Characteristics of the hosting environment could
include the security policy in place at the service provider, what levels of quality of
service are available to support Web service invocation, what kind of privacy policy is
enforced by the service provider, and so on. At one level, you can think of the non-
functional description layers as descriptions of the Web service that do not affect the
shape of the SOAP message body. Non-functional descriptions might have some influence

on the syntax of the message, related to orthogonal extensions of the message (for
example, parameters related to a required security protocol), but the core shape of the
payload of the message is derived from the functional description. At this point, WSEL is
not a concrete proposal, but rather a vague notion of requirement expressed within the
Web services community.

As we will examine in Chapter 7, the UDDI service registry also has impact on the certain
non-functional aspects of the service description. In particular, the taxonomy scheme
supported by UDDI is another mechanism by which a service provider can describe what
kind of service is being provided and what business function it supports.

Aggregation/Orchestration Description

The Web Services Flow Language (WSFL) is one technique to describe how a collection of
Web services can be arranged or orchestrated into a higher level business process. WSFL
addresses items like the proper order in which to invoke a set of Web services.
Essentially, WSFL describes how these individual Web services fit into a bigger picture,
such as a business process or a multi-party, multi-operation long running transaction.

Another approach, developed by Microsoft, is the XLANG language, part of the .NET
initiative (http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm). A third
approach, Business Process Markup, sponsored by a consortium (BPMI,
http://www.bpmi.org/bpml-spec.esp) also exists in the marketplace. To date, none of
these approaches has emerged as a dominant standard in this space.

Stack Summary

Currently, most of the work has been devoted to establishing and evolving the IDL-level
of the service description stack. The WSDL approach has only recently been established,
and it continues to gain adoption with better runtime support and tooling support from
multiple vendors and use by developers.

The standards related to the non-functional description are still in their infancy. WSEL is
only briefly mentioned as part of the WSFL specification. There is no other publicly
available information on WSEL. The same is true for aggregation/orchestration; WSFL
itself remains as a proposal in the area, and has yet to undergo the rigors of submission
and modification through an open standards body such as the W3C. We expect that
standards in these layers of the service description stack will continue to evolve and
mature.

To summarize, a Web service is described using a combination of techniques. A Web
service's description is used to unambiguously answer several questions about the Web
service. These questions and how they are addressed are summarized in Table 6.1.

Table 6.1. Roles of Each Layer of the Service Description Stack

Question Where Addressed
Who Non-functional description
What Service interface
Where Service implementation
Why Non-functional description
How Service interface
For the remainder of this chapter, let's focus on the use of the WSDL standard as the
functional description of a Web service. Toward the end of the chapter, in the "Web
Services Endpoint Language (WSEL)" section, we will briefly revisit the non-functional
layers of the service description stack.

History of IDLs

Before we dive into the WSDL discussion, a little background might be helpful. Every
distributed computing approach has a mechanism for describing components. Let's
examine a brief history of IDLs.

Interface definition languages (IDLs) have a long history in distributed computing. The
major use of IDL came as part of the Open Software Foundation's Distributed Computing
Environment (DCE) in its specification on RPC in 1994. DCE IDL was a breakthrough
concept that quickly spread to other distributed computing initiatives, such as Object
Management Group's (OMG) CORBA IDL and Microsoft's COM IDL and COM ODL (Object
Definition Language). As with most such technologies, the various flavors of IDL are
slightly different and, therefore, more or less incompatible. All hopes are now on WSDL
to bring unity back to this crucial area of distributed computing, at least in the area of
Web services.

Most people used to developing simple software frown when they first hear about IDL.
They say, "Why bother defining the interfaces of any software operations? Just get a
pointer/reference to an object or a function and make the call." The reason is that, if a
software system has even the slightest amount of heterogeneity, this simple approach
won't work. Let's consider some possibilities:

• It can be difficult to obtain a reference to the target that

implements the operation you want to call. For example, the target

could be in another executable on the same machine or on another

machine.

• The function/method calling convention varies significantly between

programming languages or even based on compilation parameters, such

as the level of optimization. If even the slightest difference exists

between the invoker's and the target's environments, it is likely

that the call will fail.

• Data encoding rules vary considerably between programming languages

(strings in Pascal are length-prefixed while they are null-terminated

in C/C++) and platforms (numbers can be represented in little- vs.

big-endian format).

The best way to approach these problems, given that software implementations and
deployments are, and will forever be, highly heterogeneous, is to agree on a bridging
strategy. This strategy establishes common ground in the middle (the bridge) without
worrying about how the roads at the endpoints are constructed. In distributed
computing, a bridging strategy involves two parts:

1. Agreeing on how to make an invocation: the mechanics of naming,

activation, data encoding, error handling, and so on. This is what

distributed computing standards such as DCE, CORBA, and COM do.

2. Specifying what to call: the operation names, their signatures,

return types, and any exceptions that they might generate. This is

the job of IDL.

In a typical distributed computing architecture, a tool called an IDL compiler combines
the information in an IDL file together with the conventions on how to make invocations

to code-generate the pieces that make the bridge work. The client that wants to invoke

operations will use a client proxy (sometimes called a client stub). The proxy has the
same interface as the operation provider. It can be used as a local object on the client.
The proxy implementation knows how to encode and marshal the invocation data to the
operation provider and how to capture the operation result and return it to the client. The

operation provider will wrap its implementation inside a skeleton (sometimes called a
server stub) implementation that is code-generated by the IDL compiler. The skeleton
knows how to capture the data sent by the proxy and pass it to the actual
implementation. It also knows how to package the result of operations and send it back
to the client. Proxies and skeletons are helped by a lot of sophisticated distributed
computing middleware. A key part of the story is that proxies and skeletons need not be
generated by the same IDL compilers, as long as these compilers are following the same
distributed computing conventions. This is the power of IDL—it describes everything that
is necessary to make invocation possible in a distributed environment.

DCE IDL specified flat function interfaces. There was no notion of object instance context
when making calls. CORBA IDL changed that by adding many important extensions to
IDL. CORBA IDL is the de facto IDL standard on non-Microsoft environments. It is also
standardized internationally as ISO/IEC 14750.

CORBA IDL is purely declarative; it provides no implementation details. It defines a
remote object API concisely (the spec is less than 40 pages long) and covers key issues
such as naming, complex type definition, in/out/in-out parameters and exceptions. The
syntax is reminiscent of C++ with some additional keywords to cover additional
concepts. The following is a brief example of a CORBA IDL specification for an account
and an interest account:

module Accounts

{

 interface Account

 {

 readonly attribute string number;

 readonly attribute float balance;

 exception InsuffucientFunds (string detail);

 float debit(in float amount) raises (InsufficientFunds);

 float credit(in float amount);

 }

 interface InterestAccount : Account

 {

 readonly attribute float rate;

 }

}

The information in the IDL file is self-describing and very readable. You can also see that
IDL supports the notion of inheritance, which makes it convenient to describe object-
oriented distributed systems. In fact, CORBA IDL even supports the notion of multiple
interface inheritance as in MyPetTurtle deriving from both Pet and Animal.

In a CORBA-enabled environment, the previous IDL above can be used to invoke the
CORBA object via dynamic invocation from a scripting language, generate proxies for
client access to the object, generate skeletons for the actual account implementation to
be plugged into the CORBA middleware, regardless of its actual implementation

language, and store information about the implementation in an interface repository
(a central store of metadata about CORBA components' interfaces).

For various historical reasons, Microsoft used to have two versions of IDL. COM IDL was
closely based on DCE IDL, although it lacked some of the advanced features supported
by COM. COM ODL had support for these features but was incompatible with COM IDL.
Clearly, that was an odd state of affairs, and Microsoft fixed things a few years ago when
it merged the two IDL languages. The following example shows a somewhat simplified
version of the Account and InterestAccount interfaces in Microsoft's IDL:

[

 object, uuid(E9FF28F4-B79F-469A-B2D9-477FF19873A0), dual

]

interface IAccount : IDispatch

{

[propget, id(1)] HRESULT balance([out, retval] float *pVal);

[id(2)] HRESULT debit(in float amount, [out, retval] float *pVal);

[id(3)] HRESULT credit(in float amount, [out, retval] float *pVal);

} ;

[

 object, uuid(5B93E296-4FF5-4A6C-A64E-51A7B6C20B6C), dual

]

interface IInterestAccount : IAccount

{

 [propget, id(1)] HRESULT rate([out, retval] float *pVal);

} ;

[

 uuid(22AE9E3F-DC3C-478E-BC00-13A735D57167), version(1.0)

]

library AccountLib

{

 [

 uuid(0D1630F9-C4E0-46A6-BCDF-A9B752DBDD94)

]

 coclass Account

 {

 [default] interface IAccount;

 } ;

 [

 uuid(F949F2A1-18C1-4010-A062-6B8DF49D4BCE)

]

 coclass InterestAccount

 {

 [default] interface IInterestAccount;

 } ;

} ;

Needless to say, Microsoft's ODL is not syntax-compatible, or even concept-compatible,
with CORBA IDL. For example, metadata about elements is provided via attributes.

Attributes prefix elements using the format [name(value), ...]. The convention is to
prefix interface names with a capital I. To support dynamic invocation from scripting
languages, interfaces must inherit from IDispatch and methods need to identify their
location in dynamic dispatch tables with the id attribute. COM does not support
exceptions. Error information is communicated via the return value of a method, which
must be an HRESULT (an integer with well-defined error codes). Therefore, the real return
value of a method is identified as [out, retval] in the IDL. Finally, COM supports a true
separation of interfaces (IAccount and IInterestAccount) from implementations
(Account and InterestAccount). The latter are identified by the coclass keyword in the
account library. COM uses UUIDs exclusively to register interfaces and implementation
classes under unique names. Apart from these differences, COM objects can be used
exactly like CORBA objects.

Programmers working with modern languages, such as Java, C#, and any other .NET
Common Language Runtime (CLR) languages have the luxury of being able to engage in
distributed computing applications typically without having to worry much about IDL. Has
IDL become irrelevant in these cases? Not at all! IDL is not present on the surface, but
IDL concepts are working behind the scenes.

Both Java and the CLR languages are fully introspectable. This means that a compiled
language component carries complete metadata about itself, such as information about
its parent class, properties, methods, and any supported interfaces. This information is
sufficient to replace the need for an explicit IDL description of the component. That is
why, for example, Java developers can invoke the RMI compiler directly on their object
without having to generate IDL first.

However, in the cases where these languages need to interoperate with components built
using other programming languages, there is no substitute for IDL. In short, separating
interfaces from implementations is the only guaranteed mechanism for ensuring the
potential for interoperability across programming languages, platforms, machines,
address spaces, memory models and object versions. On the Web, where heterogeneity
is the rule, this is more important than ever.

Web Services Definition Language (WSDL)

The Web Services Definition Language (WSDL) is a proposed standard to describe the
technical invocation syntax of a Web service. WSDL was submitted to the W3C for
standardization by IBM, Microsoft, and others in September 2000. The current version of
the specification, WSDL 1.1, is available at http://www.w3.org/TR/wsdl.

A WSDL service description is an XML document conformant to the WSDL schema
definition. As we asserted earlier, a WSDL document is not a complete service
description, but rather it covers the lower levels of the service description stack—the raw
technical description of the service's interface. WSDL is the IDL for Web services.
Essentially, a WSDL description describes three fundamental properties of a Web service:

• What a service does—the operations (methods) the service provides

• How a service is accessed—details of the data formats and protocols

necessary to access the service's operations

• Where a service is located—details of the protocol-specific network

address, such as a URL

WSDL Information Model

The WSDL information model takes full advantage of the separation between abstract
specifications and concrete implementations of these specifications. This reflects the split
between service interface definition (abstract interface) and service implementation
definition (concrete endpoint) discussed previously in the context of the service
description stack.

The description of the endpoint's capabilities is the abstract interface specification

represented in WSDL by a portType . A binding mechanism , represented in
WSDL by a binding element, is used to map the abstract definition of the Web service to
a specific implementation using a particular messaging protocol, data encoding model,
and underlying communication protocol. When the binding is combined with an address
where the implementation can be accessed, the abstract endpoint has become a concrete

endpoint that service requestors can invoke. This combination is represented by a
WSDL port element.

An abstract interface can support any number of operations . An operation is defined

by the set of messages that define its interaction pattern.

For the abstract concepts of message and operation, concrete counterparts are specified
in the binding element.

Like all good applications of XML, the WSDL schema defines several high level or major
elements in the language. Let's take a look at Web service description in terms of the
major elements in WSDL:

• portType— A Web service's abstract interface definition (think Java interface
definition) where each child operation element defines an abstract method
signature.

• message— Defines a set of parameters referred to by the method signatures or
operations. A message can be further decomposed into parts (think detailed
method parameter format definitions).

• types— Defines the collection of all the data types used in the Web service as
referenced by various message part elements (think base data types; think XML).

• binding— Contains details of how the elements in an abstract interface
(portType) are converted into a concrete representation in a particular
combination of data formats and protocols (think encoding schemes; think SOAP
over HTTP).

• port — Expresses how a binding is deployed at a particular network
endpoint (think details about a particular server on a particular network location;
think place where you specify HTTP URL).

• service— A poorly named element. A named collection of ports (think arbitrary
bag of Web services, for example, the ports associated with steps in a multistep
business transaction).

So the portType (with details from the message and type elements) describes the what
of the Web service. The binding element describes the how, and the port and service
elements describe the where of the Web service.

Figure 6.3 shows the relationship between these elements in WSDL.

Figure 6.3. The WSDL information model.

The figure shows one possible view of the organization of the WSDL information model.
You can see a clear relationship between the abstract and concrete notions of message
and operation as contained in the portType and binding elements. The words in bold on
the diagram signify the terms from the WSDL specification. The element names used in
WSDL are somewhat confusing because no consistent naming convention allows you to
distinguish between abstract and concrete concepts. You simply have to memorize which
elements represent abstract concepts and which elements represent concrete concepts.

At first glance, WSDL seems to be quite complicated. Part of this appearance is due to
the factoring chosen by the WSDL authors. This complexity feels a lot like the complexity
observed with a highly normalized relational data model. Although the same information
can be more succinctly expressed, the flexibility that results from the factoring in WSDL
is occasionally quite necessary. So, just as you might have learned to cope with
understanding highly normalized relational models, practice with reading WSDL
documents will help you to focus on the important aspects of a Web service description.

Origin of WSDL

WSDL was not the first IDL language for Web services. IBM had developed a
language called Network Accessible Service Specification Language (NASSL) to
further early internal adoption of SOAP. Meanwhile, Microsoft had developed
SOAP Contract Language (SCL), which itself was an evolution of Microsoft's
earlier attempt at a SOAP IDL called Service Definition Language.

IBM and Microsoft realized that having competing IDLs in the SOAP space would
hinder rapid adoption of Web services. WSDL is the result of hard work and
compromise in merging NASSL and SCL. As a result of this merger, a single
ubiquitous mechanism describes the interface definition of Web services: WSDL.

To make WSDL a standard, IBM, Microsoft, and several other companies
brought it forward to the W3C for standardization.

Elements of the WSDL Language

Let's take a closer look at the elements of a WSDL description. Although we examine
these elements in detail, the good news is that you don't have to become an expert in
WSDL. The software industry continues to churn out tools to generate WSDL from
existing IT assets like COM objects and Enterprise Java Beans (EJBs) and to generate
client-side stubs or proxies (access mechanism helper classes) from WSDL on the service
requestor side to ease the burden of invoking Web services. Later in this chapter, we will
take a closer look at the WSDL tooling available in Axis. However, by reviewing WSDL,
you will get a good background in case the tools don't generate exactly the WSDL or Java
to fit your particular circumstances.

None of the tools to date support the entire breadth of WSDL features. For some time to
come, WSDL descriptions will need to be hand crafted, and client and Web service
implementation code will have to be manually developed.

The best way to learn WSDL is to examine a collection of WSDL documents. An excellent
registry of WSDL documents can be found at the salcentral Web services brokerage
(http://www.salcentral.com) or the xmethods Web site (www.xmethods.net). Go to
either of these sites and browse the collection of WSDL documents found there. After a
little practice, reading a WSDL document will become as familiar as reading Java code.

So, what does a WSDL description look like? Let's discuss the WSDL language in the
context of two WSDL examples. In the following sections, we will discuss how the various
elements of the WSDL language are used to describe two of SkatesTown's Web services.

Example WSDL Documents

We will examine the WSDL description for the (relatively simple) priceCheck service
provided by SkatesTown. The priceCheck service was added by Al Rosen in response to
growing demand from customers to extend the inventoryCheck Web service to include
price information as well as availability. You will see in Chapter 7 how this service
prepares SkatesTown to participate in dynamic e-marketplaces.

The priceCheck Web service is an extension of the inventoryCheck Web service,
allowing a requestor to determine the price of one of SkatesTown's products. The
response is a price and the number of units of that item currently available from
inventory.

The entire priceCheck WSDL document is shown in Listing 6.1.

Listing 6.1 The priceCheck WSDL Document

<?xml version="1.0"?>

<definitions name="PriceCheck"

 targetNamespace="http://www.skatestown.com/services/PriceCheck"

 xmlns:pc="http://www.skatestown.com/services/PriceCheck"

 xmlns:avail="http://www.skatestown.com/ns/availability"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <!-- Type definitions -->

 <types>

 <xsd:schema targetNamespace="http://www.skatestown.com/ns/availability"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:complexType name="availabilityType">

 <xsd:sequence>

 <xsd:element name="sku" type="xsd:string"/>

 <xsd:element name="price" type="xsd:double"/>

 <xsd:element name="quantityAvailable" type="xsd:integer"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:schema>

 </types>

 <!-- Message definitions -->

 <!-- A PriceCheckRequest is simply an item code (sku) -->

 <message name="PriceCheckRequest">

 <part name="sku" type="xsd:string"/>

 </message>

 <!-- A PriceCheckResponse consists of an availability structure, -->

 <!-- defined above. -->

 <message name="PriceCheckResponse">

 <part name="result" type="avail:availabilityType"/>

 </message>

 <!-- Port type definitions -->

 <portType name="PriceCheckPortType">

 <operation name="checkPrice">

 <input message="pc:PriceCheckRequest"/>

 <output message="pc:PriceCheckResponse"/>

 </operation>

 </portType>

 <!-- Binding definitions -->

 <binding name="PriceCheckSOAPBinding" type="pc:PriceCheckPortType">

 <soap:binding style="rpc"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="checkPrice">

 <soap:operation soapAction=""/>

 <input>

 <soap:body use="encoded"

 namespace=

 "http://www.skatestown.com/services/PriceCheck"

 encodingStyle=

 "http://schemas.xmlsoap.org/soap/encoding/"/>

 </input>

 <output>

 <soap:body use="encoded"

 namespace=

 "http://www.skatestown.com/services/PriceCheck"

 encodingStyle=

 "http://schemas.xmlsoap.org/soap/encoding/"/>

 </output>

 </operation>

 </binding>

 <!-- Service definition -->

 <service name="PriceCheckService">

 <port name="PriceCheck" binding="pc:PriceCheckSOAPBinding">

 <soap:address

 location=

 "http://localhost:8080/axis/services/PriceCheck"/>

 </port>

 </service>

</definitions>

This WSDL document will come up again in Chapter 7 when we discuss how WSDL
documents are published and found in a UDDI registry.

The second example woven into the next sections illustrates more sophisticated uses of
WSDL (but by no means is it the most complicated use). We have included the entire
WSDL file in Listing 6.2, but don't panic; we explain the business purpose of this Web
service and each part of the WSDL in subsequent paragraphs. For now, just take a quick
glance at it, and let the explanations clarify any questions. Refer back to this listing
frequently.

Listing 6.2 The StockAvailableNotification WSDL Document

<?xml version="1.0" ?>

<definitions name="StockAvailableNotification"

 targetNamespace=

 "http://www.skatestown.com/services/StockAvailableNotification"

 xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"

 xmlns:reg="http://www.skatestown.com/ns/registrationRequest"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <!-- Type definitions from the registration schema-->

 <types>

 <xsd:schema targetNamespace=

 "http://www.skatestown.com/ns/registrationRequest"

 xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"

 xmlns="http://www.skatestown.com/schemas/ns/registrationRequest">

 <xsd:complexType name="registrationRequest">

 <xsd:sequence>

 <xsd:element name="items">

 <xsd:complexType name="ArrayOfItem">

 <complexContent>

 <restriction base="soapenc:Array">

 <attribute ref="soapenc:arrayType"

 wsdl:arrayType="xsd:string[]"/>

 </restriction>

 </complexContent>

 </complexType>

 </xsd:element>

 <xsd:element name="address" type="xsd:uriReference"/>

 <xsd:element name="transport"

 default="http://schemas.xmlsoap.org/soap/smtp"

 minOccurs="0">

 <xsd:simpleType>

 <xsd:restriction base="xsd:uriReference">

 <xsd:enumeration

 value="http://schemas.xmlsoap.org/soap/http"/>

 <xsd:enumeration

 value="http://schemas.xmlsoap.org/soap/smtp"/>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="clientArg" type="xsd:string" minOccurs="0"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:simpleType name="correlationID">

 <xsd:restriction base="xsd:string">

 <!-- some appropriate restriction -->

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:schema>

 </types>

 <!-- Message definitions -->

 <message name="StockAvailableRegistrationRequest">

 <part name="registration" element="reg:registrationRequest"/>

 <part name="expiration" type="xsd:timeInstant"/>

 </message>

 <message name="StockAvailableRegistrationResponse">

 <part name="correlationID" type="reg:correlationID"/>

 </message>

 <message name="StockAvailableRegistrationError">

 <part name="errorString" type="xsd:string"/>

 </message>

 <message name="StockAvailableExpirationError">

 <part name="errorString" type="xsd:string"/>

 </message>

 <message name="StockAvailableNotification">

 <part name="timeStamp" type="xsd:timeInstant"/>

 <part name="correlationID" type="reg:correlationID"/>

 <part name="items" type="reg:items"/>

 <part name="clientArg" type="xsd:string"/>

 </message>

 <message name="StockAvailableExpirationNotification">

 <part name="timeStamp" type="xsd:timeInstant"/>

 <part name="correlationID" type="reg:correlationID"/>

 <part name="items" type="reg:ArrayOfItem"/>

 <part name="clientArg" type="xsd:string"/>

 </message>

 <message name="StockAvailableCancellation">

 <part name="correlationID" type="reg:correlationID"/>

 </message>

 <!-- Port type definitions -->

 <portType name="StockAvailableNotificationPortType">

 <!--Registration Operation -->

 <operation name="registration">

 <input message="StockAvailableRegistrationRequest"/>

 <output message="StockAvailableRegistrationResponse"/>

 <fault message="StockAvailableRegistrationError"

 name="StockAvailableNotificationErrorMessage"/>

 <fault message="StockAvailableExpirationError"

 name="StockAvailableExpirationError"/>

 </operation>

 <!--Notification Operation -->

 <operation name="notification">

 <output message="StockAvailableNotification"/>

 </operation>

 <!--Expiration Notification Operation -->

 <operation name="expirationNotification">

 <output message="StockAvailableExpirationNotification"/>

 </operation>

 <!--Cancellation Operation -->

 <operation name="cancellation">

 <input message=" StockAvailableCancellation"/>

 </operation>

 </portType>

 <!-- Binding definitions -->

 <binding name="StockAvailableNotificationSOAPBinding"

 type="StockAvailableNotificationPortType">

 <soap:binding style="rpc"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <documentation>

 Note: the requestor must invoke the registration operation first.

 </documentation>

 <operation name="registration">

 <soap:operation soapAction=

 "http://www.skatestown.com/StockAvailableNotification/registration">

 <input>

 <soap:header message="StockAvailableRegistrationRequest"

 part="expiration" use="encoded"

 namespace="http://www.skatestown.com/ns/registrationRequest"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 <soap:headerfault message="StockAvailableExpirationError"

 part="errorString" use="encoded"

 namespace="http://www.skatestown.com/ns/registrationRequest"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </soap:header>

 <soap:body parts="registration" use="literal" style="document"/>

 </input>

 <output>

 <soap:body use="encoded"

 namespace="http://www.skatestown.com/ns/registrationRequest"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </output>

 <fault name="StockAvailableNotificationErrorMessage">

 <soap:fault name="StockAvailableNotificationErrorMessage"

 namespace="http://www.skatestown.com/ns/registrationRequest"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </fault>

 </operation>

 <operation name="notification">

 <output>

 <soap:body use="encoded"

 namespace="http://www.skatestown.com/ns/registrationRequest"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </output>

 </operation>

 <operation name="cancellation">

 <soap:operation soapAction=

 "http://www.skatestown.com/StockAvailableNotification/cancellation">

 <input>

 <soap:body use="encoded"

 namespace="http://www.skatestown.com/ns/registrationRequest"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </input>

 </operation>

 </binding>

 <!-- Service definition -->

 <service name="StockAvailableNotificationService">

 <port name="StockAvailableNotificationPort" binding="

 StockAvailableNotificationSOAPBinding">

 <soap:address location=

 "http://www.skatestown.com/axis/services/StockNotification"/>

 </port>

 </service>

</definitions>

The StockAvailableNotification Web service is provided by SkatesTown to support
product ordering. The RegistrationRequest schema defines the data types. In
particular, this Web service is used when a customer places an order with SkatesTown,
but one or more of the items is not currently available from SkatesTown's inventory. The
purpose of this service is to allow customers of SkatesTown to register to be notified
when all the products in their order are once again available for sale from inventory. This
Web service has four operations.

The first operation allows the customer to register for a notification. This is a
request/response operation. The customer invokes this service, passing in a collection of
item numbers (for out of stock product numbers), network address, (default is an e-mail
address) an optional transport type (valid values are
"http://schemas.xmlsoap.org/soap/http" and
"http://schemas.xmlsoap.org/soap/smtp"), and a client argument token of type
string. The client argument token is opaque to the service; it is a requestor-specific
correlation identifier. The client argument is returned by the notification operation.

This operation also includes an expiration time to be included in the message (as a
soap:header, as we will discover).

The normal response of this operation is a provider-side correlation id (a string).

The possible fault messages include:

• Invalid product number (one of the product numbers does not

correspond to a product in SkatesTown's product catalog)

• Invalid transport (some value other than smtp or http was specified)

• Invalid expiration (this appears as a soap:headerfault if the

original expiration time header was invalid in some way; we will

describe soap:headerfault elements in more detail in the section

"SOAP Fault and HeaderFault Formatting").

The second operation, notification, uses the notification transmission primitive

in WSDL (we'll talk about transmission primitives in more detail later). This
message is sent from SkatesTown to the requestor's address indicated in the registration
operation. This message indicates a timestamp, the provider-side correlation ID
established in the registration message, the item numbers from the registration
message, and the requestor-specific correlation ID.

The third operation, expirationNotification, also uses the notification transmission
primitive in WSDL. This message is sent from SkatesTown to the requestor's address
when the expiration period indicated on the original registration operation expires. This
message indicates a timestamp, the provider-side correlation ID established in the
registration message, the item numbers from the registration message, and the
requestor-specific correlation ID.

The fourth operation is a one-way operation for cancellation of the notification. It allows
the requestor to abandon its interest in the notification. The cancellation message is
simply the provider-side correlation ID.

Now, let's examine the WSDL language element by element, using the priceCheck WSDL
to show the simple, typical use and the StockAvailableNotification example to show
more sophisticated WSDL use.

PortType

The best starting point to understanding a Web service using a WSDL document is the
portType element. The portType element describes the interface to a Web service. This
is the most succinct description of what the service does; understand the portType, and
you understand what the Web service does. The rest of the elements in the WSDL
definition are essentially details that the portType depends upon; we will examine them
in later sections.

The portType in the priceCheck service description looks like this:

<!-- Port type definitions -->

<portType name="PriceCheckPortType">

 <operation name="checkPrice">

 <input message="PriceCheckRequest"/>

 <output message="PriceCheckResponse"/>

 </operation>

</portType>

A WSDL document can contain zero or more portType definitions. Typically, most WSDL
documents contain a single portType. This convention separates out different Web
service interface definitions into different documents. This granularity of separation is
good for reasons of reuse, and when we discuss how UDDI can be used to register WSDL
documents, this best practice will become apparent.

A portType element has a single name attribute. In our case, the priceCheck Web
service contains a portType of name PriceCheckPortType. Often, you will see the name
of the portType follow this pattern: nameOfWebServicePortType. If there are multiple
portTypes in a WSDL file, each portType must have a different name.

Pretty simple so far, but simple, well-factored Web services often result in a simple
looking portType. Much of the detail is in the rest of the elements in the WSDL
definition, and as far as the portType element is concerned, the detail is in the collection
of operation child elements. Just as a Java interface definition is comprised mainly of
method signatures, the interesting part of a portType definition is the collection of
operation elements it contains.

Operation

An operation element in WSDL is the equivalent of a method signature in Java. An
operation defines a method on a Web service, including the name of the method and the
input parameters and the output or return type of the method.

The PriceCheck portType describes one operation, named (cleverly) checkPrice. The
portType for the StockAvailableNotification service defines four operations:
registration, notification, expirationNotification, and cancellation.

The checkPrice operation defines an input message and output message. If we invoke
the checkPrice operation with a priceCheckRequestMessage (we'll see what exactly
these messages look like in the next section), the Web service will return a
priceCheckResponseMessage.

That is all there is to an operation element. The operation elements define a
combination of input, output, and fault messages. The WSDL specification defines four
different combinations of input, output, and fault messages. WSDL uses the term
transmission primitive to describe these combinations. Chapter 3 introduced these
concepts as interaction patterns. We now revisit these concepts in the context of how to
use WSDL to describe these patterns.

Request-Response Style of Operation

This is the most common form of operation. The request-response operation defines an
input message, output message, and an optional collection of fault messages. Because
many Web services are deployed using SOAP over HTTP, request-response is the most
common form of operation type found in WSDL documents. The checkPrice operation is
a request-response operation as is the registration operation from the
StockAvailableNotification service. Request-response messages can be
informational, retrieving information about some object represented by a Web service; or
a request-response operation can be behavioral, where the message changes the state of
the service provider and information about the new state is included in the response. The
checkPrice operation is an informational style message. The registration operation is a
behavior service, because it updates the provider's server with new information about a
requestor waiting on a stockAvailable event to fire.

Although checkPrice does not use it, the request-response transmission primitive allows
the service provider to list the possible fault messages that can appear in response to a
Web service invocation. The fault message element is used within the
StockAvailableNotificationPortType as part of the registration operation's definition:

<portType name="StockAvailableNotificationPortType">

 <!--Registration Operation -->

 <operation name="registration">

 <input message="StockAvailableRegistrationRequest"/>

 <output message="StockAvailableRegistrationResponse"/>

 <fault message="StockAvailableRegistrationError"

 name="StockAvailableNotificationErrorMessage"/>

 <fault message="StockAvailableExpirationError"

 name="StockAvailableExpirationError"/>

 </operation>

Fault elements must be named, and the name must be unique among all the fault
elements defined for the operation. Like the input and output elements, the fault
element uses a message element to describe the data contents of the fault.

One-way Style of Operation

A one-way operation does not have an output element (or a fault element for that
matter). A one-way operation is like a data sink. A one-way message would be used to
change state of the service provider. Clearly a one-way message is useless for
informational purposes (no response is sent back to the requestor).

The cancellation operation from the StockAvailableNotification service is a one-way
operation:

<!--Cancellation Operation -->

<operation name="cancellation">

 <input message=" StockAvailableCancellation"/>

</operation>

Because many Web services are accessed through SOAP over HTTP, many one-way
messages end up being request-response messages, with the response being a simple
HTTP-level acknowledgement of the message. The operation does not model the
acknowledgement or transport-level message flow for a couple of reasons. First, the
details of the transport protocol is a detail of the binding element, not the operation
element. Second, no application-level semantic is transmitted in response to the Web
service invocation.

Notification Style of Operation

A notification operation is like a one-way push from the service provider. Output
messages are pushed to the service requestor as the result of some event on the service
provider side, such as a time-out or operation completion. The notification operation in
the StockAvailableNotification Web service is a notification type of operation;
SkatesTown pushes a message to the requestor when a particular item is once again in
stock. The notification style of interaction is commonly used in systems built around
asynchronous messaging. Although systems with asynchronous messaging might be a
little harder to conceptualize and implement, they are much more loosely coupled, and,
therefore, are easier to maintain; often this flexibility adds robustness to the system.

Given the notification operation is a one-way push message, how does SkatesTown know
where to push the output messages to? Nothing in the WSDL specification describes this
directly. This correlation semantic must be described by other means. One mechanism
used to address this problem is to have a network address (a URL or e-mail address) as a
parameter in another message.

In the case of the StockAvailableNotification Web service, SkatesTown has created
the registration operation shown in Listing 6.2 for just the purpose of determining where
to send a notification message. The service requestor must invoke the registration
operation first, and then the notification operation will be able to send a message to the
requestor. The ordering requirement of these operations—that is, the fact that the
registration operation must be invoked in order to receive notification messages—cannot
be described in WSDL. Potentially, this ordering semantic might be represented in the
WSEL language (described briefly later in this chapter). At this point, SkatesTown must
describe this semantic using prose. The following documentation element appears with
this portType:

<documentation>

 Note: the requestor must invoke the registration operation first.

</documentation>

Solicit-Response Style of Operation

A solicit-response operation models a push operation similar to a notification operation.
However, unlike the notification style of operation, the solicit-response operation expects
an input (response) from the service requestor in response to the solicit-response output
flow. A solicit-response operation could look like this:

<portType name="someName">

 <operation name="exampleSolicitResponse">

 <output message="pushThis"/>

 <input message="responseToPush"/>

 <fault name="someFaultName" message="faultPushedToRequestor"/>

 </operation>

</portType>

Output and fault flows are pushed to the service requestor as the result of some event on
the service provider side, such as a time out or operation completion. The solicit-
response style of operation has the same problem as the notification style of operation:
where to push the output/fault messages. Again, the solution is the same as we
discussed with the notification style of operation.

The only way to tell the difference between a request-response operation and a solicit-
response operation is the ordering of the input and output elements. In request-
response, the input child element comes first. In solicit-response, the output child
element comes first.

Rounding Out the Operation Element

The current state of the WSDL tooling really emphasizes request-response and one-way
messages. Because solicit-response messages require some sort of correlation or
registration to associate the message with something meaningful to the requestor, they
require a level of association that is beyond the simple semantics represented by WSDL.
The operation-ordering semantic could not be enforced in generated code. Similarly, a
notification message requires a preceding registration message from the service
requestor. Again, this correlation semantic cannot be directly represented in WSDL. Most
tools do not support solicit-response or notification. For that matter, most tools support
only request-response.

Let's consider a couple of final details related to the operation element. The WSDL
specification allows the input, output, and fault messages to have a name attribute.
Typically, this name attribute is not specified by the designer on input and output
elements. This detail is often too much clutter in the WSDL document (as if a WSDL
document is not already too cluttered!). And besides, WSDL provides default values for
these names based on the operation name. For example, we repeat our priceCheck
example, this time filling in the default values that WSDL would have supplied:

<!-- Port type definitions -->

<portType name="PriceCheckPortType">

 <operation name="checkPrice">

 <input name="checkPriceRequest" message="PriceCheckRequest"/>

 <output name="checkPriceResponse" message="PriceCheckResponse"/>

 </operation>

</portType>

Typically, the name attribute of the input and output element doesn't add much.
Further, you will find that many WSDL designers already encode this information into the
names of the message elements they define. If you do add a name to an input or
output element, this name must be unique among all the input and output elements
within the portType. Table 6.2 describes the default names for input and output
elements, for an operation named XXX.

Table 6.2. Defaults for Input and Output Elements for Operation XXX

 Input Output
Request-Response XXXRequest XXXResponse
One-Way XXX Not applicable
Solicit-Response XXXSolicit XXXResponse
Notification Not applicable XXX

Fault elements, of course, require a name, because several fault elements can be
associated with any operation and the fault name is used to distinguish between the
collection of possible faults. This is particularly important in the binding element, which
describes the mapping between the fault element and the way the fault is presented in
a protocol-specific fashion.

WSDL also lets you specify a parameterOrder attribute on an operation. The
parameterOrder operation is used only for RPC-style operations. This is a bit of a
layering violation in the specification, because the portType is abstract, and its nature as
an RPC or document-centric message is revealed in the binding element. Further, this
element is informational only, and is completely optional, even for operations that are
described as RPC within the binding element. The only purpose of this attribute is to
provide a mechanism to describe the original parameter ordering of the RPC function as a
list of part names (we will see part names discussed in the following "Message" section)
separated by spaces.

So far, we have not defined what we mean by a priceCheckRequest message, or any of
the messages for that matter. These are simply abstract messages. The composition of
an abstract message is detailed in a message element, described next.

Message

A message is a very simple concept. A message is a collection of parts. A WSDL
document can contain zero or more message elements. Each message element can be
used as an input message, output message, or fault message within an operation.

What is a message? Let's take a look at the messages defined in the priceCheck WSDL:

<!-- Message definitions -->

<!-- A PriceCheckRequest is simply an item code (sku) -->

<message name="PriceCheckRequest">

 <part name="sku" type="xsd:string"/>

</message>

<!-- A PriceCheckResponse consists of an availability structure, -->

 <!-- defined above. -->

<message name="PriceCheckResponse">

 <part name="result" type="avail:availabilityType"/>

</message>

The first message, PriceCheckRequest, is a simple message element. Recall that
PriceCheckRequest is used as the input message to the checkPrice operation. All
message elements must have a name, and that name must be unique among all the
message elements defined in the WSDL document.

The PriceCheckRequest message defines one part element named item. A part
element is made up of two properties: the name of the part and the type of the part. The
name attribute must be unique among all the part child elements of the message
element. The type property of the part is defined as either a type attribute (a
simpleType, complexType from the XSD schema type system) or an element attribute
(also defined using the XSD schema type system). We will examine types in more detail
in the next section. Often, the name of the part says it all, and you need not dive into the
details of how the types associated with the part are modeled. As we will see later, the
item part will turn into a method parameter in the service invocation.

In the PriceCheckRequest example, the type of the part named item is a simple string.
The XML comment above the element definition (we could have used a WSDL
documentation element) indicates that the string is to be interpreted as an item code. Of
course, a better model might have been to define a complex type giving a pattern or

range that an item code should be constrained to. However, we didn't make that choice
here.

The only other message element defined in the priceCheck WSDL is
PriceCheckResponse. The PriceCheckResponse message describes the format of the
output message of the checkPrice operation. Like its companion message,
PriceCheckResponse defines a single part. The result part is slightly more interesting
because its type is a complex type defined in the namespace corresponding to the avail:
prefix.

That's it for simple messages. You can see that the separation of messages from the
operation is extremely well factored, but somewhat overkill for this kind of simple
example. Many WSDL documents do not require the full power achieved by factoring
messages from operations and decomposing messages into parts.

The parts mechanism in WSDL is used to allow a message to be decomposed into smaller
units or parts. Each part can be manifested in different ways in the various network
protocols. This mapping between parts and protocol-specific components is described in
the binding element. Some parts of the messages can appear as SOAP header
elements. Some parts can be mapped to HTTP headers. Some parts can be used as
individual parameters in an RPC message. You really cannot understand the true use of a
part until you look at how the abstract notion of the part is mapped into a concrete data
representation. This mapping is the responsibility of the binding element.

StockAvailableNotification is an example of a complex, multipart message:

<message name="StockAvailableNotification">

 <part name="timeStamp" type="xsd:timeInstant"/>

 <part name="correlationID" type="reg:correlationID"/>

 <part name="items" type="reg:items"/>

 <part name="clientArg" type="xsd:string"/>

</message>

We will examine how different parts are modeled as different components of a message
in the "SOAP Header Formatting" section.

Type

We have seen the message element in WSDL, and the part elements that are contained
within it. However, some of the types used in these example WSDL documents need
further discussion.

The default type system in WSDL is XML Schema (XSD). This approach is useful to
describe most of the type used in the messages to invoke a Web service. The types
element in the priceCheck WSDL is pretty typical of the use of this element:

<!-- Type definitions -->

<types>

 <xsd:schema targetNamespace="http://www.skatestown.com/ns/availability"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:complexType name="availabilityType">

 <xsd:sequence>

 <xsd:element name="sku" type="xsd:string"/>

 <xsd:element name="price" type="xsd:double"/>

 <xsd:element name="quantityAvailable" type="xsd:integer"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:schema>

</types>

The contents of the types element look very much like a schema definition using XSD.
Many organizations already have XML schemas defined. Because the types element in
WSDL is defined to contain one or more schema definition elements, WSDL repurposes
work already done in XML. Business objects already modeled in XML can be used as parts
of the message elements and, therefore, used to define the input and output elements
for the Web services' operations.

For the priceCheck WSDL, the availability type is defined using a types element from
WSDL. Recall that the availability type was used as part of the PriceCheckResponse
message. This is all standard XML schema work that we covered in Chapter 2, "XML
Primer."

WSDL is quite flexible in the type system used. Although XML Schema is the predominant
type system used, the types element allows you the flexibility to describe a completely
different type system. The types element has an extensibility element that lets you
describe another type system, say the Java type system, and define all the messages in
terms of this type system. Consider, however, that deviating from the XML Schema type
system increases the chances that more service requestors will be unable to invoke your
Web service.

There are several variants of XML Schema; schema has been under development by the
W3C for several years. The XML Schema version referenced in the listings is
http://www.w3.org/2001/XMLSchema. You might also encounter other versions of
schema used in types elements (and as we will see later in the definitions element,
too): http://www.w3.org/2000/10/XMLSchema and often
http://www.w3.org/1999/XMLSchema. These declarations have subtle implications on
some sophisticated use of the XML Schema language. Consult advanced resources on
XML schema for more detail.

The types element is essentially a place for the WSDL document to define some user-
defined XML types for later use in the message elements. A WSDL document can have at
most one types element in a document. When a types element appears in a WSDL
document, it typically contains a single schema definition element, although it is legal to
have more than one schema definition element. You will typically see multiple schema
definition elements if the Web service is using datatypes defined elsewhere in multiple
schemas.

Let's take a closer look at the way the items type is defined within SkatesTown's
registrationRequest schema. Normally, to define a type that contains a repeating
group of elements, you would use the following style of XML schema:

<xsd:complexType name="registrationRequest">

 <xsd:sequence>

 <xsd:element name="items"

 type="xsd:string" maxOccurs="unbounded" />

However, in WSDL, repeating groups such as this must be modeled using the array data
type from the SOAP encoding namespace
(xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"). This is another
jarring example where an aspect of the message encoding (really the domain of the
binding element, as we will see in the next section) imposes itself on the base
datatyping mechanism in WSDL. This is an artifact of the common use of WSDL to model
SOAP messages. So, regardless of whether your Web service uses SOAP, you need to use
the array datatype from the SOAP encoding namespace to model repeating groups. The
following snippet shows the registrationRequest type:

<xsd:complexType name="registrationRequest">

 <xsd:sequence>

 <xsd:element name="items">

 <xsd:complexType name="ArrayOfItem">

 <complexContent>

 <restriction base="soapenc:Array">

 <attribute ref="soapenc:arrayType"

 wsdl:arrayType="xsd:string[]"/>

 </restriction>

 </complexContent>

 </complexType>

 </xsd:element>

By convention, the name of the type is ArrayOfXXX, where XXX is the base type of the
elements that are to appear in the repeating group. The type itself is an extension of the
base Array type in the SOAP encoding namespace. WSDL adds an arrayType attribute to
let you formally declare the exact base type of the repeating group (in this case, it is
simply the string base type from XML schema). Note that the [] characters also specify
the array has a single dimension.

That's it for types. Essentially, the complexity is in modeling XML, not in modeling WSDL.

Binding

We have seen that the PriceCheck and StockAvailableNotification services define
several operations, and we have some idea about the sorts of XML elements that these
operations need as input and produce for output. However, to this point, we still do not
know how to format the message to invoke these operations. We haven't seen anything
in the WSDL description that relates to SOAP headers, SOAP bodies, SOAP encoding, and
so on. The portType, message, and type elements define the abstract or reusable
portion of the WSDL definition. Is this service invoked by a SOAP message, or a simple
HTTP POST of an XML payload? Is this an RPC invocation or a document-centric message
invocation? These details are given by one or more binding elements associated with the
portType.

The binding element in WSDL tells the service requestor how to format the message in a
protocol-specific manner. Each portType can have one or more binding elements
associated with it. For a given portType, a binding element can describe how to invoke
operations using a single messaging/transport protocol, like SOAP over HTTP, SOAP over
SMTP, a simple HTTP POST operation, or any other valid combination of networking and
messaging protocol standards.

Let's take a look at the binding element in the priceCheck WSDL:

<!-- Binding definitions -->

<binding name="PriceCheckSOAPBinding" type="pc:PriceCheckPortType">

 <soap:binding style="rpc"

 transport=

 "http://schemas.xmlsoap.org/soap/http"/>

 <operation name="checkPrice">

 <soap:operation soapAction=""/>

 <input>

 <soap:body use="encoded"

 namespace="http://www.skatestown.com/services/PriceCheck"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </input>

 <output>

 <soap:body use="encoded"

 namespace="http://www.skatestown.com/services/PriceCheck"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </output>

 </operation>

The name of this binding element is PriceCheckSOAPBinding. The name must be
unique among all the binding elements defined in the WSDL document. Conventionally,
the name of the binding combines the portType name with the name(s) of the
protocol(s) to which the binding maps. The type attribute identifies which portType this
binding describes. Because WSDL uses name referencing to link the binding element to
a portType, you can now see why portType name uniqueness is so important. We will
see the same is true for binding name uniqueness when we discuss how the port
element references a binding element.

Typically, most WSDL documents contain only a single binding. The reason is similar to
why conventional WSDL documents contain a single portType element: convenience of
reuse.

Now, which protocol is this binding element mapping the priceCheck portType to? We
need to look for clues inside the binding element (besides the naming convention, of
course). The first clue is the prefix of the first child element, soap:binding. This is a
pretty strong hint that this binding is related to the SOAP messaging protocol. So, the
PriceCheckSOAPBinding element describes how the priceCheck portType (remember,
priceCheck is an abstract service interface definition) is expressed using SOAP.

How are the SOAP aspects of the priceCheck service invocation described in this
binding element? WSDL defines a very clever extensibility convention that allows the
binding element to be extended, with elements from different XML namespaces, to
describe bindings to any number of messaging and transport protocols. Pick a
messaging/transport protocol set, find the WSDL convention that corresponds to that
pair, and fill in the details. The WSDL spec defines three standard binding extensions for
SOAP/HTTP, HTTP GET/POST, and SOAP with MIME attachments. All sorts of activities are
underway to define additional binding conventions.

The PriceCheckSOAPBinding element shown earlier decorates the elements from the
priceCheck portType in four ways (invocation style, SOAPAction, input message
appearance, and output message appearance), as explained in the following sections.
This is a pretty straightforward use of the SOAP binding extension convention described
in the WSDL specification. The SOAP binding style also specifies the way SOAP headers,
SOAP faults, and SOAP headerfaults should be formatted. These additional aspects of the
SOAP binding convention are illustrated in the
StockAvailableNotificationSOAPBinding.

Invocation Style

The first use of the SOAP binding extension indicates the style of invocation:

<soap:binding style="rpc"

 transport="http://schemas.xmlsoap.org/soap/http"/>

This declaration applies to the entire binding. It indicates that all operations for the
priceCheck portType are defined in this binding as SOAP messages. Further, the style
attribute indicates that operations will follow the remote procedure call (RPC)
conventions on the SOAP body as defined in the SOAP specification. This default can be
explicitly overridden by a style declaration in a child operation element. The other
alternative value for the style attribute is document, meaning the body of the SOAP
message is to be interpreted as straight XML, more of a document-centric message send
than a remote procedure call. The default value of this attribute is document. The

registration operation from the StockAvailableNotification service uses a document
style for the input flow.

The transport attribute tells you that the requestor must send the SOAP message using
HTTP. Other possible values for this attribute could include
http://schemas.xmlsoap.org/soap/SMTP/, http://schemas.xmlsoap.org/soap/ftp/, and so
on.

SOAPAction

The second use of the SOAP binding extension is:

<operation name="checkPrice">

 <soap:operation SOAPAction=""/>

This declaration indicates the value that should be placed in the SOAPAction HTTP header
as part of the HTTP message carrying the priceCheck service invocation message. As we
discussed in Chapter 3, the purpose of the SOAPAction header is to describe the intent of
the message. In the case of the checkPrice operation, the WSDL tells the service
requestor to put an empty string as the value for the SOAPAction header. Although an
empty string is a valid value for SOAPAction, it is not terribly helpful for the SOAP router.
Note that a SOAPAction header with value of empty string indicates that the URI of the
request is the place where the intent of the message is to be found. If the SOAPAction
value is completely empty, no intent of the message is to be found. Better conventions
with SOAP would require the requestor to put an interesting value as the SOAPAction to
help some SOAP routers dispatch the message to the appropriate Web service. The
operations in the StockAvailableNotification service use this convention:

<operation name="registration">

 <soap:operation

 soapAction=

 "http://www.skatestown.com/StockAvailableNotification/registration">

and

<operation name="cancellation">

 <soap:operation

 soapAction=

 "http://www.skatestown.com/StockAvailableNotification/cancellation">

This shows that different operations in the same portType can be assigned different
SOAPAction headers by the binding element. Note that the notification and
expirationNotification operation elements do not have soap:operation child
elements. These operations are not invoked using SOAP over HTTP by the requestor.

Note, however, that the semantics of the SOAPAction header are quite controversial. As
of this writing, the XML Protocol Working Group of the W3C is considering removing the
SOAPAction HTTP header concept from the XML Protocol (the follow-up to SOAP). This is
another reason why the URL dispatch is very popular, especially with things like Axis JWS
files. This technique is demonstrated in all the examples in Chapter 3. We recommend
using the URL of the message to express the intent of the message.

This soap:operation element can also be used to override the default style specified in
the soap:binding element's style attribute. In the case of the
StockAvailableNotificationSOAPBinding, the default style is rpc. However, the
registration operation overrides this default to use the document style for its input
message:

 <operation name="registration">

 <soap:operation

 soapAction=

 "http://www.skatestown.com/StockAvailableNotification/registration">

. . .

 <soap:body parts="registration" use="literal" style="document"/>

Input Message Appearance

The third use of the SOAP binding extension in the priceCheck WSDL document
describes exactly how the input message to the checkPrice appears in the parts of the
SOAP message:

<input>

 <soap:body use="encoded"

 namespace="http://www.skatestown.com/services/PriceCheck"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>

In this case, it is a pretty simple mapping. The entire input message,
PriceCheckRequest (remember, from the portType declaration for the checkPrice
operation) is declared to be abstract in this case (use="encoded"). This means that the
XML defining the input message and its parts are in fact abstract, and the real, concrete
representation of the data is to be derived by applying the encoding scheme indicated in
the encodingStyle attribute. This is a long-winded way to say that the message should
appear as part of the SOAP body element and that the SOAP engine on the service
provider's network will deserialize the information from XML to another format (such as
Java types) using the encoding style defined in the SOAP specification.

The soap:body declaration also interacts with the style of the operation. Because the
checkPrice operation was declared as RPC style, the parts of the checkPrice input
message will appear as child elements of the SOAP:body element in the SOAP message.
Further, these parts will appear as parameters in the style of the RPC convention defined
by the SOAP specification. Here is an example SOAP message that conforms to the
pattern this binding element describes for the input of the checkPrice operation:

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <SOAP-ENV:Body>

 <ns3:checkPrice xmlns:ns3="http://www.skatestown.com/services/PriceCheck">

 <sku xsi:type="xsd:string">947-TI

 </sku>

 </ns3:checkPrice>

 </SOAP-ENV:Body>

 </SOAP-ENV:Envelope>

Output Message Appearance

The fourth use of the SOAP binding extension in our example describes exactly how the
output message of checkPrice should appear. Nothing new is introduced with this
example. For completeness, here is an example response that corresponds to the pattern
described in the binding element for the output of the checkPrice operation:

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope

 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <SOAP-ENV:Body>

 <ns3:checkPriceResponse

 xmlns:ns3="http://www.skatestown.com/services/PriceCheck">

 <checkPriceResult href="#id0"/>

 </ns3:checkPriceResponse>

 <multiRef id="id0" xsi:type="ns5:AvailabilityType"

 xmlns:ns5="http://www.skatestown.com/ns/availability">

 <quantityAvailable xsi:type="xsd:int">36

 </quantityAvailable>

 <price xsi:type="xsd:double">129.0

 </price>

 <sku xsi:type="xsd:string">947-TI

 </sku>

 </multiRef>

 </SOAP-ENV:Body>

 </SOAP-ENV:Envelope>

SOAP Header Formatting

The SOAP extension also defines the way SOAP headers are described in WSDL. The
notification operation within the StockAvailableNotification Web service allows an
expiration to be carried in the input message as a SOAP header. This is described in
terms of SOAP within the binding element's operation child element:

<operation name="registration">

 <soap:operation

 soapAction=

 "http://www.skatestown.com/StockAvailableNotification/registration">

 <input>

 <soap:header message="StockAvailableRegistrationRequest"

 part="expiration" use="encoded"

 namespace="http://www.skatestown.com/ns/registrationRequest"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

The soap:header element indicates that the expiration part of the
StockAvailableRegistrationRequest message appears as a SOAP header. The
attributes of the soap:header element are similar to the soap:body element. Note that
only the "expiration" part of the message appears in the header. The rest of the message
appears in the body of the SOAP message.

SOAP Fault and HeaderFault Formatting

The soap:fault extension is an additional facility described by the SOAP binding
extension that does not appear in the priceCheck WSDL, but does appear in the
StockAvailableNotification WSDL. The soap:fault extension describes how a fault
element (like the one described in the registration operation in the
StockAvailableNotificationPortType) is mapped into SOAP. A use of this extension is
shown here:

 <operation name="registration">

. . .

 <fault name="StockAvailableNotificationErrorMessage">

 <soap:fault name="StockAvailableNotificationErrorMessage"

 namespace="http://www.skatestown.com/ns/registrationRequest"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </fault>

The soap:fault extension has the same attributes as the soap:body extension. The fault
message must have a single part.

SOAP requires that any errors generated by the SOAP engine when processing a SOAP
header must be communicated back to the requestor in the form of a header, not in the
body of a fault message. MustUnderstand faults are communicated this way, for
example. The SOAP extension in WSDL defines the soap:headerfault element for just
this purpose. A soap:headerfault element is used to describe how the
StockAvailableExpirationError is expressed in SOAP, as a fault header that could
potentially flow to communicate errors related to how the requestor formats the
expiration header. The following example shows how WSDL models this situation:

 <operation name="registration">

 <soap:operation

 soapAction=

 "http://www.skatestown.com/StockAvailableNotification/registration">

 <input>

 <soap:header message="StockAvailableRegistrationRequest"

. . .

 <soap:headerfault message="StockAvailableExpirationError"

 part="errorString" use="encoded"

 namespace="http://www.skatestown.com/ns/registrationRequest"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

. . .

The soap:headerfault element is associated with the soap:header definition that might
be in error, not as part of a fault or output message part of the operation.

Example SMTPBinding

As a slight variant on the SOAP binding theme, consider the possibility of sending a
priceCheck request using e-mail. SkatesTown could provide an additional SMTP binding
to the priceCheck portType, allowing a customer to e-mail a priceCheck request and
receive as a reply e-mail the priceCheck response message.

Not much changes with this new binding. Of course, the priceCheck portType and the
messages and types it references do not change. What does change is additional
binding, port, and service elements (we will discuss port and service elements in
separate sections later). The biggest changes include use of a different URI for the
transport attribute of the soap:binding element to indicate SMTP is the transport
mechanism. Also, the format of the location attribute in the soap:address child
element of the port is different, reflecting an e-mail address format of the location.
Another change is the use of literal form for the input and output message. It is a natural
exchange to have an XML document itself as the e-mail message and response going
between SkatesTown and its customer. Nothing precludes using RPC over SMTP; this is a
matter of your choice:

<!-- Binding definitions -->

<binding name="PriceCheckSMTPBinding" type="pc:PriceCheckPortType">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/smtp"/>

 <operation name="checkPrice">

 <input>

 <soap:body use="literal"/>

 </input>

 <output>

 <soap:body use="literal"/>

 </output>

 </operation>

 </binding>

 <!-- Service definition -->

 <service name="PriceCheckSMTPService">

 <port name="PriceCheckSMTP" binding="PriceCheckSMTPBinding">

 <soap:address location="mailto:priceCheck@skatestown.com"/>

 </port>

 </service>

And that is pretty much it for the WSDL binding element and the SOAP extensions to the
WSDL binding element.

So, we now know that the only format supported for the priceCheck and
StockAvailableNotification services is SOAP, and we know how the abstract types
should be mapped into concrete objects. We now have (almost) all the details needed to
invoke these Web services. At this point, we know we must use a SOAP message
something like the following to invoke the checkPrice operation:

HTTP/1.0 200 OK

Content-Type: text/xml; charset=utf-8

Content-Length: 719

Set-Cookie2: JSESSIONID=6321fmkki1;Version=1;Discard;Path="/axis"

Set-Cookie: JSESSIONID=6321fmkki1;Path=/axis

Servlet-Engine: Tomcat Web Server/3.2.3 (JSP 1.1; Servlet 2.2; Java 1.3.0;

Windows 2000 5.0 x86; java.vendor=IBM Corporation)

<?xml version="1.0" encoding="UTF-8"?>

 <SOAP-ENV:Envelope

 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <SOAP-ENV:Body>

 <ns3:checkPriceResponse

 xmlns:ns3="http://www.skatestown.com/services/PriceCheck">

 <checkPriceResult href="#id0"/>

 </ns3:checkPriceResponse>

 <multiRef id="id0" xsi:type="ns5:AvailabilityType"

 xmlns:ns5="http://www.skatestown.com/ns/availability">

 <quantityAvailable xsi:type="xsd:int">36

 </quantityAvailable>

 <price xsi:type="xsd:double">129.0

 </price>

 <sku xsi:type="xsd:string">947-TI

 </sku>

 </multiRef>

 </SOAP-ENV:Body>

 </SOAP-ENV:Envelope>

The only missing piece is the network address; what URL do we send the message to?
These details are given in the port and service elements.

Port

The port element in WSDL is very simple. Its only purpose is to specify the network
address of the endpoint hosting the Web service. More precisely, the port element
associates a single protocol-specific address to an individual binding element. Port
elements are named, and the name must be unique among all the ports within a WSDL
document. The port element for the priceCheckSOAPBinding is:

<port name="PriceCheck" binding="pc:PriceCheckSOAPBinding">

 <soap:address location=

 "http://localhost:8080/axis/servlet/AxisServlet/PriceCheck"/>

</port>

This binding indicates the URL to which SOAP messages should be sent in order to invoke
the priceCheck operations over SOAP. Note the soap:address element; this is another
aspect of the SOAP extension to WSDL. Most of the extension is in the binding element,
and this is the only part of the extension outside the binding element.

That's it for the port element. We would be all done with our examination of the WSDL
elements except that the port element does not stand alone. Port elements are children
of the service element.

Service

The purpose of the service element is to contain a set of related port elements. Nothing
more. Although a WSDL document can contain a collection of service elements,
conventionally a WSDL document contains a single service element. Each service
element is named, and each name must be unique among all the services in the WSDL
document. The following shows the entire service element for the priceCheck Web
service:

<!-- Service definition -->

<service name="PriceCheckService">

 <port name="PriceCheck" binding="PriceCheckSOAPBinding">

 <soap:address location=

 "http://www.skatestown.com/axis/services/PriceCheck "/>

 </port>

</service>

That's it. It seems like quite a lot of bother to waste all these elements to express a
group of ports. Why would a designer group several ports together into a service
element?

One reason is to group the ports related to the same service interface (portType) but
expressed by different protocols (bindings). For example, if the priceCheck portType
was implemented in two ways, one using SOAP over HTTP and another using SOAP over
SMTP, a single service element could contain the port describing the URL for the
SOAP/HTTP network endpoint and the port describing the e-mail address for the
SOAP/SMTP network endpoint.

Another reason might be to group related but different portTypes together. For example,
if the designer of the StockAvailabilityNotification Web service had chosen to split
out the notification operation into a separate portType (certainly justifiable), then it
would be advantageous to relate the port for the registration service together with the
port describing the network endpoint for the binding for the notification operation.

That is the bulk of the important elements in a WSDL definition. We now examine a few
other miscellaneous elements that appear in a WSDL document.

Definitions

The root element of a WSDL document is a definitions element. A definitions
element contains all of the other WSDL elements. A definitions element can contain:

• Optionally, one types element

• Zero or more message elements

• Zero or more portType elements (conventionally just one)

• Zero or more binding elements (conventionally just one, for the

portType element)

• Zero or more service elements (again, usually just one)

The definitions element might also contain a documentation element (we'll talk about
this in the next section) and zero or more import elements (we'll talk about the import
element after the documentation element).

The definitions element itself contains a name attribute (the name usually corresponds
to the name of the Web service itself) and the usual XML namespace declarations. The
following is the definitions element from the priceCheck WSDL:

<?xml version="1.0"?>

<definitions name="PriceCheck"

 targetNamespace="http://www.skatestown.com/services/PriceCheck"

 xmlns:pc="http://www.skatestown.com/services/PriceCheck"

 xmlns:avail="http://www.skatestown.com/ns/availability"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns="http://schemas.xmlsoap.org/wsdl/">

. . .

</definitions>

Except for the value of the name attribute and the xmlns:pc and xmlns:avail
declarations, you will see this pattern at the beginning of every WSDL document. For
WSDL documents that declare types with repeating groups (arrays), you will also see the
SOAP encoding namespace declaration here.

Documentation

You have seen the documentation element before. It was used to communicate the
relationship between the registration operation and the notification operation in the
StockAvailabilityNotification Web service. The documentation element can contain
any combination of text or other child elements. Any other WSDL element can contain a
documentation element, usually as the first child element.

Conventional Use of the Import Element

WSDL defines an additional import element that allows WSDL documents to be linked
together. The import element lets you reuse WSDL documents. Really, an import
element binds a network location to an XML namespace. The following line shows the
definition of an import element in WSDL:

<import namespace="uri" location="uri"/>

As described previously, many developers split their WSDL designs into two parts, each
placed in a separate document. The service interface definition, containing the types,
message, portType, and binding elements, appears in one file. The service interface
definition encapsulates the reusable components of a service description. You can then
place this file, for example, on a well-known Web site (on an e-marketplace, for
example) for everyone to view. Each organization that wants to implement a Web service
conformant to that well-known service interface definition would describe a service
implementation definition, containing the port and service elements, describing how
that common, reusable, service interface definition was, in fact, implemented at the
network endpoint hosted by that organization. (You will see in Chapter 7 that this split is
very important for registering WSDL Web service definitions in UDDI.) Figure 6.4 outlines
how the major elements in WSDL are divided between the service interface definition and
the service implementation definition.

Figure 6.4. Service implementation definition, service interface definition, and WSDL

elements.

The designers at SkatesTown used this technique for the poSubmission WSDL. The
poSubmission WSDL is a service description for the poSubmission SOAP service you saw
in Chapter 3. It uses schema definitions from Chapter 2. The service interface definition
for the poSubmission service interface definition file appears as follows:

<?xml version="1.0" ?>

<definitions name="poSubmission"

 targetNamespace=

 "http://www.skatestown.com/services/interfaces/poSubmission.wsdl"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:po="http://www.skatestown.com/ns/po"

 xmlns:inv="http://www.skatestown.com/ns/invoice"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <!-- Type definitions -->

 <types>

 <xsd:schema targetNamespace="http://www.skatestown.com/ns/invoice" ...>

 <!-- rest of invoice schema definition from chapter 2 -->

 <include schemaLocation="http://www.skatestown.com/ns/invoice.xsd"/>

 </xsd:schema>

 <xsd:schema targetNamespace="http://www.skatestown.com/ns/po" ...>

 <!-- rest of purchaseOrder schema definition from chapter 2 -->

 <include schemaLocation="http://www.skatestown.com/ns/po.xsd"/>

 </xsd:schema>

 </types>

 <!-- Message definitions -->

 <message name="poSubmissionRequest">

 <part name="purchaseOrder" element="po:po"/>

 </message>

 <message name="poSubmissionResponse">

 <part name="invoice" element="inv:invoice"/>

 </message>

 <!-- Port type definitions -->

 <portType name="poSubmissionPortType">

 <operation name="doSubmission">

 <input message="poSubmissionRequest"/>

 <output message="poSubmissionResponse"/>

 </operation>

 </portType>

 <!-- Binding definitions -->

 <binding name="poSubmissionSOAPBinding"

 type="poSubmissionPortType">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="placePO">

 <soap:operation soapAction=

 "http://www.skatestown.com/services/poSubmission/submitPO"/>

 <input>

 <soap:body parts="purchaseOrder" use="literal"/>

 </input>

 <output>

 <soap:body parts="invoice" use="literal"/>

 </output>

 </operation>

 </binding>

</definitions>

Note the use of the XML Schema include tag, importing the elements defined in the po
and invoice schema definitions.

This WSDL file is a typical pattern for a simple document-centric SOAP service. The
messages are simple document instances; the SOAP binding indicates the use of literal
encoding—no deserialization of the XML message into programming language–specific
objects will occur.

This service interface definition can be reused by many organizations. This is especially
true if the data formats (the purchase order and invoice schemas) are industry standard.

The information specific to how SkatesTown implements the poSubmission service
interface is contained in the poSubmissionService service implementation definition file:

<?xml version="1.0" ?>

<definitions name="poSubmissionService"

 targetNamespace=

 "http://www.skatestown.com/services/POSubmissionService.wsdl"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:pop=

 "http://www.skatestown.com/services/interfaces/poSubmission.wsdl"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <import

 namespace=

 "http://www.skatestown.com/services/interfaces/poSubmission.wsdl"

 location=

 "http://www.skatestown.com/services/interfaces/poSubmission.wsdl"/>

 <!-- Service definition -->

 <service name="poSubmissionService">

 <port name="poSubmissionSOAPPort" binding="pop:poSubmissionSOAPBinding">

 <soap:address

 location=

 "http://www.skatestown.com/axis/services/submitPO"/>

 </port>

 </service>

</definitions>

This technique is a nice separation of concerns. The service implementation document is
quite succinct and contains information that is truly specific to the implementation of this
type of service by SkatesTown.

Another convention, sometimes followed by WSDL designers, is to separate the binding
from the service interface definition. It remains quite controversial that the service
interface definition includes, by convention, the binding element. After all, the binding
element, when used with the SOAP extensions to WSDL, includes the SOAPAction
attribute in the operation element. This really has more to do with implementation than
reusable description. As you will see in Chapter 7, part of the argument to keep the
binding element in with the other reusable elements was due to the convention of
registering WSDL documents within UDDI.

WSDL Extension Mechanism

The WSDL language allows each of the WSDL elements to be extended with elements
from other namespaces. The language specification further defines standard extensions
for SOAP, HTTP GET/POST operations, and MIME attachments. You have seen the use of
the SOAP extension extensively in the previous sections of this chapter. We will briefly
describe the other two extension frameworks here.

WSDL Descriptions of HTTP GET/POST Web Services

Imagine a variant on the priceCheck Web service that was tuned to support Web
browsers. This variant on the priceCheck Web service would use URL encoding to
include the item number as part of the service request using HTTP GET. An invocation of
this service could look like an HTTP GET message sent to the following URL:
http://www.skatestown.com/checkPrice?item=xxx1234.

The priceCheck WSDL definition would be extended to include a new binding element:

 <!-- Binding definitions -->

. . .

 <binding name="PriceCheckHTTPGetBinding" type="PriceCheckPortType">

 <http:binding verb="GET"/>

 <operation name="checkPrice">

 <http:operation location="checkPrice"/>

 <input>

 <http:urlEncoded/>

 </input>

 <output>

 <mime:content type="text/xml"/>

 </output>

 </operation>

 </binding>

The first HTTP extension is shown as the first child of the binding element. This element
indicates that the GET verb is used (the other option was the POST verb).

The second HTTP extension is shown as the first child of the operation element. This
element indicates that the service is to be invoked at the relative URI location. This is to
be combined with the absolute URI location indicated in the port element (we'll review
that shortly).

The third HTTP extension is shown as the first child of the input element. This element
indicates that the parts of the input message are encoded in the request URI as
name/value pairs, where the HTTP GET parameter names correspond to the WSDL
message part names. Recall that the input message to the checkPrice operation is the
PriceCheckRequest message, and it has only one part: a string named item. This means
that the value of the input will appear in the URI, following the string ?item=.

The fourth HTTP extension is shown as the first child of the output element. This
element indicates that the priceCheckResponse message will appear as XML text.

The last thing required is to update the service element of the priceCheck WSDL to
include a port describing the http:address of the priceCheckHTTPGetBinding. This
update is shown in the following listing:

 <!-- Service definition -->

 <service name="PriceCheckService">

. . .

 <port name="PriceCheckBrowserPort" binding="PriceCheckHTTPGetBinding">

 <http:address location="http://www.skatestown.com/"/>

 </port>

. . .

Here the URL of the priceCheck service is given using the http:address WSDL
extension. Just like the SOAP extension, most of the HTTP extension is in the binding
element (where you would expect it), and the only remaining piece is an extension to the
port element expressing the endpoint network address in a protocol-specific manner.

The HTTP extension also specifies how to express the input message as HTTP POST using
FORM-POST and how to express the input using urlReplacement. Refer to the WSDL
specification for more detail.

WSDL Descriptions of Web Services Incorporating MIME

WSDL also supports a standard extension to describe message parts as MIME. We
covered SOAP with MIME attachments in Chapter 3. This extension would be used if the
designers at SkatesTown decided to include (in addition to the normal SOAP response) a
GIF or JPEG image of the part queried in a priceCheck service invocation. To support
this addition, the following changes would be necessary in the priceCheck WSDL. First,
the response message would be updated to include the new part:

<message name="PriceCheckResponse">

 <part name="result" type="avail:availability"/>

 <part name="picture" type="xsd:binary"/>

</message>

This change does not exercise the MIME extension standard, because the MIME
extensions are only within the binding element. However, the only change necessary in
the binding element is to indicate that the output is modeled as multipart MIME, with
the result part appearing as one MIME part, the SOAP body; the picture appears in
another MIME part as GIF or JPEG. The following listing shows the binding element with
these changes:

<!-- Binding definitions -->

<binding name="PriceCheckSOAPBinding" type="PriceCheckPortType">

 <soap:binding style="rpc"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="checkPrice">

 <soap:operation SOAPAction=""/>

 <input>

 <soap:body use="encoded"

 namespace="http://www.skatestown.com/ns/availability"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </input>

 <output>

 <mime:multipartRelated>

 <mime:part>

 <soap:body use="encoded"

 namespace="http://www.skatestown.com/services/PriceCheck"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </mime:part>

 <mime:part>

 <mime:content part="picture" type="image/gif"/>

 <mime:content part="picture" type="image/jpeg"/>

 </mime:part>

 </mime:multipartRelated>

 </output>

 </operation>

 </binding>

Really, the only thing that has changed is within the output element (added definitions
are in bold). Note the duplicate mime:content elements with the part named picture.
When you see them, you are to interpret them as alternative formats, one of which
might appear.

We have examined the WSDL standard for service description, but how does it address
automating the invocation of Web services by the service requestor? The next section
examines one approach: using WSDL to create Java interfaces or proxies to invoke Web
services. We will also talk about how to generate WSDL from existing Java code.

WSDL and Java

In this section, we review the relationship between Java and WSDL. As you will see in
Chapter 8, "Interoperability, Tools, and Middleware Products," many Web services
development and/or runtime environments include WSDL tooling support. We review the
tooling support in Axis (alpha 2 release) for generating service implementation code
based on a WSDL, and the tooling support for generating a WSDL document from a Java
implementation of a service.

Deriving Code from WSDL

Because WSDL is an IDL-level service description language, it is a good idea to make
sure that it accurately represents the service it describes. You have two choices: Either
you can manually design and code the service based on your understanding of a WSDL
document, or you can use a tool to generate as much of the code for the service as
possible.

Al Rosen used the WSDL2java program in Axis to generate the code implementing the
priceCheck service. Al entered the following in his command line:

java org.apache.axis.wsdl.Wsdl2java --verbose --skeleton --messageContext --

package ch6.ex1

 --output c:\book\ch6\ex1c:\book\ch6\ex1\pricecheck.wsdl

The output of the command was:

Parsing XML File: c:\book\ch6\ex1\pricecheck.wsdl

Using package name: ch6.ex1

Generating portType interface: PriceCheckPortType.java

Generating server-side PortType interface: PriceCheckPortTypeAxis.java

Generating client-side stub: PriceCheckSOAPBindingStub.java

Generating server-side skeleton: PriceCheckSOAPBindingSkeleton.java

Generating type implementation: AvailabilityType.java

Generating type implementation holder: AvailabilityTypeHolder.java

Generating service class: PriceCheckService.java

Generating deployment document: deploy.xml

Generating deployment document: undeploy.xml

Let's take a look at each one of these files generated by the WSDL tooling in Axis and
discuss how these files were generated from the WSDL definition of the priceCheck

service. We will also discuss the steps Al Rosen took to quickly get the priceCheck
service running and tested.

Overview of the Files Generated by WSDL2Java

The Axis WSDL tooling generates files for use on the client and the server. For the client,
Axis generates three files:

• An interface definition for each portType element

(PriceCheckPortType.java in our case)

• A client-side stub class for each binding element

(PriceCheckSOAPBindingStub.java in our case)

• A factory-pattern style class for each service

(PriceCheckService.java in our case)

The intention of the portType-based interface is to specify the interface the client
application should use to interact with the Web service via the client-side stub. The
binding-based client-side stub is a proxy for the Web service in the client's programming
language and runtime environment. The service-based factory class returns a client-side
stub instance complete with a network endpoint address.

For the server, Axis generates three files:

• A modified interface file for each portType, specific for use by the

Axis engine (PriceCheckPortTypeAxis.java in our case)

• A server-side skeleton based on each binding element

(PriceCheckSOAPBindingSkeleton.java in our case)

• A server-side "empty" service implementation file for each binding

element (PriceCheckSOAPBindingImpl.java in our case)

The server-side interface is generated only if the --messageContext option is used (we'll
talk about this option a little later). Otherwise, the server-side interface is the same as
the client-side interface. This interface specifies the interface the server expects the
target Web service to implement. The server-side skeleton is invoked by the Axis engine
and is responsible for invoking the target Web service. The extra level of indirection is
not needed in many cases; however, when there are in/out and multiple out parameters,
the server-side skeleton comes into play.

For each complex type defined, two encoding classes are generated: one defining a basic
Java implementation of the structure defined by the complex type
(AvailabilityType.java in our case) and a class to implement RPC in, in/out, and out
parameter semantics (AvailabilityTypeHolder.java in our case).

Finally, the Axis tooling generates a deployment descriptor file called deploy.xml that
can be used to deploy the service to an Axis server. A symmetric undeploy.xml is
generated to undeploy the service from the Axis server.

Let's take a look at the details of the files generated by the Axis WSDL tooling from the
priceCheck.wsdl example.

Generating Classes for Serialization/Deserialization

The priceCheck.wsdl file defined one complex type structure:

<!-- Type definitions -->

<types>

 <xsd:schema targetNamespace="http://www.skatestown.com/ns/availability"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:complexType name="availabilityType">

 <xsd:sequence>

 <xsd:element name="sku" type="xsd:string"/>

 <xsd:element name="price" type="xsd:double"/>

 <xsd:element name="quantityAvailable" type="xsd:integer"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:schema>

</types>

From the availabilityType complex type, the AvailabilityType.java encoding class
is generated. Because only one complex type element is defined in priceCheck.wsdl,
only one encoding class is generated.

The AvailabilityType.java class defines a straightforward Java representation of the
availabilityType complex type. The name of the class is derived from the value of the
name attribute of the complexType element. The class itself defines one public instance
variable for each of the child elements in the type:

public class AvailabilityType implements java.io.Serializable {

 private String sku;

 private double price;

 private int quantityAvailable;

The names of the instance variables are from the names of the child elements of the
availabilityType complex type.

The Axis WSDL tooling also generates a public no-arg constructor

public AvailabilityType() {

}

and a public constructor containing parameters for each of the instance variables
generated:

public AvailabilityType(String sku, double price, int quantityAvailable) {

 this.sku = sku;

 this.price = price;

 this.quantityAvailable = quantityAvailable;

}

Finally, the Axis WSDL tooling generates a pair of accessor methods (one get method and
one set method) for each instance variable. For example, the accessor methods for the
sku instance variable are as follows:

public String getSku() {

 return sku;

}

public void setSku(String sku) {

 this.sku = sku;

}

That's it for the encoding class for AvailabilityType. The other Java classes generated
by the Axis WSDL tooling use this class to manipulate availabilityType elements. This

class is also used as part of the BeanMapping deployed with this service. We will
discuss this a little later in the section on generating the deployment XML.

Another file was generated for the availabilityType complex type:
AvailabilityTypeHolder.java. This file is used to implement the behavior of in/out and
multiple out parameters in an RPC-style Web service. We'll examine the role of holder

classes when we examine the in/out and multiple out parameters in more detail. As
it turns out, priceCheck does not have any in/out parameters and only has one out
parameter, so the AvailabilityTypeHolder.java file is not used.

As of the Axis alpha-2 release, the Axis WSDL tooling is at a very early stage. The Axis
WSDL tooling will generate encoding classes for complex types and even handle elements
referencing other complex types. Axis supports the common simple types from XML
Schema (but not all of the simple types) and does not support the use of the XML
Schema extension mechanism to base new types from existing types. Axis WSDL tooling
also does not support nesting of complex types.

Generating the Client Stub Factory, Stub, and Interface

The client stub is a class that encapsulates the details of the SOAP and networking
protocol layers from the application. The client stub presents an interface based on the
portType to the application. The application does not need to know anything about
SOAP, HTTP, or any of those lower-level details. The application invokes the interface and
retrieves a response in terms of Java method invocation and Java data types.

The interface generated for the priceCheck portType is shown here:

public interface PriceCheckPortType extends java.rmi.Remote {

 public AvailabilityType checkPrice(String sku)

 throws java.rmi.RemoteException;

}

The interface closely reflects the portType definition:

<!-- Port type definitions -->

<portType name="PriceCheckPortType">

 <operation name="checkPrice">

 <input message="pc:PriceCheckRequest"/>

 <output message="pc:PriceCheckResponse"/>

 </operation>

</portType>

The name of the interface class is derived from the name of the portType. The only
method signature, checkPrice, reflects the fact that only one operation, checkPrice,
was defined for the portType. The signature of the method reflects the input, output,
and fault elements of the operation. The input parameter, a String parameter named
sku, reflects the message definition for the PriceCheckRequest:

<message name="PriceCheckRequest">

 <part name="sku" type="xsd:string"/>

</message>

The return type of the method, AvailabilityType, reflects the message definition for
PriceCheckResponse:

<message name="PriceCheckResponse">

 <part name="result" type="avail:availabilityType"/>

</message>

This is the first use for the AvailabilityType encoding type we discussed earlier.

The client application, then, can be coded to that interface. In the simple
PriceCheckTest class, we see the invocation lines

PriceCheckService pcs = new PriceCheckService();

PriceCheckPortType pcpt = pcs.getPriceCheck();

AvailabilityType at = pcpt.checkPrice(args[0]);

where args[0] is a string (that should correspond to a valid stock keeping unit [SKU])
taken from the command line. In this case, the application uses the PriceCheckService
to create an instance of the client stub populated with the endpoint address of the
priceCheck Web service. (We'll discuss the client stub in more detail shortly.) The
PriceCheckService factory could be used in many other ways—for example, to
determine the endpoint address of the Web service implementation from a UDDI lookup.
Regardless of the method used to derive a client stub, the portType remains the same,
allowing the client application to rely on coding to that interface. The bindings might be
different, either pointing to different Web services at different endpoint addresses, or
perhaps even using different network transports, such as e-mail. Perhaps the Web
service is a local method call within the same JVM. The client application is insulated from
these changes because it is coding to an interface defined by a portType. This level of
loose coupling between the requestor's application and the service provider makes Web
services really great!

The complete PriceCheckTest class is presented in Listing 6.3.

Listing 6.3 The PriceCheckTest Class

package ch6.ex1;

import java.text.NumberFormat;

public class PriceCheckTest {

 public static void main(String[] args){

 if(args.length != 1){

 System.err.println("Usage: PriceCheckTest sku");

 System.exit(1);

 }

 try{

 PriceCheckService pcs = new PriceCheckService();

 PriceCheckPortType pcpt = pcs.getPriceCheck();

 AvailabilityType at = pcpt.checkPrice(args[0]);

 NumberFormat df = NumberFormat.getCurrencyInstance();

 System.out.println("One " + args[0] + " costs: " +

 df.format(at.getPrice()) + ".");

 System.out.println("There are " + at.getQuantityAvailable() + "

 available.");

 } catch (Exception e){

 System.err.println("Something wrong with the PriceCheck request");

 e.printStackTrace();

 }

 }

}

The PriceCheckService class, generated from the service element in the PriceCheck
WSDL, is straightforward. The complete class is shown in Listing 6.4.

Listing 6.4 The PriceCheckService Class

package ch6.ex1;

public class PriceCheckService{

 // Use to get a proxy class for PriceCheck

 private final java.lang.String PriceCheck_address =

 "http://localhost:8080/axis/services/PriceCheck";

 public PriceCheckPortType getPriceCheck() {

 java.net.URL endpoint;

 try {

 endpoint = new java.net.URL(PriceCheck_address);

 }

 catch (java.net.MalformedURLException e) {

 return null; // unlikely as URL was validated in wsdl2java

 }

 return getPriceCheck(endpoint);

 }

 public PriceCheckPortType getPriceCheck(java.net.URL portAddress) {

 try {

 return new PriceCheckSOAPBindingStub(portAddress);

 }

 catch (org.apache.axis.SerializationException e) {

 return null; // ???

 }

 }

}

The name of the class is derived from the name of the service found in the priceCheck
WSDL. The network address used

 private final java.lang.String PriceCheck_address =

"http://localhost:8080/axis/services/PriceCheck";

is derived from the soap:address element of the port:

<port name="PriceCheck" binding="pc:PriceCheckSOAPBinding">

 <soap:address

 location="http://localhost:8080/axis/services/PriceCheck"/>

</port>

The client application uses the client stub generated by Axis to invoke a Web service
using a particular binding mechanism. The Axis WSDL tooling generates a client stub for
each binding element found in the WSDL document. The client stub class has the same
name as the binding element and implements the interface defined for the portType
named in the binding element. A complete listing for the PriceCheckSOAPBindingStub
appears in Listing 6.5.

Listing 6.5 The PriceCheckSOAPBindingStub Class

package ch6.ex1;

public class PriceCheckSOAPBindingStub extends org.apache.axis.wsdl.Stub

 implements PriceCheckPortType{

 private org.apache.axis.client.ServiceClient call =

 new org.apache.axis.client.ServiceClient(

 new org.apache.axis.transport.http.HTTPTransport());

 private java.util.Hashtable properties = new java.util.Hashtable();

 public PriceCheckSOAPBindingStub(java.net.URL endpointURL)

 throws org.apache.axis.SerializationException {

 this();

 call.set(org.apache.axis.transport.http.HTTPTransport.URL,

 endpointURL.toString());

 }

 public PriceCheckSOAPBindingStub()

 throws org.apache.axis.SerializationException {

 try {

 org.apache.axis.utils.QName qn1 =

 new org.apache.axis.utils.QName(

 "http://www.skatestown.com/ns/availability",

 "AvailabilityType");

 Class cls = AvailabilityType.class;

 call.addSerializer(cls, qn1,

 new org.apache.axis.encoding.BeanSerializer(cls));

 call.addDeserializerFactory(qn1, cls,

 org.apache.axis.encoding.BeanSerializer.getFactory());

 }

 catch (Throwable t) {

 throw new org.apache.axis.SerializationException

 ("AvailabilityType", t);

 }

 }

 public void _setProperty(String name, Object value) {

 properties.put(name, value);

 }

 // From org.apache.axis.wsdl.Stub

 public Object _getProperty(String name) {

 return properties.get(name);

 }

 // From org.apache.axis.wsdl.Stub

 public void _setTargetEndpoint(java.net.URL address) {

 call.set(org.apache.axis.transport.http.HTTPTransport.URL,

 address.toString());

 }

 // From org.apache.axis.wsdl.Stub

 public java.net.URL _getTargetEndpoint() {

 try {

 return new java.net.URL((String)

 call.get(org.apache.axis.transport.http.HTTPTransport.URL));

 }

 catch (java.net.MalformedURLException mue) {

 return null; // ???

 }

 }

 // From org.apache.axis.wsdl.Stub

 public synchronized void setMaintainSession(boolean session) {

 call.setMaintainSession(session);

 }

 // From javax.naming.Referenceable

 public javax.naming.Reference getReference() {

 return null; // ???

 }

 public AvailabilityType checkPrice(String sku)

 throws java.rmi.RemoteException{

 if (call.get(org.apache.axis.transport.http.HTTPTransport.URL)

 == null){

 throw new org.apache.axis.NoEndPointException();

 }

 call.set(org.apache.axis.transport.http.HTTPTransport.ACTION, "");

 Object resp =

call.invoke("http://www.skatestown.com/services/PriceCheck",

 "checkPrice", new Object[]

 {new org.apache.axis.message.RPCParam("sku", sku)});

 if (resp instanceof java.rmi.RemoteException) {

 throw (java.rmi.RemoteException)resp;

 }

 else {

 return (AvailabilityType) resp;

 }

 }

}

Most of the client stub code is generated to manipulate the ServiceClient, which, as
you saw in Chapter 4, is the major interface between client applications and the Axis
engine on the requestor side. Properties that are set include the transport and the
network address of the service (given as a parameter, from the client application or the
stub factory class). The client stub also configures the ServiceClient with serializers
and deserializers for each complexType involved in the binding (that is, derived from the
portType) using the encoding classes discussed earlier:

org.apache.axis.utils.QName qn1 = new org.apache.axis.utils.QName

 ("http://www.skatestown.com/ns/availability", "AvailabilityType");

Class cls = AvailabilityType.class;

call.addSerializer (cls, qn1,

 new org.apache.axis.encoding.BeanSerializer (cls));

call.addDeserializerFactory (qn1, cls,

 org.apache.axis.encoding.BeanSerializer.getFactory ());

These serializers and deserializers are very important because they are the part of the
Axis engine that is responsible for converting something that looks like this

 <ns3:checkPriceResponse

xmlns:ns3="http://www.skatestown.com/services/PriceCheck">

 <checkPriceResult href="#id0"/>

 </ns3:checkPriceResponse>

 <multiRef id="id0" xsi:type="ns5:AvailabilityType"

 xmlns:ns5="http://www.skatestown.com/ns/availability">

 <quantityAvailable xsi:type="xsd:int">36

 </quantityAvailable>

 <price xsi:type="xsd:double">129.0

 </price>

 <sku xsi:type="xsd:string">947-TI

 </sku>

 </multiRef>

into an instance of AvailabilityType, with the quantityAvailable, price, and sku
instance variables properly set.

Finally, the core purpose of the client stub is to provide an implementation of each
operation defined in the interface generated from the portType. In the
PriceCheckSOAPBindingStub, there is one method implementation: checkPrice. This
method is responsible for gathering the parameters, using the ServiceClient to invoke
the Web service, and return the marshaled result back to the client application:

public AvailabilityType checkPrice(String sku)

 throws java.rmi.RemoteException{

 if (call.get(org.apache.axis.transport.http.HTTPTransport.URL) == null){

 throw new org.apache.axis.NoEndPointException();

 }

 call.set(org.apache.axis.transport.http.HTTPTransport.ACTION, "");

 Object resp = call.invoke("http://www.skatestown.com/services/

 PriceCheck", "checkPrice", new Object[]

 {new org.apache.axis.message.RPCParam("sku", sku)});

 if (resp instanceof java.rmi.RemoteException) {

 throw (java.rmi.RemoteException)resp;

 }

 else {

 return (AvailabilityType) resp;

 }

}

And that is it for the Java code generated for use on the client side.

Generating the Server Skeleton and Interface

Generated code is also useful on the server side to insulate the implementation of the
Web service from the details of SOAP, the network transport, and even Axis itself.

The server-side interface can take one of two forms, depending on whether the Web
service implementation needs context information to be passed to it. Many Web service
implementations are standalone; they need no information from the Axis engine relating
to the context of the request (information about the requestor, transport specific
information like the servlet context, other environment properties, and so on). In this
case, the client-side interface based on portType is sufficient. However, for cases where
context is required from the Axis engine, you should use the --messageContext option
on the Wsdl2java, generating a server-side interface. The server-side interface generated
from the priceCheck WSDL appears in Listing 6.6.

Listing 6.6 The PriceCheckPortTypeAxis Interface

package ch6.ex1;

public interface PriceCheckPortTypeAxis extends java.rmi.Remote {

 public AvailabilityType checkPrice(org.apache.axis.MessageContext ctx,

 String sku) throws java.rmi.RemoteException;

}

The server-side interface has the name of the portType appended with the string Axis;
for example, PriceCheckPortTypeAxis.java. This interface is similar to the client-side
interface, except that each method signature includes as its first parameter a
MessageContext parameter, allowing the Web service implementation access to the
environment through this object. Using MessageContext is a good way to encapsulate
access to information such as the transport. The downside of doing this is that your Web
service implementation is tied very closely to Axis. Al Rosen chose this approach for the
priceCheck Web service because he used the same method to get at the
ProductDatabase as the InventoryCheck Web service, and that method uses
MessageContext.

The server-side skeleton is quite simple. One such class is defined for each binding
element in the WSDL document, as shown in Listing 6.7.

Listing 6.7 The PriceCheckSOAPBindingSkeleton Interface

package ch6.ex1;

public class PriceCheckSOAPBindingSkeleton{

 private PriceCheckPortTypeAxis impl;

 public PriceCheckSOAPBindingSkeleton() {

 this.impl = new PriceCheckSOAPBindingImpl();

 }

 public PriceCheckSOAPBindingSkeleton(PriceCheckPortTypeAxis impl) {

 this.impl = impl;

 }

 public Object checkPrice(org.apache.axis.MessageContext ctx, String sku)

 throws java.rmi.RemoteException

 {

 Object ret = impl.checkPrice(ctx, sku);

 return ret;

 }

}

The skeleton defines a couple of simple constructors, allowing it to be associated with an
implementation of the server-side interface—that is, an implementation of the Web
service. In fact, the code is generated to look for one particular implementation class,

named PriceCheckSOAPBindingImpl by default. A sample
PriceCheckSOAPBindingImpl.java file is also generated, with trivial contents:

package ch6.ex1;

public class PriceCheckSOAPBindingImpl implements PriceCheckPortTypeAxis {

 public AvailabilityType checkPrice(org.apache.axis.MessageContext ctx,

 String sku)

 throws java.rmi.RemoteException {

 throw new java.rmi.RemoteException ("Not Yet Implemented");

 }

}

The skeleton generates an implementation method for each operation in the portType.
Each operation is the same, invoking the corresponding method in the actual Web service
implementation class.

The checkPrice implementation in the PriceCheckSOAPBindingSkeleton is quite
simple:

public Object checkPrice(org.apache.axis.MessageContext ctx, String sku)

 throws java.rmi.RemoteException

{

 Object ret = impl.checkPrice(ctx, sku);

 return ret;

}

However, for Web services that involve in/out and out parameters, the implementation of
the skeleton operation becomes much trickier.

In/out and Multiple Out Parameters

In certain RPC situations, WSDL can specify message parts that appear on both the input
message and output message; these translate to in/out parameters. Further, WSDL can
specify an output message with more than one part. In/out and multipart output
messages pose an interesting problem for translating WSDL to Java.

Consider the following example WSDL:

<wsdl:message name="inmsg">

 <wsdl:part name="in1" type="in"/>

 <wsdl:part name="inout1" type="inout"/>

</wsdl:message>

<wsdl:message name="outmsg">

 <wsdl:part name="inout1" type="inout"/>

 <wsdl:part name="out1" type="out"/>

 <wsdl:part name="out2" type="out"/>

</wsdl:message>

<wsdl:portType name="pt1">

 <wsdl:operation name="op1">

 <wsdl:input message="inmsg"/>

 <wsdl:output message="outmsg"/>

 </wsdl:operation>

</wsdl:portType>

The operation named op1 has a message part named inout1 appearing in both the input
message and output message. Further, you will notice that the output message of the
operation has three output parts: the inout1 part, and two parts that appear only in the
output message, out1 and out2.

How is it possible in Java to have a parameter that is both on the input and the output,
or to have multiple output values? This is where the holder classes come in.

As we have seen, Axis WSDL tooling generates holder classes for each of the input,
output, and in/out parameters. The classes generated when this WSDL file was processed
included InHolder.Java, InOutHolder.Java, and OutHolder.Java. These holder classes
are simple: They contain a value of the given underlying type and provide a simple
constructor.

Now, the skeleton generated for the following binding

<wsdl:binding name="pt1SOAPBinding1" type="pt1">

 <soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="op1">

 <soap:operation soapAction="op1"/>

 <wsdl:input>

 <soap:body use="encoded"

 namespace="someNamespace"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="encoded"

 namespace="someNamespace"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </wsdl:output>

 </wsdl:operation>

</wsdl:binding>

looks like this:

public Object op1(org.apache.axis.MessageContext ctx, In in1, Inout inout1)

 throws java.rmi.RemoteException

 {

 InoutHolder inout1Holder = new InoutHolder(inout1);

 OutHolder out2Holder = new OutHolder();

 Object ret = impl.op1(ctx, in1, inout1Holder, out2Holder);

 org.apache.axis.server.ParamList list =

 new org.apache.axis.server.ParamList();

 list.add(new org.apache.axis.message.RPCParam("out1", ret));

 list.add(new org.apache.axis.message.RPCParam

 ("inout1", inout1Holder._value));

 list.add(new org.apache.axis.message.RPCParam

 ("out2", out2Holder._value));

 return list;

 }

Note the way the target Web service is dispatched. Holder objects are created for the
in/out and the second out parameter and passed to the implementation. The
implementation then puts a value in the Out2Holder object passed and potentially

modifies the value in the InoutHolder that is passed. All three values are passed back to
the requestor as RPCParams.

Consider the test program shown in Listing 6.8.

Listing 6.8 The In/Out and Out Parameter Test Program

package ch6.ex5;

public class Test {

 public static void main(String[] args){

 if(args.length != 2){

 System.err.println("Usage: Test int1 int2");

 System.err.println

 ("Multiplies int1 by int2 and returns that as out parm,");

 System.err.println("Adds value of int1 to int2 (as inout parm)");

 System.err.println

 ("Adds new value of inout parm with the result of the

 multiplication"

 + "to produce return value.");

 System.exit(1);

 }

 try{

 int int1 = Integer.valueOf(args[0]).intValue();

 int int2 = Integer.valueOf(args[1]).intValue();

 pt1 stub = new In_Out_Parm().getIn_Out_Test_Port();

 In in1 = new In(int1);

 InoutHolder inout1 = new InoutHolder(new Inout(int2));

 OutHolder out2 = new OutHolder();

 Out res = stub.op1 (in1, inout1, out2);

 System.out.println(int1 + "*" + int2 + " = " + out2._value.getE3());

 System.out.println(int1 + "+" + int2 + " = " + inout1._value.getE2());

 System.out.println(int1 + "*" + int2 + " + " + int1 + "+"

 + int2 + " = " + res.getE3());

 }catch (Exception e){

 System.err.println("Something wrong with the Test service");

 e.printStackTrace();

 }

 }

}

When this is run with the command

java ch6.ex5.Test 2 3

The following SOAP message is generated:

POST /axis/servlet/AxisServlet/In_Out_Test_Port HTTP/1.0

. . .

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <SOAP-ENV:Body>

 <ns3:op1 xmlns:ns3="someNamespace">

 <in1 href="#id0"/>

 <inout1 href="#id1"/>

 </ns3:op1>

 <multiRef id="id1" xsi:type="ns6:Inout"

 xmlns:ns6="anotherNamespace">

 <e2 xsi:type="xsd:int">3

 </e2>

 </multiRef>

 <multiRef id="id0" xsi:type="ns10:In" xmlns:ns10="anotherNamespace">

 <e1 xsi:type="xsd:int">2

 </e1>

 </multiRef>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

A sample Web service implementation of this service looks like Listing 6.9.

Listing 6.9 Example In/Out and Out Parameter Web Service Implementation

package ch6.ex5;

import java.rmi.RemoteException;

import org.apache.axis.MessageContext;

public class pt1SOAPBinding1Impl implements pt1Axis {

 /**

 * @see pt1Axis#op1(MessageContext, In, InoutHolder, OutHolder)

 * multiply the value of inout by in and toss it into out2

 * add in to inout and toss that into inout

 * return the total of inout and out2

 */

 public Out op1(MessageContext ctx, In in1, InoutHolder inout1,

 OutHolder out2)

 throws RemoteException {

 out2._value = new Out();

 out2._value.setE3(in1.getE1()*inout1._value.getE2());

 inout1._value.setE2(inout1._value.getE2() + in1.getE1());

 return new Out(inout1._value.getE2() + out2._value.getE3());

 }

 /**

 * in case the messageContext parm was not used

 */

 public Out op1(In in1, InoutHolder inout1, OutHolder out2)

 throws RemoteException {

 out2._value = new Out();

 out2._value.setE3(in1.getE1()*inout1._value.getE2());

 inout1._value.setE2(inout1._value.getE2() + in1.getE1());

 return new Out(inout1._value.getE2() + out2._value.getE3());

 }

}

This is a simple program that takes the input value and increments the in/out value by
that amount. Further, it returns in one output parameter the product of the in and the
original in/out value, and in the "real" output of the message, returns the sum of the
newly incremented in/out value and the other output parameter. It is a useless function,
but it illustrates the in/out and multiple out situations in a simple fashion.

This program produces the following output SOAP response:

HTTP/1.0 200 OK. . .

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope

 SOAP-ENV:encodingStyle=http://schemas.xmlsoap.org/soap/encoding/

 xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/

 xmlns:xsd=http://www.w3.org/2001/XMLSchema

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <SOAP-ENV:Body>

 <ns3:op1Response xmlns:ns3="someNamespace">

 <out1 href="#id0"/>

 <inout1 href="#id1"/>

 <out2 href="#id2"/>

 </ns3:op1Response>

 <multiRef id="id2" xsi:type="ns7:Out"

 xmlns:ns7="anotherNamespace">

 <e3 xsi:type="xsd:int">6

 </e3>

 </multiRef>

 <multiRef id="id1" xsi:type="ns11:Inout"

 xmlns:ns11="anotherNamespace">

 <e2 xsi:type="xsd:int">5

 </e2>

 </multiRef>

 <multiRef id="id0" xsi:type="ns15:Out"

 xmlns:ns15="anotherNamespace">

 <e3 xsi:type="xsd:int">11

 </e3>

 </multiRef>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Note the way the multiref element is used to contain the holder values back to the
requestor. The test program shown in Listing 6.8 then takes these values from the
returned holder classes and prints the following out on the screen:

2*3 = 6

2+3 = 5

2*3 + 2+3 = 11

This would have been extremely tricky to do manually, but it was nothing for the Axis
WSDL tooling.

Now, back to our priceCheck example.

Generating the Deployment XML

In order for the Axis engine to know about a service, the service needs to be deployed.
The current mechanism of deploying services in Axis is through a deployment descriptor,
a deploy.xml file. Instructions on how to deploy a Web service are included in generated
comments at the beginning of the deploy.xml file.

A deploy.xml file is generated to deploy all the Web services defined in a WSDL
document. A service element is generated for each port element in the WSDL file. The
deploy.xml file generated from priceCheck.wsdl is shown in Listing 6.10.

Listing 6.10 The deploy.xml File Generated from priceCheck.wsdl

<!-- -->

<!--Use this file to deploy some handlers/chains and services -->

<!--Two ways to do this: -->

<!-- java org.apache.axis.utils.Admin deploy.xml -->

<!-- from the same dir that the Axis engine runs -->

<!--or -->

<!-- java org.apache.axis.client.AdminClient deploy.xml -->

<!-- after the axis server is running -->

<!--This file will be replaced by WSDD once it's ready -->

<m:deploy xmlns:m="AdminService">

 <!-- Services from PriceCheckService WSDL service -->

 <service name="PriceCheck" pivot="RPCDispatcher">

 <option name="className" value="PriceCheckSOAPBindingSkeleton"/>

 <option name="methodName" value=" checkPrice"/>

 </service>

 <beanMappings xmlns:avail="http://www.skatestown.com/ns/availability">

 <avail:AvailabilityType classname= "AvailabilityType"/>

 </beanMappings>

</m:deploy>

The value of the pivot handler is determined by the value of the style element of the
soap:operation element; RPC generates RPCDispatcher, and document generates
MsgDispatcher. An option element with the name className is generated for the
binding referenced by the port. The actual value is set to the name of the skeleton Java
file. The methodName option element contains a list of methods, one for each operation
in the binding, each separated by a space. This deployment tells the Axis engine to
invoke the PriceCheckSOAPBindingSkeleton class using the checkPrice operation.
(Note that the deployment file has been modified to reflect the package names where the
actual class files have been placed.)

The deploy.xml file also contains a collection of serializers associated with the Web
service, associating an encoding class, in this case AvailabilityType.Java, with the
corresponding type and namespace:

<beanMappings xmlns:avail="http://www.skatestown.com/ns/availability">

 <avail:AvailabilityType classname="AvailabilityType"/>

</beanMappings>

The Axis WSDL tooling also generates a document to undeploy the Web service. This
document is called undeploy.xml. The undeploy contains a service element for each
port in the WSDL document; this corresponds to the service elements generated in the
deploy.xml file. The undeploy.xml file generated from priceCheck.wsdl is shown in
Listing 6.11.

Listing 6.11 The undeploy.xml File Generated from priceCheck.wsdl

<!-- -->

<!--Use this file to undeploy some handlers/chains and services -->

<!--Two ways to do this: -->

<!-- java org.apache.axis.utils.Admin undeploy.xml -->

<!-- from the same dir that the Axis engine runs -->

<!--or -->

<!-- java org.apache.axis.client.AdminClient undeploy.xml -->

<!-- after the axis server is running -->

<!--This file will be replaced by WSDD once it's ready -->

<m:undeploy xmlns:m="AdminService">

 <!-- Services from PriceCheckService WSDL service -->

 <service name="PriceCheck" pivot="RPCDispatcher">

 </service>

</m:undeploy>

Putting It All Together: A Running PriceCheck Service

The previous sections described the WSDL tooling in Axis, but what steps must Al Rosen
take to get the priceCheck service running?

The first step, of course, is to acquire WSDL. Al Rosen created the priceCheck.wsdl file
by hand. In the next section, we will discuss ways to generate WDSL from existing code,
and in Chapter 7, we will see how to get a WSDL description from a services registry like
UDDI.

Al then issued the Wsdl2java command shown previously to invoke the Axis WSDL
tooling. This step generated the files we discussed earlier. Note that Al used the following
options:

• --skeleton, telling WSDL2java to generate server-side files

(skeleton, deploy.xml, and undeploy.xml)

• --messageContext, because Al knew the actual priceCheck Web service

would use code from the InventoryCheck Web service that needed this

parameter

• --package, to add package declarations to each file

• --output, to put the generated files in the proper directory

Next, Al created an implementation of a priceCheck service,
PriceCheckSOAPBindingImpl, shown in Listing 6.12. This file completely replaces the

generated PriceCheckSOAPBindingImpl.java file. This is the name of the class the
PriceCheckSOAPBindingSkeleton is coded to invoke.

Listing 6.12 An Implementation of the PriceCheck Web Service

package ch6.ex1;

import org.apache.axis.MessageContext;

import bws.BookUtil;

import com.skatestown.data.Product;

import com.skatestown.backend.ProductDB;

/**

 * PriceCheck Web service, based on Inventory Web Service

 * Created by implementing a PriceCheckSOAPBindingImpl

 */

public class PriceCheckSOAPBindingImpl implements PriceCheckPortTypeAxis,

 PriceCheckPortType {

 /**

 * Checks price and quantity available given a product SKU

 *

 * @param msgContext This is the Axis message processing context

 * BookUtil needs this to extract deployment

 * information to load the product database.

 * @param sku product SKU

 * @return A structure indicating price and quantity for the sku

 * @exception Exception most likely a problem accessing the DB

 */

 public AvailabilityType checkPrice (MessageContext msgContext,String sku)

 throws java.rmi.RemoteException{

 ProductDB db = null;

 try{

 db = BookUtil.getProductDB(msgContext);

 }catch (Exception e){

 throw new java.rmi.RemoteException(e.getMessage());

 }

 Product prod = db.getBySKU(sku);

 if(prod == null){

 throw new

 java.rmi.RemoteException("Product sku: " + sku + " not found.");

 }

 AvailabilityType at = new AvailabilityType();

 at.setSku(sku);

 at.setQuantityAvailable(prod.getNumInStock());

 at.setPrice(prod.getUnitPrice());

 return at;

 }

 public AvailabilityType checkPrice (String sku)

 throws java.rmi.RemoteException{

 throw new java.rmi.RemoteException(

 "Need to generate WSDL with -messageContext option!");

 }

}

This implementation is based on the InventoryCheck Web service you saw in Chapter 3.
The input parameter sku is used to retrieve the product record from the product
database. From this information, an Availability object is created, filled in with values,
and returned to the requestor.

The next step is to deploy the Web service to a server. In this case, Al moved the .class
files to a webApps directory under his Web application server and started the server. Al
then updated the deploy.xml file to make sure the proper path structure was reflected in
the className option element and the beanMappings elements. (Note that this step was
required even though Al used the -–package option.) Al then invoked the AdminClient,
following the instructions in the comments found in the deploy.xml file, deploying the
Web service to Axis. The priceCheck Web service is now available to requestors.

The PriceCheckTest client application (shown in Listing 6.3) simply takes a sku from the
command line and uses the generated client-side stub to invoke for the priceCheck Web
service. The results of the priceCheck are then printed to the console.

For example, if Al ran the command

java ch6.ex1.PriceCheckTest 947-TI

the output could look like this:

One 947-TI costs: $129.00.

There are 36 available.

That's it for generating Java and XML from WSDL. The point here is that tooling allowed
Al Rosen to focus on the business application and not worry about the intricacies of SOAP
and Axis. Al focused on creating the WSDL description for the Web service, the actual
business logic implementing the Web service, and a simple test client. The Axis WSDL
tooling generated the rest based on the WSDL description of the Web service.

Summarizing WSDL to Java

Table 6.3 summarizes the parts of a WSDL document that map to different pieces of the
generated Java and deployment XML.

Table 6.3. How WSDL Elements Map to Generated Java and Deployment XML

WSDL
Elements

Generated Java/XML Example

<types>
each
complexType • Generate a

serializer/deserial

izer class

• AvailabilityType.java

 • Generate a holder

class

• Configure the

serviceClient in

the client stub

with

• AvailabilityType Holder.java

serializers/deseria

lizers

• Generate a

BeanMapping in the

deploy.xml file

<portType>
• Generate a client-

side interface

class

• PriceCheckPortType.java

 • Generate a server-

side interface

class

• PriceCheckPortTypeAxis. java

each operation • Becomes a method

signature in the

interface

• AvailabilityType checkPrice(String sku)..

each input part • Becomes an input

parameter to the

interface method

• AvailabilityType checkPrice(String sku)..

each output
part • First part becomes

the return type of

the method

 • Subsequent parts

become method

parameters

represented by

holder classes for

the type defined by

the part

• AvailabilityType checkPrice(String sku)..

each fault
element • Generates a class

defining a Java

exception of the

same name

• Does not appear in PriceCheck

 • Generates a Java

exception added to

the method

signature

<binding>
• Generates a client-

side stub

• PriceCheckSOAPBinding Stub.java

• Generates a server-

side skeleton

 • Generates a pair of

option elements

(className and

methodName) in the

deploy.xml file

• PriceCheckSOAPBinding Skeleton.java

• PriceCheckSOAPBinding Impl.java

each
soap:operation • Sets the SOAPAction

property of the

ServiceClient in

the client stub

from the value of

the soapAction

attribute

• call.set(HTTPTransport. ACTION, " ");

 • Sets the handler in

deploy.xml based on

the value of
soap:style

• Generates an

implementation

method in the

client-side stub

• Generates a

skeleton method in

the server-side

skeleton

• Generates an entry

in the deploy.xml
methodList

<port>
• Sets the

endpointURL in the

service class from

the soap:address

element

• Generates one

service element in
deploy.xml

• endpointURL

="http://localhost:8080/axis/servlet/AxisS

heck";

 • Generates one

service elemen in

undeploy.xml

<service>
• Generates one

service class

• PriceCheckService.java

 • Generates one

deploy.xml file

• Generates one

undeploy.xml file

Deriving WSDL from Code

We mentioned in the previous section that Al Rosen needed to manually create the
priceCheck WSDL definition. For applications that already exist, there are alternative
approaches to coming up with the WSDL definition. Axis WSDL tooling can generate a
WSDL document from a Java class.

Axis makes available the WSDL for any deployed service. You can examine the WSDL by
invoking the service using HTTP get (from a Web browser) with the ?WSDL parameter.
Figure 6.5 shows the WSDL generated by Axis for the InventoryCheck service.

Figure 6.5. Generating the WSDL for the InventoryCheck Web service.

The WSDL for the service is generated by visiting all the chains and handlers deployed
for the service, including service-specific chains, transport-specific chains, and global
chains. Doing so ensures that each component of the deployment is incorporated into the
WSDL for the Web service.

The core WSDL is generated based on the Java class definition, defining the operations
and messages that are core to any WSDL description. Other details, such as the
SOAPAction value, are also determined by the deployment.

Much work continues in the area of generating WSDL from Java and other programming
language artifacts, such as EJBs, database schemas, and so on. This is another area of
Web services that is seeing a lot of effort in standardization and tooling. We will see
some examples of other Web services environments and tooling in Chapter 8.

Future Service Description Efforts

WSDL is the basis for service description, but it is not the only component. WSDL
describes details of invocation syntax. There is more to describe about a Web service
than just the IDL-level details. At this point, higher level description mechanisms layered
on top of WSDL are still emerging; no standards exist in this space.

Web Services Endpoint Language (WSEL)

As part of the Web Services Flow Language (WSFL) specification
(http://www.ibm.com/software/solutions/webservices/pdf/WSFL.pdf), IBM hinted at a
new language, based on WSDL, to describe non-functional characteristics of a Web
service. IBM calls this language Web Services End-point Language (WSEL).

The purpose of WSEL is to formally model non-functional characteristics of a Web
service—things like quality of service (QoS) statements, privacy policy, auditing policy,
and so on.

These items do not directly affect the syntax of the message (certainly not the core part
of the message), but they can affect whether the service requestor chooses to
collaborate with a particular service provider.

This level of service description is especially important for asynchronous message flows.
For example, a WSEL-specified property of the Web service could include the expected
response time, possible duration estimates for the interaction, or number of acceptable
retries. This would be the basis upon which the requestor could establish time-out
behavior and safely assume that the collaboration will not complete and execute
whatever rollback or compensation mechanism is associated with the interaction.

Other standards are emerging in this space, not directly based on WSDL, including work
done surrounding the collaboration protocol profile and agreement markup language
(cppML) from the ebXML effort (http://www.ebxml.org/specs/ebCCP.pdf), and DAML-S
from the daml.org group (http://www.daml.org/services/daml-s/2001/05/).

Watch this space. End-point modeling is one of the next big areas for standardization
within Web services.

Web Services Flow Language (WSFL)

The final layer of the service description stack is the flow layer or orchestration layer. It
is this layer of specification that the WSFL addresses.

WSDL is used to describe the detailed information necessary to invoke a Web service; a
single Web service, WSDL has no notion of sequencing several Web service invocations
or ordering the operation invocations within a single Web service.

The Web Services Flow Language (WSFL) builds upon the work in WSDL, describing how
to organize and orchestrate a series of Web services invocations into an overall business
process or workflow. You would use WSFL to model long-running multistep business
collaborations between multiple business partners.

IBM published the WSFL specification in May 2001. It is IBM's intention to partner with
other organizations to standardize WSFL. There are other mechanisms to organize and
orchestrate Web services. Microsoft, for example, defines a similar language called
XLANG. It is difficult to predict how the industry will address these two approaches to

Web services orchestration or whether they ultimately will converge to one standard.
This book, however, will briefly describe how WSFL can be used as part of the overall
service description stack.

WSFL is an XML language somewhat similar to WSDL. WSFL is used to orchestrate, or
organize, the sequencing of Web services invocations. With WSFL, you can:

• Describe a business process that is composed of a sequence of

activities, some or all of which might be Web services

• Describe the business process itself as a Web service, specifying the

relationships between various role players in the workflow

The exciting aspect of WSFL is that it allows new, higher-level Web services to be created
by combining or orchestrating other Web services. So, the more Web services that are
created, the more possibilities there exist for orchestrating them into more powerful Web
services. This enables a network effect to occur, making Web services a very powerful
concept for business process integration.

WSFL leverages the portType element from WSDL to define the basic component or
activity interface in the workflow system. The business process is then modeled as a
state machine, where activities are modeled as Web service invocations and the
invocations are sequenced by state transition events (control flow). Eventually, as more
organizations adopt Web services and publish Web services for partner consumption over
the Internet, we will see standard portType or service interface definitions emerge,
thereby allowing organizations to incorporate and integrate their partners' business
processes into their own workflows. Until these standard service interface definitions
begin emerging, we will see WSFL used predominantly for orchestrating internal business
processes and activities.

So, watch the Web services orchestration space, too. The final piece of the Web services
puzzle will appear when it is possible to model a business process, including sequencing,
compensation mechanisms, branching, and so on, using a standard supported by a
variety of third-party tooling. Furthermore, because Web services technology fosters
process integration between business partners, Web services orchestration standards will
allow an organization to formalize how it collaborates with its business partners.

Completion Criteria for Web Services

Standardization Efforts

With the advent of WSEL and WSFL augmenting WSDL, we observe a very
important pattern emerging. Given the assertion that all Web services
technologies must follow the naming pattern WS*L, we can conclude that when
26 specifications are standardized, one for each letter of the alphabet, then Web

services will be "done" .

Summary

We began this chapter with a question: How does the requestor know what message
format should be used to invoke a Web service? We motivated the role of service
description within a service-oriented architecture and explained how service description
was the basis for the publish, find, and bind operations. We reviewed the characteristics
of a well-defined service and outlined a service description stack. The basis of a well-
defined service is an IDL-level description of its interface, described using the Web
Services Definition Language (WSDL). We reviewed the WSDL language in great detail,

using Web service descriptions for several of SkatesTown's services. We also reviewed
how WSDL relates to Java programming language artifacts, including building Java client-
side proxies and server-side skeletons from a WSDL definition and generating WSDL
definitions from existing Java program assets. We concluded this chapter by discussing
the future direction of the Web service description stack, in particular the standardization
efforts around the Web Services Endpoint Language (WSEL) and the Web Services Flow
Language (WSFL).

In the next chapter, we will review the role of service registries in a service oriented
architecture, and in particular, outline the role of the Universal Description Discovery and
Integration (UDDI) standard.

Chapter 7. Discovering Web Services

IN THIS CHAPTER

• The Role of Service Discovery

• The Role of Registries

• UDDI

• Private UDDI Registries

• What's New in UDDI Version 2.0?

• Using WSDL with UDDI

This chapter introduces the topic of discovering Web services and, in particular, the role
of a services registry in a service-oriented architecture. We discuss several alternatives
to service registries, and in particular focus on the Universal Description, Discovery and
Integration (UDDI) standard. After explaining the core APIs in UDDI Version 1.0 and
highlighting the important APIs in UDDI Version 2.0, we discuss the role of UDDI as a
private services registry, including the convention of storing WSDL service descriptions in
a UDDI registry.

We also introduce some business partners of SkatesTown and discuss how a service
registry such as UDDI can be used to help integrate their Web services. In the last
section, we'll introduce sample Java code that gives an example of how these partners
can be pulled together in a sample supply chain.

The Role of Service Discovery

In previous chapters, we have examined SOAP and service description mechanisms. But,
how does the requestor know where to send the SOAP message? What kind of message
should the requestor send to properly invoke the Web service? These questions can be
addressed by the Web service's description. In a service-oriented architecture, Web
services metadata (especially its service description) is key to maintaining loose coupling
between service requestors and service providers.

In Chapter 6, "Describing Web Services," we discussed Web Services Description
Language (WSDL), the most popular mechanism of service description for Web services.
But in order for a Web service to be invoked, it must be discovered somehow. How was
the business partner discovered, establishing the potential relationship between service
requestor and service provider? How did the service requestor find out about the services
provided by a service provider? How did the requestor obtain the WSDL service
description from the service provider? Addressing these questions is the role of the
service registry within a service-oriented architecture.

The Role of Registries

As we look at the evolution of object programming and component programming models,
it is clear that the concept of an object or component registry is an essential element in
the framework, facilitating the discovery and the use of components. Imagine trying to
write Java code without having access to a browsable set of JavaDocs, or working in
Smalltalk without having access to a class browser. If you consider the Web services
concept as an evolution of component programming, it follows that for the purpose of
service discovery, you need to have access to registries of business and service
descriptions that can be browsed and queried.

Recall the service-oriented architecture from Chapter 1, repeated here in Figure 7.1.

Figure 7.1. Service-oriented architecture.

In a service-oriented architecture, the service provider publishes the service description
of a Web service to a service registry. The service requestor queries the service registry
(through a find operation) to retrieve one or more service descriptions that meet certain
criteria, fulfilling a step within the application's business processes. The service
description contains sufficient information to allow a service requestor to bind to and
invoke the Web service.

Service Discovery at Design Time and Runtime

It is important to note that service discovery can happen at application design time or at
runtime. At application design time, a human designer, through a browser or other user
interface, performs a find operation on a service registry, examines the result of the find,
and incorporates the service description returned by the find into application logic. We
discussed in Chapter 6 some of the tooling that can consume WSDL service descriptions
and generate code for integration with the application.

In many cases, the service interface definition is used to build a proxy that the
application logic uses to invoke the Web service and consume its response. The actual
service implementation, including network location and other properties, such as which
network protocol to use, is left unbound at design time, to be determined at runtime. At
runtime, then, the application itself issues a find operation against the service registry to
locate one or more service implementation definitions that match the service interface
definition used by the application. Based on application logic such as best price, best
terms, and so on, the application chooses which Web service from among the results of
the find operation to invoke, extracts network location and other information from the
service implementation definition, and invokes the Web service.

Multiple Mechanisms of Service Discovery

The role of the service registry in a service-oriented architecture can be fulfilled by
several different mechanisms. Recall that the purpose of the registry is to provide
mechanisms by which the service provider can deliver service description(s) to service
requestors.

Figure 7.2 illustrates a continuum of service description techniques.

Figure 7.2. Kinds of service registries.

There is a trade-off here between simplicity of the registry mechanism and the
sophistication of the publishing/searching techniques. Let's briefly discuss each of these
points on the continuum.

The simplest approach is for the service provider to directly send the service description
to the service requestor. This approach uses tried-and-true techniques such as e-mail,
FTP, or even "sneaker-net" to file-transfer the service description to the service
requestor. This approach is useful, particularly if the service requestor already has a
business relationship with the service provider.

This approach is very simple—in fact, there really is no registry per se; manual
techniques using network protocols implement the publish and find operations. However,
the approach is not very dynamic and certainly provides little opportunity for anonymity.
If for some reason the description of the service changes, it becomes more difficult for
the service provider to communicate this to any and all service requestors that use that
service. This approach does not yield very loosely coupled systems; the application must
be reworked in order to change which business partner's Web service is invoked. Of
course, the service requestor could cache the service descriptions in some sort of
repository, but that technique then begins to look a lot less simple.

Many Web services runtimes, including Axis, provide a mechanism by which the Web
Service description can be retrieved using a simple HTTP GET operation. In Chapter 6, we
showed how the ?WSDL parameter can be used to return the WSDL for any Web service
deployed to Axis.

The second approach uses basic Web techniques to publish and advertise Web service
descriptions to a Web site. In this case, the Web site acts as a service registry, and the
publish operation is simply an act of Web publication. A simple browser can retrieve a list
of service descriptions and the find operation is complete. Simple techniques such as
these provide the basics of a find operation, and in many cases this basic approach is
sufficient for the requestor to obtain the service description.

Techniques such as IBM's ADS or Microsoft's .NET DISCO provide improvements
on the simple HTTP GET. With this technique, the service provider publishes service
descriptions to one or more Web sites, using one of the ADS or DISCO conventional file
formats. The service provider then communicates the URL of one of these Web sites to
potential service requestors. In fact, even that step is not necessary, because DISCO and
ADS have been built with Web crawlers in mind. So, just as Web crawling built up
directories of the World Wide Web, so could Web crawlers build up directories for the
"Web service" Web.

With ADS or DISCO, the service requestor uses HTTP GET to do a find operation. The
result of the find operation is a list of service descriptions. It is now up to the service
requestor to determine which of the Web services is pertinent to the business task at
hand and invoke that Web service. Although this approach does remove some of the
update concerns for the service provider, it still doesn't give the service requestor much
extra information about the purpose of the Web service, nor does it give much additional
information about the service provider.

The third approach is a repository of WSDL documents. This is similar in spirit to the
previous kind of service registry in that it uses HTTP GET as the primary means by which
the service requestor retrieves the service description. However, a WSDL repository,
such as SalCentral (www.salcentral.com), additionally offers improved facilities for the
service requestor, such as notification when a service description has changed.
SalCentral also offers good searching tools, including a rudimentary categorization
technique. XMethods (www.xmethods.com) is another example of a public registry of
WSDL documents.

The most sophisticated approach to service registries is Universal Description Discovery

and Integration (UDDI) (http://www.uddi.org). UDDI provides very sophisticated
publish and find capabilities. UDDI includes much more information than just the service
description, including business metadata and taxonomies of businesses and services.
UDDI not only answers the question, "Where is the Web service located?" UDDI also
addresses questions such as, "How does the requestor know what business is providing
the service?" Unlike the other techniques, UDDI does not depend on any one particular
mechanism of service description.

As we saw in Chapter 1, "Web Services Overview," the Web services community in the
W3C has described two layers in the service discovery stack: an inspection layer and a
discovery (UDDI) layer. So far, no standard has been proposed or emerged at the
inspection layer. We expect that something in this space will emerge to augment UDDI at
the simpler end of the spectrum.

Because there is only one standard for service discovery, this chapter will focus on the
UDDI specification for service registry and how it is used. We will examine UDDI by
reviewing its API and major data structures found in Version 1.0 of the UDDI
specification. Throughout the chapter, we discuss the important role of the UDDI

Business Registry (www.uddi.org). We also examine the role of privately hosted
UDDI registries as different implementations of the UDDI specification, addressing
different service discovery needs. Having covered these roles, we can discuss the new
features introduced in UDDI Version 2.0. We will conclude this chapter with an
explanation of the best practices for registering WSDL-based Web service descriptions in
UDDI.

Scenario Updates

As SkatesTown sells more skateboards, its network of suppliers expands. Let's examine
some of the new partners SkatesTown now deals with:

• The Sports Equipment Manufacturing Consortium (SEMC) is a self-funded

consortium of the major manufacturers of sports equipment, whose

mission is to establish a set of e-Business standards for this

industry. SkatesTown belongs to the consortium and has started

implementing and using the SEMC standards.

• WeMakeIt Inc. is a large manufacturer of industrial components. Its

business is to be a components supplier to a wide variety of

different finished goods manufacturers. WeMakeIt Inc. manufactures a

large range of components in its manufacturing sites in the USA,

Europe, and Asia. Of particular interest to SkatesTown, WeMakeIt Inc.

manufactures a line of small nylon wheels and wheel bearings ideal

for skateboards. Joanna Pravard is the lead Web services developer

for WeMakeIt Inc. Joanna is responsible for all of WeMakeIt Inc.'s

Web services technologies, including its UDDI registries and its

entry in the UDDI Business Registry.

• A recently created e-marketplace, called e-Torus, has formed to

provide efficient buying and selling of wheels and wheel bearings

components to finished goods manufacturers. As part of the e-

marketplace, e-Torus runs a private UDDI registry listing all the

manufacturers of wheels, bearings, and related components. This

private UDDI is also a place where service interface standards are

established for the marketplace, making B2B buying and selling of

these components more efficient and less error prone.

• Al Rosen of Silver Bullet Consulting "discovered" e-Torus and got

SkatesTown to use their e-marketplace services. It is through e-Torus

that SkatesTown established its business relationship with WeMakeIt

Inc.

• Some smaller manufacturers, competing with WeMakeIt Inc. in the small

wheels and related components e-marketplace, are also briefly

introduced to illustrate the benefits of dynamic bind operations.

This list includes wheel manufacturers, MakeCircles Inc. and

WheelsMadeHere.

UDDI

In early 2000, as the idea of Web services began gaining momentum within the
community, it became clear that Web services registries were going to be essential for
the concept to become practical. Furthermore, in view of the movement towards open
standards in the community, anything but a standard interface and search mechanism
for these registries would be unacceptable. Such a registry standard would have to be
endorsed by several, if not all, of the large software providers, and adopted by the
various industries. Thus, the UDDI initiative, the result of several months of collaboration
between representatives from Ariba, IBM, and Microsoft starting in the spring of 2000,
was born and formally announced on September 6, 2000. Support for UDDI has
expanded beyond the original three companies. Currently, the UDDI project
(http://www.uddi.org) involves a community of more than 310 companies.

The purpose of UDDI is to facilitate service discovery both at design time and
dynamically at runtime. Consequently, the UDDI project runs a public online business
(and corresponding services) registry, which first went live on May 2, 2001. This registry
is referred to as the UDDI Business Registry. The UDDI Business Registry actually
consists of two replicated registries currently hosted by two companies (IBM and

Microsoft) called the UDDI Operators . Hewlett-Packard has joined the Operators
group but has not released its registry as of this writing. More registry Operators are
expected to join the Operators group.

Becoming a UDDI registry Operator involves some strict agreements about data
replication, data privacy, and policies. From a registered business perspective and from a
user perspective, the requirement is that different Operator registries should be
theoretically indistinguishable. Businesses can register with any UDDI Operator, and their
information will be replicated to the other Operators' registries. As a result, users can
search any Operator site and find businesses regardless of which Operator these
businesses used to register. There are, however, some subtle issues involved with the
decision as to which Operator to use to register your business. For example, some
Operators might ask for additional optional information that is not required by UDDI
(such as surveys or marketing information). This information is not replicated to other
Operators. Another fact to keep in mind is that once you register with an Operator, all
updates to your information must be performed through that Operator. This is the case
because different Operators implement different security and authentication policies, so
authentication information cannot be easily replicated.

UDDI is more than a business and services registry, however. It also defines a set of
data structures and an API specification for programmatically registering and finding
businesses, services, bindings, and service types. In typical Web services scenarios, Web
service providers will want to publish their business and service descriptions to a registry,
and service requestors, whether at design time or runtime, will want to query the
registry for service descriptions. The UDDI API specification, therefore, provides a set of

publication APIs to register services and inquiry APIs to find services. These will
be explored in the following sections, as SkatesTown decides to start using UDDI to
register itself and find business partners.

In addition to providing a programmatic API, UDDI registry Operators each provide a
Web-based user interface for registering, managing, and finding businesses and services
in the registry. These Web sites provide a subset of the programmatic API and are
relatively self-explanatory, once you have mastered the concepts introduced in this
chapter. Their use will be covered in the section "Using the UDDI Web Browser
Interface." As of this writing, IBM had its UDDI Web site at
http://www.ibm.com/services/uddi and Microsoft at http://uddi.microsoft.com. Of
course, all the operator nodes are accessible from http://www.uddi.org.

The UDDI Usage Model

In this section, we'll first examine some typical requirements for a registry of metadata,
defining some typical data elements and operations. We will then provide an overview of
the UDDI data structures and API, relating them to the original requirements. We will
also explore some common UDDI operations that can be performed through the Web
browser-based interface to UDDI, as provided by the main UDDI Operators. In doing so,
we will introduce the main theme of the SkatesTown scenario that will be used
throughout this chapter.

The UDDI Registry Requirements: Overview

Registries in general, whether for software components, services, or otherwise, have
some basic requirements:

• A set of data structure specifications for the metadata to be stored

in the registry

• A set of Create, Read, Update, Delete (CRUD) operation specifications

for storing, deleting, and querying the data in the registry

Common registry requirements for the metadata are:

• Ownership and containment (I usually own the data I publish, and all

the subdata that is contained within, unless I reassign ownership.)

• Categorization (Data can be classified in one or more categories,

mainly to facilitate searching and organization.)

• A logical referencing mechanism (I can use references as pointers to

other parts of the registry.)

Common registry requirements for the operations are:

• Authentication for operations that change information and for public

registries

• Open access for read and query operations

The registry part of UDDI is no different: It has an information model that represents the
data structure specifications and an API for the operation specifications. The UDDI
information model was designed to be flexible and extensible to allow for any user
defined service description models.

Because the UDDI specification is an ongoing process of refinement and extension, the
bulk of this chapter will describe UDDI Version 1.0 (V1), available at the UDDI Web site.
Future versions will only extend the current version with more functionality, while taking
care of issues such as replication, versioning, and security. The section "What's New in
V2" will describe the UDDI extensions proposed in V2.

The UDDI Data Structures: Overview

Version 1.0 of the UDDI specification allows entities such as businesses and organizations
to register public information about themselves and details of the services they offer. It
also allows entities such as businesses, standards bodies, and industry groups to register
information about the types of services they have defined, about standards and
abstractions, and to refer to them by their assigned identifiers. In effect, it is as if UDDI
is offering two different registries: a business registry and a reference type registry.

Correspondingly, UDDI has at its core two fundamental root data structures:

businessEntity and tModel .

The businessEntity Data Structure

Business entity information is conceptually divided into what's commonly known as
White, Yellow, and Green pages:

• White pages contain general contact information about the entity. The

SkatesTown entry would contain its name, address, and contact

information such as phone, fax, and e-mail.

• Yellow pages contain classification information about the types and

location of the services the entity offers. Again, for SkatesTown,

this could be their classification as a sports equipment manufacturer

and retailer, and as a skateboard manufacturer and retailer.

• Green pages contain information about the details of how to invoke

the offered services. If SkatesTown were to offer its catalog online,

its Green pages entry would have a reference to its catalog URL.

It is important to note that this is a conceptual model only, and that UDDI does not
specify any particular storage model. Conceptually, however, an entity's White pages
entry will contain classification information that points to its place in the various Yellow
pages, and an entity's business service entries will contain implementation information
that points to entries in the Green pages. This is reflected in the details of the
businessEntity structure (see Figure 7.3). The businessEntity element, in addition to
various contact, identifier, and taxonomy information, contains a businessServices
element, which is a container for businessService elements. A businessService
element in turn contains a bindingTemplates element, which is a container for
bindingTemplate elements. Finally, bindingTemplate entries point to tModel entries.
The details of these structures will be explored in the next sections.

Figure 7.3. UDDI information model.

The tModel Data Structure

The other important structure in the UDDI information model is the tModel element.
Entries in the Green pages, where invocation details are described, are actually business-
specific binding details for service types and other abstractions defined elsewhere. These
reusable abstractions are referred to as technology models, and their corresponding
UDDI data structure is the tModel element. This element allows industry groups,
standards bodies, and individual businesses to specify reusable abstract definitions of
service types that others can use and combine, creating, in effect, a signature for a
service.

In the UDDI identification scheme, each instance of the four types of entries is assigned a
unique identifier by the UDDI node upon initial registration. In addition, according to the
UDDI containment scheme, each instance of a contained structure (businessService
and bindingTemplate) holds a key reference to its containing entity (in this case,
businessEntity and businessService, respectively) in a strict parent-child relationship.
These identifiers are Universal Unique Identifiers (UUIDs) that follow the OSF Distributed
Computing Environment (DCE) conventions
(http://www.osf.org/onlinepubs/9629399/apdxa.htm). They follow the familiar 8-4-4-4-
12 pattern (such as F775A3A6-FF3E-4B85-B1DE-F0F99D0E2C6D). In addition, tModel
references are given the uuid: URN qualifier.

Finally, it was deemed important that private (that is, non-Operator but otherwise UDDI
compatible) UDDI registries be able to extend the businessEntity structure to include
data for their own purposes. To this end, the businessEntityExt structure was
specified. UDDI registry Operators, however, will not provide extensions in their publicly
online available business entity data.

The UDDI API: Overview

In addition to defining the data structures to be stored in the registry, the UDDI
specification provides two main types of API operations: the Publication API and the
Inquiry API. These APIs define a set of 20 SOAP messages over HTTP or HTTPS that must
be understood by any UDDI-conformant registry. The SOAP body of the API messages
and responses are XML structures defined in the UDDI specification.

The Publication API is an authenticated set of operations that allows organizations to
publish information, whether business, service, implementation, or service type

specification, to the UDDI registry. Aside from requiring an authentication token and
the use of the HTTPS protocol in the authenticated operations, UDDI does not specify an
authentication method. Instead, each Operator must provide their own authentication
mechanism.

The Inquiry API is a non-authenticated public set of operations that allows users to
extract information out of the UDDI registry. Inquiries can follow two different patterns:
a browsing pattern to find general information (the find operations), usually followed by
a drill-down pattern to find specific detail information (the get_Detail operations).

Corresponding to the four structure types (businessEntity, businessService,
bindingTemplate, and tModel), UDDI provides four save operations (save_business,
save_service, save_binding, and save_tModel), four delete operations
(delete_business, delete_service, delete_binding, and delete_tModel), four find
operations (find_business, find_service, find_binding, and find_tModel) and four
get_Detail operations (get_businessDetail, get_serviceDetail,
get_bindingDetail, and get_tModelDetail); see Table 7.1.

Table 7.1. The CRUD API messages Defined by the UDDI Spec

 Business Service Binding tModel
Save/Update save_business save_service save_binding save_tModel
Delete delete_business delete_service delete_binding delete_tModel
Find find_business find_service find_binding find_tModel
GetDetail get_businessDetail get_serviceDetail get_bindingDetail get_tModelDetail

You can use the save operations to create a new entry or to update an existing one.
When creating a new entry, the entry identification key parameter is not supplied in the
call, but instead is assigned by the Operator and returned in the Operator's response. To
update an existing entry, this Operator-assigned key is supplied in the call. The delete
operations take the Operator assigned keys as parameters and remove the
corresponding entries from the registry. The delete_tModel operation is an exception
that will be discussed in the section "The Delete Operations."

The find operations are passed a set of search criteria and generally return a (possibly
empty) list structure containing information about entries that match the search criteria.
The get_detail operations are passed a list of identifiers and return detailed information
about the entries referred to by the supplied keys. The API provides one additional
get_detail operation, get_businessDetailExt, to allow the retrieval of extended
business information from non-Operator nodes that implement these extensions.

In addition, because the Publication API is a set of authenticated operations, where
authentication is token-based, the API provides two authentication operations,
get_authToken and discard_authToken.

Finally, getRegisteredInfo is an authenticated operation that returns all the
businessEntity and tModel keys registered by an accredited user.

In the next sections, we will cover in detail the UDDI data structures and API and go
through examples as SkatesTown registers its information so that potential clients can
locate it, and so that it can locate potential suppliers.

It is important to note that it is possible to perform most of the Publication and Inquiry
API functions (such as some find and get_Details operations) through the individual
Operators' Web sites. The next section will go through such an example while introducing
one of the main scenarios that will be used throughout the chapter. In addition to being
more complete and powerful than what's available through the browser interface,
however, the API is intended to allow businesses to perform all the operations
programmatically, in order to facilitate dynamic (runtime) service discovery. Keep that in
mind as we go through the next examples.

Using the UDDI Web Browser Interface

Before we examine the API in detail, it will be useful to briefly explore the browser
interface to UDDI. UDDI Operators, as part of their responsibility to the UDDI
consortium, have each provided a free public Web-based interface to their UDDI business
registries. This interface allows organizations to register their businesses, along with
contact information and services provided. Service type definitions can also be entered
(these will be covered in more detail later in the section "The UDDI tModel Concept").

In this next example, SkatesTown will register its business and the contact information of
Dean Carroll, the company's chief technology officer. It will also register its online catalog
as an HTTP-based Web service, and classify it under the North American Industry
Classification System (NAICS) taxonomy (we will discuss taxonomies in more detail in
the section "More on Classification and Categorization"). Although this basic example will
be explored in more detail and expanded significantly throughout our discussion of the
UDDI API, it provides the main theme for the UDDI usage model.

The first step in using the UDDI registries is to register an ID and obtain an
authentication token. Both IBM (https://www-
3.ibm.com/services/uddi/protect/registry.html) and Microsoft
(http://uddi.microsoft.com/register.aspx) registries require a username and password as
a method of authentication. In the following example Dean Carroll, SkatesTown CTO, will
use the IBM Test registry.

Figure 7.4 shows the registration page. Dean enters skatestown as the user ID and fills
out the rest of the required information. Once registered, Dean can start the process of
adding a new business entry. Having entered the business name, he then has the option
of entering a business description, business contact information, and business locator
information, which allows other users to find SkatesTown through a variety of keyword
searches on the Add New Business Web page.

Figure 7.4. The UDDI Registration Web page.

A variety of contact information can be entered, including descriptions, phone numbers,
e-mail addresses, and mailing addresses. Finally, the business is categorized by entering
locator information. The UDDI Version 1.0 specification provides a set of pre-determined
taxonomies to be used for this purpose (see the section "More on Classification and
Categorization"). For this instance, Dean will use the NAICS taxonomy and drill down to
the 33992 category, "Sporting and Athletic Goods Manufacturing" (see Figure 7.5).

Figure 7.5. The NAICS Category 33992 Selection Web page.

The next step is to enter a Web service registration. In this case, Dean will register the
online Check Order Status Web service provided by SkatesTown. The service registration
page allows for a variety of information to be entered about the service, including a
description (what is this service?), access point information (how do I invoke it?) and
locator information (what kind of service is it?).

Figures 7.6 and 7.7 show a high-level view of all the SkatesTown business and service
information that was entered, respectively.

Figure 7.6. The UDDI Business Details Web page.

Figure 7.7. The UDDI Service Details Web page.

It is interesting to notice that in both cases, the UDDI registry has generated unique keys
for the business entry and the service entry. In addition, it has generated a URL for the
business description (under the title Discovery URL) that returns the following XML
document, describing the SkatesTown UDDI business entry:

<?xml version="1.0" encoding="utf-8" ?>

<businessDetail generic="1.0" xmlns="urn:uddi-org:api"

 operator="www.ibm.com/services/uddi" truncated="false">

 <businessEntity authorizedName="0100003BG0"

 operator="www.ibm.com/services/uddi"

 businessKey="ED88D790-AA0E-11D5-98D0-0004AC49CC1E">

 <discoveryURLs>

 <discoveryURL useType="businessEntity">

http://www-3.ibm.com/services/uddi/testregistry/uddiget?

businessKey=ED88D790-AA0E-11D5-98D0-0004AC49CC1E

 </discoveryURL>

 </discoveryURLs>

 <name>SkatesTown</name>

 <contacts>

 <contact useType="CTO">

 <personName>Dean Carroll</personName>

 </contact>

 </contacts>

 <businessServices>

 <businessService serviceKey="C8013A60-AA10-11D5-98D0-0004AC49CC1E"

 businessKey="ED88D790-AA0E-11D5-98D0-0004AC49CC1E">

 <name>Check Order Status</name>

 <description xml:lang="en">Check your order status online

 </description>

 <bindingTemplates>

 <bindingTemplate

 bindingKey="C8061C60-AA10-11D5-98D0-0004AC49CC1E"

 serviceKey="C8013A60-AA10-11D5-98D0-0004AC49CC1E">

 <description xml:lang="en">

 This is a web based (http) order status service

 </description>

 <accessPoint URLType="http">

 http://www.skatestown.com/services/orderStatus</accessPoint>

 <tModelInstanceDetails>

 <tModelInstanceInfo

 tModelKey="UUID:68DE9E80-AD09-469D-8A37-088422BFBC36">

 </tModelInstanceInfo>

 </tModelInstanceDetails>

 </bindingTemplate>

 </bindingTemplates>

 <categoryBag>

 <keyedReference

 tModelKey="UUID:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2"

 keyName="Sporting and Athletic Goods Manufacturing"

 keyValue="33992">

 </keyedReference>

 </categoryBag>

 </businessService>

 </businessServices>

 <categoryBag>

 <keyedReference tModelKey="UUID:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2"

 keyName="Sporting and Athletic Goods Manufacturing"

 keyValue="33992">

 </keyedReference>

 </categoryBag>

 </businessEntity>

</businessDetail>

We will be seeing more of this type of XML document as we expand on the example in
the next sections, by exploring the UDDI data structure and API.

The UDDI tModel Concept

Before we begin publishing more services to UDDI, we need to explore the concept of a
tModel in detail, because it is essential to how services are described.

What Is a tModel?

In order to invoke a service, you sometimes need to know a large amount of detail in
terms of document formats, transport protocols, input and output parameters, URNs,
business process, and so on. These details in general could be supplied in the description
of the service implementation. In Chapter 6, Listing 6.1, you saw an example of a WSDL
definition for the PriceCheck service for SkatesTown. That definition contained both

abstract reusable information (the service interface definition) and concrete
implementation information (the service implementation definition). If software
engineering has taught us one thing in the last decade, it is the power of abstraction and
re-use. Suppose that another company belonging to the same SEMC consortium were to
implement an identical service. It would have to repeat the same bulk of information in
its WSDL document, with the only difference being the endpoint address for the
implementation of its SOAP service. Suppose, however, that the SEMC consortium were
to abstract out the service interface definition of the WSDL document and publish it as a
consortium standard. This would enable both companies (and any other company in the
consortium) to reference that abstract definition and only have to supply their concrete
implementation endpoint. That abstract service interface definition is, in essence, a
perfect example of a tModel.

In general, these types of service specifications could be applicable in several different
places for different services, or for different bindings for the same service. They can also
be specified by an industry consortium as we saw in the examples, a standards body, or
a large corporation for the use by its suppliers. Thus conformance to a known and
predefined set of specifications becomes very important. The tModel concept is the
mechanism for such abstractions. It allows various entities (businesses, standards
bodies, industry groups, and so on) to publish abstract specifications to be used by other
entities in implementing services. In our previous examples, the SEMC would register its
http://www.semc-consortium.org/BP/PriceCheck specification as a tModel, which would
be assigned a unique identifier key and be referenced by all businesses in the
consortium, such as SkatesTown. In addition, clients wanting to find businesses that
conform to that SEMC specification can query the registry for businesses referencing that
tModel.

How to Use tModels

It is important to stress that based on the UDDI specification, a tModel could define just
about anything: It consists of a key, a name, a description, and a URL. This simplicity is
a powerful concept, but it can also be a double-edged sword. On the one hand, because
of the simplicity in defining a tModel, you can define anything you want, even if it's not
useful to or reusable by anyone else. On the other hand, if used properly, you can use
tModels to specify the standards and templates that will be used in the next generation
of e-Business on the Web.

Throughout the UDDI data structures, tModels are used as references. By convention,
the UDDI specification suggests two main uses for them. The primary use is in defining
what is called a technical fingerprint. This refers to any technical specifications or pre-
arranged agreements on how to conduct business. For example, tModels can be created
by industry groups such as RosettaNet (http://www.rosettanet.org), or by companies
wishing to standardize the way they deal with suppliers. Our examples illustrate how
SkatesTown and MyTurningWheels are using a specification defined by another entity,
namely SEMC.

The other main use for tModels is in defining namespaces to be used in the
identifierBag and categoryBag structures. This will be covered in more detail in the
section "More on Classification and Categorization."

The tModel Structure

As we already discussed, the tModel structure is very simple. In general, an entity that
acts as a reference needs a name, a description, some reference material that describes
the details of its use, and a resolvable, unique identifier. This is true of a UDDI tModel. It
has a key, a name, a description, an optional descriptive overview document, and some
categorization and identification information (see Figure 7.8).

Figure 7.8. The tModel structure.

tModel attributes are as follows:

• tModelKey— The unique identifier for the tModel. It is assigned by the UDDI
Operator and cannot be edited or modified. For this reason, it should not be
supplied in the original tModel registration. When a new tModel is registered, the
UDDI Operator assigns a unique tModelKey in the form of a UUID and returns
that key in the response. This key can then be used in subsequent queries and
updates.

• operator— The certified name of the Operator that owns the UDDI node to which
the tModel is registered. It is originally assigned by the UDDI Operator and
cannot be edited or modified by the entity. For this reason, it should not be
supplied in the original registration.

• authorizedName— The name provided by the Operator to the authenticated user
who registered the tModel. It is originally assigned by the UDDI Operator and
cannot be edited or modified by the entity. For this reason, it should not be
supplied in the original registration.

tModel elements are as follows:

• name— Required. The tModel's name.

• description— Optional repeating. Textual description of the tModel.

• overviewDoc— Optional. In addition to its basic information, a tModel structure
might contain an optional overviewDoc element. The overviewDoc structure is
used to provide an overview description of the tModel and its intended use. It has
an optional repeating string description element and an optional overviewURL that
should be used to point to a document that provides a description and a technical
specification of the tModel. It is suggested that this document be HTML based and
suitable for retrieval in a browser through the HTTP GET operation.

• identifierBag— Optional. This element allows tModels to be identified by
associating them with a predefined identification namespace, such as defined by
an industry group, or provided by UDDI (such as the Dun & Bradstreet Data
Universal Numbering System D-U-N-S®). This is done through a set of
keyedReference elements, each of which is a key/value pair. The identification
information can be very useful when you're searching for a particular tModel in
the UDDI registry. Identifiers will be discussed in more detail in the section "More
on Classification and Categorization."

• categoryBag— Optional. This is the mechanism by which tModels can be
categorized within various taxonomies, either provided by industry groups, or
provided by UDDI. UDDI Operators will initially support three taxonomies.
Categorization will be discussed in more detail in the section "More on
Classification and Categorization."

More on Classification and Categorization

As we previously stated, one of the main objectives of the UDDI registries is the
discovery of services, whether statically (design time) or dynamically (runtime). This
entails a form of search through a large space of entries. In a reasonably populated
registry, depending on the search mechanism, this could return a very large set of hits.
An early requirement for UDDI, therefore, was a way to perform intelligent searches.
Until the semantic problem (see Chapter 9, "Future Concepts") is addressed in a
satisfactory manner, the best current mechanism to facilitate such searches is through
taxonomic categorization and classification.

Categorization is the process of creating categories, whereas classification is the process
of assigning objects to these predefined categories (or classes). There are several types
of classification schemes (such as the Library of Congress Classification used in most
libraries), but for a large space such as businesses and services, the most useful ones
are hierarchical in nature. In general, hierarchies are very powerful for organizing data
(consider XML!). One of the most powerful examples of the importance of hierarchical
classification in the age of the Web is Yahoo! In addition to a search engine, Yahoo!
offers an extensive classification scheme. For example, to find manufacturers of
skateboards, you would naturally traverse the Yahoo! classification tree to get to
Business_and_Economy/Shopping_and_Services/Sports/
Skateboarding/Deck_and_Truck_Manufacturers/.

It can be argued that the first-generation Web (the information Web of HTML and CGI
pages) did not attain its potential until the Yahoo! classification scheme became
available. Similarly, a registry such as UDDI would be very difficult to use without some
classification schemes.

The first version of UDDI includes in its core specifications three predefined classification
schemes: the North American Industry Classification System (NAICS) for classifying
businesses by industry (http://www.ntis.gov/product/naics.htm), the Universal Standard
Products and Services Classification (UNSPSC) for product and service classifications
(http://eccma.org/unspsc), and the ISO 3166 standard for geographic location
classifications (http://www.din.de/gremien/nas/nabd/iso3166ma). In order to take
advantage of these schemes, businesses need to provide the relevant classification
information as they register their entries. This is done through the categoryBag element.
This element contains a set of keyedReference elements (see Figure 7.9), each of which
has attributes forming a name/value pair and an optional tModelKey. The tModelKey is a
simple but powerful extension mechanism that acts as a namespace qualifier for the
values specified in the name/value pair. For example, if SkatesTown wanted to classify
its business using the Yahoo! classification scheme, (assuming that Yahoo has registered
the scheme as a tModel with an assigned key of 3D4EC875-E54F-4D8D-9CBF-
346D48BCAD9C), the company could add the following keyedReference to its

categoryBag, using the reference to the Yahoo! classification tModel as a namespace for
its category:

<keyedReference

 keyName="Yahoo Business Taxonomy"

 keyValue="Business_and_Economy/Shopping_and_Services/Sports/

Skateboarding/Deck_and_Truck_Manufacturers"

 tModelKey="UUID:3D4EC875-E54F-4D8D-9CBF-346D48BCAD9C"/>

Figure 7.9. The keyedReference structure.

Another important use for the keyedReference element is in the identifierBag
structure. The identifierBag is very similar to the categoryBag construct in structure in
that it is a container for a set of keyedReference elements. Instead of categorization
information, however, the identifierBag (as its name implies) is used to provide
identification information. This mechanism allows registered entities, whether businesses
or tModels, to be associated with some declared identification scheme, such as a tax ID
or an industry group ID, in a consistent manner. This, in turn, provides a richer context
and an additional mechanism for searching across UDDI entries.

As an example, consider that the D-U-N-S number is defined as a tModel in the UDDI
Taxonomy namespace (see the section "UDDI Core tModel"). In a similar manner, e-
Torus can define its own business registry under this model. Businesses in the e-Torus
marketplace can identify themselves using that tModel as a namespace. The details of
the e-Torus Registry Number tModel would look like this (it is of type identifier in the
UDDI Type taxonomy):

<tModel tModelKey="uuid:F2390501-A240-4470-8A5A-6088EE5B1A14">

 <name>et:e-Torus-registry</name>

 <description xml:lang="en">e-Torus Registry Number</description>

 <categoryBag>

 <keyedReference

 keyName=" Unique identifiers for member companies"

 keyValue="identifier"

 tModelKey="uuid:C1ACF26D-9672-4404-9D70-39B756E62AB4"/>

 </categoryBag>

</tModel>

This means that businesses that want to provide their e-Torus Registry Number as
identification for search purposes can do so by adding keyed reference pointing to this
tModel in their categoryBag. You will see such examples in the section "The Business
Entity Structure."

The save_tModel Structure

Organizations or businesses can define, create, and publish their own tModels using the
save_tModel operation. A save_tModel message needs to be constructed with a
save_tModel structure in the body element of the SOAP envelope, and the tModel
structure contained within (see Figure 7.10).

Figure 7.10. The save_tModel message structure.

save_tModel has this message signature:

<save_tModel generic="1.0" xmlns="urn:uddi-org:api" >

 <authInfo/>

 <tModel/> [<tModel/>...] | <uploadRegister/> [<uploadRegister/>...]

</save_tModel>

save_tModel has a single attribute: generic, which is required. This attribute is present
on all the UDDI API operations. As the UDDI specification grows and is modified,
Operator sites will have to manage versions of the API, and will be required to support all
current versions. The generic attribute specifies the version of the API to which a
particular operation belongs. In UDDI V1 operations, this is the string "1.0".

save_tModel has the following elements:

• authInfo— Required. All Publication API operations are authenticated because
they create or modify business information. Supplying an authentication token in
this element provides authentication. The token is obtained from the UDDI node
Operator either by an Operator-specific mechanism or through the get_authToken
operation where there is no other Operator-specific mechanism.

• tModel— Optional repeating. tModel information as described in the section "The
tModel Data Structure." One or more structures can be registered in this manner
in the same call.

• uploadRegister— Optional repeating. This is a URL that points to an XML
document containing a valid tModel structure, resolvable through an HTTP GET
operation. The uploadRegister and tModel elements should not both be included
in the same save_tModel operation.

Authentication

As you have already seen, all Publication API operations need to be authenticated.
Privacy, security, and authentication are crucial for the UDDI Operators to build a trusted
relationship with UDDI users. However, because there is still no one clearly universal and
widely accepted standard for authentication, various Operators have different
authentication policies. As a result, the UDDI authentication mechanism involves getting
an opaque authentication token by means specified by the UDDI Operator, using it in the
authInfo attribute, and then, optionally, discarding it. In addition, all Publication API
messages are SSL encrypted. UDDI Operator nodes can specify their own specific
mechanism for getting a token. In case no Operator-specific mechanism is provided,
Operators are required to implement the get_authToken API. Authentication in this case
is performed by first getting an opaque authentication token from the UDDI registry
through the get_authToken call (see Figure 7.11), supplying that token in the authInfo
element in the subsequent calls, and finally discarding the token through the
discard_authToken call (see Figure 7.12). This process is described in the next
examples.

Figure 7.11. The get_authToken message structure.

Figure 7.12. The discard_authToken message structure.

Before being allowed to publish information to an Operator node, a prospective user will
need to establish some credentials through an initial pre-registration step, which is
Operator dependent. As a result of this initial step, each registering entity is either issued
an authentication token (such as a certificate) or a user ID and password. These values
are passed in the authInfo element of the Publishing API calls, or the userID and cred
elements of the get_authToken call, respectively.

The following is an example of the get_authToken message where the sender has pre-
registered with the UDDI Operator site and been assigned a user ID and password:

<get_authToken generic="1.0" xmlns="urn:uddi-org:api"

 userID="{ userID assigned by Operator} "

 cred="{ password chosen at registration} "/>

The result of the get_authToken operation is an authToken structure (see Figure 7.13)
identifying the Operator and providing a token, usually in the form of a UUID.

Figure 7.13. The authToken structure.

The response to the previous message, assuming the correct password was supplied and
the user is pre-registered, is shown:

<authToken generic="1.0"

 xmlns="urn:uddi-org:api"

 operator="UDDIOperator">

 <authInfo>5BA16322-B5ED-4300-8F2F-420DA3A212D2</authInfo>

</authToken>

The discard_authToken operation is used to inform the token issuer that the token is no
longer valid and can be discarded. Subsequent Publishing API calls using the same token
should be rejected. It passes as parameter the token received in the get_authToken
operation:

<discard_authToken generic="1.0" xmlns="urn:uddi-org:api">

 <authInfo>5BA16322-B5ED-4300-8F2F-420DA3A212D2</authInfo>

</discard_authToken>

Publishing tModel Information in UDDI

SkatesTown belongs to an industry consortium, the Sports Equipment Manufacturing
Consortium (SEMC), which has published a set of specifications for conducting business
on the Internet, including specifications for order management, and in particular order
status processing. When implemented by manufacturers, these specifications are
intended to facilitate the process of customers' checking the status of their orders. The
SEMC published its specifications under several tModels. The root specification that
covers the overall SEMC set of specifications is registered in this section.

As discussed in the previous section on authentication, it is assumed here that the SEMC
has already registered with a UDDI Operator, and that the Operator uses a user ID and
password authentication scheme. In order to use the Publication API, we need to get an
authentication token:

<get_authToken generic="1.0" xmlns="urn:uddi-org:api"

 userID="SEMC" cred="thisbetterbeareallygoodpassword:wemakestuff"/>

The Operator UDDI node then would send a response:

<authToken generic="1.0" xmlns="urn:uddi-org:api"

 operator="UDDIOperator">

 <authInfo>50D1FEBF-4D47-4D8F-A9A5-56403DF080AB</authInfo>

</authToken>

The authInfo token is then used in the save_tModel call. The following shows what a
new tModel registration document would look like:

<save_tModel generic="1.0" xmlns="urn:uddi-org:api">

 <authInfo>50D1FEBF-4D47-4D8F-A9A5-56403DF080AB</authInfo>

 <tModel tModelKey="">

 <name>Sports Equipment Manufacturing Consortium

 e-business Specification V1.2</name>

 <description xml:lang="en">Root tModel for the SEMC set of

 specifications for e-business on the Internet</description>

 <overviewDoc>

 <description xml:lang="en">This document describes the structure,

 sections and requirements for the SEMC IeBS specification V1.2

 </description>

 <overviewURL>http://www.semc-consortium.org/SEMC-IeBS.html

 </overviewURL>

 </overviewDoc>

 <identifierBag>

 <keyedReference

 keyName="DUNS" keyValue="00-222-2222"

 tModelKey="uuid:D9392AEE-9A13-4B6E-B528-5A0D08BD4BF9"/>

 </identifierBag>

 <categoryBag>

 <keyedReference

 keyName="types" keyValue="specification"

 tModelKey="uuid:C1ACF26D-9672-4404-9D70-39B756E62AB4"/>

 </categoryBag>

 </tModel>

</save_tModel>

In this example, the SEMC is using the authentication token that it received in the
previous get_authToken call. Registering the information is very straightforward. In
addition to a name and brief description, an overviewURL is given, pointing to the SEMC
Web pages that describe the set of specifications. identifierBag and categoryBag
information is included. The identifierBag information lists the D-U-N-S number for the
consortium, which will facilitate searching for the tModels registered by SEMC (the
number shown is fictitious and only used for illustration). The categoryBag information
uses the canonical UDDI tModel supertype for specification, indicating that this tModel is
a specification type of tModel. Canonical UDDI tModels are described in the section
"UDDI Core tModels."

The UDDI registry would then assign a key to the tModel, register it, and send the
following acknowledgement response. Notice that the Operator has assigned a unique
tModelKey to the tModel, along with an authorizedName (SEMC.org) and an Operator
(UDDIOperator).

The following is a response to the SEMC save_tModel Message:

<tModelDetail generic="1.0" operator="UDDIOperator"

 truncated="false" xmlns="urn:uddi-org:api">

<tModel authorizedName="SEMC.org"

 operator="UDDIOperator"

 tModelKey="uuid:61A08700-0684-4E05-BB7D-C624BED3B901">

 <name>Sports Equipment Manufacturing Consortium

 eBusiness Specification V1.2</name>

 <description xml:lang="en">Root tModel for the SEMC set of

 specifications for eBusiness on the Internet</description>

 <overviewDoc>

 <description xml:lang="en">This document describes the structure,

 sections and requirements for the SEMC IeBS specification V1.2

 </description>

 <overviewURL>http://www. semc.org/SEMC-IeBS.html</overviewURL>

 </overviewDoc>

 <identifierBag>

 <keyedReference

 keyName="DUNS" keyValue="00-222-2222"

 tModelKey="uuid:D9392AEE-9A13-4B6E-B528-5A0D08BD4BF9"/>

 </identifierBag>

 <categoryBag>

 <keyedReference

 keyName="types" keyValue="specification"

 tModelKey="uuid:C1ACF26D-9672-4404-9D70-39B756E62AB4"/>

 </categoryBag>

</tModel>

</tModelDetail>

Next, the SEMC registers an Order Management specification V1.5 using the following
message. Notice that one of the keyed references in the categoryBag element points to
the root SEMC IeBS specification V1.2, indicating that this tModel is part of that
hierarchy, again facilitating searches. Here is what that tModel looks like:

<save_tModel generic="1.0" xmlns="urn:uddi-org:api">

 <authInfo>50D1FEBF-4D47-4D8F-A9A5-56403DF080AB</authInfo>

 <tModel tModelKey="">

 <name>Sports Equipment Manifacturing Consortium

 Order Management V1.5</name>

 <description xml:lang="en">tModel for the SEMC Order Management set of

 specifications V1.5</description>

 <overviewDoc>

 <description xml:lang="en">This document describes the details and

 conformance requirements for the SEMC IeBS Order Management V1.5

 specification

 </description>

 <overviewURL>http://www.semc-consortium.org/SEMC-IeBS/OrderMgmt.html

 </overviewURL>

 </overviewDoc>

 <identifierBag>

 <keyedReference

 keyName="DUNS" keyValue="00-222-2222"

 tModelKey="uuid:D9392AEE-9A13-4B6E-B528-5A0D08BD4BF9"/>

 </identifierBag>

 <categoryBag>

 <keyedReference

 keyName="types" keyValue="specification"

 tModelKey="uuid:C1ACF26D-9672-4404-9D70-39B756E62AB4"/>

 <keyedReference

 keyName="types" keyValue="specification"

 tModelKey="uuid:61A08700-0684-4E05-BB7D-C624BED3B901"/>

 </categoryBag>

 </tModel>

</save_tModel>

The UDDI registry again registers the tModel and assigns it a tModel key (for future
examples, let's assume this key has a value of 6E986185-3937-442F-8916-
209DA01DF837).

UDDI Core tModels

As we saw in the previous example, SEMC declared its specifications to be of the
specification type, using a types namespace provided by UDDI. The first release of the
UDDI specification registered several tModels for use as a starting set. UDDI defines a
root or supertype tModel for all types, used to establish a hierarchical taxonomy of
types. Then, all other type tModels are defined in this tModel's namespace (including the
UDDI Type itself, which is self-referential, as seen from its definition).

The UDDI type taxonomy tModel has the following definition:

<tModel tModelKey="UUID:C1ACF26D-9672-4404-9D70-39B756E62AB4">

 <name>uddi-org:types</name>

 <description xml:lang="en">UDDI Type Taxonomy</description>

 <overviewDoc>

 <description xml:lang="en">Taxonomy used to categorize Service

Descriptions</description>

 <overviewURL>http://www.uddi.org/specification.html</overviewURL>

 </overviewDoc>

 <categoryBag>

 <keyedReference keyName="types" keyValue="categorization"

 tModelKey="UUID:C1ACF26D-9672-4404-9D70-39B756E62AB4"/>

 </categoryBag>

</tModel>

Figure 7.14 lists all the UDDI types belonging to this taxonomy. These types can be used
to categorize other tModels.

Figure 7.14. The core tModel taxonomy hierarchy.

Let's look at how this works. For example, the Dun & Bradstreet D-U-N-S® number is
defined as follows:

<tModel tModelKey="UUID:8609C81E-EE1F-4D5A-B202-3EB13AD01823">

 <name>dnb-com:D-U-N-S</name>

 <description xml:lang="en">Dun & Bradstreet D-U-N-S®
Number</description>

 <overviewDoc>

 <description xml:lang="en">This tModel is used for the Dun

 & Bradstreet D-U-N-S(r) Number identifier.</description>

 <overviewURL>http://www.uddi.org/specification.html</overviewURL>

 </overviewDoc>

 <categoryBag>

 <keyedReference keyName="types" keyValue="identifier"

 tModelKey="UUID:C1ACF26D-9672-4404-9D70-39B756E62AB4"/>

 </categoryBag>

</tModel>

In the keyedReference element in the categoryBag, the tModelKey value of C1ACF26D-
9672-4404-9D70-39B756E62AB4 is the key for the UDDI Type Taxonomy tModel, which
is the namespace for all UDDI Types. Of all the possible values in the taxonomy of this
core namespace, this tModel is categorized as an identifier type (through the keyValue
attribute). (The authorizedName and operator attributes of the tModel element will be
omitted in all the examples in this section because they are irrelevant to the point being
illustrated.)

Next, UDDI defines some core tModels for the three main API services. These tModels
are all classified in the UDDI Type tModel namespace as being of types specification,
xmlSpec, and soapSpec:

<tModel tModelKey="UUID:4CD7E4BC-648B-426D-9936-443EAAC8AE23">

 <name>uddi-org:inquiry</name>

 <description xml:lang="en">UDDI Inquiry API - Core Specification

 </description>

 <overviewDoc>

 <description xml:lang="en">This tModel defines the inquiry API

 calls for interacting with the UDDI registry.</description>

 <overviewURL>http://www.uddi.org/specification.html</overviewURL>

 </overviewDoc>

 <categoryBag>

 <keyedReference keyName="types" keyValue="specification"

 tModelKey="UUID:C1ACF26D-9672-4404-9D70-39B756E62AB4"/>

 <keyedReference keyName="types" keyValue="xmlSpec"

 tModelKey="UUID:C1ACF26D-9672-4404-9D70-39B756E62AB4"/>

 <keyedReference keyName="types" keyValue="soapSpec"

 tModelKey="UUID:C1ACF26D-9672-4404-9D70-39B756E62AB4"/>

 </categoryBag>

</tModel>

The UDDI Publication API core specification tModel has the following definition:

<tModel tModelKey="UUID:64C756D1-3374-4E00-AE83-EE12E38FAE63">

 <name>uddi-org:publication</name>

 <description xml:lang="en">UDDI Publication API - Core Specification

 </description>

 <overviewDoc>

 <description xml:lang="en">This tModel defines the publication

 API calls for interacting with the UDDI registry.</description>

 <overviewURL>http://www.uddi.org/specification.html</overviewURL>

 </overviewDoc>

 <categoryBag>

 <keyedReference keyName="types" keyValue="specification"

 tModelKey="UUID:C1ACF26D-9672-4404-9D70-39B756E62AB4"/>

 <keyedReference keyName="types" keyValue="xmlSpec"

 tModelKey="UUID:C1ACF26D-9672-4404-9D70-39B756E62AB4"/>

 <keyedReference keyName="types" keyValue="soapSpec"

 tModelKey="UUID:C1ACF26D-9672-4404-9D70-39B756E62AB4"/>

 </categoryBag>

</tModel>

The UDDI Taxonomy API core specification tModel has the following definition:

<tModel tModelKey="UUID:3FB66FB7-5FC3-462F-A351-C140D9BD8304">

 <name>uddi-org:taxonomy</name>

 <description xml:lang="en">UDDI Taxonomy API</description>

 <overviewDoc>

 <description xml:lang="en">This tModel defines the taxonomy

 maintenance API calls for interacting with the UDDI registry

 </description>

 <overviewURL>http://www.uddi.org/specification.html</overviewURL>

 </overviewDoc>

 <categoryBag>

 <keyedReference keyName="types" keyValue="specification"

 tModelKey="UUID:C1ACF26D-9672-4404-9D70-39B756E62AB4"/>

 <keyedReference keyName="types" keyValue="xmlSpec"

 tModelKey="UUID:C1ACF26D-9672-4404-9D70-39B756E62AB4"/>

 <keyedReference keyName="types" keyValue="soapSpec"

 tModelKey="UUID:C1ACF26D-9672-4404-9D70-39B756E62AB4"/>

 </categoryBag>

</tModel>

The different taxonomies are also defined in the spec. The NAICS taxonomy is as follows:

<tModel tModelKey="UUID:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2">

 <name>ntis-gov:naics:1997</name>

 <description xml:lang="en">Business Taxonomy: NAICS (1997 Release)

 </description>

 <overviewDoc>

 <description xml:lang="en">This tModel defines the NAICS

 industry taxonomy.</description>

 <overviewURL>http://www.uddi.org/specification.html</overviewURL>

 </overviewDoc>

 <categoryBag>

 <keyedReference keyName="types" keyValue="categorization"

 tModelKey="UUID:C1ACF26D-9672-4404-9D70-39B756E62AB4"/>

 </categoryBag>

</tModel>

The UNSPSC taxonomy is as follows:

<tModel tModelKey="UUID:DB77450D-9FA8-45D4-A7BC-04411D14E384">

 <name>unspsc-org:unspsc:3-1</name>

 <description xml:lang="en">Product Taxonomy: UNSPSC (Version 3.1)

 </description>

 <overviewDoc>

 <description xml:lang="en">This tModel defines the UNSPSC

 product taxonomy.</description>

 <overviewURL>http://www.uddi.org/specification.html</overviewURL>

 </overviewDoc>

 <categoryBag>

 <keyedReference keyName="types" keyValue="categorization"

 tModelKey="UUID:C1ACF26D-9672-4404-9D70-39B756E62AB4"/>

 </categoryBag>

</tModel>

The ISO 3166-1:1997 and 3166-2:1998 geographic taxonomy is as follows:

<tModel tModelKey="UUID:4E49A8D6-D5A2-4FC2-93A0-0411D8D19E88">

 <name>iso-ch:3166:1999</name>

 <description xml:lang="en">ISO 3166-1:1997 and 3166-2:1998. Codes

 for names of countries and their subdivisions. Part 1: Country

 codes. Part 2:Country subdivision codes. Update newsletters

 include ISO 3166-1 V-1 (1998-02-05), V-2 (1999-10-01), ISO

 3166-2 I-1 (1998)</description>

 <overviewDoc>

 <description xml:lang="en">Taxonomy used to categorize entries

 by geographic location.</description>

 <overviewURL>http://www.uddi.org/iso-ch-3166-1999.html</overviewURL>

 </overviewDoc>

 <categoryBag>

 <keyedReference keyName="types" keyValue="categorization"

 tModelKey="UUID:C1ACF26D-9672-4404-9D70-39B756E62AB4"/>

 </categoryBag>

</tModel>

Finally, a miscellaneous taxonomy for entries that do not validate in the other
taxonomies is as follows:

<tModel tModelKey="UUID:A035A07C-F362-44DD-8F95-E2B134BF43B4">

 <name>uddi-org:misc-taxonomy</name>

 <description xml:lang="en">Other Taxonomy</description>

 <overviewDoc>

 <description xml:lang="en">This tModel defines an unidentified taxonomy

 </description>

 <overviewURL>http://www.uddi.org/specification.html</overviewURL>

 </overviewDoc>

 <categoryBag>

 <keyedReference keyName="types" keyValue="categorization"

 tModelKey="UUID:C1ACF26D-9672-4404-9D70-39B756E62AB4"/>

 </categoryBag>

</tModel>

The last tModel is the Dun and Bradstreet D-U-N-S number, which we've already seen.

Publishing Business Information to a UDDI Registry

Let's now go through some detailed examples of businesses using the UDDI registry.
SkatesTown has decided to start using UDDI to publish its information and find business
partners. To publish its business information, SkatesTown needs to construct a
businessEntity structure and send it in a SOAP message using the save_business call.
Let's look in more detail at the businessEntity structure.

The businessEntity Structure

The businessEntity element is the top-level element in the UDDI information data
structure (see Figure 7.15). The structure is used to represent information about an
entity or a business. It is also used as a container for the business services element and
indirectly for the corresponding implementation and binding details of all the services
that an entity provides. Its top structure is relatively similar to the other top structure in
the UDDI information model, the tModel, in that it has for attributes a unique key, an
Operator, and an authorized name. Again, just like a tModel structure, its elements
include name, description, categoryBag, and identifierBag information. In addition, it
has contact information, and it acts as the container for the business services.

Figure 7.15. The businessEntity structure.

businessEntity has the following attributes:

• businessKey— The unique identifier for the business entity. It is assigned by the
UDDI Operator and cannot be edited or modified by the entity. For this reason, it
should not be supplied in the original business entity registration. When a new
entity is registered, the UDDI Operator assigns a unique businessKey in the form
of a UUID and returns that key in the response. This key can then be used in
subsequent queries and updates.

• operator— The certified name of the Operator that owns the UDDI node to which
the entity is registered. It is originally assigned by the UDDI Operator and cannot
be edited or modified by the entity. For this reason, it should not be supplied in
the original registration.

• authorizedName— The name provided by the Operator. It is originally assigned by
the UDDI Operator and cannot be edited or modified by the entity. For this
reason, it should not be supplied in the original registration.

businessEntity has the following elements:

• discoveryURLs— Optional. A container for discoveryURL elements, which provide
alternate means for discovering the services. For example, businesses can provide
a Web site to their services, or use a convention such as the eCo Framework
(http://www.oasis-open.org/cover/ecoFramework.html) service description
convention. A UDDI Operator will automatically assign a URL for every registered
business entity. The discoveryURL element has a useType attribute, which can be
used to describe the corresponding URL. (See the example under "conacts" on the
next page.) UDDI reserves two useType strings, businessEntity and
businessEntityExt, which will be described later.

• name— Required. The entity's name.

• description— Optional repeating. Textual description of the business or
organization.

• contacts— Optional. A container for contact elements, which provide contact
information for the entity. As seen from Figure 7.16, contact information includes
required information such as a person's name, and optional information such as a
description, phone, e-mail, and address. The various use_type attributes are used
for text entries describing the type of information entered, such as product
manager, technical support, and cell phone. The following is an example of
SkatesTown contact information:

• <contact useType="Technical Information">
• <description>CTO for technical information</description>
• <personName>Dean Carroll</personName>
• <phone useType="Main Office">1.212.555.0001</phone>
• <email useType="CTO">dean.carroll@SkatesTown.com</email>
• <email useType="General Information">info@SkatesTown.com</email>
• <address useType="Main Office" sortCode="10001">
• <addressLine>2001 Skate Services Ln</addressLine>
• <addressLine>New York, NY 10001</addressLine>
• <addressLine>USA</addressLine>
• </address>
• </contact>

Figure 7.16. The contacts structure.

• businessServices— Optional repeating. A container for businessService
elements, which are used to describe logical groupings of services. The
businessService structure will be described in detail in the section "The
businessService Structure."

• identifierBag— Optional. Identical in use to the identifierBag element in the
tModel Structure (see the section "The tModel Structure").

• categoryBag— Optional. The mechanism by which businesses can enter Yellow
Pages classification information. Its use is identical to the categoryBag element in
the tModel structure (see the section "The tModel Structure").

The save_business Operation

In order to publish the business information to the UDDI registry, you need to construct
a save_business message with a save_business structure in the body element of the
SOAP envelope, and the businessEntity structure contained within (see Figure 7.17).
This structure is very similar to the save_tModel structure, the only difference being that
it contains a businessEntity element, and that the uploadRegister information should
point to valid businessEntity information:

<save_business generic="1.0" xmlns="urn:uddi-org:api">

 <authInfo/>

 <businessEntity/> [<businessEntity/>...] | <uploadRegister/>

[<uploadRegister/>...]

</save_business>

Figure 7.17. The save_business message structure.

The response to a save_business SOAP message is a businessDetail structure
reflecting the final results of the save_business operation.

Putting It Together: save_business Example

First, as we saw, SkatesTown needs to get an authentication token. Although it is
important to keep in mind that all Publication API calls are authenticated, this step will be
omitted from now on for brevity. The authInfo token is then used in the save_business
call. The following shows what a new business entity registration document would look
like:

<save_business generic="1.0" xmlns="urn:uddi-org:api">

 <authInfo>65EC92F4-21C4-4EA6-B438-9994C4BD24CB</authInfo>

 <businessEntity

 <name>SkatesTown</name>

 <description xml:lang="en">Provides the best skate products in the world

 </description>

 <contacts>

 <contact useType="Technical Information">

 <description xml:lang="en">CTO for technical information

 </description>

 <personName>Dean Carroll</personName>

 <phone useType="Main Office">1.212.555.0001</phone>

 <email useType="CTO">dean.carroll@SkatesTown.com</email>

 <email useType="General Information">info@SkatesTown.com</email>

 <address useType="Main Office" sortCode="10001">

 <addressLine>2001 Skate Services Ln</addressLine>

 <addressLine>New York, NY 10001</addressLine>

 <addressLine>USA</addressLine>

 </address>

 </contact>

 </contacts>

 <categoryBag>

 <keyedReference

 keyName="Sporting and Athletic Goods Manufacturing"

 keyValue="33992"

 tModelKey="UUID:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2"/>

 <keyedReference

 keyName="New York" keyValue="US-NY"

 tModelKey="UUID:4E49A8D6-D5A2-4FC2-93A0-0411D8D19E88"/>

 </categoryBag>

 <identifierBag>

 <keyedReference keyName="DUNS" keyValue="00-111-1111"

 tModelKey="UUID:8609C81E-EE1F-4D5A-B202-3EB13AD01823"/>

 </identifierBag>

 </businessEntity>

</save_business>

In this example, SkatesTown has used the authentication token that it received in the
previous get_authToken call, and registered information about itself. In addition to its
business name, description, and technical contact information (CTO), it has categorized
itself under code 33992 (Sporting and Athletic Goods Manufacturing) of the NAICS
classification and in the US-NY value of the geographic location classification and
provided its Dun & Bradstreet D-U-N-S number as identifier. Note that the businessKey
element is not supplied, because this is a new registration.

In response, the Operator UDDI node would send this confirmation:

<businessDetail

 generic="1.0" operator="UDDIOperator" truncated="false">

 <businessEntity

 businessKey="uuid:D7B8D630-59E7-11D5-9675-95373BEF0080"

 operator="UDDIOperator"

 authorizedName="Dean Carroll">

 <discoveryURLs>

 <discoveryURL useType="businessEntity">

 http://www.UDDIOperator.com?

businessKey=55BB30D8-565A-4EF9-BA2E-83118AED644D

 </discoveryURL>

 <discoveryURLs>

 <name>SkatesTown</name>

 <description xml:lang="en">Provides the best skate products in the world

 </description>

 <contacts>

 <contact useType="Technical Information">

 <description xml:lang="en">CTO for technical information

 </description>

 <personName>Dean Carroll</personName>

 <phone useType="Main Office">1.212.555.0001</phone>

 <email useType="CTO">

 dean.carroll@SkatesTown.com</email>

 <email useType="General Information">

 info@SkatesTown.com</email>

 <address useType="Main Office" sortCode="10001">

 <addressLine>2001 Skate Services Ln</addressLine>

 <addressLine>New York, NY 10001</addressLine>

 <addressLine>USA</addressLine>

 </address>

 </contact>

 </contacts>

 <categoryBag>

 <keyedReference

 keyName="Sporting and Athletic Goods Manufacturing"

 keyValue="33992"

 tModelKey="UUID:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2"/>

 <keyedReference

 keyName="New York" keyValue="US-NY"

 tModelKey="UUID:4E49A8D6-D5A2-4FC2-93A0-0411D8D19E88"/>

 </categoryBag>

 <identifierBag>

 <keyedReference keyName="DUNS" keyValue="00-111-1111"

 tModelKey="UUID:8609C81E-EE1F-4D5A-B202-3EB13AD01823"/>

 </identifierBag>

 </businessEntity>

</businessDetail>

Notice that in its response, the UDDI Operator has assigned a unique identifier to the
entity and filled out the businessKey, operator, and authorizedName attributes for the
businessEntity element. It also assigned a discoveryURL address for the business in
the Operator's domain space. This URL returns an XML document containing the
businessEntity structure for SkatesTown.

This example showed how a business would register its entry for the first time. Having
been assigned a businessKey, it can now use the businessKey to update its information,
such as adding a new contact for sales when a VP of Sales is hired, (assuming the
company has obtained an authentication token). The example message is as follows:

<save_business generic="1.0" xmlns="urn:uddi-org:api">

 <authInfo>87CD1C7F-2D23-4324-A927-82B557134DF8</authInfo>

 <businessEntity

 businessKey="uuid:D7B8D630-59E7-11D5-9675-95373BEF0080">

 <name>SkatesTown</name>

 <description xml:lang="en">Provides the best skate products in the world

 </description>

 <contacts>

 <contact useType="Technical Information">

 <description xml:lang="en">CTO for technical

 information</description>

 <personName>Dean Carroll</personName>

 <phone useType="Main Office">1.212.555.0001</phone>

 <email useType="CTO">

 dean.carroll@SkatesTown.com</email>

 <email useType="General Information">

 info@SkatesTown.com</email>

 <address useType="Main Office" sortCode="10001">

 <addressLine>2001 Skate Services Ln</addressLine>

 <addressLine>New York, NY 10001</addressLine>

 <addressLine>USA</addressLine>

 </address>

 </contact>

 <contact useType="Sales Information">

 <description xml:lang="en">VP Sales</description>

 <personName>Sandy Smith</personName>

 <phone useType="Main Office">1.212.555.0001</phone>

 <phone useType="Mobile">1.212.555.8888</phone>

 <email useType="VP Sales">

 sandy.smith@SkatesTown.com</email>

 <email useType="Sales Information">

 sales@SkatesTown.com</email>

 <address useType="Main Office" sortCode="10001">

 <addressLine>2001 Skate Services Ln</addressLine>

 <addressLine>New York, NY 10001</addressLine>

 <addressLine>USA</addressLine>

 </address>

 </contact>

 </contacts>

 <categoryBag>

 <keyedReference

 keyName="Sporting and Athletic Goods Manufacturing"

 keyValue="33992"

 tModelKey="UUID:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2"/>

 <keyedReference

 keyName="New York" keyValue="US-NY"

 tModelKey="UUID:4E49A8D6-D5A2-4FC2-93A0-0411D8D19E88"/>

 </categoryBag>

 <identifierBag>

 <keyedReference keyName="DUNS" keyValue="00-111-1111"

 tModelKey="UUID:8609C81E-EE1F-4D5A-B202-3EB13AD01823"/>

 </identifierBag>

 </businessEntity>

</save_business>

Publishing Service Information to a UDDI Registry

SkatesTown next decides to publish its product catalog online as a service, and to publish
another service that will enable its customers to check the status of their orders. This last
service follows the SEMC specification V1.5 in the required documents and process. UDDI
service information consists of two main types—logical (abstract) reusable service
description and specific (concrete) implementation details—for the different bindings for
the same logical service. In the case of the order status service, for instance, the
abstract service description for order status has already been specified by SEMC and will
be used by SkatesTown through a reference to its tModel.

Furthermore, SkatesTown decides to offer two interfaces for this service: one Web
(browser) based and another SOAP based. Both Web-based and SOAP-based services are
pre-defined logical service descriptions. However, they require two different concrete
implementations, and their binding details are different (for example, specifying different
URLs for sending the requests). The next sections will go through the details of defining
and registering an online catalog service with one binding (Web-based), and an order
status service with two bindings (Web and SOAP-based).

To publish service information, SkatesTown first needs to construct a businessService
structure. This structure can then be published in one of two ways: by including it in the
initial businessEntity structure and publishing it through the initial save_business
message, or by sending it independently in a save_service message. This is analogous
to the mechanisms used to publish businessEntity information with the save_business
message. Let's look in more detail at the businessService structure.

The businessService Structure

The businessService structure is the root element for describing a logical business
service, such as a stock quote service, or a securities buying service (see Figure 7.18).
Different implementation details and bindings for the same logical service, if offered, are
grouped under the same businessService element, through the bindingTemplates
element. Obviously, one or more businessService elements can be contained in a
businessServices element.

Figure 7.18. The businessService structure.

businessService has the following attributes:

• serviceKey— The unique identifier for the service. It is assigned by the UDDI
Operator and cannot be edited or modified by the entity. For this reason, it should
not be supplied in the original registration. When a new entity is registered, the
UDDI Operator assigns a unique serviceKey and returns that key in the
response. This key is then used in subsequent queries and updates.

• businessKey— The key of the containing businessEntity. If the
businessService is being registered in a separate call through the save_service
operation, this element should contain the Operator-assigned businessKey
generated in the save_business call. Otherwise, the key should be left blank and
will be filled in by the Operator in the response.

businessService has the following elements:

• name— Required. Name of the service, as provided by the business.

• description— Optional, repeating. Description of the service, as provided by the
business.

• bindingTemplates— Required. The containing root element for bindingTemplate
structures that provide the technical information on the various implementations

of the service. We will explore binding templates in more detail in the section "The
bindingTemplate Structure."

• categoryBag— Optional. Similar in function to the businessEntity category bag.
Services can be categorized under various taxonomies.

Let's see how SkatesTown can register its Web-based service to offer its catalog to
customers. We'll begin composing the businessService entry for this service:

<businessService businessKey="uuid:55BB30D8-565A-4EF9-BA2E-83118AED644D"

 serviceKey="">

 <name>Online Catalog</name>

 <description>This is the SkatesTown online retail catalog.

You can use it to buy equipment from us</description>

 <bindingTemplates>

 ...

 </bindingTemplates>

 <categoryBag>

 <keyedReference

 keyName="Sporting and Athletic Goods Manufacturing" keyValue="33992"

 tModelKey="UUID:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2"/>

 </categoryBag>

</businessService>

The next step involves specifying what the bindings will be for that service. Let's look
more closely at the bindingTemplate structure.

The bindingTemplate Structure

In a certain sense, the bindingTemplate structure is the end goal of UDDI. Other
structures allow you to get information about businesses, their descriptions, contact
information, categorization and taxonomy information, and what kind of services they
offer. After a decision is made on using a particular service from a particular provider,
however, the bindingTemplate subtree holds the necessary technical information for the
service to actually be invoked. The same logical service can have more than one binding
(such as a SOAP-based HTTP binding, an HTTP browser-based binding, and an e-mail
SMTP binding). Each of these bindings is described in its own bindingTemplate
structure. This is generally a combination of access point information and tModel
references and their specific parameters (see Figure 7.19).

Figure 7.19. The bindingTemplate structure.

bindingTemplate has the following attributes:

• bindingKey— By now, you are familiar with the key referencing scheme used in
UDDI. Like other keys, the bindingKey is the unique identifier for the binding. It
is assigned by the UDDI Operator and cannot be edited or modified. When a new
binding is registered, the UDDI Operator assigns a unique bindingKey and returns
that key in the response. This key is then used in subsequent queries and
updates.

• serviceKey— The key of the containing businessService. If the
bindingTemplate is being registered in a separate call through the save_binding
operation, this element should contain the Operator-assigned serviceKey
generated in the save_service call. Otherwise, the key should be left blank and
will be filled in by the Operator in the response.

bindingTemplate has the following elements:

• description— Optional repeated. Textual description of the binding template for
this service.

• accessPoint— One of either accessPoint or hostingRedirector is required.
This is a string that conveys the network address of the service to be invoked. The
string value can convey many different types of addresses and can only be
processed in the context of the whole bindingTemplate data. The type of address
being conveyed is specified in the URLType attribute. For example, the same
service can have two different bindings, one for HTTP and one for HTTPS. This
would be conveyed as two different bindingTemplate elements within the same
businessService entry. The access points for the two bindingTemplates would
have the two URLs, one with a URLType of http and the other with a URLType of
https. The allowed URLType values are mailto, http, https, ftp, fax, phone,
and other.

• hostingRedirector— One of either accessPoint or hostingRedirector is
required. The hostingRedirector element is generally used in cases where an
entity is exposing a service hosted by another entity, such as an ASP, or in cases
where different services have the same description and bindings and need to re-
use the same binding template. In these cases, the bindingKey attribute in the
hostingRedirector element points to the actual binding details for the service.

If, during a get_bindingDetails operation, a hostingRedirector element is
found, the calling application should go to the specified binding for details.

• tModelInstanceDetails— Simple container for tModelInstanceDetail
structures (see the section "The tModelInstanceDetail Structure").

Let us now continue with the previous example of defining the Web-based catalog service
for SkatesTown. The only relevant information is the access point, which is a URL to be
used in a Web browser. Its URLType is http:

 <bindingTemplates>

 <bindingTemplate bindingKey="" serviceKey=""

 <description xml:lang="en">This is a web based (http) online catalog

 </description>

 <accessPoint URLType="http">

 http://www.skatestown.com/services/catalog</accessPoint>

 <tModelInstanceDetails>

...

 </tModelInstanceDetails>

 </bindingTemplate>

 </bindingTemplates>

The only thing left to specify is the tModelInstanceDetail structure. Let's examine that
in more detail.

The tModelInstanceDetail Structure

The tModelInstanceDetail structure is a container for tModelInstanceInfo structures
(see Figure 7.20) and is where the final invocation details of the service are defined. As
we've already discussed, each registered business service can have one or more
bindings, each of which usually refers to one or more tModels. For example, when
SkatesTown registers a service that conforms to the SEMC IeBS 1.2 specification, it
might decide to provide the service using two bindings, one SOAP/HTTP-based and
another e-mail/SMTP-based. In this case, both bindings will have at least two
tModelInstanceInfo structures, one of which will reference the SEMC tModel. The SOAP
service will also reference the SOAP specification tModel in a separate
tModelInstanceInfo structure, whereas the SMTP service will reference the SMTP
specification tModel. This effectively provides several benefits: For example, the service
will re-use existing abstractions for the specifications while allowing other businesses to
locate it based on its technical fingerprint of using both SEMC and SOAP.

Figure 7.20. The tModelInstanceInfo structure.

The tModelInstanceInfo structure has one important required attribute, tModelKey.
This is the UUID reference to the tModel associated with this structure. Its presence
indicates that the binding for the containing business service implements, conforms to, or
is somehow associated with this tModel. In our example, this would be a reference to the
IeBS tModel or the SOAP or SMTP tModels. In addition, it has two optional elements: a
repeating description element and the InstanceDetails element.

The InstanceDetails element is a container that is used when parameters specific to
the tModel being referenced need to be set. An example of this could be a specific port
number that is left unspecified in the tModel but that needs to be set at invocation time.
There are two mechanisms to set parameters through the instanceParms element. In
the first mechanism, the parameter values could be specified inside the element. In this
case, it is suggested that these be a namespace-qualified XML string (from outside the
UDDI namespaces). In the other mechanism, a URL to the location of the parameters is
supplied.

In the simple case of the SkatesTown online catalog, all we need to supply is the tModel
reference to the uddi-org:http tModel (68DE9E80-AD09-469D-8A37-088422BFBC36),
which is for HTTP-or browser-based services.

The following code finishes the bindingTemplates definition for SkatesTown:

<bindingTemplates>

 <bindingTemplate bindingKey="" serviceKey=""

 <description xml:lang="en">This is a web based (http) online catalog

 </description>

 <accessPoint URLType="http">

 http://www.skatestown.com/services/catalog</accessPoint>

 <tModelInstanceDetails>

 <tModelInstanceInfo

 tModelKey="UUID:68DE9E80-AD09-469D-8A37-088422BFBC36D">

 <description xml:lang="en">HTTP Address</description>

 </tModelInstanceInfo>

 </tModelInstanceDetails>

 </bindingTemplate>

</bindingTemplates>

The save_service Operation

Similar to publishing a business entity structure with the save_business message, a
business service can be published along with its binding templates using the
save_service message. In this instance, we need to construct a save_service SOAP
message containing a save_service structure in the body element of the SOAP
envelope, and the businessService structure contained within (see Figure 7.21).

Figure 7.21. The save_service message structure.

save_service has this message signature:

<save_service generic="1.0" xmlns="urn:uddi-org:api">

 <authInfo/>

 <businessService/> [<businessService/>...]

</save_service>

Putting It Together: save_service Example

We will now register the simple online catalog service for SkatesTown using the
save_service message. Notice that we supply the businessKey for SkatesTown but
leave the serviceKey and bindingKey attributes empty to indicate these are new
entries. Again, we have omitted the required step of getting an authentication token.

Here is the save_service message for the SkatesTown online catalog (example:
business).

<save_service generic="1.0">

 <authInfo>5BA16322-B5ED-D300-8F2F-420DA3A212D2</authInfo>

 <businessService serviceKey=""

 businessKey="55BB30D8-565A-4EF9-BA2E-83118AED644D">

 <name>Online Catalog</name>

 <description>This is the SkatesTown online retail catalog.

You can use it to buy equipment from us</description>

 <bindingTemplates>

 <bindingTemplate bindingKey="">

 <description>This is a web based (http) online

 catalog</description>

 <accessPoint URLType="http">

 http://www.skatestown.com/services/catalog</accessPoint>

 <tModelInstanceDetails>

 <tModelInstanceInfo

 tModelKey="UUID:68DE9E80-AD09-469D-8A37-088422BFBC36D">

 <description>HTTP Address</description>

 </tModelInstanceInfo>

 </tModelInstanceDetails>

 </bindingTemplate>

 </bindingTemplates>

 <categoryBag>

 <keyedReference

 keyName="Sporting and Athletic Goods Manufacturing"

 keyValue="33992"

 tModelKey="UUID:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2"/>

 </categoryBag>

 </businessService>

</save_service>

The registry returns a businessService structure with the serviceKey and bindingKey
assigned to the new service and binding, respectively.

Next, we will construct and register a service to allow customers to check the status of
their orders, as defined by the SEMC IeBS Order Management specification. This service
will have two bindings, one browser-based, and another SOAP-based. First, we will
register the new service with just the browser-based binding. Here is the SkatesTown
checkOrderStatus save_service message:

<save_service generic="1.0">

 <authInfo>5BA16322-B5ED-D300-8F2F-420DA3A212D2</authInfo>

 <businessService serviceKey=""

 businessKey="55BB30D8-565A-4EF9-BA2E-83118AED644D">

 <name>Check Order Status</name>

 <description>Check your order status online. You can use a browser

 or SOAP messages</description>

 <bindingTemplates>

 <bindingTemplate bindingKey="" serviceKey="">

 <description>This is a web based (http) order status service

 </description>

 <accessPoint URLType="http">

 http://www.skatestown.com/services/orderStatus</accessPoint>

 <tModelInstanceDetails>

 <tModelInstanceInfo

 tModelKey="UUID:68DE9E80-AD09-469D-8A37-088422BFBC36D">

 <description>HTTP Address</description>

 </tModelInstanceInfo>

 </tModelInstanceDetails>

 </bindingTemplate>

 </bindingTemplates>

 <categoryBag>

 <keyedReference

 keyName="Sporting and Athletic Goods Manufacturing"

 keyValue="33992"

 tModelKey="UUID:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2"/>

 <keyedReference

 keyName="SEMC: IeBS V1.2"

 keyValue="OM1.5"

 tModelKey="6E986185-3937-442F-8916-209DA01DF837"/>

 </categoryBag>

 </businessService>

</save_service>

The UDDI registry returns a businessService structure business with the appropriate
newly assigned serviceKey and bindingKey:

<businessService serviceKey="4C379407-3E1E-DC97-B1C7-F68597DA4ABB"

 businessKey="55BB30D8-565A-4EF9-BA2E-83118AED644D">

 <name>Check Order Status</name>

 <description>Check your order status online.

 You can use a browser or SOAP messages</description>

 <bindingTemplates>

 <bindingTemplate bindingKey="C2BC244D-B4DD-A779-8CD8-45753760D055"

 serviceKey="4C379407-3E1E-DC97-B1C7-F68597DA4ABB">

...

 </bindingTemplate>

 </bindingTemplates>

 <categoryBag>

...

 </categoryBag>

</businessService>

The next step illustrates the need for a separate save_binding message. It involves
registering a new binding to an existing service, in this case a new SOAP binding to the
Check Order Status service.

Publishing a Binding Using the save_binding Operation

The save_binding message can be used to add a new binding to an existing service by
passing business a non-blank serviceKey, or to update an existing binding by passing a
non-blank bindingKey. It can also be used to move an existing binding from one service
to another by passing non-blank serviceKeys and bindingKeys. Being part of the
authenticated Publishing API, it requires an authInfo element, and it takes one or more
bindingTemplate elements as the new bindings to be added to existing services (see
Figure 7.22):

<save_binding generic="1.0" xmlns="urn:uddi-org:api">

 <authInfo/>

 <bindingTemplate/> [<bindingTemplate/>...]

</save_binding>

Figure 7.22. The save_binding message structure.

In the next step of the example, SBC has convinced SkatesTown to implement a
programmatic method for customers to check their order status through a SOAP
interface. This is a new binding to the existing Check Order Status service, and can be
added to the existing businessService entry with the save_binding message. By
passing the serviceKey, this message indicates to the registry that this binding should
be contained within the existing Check Order Status businessService for SkatesTown.
The tModel for the SEMC Order Management specification can be used as a reference to
the necessary data formats, parameters, authentication, and all other invocation details
for customers who want to use this service.

Here is the SkatesTown SOAP Check Order Status save_binding message:

<save_binding generic="1.0">

 <authInfo>2E6BAE12-04E3-DBC2-90DB-A96E21406F79</authInfo>

 <bindingTemplate bindingKey=""

 serviceKey="4C379407-3E1E-DC97-B1C7-F68597DA4ABB">

 <description>This is a SOAP based order status service</description>

 <accessPoint URLType="https">

 https://www.skatestown.com:7000/SEMC/getOrderStatus

 </accessPoint>

 <tModelInstanceDetails>

 <tModelInstanceInfo

 tModelKey="UUID:68DE9E80-AD09-469D-8A37-088422BFBC36D">

 <description>SOAP Order Status service</description>

 </tModelInstanceInfo>

 <tModelInstanceInfo

 tModelKey="UUID:6E986185-3937-442F-8916-209DA01DF837">

 <description>SEMC Order Management V1.5</description>

 </tModelInstanceInfo>

 </tModelInstanceDetails>

 </bindingTemplate>

</save_binding>

The Delete Operations

The API provides four delete operations, one for each of the core data structures. The
delete operations are fairly straightforward. They all require an authentication token for
the authInfo element and are passed the keys to the structures to be deleted. The only
exception to the pattern has to do with deleting a tModel: It is important to note that if a
registered owner uses the delete_tModel operation to delete a tModel, the tModel will
not actually be removed from the registry, but will only be marked as hidden. It would
still be available to the registered user but will not be returned by any find operation.
The registered owner can reinstate the tModel by using the save_tModel call and
passing the original tModel key.

delete_tModel has this message signature:

<delete_tModel generic="1.0" xmlns="urn:uddi-org:api">

 <authInfo/>

 <tModelKey/>

 [<tModelKey/> ...]

</delete_tModel>

delete_business has this message signature:

<delete_business generic="1.0" xmlns="urn:uddi-org:api">

 <authInfo/>

 <businessKey/>

 [<businessKey/> ...]

</delete_ business>

delete_service has this message signature:

<delete_service generic="1.0" xmlns="urn:uddi-org:api">

 <authInfo/>

 <serviceKey/>

 [<serviceKey/> ...]

</delete_service>

delete_binding has this message signature:

<delete_binding generic="1.0" xmlns="urn:uddi-org:api">

 <authInfo/>

 <bindingKey/>

 [<bindingKey/> ...]

</delete_binding>

What would happen if SkatesTown were to attempt to delete an entry that it does not
control? Let's try to send the following message:

<delete_tModel generic="1.0">

 <authInfo>D2BD49A6-1A1F-B8C9-8F4B-CDCE210AE072</authInfo>

 <tModelKey>UUID:68DE9E80-AD09-469D-8A37-088422BFBC36</tModelKey>

</delete_tModel>

This message attempts to delete the uddi-org:http tModel, one of the core UDDI
tModels used to categorize HTTP-based Web services. Because SkatesTown does not
own or control that tModel, this is obviously a bad thing to do. The next section explores
some of the details of error handling in UDDI.

Error Handling in the UDDI API

As you'd expect, the UDDI API only specifies application-level error handling, leaving the
SOAP errors to be handled by the SOAP messaging infrastructure. The main container

structure for UDDI application level errors is the dispositionReport structure, which is
returned within a SOAP Fault response message (see Figure 7.23).

Figure 7.23. The dispositionReport structure.

If SkatesTown tried to delete a core UDDI, as we started doing in the previous section, or
any tModel that it does not control, the following message would be returned:

<Fault>

 <faultcode>Client</faultcode>

 <faultstring>Client Error</faultstring>

 <detail>

 <dispositionReport generic="1.0"

 operator="UDDIOperator" xmlns="urn:uddi-org:api">

 <result errno="10130">

 <errInfo errCode="E_operatorMismatch">E_operatorMismatch

 (10130) Cannot change data that was mastered at another

 Operator site. tModel=UUID:68DE9E80-AD09-469D-8A37-088422BFBC36

 </errInfo>

 </result>

 </dispositionReport>

 </detail>

</Fault>

The UDDI API V1 specification lists 19 different error codes, listed in the specification
available at the UDDI site. It is the calling application's responsibility to intercept and
interpret these codes.

Finding Information in a UDDI Registry

As we saw in the section "The UDDI Usage Model," in addition to the Publication API, the
UDDI specification provides for an Inquiry API. The Inquiry API has two types of
operations that are associated with the core UDDI data types: find operations and
get_Details operations. The find operations, in general, are used in what is considered
browsing or searching mode, and their purpose is similar to database search operations
that can return several hits based on a set of search criteria.

All find operations can take an optional maxRows attribute whose value is used to
instruct the UDDI Operator to limit the number of results returned. All find operations
can also include an optional findQualifiers element as a container for findQualifier
elements that can be used to modify the search behavior. The current specification lists

six qualifiers, with self-evident names: exactNameMatch, caseSensitiveMatch,
sortByNameAsc, sortByNameDesc, sortByDateAsc, and sortByDateDesc.

The following sections will give some examples of search qualifiers, but the complete
description of the qualifiers and their rules of precedence can be found in the UDDI
Programmer's API 1.0 document available from the UDDI site. find operations, except
for the find_binding operation, return List structures. List structures contain Info
elements, which can contain a set of references if the search is successful, or are empty
otherwise. We will explore the results in more detail in the next sections.

The find_business Operation

In a typical scenario, you might be looking for a business entry, if you know its name, in
order to get information about the services they provide, or you might be looking for a
business based on a combination of products or services you need and a geographic
location, or you might be looking for a business that conforms to a certain industry
standard set of tModels. The find_business operation allows you to find business
entities that match a set of search criteria (see Figure 7.24):

<find_business generic="1.0" [maxRows="nn"] xmlns="urn:uddi-org:api">

 [<findQualifiers/>]

 <name/> | <identifierBag/> | <categoryBag/> | <tModelBag/> | <discoveryURLs>

</find_business>

Figure 7.24. The find_business message structure.

In addition to the findQualifiers element, the find_business structure might contain
only one of the following elements:

• name— String of partial name of the business, for leftmost matching. The names
of the businesses in the returned businessList all start with this string.

• identifierBag— A set of keyedReferences to be matched on a logical OR basis.
All the businesses in the returned businessList have at least one
keyedReference in their identifierBag registry entry that matches one of these.

• categoryBag— A set of keyedReferences to be matched on a logical AND basis.
All the businesses in the returned businessList have all these matching
keyedReferences in their categoryBag registry entry.

• tModelBag— A set of tModelKeys to be matched on a logical AND basis. All the
businesses in the returned businessList have all these matching tModelKeys in
their various binding templates.

• discoveryURLs— A set of discoveryURLs to be matched on a logical OR basis. If
the useType attributes are passed as empty strings, then they are not taken into
account in the matching operation.

The find_business operation returns a businessList structure (see Figure 7.25) that
contains a set of businessInfo elements if the search is successful. Otherwise, it is
empty. If the Operator site deems the number of hits too large, the businessList set is
truncated and the truncated attribute is set to true. Note that the businessInfo
structure also contains the serviceInfos element, which will be covered in the next
section.

Figure 7.25. The businessList structure.

The following example shows one of the most basic searches in UDDI. We are searching
for the latest (sortByDateDesc) two (maxRows=2) businesses that registered, and whose
name starts with the letter S. Note that the businessInfo elements contain
serviceInfos elements (we'll ignore them for now; they will be covered in the next
section):

<find_business generic="1.0" maxRows="2" xmlns="urn:uddi-org:api">

 <findQualifiers>

 <findQualifier>sortByDateDesc</findQualifier>

 </findQualifiers>

 <name>S</name>

</find_business>

<businessList generic="1.0" operator="UDDIOperator"

 truncated="false" xmlns="urn:uddi-org:api">

 <businessInfos>

 <businessInfo businessKey="0B345610-57A4-11D5-A554-AB7D0DF538B6">

 <name>SEMC</name>

 <description xml:lang="en">Sports Equipment Manufacturing Consortium

 </description>

 <serviceInfos>

...

 </serviceInfos>

 </businessInfo>

 <businessInfo businessKey="D7B8D630-59E7-11D5-9675-95373BEF0080">

 <name>SkatesTown</name>

 <description xml:lang="en">Provides the best skate products

 in the world</description>

 <serviceInfos>

...

 <serviceInfos>

 </businessInfo>

 </businessInfos>

</businessList>

Another search method is to query for businesses that belong to a certain category, using
the categoryBag parameter. In the next example, potential SkatesTown customers are
looking for the latest business to register under code 33992 in the NAICS taxonomy
(Sporting and Athletic Goods Manufacturing). This is done by passing the keyValue
(33992) and the NAICS tModel as namespace (uuid:C0B9FE13-179F-413D-8A5B-
5004DB8E5BB2). Here is an example find_business message using a categoryBag:

<find_business generic="1.0" maxRows="1" xmlns="urn:uddi-org:api">

 <findQualifiers>

 <findQualifier>sortByDateDesc</findQualifier>

 </findQualifiers>

 <categoryBag>

 <keyedReference keyName="Sporting and Athletic Goods Manufacturing"

 keyValue="33992"

 tModelKey="uuid:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2"/>

 </categoryBag>

</find_business>

<businessList generic="1.0" operator="UDDIOperator"

 truncated="false" xmlns="urn:uddi-org:api">

 <businessInfos>

 <businessInfo businessKey="D7B8D630-59E7-11D5-9675-95373BEF0080">

 <name>SkatesTown</name>

 <description xml:lang="en">Provides the best skate products

 in the world</description>

 <serviceInfos>

...

 <serviceInfos>

 </businessInfo>

 </businessInfos>

</businessList>

In this last example, a potential SkatesTown customer has been given SkatesTown's D-
U-N-S number, and is searching for the company's UDDI entry by supplying that value in
a keyedReference, with the D-U-N-S tModel key as namespace. Here is a
find_business message using identifierBag:

<find_business generic="1.0" maxRows="2" xmlns="urn:uddi-org:api">

 <identifierBag>

 <keyedReference keyName="" keyValue="00-111-1111"

 tModelKey="UUID:8609C81E-EE1F-4D5A-B202-3EB13AD01823"/>

 </identifierBag>

</find_business>

<businessList generic="1.0" operator="UDDIOperator"

 truncated="false" xmlns="urn:uddi-org:api">

 <businessInfos>

 <businessInfo businessKey="D7B8D630-59E7-11D5-9675-95373BEF0080">

 <name>SkatesTown</name>

 <description xml:lang="en">Provides the best skate products

 in the world</description>

 <serviceInfos>

...

 <serviceInfos>

 </businessInfo>

 </businessInfos>

</businessList>

The find_service Operation

The find_service operation is somewhat different in spirit from the find_business
operation. It assumes that you have already found a business and have its businessKey
either through the find_business operation or by outside means. Having found a
potential business partner, you might be looking for any services they offer within a
certain category of products and services using one of the standard taxonomies, or you
might be looking for services that conform to a set of industry tModels. Given a
businessKey value as an attribute, this operation will retrieve all the services provided
by that business that meet the given search criteria. The find_service parameters
passed in the contained elements are similar in intent to the ones found in the
find_business call (see Figure 7.26):

<find_service businessKey="uuid_key" generic="1.0" [maxRows="nn"]

 xmlns="urn:uddi-org:api">

 [<findQualifiers/>]

 <name/> | <categoryBag/> | <tModelBag/>

</find_service>

Figure 7.26. The find_service message structure.

This operation will return a serviceList structure (see Figure 7.27) that contains a set
of serviceInfo elements if the search is successful. Otherwise, it is empty. If the
Operator site deems the number of hits too large, the serviceList set is truncated and
the truncated attribute is set to true.

Figure 7.27. The serviceList structure.

As a potential customer, we now have the businessKey for SkatesTown (obtained
through any one of the example find_business messages we saw in the previous
section). We are next looking to see if they offer a service to check order status online,
according to the SEMC specification. To perform a strict name query (querying for a
service with a known name), a simple call would be:

<find_service businessKey="D7B8D630-59E7-11D5-9675-95373BEF0080"

 generic="1.0" xmlns="urn:uddi-org:api">

 <name>Check Order Status</name>

</find_service>

<serviceList generic="1.0" operator="UDDIOperator"

 truncated="false" xmlns="urn:uddi-org:api">

 <serviceInfos>

 <serviceInfo businessKey="D7B8D630-59E7-11D5-9675-95373BEF0080"

 serviceKey="BFEF1360-5A1F-11D5-8DC6-B0C1144E197E">

 <name>Check Order Status</name>

 </serviceInfo>

 </serviceInfos>

</serviceList>

The next listing shows the message to send if we were looking for SkatesTown services
that conform to the SEMC Order Management V1.5 (in this case, it turns out, there is just
one, the Check Order Status service):

<find_service businessKey="D7B8D630-59E7-11D5-9675-95373BEF0080"

 generic="1.0" xmlns="urn:uddi-org:api">

 <categoryBag>

 <keyedReference

 keyName="SEMC: IeBS V1.2"

 keyValue="OM1.5"

 tModelKey="6E986185-3937-442F-8916-209DA01DF837"/>

 </categoryBag>

</find_business>

<serviceList generic="1.0" operator="UDDIOperator"

 truncated="false" xmlns="urn:uddi-org:api">

 <serviceInfos>

 <serviceInfo businessKey="D7B8D630-59E7-11D5-9675-95373BEF0080"

 serviceKey="BFEF1360-5A1F-11D5-8DC6-B0C1144E197E">

 <name>Check Order Status</name>

 </serviceInfo>

 </serviceInfos>

</serviceList>

The find_binding Operation

Usually the last step in the browsing activity, the find_binding operation, is used to find
binding templates within a business service (see Figure 7.28). The root service key,
presumably found with a previous find_service call, is passed as an attribute. The
tModelBag element, as in the other find calls, is a container for one or more tModelKey
elements, and is used to pass a set of tModel references to be matched by the binding
templates. Here is the find_binding message structure:

<find_binding serviceKey="uuid_key" generic="1.0" [maxRows="nn"]

 xmlns="urn:uddi-org:api">

 [<findQualifiers/>]

 <tModelBag/>

</find_binding>

Figure 7.28. The find_binding message structure.

The find_binding operation returns a bindingDetail structure (see Figure 7.29) that
contains a set of bindingTemplate elements if the search is successful. Otherwise, it is
empty. This operation is slightly different in spirit from the other find operations in that
its end result is a set of detailed information about the bindings, and not just references
to the bindings. In other words, it returns a Detail structure and not a List structure.
Another important consideration is that, because of the effect of the hostingRedirector
element, the operation might return bindings that are not part of the business service
that was passed as a parameter. This will happen if there are bindings that match the
tModelBag references and that are not owned by the root business entity, because they
are part of services being redirected to another hosting organization (maybe an
aggregator or an ASP) using the hostingRedirector element.

Figure 7.29. The bindingDetail structure.

By drilling down, we have now found the service we are looking for (Check Order Status).
We next need to know if SkatesTown has an HTTP binding for that service. We know the
HTTP service tModel key because it's one of the core tModels. We can supply that
tModel key as parameter to the find_binding message:

<find_binding generic="1.0"

 serviceKey="BFEF1360-5A1F-11D5-8DC6-B0C1144E197E"

 maxRows="2" xmlns="urn:uddi-org:api">>

 <tModelBag>

 <tModelKey>uuid:68DE9E80-AD09-469D-8A37-088422BFBC36</tModelKey>

 </tModelBag>

</find_binding>

This will return the (at most two) bindingDetail structure containing the
bindingTemplate for the Web-based binding of the Check Order Status service.

The find_tModel Operation

The find_tModel operation is almost identical in all aspects to the find_business and
find_service operations, both in terms of the parameters that it takes and the type of
results it returns (see Figure 7.30):

<find_tModel generic="1.0" [maxRows="nn"] xmlns="urn:uddi-org:api">

 [<findQualifiers/>]

 <name/> | <identifierBag/> | <categoryBag/>

</find_tModel>

Figure 7.30. The find_tModel message structure.

The operation returns a tModelList structure (see Figure 7.31), which follows the same
principle as the other List structures. Consequently, the tModelInfos structure contains
a set of tModelInfo elements if the search is successful, or is empty otherwise. If the
Operator site deems the number of hits too large, the serviceList set is truncated and
the truncated attribute is set to true.

Figure 7.31. The tModelList structure.

Getting Business and Service Details from a UDDI Registry

As opposed to the find operations, the get_Details operations are generally used, as
their name suggests, to retrieve detail information about specific entities, usually ones
found after using the find operations. They are passed one or more unique reference
keys as parameters and return the details of the corresponding entries in a Detail
structure.

The get_businessDetail Operation

The get_businessDetail operation takes a set of businessKey references and returns a
businessDetail structure, which contains a set of businessEntity elements that
correspond to the passed keys:

<get_businessDetail generic="1.0" xmlns="urn:uddi-org:api">

 <businessKey/>

 [<businessKey/> ...]

</get_businessDetail>

For example, the following message

<get_businessDetail generic="1.0" xmlns="urn:uddi-org:api">

 <businessKey>D7B8D630-59E7-11D5-9675-95373BEF0080</businessKey>

</get_businessDetail>

returns the same businessDetail message shown previously.

The get_serviceDetail Operation

The get_serviceDetail operation takes a set of serviceKey references and returns a
serviceDetail structure, which contains a set of businessService elements that
correspond to the passed keys:

<get_serviceDetail generic="1.0" xmlns="urn:uddi-org:api">

 <serviceKey/>

 [<serviceKey/> ...]

</get_serviceDetail>

The get_bindingDetail Operation

The get_bindingDetail operation takes a set of bindingKey references and returns the
same bindingDetail structure returned by the find_binding operation described
earlier, which contains a set of bindingTemplate elements that correspond to the passed
keys:

<get_bindingDetail generic="1.0" xmlns="urn:uddi-org:api">

 <bindingKey/>

 [<bindingKey/> ...]

</get_bindingDetail>

The get_tModelDetail Operation

The get_tModelDetail operation takes a set of tModelKey references and returns a
tModelDetail structure, which contains a set of tModel elements that correspond to the
passed keys:

<get_tModelDetail generic="1.0" xmlns="urn:uddi-org:api">

 <tModelKey/>

 [<tModelKey/> ...]

</get_tModelDetail>

Summarizing UDDI Version 1.0

In this section, we have explored in detail the UDDI information model and the UDDI API
from the perspective of SkatesTown and some of its customers or potential customers.
So far, an implicit assumption has been that all operations have been performed on a
public UDDI registry. This obviously need not be the case. The next section explores the
concept and applications of private UDDI registries.

Private UDDI Registries

In this section, we talk about implementations of the UDDI specification outside the

context of the UDDI Business Registry. We use the term private UDDI to refer to
these UDDI registries that are not operator nodes within the UDDI Business Registry.
Many organizations host their own, private implementations of UDDI for various reasons.
We will examine several categories of private UDDI and discuss how SkatesTown,
WeMakeIt Inc., and e-Torus use private UDDI registries.

This section is based on a series of articles published on the IBM developerWorks Web
site (http://www.ibm.com/developerWorks) titled "Role of Private UDDI."

Why Would a Company Host a Private UDDI Registry?

There are several reasons a company would want to host a private UDDI registry. To
address this question, we need to look at why a company would use a UDDI registry at
all, and then examine the circumstances that would encourage them to choose private
UDDI registries.

In the beginning of this chapter, we discussed the role of a service discovery in a service-
oriented architecture (see "The Role of Service Discovery"). The central idea was to
provide a mechanism by which a service provider can communicate the Web service
description to service requestors. A service registry, based on UDDI, is one important
mechanism to publish and search for service descriptions.

UDDI provides a standard message API to publish and find service descriptions from a
repository. This standard is supported and used by many organizations; there are
multiple UDDI registry implementations to choose from.

Some organizations will choose to advertise all of their Web services descriptions in the
UDDI Business Registry. These companies will also use the UDDI Business Registry to
search for any business partner's Web service descriptions. The UDDI Business Registry
is in a well-known location (www.uddi.org) and therefore highly visible on the Web.
Everyone in the Web services community knows about UDDI and knows how to use the
UDDI Business Registry for find and publish. Being advertised in the UDDI Business
Registry maximizes the visibility of the business and the services it makes available to
potential business partners.

The UDDI Business Registry is not the only place to register business and service
descriptions in a UDDI format. Many organizations are choosing to host their own, private
UDDI registries. These companies make this choice for several reasons: control of access
to the information, control over updating the information, and reliability of the content of
the registry. As we discuss later, choosing to host a private UDDI registry does not
preclude also using the UDDI Business Registry. Far from it, many organizations
coordinate the use of their private UDDI registries with occasional access to the UDDI
Business Registry.

The broad visibility of the UDDI Business Registry has a downside for some
organizations. Some organizations want to restrict who is allowed to view sensitive
service description information and the network address at which their Web services are

accessible. For this reason, many organizations choose to advertise just their company in
the UDDI Business Registry; the only Web service they advertise is the UDDI Inquiry API
Web service to one of their private UDDI registries. In this way, potential partners who
are interested in learning more about a business's Web services capabilities are
encouraged to contact the business's private UDDI registry. The business hosting the
private UDDI gains control over access to Web services information through a
registration and authentication scheme. Because it controls its private UDDI registry,
access can be tracked and monitored and, if necessary, follow-up can be initiated with a
potential partner showing interest in the business by executing a find operation.

Some organizations will use a private UDDI registry to control the visibility of service
description information. Some organizations are simply not comfortable with having this
information managed by some other organization, including an open consortium such as
UDDI.org.

For Web services with network location that changes with some frequency, direct control
over changes to the service description entries in UDDI is necessary.

Many organizations will choose to host a private UDDI to ensure consistency of service
description information to support runtime discovery of Web services. This consistency is
at the business level (who is the partner) and how the service is described (use of service
interface definition standards). We illustrate an example of how private UDDI registries
support dynamic find in the "Putting It All Together: WSDL-based UDDI and Dynamic
Find section of this chapter.

The UDDI Business Registry contains business and service information about companies
from a broad range of industries. Very few of these entries are of interest to any given
businessperson searching for a particular partner or Web service implementation. For
those businesses categorized within a particular industry (using the NAICS taxonomy, for
example), not all of these businesses are desired partners. Worse, there is no guarantee
that a company classified in a particular way does, in fact, do business in that industry.
Some organizations will use a private UDDI to ensure that only services from approved
business partners appear in the services registry. As new partners are approved, their
UDDI entries are added to the private UDDI registry. As business relationships dissolve,
the UDDI entries for those partners are removed.

The flexibility provided by UDDI to register services regardless of how they are described
is both a benefit and drawback for users. Many organizations, such as SkatesTown, have
standardized on WSDL as the mechanism for IDL-level service description. These
companies have adopted tooling to enable their applications to bind to Web services
described using WSDL. Web services registered in UDDI that use some other service
description technique, such as an ASCII text document, are not useful to these
applications. Organizations that have standardized on a common service description
mechanism, such as WSDL, will use a private UDDI to make sure that the entries in their
service registry also use WSDL as the mechanism of service description. We discuss the
convention for using UDDI to register Web services using WSDL in a later section, "Using
WSDL with UDDI." Further, most organizations have enabled their applications to
consume Web services of a given type. If a Web service is not based on one of a pre-
selected set of Web service types, then it is not useful to the business's applications and,
therefore, should not be registered in their private UDDI registry.

A private UDDI registry, therefore, offers a target-rich environment so that an
application, at runtime, can do a find against the registry. A business policy, defined by
human developers at design time, is used as the search pattern in the find operation. The
search pattern describes desired Web service type and other characteristics, such as non-
functional requirements such specific to the business policy. The Web services discovered
by this search criteria will fit the business need of the application, be in a format that is
directly consumable by the application, and be hosted by a known and approved business
partner.

Supporting dynamic runtime discovery and binding to Web services at runtime is one of
the key points of flexibility in a service-oriented architecture. This flexibility is important
to the characteristic of loosely coupled application integration, either within an
organization or between business partners.

Let's take a look at five types of private UDDI node and examine how SkatesTown,
WeMakeIt Inc., and e-Torus use them.

Five Types of Private UDDI

The UDDI specification was defined to allow the possibility of private UDDI registries. A
private UDDI registry can implement some or all of the UDDI APIs. A private UDDI is
certainly not bound to any restrictions articulated by the UDDI Operator's agreement,
and in particular, does not participate in the replication mechanism within the UDDI
Business Registry. A private UDDI registry might alter the behavior of the common UDDI
operations, for example, requiring an authentication SOAP header on the find operations.
A private UDDI registry can offer additional APIs over and above those defined by the
UDDI specification.

There are five broad categories of private UDDI use, summarized here and described in
more detail in the following sections:

• E-marketplace UDDI

• Portal UDDI

• Partner catalog UDDI (also known as Vetted partners or rolodex-like

UDDI)

• Internal Enterprise Application Integration UDDI

• Test Bed UDDI

E-Marketplace UDDI

This type of private UDDI node would be hosted by an e-marketplace, an industry
standards organization, or some other consortium of organizations that
compete/participate in an industry. All publish and find (inquiry) APIs are typically
deployed for Internet access.

The e-Torus organization hosts an e-marketplace private UDDI on its Web site. All buyers
and sellers of small wheels, nylon, steel and aluminum, and related components such as
wheel bearings, come to this site and use this private UDDI registry.

The entries in the e-marketplace type of private UDDI are all related to businesses within
a particular industry or narrow range of related industries. Further, the membership
process allows the entries in this UDDI to be pre-filtered to include only legitimate
businesses participating in the industry. The membership process can also restrict who is
allowed to invoke find operations against the UDDI node.

The e-Torus organization provides a mechanism for registration at its Web site. Each user
from each participating member organization must register with the e-Torus Web site to
receive an authentication token. This registration and the corresponding authentication
token is associated with the e-Torus business registry example of identifierBags
discussed in "More on Classification and Categorization." This authentication token can be
stored as a cookie on a Web browser. The authentication token must be included as a
SOAP header on any find operation and is required by the UDDI API specification to be
part of any publish operation issued against e-Torus's private e-marketplace UDDI. This
authentication token allows e-Torus to track which members are doing publish and find

operations, and support a small subscription fee for the size and number of publish
operations done by each company, as well as the number of find operations and the size
of the result sets.

An e-marketplace UDDI is a target-rich environment for finding Web services metadata
for doing business within a particular e-marketplace or industry. The e-marketplace
hosted by e-Torus is clearly the place to be seen in the small wheel and bearing world.
The e-marketplace UDDI is also the logical place to find industry-specific custom
taxonomies (standard product coding hierarchies, specializations of NAICS categories,
etc.) as well as standard Web service interface definition tModels for common business
processes in the industry.

As detailed in the section "Using WSDL With UDDI," e-Torus hosts a set of standard
tModels for Web services used in this e-marketplace. This set of tModels includes
standards for synchronous priceCheck (based on work donated to e-Torus by
SkatesTown), formal asynchronous RFQ, and purchase order placement. These standard
Web service types are all based on a common orders suite WSDL document managed by
e-Torus.

This type of private UDDI allows an e-marketplace organization to provide value-add to
Web services advertisement and searching, such as: providing Quality of Service (QoS)
monitoring on the partner's Web services response times, doing better business bureau–
style industry self monitoring of business practices of its member's Web services, and so
on.

An e-marketplace type of private UDDI registry is where finds in serious machine-to-
machine B2B can happen. Because e-Torus monitors the participants in the e-
marketplace, SkatesTown can trust that the entries in the e-Torus UDDI registry are all
legitimate suppliers. As we detail in the section "Using WSDL with UDDI," SkatesTown
can do a find against the e-Torus e-marketplace UDDI node to discover all the suppliers
of nylon wheels for skateboards as part of the dynamic bind implementation of the
priceCheck feature of its reorder application. The e-Torus organization is considering a
value-add feature that sorts the result set of a particular kind of find operation for RFQ
service, by price value returned by invoking the business's priceCheck Web service.

Portal UDDI

Web services technology is defining the standard way to use the Internet for machine-to-
machine B2B. This use of the Internet can be contrasted with the current browser-based
or HTML-based World Wide Web by calling it the semantic Web or the transactional Web.
(See Chapter 9, "Future Concepts.") Just as a company has a Web presence on the
browser-based World Wide Web (http://www.WeMakeIt.com), so too might it have
presence on the semantic web (such as
http://www.WeMakeIt.com/services/uddi/servlet/uddi). The private UDDI representing
the organization's semantic Web presence is called a portal UDDI.

The portal UDDI hosted by WeMakeIt Inc. resides within the company's demilitarized
zone (DMZ), part of WeMakeIt Inc.'s edge of the network architecture. The entries in
WeMakeIt Inc.'s private portal UDDI registry contain descriptions for those Web services
that WeMakeIt Inc. wishes to provide to external partners. Clearly, it is in the company's
interests to keep the find APIs available from the Internet; however, WeMakeIt Inc. does
not allow access to the publish APIs from the Internet, restricting publish to internal
processes only. WeMakeIt Inc. also hosts its product code taxonomy in its private Portal
UDDI registry. Partners that wish to do business with WeMakeIt Inc. examine its private
Portal UDDI registry to determine what formats the company accepts for purchase orders
and the WSDL description of the purchase order placement service, including its network
address.

When WeMakeIt Inc. wants to deploy a new Web service, it publishes the Web service's
description to its portal UDDI.

As part of WeMakeIt Inc.'s businessEntity registration in the UDDI Business Registry,
the URL for its private Portal UDDI registry is used as a discoveryURL element, with the
useType attribute set to urn:uddi-inquiry-api. A segment of WeMakeIt Inc.'s
businessEntity entry is shown here:

<businessEntity authorizedName="..."

 businessKey="DCD2B450-A4C0-11D5-AF98-BD95162D3AC9" ...>

 <discoveryURLs>

 <discoveryURL useType="businessEntity">

 http://www.someoperator.com/uddiget?businessKey=EF433600...

 </discoveryURL>

 <discoveryURL useType="urn:uddi-inquiry-api">

 http://www.WeMakeIt.com/services/uddi/servlet/uddi

 </discoveryURL>

 </discoveryURLs>

 <name>WeMakeIt Inc.</name>

...

</businessEntity>

The portal type of private UDDI registry gives a company ultimate control over how
metadata describing its Web services is used. For example, companies are free to restrict
find access to the registry. Companies are free to tailor the response to find and get
operations based on some property associated with the requestor (such as gold member
status). Companies are able to monitor and manage the number of find operations being
made against their data and potentially derive information about the interested parties.

Partner Catalog UDDI

This type of private UDDI node sits behind the firewall. It provides a very target-rich
environment against which Web services finds and binds can be made. A partner catalog
UDDI registry contains only Web service description metadata published by trusted
business partners. WeMakeIt Inc. has a partner catalog UDDI registry containing entries
for those organizations with which it has formal business relationships. In most cases,
neither the publish nor find APIs to the partner catalog UDDI registry are available over
the Internet; restricting access to all APIs to internal applications only.

Businesses today do business with organizations they know. The use of this mechanism
allows an organization to build applications in a service-oriented way, taking advantage
of dynamic binding against Web services at runtime based on a Web service interface
built into the application at design time. This style of programming is described in a later
section, "Putting It All Together: WSDL-Based UDDI and Dynamic Find." Because the
partner catalog UDDI registry contains only approved business partners, this style of
dynamic binding does not imply the risk of dealing with an unknown service provider. No
matter which Web service is returned by the find operation, we know it is provided by a
validated business partner.

WeMakeIt Inc. uses its partner catalog private UDDI to help in its own supply chain
automation systems. Web services technology allows WeMakeIt Inc. to do process
integration with their suppliers. Using Web services, WeMakeIt Inc. can reduce
transaction costs for supply chain tasks, such as supply reordering, in a way that does
not lock them into any particular supplier. The management at WeMakeIt Inc. agrees to
do business with some supplier. Joanna Pravard examines the UDDI entries for that
partner (either from the UDDI Business Registry, an e-marketplace UDDI like e-Torus, or
the supplier's portal UDDI). Joanna copies these entries into WeMakeIt Inc.'s partner
catalog UDDI. This process is repeated for each supplier, as new suppliers are found and
business terms are negotiated. The set of suppliers change over time as business
relationships are formed and dissolved. Changes to this set are reflected by changes in
the entries within WeMakeIt Inc.'s partner catalog UDDI registry.

Proxies are generated from WSDL service interface definitions by WeMakeIt Inc.'s
developers. WeMakeIt Inc.'s applications are coded to use these proxies and to do finds
against its partner catalog private UDDI registry. The applications do not need to be
recoded to cope with the changing list of approved partners. The application uses the
UDDI entries to determine the set of available Web services and chooses one or more of
the best Web services from this set to invoke. This choice is based upon WeMakeIt Inc.'s
business policies, such as choosing the best price, best delivery terms, and so on. The
Web service of the supplier is then invoked by the application and business is done.

To make this dynamic binding application support complete, Joanna Pravard places
restrictions on the kinds of entries that can be published into the partner catalog UDDI
registry. Joanna works with each supplier to make sure the supplier's businessServices
are properly categorized according to WeMakeIt Inc.'s product code taxonomy. Joanna
makes sure that each businessService follows the standard convention for publishing
WSDL using UDDI (see "Using WSDL with UDDI"). And further, Joanna makes sure that
each tModel referenced by these businessServices is from a set of approved, standard
tModels supported by WeMakeIt Inc.'s applications. This allows Joanna to guarantee the
shape of entries that are placed within the UDDI node and, therefore, what applications
can expect in response to find operations.

Internal Enterprise Application Integration UDDI

The Internal Enterprise Application Integration (EAI) type of UDDI registry is similar to
the partner catalog type, except it contains entries for Web services provided by other
departments or groups within an organization. Many organizations treat their partner
catalog UDDI and Internal Enterprise Application Integration UDDI as logical views on the
same physical registry.

The major difference that separates the Internal EAI type of private UDDI from the
partner catalog type is the potential for common administrative domain that can dictate
standards (which tModels are used, common use of WSDL portTypes, and so on). This
allows the Internal EAI type of UDDI registry to operate with different publish restrictions
than those suggested for the partner catalog type. For example, the Internal EAI UDDI
registry could restrict the publication of new tModels and thereby restrict publishing of
businessService entries and bindingTemplate entries to accept only entries associated
with a fixed set of tModels. The fixed set of tModels corresponds to the technology
standards chosen by the decision makers controlling the common administrative domain.

Of course, this kind of UDDI registry exists completely hidden behind the organization's
firewall. Publish and find operations are restricted to applications within the organization.

Test UDDI

Programmers use this type of private UDDI registry to test applications. The testing can
be for both requestor applications and provider Web services.

SkatesTown uses this type of private UDDI registry to test that the UDDI entries
describing its purchase order placement Web service were accurate and that UDDI-aware
tools can generate proxies from the UDDI entries to access its purchase order placement
Web service.

WeMakeIt Inc. also uses a test UDDI to test its applications' ability to cope with external
services. For example, Joanna Pravard uses a test UDDI to make sure that different
variants of the RFQ Web service provided by various suppliers all run correctly with
WeMakeIt Inc.'s reorder application. Joanna runs trials against any new UDDI entry
discovered from the UDDI Business Registry, any e-marketplace such as e-Torus' e-
marketplace private UDDI, or a supplier's private portal UDDI. Joanna copies a UDDI
entry from the source UDDI registry to the test UDDI first, then runs a battery of tests to
make sure WeMakeIt Inc.'s applications can use the information found in the entry and
then, only after testing, she promotes the entry to the WeMakeIt Inc.'s partner catalog

UDDI. The notion of promote is used here to describe copying a UDDI entry from one
UDDI registry to another. A UDDI entry can be promoted from one registry to another
using a variety of techniques including: manual re-publication of the UDDI entry
(destroying the correspondence between the UUID keys of each entry), or using a
modified API that allows a record to be created in a UDDI repository with UUID keys
already assigned. Techniques to facilitate promotion are being considered as part of the
UDDI Version 3.0 specification.

What's New in UDDI Version 2.0?

A lot has happened in the UDDI community since Version 1.0 of the UDDI specification
was released on September 6, 2000. The UDDI community has broadened from the three
charter members (Ariba, IBM, and Microsoft) to include over 280 advisory group
members! As a result of this influx of additional contributors (and hence their
requirements), UDDI has increased in scope and functionality. Let's briefly highlight the
new functionality covered in UDDI v2.0 and then detail how these features can be used
by SkatesTown or WeMakeIt Inc.

These changes are documented in the Version 2.0 UDDI specification documentation set
available at www.uddi.org (copyright © 2001 by Accenture, Ariba, Inc., Commerce One,
Inc., Compaq Computer Corporation, Equifax, Inc., Fujitsu Limited, Hewlett-Packard
Company, 12 Technologies, Inc., Intel Corporation, International Business Machines
Corporation, Microsoft Corporation, Oracle Corporation, SAP AG, Sun Microsystems, Inc.,
and Verisign, Inc. All Rights Reserved). This specification was released on June 8, 2001.

Overview of Changes in UDDI V2.0

We can categorize the changes from Version 1.0 to Version 2.0 of the UDDI specification
into these broad areas:

• Third-party taxonomy support

• Modeling business relationships with assertions

• Changes to the Inquiry API

• Changes to the Publication API

• Other minor, miscellaneous changes

Overall, none of these changes have a dramatic impact on SkatesTown or WeMakeIt Inc.,
but some of the changes are useful for WeMakeIt Inc. The changes are incremental in
nature, and outside of the assertions and perhaps the third-party taxonomy feature
described next, the changes are not likely to be dramatically exploited by SkatesTown,
WeMakeIt Inc., or organizations like them.

Third-Party Taxonomies

Taxonomies are the primary means in UDDI of organizing and, therefore, searching for
entries. UDDI Version 2.0 added a feature by which third parties could specify new
taxonomies and provide a service by which UDDI registries, in particular operator nodes
within the UDDI Business Registry, could validate categorizations asserted against a
taxonomy developed by a third party. Most of the new findQualifiers (see the section
"New Find Qualifiers") added in UDDI Version 2.0 are suited for referencing these third-
party taxonomies in find messages.

Why would anyone want to define a new taxonomy? UDDI provides, by default, three
canonical taxonomies: NAICS, for industry classifications; UN/SPSC, for product/service
classifications; and ISO 3166, for geographic classifications. These general-purpose
taxonomies are quite useful for broadly classifying businesses or services. However, a
particular industry might want to define a new taxonomy to detail product classifications
according to a scheme commonly used in their industry. A third-party QoS guarantor
might wish to define an identifier scheme, classifying businesses and their services
according to some new QoS metric for Web services. Organizations can choose to convert
their product codes into a taxonomy and categorize which businessService entries are
associated with requesting, purchasing, and getting post-sales support on each of their
products.

WeMakeIt Inc. decides to create a canonical parts code scheme for all the parts
WeMakeIt Inc. uses in its manufacturing lines. Because WeMakeIt Inc. is a manufacturer
of a wide and frequently changing variety of goods, this list of product codes is constantly
updated. By creating this taxonomy, WeMakeIt Inc. can make its private UDDI partner
catalog registry extremely useful. WeMakeIt Inc. requires all its suppliers to use Web
services to interact with WeMakeIt Inc.'s automated supply reordering system. All the
partners are required to categorize their UDDI businessService entries using WeMakeIt
Inc.'s custom parts code taxonomy. In this way, the businessService entries in
WeMakeIt Inc.'s partner catalog UDDI are all classified according to its parts code. When
WeMakeIt Inc. needs to reorder a part, it can issue a taxonomy-based find operation and
retrieve all the business partners that deal in that part. WeMakeIt Inc. can then issue
RFQs, purchase orders, and so on, to resupply a manufacturing line, or to just-in-time
prepare for an upcoming manufacturing run.

Let's examine the steps WeMakeIt Inc. used to set up its third-party taxonomy.

First, WeMakeIt Inc. used their existing product code scheme as the basis of the
taxonomy. It created a relational database containing product codes for the 10,000 or so
supplies that it has ever ordered in the past. WeMakeIt Inc. built a small Web-based
application to browse the database, displaying code to product name mappings.

Next, WeMakeIt Inc. created a tModel to describe its product code taxonomy and
register it in the UDDI Business Registry. Alternatively, WeMakeIt Inc. could have created
the tModel in its own portal private UDDI registry and promoted it to the UDDI Business
Registry. Regardless, the save_tModel message looks like this:

<save_tModel generic="2.0" xmlns="urn:uddi-org:api_v2" >

 <authInfo>...</authInfo>

 <tModel tModelKey="">

 <name>WeMakeIt Product Code Taxonomy</name>

 <description xml:lang="en">WeMakeIt Inc. classfies all its supplies...

 </description>

 <overviewDoc>

 <overviewURL>

 http://www.wemakeit.com/supplies/browseReorderCatalog

 </overviewURL>

 </overviewDoc>

 <categoryBag>

 <keyedReference

 keyName="TModel categorization type"

 keyValue="categorization"

 tModelKey="UUID:C1ACF26D-9672-4404-9D70-39B756E62AB4"/>

 <!-- UDDI Types tModelKey -->

 </categoryBag>

 </tModel>

</save_tModel>

The tModelKey assigned by the UDDI registry (say, UUID:E0AC1230-4CC1-11D5-B353-
B4D70FD31643) is remembered and documented in the Web pages associated with the
reorder catalog browser WeMakeIt Inc. hosts at
http://www.wemakeit.com/supplies/browseReorderCatalog. This entry categorizes
WeMakeIt Inc.'s product code scheme as a categorization tModel. WeMakeIt Inc. tells all
its suppliers to get this tModel and use it to classify their businessEntity and
businessServices according to which of these product codes the supplier provides.

Because WeMakeIt Inc. wants their suppliers properly categorized, it provides a
validation mechanism for its taxonomy. WeMakeIt Inc. sets up a Web service to validate
any UDDI entry that is categorized using its custom taxonomy. This Web service is
conformant to the validate_values requirements specified in the UDDI Version 2.0
programmer's API. WeMakeIt Inc. registers this service with the UDDI Business Registry
using the mechanism specified by the operator node that controls WeMakeIt Inc.'s
entries. It tells all its suppliers to reference this validate_values Web service with their
private portal UDDI registries.

Without this effort, WeMakeIt Inc.'s custom taxonomy will remained unchecked. The
difference between a checked and an unchecked taxonomy is fairly important. With a
checked taxonomy, any save_business, save_service, or save_tModel (although
save_tModel is unlikely to use WeMakeIt Inc.'s taxonomy) that references this taxonomy
will use the validate_values service published by WeMakeIt Inc. If an entry specifies an
invalid category, or WeMakeIt Inc.'s validate_values service returns an error for some
reason, the save operation for the entry fails.

If WeMakeIt Inc. developed an unchecked taxonomy, there would be no way that its
suppliers could ensure that their classifications accurately reflected WeMakeIt Inc.'s
supplies coding scheme.

Let's examine WeMakeIt Inc.'s validate_values Web service in a little more detail.

The UDDI registry that is attempting to validate the use of WeMakeIt Inc.'s taxonomy
would send a validate_values message to the service registered by WeMakeIt Inc. with
that registry. Details of the taxonomy validation service are specific to each UDDI
registry implementation.

The validate_values message syntax looks like this:

<validate_values generic="2.0" xmlns="urn:uddi-org:api_v2">

 <businessEntity/>... | <businessService/>... | <tModel/>...

<validate_values>

In the case of WeMakeIt Inc., its validate_values service would receive this message,
extract the key values used in any keyedReference element referencing its taxonomy
tModelKey, and do a simple lookup of this keyValue against its product code database to
make sure the keyValue used by the entry's categorization is a valid value. Its
validate_values service ignores all other details of the entry being categorized.

The validate_values service must return a dispositionReport as specified in the
UDDI Version 2.0 API specification with errorCode set to E_success and errno set to the
value 0. If an error occurs (for example, if one of the keyValues is not within the product
code set), the service must return a SOAP fault containing a dispositionReport
containing the error details. In this case, the only error that would be returned from
WeMakeIt Inc.'s validate_values service is E_invalidValue. The error text, of course,
indicates which keyedReference element caused the error. Only the first error is
reported.

Modeling Relationships between businessEntity Entries

In UDDI Version 1.0, each company is represented by a single businessEntity. So,
small organizations like SkatesTown were modeled with the same technique as larger,
more complicated organizations like WeMakeIt Inc. Prior to UDDI Version 2.0, UDDI
provided no formal mechanism to model the relationship between individual business
units within a large organization.

The feature of publication assertions was introduced in UDDI Version 2.0 to address the
publication needs of large, complex organizations. Any pair of businessEntity entries
can be associated in some fashion, reflecting their business relationship. Using this
feature, the relationship between WeMakeIt Inc. and its subsidiaries in Asia and Europe
can be formally modeled.

A new find message, find_relatedBusinesses, was added to allow requestors to view
these relationships. This new find message is described in more detail in the section
"Added find_relatedBusiness Message". The only relationships visible through the
find_relatedBusinesses message are those that have been validated by the owners of
both businessEntity entries. The businessEntity relationship feature was built this
way to avoid false and misleading claims about the relationships between one business
and another. Unless both parties assert the relationship exists, it is not visible from
UDDI.

Let's review how WeMakeIt Inc. would create the relationships between the
businessEntity representing the corporate holding company WeMakeIt Inc. and its two
subsidiaries, WeMakeIt Asia Inc. and WeMakeIt Europe PLC.

First, WeMakeIt Inc. would create businessEntity entries for all three business units,
using the save_business message. Let's assume these entries are created in WeMakeIt
Inc.'s private portal UDDI node and later promoted to the UDDI Business Registry. The
example would be the same if WeMakeIt Inc. did all this registration in the UDDI
Business Registry. In the case of WeMakeIt Inc., Joanna Pravard manages the UDDI
entries in WeMakeIt Inc.'s private UDDI registries, as well as the UDDI Business Registry.
For other, more complicated organizations, different people might manage each
businessEntity separately.

Joanna must now make several publisher assertions to describe the relationships
between WeMakeIt Inc. and its two subsidiaries:

• Assert that WeMakeIt Inc. is the parent of WeMakeIt Asia Inc.

• Assert that WeMakeIt Asia Inc. is a child of WeMakeIt Inc.

• Assert that WeMakeIt Inc. is the parent of WeMakeIt Europe PLC.

• Assert that WeMakeIt Europe PLC. is a child of WeMakeIt Inc.

After the first two assertions are made, using the add_publisherAssertions message
(described later), the relationship between WeMakeIt Inc. and WeMakeIt Asia Inc. would
be visible through the find_relatedBusinesses message. After the last two assertions
are made, the relationship between WeMakeIt Inc. and WeMakeIt Europe PLC would be
visible. Note that Joanna could make all four assertions at once using a single invocation
of add_publisherAssertions like this:

<add_publisherAssertions generic="2.0" xmlns="urn:uddi-org:api_v2" >

 <authInfo>...</authInfo>

 <publisherAssertion>

 <!-- BusinessKey for WeMakeIt Inc.-->

 <fromKey>DCD2B450-A4C0-11D5-AF98-BD95162D3AC9</fromKey>

 <!-- BusinessKey for WeMakeIt Inc. Asia -->

 <toKey>DCD5C190-A4C0-11D5-AF98-BD95162D3AC9</fromKey>

 <keyedReference

 tModelKey="uuid:807A2C6A-EE22-470d-ADC7-E0424A337C03"

 keyValue="parent-child"/>

 </publisherAssertion>

 <publisherAssertion>

 <!-- BusinessKey for WeMakeIt Inc.-->

 <fromKey>DCD2B450-A4C0-11D5-AF98-BD95162D3AC9</fromKey>

 <!-- BusinessKey for WeMakeIt Inc. Europe -->

 <toKey>DCD5C191-A4C0-11D5-AF98-BD95162D3AC9</fromKey>

 <keyedReference

 tModelKey="uuid:807A2C6A-EE22-470d-ADC7-E0424A337C03"

 keyValue="parent-child"/>

 </publisherAssertion>

 <!-- etc. for the other two assertions -->

</add_publisherAssertions>

Note the use of keyedReference in the add_publisherAssertions message. The
business relationships feature of UDDI makes use of a special, canonical tModel to
specify the different kinds of relationships. There are three possible key values for the
relationships tModel in UDDI Version 2.0:

• parent-child— The businessEntity represented by the fromKey is the parent of
the businessEntity represented by the toKey. This value is used in the previous
example.

• peer-peer— The businessEntities represented by the toKey and fromKey are
peers. It is not likely this form will be used very frequently outside of private
UDDI registries.

• identity— The two businessEntities are the same organization.

As a result of issuing this add_publisherAssertions message, the assertions that
appear in the find_relatedBusinesses example would be visible.

After Joanna registers this information with the UDDI Business Registry, she should
occasionally issue a get_assertionStatusReport, which will tell her if any other
individual has attempted to assert a relationship with any of Joanna's businessEntity
entries. Joanna will, of course, reject each of these assertions, simply by not acting. If
the relationship is not mutually asserted, it is not visible.

To summarize the components described in this section, UDDI has defined a business
relationship facility based on pair-wise assertions of the relationship between two
businessEntity elements. To support this, UDDI Version 2.0 added the following:

• The find_relatedBusiness message to the inquiry API

• Five new messages to the publisher's API: add_publisherAssertions,

set_publisherAssertions, delete_publisherAssertions,

get_assertionStatusReport, and get_publisherAssertions (see the

section "Changes to the Publication API")

• One additional canonical tModel, to represent UDDI businessEntity

relationship descriptions

Changes to the Inquiry API

The find operation in UDDI has increased in sophistication. Version 2.0 of UDDI has
introduced changes in the following find-related areas:

• Added a find_relatedBusinesses message

• Multiple language support for business and service names

• Less restrictive find_business

• New find qualifiers

Added find_relatedBusinesses Message

This new message was added to the UDDI Version 2.0 Inquiry API as part of the new
facility to model relationships between businessEntities (see "Modeling Relationships
between businessEntity Entries"). The find_relatedBusinesses message is used to
return a list of businessEntities related in some specified way with a target
businessEntity.

The structure of the find_relatedBusinesses message looks like this:

<find_relatedBusinesses generic="2.0" xmlns="urn:uddi-org:api_v2" >

 [<findQualifiers/>]

 <businessKey/>

 [<keyedReference/>]

</find_relatedBusinesses>

The target of the search is specified by the required businessKey argument. This
argument is the UUID of the businessEntity. The businessEntity must be present
within the UDDI registry.

Like all the other find messages in the Inquiry API, the results found in the response
message are subject to the values of the findQualifiers arguments. A discussion on
the use of findQualifiers argument in find messages can be found in the section
"Finding Information in a UDDI Registry."

The keyedReference argument can be used to restrict which related businessEntities
are returned in the response message. This argument is optional and can appear at most
once in the message. The value of the keyedReference should reference the uddi-
org:relationships tModel, and keyValues should be taken from the small set of values
associated with this tModel.

For example, if a potential client wished to determine what subsidiaries WeMakeIt Inc.
had registered with its entry in the UDDI Business Registry, it would use the following
find message:

<find_relatedBusinesses generic="2.0" xmlns="urn:uddi-org:api_v2" >

 <businessKey>DCD2B450-A4C0-11D5-AF98-BD95162D3AC9</businessKey>

 <keyedReference

 tModelKey= "uuid:807A2C6A-EE22-470d-ADC7-E0424A337C03"

 keyValue="parent-child"/>

</find_relatedBusinesses>

Of course, the client would use a find_business message to locate the UUID
businessKey for WeMakeIt Inc. The keyValue attribute in the keyedReference element
was set to "parent-child", reflecting that the client is looking for "child"
businessEntities (subsidiaries) of WeMakeIt Inc.

The result of this message is a list of businessEntities that WeMakeIt Inc. asserted
were its child or subsidiary businessEntities. The following would be the response to
the find_relatedBusinesses example message:

<relatedBusinessList generic="2.0" operator="uddi.anOperator"

 xmlns="urn:uddi-org:api_v2.0">

 <businessKey>DCD2B450-A4C0-11D5-AF98-BD95162D3AC9</businessKey>

 <relatedBusinessInfos>

 <relatedBusinessInfo>

 <businessKey>DCD5C190-A4C0-11D5-AF98-BD95162D3AC9</businessKey>

 <name>WeMakeIt Asia Inc.</name>

 <description>WeMakeIt Asia provides outsourced man...</description>

 <sharedRelationships>

 <keyedReference

 tModelKey=""uuid:807A2C6A..."

 keyValue="parent-child"/>

 </sharedRelationships>

 </relatedBusinessInfo>

 <relatedBusinessInfo>

 <businessKey>DCD5C191-A4C0-11D5-AF98-BD95162D3AC9</businessKey>

 <name>WeMakeIt Europe Plc.</name>

 <description>WeMakeIt Europe provides outsourced m...</description>

 <sharedRelationships>

 <keyedReference

 tModelKey=""uuid:807A2C6A..."

 keyValue="parent-child"/>

 </sharedRelationships>

 </relatedBusinessInfo>

 ...

 </relatedBusinessInfos>

</relatedBusinessList>

Of course, if there are no related businesses to the target businessEntity, then the
response message would contain an empty relatedBusinessInfos element. An error
message will be returned if the businessKey argument does not correspond to a target
businessEntity in the registry or (like any other find message) if one of the
findQualifiers arguments is invalid.

Multiple Language Support for Business and Service Names

One extremely useful enhancement in Version 2.0 of UDDI is its support for multiple
names for businessEntity and multiple names for businessService. The primary
purpose of this change is to support multiple language translations of the business or
service name.

WeMakeIt Inc. intends to exploit this feature in its businessEntity entry in the UDDI
Business Registry. Whereas previously the company included only the English version of
its name, WeMakeIt Inc. intends to include a Spanish and French translation of the name
to serve the entire North American Free Trade Zone market and to assist in winning
contracts with clients in the European Union.

Here is the new businessEntity entry for WeMakeIt Inc.:

<businessEntity

 businessKey="DCD2B450-A4C0-11D5-AF98-BD95162D3AC9"

 authorizedName="JPavard"

 operator=...>

 <name>WeMakeIt Inc.</name>

 <name xml:lang="fr">Nous Faisons Tout Inc.</name>

 <name xml:lang="sp">Carbarundo Inc.</name>

 ...

</businessEntity>

Although WeMakeIt Inc. can save its businessEntity elements with any number of child
name elements, at most one of the names (which must be the first name element) can
appear without an xml:lang attribute qualifier. (This is also true for description
elements.) Any additional name element must have a unique xml:lang attribute qualifier.
Note that the first name element (the one without xml:lang attribute) is assigned the
code for US English, because that is the default language Joanna specified when she
registered WeMakeIt Inc. with the UDDI Business Registry.

The impact of the businessEntity name change was great for WeMakeIt Inc., because it
allowed the company to advertise in international markets. However, this name change
facility is also supported the businessService element. This application of the multiple
names facility is perhaps more useful. WeMakeIt Inc. has one businessService
advertised in the UDDI Business Registry, that being its private portal UDDI (see the
earlier discussion of portal UDDI nodes as part of the private UDDI discussion). The
additional language translations available on the name element of businessService
make it easier to find WeMakeIt Inc. The additional service name translations make a
great accompaniment to the language translations of its service descriptions.

Here is the new businessService entry for WeMakeIt Inc., advertising its private portal
UDDI:

<businessService

 businessKey="DCD2B450-A4C0-11D5-AF98-BD95162D3AC9"

 serviceKey="... />

 <name>Private Portal UDDI Inquiry API.</name>

 <name xml:lang="fr">Prive Portal UDDI Inquirer</name>

 ...

</businessService>

UDDI Version 2.0 also makes it easier to find businesses using multiple names (again,
each name element in the query must be in a separate language). Although this feature is
nice in theory, the majority of businesses will use a single name in their UDDI
businessEntity entries. For the record, the new find_business API in Version 2.0
allows up to five names to appear in the query. If any of the name elements in the query
match on both the value of the name element and the language attribute, then the
businessEntity is returned in the result set of the find operation. This feature has also
been defined for the find_service API. WeMakeIt Inc. expects that many international
clients browsing its private portal UDDI node will use this facility.

Less Restrictive find_business

UDDI Version 2.0 reduced some restrictions on the parameters in the find_business
query. In Version 1.0 of UDDI, the find_business service was defined by the UDDI
Programmer's API specification with the following syntax:

<find_business generic="1.0" [maxRows="nn"] xmlns="urn:uddi-org:api" >

 [<findQualifiers/>]

 <name/> | <identifierBag/> | <categoryBag/> | <tModelBag/> |

 <discoveryURLs>

</find_business>

The major consequence of this is that the name, identifierBag, categoryBag,
tModelBag, and discoveryURLs find arguments were all mutually exclusive. If a
find_business had more than one of these arguments specified, the result of the inquiry
would be an error message, of type E_tooManyOptions.

The Version 2.0 find_business removes this restriction. With UDDI Version 2.0, a
programmer at WeMakeIt Inc. can search a UDDI registry for businesses offering Wheel
Bearings (according to the UNSPSC code) that have services based on the e-Torus
standard order suite POPlacement service interface and whose name starts with the
letter A. A rough sketch of the find_business with these parameters is as follows:

<find_business generic="1.0" xmlns="urn:uddi-org:api_v2" >

 <name>A%</name>

 <categoryBag>

 <keyedReference

 <!-- UNSPSC 3.1 -->

 tModelKey="uuid:DB77450D-9FA8-45D4-A7BC-04411D14E384"

 keyName="Wheel bearings"

 keyValue="31171503"/>

 </categoryBag>

 <tModelBag>

 <tModelKey>UUID:D16D8A40-4F07-11D5-B842-87383803123D</tModelKey>

 </tModelBag>

</find_business>

In Version 2.0, the E_tooManyOptions error occurs only when more than five name
arguments are included in the find_business invocation.

New Find Qualifiers

UDDI Version 2.0 added six new values to the permitted set of valid findQualifiers in
find messages. The use of findQualifier arguments in find messages is described
previously in the section "Finding Information in a UDDI Registry."

The new findQualifiers add more flexibility to the find messages. Most of the new
findQualifiers extend the sophistication of categoryBag (for example, taxonomy-
based) or identifierBag find operations. Let's take a brief look at each of the new
findQualifiers.

orLikeKeys

This findQualifier is used on find messages involving categoryBag or identifierBag
arguments. The find behavior specified by the use of this findQualifier is to OR
together any keyedReference elements associated with the same tModelKey (such as
references to the same taxonomy, identifier system, or other namespacing mechanism).
Of course, keyedReference elements from separate tModelKeys are still ANDed
together.

For example, if SkatesTown wanted to find all businesses that are:

• In UNSPSC category 311715 (bearings) or in subcategory 31171503

(wheel bearings), 31171505 (roller bearings), or 31171515 (plain

bearings)

• And also are located in the United States or Canada (Geo taxonomy

codes US and CA)

then the following find_business message would be used:

<find_business generic="2.0" xmlns="urn:uddi-org:api_v2" >

 <findQualifiers>

 <findQualifier>orLikeKeys</findQualifier>

 </findQualifiers>

 <categoryBag>

 <!-- UNSPSC 3.1 patterns -->

 <keyedReference

 tModelKey="uuid:DB77450D-9FA8-45D4-A7BC-04411D14E384"

 keyValue="311715"

 keyName="Bearings"/>

 <keyedReference

 tModelKey="uuid:DB77450D-9FA8-45D4-A7BC-04411D14E384"

 keyValue="31171503"

 keyName="Wheel Bearings"/>

 <keyedReference

 tModelKey="uuid:DB77450D-9FA8-45D4-A7BC-04411D14E384"

 keyValue="31171505"

 keyName="Roller Bearings"/>

 <keyedReference

 tModelKey="uuid:DB77450D-9FA8-45D4-A7BC-04411D14E384"

 keyValue="31171515"

 keyName="Plain Bearings"/>

 <!-- GEO Taxonomy patterns ISO 3166-1 -->

 <keyedReference

 tModelKey="uuid:61668105-B6B6-425c-914B-409FB252C36D"

 keyValue="UA"

 keyName="United States"/>

 <keyedReference

 tModelKey="uuid:61668105-B6B6-425c-914B-409FB252C36D"

 keyValue="CA"

 keyName="Canada"/>

 </categoryBag>

</find_business>

This facility is very important to support sophisticated searches of hierarchical
taxonomies (such as UNSPSC) by specifying a categoryBag of all the keyValues
associated with a particular branch of the taxonomy.

orAllKeys

By default, any categoryBag or identifierBag based search uses a logical AND of all
keyedReference elements when matching. The affect of this findQualifier is that all of
this default logical AND behavior is reversed to be logical OR. So if any entry matches
any of the keyedReference elements in any of the categoryBag or identifierBag
arguments, then it is included in the result set of the message.

This findQualifier would be used if SkatesTown wanted to find any business that was
categorized according to UNSPSC code 31171503 (wheel bearings) or 31171515 (plain

bearings) or categorized in NAICS code 33992 (sporting and athletic goods). The
following find_ business message illustrates the use of this findQualifier:

<find_business generic="2.0" xmlns="urn:uddi-org:api_v2" >

 <findQualifiers>

 <findQualifier>orAllKeys</findQualifier>

 </findQualifiers>

 <categoryBag>

 <!-- UN/SPSC patterns -->

 <keyedReference

 tModelKey="uuid:DB77450D-9FA8-45D4-A7BC-04411D14E384"

 keyValue="31171503"

 keyName="Wheel Bearings"/>

 <keyedReference

 tModelKey="uuid:DB77450D-9FA8-45D4-A7BC-04411D14E384"

 keyValue="31171515"

 keyName="Plain Bearings"/>

 <!-- NAICS patterns -->

 <keyedReference

 tModelKey="uuid:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2"

 keyValue="33992"

 keyName="Sporting and Athletic Goods"/>

 </categoryBag>

</find_business>

combineCategoryBags

This is an interesting new wrinkle on the find_business message only. The use of this
findQualifier modifies the behavior of categoryBag-based searches. The idea is that
with this qualifier, the categoryBag of the businessEntity and all contained or
referenced businessService elements are treated as a single, logical, aggregated
categoryBag for purposes of matching. The response message will contain a
businessList containing businessInfo elements for each businessEntity entry whose
logical, aggregated categoryBag matched with any of the keyedReference elements
contained in the categoryBag argument of the find_business message.

SkatesTown would use this feature in the case where some business partners categorized
their businessEntity entries according to NAICS and their businessServices according
to UN/SPSC, whereas other business partners might use both taxonomies for
businessEntity only.

serviceSubset

This is a handy new feature for the find_business message only. This findQualifier
combines with other find arguments to restrict the response set to include only those
businessEntity entries that include businessService elements that are categorized
according to the categoryBag element (the find_business message must include a
categoryBag argument). The categoryBag argument is applied to businessService
elements, not businessEntity elements. The response of this message is a
businessList containing businessEntity entries that contain or reference those
businessServices whose categoryBag element matches the technical fingerprint
specified in the categoryBag argument of the find operation. The serviceInfo elements
contained within the businessService elements in the response will contain only those
businessService entries matched by the categoryBag comparison (and not all the other
businessServices that businessEntity has registered with the UDDI registry).

So if you are looking for all businesses that implement a service categorized in a
particular way, this is the findQualifier to use. Consider an example find_business
message using the serviceSubset findQualifier. If you wanted to find all businesses
that advertise a businessService for a product within a given UNSPSC code, say
31171503 (wheel bearings), use serviceSubset and the categoryBag identifying the
UNSPSC taxonomy with the key value for the given category. The following is an example
of this kind of find:

<find_business generic="2.0" xmlns="urn:uddi-org:api_v2" >

 <findQualifiers>

 <findQualifier>serviceSubset</findQualifier>

 </findQualifiers>

 <categoryBag>

 <keyedReference

 tModelKey="uuid:DB77450D-9FA8-45D4-A7BC-04411D14E384"

 keyValue="31171503"

 keyName="Wheel Bearings"/>

 </categoryBag>

</find_business>

The result of this message is a list of businessEntities that have services categorized
under the given UNSPSC category, and serviceInfo elements for each of the services so
categorized.

andAllKeys

This findQualifier specifies the default behavior of doing logical AND of any
keyedReference as part of indentifierBag or categoryBag arguments in the find
message. This is the default behavior inherited from UDDI Version 1.0 find messages.
Because the findQualifier orLikeKeys (discussed earlier) was introduced, andAllKeys
was added to the list of valid findQualifier arguments for completeness sake.

Soundex

Soundex is a term used to describe name-based searches for entity names that sound
alike.

This findQualifier can be used on the find_business and find_service messages to
locate businesses or services with similar sounding names. This is the only new
findQualifier not associated with categoryBag-or identifierBag-based find
messages.

A find message that looks like

<find_business generic="2.0" xmlns="urn:uddi-org:api_v2" >

 <findQualifiers>

 <findQualifier>soundex</findQualifier>

 </findQualifiers>

 <name>Wee May Kit</name>

</find_business>

will return a response message with a businessList containing a businessInfo element
for WeMakeIt Inc. and any other businessEntity that sounds like "Wee May Kit." If
multiple name parameters were in the find message (recall in UDDI find_xxx you can
now specify up to five name arguments), the businessList would return entries that
matched any of the names.

Changes to the Publication API

The changes made to the Publication API in UDDI Version 2.0 are all related to the
publication assertions feature supporting the modeling of business relationships in UDDI.
First, a set of five additional messages—add_publisherAssertions,
set_publisherAssertions, delete_publisherAssertions,
get_assertionStatusReport, and get_publisherAssertions—directly manage the
business relationship assertions. Second, a related modification of the save_business
behavior allows a businessService to be shared between businessEntities. The
mechanism of modeling business relationships using the publication assertion feature is
described in the section "Modeling Relationships between businessEntity Entries."

The add_publisherAssertions and delete_publisherAssertions messages are used
to insert, update, and delete individual or small sets of publisher assertions. The
set_publisherAssertions message manages an entire set of assertions as a single set.
The get_publisherAssertions message is used to retrieve the entire set of assertions;
it often will be used in conjunction with the set_publisherAssertions message. Finally,
the set of new messages includes the administrative get_assertionStatusReport
message, which is used to determine which assertions have been made referencing
owned businessEntity entries that have yet to be acknowledged by reciprocal assertion
of the business relationship.

Let's take a closer look at the five new publication messages and discuss how WeMakeIt
Inc. would use these facilities.

add_publisherAssertions

This message is used to add one or more additional publisher assertions associated with
businessEntities owned by the publisher. Like all the publication messages, entries
acted upon must be owned by the user sending the message (the publisher, or
technically the user associated with the authInfo element of the message). We saw in a
previous example that Joanna Pravard would use this message to model the relationship
between WeMakeIt Inc. and its subsidiaries. The benefit of this approach over the
set_publisherAssertions is that assertions can be added incrementally, without having
to refer to the entire set of assertions currently associated with the businessEntity.

delete_publisherAssertions

This message is used to delete one or more publisher assertions associated with
businessEntity entries owned by the publisher. Joanna Pravard would use this message
to remove assertions in case one of the subsidiaries is sold to another company, or one
of the subsidiaries goes out of business.

Of course, another way to delete assertions is to delete one of the businessEntity
entries referred to in the relationship. When the delete_business message executes,
any assertion associated with that businessEntity is also deleted.

set_publisherAssertions

This message is similar to the add_publisherAssertions message, except that it acts on
the entire set of publisher assertions associated with any businessEntity owned by the
user who sends the message (the publisher, or technically the user associated with the
authInfo element of the message). Note that unlike most of the other publication
messages, this affects entries associated with the publisher, not an individual element or
set of elements identified by UUID keys. The result of the message is to replace whatever
set of assertions existed before the message was sent with the assertions contained
within the message. Essentially any existing assertion that is not in the message is
deleted, and any new assertion that is in the message is added.

This message can act as an analog to a delete_publisherAssertions message by
passing an empty set of publisher assertions, deleting the entire set of existing assertions
associated with any businessEntity owned by the publisher.

get_publisherAssertions

This message is used to retrieve the entire set of publisher assertions associated with a
publisher. Joanna Pravard would use this message in preparation to use the
set_publisherAssertions message. Joanna would issue the get_publisherAssertions
message, examine the set of publisher assertions, add a few, remove a few, and then
use this modified set of publisher assertions as the argument in a
set_publisherAssertions message.

get_assertionStatusReport

This message is used to help publishers examine the set of assertions that reference any
of their owned businessEntity entries. Joanna Pravard would use this message to see if
any other publisher attempted to assert a relationship between one of his/her
businessEntity entry and WeMakeIt Inc. Joanna, of course, would ignore these
assertions. Until Joanna acknowledges these assertions by reciprocating with an assertion
of her own, the relationship between WeMakeIt Inc. and the other businessEntity is not
visible.

Sharing Services between businessEntity Entries

Different business units in a company might share Web services. For WeMakeIt Inc., in
the case of their POPlacement Web service, a single instance of this Web service supports
all three operating units. Although it is possible to duplicate businessService entries for
this single Web service and place them separately into each separate businessEntity,
this can become a maintenance headache for Joanna.

As a result of UDDI Version 2.0 modeling relationships between businessEntity entries,
the facility has been added to share businessService entries between businessEntity
entries. The behavior of the save_business message has been modified to allow a
businessService contained by one businessEntity to be shared or referenced by a
different businessEntity.

The save_business message takes one or more entire businessEntity elements as
arguments. A businessEntity element can contain child businessService elements. If
the businessKey child element of businessService has a value that is different from the
businessKey of the businessEntity being saved, the save_business operation will add
a reference from the businessEntity being saved to the businessService. The
referenced businessService itself will not be changed as a result of the save_business
operation.

A reference to a businessService can be removed from a businessEntity by sending a
save_business message for that businessEntity without including a reference to the
businessService in the businessEntity argument passed in the message.

Miscellaneous Changes

Several other smaller changes were made in UDDI Version 2.0, but none of them impact
SkatesTown or WeMakeIt Inc. For the sake of completeness, here is a list of several
other miscellaneous changes that appeared in UDDI Version 2.0.

Generic and Default XML Namespace Updated

Recall that messages in UDDI require the use of the oddly named generic attribute, as
well as the conventional definition of the default XML namespace. Messages intended for
UDDI Version 2.0 compatible registries should include these attributes in the message
element as shown here:

<API_MESSAGE_NAME generic="2.0" xmlns="urn:uddi-org:api_v2" >

These attributes appear to be redundant. The value of having the generic attribute to
distinguish specification version intention seems to be already covered by specifying the
default namespace of the message. The danger of this redundancy is now illustrated as
the first version change in UDDI has been made. This problem is described by the
following passage from the UDDI Version 2.0 API specification:

The use of generic value 1.0 with the UDDI Version 2.0 namespace, or
generic value 2.0 with the UDDI Version 1.0 namespace is not considered
to be a normal use of the versioning mechanism. Individual operators are
permitted to interpret mixed versioning information as an error condition.

The specification does not explicitly dictate the legal combinations of values of these
attributes. The client of the UDDI registry cannot determine what the outcome will be if
the message mixes values for generic and the default namespace. It would have been
better if the specification clearly required this to be an error condition or, better yet,
removed the generic attribute altogether and relied solely on the value of the default
namespace to indicate the version expectation of the message.

Miscellaneous Error Codes Changes

Table 7.2 summarizes the changes made to the expected error codes from Version 1.0 to
Version 2.0.

Table 7.2. Changes in Error Codes for UDDI Version 2.0

Error Code Change Comments
E_categorizationNotAllowed 20100 Retired Version 2.0 uses E_valueNotAllowed.
E_invalidCategory 20000 Retired Version 2.0 uses E_invalidValue

when a keyValue of a category bag
does not correspond to a valid
category.

E_invalidURLPassed 10220 Do Not
Use

Not used in Version 1.0 or Version 2.0.

E_keyRetired 10310 Do Not
Use

Not used in Version 1.0 or Version 2.0;
error in the V1.0 specification.

E_operatorMismatch 10130 Retired Caused precedence problems with
E_unknownUser; error in the V1.0
specification.

SOAPAction Header Use Updated

The role of the SOAPAction HTTP header was described in Chapter 3. Version 1.0 of the
UDDI specification required that this header be left as an empty string. This
recommendation is contrary to how many SOAP engines use SOAPAction as a processing
hint. UDDI Version 2.0 now allows this header to have as a value the name of the API
message contained within the SOAP body element. To support backward compatibility
with UDDI Version 1.0, the SOAPAction header is still permitted to be an empty string.

New Canonical tModels Added

UDDI Version 1.0 established a convention to describe certain UDDI-specific, core
tModels as canonical tModels. This set of canonical tModels described various technical
specifications used in UDDI itself, including:

• Core UDDI API tModels describing the Inquiry API, the Publication

API, and a taxonomy maintenance tModel

• Core tModels representing tModel type system (for categorizing

tModels)

• Core categorization tModels supported by the UDDI Business Registry

(NAICS, UNSPSC, and ISO 3166 Geographic taxonomy), the DUNS

identifier system, and the Thomas Registry

• Protocol-specific tModels representing network protocols, such as

SMTP, FTP, and so on

Version 2.0 augmented the core UDDI API tModels by adding version-specific tModels
for the updated Inquiry, Publication, and taxonomy maintenance APIs:

tModel Name UUID
UDDI Inquiry API v2.0 uuid:AC104DCC-D623-452f-88A7-F8ACD94D9B2B
UDDI Publication API v2.0 uuid:A2F36B65-2D66-4088-ABC7-914D0E05EB9E
UDDI Taxonomy API v2.0 uuid:1E3E9CBC-F8CE-41ab-8F99-88326BAD324A
The uddi-org:types tModel was extended to include two new types. First, a relationship
type was added to support the publication assertions model of representing relationships
between businessEntity entries. Second, an unvalidatable type was added to model
Version 2.0 to categorize tModels representing third party taxonomies that are not
externally validated.

The uddi-org:relationships canonical tModel was also added to support the
publication assertions feature which is new in UDDI Version 2.0. This tModel is, of
course, categorized in the uddi-org:types categorization under the relationship type
category. The use of this tModel to support publication assertions is described in the
section "Modeling Relationships between businessEntity Entries."

Replication Specification Published

Public description of the replication mechanism between operator nodes in the UDDI
Business Registry appeared for the first time with the documentation set for UDDI
Version 2.0. This specification is available at www.uddi.org.

Details of the mechanism used to share changes in UDDI entries between the operator
nodes are interesting, but not of immediate concern to most UDDI users. This level of
detail is, of course, very important to any organization building an implementation of
UDDI that would be used as an operator node within the UDDI Business Registry.

This information might also be important for an organization considering using existing
UDDI implementations to set up a private federation of UDDI registries within an
organization. Large organizations, such as WeMakeIt Inc., might consider creating a
private UDDI Business Registry. WeMakeIt Inc. could deploy a UDDI registry for each
major division, or separate business unit. The replication mechanism could be used to
keep Web service descriptions properly up-to-date between all registries within WeMakeIt
Inc. As it turns out, WeMakeIt Inc. chose to implement a federation of private UDDI
registries without the replication mechanism. The operating units felt that the volume of
changes did not warrant the extra complication of setting up the replication mechanism.
Besides, more targeted facilities, such as copy/paste and publish/subscribe, allowed each
operating unit more fine grained control on which updates were communicated to other
UDDI registries within WeMakeIt Inc.

Clearly, SkatesTown is too small an organization to consider hosting more than one
private UDDI implementation, let alone building a private replication-based federation of
UDDI registries.

Operators Manual Published

Also new in the UDDI Version 2.0 documentation set is a set of details outlining required
behavior of operator nodes within the UDDI Business Registry. This specification is also
available at www.uddi.org. The operators manual is important to WeMakeIt Inc. Although
WeMakeIt Inc. has no intention of becoming an operator within the UDDI Business
Registry, it does need to make sure its validate_values service is properly registered
with the UDDI Business Registry, and, therefore, available to UDDI Business Registry
nodes (and private UDDI registries) to validate the use of WeMakeIt Inc.'s product code
taxonomy.

Using WSDL with UDDI

UDDI was designed to accommodate the registration of businessService entries
regardless of the kind of service description mechanism used. A Web service, registered
in UDDI as a businessService, can be described using WSDL, a plain ASCII text
document, a RosettaNet pip, RDF, or any number of other description mechanisms. This
is one of the aspects of UDDI that makes it generally applicable.

This section is for those developers who use WSDL to describe your Web services and
wish to register them in UDDI. UDDI.org has published a best practices document that
outlines the convention you should use for WSDL-described Web services. UDDI.org
publishes best practices documents at http://www.uddi.org/bestpractices.html. Al Rosen
uses this convention to format the UDDI entries for SkatesTown. Let's examine the steps
that Al needs to do in order to properly register SkatesTown's PriceCheck service.

Saving a UDDI businessService Based on WSDL

In Chapter 6, we reviewed the major elements in WSDL and outlined the Web services
convention of separating service interface definition from service implementation
definition. Figure 7.32 outlines how the major elements of WSDL map into UDDI
elements.

Figure 7.32. Mapping from WSDL to UDDI.

The best practices document for using WSDL in UDDI discusses how to represent the
service interface definition as a tModel. Al Rosen followed an extended convention that
defined how to reference the service implementation definition file from the
bindingTemplate element.

Al starts with the WSDL file for SkatesTown's priceCheck service. We saw this file in
Chapter 6. Al further updates the file from Chapter 6, preparing to save it in UDDI by
decomposing the priceCheck service description into two files. The service interface
definition is available at
www.skatestown.com/services//interfaces/priceCheckInterface.wsdl. The service
implementation definition is available at
http://www.skatestown.com/services/priceCheck.wsdl.

The first thing Al must do is create a tModel to reference the service interface definition.
Al chooses to create this tModel in the UDDI Business Registry itself for maximum
exposure. Al could also have chosen to create this tModel in any private UDDI registry,
but SkatesTown hoped to make this approach to priceCheck a standard among its
supply chain partners, and therefore wanted maximum exposure. The save_service
message looks like this:

<save_tModel generic="1.0" xmlns="urn:uddi-org:api">

 <authInfo>...</authInfo>

 <tModel>

 <name>SkatesTown PriceCheck Service Interface Definition</name>

 <description>This tModel defines the service interface definition

 for priceCheck services.

 </description>

 <overviewDoc>

 <overviewURL>

 http://www.skatesTown.com/services/interfaces/priceCheckInterface.wsdl

 </overviewURL>

 </overviewDoc>

 <categoryBag>

 <keyedReference

 keyName="uddi-org:types"

 keyValue="wsdlSpec"

 tModelKey="UUID:C1ACF26D-9672-4404-9D70-39B756E62AB4"/>

 <!-- UDDI Types tModelKey -->

 </categoryBag>

 </tModel>

</save_tModel>

The key points are:

• The overviewURL element gives the URL to where the service interface

definition WSDL file can be found. This allows humans and UDDI/WSDL-

aware tooling to locate the service interface definition. As we

mentioned in Chapter 6, the goal of acquiring the service interface

definition is to generate a client proxy for the requestor

application.

• The purpose of the keyedReference element in the categoryBag is to

make sure that this tModel is categorized as a WSDL specification

document. UDDI/WSDL-aware tooling relies on consistent categorization

as a guarantee of the contents of the resource referenced by the

overviewURL.

• Remember those tModelKeys! The tModelKey assigned to SkatesTown's

priceCheck tModel must be used in any subsequent businessService

element. In this case, the tModelKey returned assigned by the UDDI

operator was UUID:75F83600-4D6E-11D5-83B9-AFF41F112FA2.

No tModelKey is passed in the message; this signals to UDDI that the tModel is a new
tModel.

Now that a tModel for SkatesTown's priceCheck service interface is generally available,
it is possible to create a businessService element that models a Web service based on
this interface. WeMakeIt Inc. can build a Web service based on this price Check standard.
Therefore, WeMakeIt Inc.'s Joanna Pravard can define a businessService entry for
WeMakeIt Inc.'s priceCheck Web service. The save_service message looks like:

<save_service generic="1.0" xmlns="urn:uddi-org:api">

 <authInfo>...</authInfo>

 <businessService businessKey="...">

 <name>WeMakeIt Inc.'s Price Check Service</name>

 <description>This service is based on the Price Check service

 interface definition...

 </description>

 <bindingTemplates>

 <bindingTemplate>

 <description>See the PriceCheck service interface standard

 Use the address in the svc impl. definition if the

 accessPoint URL doesn't work.

 </description>

 <accessPointURLType="http">

 www.wemakeit.com/axis/services/priceCheck

 </accessPoint>

 <tModelInstanceDetails>

 <tModelInstanceInfo

 tModelKey="UUID:75F83600-4D6E-11D5-83B9-AFF41F112FA2">

 <instanceDetails>

 <overviewDoc>

 <description>Points to WeMakeIt Inc.'s service

 implementation WSDL ...

 </description>

 <overviewURL>

 www.wemakeit.com/webservices/descriptions/priceCheck.wsdl

 </overviewURL>

 </overviewDoc>

 </instanceDetails>

 </tModelInstanceInfo>

 </tModelInstanceDetails>

 </bindingTemplate>

 </bindingTemplates>

 </businessService>

</save_service>

The key points are:

• The accessPoint element is the URL at which the Web service can be

invoked, although the ultimate source of truth for the Web service's

location is in the service implementation file.

• The tModelKey element refers to the tModel representing the

priceCheck service interface definition.

• The tModelInstance element follows an extended convention for

locating the service implementation definition file. Joanna uses this

additional convention because it allows WeMakeIt Inc. the flexibility

of moving the location of this service without having to immediately

update the UDDI entry. All WeMakeIt Inc. would have to do is update

the service implementation definition (which it controls) and

eventually update the accessPoint element of the UDDI entry. The

advantage to this approach is that the change of location is made

immediately in the local WSDL file and WeMakeIt Inc. does not have to

wait until the UDDI entry change is replicated to all the UDDI

Business Registry operator nodes.

More Complex WSDL and Corresponding UDDI Entries

For more sophisticated WSDL descriptions, the UDDI entries are slightly more tricky.
Let's take a look at some of the entries for the e-Torus marketplace.

The e-Torus marketplace has established a standard, industry-wide service interface
definition suite for supply reordering of small wheels and bearings. This suite has built
upon the priceCheck service interface definition developed by SkatesTown and adding
request for quote and purchase order placement. This resulted in a minor inconvenience
to existing service implementations that referenced SkatesTown's tModel. The
businessService entries for these services needed to be updated to reference the new
tModel defined by e-Torus. Because e-Torus has incorporated SkatesTown's priceCheck
and POSubmission service interface definitions into the order suite WSDL, this was a
minor inconvenience in UDDI registration only; the programs continued to work.

The details of the e-Torus orderSuite WSDL are not relevant here, but we do include
important portions of the WSDL as follows:

<?xml version="1.0"?>

<definitions name="e-Torus Order Suite"

 targetNamespace=

 "http://www.etorus.com/serviceInterfaces/orderSuiteInterface"

 xmlns:tns=

 "http://www.etorus.com/serviceInterfaces/orderSuiteInterface"

 xmlns:orderSchema="http://www.etorus.com/schemas/order.xsd"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <types>

 <schema targetNamespace="http://www.e-Torus.com/schemas/order.xsd"

 <!-– incorporates priceCheck schema elements from SkatesTown -->
 ...

 </types>

<!-- Message definitions -->

 <message name="PriceCheckRequest">

 <part name="item" type="xsd:string"/>

 </message>

 <message name="PriceCheckResponse">

 <part name="result" type="orderSchema:availability"/>

 </message>

 <message name="RequestForQuotes">

 <part name="body" element="orderSchema:RFQ"/>

 </message>

 <message name="RFQResponse">

 <part name="body" element="orderSchema:RFQResponse"/>

 </message>

 <message name="poSubmissionRequest">

 <part name="purchaseOrder" element="orderSchema:po"/>

 </message>

 <message name="poSubmissionResponse">

 <part name="invoice" element="orderSchema:invoice"/>

 </message>

...

 <!-- Port type definitions -->

 <portType name="PriceCheckPortType">

 <operation name="checkPrice">

 <input message="tns:PriceCheckRequest"/>

 <output message="tns:PriceCheckResponse"/>

 </operation>

 </portType>

 <portType name="RFQPortType">

 <operation name="PlaceRFQ">

 <input message="tns:RequestForQuotes"/>

 <output message="tns:RFQResponse"/>

 </operation>

 </portType>

 <portType name="poSubmissionPortType">

 <operation name="doSubmission">

 <input message="tns:poSubmissionRequest"/>

 <output message="tns:poSubmissionResponse"/>

 </operation>

 </portType>

 ...

 <!-- Binding definitions -->

 <binding name="PriceCheckSOAPBinding" type="tns:PriceCheckPortType">

 <soap:binding style="rpc"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="checkPrice">

 ...

 </operation>

 </binding>

 <binding name="RFQSOAPBinding" type="tns:RFQPortType">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="PlaceRFQ">

 ...

 </operation>

 </binding>

 <binding name="poSubmissionSOAPBinding" type="tns:poSubmissionPortType">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="doSubmission">

 ...

 </operation>

 </binding>

</definitions>

This WSDL file is made available at the e-Torus Web site:
http://www.etorus.com/webservices/interfaces/orderInterfaces.wsdl.

Note that each business process has a separate portType (PriceCheckPortType,
RFQPortType, and POSubmissionPortType are shown). This allows each business process
to have separate binding definitions, providing for significant implementation flexibility
for different security, reliability, transport mechanism, and so on.

Because this service interface definition has different bindings, the UDDI entries,
particularly the businessService elements referencing this service interface definition,
look slightly different.

So, e-Torus registers a tModel in its portal private UDDI for each of the bindings. This
creates a separate tModel for each binding in the service interface definition file. The
technique for registering these tModels is slightly different from what Joanna Pravard
used. Because the overviewURL references to the entire document, the developer at e-
Torus followed the recommendation in the best practices document and used a URL
fragment identifier (http://www.ietf.org/rfc/rfc2396.txt) to indicate exactly which binding
in the service interface file each tModel references. The tModel record for the
priceCheck binding looks like this:

<tModel

 tModelKey="UUID:72E5F9F0-A4C3-11D5-AF98-BD95162D3AC9" ...>

 <name>e-Torus order Service PriceCheck Interface Definition</name>

 <description xml:lang="en">

 This tModel defines the service interface definition for

 priceCheck within the e-Torus order suite of services.

 </description>

 <overviewDoc>

 <overviewURL>

 http://www.etorus.com/services/interfaces/

 orderInterfaces.wsdl#PriceCheckSOAPBinding

 </overviewURL>

 </overviewDoc>

 <categoryBag>

 <keyedReference

 keyName="uddi-org:types"

 keyValue="wsdlSpec"

 tModelKey="UUID:C1ACF26D-9672-4404-9D70-39B756E62AB4"/>

 </categoryBag>

</tModel>

Now, consider a businessService element for a Web service provided by one of the
sellers in the e-Torus marketplace that implements the priceCheck binding tModel. A
wheel manufacturer, MakeCircles Inc., is a member of the e-Torus e-marketplace.
MakeCircles Inc. defines a service implementation definition file at
http://www.makecircles.com/services/priceCheck.wsdl. This file contains ports for the
entire set of order suite bindings as follows:

<?xml version="1.0"?>

<definitions name="orderSuite"

 targetNamespace="http://www.makecircles.com/wsdl/orderSuite"

 xmlns:tns="http://www.makecircles.com/wsdl/orderSuite"

 xmlns:order=

 "http://http://www.etorus.com/serviceInterfaces/orderSuiteInterface"

 xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <import

 namespace=

 "http://www.etorus.com/serviceInterfaces/orderSuiteInterface"

 location=

 "http://www.etorus.com/services/interfaces/orderInterfaces.wsdl"

 />

 <service name="OrderServices">

 <documentation>

 PriceCheck service according to the e-Torus order standard

 </documentation>

 <port name="PriceCheckPort" binding="order:PriceCheckSOAPBinding">

 <soap:address

 location=http://www.makecircles.com/services/priceCheck/>

 </port>

 <port name="RFQPort" binding="order:RFQSOAPBinding">

 <soap:address

 location=http://www.makecircles.com/services/placeRFQ/>

 </port>

 <port name="POSubmissionPort" binding="order: poSubmissionSOAPBinding">

 <soap:address

 location=http://www.makecircles.com/services/submitPO/>

 </port>

 </service>

</definitions>

Let's take a look at a businessService entry for this service. Like Joanna Pravard, the
developer at MakeCircles Inc. preferred to have control over where the network address
of the services are actually kept, and chose to have the tModelInstanceDetails of the
bindingTemplate reference the service implementation file as the ultimate source of
truth for the Web service's network address. Note that the service has two ports. The
bindingTemplate uses the same fragment identifier mechanism on the overviewURL to
reference the particular priceCheck port:

<businessService

 businessKey="..."

 serviceKey="...">

 <name>MakeCircle's priceCheck Web service</name>

 <description>This service is based on the e-Torus PriceCheck orderSuite

service

 interface definition...

 </description>

 <bindingTemplates>

 <bindingTemplate

 bindingKey="BEF9B260-A4C7-11D5-AF98-BD95162D3AC9"

 serviceKey="BEF9B260-A4C7-11D5-AF98-BD95162D3AC9">

 <description>

 See the e-Torus order suite priceCheck service interface

 standard. Use the address in the svc impl. definition if the

 accessPoint URL does not work.

 </description>

 <accessPoint URLType="http">

 http://www.makecircles.com/services/priceCheck

 </accessPoint>

 <tModelInstanceDetails>

 <tModelInstanceInfo

 tModelKey="UUID:B04E3710-4D86-11D5-83B9-AFF41F112FA2">

 <description>

 Points to MakeCircle's service

 implementation WSDL ...

 </description>

 <instanceDetails>

 <overviewDoc>

 <overviewURL>

 http://www.makecircles.com/webservices/descriptions/

 rfq.wsdl#PriceCheckPort

 </overviewURL>

 </overviewDoc>

 </instanceDetails>

 </tModelInstanceInfo>

 </tModelInstanceDetails>

 </bindingTemplate>

 </bindingTemplates>

 </businessService>

Note the tModelKey refers to the RFQ binding as defined by e-Torus order standard
service interface definition for order-based Web services.

Putting It All Together: WSDL-Based UDDI and Dynamic Find

By this point, SkatesTown is selling a lot of skateboards. Some of the company's partner
retailers are now selling direct to customers via the Web, and those customers get real-
time availability and pricing information from SkatesTown via Web services. Retailers use
SkatesTown's Web services to order boards, and SkatesTown has committed to giving
them real-time availability information for their big orders. In order for SkatesTown to
meet this commitment in a cost-effective fashion, SkatesTown needs to verify
components supply by orchestrating back-end queries to the e-Torus e-marketplace. For
example, if a retailer orders 100 of SkatesTown's MAXX skateboards, to be delivered in
two weeks, the system can check the inventory of finished boards and parts, and then
query the e-marketplace to make sure enough wheels, bearings, and so on will be
available to SkatesTown in order to meet the commitment.

SkatesTown has all the pieces to do dynamic runtime bind of Web services. SkatesTown
wants to use the power of the e-Torus marketplace to get the best supplier for any single

reorder of wheels or bearings at any given point in time. For wheels and bearings,
SkatesTown trusts the vendors active in the e-Torus marketplace. The reorder application
that Al Rosen has put together uses dynamic bind to do priceChecks within the e-
Marketplace to all vendors that follow the e-Torus order standard suite of service
interfaces.

These are the steps Al Rosen used to develop SkatesTown's e-marketplace priceCheck
application.

First, Al uses the Java generated from the priceCheck WSDL. You saw this done back in
Chapter 6. Others, like Joanna Pravard would generate their company's proxy by
retrieving the tModel associated with the e-Torus priceCheck service interface definition
standard.

Al uses dynamic binding to fill in the URL to the proxy. Al codes the client application,

using the UDDI4J API. UDDI4J is an open source project sponsored by IBM; source is
available under the IBM Public License. Originally part of the WebServices Toolkit,
UDDI4J source is now also available at
http://oss.software.ibm.com/developerworks/projects/uddi4j. UDDI4J defines a very
straightforward and convenient mapping between the UDDI operations and data
structures and Java methods and classes. UDDI4J makes it simple to incorporate UDDI
operations as part of any Java program—exactly what Al needs to do.

Al's code does a find operation that retrieves all the vendors from the e-Torus e-
marketplace private UDDI that implement the priceCheck binding tModel and also the
POSubmission tModel. The find message appears as follows:

<find_business generic="1.0" xmlns="urn:uddi-org:api">

 <tModelBag>

 <tModelKey>UUID:5FE30870-A4C3-11D5-AF98-BD95162D3AC9</tModelKey>

 <tModelKey>UUID:72E5F9F0-A4C3-11D5-AF98-BD95162D3AC9</tModelKey>

 </tModelBag>

</find_business>

The first tModel key corresponds to the POSubmission tModel, and the second one
refers to a priceCheck tModel (not shown in any listings).

The UDDI4J code fragment would look like this:

UDDIProxy proxy=new UDDIProxy();

String userid="...";

String password="...";

//set up the TModelBag to refer to both the priceCheck and PoSubmission

//suppliers must support both standards in order to be invoked by the

//application

TModelBag bag=new TModelBag();

Vector v=new Vector();

//UUID of POSubmission tModel

v.addElement("UUID:5FE30870-A4C3-11D5-AF98-BD95162D3AC");

//UUID of PriceCheck tModel

v.addElement("UUID:72E5F9F0-A4C3-11D5-AF98-BD95162D3AC");

bag.setTModelKeyStrings(v);

//finds all businesses that have a service implementing the priceCheck and

POSubmission tModelsBusinessList bl=proxy.find_business(bag, null, 0);

A sample set of return values from execution of the find operation would look like this:

<businessList generic="1.0" ...

 <businessInfos>

 <businessInfo businessKey="DCD2B450-A4C0-11D5-AF98-BD95162D3AC9">

 <name>WeMakeIt Inc.</name>

 <serviceInfos>

 <serviceInfo

 businessKey="DCD2B450-A4C0-11D5-AF98-BD95162D3AC9"

 serviceKey="9732C900-A4C8-11D5-AF98-BD95162D3AC9">

 <name>WeMakeIt Inc.'s POSubmission Service</name>

 </serviceInfo>

 <serviceInfo

 businessKey="DCD2B450-A4C0-11D5-AF98-BD95162D3AC9"

 serviceKey="ACE9DE00-A4C8-11D5-AF98-BD95162D3AC9">

 <name>WeMakeIt Inc.'s POSubmission Service</name>

 </serviceInfo>

 <serviceInfo

 businessKey="DCD2B450-A4C0-11D5-AF98-BD95162D3AC9"

 serviceKey="D66199C0-A4C9-11D5-AF98-BD95162D3AC9">

 <name>WeMakeIt Inc.'s RFQ Service</name>

 </serviceInfo>

 <serviceInfo

 businessKey="DCD2B450-A4C0-11D5-AF98-BD95162D3AC9"

 serviceKey="CEC8E160-A4CD-11D5-AF98-BD95162D3AC9">

 <name>WeMakeIt Inc.'s Price Check Service</name>

 </serviceInfo>

 </serviceInfos>

 </businessInfo>

 <businessInfo businessKey="05064CC0-A4C1-11D5-AF98-BD95162D3AC9">

 <name>Wheels Made Here</name>

 <serviceInfos>

 <serviceInfo

 businessKey="05064CC0-A4C1-11D5-AF98-BD95162D3AC9"

 serviceKey="2065CFF0-A4CA-11D5-AF98-BD95162D3AC9">

 <name>Wheels Made Here's PO Submission Web service</name>

 </serviceInfo>

 <serviceInfo

 businessKey="05064CC0-A4C1-11D5-AF98-BD95162D3AC9"

 serviceKey="80DFFE50-A4CA-11D5-AF98-BD95162D3AC9">

 <name>Wheels Made Here's priceCheck Placement Web

 service</name>

 </serviceInfo>

 <serviceInfo

 businessKey="05064CC0-A4C1-11D5-AF98-BD95162D3AC9"

 serviceKey="BA661920-A4CA-11D5-AF98-BD95162D3AC9">

 <name>Wheels Made Here's RFQ Web service</name>

 </serviceInfo>

 </serviceInfos>

 </businessInfo>

 </businessInfos>

</businessList>

For each serviceInfo found in the businessList object returned from the find
operation, the code needs to locate the priceCheck service (remember we asked for all
businesses that supported both priceCheck and POSubmission, so we need to isolate the
priceCheck service). The location of the priceCheck service is found in a
bindingTemplate. The priceCheck bindingTemplate is identified by the tModel within
one of the bindingTemplate's tModelInstanceInfo elements. The algorithm proceeds
as follows. Issue a find_binding for the service, given the tModel bag with the
priceCheck tModel. The bindingDetail element returned from this call will contain the
bindingTemplate referring to the priceCheck. Other bindingTemplates for other
technologies might also be in the bindingDetail structure. Examine each
bindingTemplate, looking for a tModelInstanceInfo element that refers to the
priceCheck model. When that tModelInstanceInfo element is found, the algorithm has
found the right bindingTemplate. The search is complete. This is demonstrated in the
following listing, continuing from the previous code example:

//Find the binding that matches the TModel for priceCheck

TModelBag bag2=new TModelBag();

Vector v2=new Vector();

//UUID of priceCheck tModel

v2.addElement("UUID:72E5F9F0-A4C3-11D5-AF98-BD95162D3AC9");

bag2.setTModelKeyStrings(v2);

Vector biv=bl.getBusinessInfos().getBusinessInfoVector();

Enumeration e=biv.elements();

while(e.hasMoreElements()){

 BusinessInfo bi=(BusinessInfo)e.nextElement();

 ServiceInfos sis=bi.getServiceInfos();

 Vector siv=sis.getServiceInfoVector();

 Enumeration e2=siv.elements();

 //loop through the binding templates until a bt is found

 BindingTemplate bt=null;

 while(e2.hasMoreElements() && bt == null){

 ServiceInfo si=(ServiceInfo)e2.nextElement();

 //find the service's bindingDetail that corresponds to the

 //priceCheck tModel

 BindingDetail bd=proxy.find_binding(null, si.getServiceKey(), bag2,0);

 Vector btv=bd.getBindingTemplateVector();

 Enumeration e3=btv.elements();

 //the tModel is hidden in the TModelInstanceDetails

 while(e3.hasMoreElements() && bt == null){

 bt=(BindingTemplate)e3.nextElement();

 Vector tmidv=

 bt.getTModelInstanceDetails().getTModelInstanceInfoVector();

 Enumeration e4=tmidv.elements();

 TModelInstanceInfo tmii=null;

 while(e4.hasMoreElements() && tmii==null){

 tmii=(TModelInstanceInfo)e4.nextElement();

 if(! tmii.getTModelKey().equals

 ("UUID:B04E3710-4D86-11D5-83B9-AFF41F112FA2")){

 tmii=null;//continue

 }

 }

 if(tmii == null){

 bt=null; //continue

 }

 }

 }

The code then extracts the accessPoint element and invokes the priceCheck Web
service. Sample code follows, continuing from the previous code sample:

 //invoke the priceCheck WSDL proxy, passing access point, item

 PriceCheckService pcs = new PriceCheckService();

 PriceCheckPortType pcpt =

 pcs.getPriceCheck(new java.net.URL(bt.getAccessPoint().getText()));

 AvailabilityType at = pcpt.checkPrice(sku); //some SKU

 double price = at.getPrice();

 //cache the price in a data structure that associates the businessKey

with the price

 . . .

If the Web service invocation fails, the code should check to see if the InstanceDetails
element includes a URL to a service implementation definition. If it does, the code should
retrieve the service implementation definition and generate a proxy for that service. The
Web service is invoked again, this time using the network address generated in the
proxy.

All the responses from the invocations of all the Web services are aggregated, and the
list of businessEntities is sorted by the response price of the priceCheck. The
company with the best bid price is the winning supplier. Other policies, such as fastest
delivery, can also be used to determine the winning supplier.

The final stage of the reorder process is to send a PO to the winning supplier. The actual
order placement portion of the application has been built with a proxy generated from
the POSubmission service interface standard defined by the e-Torus orderSuite standard
WSDL. Like the priceCheck proxy, all the POSubmission proxy needs is a network
address to send the purchase order. This information is supplied by the UDDI entries of
the supplier that won the priceCheck bid. This is done by issuing a find_service
message, passing the businessKey of the winner of the priceCheck bid and a
tModelBag containing the UUID of the POPlacement TModel.

UDDI4J code to find the POSubmission service of the best price from priceCheck is as
follows:

String winnerBusKey=...

//set up a TModel bag referencing the POSubmission TModel

TModelBag bag=new TModelBag();

Vector v=new Vector();

//UUID of POPlacement tModel

v.addElement("UUID:5FE30870-A4C3-11D5-AF98-BD95162D3AC9");

bag.setTModelKeyStrings(v);

//find the po submission service for the winning business

ServiceList sl=proxy.find_service(winnerBusKey, bag2, null, 0);

Once the POSubmission service of the winning bidder is found, the remainder of the code
identifies the bindingTemplate in a fashion similar to the priceCheck portion of the
code. Finally, the accessPoint information is extracted from the bindingTemplate
element and given to the Web service proxy to invoke the POSubmission Web service of
the supplier that won the priceCheck bid. Of course, if the invocation of the Web service
fails, with an error that indicates a network failure, the application tries to extract a
service implementation definition from the bindingTemplate, and if successful, uses the
information in the service implementation definition to invoke the Web service.

UDDI4J code to find the POSubmission bindingTemplate of the best price from
priceCheck and then invoke the Web service is as follows:

//traverse the bindingTemplates structure looking for the binding template for

//the POSubmission TModel

BindingTemplate bt=null;

Vector btv= bs.getBindingTemplates().getBindingTemplateVector();

Enumeration e2=btv.elements();

//the tModel is hidden in the TModelInstanceDetails

while(e2.hasMoreElements() && bt == null){

 bt=(BindingTemplate)e2.nextElement();

 Vector tmidv=bt.getTModelInstanceDetails().getTModelInstanceInfoVector();

 Enumeration e3=tmidv.elements();

 TModelInstanceInfo tmii=null;

 while(e3.hasMoreElements() && tmii==null){

 tmii=(TModelInstanceInfo)e3.nextElement();

 if(! tmii.getTModelKey().equals

 ("UUID:5FE30870-A4C3-11D5-AF98-BD95162D3AC9")){

 tmii=null;//continue

 }

 }

 if(tmii == null){

 bt=null; //continue

 }

}

//invoke the POSubmission WSDL proxy, passing access point, purchase Order

. . .

With that algorithm, SkatesTown can find the best supplier for a given part at a given
moment in time and place a purchase order with that supplier by invoking a Web service.

The complete program listing for the dynamic find appears in Listing 7.1. Note that some
of the program uses utilities to find the tModelKey and other features. Further, the code
does not actually invoke the Web services, but rather prints out the access points of the
Web services it would have invoked.

Listing 7.1 The Dynamic Find Program

package ch7.ex2;

import java.util.Vector;

import java.util.Enumeration;

import java.util.Hashtable;

import com.ibm.uddi.UDDIException;

import com.ibm.uddi.client.UDDIProxy;

import com.ibm.uddi.response.*;

import com.ibm.uddi.datatype.binding.*;

import com.ibm.uddi.datatype.service.BusinessService;

import com.ibm.uddi.datatype.binding.TModelInstanceDetails;

import com.ibm.uddi.util.TModelBag;

import ch7.UDDIExamples;

import ch7.Util;

import ch6.ex1.*;

/**

 * Chapter 7 - UDDI examples

 *

 * The final example of dynamic find.

 * SkatesTown does a find for all businesses that

 * implement PriceCheck and POSubmission.

 * Based on best priceCheck, a PO is placed with the

 * supplier with the best price.

 *

 */

public class DynamicFindSkatesTown extends UDDIExamples{

/**

 * Place a PO with the supplier that has best priceCheck price.

 * Use the supplier's POSubmission service to place the PO.

 */

public static void main (String args[]) {

 try {

 if(args.length != 1){

 System.err.println("Usage: DynamicFindSkatesTown SKU");

 System.exit(1);

 }

 String sku = args[0];

 //set up the UDDIProxy

 setSecurity();

 UDDIProxy proxy = new UDDIProxy();

 proxy.setInquiryURL(inquiryAPI);

 proxy.setPublishURL(publishAPI);

 String priceCheckTModelKey =

 Util.getTModelKey("E-Torus order suite PriceCheck Service Interface

Definition");

 String POSubmissionTModelKey =

 Util.getTModelKey("E-Torus order PO Submission Service Interface

Definition");

 //set up the TModelBag to refer to both the priceCheck and POSubmission

 //suppliers must support both standards in order to be invoked by the

 //application

 TModelBag bag = new TModelBag();

 Vector v = new Vector();

 //UUID of priceCheck tModel

 v.addElement(priceCheckTModelKey);

 //UUID of POSubmission tModel

 v.addElement(POSubmissionTModelKey);

 bag.setTModelKeyStrings(v);

 //finds all businesses that have a service implementing the priceCheck

tModel

 BusinessList bl = proxy.find_business(bag, null, 0);

 //print it

 System.out.println("List the businesses that support priceCheck and

POSubmission");

 Util.printElement(bl);

 //loop through the BusinessList, invoking the priceCheck web service

 //Find the binding that matches the TModel for priceCheck

 TModelBag bag2 = new TModelBag();

 Vector v2 = new Vector();

 //UUID of priceCheck tModel

 v2.addElement(priceCheckTModelKey);

 bag2.setTModelKeyStrings(v2);

 Vector biv = bl.getBusinessInfos().getBusinessInfoVector();

 Enumeration e = biv.elements();

 while(e.hasMoreElements()){

 BusinessInfo bi = (BusinessInfo)e.nextElement();

 ServiceInfos sis = bi.getServiceInfos();

 Vector siv = sis.getServiceInfoVector();

 Enumeration e2 = siv.elements();

 //loop through the binding templates until a bt is found

 BindingTemplate bt = null;

 while(e2.hasMoreElements() && bt == null){

 ServiceInfo si = (ServiceInfo)e2.nextElement();

 //find the service's bindingDetail that corresponds to the priceCheck

tModel

 BindingDetail bd = proxy.find_binding(null, si.getServiceKey(),

bag2,0);

 Vector btv = bd.getBindingTemplateVector();

 Enumeration e3 = btv.elements();

 //the tModel is hidden in the TModelInstanceDetails

 while(e3.hasMoreElements() && bt == null){

 bt = (BindingTemplate)e3.nextElement();

 Vector tmidv =

bt.getTModelInstanceDetails().getTModelInstanceInfoVector();

 Enumeration e4 = tmidv.elements();

 TModelInstanceInfo tmii = null;

 while(e4.hasMoreElements() && tmii==null){

 tmii = (TModelInstanceInfo)e4.nextElement();

 if(! tmii.getTModelKey().equals(priceCheckTModelKey)){

 tmii = null;//continue

 }

 }

 if(tmii == null){

 bt = null; //continue

 }

 }

 }

 //invoke the priceCheck WSDL proxy, passing access point, item

 PriceCheckService pcs = new PriceCheckService();

 PriceCheckPortType pcpt = pcs.getPriceCheck(new

java.net.URL(bt.getAccessPoint().getText()));

 //for now, avoid the invocation as the various company's services are not

set up

 //AvailabilityType at = pcpt.checkPrice(sku); //some SKU

 //double price = at.getPrice();

 //cache the price in a data structure that associates the businessKey

with the

price

 //instead of invoking, print

 System.out.println("Business: " + bi.getNameString() + " priceCheck

service

accessPoint: " + bt.getAccessPoint().getText());

 }

 //use the cache to determine the winning supplier's business Key based on

best price

 //force the issue by choosing We Make It Inc.

 String winnerBusKey = Util.getBusinessKey("WeMakeIt Inc.");

 TModelBag bag3 = new TModelBag();

 v = new Vector();

 v.addElement(POSubmissionTModelKey);

 bag3.setTModelKeyStrings(v);

 ServiceList sl = proxy.find_service(winnerBusKey, bag3, null, 0);

 ServiceInfos sis = sl.getServiceInfos();

 //take first matching service, normally one would check for multiples and

choose

best

 ServiceInfo si = (ServiceInfo)sis.getServiceInfoVector().firstElement();

 ServiceDetail sd = proxy.get_serviceDetail(si.getServiceKey());

 BusinessService bs =

(BusinessService)sd.getBusinessServiceVector().firstElement();

 //traverse the bindingTemplates structure looking for the binding template

for

 //the POSubmission TModel

 BindingTemplate bt = null;

 Vector btv = bs.getBindingTemplates().getBindingTemplateVector();

 Enumeration e2 = btv.elements();

 //the tModel is hidden in the TModelInstanceDetails

 while(e2.hasMoreElements() && bt == null){

 bt = (BindingTemplate)e2.nextElement();

 Vector tmidv =

bt.getTModelInstanceDetails().getTModelInstanceInfoVector();

 Enumeration e3 = tmidv.elements();

 TModelInstanceInfo tmii = null;

 while(e3.hasMoreElements() && tmii==null){

 tmii = (TModelInstanceInfo)e3.nextElement();

 if(! tmii.getTModelKey().equals(POSubmissionTModelKey)){

 tmii = null;//continue

 }

 }

 if(tmii == null){

 bt = null; //continue

 }

 }

 //invoke the POSubmission WSDL proxy, passing access point, purchase Order

 System.out.println(" PO service accessPoint: " +

bt.getAccessPoint().getText());

 // Handle possible errors

 } catch (UDDIException e) {

 DispositionReport dr = e.getDispositionReport();

 if (dr!=null) {

 System.out.println("UDDIException faultCode:" + e.getFaultCode() +

 "\n operator:" + dr.getOperator() +

 "\n generic:" + dr.getGeneric() +

 "\n errno:" + dr.getErrno() +

 "\n errCode:" + dr.getErrCode() +

 "\n errInfoText:" + dr.getErrInfoText());

 }

 e.printStackTrace();

 // Catch any other exception that may occur

 } catch (Exception e) {

 e.printStackTrace();

 }

 System.exit(0);

 }

}

Summary

In this chapter, you have seen the role of service registries such as UDDI within a
service-oriented architecture. We examined UDDI in some depth, reviewing its core data
structures and APIs. We examined the use of UDDI for private service registries and how
Version 2.0 enhances UDDI. Finally, we examined the convention of registering WSDL-
based Web services in UDDI and how that convention can make UDDI effective for doing
dynamic location of Web services at runtime.

To this point, we have covered the fundamental concepts of Web services: XML, SOAP
(including the Axis implementation of the SOAP specification), various additional aspects
of Web services such as security, Web services description using WSDL, and Web
services registries focusing on UDDI.

In the next chapter, we survey the current set of tools and middleware supporting Web
services.

Chapter 8. Interoperability, Tools, and Middleware

Products

IN THIS CHAPTER

• Interoperability: The "Holy Grail" of Web Services

• The Larger Web Services Landscape

We've learned, and watched SkatesTown learn, an awful lot about Web services so far.
The last couple of chapters in particular dealt with getting Web service clients and
servers talking to each other in a world where you don't necessarily have a priori
knowledge of the systems you connect with. This chapter will dig a bit deeper into the
subject of interoperability, especially the issues which arise when you're tying together
systems that use completely different platforms and/or programming languages. We'll

begin by discussing interoperability in general, and then move on to explore using some
of the other available toolkits to integrate with SkatesTown's services.

Interoperability: The "Holy Grail" of Web Services

The promise of Web services lies in the ability to exchange data and functionality among
partners using standards-based messages—and arbitrary technological infrastructures.
This not only buys you the ability to talk to many new partners, but it also allows both
you and your partners to avoid "lock in"to a particular development platform. If you've
defined your outward-facing interface to the world in terms of XML, SOAP, WSDL, and
UDDI, you can feel free to switch from Java to .NET and back again (not that you would
be likely to really do so!) without ever disturbing your ongoing Web service–enabled
partner relationships. Ideally, you should also be cleanly insulated from worrying about
achieving interoperability with different implementations of these protocols. Sounds
great, doesn't it? Well, in reality, things aren't always quite so easy—but they are getting
there.

The SOAP 1.1 specification is somewhat vague about several issues and provides a lot of
flexibility (too much, many say) in the way you choose to do things. For instance:

• Section 5 of the spec (which, if you'll recall from Chapter 3,

"Simple Object Access Protocol (SOAP)," is the data encoding section)

states that null values can be represented either by the omission of

the XML element representing that value, or by an XML element with

the xsi:nil attribute present and set to true (this is the ninth rule

in the "rules for encoding" list in section 5.1). This can be a

problem in several ways—an example would be a toolkit that doesn't

care about the names of method arguments, but uses ordinal

positioning of the XML-encoded arguments to match them up with the

real arguments. If this toolkit has published a service, and another

toolkit decides to simply omit arguments whose values are nil when

making a request, we have a potential problem.

• The spec is not clear (in section 7) about how to represent a Remote

Procedure Call (RPC) response with a void return type and no output

parameters. This could, for instance, be an empty SOAP envelope, an

empty SOAP method response element, or even an HTTP 204 (No Response)

with no SOAP envelope. If faults are generated when toolkits don't

see the version they expect, this could cause some trouble.

• It's not apparent how to decide exactly which body entry in an RPC-

encoded message is the main one that would be processed as an RPC

method call. (There can be multiple body entries in the case of

multi-ref serialization, for instance.)

• It is possible with SOAP to make messages self-describing, in which

case metadata about the contents of the message (for example, the

xsi:type attribute on RPC parameters) is embedded within the message

itself. It is equally possible to assume that such metadata is

conveyed out-of-band in a Web Services Description Language (WSDL)

document or via some other means. The problem is that when you're

talking to new parties, it might be hard to know what is appropriate,

especially because some toolkits rely heavily on the xsi:type

element's presence in messages on the wire.

• The SOAPAction HTTP header is somewhat vaguely defined in section

6.1.1 of the spec as representing the "intent" of the message. Some

packages don't use this value at all, and others absolutely require

it for dispatching to the correct service. SOAPAction has been a

classic source of interoperability problems.

These issues, and others like them, can provide some serious challenges when you are
trying to create a world where any SOAP implementation can talk to any other with a
reasonable chance of success. If we decide to use xsi:nil="true" for nulls, and you
decide to omit elements, there is a significant chance that we might encounter some
problems communicating. How can we begin to resolve these issues and move towards a
maximally interoperable world? Luckily, there are at least two different answers to that
question—and both are making great progress in parallel.

The Soapbuilders Community

Clearly, two things need to occur if different implementations hope to truly interoperate.
The first is that the developers of these implementations need to be able to talk to each
other in order to iron out problems. The second is that there need to be some sort of
compatibility tests that can be used to judge whether a particular implementation can
successfully talk to another.

A solution to both of these issues appeared in the form of the soapbuilders list, a very
active community of SOAP developers on Yahoo. The list was started in January 2001 by
Tony Hong of Xmethods as a place for SOAP implementers to congregate and a forum in
which to discuss interoperability issues.

Some of the particular areas that have been discussed fruitfully on soapbuilders include:

• The various ways to express arrays in WSDL (see Chapter 6,

"Describing Web Services").

• Differences in dealing with xsi:type requirements in various engines.

• Issues regarding encoding styles, and whether it's reasonable to

assume a default encodingStyle in the absence of an explicit

encodingStyle attribute.

• The purpose and structure of the SOAPAction HTTP header.

• Lots of others—you can read the soapbuilders archives (see the

resources section at the end of the chapter) yourself to check it

out, and join the list to follow it into the future.

The Interoperability Lab

As we mentioned, soapbuilders also provided the community with a testing ground for
SOAP implementations, in the form of the Interop Lab. You can find the Web pages for
the tests at http://www.xmethods.net/ilab.

The Interop Lab represented the coming together of a number of similar efforts—Dave
Winer and the Userland software team had developed a SOAP Validator test suite, there
was discussion of how to do conformance tests on the various mailing lists, and the
Apache SOAP development team had also been sketching out a test suite with Microsoft's
.NET group.

Essentially, the Interop Lab tests involve a set of services that everyone agrees to
implement at their nodes. The first round of these services test basic SOAP compatibility
and the ability to serialize and deserialize simple data types. Many of the tests are of the
form "echo this [string, integer, float, etc]"—this tests basic SOAP connectivity
(envelopes are parsed and understood), deserialization (I understood the data you
passed), and serialization (I sent you back something which you recognize is the same as
what you passed me).

Several notable benefits have arisen from the xmethods/soapbuilders Interop Lab:

• Many bugs in various implementations have been found and fixed—in

most cases quite rapidly due to quick feedback from the community.

• There is a well-known place that developers and consumers can visit

to get a snapshot of the current state of features and bugs in a

variety of implementations.

• When a new package comes out, the developers can rapidly get feedback

from many sources telling them how their implementation plays well

(or doesn't) with others.

• In May 2001, an Interopathon event was held at NetWorld/Interop in

Las Vegas. Many vendors, both small and large, showed up for a couple

of days of interoperability demonstrations and conversation. More

than 20 different implementations supplied implementations of a

simple digital marketplace system, simulating bidding and buying

items from each other.

We're still ironing out a lot of issues, but the progress towards interoperability that has
been achieved in a very short time is remarkable. There are more than 50 SOAP 1.1
implementations as of August 2001, and they're all learning to play well together.

The soapbuilders community is now working on higher-level interop testing, which
includes testing of SOAP header functionality and WSDL as well as core SOAP. The
community is also integrating an automatic (SOAP-based, of course) registry service for
new endpoints—so when an implementation changes, they can make a SOAP call to the
Interop Lab hub that will cause all the other implementations to re-run their tests against
that endpoint.

The W3C: The Emergence of a Standardized SOAP

In parallel with the grass-roots, developer-driven soapbuilders effort, the World Wide

Web consortium (W3C) is in the midst of a standardization effort to give SOAP a
good cleaning. The W3C are the standards-keepers for XML technologies—XML, XSL, X-
Link, XSLT, and so on.

The W3C XML Protocol group has two interesting qualities; first, it's the largest group
(more than 70 members) that the W3C has yet run, and second, unlike most other W3C
activities, the group is doing almost all its work in the open—there is a public mailing list,
xml-dist-app (for "XML distributed applications"), on which most of the group

discussions take place. Both of these points serve to illustrate the high level of interest in
SOAP and Web services across the Internet community.

As we mentioned in Chapter 3, the XML Protocol group has produced a working draft of
the SOAP 1.2 spec, which attempts to address some of the issues that were somewhat
unclear in SOAP 1.1. The new spec can be found at the URL listed at the end of the
chapter. SOAP 1.2 is divided into two specifications: part 1, the "Messaging Framework,"
is really core SOAP. Part 2, "Adjuncts," describes all of the normative, but non-core,
portions of the SOAP framework, such as the HTTP binding and the RPC convention.

The new spec includes:

• A more precise definition of the SOAP processing model, which clears

up some ambiguities regarding MustUnderstand in particular. This is

in section 2, specifically sections 2.4 and 2.5.

• A standardized way of providing information about exactly which

headers were the cause of a MustUnderstand fault (section 4.4.2).

• A versioning model that should make it possible for processors to

negotiate version conflicts, or at least be more clear about what

specific versioning problems occur (section 4.1.2 and the referenced

versioning fault).

• An Abstract Model (actually a separate document) of the SOAP

processing system, which begins to clarify how SOAP systems work in

general, and can be used as a design tool.

The XML Protocol group keeps an up-to-date list of issues against the SOAP spec, which
you can find linked from the group Web page. Many of these issues, due to the public
nature of the group's work, have also benefited greatly from conversations on the
soapbuilders list. The combination of a dedicated group within the W3C and a vibrant
community of developers who are actually building SOAP software today will hopefully
result in a standard that not only addresses the concerns raised by SOAP 1.1, but also
makes migration and implementation easy.

Future work within W3C might include standardizing WSDL and clearing up the
ambiguities and issues with that spec, as well. If the work in these areas is successful,
the resulting recommendations would go a long way toward resolving many of the
interoperability problems that have been experienced thus far.

The Larger Web Services Landscape

Throughout the book, we've been focusing on Apache Axis, which has made sense
because SkatesTown is an Axis-based enterprise. Now it's time to take a brief spin
through some of the other technologies and packages that are helping to shape the Web
services landscape.

Who are all these vendors with SOAP implementations? The remainder of this chapter will
cover a brief overview of the breadth of the space, and then we'll dive into a few of the
more popular SOAP implementations and see if we can get them to interoperate with
SkatesTown.

Note

We've mentioned it before, but one point deserves to be stressed again—Web services
are an emerging technology, and things in the space are moving fast. The list of
implementations we put forth here is incomplete and will be out of date a few days after
it's been typed! One of the best ways to keep track of all the activity is to use the very
medium in which the technology is growing—the Web. A large and vibrant community of
developers, thinkers, and users are all working together to shape the evolution of the
emerging Web service-enabled net. At the end of the chapter, you'll find a list of some of
our recommended Internet resources for finding out more and getting involved in the
evolution of Web services.

Who's Building SOAP Systems?

If you ask the current crop of pundits to predict the major forces in the enterprise
computing space over the next few years, you will find a remarkable consistency to their
answers. Pretty much all of them agree that the platforms to watch are J2EE and .NET.
Both platforms provide a solid infrastructure for doing distributed application
development. So, what's going on in these two worlds with Web services?

The J2EE World

More and more vendors in the J2EE space are integrating Web services into their
application server offerings, including:

• BEA— WebLogic Server, BEA's J2EE offering, now integrates support for SOAP,
WSDL, and UDDI as of version 6.1.

• IBM— WebSphere began including a SOAP toolkit based on Apache SOAP version
2.1 in May 2001. IBM's strong commitment to Web services hasn't flagged since
then, and they are continually pushing the space further along.

• Iona— Iona's XMLBus technology looks extremely promising. It includes both the
ability to integrate with their J2EE environment (iPortal) and also a standalone
Web service container.

• Macromedia— JRun is a lean, fast, and inexpensive J2EE server that was
distributed by Allaire and has, as of 2001, been brought into Macromedia's
product suite. Macromedia has released a Web service technology preview that
runs on top of JRun 3.1 and plans to fully integrate Web services into JRun in
version 4.0.

Other Java packages don't strictly fall under the J2EE umbrella, such as:

• GLUE— Produced by The Mind Electric, GLUE is a neat little package. We'll delve
into it a bit deeper later in the chapter.

• SOAP-RMI— A team at the University of Indiana built this slot-in RMI replacement
which uses SOAP as its underlying transport for remote invocation. The work
they've done on making things fast (with a custom pull-based XML parser) and
transparent is quite impressive.

Got .NET?

No survey of the Web services landscape would be complete without mentioning
Microsoft's .NET initiative, perhaps the most sweeping Web services story out there.

We'll go into a lot more detail a bit later in the chapter, when we demonstrate how to
integrate .NET Web services with our running examples. For now, suffice it to say .NET is
Microsoft's attempt to fully internet-enable application development on the Windows
platform.

Other Languages and Environments

Of course, plenty of other SOAP implementations are out there as well, written in
everything from straight C to high-level scripting environments.

C/C++

Several C/C++ implementations are available, including Scott Seely's SimpleSOAP,
eSOAP by Rosimildo da Silva, and SOAP packages from SQLData and Idoox.

Perl

Developmentor, one of the original SOAP instigators, built an early package in Perl.
ActiveState has another in their PerlEx product.

One of the more popular SOAP libraries is SOAP::Lite, a Perl package by Paul Kulchenko.
We'll cover this comprehensive and easy-to-use package in some detail also.

Python

The popular scripting language Python has a few SOAP packages available—they include
SOAP.py by Cayce Ullman, the Zolera Soap Infrastructure (ZSI) by Rich Salz, and Adam
Elman's SOAPy.

And That Ain't All, Folks⋯

Frontier, a popular scripting environment developed by Userland software (one of the
originators of SOAP), has a SOAP implementation built in, along with support for XML-
RPC, a somewhat simpler XML-based RPC protocol.

There are a couple of PHP implementations (PHP is an HTML scripting environment
similar in some ways to Active Server Pages), two in Smalltalk, and several JavaScript
clients.

There are also SOAP implementations designed for the PocketPC, and even a couple
written in XSLT!

As you can see, there's a lot of SOAP out there! Although we can't cover all these
implementations in detail, let's take some time to dig a little deeper into just a few of the
more popular Web service toolkits available at the time of this writing. We'll see how
easy it is for SkatesTown to connect their services and clients to partners who use
completely different platforms. Note that though we've only selected a few of the
available packages due to space constraints, many of those mentioned here (and on the
sites you'll find at the end of the chapter) are equally powerful and easy to use.

SOAP::Lite—Web Services in Perl

In case you are not familiar with Perl (the Practical Extraction and Report Language), it is
a very popular interpreted language designed by Larry Wall back in the late 1980s. Perl is
in some ways like a cross between a scripting language and a 3GL.

The Perl motto is "there's more than one way to do it," and in keeping with that idea the
language is extremely flexible in terms of its syntax and semantics. We're not going to
describe the language itself here, so you might not get much by looking at the examples
unless you already speak Perl. If you don't, you might consider spending a little time to
learn it from one of the many books or Web sites penned by Perl devotees—it's always
good to learn new things, and Perl is almost guaranteed to get you thinking in new and
interesting ways about programming. For now, we're going to focus on showing you
some SOAP examples using SOAP::Lite, a Perl package written by Paul Kulchenko.

OK—let's dive right in and take a look at a simple client written with SOAP::Lite for the
PriceCheck service we built back in Chapter 6. This is the kind of thing that an online
store built with Perl might use to access SkatesTown's pricing information via SOAP:

use SOAP::Lite;

print SOAP::Lite ->

 uri('urn:X-SkatesTown') ->

 proxy('http://localhost:8080/axis/services/PriceCheckService') ->

 checkPrice('SKU-NUMBER') ->

 result;

Looks pretty simple, no? The first line is just like a Java import statement; it loads the
SOAP::Lite package so we can use it. The rest of the code is one virtual line calling into
SOAP::Lite to perform a SOAP call. The uri() sets the body URI on the resulting SOAP
message—this is identical to setting the namespace argument in the Axis client API. The
proxy() tells SOAP::Lite where to actually send the message—this is equivalent to Axis'
concept of endpoint. Clearly, checkPrice() is the method we're calling, and result gets
us the result value.

Using WSDL with SOAP::Lite

The previous example included knowledge of the network endpoint for the service, and
the namespace URI of the SOAP RPC element. This is a fine, and very dynamic, way to
access services, but you might not want to specify this stuff every time you make a SOAP
request. As you know, WSDL can help us out by encapsulating all that sort of service
metadata into one package. SOAP::Lite has a very simple syntax for using WSDL to
access a service:

use SOAP::Lite;

print SOAP::Lite ->

 service('PriceCheck.wsdl') ->

 checkPrice('SKU-NUMBER') ->

 result;

SOAP::Lite will dynamically generate a virtual proxy object for your service by parsing
the WSDL file, and then allow you to call any of the operations using the standard ->
syntax. This demonstrates some of the flexibility of the Perl language—because of Perl's
dynamic nature, you don't have to know the available method signatures of the service
up front in order to write calls like this one, or the previous one. Whereas in Java, the
compiler would have to confirm that checkPrice() is a valid method on the service
object, and that it indeed takes a single string argument, you have no such restriction in
Perl. At runtime, the language interpreter will look for a checkPrice() method in the
service after the WSDL file has been parsed.

Autodispatch

Another way to use the library to make SOAP calls is to activate the autodispatch feature.
To do this, you register a package as an autodispatch handler. Once you've done that,
any time Perl encounters an unknown function call, it will attempt to resolve it using the
autodispatch handler you defined. In this case, we set it up so that for any such
function, we attempt to call a SOAP method on a designated server. Let's take a look:

use SOAP::Lite +autodispatch =>

 proxy => 'http://localhost:8100/axis/Calculator.jws';

print "2 + 7 = " . add(2, 7) . "\n";

Because there's no add() function defined in the Perl code, the SOAP::Lite autodispatch
handler is called, which results in a SOAP call to our specified endpoint, invoking the
Calculator service automatically.

We feel a lot of kudos are due to Paul, who built a very comprehensive and easy to use
package that fits very cleanly with the Perl style. Not only does SOAP::Lite speak SOAP,
but also XML-RPC and Jabber (two other simple XML protocols). It also works across
multiple transports (including SMTP and raw TCP), handles MIME attachments, and can
deal with basic security. If you're a Perl developer interested in Web services, you owe it
to yourself to learn more about SOAP::Lite. (Incidentally, a copy of SOAP::Lite is
included with every copy of the ActivePerl distribution of Perl for Windows.)

The .NET Web Service World: A Brief Primer

What is .NET, exactly? Well, for all the details, you'll have to go and get one of the many
.NET books or surf to http://www.gotdotnet.com—it's a big package. But we can skim
the surface, and in particular, show you a few examples of using .NET to build and
consume Web services that work alongside SkatesTown.

The .NET framework consists of three major components: a common runtime
environment for managed code, a set of core class libraries to provide common features,
and a Web-oriented infrastructure called ASP.NET. These work together to provide a
unified developer experience that Microsoft hopes will be compelling enough to make it
the premier platform for application development. Let's explore what the package holds.

Common Language Runtime

Most of the code you'll deal with in .NET exists in something called the Common
Language Runtime (CLR). The CLR is very much like Java's virtual machine—CLR
components are implemented as bytecode that runs in a managed environment. This
means that the runtime will automatically handle such tasks as garbage collection,
threading, security, and loading classes. The really cool thing about the CLR in relation to
Web services is that any CLR component can be exposed as a Web service. That means
that classes/objects written in C++, Visual Basic, C#, or even COBOL can be easily
exported for use across the intranet or the Internet.

C#, incidentally, is Microsoft's new C++-derived object oriented programming language.
It has a lot in common with Java, as we'll see when looking at some sample code.

Core classes

The .NET framework class library is akin to the Java class libraries—the classes therein
provide services related to the following:

• Data types, structures and collections

• I/O, including files, network access, and streams

• XML manipulation

• GUI programming

• Security

ASP.NET

The final major component of the .NET framework is ASP.NET, the .NET foundation for
building Web applications. ASP.NET is both the natural evolution of Active Server Pages
and also a new set of tools and infrastructure for building Web UI and Web services.

A PriceCheck Client in .NET

Let's take a look at building a simple Web service client in the .NET framework. Note that
we're using the .NET framework beta 2, which is the current version as of August 2001.
By the time this book is in your hands, a later .NET release will probably be available.

A lot of this process is even easier using Visual Studio .Net, but for the client examples,
we'll use the command line tools; these are all you'll have available if you're a Windows
98 user, and we want to maximize the potential that you'll be able to run these examples
on your machine.

Because the .NET Web service tools are all deeply integrated with WSDL, we'll start by
building a client for the SkatesTown price check service that we built WSDL for back in
Chapter 6.

To begin, we want to build a proxy class to access the service based on the WSDL file, so
to do, so we'll use the wsdl.exe tool that is provided in the Bin/ directory of the .NET
framework SDK installation. (You should have this directory on your path as a result of
the .NET SDK setup.) The command and its results are as follows:

C:\MyServices> wsdl PriceCheck.wsdl

Microsoft (R) Web services Description Language Utility

[Microsoft (R) .NET Framework, Version 1.0.2914.16]

Copyright (C) Microsoft Corp. 1998-2001. All rights reserved.

Writing file 'C:\MyServices\PriceCheckService.cs'.

Now you'll notice a PriceCheckService.cs file in the current directory. This is the C#
source code which was generated by the tool—take a look at it if you're interested; it's
pretty straightforward. You'll notice that this class has exactly the same methods we
exposed in the Java backend class—it is a proxy for our Web service, and can now be
used by any .NET application to get at our price check functionality. The file also contains
a C# version of our AvailabilityType class.

We could have also chosen to generate the code in other languages, such as Visual Basic,
but we'll stick with C# for our purposes, because it's very comprehensible to Java
developers.

To invoke the service, we'll need to wrap the service proxy class in a small bit of user
interface so that we can use it. We open our favorite text editor and build the following
C# code:

using System;

class PriceCheckClient {

 public static void Main(string [] args)

 {

 PriceCheckService stub = new PriceCheckService();

 availabilityType avail = stub.checkPrice("947-TI");

 Console.WriteLine("There are " + avail.quantityAvailable + " items

available, ");

 Console.WriteLine("at a price of $" + avail.price.ToString() + " each. ");

 }

}

Clearly, this is an extremely basic little demonstration, with a hard-coded SKU argument.
The point is simply to show you how using stubs in C#/.NET is similar to the same
activity in Java/Axis.

We compile the application like so:

C:\MyServices> csc /r:System.Web.Services.dll /r:System.Xml.dll /r:System.dll

PriceCheckClient.cs PriceCheckService.cs

Microsoft (R) Visual C# Compiler Version 7.00.9254 [CLR version v1.0.2914]

Copyright (C) Microsoft Corp 2000-2001. All rights reserved.

csc is the C# compiler/linker. The /r flag tells the compiler to reference the indicated
assemblies (an assembly in .NET is a packaged set of components, in a DLL or an EXE)
and make their contents available during the build process. This command should result
in creating a PriceCheckClient.exe in your current directory. If you run that program,
you'll be able to make priceCheck requests from our SkatesTown database (see Figure
8.1).

Figure 8.1. PriceCheck with a .NET client.

Exposing .NET Web Services: Package Tracking for SkatesTown

OK, so building clients in .NET is pretty simple. What about exposing services? Luckily,
with ASP.NET, it's even easier. (For you Windows 98 folks out there, sorry; this section
won't work for you. .NET's server-side components are strictly for Windows 2000 or later.
If you want to try the example, please make sure you install the .NET server side
components plus all prerequisites.)

Let's bring our attention back to SkatesTown for a minute for this example. For some
months now, SkatesTown has been using ShipIt, Inc. to send their packages. All the
shipping has happened behind the scenes, but some customers have (quite reasonably)
been asking for the ability to get tracking numbers for their shipments. We'll walk you
through a simple version of what ShipIt might do on its .NET-based system to provide
this feature to SkatesTown.

We'll simulate the package-tracking application in .NET by building an .asmx file. As you'll
see, ASMX files are a lot like JWS files—they allow you to drop source code into a regular
old text file, and have the ASP.NET framework automatically compile and execute the
code for you on demand. There are some differences, though.

For one thing, all ASMX files require a WebService directive at the beginning of the file,
which tells the infrastructure what language the source code is expressed in and the
name of the class which implements the actual service. ASMX files can use any of the
supported .NET languages for Web services (right now that's C#, Visual Basic, and
Jscript).

Another difference is that ASMX files automatically support an HTTP GET and POST
binding as well as access via SOAP. This means you can call an ASMX-based Web service

with just a browser, passing arguments as query string parameters or form fields. Of
course, this doesn't allow for the kind of rich data mapping you can do with XML, but it is
handy for services that only deal in simple types.

Let's take a look at a simple service implemented as an ASMX file; see Listing 8.1. This
service does two things. First, it will generate new tracking numbers, which tie to
instances of a PackageInfo class. Second, it will return a tracking report for an existing
tracking number. (This example is not a real simulation of the situation—it has been
vastly simplified to let us focus more on the Web service infrastructure and less on the
application logic.)

Listing 8.1 C# Package Tracking Service in .NET

<%@ WebService Language="C#" Class="ShipIt.PackageService" %>

using System.Collections;

using System.Web.Services;

using System.Web.Services.Protocols;

namespace ShipIt {

 // Here's the "PackageInfo" class which represents

 // a package in transit.

 //

 public class PackageInfo {

 static int maxHops = 4;

 int hop = 1;

 int trackingNumber;

 string currentReport;

 public PackageInfo(int id)

 {

 trackingNumber = id;

 currentReport = "<h2>Tracking Report<h2> ";

 }

 // Move a package one hop and update its

 // tracking log. Don't bother if it has

 // reached its destination.

 public void movePackage() {

 if (hop < maxHops) {

 currentReport += "Arrived at hop #" + hop + "\n";

 hop++;

 } else if (hop == maxHops) {

 currentReport += "Delivered!\n";

 hop++;

 }

 }

 public string getTrackingReport() {

 return currentReport + "";

 }

 }

 [WebService(Namepace="http://BWS-ShipIt.com/")]

 // This is a SOAP RPC service

 [SoapRpcService]

 public class PackageService : WebService {

 static int lastTrackingNumber = 1;

 static Hashtable trackedPackages = new Hashtable();

 [WebMethod]

 public int getTrackingNumber() {

 PackageInfo pi = new PackageInfo(lastTrackingNumber);

 trackedPackages.Add(lastTrackingNumber, pi);

 return lastTrackingNumber++;

 }

 [WebMethod]

 public string getTrackingReport(int trackingNumber) {

 PackageInfo pi =

 (PackageInfo)trackedPackages[trackingNumber];

 if (pi != null) {

 // For the sake of example, we move the package

 // one "step" each time this is called.

 pi.movePackage();

 return pi.getTrackingReport();

 }

 return "No such tracking number!";

 }

 }

}

We have a C# class; this is nothing new. But the text in the square brackets ([]) is
different; these directives tell the runtime any meta-information we need to convey. In
this case, we're marking each method that we would like to publish as a [WebMethod].
This tells the runtime that the marked methods are accessible via Web service interfaces
from outside and should be included in a WSDL description of the service. There is also a
[SoapRPCService] directive at the top of the class. It indicates that our class is a SOAP
service that uses section-5 encoded payloads and the SOAP RPC style. By default, all
.NET services are document-oriented and use literal encoding (see Chapter 3 for an
explanation of the difference between literal and section-5 encoding). The [WebService]
directive just above that one allows us to specify the namespace of the service (this will
be the namespace of the body elements for the service requests and responses).

The getTrackingNumber() method creates a PackageInfo object and inserts that
PackageInfo into a hashtable, indexed by an integer tracking number that we return to
the user.

When generateTrackingReport() is called, we first look up the PackageInfo that was
previously stored. Then, for the purposes of this simple example, we call movePackage()
to move the package one hop along the path to its destination. Clearly, in the real world,
getting a tracking report for a package does not actually move it closer to its destination
(much as we might wish otherwise), but this is a quick and easy way for us to simulate

movement. Once the PackageInfo has been moved, we simply return the tracking report
generated by the PackageInfo class.

To deploy this service, just drop it into your Web hierarchy. For our purposes, we've put
it in Inetpub\wwwroot\shipit\PackageService.asmx. Figure 8.2 shows what happens if
we hit it with a browser.

Figure 8.2. Browser view of .NET Package service URL.

This page is automatically generated for us by .NET, and it allows us to not only see what
methods are available, but actually test the methods in the browser as well. You can try
this out by clicking the method names to get a page that looks like Figure 8.3.

Figure 8.3. Expanded view of the getTrackingReport method.

You'll find the source code to this service in the dotnet/ directory of the examples. If you
deploy this service to the location shipIt/PackageService.asmx on your machine (in
other words, drop the file in IIS under wwwroot/shipIt/packageService.asmx), you'll
be able to try an example that integrates this service into SkatesTown's order processing
system. You'll find the example in Chapter 8 under the examples directory in the bws
webapp. Just bring up the modified order page, submit the request, and you'll get a
package tracking number along with your invoice (see Figure 8.4). Clicking the tracking
link will get you a package tracking report.

Figure 8.4. PO results with package tracking.

We encourage you to examine the Java source for the tracking page (track.jsp) to see
how this works; as usual, we've just got a JSP front end which calls a remote Web
service. The only difference is that for this one, the service is provided by .NET—
interoperability in action!

The modified POSubmissionClient class is also worth a look; it works exactly the same
way as we've traditionally been writing this class for our examples—in particular, it
doesn't expect the SOAP body (the returned invoice) to change in order to carry the
tracking number. Rather, we do that by introducing a SOAP header that is plucked out by
the client.

The header is produced by a modified version of the POSubmission service—
TrackingSubmission.java, which you'll find in com/skatestown/services alongside the
normal POSubmission class.

GLUE: Another Take on Java Web Services

GLUE, a commercial package put out by The Mind Electric, is another Java SOAP engine,
built to be small and fast. It includes its own custom XML parser, Electric XML, in addition
to the standard SOAP/WSDL functionality we know and love. GLUE is a very nice
package, containing a lot of features that make Web service programming simple. Let's
spin through a few quick examples with this toolkit, too.

The GLUE Client for SkatesTown's InventoryCheck Service

Listing 8.2 shows how a client for our InventoryCheck service might appear in GLUE.

Listing 8.2 GLUE Client for InventoryCheck Service

import electric.registry.Registry;

public class GlueCheck

 {

 public static void main(String[] args)

 throws Throwable

 {

 if (args.length != 2) {

 System.out.println("usage: java GlueCheck <SKU> <quantity>");

 System.exit(-1);

 }

 // URL to WSDL of web service to invoke

 String url =

"http://localhost:8080/bws/services/InventoryCheck.jws?wsdl";

 // invoke using array of Objects

 Boolean result = (Boolean) Registry.invoke(url, "checkInventory",

 new Object[]{ args[0], Integer.parseInt(args[1]) });

 System.out.println("result = " + result);

 }

 }

This looks quite similar to the Axis client code we're used to looking at. GLUE uses the
Registry class to dynamically invoke services (and also to publish them, as we'll soon
see)—in this case, it's acting as the equivalent of Axis's ServiceClient. The invoke()
method on GLUE's Registry class is static, so we pass the URL on each invoke()
instead of embedding it within a ServiceClient instance as we would in Axis. Also, you'll
note that the URL points to the InventoryCheck WSDL as opposed to the service
endpoint itself. GLUE will dynamically parse the WSDL and invoke the service at the URL
specified in the service description.

Exposing Services with GLUE : Package Tracking Take 2

GLUE also has a built-in HTTP server, similar to the SimpleAxisServer we talked about
in Chapter 4, "Creating Web Services." Publishing a Java class as a Web service in GLUE
is really simple—look at the main() method in Listing 8.3. (The rest of the code
implements the same package tracking app we built in .NET earlier—and again, the Java
version of the PackageInfo class is available in the examples directory.)

Listing 8.3 Simple Web Service in GLUE (Using the Built-in HTTP Server)

import electric.registry.Registry;

import electric.server.http.HTTP;

import java.util.Hashtable;

public class TestService {

 private int lastTrackingNumber = 1;

 Hashtable trackingReports = new Hashtable();

 // Synchronized just in case

 private synchronized int getNextTrackingNumber()

 {

 return lastTrackingNumber++;

 }

 // Move a package one hop and update its

 // tracking log. Don't bother if it has

 // reached its destination.

 public void movePackage(PackageInfo info)

 {

 if (!info.delivered())

 info.moveOneHop();

 }

 public int getTrackingNumber(String invoiceID) {

 PackageInfo info = new PackageInfo(invoiceID);

 int trackingNumber = getNextTrackingNumber();

 trackingReports.put(trackingNumber, info);

 return trackingNumber;

 }

 public String generateTrackingReport(int trackingNumber) {

 PackageInfo info = trackingReports.get(trackingNumber);

 // For the sake of example, we move the package

 // one "step" each time this is called.

 movePackage(info);

 // Now return the tracking report

 return info.getTrackingReport();

 }

 /**

 * The main() method is the actual meat of web service

 * publishing. First we start an HTTP server listening

 * on port 8081, then we publish the service, and

 * we're done!

 */

 public static void main(String [] args) {

 HTTP.startup("http://localhost:8081/glue");

 Registry.publish("urn:packageTracking", new TestService());

 }

}

Note that once you call the publish() API, the server creates background threads which
listen for requests. Therefore, you won't be able to stop the server until you interrupt
those threads (typically with Ctrl+C).

Other Features in GLUE

GLUE also provides some nice additional features, such as:

• Customization of serialization/deserialization via decorated XML

Schema files. This feature lets you annotate a schema with metadata

telling GLUE how to turn the XML into Java.

• A custom XML parser, ElectricXML, which is designed to be small and

fast.

• A Java<->XML persistence engine.

• A built-in servlet engine.

It's definitely another package worth checking out.

Summary

Although SOAP on its own does not provide a complete interoperability framework, it
does give you a foundation on which to build, and we expect that foundation to improve
due to the efforts of both standard bodies such as the W3C and communities like
soapbuilders. Higher-level standards such as WSDL help a lot, and luckily, Web service
software is beginning to integrate WSDL support as a standard feature.

Clearly, you have many tools to choose from when you're dealing with SOAP, and more
are becoming available every day. The momentum is huge, and we hope this chapter has
given you a glimpse into the level of activity in the Web services arena, and a few
specific examples of how easy it can be to make Java talk to C# talk to Perl.

As you'll see in Chapter 9, many people and organizations are contributing to that
momentum and taking the service-enabled Web to the next level, in a variety of
directions.

Resources

Specifications, groups, and communities:

• SOAP version 1.2 specification—http://www.w3.org/2000/xp/Group/#drafts

• W3C XML Protocol group—http://www.w3.org/2000/xp/Group/

• The soapbuilders community—http://groups.yahoo.com/groups/soapbuilders

• WSDL group—http://groups.yahoo.com/groups/wsdl

• Xmethods Interoperability Lab—http://xmethods.net/ilab

• SoapWare.org—http://www.soapware.org/

• IBM's DeveloperWorks Web service area—http://ibm.com/developerworks/webservices/

• The DevelopMentor SOAP mailing list—http://discuss.develop.com/soap.html

These are the implementations we mentioned in the text. A much more comprehensive
list of implementations is available on soapware.org:

• SOAP::Lite (Perl)—http://www.soaplite.com/

• PerlEx (Perl)—http://www.activestate.com/Products/Components/PerlEx/

• .NET (C#, VB, C++)—http://gotdotnet.com/

• GLUE (Java)—http://www.themindelectric.com/products/glue

• WASP (Java)—http://www.idoox.com/

• Apache SOAP (Java)—http://xml.apache.org/soap

• SOAP RMI (Java)—http://www.extreme.indiana.edu/soap/index.html

• Iona's XMLBus (Java)—http://www.xmlbus.com/

• SOAPPy (Python)—http://sourceforge.net/projects/pywebsvcs/

• SimpleSOAP (C++)—http://scottseely.com/soap.htmeSOAP (C++),
http://www.embedding.net/eSOAP

• WASP for C++ (C++)—http://www.idoox.com/products/waspc/index.html

Chapter 9. Future Concepts

IN THIS CHAPTER

• Computing as a Utility

• Ontologies and the Semantic Web

• Software Agents

• Peer-to-Peer Computing

• Grid Computing

• Embedded Web Services

• Pulling It All Together

It is always difficult, especially where technology is concerned, to try to predict the
future. This chapter, therefore, will only try to present some interesting concepts about
where the authors see the future of computing taking us, as it relates to Web services.

We will cover topics such as ontologies and the Semantic Web , software

agents , peer to peer computing, grid computing , and embedded Web
services. Each of these topics can be the subject of a book on its own, so we clearly do
not expect to cover them in detail. We will, however, try to give an indication of the
relevance of these technologies to Web services. While doing so, we hope to generate
enough interest in your mind to cause you to investigate these topics in more depth.

Computing as a Utility

Current trends seem to be pointing toward a future where computing will be viewed as a
utility, in a model similar to electrical power or cable TV. The early indications came with

the development of the Application Service Provider (ASP) model. ASP companies
basically rent computing on their own platform to consumer companies who generally
pay on a monthly subscription basis. Although it can be thought of as computing as a
utility, the ASP model actually is somewhat restricted in the choice of platforms and in
the choice of application functionality, among others.

For a better model of computing as a utility, the scenarios would look something like
this:

• Personal computing— Dean Carroll, SkatesTown CTO, arrives at his hotel room.
There is a plug in the wall, next to the electrical and phone outlets, labeled
Computing. It takes a standard plug type. He plugs in his PDA (laptop, or any
other computing platform). A network connection is automatically established. As
he goes about doing his work, his local software agent (machine resident) finds
the services that he is going to need, based on where he is and what he is about

to do. (See the section "Software Agents" later in this chapter.) These could be
software services if, for example, he is trying to collaborate with some colleagues
in a different city (see the section "Peer-to-Peer Computing later in this chapter),
or hardware services, if, for example, he needs to run a stress simulation on the
latest board design. (See the section "Grid Computing" later in this chapter.)

• Enterprise computing— On the SkatesTown factory floor, a new manufacturing
robot is brought in and plugged into the computing grid. After a short initialization
period, it finds a controller, requests and receives a set of tasks, and starts
working on them in coordination with all the other robots. On that same factory
floor, as data from dealers, customers and suppliers comes in, it is processed and
interpreted as requiring a change in the specs of the bearings being used in the
wheels of the MAXX model (see Chapter 7, "Discovering Web Services") . The
controller finds a design and simulation Web service, submits new requirements,
and receives updated specs. As soon as these come in, the robot tasks are
updated, and new bearings are ordered. This is done by finding supplier Web
services, in a process similar to the example described in Chapter 7's section
"Putting It All Together: WSDL-Based UDDI and Dynamic Find," and combining
them with shipping and insurance Web services, making sure that the ordered
materials arrive at the shipping dock in time for the manufacturing run.

It can be argued that most of these tasks could be done by a combination of manual
labor and custom applications and tools, using current technologies. Although this is true,
the combination of system embedded intelligence, seamless integration of all the tasks,
and lack of human involvement in the process of integration makes these scenarios
remarkable. In the next sections, we will explore some of the technologies that will make
this possible.

Web Services Everywhere: The Vision

As the previous examples illustrate, the manifestation of the global conceptual vision of
Web services is relatively simple: A need is triggered in a system, whether through
human intervention or through external automated triggers. This need is translated into
one or more formalized requests through some intelligent interfaces. These requests
make their way into the grid/ network and are routed intelligently to other entities that
can act as possible fulfillers. The requestors and potential fulfillers negotiate a set of
mutually satisfactory terms and the need is serviced. This simple cycle is shown in Figure
9.1.

Figure 9.1. The Web services request-response cycle.

This general flow can be implemented using different architectural models, with two
extremes being the ones we'll call the centralized and peer models.

The Centralized Model

In the centralized model (Figure 9.2), some relatively well-known public or private (also
global or local) brokering services are central to the architecture. Entities wishing to
provide services will make themselves known to these brokers, and entities seeking
services will transmit their requests to the brokers. Brokers will have varying levels of
intelligence built into them, allowing them to learn from experience, for example, in order
to provide better matching capabilities to the incoming requests. Although the term
broker implies an active role in putting requestor and provider together, with some
possible benefit to the broker, we are including static services registries like UDDI (see
Chapter 7) in this general category. A typical scenario would be for a requestor to
discover one or more potential providers through the global broker, and maybe for one or
more of these potential providers to discover and compose sub-services of their own
through some private or local brokers in order to fulfill the request.

Figure 9.2. The Web services centralized model.

The current WSDL and UDDI technologies (discussed in Chapters 6, "Describing Web
Services," and 7, "Discovering Web Services") are sufficient for design time (static)
browsing, and some instances of runtime (dynamic) discovery of services. The next step
in service description and discovery, however, will have to go beyond the level of

syntactic Interface Definition Languages (such as WSDL) and taxonomies (such as
used by UDDI) to incorporate a layer of intelligence and semantics that is required for
true intervention-less interoperability.

The Peer Model

In the peer model (Figure 9.3), no central brokers or registries exist, but each node (or
peer) in the network has its own forwarding list. This list can be based on results learned
from previous experience, can be pre-built on initialization, can be a standalone external
registry, such as the ones in the centralized model, or a combination of all these.

Figure 9.3. The Web services peer model.

A typical scenario would be for a requestor to forward a request to a restricted set of
peers, based on capabilities that these peers have declared or that the requestor has
learned about them. Each of these peers in turn can either be a potential provider or
intelligently forward the request to another set of their peers, based on experience or
capability. This cycle is repeated until a provider is found or some kind of preset timeout
or forwarding level (time to live) is reached. Again, current technologies such as SOAP
Intermediaries, as discussed in Chapter 3, "Simple Object Access Protocol (SOAP)," and
WSDL can be used to implement a basic level of this kind of architecture, but they lack
the next level of intelligence and semantics to make them truly and seamlessly
interoperable with no necessity for user intervention.

Further Variation

Although, as mentioned, these two models might be extremes on the spectrum, Web
services architectures will probably end up being a combination of the two, with
independent peer nodes looking to some well-known brokers as needed.

In addition to the maturing of the Web services model, there will be increasing levels of
complexity and variation in the different components of this vision, as current
technologies mature and new technologies are created. For example, the process of
expressing a need into some form of formal machine-understandable request can have
various levels of automation and intelligence. The origin of the trigger itself can also be
examined: Is it due to a user's action, an automated set of business rules, a networked
device such as a cell phone, or an autonomous software agent's decision?

The process of routing that request to possible fulfillers is also a prime target for
enhancement. In addition to the relatively static keyword searching provided by UDDI,
for example, how can the meaning of the request be maintained and conveyed to
different services, and how can the original intent of the requestor be maintained?

The same can be said about the process of negotiation between requestor and potential
providers: What negotiation protocols will they follow, and how will they ensure that they
are speaking the same language and that the terms they are using, although similar,
actually mean the same thing? How will they prove their identities to each other and
come to an enforceable agreement? Finally, in a recursive model of "Web services all the
way down," how can these services in turn automatically find and compose other services
to fulfill a particular goal? And, once the agreement is in place, how and where will the
service be executed?

Although some of the mechanisms that answer these questions are already in place—and
covered in this book, such as SOAP and SOAP Intermediaries (see Chapter 3), encryption
and digital signatures (see Chapter 5, "Using SOAP for e-Business"), WSDL (see Chapter
6), and UDDI (see Chapter 7)—or are being developed, we are far from the full vision of
automated Web services everywhere. The next few sections will introduce some of the
current work on these topics.

Ontologies and the Semantic Web

Today's Web was originally designed for use by humans. It is now slowly being extended
for use by machines. It can be argued, however, that all the current work in standards,
protocols, interoperability stacks, and so on, are just facilitating the placement of bits on
the wire, with little effort going to actually facilitate understanding the meaning of those
bits and the content of the data being transmitted. If the eventual goal of the evolution
of the Web is to facilitate integration between human tasks and machine tasks, meaning
and context must be taken into account. At a minimum, it is clear that fundamental
tasks, such as searching and task interoperability in general, would be greatly enhanced
if the machines being used for the tasks had some semantic knowledge of the data.

Resource Description Framework

Of course, there have been numerous discussions as to what constitutes understanding.
Leaving such discussions for the academic types, let us at least agree to require that
Web content, and resources in general, be marked up with some structured metadata
that can be processed by machines. Metadata is an essential component that facilitates
tasks in everyday life and would be similarly beneficial if introduced into the framework
of Web services. XML is the first installment that makes structured metadata possible,
but XML is just a language, and another layer of meaning has to be built on top of it. This
layer of meaning is increasingly being exposed through the Resource Description

Framework (RDF) , an application of XML developed under the auspices of the W3C

.

RDF, as the name implies, is a framework that enables you to describe resources as
structured metadata, and to exchange and reuse these resources in various possibly
unrelated applications. It is built on the three concepts (see Figure 9.4):

• Resource— A resource is anything that can be uniquely identified by a Uniform

Resource Identifier (URI) . Resources usually have a reference ID for cross-
referencing. Resources also have properties.

• Property— A property is a resource that has a name and can be used to describe
other resources. A property is defined as a property-type with a corresponding
value. The value can either be an atomic value such as a string, or another
resource. A collection of properties that refer to the same resource is called a
description. RDF is essentially a mechanism to represent resources and their
descriptions in a direct labeled graph (DLG). Property-types are namespace
qualified, allowing different groups to use the same property-type name to mean
different things.

• Statement— A statement is a combination of a resource, a property-type, and a
value.

Figure 9.4. An example resource definition for a Web services book authored by Dean

Carroll and published by Sams.

A simple RDF example that defines a small subset of the graph shown in the Figure 9.4
follows:

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:books="urn:X-Skatestown.com/rdf/books/">

 xmlns:who="urn:X-Skatestown.com/rdf/who/">

 <rdf:Description rdf:ID="Book_012"

 rdf:about="http://skatestown.com/books/webservices">

 <books:title>Building Web Services</books:title>

 <books:author rdf:HREF="#Person_213"</books:author>

 <books:editor rdf:HREF="#Person_014"</books:editor>

 </rdf:Description>

 <rdf:Description rdf:ID="Person_213"

 rdf:about="http://skatestown.com/people/dean">

 <who:name>Dean Carroll</who:name>

 <who:email>dean@skatestown.com</who:email>

 </rdf:Description>

</rdf:RDF>

Ontologies

Having a framework to define resources and their relationship is only the first step. What
if different applications use different identifiers from different RDF definitions to mean the
same thing? In order for them to interoperate and exchange information, they must
reconcile the two terms. This next layer of meaning on top of RDF is provided by
ontologies. The term ontology, originally meaning "concerned with the nature and
relations of being" (Merriam-Webster), has been abused by different communities. In
general AI circles, it has come to mean a document containing a set of formal definitions
of relations among terms. Common ontologies contain a taxonomy of terms and a set of
inference rules to make sense of the terms, usually in machine readable form. This will
allow a computer, for example, to know that the terms author and creator, found in two
different schemas, actually mean the same thing when applied to a book.

Currently, the most comprehensive and widely accepted effort that extends XML and RDF
for specifying and manipulating ontologies is DAML+OIL, a joint effort combining a
DARPA sponsored language, DARPA Agent Markup Language (DAML), and a European
Union Information Society Technologies sponsored language, Ontology Inference Layer or
Ontology Interchange Language (OIL). DAML+OIL defines core resources and a large
number of ontologies. For more information, see the "Resources" section at the end of
this chapter.

Relating RDF to Web Services

Semantic Web technologies are clearly tightly related to Web services technologies and
will eventually converge. For example, Web services providers can currently describe
their services through WSDL and then register them on a UDDI registry, categorizing
them according to some taxonomy in order to be discovered. Whereas current service
descriptions and UDDI taxonomies are intended for human readers to browse, Web
service descriptions and registries that are marked up using RDF and ontologies as a
semantic enhancement to WSDL and UDDI can be machine readable, enabling dynamic
discovery and invocation of services by software through common terminology and
shared meaning. Several projects are underway to semantically enhance Web services by
exploring the concept of marked up Web services. For example, the latest effort from
DAML is DAML-S, a DAML-based Web service ontology to allow marking up Web services
for automated discovery and invocation by software agents. Again, more references are
provided in the "Resources" section.

Software Agents

The next requirement to facilitate integration between human tasks and machine tasks is
for some intelligence to be injected at all levels into the overall system. This intelligence
will probably take the form of intelligent software agents. Software agents will be able to
process the resource definitions and ontologies being developed. The concept of software
agents has been around for a few decades. Some might even consider it a failed
experiment. However, as we examine the concepts, it will become clear that it was
merely an idea that was ahead of its time, and that the infrastructure that makes it
possible and useful is now available. The following is by no means intended to cover the
topic. By last count, there are at least several dozen good books on the topic, and
hundreds of articles. What we will attempt to do, however, is a quick introduction to the
topic in the context of enabling the future of Web services.

We can categorize the concepts of intelligent software agents several ways. To add to the
confusion, over the years, several definitions of software agent have evolved amidst the
discussions of what constitutes intelligence. The two following definitions illustrate the
wide spectrum of definitions:

"Intelligent agents are software entities that carry out some set of
operations on behalf of a user or another program with some degree of
independence or autonomy, and in so doing, employ some knowledge or
representation of the user's goals or desires."

—IBM Intelligent Agent Definition (1996)

"An agent is a computational process that implements the autonomous,
communicating functionality of an application."

—FIPA and OMG Architecture (1999)

As you can see, the first definition includes the concepts of a user and the user's goals
and considers agents to be extensions of users. The second definition considers agents to
be a pure functionality embedded within an application or computer program, with no
mention or concept of users.

The software agent community has converged on a set of characteristics of autonomous
software agents, some of which are considered to be important (autonomous, reactive,
learning, goal-oriented, communicative), and others of which are still being debated
(mobile, flexible, character):

• Reactive— Responds in a timely fashion to changes in the environment

• Autonomous— Exercises control over its own actions

• Goal-oriented— Does not simply act in response to the environment

• Temporally continuous— Is a continuously running process

• Communicative— Communicates with other agents, perhaps including people

• Learning— Changes its behavior based on its previous experience

• Mobile— Is able to transport itself from one machine to another

• Flexible— Actions are not scripted

• Character— Has a believable "personality" and emotional state

Relating Software Agents to Web Services

It becomes clear from the previous list of definitions that the concept of an autonomous
intelligent software agent is closely aligned with that of a Web service, in that an agent
can either be exposed as a Web service, or as the interface to a Web service, or can be
part of the functionality of a Web service. Consider a functionality that is continuously
running, communicative, goal-oriented, and that learns from its previous interactions,
and then describe it in a WSDL document and publish it to UDDI; the result is a Web
service, regardless of whether it's an intelligent airline booking service that uses a
mainframe based process or a wine recommendation service based on a learning
adaptive intelligent software agent.

An essential element of both the agent and Web services concepts is that of identity and
integrity. In other words, how can agents prove who they are, and how can they prove
the integrity of the information they are delivering? As in Web services, the use of digital
signatures is starting to become more accepted in software agent applications, which
leads us to another important topic: agent communications. Again, most of the standards
that have emerged in agent communications have come out of DARPA funded efforts, in
this case, the DARPA Knowledge Sharing Effort.

Notably, two specifications, one for knowledge representation and the other for
knowledge exchange and message passing, have been established. The first specification
is Knowledge Interchange Format (KIF), used to represent information to be exchanged
between agents. KIF is an implementation-agnostic specification that is a prefix version
of first order predicate logic supporting the definition of four types of expressions: terms
(objects), sentences (facts), rules (inference), and definitions (constants). KIF knowledge
bases are a set of sentences, rules, or definitions. The simple example shown here
represents the information that SkatesTown is a company that sells skateboards:

(exists ((?x Sells) (?y Company) (?z Item))

 (and (Name ?y SkatesTown) (Name ?z SkateBoards)

 (Agent ?x ?y) (Object ?x ?z)))

The second specification is an Agent Communication Language, called Knowledge Query
and Manipulation Language (KQML). Whereas KIF is used to represent knowledge, KQML
is a message-format and message-handling protocol used for sharing information
between agents at runtime. This is done through an extensible set of constructs called
performatives because their intent is to cause an agent to perform a specific action.
Expressing KIF and KQML in XML should be a relatively straightforward task, and efforts
are underway to accomplish that ability. For example, the KQML message shown here, in
which a user agent requests a registration for a SEMC-sponsored conference, illustrates
the similarity of a KQML performative to a SOAP message:

(request

 :sender (:name user_agent@tcp://skatestown.com:2020)

 :receiver (:name register_agent@tcp://semc-consortium.org:7070)

 :ontology semc

 :language SL

 :protocol semc-request

 :content

 (action register_agent@tcp://semc-consortium.com:5001

 (register

 (:venue conf#3434)

 (:arrival 10/02/2001)

 (:departure 10/15/2001)

 (:infos ())

)))

Peer-to-Peer Computing

Peer-to-Peer (P2P) computing is a new name for a relatively old model of computing that
is coming back into favor. Looking back at its history, the Internet started as a network
of computers (peer nodes) communicating directly with each other. As computing
models, software and network architectures grew and evolved, different models of
computer networking were used, resulting in different architectures, most of them with
the distinct notions of a client and a server, roles being performed by different machines.
The pendulum seems to have swung back to the notion of a node on the network being
both a client and a server at different times and in different contexts. This has been
spurred by the availability of cheap computers, cheap bandwidth, cheap data storage,
and idle processor cycles. We can then define P2P computing as computing through
direct collaboration between nodes (without resorting to an intermediary such as a
server), including the sharing of data, processing cycles, and resources, such as storage
and printers. Within an organization, this has the advantage of relieving some of the load
off the servers. Outside organizational boundaries, the P2P model will enable computing
and sharing of resources in unstructured environments where it makes no sense to have
servers.

P2P computing has been made famous by the Napster court battles and is mainly known
as a model for file sharing. In fact, P2P is a full-fledged model of distributed computing
that enables collaboration, intensive computation, resource sharing, and so on. Currently,
however, most P2P applications provide only one type of service, and are usually limited
to file sharing or instant messaging. Aside from the Napster example (which is not
necessarily a true P2P model, because it requires the Napster servers as intermediaries,
at least in the discovery phase), some common P2P applications include Gnutella and
FreeNet, two information sharing applications; and Groove, a P2P collaboration platform
that allows users to share a variety of tools in addition to files and documents.

Current P2P applications are also restricted in their deployment platform and differ
significantly in their interfaces. There is, therefore, a definite need for an open platform
for P2P application development to enable multiple kinds of device independent
applications and services, and a common interface for interoperability. The JXTA project
is the latest attempt to solve that problem, and it remains to be seen whether it
succeeds. The core of the JXTA architecture is a set of three layers: the JXTA Core, which
handles communications, peer establishment, and other low level services; the JXTA
Services layer that handles common services, such as indexing, searching, and file
sharing; and the JXTA Applications layer which is the deployment framework for
applications such as e-mail, instant messaging, and file sharing. In addition, the JXTA
architecture provides for a set of platform independent protocols for routing, discovery,
binding, and other tasks.

Relating Peer Computing to Web Services

At its core, P2P computing is a kind of service-oriented architecture in that it enables
distributed computing through the loose coupling of systems, with emphasis on resource
(instead of service) description and dynamic discovery. The major differences are not
technical, but in terms of maturity. Although Web service standards are maturing and
their interoperability is being tested in open environments, P2P standards have been very
slow to emerge, hindering their acceptance as a valid option for e-business. Eventually,
however, both Web services and P2P standards will clearly converge, especially when it
comes to service description (will P2P adopt WSDL?), dynamic discovery (will Web
services adopt whatever mechanism the P2P community converges to?), and security.

Grid Computing

Whereas P2P computing emphasizes the concept of individual peers as collaborating
computing entities and the concept of peer independence, grid computing is the latest
movement in the field of distributed computing, distinguished from traditional distributed
architectures by its emphasis on large-scale resource sharing that crosses organizational
boundaries, and its emphasis on high performance computing. Grid computing is very
closely related to traditional high-performance computing and cluster computing, topics
that have been around for decades (it can be argued that the first clusters were
developed by IBM in the 1960s to link mainframes and provide high performance
computing). Grid computing, however, is different from clustering in that the concept
tries to encapsulate clustered computing as a service (thus its relevance to Web
services). The same trends that brought about P2P computing—cheap computers,
bandwidth, and idle processors—also contributed to the emergence of Grid computing.
An important additional contributing trend, however, has been the sharply increasing
need for large-scale computation in scientific and military applications involving several
different partnerships and virtual organizations.

According to one common definition, grid technologies have emerged in response to the
"grid" problem, defined as: "coordinated resource sharing and problem solving in
dynamic, multi-institutional virtual organizations." This concept of sharing computing
resources across virtual organizations raises a large number of issues that traditional

distributed computing does not address, but that are very close to some of the issues
that Web services face: how to structure flexible just-in-time sharing relationships; how
to structure fine grained access control over resources, taking care of local and global
policies; and how to agree on quality of service, scheduling and co-allocation.

A well known, if relatively simple, example of shared computing resources through Grid
computing, is the SETI@home project managed by the Space Sciences Laboratory of the
University of California, Berkeley. SETI, the Search for Extraterrestrial Intelligence, is a
scientific effort seeking to determine if there is intelligent life outside Earth. The
SETI@home project is trying to detect signals of extra-terrestrial intelligence by scanning
a 2.5MHz band of radio frequencies and processing them to look for narrowband signals.
The computations involved would overwhelm the largest supercomputers in existence. In
order to solve that problem, the project leverages idle processing power of millions of
computers connected to the Internet, who contribute willingly to the project by
downloading a client program that runs as a screensaver and processes data for the
project when the computer is idle. On a periodic basis, the client connects to the
SETI@home servers to upload results and download new data for the next computation.
Although it can be considered a type of Grid computing, the SETI@home computations
are well structured and involve all the computers asynchronously running the same client
code.

More complex and technically significant examples of grid computing include the Grid
Physics Network (GriPhyN), building a geographically distributed computational grid to
perform some of the largest physics computations; the Data Grid project, a European
project to build the infrastructure to handle large scale experiments with Petabyte-size
datasets; and the Access Grid, another project aimed at building the infrastructure and
software to enable highly distributed collaborations in conjunction with computational
grids.

Relating Grid Computing to Web Services

Due to their critical interoperability requirements, grid architectures are moving toward
standard protocols and a service-based architecture, although, again, Web service
standards are at a more mature stage in their lifecycle. It is clear, however, that grid-
type of computational power can be described and provided as a service, once all the
issues with security, dynamic partnerships, access control and quality of service have
been properly addressed.

Embedded Web Services

The final step in a "Web services everywhere" vision is the participation of devices in the
Web services world. Devices in general can be either requestors or providers of Web
services, if they are nodes on a network, or have access to nodes on a network. The
concept of a URI is ideal for this, because URIs can point to any kind of resource,
including devices. Traditional computing devices, such as laptops, desktops, and servers
can obviously easily play those roles, but what about other (not necessarily computing)
devices? On the next practical level, PDAs and cell phones can be considered as
computing devices. It is easy to see how these smaller computing devices can be
requestors of Web services. But they can also be providers of services. For example, my
PDA might make available my calendar as a Web service for some restricted list of users.
As we go down this chain of devices, even devices we think of as non-computing devices
can participate in a Web services world. Think for example of your home entertainment
center providing a list of Web services to be used by other devices on your home LAN.

In order to make this scenario a reality, we need to be able to embed Web services and
Web services clients into these devices. In addition, it would be very useful if these
devices could interact with registries such as UDDI. The computing power and capacity of
devices has been growing in conjunction with the decreasing footprint of embedded Java

and other computing platforms. These two lines have already crossed to the point where
realistic Web services can be embedded in devices, devices can act as UDDI clients, as
Web servers, and even UDDI registries can be embedded on some devices.

Pulling It All Together

As we mentioned in the introduction to this chapter, our intent was to quickly and briefly
expose you to a variety of emerging and in some cases well-established technologies that
are relevant to the future of Web services. Very soon, it will be technically possible to
have an ecology of software and hardware Web services and a community of software
agents living on various platforms, including small devices, monitoring users and systems
needs, discovering and communicating with each other as peers, using ontologies to
determine meaning and intent, discovering services as required by the issuing context,
negotiating and generating just-in-time partnerships, composing services as needed, and
fulfilling the initiating need (see Figure 9.5).

Figure 9.5. The possible future of interacting semantic Web services and agents.

Resources

Ontologies and the semantic Web:

• http://www.semanticweb.org

• http://www.kr.org/top/projects.html

• http://www.w3.org/RDF

• http://www.daml.org

• http://www.daml.org/services

• T. Berners-Lee, J. Hendler, O. Lassila, "The Semantic Web," Scientific American (May
2001). Available at http://www.sciam.com/2001/0501issue/0501berners-lee.html.

• E. Miller, "An Introduction to the Resource Description Framework." Available at
http://www.dlib.org/dlib/may98/miller/05miller.html.

• R. Fikes and D.L. McGuinness, "An Axiomatic Semantics for RDF, RDF-S and
DAML+OIL." Available at http://www.daml.org/2001/03/axiomatic-semantics-
030101.html.

Software agents:

• http://agents.umbc.edu

• http://www.cs.umbc.edu/kqml

• http://www.csee.umbc.edu/kif/

• http://www.fipa.org

• S. Franklin and A. Graesser, "Is It an Agent, or Just a Program?: A Taxonomy for
Autonomous Agents." Available at
http://www.msci.memphis.edu/~franklin/AgentProg.html.

• D. Lange and M. Oshima, Programming and Deploying Java Mobile Agents with Aglets
(Addison-Wesley, 1998).

• J. Bigus and J. Bigus, Constructing Intelligent Agents with Java (John Wiley & Sons,
1997).

P2P:

• http://www.napster.com/

• http://setiathome.ssl.berkeley.edu/

• http://www.gnutellanews.com/

• http://freenet.sourceforge.net/

• http://www.groove.net

• http://www.jxta.org

Grid computing:

• http://www.gridforum.org/

• http://www.eu-datagrid.org

• http://www.griphyn.org/

• http://www-fp.mcs.anl.gov/fl/accessgrid/

• http://www.gridcomputing.com/

Embedded Web services:

• http://aladdin.grc.nasa.gov/

• http://www.csdmag.com/main/9803fe2.htm

• http://www.w3.org/Addressing/

• http://www.pocketsoap.com

Glossary
Abstract Syntax Notation One
ASN.1

A binary format for representing structured data.

Access Control List
ACL

The most common means by which a network security system decides to grant or
deny access to network services. It is a list of the available services and the
entities permitted to use each service.

accessor
In the SOAP encoding, accessors are the link between a compound type and its
constituent parts. The SOAP encoding uses XML elements to hold the parts of
compound types. The accessors are either the element names (for structs) or the
position of the elements (for arrays).

ACID
The acronym for the four properties guaranteed by transactions: atomicity,
consistency, isolation, and durability.

AdminClient
A utility used to remotely deploy and undeploy Web resources to an Axis server.

AdminService
A predeployed service in Axis that can be used to remotely deploy and undeploy
Web resources such as services, handlers, and chains.

ADS
IBM's Advertising and Discovery of Services, a simple, HTTP-based mechanism to
advertise service descriptions on a Web page. For more information, see
http://www.ibm.com/developerworks/library/ws-ads.html. Compare with DISCO.

Application Service Providers
ASP

Companies that host applications for other companies to use on a subscription
basis, removing the need to buy software and allowing them to outsource part of
their IT departments.

array
In the SOAP encoding, arrays are subclasses of the SOAP-ENC:Array schema type.

authentication token
A small packet of data, usually encrypted, that is passed between a client and a
server, and that contains information establishing an identity.

Axis engine
The main entry point to the SOAP processor.

Axis (Apache Extensible Interaction System)
The Apache SOAP v3 project; see http://xml.apache.org/axis.

AxisFault
The Java object representing a fault (exception) generated during the processing
of the SOAP message.

Base64
An encoding for binary data as described as a means of encoding email bodies in
the IETF's MIME RFC. Base64 consists of only 64 of the 256 US-ASCII characters
(A through Z, a through z, 0 through 9, +, /).

Bean-Managed Persistence
BMP

Data transfer between an entity bean's variables and the resource manager
managed by the entity bean.

BeanMapping
The mechanism in Axis used to serialize and deserialize XML elements into Java
beans.

bind
An operation within a service-oriented architecture. The bind operation describes
the set of tasks associated with a service requestor preparing to invoke and
invoking a Web service provided by a service provider.

binding mechanism
The mechanism by which the abstract definition of a Web service (a PortType) is
mapped into a concrete representation of the Web service within a given
messaging protocol, network protocol, and encoding scheme. The WSDL binding
element is the binding mechanism used for Web services.

body
The body of a SOAP message is contained within the SOAP-ENV:Body element.

business-to-business
B2B

A characterization of interaction between businesses over the Internet. In a B2B
interaction, applications between businesses communicate without human
intervention being required during the interaction. Contrast with business-to-
consumer (B2C)

business-to-consumer
B2C

A characterization of interaction between a human being and a business over the
Internet. In a B2C interaction, a human being, often using a Web browser,
invokes applications provided by a business. Contrast with business-to-business
(B2B).

canonicalization
A method for generating a physical representation, the canonical form, of an XML
document that accounts for the permissible changes. For example, the order of
attributes, tab processing, and a standardized code set are used to check the
logical equivalence of two documents.

capabilities-based lookup
A type of SOA find operation in which the target of the search is described in
terms of what operations, characteristics, and so on the target Web services need
to fulfill. Contrast with a name-based lookup, where the target of the service is
described in terms of a well-known name or other identifier such as an object ID.

CDATA section
CDATA sections are used to escape blocks of text containing characters that would
otherwise be recognized as markup. CDATA sections begin with the string
<![CDATA[and end with the string]] >. They can occur in all places where
character data is allowed.

certificate authority
CA

A trusted third party whose purpose is to sign certificates for network entities that
it has authenticated. Other network entities can check the signature to verify that
a CA has authenticated the bearer of a certificate.

certificate path
The line of ancestral CAs that signed a given PKI certificate. If a trusted signer is
identified in the certificate path, that verifies the binding between the certificate's
subject and the public key. The certificate path is also called the certificate chain.

Certificate Revocation List
CRL

A list of certificates that have been revoked. This list is usually in a format
specified by X.509.

certificate
A data record used for authenticating network entities such as a server or a client.
A certificate contains standard information about its owner (called the subject)
and the signing Certificate Authority (called the issuer), plus the owner's public
key and the signature made by the CA. Network entities verify these signatures
using CA certificates.

chain
An ordered collection of Axis handlers. A chain is also an Axis handler.

character reference
An escape sequence for characters in XML documents. The syntax for character
references is an ampersand, followed by a pound/hash sign (#), followed by
either a decimal character code or lowercase x, followed by a hexadecimal
character code, followed by a semicolon. Example: the 8-bit character code 128
will be encoded in a UTF-8 XML document as €.

client proxy
A component on the client that acts as a substitute (or proxy) for the Web
service. A client proxy presents a programming language–specific interface to be
used by a client application to invoke the Web service and presents the response
from the Web service in a programming language–specific manner back to the
client. The term client stub is also used as a synonym.

client-config.xml
The Axis client-side configuration file.

compound type
In the SOAP encoding, compound types are composed of several parts, each of
which has an accessor. These parts could be either simple or compound types.

concrete endpoint
An actual implementation of a Web service made available at a particular network
address. A concrete endpoint is described using a WSDL port element.

connection-oriented messaging
Connection-oriented messaging requires that the sender and the recipient are
both running and have a direct connection established between them. Also known
as direct messaging.

Container Managed Persistence
Data transfer between an Entity Bean's variables and a resource manager
managed by the Entity Bean's container.

control characters
Also known as non-whitespace control characters, these include the ASCII
characters with codes 0 through 7, 9, 11, 12, or 14 through 31.

correlation ID
An identifier (usually a string) that is used to keep track of individual requests in a
multistep series of Web services interactions.

declaration
The XML declaration is a processing instruction (PI) whose target is xml. It
specifies the version of XML and, optionally, the character encoding in a
document. Example: <?xml version="1.0" encoding="UTF-8"?>.

deploy.xml
A file used as input into the Axis AdminClient to deploy new Web resources such
as handlers and chains.

deserialization
The process of generating a data structure from XML. Deserialization differs form
parsing in that the data structure is typically focused on the logical structure of
the document as opposed to its syntax.

direct messaging

See [connection-oriented messaging]
DISCO

Microsoft's approach for using a simple, HTTP-based mechanism to advertise
service descriptions on a Web page. For more information, see
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpguidnf/html/cpconenablingdiscoveryforwebservice.asp. Compare with ADS.

dispatcher
An Axis handler that will locate and invoke the desired Web service.

document-centric
A document-centric view of processing a SOAP message occurs when the body of
the SOAP envelope is viewed as an XML document rather than as an RPC call.

Document Object Model
DOM

DOM provides an object-oriented view of XML documents by representing them as
a hierarchy of objects mapped to XML markup (elements, attributes, text,
comments, and so on).

ebXML
A standards body jointly initiated by The United Nations body for Trade Facilitation
and Electronic Business (UN/CEFACT) and OASIS to standardize XML business
specifications. ebXML intends to develop a technical framework that will enable
XML to be utilized in a consistent manner for the exchange of all electronic
business data.

element
A markup language term denoting the pairing of start and end tags.

embedded value
In the SOAP encoding, a value that is not independent; that is, a value embedded
at the top level of the serialization.

Enterprise Application Integration
EAI

A form of distributed computing where applications and business processes are
combined to achieve higher goals. Although EAI can indicate integration both
within and between organizations, we use EAI for intra-organizations in this book.

Enterprise Java Beans

EJB
A component architecture for the development and deployment of object-oriented,
distributed, enterprise-level applications. Applications written using the Enterprise
Java Beans architecture are scalable, transactional, and secure.

entity
A named piece of information in an XML document. Internal entities are defined
within the document. External entities have separate physical storage.

Entity Bean
An enterprise bean that represents persistent data maintained in a database. An
Entity Bean can manage its own persistence or it can delegate this function to its
container. An Entity Bean is identified by a primary key. If the container in which
an Entity Bean is hosted crashes, the Entity Bean, its primary key, and any
remote references survive the crash.

entity reference
Refers to the content of a named entity. The syntax for entity references is an
ampersand (&), followed by the entity name, followed by a semicolon (;).

envelope
The SOAP envelope is the SOAP-ENV:Envelope element and its contents.

(File Transmission Protocol)
FTP

A standard Internet protocol to exchange files on top of TCP/IP. FTP is often used
to download programs and large files.

global chain
An Axis chain that is invoked for all Web services.

global.request
The name that should be used when defining the Axis global chain that is invoked
to process the request message.

global.response
The name that should be used when defining the Axis global chain that is invoked
to process the response message.

grid computing

A model of computation where clusters of machines at various locations on the
network are harnessed to perform various high performance computations.

guaranteed message delivery
See [reliable messaging]

handler
The basic building block inside Axis. It links Axis to existing back-end systems.
Handlers are grouped into chains.

HeaderFault
An element of WSDL that describes how a SOAP fault message is communicated
as a SOAP header.

headers
All SOAP headers are contained inside the SOAP-ENV:Headers element.

holder
The technique used to model in/out and multiple out parameters in Axis by
wrapping the actual value in a class that can carry the modified value back to the
requestor.

home interface
One of two interfaces for an enterprise bean. The home interface defines zero or
more methods for managing an enterprise bean. The home interface of a Session
Bean defines create and remove methods, whereas the home interface of an
Entity Bean defines create, finder, and remove methods.

horizontal extensibility
Allows different parts of a SOAP message to be targeted toward different
recipients along the message path. This is achieved through the use of SOAP
intermediaries.

HTTP Basic Authentication (BASIC-AUTH)
An authentication mechanism in which a Web server authenticates an entity by
extracting a user name and password from the HTTP request and comparing that
data with existing user information stored in the web server.

HTTPR
A reliable messaging protocol using HTTP as a transport protocol, proposed by
IBM; see http://www.ibm.com/developerworks/webservices/library/ws-phtt/.

HTTPS
Hypertext Transfer Protocol layered over the SSL protocol.

hybrid parsing
Combines push, pull, and one-step parsing to best serve particular scenarios.

independent value
In the SOAP encoding, all values that appear at the top level of the serialization
are considered independent.

Inquiry API
A set of public non-authenticated operations that allows users to extract
information from the UDDI Business Registry.

inspection
A level in the W3C discovery stack. Inspection is a technique of discovering the
service description given that the details about the service, a service identifier or
URL for example, is already known. Examples of inspection include ADS and
DISCO.

instance
Also known as XML instance or document instance. Refers to an XML document as
a specific instance from the set of possible documents allowed by a schema.

Interface Definition Language
IDL

A language to describe function or object interfaces in a distributed computing
environment, allowing compilers to generate proxy and stub code to marshal
parameters between different computers. In Web services, the IDL of choice is
WSDL.

interface repository
A central store of metadata about CORBA components' interfaces. This is a
CORBA-specific implementation of the SOA services registry role.

intermediaries
Processing nodes on the SOAP message path that are different from the requestor
and the final recipient of the message.

Internet Engineering Task Force
IETF

The standards body that defines Internet operating protocols such as TCP/IP,
URIs, and so on. The IETF's main documents are the RFCs.

J2EE Connector Architecture
An architecture for the integration of J2EE products with enterprise information
systems. There are two parts to this architecture: a resource adapter provided by
an enterprise information system vendor and the J2EE product that allows this
resource adapter to be plugged in. This architecture defines a set of contracts that
a resource adapter has to support to be plugged in to a J2EE product—
transactions, security, and resource management.

Java 2 Platform Enterprise Edition
J2EE

A meta-specification for developing and deploying enterprise applications with
Java. J2EE platforms consist of a set of services, application programming
interfaces (APIs), and protocols that provide the functionality for developing
multitiered, Web-based applications.

Java Authentication and Authorization Services
JAAS

A Java API that enables services to authenticate and enforce access controls on
users. The reference implementation features a version of the standard Pluggable
Authentication Module (PAM) framework and supports user-based authorization.

Java Community Processes
An open organization of international Java developers and licensees whose charter
is to develop and revise Java technology specifications, reference
implementations, and technology compatibility kits.

Java Cryptographic Architecture
JCA

A framework for providing cryptographic capabilities to Java programs.

Java Cryptography Extension
JCE

A Java framework and implementation of encryption, key generation, key
agreement, and Message Authentication Code (MAC) algorithms. Support for
encryption includes symmetric, asymmetric, block, and stream ciphers. The
software also supports secure streams and sealed objects.

Java Management Extension

JMX
A universal, open technology for system management, ready to be deployed
across all industries, wherever management is or will be needed. By design, this
new standard is suitable for adapting legacy systems, implementing new
management solutions, and plugging in to those of the future.

Java Message Service
JMS

An API for enterprise messaging systems. Implementations include IBM MQ Series
and TIBCO Rendezvous.

Java Secure Socket Extension
JSSE

A Java API that implements SSL and TLS protocols and supports data encryption,
server authentication, message integrity, and client authentication.

Java Specification Requests
JSR

A proposed or final specification for an addition or modification to the Java
platform. At any one time numerous JSRs are moving through the review and
approval process.

(Java API For XML Processing)
JAXP

Defines a vendor-independent API for parsing and transforming XML documents.

(Java Key Store)
JKS

A proprietary keystore format used by default in the Sun JDK's KeyStore API and
keytool program.

(Java Web Service)
JWS

A Java file that Axis will automatically compile and deploy as a Web service.

keystore
A repository of keys and certificates.

keytool
A tool for managing keys and certificates.

Lightweight Directory Access Protocol
LDAP

A protocol for accessing online directory services.

logical structure
The logical structure of an XML document describes the organization of the
concepts that define the meaning of the document.

MD5
A secure hash, or message digest, algorithm developed by Ron Rivest.

message
A WSDL element that describes a collection of parts of an input, output, or fault
data flow associated with an operation. A message can be abstract or concrete,
and the use is made clear only when the message is examined in the context of a
binding mechanism.

Message Authentication Code
MAC

A keyed-hash algorithm that is similar to secret-key digital signatures and is used
to ensure data integrity. A hash value is calculated using a symmetric session key,
which is included in the message itself, and then recalculated at the other end by
the same key to verify that the data has not been altered in transit.

MessageContext
The object that is passed to each handler during the SOAP message flow through
the Axis engine. The MessageContext object contains all the data needed to
process the request or response SOAP message.

message-driven bean
An enterprise bean that receives and processes asynchronous messages. A
message-driven bean has no state for a specific client, but its instance variables
can maintain state relating to the handling of client messages, including an open
database connection and an object reference to an EJB object. A client accesses a
message-driven bean by sending messages to the destination for which the
message- driven bean is a message listener.

message queuing
A messaging system built around the concept of message queues. Each message
is addressed to a specific queue; clients extract messages from the queue(s)
established to hold their messages.

messaging
A model for distributed computing where systems interact through the passing of
messages containing data.

meta-language
Can be used to define other languages. For example, XML Schema can be viewed
as a language that describes the structure and datatypes of XML-based
languages.

MsgDispatcher
An Axis handler that will locate and invoke a Java method. The entire body of the
SOAP message is passed as a DOM object to the method.

multireference
In SOAP encoding, a value that is referred to by more than one accessor is
considered multireference.

namespace
A standard that lets you specify a unique label for the set of element names
defined by a particular Document Type Definition (DTD). A document using that
DTD can be included in any other document without having a conflict between
element names. The elements defined in your DTD are then uniquely identified so
that, for example, the parser can tell when an element called <name> should be
interpreted according to your DTD, rather than using the definition for an element
called name in a different DTD.

Network Address Translation
NAT

An address assignment system that allows an organization's IP network to appear
from the outside to use a different IP address space than its component machines
are actually using.

(Organization for the Advancement of Structured Information Standards)
OASIS

See http://www.oasis-open.org/. OASIS sponsors a DTD repository at
http://www.XML.org.

one-step parsing
Involves the parser generating a parse tree (typically, a DOM structure) from an
XML document.

ontologies
Documents containing sets of formal definitions of relations among terms in
machine readable format, usually in the form of a taxonomy of terms and a set of
inference rules to make sense of the terms.

operation
A WSDL element that describes an individual method or function provided by a
Web service. An operation is part of an abstract definition of a Web service
interface (PortType).

peer-to-peer computing
A model of computation where nodes on the network are equal in status and can
act as both clients to request information from other nodes and servers to provide
that information to other nodes.

physical structure
The physical structure of an XML document describes the organization of syntax
elements (elements, text, comments, and so on) in the document.

pivot point
The Axis handler in a targeted chain that is the point at which the Axis engine
believes it has switched from processing the request SOAP message to processing
the response SOAP message.

Port
A WSDL element indicating the endpoint address of a Web service in a
communications protocol-specific fashion (for example, URL for HTTP, email
address for SMTP, and so on).

PortType
A WSDL element that describes a collection of message signatures (operation
elements) that define the abstract interface of the Web service.

principals
An identity assigned to a user as a result of authentication.

private key
The publicly unavailable key owned by an identity in a Public Key Cryptography
system. It is used to decrypt incoming messages and sign outgoing ones.

Processing Instruction
PI

A special directive to the applications processing XML documents. The syntax is
<?PITarget ...?>. The PI target is a keyword meaningful to the processing
application. Everything between the PI target and the ?> marker is considered the
contents of the PI.

prolog
A section of XML documents that provides some metadata about the markup in
the document such as information about the version of XML in use, information
about the character encoding in use, information about the document's DTD, and
any comments or processing instructions.

public key
The publicly available key in a Public Key Cryptography system, used to encrypt
messages bound for its owner and to decrypt signatures made by its owner.

Public Key Infrastructure
PKI

The architecture, organization, techniques, practices, and procedures that
collectively support the implementation and operation of a certificate-based public
key cryptographic system.

Publication API
A set of authenticated UDDI operations that allows organizations to publish
information to the UDDI Business Registry.

publish
An operation within a service-oriented architecture, describing a contract between
a service provider and a service registry. The publish operation describes the
steps taken by a service provider to advertise a service description in a way that
one or more service requestors can find that service description, and thereby be
able understand what is required to invoke that service.

publish/subscribe messaging
A one-to-many model of messaging interaction where the sender sends a single
message but copies it to multiple recipients. Also known as topic-based
messaging.

pull parsing

Parsing mechanism in which the application always has to request the next piece
of parsing information from the parser.

push parsing
Parsing mechanism in which the parser sends parsing events to the application
processing an XML document.

Quality Of Service
QoS

A general term encompassing a set of metrics relevant to a particular distributed
computing scenario. Typically these include aspects of security, transaction-
management, response times.

realm
A string, passed as part of an HTTP request during basic authentication, that
defines a protected space. The protected resources on a server can be partitioned
into a set of protected spaces, each with its own authentication scheme and/or
authorization database.

reliable messaging
Process of delivering messages with various Quality of Service (QoS) options that
guarantee the safe arrival of those messages at their destinations, even when
machine failures occur. When reliable messaging is used, the following
functionality is available: confirmation of receipt of messages, message logging
and tracking, correlation of messages, retry attempts, and a choice of message
delivery methods.

request message
The SOAP message that will be processed by the SOAP engine.

Resource Description Framework
RDF

An XML application that allows the description of resources as structured
metadata in machine readable format, and the exchange and reuse of these
resources in various and possibly unrelated applications.

response message
The response from a SOAP engine. Typically, this is generated as a result of
processing a request message.

Remote Method Invocation over Internet Inter-ORB Protocol
RMI-IIOP

An implementation of RMI using the CORBA IIOP protocol. RMI over IIOP provides
interoperability with CORBA objects implemented in any language if all the remote
interfaces are originally defined as RMI interfaces.

role-based access control
An access control mechanism based on roles: abstract logical groupings of users
that are defined by a system administrator. When an application is deployed, roles
are mapped to security identities, such as principals or groups, in the operational
environment.

root element
The first element in an XML document. The name derives from the fact that this
element is the root of the element hierarchy.

Round-Robin Domain Name Service
RR-DNS

A DNS method of managing server congestion by distributing connection loads
across multiple servers (containing identical content).

(Remote Procedure Call)
RPC

The concept of executing a function on another process or machine.

RPCDispatcher
An Axis handler that will locate and invoke a Java method as a Web service. The
body of the SOAP message is assumed to be an RPC call containing the method
name and serialized versions of the parameters.

RSA
The most widely known public key cryptographic algorithms. The security of RSA
relies on the relative ease of finding large prime numbers and the comparative
difficulty of factoring large integers.

(Simple API For XML)
SAX

Defines a simple event-based API for XML push parsing.

schema compilers
Tools that analyze XML schemas and code-generate serialization and
deserialization modules specific to the schemas.

Secure Socket Layer
SSL

A security protocol that ensures confidentiality and integrity of data exchanged
over the Internet. The protocol allows client and server applications to
communicate in such a way that third parties cannot eavesdrop or tamper with
the content of the communication. Servers are always authenticated and clients
are optionally authenticated.

Security Assertion Markup Language
SAML

A proposed standard that specifies a way of exchanging authentication and
authorization information as an XML document.

semantic Web
The evolution of the current Web, where Web information is augmented with
machine-readable data about the semantics of the content, allowing automatic
integration and interoperability between machines.

serialization
The process of emitting XML markup from a data structure.

server-config.xml
The Axis server-side configuration file.

ServiceClient
An Axis Java class that is the portal through which clients will connect to the
remote Web Service.

ServiceDescription
An Axis Java class that is used by the client to give the Axis engine metadata
about the Web service being invoked.

service description
A unit of meta data describing the capabilities of a Web service. A service
description is key to a service- oriented architecture in that it describes everything
a service requestor needs to know in order to invoke a Web service. The most
popular form of service description is WSDL. The W3C describes a service
description stack, outlining all of the technologies associated with describing many
facets of a Web service.

service implementation definition

A subset of WSDL elements focused on the actual endpoint definition of a Web
service. This forms a conventional division of a WSDL document, separating the
service implementation definition from service interface defintion.

service interface definition
A subset of WSDL elements focused on the reusable portions of a Web service;
that is, elements that are likely to be shared between many actual Web service
implementations hosted by different service providers. This forms a conventional
division of a WSDL document, separating the service implementation definition
from service interface defintion.

service orchestration
The act of combining two or more Web services to produce a higher level or more
sophisticated Web service. Popular service orchestration techniques include IBM's
WSFL and Microsoft's XLANG.

service oriented architecture
SOA

An abstract pattern that applies to a wide variety of Web services situations. SOA
defines an architecture consisting of three roles (service provider, service registry,
and service requestor) that can be fulfilled or implemented by a variety of
techniques. SOA also defines the contracts between these roles in terms of three
operations: publish, find, and bind.

service provider
A role within a service-oriented architecture. A service provider is any business or
entity that hosts one or more Web services for access by service requestors.
Service providers publish service descriptions to one or more service registries
and receive service invocations from one or more service requestors. Think of a
service provider as a "server" in a client-server relationship with a service
requestor.

service registry
A role within a service-oriented architecture. A service registry is any mechanism
by which one or more service descriptions can be published by service providers
and searched for or found by service requestors.

service requestor
A role within a service-oriented architecture. A service requestor is any business
or entity that invokes a Web service provided by a service provider. Service
requestors do find operations against one or more service registries to retrieve a
service description for a Web service. Based on that service description, the
service requestor invokes a Web service to fulfill some task within a business
process. Think of a service requestor as a "client" in a client-server relationship
with a service provider.

Session Bean
An enterprise bean that is created by a client and usually exists for the duration of
a single client-server session. A Session Bean performs operations, such as
calculations or accessing a database, for the client. Although a Session Bean
might be transactional, it is not recoverable should a system crash occur. Session
Bean objects can be either stateless or they can maintain conversational state
across methods and transactions. If a Session Bean maintains state, the EJB
container manages this state in any case where the object must be removed from
memory. However, the Session Bean object itself must manage its own persistent
data.

SGML/XML application
A term historically rooted in document-centric uses of SGML and XML. It describes
the set of SGML/XML documents allowed by a schema.

(Secure Hash Algorithm 1)
SHA1

A message digest function designed by NIST and the NSA.

Simple Network Management Protocol
SNMP

A network protocol used on the Internet to control devices. It is also used to
monitor devices over a network.

Simple Object Access Protocol
SOAP

A lightweight protocol for exchange of information in a decentralized, distributed
environment. It is an XML-based protocol that consists of three parts: an envelope
that defines a framework for describing what is in a message and how to process
it, a set of encoding rules for expressing instances of application-defined
datatypes, and a convention for representing remote procedure calls and
responses. SOAP can potentially be used in combination with a variety of other
protocols; however, the only bindings defined in this document describe how to
use SOAP in combination with HTTP and HTTP Extension Framework (definition
from http://www.w3.org/TR/SOAP/).

simple type
In the SOAP encoding, simple types map to the built-in XML Schema types, and
types derived from them using schema extensibility.

single-reference
In the SOAP encoding, a value that is referred to by only one accessor is
considered single-reference.

single sign-on
An authentication system set up such that the user has to sign-on only once to
access multiple systems and applications. Possible benefits include easier access
for the user and greater security (the user does not have to remember as many
passwords).

skeleton
A server-side component that intermediates between the Web services
middleware (such as the Axis engine) and the target Web service implementation.
A skeleton will decode information sent from the service requestor and invoke the
target Web service using a programming-language specific API. The skeleton also
translates the response from the target Web service back into a format expected
by the Web services middleware. The term server stub is also used as a synonym.

(Simple Message Transport Protocol)
SMTP

A protocol for email.

SOAP Digital Signature
A specification describing the form and content of a SOAP 1.1 header entry
carrying digital signature information.

SOAP Intermediary
A SOAP node that receives and forwards SOAP messages along the message path,
acting on the messages.

software agent
For the purposes of this book, a program that assists people and acts on their
behalf. Agents function by allowing people to delegate work to them.

struct
In the SOAP encoding, compound types whose parts are distinguished only by
their name.

tags
Identify pieces of information in markup languages. They denote the beginning
and end of elements. Elements begin with a start tag, such as <name>, and end
with an end tag, such as </name>.

targeted-chain
An Axis chain that has a pivot point handler.

TCPMon
A proxy tool that comes with Apache Axis. It allows for the monitoring of SOAP
messages over HTTP.

TCP router
A networked service that acts as a load balancing front-end to the clustered Web
server. TCP request packets arrive at the public interface to the cluster where
they are routed to an available processing node over the internal network
connecting the router to the server nodes.

TELNET
An Internet protocol that allows you to log on to another computer on the Internet
and interact with it as if you were physically present at that remote computer.

tModel
Refers to a technology model, a reusable abstract definition that is typically
published by a standards body or an industry organization and referenced in the
specification of a Web service that conforms to it.

topic-based messaging
See [publish]

transaction
An atomic unit of work that modifies data. A transaction encloses one or more
program statements, all of which either complete or roll back. Transactions enable
multiple users to access the same data concurrently.

Transaction Internet Protocol
TIP

A simple two-phase commit protocol that specifies how different nodes agree on
the outcome of a transaction; the content on which the nodes agree moves
through other protocols like HTTP. TIP is currently a proposed IETF standard.

Transaction Manager
An object that provides the services and management functions required to
support transaction demarcation, transactional resource management,
synchronization, and transaction context propagation.

transmission primitive

A characterization of the message flow associated with an operation. There are
four types of transmission primitives: request-response, one-way, solicit-
response, and notification.

transport
The means through which a SOAP message is delivered to and from the SOAP
processor; for example, HTTP.

Transport Layer Security protocol
TLS

The latest version of the SSL protocol. It is an enhancement of SSL version 3.0,
and is a proposed Internet Standard (see RFC2246).

transport listener
The piece of code that will wait for a SOAP request message, locate (or create) an
Axis engine, and then invoke the engine with the request message.

transport sender
The piece of code that will take the response message generated by the Axis
engine and send it to the appropriate target SOAP processor.

transport-specific chain
An Axis chain that is invoked based on the transport mechanism used.

Two-Phase Commit
TPC

The process by which a relational database ensures that distributed transactions
are performed in an orderly manner. In this system, transactions can be
terminated by either committing them or rolling them back.

UDDI4J
A collection of Java interfaces and implementations for client access to a UDDI
registry (http://oss.software.ibm.com/developerworks/projects/uddi4j).

UDDI Business Registry
An instance of the UDDI registry hosted at www.uddi.org.

UDDI Operators

Companies that run public instances of a UDDI Business Registry. Operators have
signed an operator agreement that commits them, among other things, to support
the UDDI API and to replicate registrations among themselves on a periodic basis.

undeploy.xml
A file used as input into the Axis AdminClient for undeploying Web resources such
as handlers and chains.

Uniform Resource Identifier
URI

The Web naming and addressing technology, consisting of strings that identify
resources on the Web, such as documents, images and email addresses.

Universal Description, Discovery and Integration
UDDI

A standards-based approach to very sophisticated service registry
implementation. UDDI is also an implementation of a services registry located at
www.uddi.org.

(Uniform Resource Locator)
URL

A subset of URIs referring to Internet addresses (for example,
http://www.example.com/doc/). URLs consist of an access protocol specifier
(http), a host IP specifier (www.example.com), and optionally the path to a file
or resource residing on that host (/doc).

(Uniform Resource Name)
URN

URIs that are globally unique and persistent. They begin with the specifier urn:.

(Universally Unique Identifier)
UUID

128-bit globally unique identifiers. They combine network card (Ethernet)
addresses with a high-precision timestamp and an increment counter. For
example: 2FAC1234-31F8-11B4-A222-08002B34C003.

valid
A valid XML document is well-formed and follows the constraints of some schema.

vertical extensibility

Allows new pieces of information to be introduced in SOAP messages without
breaking existing applications. This is achieved through the use of SOAP headers.

(World Wide Web Consortium)
W3C

The international body that governs Internet standards. It was created in 1994
and is open to all interested organizations. Participation in the W3C allows
member organizations to jointly develop protocols that promote the evolution of
the Web while insuring its interoperability. The W3C holds the specifications for
many of the Web technologies such as HTML, XML, and RDF.

W3C Note
A dated, public recognition of an idea, comment, or document by the W3C.
Members wishing to have their ideas published at the W3C site as a Note must
follow the Submission process.

W3C Working Draft
A W3C-published document that represents work in progress and a commitment
by W3C to pursue work in the area focused on. A Working Draft does not imply
consensus by a group or the W3C.

(Web Distributed Data Exchange)
WDDX

A language- and platform-neutral XML technology for exchanging data between
applications.

Web service
A platform- and implementation-independent software component that can be
described using a service description language; published to a registry of services;
discovered through a standard mechanism (at runtime or design time); invoked
through a declared API, usually over a network; and composed with other
services.

Web Services Deployment Descriptor
WSDD

An XML-based file used that will be used (in future Axis releases) for deploying
Web resources.

Web Services Description Language
WSDL

A component of a service description that describes the interface definition of the
Web service, details related to binding (network protocol and data encoding

requirements), and the network location of the Web service. WSDL is published at
http://www.w3.org/TR/wsdl.

Web Services Endpoint Language
WSEL

A component of a service description that describes aspects of the Web service
not directly addressed by the WSDL. These aspects are typically non-functional,
not directly impacting the way the Web service invocation message must be
formatted by the service requestor. Examples of non-functional properties include,
privacy policy, quality of service (QoS) assertions, and so on. WSEL currently
exists only as a high-level requirement as part of WSFL.

Web Services Flow Language
WSFL

A mechanism for service orchestration based on flow composition. WSFL was
published by IBM at
http://www.ibm.com/software/solutions/webservices/pdf/WSFL.pdf.

well-formed
A well-formed XML document follows the rules of XML syntax.

X.500 distinguished name
A name by which an entity entered in an X.500 directory service is unambiguously
identified.

XML digital signature
Addendum to an XML document containing information so that the authenticity of
the signed document and also the identity of the signer can be verified.

XML encryption
A method for encrypting data and a specification for representing the resulting
ciphertext in XML.

XML Key Management Services
XKMS

A specification to access PKI in XML. XKMS uses the relative simplicity of XML to
implement two key aspects of secure e-commerce, according to the specification's
authors, Microsoft Corp. and VeriSign Inc. In the near future, the specification will
be submitted to Web standards bodies for consideration as an open Internet
standard. XKMS aims to simplify application building by moving digital signature
handling and encryption out of the applications themselves.

XML protocol
Encompasses a set of rules and conventions for distributed computing using XML.
XML protocols govern how communication happens and how data is represented
in XML format on the wire. Examples of XML Protocols are WDDX, XML-RPC, and
SOAP.

XML Transaction Authority Markup Language
XAML

A set of XML-based message formats and interaction models that Web services
can use to enable business transactions between multiple parties on the Internet.
XAML is a vendor-neutral standard developed jointly by Bowstreet, Hewlett-
Packard, IBM, Oracle, and Sun.

XML-RPC
A simple RPC mechanism that uses XML messages.

	Cover
	Introduction
	Goals of this Book
	Assumed Background
	Philosophy
	Overview of the Book' s Composition
	Introducing SkatesTown

	Chapter 1. Web Services Overview
	What Is a Web Service?
	The Web Service Opportunity
	Trends in e- business
	Why Do We Need a Web Services Approach?
	Service- Oriented Architectures
	Web Services Interoperability Stacks
	Summary

	Chapter 2. XML Primer
	Origins of XML
	Document- Versus Data- Centric XML
	XML Instances
	XML Namespaces
	Document Type Definitions
	XML Schemas
	Processing XML
	Summary
	Resources

	Chapter 3. Simple Object Access Protocol (SOAP)
	Evolution of XML Protocols
	Simple Object Access Protocol (SOAP)
	Doing Business with SkatesTown
	Inventory Check Web Service
	SOAP Envelope Framework
	Taking Advantage of SOAP Extensibility
	SOAP Intermediaries
	Error Handling in SOAP
	SOAP Data Encoding
	Architecting Distributed Systems with Web Services
	Purchase Order Submission Web Service
	SOAP Protocol Bindings
	Summary
	The Road Ahead
	Resources

	Chapter 4. Creating Web Services (Axis)
	Why and What Is Axis?
	The Axis Architecture
	Installing Axis
	Configuring Axis
	Security
	Simple Web Services
	Client- Side Programming
	Advanced Web Service Deployment
	Document- Centric Services
	Data Encoding/Decoding
	Building Handlers
	Specialized Pivot Point Handlers, a. k. a. Providers
	Faults
	Message Patterns
	Building and Deploying an Intermediary
	SOAP V1.2
	Monitoring
	Summary

	Chapter 5. Using SOAP for e- Business
	Web Services Security
	Enterprise Application Integration
	Quality of Service
	Summary
	Resources

	Chapter 6. Describing Web Services
	Why Service Descriptions?
	Role of Service Description in a Service- Oriented Architecture
	Well Defined Service
	History of IDLs
	Web Services Definition Language (WSDL)
	WSDL and Java
	Future Service Description Efforts
	Summary

	Chapter 7. Discovering Web Services
	The Role of Service Discovery
	The Role of Registries
	UDDI
	Private UDDI Registries
	What' s New in UDDI Version 2.0?
	Using WSDL with UDDI
	Summary

	Chapter 8. Interoperability, Tools, and Middleware Products
	Interoperability: The " Holy Grail" of Web Services
	The Larger Web Services Landscape
	Summary
	Resources

	Chapter 9. Future Concepts
	Computing as a Utility
	Ontologies and the Semantic Web
	Software Agents
	Peer- to- Peer Computing
	Grid Computing
	Embedded Web Services
	Pulling It All Together
	Resources

	Glossary

