Steve Graham
Simeon Simeonov
Toufic Boubaez
Doug Lravis

Glen Daniels
Yuichi Makamura
Ryo Meyama

=
—

ML, SOAP. WSDL, and

f X

i@
.S
= e
e
@y
e
T O
-S.E
=aj
Q
(Vg

Making Sense «

Building Web Services with Java™: Making Sense of XML,
SOAP, WSDL, and UDDI

By Steve Graham, Simeon Simeonov, Toufic Boubez,

Doug Davis, Glen Daniels, Yuichi Nakamura, Ryo Neyama

Publisher : Sams Publishing
Pub Date : December 12, 2001
ISBN : 0-672-32181-5
Pages : 600

Slots 1

The Web services approach is the next step in the evolution of distributed computing.
Based on open industry standards, Web services enable your software to integrate with
partners and clients in a fashion that is loosely coupled, simple, and platform-
independent. Building Web Services with Java: Making Sense of XML, SOAP, WSDL, and
UDDI presents the concept of Web services and explains how to incorporate Web services
into your business. The book addresses emerging standards associated with Web
services, such as Simple Object Access Protocol (SOAP), Web Services Description
Language (WSDL), and Universal Description Discovery and Integration (UDDI).

Copyright

Copyright © 2002 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or
otherwise, without written permission from the publisher. No patent liability is assumed
with respect to the use of the information contained herein. Although every precaution
has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions. Nor is any liability assumed for damages resulting
from the use of the information contained herein.

Library of Congress Catalog Card Number: 2001090920
Printed in the United States of America
First Printing: December 2001

040302014321

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this

information. Use of a term in this book should not be regarded as affecting the validity of
any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an "as is" basis. The
authors and the publisher shall have neither liability nor responsibility to any person or

entity with respect to any loss or damages arising from the information contained in this
book.

Executive Editor
Michael Stephens
Acquisitions Editor
Michael Stephens
Development Editor
Tiffany Taylor
Managing Editor
Matt Purcell
Project Editor
Christina Smith
Copy Editor
Tiffany Taylor

Indexer

Eric Schroeder
Proofreader
Plan—It Publishing
Technical Editor
Chad Fowler

Craig Pfiefer
Team Coordinator
Pamalee Nelson
Media Developer
Dan Scherf
Interior Designer
Anne Jones

Cover Designer
Aren Howell

Page Layout

Heather Stephenson

About the Authors

Steve Graham is an architect in the Emerging Technologies division of IBM Software
Group. He has spent the last several years working on service-oriented architectures,
most recently as part of the IBM Web Services Initiative. Prior to this, Steve worked as a
technologist and consultant on various emerging technologies such as Java and XML, and
before that he was an architect and consultant with the IBM Smalltalk consulting
organization.

Before joining IBM, Steve was a developer with Sybase, a consultant, and a faculty
member in the Department of Computer Science at the University of Waterloo. Steve
holds a BMath and MMAth in computer science from the University of Waterloo. You can
reach him at sggraham@us.ibm.com.

Simeon (Sim) Simeonov has been developing software for more than 15 years. Sim's
areas of expertise encompass object-oriented technology, compiler theory, Internet
tools, enterprise computing, and the broad spectrum of XML technologies. As chief
architect at Macromedia Inc., Sim provides direction for the evolution of the company's
technology and product strategy as well as the architecture of its server-side platform
products. Previously, Sim was chief architect at Allaire Corporation, where his initiatives
brought about numerous innovations to the core product lines.

Sim is currently working on service-oriented architectures for the next generation of
distributed XInternet applications. He is actively involved with the Java Community

Process in the areas of Internet applications, XML, and Web Services. Sim also
represents Macromedia on the W3C working group on XML Protocol. He is a regular
speaker at conferences and a monthly columnist for XML Journal. Sim holds a B.A. in
Computer Science, Economics, and Mathematics and a MSc in Computer Science.

Toufic Boubez is the chief technology officer of Saffron Technology. Prior to joining
Saffron, he was a senior technologist in IBM's Emerging Technologies group, and lead
architect of IBM's Web services initiative. He was IBM's technical representative to the
UDDI Web Services Consortium with Microsoft and Ariba and co-authored the UDDI API
specification. He was also the IBM technical lead on the UN/CEFACT/OASIS ebXML
initiative and helped drive IBM's early XML and Web services strategies.

Dr. Boubez has more than 15 years of experience in IT and has published and presented
on Web services, XML, object technology, distributed computing, intelligent agents, B2B,
business modeling, simulation, neural networks, and wavelet analysis. He holds a
doctorate in Biomedical Engineering from Rutgers University.

Doug Davis works in the Emerging Technology organization of IBM, working on IBM's
Web Services Toolkit, and he is one of IBM's representatives in the W3C XML Protocol
working group. Previous projects include WebSphere's Machine Translation project,
TeamConnection, and IBM's FORTRAN 90 compiler. Doug has a Bachelor of Science
degree from the University of California at Davis and a Master's degree in Computer
Science from Michigan State University.

Glen Daniels, in his 13 years in the software industry, has run the gamut from device
drivers and network stacks up through user interface and Web site work, in everything
from assembly language to C++ to Lisp. Distributed computing has always been a
passion, and as such he is currently technical lead for the JRun Web Services team at
Macromedia. Glen is an active member of the W3C XML Protocol group as well as one of
the lead developers of Axis. When not coding, he can often be found playing bass or
harmonica, hanging out with his many crazy friends in the Boston area, or relaxing with
his cats.

Yuichi Nakamura is an advisory researcher at the IBM Tokyo Research Laboratory. His
research interests are Web services including SOAP and XML security, object-oriented
systems, J2EE, multiagent systems, B2B e-commerce, and knowledge engineering. He
received an MSc and a PhD in Applied Physics from Osaka University in 1987 and 1990,
respectively.

Ryo Neyama is a researcher at the IBM Tokyo Research Laboratory. His research
interests are distributed object systems including Web services, object request brokers,
and security. He received an MSc in Information and Computer Science from Waseda
University in 1999.

Acknowledgments

To Karen, Erin and Jessie, my family, my inspiration. For all the moments sacrificed to
create this book, my most heartfelt thanks for your understanding.

My thanks to my coworkers at IBM, and in particular the WSTK team for doing such an
outstanding job. My thanks also to Rod Smith for fostering an excellent environment for
creative work.

My thanks also to the staff at Sams, particularly Tiffany Taylor and Michael Stephens, for
the hard work that went into making this project a reality.

Romans 12:2.

—Steve Graham

It is much easier to write a book when others believe you can. My deepest thanks to
Pyrra: my true love and a constant source of inspiration. Thanks also to all my friends
and co-workers who never stopped being interested in Web services and the progress of
the book. See? It's done.

—Sim Simeonov

To Lucy and Yasmine: Thank you for your patience, love, and understanding. This was a
major undertaking for a new dad with another full-time job. To my old IBM team, Sam
Adams, Steve Burbeck, Jay Casler, Steve Graham, Maryann Hondo, and Rod Smith,
thank you for the great, challenging, and receptive work environment. | seriously don't
think the concept of Web services would have evolved to where it is today in a different
environment. To my new team at Saffron, thank you for replicating that environment!

—Toufic Boubez

Lin—I owe so many things to your patience, support, and most of all your sense of
humor. | can never say it enough, but thank you.

—Doug Davis

For all my friends and family who so patiently continue to be there for me through even
the busiest times—love and thanks to all of you.

—Glen Daniels

To Michiyo: Thank you for your understanding and patience during this work. Thanks to
my kids, Arisa and Ryotaro: You always made me happy with your lovely smiles.

My thanks to all XML and Security team members at IBM Tokyo Research Laboratory.
—Yuichi Nakamura

My thanks to my parents, Jun and Sachie, for bringing me up and always supporting me.
My thanks also to Takako and my friends for their encouragement and understanding.

My thanks to my coworkers at IBM Tokyo Research Laboratory for their deep insights on
Web services and related technologies.

—Ryo Neyama

Tell Us What You Think!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we're doing right, what we could do better, what
areas you'd like to see us publish in, and any other words of wisdom you're willing to
pass our way.

As an Executive Editor for Sams Publishing, | welcome your comments. You can fax, e-
mail, or write me directly to let me know what you did or didn't like about this book—as
well as what we can do to make our books stronger.

Please note that | cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail | receive, | might not be able to reply to
every message.

When you write, please be sure to include this book's title and authors' names as well as
your name and phone or fax number. | will carefully review your comments and share
them with the authors and editors who worked on the book.

Fax: 317-581-4770

E-mail: feedback@samspublishing.com

Mail: Michael Stephens

Executive Editor

Sams Publishing

201 West 103rd Street
Indianapolis, IN 46290 USA

Introduction

Welcome to the world of Web services! This is a rapidly evolving set of standards and
implementation technologies that have great promise for the world of application
integration and distributed computing.

Before we get going, we need to clarify some things about the purpose and structure of
the book. Let's talk about them now.

Goals of this Book

The overall goal of this book is to familiarize you with the concept of Web services and
what it will take to incorporate Web services as part of your business.

We will introduce the concept of Web services and give you a framework that describes
how you can position the various emerging standards that are associated with Web
services, such as Simple Object Access Protocol (SOAP), Web Services Description
Language (WSDL), and Universal Description Discovery and Integration (UDDI).

We will help position Web services from a business and technical perspective, explaining
and demonstrating how Web services can be used to address various business problems,
particularly related to application integration.

Another goal of this book is to help developers understand the issues and details related
to building Web services using the techniques covered by this book. What pieces are
required when you're planning a Web services strategy? What things do you need to take
care of when developing Web services? We provide lots of examples and running code to
demonstrate these approaches. We also review in detail the Apache Axis Web services
infrastructure with our running examples. Other tools and Web services infrastructures
are discussed as well, but not in the same detail as Axis.

Assumed Background

This book is meant for computing technical professionals with some experience building
Web applications and distributed computing systems. You don't need to be a seasoned
veteran of the distributed object wars to appreciate this book, but some familiarity with
Web-based architectures and techniques such as HTTP and HTML is assumed. If you do
not have any experience with these techniques, some of the material could be a little
confusing—particularly some of the code examples—but you should still be able to get a
lot out of this book.

We assume you are familiar with Java, and in particular the Java Server Pages (JSP) and
Java servlet technologies. We also briefly discuss the relationship between Enterprise
Java Beans (EJBs) and Web services, so some familiarity with EJBs is helpful as well. If
you need to supplement your understanding of these techniques, many, many good
books on programming with Java, JSP, servlets, and EJB are available on the market.

You will also discover that the Extensible Markup Language (XML) is at the core of all
things dealing with Web service. Although we devote an entire chapter to explaining the
core pieces of XML needed to build Web services, the more understanding of XML you
have, the more successful you will be in building Web services.

Philosophy

It is difficult to structure a book on Web services. The concepts and standards are very
much interdependent. It is hard to cover each topic in isolation, because it is the
combination of these concepts and standards that make Web services important to
distributed computing.

The philosophy of this book can be summarized by four points: pragmatics, progressive
disclosure, a running example, and a service-oriented architecture framework.

Pragmatics

In this book, we try to get to programming examples and running code as quickly as
possible. In particular, we focus on building and consuming SOAP-based Web services
using the Apache Axis Web services infrastructure. This is a Java-centric approach to
building Web services. Whereas we emphasize that Web services are fundamentally
programming language neutral, ultimately, any given Web service is implemented in
some programming language technology. In the case of this book, we have chosen Java.
Where issues of interoperability with Web services written in other programming
languages might appear, we note them. Detailed coverage of other Web services
implementation approaches, such as Microsoft's .NET, is beyond the scope of this book,
although we do give some basic examples of .NET and other environments in Chapter 8,
"Interoperability, Tools, and Middleware Products."

Progressive Disclosure

After the overview of Web services, we start with the fundamentals of XML, and then
layer on new concepts, motivated by a business computing problem. These layers
produce a series of Web services technology "stacks." For each of the technologies and
standards in the Web services arena, we focus on understanding the technology from the
perspective of what problems it solves, balancing the explanation of the technology itself.

Running Example

The technologies and standards that make up the Web services concept are each
examined in the context of a running example (which we discuss later in this
introduction). The use of the running example adds insight to the explanation of the
concept in the text of the book and supports the progressive disclosure approach as we
follow the example, adding the layers of Web services technology to the solution. This
approach helps position various best-practices approaches to Web service development
and deployment. You can download the source code for these running examples from
www.samspublishing.com. When you reach that page, enter this book's ISBN number
(0672321815) in the search box to access information about the book and a Source Code
link.

Service-Oriented Architecture

The examples and Web services concepts are discussed in the context of a service-
oriented architecture (SOA) that we introduce in Chapter 1, "Web Services Overview."
We use the SOA framework to help position the various Web services concepts back into
a bigger picture.

Overview of the Book’ s Composition

Chapter 1 begins the book with an explanation of what the Web services approach is all
about. We describe what a Web service is, what standards and technologies are
associated with Web services, and what problems can be solved using Web services. We
use this chapter to introduce the SOA conceptual framework and begin to explain how
the various Web services standards such as SOAP, WSDL, and UDDI fit together. This
chapter will give you a solid conceptual basis for the rest of the book.

Before we can get into the core Web services standards, we take a brief side trip to
explain XML in Chapter 2, "XML Primer." Because XML is at the heart of all the Web
services standards and techniques, it is important you understand it well. XML is a huge
topic, but we focus our examination of XML on what you will need to know in order to
understand the rest of the Web services topics.

After the review of XML, Chapter 3, "Simple Object Access Protocol (SOAP)," dives in to
the core problem of invoking a Web service. We review the topic of XML messaging in a
distributed computing environment, focusing on the SOAP message enveloping standard.
SOAP forms the core basis of communication between a service requestor and a service
provider in a Web services environment.

Chapter 4, "Creating Web Services," refines your understanding of SOAP in the context of
a particular SOAP infrastructure: the Apache Axis project. Chapter 4 dives into the details
of how Axis works and how you can use it to make it easy to deploy Web services and
have your applications consume Web services.

At this point, you will have a great background understanding of SOAP and at least one
way to make SOAP real: Axis. But SOAP alone is not enough to do more than very simple
Web services. Chapter 5, "Using SOAP for e-Business," adds detail to the concepts
introduced in Chapters 3 and 4 by explaining how you can build Web services for
complete business computing problems. Chapter 5 discusses how Web services
addresses many distributed computing problems including security, performance, quality
of service, reliability, and so on.

Chapter 6, "Describing Web Services," introduces the important notion of service
description, which is key to making Web services the great application integration
technology for building loosely coupled systems. Chapter 6 discusses how Web services
uses service description to address the problem of communicating what details the
service requestor needs to know about the Web service in order to properly understand
how (and why) to invoke it.

Now, you need to understand how the service requestor got the service description in the
first place. Chapter 7, "Discovering Web Services," picks up where Chapter 6 left off,
discussing the various techniques for Web service discovery. This chapter examines the
standards related to finding what Web services are provided by businesses with which a
company might want to collaborate.

Chapter 8, "Interoperability, Tools, and Middleware Products," fills out your
understanding of best practices in the Web services arena by examining various other
Web services infrastructure and tooling environments.

The book concludes with a forward-looking Chapter 9, "Future Concepts," which
speculates on some possible future uses of Web services technologies to address other
problems in distributed computing.

Note

This book introduces quite a few terms with which you might not be familiar. We have
included a glossary at the back of this book that acts as a great reference guide to the
terminology used in the book. We will annotate the first use of each term appearing in

the glossary using the msymbol.

So, before we get started, let's introduce the fictional company we'll use for our
examples throughout this book: SkatesTown. We will follow SkatesTown as the company
exploits Web services to improve its business.

Introducing SkatesTown

SkatesTown is a small but growing business in New York founded by three mechanically
inclined friends with a passion for cars and skateboards. They started by designing and
selling custom pre-built boards out of Dean Carroll's garage, and word soon spread about
the quality of their work. They came up with some innovative new construction
techniques, and within months they had orders piling up. Now SkatesTown has a small
manufacturing operation in Brooklyn, and the company is selling boards, clothing, and
equipment to stores around the city. Dean, Frank Stemkowski, and Chad Washington
couldn't be happier about how their business has grown.

Of the three, Chad is the real gearhead, and he has been responsible for most of the
daring construction and design choices that have helped SkatesTown get where it is
today. He's the president and head of the team. Frank, gregarious and a smooth talker
ever since childhood, now handles marketing and sales. Dean has tightly tracked the
computer revolution over the years, and is chief technical officer for the company.

A few years back, Dean realized that networking technology was going to be big, and he
wanted to make sure that SkatesTown could catch the wave and utilize distributed
computing to leverage its business. This focus turned out to be a great move.

Dean set up a Web presence so SkatesTown could help its customers stay up-to-date
without requiring a large staff to answer phones and questions. He also built an online
order-processing system to help streamline the actual flow of the business with network-
enabled clients. In recent months, more and more stores who carry SkatesTown products
have been using the system to great effect.

Our Story Begins---

At present, Dean is pretty happy with the way things are working with SkatesTown's
electronic commerce systems. But there have been a few problems, and Dean is sure
that things could be even better. He realizes that as the business grows, the manual
tasks associated with order gathering and inventory resupply will limit the company's
success. Always one to watch the horizon, Dean has heard the buzz about Web services,
and wants to know more. At the urging of a friend, he got in touch with Al Rosen, a
contractor for Silver Bullet Consulting. Silver Bullet specializes in Web services solutions,
and after a couple of meetings with Al, Dean was convinced—he hired SBC to come in,
evaluate SkatesTown's systems, and help the company grow into a Web service—enabled
business.

As we move through the rest of the book, we'll keep an eye on how SkatesTown uses
technologies like XML and, later, SOAP, WSDL, and UDDI to increase efficiency,
productivity, and establish new and valuable relationships with its customers and
business partners. Silver Bullet, as we'll see, usually lives up to its name.

Chapter 1. Web Services Overview

IN THIS CHAPTER

e What Is a Web Service?

e The Web Service Opportunity

e Trends in e—business

e Why Do We Need a Web Services Approach?

e Service—Oriented Architectures

e Web Services Interoperability Stacks

In this chapter, we will provide the basic terminology and set of concepts that put the

remainder of the book into context. We will define what we mean by a Web service
and describe situations in which Web services will play an important role. We will

describe a simple framework, called service-oriented architecture @3 that helps
structure the application of Web services technologies. We will also provide a framework,
in the form of three "interoperability"” stacks that position how the various Web services

technologies such as Simple Object Access Protocol (SOAP) , Web Services

Description Language (WSDL) , and Universal Description Discovery and

Integration (UDDI) ~ relate.

The rest of the book, then, is an elaboration of the basic concepts presented here.

What Is a Web Service?

This is a book about building Web services. We cannot describe how to build a Web
service without first clarifying what we mean by a Web service.

The term Web services has gained a lot of momentum in the last year. Many software
vendors (large and small) are announcing Web services initiatives and adoption (see the
sidebar "Web Services Market Dynamics"). Many organizations are involved in the
refinement of Web services standards. Although there seems to be a slow convergence
towards a common understanding of what the term means, there is no single, universally
adopted definition of what is meant by the term Web service. This situation is
reminiscent of the early days of object-oriented programming: Not until the concepts of
inheritance, encapsulation, and polymorphism were well defined did object-oriented
programming become accepted into the mainstream of development methodologies.

Several major Web services infrastructure providers have published their definitions for a
Web service:

IBM offers this definition at
http://www4.ibm.com/software/solutions/Webservices/pdf/WSCA. pdf:

A Web service is an interface that describes a collection of operations that
are network accessible through standardized XML messaging. Web services
fulfill a specific task or a set of tasks. A Web service is described using a
standard, formal XML notion, called its service description, that provides all
of the details necessary to interact with the service, including message
formats (that detail the operations), transport protocols, and location.

The nature of the interface hides the implementation details of the service
so that it can be used independently of the hardware or software platform
on which it is implemented and independently of the programming
language in which it is written. This allows and encourages Web services
based applications to be loosely coupled, component-oriented, cross-

technology implementations. Web services can be used alone or in

conjunction with other Web services to carry out a complex aggregation or
a business transaction.

Microsoft has a couple of definitions for Web service. The first is at http://
msdn.microsoft.com/library/default.asp?url=/nhp/Default.asp?contentid=28000442:

A Web service is a unit of application logic providing data and services to
other applications. Applications access Web services via ubiquitous Web
protocols and data formats such as HTTP, XML, and SOAP, with no need to
worry about how each Web service is implemented. Web services combine
the best aspects of component-based development and the Web, and are a
cornerstone of the Microsoft .NET programming model.

The other Microsoft definition is at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnWebsrv/html/Websvcs platform.asp:

A Web service is programmable application logic accessible using standard
Internet protocols. Web services combine the best aspects of component-
based development and the Web. Like components, Web services
represent black-box functionality that can be reused without worrying
about how the service is implemented. Unlike current component
technologies, Web services are not accessed via object-model-specific
protocols, such as the distributed Component Object Model (DCOM),
Remote Method Invocation (RMI), or Internet Inter-ORB Protocol (110P).
Instead, Web services are accessed via ubiquitous Web protocols and data
formats, such as Hypertext Transfer Protocol (HTTP) and Extensible
Markup Language (XML). Furthermore, a Web service interface is defined
strictly in terms of the messages the Web service accepts and generates.
Consumers of the Web service can be implemented on any platform in any
programming language, as long as they can create and consume the
messages defined for the Web service interface.

Sun provides the following definition at
http://www.sun.com/software/sunone/faqg.html#2:

Web services are software components that can be spontaneously

discovered, combined, and recombined to provide a solution to the user's

problem/request. The Java™ language and XML are the prominent

technologies for Web services.
As you can see, there is broad agreement on what a Web service might be, but no single
agreed-upon definition. Many developers will claim they cannot define what a Web
service is, but they know one when they see one.

From the perspective of this book, a Web service is a platform and implementation
independent software component that can be:

e Described using a service description language

e Published to a registry of services

e Discovered through a standard mechanism (at runtime or design time)
e Invoked through a declared API, usually over a network

e Composed with other services

One important point is that a Web service need not necessarily exist on the World Wide
Web. This is an unfortunate historical naming issue. A Web service can live anywhere on
the network, Inter- or intranet; some Web services can be invoked by a simple method
invocation in the same operating system process, or perhaps using shared memory
between tightly coupled processes running on the same machine. In fact, Web services
have little to do with the browser-centric, HTML-focused World Wide Web. Sometimes,
the names we choose in the information technology (IT) industry don't make a lot of
sense; they simply take on a life of their own.

Another important point is that a Web service's implementation and deployment platform
details are not relevant to a program that is invoking the service. A Web service is
available through its declared API and invocation mechanism (network protocol, data
encoding schemes, and so on). This is analogous to the relationship between a Web
browser and a Web application server: Very little shared understanding exists between
the two components. The Web browser doesn't particularly care if the Web application
server is Apache Tomcat, Microsoft 11S, or IBM Websphere. The shared understanding is
that they both speak HTTP and converse in HTML or a very limited set of MIME types.
Similarly, the Web application server really doesn't care what kind of client is using it—
various brands of Web browsers or even non-browser clients. This minimal shared
understanding between components allows Web services to form a system of loosely
coupled components.

Business Perspective

To a business person, the Web services approach is all about integration: integrating
application functionality within an organization or integrating applications between
business partners (in a supply chain, for example). The scenario in this book illustrates
this approach, particularly in Chapter 7, "Discovering Web Services." This application
integration allows time and cost efficiencies for receiving purchase orders, answering
status inquiries, processing shipment requests, and so on. The important point is that
application integration is enabled without tight lock-in to any particular business partner.
If another supplier has a better price, shipping terms, or quality assurance, then a
company's reorder systems can be easily repositioned to use that supplier; doing so is as
easy as pointing a Web browser at a different Web site. With a broader adoption of Web
services and XML document format standards, this style of dynamic business partner
integration will become more broadly used.

When systems are this easy to integrate, an organization's reach to suppliers, customers,
and other business partners is extended, yielding cost savings, flexible business models,
better customer service, higher customer retention, and so on. Just as IT is fundamental
to the efficient operations of an organization, Web services-based systems integration
will be fundamental to flexible, lightweight systems integration—for internal application
integration within an organization over an intranet and external partner integration over
the Intranet or extended virtual private network.

So, from a business perspective, a Web service is a business process or step within a
business process that is made available over a network to internal and/or external
business partners to achieve some business goal.

Technical Perspective

From a technical perspective, a Web service is nothing more than a collection of one or
more related operations that are accessible over a network and are described by a
service description. At this level, the Web services concept is not new. With Web
services, the IT industry is trying to address the fundamental challenge of distributed
computing that has been around for decades—Ilocating and accessing remote systems.
The big difference is that now the industry is approaching this problem using open
technology (XML and Internet protocols) and open standards managed by broad

consortia such as the World Wide Web Consortium m(WSC, which manages the

evolution of the SOAP and WSDL specifications). Further, the approach often taken with

Web services uses capabilities-based lookup m where the kind of service is searched
for, as opposed to a service of a particular name or object identifier.

The Web Service Opportunity

The Web services approach is an application integration concept; it is a set of
technologies that provides access to business functionality, such as purchase order
processing. Often, the business functionality already exists in the form of legacy
transaction processing systems, existing Web applications, Enterprise Java Beans, and so
on. Web services technology is about access and application integration; it is not an
implementation technology.

Organizations use Web services technology in two broad categories: Enterprise

Application Integration (EAI) mand business-to-business (B2B) mpartner integration
over the Internet. In either of these categories, Web services can range in sophistication
from simple request response functions such as a credit card check to very complicated
multi-party, multi-stage long-running business transactions such as a supply
configuration and order system. Web services can be invoked by PC-based programs,
mainframe systems, Web browsers, or even small mobile devices such as cell phones or
personal digital assistants (PDAS).

Regardless of the application, Web services will be used for systems integration: flexible,
loosely-coupled systems integration yielding systems that can be decomposed and
recomposed to reflect changes in the business.

Enterprise Application Integration

Enterprise Application Integration is still a field where large consulting companies
command multimillion dollar contracts to help their clients deal with a mess of
applications that were never meant to interoperate.

The state of the art within many enterprise systems remains that of large, monolithic
application "silos." These systems are often extremely difficult to change, let alone
integrate with other systems. These applications often define unique data formats, and
sometimes (for historical, often performance-related reasons) even define their own
communications protocols. Furthermore, many systems, particularly in large
organizations, can exist on multiple different platform technologies. Interoperability
between systems is a significant challenge. In many organizations, particularly
organizations that result from a merger of two previously independent companies, IT
integration costs can seriously impact the financial health of the company.

The Web services approach offers an attractive set of technologies by which existing
legacy systems can be wrappered as Web services and made available for integration
with other systems within the organization. Applications exposed as Web services are
accessible by other applications running on different hardware platforms and written in
different programming languages. Using this approach, the complexity of these systems
can be encapsulated behind industry-standard XML protocols. Pair-wise system
integration projects can be replaced with one-to-many systems interactions based on
Web services. The promise of higher-level interoperability initiatives is that over time we
will be able to develop the set of standards, technologies, and tools that will enable small
and large businesses all over the world to easily integrate systems internally, and then
mix and match the implementation of various activities within a business process,
maintaining the option to, at any time, choose to outsource any or all of these activities if
doing so makes business sense.

For many organizations, their first implementations using Web services technology will be
internal application integration, because that is the biggest problem for them to address

with IT. Flexible systems will yield flexible business models. Flexible business models will
yield organizations better able to adapt to changes in the business environment.

B2B

Another key driver behind the rise of Web services is the continuing evolution of B2B
computing. B2B computing is about integrating the business systems of two or more
companies to support cross-enterprise business processes such as supply chain
management. Some industry pundits claim that supply chain integration will be the killer
application of Web services, particularly as a result of the standardization of common
industry formats for XML and Web services related to supply chain business processes.
B2B applications can be as simple as automated credit card validation or as complex as
the full automation of the multi-billion- dollar supply chain of a Fortune 100 company.
The challenges of building B2B applications combined with their huge market potential
drove rapid innovation that has taken the industry from simple business-to-consumer

(B2C) mapplications to SOAP-enabled Web services in a matter of five years.

B2C, B2B, and Web services

Online HTML-based applications are consumer-oriented. The classic example of a B2C
Web application is the Amazon book search. To access this functionality, a human being
needs to use a Web browser to navigate the company's site through multiple page
transitions, input information using Web forms, submit them, and get the results back in
human-readable form. The only way to automate this process is to simulate how a
human uses the system. Doing so involves reverse-engineering the Web application to
see how it moves data between pages, passing the data automatically from page to
page, and, finally, parsing any data contained in the response HTML of pages. This
screen-scraping approach was popular in the early years of the Web (1995-97). It is very
error prone. Any changes in the Web application—even changes that are completely Ul-
centric and do not change the data being passed back and forth—can break screen-
scraping applications. These problems are compounded because most of these
applications do not properly separate presentation from application processing logic. The
only true way to integrate applications on the Web is to use a B2B-focused solution.

Because B2B applications are designed to have other applications as their clients, they
are fundamentally different from B2C applications. Table 1.1 summarizes some of these
differences for Java applications. Both types of application are unrestricted as to the type
of backend they can use—typically, Java classes or Enterprise Java Beans (EJBs). (We
discuss how Web services work with EJBs in more detail in Chapter 5, "Using SOAP for e-
Business.") This is where the similarities end, however. To customize backend logic, B2C
applications use servlets or Java Server Pages (JSPs) that are hosted in a servlet engine.
B2B applications customize their backends using straight Java code (often EJBs) that is
hosted inside a Web service engine. B2C applications communicate with a browser over
HTTP. B2B applications can use any of the open Internet protocols such as HTTP, SMTP,
or FTP, or proprietary networks such as EDI. B2C applications handle data over the
straight HTTP protocol. Input comes as GET parameters (on the URL/query string) or as
POST parameters from Web forms. Only strings can be exchanged. Any other datatypes,
even numbers, need to be encoded as strings. For output, data is mixed together with
formatting rules inside HTML pages. This is in marked contrast with B2B applications that
use XML for both data input and output. XML is perfect for B2B computing because it is
programming language- and platform-neutral, it can represent arbitrary data structures,
it is easy to process, and it can be validated independently of its processing. B2C
applications need to have some Ul (typically HTML, although some have used Java
applets) because their clients are humans. B2B applications have no Ul because their
clients are other applications.

Table 1.1. Comparing B2C and B2B Java Applications

Area B2C application B2B application
Backend logic Java classes and EJBs |Java classes and EJBs
Custom logic Servlets and JSPs Web service engine
Communication HTTP HTTP, SMTP, FTP, TCP/IP, EDI,
protocol JMS, RMI/IIOP....
Data input HTTP GET/POST XML
parameters
Data output HTML XML
Ul HTML + script N/A
Client Human behind a Software application
browser

Trends in e—business

It is clear that the network economy is currently driving the evolution of business.
Businesses must respond to increasingly dynamic marketplaces. Within corporate
departments, application integration has been a major issue in the last few years.
Traditional architectures are brittle, and this brittleness is being exposed as the scale,
demand level, transaction volume, and rate of change of transaction volume increases.

Interoperability, particularly between heterogeneous distributed systems components,
has been one of the major themes in software engineering in general, and EAI in
particular, for the last decade. It's unfortunate that the seamless interoperability vision is
still a dream. Brittleness in all current architectures is preventing software from achieving
this vision. Brittleness comes from tightly coupled systems that generate dependencies at
every level in the system. One of the most important lessons we learned as developers
and architects is that systems need to be able to find resources (software or otherwise)
automatically, when and as needed, without human intervention. This ability frees
business people to concentrate on their business and customers rather than worry about
IT complexities. At the same time, it frees system developers to concentrate on enabling
their business and their customers rather than deal with interoperability headaches by
writing glue code and patching systems together. More than any technical consideration,
this concept of implicit, seamless integration as a major business benefit is one of the
main drivers for service orientation. In other words, the time has come for "just in time"
integration!

Trends in application design are moving from rigid structures to flexible architectures.
Trends in business partner interactions are moving from static agreements to more
dynamic agreements. Trends in B2B integration are moving from technology-based
integration to business process-based integration. There is a corresponding shift in
programming and architecture models to enable these trends: from tightly coupled
applications to loosely coupled services.

On the technical side, major shifts have occurred toward flexibility and interoperability,
through open and widely accepted standards. The first major shift happened two decades
ago with the advent of TCP/IP as an open platform for networking. This step enabled
such important and pervasive architectures as client-server computing. It took the
advent of the World Wide Web for the next major shift, with HTML and HTTP providing
the first truly universal open and portable user interface. Next, Java gave us truly open
portable programming, and finally XML brought with it open portable data exchange. The
next step in this evolution of open standards is the integration step. How do all these
ingredients come together to facilitate the next evolution of e-business? Web services.

One aspect of more loosely coupled systems is reflected in the move from Remote

Procedure Call (RPC) interfaces towards a messaging or document-centric wmodel of
distributed computing interface. With a document-centric approach, the interface to the
Web service becomes much more simple and flexible. An RPC interface presenting a fixed
set of parameters in a fixed order is quite brittle. Small changes to information required—
for example, a new requirement for an expiration date on a credit card—require a new
interface to be created, published, and understood by the service requestor. With a
document-centric approach, the new information can be added to the document schema
defined in the Web service interface. Programs that use the older schema don't
necessarily break when the new XML element is added (this is a property of XML
namespaces that you will see in Chapter 2, "XML Primer™). This approach yields Web
services interfaces that are much more flexible, resulting in systems that are much more
adaptive.

Web Services Market Dynamics

Most major software companies and many smaller software vendors have
embraced the concept of Web services in one form or another. Some might just
be giving it lip service, hedging on whether it's just another fad, or using it as a
buzzword to generate marketing fodder. Others have staked their future on it.
Here is a brief examination of the Web services initiatives from a few major
players:

e IBM: Dynamic e-business—IBM provides a broad collection of
Web services technology, including a SOAP stack as part of
WebSphere (derived from Apache SOAP 2.2), WSDL tooling in the
Web Services Toolkit, and a UDDI implementation. Many major
products within IBM are incorporating the Web services
approach in some fashion.

e Microsoft: .NET—It can be argued that Microsoft is “betting
the business” on the success of .NET. Although .NET is based
on Web services technologies, the .NET initiative is much
broader than Web services, including a new programming
language, CH#, and a common runtime layer upon which
implementations of multiple programming languages can be
built. We will look at .NET in more detail in Chapter 8,
"Interoperability, Tools, and Middleware Products.”

e Sun: SunOne (Open Net Environment)— Sun declared the notion of
smart Web services that can somehow understand the context in which
they were deployed or invoked (such as user identity, type of client
device and privacy policy, and so on). Smart Web services includes a
standard for sharing this notion of "context" and an infrastructure
SunONE upon which to deploy it.

Sun’ s approach to Web services is fairly similar to the
approach taken by the other major IT vendors, in that Sun
bases its Web services technology on the core XML, SOAP,
WSDL, UDDI technology set. Sun also augments these
technologies with technologies derived from ebXML. The
details are not clear as to how these technologies merge

together.

Sun’ s sponsorship of the Java Community Process and its
definition of Java specifications related to Web services is
also a major component of the company s Web services
initiative.

e Oracle: Oracle 9i Web Services Broker— The Oracle approach to Web
services also follows the traditional SOAP, WSDL, UDDI perspective.
Oracle emphasizes the role of its database technology as a service
registry (broker) providing security and other value added services as an
intermediary between service requestor and service provider.

e Macromedia: Macromedia platform— Macromedia has embraced Web
services throughout its mass-enterprise platform. Its rich clients can
display information retrieved through Web services, its application
servers make building Web services possible for developers at all skill
levels, and its tools provide high-level support for building applications
that leverage Web services.

It is exciting to see so many software vendors active in Web services. With
multiple vendors, there is a risk of incompatibility of implementations. Unless
Web services from different vendors can interoperate, Web services will fail to
attain critical mass of adoption. Happily, there is significant focus among the
various Web services implementations to develop and maintain interoperability.

Chapter 8 will look at a collection of Web services implementations in the
industry, from large software vendors to smaller boutique Web services
infrastructure providers.

Why Do We Need a Web Services Approach?

The beginning of this chapter explained the motivation for application-to-application
communication over the Internet to address the current challenges of distributed
computing and B2B integration in particular. Since 1999, the software industry has been
rapidly evolving XML-based Web services technologies as the approach to these
problems. In the maelstrom of press hype, product releases, and standards
announcements, many people have been left wondering whether this is a good in which
direction to go. After all, we already have many different mechanisms for distributed
computing. Surely, some of them would be able to rise to meet the challenges of e-
business. Why build a completely new distributed computing stack based on Web
services?

This is a very good question and one that is hard to give a short answer to. "Because
Web services use XML" is not the right answer. It is a correct observation, but it doesn't
answer the crucial question as to why using XML makes such a big difference. At a basic
level, there are three key reasons why existing distributed computing approaches are
inferior to Web services for solving the problems of e-business:

e The scope of problems they try to address
e The choice of available technology
e Industry dynamics around standards control and innovation

Scoping the Problem

Traditional distributed computing mechanisms have typically evolved around technical
architectures rather than broader problems of application integration. For example,
CORBA evolved as a solution to the problem of implementing rich distributed object
architectures. At the time, it was implicitly assumed that this was the right approach to
getting applications to communicate with one another. As we discussed earlier,
experience has shown that RPCs are not always the best architecture for this
requirement. The need for loosely coupled applications and business process automation
has clearly shown the benefits of simply exchanging messages containing data (typically
a business document) between the participants of e-business interactions, a so-called
document-centric approach. Distributed computing specifications address messaging as a
computing architecture; however, there has been no unifying approach that brings RPCs
and messaging to the same level of importance—until Web services, that is.

Web services have evolved not around pre-defined architectures but around the problem
of application integration. This is a very important distinction. The choice of problem
scope defines the focus of a technology initiative. Web services technologies have been
designed from the ground up to focus on the problems of application integration. As a
result, we are able to do things outside the scope of traditional distributed computing
approaches:

e Support both document—centric messaging and RPCs
e Transport encoded data from both applications and business documents

e Work over open Internet protocols such as HTTP and SMTP

In other words, Web services are better suited for the task than what we have so far
because we have specifically built them with this in mind. COM/CORBA/RMI are still great
technologies for tying together distributed objects on the corporate network. However,
the e-business application integration problem is best tackled by Web services.

Core Technologies

Because Web services address a much more broadly scoped problem, they use much
more flexible technologies than traditional distributed computing approaches. Further,
with Web services we can leverage all that we have learned about connecting and
integrating applications since we first started doing distributed computing. These two
factors put Web services on a better technology foundation for solving the problems of e-
business than traditional distributed computing approaches.

Later, in the "Web Services Interoperability Stacks" section, we introduce the notion of
Web services interoperability stacks. These interoperability stacks organize a layering of
technologies that define the capabilities of Web services. It is possible to compare the
Web services approach to traditional distributed computing approaches level-by-level to
see why the technical foundation of Web services is more appropriate for the problems it
needs to solve. Rather than going through this lengthy process, let's focus on two key
capabilities: the ability to represent data structures and the ability to describe these data
structures.

Data encoding is a key weakness for traditional distributed computing approaches,
particularly those that are programming language independent. Sure, they typically have
a mechanism to represent simple data (numbers, strings, booleans, date-time values,
and so on), basic arrays, and structures with properties. However, mapping existing
complex datatypes in applications to the underlying data encoding mechanisms was very
difficult. Adding new native datatypes was practically impossible (doing so required a
complete update of specifications). The fact that data was encoded in binary formats
further complicated matters. For example, processing code had to worry about little- vs.
big-endian issues when reading and writing numbers.

Web services address these issues by using XML to represent information. XML's text-
based form eliminates byte ordering concerns. The wide availability of XML processing
tools makes participation in the world of Web services relatively easy. XML's hierarchical
structure (achieved by the nesting of XML elements) allows changes at some level of
nesting in an XML document to be made with ease without worrying about the effect on
other parts of the document. Also, the expressive nature of attributes and nested
elements makes it considerably easier to represent complex data structures in XML than
in the pure binary formats traditionally used by COM and CORBA, for example. In short,
XML makes working with arbitrary data easier.

The choice of XML brought another advantage to Web services—the ability to describe
datatypes and validate whether data coming on the wire complies with its specification.
This happens through the use of XML meta-languages such as XML Schema. Binary data
encodings typically used for distributed computing offered no such mechanism and thus
pushed data validation into application logic, considerably complicating applications
dealing with non-trivial data.

Industry Dynamics

Momentum is a very important aspect of the dynamics of software innovation. Great
problems gate great opportunities. The desire to capitalize on the opportunities
generates momentum around a set of initiatives targeted at solving the problem. This
momentum is the binding force of our industry. This is how major innovation takes place
on a broad scale. The challenge of e-business application integration is great; this is why
all the key players in the industry are focused on it (see the sidebar "Web Services
Market Dynamics™). Customer need, market pressure, and the desire to be part of the
frontier-defining elite have pushed many companies to become deeply engaged with Web
services. Good things are bound to happen. Consider this: The last time every one of the
key infrastructure vendors was focused on the same set of issues was during the early
days of e-business when the industry was trying to address the challenges of building
Web applications. The net result was a new model for application development that
leveraged the Web browser as a universal client and the Web application server as a
universal backend. In short, trust that some of the very best minds in the industry
working together under the aegis of organizations such as the W3C and OASIS will be
able to come up with a good solution to the problems of e-business integration.

To the veterans of the software industry, momentum sometimes equals hype. So, are we
trying to say that Web services will succeed because there is so much hype around
them? Absolutely not! The momentum around Web services is real and different from
what we have experienced so far with other distributed computing fads. The fundamental
difference is around the ability of many industry players to engage in complementary
standardization in parallel.

Parallelism is key to building real momentum and increasing the bandwidth of innovation.
Traditional distributed computing efforts could not achieve this kind of parallelism
because they were either driven by a single vendor—Microsoft promoting COM, for
example—or they were driven by a large, slow organization such as the Object
Management Group (OMG), which owns the CORBA standards. In both cases, the key
barrier to fast progress was the centralized management of standards. Any change had
to be approved by the body owning the standard. And Microsoft and OMG owned all of
COM and CORBA, respectively. This is no way to gain real momentum, regardless of the
size of the marketing budgets to promote any given technology. Vendors that feel they
have very little control over the evolution of a technology will likely spend very little time
investing in its evolution. In other words, you might use COM, but if you think you have
no chance of influencing Microsoft's direction on COM you will probably not spend much
time thinking about and prototyping ways to improve COM. Open-source efforts such as
the Linux operating system and projects of the Apache Software Foundation
fundamentally generate momentum because people working on them can have a direct
influence on the end product. The momentum of Web services is real because

standardization work is going on in parallel at the W3C, OASIS, UDDI, and many other
horizontal and vertical industry standards organizations. Further, the major players so far
have shown a commitment to do a lot of innovation out in the open.

The interesting thing from a technical perspective is that XML actually has something to
do with the ability of Web service standardization to be parallelized. XML has facilities
(namespaces and schema) that enable the decentralized evolution of XML-based
standards without preventing the later composition of these standards in the context of a
single solution. For example, if group A owns some standard and group B is trying to
build an extension to the standard, then with some careful use of XML, group B can
design the extensions such that:

e Its extension can be published independently of the standard.
e [Its extension can be present in cases where the standard is used.

e Applications that do not understand the extension will not break if
the extension is present.

e Applications that need the extension will only work if the extension
is present.

The industry's focus on Web services combines the right scope (e-business application
integration) with the right technologies (XML-based standards) with the potential for
significant parallelism and high-bandwidth innovation. This is why Web services will be
successful.

Distributed Computing History

Historically, distributed computing has been focused on the problem of
distributing computation between several systems that are jointly working on a
problem. The most often used distributed computing abstraction is the RPC.
RPCs allow a remote function to be invoked as if it were a local one. Distributed
object-oriented systems require object-based RPCs (ORPCs). ORPCs need some
additional context to be able to invoke methods on specific object instances. The
history of RPC-style distributed computing and distributed objects is fairly
complicated. The following timeline illustrates some of the key events:

e 1987

o Sun Microsystems developed the Open Network Computing
(ONC) RPC system as the basic communication mechanism
for its Network File System (NFS).

o Apollo Computer developed the Network Computing System
(NCS) RPC system for its Domain operating system.

e 1989

o The Open Software Foundation (OSF, now The Open Group)
issued a Request for Technology (RFT) for an RPC
system. OSF received two key submissions. The first
submission came from HP/DEC based on NCS (HP had
acquired Apollo). The other submission came from Sun

1990

1991

1996

1997

based on ONC. OSF selected NCS as the RPC mechanism for
its Distributed Computing Environment (DCE).

The Object Management Group (OMG) was formed to deliver
language— and platform—neutral specifications for
distributed computing. (The consortium includes about
650 members as of the time of this writing.) The OMG
began development of specifications for Common Object
Request Broker Architecture (CORBA), a distributed
objects platform.

Microsoft based its RPC initiatives on a modified
version of DCE/RPC.

DCE 1.0 was released by OSF.

CORBA 1.0 shipped with a single language mapping for
the C language. The term Object Request Broker (ORB)
gained popularity to denote the infrastructure software
that enables distributed objects.

Microsoft shipped the Distributed Component Object
Model (DCOM), which was closely tied to previous
Microsoft component efforts such as Object Linking and
EFmbedding (OLE), non-distributed COM (a.k.a. OLE2), and
ActiveX (lightweight components for Web applications).
The core DCOM capabilities are based on Microsoft’s RPC
technologies. DCOM is an ORPC protocol.

CORBA 2.0 shipped with major enhancements in the core
distributed computing model as well as higher—level
services that distributed objects could use. The
Internet Inter—ORB Protocol (II0OP) was part of the
specification. IIOP allows multiple ORBs to
interoperate in a vendor—agnostic manner. IIOP is an
ORPC protocol.

Sun shipped JDK 1.1, which included Remote Method

Invocation (RMI). RMI defines a model for distributed
computing using Java objects. RMI is similar to CORBA
and DCOM but works only with Java objects. RMI has an

ORPC protocol called Java Remote Method Protocol
(JRMP).

o Microsoft announced the first iteration of COM+, the
successor of DCOM. The capabilities of COM+ brought it
much closer to the CORBA model for distributed
computing.

e 1999

o Sun shipped J2EE (Java 2 Platform Enterprise Edition).
The Java 2 platform integrated RMI with IIOP, making it
easy to interoperate between Java and CORBA systems.

o Simple Object Access Protocol (SOAP) appeared for the
first time. The era of Web services was born.

Although RPCs and distributed objects have been the traditional approaches for
building distributed systems, they are by no means the only ones. Another very
important approach is that of data-oriented or document-centric messaging.
Rather than being focused on distributing computation by specifically invoking
remote code, messaging takes a different approach. Applications that
communicate via messaging run their own independent computations and
communicate via messages that contain pure data. Messaging was popularized
via the efforts of system integrators who were trying to get highly
heterogeneous systems to interoperate. In most cases, the systems were so
different that the requirement to perform fine-grain integration via RPCs was
impossible to satisfy. Instead, system integrators were happy to be able to
reliably move pure data between the systems. Commercially, the importance of
messaging applications has been steadily growing since IBM released its
messaging product MQSeries in 1993. Microsoft's messaging product is the
Microsoft Message Queuing Server (MSMQ). J2EE defines a set of APIs for
messaging through the Java Messaging Service (JMS). There has been no
attempt to define a standard interoperability protocol for messaging servers.

One of the key benefits of Web services is that the core Web service protocols
can support RPCs and messaging with equal ease. Chapter 3, "Simple Object
Access Protocol (SOAP)," has a section that addresses this topic in detail.

Service—Oriented Architectures

Early on in the Web services technology evolution, we noticed a pattern. Each time we
applied Web services technologies to an application integration problem, a pattern
emerged. We called this pattern service-oriented architecture (SOA). SOA is a simple
concept, which makes it applicable to a wide variety of Web services situations. Figure
1.1 depicts the main roles and operations in an SOA.

Figure 1.1. Service-oriented architecture.

Service
Registry

Publish

Service
Provider

Service
Requestor

Any service-oriented architecture contains three roles: a service requestor m a service

provider m and a service registry ;

e A service provider is responsible for creating a service description

i:El) publishing that service description to one or more service
registries, and receiving Web service invocation messages from one or
more service requestors. A service provider, then, can be any company
that hosts a Web service made available on some network. You can
think of a service provider as the ”“server side” of a client—server
relationship between the service requestor and the service provider.

e A service requestor is responsible for finding a service description
published to one or more service registries and is responsible for
using service descriptions to bind to or invoke Web services hosted
by service providers. Any consumer of a Web service can be considered
a service requestor. You can think of a service requestor as the
“client side” of a client—server relationship between the service
requestor and the service provider.

e The service registry is responsible for advertising Web service
descriptions published to it by service providers and for allowing
service requestors to search the collection of service descriptions
contained within the service registry. The service registry role is
simple: be a match—-maker between service requestor and service
provider. Once the service registry makes the match, it is no longer
needed in the picture; the rest of the interaction is directly

between the service requestor and the service provider for the Web
service invocation.

Each of these roles can be played by any program or network node. In some
circumstances, a single program might fulfill multiple roles; for example, a program can
be a service provider, providing a Web service to downstream consumers as well as a
service requestor, itself consuming Web services provided by others.

An SOA also includes three operations: publish m find @ and bind @ These
operations define the contracts between the SOA roles:

The publish operation is an act of service registration or service
advertisement. It acts as the contract between the service registry
and the service provider. When a service provider publishes its Web
service description to a service registry, it is advertising the
details of that Web service to a community of service requestors. The
actual details of the publish API depend on how the service registry
is implemented. In certain simple or “direct publish” scenarios, the
service registry role is played by the network itself, with publish
being simply an act of moving the service description into a Web
application server’s directory structure. Other services registry
implementations, such as UDDI, define a very sophisticated
implementation of the publish operation.

The find operation is the logical dual of the publish operation. The
find operation is the contract between a service requestor and a
service registry. With the find operation, the service requestor
states a search criteria, such as type of service, various other
aspects of the service such as quality of service guarantees, and so
on. The service registry matches the find criteria against its
collection of published Web service descriptions. The result of the
find operation is a list of service descriptions that match the find
criteria. Of course, the sophistication of the find operation varies
with the implementation of the service registry role. Simple service
registries can provide a find operation with nothing more
sophisticated than an unparameterized HTTP GET. This means the find
operation always returns all Web services published to the service
registry and it is the service requestor’s job to figure out which
Web service description matches its needs. UDDI, of course, provides
extremely powerful find capabilities.

The bind operation embodies the client—server relationship between
the service requestor and the service provider. The bind operation
can be quite sophisticated and dynamic, such as on—the-fly generation
of a client—side proxy based on the service description used to
invoke the Web service; or it can be a very static model, where a
developer hand—codes the way a client application invokes a Web
service.

The key to SOA is the service description. It is the service description that is published by
the service provider to the service registry. It is the service description that is retrieved
by the service requestor as a result of the find operation. It is a service description that
tells the service requestor everything it needs to know in order to bind to or invoke the
Web service provided by the service provider. The service description also indicates what
information (if any) is returned to the service requestor as a result of the Web service
invocation.

Each time a service-oriented architecture is deployed, there might be different
technologies to fulfill each role. Chapter 7, "Discovering Web Services," discusses various
options for implementing a service registry and goes into great detail on the UDDI
service registry technology. Chapter 6, "Describing Web Services," discusses service
description and how a service description can be used to automate the task of building a
client-side proxy to the Web service and a server-side skeleton to dispatch the Web
service invocation to the target Web service implementation. Chapters 3 and 4, "Simple
Object Access Protocol (SOAP)" and "Creating Web Services," focus on the use of SOAP
to fulfill the bind operation; Chapter 5, "Using SOAP for e-Business," details how the bind
can be made ready for e-business.

Web Services Interoperability Stacks

An alphabet soup of technologies is swimming around the Web services space. We have
XML, SOAP, WSDL, UDDI, WSEL, WSFL, and more. How can anyone make sense of what
these technologies are and how they fit together? Well, that is one of the purposes of this
book.

To help put a framework around these technologies, we refer to a trio of Web services
interoperability stacks, first proposed to the W3C by IBM and Microsoft in March 2001
(http://www.w3.0rg/2001/03/WSWS-popa/paper51). This proposal factored Web
services technologies into three stacks:

e The wire stack
e The description stack

e The discovery stack
The contents of the stacks presented in this book reflect a different factoring than
originally proposed to the W3C, due in part to the additional standards efforts that have
come into play since March 2001.
The Wire Stack
Figure 1.2 shows the wire stack as we define it.

Figure 1.2. The wire stack.

Envelope

SOAP Headers Extensions
XML M [Q
SOAP essaging E 5
(0] a =
‘A
= o w
- < o. @
XML and Data Encoding = %
SOAP @
HTTR(S), Network Protocol
SMTP, FTP,
and so on

Wire stack

The wire stack represents the technologies that determine how a message is sent from
the service requestor to the service provider. The base of the wire stack is a network
protocol. Web services can be based on a variety of standard, Internet wire protocols
such as HTTP or HTTPS, SMTP, FTP, and so on, as well as sophisticated enterprise-level
protocols such as RMI/IIOP and MQSeries.

For data encoding, Web services use XML. In addition, non-XML content can be
referenced from a Web service invocation message, allowing full flexibility in the kinds of
data used in the message. For data specification, Web services use XML Schema. This
includes both custom schemas in the case of XML messaging or schemas conforming to a
set of pre-defined rules, such as the SOAP encoding rules discussed in Chapter 3.

Built on top of the networking protocol and data-encoding layers are the XML messaging
layers. For XML messaging, Web services use SOAP in all its data encoding, interaction
style, and protocol binding variations. SOAP is used as a simple approach to wrapper an
XML message in an envelope. The result is a solid, standards-based foundation for Web
services.

Conceptually layered on top of the SOAP enveloping mechanism is a mechanism for

envelope extensions called SOAP headers @3 With SOAP headers, orthogonal
extensions such as a digital signature can be associated with the body of the message
contained within the SOAP envelope. Chapter 3 will give details on the SOAP enveloping
mechanism and the SOAP header facility.

The layers of this stack are well defined, either as standard networking protocols or as
the SOAP specification itself. This stack is the most accepted and most widely deployed
set of technologies for Web services.

At right in Figure 1.2 are three vertical columns representing associated technologies that
impact multiple levels of the wire stack. Security, for example, can appear at each level—
SSL at the network protocol level and digital signatures at the envelope extensions level,
for instance. It is doubtful there will ever be a single standard that fits all aspects of Web
services security needs. Chapter 5 goes into more detail on the current Web services—
related security technologies like XML digital signatures and XML cryptography. Other
vertical towers listed include Quality of Service and Manageability. These are just a

handful of facets of Web services that can appear at several levels of the wire stack.
There is no well-accepted standard for these facets, but work is underway in these areas.

The Description Stack

The wire stack is only where the capabilities of Web services begin. Even the simplest
example of Web service use shows the need for a higher level of interoperability.

Consider the following situation (we'll see this example in greater detail in Chapter 3). A
company has provided an inventory checking service, allowing customers to determine
whether a particular number of items are in stock for a given product code (as
represented as a stock keeping unit [SKU]). The Web service takes as parameters a
string representing the SKU and an integer representing the number of units needed. If
the company has on hand the requested number of units, the Web service responds with
a Boolean true value; otherwise, the response is a Boolean false.

From a pure SOAP perspective, the interaction with this Web service is trivial. However,

things get much more complicated when we consider how much common understanding
must exist between the service requestor and the service provider. For the interaction to
succeed, at a minimum, the service requestor needs to know the following:

e The address of the Web service.

It should make requests and receive responses over HTTP.

e It should use SOAP 1. 1.
e Requests and responses should use the SOAP data encoding.

e Requests will be RPC requests containing as parameters a string SKU
and an integer indicating the desired quantity.

e Responses will be RPC responses containing a Boolean indicating the
inventory check outcome.

Throw in security, payments, error handling, and other capabilities required to build
enterprise-grade Web services, and the need for shared knowledge expands even
further.... How can the service requestor acquire this information? Well, traditionally Web
services have advertised their capabilities in some human readable form. Developers
have read the description of these capabilities and configured user applications to be able
to communicate with particular Web services.

While this approach works in principle, it is not scalable for many reasons:

e It requires costly (in terms of both time and money) manual
configuration by highly skilled, and therefore scarce, personnel.

e It is error prone because it does not utilize formalized service
specifications.

e It precludes automatic discovery and engagement of Web services; a
priori knowledge is required for configuration of the user
application.

e No built-in mechanism exists for change notifications and/or failure
recovery; every time a Web service evolves, there is a risk that
existing user applications will fail.

These are some of the reasons why industry leaders are developing the standards
described in a service description stack. Figure 1.3 shows the service description stack.

Figure 1.3. The service description stack.

Service

WSFL/ Ochestration

XLANG

WSEL Endpoint

Description
WSDL Service
Interface
WSDL Service |
Implementation

XML Schema Rl

Service
Description
stack

Key to the entire service-oriented architecture approach is the service description itself.
Many aspects of a Web service need to be communicated, and therefore the description
stack has multiple levels. The focus on service description is to communicate those
aspects of a service that might be important to the service requestor. Chapter 6 goes
into detail on each of the technologies used for service description.

In Web services, XML is the basis of service description. XML schema is the base data
type mechanism in the service description and all of the service description technologies
in the stack are expressed using XML. Much of the power of Web services is derived from
the power of XML.

The next two levels of the stack, service implementation and service interface, are
described using the Web Services Description Language (WSDL). WSDL is a note to the
W3C, and there is active work to refine this language into a standard. WSDL is the
interface definition language for Web services; it is the key to understanding Web
services. With WSDL, a developer describes the set of operations supported by a Web
service, including the kinds of objects that are expected as input and output of the
operations, the various bindings to concrete network and data encoding schemes. This
level constitutes the core definition of the service's interface. The service implementation
defines the network address where the service itself can be invoked. WSDL allows for
automatic code-generation of Web service clients based on this information.

But IDL is not enough for Web services. Other aspects of the Web service could affect
whether a service requestor would choose to bind to a Web service. For example, if two
different service providers host implementations of the same service interface, perhaps a
stock quote service, then from the IDL perspective, the services are almost
indistinguishable: The network address is the only difference. However, the service
providers might differ widely in their privacy policy, cost to use, timeliness of response,
and so on. These non-operational characteristics might be critical to the service
requestor. The role of the endpoint definition is to layer on top of the WSDL description
information about characteristics of the Web service that are impacted by its
implementation environment. Work in this area is at its very beginnings. The notion of a

Web Services Endpoint Language (WSEL) has only been hinted at publicly. Other
examples of this sort of description include the ebXML Collaboration-Protocol Profile and
Agreement Specification (CPP).

At the top of the service description stack is the elusive promise of seamless, automatic

service integration: the service orchestration layer. With service orchestration m the
developer describes how a collection of Web services is combined to produce a more
sophisticated Web service. For example, you would use service orchestration to model
how a purchase order submission Web service could be combined with a notification
service and a returns-processing service to produce a richer overall purchasing Web
service. At this level, several alternative approaches exist. IBM has proposed the Web
Services Flow Language, and Microsoft has Xlang. A single standard has not emerged in
this space.

The orchestration of Web services poses significant challenges from both a technical and
a business perspective. On the technical side, seamless service integration requires a
significant technological foundation. Most important is the description of service behavior,
defined by the rules for sequencing operation invocations and for sending and receiving
messages. Next is the problem of composing services into process-based interactions.
The problem is made harder by the requirement that some composition bindings must
happen at runtime. Without this capability, it is difficult to map the technology to well-
established business processes such as representation, referral, and brokering. On the
business side, the problems are no less significant. From a business perspective, service
integration is a workflow problem and as such could introduce dependencies on aspects
of companies' core business models. Particularly difficult in this perspective is potentially
the most valuable type of service integration—the one that spans enterprise boundaries.

The Discovery Stack

Given the ability to describe Web services, we are better off than we were, but we still
have solved only part of the Web service integration problem. Service descriptions tell us
how to bind to Web services, but how did the service requestor get the service
description in the first place? Clearly, we need some form of a Web service discovery
mechanism. The requirement here is for a directory or search engine for Web services.
Service providers will need a publication mechanism so that they can provide information
about the Web services they offer and make changes as their Web services evolve.

Service requestors will need well-defined find APIs. This is the SOA service registry role
we described earlier.

Figure 1.4 shows the third interoperability stack, the discovery stack. The discovery stack
organizes technologies associated with Web service discovery.

Figure 1.4. The discovery stack.

uDDI Directory
ADS/DISCO Inspection
Discovery

stack

The first level of the stack represents a simple inspection level. Inspection mis a
technique of discovering the service description given that the details about the service
(a service identifier or URL, for example) are already known. Once again, no single

standard exists in this space. IBM has ADS mand Microsoft has DISCO .

The directory level represents the capability of discovering Web services and business
partners using a capabilities-based lookup. Unlike previous distributed computing
techniques that relied on well known names as the basis for remote discovery of services,
Web services can use find techniques based on the kind of service or service capabilities.
The UDDI standard is the proposed technology for Web services directory.

Chapter 7 is dedicated to explaining service discovery in much more detail, and in
particular reviewing the UDDI standard.

Putting the Interoperability Stacks Together

Does any given Web service require all of these technologies in order to be considered a
Web service? Certainly not.

Looking at the wire stack, no single network protocol—not even HTTP—is a required part
of a Web service; any number of networking protocols can be used. Some Web services
don't even need to use a network protocol. Techniques such as the Web Services
Invocation Framework (WSIF) (http://www.alphaworks.ibm.com/tech/wsif) discuss the
possibility of a Web service being a simple Java method invocation, where the service
requestor and service provider are in the same Java Virtual Machine. Moving up the
stack, we can discover that even SOAP is not a necessary technology for Web services. It
is possible that a component accessed through a simple HTTP POST can be considered a
Web service. In these cases, the commonality that makes these components Web
services is the use of WSDL to describe the service.

So, is a service description required in order for a component to be considered a Web
service? Again, not necessarily. Many Web services, particularly older Web services
developed when SOAP was first introduced, do not have a corresponding service
description. These components are considered Web services, but it is worth noting that
without a service description, the Web service cannot be a part of the publish, find, bind
operations in a service-oriented architecture. As the WSDL standard is adopted, you will
see fewer Web services provided that do not have a corresponding WSDL description.

Many developers have concluded that a Web service is simply "anything that can be
described using WSDL."

Does a Web service have to appear in a UDDI registry in order to be considered a Web
service? Clearly not. Many Web services advertised on the Web do not appear in UDDI
and do not support the ADS or DISCO simple service discovery conventions.

So you will agree that any given Web service doesn't need all of these technologies to be
considered a Web service. But are any of these technologies found in each and every
Web service? If you follow the arguments above, clearly not. Is SOAP required in all Web
services? No. Is WSDL? No. UDDI? No. There is no single Web services technology whose
use determines that a component is a Web service. For this reason, defining what is a
Web service remains difficult.

In addition to writing great specifications, the Web services industry has been busy
building software that makes the standards come to life and solve meaningful business
problems. This book uses Apache Axis at the heart of our Web services examples. Axis is
an advanced Web services engine with a highly scalable and extensible architecture. We
will examine Axis in great depth in Chapter 4.

There are, however, other great Web services implementations from multiple vendors.
Chapter 8 looks at the currently available best-of-breed Web services tooling, its
capabilities and its interoperability record.

Interoperability is key for Web services. In the World Wide Web, does my browser care
about which Web server you are running? No. The same thing is true in Web services.
Any service requestor should be able to consume any standard (no custom extensions)
Web service provided via any Web services engine. We might be some distance from this
holy grail, but the industry is working hard at it because everyone knows this is the only
way to make Web services (and dynamic application integration) successful.

Summary

In this chapter, we provided you with a definition for Web services and helped position
where these technologies will benefit businesses. We also provided a conceptual
framework—service-oriented architecture—you can use to think about problems related
to Web services. We introduced the alphabet soup of Web services technologies and
illustrated an organizational framework around three related interoperability stacks.

The rest of this book builds upon what we introduced here. Chapter 2 explores the root of
all Web services technologies: XML. Chapter 3 builds upon that discussion by examining
the wire stack and, in particular, the SOAP technology as the access mechanism of choice
for many Web services. Chapter 4 shows how SOAP is implemented in the Apache Axis
project. Chapter 5 expands upon SOAP and Axis, describing how other e-business
aspects such as security can be layered into a Web service. Chapter 6 explores the
service description stack, focusing on how the service requestor knows what kind of
message to send and where to send it. Chapter 7 examines the discovery stack and in
particular the UDDI standard. Chapter 8 explores other Web services infrastructures. We
close with Chapter 9, "Future Concepts," which discusses some future trends for Web
services.

Chapter 2. XML Primer

IN THIS CHAPTER

e Origins of XML

e Document— Versus Data—Centric XML

e XML Instances

o XML Namespaces

e Document Type Definitions

e XML Schemas

e Processing XML

Since its introduction in 1998, Extensible Markup Language (XML) has revolutionized the
way in which we think about structuring, describing, and exchanging information. The
ways in which XML is used in the software industry are many and growing. Certainly for
Web services the importance of XML is paramount; all key Web service technologies are
based on it.

One great thing about XML is that it is constantly changing and evolving. However, this
can also be its downside. New problems require new approaches and uses of XML that
drive aggressive technological innovation. The net result is a maelstrom of invention—a
pace of change so rapid that it leaves most people confused. To say that you are using
XML is meaningless. Are you using DTDs or XML Schema and, if so, then whose? How
about XML Namespaces, XPointer, XLink, XPath, XSLT, XQuery, RDF, SOAP, WSDL,
UDDI, XAML, WSFL, WSCL, or WS-1? Does your software use SAX, DOM, JAXB, JAXP,
JAXM, JAXR, or JAX-RPC? It is easy to get lost, to drown in the acronym soup. You are
interested in Web services (you bought this book, remember?). How much do you really
need to know about XML?

The truth is pleasantly surprising. First, many XML technologies you might have heard
about are not relevant to Web services. You can safely forget half the acronyms you wish
you knew more about. Second, even with relevant technologies, you need to know only a
few core concepts. (The 80/20 rule does not disappoint.) Third, this chapter is all you
need to read and understand to be able to handle the rest of the book and make the
most of it. This chapter will cover, in sufficient detail:

e The origins of XML and the fundamental difference between document—
and data—centric XML applications

e The syntax and rules governing XML documents

e XML Namespaces, the key specification enabling the distributed
evolution of XML technologies

e XML Schema, the de facto standard for describing document structure
and XML datatypes for data-oriented applications

e The key mechanisms for creating and processing XML with Java software

This chapter will develop a set of examples around SkatesTown's purchase order
submission and invoice generation process. The examples will cover all the technologies
we've listed here.

If you are an old hand at XML who understands the XML namespace mechanism and
feels at home with schema extensibility and the use of xsi : t ype, you should go straight
to Chapter 3, "Simple Object Access Protocol (SOAP)" and dive into Web services. If you
can parse and process a significant portion of the previous sentence, you should skim

this chapter to get a quick refresher of some core XML technologies. If you are someone
with more limited XML experience, do not worry—by the end of this chapter, you will be
able to hold your own.

Origins of XML

World Wide Web Consortium (W3C) began work on Extensible Markup Language (XML) in
the middle of 1996. XML 1.0, released on February 10, 1998, resulted from the computer
industry's need to develop a simple yet extensible mechanism for the textual
representation of structured and semi-structured information. The design inspiration for
XML came from two main sources: Standard Generalized Markup Language (SGML) and
HTML.

The concept of generalized markup (GM) has been around for decades. It involves using

tags mto identify pieces of information. Simply put, tags are names surrounded by
pointy brackets (< and >). For example, <ti t| e> is a tag. The innovative thing about GM
is that it requires information to be surrounded by both start and end tags. End tags look
like start tags with the addition of a forward slash (/) before the tag name, as in
</title>. The notion of start and end tags allows for nesting, which, in turn, lets you
structure information in a hierarchical manner.

Consider the following example, which uses markup to indicate that a book has a title
and several authors:

<book>
<title>Building Web Services with Java</title>
<authors>
<author>Steve Graham</author>
<author>Simeon Simeonov</author>
<author>Toufic Boubez</author>
<author>Doug Davis</author>
<author>Glen Daniels</author>
<author>Yuichi Nakamura</author>
<author>Ryo Neyama</author>
</authors>
</book>

Using markup to represent information about books has many benefits. The information
is readily readable by humans. It is also quite easy to process with software because
start and end tags clearly delineate where certain pieces of information start and where
they end. Further, this way to represent information is inherently extensible. For
example, you can easily imagine how to add more authors or other information (such as
the book's ISBN) to the book description. Markup is appealing because of its simplicity
combined with the potential for extensibility. Not all markup is simple, though. In fact,
our industry's first attempt to formally define generalized markup yielded a very complex
specification. SGML was ratified by I1SO in 1986. It defined everything you could ever
want to know about markup and more. SGML-enabled software was expensive; typically,
only large companies could afford it. The software also tended to be full of defects. Over
time, a growing community of SGML experts began to voice opinions that, perhaps, the
core ideas of SGML could be organized in a much simpler fashion. All that was needed
was a catalyst to force the change and an organization that could lead the
standardization effort. The catalyst was the combination of HTML and the Web. The
organization was the W3C.

By its nature, SGML is a meta-language @3 It does not prescribe any particular
markup; instead, it defines how any given markup language can be formally specified.

For better or worse, the term for these markup languages is SGML applications .

Because the term is confusing (a markup language specification is not a piece of
software), it is rarely used nowadays, but you still might encounter it in some of the
reference materials pointed out at the end of the chapter.

The most popular SGML application is HTML, the markup language that rules the Web.
HTML combines markup from several different categories to provide a rich hypertext
experience:

e Text structuring tags: <HLl>, <H2>, <P>,

e Formatting tags: , <I>

e Linking and embedding tags: <I Mz, <A>

e Data input tags: <FORM>, <I|NPUT>, <SELECT>

The HTML specification is owned by W3C. Unfortunately, due to the rapid growth of the
Internet and the market pressure caused by the browser wars, the leading browser
vendors introduced a number of incompatible tags to HTML completely outside the scope
of the HTML specification. These tags created problems for Internet software vendors and
HTML document authors—they had to be careful what markup they used, based on the
type of browser that would display the HTML document. Yet at the same time, they
themselves were not able to extend HTML with markup that could have been useful to
them.

The need to simplify SGML coincided with the need to control the evolution of HTML and
create a simple generalized markup language for use on the Web. SGML was too heavy
for this purpose—it simply took too much effort to support and process. XML became that
lightweight language. After about one-and-a-half-years of work, the XML working group
at the W3C produced a final specification. XML is similar to SGML in that it preserves the
notion of GM. However, the specification is much simpler. There are very few optional
features, and most SGML features that were deemed difficult to implement were
abandoned.

XML is here to stay. The XML industry is experiencing a boom. XML has become the de
facto standard for representing structured and semi-structured information in textual
form. Many specifications are built on top of XML to extend its capabilities and enable its
use in a broader range of scenarios. One of the most exciting areas of use for XML is Web
services. The rest of this chapter will introduce the set of XML technologies and standards
that are the foundation of Web services:

e XML instances— The rules for creating syntactically correct XML documents

e XML Schema— A recent standard that enables detailed validation of XML
documents as well as the specification of XML datatypes

e XML Namespaces— Definitions of the mechanisms for combining XML from
multiple sources in a single document

e XML processing— The core architecture and mechanisms for creating, parsing,
and manipulating XML documents from programming languages

Document— Versus Data—Centric XML

Generally speaking, there are two broad application areas of XML technologies. The first
relates to document-centric applications, and the second to data-centric applications.
Because XML can be used in so many different ways, it is important to understand the
difference between these two categories.

Document—Centric XML

Because of its SGML origins, in the early days of its existence XML gained rapid adoption
within publishing systems as a mechanism for representing semi-structured documents
such as technical manuals, legal documents, and product catalogs. The content in these
documents is typically meant for human consumption, although it could be processed by
any number of applications before it is presented to humans. The key element of these
documents is semi-structured marked-up text.

The following markup is a perfect example of XML used in a document-centric manner.
The content is directed towards human consumption—it's part of the FastGlide
skateboard user guide. The content is semi-structured. The usage rules for tags such as
, <l > and <LI NK> are very loosely defined; they could appear pretty much anywhere
in the document:

<H1>Skateboard Usage Requirements</H1>

<P>In order to use the FastGlide skateboard you have to
have:</P>

<LIST>

<ITEM>A strong pair of legs.</ITEM>

<ITEM>A reasonably long stretch of smooth road surface.</ITEM>
<ITEM>The impulse to impress others.</ITEM>

</LIST>

<P>If you have all of the above, you can proceed to <LINK
HREF="Chapter2.xml">Getting on the Board</LINK>.</P>

Data—Centric XML

By contrast, data-centric XML is used to mark up highly structured information such as
the textual representation of relational data from databases, financial transaction
information, and programming language data structures. Data-centric XML is typically
generated by machines and is meant for machine consumption. It is XML's natural ability
to nest and repeat markup that makes it the perfect choice for representing these types
of data.

Consider the purchase order example in Listing 2.1. It is a purchase order from the
Skateboard Warehouse, retailer of skateboards to SkatesTown. The order is for 5
backpacks, 12 skateboards, and 1,000 SkatesTown promotional stickers (this is what the
stock keeping unit [SKU] of 008-PR stands for).

Listing 2.1 Purchase Order in XML

<po 1d="43871" submitted="2001-10-05">

<billTo>
<company>The Skateboard Warehouse</company>
<street>0ne Warehouse Park</street>
<street>Building 17</street>
<city>Boston</city>
<state>MA</state>
<postalCode>01775</postalCode>

</billTo>

<shipTo>
<company>The Skateboard Warehouse</company>
<street>0ne Warehouse Park</street>
<street>Building 17</street>
<city>Boston</city>

</po>

<state>MA</state>
<postalCode>01775</postalCode>

</shipTo>
<order>

<item sku="318-BP" quantity="5">

<description>Skateboard backpack; five pockets</description>
</item>
<item sku="947-TI" quantity="12">

<description>Street-style titanium skateboard.</description>
</item>
<item sku="008-PR" quantity="1000">
</item>

</order>

The use of XML is very different from the previous user guide example:

The ratio of markup to content is high. The XML includes many
different types of tags. There is no long—running text.

The XML includes machine—generated information; for example, the
submission date of the purchase order uses a date—time format of
year—-month—day. A human authoring an XML document is unlikely to
enter a date—time value in this format.

The tags are organized in a highly structured manner. Order and
positioning matter, relative to other tags. For example,
<description> must be under <itenp, which must be under <order>,
which must be under <po>. The <order> tag can be used only once in
the document.

Markup is used to describe what a piece of information means rather
than how it should be presented to a human.

In short, if you can easily imagine the XML as a data structure in your favorite
programming language, you are probably looking at a data-centric use of XML. An
example Java class that could, with a bit more work, be used to represent the purchase
order data is shown here:

class PO

{

}

int id;

Date submitted;
Address billTo;
Address shipTo;
Item order[];

Document Lifetime

Document- and data-centric uses of XML can differ in one other very significant aspect—
the lifetime of the XML document. Typically, XML documents for human consumption
(such as technical manuals and research papers) live a long time because the

information contained in them can be used for a long time. On the other hand, some
data-centric XML could live for only a few milliseconds. Consider the example of a
database that is returning the results of a query in XML format. The whole operation
takes several milliseconds. After the query is used, the data is discarded. Further, no real
XML document exists. The XML is just bits on a wire or bits in an application's data
structure. Still, for convenience purposes, we will use the term XML document to refer to
any particular whole piece of XML being used. As a general identification of parts of a
whole XML document, this book uses the highly technical term chunk.

Web services are about data-centric uses of XML. Through the rest of this chapter and
the rest of this book, we will purposefully ignore discussing document-centric XML.

XML Instances

The structure and formatting of XML in an XML document must follow the rules of the

XML instance syntax. The term instance mis used to explicitly distinguish the
difference between the use of some particular type of XML and its specification. This
usage parallels the difference in object-oriented terminology between an object instance
and an object type.

Document Prolog

XML documents contain an optional prolog wfollowed by a root element that
contains the contents of the document.

Typically the prolog serves up to three roles:

e Identifies the document as an XML document
e Includes any comments about the document

e Includes any meta—information about the content of the document

A document can be identified as an XML document through the use of a processing

instruction m Processing instructions (PIs) are special directives to the application that
will process the XML document. They have the following syntax:

<?PlTarget ...?>

Pls are enclosed in <? ... ?>. The Pl target is a keyword meaningful to the processing
application. Everything between the Pl target and the ?> marker is considered the
contents of the PI.

In general, data-oriented XML applications do not use application-specific processing
instructions. Instead, they tend to put all information in elements and attributes.
However, you should use one standard processing instruction—the XML declaration

—in the XML document prolog to determine two very important pieces of
information: the version of XML in the document and the character encoding:

<?xml version="1.0" encoding="UTF-8"?>

The ver si on parameter of the xnl Pl tells the processing application the version of the
XML specification to which the document conforms. Currently, there is only one version:
"1.0". The encodi ng parameter is optional. It identifies the character set of the
document. The default value is " UTF- 8" .

Note

UTF-8 is a variable-length character encoding standard that generates 7-bit safe output.
This type of output makes it easy to move XML on the Internet using standard
communication protocols such as HTTP, SMTP, and FTP. Keep in mind that XML is
internationalized by design and can support other character encodings such as Unicode
and ISO/IEC 10646. However, for simplicity and readability purposes, this book will use
UTF-8 encoding for all samples.

If you omit the XML declaration, the XML version is assumed to be 1.0, and the
processing application will try to guess the encoding of the document based on clues
such as the raw byte order of the data stream. This approach has problems, and
whenever interoperability is of high importance—such as for Web services—applications
should always provide an explicit XML declaration and use UTF-8 encoding.

XML document prologs can also include comments that pertain to the whole document.
Comments use the following syntax:

<!-- Sample comment and more ... -->

Comments can span multiple lines but cannot be nested (comments cannot enclose other
comments). Everything inside the comment markers will be ignored by the processing
application. Some of the XML samples in this book will use comments to provide you with
useful context about the examples in question.

With what you have learned so far, you can extend the purchase order example from
Listing 2.1 to include an XML declaration and a comment about the document (see Listing
2.2).

Listing 2.2 XML Declaration and Comment for the Purchase Order

<?xml version="1.0" encoding="UTF-8"?>
<I-- Created by Bob Dister, approved by Mary Jones -->
<po 10d="43871" submitted="2001-10-05">
<I-- The rest of the purchase order will be the same as before -->

</po>

In this case, po is the root element of the XML document.

Elements

The term element is a technical name for the pairing of a start and end tag in an
XML document. In the previous example, the po element has the start tag <po> and the
end tag </ po>. Every start tag must have a matching end tag and vice versa. Everything
between these two tags is the content of the element. This includes any nested elements,
text, comments, and so on.

Element names can include all standard programming language identifier characters ([O-
9A- Za- z]) as well as underscore (), hyphen (-), and colon (:), but they must start with
a letter. cust oner - nane is a valid XML element name. However, because XML is case-
sensitive, cust oner - nane is not the same element as Cust oner - Nane.

According to the XML Specification, elements can have three different content types.
They can have element-only content, mixed content, or empty content. Element-only
content consists entirely of nested elements. Any whitespace separating elements is not
considered significant in this case. Mixed content refers to any combination of nested
elements and text. All elements in the purchase order example, with the exception of
descri pti on, have element content. Most elements in the skateboard user guide
example earlier in the chapter had mixed content.

Note that the XML Specification does not define a text-only content model. Outside the
letter of the specification, an element that contains only text is often referred to as
having data content; but, technically speaking, it has mixed content. This awkwardness
comes as a result of XML's roots in SGML and document-oriented applications. However,
in most data-oriented applications, you will never see elements whose contents are both
nested elements and text. It will typically be one or the other, because limiting the
content to be either elements or text makes processing XML much easier.

The syntax for elements with empty content is a start tag immediately followed by an
end tag, as in <enpt yEl enent ></ enpt yEl enent >. Because this is simply too much text,
the XML Specification also allows the shorthand form <enpt yEl enent / >. For example,
because the last item in our purchase order does not have a nested descri ption
element, it has empty content. Therefore, we could have written it as follows:

<item sku="008-PR" quantity="1000"/>
XML elements must be strictly nested. They cannot overlap, as shown here:

<I-- This 1is correct nesting -->
<P><I>Bold, italicized text in a paragraph</1></P>

<I--Bad syntax: overlapping I and B tags -->

<P><I>Bold, italicized text in a paragraph</1></P>

<I-- Bad syntax: overlapping P and B tags -->

<P><I>Bold, italicized text in a paragraph</1></P>

The notion of an XML document root implies that there can be only one element at the
very top level of a document. For example, the following would not be a valid XML
document:

<first>l am the first element</first>

<second>l am the second element</second>

It is easy to think of nested XML elements as a hierarchy. For example, Figure 2.1 shows

a hierarchical tree representation of the XML elements in the purchase order example
together with the data (text) associated with them.

Figure 2.1. Tree representation of XML elements in a purchase order.

£ po sl - 3L Motepad
File [k Vs Ineet Toos Felp
D] o] | o]@)) BLs| «|+]+[#]+]-|™]1%] €
Stuclure | [shoes
=Ll s
& A3ETH
& subsited 0011005
0 bilTo
N, oY e Sstebosd Waetmes
My, shrest e Warshouse Park
My, et Baaldrg 17
", oy Eceton
“u, hue Ma
"y, postaiCode [T
3 sheTe
“wy conpany Tre Shatebodrd Warenouse
“wy, shieet COre Warehouse Park
My, shiest Euiddng 17
oty Bosbon
“uy, st M
My, postaiiocs [TFi]
] orcher
=]
L sLe-gp
@ quanitiy H
o, desicriplion Shabwboas i backpad N podets
= Jkm
& g M47TI
& quant®y 12
"y, desoription Strast-styls Hmnam shateboard
4 Cd kem
L] OOH-FH,
& quantity 1000
For Melp, press P

Unfortunately, it is often difficult to identify XML elements precisely in the hierarchy. To
aid this task, the XML community has taken to using genealogy terms such as parent,
child, sibling, ancestor, and descendant. Figure 2.2 illustrates the terminology as it
applies to the or der element of the purchase order:

e [ts parent is po.

e [ts ancestor is po.

e Its siblings are billTo and shipTo.

e Its children are three item elements.

e Its descendants are three item elements and two description elements.

Figure 2.2. Common terminology for XML element relationships.

item

bill To shipTo

I— siblings—J

po parent/ order children/ item
ancestor descendants
|— descendants
description description
item
Attributes

The start tags for XML elements can have zero or more attributes. An attribute is a
name-value pair. The syntax for an attribute is a name (which uses the same character
set as an XML element name) followed by an equal sign (=), followed by a quoted value.
The XML Specification requires the quoting of values; both single and double quotes can
be used, provided they are correctly matched. For example, the po element of our
purchase order has two attributes, i d and submi tted:

<po 10="43871" submitted="2001-10-05"> ... </po>

A family of attributes whose names begin with xni : is reserved for use by the XML
Specification. Probably the best example is xml : | ang, which is used to identify the
language of the text that is the content of the element with that attribute. For example,
we could have written the descri pti on elements in our purchase order example to
identify the description text as English:

<description xml:lang="en">Skateboard backpack; five pockets</description>

Note that applications processing XML are not required to recognize, process, and act
based on the values of these attributes. The key reason why the XML Specification
identified these attributes is that they address common use-cases; standardizing them
would aid interoperability between applications.

Without any meta-information about an XML document, attribute values are considered
to be pieces of text. In the previous example, the id might look like a number and the
submission date might look like a date, but to an XML processor they will both be just
strings. This obviously causes some headaches when processing data-oriented XML, and
it is one of the primary reasons most data-oriented XML documents have associated
meta-information described in XML Schema (introduced later in this chapter).

At the same time, XML applications are free to attach any semantics they choose to XML
markup. A common use-case is leveraging attributes to create a basic linking mechanism
within an XML document. The typical scenario involves a document having duplicate
information in multiple locations. The goal is to eliminate information duplication. The
process has three steps:

1. Put the information in the document only once.

2. Mark the information with a unique identifier.

3. Refer to this identifier every time you need to refer to the
information.

The purchase order example offers the opportunity to try this out (see Listing 2.3). As
shown in the example, in most cases, the bill-to and ship-to addresses will be the same.

Listing 2.3 Duplicate Address Information in a Purchase Order

<po 1d="43871" submitted="2001-10-05">

<billTo>
<company>The Skateboard Warehouse</company>
<street>0One Warehouse Park</street>
<street>Building 17</street>
<city>Boston</city>
<state>MA</state>
<postalCode>01775</postalCode>

</billTo>

<shipTo>
<company>The Skateboard Warehouse</company>
<street>0One Warehouse Park</street>
<street>Building 17</street>
<city>Boston</city>
<state>MA</state>
<postalCode>01775</postalCode>

</shipTo>

</po>

There is no reason to duplicate this information. Instead, we can use the markup shown
in Listing 2.4.

Listing 2.4 Using ID/IDREF Attributes to Eliminate Redundancy

<po id="43871" submitted="2001-10-05">

<billTo id="addr-1">
<company>The Skateboard Warehouse</company>
<street>0One Warehouse Park</street>
<street>Building 17</street>
<city>Boston</city>
<state>MA</state>
<postalCode>01775</postalCode>

</billTo>

<shipTo href="addr-1"/>

</po>
We followed the three steps described previously:

1. We put the address information in the document only once, under the
bill To element.

2. We uniquely identified the address as "addr-1" and stored that
information in the id attribute of the bill To element. We only need

to worry about the uniqueness of the identifier within the XML
document.

3. To refer to the address from the shipTo element we use another

attribute, href, whose value is the unique address identifier "addr-

1".

The attribute names i d and hr ef are not required but nevertheless are commonly used

by convention.

You might have noticed that now both the po and bi | | To elements have an attribute

called i d. This is fine, because attributes are always associated with an element.

Elements Versus Attributes

Given that information can be stored in both element content and attribute
values, sooner or later the question of whether to use an element or an
attribute arises. This debate has erupted a few times in the XML community and
has claimed many casualties.

One common rule is to represent structured information using markup. For
example, you should use an addr ess element with nested conpany, street,
city, state, postal Code, and count ry elements instead of including a whole
address as a chunk of text.

Even this simple rule is subject to interpretation and the choice of application
domain. For example, the choice between

<work number="617.219.2000">

and

<work>
<area>6l7</area>
<number>219.2000</number>
<ext/>
</work>
really depends on whether your application needs to have phone number

information in granular form (for example, to perform searches based on the
area code only).

In other cases, only personal preference and stylistic choice apply. We might
ask if SkatesTown should have used

<po>
<id>43871</id>
<submitted>2001-10-05</submitted>

</po>

instead of

<po 1d="43871" submitted="2001-10-05">

</pol>

There really isn't a good way to answer this question without adding all sorts of
stretchy assumptions about extensibility needs, and so on.

In general, whenever humans design XML documents, you will see more
frequent use of attributes. This is true even in data-oriented applications. On
the other hand, when XML documents are automatically "designed" and
generated by applications, you might see a more prevalent use of elements. The
reasons are somewhat complex; Chapter 3 will address some of them.

Character Data

Attribute values as well as the text and whitespace between tags must follow precisely a
small but strict set of rules. Most XML developers tend to think of these as mapping to
the string data type in their programming language of choice. Unfortunately, things are
not that simple.

Encoding

First, and most important, all character data in an XML document must comply with the
document's encoding. Any characters outside the range of characters that can be

included in the document must be escaped and identified as character references m
The escape sequence used throughout XML uses the ampersand (&) as its start and the
semi-colon (;) as its end. The syntax for character references is an ampersand, followed
by a pound/hash sign (#), followed by either a decimal character code or lowercase x
followed by a hexadecimal character code, followed by the semicolon. Therefore, the 8-
bit character code 128 will be encoded in a UTF-8 XML document as € .

Unfortunately, for obscure document-oriented reasons, there is no way to include
character codes O through 7, 9, 11, 12, or 14 through 31 (typically known as non-

whitespace control characters min ASCII) in XML documents. Even a correctly escaped
character reference will not do. This situation can cause unexpected problems for
programmers whose string data types can sometimes end up with these values.

Whitespace

Another legacy from the document-centric world that XML came from is the rules for
whitespace handling. It is not important to completely define these rules here, but a
couple of them are worth mentioning:

e An XML processor is required to convert any carriage return (CR)
character, as well as the sequence of a carriage return and a line
feed (LF) character, it sees in the XML document into a single line
feed character.

e Whitespace can be treated as either significant or insignificant. The
set of rules for how applications are notified about either of these
has erupted more than one debate in the XML community.

Luckily, most data-oriented XML applications care little about whitespace.

Entities

In addition to character references, XML documents can define entities as well as

references to them (entity references m). Entities are typically not important for data-
oriented applications and we will not discuss them in detail here. However, all XML
processors must recognize several pre-defined entities that map to characters that can
be confused with markup delimiters. These characters are less than (<); greater than

(>); ampersand (&); apostrophe, a.k.a. single quote ('); and quote, a.k.a. double quote
("). Table 2.1 shows the syntax for escaping these characters.

Table 2.1. Pre—-defined XML Character Escape Sequences

Character Escape sequence
< <

> > ;

& |&anp;

' '

" " ;

For example, to include a chunk of XML as text, not markup, inside an XML document, all
special characters should be escaped:

<example-to-show>
<?xml version="1.0"?>
<rootElementégt;
<childElement id="lé"é>
The man said: "Hello, therel".
</childElementégt;
</rootElementégt;
</example-to-show>
The result is not only reduced readability but also a significant increase in the size of the

document, because single characters are mapped to character escape sequences whose
length is at least four characters.

To address this problem, the XML Specification has a special multi-character escape

construct. The name of the construct, CDATA section @3 refers to the section holding
character data. The syntax is <! [CDATA[, followed by any sequences of characters
allowed by the document encoding that does not include]| >, followed by]] >. Therefore,
you can write the previous example much more simply as follows:

<example-to-show><![CDATA[
<?xml version="1.0"7?>
<rootElement>
<childElement id="1">
The man said: "Hello, there!".
</childelement>
</rootElement>
11></example-to-show>

A Simpler Purchase Order

Based on the information in this section, we can re-write the purchase order document as
shown in Listing 2.4.

Listing 2.4 Improved Purchase Order Document

<?xml version="1.0" encoding="UTF-8"?>
<I-- Created by Bob Dister, approved by Mary Jones -->
<po id="43871" submitted="2001-10-05">
<billTo id="addr-1">
<company>The Skateboard Warehouse</company>
<street>0One Warehouse Park</street>
<street>Building 17</street>

<city>Boston</city>
<state>MA</state>
<postalCode>01775</postalCode>
</billTo>
<shipTo href="addr-1"/>
<order>
<item sku="318-BP" quantity="5">
<description>Skateboard backpack; five pockets</description>
</item>
<item sku="947-TI" quantity="12">
<description>Street-style titanium skateboard.</description>
</item>
<item sku="008-PR" quantity="1000"/>
</order>
</po>

XML Namespaces

An important property of XML documents is that they can be composed to create new
documents. This is the most basic mechanism for reusing XML. Unfortunately, simple
composition creates the problems of recognition and collision.

To illustrate these problems, consider a scenario where SkatesTown wants to receive its
purchase orders via the XML messaging system of XCommerce Messaging, Inc. The
format of the messages is simple:

<message from="_.." to="..." sent="_..">
<text>
This is the text of the message.
</text>
<I-- A message can have attachments -->
<attachment>
<description>Brief description of the attachment.</description>
<item>
<l-- XML of attachment goes here -->
</item>
</attachment>
</message>

Listing 2.5 shows a complete message with a purchase order attachment.

Listing 2.5 Message with Purchase Order Attachment

<message from="bj@bjskates.com" to="orders@skatestown.com"

sent="2001-10-05">
<text>

Hi, here is what | need this time. Thx, BJ.
</text>
<attachment>

<description>The PO</description>

<item>

<po 1d="43871" submitted="2001-10-05">
<billTo i1d="addr-1">

<company>The Skateboard Warehouse</company>
<street>0One Warehouse Park</street>
<street>Building 17</street>
<city>Boston</city>
<state>MA</state>
<postalCode>01775</postalCode>
</billTo>
<shipTo href="addr-1"/>
<order>
<item sku="318-BP" quantity="5">
<description>
Skateboard backpack; five pockets
</description>
</item>
<item sku="947-TI" quantity="12">
<description>
Street-style titanium skateboard.
</description>
</item>
<item sku="008-PR" quantity="1000"/>
</order>
</po>
</item>
</attachment>
</message>

It is relatively easy to identify the two problems mentioned earlier in the composed
document:

e Recognition— How does an XML processing application distinguish between the
XML elements that describe the message and the XML elements that are part of
the purchase order?

e Collision— Does the element descri pti on refer to attachment descriptions in
messages or order item descriptions? Does the i t emelement refer to an item of
attachment or an order item?

Very simple applications might not be bothered by these problems. After all, the
knowledge of what an element means can reside in the application logic. However, as
application complexity increases and the number of applications that need to work with
some particular composed document type grows, the need to clearly distinguish between
the XML elements becomes paramount. The XML Namespaces specification brings order
to the chaos.

Namespace Mechanism

The problem of collision in composed XML documents arises because of the likelihood of
elements with common names (description, item, and so on) to be reused in different
document types. This problem can be addressed by qualifying an XML element name with
an additional identifier that is much more likely to be unique within the composed
document. In other words:

Qualified name (a.k.a. QName) = Namespace identifier + Local
name

This approach is similar to how namespaces are used in languages such as C++ and C#
and to how package names are used in the Java programming language.

The problem of recognition in composed XML documents arises because no good
mechanism exists to identify all elements belonging to the same document type. Given
namespace qualifiers, the problem is addressed in a simple way—all elements that have
the same namespace identifier are considered together.

For identifiers, XML Namespaces uses Uniform Resource ldentifiers m(URIs). URIs are
described in RFC 2396. URIs are nothing fancy, but they are very useful. They can be

locators, names, or both. URI locators are known as Uniform Resource Locators m
(URLSs), a term familiar to all using the Web. URLs are strings such as

htt p: // ww. skat est own. cont ser vi ces/ POSubmi ssi on and

mai | t o: or der s@kat est own. com

Uniform Resource Names (URNs) are URIs that are globally unique and

persistent. Universally Unique ldentifiers m(UUIDs) are perfect for use as URNs. UUIDs
are 128-bit identifiers that are designed to be globally unique. Typically, they combine
network card (Ethernet) addresses with a high-precision timestamp and an increment
counter. An example URN using a UUID is ur n: uui d: 2FAC1234- 31F8- 11B4- A222-
08002B34C003. UUIDs are used as unique identifiers in Universal Description Discovery
and Integration (UDDI) as detailed in Chapter 7, "Discovering Web Services."

Namespace Syntax

Because URIs can be rather long and typically contain characters that are not allowed in
XML element names, the syntax of including namespaces in XML documents involves two
steps:

1. A namespace identifier is associated with a prefix, a name that
contains only legal XML element name characters with the exception of
the colon (:).

2. Qualified names are obtained as a combination of the prefix, the
colon character, and the local element name, as in
nyPrefi x: myEl ement Nane.

Listing 2.6 shows an example of the composed XML document using namespaces.

Listing 2.6 Message with Namespaces

<msg:message from="bj@bjskates.com™ to="orders@skatestown.com"

sent="2001-10-05" xmlns:msg=""http://www.Xxcommercemsg.com/ns/message"
xmIns:po="http://www.skatestown.com/ns/po'>
<msg:text>

Hi, here is what I need this time. Thx, BJ.
</msg:text>
<msg:attachment>

<msg:description>The PO</msg:description>

<msg:item>

<po:po 1d="43871" submitted="2001-10-05">
<po:billTo id="addr-1">
<po:company>The Skateboard Warehouse</po:company>

<po:street>0One Warehouse Park</po:street>
<po:street>Building 17</po:street>
<po:city>Boston</po:city>
<po:state>MA</po:state>
<po:postalCode>01775</po:postalCode>
</po:billTo>
<po:shipTo href="addr-1"/>
<po:order>
<po:item sku="318-BP" quantity="5">
<po:description>
Skateboard backpack; five pockets
</po:description>
</po:item>
<po:item sku="947-TI" quantity="12">
<po:description>
Street-style titanium skateboard.
</po:description>
</po:item>
<po:item sku="008-PR" quantity="1000"/>
</po:order>
</po:po>
</msg:item>
</msg:attachment>
</msg:message>
In this example, the elements prefixed with nsg are associated with a namespace whose
identifier is http://www.xcommercemsg.com/ns/message, and those prefixed with po are
associated with a namespace whose identifier is htt p: / / ww. skat est own. coni ns/ po.
The prefixes are linked to the complete namespace identifiers by the attributes on the
top nessage element beginning with xm ns: (xn ns: nsg and xm ns: po). XML processing

software will have access to both the prefixed name and to the mapping of prefixes to
complete namespace identifiers.

Adding a prefix to every single element in the document somewhat decreases readability
and increases document size. Therefore, XML Namespaces let you use a default
namespace in a document. Elements belonging to the default namespace do not require
prefixes. Listing 2.7 makes the nsg namespace the default.

Listing 2.7 Using Default Namespaces

<message from="bj@bjskates.com" to="orders@skatestown.com"

sent="2001-10-05" xmIns ="http://www.xcommercemsg.com/ns/message"
xmIns:po="http://www.skatestown.com/ns/po'>
<text>

Hi, here is what I need this time. Thx, BJ.
</text>
<attachment>

<description>The PO</description>

<item>

<po:po id="43871" submitted="2001-10-05">

</po:po>
</item>

</attachment>
</message>

Default namespaces work because the content of any namespace-prefixed element is
considered to belong to the namespace of its parent element unless, of course, the
element is explicitly defined to be in another namespace with its own xnl ns-type
attribute. We can use this to further clean up the composed XML document by moving
the PO namespace declaration to the po element (see Listing 2.8).

Listing 2.8 Using Nested Namespace Defaulting

<message from="bj@bjskates.com™ to="orders@skatestown.com"
sent="2001-10-05" xmlns="http://www.Xxcommercemsg.com/ns/message"">
<text>
Hi, here is what | need this time. Thx, BJ.
</text>
<attachment>
<description>The PO</description>
<item>
<po:po 1d="43871" submitted="2001-10-05"
xmIns:po="http://www.skatestown.com/ns/po'>
<billTo id="addr-1">

</billTo>
<shipTo href="addr-1"/>
<order>

</order>
</po:po>
</item>

</attachment>
</message>

This example shows an efficient, readable syntax that completely eliminates the
recognition and collision problems. XML processors can identify the namespace of any
element in the document.

Namespace-Prefixed Attributes

Attributes can also have namespaces associated with them. Initially, it might be hard to
imagine why a capability like this would be useful for XML applications. The common use-
case scenario is the desire to extend the information provided by an XML element without
having to make changes directly to its document type.

A concrete example might involve SkatesTown wanting to have an indication of the
priority of certain items in purchase orders. High-priority items could be shipped
immediately, without waiting for any back-ordered items to become available and
complete the whole order. Item priorities are not something that SkatesTown's automatic
order processing software understands. They are just a hint for the fulfillment system on
how it should react in case of back-ordered items.

A simple implementation could involve extending the i t emelement with an optional
priority attribute. However, this could cause a problem for the order processing
software that does not expect to see such an attribute. A better solution is to attach
priority information to items using a namespace-prefixed pri ority attribute. Because
the attribute will be in a namespace different from that of the i t emelement, the order
processing software will simply ignore it.

The example in Listing 2.9 uses this mechanism to make the backpacks high priority and
the promotional materials low priority. By default, any items without a priority
attribute, such as the skateboards, are presumed to be of medium priority.

Listing 2.9 Adding Priority to Order Items

<message from="bj@bjskates.com™ to="orders@skatestown.com"
sent="2001-10-05" xmlns="http://www.Xxcommercemsg.com/ns/message"">
<text>
Hi, here is what I need this time. Thx, BJ.
</text>
<attachment>
<description>The PO</description>
<item>
<po:po 1d="43871" submitted="2001-10-05"
xmlns:po="http://www.skatestown.com/ns/po'>
xmIns:p="http://www.skatestown.com/ns/priority">

<po:order>
<po:item sku="318-BP" quantity="5" p:priority="high">
<po:description>
Skateboard backpack; five pockets
</po:description>
</po:item>
<po:item sku="947-TI" quantity="12">
<po:description>
Street-style titanium skateboard.
</po:description>
</po:item>
<po:item sku="008-PR" quantity="1000" p:priority="low"/>
</po:order>
</po:po>
</item>
</attachment>
</message>

Dereferencing URIs

All the examples in this section have used namespace URIs that are URLs. A
natural question arises: What is the resource at that URL? The answer is that it
doesn't matter. XML Namespaces does not require that a resource be there. The
URI is used entirely for identification purposes.

This could cause problems for applications that see an unknown namespace in
an XML document and have no way to obtain more information about the
elements and attributes that belong to that namespace. Later in this chapter, in
the section on XML Schemas, you will see a mechanism that addresses this
issue.

Document Type Definitions

Document Type Definitions (DTDs) are an optional feature of XML documents. A
document associated with a DTD has a set of rules regarding what elements and

attributes can be part of the document and where can they appear. DTDs originate from
SGML, although XML's DTDs are greatly simplified. The presence of DTDs in XML

documents allows us to distinguish the concepts of well-formedness mand validity m
Well-Formedness and Validity

If a document subscribes to the rules of XML syntax (as described in the section "XML
Instances") it is considered well-formed. Well-formedness implies that XML processing
software can read the document without any basic errors associated with parsing such as
invalid character data, mismatched start and end tags, multiple attributes with the same
name, and so on. The XML Specification mandates that if any well-formedness constraint
is not met, the XML parser must immediately generate a non-recoverable error. This rigid
mandate makes it easy to separate the doings of the software focused on the logical

structure mof an XML document (what the markup means) from the mundane details

of the physical structure of the document (the markup syntax).

However, well-formedness is not sufficient for most applications. Consider, for example,
the SkatesTown order processing application. When an XML document is submitted to it,
it cares not that it is well-formed XML but that it is indeed a purchase order in the
specific XML format it requires. The notion of format applies to the set of rules describing
SkatesTown's purchase orders: "The document must begin with a po element that has
two attributes (i d and subni t t ed) which will be followed by a bi | | To element..." and so
on. In other words, before a submitted document is processed, it must be identified as a
valid purchase order.

This is how the notion of validity comes in. DTDs offer an automated, declarative
mechanism for validating the contents of XML documents as they are parsed. Therefore,
XML applications can limit the amount of validation they need to perform. If the
SkatesTown purchase order processing application could not delegate validation to the
XML processor, it would have had to express all validation rules directly in code. Code is
procedural in nature and much harder to maintain than DTDs, which are declarative and
have a reasonably readable syntax.

To handle validity checks, DTDs must enable the following:

e Identification of the elements that can be in a document
e JIdentification of the order and relation between elements

e Identification of the attributes of every element and whether they
are optional or required

Last but not least, there needs to be a mechanism to associate DTDs with XML
documents.

Document Structure

DTDs are a mechanism to express the valid structure of a document. One way to
visualize the structure of a document is as a tree of possible element and attribute
combinations. For example, Figure 2.3 shows the document structure for purchase orders
as expressed by a popular XML processing tool. The image uses some syntax from
regular expressions to visualize the multiplicity of elements: question mark (?) stands for
optional (zero or one), asterisk (*) stands for any (zero or more) , and plus (+) stands
for at least some (one or more).

Figure 2.3. Document structure defined by the purchase order DTD.

+company§

+street

| *billTe E +city %
@ + state %

+ postalCode

=

=

* = * 1
an_ @ country

+shipTo

N,

E r
#sku # quantity
r [Stri"g [ﬂriﬂg]

+order +item #+description
E———a® @ =

Every element in the document structure tree has an associated model group. Model
groups identify the sequencing and multiplicity of element content. There are two types
of sequences: sequence and choice. Sequence defines the exact order in which child
elements must appear. In DTDs, the sequence operator in model groups is the comma
(,)- The model group (A, B, C) defines a content model where the first child element will
be A, followed by B, followed by C. Choice defines the possible elements that can appear
at any given position in the content model. The choice operator in model groups is the
pipe character (]). The model group (A | B | C) defines a content model where there will
be only one child element that can be A or B or C. Sequences and choices can be nested,
asin (A] (X,Y, 2)), B, (C | D)). This content model defines the following possible
combinations of child elements:

The multiplicity of elements is defined using the same regular expression syntax used in
document structure trees. The absence of a suffix stands for exactly one, question mark
(?) stands for optional (zero or one), asterisk (*) stands for any (zero or more), and plus

(+) stands for at least some (one or more). For example, the model group (A, B?, C*,
D+) allows for the following combinations of child elements (... stands for "potentially
many more of the same element"):

Are DTDs Enough?

Documents associated with DTDs are a huge step forward from basic XML markup. DTDs
allow for validating document structure (element content, allowed attributes, and their
value types), which significantly reduces the amount of custom validation code that
needs to be written in XML applications. However, DTDs have some notable deficiencies:

e Although they express structured information, they do not use XML
markup. DTD syntax is not as easy to process and manipulate as XML.

e DIDs were designed before namespaces came into existence and don’ t
have good facilities for dealing with them. This is a problem for
data—oriented applications that rely heavily on namespaces.

e DIDs do not offer sufficient reusability and extensibility
capabilities. No mechanism exists for associating more than one DTD
with an XML document. It is easy to reach the limit of what DTDs
allow for even basic applications.

e DTDs model groups are sometimes too restrictive, in particular with
respect to the order of child elements. No convenient DTD mechanism
exists for declaring, for example, that the content of some element
could include two child elements A and five child elements B,
regardless of the order in which they appear.

e DTDs have no notion of data types. This hurts data—oriented
applications where XML is eventually bound to some application—level
data structure in a programming language. For example, DTDs offer no
mechanism to enforce the simple rule that the values of the quantity
attribute of the item element should be positive integers.

e For these reasons and others, one of the main Web service protocols—
Simple Object Access Protocol (SOAP), which we’ 11 discuss in Chapter
J—explicitly forbids the use of DTDs for defining document
structure.

For these reasons, this chapter will not discuss DTDs in any further detail. We won't even
introduce the basic DTD syntax here because data-oriented XML applications have moved
away from DTDs; these applications use another mechanism to validate XML documents

and to enforce document structure and datatype rules. To address the problems inherent

in DTDs, the XML community developed XML Schema, a much richer meta-language for
XML documents expressed natively in XML.

XML Schemas

XML provides a flexible set of structures that can represent many different types of
document- and data-oriented information. As part of XML 1.0, DTDs offered the basic
mechanism for defining a vocabulary specifying the structure of XML documents in an
attempt to establish a contract (how an XML document will be structured) between
multiple parties working with the same type of XML. DTDs came into existence because
people and applications wanted to be able to treat XML at a higher level than a collection
of elements and attributes. Well-designed DTDs attach semantics (meaning) to the XML
syntax in documents.

At the same time, DTDs fail to address the common needs of namespace integration,
modular vocabulary design, flexible content models, and tight integration with data-
oriented applications. This failure comes as a direct result of XML's SGML origins and the
predominantly document-centric nature of SGML applications. To address these issues,
the XML community, under the leadership of the W3C, took up the task of creating a
meta-language for describing both the structure of XML document and the mapping of
XML syntax to data types. After long deliberation, the effort produced the final version of
the XML Schema specification in March, 2001. In a nutshell, XML Schema can be
described as powerful but complex. It is powerful because it allows for much more
expressive and precise specification of the content of XML documents. It is complex for
the same reason. The specification is broken into three parts:

¢ XML Schema Part 0: Primer is a non-normative document that tries to make sense
of XML Schema by parceling complexity into small chunks and using many
examples.

e XML Schema Part 1: Structures focuses primarily on serving the needs of
document-oriented applications by laying out the rules for defining the structure
of XML documents.

e XML Schema Part 2: Datatypes builds upon the structures specification with
additional capabilities that address the needs of data-oriented applications such as
defining reusable datatypes, associating XML syntax with schema datatypes, and
mapping these to application-level data.

Part O is meant for general consumption, whereas Parts 1 and 2 are deeply technical and
require a skilled and determined reader. The rest of this section will attempt to provide
an introduction to XML Schema that is very much biased towards schema usage in data-
oriented applications. You should be able to gain sufficient understanding of structure
and datatype specifications to comprehend and use common Web service schemas. Still,
because XML Schema is fundamental to Web services, we highly recommend that you go
through the primer document of the XML Schema specification.

XML Schema Basics

Listing 2.10 shows the basic structure of the SkatesTown purchase order schema.

Listing 2.10 Basic XML Schema Structure

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmIns="http://www.skatestown.com/ns/po"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema’
targetNamespace="http://www.skatestown.com/ns/po'>

<xsd:annotation>
<xsd:documentation xml:lang="en">
Purchase order schema for SkatesTown.
</xsd:documentation>
</xsd:annotation>

</xsd:schema>

The most striking difference between schemas (that is how the book will informally refer
to XML Schemas) and DTDs is that schemas are expressed in XML. This was done to
eliminate the need for XML parsers to know another syntax (that of DTDs) and also to
gain the power of expressive XML syntax. Of course, the XML Schema vocabulary is itself
defined using schema as an ultimate proof of the power of the schema meta-language.

The second very important feature of schema is that they are designed with namespaces
in mind from the ground up. In this particular schema document, all elements belonging
to the schema specification are prefixed with xsd:. The prefix's name is not important,
but xsd: (which comes from XML Schema Definition) is the convention. The prefix is
associated with the http://www.w3.0rg/2001/XMLSchema namespace that identifies the
W3C Recommendation of the XML Schema specification. The default namespace of the
document is set to be http://ww. skat est own. conl ns/ po, the namespace of the
SkatesTown purchase order. The schema document needs both namespaces to
distinguish between XML elements that belong to the schema specification versus XML
elements that belong to purchase orders. Finally, the t ar get Nanespace attribute of the
schena element identifies the namespace of the documents that will conform to this
schema. This is set to the purchase order schema namespace.

The schema is enclosed by the xsd: schenma element. The content of this element will be
other schema elements that are used for element, attribute, and datatype definitions.
The annotation and documentation elements can be used liberally to attach auxiliary
information to the schema.

Associating Schemas with Documents

Schemas do not have to be associated with XML documents. For example, applications
can be pre-configured to use a particular schema when processing documents.
Alternatively, there is a powerful mechanism for associating schemas with documents.
Listing 2.11 shows how to associate the previous schema with a purchase order
document.

Listing 2.11 Associating Schema with Documents

<?xml version="1.0" encoding="UTF-8"?>
<po:po xmlns:po="http://www.skatestown.com/ns/po"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.skatestown.com/ns/po
http://www.skatestown.com/schema/po.xsd"
id="43871" submitted="2001-10-05">

</po:po>

First, because the purchase order schema identified a target namespace, purchase order
documents are required to use namespaces to identify their elements. The purchase
order document uses the po prefix for this task.

Next, the document uses another namespace—http://www.w3.0rg/2001/XMLSchema-
instance—that has a special meaning. It defines a number of attributes that are part of
the schema specification. These attributes can be applied to elements in instance
documents to provide additional information to a schema-aware XML processor. By
convention, most documents use the namespace prefix xsi : (for XML Schema:
Instance).

The binding between the purchase order document and its schema is established via the
xsi : schemalLocat i on attribute. This attribute contains a pair of values. The first value is
the namespace identifier whose schema's location is identified by the second value.
Typically, the second value will be a URL, but specialized applications can use other types
of values, such as an identifier in a schema repository or a well-known schema name. If
the document used more than one namespace, the xsi : schenmalLocat i on attribute would
contain multiple pairs of values.

Simple Types

One of the biggest problems of DTDs is that they have no notion of datatypes, even for
simple values such as the character data content of an element or an attribute value.
Because of this, prior to the arrival of XML schema, XML applications included a large
amount of validation code. For example, even a simple purchase order requires the
following validation rules that are outside the scope of DTDs:

e Attribute id of the po element must be a positive integer.

e Attribute submitted of the po element must be a date in the format
yyyy—mm—dd.

e Attribute quantity of the item element must be a positive integer.

e Attribute sku (stock keeping unit) of the item element must be a
string with the format three digits followed by a dash followed by
two uppercase letters.

XML schemas address these issues in two ways. First, the specification comes with a
large set of pre-defined basic datatypes such as string, positive integer, and date. These
can be used directly. For custom data types, such as the values of the sku attribute, the
specification defines a powerful mechanism for defining new types. Table 2.2 shows some
of the commonly used pre-defined schema types with some examples of their use.

Table 2.2. Pre—-defined XML Schema Simple Types

\Simple Type \Examples (delimited by commas) |Notes
string Confirm this is electric |
base64Bi nary GpM7

hexBi nary OFB7

i nt eger -126789, -1, 0, 1, 126789

posi tivel nteger 1, 126789

negati vel nt eger -126789, -1

nonNegativelnteger|o 1, 126789

nonPosi ti vel nt eger -126789, -1, 0
deci nal -1.23, 0, 123.4, 1000.00
bool ean true, false
1,0
time 13:20:00.000,
13:20:00.000-05:00
dat eTi ne 1999-05-31T13:20:00.000-05:00 May 31st 1999 at
1.20pm Eastern
Standard Time, which
is 5 hours behind
Coordinated Universal
Time
duration P1Y2M3DT10H30M12.3S 1 year, 2 months, 3
days, 10 hours, 30
minutes, and12.3
seconds
date 1999-05-31
INarre shipTo XML 1.0 Name type
Q\ane po:USAddress XML Namespace
QName
any URI http://www.example.com/,
http://www.example.com/doc.html#ID5
ID XML 1.0 ID attribute
type
| DREF XML 1.0 IDREF
attribute type

\The information in this table comes from the XML Schema Primer.

A note on | D/I DREF attributes: An XML processor is required to generate an error if a
document contains two | D attributes with the same value or an | DREF with a value that
has no matching | D value. This makes | D/I DREF attributes perfect for handling attributes
such as the i d/hr ef ones in SkatesTown's purchase order address element.

The process for creating new simple datatypes is straightforward. The new type must be
derived from a base type: a pre-defined schema type or another already defined simple
type. The base type is restricted along a number of facets to obtain the new type. The

facets identify various characteristics of the types such as:

e | ength, m nLengt h and naxLengt h— the exact, minimum and maximum
character length of the value

e pattern— a regular expression pattern for the value

e enunerati on— a list of all possible values

e whi t eSpace— the rules for handling whitespace in the value

e mi nExcl usive, m nlncl usi ve, maxl ncl usi ve and maxExcl usi ve— the range of
numeric values that are allowed

e total D gits— the number of decimal digits in numeric values

e fractionDi gits— the number of decimal digits after the decimal point

Of course, not all facets apply to all types. For example, the notion of fraction digits
makes no sense for a date or a name. Tables 2.3 and 2.4 cross-link the pre-defined types
and the facets that are applicable for them.

Table 2.3. XML Schema Facets for Simple Types

Simple Types Facets
| engt h|m nLengt h |maxLengt h |pattern enunerati on |whit eSpace

string J S J J v v
base64Bi nary J / J v v v
hexBi nary S s J J v v
i nt eger v v v
posi tivel nteger J v v
negati vel nt eger v v v
nonNegat i vel nt eger s s v
nonPosi ti vel nt eger v v v
deci mal s v v
bool ean v v
tine v v v
dat eTi me v v v
duration S v v
dat e v v v
Name S J / v v v
Qare s / Wy v v v
anyURI S s J / v v
D v v v v v v
| DREF s s v v v v

The information in this table comes from the XML Schema Primer.

The facets listed in Table 2.4 apply only to simple types that have an implicit order.

Table 2.4. XML Schema Facets for Ordered Simple Types

Simple Types Facets
Max Max Min Min Total |Fraction
Inclusive |Exclusive |Inclusive |Exclusive |Digits |Digits
i nt eger S / / 7 v v
posi tivel nteger / J 4 v v v
negati vel nt eger / / J v v v
nonNegat i vel nt eger 7 ..f 4 v v v
nonPosi tivel nt eger Y / / v v v
deci mal / J e v v v
time s J v v

‘dat eTi me Y Y Y Y | |

duration S S S S

dat e S S S S

\The information in this table comes from the XML Schema Primer.

The syntax for creating new types is simple. For example, the schema snippet in Listing
2.12 defines a simple type for purchase order SKUs. The name of the type is skuType. It
is based on a string and it restricts it to have the pattern of three digits followed by dash
followed by two uppercase letters.

Listing 2.12 Using Patterns to Define String Format

<xsd:simpleType name="skuType'>
<xsd:restriction base="xsd:string">
<xsd:pattern value="\d{ 3} -[A-Z]{ 2} "/>
</xsd:restriction>
</xsd:simpleType>

Listing 2.13 shows how to force purchase order ids to be greater than 10,000 but less
than 100,000 and define an enumeration of all U.S. states.

Listing 2.13 Using Ranges and Enumerations

<xsd:simpleType name="poldType'>
<xsd:restriction base="xsd:integer'>
<xsd:minExclusive value="10000"/>
<xsd:maxExclusive value="100000"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="stateType'>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="AK"/>
<xsd:enumeration value="AL"/>
<xsd:enumeration value="AR"/>

</xsd:restriction>
</xsd:simpleType>

Complex types

In XML Schema, simple types define the valid choices for character-based content such
as attribute values and elements with character content. Complex types, on the other
hand, define complex content models, such as those of elements that can have attributes
and nested children. Complex type definitions do address both the sequencing and
multiplicity of child elements as well as the names of associated attributes and whether
they are required or optional. The main difference with respect to DTDs is that the
schema syntax is much more expressive and the schema capabilities are much more
powerful.

The syntax for defining complex types is straightforward:

<xsd:complexType name="typeName'>
<xsd:someTopLevelModelGroup>
<I-- Sequencing and multiplicity constraints for
child elements defined using xsd:element -->

</xsd:someTopLevelModelGroup>
<I-- Attribute declarations using xsd:attribute -->
</xsd:complexType>

The element xsd: conpl exType identifies the type definition. There are many different
ways to specify the model group of the complex type. The most commonly used top-level
model group elements you will see are:

e xsd: sequence— A sequence of elements
e xsd: choi ce— Allows one out of a number of elements

e xsd: al | — Allows a certain set of elements to appear once or not at all but in any
order

e xsd: gr oup— References a model group that is defined someplace else

These could be further nested to create more complex model groups. The xsd: gr oup
model group element is covered later in this chapter in the section "Content Model

Groups."

Inside the model group specification, child elements are defined using xsd: el enent . The
model group specification is followed by any number of attribute definitions using
xsd: attri bute.

For example, one possible way to define the content model of the purchase order address
used in the bi I | To and shi pTo elements is shown in Listing 2.14. The name of the
complex type is addr essType. Using xsd: sequence and xsd: el enent , it defines a
sequence of the elements nane, conpany, street, city, state, postal Code, and
country.

Listing 2. 14 Schema Fragment for the Address Complex Type

<xsd:complexType name="addressType'>
<xsd:sequence>
<xsd:element name="name" type="xsd:string"” minOccurs="0"/>
<xsd:element name="company" type="'xsd:string"” minOccurs="0"/>
<xsd:element name="street" type="'xsd:string"
maxOccurs="unbounded"/>
<xsd:element name="city" type="xsd:string"/>
<xsd:element name="state" type="'xsd:string"” minOccurs="0"/>
<xsd:element name="postalCode™ type="'xsd:string"
minOccurs="0"/>
<xsd:element name="country" type="xsd:string"” minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="id" type="xsd:ID"/>
<xsd:attribute name="href" type="xsd:IDREF"/>
</xsd:complexType>

The multiplicities of these elements' occurrences are defined using the ni nCccur s and
maxQOccur s attributes of xsd: el enent . The value of zero for m nCccur s renders an
element's presence optional ("?" in the document structure diagrams). The default value
for m nCccurs is 1. The special value for mrexCccur s of "unbounded" is used for the street
element to indicate that there must be at least one present ("+" in the document
structure diagrams).

Every element is associated with a type using the type attribute xsd: el enent . In this
example, all elements have simple character content of type string, identified by the

xsd: string type. It might seem unusual to you that the namespace prefix is used inside
an attribute value. It is true, the XML Namespaces specification does not explicitly
address this use of namespace prefixes. However, the idea is simple. A schema can
define any number of types. Some of them are built into the specification, and others are
user-defined. The only way to know for sure which type is being referred to is to
associate the type name with the namespace from which it is coming. What better way to
do this than to prefix all references to the type with a namespace prefix?

After the model group definition come the attribute definitions. In this example,
xsd: attri bute is used to define attributes i d and hr ef of types | D and | DREF,
respectively. Both attributes are optional by default.

Now, consider a slightly more complex example of a complex type definition—the po
element's type (see Listing 2.15).

Listing 2.15 Schema Fragment for the Purchase Order Complex Type

<xsd:complexType name="poType'>
<xsd:sequence>
<xsd:element name="billTo" type="addressType"/>
<xsd:element name="shipTo" type="addressType"/>
<xsd:element name="order">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="item" type="i1temType"
maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="id" use="required"
type="xsd:positivelnteger"/>
<xsd:attribute name="submitted" use="required"
type="xsd:date"/>
</xsd:complexType>

The poType introduces three interesting aspects of schema:

e It shows how easy it is to achieve basic reusability of types. Both
the billTo and shipTo elements refer to the addressType defined
previously. Note that because this is a user defined complex type, a
namespace prefix is not necessary in this case.

e It shows that the association between elements and their types can be
implicit. The order element’s type is defined inline as a sequence of
one or more item elements of type itenfype. This is convenient
because it keeps the schema more readable and it prevents the need to
define a global type that is used in only one place.

e It shows that the presence of attributes can be required through the
use="required" attribute-value pair of the xsd:attribute element. To
give default and fixed values to attributes, you can also use the
aptly named default and fixed attributes of xsd:attribute.

The Purchase Order Schema

With the information gathered so far, we can completely define the SkatesTown purchase
order schema. The document structure tree in Figure 2.4 looks very similar to that from
the section on DTDs. The main difference is the presence of more detailed datatype
information. Listing 2.16 shows the complete schema.

Figure 2.4. Document structure defined by purchase order schema.

et 5
—{of3 ofog)

#+ name
slnng

'?

S Ccompan
@ Pany=

siring
street
@ siring
_|+billTo g - +city
addressType siring

@ + state
siring

#postalCode
@ siring =

+po — | @ + country
paType E 2 siring =

+shipTo =

addreszType esku | [equantity

‘ *fstring positivelnteger
+order o #item #+description
| [s itamType =] _® siring =

Listing 2.16 The Complete SkatesTown Purchase Order Schema (po. xsd)

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmIns="http://www.skatestown.com/ns/po"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema’
targetNamespace="http://www.skatestown.com/ns/po'>

<xsd:annotation>
<xsd:documentation xml:lang="en">
Purchase order schema for SkatesTown.
</xsd:documentation>
</xsd:annotation>

<xsd:element name="po" type="poType"/>

<xsd:complexType name="poType'>
<xsd:sequence>
<xsd:element name="billTo" type="addressType"/>
<xsd:element name="shipTo" type="addressType"/>
<xsd:element name="order">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="item" type="itemType
maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="id" use="required"
type=""xsd:positivelnteger"/>
<xsd:attribute name="submitted" use="required"
type=""xsd:date"/>
</xsd:complexType>

<xsd:complexType name="addressType'>
<xsd:sequence>

<xsd:element name="name" type="xsd:string" minOccurs="0"/>
<xsd:element name="company" type="xsd:string" minOccurs="0"/>

<xsd:element name="street" type="'xsd:string"
maxOccurs="unbounded"/>
<xsd:element name="city" type="'xsd:string"/>

<xsd:element name="state" type="xsd:string" minOccurs="0"/>

<xsd:element name="postalCode" type="xsd:string"
minOccurs="0"/>

<xsd:element name="country" type="xsd:string" minOccurs="0"/>

</xsd:sequence>

<xsd:attribute name="1d" type="xsd:ID"/>

<xsd:attribute name="href" type="xsd: IDREF"/>
</xsd:complexType>

<xsd:complexType name="itemType">
<xsd:sequence>
<xsd:element name="description" type="xsd:string
minOccurs="0"/>

</xsd:sequence>
<xsd:attribute name="sku" use="required">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="\d{ 3} -[A-Z]{ 2} "/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="quantity" use="required"

type="xsd:positivelnteger"/>
</xsd:complexType>
</xsd:schema>

Everything should look familiar except perhaps for the standalone definition of the po
element right after the schema annotation. This brings us to the important topic of local
versus global elements and attributes. Any element or attribute defined inside a complex
type definition is considered local to that definition. Conversely, any element or attribute
defined at the top level (as a child of xsd: schems) is considered global.

All global elements can be document roots. That is the main reason why most schemas
define a single global element. In the case of the SkatesTown purchase order, the po
element must be the root of the purchase order document and is hence defined as a
global element.

The notion of global attributes might not make much sense at first, but they are very
convenient. You can use global attributes (in namespace-prefixed form) on any element
in a document that allows them. The item priority attribute discussed in the section "XML
Namespaces" can be defined with the short schema in Listing 2.17.

Listing 2.17 Defining the Priority Global Attribute Using Schema

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmIns="http://www.skatestown.com/ns/priority"
targetNamespace=""http://www.skatestown.com/ns/priority"
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema'">
<xsd:attribute name="priority" use="optional" default="medium">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="low"/>
<xsd:enumeration value="medium"/>
<xsd:enumeration value="high"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:schema>

Basic Schema Reusability

The concept of reusability is important for XML Schema. Reusability deals with the
question of how to best leverage any already created assets in new projects. In schema,
the assets include element and attribute definitions, content model definitions, simple
and complex datatypes, and whole schemas. We can roughly break down reusability
mechanisms into two kinds: basic and advanced. The basic reusability mechanisms
address the problems of using existing assets in multiple places. Advanced reusability
mechanisms address the problems of modifying existing assets to serve needs that are
perhaps different from what they were originally designed for.

This section will address the following basic reusability mechanisms:

e Element references
e Content model groups
e Attribute groups

e Schema includes

e Schema imports
Element References

In XML Schema, you can define elements using a name and a type. Alternatively,
element declarations can refer to pre-existing elements using the r ef attribute of

xsd: el ement as follows, where a globally defined comment element is being reused for
both a person and a task complex type:

<xsd:element name="comment" type="xsd:string"/>

<xsd:complexType name="personType'>
<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element ref="comment" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="taskType'>
<xsd:sequence>
<xsd:element name="toDo" type="xsd:string"/>
<xsd:element ref="comment" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>

Content Model Groups

Element references are perfect for reusing the definition of a single element. However, if
your goal is to reuse whole or part of a content model, then element groups are the way
to go. Element groups are defined using xsd: gr oup and are referred to using the same
mechanism used for elements. The following schema fragment illustrates the concept. It
extends the previous example so that instead of a single comment element, public and
private comment elements are reused as a group:

<xsd:group name="comments'>
<xsd:sequence>
<xsd:element name="publicComment” type="xsd:string"
minOccurs="0"/>
<xsd:element name="privateComment"” type="xsd:string"
minOccurs="0"/>
</xsd:sequence>
</xsd:group>

<xsd:complexType name="personType'>
<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:group ref="comments"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="taskType'>
<xsd:sequence>
<xsd:element name="toDo" type="xsd:string"/>
<xsd:group ref="comments"/>

</xsd:sequence>
</xsd:complexType>

Attribute Groups

The same reusability mechanism can be applied to commonly used attribute groups. The
following example defines the | D/I DREF combination of an i d and hr ef attribute as a
referenceable attribute group. It is then applied to both the person and the task type:

<xsd:attributeGroup name="referenceable">
<xsd:attribute name="id" type="xsd:ID"/>
<xsd:attribute name="href" type="xsd:IDREF"/>
</xsd:attributeGroup>

<xsd:complexType name="personType'>
<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
</xsd:sequence>
<xsd:attributeGroup ref="referenceable"/>
</xsd:complexType>

<xsd:complexType name="taskType'>
<xsd:sequence>
<xsd:element name="toDo" type="xsd:string"/>
</xsd:sequence>
<xsd:attributeGroup ref="referenceable"/>
</xsd:complexType>

Schema Includes and Imports

Element references and groups as well as attribute groups provide reusability within the
same schema document. However, when you're dealing with very complex schema or
trying to achieve maximum reusability, you'll often need to split a schema into several
documents. The schema include and import mechanisms allow these documents to
reference one another.

Consider the scenario where SkatesTown is intent on reusing the schema definition for its
address type for a mailing list schema. SkatesTown must solve three small problems:

e Put the address type definition in its own schema document

e Reference this schema document from the purchase order schema
document

e Reference this schema document from the mailing list schema document

Pulling the address definition into its own schema is as easy as a simple cut-and-paste
operation (see Listing 2.18). Even though this is a different document than the main
purchase order schema, they both define portions of the SkatesTown purchase order
namespace. The binding between schema documents and the namespaces they define is
not one-to-one. It is explicitly identified by the t ar get Nanespace attribute of the

xsd: schema element.

Listing 2. 18 Standalone Address Type Schema

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns="http://www.skatestown.com/ns/po"

xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.skatestown.com/ns/po'>

<xsd:annotation>
<xsd:documentation xml:lang="en">
Address type schema for SkatesTown.
</xsd:documentation>
</xsd:annotation>

<xsd:complexType name="addressType'>
<xsd:sequence>
<xsd:element name="name" type="'xsd:string" minOccurs="0"/>
<xsd:element name="company" type="xsd:string" minOccurs="0"/>
<xsd:element name="'street" type="xsd:string"
maxOccurs="unbounded"/>
<xsd:element name="city" type='"xsd:string"/>
<xsd:element name="state" type="'xsd:string" minOccurs="0"/>
<xsd:element name="postalCode™ type="xsd:string"
minOccurs="0"/>
<xsd:element name="country" type="xsd:string" minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="id" type="xsd:ID"/>
<xsd:attribute name="href" type="xsd:IDREF"/>
</xsd:complexType>

</xsd:schema>

Referring to this schema is also very easy. Instead of having the address type definition
inline, the purchase order schema needs to include the address schema using the

xsd: i ncl ude element. During the processing of the purchase order schema, the address
schema will be retrieved and the address type definition will become available (see

Listing 2.19).
Listing 2.19 Referring to the Address Type Schema

<?xml version="1.0" encoding="UTF-8"?7>

<xsd:schema xmIns="http://www.skatestown.com/ns/po"
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.skatestown.com/ns/po'>

<xsd:include
schemalLocation="http://www.skatestown.com/schema/address.xsd"/>

</xsd:schema>

The mailing list schema is very simple. It defines a single mai | i ngLi st element that
contains any number of contact elements whose type is addr ess. Being an altogether
different schema than purchase orders, the mailing list schema uses a new namespace,
htt p: // ww. skat est own. conf ns/ mai | i ngLi st . Listing 2.20 shows one possible way to
define this schema.

Listing 2.20 Mailing List Schema

<?xml version="1.0" encoding="UTF-8"?7>

<xsd:schema xmIns="http://www.skatestown.com/ns/po"
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.skatestown.com/ns/mailingList">

<xsd:include
schemalLocation="http://www.skatestown.com/schema/address.xsd"/>

<xsd:annotation>
<xsd:documentation xml:lang="en">
Mailing list schema for SkatesTown.
</xsd:documentation>
</xsd:annotation>

<xsd:element name="mailingList'>
<xsd:sequence>
<xsd:element name="contact" type="addressType"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:element>

</xsd:schema>

This example uses xsd: i ncl ude to bring in the schema fragment defining the address
type. There is no problem with that approach. However, there might be a problem with
authoring mailing list documents. The root of the problem is that the nai | i ngLi st and
cont act elements are defined in one namespace

(http://ww. skat est own. coni ns/ nai | i ngLi st), whereas the elements belonging to the
address type—nane, conpany, street, city, state, post al Code, count ry—are defined
in another (http://ww. skat est own. com ns/ po). Therefore, the mailing list document
must reference both namespaces (see Listing 2.21).

Listing 2.21 Mailing List that References Two Namespaces

<?xml version="1.0" encoding="UTF-8"?>
<list:mailingList xmIns:list="http://www.skatestown.com/ns/mailingList"
xmIns:addr="http://www.skatestown.com/ns/po"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.skatestown.com/ns/mailingList
http://www.skatestown.com/schema/mailingList.xsd
http://www.skatestown.com/ns/po
http://www.skatestown.com/schema/address.xsd">
<contact>
<addr:company>The Skateboard Warehouse</addr:company>
<addr:street>0One Warehouse Park</addr:street>
<addr:street>Building 17</addr:street>
<addr:city>Boston</addr:city>
<addr:state>MA</addr:state>
<addr:postalCode>01775</addr:postalCode>
</contact>
</list:mailingList>

Ideally, when reusing the address type definition in the mailing list schema, we want to
hide the fact that it originates from a different namespace and treat it as a true part of
the mailing list schema. Therefore, the xsd: i ncl ude mechanism is not the right one to
use, because it makes no namespace changes. The reuse mechanism that will allow the
merging of schema fragments from multiple namespaces into a single schema is the
import mechanism. Listing 2.22 shows the new mailing list schema.

Listing 2.22 Importing Rather Than Including the Address Type Schema

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmIns="http://www.skatestown.com/ns/po"
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmIns:addr="http://www.skatestown.com/ns/po"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.skatestown.com/ns/po

http://www.skatestown.com/schema/address.xsd"

targetNamespace="http://www.skatestown.com/ns/mailingList">

<xsd:import namespace="http://www.skatestown.com/ns/po"/>

<xsd:annotation>
<xsd:documentation xml:lang="en">
Mailing list schema for SkatesTown.
</xsd:documentation>
</xsd:annotation>
<xsd:element name="mailingList">
<xsd:sequence>
<xsd:element name="contact™ type="addr:addressType"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:element>

</xsd:schema>

Although the mechanism is simple to describe, it takes several steps to execute:

1. We declare the namespace of the address type definition and assign it
the prefix addr.

2. We use the standard xsi:schemalLocati on mechanism to point to the
location of the address schema.

3. We use xsd:inport instead of xsd:include. We import just the
namespace; we already know the schema location.

4. When referring to the address type, we use its fully qualified name
addr: addr essType.

The net result is that the mailing list instance document has been simplified (see Listing
2.23).

Listing 2.23 Simplified Instance Document that Requires a Single Namespace

<?xml version="1.0" encoding="UTF-8"?>

<list:mailingList xmIns:list="http://www.skatestown.com/ns/mailingList"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.skatestown.com/ns/mailingList
http://www.skatestown.com/schema/mailingList.xsd">
<contact>
<company>The Skateboard Warehouse</company>
<street>0One Warehouse Park</street>
<street>Building 17</street>
<city>Boston</city>
<state>MA</state>
<postalCode>01775</postalCode>
</contact>
</list:mailingList>

Advanced Schema Reusability

The previous section demonstrated how you can reuse types and elements "as is" from
the same or a different namespace. This capability can go a long way in some cases, but
many real-world scenarios require more sophisticated reuse capabilities. Consider, for
example, the format of the invoice that SkatesTown will send to The Skateboard
Warehouse based on its purchase order (see Listing 2.24).

Listing 2.24 SkatesTown Invoice Document

<?xml version="1.0" encoding="UTF-8"?7>
<invoice:invoice xmIns:invoice="http://www.skatestown.com/ns/invoice"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.skatestown.com/ns/invoice
http://www.skatestown.com/schema/invoice.xsd"
id="43871" submitted="2001-10-05">
<billTo 1d="addr-1">
<company>The Skateboard Warehouse</company>
<street>0One Warehouse Park</street>
<street>Building 17</street>
<city>Boston</city>
<state>MA</state>
<postalCode>01775</postalCode>
</billTo>
<shipTo href="addr-1"/>
<order>
<item sku="318-BP" quantity="5" unitPrice="49.95">
<description>Skateboard backpack; five pockets</description>
</item>
<item sku="947-TI" quantity="12" unitPrice="129.00">
<description>Street-style titanium skateboard.</description>
</item>
<item sku="008-PR" quantity="1000" unitPrice="0.00">
<description>Promotional: SkatesTown stickers</description>
</item>
</order>
<tax>89.89</tax>
<shippingAndHandl ing>200</shippingAndHandl ing>

<totalCost>2087.64</totalCost>
</invoice:invoice>

The invoice document has many of the features of a purchase order document, with a
few important changes:

e Invoices use a different namespace,
http: //ww. skat est own. conf ns/ i nvoi ce.

e The root element of the document is invoice and not po.

e The invoice element has three additional children: tax,
shi ppi ngAndHandl i ng, and t ot al Cost.

e The item element has an additional attribute, unitPrice.

How can we leverage the work done to define the purchase order schema in defining the
invoice schema? This section will introduce the advanced schema reusability mechanisms
that make this possible.

Design Principles

Imagine that purchase orders, addresses, and items were represented as classes in an
object-oriented programming language such as Java. We could create an invoice object
by sub-classing i t emto i nvoi cel t em(which adds uni t Pri ce) and po to i nvoi ce (which
adds t ax, shi ppi ngAndHandl i ng, and t ot al Cost). The benefit of this approach is that
any changes to related classes such as addr ess will be automatically picked up by both
purchase orders and invoices. Further, any changes in base types such as i t emwill be
automatically picked up by derived types such as i nvoi celtem

The following pseudo-code shows how this approach might work:

class Address { ... }
class Item
{

String sku;
int quantity;

}
class Invoiceltem extends Item
{
float unitPrice;
}
class PO
{
int id;
Date submitted;
Address billTo;
Address shipTo;
Item order[];
}

class Invoice extends PO

{
float tax;

float shippingAndHandling;
float totalCost;

}

Everything looks good except for one important detail. You might have noticed that

I nvoi ce probably shouldn't subclass PO. The reason is that the or der array inside an

i nvoi ce object must hold | nvoi cel t ens and not just | t em The subclassing relationship
will force you to work with | t ens instead of | nvoi cel t ens. Doing so will weaken static
type-checking and will require constant downcasting, which is generally a bad thing in
well-designed object-oriented systems. A better design for the | nvoi ce class,
unfortunately, requires some duplication of POs data members:

class Invoice
{
int id;
Date submitted;
Address billTo;
Address shipTo;
Invoiceltem order[];
float tax;
float shippingAndHandling;
float totalCost;

}

Note that subclassing | t emto get | nvoi cel t emis a good decision because | nvoi cel t em
is a pure extension of | t em It adds new data members; it does not in any way require
modifications to | t enls data members, nor does it change the way they are used.

Extensions and Restrictions

The analysis from object-oriented systems can be directly applied to the design of
SkatesTown's invoice schema. The schema will define the i nvoi ce element in terms of
pre-existing types such as addr essType, and the invoice's i t emtype will reuse the
already defined purchase order item type via extension (see Listing 2.25).

Listing 2.25 SkatesTown Invoice Schema

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns="http://www.skatestown.com/ns/invoice"
targetNamespace=""http://www.skatestown.com/ns/invoice"
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema™
xmIns:po="http://www.skatestown.com/ns/po'>

<xsd:import namespace="http://www.skatestown.com/ns/po"
schemaLocation="http://www.skatestown.cm/schema/po.xsd"/>

<xsd:annotation>
<xsd:documentation xml:lang="en">
Invoice schema for SkatesTown.
</xsd:documentation>
</xsd:annotation>

<xsd:element name="invoice" type="invoiceType"/>

<xsd:complexType name="invoiceType'>
<xsd:sequence>
<xsd:element name="billTo" type="po:addressType"/>
<xsd:element name="shipTo" type="po:addressType"/>
<xsd:element name="order">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="item" type="itemType"
maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="tax" type="priceType"/>
<xsd:element name="shippingAndHandling" type="priceType"/>
<xsd:element name="totalCost" type="priceType"/>
</xsd:sequence>
<xsd:attribute name="id" use="required"
type="xsd:positivelnteger"/>
<xsd:attribute name="submitted" use="required" type="xsd:date"/>
</xsd:complexType>

<xsd:complexType name="itemType'>
<xsd:complexContent>
<xsd:extension base="po:itemType'>
<xsd:attribute name="unitPrice" use="required"
type="priceType"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:simpleType name="priceType'>
<xsd:restriction base="xsd:decimal'>
<xsd:minInclusive value="0"/>
</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

By now the schema mechanics should be familiar. The beginning of the schema declares
the purchase order and invoice namespaces. The purchase order schema has to be
imported because it does not reside in the same namespace as the invoice schema.

The i nvoi ceType schema address type is defined in terms of po: addr essType, but the
order element's content is of type i t enifype and not po: i t emlype. That's because the
invoice's i t eniType needs to extend po: it enilfype and add the uni t Pri ce attribute. This
happens at the next complex type definition. In general, the schema extension syntax,
although somewhat verbose, is easy to use:

<xsd:complexType name="_..">

<xsd:complexContent>
<xsd:extension base="...">

<I-- QOptional extension content model -->
<I-- QOptional extension attributes -->
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

The content model of extended types contains all the child elements of the base type plus
any additional elements added by the extension. Any attributes in the extension are
added to the attribute set of the base type.

Last but not least, the invoice schema defines a simple price type as a non-negative
decimal number. The definition happens via restriction of the lower bound of the decimal
type using the same mechanism introduced in the section on simple types.

The restriction mechanism in schema applies not only to simple types but also to
complex types. The syntax is similar to that of extension:

<xsd:complexType name="...">
<xsd:complexContent>
<xsd:restriction base="...">
<I-- Content model and attributes -->
</xsd:restriction>
</xsd:complexContent>
</xsd:complexType>
The concept of restriction has a very precise meaning in XML Schema. The declarations

of the type derived by restriction are very close to those of the base type but more
limited. There are several possible types of restrictions:

e Multiplicity restrictions

Deletion of optional element

Tighter limits on occurrence constraints

Providing default values

e Providing types where there were none, or narrowing types

For example, you can extend the address type by restriction to create a corporate
address that does not include a name:

<xsd:complexType name="corporateAddressType">
<xsd:complexContent>
<xsd:restriction base="addressType'>
<xsd:sequence>
<I-- Add maxOccurs="0" to delete optional name element -->
<xsd:element name="name" type="xsd:string"
minOccurs="0" maxOccurs="0"/>
<I-- The rest is the same as in addressType -->
<xsd:element name="company" type="xsd:string"
minOccurs="0"/>
<xsd:element name="street" type="xsd:string"
maxOccurs="unbounded"/>
<xsd:element name="city" type="xsd:string"/>
<xsd:element name="state" type="xsd:string"

minOccurs="0"/>
<xsd:element name="postalCode" type="xsd:string"
minOccurs="0"/>
<xsd:element name="country" type="xsd:string"
minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="id" type="xsd:ID"/>
<xsd:attribute name="href" type="xsd:IDREF"/>
</xsd:restriction>
</xsd:complexContent>
</xsd:complexType>

The Importance of xsi:type

The nature of restriction is such that an application that is prepared to deal with the base
type can certainly accept the derived type. In other words, you can use a corporate
address type directly inside the bi | | To and shi pTo elements of purchase orders and
invoices without a problem. There are times, however, when it might be convenient to
identify the actual schema type that is used in an instance document. XML Schema
allows this through the use of the global xsi : t ype attribute. This attribute can be applied
to any element to signal its actual schema type, as Listing 2.26 shows.

Listing 2.26 Using xsi:type

<?xml version="1.0" encoding="UTF-8"?>
<po:po xmlns:po="http://www.skatestown.com/ns/po"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.skatestown.com/ns/po
http://www.skatestown.com/schema/po.xsd"
id="43871" submitted="2001-10-05">
<billTo xsi:type="po:corporateAddressType">
<company>The Skateboard Warehouse</company>
<street>0One Warehouse Park</street>
<street>Building 17</street>
<city>Boston</city>
<state>MA</state>
<postalCode>01775</postalCode>
</billTo>

</po:po>

Although derivation by restriction does not require the use of xsi : t ype, derivation by
extension often does. The reason is that an application prepared for the base schema
type is unlikely to be able to process the derived type (it adds information) without a
hint. But, why would such a scenario ever occur? Why would an instance document

contain data from a type derived by extension in a place where a base type is expected
by the schema?

One reason is that XML Schema allows derivation by extension to be used in cases where
it really should not be used, as in the case of the invoice and purchase order datatypes.
In these cases, xsi : t ype must be used in the instance document to ensure successful
validation. Consider a scenario where the invoice type was derived by extension from the
purchase order type:

<xsd:complexType name="invoiceType'>
<xsd:complexContent>

<xsd:extension base="po:poType'>
<xsd:element name="tax" type="priceType"/>
<xsd:element name="shippingAndHandling" type="priceType"/>
<xsd:element name="totalCost" type="priceType"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Remember, extension does not change the content model of the base type; it can only
add to it. Therefore, this definition will make the i t emelement inside invoices of type
po:itenlype, notinvoi ce:itenlype. The use of xsi : t ype (see Listing 2.27) is the only
way to add unit prices to items without violating the validity constraints of the document
imposed by the schema. An imperfect analogy from programming languages is that

Xsi : type provides the true type to downcast to when you are holding a reference to a
base type.

Listing 2.27 Using xsi:type to Correctly Identify Invoice Item Elements

<order>
<item sku="318-BP" quantity="5" unitPrice="49.95"
xsi:type="invoice:itemType'>
<description>Skateboard backpack; five pockets</description>
</item>
<item sku="947-TI" quantity="12" unitPrice="129.00"
xsi:type="invoice:itemType'>
<description>Street-style titanium skateboard.</description>
</item>
<item sku="008-PR" quantity="1000" unitPrice="0.00"
xsi:type="invoice:itemType'">
<description>Promotional: SkatesTown stickers</description>
</item>
</order>

This example shows a use of xsi : t ype that comes as a result of poor schema design. If,
instead of extending purchase order, the invoice type is defined on its own, the need for
xsi : type disappears. However, sometimes even good schema design does not prevent
the need to identify actual types in instance documents.

Imagine that, due to constant typos in shipping and billing address postal codes,
SkatesTown decides to become more restrictive in its document validation. The company
defines three types of addresses that can be used in purchase orders and schema. The
types have the following constraints:

e Address— Same as always

e USAddr ess— Country is not allowed, and the Zip code pattern "\ d{ 5} (-\d{ 4}
) ?" is enforced

e UKAddr ess— Country is fixed to UK and the postal code pattern "[0- 9A- Z] { 3}
[0-9A-Z]{ 3}"is enforced

To get the best possible validation, SkatesTown's applications need to know the exact
type of address that is being used in a document. Without using xsi : t ype, the purchase
order and invoice schema will each have to define nine (three squared) possible
combinations of bi | | To and shi pTo elements: bi | | To/shi pTo, bi | | To/shi pToUS,

bi | | To/shi pToUK, bi | | ToUS/shi pTo, and so on. It is better to stick with bi | | To and

shi pTo and use xsi : t ype to get exact schema type information.

There’ s More

This completes the whirlwind tour of XML Schema. Fortunately or unfortunately, much
material useful for data-oriented applications falls outside the scope of what can be
addressed in this chapter. Some further material will be introduced throughout the rest of
the book as needed.

Processing XML

So far, this chapter has introduced the key XML standards and explained how they are
expressed in XML documents. The final section of the chapter focuses on processing XML
with a quick tour of the specifications and APIs you need to know to be able to generate,
parse, and process XML documents in your Java applications.

Basic Operations

The basic XML processing architecture shown in Figure 2.5 consists of three key layers.
At far left are the XML documents an application needs to work with. At far right is the
application. In the middle is the infrastructure layer for working with XML documents,
which is the topic of this section.

Figure 2.5. Basic XML processing architecture.

= Character Stream =€
XML Document(s) pe— Serializer - —— — Application
Standardized
XML APIs
— Parser — —

For an application to be able to work with an XML document, it must first be able to
parse it. Parsing is a process that involves breaking up the text of an XML document into
small identifiable pieces (nodes). Parsers will break documents into pieces such as start
tags, end tags, attribute value pairs, chunks of text content, processing instructions,
comments, and so on. These pieces are fed into the application using a well-defined API
implementing a particular parsing model. Four parsing models are commonly in use:

e Pull parsing i:gxinvolves the application always having to ask the
parser to give it the next piece of information about the document.
It is as if the application has to “pull” the information out of the
parser and hence the name of the model. The XML community has not yet
defined standard APIs for pull parsing. However, because pull parsing
is becoming popular, this could happen soon.

e Push parsingi:gx—— The parser sends notifications to the application
about the types of XML document pieces it encounters during the
parsing process. The notifications are sent in “reading” order, as
they appear in the text of the document. Notifications are typically
implemented as event callbacks in the application code, and thus push
parsing is also commonly known as event—based parsing. The XML
community created a de facto standard for push parsing called Simple

API for XML (SAX) . SAX is currently released in version 2. 0.

e One-step parsing— The parser reads the whole XML document and
generates a data structure (a parse tree) describing its entire
contents (elements, attributes, PIs, comments, and so on). The data
structure is typically deeply nested; its hierarchy mimics the
nesting of elements in the parsed XML document. The W3C has defined a

Document Object Model (DOM) i:gxfor XML. The XML DOM specifies the
types of objects that will be included in the parse tree, their
properties, and their operations. The DOM is so popular that one—step
parsing is typically referred to as DOM parsing. The DOM is a
language— and platform—independent API. It offers many obvious
benefits but also some hidden costs. The biggest problem with the DOM
APIs is that they often do not map well to the native data structures
of particular programming languages. To address this issue for Java,
the Java community has started working on a Java DOM (JDOM)
specification whose goal is to simplify the manipulation of document
trees in Java by using object APIs tuned to the common patterns of
Java programming.

e Hybrid parsingi:gx—— This approach tries to combine different
characteristics of the other two parsing models to create efficient
parsers for special scenarios. For example, one common pattern
combines pull parsing with one—step parsing. In this model, the
application thinks it is working with a one-step parser that has
processed the whole XML document from start to end. In reality, the
parsing process has just begun. As the application keeps accessing
more objects on the DOM (or JDOM) tree, the parsing continues
incrementally so that just enough of the document is parsed at any
given point to give the application the objects it wants to see.

The reasons there are so many different models for parsing XML have to do with trade-
offs between memory efficiency, computational efficiency, and ease of programming.
Table 2.6 identifies some of the characteristics of the different parsing models. Control of
parsing refers to who has to manage the step-by-step parsing process. Pull parsing
requires that the application does that. In all other models, the parser will take care of
this process. Control of context refers to who has to manage context information such as
the level of nesting of elements and their location relative to one another. Both push and
pull parsing delegate this control to the application. All other models build a tree of nodes
that makes maintaining context much easier. This approach makes programming with
DOM or JDOM generally easier than working with SAX. The price is memory and
computational efficiency, because instantiating all these objects takes up both time and
memory. Hybrid parsers attempt to offer the best of both worlds by presenting a tree
view of the document but doing incremental parsing behind the scenes.

Table 2.6. XML Parsing Models and Their Trade—offs

Model Control of |Control of Memory Computational |Ease of
Parsing context efficiency |efficiency programming

Pull Application |Application |High Highest Low

Push Parser Application |High High Low
(SAX)

One-step |Parser Parser Lowest Lowest High
(DOM)

One-step Parser Parser Low Low Highest
(JDOM)

Hybrid Parser Parser Medium Medium High
(DOM)

Hybrid Parser Parser Medium Medium Highest
(JDOM)

In the Java world, a standardized APl—Java API for XML Processing (JAXP) w—exists
for instantiating XML parsers and parsing documents using either SAX or DOM. Without
JAXP, Java applications were not completely portable across XML parsers because
different parsers, despite following SAX and DOM, had different APIs for creation,
configuration, and parsing of documents. JAXP is currently released in version 1.1. It
does not support JDOM yet because the JDOM specification is not complete at this point.

Although XML parsing addresses the problem of feeding data from XML documents into
applications, XML output addresses the reverse problem—applications generating XML
documents. At the most basic level, an application can directly output XML markup. In
Figure 2.5, this is indicated by the application working with a character stream. This is
not very difficult to do, but handling all the basic syntax rules (attributes quoting, special
character escaping, and so on) can become cumbersome. In many cases, it might be
easier for the application to construct a data structure (DOM or JDOM tree) describing the
XML document that should be generated. Then, the application can use a serialization

wprocess to traverse the document tree and emit XML markup corresponding to its
elements. This capability is not directly defined in the DOM and JDOM APIs, but most XML
toolkits make it very easy to do just that.

Data—Oriented XML Processing

When you're thinking about applications working with XML, it is important to note that all
the mechanisms for parsing and generating XML described so far are syntax-oriented.
They force the application to work with concepts such as elements, attributes, and pieces
of text. This is similar to applications that use text files for storage being forced to work
with characters, lines, carriage returns (CR), and line feeds (LF). Typically, applications
want a higher-level view of their data. They are not concerned with the physical structure
of the data, be it characters and lines in the case of text files or elements and attributes
in the case of XML documents. They want to abstract this away and expose the meaning
or semantics of the data. In other words, applications do not want to work with syntax-
oriented APIs, they want to work with data-oriented APls. Therefore, typical data-
oriented XML applications introduce a data abstraction layer between the syntax-oriented
parsing and output APIs and application logic (see Figure 2.6).

Figure 2.6. Data abstraction layer in XML applications.

Application

Syntax-oriented |g 4, Data Abstraction ‘—|_)

APls Layer Application Logic

When working with XML in a data-oriented manner, you'll typically use one of two
approaches: operation-centric and data-centric. The operation-centric approach works in
terms of custom-built APIs for certain operations on the XML document. The
implementation of these APIs hides the details of XML processing. Only non-XML types
are passed through the APIs.

Consider for example, the task of SkatesTown trying to independently check the total
amount on the invoices it is sending to its customers. From a Java application
perspective, a good way to implement an operation like this would be through the
interface shown in Listing 2.28.

Listing 2.28 InvoiceChecker Interface

package com.skatestown.invoice;

import java.io.lnputStream;

/**
* SkatesTown invoice checker
*/
public interface InvoiceChecker {
/**

* Check invoice totals.

*

* @param invoiceXML Invoice XML document
* @exception Exception Any exception returned during checking
*/

void checklInvoice(InputStream invoiceXML) throws Exception;
}

The actual implementation of checkl nvoi ce will have to do the following:

1. Obtain an XML parser.
2. Parse the XML from the input stream.
3. Initialize a running total to zero.

4. Find all order items and calculate item subtotals by multiplying
quantities and unit prices. Add item subtotals to the running total.

5. Add tax to the running total.

6. Add shipping and handling to the running total.

7. Compare the running total to the total on invoice.
8. If there is a difference, throw an exception.

9. Otherwise, return.

The most important aspect to this approach is that any XML processing details will be
hidden from the application. It can happily work with the | nvoi ceChecker interface,
never knowing or caring about how checkl nvoi ce does its work.

An alternative is the data-centric approach. Data-centric XML computing reduces the
problem of working with XML documents to that of mapping the XML to and from
application data and then working with the data entirely independent of its XML origins.
Application data covers the common datatypes developers work with every day: boolean
values, numbers, strings, date-time values, arrays, associative arrays (dictionaries,
maps, hash tables), database recordsets, and complex object types. Note that in this
context, DOM tree objects will not be considered "true" application data because they are
tied to XML syntax. The process of converting application data to XML is called
serialization. The XML is a serialized representation of the application data. The process

of generating application data from XML is called deserialization .

For example, the XML invoice markup could be mapped to the set of Java classes
introduced in the schema section (see Listing 2.29).

Listing 2.29 Java Classes Representing Invoice Data

class Address { ... }
class Item { ... }
class Invoiceltem extends Item { ... }
class Invoice
{
int id;

Date submitted;

Address billTo;

Address shipTo;
Invoiceltem order[];

float tax;

float shippingAndHandling;
float totalCost;

}

The traditional approach for generating XML from application data has been to sit down
and custom-code how data values become elements, attributes, and element content.
The traditional approach of working with XML to produce application data has been to
parse it using a SAX or a DOM parser. Data structures are built from the SAX events or
the DOM tree using custom code. There are, however, better ways to map data to and
from XML using technologies specifically built for serializing and deserializing data to and
from XML. Enter schema compilation tools. Schema compilers are tools that analyze XML
schema and code-generate serialization and deserialization modules specific to the
schema. These modules will work with data structures tuned to the schema. Figure 2.7
shows the basic process for working with schema compilers. The schema compiler needs
to be invoked only once. Then the application can use the code-generated modules just
like any other API. For example, a schema compiler working on the SkatesTown invoice
schema could have generated the helper class shown in Listing 2.30 to wrap serialization
and deserialization.

Figure 2.7. Using a schema compiler.

-— Serializer Module <€

g ! .
5 codegen §
L | Target Schema c
= Schema Compiler [« (DTD or XML 2
o]
< Schema))
o ! 3
o codegen 2
] |
—»| Deserializer Module >

Listing 2.30 Serialization/Deserialization Helper

class InvoiceXMLHelper

{

// All exception signatures removed for readability
public static InvoiceXMLHelper create();

public serialize(lnvoice inv, OutputStream xml);
public Invoice deserialize(InputStream xml);

}

Chapters 3 ("Simple Object Access Protocol (SOAP)™) and 4 ("Creating Web Services")
will introduce some advanced data mapping concepts specific to Web services as well as
some more sophisticated mechanisms for working with XML. The rest of this section will
offer a taste of XML processing by implementing the checkl nvoi ce() API described
earlier using both a SAX and a DOM parser.

SAX-based checkl nvoi ce

The basic architecture of the JAXP SAX parsing APIs is shown in Figure 2.8. It uses the
common abstract factory design pattern. First, you must create an instance of

SAXPar ser Fact ory that is used to create an instance of SAXPar ser . Internally, the parser
wraps a SAXReader object that is defined by the SAX API. JAXP developers typically do
not have to work directly with SAXReader . When the parser's par se() method is invoked,
the reader starts firing events to the application by invoking certain registered callbacks.

Figure 2.8. SAX parsing architecture.

SAXParser

Factory
| Content
! ! , C Handler
/ Error
SAXParser |’

. SAX C < Handler
— ‘\‘ Reader —
. A Q Hand|

— andler

XML) |
Entity
I Handler

Working with JAXP

and SAX involves four important Java packages:

Package

Description

org. xm . sax

Defines the SAX interfaces

org. xm . sax. ext

Defines advanced SAX extensions for DTD processing and
detailed syntax information

org.xm . sax. hel per s pDefines helper classes such as Def aul t Handl er

‘j avax. xm . parsers \Defines the SAXPar ser Fact ory and SAXPar ser classes

Here is a summary

of the key SAX-related objects:

SAXPar ser Fact ory

A SAXpPar ser Fact or y object creates an instance of the parser
determined by the system property,
j avax. xm . par sers. SAXPar ser Fact ory.

SAXPar ser

The saxpPar ser interface defines several kinds of par se() methods.
In general, you pass an XML data source and a Def aul t Handl er
object to the parser, which processes the XML and invokes the
appropriate methods in the handler object.

Def aul t Handl er

Not shown in Figure 2.8, Def aul t Handl er implements all SAX
callback interfaces with null methods. Custom handlers subclass
Def aul t Handl er and override the methods they are interested in
receiving.

The following list contains the callback interfaces and some of their important methods:

e Cont ent Handl er — Contains methods for all basic XML parsing events:
e Void startDocument()

Receive notification of the beginning of a document.

Void endDocument()

Receive notification of the end of a document.

Void startElement(String namespaceURI, String localName, String gName,
Attributes atts)

Receive notification of the beginning of an element.
Void characters(char[] ch, int start, int length)

Receive notification of character data.

e ErrorHandl er — Contains methods for receiving error notification. The default
implementation in Def aul t Handl er throws errors for fatal errors but does nothing
for non-fatal errors, including validation errors:

e Void error(SAXParseException exception)

Receive notification of a recoverable error. An example of a
recoverable error is a validation error.

Void fatalError(SAXParseException exception)

Receive notification of a non—recoverable error. An example of a non-—
recoverable error is a well-formedness error.

e DTDHandl er — Contains methods for dealing with XML entities.

e EntityResol ver — Contains methods for resolving the location of external
entities.

SAX defines an event-based parsing model. A SAX parser will invoke the callbacks from
these interfaces as it is working through the document. Consider the following sample
document:
<?xml version="1.0" encoding="UTF-8"?>
<sampleDoc>

<greeting>Hello, world!</greeting>
</sampleDoc>

An event-based parser will make the series of callbacks to the application as follows:

start document

start element: sampleDoc
start element: greeting
characters: Hello, world!
end element: greeting
end element: sampleDoc
end document

Because of the simplicity of the parsing model, the parser does not need to keep much
state information in memory. This is why SAX-based parsers are very fast and highly
efficient. The flip side to this benefit is that the application has to manage any context
associated with the parsing process. For example, for the application to know that the
string "Hello, world!" is associated with the gr eet i ng element, it needs to maintain a flag
that is raised in the start element event for greeting and lowered in the end element
event. More complex applications typically maintain a stack of elements that are in the
process of being parsed. Here are the SAX events with an added context stack:

start document O

start element: sampleDoc (sampleDoc)

start element: greeting (sampleDoc, greeting)
characters: Hello, world! (sampleDoc, greeting)
end element: greeting (sampleDoc, greeting)
end element: sampleDoc (sampleDoc)

end document O

With this information in mind, building a class to check invoice totals becomes relatively
simple (see Listing 2.31).

Listing 2.31 SAX-based Invoice Checker (I nvoi ceChecker SAX. | ava)

package com.skatestown.invoice;

import java.io.lnputStream;

import org.xml.sax_Attributes;

import org.xml.sax.SAXException;

import javax.xml_parsers.SAXParser;

import javax.xml.parsers.SAXParserFactory;
import org.xml.sax_helpers.DefaultHandler;

/**
* Check SkatesTown invoice totals using a SAX parser.
*/
public class InvoiceCheckerSAX
extends DefaultHandler
implements InvoiceChecker

// Class-level data

// 1nvoice running total
double runningTotal = 0.0;
// invoice total

double total = 0.0;

// Utility data for extracting money amounts from content
boolean isMoneyContent = false;
double amount = 0.0;

/**

* Check invoice totals.

* @param invoiceXML Invoice XML document

* (@exception Exception Any exception returned during checking
*/

public void checklInvoice(InputStream invoiceXML) throws Exception {
// Use the default (non-validating) parser
SAXParserFactory factory = SAXParserFactory.newlnstance();
SAXParser saxParser = factory.newSAXParser();

// Parse the input; we are the handler of SAX events
saxParser.parse(invoiceXML, this);

}

// SAX DocumentHandler methods

public void startDocument() throws SAXException {
runningTotal = 0.0;
total = 0.0;
isMoneyContent = false;

public void endDocument() throws SAXException {
// Use delta equality check to prevent cumulative

// binary arithmetic errors. In this case, the delta
// is one half of one cent

if (Math_.abs(runningTotal - total) >= 0.005) {
throw new SAXException(
"Invoice error: total is " + Double.toString(total) +
" while our calculation shows a total of " +
Double.toString(Math.round(runningTotal * 100) / 100.0));

}

public void startElement(String namespaceURI,
String localName,
String qualifiedName,

Attributes attrs) throws SAXException {
it (localName.equals("'item™)) {

// Find item subtotal; add it to running total
runningTotal +=
Integer.valueOf(attrs.getValue(namespaceURl,
"quantity™)).intvalue() *
Double.valueOf(attrs.getValue(namespacelURI,
"unitPrice™)).doublevalue();
} else if (localName.equals('tax™) ||

localName.equals(*'shippingAndHandling™) ||
localName.equals(*'totalCost™)) {

// Prepare to extract money amount

isMoneyContent = true;

}

public void endElement(String namespaceURI,
String localName,

String qualifiedName) throws SAXException {
if (isMoneyContent) {

it (localName.equals("totalCost™)) {
total = amount;

} else {

// 1t must be tax or shippingAndHandling
runningTotal += amount;

}

isMoneyContent = false;

}

public void characters(char buf[], int offset, int len)
throws SAXException {

it (isMoneyContent) {

String value = new String(buf, offset, len);
amount = Double.valueOf(value).doubleValue();

}

I nvoi ceChecker SAX must implement the | nvoi ceChecker interface in order to provide
the checkl nvoi ce functionality. It also subclasses Def aul t Handl er to obtain default
implementations for all SAX callbacks. In this way the implementation can focus on
overriding only the relevant callbacks.

The class members runni ngTot al and t ot al maintain state information about the
invoice during the parsing process. The class members i sMbneyCont ent and anount are
necessary in order to maintain parsing context. Because events about character data are
independent of events about elements, we need a flag to indicate whether we should
attempt to parse character data as a dollar amount for the t ax, shi ppi ngAndHandl i ng,
and t ot al Cost elements. This is what i sMoneyCont ent does. After we parse the text into
a dollar figure, we save it into the anount member variable and wait until the

endEl enent () callback to determine what to do with it.

The checkl nvoi ce() method implementation shows how easy it is to use JAXP for XML
parsing. Parsing an XML document with SAX only takes three lines of code.

At the beginning of the document, we have to initialize all member variables. At the end
of the document, we check whether there is a difference between the running total and
the total cost listed on the invoice. If there is a problem, we throw an exception with a
descriptive message. Note that we cannot use an equality check because no exact
mapping exists between decimal numbers and their binary representation. During the
many additions to r unni ngTot al , a very tiny error will be introduced in the calculation.
So, instead of checking for equality, we need to check whether the difference between
the listed and the calculated totals is significant. Significant in this case would be any
amount greater than half a cent, because a half-cent difference can affect the rounding
of a final value to a cent.

The parser pushes events about the new elements to the st art El enent () method. If the
element we get a notification about is an i t emelement, we can immediately extract the
values of the quantity and uni t Pri ce attributes from its attributes collection.
Multiplying them together creates an item subtotal, which we add to the running total.
Alternatively, if the element is one of t ax, shi ppi ngAndHandl i ng, or t ot al Cost, we
prepare to extract a money amount from its text content. All other elements are simply
ignored.

We only care to process end element notifications if we were expecting to extract a
money amount from their content. Based on the name of the element, we decide
whether to save the amount as the total cost of the invoice or whether to add it to the
running total.

When we process character data and we are expecting a dollar value, we extract the
element content, convert it to a double value, and save it in the anobunt class member for
use by the endEl enent () callback.

Note that we could have skipped implementing endEl enent () altogether if we had also
stored the element name as a string member of the class or used an enumerated value.
Then, we would have decided how to use the dollar amount right inside char act er s() .

That's all there is to it. Of course, this is a very simple example. A real application would
have done at least two things differently:

e It would have used namespace information and prefixed element names
instead of simply using local names.

e It would have defined its own exception type to communicate invoice
validation information. It would have also overridden the default
callbacks for error() and fatal Error() and used these to collect
better exception information.

Unfortunately, these extensions fall outside the scope of this chapter. The rest of the
book has several examples of building robust XML processing software.

DOM-based checkl nvoi ce

The basic architecture of the JAXP DOM parsing APIs is shown in Figure 2.9. It uses the
same factory design pattern as the SAX API. An application will use the

javax. xm . parsers. Docunent Bui | der Fact ory class to get a Docunent Bui | der object
instance, and use that to produce a document that conforms to the DOM specification.
The value of the system property j avax. xnl . par sers. Docunent Bui | der Fact ory
determines which factory implementation will produce the builder. This is how JAXP
enables applications to work with different DOM parsers.

Figure 2.9. DOM parsing architecture.

DocumentBuilder
Factory

—

Document
XML Data :> Builder :>

Document {DOM)

The important packages for working with JAXP and DOM are as follows:

\Package Description

org. w3c. dom Defines the DOM programming interfaces for XML (and,
optionally, HTML) documents, as specified by the W3C

j avax. xnl . parsers|Defines Document Bui | der and Docunent Bui | der Fact ory classes

The DOM defines APIs that allow applications to navigate XML documents and to
manipulate their content and structure. The DOM defines interfaces, not a particular
implementation. These interfaces are specified using the Interface Description Language
(IDL) so that any language can define bindings for them. Separate Java bindings are
provided to make working with the DOM in Java very easy.

The DOM has several levels and various facets within a level. In the fall of 1998, DOM
Level 1 was released. It provided the basic functionality to navigate and manipulate XML

and HTML documents. DOM Level 2 builds upon Level 1 with more and better-segmented
functionality:

e The DOM Level 2 Core API builds upon Level 1, fixes some problem
spots, and defines additional ways to navigate and manipulate the
content and structure of documents. These APIs also provide full
support for namespaces.

e The DOM Level 2 Views API specifies interfaces that provide
programmers with the ability to view alternate presentations of the
XML or HTML document.

e The DOM Level 2 Style API specifies interfaces that provide
programmers with the ability to dynamically access and manipulate
style sheets.

e The DOM Level 2 Events API specifies interfaces that provide
programmers with a generic event system.

e The DOM Level 2 Traversal-Range API specifies interfaces that provide
programmers with the ability to traverse a representation of the XML
document.

e The DOM Level 2 HTML API specifies interfaces that provide
programmers with the ability to work with HTML documents.

All interfaces apart from the core ones are optional. This is the main reason why most
applications choose to rely entirely on the DOM Core. You can expect more of the DOM to
be supported by parsers soon. In fact, the W3C is currently working on DOM Level 3.

The DOM originated as an API for XML processing at a time when the majority of XML
applications were document-centric. As a result, the interfaces in the DOM describe fairly
low-level syntax constructs in XML documents. This makes working with the DOM for
data-oriented applications somewhat cumbersome, and is one of the reasons the Java
community is working on the JDOM APIs.

To better understand the XML DOM, you need to understand the core interfaces and the
most significant methods in them. Figure 2.10 shows a Universal Modeling Language
(UML) diagram describing some of these.

Figure 2.10. Key DOM interfaces and operations.

intariaca intarlaca inlerface
NodeList Node NamedNodeMap
+itemiindasint:Node +geiiodeame:Sirng +petiamedifamyname:Siring):Node
+gellangth{lint +geihode Vakue():-Siring +seifamediem{angNodal:Node
+satiodeValuainods Vake:String)void +ilgmifindenint):Node
[—— +geihode Type!):short +patl ety
CharactarDats +getParentNods() Nods
L= +geChildodes() ModedLis! -
+getData(}:String sgetAtibutes(NamedNodeMap =<+ Elomont
+salDataldaia: String)veid
+getlengthilint l?« \ +parTagiamer):String
+gotditnbunefname: Sring Sting
? Inkartace + seAtirbulnname String, il Siring)void
—— +hasAliribuledname: Sinnglbodlean
Teaxt rereataElamantytagiama: Sirng):Elemant \\
+creataliocumentFragmant): DocumantFragment
+spiitTantjotfsatint: Text | | 4 create TanNods(data:Siring). Text "b:n“‘:'rm
wcrpataAtinbuteiname: Sirng):Afr
+petEiemantsBy Taghametagname:String):Nodel ist +patNamey):Siring
+getValuef):String
+satlalveivaive:String)void

The root interface is Node. It contains methods for working with the node name

(get NodeName()), type (get NodeType()), and attributes (get NodeAt tri but es()). Node
types cover various possible XML syntax elements: document, element, attributes,
character data, text node, comment, processing instruction, and so on. All of these are
shown in subclass Node but not all are shown in Figure 2.10. To traverse the document
hierarchy, nodes can access their parent (get Par ent Node()) as well as their children
(get Chi | dNodes()). Node also has several convenience methods for retrieving the first
and last child as well as the previous and following sibling.

The most important operations in Docunent involve creating nodes (at least one for every
node type), assembling these nodes into the tree (not shown), and locating elements by
name, regardless of their location in the DOM (get El ement sByTagNane()). This last API
is very convenient because it can save you from having to traverse the tree to get to a
particular node.

The rest of the interfaces on the figure are very simple. Elements, attributes, and
character data offer a few methods each for getting and setting their data members.
NodeLi st and NanedNodeMap are convenience interfaces for dealing with collections of
nodes and attributes, respectively. What Figure 2.10 does not show is that DOM Level 2
is fully namespace aware and all DOM APIs have versions that take in namespace URIs.
Typically, their name is the same as the name of the original APl with NS appended, such
as El enent's get Attri buteNS(String nsURI, String |ocal Nane).

With this information in mind, building a class to check invoice totals becomes relatively
simple. The DOM implementation of | nvoi ceChecker is shown in Listing 2.32.

Listing 2.32 DOM-based Invoice Checker (I nvoi ceChecker DOM j ava)

package com.skatestown.invoice;

import java.io.lnputStream;

import org.w3c.dom.Node;

import org.w3c.dom_NodelList;

import org.w3c.dom.Document;

import org.w3c.dom_Element;

import org.w3c.dom.CharacterData;

import javax.xml._parsers.DocumentBuilder;

import javax.xml_parsers.DocumentBuilderFactory;

/**
* Check SkatesTown invoice totals using a DOM parser.
*/
public class InvoiceCheckerDOM implements InvoiceChecker {
/**
* Check invoice totals.

*

* @param invoiceXML Invoice XML document
* @exception Exception Any exception returned during checking
*/

public void checklInvoice(InputStream invoiceXML)
throws Exception
{
// Invoice running total
double runningTotal = 0.0;
// Obtain parser instance and parse the document
DocumentBui lderFactory factory =
DocumentBui lderFactory.newlnstance();
DocumentBuilder builder = factory.newDocumentBuilder();
Document doc = builder.parse(invoiceXxML);

// Calculate order subtotal
NodeList itemList = doc.getElementsByTagName(*'item™);
for (int i = 0; i < itemList.getlLength(); i++) {
// Extract quantity and price
Element item = (Element)itemList.item(i);
Integer qty = Integer.valueOf(
item.getAttribute("'quantity™));
Double price = Double.valueOf(
item.getAttribute("unitPrice™));

// Add subtotal to running total
runningTotal += qty.intvalue() * price.doublevalue();
}

// Add tax
Node nodeTax = doc.getElementsByTagName(''tax™).i1tem(0);
runningTotal += doubleValue(nodeTax);

// Add shipping and handling

Node nodeShippingAndHandling =
doc.getElementsByTagName(*'shippingAndHandling™).item(0);

runningTotal += doubleValue(nodeShippingAndHandling);

// Get invoice total

Node nodeTotalCost =
doc.getElementsByTagName(*"totalCost™).item(0);

double total = doubleValue(nodeTotalCost);

// Use delta equality check to prevent cumulative

// binary arithmetic errors. In this case, the delta
// is one half of one cent

if (Math.abs(runningTotal - total) >= 0.005)

{
throw new Exception(
"Invoice error: total is " + Double.toString(total) +
" while our calculation shows a total of " +
Double.toString(Math.round(runningTotal * 100) / 100.0));
}
}
/**

* Extract a double from the text content of a DOM node.

*

* @param node A DOM node with character content.

* @return The double representation of the node®s content.
* @exception Exception Could be the result of either a node
* that does not have text content being passed in
* or a node whose text content is not a number.
*/

private double doubleValue(Node node) throws Exception {
// Get the character data from the node and parse it
String value = ((CharacterData)node.getFirstChild()).getData();
return Double.valueOf(value).doublevValue();

}

I nvoi ceChecker DOMmust implement the | nvoi ceChecker interface in order to provide
the checkl nvoi ce functionality. Apart from this, it is a standalone class. Also, note that
the class has no member data, because there is no need to maintain parsing context. The
context is implicit in the hierarchy of the DOM tree that will be the result of the parsing
process.

The factory pattern used here to parse the invoice is the same as the one from the SAX
implementation; it just uses Docunent Bui | der Fact ory and Docunent Bui | der instead.
Although the SAX parse method returns no data (it starts firing events instead), the DOM
par se() method returns a Docunent object that holds the complete parse tree of the
invoice document.

Within the parse tree, the call to get El enent sByTagNanme("it eni') retrieves a node list of
all order items. The loop iterates over the list, extracting the quantity and uni t Price
attributes for every item, obtaining an item subtotal, and adding this to the running total.

The same get El enent sByTagNane() APl combined with the utility function
doubl eVal ue() extracts the amounts of tax, the shipping and handling, and the invoice
total cost.

Just as in the SAX example, the code has to use a difference check instead of a direct
equality check to guard against inexact decimal-to-binary conversions.

The class also defines a convenient utility function that takes in a DOM node that should
have only character content and returns the numeric representation of that content as a
double. Any non-trivial DOM processing will typically require these types of utility

functions. It goes to prove that the DOM is very syntax-oriented and not at all concerned
about data.

That's all there is to it. Of course, this is a very simple example and, just as in the SAX
example, a real application would have done at least three things differently:

e It would have used namespace information and prefixed element names
instead of simply using local names.

e It would have defined its own exception type to communicate invoice
validation information. It would have implemented try-catch logic
inside the checkl nvoi ce method in order to report more meaningful
errors.

e It would have either explicitly turned on validation of the incoming
XML document or traversed the DOM tree step—by—step from the document
root to all the elements of interest. Using get El ement sBy TagName()
presumes that the structure of the document (relative positions of
elements) has already been validated. If this is the case, it is OK
to ask for all item elements regardless of where they are in the
document. The example implementation took this approach for code
readability purposes.

These changes are not complex, but they would have increased the size and complexity
of the example beyond its goals as a basic introduction to DOM processing.

Testing the Code

Rather than forcing you to set up the Java Runtime Environment (JRE), modify
CLASSPATH environment variables, and run examples from the command line, this book
has taken a novel, Web-centric approach. All examples are accessible from the book's
example Web site.

The actual example code is written using Java Server Pages (JSP). JSP allows Java code
to be mixed in with HTML for building Web applications. JSP builds on top of the Java
servlet standard for building Web components. Java application servers compile JSPs
down to servlets.

The example code that drives | nvoi ceChecker SAX and | nvoi ceChecker DOMappears in
Listing 2.33.

Listing 2.33 JSP Page for Checking Invoices (/ ch2/ex1/index.jsp)

<%@ page import="java.io.*,bws.BookUtil,com.skatestown.invoice.*" %>
<HTML>

<HEAD><TITLE>Invoice Checker</TITLE></HEAD>

<hl>Invoice Checker</hl>

<p>This example implements a web form driver for SkatesTowns®s invoice
checker. You can modify the invoice on the form if you wish (the
default one is from Chapter 2), select a DOM or SAX parser and perform
a check on the invoice total.</p>

<FORM action="index. jsp" method="POST">

<%
String xml = request.getParameter("xml™);
if (xnl = null) {
xml = BookUtil.readResource(application,
"/resources/samplelnvoice.xml™);

}

%>
<TEXTAREA NAME="xml" ROWS="20" COLS="90"><%= xml%></TEXTAREA>
<P></P>
Select parser type:
<INPUT type="RADIO" name="'parserType" value="SAX" CHECKED> SAX
<INPUT type="RADIO" name="parserType" value="DOM"> DOM
<P></P>
<INPUT type="SUBMIT" value=" Check Invoice'>
</FORM>

<%
// Check for form submission
if (request.getParameter('xml') I= null) {
out.printIn(*'<HR>");

// Instantiate appropriate parser type
InvoiceChecker ic;
if (request.getParameter(parserType™).equals(*'SAX™)) {
out.print('Using SAX parser...
");
ic = new InvoiceCheckerSAX();
} else {
out.print('Using DOM parser...
");
ic = new InvoiceCheckerDOM();

}

// Check the invoice

try {
ic.checklnvoice(new StringBufferlnputStream(xml));
out.print("Invoice checks 0K.™);

} catch(Exception e) {
out._print(e.getMessage());

}

%>

</BODY>
</HTML>

JSP uses the <%@ ... % syntax for compile-time directives. The page i nport="..."
directive accomplishes the equivalent of a Java i nport statement.

The HTML code sets up a simple Web form that will post back to the same page. The
form contains a text area with the name xml that will contain the XML of the invoice to
be validated.

In JSP, you can use the construct <% ... 9% to surround arbitrary Java code embedded
in the JSP page. The request object is an implicit object on the page associated with the
Web request. Implicit objects in JSP are set up by the JSP compiler. They can be used
without requiring any type of declaration or setup. One of the most useful methods of the
request object is get Par anet er (), which retrieves the value of a parameter passed from
the Web such as a form field or returns null if this parameter did not come with the
request. The code uses get Paranet er ("xm ") to check whether the form is being
displayed (return is null) versus submitted (return is non-null). If the form is displayed
for the first time, the page loads the invoice XML from a sample file in

/ resour ces/ sanpl el nvoi ce. xm .

The rest of the Java code runs only if the form has been submitted. It uses the implicit
out object to send output to the resulting Web page. It uses the value of the par ser Type
field in the Web page to determine whether to instantiate a SAX or a DOM parser. It then
checks the invoice by passing the value of the xm text area on the page to the

checkl nvoi ce() method. If the call is successful, the invoice checks OK, and an
appropriate message is displayed. If an exception is thrown by checkl nvoi ce(), an
invoice total discrepancy (or an XML processing error) has been detected, which will be
output to the browser.

That's all there is to creating a Web test client for the invoice checker. Figure 2.11 shows
the Web page ready for submission.

Figure 2.11. Invoice checker Web page.

(=~ 0D d@mI8~ EEEE
7¥ml wersion = "1.0" encoding = "OTF=8"7» -

Cimvolce! iBvoLloe Welns:invoice = "krepl//uve. skatecicy.comfns/ invoice™
xmlns:aei = "hoop: S fuwe. wlooegs 2000/ 10/ XML Schema- L BT ARCE"
xoitschemalocation = "hicop://eww.skatecity.com s/ involos

heop:/ /vy skatec ity . comyf sohema) involoe . xod™
id = =33871" submitted = =I001-10-057%
<bdliTe>
“ggmpany>The Skateboacd Vareshouse</ companys
<atreetrCne Warehouse Park</atreec:
cacreatxiullding 1T« acoeat>
ceivy>Boatane/ siey>
cararssMkc S srares
cpoatalCode>017T5</ peatal Codex
</BillTox
<shipTo>
coompanys>The Skatetoard Warshouses/ companys
<strestr>ime Warshouse Fark</streecs
cpbrest>Bullding 1T</strest>
4gitiBostons/ sl e
cacacas>HisSacace> -

Selsct parser ppe: & SAX © DOM

| Check Invoice I

Summary

This chapter has focused on explaining some of the core features of XML and related
technologies. The goal was to prepare you for the Web service—related material in the
rest of the book, which relies heavily on the concepts presented here. To this end, we
covered, in some detail:

e The origins of XML and the fundamental difference between document—
and data—centric XML applications. Web services are an extreme

example of data—centric XML use. The material in this chapter
purposefully ignored some aspects of XML that are more document-—
oriented.

The syntax and rules governing the physical structure of XML
documents: document prologs, elements, attributes, character content,
CDATA sections, and so on. We omitted document—oriented features of
XML such as entities and notations due to their infrequent use in the
context of Web services. The SkatesTown purchase order document
format made its initial appearance.

XML Namespaces, the key tool for resolving the problems of name
recognition and name collision in XML applications. Namespaces are
fundamental to mixing information from multiple schemas into a single
document, something that all core Web service technologies rely upon.
SkatesTown’ s purchase order inside an XML message wrapper is an
example of a common pattern for XML use that will be explored in
depth in the next chapter. The namespace mechanism is simple and
beautiful; however, people often try to read more into it than is
really there, as demonstrated by the debate over whether namespace
URIs should point to meaningful resources. One of the slightly more
complex aspects of the specification is the multiple namespace
defaulting mechanisms that simplify document markup while preserving
namespace information.

The concepts of well-formedness and validity and Document Type
Definitions (DTDs) as a mechanism to validate XML document structure.
DTDs are powerful, but they also have great limitations such as non—
XML syntax, no ties to namespaces, and poor support for even basic
data types such as numbers and dates.

XML Schema, the de facto standard for describing document structure
and XML datatypes for data—oriented applications. Although XML Schema
is a recent standard, the XML community had defined specifications
based on draft versions of the standard for nearly two years. The
flexible content models, the large number of pre—defined datatypes
and the powerful extensibility and reuse features make this one of
the most important developments in the XML space since XML 1.0. All
Web service specifications are described using schema. Through the
definition of SkatesTown’s purchase order and invoice schemas, this
chapter introduced enough of the key capabilities of the technology
to prepare you for what is to come in the rest of the book.

The key mechanisms for creating and processing XML with software.
Starting with the basic syntax—oriented XML processing architecture,
the chapter progressed to define a data—oriented XML processing
architecture together with the key concepts of XML data mapping and

XML parsing. In the context of SkatesTown s desire to independently
validate invoice totals sent to its customers, we used the Java APIs
for XML Processing (JAXP), the Simple APIs for XML (SAX), and the XML
Document Object Model (DOM) to build two separate implementations of
an invoice checker. A simple Web—based front end served as the test
bed for the code.

This chapter explicitly did not focus on other important but not very relevant XML
technologies such as XPointer/XLink, Resource Definition Framework (RDF), XPath,
Extensible Stylesheet Language Transformations (XSLT), or XQuery. They are important
in their own domains and useful to be familiar with in general but are not commonly used
in the context of Web services. Other more technical XML specification such as XML
Digital Signatures will be introduced later in the book as part of meaningful Web service
usage scenarios.

Right now, you know enough about XML to go deep into the exciting world of Web
services. Chapter 3 introduces the core Web service messaging technologies: Simple
Object Access Protocol (SOAP) and XML Protocol (XMLP).

Resources

e DOM Level 1—DOM Level 1 Specification (W3C, October 1998). Available at
http://www.w3.0rg/TR/REC-DOM-Level-1.

e DOM Level 2 Core—W3C (World Wide Web Consortium) Document Object Model Level 2
Core (W3C, November 2000). Available at http://www.w3.0rg/TR/2000/REC-DOM-Level-
2-Core-20001113.

 JAXP—Java API for XML Processing 1.1 (Sun Microsystems, Inc., February 2001).
Available at http://java.sun.com/xml/xml_jaxp.html.

 JDOM—Java Document Object Model. Available at http://www.jdom.org/docs/apidocs.

e JSP—Java Server Pages 1.2 (Sun Microsystems, Inc., April 2001). Available at
http://java.sun.com/products/jsp.

e RFC2396—RFC 2396, "Uniform Resource Identifiers (URI): Generic Syntax" (IETF,
August 1998). Available at http://www.ietf.org/rfc/rfc2396.txt.

e SAX—Simple API for XML (SAX) 2.0 (May 2000). Available at
http://www.megginson.com/SAX/Java/index.html.

e XML—Extensible Markup Language (XML) 1.0, 2nd ed. (W3C, August 2000). Available
at http://www.w3.0rg/TR/2000/WD-xml-2e-20000814.

e XML Namespaces—"Namespaces in XML" (W3C, January 1999). Available at
http://www.w3.0rg/TR/1999/REC-xml-names-19990114.

e XML Schema Part 0: Primer—"XML Schema Part 0: Primer" (W3C, May 2001). Available
at http://www.w3.0rg/TR/2001/REC-xmlschema-0-20010502.

e XML Schema Part 1: Structures—"XML Schema Part 1: Structures" (W3C, May 2001).
Available at http://www.w3.0rg/TR/2001/REC-xmischema-1-20010502.

e XML Schema Part 2: Datatypes—"XML Schema Part 2: Datatypes" (W3C, May 2001).
Available at http://www.w3.0rg/TR/2001/REC-xmischema-2-20010502.

Chapter 3. Simple Object Access Protocol (SOAP)

IN THIS CHAPTER

e FEvolution of XML Protocols

Simple Object Access Protocol (SOAP)

e Doing Business with SkatesTown

e Inventory Check Web Service

e SOAP Envelope Framework

e Taking Advantage of SOAP Extensibility

e SOAP Intermediaries

e FError Handling in SOAP

e SOAP Data Encoding

e Architecting Distributed Systems with Web Services

e Purchase Order Submission Web Service

e SOAP Protocol Bindings

There is a lot more to Web services than Simple Object Access Protocol (SOAP). Chapter
1, "Web Services Overview," introduced the Web services interoperability stack that went
several levels higher than SOAP. SOAP is synonymous with Web services, however,
because since its introduction in late 1999, it has become the de facto standard for Web
services messaging and invocation. With competitive and market pressures driving the
Web services industry in a hard race to provide meaningful solutions to cross-enterprise
integration problems, SOAP is the go-to-market technology of choice.

What is SOAP all about, you ask? Will it save you from failure (and keep you clean) while
you toil 80-hour work weeks on a business-to-business (B2B) integration project from
hell? Will it support your extensibility needs as requirements change, and provide you
with interoperability across multi-vendor offerings? Will it be the keyword on your
resume that will guarantee you a big raise as you switch jobs? In short, is it the new new
thing? Well, maybe.

SOAP is so simple and so flexible that it can be used in many different ways to fit the
needs of different Web service scenarios. This is both a blessing and a curse. It is a
blessing because chances are that SOAP can fit your needs. It is a curse because you
probably won't know how to make it do that. This is where this chapter comes in. When
you are through with it, you will know not only how to use SOAP straight out of the box,
but also how to extend SOAP in multiple ways to support your diverse and changing
needs. You will also have applied design best practices to build several meaningful e-
commerce Web services for our favorite company, SkatesTown. Last but not least, you
will be ready to handle the rest of the book and climb still higher toward the top of the
Web services interoperability stack. To this end, the chapter will discuss the following
topics:

e The evolution of XML protocols and the history and motivation behind
SOAP’ s creation

e The SOAP envelope framework, complete with discussions of versioning,
header—based vertical extensibility, intermediary-based horizontal
extensibility, error handling, and bindings to multiple transport
protocols

e The various mechanisms for packaging information in SOAP messages,
including SOAP’ s own data—encoding rules and a number of heuristics
for putting just about any kind of data in SOAP messages

e The use of SOAP within multiple distributed system architectures such
as RPC-and messaging-based systems in all their flavors

e Building and consuming Web services using the Java—based Apache Axis
Web services engine

One final note before we begin. The SOAP 1.1 specification is slightly over 40 pages long.
This chapter is noticeably longer, because the purpose of this book is to be something
more than an annotated spec or a tutorial for building Web services. We've tried hard to
create a thorough treatment of Web services for people who want answers to questions
that begin not only with "what" and "how" but also with "why." To become an expert at
Web services, you need to be comfortable dealing with the latter type of questions. We
are here to help.

So, why SOAP? As this chapter will show, SOAP is simple, flexible, and highly extensible.
Because it is XML based, SOAP is programming language, platform, and hardware
neutral. What better choice for the XML protocol that is the foundation of Web services?
To prove this point, let's start the chapter by looking at some of the earlier work that
inspired SOAP.

Evolution of XML Protocols

The enabling technology behind Web services is built around XML protocols mXML
protocols govern how communication happens and how data is represented in XML
format on the wire. XML protocols can be broadly classified into two generations. First-
generation protocols are based purely on XML 1.0. Second-generation protocols take
advantage of both XML Namespaces and XML Schema. SOAP is a second-generation XML
protocol.

First—-Generation XML Protocols

There were many interesting first-generation XML protocol efforts. They informed the
community of important protocol requirements and particular approaches to satisfying
these requirements. Unfortunately, very few of the first-generation XML protocols
achieved multi-vendor support and broad adoption. Two are worth mentioning: Web
Distributed Data Exchange (WDDX) and XML-RPC.

WDDX

WDDX wprovides a language-and platform-neutral mechanism for data exchange
between applications. WDDX is perfect for data syndication and remote B2B integration
APIs because it is all about representing data as XML. For example, Moreover

Technologies, the Web feed company, exposes all its content through a WDDX-based
remote API. Access http://moreover.com/cgi-local/page?index+wddx with an XML-aware
browser such as Internet Explorer and you will get a WDDX packet with current headline
news. A simplified version of the packet is shown in the following example. You can see
from it that the data format is a recordset (tabular data) with three fields containing the
URL to the full article, its headline text, and the publishing source:

<wddxPacket version="1.0">
<header/>
<data>
<recordset rowCount="2" fieldNames="url,headline_text,source">
<field name="url">
<string>http://c.moreover.com/click/here.pl?x22535276</string>
<string>http://c.moreover.com/click/here.pl?x22532205</string>
</field>
<field name="headline_text">
<string>Firefighters hold line in Wyoming</string>
<string>US upbeat as China tensions ease</string>
</field>
<field name="source">
<string>CNN</string>
<string>BBC</string>
</field>
</recordset>
</data>
</wddxPacket>

Allaire Corporation (now Macromedia, Inc.) created WDDX in 1998. WDDX is currently
supported in many environments and is flexible enough to handle most useful datatypes
(strings, numbers, booleans, date/time, binary, arrays, structures, and recordsets), but it
cannot represent arbitrary data in XML. It is an epitome of the 80/20 rule: flexible
enough to be useful yet simple enough to be broadly supported. Because WDDX is not
bound to any particular transport, applications can exchange WDDX packets via HTTP,
over e-mail, or by any other means. Many applications persist data as XML in a relational
database using WDDX.

XML-RPC

XML-RPC mis an RPC protocol introduced in the market in 1998 by Userland. XML-RPC
supports a set of datatypes similar to that supported by WDDX and uses HTTP as the
underlying transport protocol. Because of its simplicity, XML-RPC enjoyed good multi-
vendor support. Here's an example XML-RPC method call and response:
<methodCal 1>
<methodName>NumberToText</methodName>
<params>
<param>
<value><i4>28</i4></value>
</param>
</params>
</methodCall>

<methodResponse>
<params>

<param>
<value><string>twenty-eight</string></value>
</param>
</params>
</methodResponse>

First—-Generation Problems

Although first-generation XML protocols have been and still are very useful, their
simplicity and reliance on XML 1.0 alone causes some problems.

First-generation protocols are not very extensible. The protocol architects had to reach
agreement before any changes were implemented, and the protocol version had to be
revved up in order to let tools distinguish new protocol versions from old ones and handle
the XML appropriately. For example, when XML-RPC and WDDX added support for binary
data, both protocols had to update their specifications, and the protocol implementations
on all different languages and platforms supporting the protocols had to be updated. The
overhead of constantly revising specifications and deploying updated tools for handling
the latest versions of the protocols imposed limits on the speed and scope of adoption of
first-generation protocols. Second-generation protocols address the issue of extensibility
with XML namespaces.

The second problem with first-generation protocols had to do with datatyping. First-
generation XML protocols stuck to a single Document Type Definition (DTD) to describe
the representation of serialized data in XML. In general, they used just a few XML
elements. This approach made building tools supporting these protocols relatively easy.
The trouble with such an approach is that the XML describing the data in protocol
messages expressed datatype information and not semantic information. In other words,
to gain the ability to represent data in XML, first-generation XML protocols went without
the ability to preserve information about the meaning of the data. Second-generation
XML protocols use XML schema as a mechanism to combine descriptive syntax with
datatype information.

To sum things up, the need to provide broad extensibility without centralized
standardization and the need to combine datatype information with semantic information
were the driving forces behind the effort to improve upon first-generation efforts and to
create SOAP, the de facto standard XML protocol for modern Web services and B2B
applications.

Simple Object Access Protocol (SOAP)

This section looks at the history, design center, and core capabilities of SOAP as a means
for establishing the base on which to build our understanding of Web services.

The Making of SOAP

Microsoft started thinking about XML-based distributed computing in 1997. The goal was
to enable applications to communicate via Remote Procedure Calls (RPCs) on top of
HTTP. DevelopMentor and Userland joined the discussions. The name SOAP was coined in
early 1998. Things moved forward, but as the group tried to involve wider circles at
Microsoft, politics stepped in and the process was stalled. The DCOM camp at the
company disliked the idea of SOAP and believed that Microsoft should use its dominant
position in the market to push the DCOM wire protocol via some form of HTTP tunneling
instead of pursuing XML. Some XML-focused folks at Microsoft believed that the SOAP
idea was good but that it had come too early. Perhaps they were looking for some of the
advanced facilities that could be provided by XML Schema and Namespaces. Frustrated
by the deadlock, Userland went public with a cut of the spec published as XML-RPC in the
summer of 1998.

In 1999, as Microsoft was working on its version of XML Schema (XML Data) and adding
support for namespaces in its XML products, the idea of SOAP gained additional
momentum. It was still an XML-based RPC mechanism, however. That's why it met with
resistance from the BizTalk (http://www.biztalk.org) team. The BizTalk model was based
more on messaging than RPCs. It took people a few months to resolve their differences.
SOAP 0.9 appeared for public review on September 13, 1999. It was submitted to the
IETF as an Internet public draft. With few changes, in December 1999, SOAP 1.0 came to
life.

On May 8, 2000 SOAP 1.1 was submitted as a Note to the World Wide Web Consortium
(W3C) with IBM as a co-author—an unexpected and refreshing change. In addition, the
SOAP 1.1 spec was much more extensible, eliminating concerns that backing SOAP
implied backing some Microsoft proprietary technology. This change, and the fact that
IBM immediately released a Java SOAP implementation that was subsequently donated to
the Apache XML Project (http://xml.apache.org) for open-source development, convinced
even the greatest skeptics that SOAP is something to pay attention to. Sun voiced
support for SOAP and started work on integrating Web services into the J2EE platform.
Not long after, many vendors and open-source projects were working on Web service
implementations.

Right before the XTech 2000 Conference, the W3C made an announcement that it was
looking into starting an activity in the area of XML protocols: "We've been under pressure
from many sources, including the advisory board, to address the threat of fragmentation
of and investigate the exciting opportunities in the area of XML protocols. It makes sense
to address this now because the technology is still early in its evolution...”
(http://lists.w3.0rg/Archives/Public/xml-dist-app/2000Feb/0006.html). On September
13, 2000 the XML Protocol working group at the W3C was formed to design the XML
protocol that was to become the core of XML-based distributed computing in the years to
come. The group started with SOAP 1.1 as a foundation and produced the first working
draft of SOAP 1.2 on July 9, 2001.

What Should SOAP Do?

SOAP claims to be a specification for a ubiquitous XML distributed computing
infrastructure. It's a nice buzzword-compliant phrase, but what does it mean? Let's parse
it bit by bit to find out what SOAP should do.

XML means that, as a second-generation XML protocol, SOAP is based on XML 1.0, XML
Schema, and XML Namespaces.

Distributed computing implies that SOAP can be used to enable the interoperability of
remote applications (in a very broad sense of the phrase). Distributed computing is a
fuzzy term and it means different things to different people and in different situations.
Here are some "facets" you can use to think about a particular distributed computing
scenario: the protocol stack used for communication, connection management, security,
transaction support, marshalling and unmarshalling of data, protocol evolution and
version management, error handling, audit trails, and so on. The requirements for
different facets will vary between scenarios. For example, a stock ticker service that
continuously distributes stock prices to a number of subscribers will have different needs
than an e-commerce payment-processing service. The stock ticker service will probably
need no support for transactions and only minimal, if any, security or audit trails (it
distributes publicly available data). The e-commerce payment-processing service will
require Cerberean security, heavy-duty transaction support, and full audit trails.

Infrastructure implies that SOAP is aimed at low-level distributed systems developers,
not developers of application/business logic or business users. Infrastructure products
such as application servers become "SOAP enabled" by including a Web service engine
that understands SOAP. SOAP works behind the scenes making sure your applications
can interoperate without your having to worry too much about it.

Ubiquitous means omnipresent, universal. On first look, it seems to be a meaningless
term, thrown into the phrase to make it sound grander. It turns out, however, that this is
the most important part. The ubiquity goal of SOAP is a blessing because, if SOAP-
enabled systems are everywhere on the Internet, it should be easier to do distributed
computing. After all, that's what SOAP is all about. However, the ubiquity of SOAP is also
a curse, because one technology specification should be able to support many different
types of distributed computing scenarios, from the stock ticker service to the e-
commerce payment-processing service. To meet this goal, SOAP needs to be a highly
abstract and flexible technology. However, the more abstract SOAP becomes, the less
support it will provide for specific distributed computing scenarios. Furthermore, greater
abstraction means more risk that different SOAP implementations will fail to interoperate.
This is the eternal tug-of-war between generality and specificity.

What Is SOAP, Really?

Like most new technologies that change the rules of how applications are being
developed, Web services and SOAP have sometimes been over-hyped. Despite the hype,
however, SOAP is still of great importance because it is the industry's best effort to date
to standardize on the infrastructure technology for cross-platform XML distributed
computing.

Above all, SOAP is relatively simple. Historically, simplicity is a key feature of most
successful architectures that have achieved mass adoption. The Web with HTTP and
HTML at its core is a prime example. Simple systems are easier to describe, understand,
implement, test, maintain, and evolve. At its heart, SOAP is a specification for a simple
yet flexible second-generation XML protocol. SOAP 1.0 printed at about 40 pages. The
text of the specification has grown since then (the authors have to make sure the
specification is clear and has no holes), but the core concepts remain simple.

Because SOAP is focused on the common aspects of all distributed computing scenarios,
it provides the following:

e A mechanism for defining the unit of communication. In SOAP, all
information is packaged in a clearly identifiable SOAP message. This
is done via a SOAP envelope that encloses all other information. A
message can have a body in which potentially arbitrary XML can be
used. It can also have any number of headers that encapsulate
information outside the body of the message.

e A mechanism for error handling that can identify the source and cause
of the error and allows for error—diagnostic information to be
exchanged between participants in an interaction. This is done via
the notion of a SOAP fault.

e An extensibility mechanism so that evolution is not hindered and
there is no lock—in. XML, schemas, and namespaces really shine here.
The two key requirements on extensions are that they can be
orthogonal to other extensions and they can be introduced and used
without the need for centralized registration or coordination.
Typically, extensions are introduced via SOAP headers. They can be
used to build more complex protocols on top of SOAP.

e A flexible mechanism for data representation that allows for the
exchange of data already serialized in some format (text, XML, and so

on) as well as a convention for representing abstract data structures
such as programming language datatypes in an XML format.

e A convention for representing Remote Procedure Calls (RPCs) and
responses as SOAP messages, because RPCs are the most common type of
distributed computing interaction and because they map so well to
procedural programming language constructs.

e A document—centric approach to reflect more natural document exchange
models for business interactions. This is needed to support the cases
in which RPCs result in interfaces that are too fine grained and,
therefore, brittle.

e A binding mechanism for SOAP messages to HTTP, because HTTP is the
most common communication protocol on the Internet.

Although solid consensus exists in the industry about the core capabilities of SOAP, there
is considerably less agreement on how higher-level issues such as security and
transaction-management should be addressed. Nearly everyone agrees that to tackle the
broad spectrum of interesting problems we are faced with, we need to work in parallel on
a set of layered specifications for XML distributed computing. Indeed, many loosely
coupled industry initiatives are developing standards and technologies around SOAP.
Tracking these efforts is like trying to shoot at many moving targets. The authors of this
book have tried our best to address the relevant efforts in this space and to provide you
with up-to-date information. Chapter 1 showed how many of these efforts layered around
the notion of the Web services interoperability stack. Chapter 5, "Using SOAP for e-
Business," goes into more detail about the set of standards surrounding SOAP that
enable secure, robust, and scalable enterprise-grade Web services.

Now, let's take a look at how SkatesTown is planning to use SOAP and Web services.
Doing Business with SkatesTown

When Al Rosen of Silver Bullet Consulting first began his engagement with SkatesTown,
he focused on understanding the e-commerce practices of the company and its
customers. After a series of conversations with SkatesTown's CTO Dean Caroll, he
concluded the following:

e SkatesTown s manufacturing, inventory management, and supply chain
automation systems are in good order. These systems are easily
accessible by SkatesTown s Web—centric applications.

e SkatesTown has solid consumer—oriented online presence. Product and
inventory information is fed into the online catalog that is
accessible to both direct consumers and SkatesTown s reseller
partners via two different sites.

e Although SkatesTown s order processing system is sophisticated, it is
poorly connected to online applications. This is a pain point for the
company because SkatesTown’ s partners are demanding better
integration with their supply chain automation systems.

e SkatesTown s purchase order system is solid. It accepts purchase
orders in XML format and uses XML Schema—based validation to
guarantee their correctness. Purchase order item stock keeping units
(SKUs) and quantities are checked against the inventory management
system. If all items are available, an invoice is created. SkatesTown
charges a uniform 5% tax on purchases and the highest of 5% of the
total purchase or $20 for shipping and handling.

Digging deeper into the order processing part of the business, Al discovered that it uses a
low-tech approach that has a high labor cost and is not suitable for automation. He
noticed one area that badly needed automation: the process of purchase order
submission. Purchase orders are sent to SkatesTown by e-mail. All e-mails arrive in a
single manager's account in operations. The manager manually distributes the orders to
several subordinates. They have to open the e-mail, copy only the XML over to the
purchase order system, and enter the order there. The system writes an invoice file in
XML format. This file must be opened, and the XML must be copied and pasted into a
reply e-mail message. Simple misspellings of e-mail addresses and cut-and-paste errors
are common. They cost SkatesTown and its partners both money and time.

Another area that needs automation is the inventory checking process. SkatesTown's
partners used to submit purchase orders without having a clear idea whether all the
items were in stock. This often caused delayed order processing. Further, purchasing
personnel from the partner companies would engage in long e-mail dialogs with
operations people at SkatesTown. This situation was not very efficient. To improve it,
SkatesTown built a simple online application that communicates with the company's
inventory management system. Partners could log in, browse SkatesTown's products,
and check whether certain items were in stock. The application interface is shown in
Figure 3.1. (You can access this application as Example 1 under Chapter 3 in the example
application on this book's Web site.) This application was a good start, but now
SkatesTown's partners are demanding the ability to have their purchasing applications
directly inquire about order availability.

Figure 3.1. SkatesTown's online inventory check application.

=-2-000 GBna 8") - 5)

Examples > Chapter 3 > Example 1 [Sioarce]

Welcome to SkatesTown!

Product Search: skatrboand

1. ¢ Titanbom Glider - £ 1250
Street-style ttann=n skateboard

2. # SuperFlyer - £ 2300
Super fast sheateboard

3. C SuperFlyer IT - £ 450.0
Super fast skateboard - son of SuperFlyer

Ttems Found 3

Desed i

Looking at the two areas that most needed to be improved, Al Rosen chose to focus on
the inventory checking process because the business logic was already present. He just
had to enable better automation. To do this, he had to better understand how the
application worked.

Interacting with the Inventory System

The logic for interacting with the inventory system is very simple. Looking through the
Java Server Pages (JSPs) that made up the online application, Al easily extracted the key
business logic operations from / ch3/ ex1/i nvent or yCheck. j sp. Here is the process for
checking SkatesTown's inventory:

import bws.BookUtil;
import com.skatestown.data.Product;
import com.skatestown.backend.ProductDB;

String sku = ...;
int quantity = ...;

ProductDB db = BookUtil.getProductDB(...);
Product p = db.getBySKU(sku);

boolean isInStock = (p != null && p.getNuminStock() >= quantity);

Given a SKU and a desired product quantity, an application needs to get an instance of
the SkatesTown product database and locate a product with a matching SKU. If such a
product is available and if the number of items in stock is greater than or equal to the
desired quantity, the inventory check succeeds. Because most of the examples in this
chapter talk to the inventory system, it is good to take a deeper look at its
implementation.

Note

A note of caution: this book's sample applications demonstrate realistic uses of Java
technology and Web services to solve real business problems while, at the same time,
remaining simple enough to fit in the book's scope and size limitations. Further, all the
examples are directly accessible in many environments and on all platforms that have a
JSP and servlet engine without any sophisticated installation. To meet these somewhat
conflicting criteria, something has to give. For example:

e To keep the code simple, we do as little data validation and error
checking as possible without allowing applications to break. You
won’ t find us defining custom exception types or producing long,
readable error messages.

e To get away from the complexities of external system access, we use
simple XML files to store data.

e To make deployment easier, we use the BookUtil class as a place to go
for all operations that depend on file locations or URLs. You can
tune the deployment options for the example applications by modifying
some of the constants defined in BookUtil .

e All file paths are relative to the installation directory of the
example application.

SkatesTown's inventory is represented by a simple XML file stored in / r esour ces/
products. xm (see Listing 3.1). By modifying this file, you can change the behavior of
many examples. The Java representation of products in SkatesTown's systems is the

com skat est own. dat a. Product class. It is a simple bean that has one property for every
element under product.

Listing 3.1 SkatesTown Inventory Database

<?xml version="1.0" encoding="UTF-8"?>
<products>
<product>
<sku>947-TI</sku>
<name>Titanium Glider</name>
<type>skateboard</type>
<desc>Street-style titanium skateboard.</desc>
<price>129.00</price>
<inStock>36</inStock>
</product>

</products>

SkatesTown's inventory system is accessible via the Product DB (for product database)
class in package com skat est own. backend. Listing 3.2 shows the key operations it
supports. To construct an instance of the class, you pass an XML DOM Docunent object
representation of product s. xm . (BookUti | . get Product DB() does this automatically.)
After that, you can get a listing of all products or you can search for a product by its
SKU.

Listing 3.2 SkatesTown’ s Product Database Class
public class ProductDB

{

private Product[] products;

public ProductDB(Document doc) throws Exception

{
// Load product information
}
public Product getBySKU(String sku)
{
Product[] list = getProducts();
for Cint i =0 ; i < list.length ; i++)
if (sku.equals(list[i].getSKU(Q))) return(list[i]);
return(null);
}
public Product[] getProducts()
{
return products;
}

This was all Al Rosen needed to know to move forward with the task of automating the
inventory checking process.

Inventory Check Web Service

SkatesTown's inventory check Web service is very simple. The interaction model is that
of an RPC. There are two input parameters: the product SKU (a string) and the quantity
desired (an integer). The result is a simple boolean value—true if more than the desired
quantity of the product are in stock and false otherwise.

Choosing a Web Service Engine

Al Rosen decided to host all of SkatesTown's Web services on the Apache Axis Web
service engine for a number of reasons:

e The open—source implementation guaranteed that SkatesTown will not
experience vendor lock—in in the future. Further, if any serious
problems were discovered, you could always look at the code to see
what is going on.

e Axis is one of the best Java—-based Web services engines. It is better
architected and much faster than its Apache SOAP predecessor. The
core Axis team includes some of the great Web service gurus from
companies such as HP, IBM, and Macromedia.

e Axis is also probably the most extensible Web service engine. It can
be tuned to support new versions of SOAP as well as the many types of
extensions current versions of SOAP allow.

e Axis can run on top of a simple servlet engine or a full-blown J2EE
application server. SkatesTown could keep its current J2EE
application server without having to switch.

This combination of factors leads to an easy sell. SkatesTown's CTO agreed to have all
Web services developed on top of Axis. Al spent some time on
http://xml.apache.org/axis learning more about the technology and its capabilities. He
learned how to install Axis on top of SkatesTown's J2EE server by reading the Axis
installation instructions.

Service Provider View

To expose the Web service, Al Rosen had to do two things: implement the service
backend and deploy it into the Web service engine.

Building the backend for the inventory check Web service was simple because the logic
was already available in SkatesTown's JSP pages (see Listing 3.3).

Listing 3.3 Inventory Check Web Service Implementation

import org.apache.axis.MessageContext;
import bws.BookUtil;

import com.skatestown.data.Product;
import com.skatestown.backend.ProductDB;

/**

* Inventory check Web service
*/
public class InventoryCheck
{
/**
* Checks inventory availability given a product SKU and
* a desired product quantity.

*

* @param msgContext This is the Axis message processing context
* BookUtil needs this to extract deployment

* information to load the product database.

* @param sku product SKU

* @param quantity guantity desired

* @return true|false based on product availability

* @exception Exception most likely a problem accessing the DB

*/

public static boolean doCheck(MessageContext msgContext,
String sku, int quantity)
throws Exception

{

ProductDB db = BookUtil.getProductDB(msgContext);

Product prod = db.getBySKU(sku);

return (prod = null && prod.getNuminStock() >= quantity);
}

}

One Axis-specific feature of the implementation is that the first argument to the
doCheck() method is an Axis message context object. You need the Axis context so that
you can get to the product database using the BookUt i | class. From inside the Axis
message context, you can get access to the servlet context of the example Web
application. (Axis details such as message context are covered in Chapter 4, "Creating
Web Services.") Then you can use this context to load the product database from

resour ces/ products. xm . Note that this parameter will not be "visible" to the requestor
of a Web service. It is something Axis will provide you with if it notices it (using Java
reflection) to be the first parameter in your method. The message context parameter
would not be necessary in a real-world situation where the product database would most
likely be obtained via JNDI.

Deploying the Web service into Axis is trivial because Axis has the concept of a Java Web
Service (JWS) file. A JWS file is a Java file stored with the .] ws extension somewhere in
the externally accessible Web applications directory structure (anywhere other than
under / VIEB- | NF). JWSs are to Web services somewhat as JSPs are to servlets. When a
request is made to a JWS file, Axis will automatically compile the file and invoke the Web
service it provides. This is a great convenience for development and maintenance.

In this case, the code from Listing 3.3 is stored as / ch3/ ex2/ | nvent or yCheck. j ws. This
automatically makes the Web service available at the application URL

appRoot / ch3/ ex2/ | nvent or yCheck. j ws. For the example application deployed on top of
Tomcat, this URL is http://localhost:8080/bws/ch3/ex2/InventoryCheck.jws.

Service Requestor View

Because SOAP is language and platform neutral, the inventory check Web service can be
accessed from any programming environment that is Web services enabled. There are
two different ways to access Web services, depending on whether service descriptions

are available. Service descriptions use the Web Services Description Language (WSDL) to
specify in detail information about Web services such as the type of data they require,
the type of data they produce, where they are located, and so on. WSDL is to Web
services what IDL is to COM and CORBA and what Java reflection is to Java classes. Web
services that have WSDL descriptions can be accessed in the simplest possible manner.
Chapter 6, "Describing Web Services," introduces WSDL, its capabilities, and the tools
that use WSDL to make Web service development and usage simpler and easier. In this
chapter, we will have to do without WSDL.

Listing 3.4 shows the prototypical model for building Web service clients in the absence
of a formal service description. The basic class structure is simple:

e A private member stores the URL where the service can be accessed. Of
course, this property can have optional getter/setter methods.

e A simple constructor sets the target URL for the service. If the URL
is well known, it can be set in a default constructor.

e There is one method for every operation exposed by the Web service.
The method signature is exactly the same as the signature of the Web
service operation.

Listing 3.4 Inventory Check Web Service Client
package ch3.ex2;

import org.apache.axis.client.ServiceClient;

/*
* Inventory check web service client
*/
public class InventoryCheckClient
{
/**
* Service URL
*/
private String url;

/**

* Point a client at a given service URL

*/

public InventoryCheckClient(String targetUrl)
{

url = targeturl;

}
/**

* Invoke the inventory check web service

*/

public boolean doCheck(String sku, int quantity) throws Exception
{

ServiceClient call = new ServiceClient(url);
Boolean result = (Boolean) call.invoke(

"doCheck™,
new Object[] { sku, new Integer(quantity) });
return result.booleanValue();

}

This approach for building Web service clients by hand insulates developers from the
details of XML, the SOAP message format and protocol, and the APIs for invoking Web
services using some particular client library. For example, users of

I nvent or yCheckCl i ent will never know that you have implemented the class using Axis.
This is a good thing.

Chapter 4 will go into the details of the Axis API. Here we'll briefly look at what needs to
happen to access the Web service. First, you need to create a Servi ceCl i ent object
using the service URL. The service client is the abstraction used to make a Web service
call. Then, you call the i nvoke() method of the Servi ceC i ent, passing in the name of
the operation you are trying to invoke and an object array of the two operation
parameters: a St ri ng for the SKU and an | nt eger for the quantity. The result will be a
Bool ean object.

That's all there is to invoking a Web service using Axis.
Putting the Service to the Test

Figure 3.2 shows a simple JSP page (/ ch3/ ex2/i ndex. j sp) that uses

I nvent or yCheckC i ent to access SkatesTown's Web service. You can experiment with
different SKU and quantity combinations and see how SkatesTown's SW responds. You
can check the responses against the contents of the product database in

/ resour ces/ products. xm .

Figure 3.2. Putting the SkatesTown inventory check Web service to the test.

=5 000 ena & & -5

Examples > Chapter 3 > Example 2 [Seuarce]

SOAP Inventory Check

Geven a SEU and a deewed product quantity, thes example will rmake a SOAP call to the mventory check web zermce

SETE [347-T0 r|
Cruashity, |7
Check imventary

The 2em o5 avalable

The inventory check example demonstrates one of the promises of Web services—you
don't have to know XML to build them or to consume them. This finding validates SOAP's

claim as an infrastructure technology. The mechanism that allows this to happen involves
multiple abstraction layers (see Figure 3.3). Providers and requestors view services as
Java APIs. Invoking a Web service requires one or more Java method invocations.
Implementing a Web service requires implementing a Java backend (a class or an EJB,
for example). The Web service view is one of SOAP messages being exchanged between
the requestor and the provider.

Figure 3.3. Layering of views in Web service invocation.

View Requestor Provider

Developer Java API €----- > Java API

Web service | SOAP message [~ -=---»] SOAP message

Wire-level HTTP packet |€—»] HTTP packet

These are both logical views in that this is not how the requestor and provider
communicate. The only "real” view is the wire-level view where HTTP packets containing
SOAP messages are exchanged between the requestor's application and the provider's
Web server. The miracle of software abstraction has come to our aid once again.

SOAP on the Wire

The powers of abstraction aside, really understanding Web services does require some
knowledge of XML. Just as a highly skilled Java developer has an idea about what the
JVM is doing and can use this knowledge to write higher performance applications, so
must a Web service guru understand the SOAP specification and how SOAP messages are
moved around between requestors and providers. This does not mean that to build or
consume sophisticated or high-performance Web services you have to work with raw
XML—layers can be applied to abstract your application from SOAP. However, knowledge
of SOAP and the way in which a Web service engine translates Java API calls into SOAP
messages and vice versa allows you to make educated decisions about how to define and
implement Web services.

TCPMon

Luckily, the Apache Axis distribution comes with an awesome tool that can monitor the

exchange of SOAP messages on the wire. The aptly named TCPMon mtool will monitor
all traffic on a given port. You can learn how to use TCPMon by looking at the examples
installation section in / readne. ht m .

TCPMon will redirect all traffic to another host and port. This ability makes TCPMon great
not only for monitoring SOAP traffic but also for testing the book's examples with a
backend other than Tomcat. Figure 3.4 shows TCPMon in action on the inventory check
Web service. In this case, the backend is running on the Macromedia JRun J2EE
application server. By default, JRun's servlet engine listens on port 8100, not on 8080 as
Tomcat does. In the figure, TCPMon is set up to listen on 8080 but to redirect all traffic to
8100. Essentially, with TCPMon you can make JRun (or IBM WebSphere or BEA Weblogic)
appear to listen on the same port as Tomcat and run the book's examples without any
changes.

Figure 3.4. TCPMon in action.

Ademin Pt 0080 |

Sop | ListenPort[s0a0 Hosthocathost Patigtol [

Stads | Tirmsé | Requesd Hodl
M Hacant =

Dorie DBMO7A0T 0623 54 AN AdSublract

Dore DBRTAT 0823 67 AM AdSubliact

Dome DAMOTAT 082359 AM ASUDIract

Frmam FEALVTENA T SR & e

Rarmove Saladad] [Fhirmedio All |

R#quest
FOST /owsschd fexd /InwentoryCheck. jus ETTF/L.0
Concenc-Llengeh: 160
Host: localkoat]
Content-Type: textfimls; chaiset=usf-0
SO0APACCLOEm: =7

Ehml vermion="1.0" sncoding="TUTF-0%
CEOAF-ENV:Envelope salngixpd="Loop: /e, vl oog/ 2000 SN0 3chana” smlng: J0AF-ENV="Eetp: / fachenad, kel #oag . oEg. i oap/
LEOAF-ENY ! Hodys
o Thackns
{aCgl XollType="Kadiatring »F47-TI1
£ Fmrgins
CREgl ®Eitvype="wad:inr »Lld
< Sargly
o fdaCkecks
o F SOAP-ENT s Body>
< FENAF=ENV: Enwe | opies

Response

The SOAP Request

Here is the information that passed on the wire as a result of the inventory check Web
service request. Some irrelevant HTTP headers have been removed and the XML has
been formatted for better readability but, apart from that, no substantial changes have
been made:

POST /bws/inventory/InventoryCheck.jws HTTP/1.0
Host: localhost

Content-Type: text/xml; charset=utf-8
Content-Length: 426

SOAPAction: ™

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmIns:SOAP-ENV=""http://schemas.xmlsoap.org/soap/envelope/"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance'>
<SOAP-ENV:Body>
<doCheck>
<arg0 xsi:type="xsd:string">947-TI</arg0>
<argl xsi:type="xsd:int''>1</argl>
</doCheck>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Later in the chapter, we will look in detail at all parts of SOAP. For now, a quick
introduction will suffice.

The HTTP packet begins with the operation, a POST, and the target URL of the Web
service (/ bws/ i nvent ory/ I nvent or yCheck. j ws). This is how the requestor identifies the

service to be invoked. The host is localhost (127.0.0.1) because you are accessing the
example Web service that comes with the book from your local machine. The content
MIME type of the request is t ext / xm . This is how SOAP must be invoked over HTTP. The
content length header is automatically calculated based on the SOAP message that is
part of the HTTP packet's body. The SOAPAct i on header pertains to the binding of SOAP
to the HTTP protocol. In some cases it might contain meaningful information. JWS-based
Web service providers don't require it, however, and that's why it is empty.

The body of the HTTP packet contains the SOAP message describing the inventory check
Web service request. The message is identified by the SOAP- ENV: Envel ope element. The
element has three xmi ns: attributes that define three different namespaces and their
associated prefixes: SOAP- ENV for the SOAP envelope namespace, xsd for XML Schema,
and xsi for XML Schema instances. One other attribute, encodi ngSt yl e, specifies how
data in the SOAP message will be encoded.

Inside the SOAP- ENV: Envel ope element is a SOAP- ENV: Body element. The body of the
SOAP message contains the real information about the Web service request. In this case,
this element has the same name as the method on the Web service that you want to
invoke—doCheck() . You can see that the Axis Servi ceC i ent object auto-generated
element names—ar g0 and ar g1—to hold the parameters passed to the method. This is
fine, because no external schema or service description specifies how requests to the
inventory check service should be made. In lieu of anything like that, Axis has to do its
best in an attempt to make the call. Both parameter elements contain self-describing
data. Axis introspected the Java types for the parameters and emitted xsi : t ype
attributes, mapping these to XML Schema types. The SKU is aj ava. | ang. Stri ng and is
therefore mapped to xsd: st ri ng, and the quantity is a j ava. | ang. | nt eger and is
therefore mapped to xsd: i nt . The net result is that, even without a detailed schema or
service description, the SOAP message contains enough information to guarantee
successful invocation.

The SOAP Response

Here is the HTTP response that came back from Axis:

HTTP/1.0 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: 426

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema™
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance'>
<SOAP-ENV:Body>
<doCheckResponse>
<doCheckResult xsi:type="xsd:boolean">true</doCheckResult>
</doCheckResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The HTTP response code is 200 K because the service invocation completed
successfully. The content type is also t ext / xnml . The SOAP message for the response is
structured in an identical manner to the one for the request. Inside the SOAP body is the
element doCheckResponse. Axis has taken the element name of the operation to invoke
and added Response to it. The element contained within uses the same pattern but with
Result appended to indicate that the content of the element is the result of the operation.

Again, Axis uses xsi : t ype to make the message's data self-describing. This is how the
service client knows that the result is a boolean. Otherwise, you couldn't have cast the
result of cal | . i nvoke() to ajava. | ang. Bool ean in Listing 3.4.

If the messages seem relatively simple, it is because SOAP is designed with simplicity in
mind. Of course, as always, some complexity lurks in the details. The next several
sections will take an in-depth look at SOAP in an attempt to uncover and explain all that
you need to know about SOAP to become a skilled and successful Web service developer
and user.

SOAP Envelope Framework

The most important part that SOAP specifies is the envelope framework. Although it
consists of just a few XML elements, it provides the structure and extensibility
mechanisms that make SOAP so well suited as the foundation for all XML-based
distributed computing. The SOAP envelope framework defines a mechanism for
identifying what information is in a message, who should deal with the information, and
whether this is optional or mandatory. A SOAP message consists of a mandatory

envelope wrapping any number of optional headers mand a mandatory body
These concepts are discussed in turn in the following sections.

SOAP Envelope

SOAP messages are XML documents that define a unit of communication in a distributed
environment. The root element of the SOAP message is the Envel ope element. In SOAP
1.1, this element falls under the http://schemas.xmlsoap.org/soap/envelope/
namespace. Because the Envel ope element is uniquely identified by its namespace, it
allows processing tools to immediately determine whether a given XML document is a
SOAP message.

This certainly is convenient, but what do you trade off for this capability? The biggest
thing you have to sacrifice is the ability to send arbitrary XML documents and perform
simple schema validation on them. True, you can embed arbitrary XML inside the SOAP
Body element, but naive validation will fail when it encounters the Envel ope element at
the top of the document instead of the top document element of your schema. The

lesson is that for seamless validation of arbitrary XML inside SOAP messages, you must
integrate XML validation with the Web services engine. In most cases, the Web services
engine will have to separate SOAP-specific from application-specific XML before validation
can take place.

The SOAP envelope can contain an optional Header element and a mandatory Body
element. Any number of other XML elements can follow the Body element. This
extensibility feature helps with the encoding of data in SOAP messages. We'll discuss it
later in this chapter in the section "SOAP Data Encoding Rules."

SOAP Versioning

One interesting note about SOAP is that the Envel ope element does not expose any
explicit protocol version, in the style of other protocols such as HTTP (HTTP/1.0 vs.
HTTP/1.1) or WDDX (<swddxPacket version="1.0"> ... </wddxPacket>). The
designers of SOAP explicitly made this choice because experience had shown simple
number-based versioning to be fragile. Further, across protocols, there were no
consistent rules for determining what changes in major versus minor version numbers
truly mean. Instead of going this way, SOAP leverages the capabilities of XML
namespaces and defines the protocol version to be the URI of the SOAP envelope
namespace. As a result, the only meaningful statement that you can make about SOAP

versions is that they are the same or different. It is no longer possible to talk about
compatible versus incompatible changes to the protocol.

What does this mean for Web service engines? It gives them a choice of how to treat
SOAP messages that have a version other than the one the engine is best suited for
processing. Because an engine supporting a later version of SOAP will know about all
previous versions of the specification, it has a range of options based on the namespace
of the incoming SOAP message:

e If the message version is the same as any version the engine knows
how to process, the engine can just process the message.

e If the message version is older than any version the engine knows how
to process, the engine can do one of two things: generate a version
mismatch error and/or attempt to negotiate the protocol version with
the client by sending some information regarding the versions that it
can accept.

e [If the message version is newer than any version the engine knows how
to process, the engine can choose to attempt processing the message
anyway (typically not a good choice) or it can go the way of a
version mismatch error combined with some information about the
versions it understands.

All in all, the simple versioning based on the namespace URI results in the fairly flexible
and accommodating behavior of Web service engines.

SOAP Headers

Headers are the primary extensibility mechanism in SOAP. They provide the means by
which additional facets can be added to SOAP-based protocols. Headers define a very
elegant yet simple mechanism to extend SOAP messages in a decentralized manner.
Typical areas where headers get involved are authentication and authorization,
transaction management, payment processing, tracing and auditing, and so on. Another
way to think about this is that you would pass via headers any information orthogonal to
the specific information needed to execute a request.

For example, a transfer payment service only really needs from and to account numbers
and a transfer amount to execute. In real-world scenarios, however, a service request is
likely to contain much more information, such as the identity of the person making the
request, account/payment information, and so on. This additional information is usually
handled by infrastructure services (login and security, transaction coordination, billing)
outside the main transfer payment service. Encoding this information as part of the body
of a SOAP message will only complicate matters. That is why it will be passed in as
headers.

A SOAP message can include any number of header entries (simply referred to as
headers). If any headers are present, they will all be children of the SOAP Header
element, which, if present, must appear as the first child of the SOAP Envel ope element.
The following example shows a SOAP message with two headers, Tr ansacti on and
Priority. Both headers are uniquely identified by the combination of their element name
and their namespace URI:

<SOAP-ENV:Envelope
xmIns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

<SOAP-ENV:Header>
<t:Transaction xmIns:t="some-URI"™ SOAP-ENV:mustUnderstand="1">
12345
</t:Transaction>
<p:Priority xmlns:p="some-Other-URI">
<Real lyVeryHigh/>
</p:Priority>
</SOAP-ENV:Header>
<SOAP-ENV:Body>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The contents of a header (sometimes referred to as the header value) are determined by
the schema of the header element. This allows headers to contain arbitrary XML, another
example of the benefits of SOAP being an XML-based protocol. Compare it to protocols
such as HTTP where header values must be simple strings, thus forcing any structured
information to be somehow encoded to become a string. For example, cookie values
come in a semicolon delimited format, such as cooki el=val uel; cooki e2=val ue2. It is
easy to reach the limits of these simple encodings. XML is a much better way to
represent this type of structured information.

Also, notice the SOAP nust Under st and attribute with value 1 that decorates the
Transacti on element. This attribute indicates that the recipient of the SOAP message
must process the Tr ansact i on header entry. If a recipient does not know how to process
a header tagged with nust Under st and="1", it must abort processing with a well-defined
error. This rule allows for robust evolution of SOAP-based protocols. It ensures that a
recipient that might be unaware of certain important protocol extensions does not ignore
them.

Note that because the Priority header is not tagged with nust Under st and="1", it can
be ignored during processing. Presumably, this will be OK because a server that does not
know how to process message priorities will assume normal priority.

You might have noticed that the SOAP body can be treated as a well-specified SOAP
header flagged with nust Under st and="1". Although this is certainly true, the SOAP
designers thought that having a separation between the headers and body of a message
does not complicate the protocol and is convenient for readability.

Before leaving the topic of headers, it is important to point out that, despite the obvious
need for header extensions to support such basic distributed computing concepts such as
authentication credentials or transaction information, there hasn't been a broad
standardization effort in this area, with the exception of some security extensions that
we'll review in Chapter 5. Some of the leading Web service vendors are doing interesting
work, but the industry as a whole is some way away from agreeing on core extensions to
SOAP. Two primary forces maintain this unsatisfactory status quo:

e Most current Web service engines do not have a solid extensibility
architecture. Therefore, header processing is relatively difficult
right now. At the time of this writing, Apache Axis is a notable
exception to this rule.

e Market pressure is pushing Web service vendors to innovate in
isolation and to prefer shipping software over coordinating
extensions with partners and competitors.

Wider Web service adoption will undoubtedly put pressure on the Web services
community to think more about interoperability and begin broad standardization in some
of these key areas.

SOAP Body

The SOAP Body element immediately surrounds the information that is core to the SOAP
message. All immediate children of the Body element are body entries (typically referred
to simply as bodies). Bodies can contain arbitrary XML. Sometimes, based on the intent

of the SOAP message, certain conventions will govern the format of the SOAP body. The
conventions for representing RPCs are discussed later in the section "SOAP-based RPCs."
The conventions for communicating error information are discussed in the section "Error
Handling in SOAP."

Taking Advantage of SOAP Extensibility

Let's take a look at how SkatesTown can use SOAP extensibility to its benefit. It turns out
that SkatesTown's partners are demanding some type of proof that certain items are in
SkatesTown's inventory. In particular, partners would like to have an e-mail record of
any inventory checks they have performed.

Al Rosen got the idea to use SOAP extensibility in a way that allows the existing
inventory check service implementation to be reused with no changes. SOAP inventory
check requests will include a header whose element name is EMai | belonging to the
htt p: // ww. skat est own. conf ns/ emrai | namespace. The value of the header will be a
simple string containing the e-mail address to which the inventory check confirmation
should be sent.

Service Requestor View

Service requestors will have to modify their clients to build a custom SOAP envelope that
includes the EMai | header. Listing 3.5 shows the necessary changes. The e-mail to send
confirmations to is provided in the constructor.

Listing 3.5 Updated Inventory Check Client

package ch3.ex3;

import org.apache.axis.client.ServiceClient;
import org.apache.axis.message.SOAPEnvelope;
import org.apache.axis.message.SOAPHeader;
import org.apache.axis.message.RPCElement;
import org.apache.axis.message.RPCParam;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;
import org.w3c.dom.Document;

import org.w3c.dom.Element;

/*
* Inventory check web service client
*/
public class InventoryCheckClient {
/**

* Service URL
*/

String url;

/**

* Email address to send confirmations to
*/

String email;

/**
* Point a client at a given service URL
*/
public InventoryCheckClient(String url, String email) {
this.url = url;
this.email = email;

}

/**
* Invoke the inventory check web service
*/
public boolean doCheck(String sku, int quantity) throws Exception {
// Build the email header DOM element
DocumentBuilderFactory factory =
DocumentBui lderFactory.newlnstance();
DocumentBuilder builder = factory.newDocumentBuilder();
Document doc = builder.newDocument();
Element emailElem = doc.createElementNS(
"http://www._skatestown.com/", “EMail™);
emai lElem.appendChild(doc.createTextNode(email));

// Build the RPC request SOAP message

SOAPEnvelope regEnv = new SOAPEnvelope();

regenv.addHeader(new SOAPHeader(emailElem));

Object[] params = new Object[]{ sku, new Integer(quantity), } ;
reqenv.addBodyElement(new RPCElement("""', "doCheck", params));

// Invoke the inventory check web service
ServiceClient call = new ServiceClient(url);
SOAPEnvelope respEnv = call.invoke(regEnv);

// Retrieve the response

RPCElement respRPC = (RPCElement)respEnv.getFirstBody();
RPCParam result = (RPCParam)respRPC.getParams().get(0);
return ((Boolean)result.getValue()).booleanValue();

}

To set a header in Axis, you first need to build the DOM representation for the header.
The code in the beginning of doCheck() does this. Then you need to manually construct
the SOAP message that will be sent. This involves starting with a new SOAPEnvel ope
object, adding a SOAPHeader with the DOM element constructed earlier, and, finally,
adding an RPCEl enent as the body of the message. At this point, you can use
ServiceCient.invoke() to send the message.

When the call is made with a custom-built SOAP envelope, the return value of i nvoke()
is also a SOAPEnvel ope object. You need to pull the relevant data out of that envelope by
getting the body of the response, which will be an RPCEI enent . The result of the
operation will be the first RPCPar aminside the RPC response. Knowing that doCheck()
returns a boolean, you can get the value of the parameter and safely cast it to Bool ean.

As you can see, the code is not trivial, but Axis does provide a number of convenience
objects that make working with custom-built SOAP messages straightforward. Figure 3.5
shows a UML diagram with some of the key Axis objects related to SOAP messages.

Figure 3.5. Axis SOAP message objects.

o SOLPEmwelps I MazzagaElament
+addHaaden headar: S0APHaader) vod +gatvalueAsType(typa: OMame] Objact
+acdBodyElement|slamenl-S 0APBodyElamenl):void +outpul{contestSerializationContext) Vod
+getHeaderByNamednamaspace: Siring, ocalPart String): 50AFHeader name;String
miassageType: String prafiString
encasngStylalIRLSiring riameaspacel iRl Siring
bodyElemenls:-Veclar type:(iiame
hiadrs Visclor parent-lessageElement o

il SOAPE moalkops
SOAPHeader ?
S0 PBodyE lement
+50APHaader namaspace: Sring, incalPart:Slring)
+50APHeaderelem; Elarment) +S0APBodyElemenl(elem: Elameant)
musilindarstand bocloan
achor:Sting ?
APCEIeman
= RPGParam
+APCElement ramespace: Siirg, methadMame:Sing. args:Otject])
+RPCParam{nama:Siring, valua:Object) +gatParaminame:String) APCRaram
wvalue Obyact +atcPanm(paramAFCParamjooid
name:Siring mathadMName:String
params: Vector

Service Provider View

The situation on the side of the Axis-based service provider is a little more complicated
because we can no longer use a simple JWS file for the service. JWS files are best used
for simple and straightforward service implementations. Currently, it is not possible to

indicate from a JWS file that a certain header (in this case the e-mail header) should be

processed. Al Rosen implements three changes to enable this more sophisticated type of
service:

e He moves the service implementation from the JWS file to a simple
Java class.

e He writes a handler for the EMail header.

e He extends the Axis service deployment descriptor with information
about the service implementation and the header handler.

Moving the service implementation is as simple as saving | nvent or yCheck. j ws as
I nvent or yCheck. j ava in / V\EB- | NF/ cl asses/ com skat est own/ servi ces. No further
changes to the service implementation are necessary.

Building a handler for the EMai | header is relatively simple, as Listing 3.6 shows. When
the handler is invoked by Axis, it needs to find the SOAP message and lookup the EMai |
header using its namespace and name. If the header is present in the request message,

the handler sends a confirmation e-mail of the inventory check. The implementation is
complex because to produce a meaningful e-mail confirmation, the handler needs to see
both the request data (SKU and quantity) and the result of the inventory check. The
basic process involves the following steps:

1. Get the request or the response message using get Request Message() or
get ResponseMessage() on the Axis MessageCont ext object.

2. Get the SOAP envelope by calling get AsSOAPEnvel ope().

3. Retrieve the first body of the envelope and cast it to an RPCEl enent
because the body represents either an RPC request or an RPC response.

4. Get the parameters of the RPC element using get Parans().

5. Extract parameters by their position and cast them to their
appropriate type. As seen earlier in Listing 3.5, the response of an
RPC is the first parameter in the response message body.

Listing 3.6 E-mail Header Handler

package com.skatestown.services;

import java.util_Vector;

import org.apache.axis.* ;

import org.apache.axis.message.*;

import org.apache.axis.handlers.BasicHandler;

import org.apache.axis.encoding.SOAPTypeMappingRegistry;
import bws.BookUtil;

import com.skatestown.backend.EmailConfirmation;

/**
* EMail header handler
*/
public class EMailHandler extends BasicHandler
{
/**
* Utility method to retrieve RPC parameters
* from a SOAP message.
*/
private Object getParam(Vector params, int index)
{
return ((RPCParam)params.get(index)).getValue();
}

/**
* Looks for the EMail header and sends an email
* confirmation message based on the inventory check
* request and the result of the inventory check
*/
public void invoke(MessageContext msgContext) throws AxisFault

{

try

// Attempt to retrieve EMail header
Message regMsg = msgContext.getRequestMessage();
SOAPEnvelope regEnv = regMsg.getAsSOAPEnvelope();
SOAPHeader header = regEnv.getHeaderByName(
"http://www.skatestown.com/",
"EMail™);

it (header !'= null)

{
// Mark the header as having been processed
header.setProcessed(true);

// Get email address in header
String email = (String)header.getValueAsType(
SOAPTypeMappingRegistry.XSD_STRING);

// Retrieve request parameters: SKU & quantity
RPCElement reqRPC = (RPCElement)reqEnv.getFirstBody();
Vector params = reqRPC.getParams();

String sku = (String)getParam(params, 0);

Integer quantity = (Integer)getParam(params, 0);

// Retrieve inventory check result
Message respMsg = msgContext.getResponseMessage();
SOAPEnvelope respEnv = respMsg.getAsSOAPEnvelope();
RPCElement respRPC = (RPCElement)respEnv.getFirstBody();
Boolean result = (Boolean)getParam(

respRPC.getParams(), 0);

// Send confirmation email
EmaiIConfirmation ec = new EmailConfirmation(
BookUti I .getResourcePath(msgContext,
"/resources/email.log™));
ec.send(email, sku,
quantity.intValue(), result._booleanvalue());
}
}
catch(Exception e)
{
throw new AxisFault(e);
}
}

/**

* Required method of handlers. No-op iIn this case
*/

public void undo(MessageContext msgContext)

“

}

It's simple code, but it does take a few lines because several layers need to be
unwrapped to get to the RPC parameters. When all data has been retrieved, the handler
calls the e-mail confirmation backend, which, in this example, logs e-mails "sent" to
/resources/ennil .| og.

Finally, adding deployment information about the new header handler and the inventory
check service involves making a small change to the Axis Web services deployment
descriptor. The book example deployment descriptor is in / resour ces/ depl oy. xm .
Working with Axis deployment descriptors will be described in detail in Chapter 4.

Listing 3.7 shows the five lines of XML that need to be added. First, the e-mail handler is
registered by associating a handler name with its Java class name. Following that is the
description of the inventory check service. The service options identify the Java class
name for the service and the method that implements the service functionality. The
service element has two attributes. Pivot is an Axis term that specifies the type of
service. In this case, the value is RPCDi spat cher, which implies that | nvent or yCheck is
an RPC service. The response attribute specifies the name of a handler that will be called
after the service is invoked. Because the book examples don't rely on an e-mail server
being present, instead of sending confirmation this class writes messages to a log file in
/resources/enuil .| og.

Listing 3.7 Deployment Descriptor for Inventory Check Service

<I-- Chapter 3 example 3 services -->

<handler name="Email" class="com.skatestown.services.EMailHandler"/>

<service name="InventoryCheck"” pivot="RPCDispatcher" response="Email">
<option name="className" value="com.skatestown.services. InventoryCheck"/>
<option name="methodName" value="doCheck"/>

</service>

Putting the Service to the Test

With all these changes in place, we are ready to test the improved inventory check
service. There is a simple JSP test harness in ch3/ ex3/i ndex. | sp that is modeled after
the JSP test harness we used for the JWS-based inventory check service (see Figure 3.6).

Figure 3.6. Putting the enhanced inventory check Web service to the test.

R 1 M ok I s

Examples > Chapter 3 > Example 3 [Source]

SOAP Inventory Check

Gaven a SEU and a deswed product quanity, this coamgle will make a S0AE call te the mvenbory check web serace. The
web service will also send a confirmaton to the emal address provided below

SE: [3arT1 =
-::-uum:g,r.l'lz—
Emal Iwnﬁmﬁpam-wm

Chack imaniary

The dem i avalable.

SOAP on the Wire

With the help of TCPMon, we can see what SOAP messages are passing between the
client and the Axis engine. We are only interested in seeing the request message because
the response message will be identical to the one before the EMai | header was added.

Here is the SOAP request message with the EMai | header present:

POST /bws/services/InventoryCheck HTTP/1.0
Content-Length: 482

Host: localhost

Content-Type: text/xml; charset=utf-8
SOAPAction: "/doCheck™

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmIns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance'>
<SOAP-ENV:Header>
<e:EMail xmIns:e="http://www.skatestown.com/ns/email">
confirm@partners.com
</e:EMail>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
<nsl:doCheck xmlns:nsl="AvailabilityCheck'>
<arg0 xsi:type="xsd:string'>947-TI</arg0>
<argl xsi:type="xsd:int">1</argl>
</nsl:doCheck>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

There are no surprises in the SOAP message. However, a couple of things have changed
in the HTTP message. First, the target URL is / bws/ servi ces/ | nvent or yCheck. This is a
combination of two parts: the URL of the Axis servlet that listens for SOAP requests over
HTTP (/ bws/ servi ces) and the name of the service we want to invoke

(I nvent or yCheck). Also, the SOAPAct i on header, which was previously empty, now
contains the name of the method we want to invoke. The service name on the URL and
the method name in SOAPAct i on are both hints to Axis about the service we want to
invoke.

That's all there is to taking advantage of SOAP custom headers. The key message is one
of simple yet flexible extensibility. Remember, the inventory check service
implementation did not change at all!

SOAP Intermediaries

So far, we have addressed SOAP headers as a means for vertical extensibility mwithin

SOAP messages. There is another related notion, however: horizontal extensibility @
Vertical extensibility is about the ability to introduce new pieces of information within a
SOAP message, and horizontal extensibility is about targeting different parts of the same
SOAP message to different recipients. Horizontal extensibility is provided by SOAP

intermediaries #== .

The Need for Intermediaries

SOAP intermediaries are applications that can process parts of a SOAP message as it
travels from its origination point to its final destination point (see Figure 3.7).
Intermediaries can both accept and forward SOAP messages. Three key use-cases define
the need for SOAP intermediaries: crossing trust domains, ensuring scalability, and
providing value-added services along the SOAP message path.

Figure 3.7. Intermediaries on the SOAP message path.

Requestor |—— Intermediary f———>] Intermediary f|———3 Provider

Crossing trust domains is a common issue faced while implementing security in
distributed systems. Consider the relation between a corporate or departmental network
and the Internet. For small organizations, it is likely that the IT department has put most
computers on the network within a single trusted security domain. Employees can see
their co-workers computers as well as the IT servers and they can freely exchange
information between them without the need for separate logons. On the other hand, the
corporate network probably treats all computers on the Internet as part of a separate
security domain that is not trusted. Before an Internet request reaches the network, it
needs to cross from its untrustworthy domain to the trusted domain of the network.
Corporate firewalls and virtual private network (VPN) gateways are the Cerberean guards
of the gates to the network’s riches. Their job is to let some requests cross the trust
domain boundary and deny access to others.

Another important need for intermediaries arises because of the scalability requirements
of distributed systems. A simplistic view of distributed systems could identify two types
of entities: those that request some work to be done (clients) and those that do the work
(servers). Clients send messages directly to the servers with which they want to
communicate. Servers, in turn, get some work done and respond. In this naive universe,

there is little need for distributed computing infrastructure. Alas, you cannot use this
model to build highly scalable distributed systems.

Take basic e-mail as an example—the service we've grown to depend on so much in the
Net era. When soneone@onpany. comsends an e-mail message to
myfriend@london.co.uk, it is definitely not the case that their e-mail client locates the
mail server london.co.uk and sends the message to it. Instead, the client sends the
message to its e-mail server at conpany. com Based on the priority of the message and
how busy the mail server is, the message will leave either by itself or in a batch of other
messages. Messages are often batched to improve performance. It is likely that the
message will make a few hops through different nodes on the Internet before it gets to
the mail server in London.

The lesson from this example is that highly scalable distributed systems (such as e-mail)
require flexible buffering of messages and routing based not only on message
parameters such as origin, destination, and priority but also on the state of the system
measured by parameters such as the availability and load of its nodes as well as network
traffic information. Intermediaries hidden from the eyes of the originators and final
recipients of messages perform all this work behind the scenes.

Last but not least, you need intermediaries so that you can provide value-added services
in a distributed system. The type of services can vary significantly. Here are a couple of
common examples:

e Securing message exchanges, particularly when transmitting messages
through untrustworthy domains, such as using HTTP/SMTP on the
Internet. You could secure SOAP messages by passing them through an
intermediary that first encrypts them and then digitally signs them.
On the receiving side, an intermediary will perform the inverse
operations——checking the digital signature and, if it is valid,
decrypting the message.

e Providing message—tracing facilities. Tracing allows the recipient of
messages to find out the exact path that the message went through
complete with detailed timings of arrivals and departures to and from
intermediaries along the way. This information is indispensable for
tasks such as measuring quality of service (QoS), auditing systems,
and identifying scalability bottlenecks.

Intermediaries in SOAP

As the previous section has shown, intermediaries are an extremely important concept in
distributed systems. SOAP is specifically designed with intermediaries in mind. It has
simple yet flexible facilities that address the three key aspects of an intermediary-
enabled architecture:

e How do you pass information to intermediaries?

e How do you identify who should process what?

e What happens to information that is processed by intermediaries?
From the discussion of intermediaries, you can see that most of the information that

intermediaries require is completely orthogonal to the information contained in SOAP
message bodies. For example, whether logging of inventory check requests is enabled or

not is irrelevant to the inventory check service. Therefore, only information in SOAP
headers can be explicitly targeted at intermediaries. The question then becomes one of
deciding how to target the recipient of a particular header. This does not mean that an
intermediary cannot look at, process, or change the SOAP message body; it certainly can
do that. However, SOAP itself defines no mechanism to instruct an intermediary to do
that. Contrast this to a SOAP message explicitly targeting a piece of information
contained in a SOAP header at an intermediary with the understanding that it must at
least attempt to process it.

All header elements can optionally have the SOAP- ENV: act or attribute. The value of the
attribute is a URI that identifies who should handle the header entry. Essentially, that
URI is the "name" of the intermediary. The special value
http://schemas.xmlsoap.org/soap/actor/next indicates that the header entry's recipient
is the next SOAP application that processes the message. This is useful for hop-by-hop
processing required, for example, by message tracing. Of course, omitting the actor
attribute implies that the final recipient of the SOAP message should process the header
entry. The message body is intended for the final recipient of the SOAP message.

The issue of what happens to a header that is processed by an intermediary is a little
trickier. The SOAP specification states, "the role of a recipient of a header element is
similar to that of accepting a contract in that it cannot be extended beyond the
recipient.” This means that the intermediary should remove any header targeted for it
that it has processed. The intermediary is free to introduce a new header in the message
that looks the same but then this constitutes a contract between the intermediary and
the next application. The goal here is to reduce system complexity by requiring that
contracts about the presence, absence, and content of information in SOAP messages be
very narrow in scope—from the originator of that information to the first SOAP
application that handles it and not beyond.

Putting It All Together

To get a better sense of how you might use intermediaries in the real world, let's
consider the potentially realistic albeit contrived example of SkatesTown's overall B2B
integration architecture. Please keep in mind that all XML in the example is purely
fictional—currently there isn't a standardized way to handle security and routing of SOAP
messages.

SkatesTown needs to integrate various applications in several of its departments with
some of its partners' applications (see Figure 3.8). Silver Bullet Consulting started
working with the purchasing department building Web services to automate business
functions such as checking inventory. Following the success of this engagement, Silver
Bullet Consulting has been asked to use Web services to automate processes in other
departments such as customer service. SkatesTown's corporate IT department is
demanding centralized control over the entry point of all Web service requests to the
company. They also require that all SOAP messages be transmitted over HTTPS for
security reasons.

Figure 3.8. SkatesTown s system integration architecture.

SkatesTown

Partner A = “,»E.‘:urpﬂrale firewall Purchasing
Partner .
Partner B Interface .
Gateway .
Customer
Partner C = Service

Enterprise Directory

- Departmental server locations
—» Purchasing

——3 Cuslomer service

» Partner accounts security information

At the same time, individual departments demand that their own IT units control the
servers that run their own Web services. These servers have their own trust domains and
are sitting deep inside the corporate network, invisible to the outside world. To address
this issue, Silver Bullet Consulting develops a partner interface gateway SOAP application
that acts as an intermediary between the partner applications sending SOAP messages
and the department-level applications that are handling them. The gateway application is
hosted on an application server that is visible to the partner applications. This server is
managed by the corporate IT department. A firewall is configured to allow access to the
gateway application from the partner networks only.

The gateway application has the responsibility to validate partners’ security credentials
and to route messages to the appropriate departmental SOAP applications. Security
information and department server locations are available from SkatesTown's enterprise
directory.

Here is an example message the gateway application might receive:

POST /bws/inventory/InventoryCheck HTTP/1.0
Host: partnergateway.skatestown.com
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn

SOAPAction: "/doCheck"

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance'>
<SOAP-ENV:Header>
<td:TargetDepartment
xmlns:td="http://www.skatestown.com/ns/partnergateway"
SOAP-ENV:actor="urn:X-SkatesTown:PartnerGateway"

SOAP-ENV:mustUnderstand="1">
Purchasing
</td:TargetDepartment>
<ai:Authenticationlnformation
xmIns:ai="http://www.skatestown.com/ns/security"
SOAP-ENV:actor="urn:X-SkatesTown:PartnerGateway"
SOAP-ENV:mustUnderstand="1">
<username>PartnerA</username>
<password>LongLiveSOAP</password>
</ai :AuthenticationInformation>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
<doCheck>
<arg0 xsi:type="xsd:string'>947-TI</arg0>
<argl xsi:type="xsd:int">1</argl>
</doCheck>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

There are two header entries. The first identifies the target department as purchasing,
and the second passes the authentication information of the message originator, partner
A in this case. Both header entries are marked with nust Under st and="1" because they
are critical to the successful processing of the message. The partner gateway application
is identified by the actor attribute as the place to process these.

After processing the message, the partner gateway application might forward the
following message:

POST /bws/services/ InventoryCheck HTTP/1.0
Host: purchasing.skatestown.com
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn

SOAPAction: "/doCheck™

<?xml version="1.0" encoding="UTF-8"?7>
<SOAP-ENV:Envelope
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmIns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance'>
<SOAP-ENV:Header>
<cc:ClientCredentials
xmIns:cc="http://schemas.security.org/soap/security"
SOAP-ENV:mustUnderstand="1">
<ClientlD>/External/Partners/PartnerA</ClientID>
</cc:ClientCredentials>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
<doCheck>
<arg0 xsi:type="xsd:string">947-Tl</arg0>
<argl xsi:type="xsd:int">1</argl>
</doCheck>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Note how the previous two header entries have disappeared. They were meant for the
gateway application only. Having extracted the purchasing department's location from
the enterprise directory, the gateway application forwards the message to

pur chasi ng. skat est own. com A new header entry is meant for the final recipient of the
message. The entry specifies the security identity of the message originator as

/ Ext er nal / Par t ner s/ Part ner A. This identity was presumably obtained from
SkatesTown's security system following the successful authentication of partner A. The
applications in the purchasing department will use this identity to check whether partner
A is authorized to perform the operation requested in the SOAP message body.

This example scenario shows that intermediaries bring significant capabilities to SOAP-
enabled applications and can be introduced and implemented at a fairly low cost. The
inventory check service implementation does not need to change. The partner gateway
does not need to know anything about inventory checking; it only understands the target
department and authentication headers. Inventory check clients only need to add a
couple of headers to the messages they are sending to fit in the new architecture.

Error Handling in SOAP

So far in our examples everything has gone according to plan. Murphy's Law guarantees
that this is not how things work out in the real world. What would happen, for example, if
partner A failed to authenticate with the partner gateway application? How will this
exceptional condition be communicated via SOAP? The answer lies in the semantics of
the SOAP Faul t element.

Consider the following possible reply message caused by the authentication failure:

HTTP/1.0 500 Internal Server Error
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"">
<SOAP-ENV:Body>
<SOAP-ENV:Fault>
<faultcode>Client.AuthenticationFailure</faultcode>
<faultstring>Failed to authenticate client</faultstring>
<faultactor>urn:X-SkatesTown:PartnerGateway</faultactor>
</SOAP-ENV:Fault>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Before we look at the XML, note that the HTTP response code is 500 | nternal Server
Error. This is a required response in the case of any SOAP-related error by the HTTP
transport binding as presented in the SOAP specification. Other protocols will have their
own way to report errors. The HTTP SOAP binding is discussed in detail in the section
"SOAP Protocol Bindings."

The body of the response contains a single Faul t element in the SOAP envelope
namespace. SOAP uses this mechanism to indicate that an error has occurred and to
provide some diagnostic information. There are three child elements.

The f aul t code element must be present in all cases. It provides information that can be
used to identify the specific error that occurred. It is not meant for human consumption.
The content of the element is a string prefixed by one of the four f aul t code values
specified by SOAP:

e \VersionM smatch indicates that the namespace of the Envel ope element
is invalid.

e MistUnderstand indicates that a required header entry was not
understood.

e dient indicates that likely cause of the error lies in the content
or formatting of the SOAP message. In other words, the client should
probably not re—send the message without making some changes to it.

e Server indicates that the message failed due to reasons other than
its content or its format. This leaves the door open for the same
message to perhaps succeed at a later time.

A hierarchical namespace of values can be obtained by separating fault values with the
dot (.) character. In our example, Cl i ent. Aut henti cati onFai | ur e is a more specific
fault code than Cl i ent .

The f aul t st ri ng element contains a human-readable message identifying the cause of
the fault. It must always be present. Here we simply state that the client has failed to
authenticate.

The f aul t act or element provides information about where in the message path the fault
occurred. It must be present if the failure occurred somewhere other than at the final
destination of the SOAP message. The content of the element is the URI of the actor
where the error occurred. In our example, we identify the partner gateway application as
the failure point.

What is not shown in this example is how application-specific error diagnostic information
can be exchanged. SOAP provides a simple mechanism for this, as well. If the fault
occurred during the processing of the message body, an optional det ai | element can be
added after f aul t act or . There are no restrictions on its contents. This rule has one
important exception: If the fault occurred during the processing of a header entry, a

det ai | element cannot be returned. Instead, the header entry should be returned with
detailed error information contained therein. This is the mechanism SOAP uses to
determine whether a fault was the result of header versus body processing.

SOAP Message Processing

Now that we have covered headers with nust Under st and behavior, intermediaries, and
error handling, we can completely define the rules for SOAP message processing. Upon
receiving a message, a SOAP application must:

1. Determine whether it understands the version of SOAP that the message
uses by inspecting the namespace value of the SOAP Envel ope element.
If the version is unknown, it must discard the message with a
Versi onM smat ch error. Otherwise, it has to move to the next step.

2. Identify all parts of the message intended for the application.
Typically this is done considering the application’s role in the

message path (intermediary or final recipient) and the values of the
actor global attribute, but other information can be taken into
account as well.

3. Verify that all mandatory parts of the message identified in Step 2
are supported by the application. These include nust Under st and
headers and, in the case of a final recipient, the body. If any
mandatory part cannot be supported, the message is discarded with a
Must Under st and error in the case of headers and an application—
specific error in the case of bodies. Otherwise, the application will
move to Step 4.

4. Process all mandatory parts identified in Step 2 plus any optional
parts that it knows about.

5. If the application is not the final recipient of the message, it must
remove all headers that it has processed before passing the message
forward along its path.

Having covered the SOAP envelope framework, intermediaries, and error handling, it is
now time to move to other areas of the SOAP specification.

SOAP Data Encoding

Another important area of SOAP has to do with the rules and mechanisms for encoding
data in SOAP messages. So far, our Web service example, the inventory check, has dealt
only with very simple datatypes: strings, integers, and booleans. All these types have
direct representation in XML Schema so it was easy, through the use of the xsi : t ype
attribute, to describe the type of data being passed in a message. What would happen if
our Web services needed to exchange more complex types, such as arrays and arbitrary
objects? What algorithm should be used to determine their representation in XML format?
In addition, given SOAP's extensibility requirements, how can a SOAP message specify
different encoding algorithms? This section addresses such questions.

Specifying Different Encodings

SOAP provides an elegant mechanism for specifying the encoding rules that apply to the
message as a whole or any portion of it. This is done via the encodi ngSt yl e attribute in
the SOAP envelope namespace. The attribute is defined as global in the SOAP schema; it
can appear with any element, allowing different encoding styles to be mixed and
matched in a SOAP message. An encodi ngSt yl e attribute applies to the element it
decorates and its content, excluding any children that might have their own

encodi ngSt yl e attribute. Therefore, any element in a SOAP message can have either no
encoding style specified or exactly one encoding style. The rules for determining the
encoding style of an element are simple:

1. If an element has the encodingStyle attribute, then its encoding
style is equal to the value of that attribute.

2. Otherwise, the encoding style is equal to the encoding style of the
closest ancestor element that has the encodingStyle attribute-:-

3. --:Unless there is no such ancestor, which implies that the element
has no specified encoding style.

SOAP defines one particular set of data encoding rules. They are identified by SOAP-

ENV: encodi ngStyl e="htt p://schemas. xnm soap. or g/ soap/ encodi ng" in SOAP
messages. You will often see this attribute applied directly to the Envel ope element in a
SOAP message. There is no notion of default encoding in a SOAP message. Encoding
style must be explicitly specified.

Despite the fact that the SOAP specification defines these encoding rules, it does not
mandate them. SOAP implementations are free to choose their own encoding styles.
There are costs and benefits to making this choice. A benefit could be that the
implementations can choose a more optimized data encoding mechanism than the one
defined by the SOAP specification. For example, some SOAP engines already on the
market detect whether they are exchanging SOAP messages with the same type of
engine and, if so, switch to a highly optimized binary data encoding format. Because this
switch happens only when both ends of a communication channel agree to it,
interoperability is not hindered. At the same time, however, supporting these different
encodings does have an associated maintenance cost, and it is difficult for other vendors
to take advantage of the benefits of an optimized data encoding.

SOAP Data Encoding Rules

The SOAP data encoding rules exist to provide a well-defined mapping between abstract
data models (ADMs) and XML syntax. ADMs can be mapped to directed labeled graphs
(DLGs)—collections of named nodes and named directed edges connecting two nodes.
For Web services, ADMs typically represent programming language and database data
structures. The SOAP encoding rules define algorithms for executing the following three
tasks:

e Given meta—data about an ADM, construct an XML schema from it.

e Given an instance graph of the data model, we can generate XML that
conforms to the schema. This is the serialization operation.

e Given XML that conforms to the schema, we can create an instance
graph that conforms to the abstract data model’ s schema. This is the
deserialization operation. Further, if we follow serialization by
deserialization, we should obtain an identical instance graph to the
one we started with.

Although the purpose of the SOAP data encoding is so simple to describe, the actual rules
can be somewhat complicated. This section is only meant to provide an overview of topic.
Interested readers should pursue the data encoding section of the SOAP Specification.

Basic Rules

The SOAP encoding uses a type system based on XML Schema. Types are schema types.

Simple types m(oﬂen known as scalar types in programming languages) map to the
built-in types in XML Schema. Examples include f | oat , posi ti vel nteger, string, date,
and any restrictions of these, such as an enumeration of RGB colors derived by

restricting xsd: stri ng to only "red", "green", and "blue". Compound types mare
composed of several parts, each of which has an associated type. The parts of a

compound type are distinguished by an accessor m An accessor can use the name of
a part or its position relative to other parts in the XML representation of values. Structs

are compound types whose parts are distinguished only by their name. Arrays

mare compound types whose parts are distinguished only by their ordinal position.

Values are instances of types, much in the same way that a string object in Java is an
instance of the j ava. | ang. St ri ng class. Values are represented as XML elements whose
type is the value type. Simple values are encoded as the content of elements that have a
simple type. In other words, the elements that represent simple values have no child
elements. Compound values are encoded as the content of elements that have a
compound type. The parts of the compound value are encoded as child elements whose
names and/or positions are those of the part accessors. Note that values can never be
encoded as attributes. The use of attributes is reserved for the SOAP encoding itself, as
you will see a bit later.

Values whose elements appear at the top level of the serialization are considered

independent @ whereas all other values are embedded (their parent is a
value element).

The following snippet shows an example XML schema fragment describing a person with
a name and an address. It also shows the associated XML encoding of that schema
according to the SOAP encoding rules:

<I-- This is an example schema fragment -->

<xsd:element name="Person" type="Person"/>
<xsd:complexType name="Person'>
<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="address" type="Address"/>
</xsd:sequence>
<I-- This 1s needed for SOAP encoding use; there may be a need
to specify some encoding parameters, e.g., encodingStyle,
through the use of attributes -->
<xsd:anyAttribute namespace="##other" processContents="strict"/>
</xsd:complexType>

<xsd:element name="Address" type="Address"/>
<xsd:complexType name="Address'>
<xsd:sequence>
<xsd:element name="street" type='"xsd:string"/>
<xsd:element name="city" type="xsd:string"/>
<xsd:element name="state" type="USState"/>
</xsd:sequence>
<l-- Same as above in Person -->
<xsd:anyAttribute namespace="##other" processContents="strict"/>
</xsd:complexType>

<xsd:simpleType name="USState">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="AK"/>
<xsd:enumeration value="AL"/>
<xsd:enumeration value="AR"/>
<l-— .. -=>
</xsd:restriction>
</xsd:simpleType>

<I-- This 1s an example encoding fragment using this schema -->

<l-- This value is of compound type Person (a struct) -->
<p:Person>
<I-- Simple value with accessor "name" is of type xsd:string -->
<name>Bob Smith</name>
<I-- Nested compound value address -->
<address>
<street>1200 Rolling Lane</street>
<city>Boston</city>
<I-- Actual state type is a restriction of xsd:string -->
<state>MA</state>
</address>
</p:Person>

One thing should be apparent: The SOAP encoding rules are designed to fit well with
traditional uses of XML for data-oriented applications. The example encoding has no
mention of any SOAP-specific markup. This is a good thing.

Identifying Value Types

When full schema information is available, it is easy to associate values with their types.
In some cases, however, this is hard to do. Sometimes, a schema will not be available.
In these cases, Web service interaction participants should do their best to make
messages as self-describing as possible by using xsi : t ype attributes to tag the type of
at least all simple values. Further, they can do some guessing by inspecting the markup
to determine how to deserialize the XML. Of course, this is difficult. The only other
alternative is to establish agreement in the Web services industry about the encoding of
certain generic abstract data types. The SOAP encoding does this for arrays.

Other times, schema information might be available, but the content model of the
schema element will not allow you to sufficiently narrow the type of contained values. For
example, if the schema content type is "any", it again makes sense to use xsi : t ype as
much as possible to specify the exact type of value that is being transferred.

The same considerations apply when you're dealing with type inheritance, which is
allowed by both XML Schema and all object-oriented programming languages. The SOAP
encoding allows a sub-type to appear in any place where a super-type can appear.
Without the use of xsi : t ype, it will be impossible to perform good deserialization of the
data in a SOAP message.

Sometimes you won't know the names of the value accessors in advance. Remember
how Axis auto-generates element names for the parameters of RPC calls? Another
example would be the names of values in an array—the names really don't matter; only
their position does. For these cases, xsi : t ype could be used together with auto-
generated element names. Alternatively, the SOAP encoding defines elements with
names that match the basic XML Schema types, such as SOAP- ENC. i nt or SOAP-

ENC: st ri ng. These elements could be used directly as a way to combine name and type
information in one. Of course, this pattern cannot be used for compound types.

SOAP Arrays

Arrays are one of the fundamental data structures in programming languages. (Can you
think of a useful application that does not use arrays?) Therefore, it is no surprise that
the SOAP data encoding has detailed rules for representing arrays. The key requirement
is that array types must be represented by a SOAP- ENC: Array or a type derived from it.
These types have the SOAP- ENC: ar r ay Type attribute, which contains information about
the type of the contained items as well as the size and number of dimensions of the

array. This is one example where the SOAP encoding introduces an attribute and another
reason why values in SOAP are encoded using only element content or child elements.

Table 3.1 shows several examples of possible arrayType values. The format of the
attribute is simple. The first portion specifies the contained element type. This is
expressed as a fully qualified XML type name (QName). Compound types can be freely
used as array elements. If the contained elements are themselves arrays, the QName is
followed by an indication of the array dimensions, such as [] and [,] for one-and two-
dimensional arrays, respectively. The second portion of arrayType specifies the size and
dimensions of the array, such as [5] or [2,3]. There is no limit to the number of array
dimensions and their size. All position indexes are zero-based, and multidimensional
arrays are encoded such that the rightmost position index changes the quickest.

Table 3.1. Example SOAP-ENC:arrayType Values

\ar rayType Value |Description

xsd:int[5] An array of five integers

\Xsdi int[][5] |An array of five integer arrays

\Xsdi int[,][5] |An array of five two-dimensional arrays of integers
Ip: Per son[5] An array of five people

xsd: string[2, 3] A 2x3, two-dimensional array of strings

If schema information is present, arrays will typically be represented as XML elements
whose type is or derives from SOAP- ENC: Ar r ay. Further, the array elements will have
meaningful XML element names and associated schema types. Otherwise, the array
representation would most likely use the pre-defined element names associated with
schema types from the SOAP encoding namespace. Here is an example:

<I-- Schema fragment for array of numbers -->
<element name="arrayOfNumbers'>
<complexType base="SOAP-ENC:Array">
<element name="number" type="xsd:int" maxOccurs="unbounded"/>
</complexType>
<xsd:anyAttribute namespace="##other" processContents="strict"/>
</element>

<I-- Encoding example using the array of numbers -->
<arrayOfNumbers SOAP-ENC:arrayType="xsd:int[2]">
<number>11</number>
<number>22</number>
</arrayOfNumbers>

<I-- Array encoding w/o schema information -->
<SOAP-ENC:Array SOAP-ENC:arrayType="xsd:int[2]">
<SOAP-ENC: int>11</SOAP-ENC: int>
<SOAP-ENC: int>22</SOAP-ENC: int>
</SOAP-ENC:Array>

Referencing Data

Abstract data models allow a single value to be referred to from multiple locations. Given
any particular data structure, a value that is referred to by only one accessor is

considered single-reference @ whereas a value that has more than one accessor

referring to it is considered multi-reference = . The examples shown so far have
assumed single-reference values. The rules for encoding multi-reference values are
relatively simple, however:

e Multi-reference values are represented as independent elements at the
top of the serialization. This makes them easy to locate in the SOAP
message.

e They all have an unqualified attribute named id of type ID per the
XML Schema specification. The ID value provides a unique name for the
value within the SOAP message.

e Fach accessor to the value is an unqualified href attribute of type
uri-reference per the XML Schema specification. The href values
contain URI fragments pointing to the multi-reference value.

Here is an example that brings together simple and compound types, and single-and
multi-reference values and arrays:

<I-- Person type w/ multi-ref attributes added -->
<xsd:complexType name="Person'>
<xsd:sequence>
<xsd:element name="name" type='"xsd:string"/>
<xsd:element name="address" type="Address"/>
</xsd:sequence>
<xsd:attribute name="href" type="uriReference"/>
<xsd:attribute name="id" type="ID"/>
<xsd:anyAttribute namespace="##other" processContents="strict"/>
</xsd:complexType>

<I-- Address type w/ multi-ref attributes added -->
<xsd:complexType name="Address'>
<xsd:sequence>
<xsd:element name="street" type="'xsd:string"/>
<xsd:element name="city" type='"xsd:string"/>
<xsd:element name="state" type="USState"/>
</xsd:sequence>
<xsd:attribute name="href" type="uriReference"/>
<xsd:attribute name="id" type="ID"/>
<xsd:anyAttribute namespace="##other" processContents="strict"/>
</xsd:complexType>

<I-- Example array of two people sharing an address -->
<SOAP-ENC:Array SOAP-ENC:arrayType="p:Person[2]'>
<p:Person>
<name>Bob Smith</name>
<address href="#addr-1"/>
</p:Person>
<p:Person>
<name>Joan Smith</name>

<address href="#addr-1"/>

</p:Person>

</SOAP-ENC:Array>

<p:address id="addr-1">
<street>1200 Rolling Lane</street>
<city>Boston</city>
<state>MA</state>

</p:address>

The schema fragments for the compound types had to be extended to support the i d and
hr ef attributes required for multi-reference access.

0dds and Ends

The SOAP encoding rules offer many more details that we have glossed over in the
interest of keeping this chapter focused on the core uses of SOAP. Three data encoding
mechanisms are worth a brief mention:

e Null values of a specific type are represented in the traditional XML
Schema manner, by tagging the value element with xsi:null="1".

e The notion of “any” type is also represented in the traditional XML
Schema manner via the xsd:ur-type type. This type is the base for all
schema datatypes and therefore any schema type can appear in its
place.

e The SOAP encoding allows for the transmission of partial arrays by
specifying the starting offset for elements using the SOAP- ENC: of f set
attribute. Sparse arrays are also supported by tagging array elements
with the SOAP-ENC: position attribute. Both of these mechanisms are
provided to minimize the size of the SOAP message required to
transmit a certain array—based data structure.

Having covered the SOAP data encoding rules, it is now time to look at the more general
problem of encoding different types of data in SOAP messages.

Choosing a Data Encoding

Because data encoding needs vary a lot, there are many different ways to approach the
problem of representing data for Web services. To add some structure to the discussion,
think of the decision space as a choice tree. A choice tree has yes/no questions at its
nodes and outcomes at its leaves (see Figure 3.9).

Figure 3.9. Possible choice tree for data encoding.

Externally
refarenceable
D attributes?

Pure
binary data?

‘ris hf Yes
Encode XML Include XML Use basetd

as text data inside encoding Output

inside the the message. inside the schema format

message. message. matters?

T
Usze a fixed
Are you schema
mapping typed encoding

objects to mechanism.

XML?

Usaa Custom-build
schema serializer/
compiler. deserializer

modules.

XML Data

Probably the most common choice has to do with whether the data already is in (or can
easily be converted to) an XML format. If you can represent the data as XML, you only
need to decide how to include it in the XML instance document that will represent a
message in the protocol. Ideally, you could just mix it in amidst the protocol-specific XML
but under a different namespace. This approach offers several benefits. The message is
easy to construct and easy to process using standard XML tools. However, there is a
catch.

The problem has to do with a little-considered but very important aspect of XML: the
uniqueness rule for ID attributes. The values of attributes of type ID must be unique in
an XML instance so that the elements with these attributes can be conveniently referred
to using attributes of type IDREF, as shown here:

<Target id="mainTarget"/>
<Reference href="#mainTarget"/>

The problem with including a chunk of XML inline (textually) within an XML document is
that the uniqueness of IDs can be violated. For example, in the following code both
message elements have the same ID. This makes the document invalid XML:

<message id="msg-1">
A message with an attached message.
<attachment id="attachment-1">
<I-- ID conflict right here -->
<message id="msg-1">
This is a textually included message.

</message>
</attachment>
</message>
And no, namespaces do not address the issue. In fact, the problems are so serious that

nothing short of a change in the core XML specification and in most XML processing tools
can change the status quo. Don't wait for this to happen.

You can work around the problem two ways. If no one will ever externally reference
specific IDs within the protocol message data, then your XML protocol toolset can
automatically re-write the IDs and references to them as you include the XML inside the
message, as follows:

<message id="msg-1">
A message with an attached message.
<attachment id="attachment-1">
<I-- ID has been changed -->
<message id=""id-9137">
This is a textually included message.
</message>
</attachment>
</message>

This approach will give you the benefits described earlier at the cost of some extra
processing and a slight deterioration in readability due to the machine-generated IDs.

If you cannot do this, however, you will have to include the XML as an opaque chunk of
text inside your protocol message:

<message id="msg-1">
A message with an attached message that
we can no longer refer to directly.
<attachment id="attachment-1">
<I-- Message included as text -->
<message i1d="id-9137">
This is a textually included message.
</messageégt;
</attachment>
</message>
In this case, we have escaped all pointy brackets, but we also could have included the
whole message in a CDATA section. The benefit of this approach is that it is easy and it
works for any XML content. However, you don't get any of the benefits of XML. You

cannot validate, query, or transform the data directly, and you cannot reference pieces of
it from other parts of the message.

Binary Data

So far, we have discussed encoding options for pre-existing XML data. However, what if
you are not dealing with XML data? What if you want to transport binary data as part of
your message, instead? The commonly used solution is good old base64 encoding:

<SOAP-ENV:Envelope
xmIns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>
<x:StorePicture xmlns:x="Some URI">
<Picture xsi:type="SOAP-ENC:base64">

aG931G5vDyBicm73biBjb3cNCg==
</Picture>
</x:StorePicture>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

On the positive side, base64 data is easy to encode and decode, and the character set of
base64-encoded data is valid XML element content. On the negative side, base64
encoding takes up nearly 33% more memory than pure binary representation. If you
need to move much binary data and space/time efficiency is a concern, you might have
to look for alternatives. (More on this in a bit.)

You mignt want to consider using base64 encoding even when you want to move some
plain text as part of a message, because XML's document-centric SGML origin led to
several awkward restrictions on the textual content of XML instances. For example, an
XML document cannot include any control characters (ASCII codes O through 31) except
tabs, carriage returns, and line feeds. This limitation includes both the straight
occurrences of the characters and their encoded form as character references, such as
 . Further, carriage returns are always converted to line feeds by XML processors.
It is important to keep in mind that not all characters you can put in a string variable in a
programming language can be represented in XML documents. If you are not careful, this
situation can lead to unexpected runtime errors.

Abstract Data Models

If you are not dealing with plain text, XML, or binary data, you probably have some form
of structured data represented via an abstract data model.

The key question when dealing with abstract data models and XML is whether the output
XML format matters. For example, if you have to generate SkatesTown purchase orders,
then the output format is clearly important. If, on the other hand, you just want to make
an RPC call over SOAP to pass some data to a Web service, then the exact format of the
XML representing your RPC parameters does not matter. All that matters is that the Web
service engine can decode the XML and reconstruct a similar data structure with which to
invoke the backend.

In the latter case, it is safe to use pre-built automatic "data to XML and back" encoding
systems (see Figure 3.10). For example, Web service engines have data
serialization/deserialization modules that support the rules of SOAP encoding. These rules
are flexible enough to represent most application-level data types. Suffice to say, in
many cases you will never have to worry about the mechanics of the
serialization/deserialization processes.

Figure 3.10. Generic XML serialization/deserialization.

. m

4—| Serializer Module o

0

5 S
= 8
o o

Deserializer Module ftl

The SOAP encoding is a flexible schema model for representing data—element names in
the instance document often depend on the type and format of data that is being
encoded. This model allows for a link between the data and its type, which enables
validation. It is one of the core reasons why XML protocols such as SOAP moved to this
encoding model, as discussed earlier in the chapter when we considered the evolution of
XML protocols.

In the cases where the XML output format does not matter (typically RPC scenarios), you
can rely on the default rules provided by various XML data encoding systems. In many
cases, however, the XML format is fixed based on the specification of a service. A
SkatesTown purchase order submission service is a perfect example. From a requestor's
perspective, the input format must be a PO document and the output format must be an
invoice document. Requestors are responsible for mapping whatever data structures they
might be using to represent POs in their order systems to the SkatesTown PO format.
Also, SkatesTown is responsible for always outputting responses in its invoice XML
format.

There are two typical approaches to handling this scenario. The simplest one is to
completely delegate XML processing to the application. In other words, the Web service
engine is responsible only for delivering a chunk of XML to the Web service
implementation. Another approach involves building and registering custom
serializers/deserializers (datatype mappers) with the Web service engine. The serializers
manipulate application data to produce XML. The deserializers manipulate the XML to
generate application data. You can build these serializer/deserializer modules two ways:
by hand, using the APIs of the Web service engine; or using a tool for mapping data to
and from XML given a pre-existing schema. These tools are known as schema compilers

m(see Figure 3.11).

Figure 3.11. Serialization/deserialization process with a schema compiler.

-€—{ Serializer Module [«

+

@

E codegen %

o

LC | o
=

ﬁ Schema Compiler [« Target Schema %

x S

B | a

2 codegen g

: Y

—>»| Deserializer Module >

Schema compilers are tools that analyze XML schema and code-generate serialization
and deserialization modules specific to the schema. These modules will work with data
structures tuned to the schema.

Schema compilation is a difficult problem, and this is one reason there aren't many
excellent tools in this space. The Java Architecture for XML Binding (JAXB) is one of the
projects that is trying to address this problem in the context of the Java programming
language (http://java.sun.com/xml/jaxb/). Unfortunately, at the time of this writing,
JAXB only supports DTDs and does not support XML Schema. Chapter 8,
"Interoperability, Tools, and Middleware Products," focuses on the current Web service

tooling for the Java platform. It provides more details on these and other important
implementation efforts in the space.

Linking Data

So far, we have only considered scenarios where the encoded data is part of the XML
document describing a protocol message. This can create some problems for including
pre-existing XML content and can waste space in the case of base64-encoded binary
objects. The alternative would be keeping the data outside of the message and somehow
bringing it in at the right time. For example, an auto insurance claim might carry along
several accident pictures that come into play only when the insurance claim needs to be
displayed in a browser or printed.

You can use two general mechanisms in such cases. The first comes straight out of XML
1.0. It involves external entity references, which allow content external to an XML
document to be brought in during processing. Many people in the industry prefer pure
markup and therefore favor a second approach that uses explicit link elements that
comply with the XLink specification. Both methods could work. Both require extensions to
the core Web services toolsets that are available now. In addition, purely application-
based methods are available for linking; you could just pass a URI known to mean "get
the actual content here." However, this approach does not scale to generic data encoding
mechanisms because it requires application-level knowledge.

External content can be kept on a separate server to be delivered on demand. It can also
be packaged together with the protocol message in a MIME envelope. The SOAP

Messages with Attachments Note to the W3C (http://www.w3.0rg/TR/2000/NOTE-SOAP-
attachments-20001211) defines a mechanism for doing this. An example SOAP message
with an attachment is shown later in the chapter in the section "SOAP Protocol Bindings."

There are many, many ways to encode data in XML, and well-designed XML protocols will
let you plug any encoding style you choose. How should you make this important
decision? First, of course, keep it simple. If possible, choose standards-based and well-
deployed technology. Then, consider your needs and match them against some of the
important facets of XML data encoding described here.

Architecting Distributed Systems with Web Services

Although SOAP is typically demoed with simple RPC-based Web services, such as
SkatesTown's inventory check service, the SOAP specification does not mandate any
particular communication mechanism or interaction pattern between the participants of a
Web-service— enabled distributed system. System designers basically have complete
control over the system architecture, choice of communication protocols, message
routing, intermediary configuration, and so on. The hard part about having so much
flexibility is that without solid experience with distributed systems and good judgment, it
is easy to make sub-optimal choices.

The most commonly asked questions about distributed systems based on Web services
center around a long-running debate in distributed computing circles regarding the rules
and regulations for using RPC and messaging (often identified as Message Oriented
Middleware—MOM) to solve problems. Typically, the debate takes the unnecessarily
polarized form of "MOM vs. RPC." The fact of the matter is that both messaging and RPC
play significant, albeit different, roles in distributed computing. Both approaches continue
to be very relevant in the era of Web services.

Unfortunately, a lot of confusion exists about the meaning of the terms, the capabilities
of messaging and RPC systems, and the scenarios in which they are best applied.
Service-oriented architectures fundamentally can support both models. Therefore, to best
take advantage of Web services, it helps to have a good understanding of both. What

follows is a brief analysis of the two approaches and their relation to SOAP and Web
services. Given that people are generally more familiar with RPCs, we start with a
discussion of messaging in its many forms.

Messaging

As a model for distributed computing, messaging mrefers to a mechanism for getting
systems to interact via the passing of messages. A message is a single unit of
communication encapsulating some information. (A SOAP message is a great example.)
This is where the differences begin. Messaging models can vary significantly based on the
following criteria:

e Number of participants and their organization

Interaction patterns

Synchronicity of message exchanges

Direct versus queued messaging

Quality of service (QoS)

e Message format
Message Participants

There are three different ways to organize messaging participants (see Figure 3.12). The
simplest case is 1-to-1 (point-to-point) messaging, which involves only two systems. An
example could be an e-commerce scenario where the client application submits a
purchase order to a digital marketplace. In this case, the sender needs to know where to
send the message.

Figure 3.12. Messaging patterns.

1-to-1 Sender | Recipient

Recipient 1
1-to-many Sender /
1
Recipient N
MNode Node
many-to-many Node Node
Node Node

A slightly more complicated organization is 1-to-many messaging, where the sender
sends a single message but copies of it go to multiple recipients. This is often referred to

as publish/subscribe mor topic--based messaging @3 The idea is that the sender is a
publisher that sends a message to a "topic" and that the recipients are all the systems
that have subscribed to receive notifications on this topic. E-mail distribution lists are a
good example of this type of messaging. The name of the distribution list is the topic,
and the subscribers are all the e-mail addresses on the list.

Finally, many-to-many messaging involves a pattern of message exchange among any
number of participants. Clearly, in this case, some system in the middle (typically some
type of a workflow engine supporting business processes) needs to direct message
traffic. This is described by the cloud in Figure 3.12.

Interaction Patterns

There are four common messaging interaction patterns (see Figure 3.13). One-way (fire-
and-forget) messaging involves the simple sending of a message from one system to
another. No response is generated at the application level. Of course, depending on the
transport (such as HTTP), a response might be generated at the network level. In the

case of request-response messaging, a response message is generated for every request
message. The response message is sent from the target of the request message to its
source. Chapter 6 describes how requests and responses can be correlated and how
multiple request-response pairs can be organized into logical "conversations."

Figure 3.13. Interaction patterns.

one-way Client f——» Server
request-response Client > Server
notification Client |€——oq Server
notification-response Client] Server

The other two interaction patterns, notification and notification-response, are mirror
images of one-way and request-response. They are callback patterns. Rather than a
client system pushing messages to a server system, the server system is pushing
messages to the client. The stock ticker application you might have on your desktop is a
perfect example of notification combined with publish-subscribe messaging. Chapter 6
gets into more detail about Web service interaction patterns.

Synchronicity

Messaging can be either synchronous or asynchronous. In synchronous messaging, a
send operation does not complete until the target of the message has finished processing
the message. Asynchronous messaging is harder to define. Typically, the send operation
will return immediately (or very quickly), before the target has processed the message.
Response messages, if any, typically arrive via callbacks.

Direct vs. Queued Messaging

The synchronicity of messaging is controlled by the presence of messaging middleware,

particularly queuing systems. Direct messaging works without any middleware
present. For messages to be exchanged, a direct connection between the source and the
target(s) must be available. This is why it is sometimes referred to as connection-

oriented messaging You can get some amount of asynchronicity in direct
messaging by using threads to manage the sending and receiving of messages.

Indirect messaging involves some type of message queuing. Queues provide message
buffering and dispatch capabilities. Consider the e-mail server example from earlier in

the chapter. An e-mail server is a perfect example of a message queuing system. When
you send an e-mail message, your e-mail client does not contact the e-mail client of the
person you are trying to reach. Instead, your e-mail client sends the message to a local
e-mail server. The server saves the message in some safe place and waits for a good
moment to send it out. Typically, many messages are sent at once. This is the buffering
function. The dispatch function has to do with the e-mail server inspecting the target e-
mail addresses and deciding where to forward the e-mail message. In some cases, an e-
mail message will make several hops between e-mail servers before it arrives at the
destination e-mail server where your mail client can read it. This configuration is so
powerful because it works even in the cases where mail clients and even some mail
servers are offline for long periods of time. A mail server will keep trying to send e-mail
for several days and will store received messages potentially indefinitely.

Figure 3.14 contrasts direct messaging (the topmost configuration) with a number of
possible queuing configurations. In the second and third configurations, the queuing
system acts primarily as a message buffer. For example, if the receiver is not on the
network, the message will still be safely stored in the queue. The last configuration is the
most interesting, in that the message can be moved from the local to the remote system
without either the sender or the receiver being online—the message queuing systems can
do the job by themselves. In addition, the presence of more than one queuing system
allows for flexible message dispatch.

Figure 3.14. Variations of queuing configurations.

i network boundary
Sender T »| Recipient
!
Sendar —»| ! | Recipient
queue '
Sendar 4)-| —» Recipient
; queue
Sender f— i > | Recipient
queLes E queus

Quality of Service

Another important aspect of messaging is quality of service (QoS). Direct
messaging exhibits the QoS parameters with which we are most familiar, such as
security and transaction management. When queuing is in use, other types of QoS
become available. For example, messages can be stored in the queuing server in various
ways: in memory (the fastest queuing mechanism but one that does not guarantee
against system failure) or in some persistent store, such as a DBMS.

Further, transactions can guarantee that the message is sent to the receiver once and
only once or not at all. In the case of message delivery failure, QoS policy might dictate
that a failure notification is sent to the message sender. In addition, it is common QoS
policy to send acknowledgement notifications that the message has been successfully

delivered to the receiver. These types of QoS considerations are very relevant to Web
services. Chapter 5 looks in more detail at some QoS aspects.

Message Format

The last but not least important aspect of messaging is the format of message data. Most
messaging systems allow the transfer of text and binary data, which enables the easy
transfer of XML. Some newer messaging systems treat XML messages specially and try to
use an optimized XML encoding format. There is also the notion of queues that can
automatically allow only XML messages that comply with certain schema. Some platform-
focused messaging systems, such as Java Messaging Service (JMS) middleware and
Microsoft's .NET messaging server, also allow for the automatic serialization of
application data (Java objects in the case of JIMS and Common Language Runtime [CLR]
data structures in the case of Microsoft).

Messaging Versus RPC

If messaging is all about possibilities and variations, RPCs are much more constrained. As
the name suggests, the goal of RPCs is to make the invocation of remote code seem like
a local procedure call (LPC). To make an RPC call, you need the following information:

e A target to invoke
e An operation name

e Optionally, parameters to pass to the operation

Therefore, whereas messaging is primarily about data (which can be in any conceivable
format), RPCs are about combining specific application-level data with remote code. This
is the one fundamental difference between messaging and RPC. A nice side-effect is that
programmers using RPC do not have to worry about manually performing data encoding
and decoding—something that typically has to happen when using messaging systems,
especially across programming languages and platforms.

Another way to state the main difference between messaging and RPC is to note that
messaging deals with generic APIs such as sendMessage(), get Message(), and

regi st er MessageResponseCal | back() , whereas RPCs deal with special-purpose APIs
that vary based on the interface of the target that is being invoked. For example, if you
are trying to invoke a remote EJB that has a processOr der () method, you will most
likely call the processOrder () method of a local object that acts like a proxy to the
remote EJB. Chapter 6 discusses this topic in much more detail.

Another key difference between RPCs and messaging is that RPCs are direct invocations.
There is no queuing mechanism; the backend must be running and it must be directly
accessible at a well-known location. This limits the dispatch capabilities of RPC
middleware. MOM message dispatch can be much more flexible.

Finally, extensive use of RPCs tends to result in somewhat brittle distributed systems.
Because the APIs are fine-grained, even small changes in the data being passed around
can break the system. Messaging uses much rougher-grain data exchanges and is
therefore more likely to sustain small changes in the data being exchanged without
failure.

Apart from these key differences, RPCs and messaging have many similarities:

e RPCs can be implemented on top of a request-response messaging
pattern.

e Contrary to popular belief, however, RPCs do not have to have a
request—response messaging pattern. Some systems support one—way
RPCs.

e In addition, RPCs do not have to be synchronous. Some systems
automatically spawn threads to wait in the background for RPC
responses.

e RPCs and messaging share many of the same QoS requirements such as
security and transaction management.

e Direct, synchronous, 1-to—1 messaging can be simulated via a simple
RPC, e.g., void sendMessage(data).

It should become clear by now that the real issue isn't which of the two approaches to
distributed computing is better (the simple interpretation of "messaging vs. RPC") but
when each approach should be used in the world of Web services. To answer this
question, after we have mentioned so many possible variations of both messaging and
RPC, it helps to establish some stereotypes. When working with Web services, it will
generally be the case that:

e RPCs will be direct, synchronous, request-response invocations that
pass encoded application—level data structures from a client to a
target backend that implements the RPC functionality.

e Messages will carry XML data. The interaction pattern is most likely
to be one-way or request-response. Simple architectures will use
direct messaging. The organization of participants will likely be 1-
to—1. More advanced architectures will be queued and therefore
asynchronous.

In both cases, messages will be represented on the wire using SOAP. QoS-related
information that is part of the message will be represented as message headers. A good
example would be an authentication header that carries a username and password;
Chapter 5 shows an example.

Table 3.2 presents a number of benefits and concerns about using messaging and RPC.
Based on these and the current state-of-the-art in Web service middleware and tooling,
we would recommend that you go with a simple RPC-based solution or a direct
messaging solution unless disconnected operation will be of benefit, the system requires
1-to-many interactions, or synchronous operation is causing performance problems.

Table 3.2. Pros and Cons of Messaging and RPC for Web Services

Pros Cons

Direct o The basic messaging APIs e Applications must perform
messaging are very simple. manual data

encoding/decoding.
e Any data can be passed.

e Separates data from the
code that operates on it.

Queued e Same as above, plus--- e Same as above plus---
messaging

e Asynchronicity spreads e Most useful forms of
the load and improves messaging require a
performance. queuing infrastructure.

e Allows for disconnected e Current message queuing
operation. products do not

interoperate well.
e Allows for 1-to—many and

many—to—many e Asynchronicity makes
interactions. programming more
difficult.
RPC e Local APIs match backend e Synchronicity can cause

APIs. bottlenecks.

e Synchronicity makes e Backend must be running
programming easy. for RPCs to succeed.

e Application data is e Only 1-to-1 interactions
automatically are supported.
encoded/decoded.

e Exceptions provide a good
error—handling mechanism.

e RPC products interoperate
reasonably well.

We would expect that as messaging middleware vendors embrace Web services to a
greater extent and as more Web services become increasingly used in the context of
complex business process workflows, the importance of Web service messaging will
grow. Broad standardization efforts such as ebXML (http://www.ebxml.org) and Java API
for XML Messaging (JAXM, http://java.sun.com/xml/jaxm/index.html) will help speed up
the process.

SOAP-based RPCs

So far in this chapter we have presented several examples of SOAP-based RPC without
ever mentioning the details of representing RPCs in SOAP messages as described by the
SOAP specification. The rules are very simple.

Recall that to invoke an RPC, you need a target URI, an operation name, some
parameters, and any amount of context information (such as security context). Any such
context information is modeled as SOAP headers.

SOAP's RPC binding does not specify how the target URI is going to be provided. In other
words, it leaves it up to the SOAP processor to determine how to dispatch a SOAP RPC
request to a target backend. There are three common ways to do this dispatch. Two of
these are HTTP-specific, and the other is based on the contents of the SOAP message:

e In the case of HTTP, the SOAP processor can dispatch based on the
target URL (as in the inventory check example).

e Alternatively, it may dispatch based on the value of the SOAPActi on
HTTP header that comes as part of the HTTP request.

e Alternatively, it can use the value of the namespace URI for the
first element inside the SOAP body.

Most Web services engines do not support any combination of these dispatch
mechanisms. Axis can be configured to work with any combination.

In the language of the SOAP encoding, the actual RPC invocation is modeled as a struct.
The name of the struct (that is, the name of the first element inside the SOAP body) is
identical to the name of the method/procedure. This is not a problem, because the
character set of XML elements is a superset of the character set of valid identifier names
in programming languages. Every in and in-out parameter of the RPC is modeled as an
accessor with a name identical to the name of the RPC parameter and type identical to
the type of the RPC parameter mapped to XML according to the rules of the active
encoding style. The accessors appear in the same order, as do the parameters in the
operation signature.

The RPC response is also modeled as a struct. By convention, the name of the struct is
the same as the name of the operation, with Response appended to it. There are
accessors for the operation result and all in-out and out parameters. The result is the
first accessor, followed by the parameters in the order they appear in the operation
signature. By convention, the result element's name is the same as the name of the
operation, with Result appended to it.

Java developers are not used to the concept of in-out or out parameters because,
typically, in Java all objects are automatically passed by reference. When using RMI,
simple objects can be passed by value, but other objects are still passed by reference. In
this sense, any mutable objects (ones whose state can be modified) are automatically
treated as in-out parameters.

In Web services, the situation is different. All parameters are passed by value. SOAP has
no notion of passing values by reference. This design decision was made in order to keep
SOAP and its data encoding simple. Passing values by reference in a distributed system
requires distributed garbage collection. This not only complicates the design of the
system but also imposes restrictions on some possible system architectures and
interaction patterns. For example, how can you do distributed garbage collection in a
queued messaging architecture when the requestor and the provider of a service can
both be offline at the same time?

Therefore, for Web services, the notion of in-out and out parameters does not involve
passing objects by reference and letting the target backend modify their state. Instead,
copies of the data are exchanged. It is then up to the service client code to create the
perception that the actual state of the object that has been passed in to the client
method has been modified. Different Web service clients might have different ways to do
this.

Consider the following operation signature:
boolean doCheck(in String sku, in int quantity, out int numlnStock)
Some possible SOAP RPC request and response bodies are:

<I-- RPC request body -->
<SOAP-ENV:Body>

<doCheck>
<sku xsi:type="xsd:string">947-TI</sku>
<gquantity xsi:type="xsd:int">1</quantity>
</doCheck>
</SOAP-ENV:Body>

<I-- RPC response body -->
<SOAP-ENV:Body>
<doCheckResponse>
<doCheckResult xsi:type="xsd:boolean">true</doCheckResult>
<numInStock xsi:type="xsd:int">150</numlnStock>
</doCheckResponse>
</SOAP-ENV:Body>

Of course, if a description of the operation is available, you can generate a schema for all
the elements in the SOAP body. Doing so would eliminate the need to use xsi : t ype
everywhere in the SOAP message. Chapter 6 looks in more detail at the mechanisms for
doing this.

SOAP-based Messaging

The technical term for non-RPC SOAP messaging is document-centric mmessaging.
The name comes from the fact that the data sent over SOAP is represented as an XML
document embedded inside the SOAP envelope. Although the RPC binding for SOAP has a
number of rules governing the representation and encoding of operation names and
parameters, simple SOAP messages have absolutely no restrictions as to the information
that can be stored in their bodies. In short, any XML can be included in the SOAP
message. The next section of this chapter shows an example of SOAP-based messaging.

Purchase Order Submission Web Service

Recall that when Al Rosen of Silver Bullet Consulting was investigating SkatesTown's e-
business processes, he noticed that one area that badly needed automation was
purchase order submission. Purchase orders and invoices were being exchanged over e-
mail, and they were manually input into the company's purchase order system.

Because SkatesTown already has defined an XML schema for its purchase orders and
invoices, Al thinks it makes sense to build a purchase order Web service that accepts a
purchase order as an XML document and returns an XML invoice. This service would be
an example of 1-to-1 direct messaging using a request-response interaction pattern.

Purchase Order and Invoice Schemas

The schemas for SkatesTown's purchase orders and invoices are explained in detail in
Chapter 2. Listings 3.8 and 3.9 show example XML document instances for both.

Listing 3.8 Example SkatesTown Purchase Order

<po xmlns="http://www.skatestown.com/ns/po"
id=""50383" submitted="2001-12-06">
<billTo>
<company>The Skateboard Warehouse</company>
<street>0ne Warehouse Park</street>
<street>Building 17</street>
<city>Boston</city>

<state>MA</state>
<postalCode>01775</postalCode>

</billTo>

<shipTo>
<company>The Skateboard Warehouse</company>
<street>0One Warehouse Park</street>
<street>Building 17</street>
<city>Boston</city>
<state>MA</state>
<postalCode>01775</postalCode>

</shipTo>

<order>
<item sku="318-BP" quantity="5">

<description>Skateboard backpack; five pockets</description>
</item>
<item sku="947-TI" quantity="12">
<description>Street-style titanium skateboard.</description>

</item>
<item sku="008-PR" quantity="1000"/>

</order>

</po>

Listing 3.9 Example SkatesTown Invoice

<invoice inv="http://www.skatestown.com/ns/invoice"
id="50383" submitted="2001-12-06">
<billTo>
<company>The Skateboard Warehouse</company>
<street>0One Warehouse Park</street>
<street>Building 17</street>
<city>Boston</city>
<state>MA</state>
<postalCode>01775</postalCode>
</billTo>
<shipTo>
<company>The Skateboard Warehouse</company>
<street>0One Warehouse Park</street>
<street>Building 17</street>
<city>Boston</city>
<state>MA</state>
<postalCode>01775</postalCode>
</shipTo>
<order>
<item sku="318-BP" quantity="5" unitPrice="49.95">
<description>Skateboard backpack; five pockets</description>
</item>
<item sku="947-TI" quantity="12" unitPrice="129.00">
<description>Street-style titanium skateboard.</description>
</item>
<item sku="008-PR" quantity="1000" unitPrice="0.00">
<description>Promotional: SkatesTown stickers</description>

</item>
</order>
<tax>89.89</tax>
<shippingAndHandl ing>89.89</shippingAndHandl ing>
<totalCost>1977.52</totalCost>
</invoice>

XML-Java Data Mapping

Unfortunately, Al Rosen finds out that the actual SkatesTown purchase order system
does not know how to deal with XML. The XML capabilities were added as an extension to
the system by a developer who has since left the company. To make matters worse,
much of the source code pertaining to XML processing seems to have been lost during an
upgrade of the source control management (SCM) system at the company.

The PO system's APIs work in terms of a set of Java beans representing concepts such as
product, purchase order, invoice, address, and so on. Figure 3.15 shows a UML diagram.

Figure 3.15. UML model for the PO system’ s data objects.

I;'J BusinessDocument I;'J Address
ickint > name:String
dala:String company.String
kil To:Address streat: String(]
shipTo: Address city:String
state:String
postalCode:String
country: String POltem

description:String
SKLU:String
quantity:int

db Invoice

iterns; POltern]

items:Invoicement(] Invoiceltem
tax:double 0."
shippingAndHandling:double E—
totalCost:double unitPrice:double

Al knows that because he is using SOAP-based messaging, the task of mapping the
purchase order XML to Java objects and the invoice Java objects back to XML is left
entirely up to him. Therefore, he implements a serializer and a deserializer that know
how to encode and decode objects from the com skat est own. dat a package to and from
XML. Because the schemas for purchase orders and invoices are relatively simple, he
decides to do this by hand rather than to rely on available schema compiler tools; he has
had no experience with these. The two classes that he builds are Seri al i zer and

Deseri al i zer in the com skat est own. xnml package. The combined code size is slightly
over 300 lines of Java code.

Listing 3.10 shows the key purchase order deserialization methods. They use a number
of simple utility methods such as get Val ue() and get El enent s() to traverse the DOM
representation of a purchase order and construct a purchase order and all its contained
objects. Reusable functionality, such as reading the common properties of POltem and

Invoiceltem or creating addresses, is put in separate methods (readl ten() and
creat eAddr ess(), respectively). This pattern for XML to Java data mapping is very
simple and readable yet flexible to handle a large variety of input XML formats.

Listing 3.10 Core Purchase Deserialization Methods

protected void readDocument(BusinessDocument doc, Element elem)

{
doc.setld(Integer.parselnt(elem.getAttribute("id")));

doc.setDate(elem.getAttribute("submitted™));

doc.setBillTo(createAddress(getElement(elem, "billTo™)));
doc.setShipTo(createAddress(getElement(elem, "shipTo™)));

}

protected void readltem(POltem item, Element elem)

{
item.setSKU(elem.getAttribute(*'sku™));
item.setQuantity(Integer.parselnt(elem.getAttribute("quantity™)));
item.setDescription(getValue(elem, "description™));

}

protected Address createAddress(Element elem)

{
Address addr = new Address();
addr.setName(getValue(elem, "name"™));
addr.setCompany(getValue(elem, "company"));
addr.setStreet(getValues(elem, "street"));
addr.setCity(getvalue(elem, "city"));
addr.setState(getValue(elem, "state"));
addr.setPostalCode(getvalue(elem, "postalCode"));
addr.setCountry(getValue(elem, "country"));
return addr;

}

protected PO _createPO(Element elem)
{

PO po = new POQ);
readDocument(po, elem);
Element[] orderltems = getElements(elem, "item™);

POltem[] items = new POltem[orderltems.length];
for (int 1 = 0 ; 1 < 1tems.length; ++1)

{
POltem item = new POltem();
readltem(item, elem);
items[i] = item;

}

po.setltems(items);

return po;
}

Listing 3.11 shows the key invoice serialization methods. In this case, they traverse the
Java data structures describing an invoice and use utility methods such as addChi | d() to
construct a DOM tree representing an invoice document. Again, shared functionality such
as serializing an address is separated in methods that are called from multiple locations.

Listing 3.11 Core Invoice Serialization Methods

protected void writeDocument(BusinessDocument bdoc, Element elem)
{
elem.setAttribute("id"™, ""'+bdoc.getld());
elem.setAttribute("submitted”, bdoc.getDate());
writeAddress(bdoc.getBillTo(), addChild(elem, "billTo™));
writeAddress(bdoc.getShipTo(), addChild(elem, "shipTo™));

}

protected void writeAddress(Address addr, Element elem)

{
addChild(elem, "name", addr.getName());
addChild(elem, "company", addr.getCompany());
addChildren(elem, "street", addr.getStreet());
addChild(elem, "city", addr.getCity());
addChild(elem, "state"™, addr.getState());
addChild(elem, "postalCode", addr.getPostalCode());
addChild(elem, "country", addr.getCountry());

}

protected void writePOltem(POltem item, Element elem)

{
elem.setAttribute(*'sku”, i1tem.getSKU());
elem.setAttribute("quantity”, ""+item_getQuantity());
addChild(elem, "description”, item.getDescription());

}

protected void writelnvoiceltem(Invoiceltem item, Element elem)
{
writePOltem(item, elem);
elem_setAttribute("unitPrice”, nf.format(item.getUnitPrice()));

}

protected void writelnvoice(lnvoice invoice, Element elem)
{

writeDocument(invoice, elem);

Element order = addChild(elem, "order™);

Invoiceltem[] items = invoice.getltems();

for (int i = 0; i < items.length; ++i)

{

writelnvoiceltem(items[i], addChild(order, "item™));

}

addChild(elem, "tax™, nf.format(invoice.getTax()));

addChild(elem, "shippingAndHandling",
nf.format(invoice.getShippingAndHandling()));

addChild(elem, "totalCost", nf.format(invoice.getTotalCost()));

}

Service Requestor View

The PO Web service client implementation follows the same pattern as the invoice
checker clients (see Listing 3.12). The goal of its API is to hide the details of Axis-specific
APls from the service requestor. Therefore, the i nvoke() method takes an | nput St r eam
for the purchase order XML and returns the generated invoice as a string. Alternatively,
the i nvoke() method might have been written to take in and return DOM documents.

Listing 3.12 PO Submission Web Service Client

package ch3.ex4;

import java.io.*;

import org.apache.axis.encoding.SerializationContext;
import org.apache.axis.message.SOAPEnvelope;

import org.apache.axis.message.SOAPBodyElement;
import org.apache.axis.client.ServiceClient;

import org.apache.axis.Message;

import org.apache.axis.MessageContext;

/**
* Purchase order submission client
*/
public class POSubmissionClient
{
/**
* Target service URL
*/
private String url;

/**
* Create a client with a target URL
*/
public POSubmissionClient(String targetUrl)

{
url = targetUrl;

}

/**

* Invoke the PO submission web service

*

* @param po Purchase order document

* @return Invoice document

* @exception Exception 1/0 error or Axis error
*/

public String invoke(InputStream po) throws Exception
{
// Send the message
ServiceClient client = new ServiceClient(url);
client.setRequestMessage(new Message(po, true));
client.invoke();

// Retrieve the response body

MessageContext ctx = client.getMessageContext();
Message outMsg = ctx.getResponseMessage();
SOAPEnvelope envelope = outMsg.getAsSOAPEnvelope();
SOAPBodyElement body = envelope.getFirstBody();

// Get the XML from the body

StringWriter w = new StringWriter();

SerializationContext sc = new SerializationContext(w, ctx);
body.output(sc);

return w.toString();

}

Sending the request message is simple. We have to create a Servi ceCl i ent from the
target URL and set its request message to a message constructed from the purchase
order input stream. The second parameter to the Message constructor, the boolean t r ue,
is an indication that the input stream represents the message body as opposed to the
whole message. Calling i nvoke() sends the message to the Web service.

The second part of the method has to do with retrieving the body of the response
message. This code should be familiar from the implementation of the E- mai | header
handler.

Finally, we use an Axis serialization context to write the XML in the response body into a
StringWiter. We could have easily gotten the body as a DOM element by calling is

get AsDOM) method. The trouble is, there is no standard way in DOM Level 2 to convert
a DOM element into a string! Java API for XML Processing (JAXP) defines such a
mechanism in its transformation APl (j avax. xnl . t r ansf or mpackage), but the method is
fairly cumbersome. It is easiest to use an Axis Seri al i zat i onCont ext object.

Service Provider View

The implementation of the purchase order submission service is very simple (see Listing
3.13). Because this is not an RPC-based service, the input and output are both XML
documents (represented via DOM Docunent objects). The input document is deserialized
to produce a purchase order object. It is passed to the actual PO processing backend. Its
implementation is not shown here because it has nothing to do with Web services. It
looks up item prices by their SKU, calculates totals based on item quantities, and adds
tax and shipping and handling. The resulting invoice object is serialized to produce the
result of the purchase order submission service.

Listing 3.13 Purchase Order Submission Web Service

package com.skatestown.services;

import javax.xml.parsers.*;
import org.w3c.dom.*;
import org.apache.axis.MessageContext;

import com.skatestown.backend.*;
import com.skatestown.data.*;
import com.skatestown.xml.*;
import bws.BookUtil;

/**
* Purchase order submission service
*/
public class POSubmission
{
/**
* Submit a purchase order and generate an invoice
*/
public Document submitPO(MessageContext msgContext, Document inDoc)
throws Exception
{
// Create a PO from the XML document
DocumentBui lderFactory factory = DocumentBuilderFactory.newlnstance();
DocumentBuilder builder = factory.newDocumentBuilder();
PO po = Deserializer.createPO(inDoc.getDocumentElement());

// Get the product database
ProductDB db = BookUtil.getProductDB(msgContext);

// Create an invoice from the PO
POProcessor processor = new POProcessor(db);
Invoice invoice = processor.processPO(po);

// Serialize the invoice to XML
Document newDoc = Serializer._writelnvoice(builder, invoice);

return newDoc;

}

Finally, adding deployment information about the new service involves making a small
change to the Axis Web services deployment descriptor (see Listing 3.14). Again,
Chapter 4 will go into the details of Axis deployment descriptors.

Listing 3.14 Deployment Descriptor for Purchase Order Submission Service

<l-- Chapter 3 example 4 services -->

<service name="POSubmission" pivot="MsgDispatcher'>
<option name="className" value="com.skatestown.services.POSubmission"/>
<option name="methodName" value="doSubmission"/>

</service>

Putting the Service to the Test

A simple JSP test harness in ch3/ ex4/ i ndex. | sp (see Figure 3.16) tests the purchase
order submission service. By default, it loads / r esour ces/ sanpl ePO. xm , but you can
modify the purchase order on the page and see how the invoice you get back changes.

Figure 3.16. Putting the PO submission Web service to the test.

[+ =2 -0 AE I D I - R

Exameples = Chapter 3 > Example 4 [Seurce |

Purchase Order Submission

Thas exsmple implements & web form driver Bor SleatesTown's purchate order subsasnion chest Yoo can modify the punchase
order on the form if you wish (the default one iz From Chapter Z)

<po Mmlns="htcopr//wew. skatestovn. coow' e/ po™ 1d="50383" subsicted="2001=-12-06": -
sk1ll1Taox
<oompany>The Skateboard Warehouse</companys
<ptrest>lne Uarebouse Park</street>
<atreat>Bullding 17</streat>
czityrBostons/ oLy
cacatesHhc/ apaces
cpaatalCods »01TT5L/ pastal Coder
</BillTo>
<ahipTo*
foompanysThe Skatecboard Warehouse</companys
{atrastiOme Earebous= Park</screstr fd|

Submi PO

Sendmg PO
Mg response

£Mml version="1.0" encoding="UTF-8*"7:<nsliinvoice xai:schemalacation="http://vew, skatestown.com’

SOAP on the Wire

With the help of TCPMon, we can see what SOAP messages are passing between the
client and the Axis engine:

POST /bws/services/POSubmission HTTP/1.0
Host: localhost

Content-Length: 1169

Content-Type: text/xml; charset=utf-8
SOAPAction: "

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmIns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance'>
<SOAP-ENV:Body>

<po xmIns="http://www.skatestown.com/ns/po"
id=""50383" submitted="2001-12-06">

</po>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
The target URL is / bws/ ser vi ces/ POSubni ssi on. The response message simply carries

an invoice inside it, much in the same way that the request message carries a purchase
order. As a result, there is no need to show it here.

That's all there is to taking advantage of SOAP-based messaging. Axis makes it very easy
to define and invoke services that consume and produce arbitrary XML messages.

Figure 3.17 shows one way to think about the interaction of abstraction layers in SOAP
messaging. It is modeled after Figure 3.3 earlier in the chapter but includes the
additional role of a service developer. As before, the only "real" on-the-wire
communication happens between the HTTP client and the Web server that dispatches a
service request to Axis.

Figure 3.17. Layering of abstraction for SOAP messaging.

W Requesior - Provider
Application
Develaper davaAP] [sesss=scssssssssasssnsssnasrssssnncnsssnnceed lavaAP
XML inputioutput ML mputioutpul J
Service dev |—) messsssssssssssssssssssssssed]
reloper and Axis client APLs € > and Axds senvice APts

Az |—b SOAP message [#==-===-======== » SO4F message —T
HTTF I—) HTTF packel o= HTTF packel J

The abstractions at this level are HTTP packets. At the Axis level, the abstractions are
SOAP messages with some additional context. For example, on the provider side, the
target service is determined by the target URL of the HTTP packet. This piece of context
information is "attached" to the actual SOAP message by the Axis servlet that listens for
HTTP-based Web service requests. The job of a service-level developer is to create an
abstraction layer that maps Java APIs to and from SOAP messages. During SOAP
messaging, a little more work needs to happen at this level than when doing RPCs. The
reason is that data must be manually encoded and decoded by both the Web service
client and the Web service backend. Finally, at the top of the stack on both the requestor
and provider sides sits the application developer who is happily insulated from the fact
that Web services are being used and that Axis is the Web service engine. The
application developer needs only to understand the concepts pertaining to his application
domain—in this case, purchase orders and invoices.

SOAP Protocol Bindings

So far in this chapter, we have only shown SOAP being transmitted over HTTP. SOAP,
however, is transport-independent and can be bound to any protocol type. This section
looks at some of the issues involved in building Web services and transporting SOAP
messages over various protocols.

General Considerations

The key issue in deciding how to bind SOAP to a particular protocol has to do with
identifying how the requirements for a Web service (RPC or not, interaction pattern,
synchronicity, and so on) map to the capabilities of the underlying transport protocol. In
particular, the task at hand is to determine how much of the total information needed to
successfully execute the Web service needs to go in the SOAP message versus
somewhere else.

As Figure 3.18 shows with an HTTP example, many protocols have a packaging notion. If
SOAP is to be transmitted over such protocols, a distinction needs to be made between
physical (transport-level) and logical (SOAP) messages. Context information can be
passed in both. In the case of HTTP, context information is passed via the target URI and
the SOAPAct i on header. Security information might come as HTTP username and
password headers. In the case of SOAP, context information is passed as SOAP headers.

Figure 3.18. Logical versus physical messages.

POST /LookupCentral HTTP/1.1 |P“5’5i°a' {Communication Protocol) Message

Host: www.lookupcentralserver,
Content-Type: text/xml; charset="utf-8°
Content-Length: nnnn

S0APAction: "Directory/LookupPerson” —{ Out-of-message context (SOAPAction)

Out-of-massage context (targat URI)

<SOAP-ENV: Envelope | Logical SOAP Message
xmlns:S0AP-ENV="http://schemas.xmlsoap.org/soap/envelope/”
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/ " />

<S0AP-ENV :Header> | SOAP Headers

<a:AuthorizationLevels In-message contesxt
xmlns:a="some-URI">
<AeallyVeryHigh/>
<fa:AuthorizationLevel=

< [S0AP -ENV:Header>

<S0AP-ENV:Body> SOAP Body
<m:LookupPerson
xmlns:m="%ome-URI"=>
<FirstName>Big<FirstName>
<LastName=Boss</LastName>
</m:LookupPerson=
< /SOAP - ENV: body>

<[S0AP-ENV:Envelopes>

Sometimes, SOAP messages have to be passed over protocols whose physical messages

do not have any mechanism for storing context. Consider pure sockets-based exchanges.
By default, in these cases the physical and the logical message are one and the same. In
these cases, you have four options for passing context information:

e By convention, as in, “When listening on port 12345, I know that I
have to invoke service X.”

e By entirely using SOAP’ s header—-based extensibility mechanism to pass
all context information.

e By custom-building a very light physical protocol under SOAP
messages, as in, ~The first CRLF delimited line of message will be
the target URI; the rest will be the SOAP message.”

e By using a lightweight protocol that can be layered on top of the
physical protocol and can be used to move SOAP messages. Examples of
such protocols are Simple MIME Exchange Protocol (SMXP) or Blocks
Extensible Exchange Protocol (BEEP).

As in most cases in the software industry, reinventing the wheel is a bad idea. Therefore,
the second and fourth approaches listed here typically make the most sense. The first
approach is not extensible and can leave you in a tight spot if requirements change. The
third approach smells of reinventing the wheel. The cost of going with the second

approach is that you have to make sure that all clients interacting with your Web service
will be able to support the necessary extensions. The cost of going with the fourth
approach is that it might require additional infrastructure for both requestors and
providers.

Another consideration that comes into play is the interaction pattern supported by the
transport protocol. For example, HTTP is a request-response protocol. It makes RPCs and
request-response messaging interactions very simple. For other protocols, you might
have to explicitly manage the association of requests and responses. As we mentioned in
the previous section, Chapter 6 discusses this topic in more detail.

Contrary to popular belief, Web services do not have to involve stateless interactions. For
example, Web services could be designed in a session-oriented manner. This is probably
not the best design for a high-volume Web service, but it could work fine in many cases.
HTTP sessions can be leveraged to provide context information related to the session.
Otherwise, you will have to use a session ID of some kind, much in the same way a
message conversation ID is used.

Finally, when choosing transport protocols for Web services, think carefully about
external requirements. You may discover important factors entirely outside the needs of
the Web service engine. For example, when considering Web services over sockets as a
higher-performance alternative to Web services over HTTP (requests and responses don't
have to go through the Web server), you might want to consider the following factors:

e If services have to be available over a public unsecured network, is
it an acceptable risk to open a hole through the firewall for Web
service traffic?

e Can clients support SSL to ensure the privacy of messages?
Surprisingly, some clients can speak HTTPS but not straight SSL.

e What are the back—end load balancing and failover requirements?
Straight sockets—based communication requires sticky load balancing.
You establish a session with one server and you have to keep using
this server. This approach potentially compromises scalability and
failover, unless steps are taken to build request redirection and
session persistence and failover capabilities into the system.

As with most things in the software industry, there is no single correct approach and no
single right answer. Investigate your requirements carefully and do not be easily tempted
by seemingly exciting, out-of-the-ordinary solutions. The rest of this section provides
some more details about how certain protocols can be used with SOAP.

HTTP/S

This chapter has shown many examples of SOAP over HTTP. The SOAP specification
defines a binding of SOAP over HTTP with the following set of rules:

e The MIME media type of both HTTP requests and responses (defined in
the Content—Type HTTP header) must be text/xml.

e Requests must come as HTTP POST operations.

e The soOAPActi on header is reserved as a hint to the SOAP processor as
to which Web service is being invoked. The value of the header can be
any URI; it is implementation—specific.

e Successful SOAP message processing must return an HTTP error code in
the 200 range. Typically, this is 200 OK.

e In the case of an error generated while processing the SOAP message,
the HTTP response code must be 500 Internal Server Error and it must
include a SOAP message with a Fault element describing the error.

In addition to these simple rules, the SOAP specification defines how SOAP messages can
be exchanged over HTTP using the HTTP Extension Framework (RFC 2774,
http://www.normos.org/ietf/rfc/rfc2774.txt), but this information is not very relevant to
us.

In short, HTTP is the most commonly used mechanism for exchanging SOAP messages. It
is aided by the industry's experience building relatively secure, scalable, reliable
networks to handle HTTP traffic and by the fact that traditional Web applications and
application servers primarily use HTTP. HTTP is not perfect, but we are very good at
working around its limitations.

For secure message exchanges, you can use HTTPS instead of HTTP. The most common
extension on top of what the SOAP specification describes is the use of HTTP usernames
and passwords to authenticate Web service clients. Combined with HTTPS, this approach
offers a good-enough level of security for most e-commerce scenarios. Chapter 5
discusses the role of HTTPS in Web services.

SOAP Messages with Attachments

SOAP messages will often have attachments of various types. The prototypical example
is an insurance claim form in XML format that has an accident picture associated with it
and/or a scanned copy of the signed accident report form. The SOAP Messages with
Attachments specification defines a simple mechanism for encoding a SOAP message in a
MIME multipart structure and associating this message with any number of parts
(attachments) in that structure. These attachments can be in their native format, which
is typically binary.

Without going into too many details, the SOAP message becomes the root of the

multipart/related MIME structure. The message refers to attachments using a URI with

the ci d: prefix, which stands for "content ID" and uniquely identifies the parts of the

MIME structure. Here is how this is done. Note that some long lines (such as the

Cont ent - Type header) have been broken in two for better readability:

MIME-Version: 1.0

Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml;
start="<claim061400a.xml@claiming-it.com>"

Content-Description: This is the optional message description.

--MIME_boundary

Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: 8bit

Content-1D: <claim061400a.xml@claiming-it.com>

<?xml version="1.0" ?>
<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>

<theSignedForm href="cid:claim061400a.tiff@claiming-it.com"/>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

--MIME_boundary

Content-Type: image/tiff
Content-Transfer-Encoding: binary

Content-1D: <claim061400a.tiff@claiming-it.com>

...binary TIFF image...
--MIME_boundary--

One excellent thing about encapsulating SOAP messages in a MIME structure is that the
packaging is independent of an actual transport protocol. In a sense, the MIME package
is another logical message on top of the SOAP message. This type of MIME structure can
then be bound to any number of other protocols. The specification defines a binding to
HTTP, an example of which is shown here:

POST /insuranceClaims HTTP/1.1

Host: www.risky-stuff.com

Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml;
start="<claim061400a.xml@claiming-it.com>"

Content-Length: XXXX

SOAPAction: http://schemas.risky-stuff.com/Auto-Claim

SOAP over SMTP

E-mail is pervasive on the Internet. The important e-mail-related protocols are Simple
Mail Transfer Protocol (SMTP), Post Office Protocol (POP), and Internet Message Access
Protocol (IMAP). E-mail is a great way to exchange SOAP messages when synchronicity is
not required because:

e E-mail messages can easily carry SOAP messages.

e E-mail messages have extensible headers that can be used to transmit
context information outside the SOAP message body.

e Both sending and receiving of e—mail messages can be configured to
require authentication. Further, using S/MIME with e-mail provides
additional security for a range of applications.

e E-mail can support one—to—one and one—to—many participant
configurations.

e E-mail messaging is buffered and queued with reliable dispatch that
automatically includes multiple retries and failed delivery
notification.

e The Internet e—mail server infrastructure is highly scalable.

Together, these factors make e-mail a very suitable alternative to HTTP for asynchronous
Web service messaging applications.

Other Protocols

Despite its low-tech nature, FTP can be very useful for simple one-way messaging using
Web services. Access to FTP servers can be authenticated. Further, roles-based
restrictions can be applied to particular directories on the FTP server. When using FTP,
SOAP messages are mapped onto the files that are being transferred. Typically, the file
names indicate the target of the SOAP message.

In addition, with companies such as Microsoft backing SMXP for their Hailstorm
initiatives, the protocol is emerging as a potential candidate to layer on top of straight
socket-based communications for transmission of SOAP messages.

Finally, sophisticated messaging infrastructures such as IBM's MQSeries, Microsoft's
Message Queue (MSMQ), and the Java Messaging Service (JMS) are well-suited for the
transport of SOAP messages. Chapter 5 shows an example of SOAP messaging using
JMS.

The key constraint limiting the wide deployment of SOAP bindings to protocols other than
HTTP and e-mail is the requirement of Web service interoperability. HTTP and e-mail are
so pervasive that they are likely to remain the preferred choices for SOAP message
transport for the foreseeable future.

Summary

This chapter addressed the fourth level of the Web services interoperability stack—XML
messaging. It focused on explaining some of the core features of XML protocols and
SOAP 1.1 as the de facto standard for Web service messaging and invocation. The goal
was to give you a solid understanding of SOAP and a first-hand experience building and
consuming Web services using the Apache Axis engine. To this end, we covered, in some
detail:

e The evolution of XML protocols from first—generation technologies
based on pure XML 1.0 (WDDX and XML-RPC) to XML Schema—and Namespace-—
powered second—generation protocols, of which SOAP is a prime
example. The chapter also discussed the motivation and history behind
SOAP’ s creation.

e The simple yet flexible design of the SOAP envelope framework,
including versioning and vertical extensibility using SOAP headers.
In SOAP, all context information orthogonal to what is in the SOAP
body is carried via headers. SOAP’ s envelope framework allows you to
design higher—level protocols on top of SOAP in a decentralized
manner.

e SOAP intermediaries as the key innovation enabling horizontal
extensibility. Because of intermediaries, Web services can be
organized into very flexible system and network architectures and
value—added services can be provided on top of basic Web service
messaging.

e SOAP error handling using SOAP faults. Any robust messaging protocol
needs a well-designed exception—handling model. With their ability to
communicate error information targeted at both software and humans,
as well as clearly identifying the source of the error condition,
SOAP faults make it possible to integrate SOAP as part of robust,
mission—critical systems.

e Encoding data using SOAP. The chapter covered both SOAP’ s abstract
data model encoding and a number of other heuristics for determining
an appropriate data representation model for SOAP messages.

e Using SOAP for both messaging and RPC applications. By design, SOAP
is independent of all traditional aspects of messaging: participant
organization, interaction pattern, synchronicity, and so on. As a
result, SOAP can be used for just about any distributed system. This
chapter provided some guidelines that help narrow the space of what
is possible to the space of what makes sense in the real-world
solutions.

e Using SOAP over multiple protocols. The SOAP specification mentions
an HTTP binding for SOAP, but Web services can be meaningfully bound
to many other packaging and protocol schemes: MIME packages to
support attachments, SMTP for scalable asynchronous messaging without
the need for special middleware, and many others.

During the course of the chapter, we developed two meaningful e-commerce Web
services for SkatesTown: an inventory check RPC service (with or without e-mail
confirmations) and a purchase order submission messaging service. Our implementation
on both the server and the client used design best practices for separating data and
business logic from the details of SOAP and XML processing.

The Road Ahead

This chapter focused on the de facto standard protocol for Web service invocation as of
the time of this writing—SOAP 1.1. (SOAP 1.2 is still in early draft stage.) However,
many more pieces to the puzzle are required to bring meaningful Web services-enabled
business solutions online. The rest of the book will complete the Web services puzzle.
Chapter 5 focuses on building secure, robust, scalable enterprise-grade Web services.
Chapter 6 introduces the concept of service descriptions and the Web Services
Description Language (WSDL). Chapter 7 discusses service registries and the Universal
Description, Discovery and Integration (UDDI) effort. Chapter 8 reviews the state of the
currently available Web services tooling. Chapter 9 looks at the exciting world of Web
service futures. This said, the next chapter offers a short detour for those who are truly
excited about building and consuming extensible, high-performance Web services—it is
about building Web services using the advanced features of Apache Axis.

Resources

< BEEP—RFC 3080: "The Blocks Extensible Exchange Protocol Core" (IETF, March 2001).
Available at http://www.ietf.org/rfc/rfc3080.txt.

e DOM Level 2 Core—W3C (World Wide Web Consortium) Document Object Model Level 2
Core (W3C, November 2000). Available at http://www.w3.0rg/TR/2000/REC-DOM-Level-
2-Core-20001113.

e HTTP extensions—RFC 2774: "An HTTP Extension Framework" (IETF, February 2000).
Available at http://www.ietf.org/rfc/rfc2774.txt.

e HTTP/1.1—RFC 2616: "Hypertext Transfer Protocol—HTTP/1.1" (IETF, January 1997).
Available at http://www.ietf.org/rfc/rfc2616.txt.

 JAXP—Java API for XML Processing 1.1 (Sun Microsystems, Inc., February 2001).
Available at http://java.sun.com/xml/xml_jaxp.html.

e MIME—RFC 2045: "Multipurpose Internet Mail Extensions (MIME) Part One: Format of
Internet Message Bodies" (IETF, November 1996). Available at
http://www.ietf.org/rfc/rfc2045.txt.

e SMXP—Simple MIME eXchange Protocol (SMXP) (First Virtual, May 1995). Available at
http://wuarchive.wustl.edu/packages/first-virtual/docs/smxp-spec.txt.

e XML—Extensible Markup Language (XML) 1.0, Second Edition (W3C, August 2000).
Available at http://www.w3.0rg/TR/2000/WD-xml-2e-20000814.

e XML Namespaces—"Namespaces in XML" (W3C, January 1999). Available at
http://www.w3.0rg/TR/1999/REC-xml-names-19990114.

e XML Schema Part 1: Structures—"XML Schema Part 1: Structures" (W3C, May 2001).
Available at http://www.w3.0rg/TR/2001/REC-xmlIschema-1-20010502.

e XML Schema Part 2: Datatypes—"XML Schema Part 2: Datatypes" (W3C, May 2001).
Available at http://www.w3.0rg/TR/2001/REC-xmlischema-1-20010502.

Why and What Is Axis?

Axis is the latest version of the Apache SOAP project. The acronym Axis means Apache
Extensible Interaction System, a fancy way of saying it's a SOAP processor that allows
for an assortment of pluggable components to be configured in a variety of ways. We
chose this SOAP processor for a few reasons. First, most of the authors of this book are
(or have been) involved in the development of Axis from its inception. Second, we
believe that Axis's flexibility and overall design will allow it to become one of the leading
SOAP processors very quickly. And third, because it is an Apache open source project, we
believe it will gain the benefits of having contributors from a wide range of backgrounds
and companies, giving it a technological edge over other SOAP implementations. But,
only time will tell.

Apache SOAP v2 (http://xml.apache.org/soap), the predecessor to Axis, is a fairly good
implementation of the SOAP specification, but it has its limitations. Although it can be
used for deploying Web services, the performance and pluggability of SOAP v2 leave a lot
to be desired. At the time of this writing, Axis is already quite a bit faster than SOAP v2;
and although SOAP v2 provides some level of pluggability for components like different

kinds of Web services or for different transports m these features were added as an
afterthought—the design deficiencies of these features shows through in their usability
(or lack thereof). SOAP v2 also isn't fully compliant with the SOAP 1.1 specification.

It is important to note that at the time of this writing Axis has not yet released its first
version. It has, however, released an alpha version. This alpha version is not complete
(or fully SOAP 1.1 spec compliant), but it is functional enough for people to start kicking
the tires and getting a feel for whether the architecture is good. By the time the first
release does come out (before the end of 2001, we hope) it will be fully spec compliant.
As with any project, customer feedback is an important step in the development process,

so releasing an alpha version is a key milestone in Axis' development cycle. This chapter
will focus mainly on the current functionality of Axis—when appropriate, however, it will
give insight into the possible future features of Axis (the design could change).

The Axis Architecture

From the start, Axis was designed with a completely open and pluggable architecture. In
its simplest form, Axis can be viewed as a thin layer that sits between the business logic
and the network transport carrying your data.

As depicted in Figure 4.1, Axis is simply the means by which the SOAP message is taken
from a transport (such as HTTP) and handed to the Web service and the means by which
any response is formatted as a SOAP message to then be sent back to the requestor.
Although this might seem like an oversimplification, Axis is designed to be used in a wide
range of environments and by deployment engineers with varying skill levels. When
you're first experimenting with Web services, or if you don't need complex
configurations, Axis by default will make the deployment of Web services very easy. The
"Simple Web Services" section will describe this further by showing you how to quickly
take Java code and deploy it as a Web service in Axis. However, if you need a more
complex processing model, Axis can be configured to support that, too.

Figure 4.1. Basic overview of Axis.

Requestor [][] Axis Engine <€——» Web service

HTTR SMTR,
MO, ete. ..

Axis Components

Next, we're going to focus on the various components of Axis. Each item in the following
list will be discussed in more detail, but here's brief summary of the key components:

e Axis Enginem— The main entry point into the SOAP processor

e Handlers @3— The basic building blocks inside Axis that link Axis
to existing back—end systems

. Chain— An ordered collection of handlers (and a handler

itself)

e Transports— Mechanisms by which SOAP messages flow into and out of
Axis

e Deployment/Configuration— Means through which Web services are made
available through Axis

e Serializers/Deserializers— Code that will convert native (for
example, Java) datatypes into XML and back

Axis Engine

As you could probably guess, the Axis engine is the focal point of the Axis SOAP
processor. The engine's job is to act as the main entry point into Axis' message
processing model as well as to coordinate the SOAP message's flow through the various

components. The engine is also responsible for ensuring that the SOAP semantics are
followed—for example, it will verify that the nust Under st and checks are properly
performed. In the following sections, we'll discuss the other components that make up
the processing model, but it is important to know that the engine is the piece responsible
for coordinating the order in which those other components are invoked. As we discuss
each of these components, we'll describe their interaction with the engine in more detail.

During the design process of Axis, it was realized that it would be impossible to design a
SOAP message processor in such a way that it could work for the wide-ranging uses we
wanted for Axis unless it was flexible enough to allow deployment engineers
(configuration administrations) to control the message flow itself. Allowing people to tell
Axis which message processing logic to perform, in what order, and when, became a
clear requirement. It also became apparent that there would be no way of knowing how
people would want to process the SOAP messages. For example, many people see SOAP
as simply another Remote Procedure Call (RPC) mechanism—which is a valid use.
However, there is no reason the exact same SOAP message that might be treated as an
RPC message by one SOAP processor could not be treated as an XML document and
simply run through an XSLT processor by another. As long they both adhere to the SOAP
specification, and of course follow the semantic rules defined by the Web service
definition, exactly how the SOAP message is processed is wide open. So, how does Axis
handle these challenges? Handlers and chains.

Handlers and Chains

At its most basic level, Axis is all about chaining together pieces of message processing
logic. Figure 4.1 shows just one piece: the Web service itself. Often, you'll need to
perform additional processing on the message either before or after the Web service
itself is invoked. For example, some logging might need to take place, or SOAP headers
might need to be processed. You can accomplish this two ways: Place this additional logic
in the Web service itself or allow for additional pieces of code to be executed outside of,
but before and after, the Web service. For this purpose, Axis has the notion of chains.
Chains are simply ordered collections of components (code) that Axis will invoke
sequentially and in the order specified.

The components that are used to build these chains are called handlers. Each handler
has the opportunity to examine or modify the SOAP message in order to complete its job.
For example, it is possible to have a handler in the chain that will look for any encrypted
data in the message and decrypt it before the Web service itself is invoked (SOAP
encryption is explained in more detail in Chapter 5, "Using SOAP for e-Business"). By
modularizing the work in this way, each handler is free to focus on its core job and not
worry about any possible auxiliary work that might need to be done, thereby eliminating
code duplication. Also, if new pre- or post-processing is needed in the future, it becomes
a simple matter of plugging new handlers into the chain through configuration changes to
Axis rather than having to make code changes to the Web service. This also allows third-
party vendors to produce Axis handlers that can be snapped into any configuration
without prior knowledge of the exact environment, configuration, or Web service being
invoked.

Handlers are the basic building blocks inside Axis. Everything, even the Axis engine and
the chains themselves, is a handler. As a result, the deployment engineer is free to
configure Axis in an unlimited number of ways. It is possible for a preprocessing handler
shown in Figure 4.2 to be a chain that itself contains a collection of handlers (or even
more chains). Aside from each handler having access to the SOAP message, each handler
can also be involved in the production of any possible SOAP response message. We'll give
more details in the "Building Handlers" section, but it is worth reiterating that each

handler does have access to (and can change) the request message mand any possible

response message mthat might exist during the processing flow through the Axis
processor.

Figure 4.2. Pre- and post-processing is done by defining a chain.

Web service specific chain

Request Handlers

.ﬂ Pivot Point

/ \ Handler
Axis Web
Requesiy o m Engine SErvice
®| /
N

Response Handlers

Chains are the mechanisms by which handlers are grouped together. The concept is
simple; a chain is an ordered collection of handlers that together can be viewed as a
single unit of processing. As with any good rule, there is a slight complication—certain

types of chains have the notion of a pivot point mhandler, which is the point at which
the chain notes that it has switched from processing the request SOAP message (request
processing) and is now processing the response SOAP message (response processing).
The need for this logical split between request, pivot point, and response handlers in a
chain will be made clearer later. This pivot point handler also serves as the one handler
in these types of chains that is the real reason the chain exists—to dispatch the message
to the target Web service (the other handlers are there for request and response
processing of the message). The most common use of this type of chain (also called

targeted-chain because it is viewed as pointing to the pivot point handler) is the
Web service—specific chain. In Figure 4.2, a Web service chain has request and response
processing handlers defined, but the pivot point handler invokes the Web service. Even
though Axis has, for programmer convenience, defined a particular kind of chain
encapsulating these three pieces, when a chain is defined there is no reason that all
three pieces need to be used. For example, it is possible to define a chain that is just a
collection of handlers without a specific pivot point—it is there merely as a configuration
option.

Figure 4.2 shows that it is possible to define a chain of handlers that are invoked for a
particular Web service. However, what if chains need to be invoked for all Web service
invocations flowing through Axis? Or, what if certain chains need to be invoked only if the
message came in on HTTP, whereas if the message was delivered via SMTP those chains
should not be invoked? To support these configurations, Axis has the notion of transport

specific chains and global chains m

As shown in Figure 4.3, Axis allows the definition of chains that are invoked based on the
type of transport used in the delivery of the SOAP message (transport specific chains)
and chains that should be invoked for all Web services (global chains).

Figure 4.3. Axis includes three different levels of chaining.

Transport Global Web sarvice specilic chain

Request Request Raquest Handlers
Chain Chain

THT
o1y \
roquestr [IRER>| sorve

N

Transport Global

Response| |Response Rasponse Handlers
Chain Chain

Transport-specific chains might be defined to process such things as transport-specific
compression, or authentication. The "Configuration Methods" section will discuss the way
to deploy chains, but it is important to note that transport specific chains are targeted-
chains. The request and response sides are clearly separated so that the Axis engine
knows exactly which subset of handlers to invoke at the start of the message flow and
which set to invoke at the end of the message flow. Although it was possible to design
Axis so that there were two completely separate chains defined (rather than one with a
request and a response side), it was decided that because they would always be used in
conjunction with each other, and because it is expected that there will be a large number
of transport specific chains, it would be easier from a usability point of view to define
them as one chain with two sides.

Global chains come in handy in cases when all Web services require the same processing
regardless of how the message was delivered or what the specific Web service itself is—
for example, SkatesTown might want to keep a log of all Web service requests, and
placing a logging handler in the global chain becomes a cleaner way of deploying it than
placing it in each Web service—specific chain. Unlike transport chains that use targeted-
chains, the global chain is split into two separate chains. Because, conceptually, there is
only one global chain, it was decided that it would be easier for deployment engineers to
define two separately named chains (gl obal . request and gl obal . response) rather
than one chain with two sides. We'll discuss the details of how to name chains in the
"Configuring Axis" section.

Within the Axis server-side engine, the order of chain processing is as follows:

1. If a transport—-specific chain is defined, then the handlers labeled
as the request handlers defined for that chain are invoked.

2. If a chain named gl obal . request is defined, then it is invoked.

3. The Web service - specific chain is invoked. Exactly how the Web
service - specific chain is identified is discussed later. As noted
before, this chain is a targeted—chain and has three groupings of
handlers: the request handlers, the Web service itself (at the pivot
point), and the response handlers. They are invoked in that order.

4. If a chain named gl obal . response is defined, it is invoked.

5. If a transport specific chain is defined, then the handlers labeled
as the response handlers defined for that chain are invoked.

This processing model should allow a deployment engineer to have the complete
flexibility of placing any handler at any point in the flow of messages through the server
Axis engine.

In Figure 4.3, the Web service is shown as a handler at the pivot point in the Web

service— specific chain. One layer of code is not shown: the dispatcher .

Figure 4.4 shows a dispatcher as the pivot point handler in the Web service—specific
chain. Like all handlers, this dispatcher is responsible for acting as the bridge between
Axis and your business logic. It is the job of the dispatcher to locate and invoke the
appropriate piece of code associated with the desired Web service. For example, Axis

comes with an RPCDispatcher whose job is to convert the SOAP message from
XML into Java objects, locate the appropriate Java method to invoke, invoke it, and
convert any possible response data back into XML and place it in the response SOAP
message. By having a dispatch handler do this work, it can be used for any Java Web
service invoked. Likewise, the Web service itself does not need to be concerned with the
details of how the data was delivered or how to convert XML into Java objects; it can
concentrate on doing its real job.

Figure 4.4. Handlers, acting as dispatchers, are the bridges between Axis and application
logic.

Request Handlers

ﬂ. - -

N

Dispatcher <€—>

v

Response Handlers

Web
service

«—] H I

Although dispatchers have been presented in the context of invoking the Web service,
any of the handlers in any of the chains could be dispatchers. In other words, there is no
reason why any of the request/response processing handlers need to have the business
logic directly inside them. Those handlers could be dispatchers that extract the necessary
data from the SOAP message and pass it along to external code in the proper format.

Transports

In order to complete the overall picture of the Axis architecture, one more piece of the
puzzle needs to be brought in: transports. All the figures show a single Axis engine with a
single transport delivering the SOAP message; however, this need not be the case.

Figure 4.5 shows that Axis can support a variety of transports, not just HTTP. Actually,
Axis itself doesn't support multiple transports. Axis is designed such that the Axis engine
can be viewed simply as a chunk of code that is called with an incoming message and

returns an outgoing message. Transport Iistenersﬁzl (such as servlets that wait for a
SOAP message), although key in the overall picture of how Axis is used, are themselves

not part of the Axis engine. It is assumed that the mechanism by which the Axis engine
is created (a new one on each request or shared instance) will be managed by the
transport listeners. Axis comes with a set of transport listeners (such as the

Axi sSer vl et) that you can use, but if you require special processing, it is assumed that
you will modify the shipped transport listener to suit your needs or write a new one.

Figure 4.5. Multiple transports.

Transport
Listeners
1

Requestor I] HTTP T/L

Requestor ||| Em SMTP T/L
|

Requestor |] FTP T/L

L — =

Axis
Engine

The role of the transport listener is to deliver the SOAP message to the Axis engine. This
could mean listening on port 80 for an HTTP request or waiting for a file to be FTPed to a
certain directory and then handing that message to the Axis engine. Aside from invoking
the Axis engine, the transport listener must also tell the Axis engine which transport was
used—this allows Axis to invoke any transport-specific chain that might have been
configured.

The delineation between whether certain processing should be in the transport listener or
in the transport specific chain is an issue left up to the deployment engineer. For
example, in the HTTP case, the servlet waiting for SOAP requests can also perform any
basic HTTP authentication checks before invoking the Axis engine. It is also perfectly
acceptable for the servlet to not perform that check and leave it up to a handler on the
transport specific chain to do it. The choice is left open.

Listing 4.1 shows a sample transport listener that does nothing more than look for a file
called i nMsg in the current directory. If the file is found, the transport listener uses it as
the requesting SOAP message, calls Axis on it, and then places any response back into a
file called out Msg.

Listing 4.1 Fi |l eLi stener.java

import java.io.File;

import java.io.FilelnputStream;

import java.io.FileOutputStream;

import java.io.FileNotFoundException;

import org.apache.axis.AxisFault;

import org.apache.axis.AxisEngine;

import org.apache.axis.server.AxisServer;
import org.apache.axis.Message;

import org.apache.axis.MessageContext;
import org.apache.axis.message.SOAPEnvelope;
import org.apache.axis.message.SOAPFaultElement;

public class FileListener {
public void run() {
while (true) {

try {
// Look for an incoming msg, create a new Message object

FilelnputStream input = new FilelnputStream(*'inMsg™);
AxisEngine engine = AxisServer.getSingleton();
MessageContext msgContext = new MessageContext(engine);
Message msg = new Message(input);

try {
//Set i1t as the "request" message

msgContext.setRequestMessage(msg) ;

// Set the Transport
msgContext.setTransportName(*"file™);

// Invoke the Axis engine
engine. invoke(msgContext);
}
catch(Exception e) {
// Catch any error and stick it in the response
if (1(e instanceof AxisFault))
e = new AxisFault(e);
AxisFault af = (AxisFault)e;
msg = msgContext.getResponseMessage();
if (msg == null) {
msgContext.setResponseMessage(new Message(af));
} else {
SOAPEnvelope env = msg.getAsSOAPEnvelope();
env.clearBody();
env.addBodyElement(new SOAPFaultElement(af));

}
}

// Close and delete the incoming message
input.close();
(new File("inMsg™)).delete();

// Place the response message in a file called "outMsg"
msg = msgContext.getResponseMessage();

FileOutputStream output = new FileOutputStream(outMsg™);
String result = (String)msg.getAsString();
output.write(result.getBytes());

output.close();

System.out.printIn(*'Processed a request™);
} catch(Exception exp) {
if (I(exp instanceof FileNotFoundException))
exp.printStackTrace();
}

// Sleep for a sec and then loop

try {
Thread.sleep(1000);

} catch(Exception e) {

}
}
}

static public void main(String[] args) {
(new FileListener()).run();

}
}

Let's walk through this example. The Fi | eLi st ener's run() method will loop forever
while waiting for a new message to arrive. Once there, an | nput St r eamis created for it.
The listener will then ask Axis for an instance of an Axi sSer ver —the get Si ngl et on()

method will return the same instance each time. Next we create a MessageCont ext
object. This will be discussed more in the "Building Handlers" section, but for now it is
simply an object that will contain all the data (request and response messages, meta-
data, and so on) about this current SOAP message flow; it is passed to each handler as it
is invoked. Inside this object we place a new Message object that is created by passing in
the file's | nput St r eam This will be the request message. There's only one more thing to
do before we invoke the engine, and that's to tell Axis the name of the transport that was
used to retrieve the message—in this case, fi | e. When the engine wants to invoke the
transport-specific chain, it will look for one named fi | e and, if found, invoke it.

The rest of the code processes any result from the engine. We must, of course, handle

any error conditions. The Axis engine can throw an AxisFault w(see the "Fault”
section) that must be caught and used to create a response message. The cat ch block
will also check to see if a response message already exists and clear any XML from the
Body section if there is one.

In either the successful case or the faulting case, the code will then get the response
message as a Stri ng, write it out to a file called out Msg, and then go look for more
messages.

Completing the overall picture of what the Axis engine's architecture looks like, we have
Figure 4.6.

Figure 4.6. Complete Axis architecture.

Transport Global Web sarvice specific chain

Request Request Request Handlers
Chain Chain

i/’-\

Dispatcher

i"\ v

Transport Global
Response| |Response

Response Handlers
Chain Chain

¥

Web
sarvice

Although the final picture of the Axis engine's processing model might seem a bit
complex, it really is nothing more than defining handlers and chains. Of course, we've
overlooked one very important issue; up to this point, the focus has been on what an
Axis engine does when it is on the receiving side of the SOAP message path (the server).
Axis can be used on the client side, as well. With just a few slight changes, all the
concepts we've mentioned up to now apply on the client as shown in Figure 4.7.

Figure 4.7. Axis client architecture.
Wab service

specific request
handlers

Global | [Transport
Request | | Raquest
Chain Chain

!

: —> Axis Transport
Client g Engine Sender DD

Transport
Global | |Response

Response| | Chain
Chain

Web service
specific response
handlers

It should be clear that almost all the same components that appeared on the server are
on the client as well; they are just invoked in a slightly different order:

1. The request handlers of the Web service - specific request chain are
invoked.

2. The gl obal . request chain is invoked.

3. The transport chain is invoked. Notice that here the entire chain is
invoked, not just the request side. There is no need to split the
request and response invocations because they would be called one
right after the other anyway. Also note that at the pivot point of

the transport specific chain is a transport sender @; more on this
later.

4. The gl obal . response chain is invoked.

5. The response handlers of the Web service - specific response chain are
invoked.

As mentioned in Step 3, there is something new here: a transport sender. A transport
sender is a handler that is responsible for taking the request SOAP message and sending
it to a SOAP server. For example, one of the transport senders that is shipped with Axis
is an HTTP transport sender that will take the request SOAP message, open an HTTP
socket connection to the specified HTTP server, do a POST of the SOAP message, and
wait for a response. The response is then placed in the response message portion of the
MessageCont ext object.

Because transport senders are just handlers, they can be placed in any chain in any
configuration. So, it is technically possible that the transport chain shown in Figure 4.7
could have multiple transport senders if you desire a multicast scenario. It is also
possible that a transport sender could be placed in one of the chains on the server such
that the response message could be sent over a different transport than it was received
on (for example, the transport listener could be an HTTP servlet, but the SOAP response
message could be sent back via SMTP).

Locating the Service Chain

We've talked about how there are service-specific chains, but we haven't yet touched on
how the service chain is selected by the Axis engine. An interesting aspect of SOAP is
that it doesn't mandate how to determine the exact Web service to invoke. This might
seem odd—but it is accurate. Many different common practices have been established,
and each one is valid. Here are just three of the more common ones:

e SOAPActi on— The value of the SOAPAct i on HTTP header is used to match the
service name.

e URL— The URL of the incoming HTTP request is used to match the service name.
For example, if the URL used to access Axis was
http://1 ocal host: 8080/ axi s/ servl et/ Axi sServl et/ MyServi ce, then the SOAP
engine would look for a service chain called nySer vi ce.

¢ Namespace— Perhaps the most used method. It takes the namespace of the first
XML element in the SOAP Body block and tries to find a service chain that
matches.

Axis could have chosen one method, most likely the namespace approach, but doing so
would have limited the options available to its users. Instead, Axis lets you choose how
services are determined. A handler can be written and placed in the transport chain or

global chain that can determine which service chain to choose. This handler is free to use
any algorithm it wants to make this determination. However, if a service chain has not
been selected by the time the Axis engine gets to the point in its processing that it wants
to invoke the service specific chain, it will default to the namespace selection method.

XML Parsing

Axis has been designed and coded with a watchful eye towards performance. For this
reason, when tackling the problem of how to parse an XML stream efficiently, a SAX-
based approach was chosen over a DOM-based one. As we discussed in Chapter 2, "XML
Primer,"” SAX XML parsing does not read the entire XML stream into memory; rather, it
triggers callbacks based on the types of XML tokens that are encountered. It then
becomes the responsibility of those callback routines to do any buffering of data or
saving of state that is needed so that subsequent callbacks still have access to any
previously seen data. Even though SAX is used for parsing, a DOM-based representation
of XML sometimes is used when passing around XML blocks—as will be seen in the
"Document-Centric Services" section. In various discussions and examples in this
chapter, we'll need to talk about concepts and features in terms of using a SAX parser or
writing SAX callback routines. We assume that you are familiar with these concepts, and
we will not explain the specific details of how to write code utilizing a SAX parser in great
detail.

With that overview of what Axis is and how it works, now we can move on to actually
using it.

Installing Axis

Installing an Axis server is relatively simple. In the servlet engine's directory structure is
a webapps directory. This directory contains the various Web applications that are
deployed. The Axis distribution includes a webapps directory as well, and contains a
directory named axi s. Copy the axi s directory into the servlet engine's webapps
directory. In this new axi s directory should be a VEEB- | NF/ | i b directory. There, you
should place all the JAR files Axis will need to run. You should already see axi s.j ar.
Currently, Axis will need one only additional JAR file: xer ces. j ar (available from the
Apache Xerces distribution at http://xml.apache.org) or any other JAXP-compliant parser.
Copy the parser's JAR file into the VEEB- | NF/ | i b directory.

When services are deployed, the Java class files should be placed in the axi s/ V\iEB- | NF/
cl asses directory; or if there are JAR files, they should be placed in the axi s/ \EB-

I NF/1'i b directory. If you plan to use the JWS mfeature of Axis (see the "Simple Web
Services" section), you will also need to make sure that the Java t ool s. | ar file is either
in the axi s/ VAEB-1 NF/ | i b directory or in your servlet engine's classpath.

Installing the client is simply a matter of making sure the axi s. j ar and xer ces. j ar files
are in your classpath.

Configuring Axis

There are four different types of configuration files. Each will contain the same type of
data, but the outermost XML element will vary:

e client-config.xm @3— This is the configuration information for the Axis
engine when it is invoked on the client. This file needs to be in the current
working directory of the client application. This file has the format

e <engineConfig>
. ..configuration XML...
e </engineConfig>

e server-config.xm — This is the configuration information for the Axis

engine when it is invoked on the server. This file needs to be in the servlet
engine’'s axi s/ V\EB- | NF directory in the HTTP case, or in the current working
directory for other transports. This file has the format

e <engineConfig>
o ..configuration XML..
e </engineConfig>

e depl oy. xm @3— This is the file used by the Adni nCl i ent to deploy new

handlers, chains, and services. The Adni nCl i ent is an administrative tool used for
deploying and undeploying Axis resources (such as handlers and chains). The

Adm nCl i ent uses a document-centric Web service—it takes the XML file passed
to it and sends it to the Axis server for processing (more later). Unlike the first
two configuration files, the name of this file can be anything. This file has the
format

e <m:deploy xmlns:m="AdminService">

. ..configuration XML...
e </m:deploy>

e undepl oy. xm w— This is the file used by the Adnmi nCl i ent to undeploy
resources. The Adni nCl i ent will remove any named resources listed as
immediate child elements of the undepl oy XML element. Unlike the first two
configuration files, the name of this file can be anything. This file has the format

e <m:undeploy xmlns:m="AdminService">

. ..resources to be removed..

</m:undeploy>

In the first three cases, ... configuration XM. .. section will contain one of the
following XML elements:

e handler

e <handler name="handler_name" class="class_name'>

. [<option name="option_name" value="option_value"/>]..

e </handler>

o Example:
e <I-- Define an EMail handler -->
e <handler name="EMail" class="com.skatestown.services.EMailHandler" />

e Defines a single handler named handl er name whose class is given by
cl ass_nane. The optional name/value pairs are defined by each specific
handler and will be available to the handler at runtime.

e chain

e <chain name="chain_name" { flow="list _of handlers" |

o request="list of handlers" pivot="handler_name"
o response="list_of handlers"} >

o [<option name="option_name"™ value="option_value"/>]..
e </chain>

]

o Example:

e <I--Define a chain consisting of 2 handlers, a Java RPC Dispatcher

and the Email handler from chapter 3 -->
<chain name="myChain" flow="RPCDispatcher, Email" />

Defines a chain called chain_name that consists of either the list of
handlers specified in the flow attribute or the handlers specified by
the request pivot and response attributes combined. The optional
name/value pairs will be available to the chain at runtime. There are
two reserved chain names: gl obal . request and gl obal . response. These
names should be used when defining the global chains.

service
<service name="service_name" [request="list_of handlers"]
[pivot=""handler_name"]
[response="list_of_handlers"]>
[<option name="option_name" value="option_value"/>]..
</service>

Example:

<I-- Define a service chain with the "RPCDispatcher" at the pivot-point
and Email handler to mail the response. The class and method name
that the RPCDispatcher will use are passed in as options -->
<service name="InventoryCheck" pivot="RPCDispatcher" response="Email">
<option name="className"
value="com.skatestown.services. InventoryCheck"/>
<option name="methodName" value="doCheck"/>
</service>

Defines a service chain consisting of the list of handlers specified
in the request, pivot, and response attributes combined. The optional
name/value pairs will be available to the service at runtime. The
name specified here should match the namespace URI of the first body
entry of the incoming SOAP request message.

transport
<transport name="transport_name" [request="list _of handlers"]
[pivot="handler_name"]
[response="list_of handlers"]>
[<option name="option_name" value="option_value"/>]..
</transport>

Example:

<I-- Define a transport specific chain that will invoke a "uudecode"
handler on the request message and the "uuencode™ handler on the
response message — these will only be invoked for those messages
that come in using the "file" transport -->

<transport name="file" request="uudecode" response="uuencode"/>

Defines a transport chain consisting of the list of handlers
specified in the request, pivot, and response attributes combined.
The optional name/value pairs will be available to the transport
chain at runtime. The name specified on this definition must match

the name of the transport specified by the transport listener on the
set Transport Nane() method.

e beanMappings

e <peanMappings>

o <x:name xmIns:x="namespace_uri" classname="class_name" />
e </beanMappings>

e Example:

e <peanMappings>

o <x:po xmlns:x="http://www.skatestown.com/ns/po"
. classname="www.skatestown.com.data.P0" />
e </beanMappings>

Defines the bean serializer/deserializer class (class nane) to be
used for the bean named nanme in the namespace namespace uri. This is
a convenient way of using the default Java bean serializer and
deserializer for your Java beans. We’ 1l give more details about
serializers and deserializers in the “Data Encoding/Decoding”

section.

e typeMappings

e <typeMappings>

. <x:name xmlns:x="namespace_uri" type="soap_type" serializer="class_name"
. deserializerFactory="class_name" />

o </typeMappings>

o Example:

e <typeMappings>

o <x:PO xmlns:x="http://www.skatestown.com/ns/po" type="po"
. serializer="serializeP0"

. deserializerFactory="deserializePOFactory" />

o </typeMappings>

e Defines a mapping between the type found in the SOAP message
(soap_type) in the specified snamespace namespace uri with the
specified serializer and deserializer. We’ 1l give more details about
serializers and deserializers in the “Data Encoding/Decoding”

section.

The fourth configuration file, undepl oy. xnl , has a slightly different format. In this file,
you just list the types of resources to be undeployed and their names. For example:
<m:undeploy xmIns:m="AdminService">

<handler name="logger" />

<service name="DoCheck" />

<transport name="file" />
</m:zundeploy>

In this example, three resources will be undeployed: a handler named | ogger , a service
chain named DoCheck, and a transport chain named fi | e.

Configuration Methods

You can configure the Axis server two ways: You can modify the server-config. xn file
directly by adding or removing the XML configuration data, or you can use the
AdminClient tool. This tool lets you remotely modify the server's configuration. By
default, Axis will only allow the AdminClient to be run from the same machine as the
server (for security reasons), but this is easily changed (see the "Security" section).

To run the AdminClient, you must first create an XML file with the list of changes to be
made. Inside this XML file should be just the list of resources (handlers, chains, services,
and so on) that should be deployed or undeployed. As previously shown, the XML's root
element should be named depl oy in the case where new resources are being added and
undepl oy when they are being removed. Once all the deployment information is placed in
an XML file, you can invoke AdminClient:

> java org.apache.axis.client.AdminClient
-1 http://localhost:8080/axis/servlet/AxisServiet deploy.xml

Note that this assumes an HTTP transport and that the Axis servlet is available and
waiting for requests on the specified URL
(http://localhost:8080/axis/servlet/AxisServlet). This invocation will work for deploying
new resources to an Axis engine running as a server. To add new resources to an Axis
client engine, you'll need to modify the cl i ent - confi g. xm file used by the client Axis
engine. This file will reside in the current working directory. Following is one of the
sample XML files from Chapter 3 that is used as input to the AdminClient:

<m:deploy xmlns:m="AdminService">
<handler name="URLMapper" class="org.apache.axis.handlers.http.URLMapper"/>
<handler name="ActionHandler"
class="org.apache.axis.handlers.http.HTTPActionHandler"/>

<transport name="http" request="URLMapper"/>

<I-- Chapter 3 example 3 services -->

<handler name="EMail" class="com.skatestown.services.EMailHandler"/>

<service name="InventoryCheck"” pivot="RPCDispatcher" response="EMail">
<option name="className" value="com.skatestown.services. InventoryCheck"/>
<option name="methodName"™ value="doCheck'/>

</service>

<I-- Chapter 3 example 4 services -->

<service name="POSubmission" pivot="MsgDispatcher'>
<option name="className" value="com.skatestown.services.POSubmission"/>
<option name="methodName" value="doSubmission"/>

</service>

</m:deploy>

Although it is possible to run the AdminClient tool to change the configuration
information of the Axis client engine, it is easier to simply modify the cl i ent -
config.xm file that resides in the current working directory.

Once a Web resource is deployed, either to the client or the server, it will be available
until it is undeployed—even across servlet engine restarts.

At the time of publication, Axis' deployment XML files use a very simple XML definition
format. Although this format works for now, it doesn't quite support the full features that
Axis is planning to have. Eventually, Axis will switch to a new XML format called Web

Services Deployment Descriptor (WSDD) @ Although WSDD is still under

development, it should be more robust than the current XML deployment file. One other

advantage is that WSDD will have a WSDL flavor that should allow for Web services that
are defined in WSDL to be deployed by having the WSDD point to their WSDL file. But all
of this is still being designed.

By default, Axis will have several handlers, chains, and services automatically deployed.
If a server-config.xm file is not found in the appRoot / V\EB- | NF directory by the Axis
server, Axis will default to have the following pre-deployed:

e JWSProcessor service— Looks for and processes JWS files (JWS was briefly
discussed in Chapter 3, and will be discussed in more detail later in this chapter).

e RPCProvider handler— Locates and invokes a Java class method.

e AdminService service— Takes as input an XML document that will be interpreted
as a deployment data XML file containing the list of new handlers, chains, and
services to deploy (or undeploy).

e HTTPSender handler— Is used by an Axis client to send a SOAP request to a SOAP
server. It can also be used on the server side when a message should be sent to
another SOAP server using HTTP (for example, an intermediary).

Ifaclient-config.xm fileis not found, then Axis will default to having just one handler
pre-deployed: the HTTPSender , for use in sending a SOAP request over HTTP.

Security

Currently, Axis includes only one minor security feature. By default, the AdminService
will only allow deployment of new resources from the same machine running the Axis
server. By using the enabl eRenpt eAdni n option on the AdminService, resources can be
deployed from any other machine as well. The server-confi g. xm file should be
changed as follows:
<service name="AdminService" pivot="RPCDispatcher">

<option name="className" value="org.apache.axis.util.Admin"/>

<option name="methodName"™ value="AdminService"/>

<option name="enableRemoteAdmin" value="true"/>
</service>

Note, however, that security can be added to Axis through the development of handlers
that perform the desired security checks. This addition is being planned for development
in time for Axis' first release.

Simple Web Services

By far the easiest and quickest way to deploy a Java Web service is through Axis' Java
Web Service (JWS) facility. JWS lets you place a Java file in your Web application
directory structure, and Axis will automatically find it, compile it, and deploy the methods
automatically. Using the example from Chapter 3, we have the JWS (or Java) file shown

in Listing 4.2.
Listing 4.2 | nvent or yCheck. j ws

import org.apache.axis.MessageContext;
import bws.BookUtil;

import com.skatestown.data.Product;
import com.skatestown.backend.ProductDB;

/**
* Inventory check Web service

*/
public class InventoryCheck
{
/**
* Checks inventory availability given a product SKU and
* a desired product quantity.
*
* @param msgContext This is the Axis message processing context
* BookUtil needs this to extract deployment
* information to load the product database.
* @param sku product SKU
* @param quantity quantity desired
* @return true|false based on product availability
* @exception Exception most likely a problem accessing the DB
*/

public static boolean doCheck(MessageContext msgContext,
String sku, int quantity)
throws Exception

{

ProductDB db = BookUtil.getProductDB(msgContext);

Product prod = db.getBySKU(sku);

return (prod !'= null && prod.getNuminStock() >= quantity);
}

}

All you need to do is place this file in the Axis webapps directory structure with a . j ws
extension instead of . j ava. So, to access this example on the CD, because it is in the
ch3/ ex2 directory, the URL for this Web service would be
http://localhost:8080/bws/ch3/ex2/InventoryCheck.jws. It's as easy as that.

One important thing to remember is that all public methods will be available as Web
services. So, use JWS files with care.

Client—Side Programming

Accessing a Web service from the client can be (almost) as easy. In the simplest case of
wanting to access an RPC SOAP service, let's take a closer look at the example from

Chapter 3, shown in Listing 4.3.
Listing 4.3 I nventoryCheckC ient.java
package ch3.ex2;

import org.apache.axis.client.ServiceClient;

/*
* Inventory check web service client
*/
public class InventoryCheckClient {
/**
* Service URL

*/
String url;

/**
* Point a client at a given service URL
*/
public InventoryCheckClient(String url) {
this.url = url;

}

/**
* Invoke the inventory check web service
*/
public boolean doCheck(String sku, int quantity) throws Exception {
ServiceClient call = new ServiceClient(url);
Object[] params = new Object[]{ sku, new Integer(quantity), } ;
Boolean result = (Boolean)call.invoke("", "doCheck™, params);
return result.booleanValue();

}

As shown here, a Servi ceCl i ent mobject is needed. This object is used as the portal
through which the client application connects with the Web service. The constructor takes
the URL of the target SOAP server. Once the Servi ceC i ent object knows where to find
the service, all that is left is to invoke the Web service itself. Notice that the
client.invoke() method call takes three parameters: the value of the HTTP

SOAPAct i on header, which in this call is just an empty string; the name of the Web
service's method to invoke (doCheck); and an array containing the Java objects
representing the parameters for the method. The return value of the i nvoke() method is
a Java object of type Obj ect, so it will need to be cast to the proper return type before it
is used.

Sometimes each parameter passed to the method needs to have a specific name
associated with it. For example, some SOAP servers will use the parameter names in the
method-matching algorithm. In these cases, a slight change to the way i nvoke() is
called is required:

Boolean result = (Boolean) call.invoke(

"doCheck",
new Object[] { new RPCParam(’'skuName", sku),
new RPCParam(*'quantity”, new Integer(quantity))});

Notice that now instead of passing in an array of Java objects, an array of RPCPar ans is
passed in, where each RPCPar am consists of the name of the parameter (skuNane and
guant ity in this example) and the value of the parameter (sku and quanti ty).

When talking with an Axis server or any other SOAP server that does explicit typing of
the XML stream (this means the datatype of the parameters and return value of the RPC
call is placed in the SOAP message), the Axis client can use that typing information to
know how to deserialize the return value. However, some SOAP servers do not do this; in
this instance, they are expecting the client to know the datatype through some other
means (perhaps WSDL). When this occurs, it becomes the responsibility of the client

application to tell the Axis client what type the return value is—which just requires a
couple lines of code. The complete client application looks like Listing 4.4

Listing 4.4 | nvent oryCheckC ient.java
package ch3.ex2;

import org.apache.axis.client.ServiceClient;

/*
* Inventory check web service client
*/
public class InventoryCheckClient
{
/**
* Service URL
*/
private String url;

/**
* Point a client at a given service URL
*/
public InventoryCheckClient(String targetUrl)

{
url = targetUrl;

}

/**
* Invoke the inventory check web service
*/
public boolean doCheck(String sku, int quantity) throws Exception
{
ServiceClient call = new ServiceClient(url);
ServiceDecription sd = new ServiceDescription("return™, true);
sd.setOutputType(new QName(Constants.URI_2001_SCHEMA_XSD, "boolean™));
call.setServiceDescription(sd);
Boolean result = (Boolean) call.invoke(
"doCheck",
new Object[] { sku, new Integer(quantity) });
return result.booleanvalue();

}

In this example we've added the definition of a Ser vi ceDescri ption mobject. This
object is used by the client to notify the Axis client of various pieces of metadata about
the Web service being invoked. In this instance we're defining the Cut put Type (return
type) of the method as a bool ean using the 2001 W3C XML Schema definition. The
Servi ceDescri pti on constructor takes two parameters: a name assigned to this object
(return parameter names aren't used very much as they are basically ignored) and an
indication of whether this service is an RPC service (true indicates that it is). The only

other code change associates this Ser vi ceDescri pti on object with the Servi ceCl i ent,
and this is done through the set Servi ceDescri ption() method call.

Advanced Web Service Deployment

Although JWS files are convenient, sometimes you'll need more complex Web service
configurations. For example, some pre- or post-processing might be needed for a
particular Web service, or perhaps the Web service isn't a Java program and a special
dispatcher is needed (more on these later). In these cases, you can't use JWS files, and
you need a more robust deployment mechanism. This is when you'll use the server -
config.xm file and the Adm nCl i ent (mentioned previously).

For example, let's say we want to deploy the same | nvent or yCheck service in the JWS
scenario, but this time we also want to have a handler email a copy of each response
message. To do this, we must first create a deployment XML file for the Admi nCl i ent :

<m:deploy xmlns:m="AdminService">
<handler name="email" class="com.skatestown.services.EMailHandler" />
<service name="InvetoryCheck™ pivot=""RPCDispatcher" response="email">
<option name="className" value="com.skatestown.services. InventoryCheck" />
<option name="methodName" value="doCheck" />
</service>
</m:deploy>

Notice that we added a handler called enui | , whose class name is

com skat est own. servi ces. EMai | Handl er . In addition, a new service chain is defined
that invokes the RPCDi spat cher and this new email handler. The RPCDi spat cher is the
handler that will locate and invoke the Java method for the Web service. Notice that in
the definition of the service, we provide some options—cl assNane and net hodNane.
These options will be used in the RPCDi spat chhandl er —it will create a new instance of
com skat est own. servi ce. | nvent or yCheck class and then invoke the doCheck method
(of course passing in the parameters from the SOAP request message). To deploy these
new resources, the Adm nCl i ent is used:

> java org.apache.axis.client.AdminClient deploy.xml

Once deployed, we need to copy the | nvent or yCheck. cl ass file into the axi s/ V\EB- | NF/
cl asses directory. We should then be set to run the client.

Document—Centric Services

Up to this point, our focus has been on the simple RPC case where the Web service being
invoked is a Java method. This is just one way to use SOAP and Axis. As discussed in
previous chapters, there is also document-centric SOAP processing. In this scenario,
rather than the SOAP processor converting the XML into Java objects and then calling a
method, the XML is left untouched and is simply handed to a method for processing. This
method is then free to do whatever it wants with the XML. Supporting this approach in
Axis is a simple matter of changing the dispatcher that is used. In the RPC case, an
RPCDi spat cher handler was used; now a MsgDi spat cher handler must be used. This
handler will locate the appropriate method (as specified by the deployment information)
and then call it, passing in the request XML SOAP message as a parameter. The
deployment of a document-centric service will look like this:

<service name="POSubmission" pivot="MsgDispatcher'>
<option name="className" value="POSubmission"/>
<option name="methodName" value="doSubmission"/>
</service>

This code shows the deployment information for a service chain called POSubmi ssi on.
Notice that it uses MsgDi spat cher at the pivot point, and as options it passes in the

cl assNane and the actual method that should be located and invoked. Unlike the RPC
case, where the parameters to the method can be determined by the needs of the
service, MsgDi pat cher assumes that all document-centric methods have the same
method signature, as follows:

public Document doSubmission(MessageContext msgContext, Document xml)
throws AxisFault;

Notice that the service takes two parameters, a MessageCont ext and a Docunent (more
on MessageCont ext later in the "Building Handlers" section; for now, just know that it is
Axis-specific data that is made available to the service if it needs it). The service also
returns a Docunent object, which is used as the body of the response SOAP message.
Notice that the input and output messages are W3C Document objects, and not SAX
events—this is done as a matter of convenience for the handler writer. However, by the
time Axis is released, the handler might have the option of processing the SAX events
directly. If an error occurs during processing, the service should throw an Axi sFaul t
(see the "Faults" section). Listing 4.5 shows a sample service (from Chapter 3).

Listing 4.5 POSubni ssi on.java

package com.skatestown.services;

import org.w3c.dom.Document;
import org.apache.axis.MessageContext;
import javax.xml_parsers.DocumentBuilder;
import javax.xml_parsers.DocumentBuilderFactory;
import com.skatestown.data.PO;
import com.skatestown.data.lInvoice;
import com.skatestown.backend.ProductDB;
import com.skatestown.backend.POProcessor;
import com.skatestown.xml.Serializer;
import com.skatestown.xml.Deserializer;
import bws.BookUtil;
/**
* Purchase order submission service
*/
public class POSubmission {
/**
* Submit a purchase order and generate an invoice
*/
public Document doSubmission(MessageContext msgContext, Document inDoc)
throws Exception
{
// Create a PO from the XML document
DocumentBui lderFactory factory = DocumentBuilderFactory.newlnstance();
DocumentBuilder builder = factory.newDocumentBuilder();
PO po = Deserializer.createPO(inDoc.getDocumentElement());

// Get the product database
ProductDB db = BookUtil.getProductDB(msgContext);

// Create an invoice from the PO
POProcessor processor = new POProcessor(db);
Invoice invoice = processor.processPO(po);

// Serialize the invoice to XML
Document newDoc = Serializer.writelnvoice(builder, invoice);

return newDoc;

}

To deploy it, we use the Admi nCl i ent :
java org.apache.axis.client_AdminClient po_deploy.xml
The po_depl oy. xm file looks like this:

<m:deploy xmIns:m="AdminService'>
<service name="http://www.skatestown.com/ns/po" pivot="MsgDispatcher'>
<option name="className" value="com.skatestown.services.POSubmission'/>
<option name="methodName" value="doSubmission"/>
</service>
</m:deploy>
Although invoking an RPC Web service is relative easy, invoking a document-centric Web

service requires a little more work, but not much. A corresponding client would look like
Listing 4.6.

Listing 4.6 POSubmni ssionClient.]ava
package ch3.ex4;

import java.io.lnputStream;

import java.io.StringWriter;

import org.apache.axis.encoding.SerializationContext;
import org.apache.axis.message.SOAPEnvelope;

import org.apache.axis.message.SOAPBodyElement;
import org.apache.axis.client.ServiceClient;

import org.apache.axis.Message;

import org.apache.axis.MessageContext;

/**
* Purchase order submission client
*/
public class POSubmissionClient {
/**
* Target service URL
*/
String url;

/**
* Create a client with a target URL
*/
public POSubmissionClient(String url) {
this.url = url;

}

/**
* Invoke the PO submission web service
*
* @param po Purchase order document
* @return Invoice document
* @exception Exception 1/0 error or Axis error
*/
public String invoke(InputStream po) throws Exception {
// Send the message
ServiceClient client = new ServiceClient(url);
client.setRequestMessage(new Message(po, true));
client.getMessageContext().
setTargetService("'http://www.skatestown.com/ns/po™);
client.invoke();

// Retrieve the response body

MessageContext ctx = client.getMessageContext();
Message outMsg = ctx.getResponseMessage();
SOAPEnvelope envelope = outMsg.getAsSOAPEnvelope();
SOAPBodyElement body = envelope.getFirstBody();

// Get the XML from the body

StringWriter w = new StringWriter();

SerializationContext sc = new SerializationContext(w, ctx);
body.output(sc);

return w.toString();

}

The example starts by creating a Servi ceCl i ent object and gives it the location of the
SOAP server. Next, it creates an Axis Message object. This object will contain the actual
XML of the SOAP message. As input to the constructor, it takes an input stream (the XML
for the body of the SOAP envelope) and a bool ean indicating whether this XML input
stream is the entire SOAP envelope or just the body—t r ue indicates that it is just the
body. The Servi ceC i ent object is then told of the request message through the

set Request Message() method call, and then the Web service itself is invoked. Once the
service is invoked, the response message is obtained. This allows for the client to access
any part of the response and not just the body. However, in this case, we ask for the first
body element to convert it to a St ri ng and return it.

Data Encoding/Decoding

Switching back to RPC, so far we've deferred the entire notion of how the data is
converted between Java objects and the XML. This section will go into the steps involved
in creating customized serializers and deserializers that can be used in Axis. Although the
concept of what serializers and deserializers do is not terribly complex, writing one for
Axis requires a good working knowledge of how to use a SAX parser. Chapter 2 had a
good, but brief, discussion of how SAX parsers work and how to use them—this section
will assume that you are well versed enough with SAX that usage of SAX terms, without
the details behind them, will be appropriate.

As we discussed in Chapter 2, the concepts of serializers and deserializers are really quite
simple—they are just pieces of code that will convert data (in its native state, such as a
Java object) into XML in the serializing case, and from XML back into the data's native
state in the deserializing case. If your classes are Java beans, then you can use the Bean
serializer and deserializer that comes with Axis. To do this, all you have to do is tell Axis
to use the Bean serializer/deserializer when it encounters your class. For example, on the
client side the code might look like the following:

// register the PurchaseOrder class

String URL = "http://localhost:8080/axis/servlet/AxisServlet”;
ServiceClient client = new ServiceClient(URL);

QName gn = new QName(“'http://www.skatestown.com/ns/po™, "po™);

Class cls = com.skatestown.data.PO.class;

client.addSerializer(cls, gn, new BeanSerializer(cls));
client.addDeserializerFactory(qn, cls, BeanSerializer.getFactory());

In this code, the addSeri al i zer () method will create a serializer association between
the class PO and its namespace, htt p: / / ww. skat est own. coni ns/ po, and the
BeanSeri al i zer. Then we do the same thing for the deserializing side.

While on the server, a beanMappi ng would need to be deployed (for example, in the XML
file passed to the Adni nCl i ent):

<beanMappings xmIns:bid=" http://www.skatestown.com/ns/po'>
<bid:po classname="com.skatestown.data.P0"/>
</beanMappings>

However, sometimes the BeanSeri al i zer isn't enough, and you'll need an even more
customized serializer/deserializer and specialized code that manually examines or creates
the XML. In this case, it is just a matter of writing a few Java classes.

You need a serializing class that should implement the Seri al i zer interface. This
interface has just one method:

public interface Serializer extends java.io.Serializable {
public void serialize(QName name, Attributes attributes,
Object value, SerializationContext context)
throws 10Exception;

}

This method should, construct a block of XML with a root element with the given nane
and attri but es, and the body should be the serialized version of val ue. This method
assumes that SAX events will be generated against the Seri al i zat i onCont ext passed to
it. The Seri al i zati onCont ext object is a utility class that provides functions necessary
for writing XML to a Writer, including maintaining namespace mappings, serialization of
data objects, and automatic handling of multi-ref encoding of object graphs.

Next, you need a class that implements the Deseri al i zati onFact ory interface. This
interface has just one method, as well:

public interface DeserializerFactory extends java.io.Serializable

{

public Deserializer getDeserializer(Class cls);
}

This method should return an instance of the Deseri al i zer class. Whether it returns the
same instance or a new instance each time is an implementation choice—you use a
factory because the deserializers are processing SAX events, so they will need to
maintain some state information between each SAX event callback. If a single

deserializer existed and multiple threads were deserializing objects at the same time,
they would override each other's work.

The final class you need to write is the deseri al i zer class (the class the deseri al i zer
factory returns). This class should extend the Deseri al i zer class. Inside this class
should be any of the SAX callback methods needed to deserialize the incoming SAX event
stream. The exact implementation of these methods is left completely up to you. The
only requirement is that when it is done, the methods set a field in the base

Deseri al i zer class called val ue to the Java object represented by the XML. As a quick
example, Axis comes with a Base64 serializer and deserializer. The deserializer is very
small, and simply implements the SAX char act er s() method:

static class Base64Deser extends Deserializer {
public void characters(char[] chars, int start, int end) throws
SAXException {
setValue(Base64.decode(chars, start, end));

}

The Base64. decode, method does the actual decoding and just returns a Java object.

Building Handlers

Handlers are the key building blocks of Axis. As previously described, configuring Axis
simply requires defining the types of handlers deployed and the order in which handlers
are placed in the chains. A handler is nothing more than a piece of code that examines
some (or all) of a SOAP message and then acts on it. Axis makes no assumptions about
what each handler does; each one is free to do as little or as much work as needed. The
specific details of how to write a handler are outside the scope of this book; however,
we'll give a brief overview here. If you want to write a handler, you should consult the
Axis documentation.

As each handler is invoked, it is passed a MessageCont ext object that contains all the
information about the current state of the processing of the SOAP message. In particular,
some of the key pieces of data in the MessageCont ext are as follows:

e request Message— The SOAP message that is the incoming or requesting
message. Typically this is the message that handlers before the pivot point use as
input.

e responseMessage— The SOAP message that is the outgoing or response message.
Typically this is the message into which handlers after the pivot point will place
their response message (if any).

e target Servi ce— The name of the service-specific chain that will be invoked by
the Axis engine. If a handler's job is to determine which Web service is being
called, it needs to set this field by calling the set Tar get Servi ce() method,
passing it the name of the service-specific chain.

e bag— A Hashtable that can be used to store any metadata about the processing of
the current message. Handlers can use this Hashtable to share information. For
example, one handler can place in it information that another handler, later in the
chain, can then retrieve and use in its own processing. This process requires some
out-of-band knowledge between handlers so they know what key to use to store
and retrieve the data.

The logic inside a handler is relatively straightforward. Each handler, whether it is on the
request chain, on the response chain, or the pivot point handler, can access any of the
data in the MessageCont ext . As a result, both the request and any possible response
message that might exist are available and can be modified. Sometimes a handler can be

placed on the request or the response side of a chain—in this case, requesting the
request or response message explicitly could result in the wrong message being
returned. For this reason, a get Current Message() method on the MessageCont ext
object will return either the request or response message, depending on whether the
handler appears before or after the pivot point.

Once a message has been obtained, the handler is free to examine or process any part of
the message. The handler can ask for the entire message, the body of the message, or
any specific header. Because the SOAP specification has very specific rules for the
processing of nmust Under st and headers, it is important than any handler that does
process a header set the processed flag on that header by calling set Processed(true)
on that SOAPHeader object. Axis will use this information to determine whether to throw
a nust Under st and fault if all the nust Under st and headers have not been processed.

Specialized Pivot Point Handlers, a.k.a. Providers

New technology like Web services can be viewed as simply a new means of accessing
existing IT assets. When you're looking at the wide variety of ways in which data can be
accessed (servlets, Web services, Java RMI, and so on), you can see that each of them
uses a different mechanism for transferring the data from one source to another;
however, the business logic that is executed should not change based on the means of
data transport. In keeping with this separation of roles, Axis' handlers will typically be
written in such a way that they are simply the bridge between Axis and your existing
business logic. Of course, it is possible to write handlers such that all of the code is
contained within the handler itself, but when the next big thing comes along, chances are
it would require more work than if a clean delineation had been kept between the means
of transporting the data and the business logic. This concept is very similar to how many
people write their servlets or JSPs; the HTML presentation logic is in the JSP, whereas the
real work is done through accessing beans or some external Java code.

In keeping with this separation, the pivot point handlers should be written such that their
job is to interpret the incoming SOAP message, locate the business resources needed to
perform the desired task, execute the task, and then place any response data into the
response SOAP message. Although we discuss this subject in terms of a pivot point
handler, this same design pattern can (and should) be used for any of the handlers
written no matter where in the chains they appear.

There is no limit to the types of resources that handlers can access. By the time Axis
ships its first release, it should contain handlers that will enable access to resources such
as:

Enterprise Java Beans

e Scripting languages through the Bean Scripting Framework
e C(COM objects
e J2EE connectors

e (Code fragments in non—Java languages

However, currently, Axis is only at an alpha state, and only two types of handlers come
with it: a Java RPC handler and a Java Message handler. The Java RPC handler will
examine the body of the request message and convert it into a procedure call. In other
words, it will deserialize the XML elements in the body into individual Java objects (the
method parameters) and, based on the method name (also in the body element), call
that specified method with those Java objects as parameters. If there is a return value

from the procedure call, it will be serialized and placed into the body of the response
SOAP message. (It might be useful to examine the code for this handler—you can find it
in the Axis source in a file called

or g/ apache/ axi s/ provi der s/ java/ RPCProvi der. j ava.)

The other handler that comes with Axis is the Java Message handler. This handler is
similar to the Java RPC handler in that it will examine the body of the request SOAP
message to determine which Java method to call. However, unlike the RPC handler,
which will deserialize the XML into Java objects, the Message handler will take the XML as
is and simply pass it along to the desired method untouched. This approach is useful in a
document-centric processing model—one in which the business logic wishes to receive
the data in raw XML rather than to have Axis try to do any conversions.

As long as it is possible to write Java code to access the desired resource, there is no
reason why a handler cannot be written to access it—thus making Axis an incredibly
flexible and powerful SOAP processor. Of course, sometimes a handler's role is to
perform a task that is SOAP specific, and in that case placing the logic inside the handler
itself might make sense. For example, a handler that determines which Web service to
invoke would probably not need to access any back-end systems, but instead would use
just the data in the SOAP message.

Ultimately, the choice of how to design and write a handler is not mandated by Axis, but
rather is left up to the handler writer. Axis does not place any restrictions on your design
choices in hopes that the system remains flexible and pluggable enough that it can be
used in a limitless number of configurations.

Faults

Currently, Axis has a very simple mechanism for dealing with error conditions. The code
(whether it is the Web service or some pluggable component such as a handler) can
throw an exception, which will then be caught by the Axis engine and propagated back to
the transport listener. The transport listener will then typically return it to the client (in
the HTTP case)—but that is an implementation choice. If the exception that is thrown is a
Java exception, it will be converted into a specialized Axis class, Axi sFaul t . This class is
defined to contain all the information that would go into a SOAP fault response message.
The f aul t code is set to Server. gener al Excepti on, and the det ai | part of the fault will
contain the stack trace.

If you require more specialized detail, the code that throws the exception can throw an
Axi sFaul t directly. The Axi sFaul t class has two constructors:

public AxisFault(String code, String str, String actor, Element[] details);
public AxisFault(QFault code, String str, String actor, Element[] details);

Like the SOAP fault definition, Axi sFaul t s contain f aul t code, faul tstri ng,
faultactor, and faul tdetai |l s fields. The QFaul t class is a utility class that contains
the fully qualified name of the fault code (namespace and local name). The

faul t det ai | s field is an array of DOM elements so that the specific XML that is
contained in the fault can be tailored to any specific needs.

When Axis is completed, it is expected to include a more robust system for handling
faults. In particular, some of the ideas being discussed include:

e The ability to define a mapping between Java exceptions and
Axi sFaul t s

e The ability to define fault chains where specific chains will be
invoked based on the type of AxisFault thrown

e The ability for handlers to have an undo mechanism so that some type
of rollback can be performed in the event of an error

These ideas are not guaranteed to be implemented in the first release of Axis; they are
just the current list of ideas being considered.

Message Patterns

It should be obvious that Axis is nicely designed to handle a request/response message
processing pattern. However, it is not limited to this single message-flow pattern. As we
stated earlier, each handler and service has available to it a MessageCont ext object that
will contain both the request and response message; however, you don't have to use
both of these messages. It is possible to configure chains of handlers that process the
request message but produce no response message. In the HTTP transport environment,
doing so might seem strange; but in a non-request/response transport (such as SMTP),
this is a much more likely scenario. In this one-way message pattern, the Axis engine
can be configured to use only handlers that examine the request message and do not use
the response message at all. Note that if a handler is invoked that does generate a
response SOAP message, but the transport listener chooses not to do anything with the
response SOAP message inside the MessageCont ext object, then the response will be
ignored. Axis assumes that the transport listener knows how to deal with the response
message, and if it ignores any response, then that must be the correct behavior.

At the time of this writing, Axis does not yet support the notion of asynchronous message
processing, but it should by the time of its first release. In this model, Axis will allow the
client to asynchronously invoke a Web service and at some later point in time request the
response, thus allowing the client to perform other actions while the Web service is doing
its job.

Building and Deploying an Intermediary

Although Axis can support the notion of a SOAP intermediary, Axis itself needs to do very
little to support it. An intermediary is a SOAP processing node that does some work
based on the requesting SOAP message, but is not the final destination of the message;
S0, it is responsible for forwarding the message to the next SOAP processing node in the
message path. From an Axis configuration point of view, this is a simple matter of
defining a chain that has as its pivot point a Transport Sender handler. This handler will
determine the next SOAP processing node in the message path and send the SOAP
message to it. In this way, the handler is acting like a SOAP client, so the same client
APIs normally used in writing an Axis client application can (and should) be used in this
handler in conjunction with any server-side APIs needed to process or interpret the
incoming SOAP message.

The SOAP specification requires that two things must take place in a SOAP intermediary:
All message headers targeted for this intermediary (for example, the actor attribute on
the header pointing to a certain URI) are removed before the message is sent to the next
SOAP processing node, and if any of those message headers are marked with the

nmust Under st and=1 attribute, they must be understood by this SOAP node or a fault must
be thrown. In order to locate all the SOAP headers targeted for this actor, a handler can
use the following method on the SOAPEnvel ope object:

public Enumeration getHeadersByName(String namespace, String localPart);

This method will return an enumeration of SOAPHeader objects. Once each header is
processed, it is very important that the handler notify the Axis engine that this header
has been processed by calling the set Processed() method:

Enumeration enum = soapEnv.getHeadersByName(http://www.skatestown.com/, "foo™);

while (enum.hasMoreElements()) {
SOAPHeader header = (SOAPHeader) enum.nextElement();
// process header here
header.setProcessed(true);

}

Setting the Processed flag on this header indicates to Axis that the header has been
successfully processed. The Axis engine will then use this information to determine if any
headers in the message marked with a nust Under st and=1 attribute are unprocessed,
and if so throw a nust Under st and fault.

Currently, in the alpha release of Axis, intermediary support is not complete. In
particular, support is not yet included for indicating which headers should be removed
before the message should be sent to the next SOAP processing node.

SOAP V1.2

Axis is written to support the SOAP 1.1 specification. In the alpha release, it
supports/implements almost all of the specification, and by the time the first release is
done, the entire specification will be supported. The W3C XML Protocol working group is
currently working on the next version of the SOAP specification (v1.2), and members of
the Axis development team are constantly watching the group's activity to ensure that
they will fully support that version of the specification.

As of now, the changes proposed to the SOAP specification are not so sweeping that they
will dramatically change the definition of SOAP. The group's main focus is fixing any
ambiguities or bugs in the v1.1 specification. However, a few changes will make a SOAP
v1.2 message incompatible with a SOAP 1.1 message, so those interested in watching
(or being involved in) the working group's activities should join its mailing list. The
group's Web site is at http://www.w3.0rg/2000/xp/Group/.

Monitoring

Axis comes with a tool that can be useful in monitoring the TCP/IP traffic between your

SOAP client and SOAP server. The tool is called t cpnon wand can be executed by
running

java org.apache.axis.utils.tcpmon
or
Java org.apache.axis.utils.tcpmon 81 localhost 8080

The first command will bring up the tool and take you to an Admin page that allows you
to enter a port number on which t cprmon will listen, a target host, and a target port
number to which the incoming request should be routed. By simply routing your SOAP
client's requests through t cpnon, you will be able to see the request and response SOAP
messages. The second command will let you start t cpnon by specifying the listening port
number (81 in the previous example), the target host name, and the port number
(localhost and 8080 in this case) on the command line—thus bypassing the Admin page.
Figure 4.8 shows what t cpnon looks like.

Figure 4.8. TCPMonitor can be used to examine the request and response messages.

= 2] x|

Adenin Porl 81 |

Baop Ligtn Porl FI Hnallu-:u ool Port }enm r
St5%

Time Radqueat Host Tanrgit Host

Cone OWENDT 0503927 AM 127.0.01 0681
| Remiree &1

Faguast Responis
FOST feawis/Svockuocefervice. jus HTTFS1.0 I TTESL 0 200 O |
Comteme-Lengen: 440 Dace: Wed, 28 Zep 2001 1323923 GHT
fHozt: localhosat SraTus: 00
Content=Type: textrcal; chazset=utli=8 Ser=Cookiel: JSEIZTONIT=TolOl0eCO3S40838 2030l POSAL - VaEd b
Juthorization: Basic £N1loiEScGFeczls Serviec-Engine: Toacat Web Server/X. L [JSP L.l Serviec 2.

SOAPAcEicn: Turn:dmleeday-de l afed-Suate s fgetlusts Set=Cookie: JIESSICHID=Tsl0i0aC0I4206362 50031 9054, Paths ¢
Content-Type: text/xml; charsetsutf-8
cruml verSiass"L 07 enssdungs ITF-5%1 Casmeme-Lengeh: 400
<20AF-ENV: Envelops S30LF-BIV: encodingfoyles"hotp: iContent-Langasge: =n
< S0AP-ENV: Body
cnadzgecfuote xulnsrneda"urn xul today-delayed- | lohml versions"1.0" sncodings"ITF-8"%

cayabol sl oype="xad:avelng 00 S30AP-ERV: Exumlops JOAF-EFV: srcodingSoyle="hrrp: £/ achenes
< Fayaboly CE0AP-ENV I Eody>
s ge o Tes = <rEllgetfaoreRe sponss ¥nlng i nads"wen mlroday=de layed=¢ |
« FEOAF-EIW : Body <getfustefemlt el type="wedifloat "»86, 25
< FE0AF =ENV: Evre Lopes < fgenimseRe sl o

= < mes) getjuctefe sponass =

i Ll_l [l 3]

I ML Format Sve I Resend | Swaichs Laryoul ! Close

You'll notice that each request/response pair is given its own entry table at the top of the
window, allowing you to select which specific flow to examine. Below the table is the
request and response data. You can save the data to a file, ask t cpnon to try to make
the XML look nice (add linefeeds and spaces), switch between a side-by-side layout and a
top-bottom layout, or even ask it to resend the request data. When resending the data,
you are free to modify the data in the request side of the window before resending; thus,
you can make a change to test a server with new XML without having to change any
client code.

Summary

Because Axis is still under development and only at an alpha stage, you should consult
the Axis Web site and documentation for the latest features and APls. We hope this
chapter has provided you with a basic understanding of what Axis is, how it works, and
how you can use it for new Web services as well as leverage it to access existing IT
assets and resources with minimal work. In Chapter 5, we'll focus on how to use SOAP
(and in particular Axis) in some scenarios that go beyond simply invoking a Web service;
these scenarios are more like the real world and deal with the issues that companies face
every day.

Chapter 5. Using SOAP for e—Business
IN THIS CHAPTER

e Web Services Security

e Enterprise Application Integration

e Quality of Service

In Chapter 3, "Simple Object Access Protocol (SOAP)," you saw how SOAP enables
applications to interact with each other, and in Chapter 4, "Creating Web Services," you
saw that Axis is an example SOAP infrastructure. With SOAP, applications can be coupled

loosely—more importantly, in a decentralized manner. On the basis of such an
advantage, in this chapter we review a collection of topics that are required for starting a
serious e-Business with Web services.

First, we consider security, assuming that business-to-business (B2B) collaboration is
performed in terms of SOAP messaging. We will begin by discussing familiar technologies

such as HTTP Basic Authentication (BASIC-AUTH) wand Secure Socket Layer (SSL)

, then move to SOAP-specific security, such as SOAP Digital Signature mand

encryption. We'll also discuss Public Key Infrastructure(PKI) mas a basis for many
security technologies.

Then, we shift our focus to intranet applications that are configured to process incoming
SOAP messages, which might potentially produce response messages. This approach is

called Enterprise Application Integration (EAI) because typical enterprises have a
portfolio of existing applications that should be integrated properly to achieve additional

business goals. We will take Enterprise JavaBeans (EJBs) m Java Message Service

(IMS) mand Java 2 Platform Enterprise Edition (J2EE) mas a basis for integrating
applications.

Finally, we discuss technologies required for high-volume SOAP servers in terms of

Quality of Service (QoS) m Performance, scalability, and availability are important
issues whenever you're developing real applications. We will consider how existing
technologies in that area are adopted for developing scalable SOAP servers.

Web Services Security

e-Business relies on information exchange between trading partners over networks, often
the Internet. Therefore, there are always security risks, because messages could be
stolen, lost, or modified. Four security requirements must be addressed to ensure the
safety of information exchange among trading partners:

e Confidentiality guarantees that exchanged information is protected
against eavesdroppers.

e Authentication guarantees that access to e—Business applications and
data is restricted to only those who can provide the appropriate
proof of identity.

e Integrity refers to assurance that the message was not modified
accidentally or deliberately in transit.

e Non—repudiation guarantees that the sender of the message cannot deny
that he/she sent it.

Note that these requirements are related to cryptography because they concern how to
protect communicated data. Apart from cryptography, we must also consider protection
of resources such as data and applications in such a way that only appropriate entities
are allowed to access the particular resources. A fifth requirement is summarized as
follows:

e Authorization is a process to decide whether the identity can access
the particular resource.

In this section, we review a collection of security technologies that specifically address
information exchange among trading partners via SOAP messaging. Figure 5.1 depicts a
security architecture that you should keep in mind throughout this section.

Figure b.1. Security architecture for SOAP messaging.

S0OAP Security
Digital Signature
Encryplion o C_ u_n‘n_pf E{
: I
SAML I Resource :
|
E / I
= I
Monrepudiation % Autherization :
Service B
|
-\ I. g \ |
|
Transport Security : Resource |
|
Basic T I
Authentication
XKMS == XKMS
PKCS PKCS

\V4 W4

Fublic Key Infrastructure (PKIl)

We begin by reviewing well-known security technologies: BASIC-AUTH and SSL. They are
considered to be transport security, as shown in the figure.

Transport security is useful to some extent, but it fails to ensure non-repudiation and is
not enough when you have to include third-party intermediaries. SOAP security provides
transport-agnostic security measures. We will discuss digital signatures and encryption
for SOAP messages.

We will introduce a non-repudiation service that ensures the delivery of the message with
a timestamp. This notary third party is a good practical example of a SOAP intermediary

Focusing on the internal process within our example company, we will describe
authorization to protect resources by giving appropriate permissions to the accessing

entity. We will mainly discuss role-based access control and briefly show how it
can be implemented.

Finally, we will discuss Public Key Infrastructure (PKI), which provides a foundation to a
solution for the four risks: confidentiality, authentication, integrity, and non-repudiation.
Although PKI is a solid technology basis, it is fairly difficult to implement and use through
Public Key Cryptography Standards (PKCS). We will see an emerging standard, called

XML Key Management Services (XKMS) m which enables key management via XML.
Let's begin by establishing the example scenario we'll use in our code samples
throughout the chapter.

Example Scenario

In our discussion of security, we'll continue our SkatesTown example. SkatesTown's CTO,
Dean Caroll, is beginning to become concerned with security now that the business is
expanding. SkatesTown is doing business with a large number of companies, and most of
them are not Fortune-500 companies. Currently, SkatesTown's Web services are secured
only with SSL and BASIC-AUTH. Although Dean notices that the combination of the two is
not enough, he cannot think of a better mechanism in terms of security.

To ease Dean's concern, Al Rosen of Silver Bullet Consulting was asked to advise Dean
about what kind of security features to address in the next development phase. This was
not an easy task for Al either, because there are numerous security technologies and
specifications. It is not possible and not meaningful to cover all of them. Therefore, he
selected a fairly small number of security features and applied them to SkatesTown's
SOAP-based transactions, as we'll present throughout this chapter.

SSL and HTTP Basic Authentication

The most popular security method on the Internet is a combination of BASIC-AUTH and
SSL. This method is widely adopted in many B2C shopping sites such as Amazon.com
(http://www.amazon.com) because its configuration is fairly simple, but it still provides a
necessary security level for a small amount of transactions. Here, we review BASIC-AUTH
and SSL with examples of how to use them with Axis.

HTTP Basic Authentication

You probably have experienced being required to enter a user ID and password while
visiting a Web site. BASIC-AUTH is often called password authentication; its specification
is defined in RFC 2617 (BASIC-AUTH). The typical BASIC-AUTH interaction between a
Web browser and a Web server is illustrated in Figure 5.2.

Figure 5.2. Interaction protocol for basic authentication.

Web Browser Web Server

GET /protected/index.htm| HTTPM.0

HTTPM.0 401 Unauthorized
Wih-Authenticate: Basic realm = "Basic Authentication Arga®

Input password GET /protected/indes.itml HTTP/A.0
Authorization: Basic U2thdGVib2FyZFdhemVob3VzZ Tpdc2 vb2tlie GFtcGxl

HTTPA.0 200 OK

When the Web browser sends an HTTP request to access a protected Web resource, the
Web server returns an HTTP response, which includes the error code "401 Unauthorized"
and the following HTTP header:

WWw-Authenticate: Basic realm="Realm Name"
Realmm is a name given to a set of Web resources, and it is a unit to be protected.
Basic in front of realm indicates a type of authentication—in this case, BASI C- AUTH.

Based on this information, the Web browser shows a login dialog to the user. Then, the
Web browser sends an HTTP request again including the following HTTP header:

Authorization: Basic credential

Although the credential looks like encrypted text, it is logically plain text because its
format is simply UserName:Password encoded with Base64 m—for example,

U2t hdGVi b...in Figure 5.2 can be decoded to Skat eboar d\War ehouse: wsbookexanpl e.

The Web server authenticates the user with the user ID and password included in the
credential. If the given user ID and password are wsrong, "401 Unauthorized" is

returned. Moreover, the Web server has an access control list (ACL) that
specifies who can access what and checks whether the authenticated user can access the
Web resource. If the check succeeds, then "200 OK" is returned; otherwise, "401
Unauthorized" is returned.

BASIC-AUTH in Axis

In this section, we review how to use BASI C- AUTH in Axis. On the server side, BASI C-
AUTH is performed by middleware such as a Web server or servlet container. We do not

have to modify the server programs at all, but change the server configuration. For
Tomcat, we only modify its web. xml configuration file, as shown in Listing 5.1.

Listing 5.1 Configuration for Basic Authentication in Tomcat

<web-app>
<display-name>Basic Authentication Sample</display-name>

<servlet>
<servlet-name>AxisServletProtected</servlet-name>
<display-name>Apache-Axis Servlet</display-name>
<servlet-class>org.apache.axis.transport.http.AxisServlet</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>AxisServletProtected</servlet-name>
<url-pattern>services/protected</url-pattern>
</servlet-mapping>
<security-constraint>
<web-resource-collection>
<web-resource-name>Protected Area</web-resource-name>
<I-- Define the context-relative URL(S) to be protected -->
<url-pattern>/services/protected</url-pattern>
<I-- If you list http methods, only those methods are protected -->
<http-method>GET</http-method>
<http-method>POST</http-method>
</web-resource-collection>
<auth-constraint>
<I-- Anyone with one of the listed roles may access this area -->
<role-name>MyCustomer</role-name>
</auth-constraint>
</security-constraint>
<login-config>
<auth-method>BASIC</auth-method>
<realm-name>Protected Area</realm-name>
</login-config>
</web-app>

The security-constraint element defines a realm and ACL. web-resource-col | ection
specifies a collection of Web resources, each located at ur | - pat t er n, accessed by an
HTTP method like POST. aut h- const rai nt specifies who can access the realm. | ogi n-
conf i g specifies authentication method on the realm—for example, BASIC-AUTH
(indicated by BASIC).

On the client side, we have to make sure that the user ID and password are properly
embedded in the HTTP request. Axis provides a basic function for performing BASIC-

AUTH, so the development of the client is fairly easy. Listing 5.2 shows a POSubmi ssi on
program that can access servers via BASIC-AUTH.

Listing 5.2 POSubm ssi on that Performs Basic Authentication

package ch5.ex1;

import java.io.*;
import org.apache.axis.encoding.SerializationContext;

import org.apache.axis.message.SOAPEnvelope;
import org.apache.axis.message.SOAPBodyElement;
import org.apache.axis.client.ServiceClient;
import org.apache.axis.Message;

import org.apache.axis.MessageContext;

/**
* Purchase order submission client
*/
public class POSubmission
{
/**
* Target service URL
*/
private String url;
private String userid;
private String password;
/**
* Create a client with a target URL
*/
public POSubmission(String targetUrl, String userid, String password)
{
this.url = targetUrl;
this.userid = userid;
this.password = password;

}

/**
* Invoke the PO submission web service
*
* @param po Purchase order document
* @return Invoice document
* @exception Exception 1/0 error or Axis error
*/
public String invoke(InputStream po) throws Exception
{
// Send the message
ServiceClient client = new ServiceClient(url);
client.setRequestMessage(new Message(po, true));
call.set(Transport.USER, userid);
call.set(Transport.PASSWORD, password);
client.invoke();

// Retrieve the response body

MessageContext ctx = client.getMessageContext();
Message outMsg = ctx.getResponseMessage();
SOAPEnvelope envelope = outMsg.getAsSOAPEnvelope();
SOAPBodyElement body = envelope.getFirstBody();

// Get the XML from the body

StringWriter w = new StringWriter();

SerializationContext sc = new SerializationContext(w, ctx);
body.output(sc);

return w.toString();

}

The difference from the original POSubni ssi on (Listing 3.12) is shown in bold. Member
variables useri d and passwor d are added, and they are set to the Servi ceCl i ent object
in the i nvoke() method. As you can imagine, these values are used to create an

Aut hori zat i on header, with the base64 encoding of

Skat eboar d\War ehouse: wsbookexanpl e, which is included in HTTP request. Unlike the
challenge-response protocol in Figure 5.2, the HTTP request here is accepted directly
because the Aut hori zat i on header is included.

The new POSubni ssi on sample can be executed with our example navigator shipped with
this book. Go to / ch5/ ex1/ basi caut h. | sp, specify a user ID and password, and click the
Submit PO button (see Figure 5.3). By entering the values SkateboardWarehouse and
wsbookexample, you can successfully submit the purchase order. Otherwise, you will
receive an error message.

Figure b5.3. Example navigator GUI for basic authentication.
Examples > Chapter 5 > Example | [Source |

HTTP Basic Authentication]

Thiz example implements a web form driver for SkatesTown's purchase order submission client. Yon
can modify the user id, password and the purchase order on the form if vou wish (the defaull one is
from Chapter 5).

See "wehomml” to understand what the server-side configuration is. In case of Apache Tomcat, the
user id and password is configured in <jakarta-tomeat>/conftomecat-users_xml.

1. Deploying a POSubmission service

Deploy POSubmission |

2. Sending a PO request

UserID |SkateboardWarshowse X)) SkateboardWarchouse
Password fusbcokerample ex) wehookexample

<po xmlos="hitp!//vew.skatescown, con' ned/ po™ 1d="S0183" submitced="Z001-12-06": |
€balliTo>
<oompany>The Zkateboazd Uarehouse</companys
<stEaat>0ng Vatehouss Pack</stiest>
<grreet>Building 17</ocEcET>
<oityrHoaton</cityr
<mtaterMkd/ srates
cportaltode>01 775 post sl Sodes -

Secure Socket Layer (SSL)

BASIC-AUTH is useful, but on its own, it is not secure enough because the user ID and
password are virtually unprotected. That is, an attacker can easily eavesdrop on the wire
and either take the password to impersonate the user or tamper with the transmitted
data.

SSL is a protocol for transmitting data in a secure way using encryption methods. With
SSL, you can fulfill three of the five security requirements mentioned earlier:

confidentiality, authentication, and integrity. You are probably familiar which HTTPSw,

which is HTTP over SSL. However, other application layer protocols such as TELNET m

and FTP mcan be performed over SSL because SSL is located between the application
layer and the transport layer (TCP).

In order to establish a secure communication channel, the server and client have to
authenticate each other. With SSL, the client can authenticate the server (server
authentication) and vice versa (client authentication). Currently, client authentication is

not common because it requires the client to have a certificate wissued by a certificate

authority (CA) msuch as VeriSign. Instead, client authentication is often performed
with BASIC-AUTH for client convenience. However, in Web services of the future, not

only human clients but also business applications will also make requests, so mutual

authentication by SSL will become common.

Using SSL with Axis

In this section, we review how to use SSL with Axis and address the combination of SSL
server authentication and BASIC-AUTH. SSL is based on a public key cryptography
system, also called an asymmetrical key cryptography system, in which separate keys
are used for encryption and decryption. In the case of server authentication, the server

has a private key to decrypt messages from the client, and the client has the

server's public key mfor encrypting messages it sends after the session is established.

In the case of secret key encryption, more effort is required: Storage of the secret key by
each communications partner, as well as the (initial) distribution of the secret key to
those partners, must be secured. This can be a daunting and error-prone task.

You can create private and public keys using the keyt ool mprogram provided with the
JDK. If you add the - genkey option, the keyt ool command generates a private key and
its public key (the command is broken here because of printing constraints, but it
actually appears on a single line):

keytool -genkey -keyalg RSA —sigalg MD5withRSA -keysize 1024 -alias SkatesTown -
dname

"CN=Purchase Order Service, OU=Purchase Order Department, O=SkatesTown, L=...,
S=NY,

C=US" -keypass wsbookexample -storepass wshookexample —keystore SkatesTown.ks -
storetype

JKS

The options are summarized in Table 5.1. The generated private key and related

information are stored in a keystore file, and keystore file information can also
be specified in the command (for example, - keyst ore and - st or et ype).

The - keyal g and - keysi ze options specify the specification of the private key. - dnane

specifies an identification (X.500 Distinguished Name) for the key, and -al i as
indicates an alias for the key (unique within the keystore). In addition, a password for
accessing the key can be specified with - keypass (by default, it is the same as the
keystore password).

A public key corresponding to the private key is also generated with this command, and
is included in a certificate, which will be published to the client. Note that the certificate
itself is described in more detail in PKI section. The certificate must be signed in order to
demonstrate integrity. The signature algorithm is specified by the - si gal g option.
Although we would like to specify who signed (or will sign) the certificate, that

information cannot be specified with keyt ool . In this case, the certificate is signed by the
private key that is generated, making it a self-signed certificate. A self-signed certificate
is not practical for real use, but is sufficiently useful for the purpose of experimenting

with SSL.
Table 5.1. Options for the keyt ool Command

\Opﬁon \Vmue \MeaMng

- keyal g RSA Format of the private key is RSA

- keysi ze 1024 Key size is 1024 bits

-alias Skat esTown Key alias is SkatesTown

- dnane CN=Pur chase Order Identification of the key is CN=Purchase

Service,... Order Service, ...

- keypass wsbookexanpl e Password for the private key is
wsbookexample

~sigalg MDSWE t hRSA Method for signing certificate is MD5 o«
with RSA

-storepass \wsbookexanpl e Password for the keystore file is
wsbookexample

-keystore Skat esTown. ks Keystore file name is Skat esTown. ks

- JKS i i

Keyst or et ype Keystore file type is Java Key Store (JKS)

The generated certificate can be extracted with the following keyt ool command:

keytool -export -alias SkatesTown -file SkatesTown.cer -keystore SkatesTown.ks -

storepass
wshookexample

The extracted certificate is stored in Skat esTown. cer . Next, we import the server
certificate to a client keystore using the following command:

keytool -import -trustcacerts -alias SkatesTown -file SkatesTown.cer -keystore
SkateboardWarehouse.ks -storepass wshookexample -storetype JKS

The client uses the imported certificate to trust the server that owns that certificate.
When a client establishes a session, the server sends a server certificate to